Improving geothermal power plants with a binary cycle
NASA Astrophysics Data System (ADS)
Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.
2015-12-01
The recent development of binary geothermal technology is analyzed. General trends in the introduction of low-temperature geothermal sources are summarized. The use of single-phase low-temperature geothermal fluids in binary power plants proves possible and expedient. The benefits of power plants with a binary cycle in comparison with traditional systems are shown. The selection of the working fluid is considered, and the influence of the fluid's physicochemical properties on the design of the binary power plant is discussed. The design of binary power plants is based on the chemical composition and energy potential of the geothermal fluids and on the landscape and climatic conditions at the intended location. Experience in developing a prototype 2.5 MW Russian binary power unit at Pauzhetka geothermal power plant (Kamchatka) is outlined. Most binary systems are designed individually for a specific location. Means of improving the technology and equipment at binary geothermal power plants are identified. One option is the development of modular systems based on several binary systems that employ the heat from the working fluid at different temperatures.
Equipment of the binary-cycle geothermal power unit at the Pauzhet geothermal power station
NASA Astrophysics Data System (ADS)
Tomarov, G. V.; Nikol'skii, A. I.; Semenov, V. N.; Shipkov, A. A.
2014-06-01
The equipment of and technological processes in the pilot industrial model of the domestically produced binary-cycle geothermal power unit operating on the discharge separate at the Pauzhet geothermal power station are considered. The development principles, the design and operational features, and the data on selecting the metal in manufacturing the main equipment of the 2.5-MW binary power unit of the geothermal power station are described.
Choice of optimal working fluid for binary power plants at extremely low temperature brine
NASA Astrophysics Data System (ADS)
Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.
2016-12-01
The geothermal energy development problems based on using binary power plants utilizing lowpotential geothermal resources are considered. It is shown that one of the possible ways of increasing the efficiency of heat utilization of geothermal brine in a wide temperature range is the use of multistage power systems with series-connected binary power plants based on incremental primary energy conversion. Some practically significant results of design-analytical investigations of physicochemical properties of various organic substances and their influence on the main parameters of the flowsheet and the technical and operational characteristics of heat-mechanical and heat-exchange equipment for binary power plant operating on extremely-low temperature geothermal brine (70°C) are presented. The calculation results of geothermal brine specific flow rate, capacity (net), and other operation characteristics of binary power plants with the capacity of 2.5 MW at using various organic substances are a practical interest. It is shown that the working fluid selection significantly influences on the parameters of the flowsheet and the operational characteristics of the binary power plant, and the problem of selection of working fluid is in the search for compromise based on the priorities in the field of efficiency, safety, and ecology criteria of a binary power plant. It is proposed in the investigations on the working fluid selection of the binary plant to use the plotting method of multiaxis complex diagrams of relative parameters and characteristic of binary power plants. Some examples of plotting and analyzing these diagrams intended to choose the working fluid provided that the efficiency of geothermal brine is taken as main priority.
Design and optimization of geothermal power generation, heating, and cooling
NASA Astrophysics Data System (ADS)
Kanoglu, Mehmet
Most of the world's geothermal power plants have been built in 1970s and 1980s following 1973 oil crisis. Urgency to generate electricity from alternative energy sources and the fact that geothermal energy was essentially free adversely affected careful designs of plants which would maximize their performance for a given geothermal resource. There are, however, tremendous potentials to improve performance of many existing geothermal power plants by retrofitting, optimizing the operating conditions, re-selecting the most appropriate binary fluid in binary plants, and considering cogeneration such as a district heating and/or cooling system or a system to preheat water entering boilers in industrial facilities. In this dissertation, some representative geothermal resources and existing geothermal power plants in Nevada are investigated to show these potentials. Economic analysis of a typical geothermal resource shows that geothermal heating and cooling may generate up to 3 times as much revenue as power generation alone. A district heating/cooling system is designed for its incorporation into an existing 27 MW air-cooled binary geothermal power plant. The system as designed has the capability to meet the entire heating needs of an industrial park as well as 40% of its cooling needs, generating potential revenues of $14,040,000 per year. A study of the power plant shows that evaporative cooling can increase the power output by up to 29% in summer by decreasing the condenser temperature. The power output of the plant can be increased by 2.8 percent by optimizing the maximum pressure in the cycle. Also, replacing the existing working fluid isobutane by butane, R-114, isopentane, and pentane can increase the power output by up to 2.5 percent. Investigation of some well-known geothermal power generation technologies as alternatives to an existing 12.8 MW single-flash geothermal power plant shows that double-flash, binary, and combined flash/binary designs can increase the net power output by up to 31 percent, 35 percent, and 54 percent, respectively, at optimum operating conditions. An economic comparison of these designs appears to favor the combined flash/binary design, followed by the double-flash design.
Thermodynamics Analysis of Binary Plant Generating Power from Low-Temperature Geothermal Resource
NASA Astrophysics Data System (ADS)
Maksuwan, A.
2018-05-01
The purpose in this research was to predict tendency of increase Carnot efficiency of the binary plant generating power from low-temperature geothermal resource. Low-temperature geothermal resources or less, are usually exploited by means of binary-type energy conversion systems. The maximum efficiency is analyzed for electricity production of the binary plant generating power from low-temperature geothermal resource becomes important. By using model of the heat exchanger equivalent to a power plant together with the calculation of the combined heat and power (CHP) generation. The CHP was solved in detail with appropriate boundary originating an idea from the effect of temperature of source fluid inlet-outlet and cooling fluid supply. The Carnot efficiency from the CHP calculation was compared between condition of increase temperature of source fluid inlet-outlet and decrease temperature of cooling fluid supply. Result in this research show that the Carnot efficiency for binary plant generating power from low-temperature geothermal resource has tendency increase by decrease temperature of cooling fluid supply.
Entropy production and optimization of geothermal power plants
NASA Astrophysics Data System (ADS)
Michaelides, Efstathios E.
2012-09-01
Geothermal power plants are currently producing reliable and low-cost, base load electricity. Three basic types of geothermal power plants are currently in operation: single-flashing, dual-flashing, and binary power plants. Typically, the single-flashing and dual-flashing geothermal power plants utilize geothermal water (brine) at temperatures in the range of 550-430 K. Binary units utilize geothermal resources at lower temperatures, typically 450-380 K. The entropy production in the various components of the three types of geothermal power plants determines the efficiency of the plants. It is axiomatic that a lower entropy production would improve significantly the energy utilization factor of the corresponding power plant. For this reason, the entropy production in the major components of the three types of geothermal power plants has been calculated. It was observed that binary power plants generate the lowest amount of entropy and, thus, convert the highest rate of geothermal energy into mechanical energy. The single-flashing units generate the highest amount of entropy, primarily because they re-inject fluid at relatively high temperature. The calculations for entropy production provide information on the equipment where the highest irreversibilities occur, and may be used to optimize the design of geothermal processes in future geothermal power plants and thermal cycles used for the harnessing of geothermal energy.
World Geothermal Congress WGC-2015
NASA Astrophysics Data System (ADS)
Tomarov, G. V.; Shipkov, A. A.
2016-08-01
This article discusses materials and results of the World Geothermal Congress that was held in Melbourne (Australia) from April 19 to April 25, 2015. Information on the extent and technological features of utilization of geothermal resources for heat supply and power production, as well as in other economic areas, is given. A stable growth in the capacity and number of geothermal power systems that is determined by ecological cleanliness, economic efficiency, and the highest (among renewable energy sources) indicators of installed capacity utilization is shown. It was noted that combined schemes of geothermal power plants (GPPs), such as turbine units of different type (binary units, units with one or two separation pressures, etc.), have become more frequently used to increase the efficiency of utilization of geothermal heat carrier. Actual data determining room heating systems with the total worldwide capacity of nearly 50000 MW thermal (MWt) as the most currently significant segment of consumption of geothermal waters are given. In addition, geothermal resources are also utilized in soil pumps, balneological and sports basins, greenhouse complexes, and other manufactures. It was noted that geological studies were carried out in more than 40 countries, with the development of methods of simulation of tanks for the existing and new geothermal fields. Trends of development and the role of geothermal power engineering in the energy supply of many countries are shown. It was shown that prospects for the development of geothermal power generation are significantly associated with utilization of low-temperature geothermal sources in binary power generating units, as well as with the increase in installed capacity of operating geothermal power plants (GPPs) without drilling additional wells, i.e., by using waste geothermal heat carrier in binary-cycle or combined-cycle power plants. The article provides data on a pilot binary power unit at Pauzhetka GPP and on a promising Russian geothermal project to increase the installed capacity of Mutnovsk GPP (whose current capacity is 50.0 (2 × 25.0) MW of electric power) by 25% by constructing a combined binary-cycle power generating unit on the basis of waste separate utilization.
Heber Binary Project. Binary Cycle Geothermal Demonstration Power Plant (RP1900-1)
NASA Astrophysics Data System (ADS)
Lacy, R. G.; Nelson, T. T.
1982-12-01
The Heber Binary Project (1) demonstrates the potential of moderate temperature (below 410 F) geothermal energy to produce economic electric power with binary cycle conversion technology; (2) allows the scaling up and evaluation of the performance of binary cycle technology in geothermal service; (3) establishes schedule, cost and equipment performance, reservoir performance, and the environmental acceptability of such plants; and (4) resolves uncertainties associated with the reservoir performance, plant operation, and economics.
Investigation of waste heat recovery of binary geothermal plants using single component refrigerants
NASA Astrophysics Data System (ADS)
Unverdi, M.
2017-08-01
In this study, the availability of waste heat in a power generating capacity of 47.4 MW in Germencik Geothermal Power Plant has been investigated via binary geothermal power plant. Refrigerant fluids of 7 different single components such as R-134a, R-152a, R-227ea, R-236fa, R-600, R-143m and R-161 have been selected. The binary cycle has been modeled using the waste heat equaling to mass flow rate of 100 kg/s geothermal fluid. While the inlet temperature of the geothermal fluid into the counter flow heat exchanger has been accepted as 110°C, the outlet temperature has been accepted as 70°C. The inlet conditions have been determined for the refrigerants to be used in the binary cycle. Finally, the mass flow rate of refrigerant fluid and of cooling water and pump power consumption and power generated in the turbine have been calculated for each inlet condition of the refrigerant. Additionally, in the binary cycle, energy and exergy efficiencies have been calculated for 7 refrigerants in the availability of waste heat. In the binary geothermal cycle, it has been found out that the highest exergy destruction for all refrigerants occurs in the heat exchanger. And the highest and lowest first and second law efficiencies has been obtained for R-600 and R-161 refrigerants, respectively.
Small-scale Geothermal Power Plants Using Hot Spring Water
NASA Astrophysics Data System (ADS)
Tosha, T.; Osato, K.; Kiuchi, T.; Miida, H.; Okumura, T.; Nakashima, H.
2013-12-01
The installed capacity of the geothermal power plants has been summed up to be about 515MW in Japan. However, the electricity generated by the geothermal resources only contributes to 0.2% of the whole electricity supply. After the catastrophic earthquake and tsunami devastated the Pacific coast of north-eastern Japan on Friday, March 11, 2011, the Japanese government is encouraging the increase of the renewable energy supply including the geothermal. It needs, however, more than 10 years to construct the geothermal power plant with more than 10MW capacity since the commencement of the development. Adding the problem of the long lead time, high temperature fluid is mainly observed in the national parks and the high quality of the geothermal resources is limited. On the other hand hot springs are often found. The utilisation of the low temperature hot water becomes worthy of notice. The low temperature hot water is traditionally used for bathing and there are many hot springs in Japan. Some of the springs have enough temperature and enthalpy to turn the geothermal turbine but a new technology of the binary power generation makes the lower temp fluid to generate electricity. Large power generators with the binary technology are already installed in many geothermal fields in the world. In the recent days small-scale geothermal binary generators with several tens to hundreds kW capacity are developed, which are originally used by the waste heat energy in an iron factory and so on. The newly developed binary unit is compact suitable for the installation in a Japanese inn but there are the restrictions for the temperature of the hot water and the working fluid. The binary power unit using alternatives for chlorofluorocarbon as the working fluid is relatively free from the restriction. KOBELCO, a company of the Kobe Steel Group, designed and developed the binary power unit with an alternative for chlorofluorocarbon. The unit has a 70 MW class electric generator. Three units have been installed in Obama Hot Spring area, Nagasaki Prefecture, where about 15,000 tonnes of hot water are produced in a day and more than 35% of the hot water flow directly to the sea. Another demonstration experiments are also conducted in several hot spring areas. In this study we will review several examples to utilise low temperature hot springs in Japan. Binary Power Unit at Obama (Fujino, 2013)
NASA Astrophysics Data System (ADS)
Alkhasov, A. B.; Alkhasova, D. A.
2018-02-01
The article substantiates the possibility of efficiently harnessing the geothermal resources available in the North Caucasian region through constructing binary geothermal power plants (GeoTPPs) using idle petroleum and gas wells. The power capacities of GeoTPPs are evaluated, and the basic characteristics of these power plants in case of constructing them in the promising areas are determined. The overall useful GeoTPP capacity equal to approximately 330 MW can be obtained from using the entire fleet of idle wells available in these areas. Diagrams confirming the possibility of reaching the optimal flowrate of geothermal heat carrier circulating in the geothermal circulation system loop are presented. This flowrate corresponds to a binary GeoTPP's maximal useful power output. The article shows, taking the Ternair geothermal field as an example, that it is inefficient to use medium-enthalpy thermal waters for generating energy at a binary GeoTPP involving reinjection of a spent heat carrier. It is shown that good prospects can be expected from applying a hybrid geothermal and combined-cycle technology, by means of which it is possible to use lowenthalpy (80-100°C) thermal waters for generating electricity in a highly efficient manner. In accordance with such technology, geothermal heat is used in the binary GeoTPP cycle for heating low-boiling working fluid to its evaporation temperature. The working fluid is evaporated and superheated by using the heat of exhaust gases from a gas turbine power unit. Owing to combined use of the thermal water heat potential and the heat of exhaust gases from a gas turbine power plant in a hybrid process system, it becomes possible to obtain high power performance indicators of hybrid geothermal and combined-cycle power plants. This conclusion is confirmed by the results from numerical evaluations carried out as applied to the Ternair geothermal field. With the fully harnessed resource potential of the Ternair field, the total capacity of hybrid geothermal and combined-cycle power plants may reach 60 MW, a level that would make it possible to relieve a significant part of energy, environmental, economic, and social problems faced by the city of Makhachkala.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Corrie E.; Harto, Christopher B.; Schroeder, Jenna N.
This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operationalmore » water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges. This report is divided into nine chapters. Chapter 1 gives the background of the project and its purpose, which is to assess the water consumption of geothermal technologies and identify areas where water availability may present a challenge to utility-scale geothermal development. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or nongeothermal aquifer that is not returned to that resource. The geothermal electricity generation technologies evaluated in this study include conventional hydrothermal flash and binary systems, as well as EGSs that rely on engineering a productive reservoir where heat exists, but where water availability or permeability may be limited. Chapter 2 describes the approach and methods for this work and identifies the four power plant scenarios evaluated: a 20-MW EGS binary plant, a 50-MW EGS binary plant, a 10-MW hydrothermal binary plant, and a 50-MW hydrothermal flash plant. The methods focus on (1) the collection of data to improve estimation of EGS stimulation volumes, aboveground operational consumption for all geothermal technologies, and belowground operational consumption for EGS; and (2) the mapping of the geothermal and water resources of the western United States to assist in the identification of potential water challenges to geothermal growth. Chapters 3 and 4 present the water requirements for the power plant life cycle. Chapter 3 presents the results of the current data collection effort, and Chapter 4 presents the normalized volume of fresh water consumed at each life cycle stage per lifetime energy output for the power plant scenarios evaluated. Over the life cycle of a geothermal power plant, from construction through 30 years of operation, the majority of water is consumed by plant operations. For the EGS binary scenarios, where dry cooling was assumed, belowground operational water loss is the greatest contributor depending upon the physical and operational conditions of the reservoir. Total life cycle water consumption requirements for air-cooled EGS binary scenarios vary between 0.22 and 1.85 gal/kWh, depending upon the extent of belowground operational water consumption. The air-cooled hydrothermal binary and flash plants experience far less fresh water consumption over the life cycle, at 0.04 gal/kWh. Fresh water requirements associated with air- cooled binary operations are primarily from aboveground water needs, including dust control, maintenance, and domestic use. Although wet-cooled hydrothermal flash systems require water for cooling, these plants generally rely upon the geofluid, fluid from the geothermal reservoir, which typically has high salinity and total dissolved solids concentration and is much warmer than normal groundwater sources, for their cooling water needs; thus, while there is considerable geofluid loss at 2.7 gal/kWh, fresh water consumption during operations is similar to that of aircooled binary systems. Chapter 5 presents the assessment of water demand for future growth in deployment of utility-scale geothermal power generation. The approach combines the life cycle analysis of geothermal water consumption with a geothermal supply curve according to resource type, levelized cost of electricity (LCOE), and potential growth scenarios. A total of 17 growth scenarios were evaluated. In general, the scenarios that assumed lower costs for EGSs as a result of learning and technological improvements resulted in greater geothermal potential, but also significantly greater water demand due to the higher water consumption by EGSs. It was shown, however, that this effect could be largely mitigated if nonpotable water sources were used for belowground operational water demands. The geographical areas that showed the highest water demand for most growth scenarios were southern and northern California, as well as most of Nevada. In addition to water demand by geothermal power production, Chapter 5 includes data on water availability for geothermal development areas. A qualitative analysis is included that identifies some of the basins where the limited availability of water is most likely to affect the development of geothermal resources. The data indicate that water availability is fairly limited, especially under drought conditions, in most of the areas with significant near- and medium-term geothermal potential. Southern California was found to have the greatest potential for water-related challenges with its combination of high geothermal potential and limited water availability. The results of this work are summarized in Chapter 6. Overall, this work highlights the importance of utilizing dry cooling systems for binary and EGS systems and minimizing fresh water consumption throughout the life cycle of geothermal power development. The large resource base for EGSs represents a major opportunity for the geothermal industry; however, depending upon geology, these systems can require large quantities of makeup water due to belowground reservoir losses. Identifying potential sources of compatible degraded or low-quality water for use for makeup injection for EGS and flash systems represents an important opportunity to reduce the impacts of geothermal development on fresh water resources. The importance of identifying alternative water sources for geothermal systems is heightened by the fact that a large fraction of the geothermal resource is located in areas already experiencing water stress. Chapter 7 is a glossary of the technical terms used in the report, and Chapters 8 and 9 provide references and a bibliography, respectively.« less
Investment and operating costs of binary cycle geothermal power plants
NASA Technical Reports Server (NTRS)
Holt, B.; Brugman, J.
1974-01-01
Typical investment and operating costs for geothermal power plants employing binary cycle technology and utilizing the heat energy in liquid-dominated reservoirs are discussed. These costs are developed as a function of reservoir temperature. The factors involved in optimizing plant design are discussed. A relationship between the value of electrical energy and the value of the heat energy in the reservoir is suggested.
Alternative Geothermal Power Production Scenarios
Sullivan, John
2014-03-14
The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.
Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendt, Daniel; Mines, Greg; Turchi, Craig
There are numerous technical merits associated with a renewable geothermal-solar hybrid plant concept. The performance of air-cooled binary plants is lowest when ambient temperatures are high due to the decrease in air-cooled binary plant performance that occurs when the working fluid condensing temperature, and consequently the turbine exhaust pressure, increases. Electrical power demand is generally at peak levels during periods of elevated ambient temperature and it is therefore especially important to utilities to be able to provide electrical power during these periods. The time periods in which air-cooled binary geothermal power plant performance is lowest generally correspond to periods ofmore » high solar insolation. Use of solar heat to increase air-cooled geothermal power plant performance during these periods can improve the correlation between power plant output and utility load curves. While solar energy is a renewable energy source with long term performance that can be accurately characterized, on shorter time scales of hours or days it can be highly intermittent. Concentrating solar power (CSP), aka solar-thermal, plants often incorporate thermal energy storage to ensure continued operation during cloud events or after sunset. Hybridization with a geothermal power plant can eliminate the need for thermal storage due to the constant availability of geothermal heat. In addition to the elimination of the requirement for solar thermal storage, the ability of a geothermal/solar-thermal hybrid plant to share a common power block can reduce capital costs relative to separate, stand-alone geothermal and solar-thermal power plant installations. The common occurrence of long-term geothermal resource productivity decline provides additional motivation to consider the use of hybrid power plants in geothermal power production. Geothermal resource productivity decline is a source of significant risk in geothermal power generation. Many, if not all, geothermal resources are subject to decreasing productivity manifested in the form of decreasing production fluid temperature, flow rate, or both during the life span of the associated power generation project. The impacts of geothermal production fluid temperature decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant efficiency. The impact of resource productivity decline on power generation project economics can be equally detrimental. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contracts in place may be subject to significant economic penalties if power generation falls below a specified default level. While the magnitude of PPA penalties varies on a case-by-case basis, it is not unrealistic for these penalties to be on the order of the value of the deficit power sales such that the utility may purchase the power elsewhere. This report evaluates the use of geothermal/solar-thermal hybrid plant technology for mitigation of resource productivity decline, which has not been a primary topic of investigation in previous analyses in the open literature.« less
Dixie Valley Binary Cycle Production Data 2013 YTD
Lee, Vitaly
2013-10-18
Proving the technical and economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the Dixie Valley Geothermal Power Plant. Monthly data for Jan 2013-September 2013
GEOTHERMAL / SOLAR HYBRID DESIGNS: USE OF GEOTHERMAL ENERGY FOR CSP FEEDWATER HEATING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig Turchi; Guangdong Zhu; Michael Wagner
2014-10-01
This paper examines a hybrid geothermal / solar thermal plant design that uses geothermal energy to provide feedwater heating in a conventional steam-Rankine power cycle deployed by a concentrating solar power (CSP) plant. The geothermal energy represents slightly over 10% of the total thermal input to the hybrid plant. The geothermal energy allows power output from the hybrid plant to increase by about 8% relative to a stand-alone CSP plant with the same solar-thermal input. Geothermal energy is converted to electricity at an efficiency of 1.7 to 2.5 times greater than would occur in a stand-alone, binary-cycle geothermal plant usingmore » the same geothermal resource. While the design exhibits a clear advantage during hybrid plant operation, the annual advantage of the hybrid versus two stand-alone power plants depends on the total annual operating hours of the hybrid plant. The annual results in this draft paper are preliminary, and further results are expected prior to submission of a final paper.« less
Comparison of geothermal power conversion cycles
NASA Technical Reports Server (NTRS)
Elliott, D. G.
1976-01-01
Geothermal power conversion cycles are compared with respect to recovery of the available wellhead power. The cycles compared are flash steam, in which steam turbines are driven by steam separated from one or more flash stages; binary, in which heat is transferred from the brine to an organic turbine cycle; flash binary, in which heat is transferred from flashed steam to an organic turbine cycle; and dual steam, in which two-phase expanders are driven by the flashing steam-brine mixture and steam turbines by the separated steam. Expander efficiencies assumed are 0.7 for steam turbines, 0.8 for organic turbines, and 0.6 for two-phase expanders. The fraction of available wellhead power delivered by each cycle is found to be about the same at all brine temperatures: 0.65 with one stage and 0.7 with four stages for dual stream; 0.4 with one stage and 0.6 with four stages for flash steam; 0.5 for binary; and 0.3 with one stage and 0.5 with four stages for flash binary.
Geothermal Electricity Production Basics | NREL
. There are three types of geothermal power plants: dry steam, flash steam, and binary cycle. Photo of a California. Dry Steam Dry steam power plants draw from underground resources of steam. The steam is piped . Since Yellowstone is protected from development, the only dry steam plants in the country are at The
The 125 MW Upper Mahiao geothermal power plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forte, N.
1996-12-31
The 125 MW Upper Mahiao power plant, the first geothermal power project to be financed under a Build-Own-Operate-and-Transfer (BOOT) arrangement in the Philippines, expected to complete its start-up testing in August of this year. This plant uses Ormat`s environmentally benign technology and is both the largest geothermal steam/binary combined cycle plant as well as the largest geothermal power plant utilizing air cooled condensers. The Ormat designed and constructed plant was developed under a fast track program, with some two years from the April 1994 contract signing through design, engineering, construction and startup. The plant is owned and operated by amore » subsidiary of CalEnergy Co., Inc. and supplies power to PNOC-Energy Development Corporation for the National Power Corporation (Napocor) national power grid in the Philippines.« less
Downwell pump reliability: Geothermal experience update: Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, P.F.
1988-01-01
Geothermal resources with temperatures between 250/sup 0/ and 360/sup 0/F (121/sup 0/C and 182/sup 0/C) are prime candidates for binary-cycle power generation, and constitute about 80% of the power-capable resources in the United States. The successful exploitation of these resources requires reliable high-capacity downwell brine production pumps, but earlier experience showed that high-capacity, high-temperature geothermal production pumps had many problems which resulted in a mean time-to-failure (MTTF) of less than 1000 h. However, steady progress has been made since 1981, and a large body of experience has been acquired by three geothermal binary plants. This survey of high-temperature geothermal downwellmore » pump users and manufacturers updates a prior survey (AP-3572) completed in early 1983. This survey traces the development of lineshaft pump technology from the late 1970s to the present (mid-1987), detailing the advances in design, materials selection, and operating practices. Case histories of 72 lineshaft pumps installed at three geothermal binary plants since late 1981 are documented, including some detailed cause of failure reports. In the recent past, pump lives in excess of 7000 h have become common, but a high continuing rate of premature failures resulted in a mean time-to-failure (MTTF) of about 5000 h. Based on recent advances which appear likely to eliminate most premature failures, the estimated near-term MTTF will be on the order of 8000 h. The survey found almost no development of high-temperature geothermal electric submersible pumps (ESP's) or close-coupled downwell hydraulic turbopumps, and concluded that considerable development and demonstration will be needed before these technologies are able to compete with existing high-temperature geothermal lineshaft pump technology. 36 refs., 10 figs., 25 tabs.« less
Advanced binary geothermal power plants: Limits of performance
NASA Astrophysics Data System (ADS)
Bliem, C. J.; Mines, G. L.
1991-01-01
The Heat Cycle Research Program is investigating potential improvements to power cycles utilizing moderate temperature geothermal resources to produce electrical power. Investigations have specifically examined Rankine cycle binary power systems. Binary Rankine cycles are more efficient than the flash steam cycles at moderate resource temperature, achieving a higher net brine effectiveness. At resource conditions similar to those at the Heber binary plant, it has been shown that mixtures of saturated hydrocarbons (alkanes) or halogenated hydrocarbons operating in a supercritical Rankine cycle gave improved performance over Rankine cycles with the pure working fluids executing single or dual boiling cycles or supercritical cycles. Recently, other types of cycles have been proposed for binary geothermal service. The feasible limits on efficiency of a plant given practical limits on equipment performance is explored and the methods used in these advanced concept plants to achieve the maximum possible efficiency are discussed. (Here feasible is intended to mean reasonably achievable and not cost effective.) No direct economic analysis was made because of the sensitivity of economic results to site specific input. The limit of performance of three advanced plants were considered. The performance predictions were taken from the developers of each concept. The advanced plants considered appear to be approaching the feasible limit of performance. Ultimately, the plant designer must weigh the advantages and disadvantages of the the different cycles to find the best plant for a given service. In addition, a standard is presented of comparison of the work which has been done in the Heat Cycle Research Program and in the industrial sector by Exergy, Inc. and Polythermal Technologies.
NASA Astrophysics Data System (ADS)
Mulyana, Cukup; Adiprana, Reza; Saad, Aswad H.; M. Ridwan, H.; Muhammad, Fajar
2016-02-01
The scarcity of fossil energy accelerates the development of geothermal power plant in Indonesia. The main issue is how to minimize the energy loss from the geothermal working fluid so that the power generated can be increased. In some of geothermal power plant, the hot water which is resulted from flashing is flown to injection well, and steam out from turbine is condensed in condenser, while the temperature and pressure of the working fluid is still high. The aim of this research is how the waste energy can be re-used as energy source to generate electric power. The step of the research is started by studying the characteristics of geothermal fluid out from the well head. The temperature of fluid varies from 140°C - 250°C, the pressure is more than 7 bar and the fluid phase are liquid, gas, or mixing phase. Dry steam power plant is selected for vapor dominated source, single or multiple flash power plant is used for dominated water with temperature > 225°C, while the binary power plant is used for low temperature of fluid < 160°C. Theoretically, the process in the power plant can be described by thermodynamic cycle. Utilizing the heat loss of the brine and by considering the broad range of working fluid temperature, the integrated geothermal power plant has been developed. Started with two ordinary single flash power plants named unit 1 and unit 2, with the temperature 250°C resulting power is W1'+W2'. The power is enhanced by utilizing the steam that is out from first stage of the turbine by inputting the steam to the third stage, the power of the plant increase with W1''+W2" or 10% from the original power. By using flasher, the water from unit 1 and 2 is re-flashed at 200°C, and the steam is used to drive the turbine in unit 3, while the water is re-flashed at the temperature170°C and the steam is flown to the same turbine (unit 3) resulting the power of W3+W4. Using the fluid enthalpy, the calculated power of these double and triple flash power plant are 50% of W1+W2. At the last step, the steam out from the turbine of unit 3 with the temperature 150°C is used as a heat source for binary cycle power plant named unit 4, while the hot water from the flasher is used as a heat source for the other binary cycle named unit 5 resulted power W5+W6 or 15% of W1+W2. Using this integrated model the power increased 75% from the original one.
Challenges in Implementing a Multi-Partnership Geothermal Power Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gosnold, Will; Mann, Michael; Salehfar, Hossein
The UND-CLR binary geothermal power plant project is a piggyback operation on a secondary-recovery water-flood project in the Cedar Hills oil field in the Williston Basin. Two open-hole horizontal wells at 2,300 m and 2,400 m depths with lateral lengths of 1,290 m and 860 m produce water at a combined flow of 51 l s -1 from the Lodgepole formation (Miss.) for injection into the Red River formation (Ordovician). The hydrostatic head for the Lodgepole is at ground surface and the pumps, which are set at 650 m depth, have run continuously since 2009. Water temperature at the wellheadmore » is 103 °C and CLR passes the water through two large air-cooled heat exchangers prior to injection. In all aspects, the CLR water flood project is ideal for demonstration of electrical power production from a low-temperature geothermal resource. However, implementation of the project from concept to power production was analogous to breaking trail in deep snow in an old growth forest. There were many hidden bumps, detours, and in some instances immoveable barriers. Problems with investors, cost share, contracts with CLR, resistance from local industry, cost of installation, delays by the ORC supplier, and the North Dakota climate all caused delays and setbacks. Determination and problem solving by the UND team eventually overcame most setbacks, and in April 2016, the site began generating power. Figure 1: Schematic of the water supply well at the UND CLR binary geothermal power plant REFERENCES Williams, Snyder, and Gosnold, 2016, Low Temperature Projects Evaluation and Lesson Learned, GRC Transactions, Vol. 40, 203-210 Gosnold, LeFever, Klenner, Mann, Salehfar, and Johnson, 2010, Geothermal Power from Coproduced Fluids in the Williston Basin, GRC Transactions, Vol. 34, 557-560« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dan Wendt; Greg Mines
2014-09-01
Many, if not all, geothermal resources are subject to decreasing productivity manifested in the form of decreasing brine temperature, flow rate, or both during the life span of the associated power generation project. The impacts of resource productivity decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant conversion efficiency. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contractsmore » in place may be subject to significant economic penalties if power generation falls below the default level specified. A potential solution to restoring the performance of a power plant operating from a declining productivity geothermal resource involves the use of solar thermal energy to restore the thermal input to the geothermal power plant. There are numerous technical merits associated with a renewable geothermal-solar hybrid plant in which the two heat sources share a common power block. The geo-solar hybrid plant could provide a better match to typical electrical power demand profiles than a stand-alone geothermal plant. The hybrid plant could also eliminate the stand-alone concentrated solar power plant thermal storage requirement for operation during times of low or no solar insolation. This paper identifies hybrid plant configurations and economic conditions for which solar thermal retrofit of a geothermal power plant could improve project economics. The net present value of the concentrated solar thermal retrofit of an air-cooled binary geothermal plant is presented as functions of both solar collector array cost and electricity sales price.« less
Electric Power Generation from Low to Intermediate Temperature Resourcces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gosnold, William; Mann, Michael; Salehfar, Hossein
The UND-CLR Binary Geothermal Power Plant was a collaborative effort of the U.S. Department of Energy (DOE), Continental Resources, Inc. (CRL), Slope Electric Cooperative (SEC), Access Energy, LLC (AE), Basin Electric Cooperative (BEC), Olson Construction, the North Dakota Industrial Commission Renewable Energy Council (NDIC-REC), the North Dakota Department of Commerce Centers of Excellence Program (NDDC-COE), and the University of North Dakota (UND). The primary objective of project was to demonstrate/test the technical and economic feasibility of generating electricity from non-conventional, low-temperature (90 ºC to 150 °C) geothermal resources using binary technology. CLR provided the access to 98 ºC water flowingmore » at 51 l s-1 at the Davis Water Injection Plan in Bowman County, ND. Funding for the project was from DOE –GTO, NDIC-REC, NDD-COE, and BEC. Logistics, on-site construction, and power grid access were facilitated by Slope Electric Cooperative and Olson Construction. Access Energy supplied prototype organic Rankine Cycle engines for the project. The potential power output from this project is 250 kW at a cost of $3,400 per kW. A key factor in the economics of this project is a significant advance in binary power technology by Access Energy, LLC. Other commercially available ORC engines have efficiencies 8 to 10 percent and produce 50 to 250 kW per unit. The AE ORC units are designed to generate 125 kW with efficiencies up to 14 percent and they can be installed in arrays of tens of units to produce several MW of power where geothermal waters are available. This demonstration project is small but the potential for large-scale development in deeper, hotter formations is promising. The UND team’s analysis of the entire Williston Basin using data on porosity, formation thicknesses, and fluid temperatures reveals that 4.0 x 1019 Joules of energy is available and that 1.36 x 109 MWh of power could be produced using ORC binary power plants. Much of the infrastructure necessary to develop extensive geothermal power in the Williston Basin exists as abandoned oil and gas wells. Re-completing wells for water production could provide local power throughout the basin thus reducing power loss through transmission over long distances. Water production in normal oil and gas operations is relatively low by design, but it could be one to two orders of magnitude greater in wells completed and pumped for water production. A promising method for geothermal power production recognized in this project is drilling horizontal open-hole wells in the permeable carbonate aquifers. Horizontal drilling in the aquifers increases borehole exposure to the resource and consequently increases the capacity for fluid production by up to an order of magnitude.« less
Kenya geothermal private power project: A prefeasibility study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-10-01
Twenty-eight geothermal areas in Kenya were evaluated and prioritized for development. The prioritization was based on the potential size, resource temperature, level of exploration risk, location, and exploration/development costs for each geothermal area. Suswa, Eburru and Arus are found to offer the best short-term prospects for successful private power development. It was found that cost per kill developed are significantly lower for the larger (50MW) than for smaller-sized (10 or 20 NW) projects. In addition to plant size, the cost per kill developed is seen to be a function of resource temperature, generation mode (binary or flash cycle) and transmissionmore » distance.« less
Heavy metal contamination from geothermal sources.
Sabadell, J E; Axtmann, R C
1975-01-01
Liquid-dominated hydrothermal reservoirs, which contain saline fluids at high temperatures and pressures, have a significant potential for contamination of the environment by heavy metals. The design of the power conversion cycle in a liquid-dominated geothermal plant is a key factor in determining the impact of the installation. Reinjection of the fluid into the reservoir minimizes heavy metal effluents but is routinely practiced at few installations. Binary power cycles with reinjection would provide even cleaner systems but are not yet ready for commercial application. Vapor-dominated systems, which contain superheated steam, have less potential for contamination but are relatively uncommon. Field data on heavy metal effluents from geothermal plants are sparse and confounded by contributions from "natural" sources such as geysers and hot springs which often exist nearby. Insofar as geothermal power supplies are destined to multiply, much work is required on their environmental effects including those caused by heavy metals. PMID:1227849
Heavy metal contamination from geothermal sources.
Sabadell, J E; Axtmann, R C
1975-12-01
Liquid-dominated hydrothermal reservoirs, which contain saline fluids at high temperatures and pressures, have a significant potential for contamination of the environment by heavy metals. The design of the power conversion cycle in a liquid-dominated geothermal plant is a key factor in determining the impact of the installation. Reinjection of the fluid into the reservoir minimizes heavy metal effluents but is routinely practiced at few installations. Binary power cycles with reinjection would provide even cleaner systems but are not yet ready for commercial application. Vapor-dominated systems, which contain superheated steam, have less potential for contamination but are relatively uncommon. Field data on heavy metal effluents from geothermal plants are sparse and confounded by contributions from "natural" sources such as geysers and hot springs which often exist nearby. Insofar as geothermal power supplies are destined to multiply, much work is required on their environmental effects including those caused by heavy metals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humme, J.T.; Tanaka, M.T.; Yokota, M.H.
1979-07-01
The purpose of this study was to determine the feasibility of geothermal resource utilization at the Puna Sugar Company cane sugar processing plant, located in Keaau, Hawaii. A proposed well site area was selected based on data from surface exploratory surveys. The liquid dominated well flow enters a binary thermal arrangement, which results in an acceptable quality steam for process use. Hydrogen sulfide in the well gases is incinerated, leaving sulfur dioxide in the waste gases. The sulfur dioxide in turn is recovered and used in the cane juice processing at the sugar factory. The clean geothermal steam from themore » binary system can be used directly for process requirements. It replaces steam generated by the firing of the waste fibrous product from cane sugar processing. The waste product, called bagasse, has a number of alternative uses, but an evaluation clearly indicated it should continue to be employed for steam generation. This steam, no longer required for process demands, can be directed to increased electric power generation. Revenues gained by the sale of this power to the utility, in addition to other savings developed through the utilization of geothermal energy, can offset the costs associated with hydrothermal utilization.« less
Second law analysis of advanced power generation systems using variable temperature heat sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bliem, C.J.; Mines, G.L.
1990-01-01
Many systems produce power using variable temperature (sensible) heat sources. The Heat Cycle Research Program is currently investigating the potential improvements to such power cycles utilizing moderate temperature geothermal resources to produce electrical power. It has been shown that mixtures of saturated hydrocarbons (alkanes) or halogenated hydrocarbons operating with a supercritical Rankine cycle gave improved performance over boiling Rankine cycles with the pure working fluids for typical applications. Recently, in addition to the supercritical Rankine Cycle, other types of cycles have been proposed for binary geothermal service. This paper explores the limits on efficiency of a feasible plant and discussesmore » the methods used in these advanced concept plants to achieve the maximum possible efficiency. The advanced plants considered appear to be approaching the feasible limit of performance so that the designer must weigh all considerations to fine the best plant for a given service. These results would apply to power systems in other services as well as to geothermal power plants. 17 refs., 15 figs.« less
Goldsberry, Fred L.
1989-01-01
All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.
Potential for a significant deep basin geothermal system in Tintic Valley, Utah
NASA Astrophysics Data System (ADS)
Hardwick, C.; Kirby, S.
2014-12-01
The combination of regionally high heat flow, deep basins, and permeable reservoir rocks in the eastern Great Basin may yield substantial new geothermal resources. We explore a deep sedimentary basin geothermal prospect beneath Tintic Valley in central Utah using new 2D and 3D models coupled with existing estimates of heat flow, geothermometry, and shallow hydrologic data. Tintic Valley is a sediment-filled basin bounded to the east and west by bedrock mountain ranges where heat-flow values vary from 85 to over 240 mW/m2. Based on modeling of new and existing gravity data, a prominent 30 mGal low indicates basin fill thickness may exceed 2 km. The insulating effect of relatively low thermal conductivity basin fill in Tintic Valley, combined with typical Great Basin heat flow, predict temperatures greater than 150 °C at 3 km depth. The potential reservoir beneath the basin fill is comprised of Paleozoic carbonate and clastic rocks. The hydrology of the Tintic Valley is characterized by a shallow, cool groundwater system that recharges along the upper reaches of the basin and discharges along the valley axis and to a series of wells. The east mountain block is warm and dry, with groundwater levels just above the basin floor and temperatures >50 °C at depth. The west mountain block contains a shallow, cool meteoric groundwater system. Fluid temperatures over 50 °C are sufficient for direct-use applications, such as greenhouses and aquaculture, while temperatures exceeding 140°C are suitable for binary geothermal power plants. The geologic setting and regionally high heat flow in Tintic Valley suggest a geothermal resource capable of supporting direct-use geothermal applications and binary power production could be present.
NASA Technical Reports Server (NTRS)
Orren, L. H.; Ziman, G. M.; Jones, S. C.
1981-01-01
A financial accounting model that incorporates physical and institutional uncertainties was developed for geothermal projects. Among the uncertainties it can handle are well depth, flow rate, fluid temperature, and permit and construction times. The outputs of the model are cumulative probability distributions of financial measures such as capital cost, levelized cost, and profit. These outputs are well suited for use in an investment decision incorporating risk. The model has the powerful feature that conditional probability distribution can be used to account for correlations among any of the input variables. The model has been applied to a geothermal reservoir at Heber, California, for a 45-MW binary electric plant. Under the assumptions made, the reservoir appears to be economically viable.
Modelling geothermal conditions in part of the Szczecin Trough - the Chociwel area
NASA Astrophysics Data System (ADS)
Miecznik, Maciej; Sowiżdżał, Anna; Tomaszewska, Barbara; Pająk, Leszek
2015-09-01
The Chociwel region is part of the Szczecin Trough and constitutes the northeastern segment of the extended Szczecin-Gorzów Synclinorium. Lower Jurassic reservoirs of high permeability of up to 1145 mD can discharge geothermal waters with a rate exceeding 250 m3/h and temperatures reach over 90°C in the lowermost part of the reservoirs. These conditions provide an opportunity to generate electricity from heat accumulated in geothermal waters using binary ORC (Organic Rankine Cycle) systems. A numerical model of the natural state and exploitation conditions was created for the Chociwel area with the use of TOUGH2 geothermal simulator (i.e., integral finite-difference method). An analysis of geological and hydrogeothermal data indicates that the best conditions are found to the southeast of the town of Chociwel, where the bottom part of the reservoir reaches 3 km below ground. This would require drilling two new wells, namely one production and one injection. Simulated production with a flow rate of 275 m3/h, a temperature of 89°C at the wellhead, 30°C injection temperature and wells being 1.2 km separated from each other leads to a small temperature drop and moderate requirements for pumping power over a 50 years' time span. The ORC binary system can produce at maximum 592.5 kW gross power with the R227ea found as the most suitable working fluid. Geothermal brine leaving the ORC system with a temperature c. 53°C can be used for other purposes, namely mushroom growing, balneology, swimming pools, soil warming, de-icing, fish farming and for heat pumps.
Field tests of 2- and 40-tube condensers at the East Mesa Geothermal Test Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, R.W.; Domingo, N.
1982-05-01
Two water-cooled isobutane condensers, one with 2 tubes and one with 40 tubes, were subjected to field tests at the East Mesa Geothermal Test Site to assess relative heat transfer performance in both surface evaporator and direct-contact evaporator modes. The five groups of tests established that field performance was below earlier laboratory-determined levels and that direct-contact evaporator mode performance was poorer than that for the surface evaporator mode. In all test situations, fluted condenser tubes performed better than smooth condenser tubes. Cooling water quality had no significant effect on performance, but brine preflash in the direct-contact mode did promote somemore » relative performance improvement. Important implications of these results for binary geothermal power plants are that (1) working-fluid-side impurities can significantly degrade heat transfer performance of the power plant condensers and (2) provisions for minimizing such impurities may be required.« less
NASA Astrophysics Data System (ADS)
Butuzov, V. A.; Amerkhanov, R. A.; Grigorash, O. V.
2018-05-01
Solar and geothermal energy systems are shown to have received the widest use among all kinds of renewable sources of energy for heat supply purposes around the world. The power capacities and amounts of thermal energy generated by solar and geothermal heat supply systems around the world are presented by way of comparison. The thermal power capacity of solar heat supply systems installed around the world as of 2015 totaled 268.1 GW, and the thermal energy generated by them amounted to 225 TW h/year. The thermal power capacity of geothermal heat supply systems installed around the world totaled 70.3 GW, and the thermal energy generated by them amounted to 163 TW h/year. Information on the geothermal heat supply systems in the leading countries around the world based on the data reported at the World Geothermal Congress held in 2015 is presented. It is shown that China, with the installed thermal power capacities of its geothermal heat supply stations totaling 17.87 GW and the amount of thermal energy generated per annum equal to 48.435 TW h/year, is the world's leader in this respect. The structures of geothermal heat supply systems by the kinds of heat consumption used around the world are presented. The systems equipped with geothermal heat pumps accounted for 70.95% in the total installed capacity and for 55.3% in the total amount of generated heat. For systems that do not use heat pumps, those serving for pools account for the largest share amounting to 44.74% in installed capacity and to 45.43% in generated heat. A total of 2218 geothermal wells with the total length equal to 9534 km (with 38.7% of them for heat supply purposes) were drilled in 42 countries in the period from 2010 to 2014. In Russia, geothermal heat supply systems are in operation mainly in Dagestan, in Krasnodar krai, and in Kamchatka. The majority of these systems have been made without breaking the stream after the well outlet. A cyclic control arrangement is also used. The combined geothermal and solar heat supply system with an installed thermal power capacity of 5 MW that is in operation in the Rozovyi settlement, Krasnodar krai, is described. In the summer time, the solar installation with a capacity of 115 kW is used for supplying hot water to residential houses and for restoring the geothermal well pore pressure. The basic process circuit and characteristics of the geothermal heat supply system with the installed thermal power capacity of 8.7 MW operating in the Khankala settlement, the city of Groznyi, are given. The specific feature of this system is that the spent geothermal heat carrier is reinjected into a specially drilled inclined well. Advanced geothermal heat supply technologies involving reinjection of the spent geothermal heat carrier, combination with binary power units, use of heat pumps for recovering the spent heat carrier, and protection of equipment from corrosion and deposits are proposed.
Moya, Diego; Paredes, Juan; Kaparaju, Prasad
2018-01-01
RETScreen presents a proven focused methodology on pre-feasibility studies. Although this tool has been used to carry out a number of pre-feasibility studies of solar, wind, and hydropower projects; that is not the case for geothermal developments. This method paper proposes a systematic methodology to cover all the necessary inputs of the RETScreen-International Geothermal Project Model. As case study, geothermal power plant developments in the Ecuadorian context were analysed by RETScreen-International Geothermal Project Model. Three different scenarios were considered for analyses. Scenario I and II considered incentives of 132.1 USD/MWh for electricity generation and grants of 3 million USD. Scenario III considered the geothermal project with an electricity export price of 49.3 USD/MWh. Scenario III was further divided into IIIA and IIIB case studies. Scenario IIIA considered a 3 million USD grant while Scenario IIIB considered an income of 8.9 USD/MWh for selling heat in direct applications. Modelling results showed that binary power cycle was the most suitable geothermal technology to produce electricity along with aquaculture and greenhouse heating for direct use applications in all scenarios. Financial analyses showed that the debt payment would be 5.36 million USD/year under in Scenario I and III. The correspindig values for Scenario II was 7.06 million USD/year. Net Present Value was positive for all studied scenarios except for Scenario IIIA. Overall, Scenario II was identified as the most feasible project due to positive NPV with short payback period. Scenario IIIB could become financially attractive by selling heat for direct applications. The total initial investment for a 22 MW geothermal power plant was 114.3 million USD (at 2017 costs). Economic analysis showed an annual savings of 24.3 million USD by avoiding fossil fuel electricity generation. More than 184,000 tCO 2 eq. could be avoided annually.
NASA Astrophysics Data System (ADS)
Alkhasov, A. B.
2018-03-01
Technology for the integrated development of low-temperature geothermal resources using the thermal and water potentials for various purposes is proposed. The heat of the thermal waters is utilized in a low-temperature district heating system and for heating the water in a hot water supply system. The water cooled in heat exchangers enters a chemical treatment system where it is conditioned into potable water quality and then forwarded to the household and potable water supply system. Efficient technologies for removal of arsenic and organic contaminants from the water have been developed. For the uninterrupted supply of the consumers with power, the technologies that use two and more types of renewable energy sources (RESs) have the best prospects. Technology for processing organic waste using the geothermal energy has been proposed. According to this technology, the geothermal water is divided into two flows, one of which is delivered to a biomass conversion system and the other is directed to a geothermal steam-gas power plant (GSGP). The wastewater arrives at the pump station from which it is pumped back into the bed. Upon drying, the biogas from the conversion system is delivered into the combustion chamber of a gas-turbine plant (GTP). The heat of the turbine exhaust gases is used in the GSGP to evaporate and reheat the low-boiling working medium. The working medium is heated in the GSGP to the evaporation temperature using the heat of the thermal water. High-temperature geothermal brines are the most promising for the comprehensive processing. According to the proposed technology, the heat energy of the brines is utilized to generate the electric power at a binary geothermal power station; the electric power is then used to extract the dissolved chemical components from the rest of the brine. The comprehensive utilization of high-temperature brines of the East-Precaucasian Artesian Basin will allow to completely satisfy the demand of Russia for lithium carbonate and sodium chloride.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Twenty-eight geothermal areas in Kenya were evaluated and prioritized for development. The prioritization was based on the potential size, resource temperature, level of exploration risk, location, and exploration/development costs for each geothermal area. Suswa, Eburru and Arus are found to offer the best short-term prospects for successful private power development. It was found that cost per kill developed are significantly lower for the larger (50MW) than for smaller-sized (10 or 20 NW) projects. In addition to plant size, the cost per kill developed is seen to be a function of resource temperature, generation mode (binary or flash cycle) and transmissionmore » distance.« less
Temporal changes in shear velocity from ambient noise at New Zealand geothermal fields
NASA Astrophysics Data System (ADS)
Civilini, F.; Savage, M. K.; Townend, J.
2016-12-01
We use ambient noise to compare shear velocity changes with geothermal production processes at the Ngatamariki and Rotokawa geothermal fields, located in the central North Island of New Zealand. We calculate shear velocity changes through an analysis of cross correlation functions of diffusive seismic wavefields between stations, which are proportional to Green's functions of the station path. Electricity production at Ngatamariki uses an 82 MW binary type power station manufactured by Ormat Technologies, which began operations in mid-2013 and is owned and operated by Mighty River Power. The "Nga Awa Purua" triple flash power plant at the Rotokawa geothermal field was established in 2010 with parnership between Mighty River Power and Tauhara North No. 2 trust and currently operates 174 MW of generation. The seismometers of both networks, deployed primarily to observe microseismicity within the field, were installed prior to well stimulation and the start of production. Although cultural noise dominates the energy spectrum, a strong natural ambient noise signal can be detected when filtering below 1 Hz. Despite similar noise settings, the signal-to-noise ratio of cross correlation stacks at Rotokawa was more than two times greater than at Ngatamariki. We use stacks of cross correlations between stations prior to the onset of production as references, and compare them with cross correlations of moving stacks in time periods of well stimulation and the onset of electricity production.
Energy conversion/power plant cost-cutting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, K.
This presentation by Kenneth Nichols, Barber-Nichols, Inc., is about cost-cutting in the energy conversion phase and power plant phase of geothermal energy production. Mr. Nichols discusses several ways in which improvements could be made, including: use of more efficient compressors and other equipment as they become available, anticipating reservoir resource decline and planning for it, running smaller binary systems independent of human operators, and designing plants so that they are relatively maintenance-free.
NASA Astrophysics Data System (ADS)
Alkhasov, A. B.; Alkhasova, D. A.; Ramazanov, A. Sh.; Kasparova, M. A.
2016-06-01
The promising nature of integrated processing of high-temperature geothermal brines of the Tarumovskoye geothermal field is shown. Thermal energy of a geothermal brine can be converted to the electric power at a binary geothermal power plant (GPP) based on low-boiling working substance. The thermodynamic Rankine cycles are considered which are implemented in the GPP secondary loop at different evaporation temperatures of the working substance―isobutane. Among them, the most efficient cycle from the standpoint of attaining a maximum power is the supercritical one which is close to the so-called triangular cycle with an evaporation pressure of p e = 5.0 MPa. The used low-temperature brine is supplied from the GPP to a chemical plant, where main chemical components (lithium carbonate, burnt magnesia, calcium carbonate, and sodium chloride) are extracted from it according to the developed technology of comprehensive utilization of geothermal brines of chloride-sodium type. The waste water is delivered to the geotechnological complex and other consumers. For producing valuable inorganic materials, the electric power generated at the GPP is used. Owing to this, the total self-sufficiency of production and independence from external conditions is achieved. The advantages of the proposed geotechnological complex are the full utilization of the heat potential and the extraction of main chemical components of multiparameter geothermal resources. In this case, there is no need for reverse pumping, which eliminates the significant capital costs for building injection wells and a pumping station and the operating costs for their service. A characteristic of the modern state of the field and estimated figures of the integrated processing of high-temperature brines of well no. 6 are given, from which it follows that the proposed technology has a high efficiency. The comprehensive development of the field resources will make it possible to improve the economic structure of the region and fully meet the needs of Russia in lithium carbonate and sodium chloride.
Geothermal probabilistic cost study
NASA Technical Reports Server (NTRS)
Orren, L. H.; Ziman, G. M.; Jones, S. C.; Lee, T. K.; Noll, R.; Wilde, L.; Sadanand, V.
1981-01-01
A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model was used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents was analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance were examined.
The economical utilization of geothermal energy
NASA Astrophysics Data System (ADS)
Rose, G.
1982-12-01
The geothermal energy which is stored in hot dry rock could be theoretically utilized for the generation of power. The hot-dry-rock procedure can provide a flow of hot water. The considered binary system can transform the obtained thermal energy into electrical energy. The system makes use of a Rankine cycle with a working fluid having a low boiling point. Heat from the hot water is transferred to the working fluid. The present investigation is concerned with the development of a method for the calculation of the entire process. The results obtained with the computational method are to provide a basis for the determination of the operational characteristics. The development method is used for the study of a process based on the use of carbon dioxide as working fluid. The economics of a use of the hot-dry-rock process with the binary system is also investigated. It is found that the considered procedure is not economical. Economical operation requires, in particular, hot water supplied at a much lower cost.
Re-Evaluating Geothermal Potential with GIS Methods and New Data: Williston Basin, North Dakota
NASA Astrophysics Data System (ADS)
Crowell, A. M.; Gosnold, W. D.; UND Geothermal Laboratory
2011-12-01
The University of North Dakota Geothermal Laboratory is working on the National Geothermal Data Aggregation project in conjunction with Southern Methodist University (SMU) and other partners, and funded by the Department of Energy to collect data for exploration and utilization of resources for geothermal power production. We have examined 10,951 wells in the Williston Basin to determine accurate methods for estimating power extraction potential in a sedimentary basin. The calculations we used involved defining the area of wells within designated ranges and calculating the geothermal fluid reservoir volume using porosity data from the North Dakota Geological Survey Wilson M. Laird Core Library. We defined the parameters for our calculations as: bottom-hole temperature (BHT), formation thickness data, surface area of the polygon around wells within the temperature range, and porosity data. The wells in each formation with a BHT over 90°C were imported into ArcGIS, buffered to 1.6 kilometers from centroid, and outlined with a polygon feature to define the surface area. We then included average formation thickness to determine an approximate volume for ten water and rock reservoirs. In calculating this available energy the following three assumptions were made; that 1/1000 of the water volume is available to use per year, that the temperature is lowered to 50°C during electrical power production, and that the efficiency of the binary power plant utilized is 14%. The estimated recoverable energy in the volume of rock containing geothermal fluids by temperature range is as follows: 1.32 x 108 MW for 90°-100° C, 1.92 x 108 MW for 100°-110° C, 2.15 x 108 MW for 110°-120° C, 2.4 x 108 MW for 120°-130° C, 1.4 x 108 MW for 130°-140° C, 4.95 x 107 MW for 140°-150° C, and 3.67 x 107 MW for 150° C and up.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckers, Koenraad J; Young, Katherine R; Johnston, Henry
When conducting techno-economic analysis of geothermal systems, assumptions are typically necessary for reservoir and wellbore parameters such as producer/injector well ratio, production temperature drawdown, and production/injection temperature, pressure and flow rate. To decrease uncertainty of several of these parameters, we analyzed field data reported by operators in monthly production reports. This paper presents results of a statistical analysis conducted on monthly production reports at 19 power plants in California and Nevada covering 196 production wells and 175 injection wells. The average production temperature was 304 degrees F (151 degrees C) for binary plants and 310 degrees F (154 degrees C)more » for flash plants. The average injection temperature was 169 degrees F (76 degrees C) for binary plants and 173 degrees F (78 degrees C) for flash plants. The average production temperature drawdown was 0.5% per year for binary plants and 0.8% per year for flash plants. The average production well flow rate was 112 L/s for binary plant wells and 62 L/s for flash plant wells. For all 19 plants combined, the median injectivity index value was 3.8 L/s/bar, and the average producer/injector well ratio was 1.6. As an additional example of analysis using data from monthly production reports, a coupled reservoir-wellbore model was developed to derive productivity curves at various pump horsepower settings. The workflow and model were applied to two example production wells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. L. Renner
2007-08-01
Following is complete draft.Geothermal Summary for AAPG Explorer J. L. Renner, Idaho National Laboratory Geothermal energy is used to produce electricity in 24 countries. The United States has the largest capacity (2,544 MWe) followed by Philippines (1,931 MWe), Mexico (953 MWe), Indonesia (797 MWe), and Italy (791 MWe) (Bertani, 2005). When Chevron Corporation purchased Unocal Corporation they became the leading producer of geothermal energy worldwide with projects in Indonesia and the Philippines. The U. S. geothermal industry is booming thanks to increasing energy prices, renewable portfolio standards, and a production tax credit. California (2,244 MWe) is the leading producer, followedmore » by Nevada (243 MWe), Utah (26 MWe) and Hawaii (30 MWe) and Alaska (0.4 MWe) (Bertani, 2005). Alaska joined the producing states with two 0.4 KWe power plants placed on line at Chena Hot Springs during 2006. The plant uses 30 liters per second of 75°C water from shallow wells. Power production is assisted by the availability of gravity fed, 7°C cooling water (http://www.yourownpower.com/) A 13 MWe binary power plant is expected to begin production in the fall of 2007 at Raft River in southeastern Idaho. Idaho also is a leader in direct use of geothermal energy with the state capital building and several other state and Boise City buildings as well as commercial and residential space heated using fluids from several, interconnected geothermal systems. The Energy Policy Act of 2005 modified leasing provisions and royalty rates for both geothermal electrical production and direct use. Pursuant to the legislation the Bureau of Land management and Minerals Management Service published final regulations for continued geothermal leasing, operations and royalty collection in the Federal Register (Vol. 72, No. 84 Wednesday May 2, 2007, BLM p. 24358-24446, MMS p. 24448-24469). Existing U. S. plants focus on high-grade geothermal systems located in the west. However, interest in non-traditional geothermal development is increasing. A comprehensive new MIT-led study of the potential for geothermal energy within the United States predicts that mining the huge amounts of stored thermal energy in the Earth’s crust not associated with hydrothermal systems, could supply a substantial portion of U.S. electricity with minimal environmental impact (Tester, et al., 2006, available at http://geothermal.inl.gov). There is also renewed interest in geothermal production from other non-traditional sources such as the overpressured zones in the Gulf Coast and warm water co-produced with oil and gas. Ormat Technologies, Inc., a major geothermal company, recently acquired geothermal leases in the offshore overpressured zone of Texas. Ormat and the Rocky Mountain Oilfield Testing Center recently announced plans to jointly produce geothermal power from co-produced water from the Teapot Dome oilfield (Casper Star-Tribune, March 2, 2007). RMOTC estimates that 300 KWe capacity is available from the 40,000 BWPD of 88°C water associated with oil production from the Tensleep Sandstone (Milliken, 2007). The U. S. Department of Energy is seeking industry partners to develop electrical generation at other operating oil and gas fields (for more information see: https://e-center.doe.gov/iips/faopor.nsf/UNID/50D3734745055A73852572CA006665B1?OpenDocument). Several web sites offer periodically updated information related to the geothermal industry and th« less
Systematic Review of Life Cycle Greenhouse Gas Emissions from Geothermal Electricity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eberle, Annika; Heath, Garvin A.; Carpenter Petri, Alberta C.
The primary goal of this work was to assess the magnitude and variability of published life cycle greenhouse gas (GHG) emission estimates for three types of geothermal electricity generation technologies: enhanced geothermal systems (EGS) binary, hydrothermal (HT) flash, and HT binary. These technologies were chosen to align the results of this report with technologies modeled in National Renewable Energy Laboratory's (NREL's) Regional Energy Deployment Systems (ReEDs) model. Although we did gather and screen life cycle assessment (LCA) literature on hybrid systems, dry steam, and two geothermal heating technologies, we did not analyze published GHG emission estimates for these technologies. Inmore » our systematic literature review of the LCA literature, we screened studies in two stages based on a variety of criteria adapted from NREL's Life Cycle Assessment (LCA) Harmonization study (Heath and Mann 2012). Of the more than 180 geothermal studies identified, only 29 successfully passed both screening stages and only 26 of these included estimates of life cycle GHG emissions. We found that the median estimate of life cycle GHG emissions (in grams of carbon dioxide equivalent per kilowatt-hour generated [g CO2eq/kWh]) reported by these studies are 32.0, 47.0, and 11.3 for EGS binary, HT flash, and HT binary, respectively (Figure ES-1). We also found that the total life cycle GHG emissions are dominated by different stages of the life cycle for different technologies. For example, the GHG emissions from HT flash plants are dominated by the operations phase owing to the flash cycle being open loop whereby carbon dioxide entrained in the geothermal fluids is released to the atmosphere. This is in contrast to binary plants (using either EGS or HT resources), whose GHG emissions predominantly originate in the construction phase, owing to its closed-loop process design. Finally, by comparing this review's literature-derived range of HT flash GHG emissions to data from currently operating geothermal plants, we found that emissions from operational plants exhibit more variability and the median of emissions from operational plants is twice the median of operational emissions reported by LCAs. Further investigation is warranted to better understand the cause of differences between published LCAs and estimates from operational plants and to develop LCA analytical approaches that can yield estimates closer to actual emissions.« less
Silica problem in the design of geothermal power plants
NASA Astrophysics Data System (ADS)
Dipippo, R.
1985-02-01
The silica problem is examined from the perspective of the power plant designer to develop a procedure to enable a quick estimate to be made of the potential seriousness of the silica deposition problem for a wide variety of resources and for selected types of power plant. The method employs correlations for the equilibrium solubilities of quartz and amorphous silica and for the saturated liquid enthalpy and the latent heat of water substance. Single- and double-flash plants optimized for highest thermodynamic efficiency are considered. Binary-type plants are included generically without mention of cycle specifics. The results are presented both graphically and in tabular form, and the governing equations will be given in an easily-programmable form.
Performance evaluation of Ormat unit at Wabuska, Nevada. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culver, G.
1986-07-01
Three nominal 24 hour tests under summer, winter and spring weather conditions, were run on an Ormat geothermal binary power generation machine. The machine, located at TAD's Enterprises in Wabuska, Nevada is supplied with approximately 830 gpm of geothermal water at 221/sup 0/F and has two spray cooling ponds. During the tests, temperature, pressure, and flows of geothermal water, freon, cooling water and instantaneous electrical production were recorded hourly. At least once during each test, energy consumption of the well pump, freon feed pump and cooling water pumps were made. Power output of the machine is limited by spray pondmore » capacity. Net output ranged from 410.2 kW during summer conditions when cooling water was 65/sup 0/F to 610.4 kW during winter conditions when cooling water was 55/sup 0/F. Net resource utilization ranged from 1.005 Whr/lb during the summer test to 1.55 Whr/lb during the winter test. Spray pond performance averaged 63% for the fall and winter tests. Availability of the Ormat unit itself during the eight month test period was generally good, averaging 95.5%. Overall system availability, including well pumps, cooling system and electric grid was somewhat less - averaging 83%.« less
Federal Geothermal Research Program Update, FY 2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renner, Joel Lawrence
2001-08-01
The Department of Energy's Geothermal Program serves two broad purposes: 1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and 2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermalmore » systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.« less
Federal Geothermal Research Program Update Fiscal Year 2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renner, J.L.
2001-08-15
The Department of Energy's Geothermal Program serves two broad purposes: (1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and (2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermalmore » systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.« less
Feasibility of Geothermal Energy Extraction from Non-Activated Petroleum Wells in Arun Field
NASA Astrophysics Data System (ADS)
Syarifudin, M.; Octavius, F.; Maurice, K.
2016-09-01
The big obstacle to develop geothermal is frequently came from the economical viewpoint which mostly contributed by the drilling cost. However, it potentially be tackled by converting the existing decommissioned petroleum well to be converted for geothermal purposes. In Arun Field, Aceh, there are 188 wells and 62% of them are inactive (2013). The major obstacle is that the outlet water temperature from this conversion setup will not as high as the temperature that come out from the conventional geothermal well, since it will only range from 60 to 180oC depending on several key parameters such as the values of ground temperature, geothermal gradient in current location, the flow inside of the tubes, and type of the tubes (the effect from these parameters are studied). It will just be considered as low to medium temperature, according to geothermal well classification. Several adjustments has to be made such as putting out pipes inside the well that have been used to lift the oil/gas and replacing them with a curly long coil tubing which act as a heat exchanger. It will convert the cold water from the surface to be indirectly heated by the hot rock at the bottom of the well in a closed loop system. In order to make power production, the binary cycle system is used so that the low to medium temperature fluid is able to generate electricity. Based on this study, producing geothermal energy for direct use and electricity generation in Arun Field is technically possible. In this study case, we conclude that 2900 kW of electricity could be generated. While for-direct utility, a lot of local industries in Northern Sumatera could get the benefits from this innovation.
NASA Astrophysics Data System (ADS)
Matthews, H. B.
The major fraction of hydrothermal resources with the prospect of economic usefulness for the generation of electricity are in the 300(0)F to 425(0)F temperature range. Cost effective conversion of the geothermal energy to electricity requires new ideas to improve conversion efficiency, enhance brine flow, reduce plant costs, increase plant availability, and shorten the time between investment and return. The problems addressed are those inherent in the geothermal environment, in the binary fluid cycle, in the difficulty of efficiently converting the energy of a low temperature resource, and in geothermal economics some of these problems are explained. The energy expended by the down hole pump; the difficulty in designing reliable down hole equipment; fouling of heat exchanger surfaces by geothermal fluids; the unavailability of condenser cooling water at most geothermal sites; the large portion of the available energy used by the feed pump in a binary system; the pinch effect, a loss in available energy in transferring heat from water to an organic fluid; flow losses in fluids that carry only a small amount of useful energy to begin with; high heat exchanger costs, the lower the temperature interval of the cycle, the higher the heat exchanger costs in $/kW; the complexity and cost of the many auxiliary elements of proposed geothermal plants; and the unfortunate cash flow vs. investment curve caused by the many years of investment required to bring a field into production before any income is realized.
NREL/PG&E Condensation System Increases Geothermal Power Plant Efficiency
. Geothermal power plants like The Geysers produce energy by collecting steam from underground reservoirs and NREL/PG&E Condensation System Increases Geothermal Power Plant Efficiency For more information world's largest producer of geothermal power has improved its power production efficiency thanks to a new
Geothermal Maps | Geospatial Data Science | NREL
presented in these maps was aggregated from the Geothermal Energy Association 2014 Annual U.S. and Global Geothermal Maps Geothermal Maps Our geothermal map collection covers U.S. geothermal power plants , geothermal resource potential, and geothermal power generation. If you have difficulty accessing these maps
Multi-scale evaporator architectures for geothermal binary power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabau, Adrian S; Nejad, Ali; Klett, James William
2016-01-01
In this paper, novel geometries of heat exchanger architectures are proposed for evaporators that are used in Organic Rankine Cycles. A multi-scale heat exchanger concept was developed by employing successive plenums at several length-scale levels. Flow passages contain features at both macro-scale and micro-scale, which are designed from Constructal Theory principles. Aside from pumping power and overall thermal resistance, several factors were considered in order to fully assess the performance of the new heat exchangers, such as weight of metal structures, surface area per unit volume, and total footprint. Component simulations based on laminar flow correlations for supercritical R134a weremore » used to obtain performance indicators.« less
Direct contact, binary fluid geothermal boiler
Rapier, Pascal M.
1982-01-01
Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carry-over through the turbine causes corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.
Direct contact, binary fluid geothermal boiler
Rapier, P.M.
1979-12-27
Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carryover through the turbine causing corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.
Raft River Geothermal Area Data Models - Conceptual, Logical and Fact Models
Cuyler, David
2012-07-19
Conceptual and Logical Data Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses at Raft River a. Logical Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 b. Fact Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 Derived from Tables, Figures and other Content in Reports from the Raft River Geothermal Project: "Technical Report on the Raft River Geothermal Resource, Cassia County, Idaho," GeothermEx, Inc., August 2002. "Results from the Short-Term Well Testing Program at the Raft River Geothermal Field, Cassia County, Idaho," GeothermEx, Inc., October 2004.
Development of a Direct Contact Heat Exchanger, Phase 1 Study Report
NASA Technical Reports Server (NTRS)
Manvi, R.
1978-01-01
Electric power generation from geothermal brine requires, first, bringing the hot brine to the surface and then converting the heat to electric power. Binary conversion schemes were proposed, with the heat transfer between the brine and the working organic fluid taking place in a conventional tube and shell heat exchanger. If the brine is heavily laden with dissolved solids, however, solids buildup on the heat exchanger surfaces leads to a considerable degree of fouling and an accompanying drop in performance is experienced. A possible solution to this problem is the use of a direct contact exchanger with the secondary fluid power cycle. The proposed concept involves the formation of fluid sheets and bells as heat angles. Results of a study concerning the fluid mechanics of such surfaces are given.
NASA Astrophysics Data System (ADS)
1992-10-01
This report includes the printouts from the International Geothermal Power Plant Data Base and the Geothermally Active Entity Data Base. Also included are the explanation of the abbreviations used in the power plant data base, maps of geothermal installations by country, and data base questionnaires and mailing lists.
Recovery Act:Rural Cooperative Geothermal development Electric & Agriculture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culp, Elzie Lynn
Surprise Valley Electric, a small rural electric cooperative serving northeast California and southern Oregon, developed a 3mw binary geothermal electric generating plant on a cooperative member's ranch. The geothermal resource had been discovered in 1980 when the ranch was developing supplemental irrigation water wells. The 240°F resource was used for irrigation until developed through this project for generation of electricity. A portion of the spent geothermal fluid is now used for irrigation in season and is available for other purposes, such as greenhouse agriculture, aquaculture and direct heating of community buildings. Surprise Valley Electric describes many of the challenges amore » small rural electric cooperative encountered and managed to develop a geothermal generating plant.« less
NASA Astrophysics Data System (ADS)
Saar, Martin; Garapati, Nagasree; Adams, Benjamin; Randolph, Jimmy; Kuehn, Thomas
2016-04-01
Safe, sustainable, and economic development of deep geothermal resources, particularly in less favourable regions, often requires employment of unconventional geothermal energy extraction and utilization methods. Often "unconventional geothermal methods" is synonymously and solely used as meaning enhanced geothermal systems, where the permeability of hot, dry rock with naturally low permeability at greater depths (4-6 km), is enhanced. Here we present an alternative unconventional geothermal energy utilization approach that uses low-temperature regions that are shallower, thereby drastically reducing drilling costs. While not a pure geothermal energy system, this hybrid approach may enable utilization of geothermal energy in many regions worldwide that can otherwise not be used for geothermal electricity generation, thereby increasing the global geothermal resource base. Moreover, in some realizations of this hybrid approach that generate carbon dioxide (CO2), the technology may be combined with carbon dioxide capture and storage (CCS) and CO2-based geothermal energy utilization, resulting in a high-efficiency (hybrid) geothermal power plant with a negative carbon footprint. Typically, low- to moderate-temperature geothermal resources are more effectively used for direct heat energy applications. However, due to high thermal losses during transport, direct use requires that the heat resource is located near the user. Alternatively, we show here that if such a low-temperature geothermal resource is combined with an additional or secondary energy resource, the power production is increased compared to the sum from two separate (geothermal and secondary fuel) power plants (DiPippo et al. 1978) and the thermal losses are minimized because the thermal energy is utilized where it is produced. Since Adams et al. (2015) found that using CO2 as a subsurface working fluid produces more net power than brine at low- to moderate-temperature geothermal resource conditions, we compare over a range of parameters the net power and efficiencies of hybrid geothermal power plants that use brine or CO2 as the subsurface working fluid, that are then heated further with a secondary energy source that is unspecified here. Parameters varied include the subsurface working fluid (brine vs. CO2), geothermal reservoir depth (2.5-4.5 km), and turbine inlet temperature (200-600°C) after auxiliary heating. The hybrid power plant is numerically modeled using an iterative coupling approach of TOUGH2-ECO2N/ECO2H (Pruess, 2004) for simulation of the subsurface reservoir and Engineering Equation Solver for well bore fluid flow and surface power plant performance. We find that hybrid power plants that are CO2-based (subsurface) systems produce more net power than the sum of the power produced by individual power plants at low turbine inlet temperatures and brine based systems produce more power at high turbine inlet temperatures. Specifically, our results indicate that geothermal hybrid plants that are CO2-based are more efficient than brine-based systems when the contribution of the geothermal resource energy is higher than 48%.
Geothermal Produced Fluids: Characteristics, Treatment Technologies, and Management Options
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finster, Molly; Clark, Corrie; Schroeder, Jenna
2015-10-01
Geothermal power plants use geothermal fluids as a resource and create waste residuals as part of the power generation process. Both the geofluid resource and the waste stream are considered produced fluids. The chemical and physical nature of produced fluids can have a major impact on the geothermal power industry and can influence the feasibility of geothermal power development, exploration approaches, power plant design, operating practices, and the reuse or disposal of residuals. In general, produced fluids include anything that comes out of a geothermal field and that subsequently must be managed on the surface. These fluids vary greatly dependingmore » on the geothermal reservoir being harnessed, power plant design, and the life cycle stage in which the fluid exists, but generally include water and fluids used to drill geothermal wells, fluids used to stimulate wells in enhanced geothermal systems, and makeup and/or cooling water used during operation of a geothermal power plant. Additional geothermal-related produced fluids include many substances that are similar to waste streams from the oil and gas industry, such as scale, flash tank solids, precipitated solids from brine treatment, hydrogen sulfide, and cooling-tower-related waste. This review paper aims to provide baseline knowledge on specific technologies and technology areas associated with geothermal power production. Specifically, this research focused on the management techniques related to fluids produced and used during the operational stage of a geothermal power plant; the vast majority of which are employed in the generation of electricity. The general characteristics of produced fluids are discussed. Constituents of interest that tend to drive the selection of treatment technologies are described, including total dissolved solids, noncondensable gases, scale and corrosion, silicon dioxide, metal sulfides, calcium carbonate, corrosion, metals, and naturally occurring radioactive material. Management options for produced fluids that require additional treatment for these constituents are also discussed, including surface disposal, reuse and recycle, agricultural industrial and domestic uses, mineral extraction and recovery, and solid waste handling.« less
Scale Resistant Heat Exchanger for Low Temperature Geothermal Binary Cycle Power Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hays, Lance G.
2014-11-18
Phase 1 of the investigation of improvements to low temperature geothermal power systems was completed. The improvements considered were reduction of scaling in heat exchangers and a hermetic turbine generator (eliminating seals, seal system, gearbox, and lube oil system). A scaling test system with several experiments was designed and operated at Coso geothermal resource with brine having a high scaling potential. Several methods were investigated at the brine temperature of 235 ºF. One method, circulation of abradable balls through the brine passages, was found to substantially reduce scale deposits. The test heat exchanger was operated with brine outlet temperatures asmore » low as 125 ºF, which enables increased heat input available to power conversion systems. For advanced low temperature cycles, such as the Variable Phase Cycle (VPC) or Kalina Cycle, the lower brine temperature will result in a 20-30% increase in power production from low temperature resources. A preliminary design of an abradable ball system (ABS) was done for the heat exchanger of the 1 megawatt VPC system at Coso resource. The ABS will be installed and demonstrated in Phase 2 of this project, increasing the power production above that possible with the present 175 ºF brine outlet limit. A hermetic turbine generator (TGH) was designed and manufacturing drawings produced. This unit will use the working fluid (R134a) to lubricate the bearings and cool the generator. The 200 kW turbine directly drives the generator, eliminating a gearbox and lube oil system. Elimination of external seals eliminates the potential of leakage of the refrigerant or hydrocarbon working fluids, resulting in environmental improvement. A similar design has been demonstrated by Energent in an ORC waste heat recovery system. The existing VPC power plant at Coso was modified to enable the “piggyback” demonstration of the TGH. The existing heat exchanger, pumps, and condenser will be operated to provide the required process conditions for the TGH demonstration. Operation of the TGH with and without the ABS system will demonstrate an increase in geothermal resource productivity for the VPC from 1 MW/(million lb) of brine to 1.75 MW/(million lb) of brine, a 75% increase.« less
Evolution of high-temperature geothermal brine production pumps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, P.F. II
1989-01-01
Geothermal resources with temperatures between 250{degrees} and 360{degrees}F (121{degrees} and 182{degrees}C) are prime candidates for binary-cycle power generation in the United States and abroad, and constitute about 80% of the known power-capable resources in the United States. Initially there were many technological obstacles to exploitation of these resources, with one of the greatest being the absence of reliable high-capacity downwell brine production pumps to supply the required amounts of brine from an economically small group of wells. Early experience revealed many problems with downwell pumps, resulting in a mean-time-to-failure (MTTF) in 1981 of less than 1000 hours for the bestmore » available technology. This paper reports how evolutionary advances in pump design and materials selection have resolved most of the early problems, producing third- generation pumps which have run as long as 20,000 hours. Pump life extension practices - greatly enhanced component and assembly quality control, increased care in pump installation, and continuous monitoring of pump performance with swift intervention at the first signs of distress - have essentially eliminated premature failure where implemented, leading to estimated near-term MTTFs of 8000 hours.« less
Schroeder, Jenna N.
2014-06-10
This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.
Rapier, P.M.
1980-06-26
A multi-stage flash degaser is incorporated in an energy conversion system having a direct-contact, binary-fluid heat exchanger to remove essentially all of the noncondensable gases from geothermal brine ahead of the direct-contact binary-fluid heat exchanger in order that the heat exchanger and a turbine and condenser of the system can operate at optimal efficiency.
Research status of geothermal resources in China
NASA Astrophysics Data System (ADS)
Zhang, Lincheng; Li, Guang
2017-08-01
As the representative of the new green energy, geothermal resources are characterized by large reserve, wide distribution, cleanness and environmental protection, good stability, high utilization factor and other advantages. According to the characteristics of exploitation and utilization, they can be divided into high-temperature, medium-temperature and low-temperature geothermal resources. The abundant and widely distributed geothermal resources in China have a broad prospect for development. The medium and low temperature geothermal resources are broadly distributed in the continental crustal uplift and subsidence areas inside the plate, represented by the geothermal belt on the southeast coast, while the high temperature geothermal resources concentrate on Southern Tibet-Western Sichuan-Western Yunnan Geothermal Belt and Taiwan Geothermal Belt. Currently, the geothermal resources in China are mainly used for bathing, recuperation, heating and power generation. It is a country that directly makes maximum use of geothermal energy in the world. However, China’s geothermal power generation, including installed generating capacity and power generation capacity, are far behind those of Western European countries and the USA. Studies on exploitation and development of geothermal resources are still weak.
Geothermal development in the Philippines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elizagaque, R.F.; Tolentino, B.S.
1982-06-01
The development of geothermal resources and energy in the Philippines is discussed. Philippine National Oil Company-Energy Development Corporation initiated the first semi-commercial generation of geothermal power in July 1977 with the installation of a 3MWe plant. By 1980 the country had 440 MWe on line at Mak-Ban and Tiwi. This placed the Philippines second after the US among countries using geothermal energy for power generation. Before the end of 1981, PNOC-EDC added 6 additional MWe of geothermal power generating capacity to increase the total to 446 MWe. As part of the five-year National Energy Development Programme covering the period 1981-1985,more » additional power plants will be installed in various project areas to increase the share of geothermal power generation from the present 9.8% to 18.6% of the nationwide power-generation total, or the equivalent of 16.6 million barrels of oil per year. (MJF)« less
Assessment of Moderate- and High-Temperature Geothermal Resources of the United States
Williams, Colin F.; Reed, Marshall J.; Mariner, Robert H.; DeAngelo, Jacob; Galanis, S. Peter
2008-01-01
Scientists with the U.S. Geological Survey (USGS) recently completed an assessment of our Nation's geothermal resources. Geothermal power plants are currently operating in six states: Alaska, California, Hawaii, Idaho, Nevada, and Utah. The assessment indicates that the electric power generation potential from identified geothermal systems is 9,057 Megawatts-electric (MWe), distributed over 13 states. The mean estimated power production potential from undiscovered geothermal resources is 30,033 MWe. Additionally, another estimated 517,800 MWe could be generated through implementation of technology for creating geothermal reservoirs in regions characterized by high temperature, but low permeability, rock formations.
Magnetic power conversion with machines containing full or porous wheel heat exchangers
NASA Astrophysics Data System (ADS)
Egolf, Peter W.; Kitanovski, Andrej; Diebold, Marc; Gonin, Cyrill; Vuarnoz, Didier
2009-04-01
A first part of the article contains a thermodynamic theory describing the temperature distribution in a Curie wheel. The occurring nonlinear ordinary differential equation has an analytical solution. If a Curie wheel is stabilized by levitation, it is named Palmy wheel. These wheels show a full structure, and because of this reason, their uptake of heat from a flame (Curie wheel) or by (solar) light absorption (Palmy wheel) only on the periphery of a cylinder is very limited. To improve the method, a modification of the principle by introducing a convective heat transport into a porous wheel is discussed. By this the power conversion rate from a heat flux to mechanical and electric power is very much increased. The second part of the article presents results of a theoretical/numerical study on the efficiencies of magnetic power conversion plants operating with porous wheels. Furthermore, these efficiencies—which are promising—are compared with those of existing power conversion plants, as e.g. geothermal binary cycle power plants.
Federal Geothermal Research Program Update Fiscal Year 2002
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2003-09-01
The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The goals are: (1) Double the number of States with geothermal electric power facilities to eight by 2006; (2) Reduce the levelized cost of generating geothermal power to 3-5 cents per kWh by 2007; and (3) Supply the electrical power or heat energy needs of 7 million homes and businesses in themore » United States by 2010. This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2002. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy. balanced strategy for the Geothermal Program.« less
Advantage of incorporating geothermal energy into power-station cycles
NASA Astrophysics Data System (ADS)
White, A. A. L.
1980-06-01
The generation of electricity from low-temperature geothermal sources has been hampered by the low conversion efficiencies of Rankine cycle operating below 150 C. It is shown how the electrical output derived from a geothermal borehole may be substantially improved on that expected from these cycles by incorporating the geothermal heat into a conventional steam-cycle power station to provide feedwater heating. This technique can yield thermal conversion efficiencies of 11% which, for a well-head temperature of 100 C, is 50% greater than the output expected from a Rankine cycle. Coupled with the smaller capital costs involved, feedwater heating is thus a more attractive technique of converting heat into electricity. Although power stations above suitable geothermal resources would ideally have the geothermal heat incorporated from the design stage, experiments at Marchwood Power Station have shown that small existing sets can be modified to accept geothermal feedwater heating.
New geothermal heat extraction process to deliver clean power generation
McGrail, Pete
2017-12-27
A new method for capturing significantly more heat from low-temperature geothermal resources holds promise for generating virtually pollution-free electrical energy. Scientists at the Department of Energys Pacific Northwest National Laboratory will determine if their innovative approach can safely and economically extract and convert heat from vast untapped geothermal resources. The goal is to enable power generation from low-temperature geothermal resources at an economical cost. In addition to being a clean energy source without any greenhouse gas emissions, geothermal is also a steady and dependable source of power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, Katherine R; Levine, Aaron L; Cook, Jeffrey J
Developers have identified many non-technical barriers to geothermal power development, including market barriers. Understanding the challenges to market deployment of geothermal power is important since obtaining power purchase agreements is often cited as one of the largest barriers to geothermal development. This paper discusses the impacts to deployment caused by market challenges, including market demand, price of electricity, policies and incentives.
75 FR 62371 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-08
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Combined Notice of Filings 2 September... Numbers: ER10-3244-000. Applicants: Coso Geothermal Power Holdings, LLC. Description: Coso Geothermal Power Holdings, LLC submits tariff filing per 35.12: Coso Geothermal Power Holdings, LLC MBR Tariff to...
Uncertainty analysis of geothermal energy economics
NASA Astrophysics Data System (ADS)
Sener, Adil Caner
This dissertation research endeavors to explore geothermal energy economics by assessing and quantifying the uncertainties associated with the nature of geothermal energy and energy investments overall. The study introduces a stochastic geothermal cost model and a valuation approach for different geothermal power plant development scenarios. The Monte Carlo simulation technique is employed to obtain probability distributions of geothermal energy development costs and project net present values. In the study a stochastic cost model with incorporated dependence structure is defined and compared with the model where random variables are modeled as independent inputs. One of the goals of the study is to attempt to shed light on the long-standing modeling problem of dependence modeling between random input variables. The dependence between random input variables will be modeled by employing the method of copulas. The study focuses on four main types of geothermal power generation technologies and introduces a stochastic levelized cost model for each technology. Moreover, we also compare the levelized costs of natural gas combined cycle and coal-fired power plants with geothermal power plants. The input data used in the model relies on the cost data recently reported by government agencies and non-profit organizations, such as the Department of Energy, National Laboratories, California Energy Commission and Geothermal Energy Association. The second part of the study introduces the stochastic discounted cash flow valuation model for the geothermal technologies analyzed in the first phase. In this phase of the study, the Integrated Planning Model (IPM) software was used to forecast the revenue streams of geothermal assets under different price and regulation scenarios. These results are then combined to create a stochastic revenue forecast of the power plants. The uncertainties in gas prices and environmental regulations will be modeled and their potential impacts will be captured in the valuation model. Finally, the study will compare the probability distributions of development cost and project value and discusses the market penetration potential of the geothermal power generation. There is a recent world wide interest in geothermal utilization projects. There are several reasons for the recent popularity of geothermal energy, including the increasing volatility of fossil fuel prices, need for domestic energy sources, approaching carbon emission limitations and state renewable energy standards, increasing need for baseload units, and new technology to make geothermal energy more attractive for power generation. It is our hope that this study will contribute to the recent progress of geothermal energy by shedding light on the uncertainty of geothermal energy project costs.
Federal Geothermal Research Program Update Fiscal Year 2003
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2004-03-01
The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office. The goals are: (1) Reduce the levelized cost of generating geothermal power to 3-5 cents per kWh by 2007; (2) Double the number of States with geothermal electric power facilities to eight by 2006; and (3) Supply the electricalmore » power or heat energy needs of 7 million homes and businesses in the United States by 2010. This Federal Geothermal Program Research Update reviews the accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2003. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy. balanced strategy for the Geothermal Program.« less
Schroeder, Jenna N.
2013-08-31
This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-26
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-566-000] Cosa Geothermal Power Holdings, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request...-referenced proceeding of Cosa Geothermal Power Holdings, LLC's application for market-based rate authority...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-16
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-1273-000] Vulcan/BN Geothermal Power Company; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... Vulcan/BN Geothermal Power Company's application for market-based rate authority, with an accompanying...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryant, M.; Starkey, A.H.; Dick-Peddie, W.A.
A brief overview of the present day geothermal applications for hydrothermal electrical generation and direct heat use and their environmental implications is provided. Technologies and environmental impacts are considered at all points on the pathway of development resource exploration; well field, plant and transmission line construction; and plant operation. The technologies for electrical generation-direct, dry steam conversion; separated steam conversion; single-flash conversion, separated-steam/single-flash conversion and binary cycle conversion and the technologies for direct heat use - direct use of geothermal waters, surface heat exhanger, down-the hole heat exchanger and heat pump are described. A summary of the geothermal technologies plannedmore » or in operation within New Mexico geothermal areas is provided. A review of regulations that affect geothermal development and its related environmental impact in New Mexico is presented. The regulatory pathway, both state and federal, of geothermal exploration after the securing of appropriate leases, development, and construction and implementation of a geothermal facility are described. Six categories (Geophysical, Water, Air, Noise, Biota and Socioeconomics) were selected for environmental assessment. The data available is described.« less
Geothermal Power Potential in the Tatun Volcano Group, Taiwan
NASA Astrophysics Data System (ADS)
Tseng, H. H.; Song, S.
2013-12-01
Recent energy issues have concentrated the attention on finding alternative ones. National demands for renewable and sustainable energy increase rapidly, especially the geothermal power production, which is viewed as the most potential opportunity. This study attempts to estimate the geothermal powers in the Tatung Volcano Group (TVG), Taiwan and evaluate the possibility to develop the Enhanced Geothermal System. Tatung Volcano Group is located at the northwest part of Taiwan. It has violent volcanism during 0.8-0.20Ma, and is still active with many thermal manifestations. The young volcanic activity provides the TVG with high geothermal gradient and is well suitable for exploiting geothermal resources. Many explorations on geothermal energy have been accomplished in this area during1966-1973. They included resistivity survey, magnetic prospecting, gravity method, seismic prospecting and etc. In this study, we base on previous data and apply the probabilistic volumetric method proposed by Geotherm EX Inc., modified from the approach introduced by the USGS to evaluate the geothermal power potential in TVG. Meanwhile, use a Monte Carlo simulation technique to calculate the probability distribution of potentially recoverable energy reserves. The results show that the mean value is 270Mw, and P50 is 254Mw for 30 years, separately. Furthermore, the power potential of enhanced geothermal system in TVG is also estimated by the quantitative model proposed by Massachusetts Institute of Technology (MIT 2006). The results suggest that the mean value is 3,000 MW and P50 is 2,780 MW for 30 years, separately.
Rapier, Pascal M.
1982-01-01
A multi-stage flash degaser (18) is incorporated in an energy conversion system (10) having a direct-contact, binary-fluid heat exchanger to remove essentially all of the noncondensable gases from geothermal brine ahead of the direct-contact binary-fluid heat exchanger (22) in order that the heat exchanger (22) and a turbine (48) and condenser (32) of the system (10) can operate at optimal efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-12-01
The Philippines has a rich potential for geothermal energy development, according to the assessment of opportunities for U.S. private investment in the sector. Areas covered in detail are the Philippines' geothermal resources, the legal structure of the geothermal industry, conditions acting as stimuli to geothermal power generation, and interest in private geothermal investment. Major finding are as follows. (1) The Philippine geothermal power industry is the world's second largest. (2) Geothermal resources are owned by the Government of the Philippines and a complex legal structure governs their exploitation. (3) Since the Philippines is poor in most energy resources (e.g., coal,more » oil, and gas), use of geothermal energy is necessary. (4) Despite legal and structural obstacles, various foreign private enterprises are interested in participating in geothermal development. Two possible options for U.S. investors are presented: a joint venture with the National Oil Company, and negotiation of a service contract, either alone or with a Philippine partner, for a concession on land administered by the Office of Energy Affairs.« less
Bergfeld, D.; Vaughan, R. Greg; Evans, William C.; Olsen, Eric
2015-01-01
The Long Valley hydrothermal system supports geothermal power production from 3 binary plants (Casa Diablo) near the town of Mammoth Lakes, California. Development and growth of thermal ground at sites west of Casa Diablo have created concerns over planned expansion of a new well field and the associated increases in geothermal fluid production. To ensure that all areas of ground heating are identified prior to new geothermal development, we obtained high-resolution aerial thermal infrared imagery across the region. The imagery covers the existing and proposed well fields and part of the town of Mammoth Lakes. Imagery results from a predawn flight on Oct. 9, 2014 readily identified the Shady Rest thermal area (SRST), one of two large areas of ground heating west of Casa Diablo, as well as other known thermal areas smaller in size. Maximum surface temperatures at 3 thermal areas were 26–28 °C. Numerous small areas with ground temperatures >16 °C were also identified and slated for field investigations in summer 2015. Some thermal anomalies in the town of Mammoth Lakes clearly reflect human activity.Previously established projects to monitor impacts from geothermal power production include yearly surveys of soil temperatures and diffuse CO2 emissions at SRST, and less regular surveys to collect samples from fumaroles and gas vents across the region. Soil temperatures at 20 cm depth at SRST are well correlated with diffuse CO2 flux, and both parameters show little variation during the 2011–14 field surveys. Maximum temperatures were between 55–67 °C and associated CO2 discharge was around 12–18 tonnes per day. The carbon isotope composition of CO2 is fairly uniform across the area ranging between –3.7 to –4.4 ‰. The gas composition of the Shady Rest fumarole however has varied with time, and H2S concentrations in the gas have been increasing since 2009.
Geothermal pilot study final report: creating an international geothermal energy community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bresee, J.C.; Yen, W.W.S.; Metzler, J.E.
The Geothermal Pilot Study under the auspices of the Committee on the Challenges of Modern Society (CCMS) was established in 1973 to apply an action-oriented approach to international geothermal research and development, taking advantage of the established channels of governmental communication provided by the North Atlantic Treaty Organization (NATO). The Pilot Study was composed of five substudies. They included: computer-based information systems; direct application of geothermal energy; reservoir assessment; small geothermal power plants; and hot dry rock concepts. The most significant overall result of the CCMS Geothermal Pilot Study, which is now complete, is the establishment of an identifiable communitymore » of geothermal experts in a dozen or more countries active in development programs. Specific accomplishments include the creation of an international computer file of technical information on geothermal wells and fields, the development of studies and reports on direct applications, geothermal fluid injection and small power plants, and the operation of the visiting scientist program. In the United States, the computer file has aready proven useful in the development of reservoir models and of chemical geothermometers. The state-of-the-art report on direct uses of geothermal energy is proving to be a valuable resource document for laypersons and experts in an area of increasing interest to many countries. Geothermal fluid injection studies in El Salvador, New Zealand, and the United States have been assisted by the Reservoir Assessment Substudy and have led to long-range reservoir engineering studies in Mexico. At least seven small geothermal power plants are in use or have been planned for construction around the world since the Small Power Plant Substudy was instituted--at least partial credit for this increased application can be assigned to the CCMS Geothermal Pilot Study. (JGB)« less
Corrosion tests in Hawaiian geothermal fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsen-Basse, J.; Lam, Kam-Fai
1984-01-01
Exposure tests were conductd in binary geothermal brine on the island of Hawaii. The steam which flashes from the high pressure, high temperature water as it is brought to ambient pressure contains substantial amounts of H{sub 2}S. In the absence of oxygen this steam is only moderately aggressive but in the aerated state it is highly aggressive to carbon steels and copper alloys. The liquid after flasing is intermediately aggressive. The Hawaiian fluid is unique in chemistry and corrosion behavior; its corrosiveness is relatively mild for a geothermal fluid falling close to the Iceland-type resources. 24 refs., 7 figs., 5more » tabs.« less
Careers in Geothermal Energy: Power from below
ERIC Educational Resources Information Center
Liming, Drew
2013-01-01
In the search for new energy resources, scientists have discovered ways to use the Earth itself as a valuable source of power. Geothermal power plants use the Earth's natural underground heat to provide clean, renewable energy. The geothermal energy industry has expanded rapidly in recent years as interest in renewable energy has grown. In 2011,…
Evans, W.C.; Bergfeld, D.; Sutton, A.J.; Lee, R.C.; Lorenson, T.D.
2015-01-01
We report chemical data for selected shallow wells and coastal springs that were sampled in 2014 to determine whether geothermal power production in the Puna area over the past two decades has affected the characteristics of regional groundwater. The samples were analyzed for major and minor chemical species, trace metals of environmental concern, stable isotopes of water, and two organic compounds (pentane and isopropanol) that are injected into the deep geothermal reservoir at the power plant. Isopropanol was not detected in any of the groundwaters; confirmed detection of pentane was restricted to one monitoring well near the power plant at a low concentration not indicative of source. Thus, neither organic compound linked geothermal operations to groundwater contamination, though chemical stability and transport velocity questions exist for both tracers. Based on our chemical analysis of geothermal fluid at the power plant and on many similar results from commercially analyzed samples, we could not show that geothermal constituents in the groundwaters we sampled came from the commercially developed reservoir. Our data are consistent with a long-held view that heat moves by conduction from the geothermal reservoir into shallow groundwaters through a zone of low permeability rock that blocks passage of geothermal water. The data do not rule out all impacts of geothermal production on groundwater. Removal of heat during production, for example, may be responsible for minor changes that have occurred in some groundwater over time, such as the decline in temperature of one monitoring well near the power plant. Such indirect impacts are much harder to assess, but point out the need for an ongoing groundwater monitoring program that should include the coastal springs down-gradient from the power plant.
The Geothermal Potential, Current and Opportunity in Taiwan
NASA Astrophysics Data System (ADS)
Song, Sheng-Rong
2016-04-01
Located in the west Pacific Rim of Fire, Taiwan possesses rich geothermal resources due to volcanic activities and rapid uplifting of plate collision. Based on available data prior to 1980, Taiwan may have about 1 GWe of potential shallow geothermal energy, which is less than 3% of the national gross power generation. A 3-Mw pilot power plant, therefore, was constructed in 1981 and terminated in 1993 in the Chingshui geothermal field of Ilan, northeastern Taiwan. Recently, one of the National Science & Technology Program (NSTP) projects has been conducting research and reevaluating the island-wide deep geothermal energy. Four hot potential sites have been recognized. They are: (1) Tatun Volcano Group of northern Taiwan; (2) I-Lan Plain of NE Taiwan; (3) Lu-Shan area of Central Taiwan; and (4) Hua-Tung area of eastern Taiwan. We found that the geothermal resource in Taiwan may be as high as 160 GWe, with 33.6 GWe of exploitable geothermal energy. There are no any commercial geothermal power plants until now in Taiwan, although the potential is great. However, geothermal energy has been listed as one of major tasks of National Energy Program, Phase II (NEP-II) in Taiwan. We will conduct more detailed geothermal energy surveys on some proposed hot sites and to construct an EGS pilot geothermal plant with 1 MWe capability in a few years. Currently, there are three nuclear power plants, named No. 1, 2 & 3, in operations, which produce 16.5% gross generation of electricity and one (No. 4) is under construction, but is stopped and sealed now in Taiwan. Furthermore, the life-span of 40-year operation for those three power plants will be close-at hand and retire in 2018-2019, 2021-2023 and 2024-2025, respectively. Therefore, to find alternative energy sources, especially on the clean, renewable and sustainable ones for generating electricity are emergent and important for Taiwan's government in next few years. Among various energy sources, geothermal energy can be as base-load electricity and offers an opportunity for a country with naturally free-resource and less dependence on fossil fuel. However, development of geothermal energy has been stopped for more than 30 years, and currently no working geothermal power plant existed in Taiwan. To jump-start the geothermal exploitation rather than solely rely on knowledge, we also need to introduce the techniques from outside of this country.
Sedimentary and Enhanced Geothermal Systems | Geothermal Technologies |
NREL Sedimentary and Enhanced Geothermal Systems Sedimentary and Enhanced Geothermal Systems To innovative technologies, such as sedimentary and enhanced geothermal systems (EGS). Photo of a geothermal power plant in Imperial California. Capabilities To advance EGS and sedimentary geothermal systems, NREL
Geothermal Energy: Prospects and Problems
ERIC Educational Resources Information Center
Ritter, William W.
1973-01-01
An examination of geothermal energy as a means of increasing the United States power resources with minimal pollution problems. Developed and planned geothermal-electric power installations around the world, capacities, installation dates, etc., are reviewed. Environmental impact, problems, etc. are discussed. (LK)
Army Net Zero Prove Out. Net Zero Energy Best Practices
2014-11-18
energy which is then used to drive a heat engine to generate electrical power. Geothermal Power – These systems use thermal energy generated and...stored in the earth as a generating source for electricity. Several pilot installations are investigating this technology by conducting geothermal ...concentrate solar thermal energy which is then used to drive a heat engine to generate electrical power. • Geothermal Power - These systems use thermal energy
Geothermal Today: 2003 Geothermal Technologies Program Highlights (Revised)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2004-05-01
This outreach publication highlights milestones and accomplishments of the DOE Geothermal Technologies Program for 2003. Included in this publication are discussions of geothermal fundamentals, enhanced geothermal systems, direct-use applications, geothermal potential in Idaho, coating technology, energy conversion R&D, and the GeoPowering the West initiative.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gazo, F.M.
1997-12-31
The Philippine geothermal energy development is now considered in a state of maturity. After more than 20 years of geothermal experience, the total geothermal installed capacity in the Philippines reached 1,455 MW (1996) or about 12% of the total installed power plant capacity. This also enabled the Philippines to become the second largest producer of geothermal energy in the world. The country`s track record in harnessing geothermal energy is considered a revelation, as it continues with its vision of {open_quotes}full steam ahead{close_quotes}, originally conceived when commercial geothermal operation started in 1973. It is thus proper and timely to refer tomore » historical highlights and experiences in geothermal energy development for planning and implementation of the country`s geothermal energy program.« less
Williams, C.F.
2002-01-01
Based on current projections, the United States faces the need to increase its electrical power generating capacity by 40% (approximately 300,000 Megawatts-electrical or MWe) over the next 20 years (Energy Information Administration, EIA - Department of Energy). A critical question for the near future is the extent to which geothermal resources can contribute to this increasing demand for electricity. Geothermal energy constitutes one of the nation's largest sources of renewable and environmentally benign electrical power, yet the installed capacity of 2860 MWe falls far short of estimated geothermal resources. This is particularly true for the Great Basin region of the western United States, which has an installed capacity of about 500 MWe, much lower than the 7500 MWe resource estimated by the U.S. Geological Survey (USGS) in the late 1970s. The reasons for the limited development of geothermal power are varied, but political, economic and technological developments suggest the time is ripe for a new assessment effort. Technologies for power production from geothermal systems and scientific understanding of geothermal resource occurrence have improved dramatically in recent years. The primary challenges facing geothermal resource studies are (1) understanding the thermal, chemical and mechanical processes that lead to the colocation of high temperatures and high permeabilities necessary for the formation of geothermal systems and (2) developing improved techniques for locating, characterizing and exploiting these systems. Starting in the fall of 2002, the USGS will begin work with institutions funded by the Department of Energy's (DOE) Geothermal Research Program to investigate the nature and extent of geothermal systems in the Great Basin and to produce an updated assessment of available geothermal resources.
ERIC Educational Resources Information Center
Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.
An introduction to geothermal energy is provided in this discussion of: (1) how a geothermal reservoir works; (2) how to find geothermal energy; (3) where it is located; (4) electric power generation using geothermal energy; (5) use of geothermal energy as a direct source of heat; (6) geopressured reservoirs; (7) environmental effects; (8)…
Geothermal energy abstract sets. Special report No. 14
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, C.
1985-01-01
This bibliography contains annotated citations in the following areas: (1) case histories; (2) drilling; (3) reservoir engineering; (4) injection; (5) geothermal well logging; (6) environmental considerations in geothermal development; (7) geothermal well production; (8) geothermal materials; (9) electric power production; (10) direct utilization of geothermal energy; (11) economics of geothermal energy; and (12) legal, regulatory and institutional aspects. (ACR)
Basics of applied geothermal engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehlage, E.F.
1976-01-01
The following chapters are included: (1) born of fire, (2) milestones with tectonics, (3) a world in geothermal review, (4) simple mechanical and electrical facts for geothermal, (5) elementary hydraulics and pumping, (6) elementary heat, (7) application of steam, (8) geothermal hydroponics, (9) designing for a geothermal diary, (10) review of geothermal prime movers for power production, (11) design procedures-geothermal house heating, (12) cooling with geothermal refrigeration, and (13) geothermal synthesis-new heat for the world. (MOW)
Outstanding issues for new geothermal resource assessments
Williams, C.F.; Reed, M.J.
2005-01-01
A critical question for the future energy policy of the United States is the extent to which geothermal resources can contribute to an ever-increasing demand for electricity. Electric power production from geothermal sources exceeds that from wind and solar combined, yet the installed capacity falls far short of the geothermal resource base characterized in past assessments, even though the estimated size of the resource in six assessments completed in the past 35 years varies by thousands of Megawatts-electrical (MWe). The U. S. Geological Survey (USGS) is working closely with the Department of Energy's (DOE) Geothermal Research Program and other geothermal organizations on a three-year effort to produce an updated assessment of available geothermal resources. The new assessment will introduce significant changes in the models for geothermal energy recovery factors, estimates of reservoir permeability, limits to temperatures and depths for electric power production, and include the potential impact of evolving Enhanced (or Engineered) Geothermal Systems (EGS) technology.
New Zealand geothermal: Wairakei -- 40 years
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This quarterly bulletin highlights the geothermal developments in New Zealand with the following articles: A brief history of the Wairakei geothermal power project; Geothermal resources in New Zealand -- An overview; Domestic and commercial heating and bathing -- Rotorua area; Kawerau geothermal development: A case study; Timber drying at Kawerau; Geothermal greenhouses at Kawerau; Drying of fibrous crops using geothermal steam and hot water at the Taupo Lucerne Company; Prawn Park -- Taupo, New Zealand; Geothermal orchids; Miranda hot springs; and Geothermal pipeline.
High geothermal energy utilization geothermal/fossil hybrid power cycle: a preliminary investigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grijalva, R. L.; Sanemitsu, S. K.
1978-11-01
Combining geothermal and fossil fuel energy into the so-called hybrid cycle is compared with a state-of-the-art double-flash geothermal power cycle using resources which vary from 429/sup 0/K (312/sup 0/F) to 588/sup 0/K (598/sup 0/F). It is demonstrated that a hybrid plant can compete thermodynamically with the combined output from both a fossil-fired and a geothermal plant operating separately. Economic comparison of the hybrid and double-flash cycles is outlined, and results are presented that indicate the performance of marginal hydrothermal resources may be improved enough to compete with existing power cycles on a cost basis. It is also concluded that onmore » a site-specific basis a hybrid cycle is capable of complementing double-flash cycles at large-capacity resources, and can operate in a cycling load mode at constant geothermal fluid flow rate.« less
Geothermal FIT Design: International Experience and U.S. Considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rickerson, W.; Gifford, J.; Grace, R.
2012-08-01
Developing power plants is a risky endeavor, whether conventional or renewable generation. Feed-in tariff (FIT) policies can be designed to address some of these risks, and their design can be tailored to geothermal electric plant development. Geothermal projects face risks similar to other generation project development, including finding buyers for power, ensuring adequate transmission capacity, competing to supply electricity and/or renewable energy certificates (RECs), securing reliable revenue streams, navigating the legal issues related to project development, and reacting to changes in existing regulations or incentives. Although FITs have not been created specifically for geothermal in the United States to date,more » a variety of FIT design options could reduce geothermal power plant development risks and are explored. This analysis focuses on the design of FIT incentive policies for geothermal electric projects and how FITs can be used to reduce risks (excluding drilling unproductive exploratory wells).« less
20131201-1231_Green Machine Florida Canyon Hourly Data
Thibedeau, Joe
2014-01-08
Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Dec to 31 Dec 2013.
20131101-1130_Green Machine Florida Canyon Hourly Data
Thibedeau, Joe
2013-12-02
Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Nov to 30 Nov 2013.
20130416_Green Machine Florida Canyon Hourly Data
Vanderhoff, Alex
2013-04-24
Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 4/16/13.
20131001-1031_Green Machine Florida Canyon Hourly Data
Thibedeau, Joe
2013-11-05
Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 Oct 2013 to 31 Oct 2013.
20140201-0228_Green Machine Florida Canyon Hourly Data
Thibedeau, Joe
2014-03-03
Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Feb to 28 Feb 2014.
20130801-0831_Green Machine Florida Canyon Hourly Data
Vanderhoff, Alex
2013-09-10
Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 8/1/13 to 8/31/13.
20140101-0131_Green Machine Florida Canyon Hourly Data
Thibedeau, Joe
2014-02-03
Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Jan to 31 Jan 2014.
20140430_Green Machine Florida Canyon Hourly Data
Thibedeau, Joe
2014-05-05
Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 April to 30 April 2014.
20140301-0331_Green Machine Florida Canyon Hourly Data
Thibedeau, Joe
2014-04-07
Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Mar to 31 Mar 2014.
20140501-0531_Green Machine Florida Canyon Hourly Data
Thibedeau, Joe
2014-06-02
Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 May to 31 May 2014.
20140601-0630_Green Machine Florida Canyon Hourly Data
Thibedeau, Joe
2014-06-30
Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 June to 30 June 2014.
20140701-0731_Green Machine Florida Canyon Hourly Data
Thibedeau, Joe
2014-07-31
Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 July to 31 July 2014.
20130901-0930_Green Machine Florida Canyon Hourly Data
Thibedeau, Joe
2013-10-25
Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 September 2013 to 30 September 2013.
Green Machine Florida Canyon Hourly Data 20130731
Vanderhoff, Alex
2013-08-30
Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 7/1/13 to 7/31/13.
20130501-20130531_Green Machine Florida Canyon Hourly Data
Vanderhoff, Alex
2013-06-18
Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from May 2013
Green Machine Florida Canyon Hourly Data
Vanderhoff, Alex
2013-07-15
Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 6/1/13 to 6/30/13
DoD Installation Energy Security: Evolving to a Smart Grid
2012-03-20
located at the Naval Air Weapons Station in China Lake, California. This series of geothermal power plants produces a peak power output of 270 megawatts...initiatives are driving the DoD to invest significantly in renewable energy resources like solar, wind, and geothermal , as well as energy efficient vehicles...hydroelectric, geothermal ) resources. The most common and largest forms of electrical generation come from power plants that use fossil fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gowda, Varun; Hogue, Michael
This report will discuss the methods and the results from economic impact analysis applied to the development of Enhanced Geothermal Systems (EGS), conventional hydrothermal, low temperature geothermal and coproduced fluid technologies resulting in electric power production. As part of this work, the Energy & Geoscience Institute (EGI) has developed a web-based Geothermal Economics Calculator (Geothermal Economics Calculator (GEC)) tool that is aimed at helping the industry perform geothermal systems analysis and study the associated impacts of specific geothermal investments or technological improvements on employment, energy and environment. It is well-known in the industry that geothermal power projects will generate positivemore » economic impacts for their host regions. Our aim in the assessment of these impacts includes quantification of the increase in overall economic output due to geothermal projects and of the job creation associated with this increase. Such an estimate of economic impacts of geothermal investments on employment, energy and the environment will also help us understand the contributions that the geothermal industry will have in achieving a sustainable path towards energy production.« less
Geothermal Life Cycle Calculator
Sullivan, John
2014-03-11
This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.
Technologies for the exploration of highly mineralized geothermal resources
NASA Astrophysics Data System (ADS)
Alkhasov, A. B.; Alkhasova, D. A.; Ramazanov, A. Sh.; Kasparova, M. A.
2017-09-01
The prospects of the integrated processing of the high-parameter geothermal resources of the East Ciscaucasia of artesian basin (ECAB) with the conversion of their heat energy into electric energy at a binary geoPP and the subsequent extraction of solved chemical compounds from thermal waters are evaluated. The most promising areas for the exploration such resources are overviewed. The integrated exploration of hightemperature hydrogeothermal brines is a new trend in geothermal power engineering, which can make it possible to significantly increase the production volume of hydrogeothermal resources and develop the geothermal field at a higher level with the realization of the energy-efficient advanced technologies. The large-scale exploration of brines can solve the regional problems of energy supply and import substitution and fulfill the need of Russia in food and technical salt and rare elements. The necessity of the primary integrated exploration of the oil-field highly mineralized brines of the South Sukhokumskii group of gas-oil wells of Northern Dagestan was shown in view of the exacerbated environmental problems. Currently, the oil-field brines with the radioactive background exceeding the allowable levels are discharged at disposal fields. The technological solutions for their deactivation and integrated exploration are proposed. The realization of the proposed technological solutions provides 300 t of lithium carbonate, 1650 t of caustic magnesite powder, 27300 t of chemically precipitated chalk, 116100 t of food salt, and up to 1.4 mln m3 of desalinated water from oil-field brines yearly. Desalinated water at the output of a geotechnological complex can be used for different economic needs, which is important for the arid North Caucasus region, where the fresh water deficiency is acute, especially in its plain part within the ECAB.
Geothermal Cogeneration: Iceland's Nesjavellir Power Plant
ERIC Educational Resources Information Center
Rosen, Edward M.
2008-01-01
Energy use in Iceland (population 283,000) is higher per capita than in any other country in the world. Some 53.2% of the energy is geothermal, which supplies electricity as well as heated water to swimming pools, fish farms, snow melting, greenhouses, and space heating. The Nesjavellir Power Plant is a major geothermal facility, supplying both…
A comparison of economic evaluation models as applied to geothermal energy technology
NASA Technical Reports Server (NTRS)
Ziman, G. M.; Rosenberg, L. S.
1983-01-01
Several cost estimation and financial cash flow models have been applied to a series of geothermal case studies. In order to draw conclusions about relative performance and applicability of these models to geothermal projects, the consistency of results was assessed. The model outputs of principal interest in this study were net present value, internal rate of return, or levelized breakeven price. The models used were VENVAL, a venture analysis model; the Geothermal Probabilistic Cost Model (GPC Model); the Alternative Power Systems Economic Analysis Model (APSEAM); the Geothermal Loan Guarantee Cash Flow Model (GCFM); and the GEOCOST and GEOCITY geothermal models. The case studies to which the models were applied include a geothermal reservoir at Heber, CA; a geothermal eletric power plant to be located at the Heber site; an alcohol fuels production facility to be built at Raft River, ID; and a direct-use, district heating system in Susanville, CA.
75 FR 71112 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-22
...: ArcLight Energy Marketing, LLC, Oak Creek Wind Power, LLC, Coso Geothermal Power Holdings, LLC.... Applicants: ArcLight Energy Marketing, LLC, Oak Creek Wind Power, LLC, Coso Geothermal Power Holdings, LLC... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Combined Notice of Filings 1 November 15...
Nevada Renewable Energy Training Project: Geothermal Power Plant Operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jim, Nichols
2014-04-29
The purpose of this project was to develop and institute a training program for certified geothermal power plant operators (GPO). An advisory board consisting of subject matter experts from the geothermal energy industry and academia identified the critical skill sets required for this profession. A 34-credit Certificate of Achievement (COA), Geothermal Power Plant Operator, was developed using eight existing courses and developing five new courses. Approval from the Nevada System of Higher Education Board of Regents was obtained. A 2,400 sq. ft. geothermal/fluid mechanics laboratory and a 3,000 sq. ft. outdoor demonstration laboratory were constructed for hands-on training. Students alsomore » participated in field trips to geothermal power plants in the region. The majority of students were able to complete the program in 2-3 semesters, depending on their level of math proficiency. Additionally the COA allowed students to continue to an Associate of Applied Science (AAS), Energy Technologies with an emphasis in Geothermal Energy (26 additional credits), if they desired. The COA and AAS are stackable degrees, which provide students with an ongoing career pathway. Articulation agreements with other NSHE institutions provide students with additional opportunities to pursue a Bachelor of Applied Science in Management or Instrumentation. Job placement for COA graduates has been excellent.« less
Geothermal Coproduction and Hybrid Systems | Geothermal Technologies | NREL
systems. Geothermal and Oil and Gas NREL experts are working to find ways to effectively use renewable resources in combination with fossil energy. Geothermal and oil and gas hybrid systems make use of wells already drilled by oil and gas developers. Using coproduced geothermal fluids for power production from
Design, fabrication, delivery, operation and maintenance of a geothermal power conversion system
NASA Technical Reports Server (NTRS)
1980-01-01
The design, fabrication, delivery, operation and maintenance of an Hydrothermal Power Company 1250 KVA geothermal power conversion system using a helical screw expander as the prime mover is described. Hydrostatic and acceptance testing are discussed.
A consortium of three brings real geothermal power for California's Imperial valley -- at last
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehlage, E.F.
1983-04-01
Imperial Valley's geothermal history gets a whole new chapter with dedication ceremony for southern California's unusual 10,000 kilowatt power station-SCE in joint corporate venture with Southern Pacific and Union Oil. America's newest and unique electric power generation facility, The Salton Sea Geothermal-Electric Project, was the the site of a formal dedication ceremony while the sleek and stainless jacketed piping and machinery were displayed against a flawlessly brilliant January sky - blue and flecked with a few whisps of high white clouds, while plumes of geothermal steam rose across the desert. The occasion was the January 19, 1983, ceremonial dedication ofmore » the unique U.S.A. power generation facility constructed by an energy consortium under private enterprise, to make and deliver electricity, using geothermal steam released (with special cleaning and treatment) from magma-heated fluids produced at depths of 3,000 to 6,000 feet beneath the floor of the Imperial Valley near Niland and Brawley, California.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bearden, Mark D.; Davidson, Casie L.; Horner, Jacob A.
Presented here are the results of a techno-economic (TEA) study of the potential for coupling low-grade geothermal resources to boost the electrical output from coal-fired power plants. This study includes identification of candidate 500 MW subcritical coal-fired power plants in the continental United States, followed by down-selection and characterization of the North Valmy generating station, a Nevada coal-fired plant. Based on site and plant characteristics, ASPEN Plus models were designed to evaluate options to integrate geothermal resources directly into existing processes at North Valmy. Energy outputs and capital costing are presented for numerous hybrid strategies, including integration with Organic Rankinemore » Cycles (ORCs), which currently represent the primary technology for baseload geothermal power generation.« less
NASA Astrophysics Data System (ADS)
Sinaga, R. H. M.; Darmanto, P. S.
2016-09-01
Darajat unit III geothermal power plant is developed by PT. Chevron Geothermal Indonesia (CGI). The plant capacity is 121 MW and load 110%. The greatest utilization power is consumed by Hot Well Pump (HWP) and Cooling Tower Fan (CTF). Reducing the utility power can be attempted by utilizing the wet bulb temperature fluctuation. In this study, a modelling process is developed by using Engineering Equation Solver (EES) software version 9.430.The possibility of energy saving is indicated by Specific Steam Consumption (SSC) net in relation to wet bulb temperature fluctuation from 9°C up to 20.5°C. Result shows that the existing daily operation reaches its optimum condition. The installation of Variable Frequency Drive (VFD) could be applied to optimize both utility power of HWP and CTF. The highest gain is obtained by VFD HWP installation as much as 0.80% when wet bulb temperature 18.5 °C.
Enabling CCS via Low-temperature Geothermal Energy Integration for Fossil-fired Power Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, Casie L.; Heldebrant, D. J.; Bearden, M. D.
Here, among the key barriers to commercial scale deployment is the cost associated with CO 2 capture. This is particularly true for existing large, fossil-fired assets that account for a large fraction of the electricity generation fleet in developed nations, including the U.S. Fitting conventional combustion technologies with CO 2 capture systems can carry an energy penalty of thirty percent or more, resulting in an increased price of power to the grid, as well as an overall decrease in net plant output. Taken together with the positive growth in demand for electricity, this implies a need for accelerated capital build-outmore » in the power generation markets to accommodate both demand growth and decreased output at retrofitted plants. In this paper, the authors present the results of a study to assess the potential to use geothermal energy to provide boiler feedwater preheating, capturing efficiency improvements designed to offset the losses associated with CO 2 capture. Based on NETL benchmark cases and subsequent analysis of the application using site-specific data from the North Valmy power plant, several cases for CO 2 capture were evaluated. These included geothermally assisted MEA capture, CO2BOLs capture, and stand-alone hybrid power generation, compared with a baseline, no-geothermal case. Based on Case 10, and assuming 2.7 MMlb/h of geothermally sourced 150 ºC water, the parasitic power load associated with MEA capture could be offset by roughly seven percent, resulting in a small (~1 percent) overall loss to net power generation, but at levelized costs of electricity similar to the no-geothermal CCS case. For the CO 2BOLs case, the availability of 150°C geothermal fluid could allow the facility to not only offset the net power decrease associated with CO 2BOLs capture alone, but could increase nameplate capacity by two percent. The geothermally coupled CO 2BOLs case also decreases LCOE by 0.75 ¢/kWh relative to the non-hybrid CO 2BOLs case, with the improved performance over the MEA case driven by the lower regeneration temperature and associated duty for CO 2BOLs relative to MEA.« less
Enabling CCS via Low-temperature Geothermal Energy Integration for Fossil-fired Power Generation
Davidson, Casie L.; Heldebrant, D. J.; Bearden, M. D.; ...
2017-08-18
Here, among the key barriers to commercial scale deployment is the cost associated with CO 2 capture. This is particularly true for existing large, fossil-fired assets that account for a large fraction of the electricity generation fleet in developed nations, including the U.S. Fitting conventional combustion technologies with CO 2 capture systems can carry an energy penalty of thirty percent or more, resulting in an increased price of power to the grid, as well as an overall decrease in net plant output. Taken together with the positive growth in demand for electricity, this implies a need for accelerated capital build-outmore » in the power generation markets to accommodate both demand growth and decreased output at retrofitted plants. In this paper, the authors present the results of a study to assess the potential to use geothermal energy to provide boiler feedwater preheating, capturing efficiency improvements designed to offset the losses associated with CO 2 capture. Based on NETL benchmark cases and subsequent analysis of the application using site-specific data from the North Valmy power plant, several cases for CO 2 capture were evaluated. These included geothermally assisted MEA capture, CO2BOLs capture, and stand-alone hybrid power generation, compared with a baseline, no-geothermal case. Based on Case 10, and assuming 2.7 MMlb/h of geothermally sourced 150 ºC water, the parasitic power load associated with MEA capture could be offset by roughly seven percent, resulting in a small (~1 percent) overall loss to net power generation, but at levelized costs of electricity similar to the no-geothermal CCS case. For the CO 2BOLs case, the availability of 150°C geothermal fluid could allow the facility to not only offset the net power decrease associated with CO 2BOLs capture alone, but could increase nameplate capacity by two percent. The geothermally coupled CO 2BOLs case also decreases LCOE by 0.75 ¢/kWh relative to the non-hybrid CO 2BOLs case, with the improved performance over the MEA case driven by the lower regeneration temperature and associated duty for CO 2BOLs relative to MEA.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steele, B.C.; Harman, G.; Pitsenbarger, J.
1996-02-01
Geothermal Energy Technology (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production.
NASA Astrophysics Data System (ADS)
Bielicki, J. M.; Adams, B. M.; Choi, H.; Saar, M. O.; Taff, S. J.; Jamiyansuren, B.; Buscheck, T. A.; Ogland-Hand, J.
2015-12-01
Mitigating climate change requires increasing the amount of electricity that is generated from renewable energy technologies and while simultaneously reducing the amount of carbon dioxide (CO2) that is emitted to the atmosphere from present energy and industrial facilities. We investigated the efficacy of generating electricity using renewable geothermal heat that is extracted by CO2 that is sequestered in sedimentary basins. To determine the efficacy of CO2-Geothermal power production in the United States, we conducted a geospatial resource assessment of the combination of subsurface CO2 storage capacity and heat flow in sedimentary basins and developed an integrated systems model that combines reservoir modeling with power plant modeling and economic costs. The geospatial resource assessment estimates the potential resource base for CO2-Geothermal power plants, and the integrated systems model estimates the physical (e.g., net power) and economic (e.g., levelized cost of electricity, capital cost) performance of an individual CO2-Geothermal power plant for a range of reservoir characteristics (permeability, depth, geothermal temperature gradient). Using coupled inverted five-spot injection patterns that are common in CO2-enhanced oil recovery operations, we determined the well pattern size that best leveraged physical and economic economies of scale for the integrated system. Our results indicate that CO2-Geothermal plants can be cost-effectively deployed in a much larger region of the United States than typical approaches to geothermal electricity production. These cost-effective CO2-Geothermal electricity facilities can also be capacity-competitive with many existing baseload and renewable energy technologies over a range of reservoir parameters. For example, our results suggest that, given the right combination of reservoir parameters, LCOEs can be as low as $25/MWh and capacities can be as high as a few hundred MW.
Blackett, Robert E.; Ross, Howard P.
1994-01-01
Development of geothermal resources in southwest Utah's Sevier thermal area continued in the early 1990s with expansion of existing power-generation facilities. Completion of the Bud L. Bonnett geothermal power plant at the Cove Fort-Sulphurdale geothermal area brought total power generation capacity of the facility to 13.5 MWe (gross). At Cove Fort-Sulphurdate, recent declines in steam pressures within the shallow, vapor-dominated part of the resource prompted field developers to complete additional geothermal supply wells into the deeper, liquid-dominated portion of the resource. At Roosevelt Hot Springs near Milford, Intermountain Geothermal Company completed an additional supply well for Utah Power and Light Company's single-flash, Blundell plant. with the increased geothermal fluid supply from the new well, the Blundell plant now produces about 26 MWe (gross). The authors conducted several geothermal resource studies in undeveloped thermal areas in southwest Utah. Previous studies at Newcastle revealed a well-defined, self-potential minimum coincident with the intersection of major faults and the center of the heatflow anomaly. A detailed self-potential survey at Wood's Ranch, an area in northwest Iron County where thermal water was encountered in shallow wells, revealed a large (5,900 ?? 2,950 feet [1,800 ?? 900 m]) northeast-oriented self-potential anomaly which possibly results from the flow of shallow thermal fluid. Chemical geothermometry applied to Wood's Ranch water samples suggest reservoir temperatures between 230 and 248??F (110 and 120??C). At the Thermo Hot Springs geothermal area near Minersville, detailed self-potential surveys have also revealed an interesting 100 mV negative anomaly possibly related to the upward flow of hydrothermal fluid.
Monitoring Biological Activity at Geothermal Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter Pryfogle
2005-09-01
The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has beenmore » evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.« less
High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zia, Jalal; Sevincer, Edip; Chen, Huijuan
2013-06-29
A thermo-economic model has been built and validated for prediction of project economics of Enhanced Geothermal Projects. The thermo-economic model calculates and iteratively optimizes the LCOE (levelized cost of electricity) for a prospective EGS (Enhanced Geothermal) site. It takes into account the local subsurface temperature gradient, the cost of drilling and reservoir creation, stimulation and power plant configuration. It calculates and optimizes the power plant configuration vs. well depth. Thus outputs from the model include optimal well depth and power plant configuration for the lowest LCOE. The main focus of this final report was to experimentally validate the thermodynamic propertiesmore » that formed the basis of the thermo-economic model built in Phase 2, and thus build confidence that the predictions of the model could be used reliably for process downselection and preliminary design at a given set of geothermal (and/or waste heat) boundary conditions. The fluid and cycle downselected was based on a new proprietary fluid from a vendor in a supercritical ORC cycle at a resource condition of 200°C inlet temperature. The team devised and executed a series of experiments to prove the suitability of the new fluid in realistic ORC cycle conditions. Furthermore, the team performed a preliminary design study for a MW-scale turbo expander that would be used for a supercritical ORC cycle with this new fluid. The following summarizes the main findings in the investigative campaign that was undertaken: 1. Chemical compatibility of the new fluid with common seal/gasket/Oring materials was found to be problematic. Neoprene, Viton, and silicone materials were found to be incompatible, suffering chemical decomposition, swelling and/or compression set issues. Of the materials tested, only TEFLON was found to be compatible under actual ORC temperature and pressure conditions. 2. Thermal stability of the new fluid at 200°C and 40 bar was found to be acceptable after 399 hours of exposure?only 3% of the initial charge degraded into by products. The main degradation products being an isomer and a dimer. 3. In a comparative experiment between R245fa and the new fluid under subcritical conditions, it was found that the new fluid operated at 1 bar lower than R245fa for the same power output, which was also predicted in the Aspen HSYSY model. As a drop-in replacement fluid for R245fa, this new fluid was found to be at least as good as R245fa in terms of performance and stability. Further optimization of the subcritical cycle may lead to a significant improvement in performance for the new fluid. 4. For supercritical conditions, the experiment found a good match between the measured and model predicted state point property data and duties from the energy balance. The largest percent differences occurred with densities and evaporator duty (see Figure 78). It is therefore reasonable to conclude that the state point model was experimentally validated with a realistic ORC system. 5. The team also undertook a preliminary turbo-expander design study for a supercritical ORC cycle with the new working fluid. Variants of radial and axial turbo expander geometries went through preliminary design and rough costing. It was found that at 15MWe or higher power rating, a multi-stage axial turbine is most suitable providing the best performance and cost. However, at lower power ratings in the 5MWe range, the expander technology to be chosen depends on the application of the power block. For EGS power blocks, it is most optimal to use multi-stage axial machines. In conclusion, the predictions of the LCOE model that showed a supercritical cycle based on the new fluid to be most advantageous for geothermal power production at a resource temperature of ~ 200C have been experimentally validated. It was found that the cycle based on the new fluid is lower in LCOE and higher in net power output (for the same boundary conditions). The project, therefore has found a new optimal configuration for low temperature geothermal power production in the form of a supercritical ORC cycle based on a new vendor fluid.« less
Federal Geothermal Research Program Update - Fiscal Year 2004
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patrick Laney
2005-03-01
The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermalmore » electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or economical.« less
Federal Geothermal Research Program Update Fiscal Year 2004
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2005-03-01
The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermalmore » electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or economical.« less
Tongonani geothermal power development, Philippines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minson, A.A.C.; Fry, T.J.; Kivell, J.A.
1985-01-01
This paper describes the features, design and construction of a 112 MWe geothermal power project, representing the first stage development of the substantial geothermal resources of the central Philippine region. The project has been undertaken by the Philippine Government. The National Powe Corporation is responsible for generation and distribution facilities and the Philippine National Oil Company Energy Development Corporation is responsible for controlled delivery of steam to the powe station.
NASA Astrophysics Data System (ADS)
Guo, Qinghai; Wang, Yanxin; Liu, Wei
2007-10-01
The Yangbajing geothermal field with the highest reservoir temperature in China is located about 90 km northwest to Lhasa City, capital of Tibet, where high temperature geothermal fluids occur both in shallow and deep reservoirs. The geophysical survey by the INDEPTH (International Deep Profiling of Tibet and the Himalayas) project group proved the existence of magmatic heat source at Yangbajing. In the study area, the hydrochemistry of cold surface waters and groundwaters and that of thermal groundwaters from both reservoirs are distinctively different. However, analysis of the relationship between enthalpy values and Cl concentrations of cold groundwaters and geothermal fluids indicates that the geothermal fluids from the shallow reservoir were formed as a result of mixing of cold groundwaters with geothermal fluids from the deep reservoir. In other words, the geothermal fluids from the deep reservoir flowed upwards into the shallow reservoir where it was diluted by the shallow cold groundwaters to form the shallow geothermal fluids with much lower temperature. A binary mixing model with two endmembers (the cold groundwaters and the deep geothermal fluids) was proposed and the mixing ratios for the geothermal fluid from each shallow well were estimated. Using the mixing ratios, the concentrations of some constituents in shallow geothermal fluids, such as As, B, SiO 2, SO 42- and F, were calculated and their differences with the actual concentrations were estimated. The results show that the differences between estimated and actual concentrations of As and B are small (the average absolute values being only 1.9% and 7.9%, respectively), whereas those of SiO 2, SO 42- and F are much bigger, indicating that other hydrogeochemical processes are responsible for the concentrations of these constituents. It is postulated that SiO 2 precipitation due to water temperature decrease, H 2S oxidation and ion exchange between OH - in geothermal waters and exchangeable F - in fluoride bearing silicate minerals during the geothermal fluid upflow might be the causes for the observed concentration differences.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-16
... geothermal unit, which is currently providing energy sufficient to power three operating geothermal plants... the Casa Diablo IV Geothermal Development Project, CA AGENCY: Bureau of Land Management, Interior... Statement (EIS)/Environmental Impact Report (EIR) for the proposed Casa Diablo IV Geothermal Development...
Preliminary assessment of the velocity pump reaction turbine as a geothermal total-flow expander
NASA Astrophysics Data System (ADS)
Demuth, O. J.
1984-06-01
The velocity pump reaction turbine (VPRT) was evaluated as a total flow expander in a geothermal-electric conversion cycle. Values of geofluid effectiveness of VPRT systems were estimated for conditions consisting of: a 360(F) geothermal resource, 60 F wet-bulb ambient temperature, zero and 0.003 mass concentrations of dissolved noncondensible gas in the geofluid, 100 and 120 F condensing temperatures, and engine efficiencies ranging from 0.4 to 1.0. Achievable engine efficiencies were estimated to range from 0.77, with plant geofluid effectiveness values ranging as high as 9.5 watt hr-lbm geofluid for the 360 F resource temperature. This value is competitive with magnitudes of geofluid effectiveness projected for advanced binary plants, and is on the order of 40% higher than estimates for dual-flash steam and other total flow systems reviewed. Because of its potentially high performance and relative simplicity, the VPRT system appears to warrant further investigation toward its use in a well-head geothermal plant.
NASA Astrophysics Data System (ADS)
Chen, Liuzhu; Ma, Teng; Du, Yao; Xiao, Cong; Chen, Xinming; Liu, Cunfu; Wang, Yanxin
2016-05-01
Geothermal energy is abundant in Guangdong Province of China, however, majority of it is still unexploited. To take full advantage of this energy, it is essential to know the information of geothermal system. Here, physical parameters such as pH and temperature, major ion (Na+, Ca2 +, Mg2 +, Cl-, SO42 - and HCO3-), trace elements (Br-, Sr2 +, Li+ and B3 +) and stable isotopes (2H, 18O and 37Cl) in geothermal water, non-geothermal water (river water, cold groundwater) and seawater were used to identify the origin and evolution of geothermal water in coastal plain of Southwest of Guangdong. Two separate groups of geothermal water have been identified in study area. Group A, located in inland of study area, is characterized by Na+ and HCO3-. Group B, located in coastal area, is characterized by Na+ and Cl-. The relationships of components vs. Cl for different water samples clearly suggest the hydrochemical differences caused by mixing with seawater and water-rock interactions. It's evident that water-rock interactions under high temperature make a significant contribution to hydrochemistry of geothermal water for both Group A and Group B. Besides, seawater also plays an important role during geothermal water evolution for Group B. Mixing ratios of seawater with geothermal water for Group B are calculated by Cl and Br binary diagram, the estimated results show that about < 1% to < 35% of seawater has mixed into geothermal water, and seawater might get into the geothermal system by deep faults. Molar Na/Cl ratios also support these two processes. Geothermal and non-geothermal water samples plot around GMWL in the δ2H vs. δ18O diagram, indicating that these samples have a predominant origin from meteoric water. Most of geothermal water samples display δ37Cl values between those of the non-geothermal water and seawater samples, further reveals three sources of elements supply for geothermal water, including atmospheric deposition, bedrocks and seawater, which show a great potential to trace source of dissolved Cl- in geothermal water. Estimated reservoir temperatures show that geothermal reservoirs in study area are mid-low temperature geothermal reservoirs.
Geothermal Potential for China, Poland and Turkey with/Financing Workbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, J G
This collection of documents presents the results of assessments of the geothermal power potential in three countries: China, Poland, and Turkey. Also included is a Geothermal Financing Workbook, which is intended to provide a comprehensive package of information on financing, financing plans, financial analysis, and financial sources for smaller geothermal resource developers. All three countries are facing ever increasing demands for power in the coming decades, but each has some barriers to fully developing existing resources. For Poland and Turkey, it is important that legislation specific to geothermal resource development be enacted. For China, a crucial step is to developmore » more detailed and accurate estimates of resource potential. All three countries could benefit from the expertise of U.S. geothermal companies, and this collection of material provides crucial information for those interested companies.« less
NASA Astrophysics Data System (ADS)
Kaczmarczyk, Michał
2017-11-01
The basic source of information for determining the temperature distribution in the rock mass and thus the potential for thermal energy contained in geothermal water conversion to electricity, are: temperature measurements in stable geothermic conditions, temperature measurements in unstable conditions, measurements of maximum temperatures at the bottom of the well. Incorrect temperature estimation can lead to errors during thermodynamic parameters calculation and consequently economic viability of the project. The analysis was performed for the geothermal water temperature range of 86-100°C, for dry working fluid R245fa. As a result of the calculations, the data indicate an increase in geothermal power as the geothermal water temperature increases. At 86°C, the potential power is 817.48 kW, increases to 912.20 kW at 88°C and consequently to 1 493.34 kW at 100°C. These results are not surprising, but show a scale of error in assessing the potential that can result improper interpretation of the rock mass and geothermal waters temperature.
Keeping the Future Bright: Department of Defense (DOD) Sustainable Energy Strategy for Installations
2016-04-04
sustainable energy included renewable energy sources, such as hydroelectricity, solar energy, wind energy, wave power, geothermal energy, bioenergy, tidal...energy, including bioftiel and other alternative sources (wind. solar, and geothermal ).27 The SECNAV made security and independence the two energy...Navy’s China Lake geothermal power plant in California is DOD’s largest renewable energy project supplying nearly half of DOD’s renewable energy
Global Value Chain and Manufacturing Analysis on Geothermal Power Plant Turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akar, Sertac; Augustine, Chad; Kurup, Parthiv
In this study, we have undertaken a robust analysis of the global supply chain and manufacturing costs for components of Organic Rankine Cycle (ORC) Turboexpander and steam turbines used in geothermal power plants. We collected a range of market data influencing manufacturing from various data sources and determined the main international manufacturers in the industry. The data includes the manufacturing cost model to identify requirements for equipment, facilities, raw materials, and labor. We analyzed three different cases; 1) 1 MW geothermal ORC Turboexpander 2) 5 MW ORC Turboexpander 3) 20 MW geothermal Steam Turbine
A partial listing of contents includes: The use of gas sampling bags for the collection and storage of hydrothermal gases; Heavy metal emissions from geothermal power plants; The dynamic measurement of ambient airborne gases near geothermal areas; Analysis of radon in geothermal ...
China starts tapping rich geothermal resources
NASA Astrophysics Data System (ADS)
Guang, D.
1980-09-01
Attention is given to the electric and power installation running on geothermal energy at Yangbajain, Tibet. Other geothermal projects in Tibet, the Yunnan Province and the North China Plain are also outlined. Applications of geothermal energy are described, including the heating of homes and factories, spinning, weaving, paper-making and the making of wine.
NASA Astrophysics Data System (ADS)
Kiryukhin, A. V.; Polyakov, A. Y.; Usacheva, O. O.; Kiryukhin, P. A.
2018-05-01
The Mutnovsky geothermal area is part of the Eastern Kamchatka active volcano belt. Mutnovsky, 80 kY old and an aging strato-volcano (a complex of 4 composite volcanic cones), acts as a magma- and water-injector into the 25-km-long North Mutnovsky extension zone. Magmatic injection events (dykes) are associated with plane-oriented MEQ (Micro Earth Quakes) clusters, most of them occurring in the NE sector of the volcano (2 × 10 km2) at elevations from -4 to -2 km, while some magmatic injections occur at elevations from -6.0 to -4.0 km below the Mutnovsky production field. Water recharge of production reservoirs is from the Mutnovsky volcano crater glacier (+1500 to +1800 masl), which was confirmed by water isotopic data (δD, δ18O) of production wells at an earlier stage of development. The Mutnovsky (Dachny) 260-310 °C high-temperature production geothermal reservoir with a volume of 16 km3 is at the junction of NNE- and NE-striking normal faults, which coincides with the current dominant dyke injection orientation. TOUGH2-modeling estimates of the reservoir properties are as follows: the reservoir permeability is 90-600 e-15 m2, the deep upflow recharge is 80 kg/s and the enthalpy is 1420 kJ/kg. Modeling was used to reproduce the history of the Mutnovsky (Dachny) reservoir exploitation since 1983 with an effective power of 48 MWe by 2016. Modeling also showed that the reservoir is capable of yielding 65-83 MWe of sustainable production until 2055, if additional production drilling in the SE part of the field is performed. Moreover, this power value may increase to 87-105 MWe if binary technologies are applied. Modeling also shows that the predicted power is sensitive to local meteoric water influx during development. Conceptual iTOUGH2-EOS1sc thermal hydrodynamic modeling of the Mutnovsky magma-hydrothermal system as a whole reasonably explains its evolution over the last 1500-5000 years in terms of heat recharge (dyke injection from the Mutnovsky-4 funnel) and mass recharge (water injection through the Mutnovsky-2 and Mutnovsky-3 funnels) conditions as previously mentioned.
Williams, Colin F.; Reed, Marshall J.; Mariner, Robert H.
2008-01-01
The U. S. Geological Survey (USGS) is conducting an updated assessment of geothermal resources in the United States. The primary method applied in assessments of identified geothermal systems by the USGS and other organizations is the volume method, in which the recoverable heat is estimated from the thermal energy available in a reservoir. An important focus in the assessment project is on the development of geothermal resource models consistent with the production histories and observed characteristics of exploited geothermal fields. The new assessment will incorporate some changes in the models for temperature and depth ranges for electric power production, preferred chemical geothermometers for estimates of reservoir temperatures, estimates of reservoir volumes, and geothermal energy recovery factors. Monte Carlo simulations are used to characterize uncertainties in the estimates of electric power generation. These new models for the recovery of heat from heterogeneous, fractured reservoirs provide a physically realistic basis for evaluating the production potential of natural geothermal reservoirs.
Make-up wells drilling cost in financial model for a geothermal project
NASA Astrophysics Data System (ADS)
Oktaviani Purwaningsih, Fitri; Husnie, Ruly; Afuar, Waldy; Abdurrahman, Gugun
2017-12-01
After commissioning of a power plant, geothermal reservoir will encounter pressure decline, which will affect wells productivity. Therefore, further drilling is carried out to enhance steam production. Make-up wells are production wells drilled inside an already confirmed reservoir to maintain steam production in a certain level. Based on Sanyal (2004), geothermal power cost consists of three components, those are capital cost, O&M cost and make-up drilling cost. The make-up drilling cost component is a major part of power cost which will give big influence in a whole economical value of the project. The objective of this paper it to analyse the make-up wells drilling cost component in financial model of a geothermal power project. The research will calculate make-up wells requirements, drilling costs as a function of time and how they influence the financial model and affect the power cost. The best scenario in determining make-up wells strategy in relation with the project financial model would be the result of this research.
Geothermal research and development program of the US Atomic Energy Commission
NASA Technical Reports Server (NTRS)
Werner, L. B.
1974-01-01
Within the overall federal geothermal program, the Atomic Energy Commission has chosen to concentrate on development of resource utilization and advanced research and technology as the areas most suitable to the expertise of its staff and that of the National Laboratories. The Commission's work in geothermal energy is coordinated with that of other agencies by the National Science Foundation, which has been assigned lead agency by the Office of Management and Budget. The objective of the Commission's program, consistent with the goals of the total federal program is to facilitate, through technological advancement and pilot plant operations, achievement of substantial commercial production of electrical power and utilization of geothermal heat by the year 1985. This will hopefully be accomplished by providing, in conjunction with industry, credible information on the economic operation and technological reliability of geothermal power and use of geothermal heat.
NASA Astrophysics Data System (ADS)
Elders, W. A.; Nielson, D.; Schiffman, P.; Schriener, A., Jr.
2014-12-01
Scientists, engineers, and policy makers gathered at a workshop in the San Bernardino Mountains of southern California in October 2013 to discuss the science and technology involved in developing high-enthalpy geothermal fields. A typical high-enthalpy geothermal well between 2000 and 3000 m deep produces a mixture of hot water and steam at 200-300 °C that can be used to generate about 5-10 MWe of electric power. The theme of the workshop was to explore the feasibility and economic potential of increasing the power output of geothermal wells by an order of magnitude by drilling deeper to reach much higher pressures and temperatures. Development of higher enthalpy geothermal systems for power production has obvious advantages; specifically higher temperatures yield higher power outputs per well so that fewer wells are needed, leading to smaller environmental footprints for a given size of power plant. Plans for resource assessment and drilling in such higher enthalpy areas are already underway in Iceland, New Zealand, and Japan. There is considerable potential for similar developments in other countries that already have a large production of electricity from geothermal steam, such as Mexico, the Philippines, Indonesia, Italy, and the USA. However drilling deeper involves technical and economic challenges. One approach to mitigating the cost issue is to form a consortium of industry, government and academia to share the costs and broaden the scope of investigation. An excellent example of such collaboration is the Iceland Deep Drilling Project (IDDP), which is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs, and this approach could serve as model for future developments elsewhere. A planning committee was formed to explore creating a similar initiative in the USA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sumitramihardja, A.; Robert, D.; Ibrahim, K.
1986-07-01
Indonesia is one of the largest developing countries in southeast Asia; therefore, energy demand tends to increase continuously. Fortunately, large amounts of energy resource potentials are available, among which is energy from geothermal resources. Some of these energy resources comprise exportable commodities such as oil, natural gas, and coal; others are for domestic consumption such as hydrothermal and geothermal energy. During the next several years the Indonesian government intends to accelerate development of nonexportable energies used to generate electrical power in order to save exportable energies that can bring foreign currencies. Therefore, geothermal has become a priority goal. Moreover, thismore » type of energy is of particular interest because Indonesia has a large geothermal energy potential related to the Circum-Pacific volcanic belts. These geothermal manifestations are spread throughout almost the entire archipelago, except the island of Kalimantan. Geothermal exploration in Indonesia began in 1929 when some shallow wells were drilled in Kamojang, West Java. Actual exploration for geothermal energy to generate electricity commenced in 1972. Preliminary reconnaissance surveys were made by the Volcanological Survey of Indonesia. In 1982, the state oil company, Pertamina, was placed in charge of exploration and development activities for geothermal energy in different fields, either by its own activities or in the form of joint-operation contracts with foreign companies. In addition, the state electrical company, PLN, is responsible for installing a power plant to generate and distribute electricity. Presently, several projects are at different stages of maturity. Some fields are in an exploration stage, and others are already developed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, A.G.
The Hawaiian Community Geothermal Technology Program is unique. Under its auspices, heat and other by-products of Hawaii's high-temperature HGP-A geothermal well and power plant are not wasted. Instead, they form the backbone of a direct-heat grant program that reaches into the local community and encourages community members to develop creative uses for geothermal energy. A by-product of this approach is a broadened local base of support for geothermal energy development. With the experimental and precommercial work completed, most of the original grantees are looking for ways to continue their projects on a commercial scale by studying the economics of usingmore » geothermal heat in a full-scale business and researching potential markets. A geothermal mini-park may be built near the research center. In 1988, a second round of projects was funded under the program. The five new projects are: Geothermal Aquaculture Project - an experiment with low-cost propagation of catfish species in geothermally heated tanks with a biofilter; Media Steam Sterilization and Drying - an application of raw geothermal steam to shredded, locally-available materials such as coconut husks, which would be used as certified nursery growing media; Bottom-Heating System Using Geothermal Power for Propagation - a continuation of Leilani Foliage's project from the first round of grants, focusing on new species of ornamental palms; Silica Bronze - the use of geothermal silica as a refractory material in casting bronze artwork; and Electro-deposition of Minerals in Geothermal Brine - the nature and possible utility of minerals deposited from the hot fluid.« less
The Pawsey Supercomputer geothermal cooling project
NASA Astrophysics Data System (ADS)
Regenauer-Lieb, K.; Horowitz, F.; Western Australian Geothermal Centre Of Excellence, T.
2010-12-01
The Australian Government has funded the Pawsey supercomputer in Perth, Western Australia, providing computational infrastructure intended to support the future operations of the Australian Square Kilometre Array radiotelescope and to boost next-generation computational geosciences in Australia. Supplementary funds have been directed to the development of a geothermal exploration well to research the potential for direct heat use applications at the Pawsey Centre site. Cooling the Pawsey supercomputer may be achieved by geothermal heat exchange rather than by conventional electrical power cooling, thus reducing the carbon footprint of the Pawsey Centre and demonstrating an innovative green technology that is widely applicable in industry and urban centres across the world. The exploration well is scheduled to be completed in 2013, with drilling due to commence in the third quarter of 2011. One year is allocated to finalizing the design of the exploration, monitoring and research well. Success in the geothermal exploration and research program will result in an industrial-scale geothermal cooling facility at the Pawsey Centre, and will provide a world-class student training environment in geothermal energy systems. A similar system is partially funded and in advanced planning to provide base-load air-conditioning for the main campus of the University of Western Australia. Both systems are expected to draw ~80-95 degrees C water from aquifers lying between 2000 and 3000 meters depth from naturally permeable rocks of the Perth sedimentary basin. The geothermal water will be run through absorption chilling devices, which only require heat (as opposed to mechanical work) to power a chilled water stream adequate to meet the cooling requirements. Once the heat has been removed from the geothermal water, licensing issues require the water to be re-injected back into the aquifer system. These systems are intended to demonstrate the feasibility of powering large-scale air-conditioning systems from the direct use of geothermal power from Hot Sedimentary Aquifer (HSA) systems. HSA systems underlie many of the world's population centers, and thus have the potential to offset a significant fraction of the world's consumption of electrical power for air-conditioning.
Geothermal Power/Oil & Gas Coproduction Opportunity
DOE Office of Scientific and Technical Information (OSTI.GOV)
DOE
2012-02-01
Coproduced geothermal resources can deliver near-term energy savings, diminish greenhouse gas emissions, extend the economic life of oil and gas fields, and profitably utilize oil and gas field infrastructure. This two-pager provides an overview of geothermal coproduced resources.
Geothermal power development in Hawaii. Volume 1. Review and analysis
NASA Astrophysics Data System (ADS)
1982-06-01
The history of geothermal exploration in Hawaii is reviewed briefly. The nature and occurrences of geothermal resources are presented island by island. An overview of geothermal markets is presented. Other topics covered are: potential markets of the identified geothermal areas, well drilling technology, hydrothermal fluid transport, overland and submarine electrical transmission, community aspects of geothermal development, legal and policy issues associated with mineral and land ownership, logistics and infrastructure, legislation and permitting, land use controls, Regulation 8, public utilities commission, political climate and environment, state plans, county plans, geothermal development risks, and business planning guidelines.
Economic impact of corrosion and scaling problems in geothermal energy systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shannon, D.W.
Corrosion and scaling problems have a significant impact on geothermal plant economics. A power plant must amortize the capital investment over a 20-year period and achieve satisfactory operating efficiency to achieve financial success. Corrosion and scale incrustations have been encountered in all geothermal plants, and to various degrees, adversely affected plant life times and power output. Using published data this report analyzes known geothermal corrosion and scaling phenomena for significant cost impacts on plant design and operation. It has been necessary to speculate about causes and mechanisms in order to estimate impacts on conceptual geothermal plants. Silica is highly solublemore » in hot geothermal water and solubility decreases as water is cooled in a geothermal power plant. Calculations indicate as much as 30,000 tons/year could pass through a 100 MWe water cycle plant. The major cost impact will be on the reinjection well system where costs of 1 to 10 mills/kwhr of power produced could accrue to waste handling alone. On the other hand, steam cycle geothermal plants have a definite advantage in that significant silica problems will probably only occur in hot dry rock concepts, where steam above 250 C is produced. Calculation methods are given for estimating the required size and cost impact of a silica filtration plant and for sizing scrubbers. The choice of materials is significantly affected by the pH of the geothermal water, temperature, chloride, and H{sub s} contents. Plant concepts which attempt to handle acid waters above 180 C will be forced to use expensive corrosion resistant alloys or develop specialized materials. On the other hand, handling steam up to 500 C, and pH 9 water up to 180 C appears feasible using nominal cost steels, typical of today's geothermal plants. A number of factors affecting plant or component availability have been identified. The most significant is a corrosion fatigue problem in geothermal turbines at the Geyser's geothermal plant which is presently reducing plant output by about 10%. This is equivalent to over $3 million per year in increased oil consumption to replace the power. In the course of assessing the cost implications of corrosion and scaling problems, a number of areas of technological uncertainty were identified which should be considered in R and D planning in support of geothermal energy. Materials development with both laboratory and field testing will be necessary. The economic analysis on which this report is based was done in support of an AEC Division of Applied Technology program to assess the factors affecting geothermal plant economics. The results of this report are to be used to develop computer models of overall plant economics, of which corrosion and scaling problems are only a part. The translation of the economic analysis to the report which appears here, was done on AEC Special Studies Funds.« less
Pumpernickel Valley Geothermal Project Thermal Gradient Wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Z. Adam Szybinski
2006-01-01
The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined withmore » geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley – Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, and all four encountered geothermal fluids. The holes provided valuable water geochemistry, supporting the geothermometry results obtained from the hot springs and Magma well. The temperature data gathered from all the wells clearly indicates the presence of a major plume of thermal water centered on the Pumpernickel Valley fault, and suggests that the main plume is controlled, at least in part, by flow from this fault system. The temperature data also defines the geothermal resource with gradients >100oC/km, which covers an area a minimum of 8 km2. Structural blocks, down dropped with respect to the Pumpernickel Valley fault, may define an immediate reservoir. The geothermal system almost certainly continues beyond the recently drilled holes and might be open to the east and south, whereas the heat source responsible for the temperatures associated with this plume has not been intersected and must be at a depth greater than 920 meters (depth of the deepest well – Magma well). The geological and structural setting and other characteristics of the Pumpernickel Valley geothermal project area are markedly similar to the portions of the nearby Dixie Valley geothermal field. These similarities include, among others, the numerous, unexposed en echelon faults and large-scale pull-apart structure, which in Dixie Valley may host part of the geothermal field. The Pumpernickel Valley project area, for the majority of which Nevada Geothermal Power Company has geothermal rights, represents a geothermal site with a potential for the discovery of a relatively high temperature reservoir suitable for electric power production. Among locations not previously identified as having high geothermal potential, Pumpernickel Valley has been ranked as one of four sites with the highest potential for electrical power production in Nevada (Shevenell and Garside, 2003). Richards and Blackwell (2002) estimated the total heat loss and the preliminary production capacity for the entire Pumpernickel Valley geothermal system to be at 35MW. A more conservative estimate, for the hot spring area only, was presented by GeothermEx Inc. (2004), which projected that power generation capacities for the Pumpernickel Valley site are 10 MW-30yrs minimum (probablility of >90%), and most likely 13 MW-30yrs.« less
Geothermal characteristics of deep wells using geophysical logs in Pohang area, Korea
NASA Astrophysics Data System (ADS)
LIM, W.; Hamm, S. Y.; Lee, C.; Song, Y.; Kim, H.
2016-12-01
Pohang area displays a larger potential of geothermal energy with the highest heat flow of 83 mWm-2 in South Korea. A geothermal binary power plant with a generation capacity of 1.5MW using enhanced geothermal system (EGS) is under construction in Pohang area and will be completed until 2017. This study aims to reveal geothermal characteristics of four wells (BH-1 to BH-4 wells) of 2,383 m in depth in Pohang area, using geophysical logs. The geology of the study area is composed of tertiary mudstone of 200 - 359.1 m, tuff of 73 - 240 m, sandstone/mudstone of 46 - 907 m, rhyolite of 259 - 375 m, and andesitic volcanic breccia of 834 m in thicknesses from the surface, with granodiorite at bottom. By the result of the study, temperature and maximum electrical conductivity (EC) are 69.5°C at 1,502.6 m and 1,162 μS/cm at BH-2 well, 44.4°C at 912.3 m and 1,105 μS/cm at BH-3 well, and 82.5°C at 1,981.3 m and 3,412 μS/cm at BH-4 well. Thermal conductivity values at saturated state are 2.14 - 3.95 W/m-K (average 3.47 W/m-K) at BH-1 well and 2.36 - 3.61 W/m-K (average 2.85 W/m-K) at BH-4 well. ß (determining heat flow rate and up/down direction) values were estimated by using 1-D steady-state heat transfer equation and were determined as -0.77 - 0.99 with the geothermal gradients (Ks) of 42.5 - 46.3°C/km at BH-1 well, -3.15 - 3.05 with the Ks of 25.0 - 29.1°C/km at BH-2, -1.80 - 2.09 with the Ks of 20.0 - 23.0°C/km at BH-3 well, and -4.10 - 5.18 with the Ks of 30.2 - 39.0°C/km at BH-4 well. Most depths of all the wells showed upward heat transfer. Based on the geophysical logs, the main aquifer is located between 200 and 300 meters. KEY WORDS: Geothermal gradient, thermal conductivity, geophysical logs, ß value, heat transfer equation, Pohang area Acknowledgement This work was supported by grants from the Principal Research Fund of Korea Institute of the Geoscience and Mineral Resources (KIGAM 16-3411).
manufacturing, buildings efficiency, concentrating solar power, geothermal energy, transportation, water power Integration Facility Geothermal Energy Grid Modernization Hydrogen & Fuel Cells Integrated Energy Research Research Researching energy systems and technologies-and the science behind them-for a
Life Cycle analysis data and results for geothermal and other electricity generation technologies
Sullivan, John
2013-06-04
Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.
Using Geothermal Electric Power to Reduce Carbon Footprint
NASA Astrophysics Data System (ADS)
Crombie, George W.
Human activities, including the burning of fossil fuels, increase carbon dioxide levels, which contributes to global warming. The research problem of the current study examined if geothermal electric power could adequately replace fossil fuel by 2050, thus reducing the emissions of carbon dioxide while avoiding potential problems with expanding nuclear generation. The purpose of this experimental research was to explore under what funding and business conditions geothermal power could be exploited to replace fossil fuels, chiefly coal. Complex systems theory, along with network theory, provided the theoretical foundation for the study. Research hypotheses focused on parameters, such as funding level, exploration type, and interfaces with the existing power grid that will bring the United States closest to the goal of phasing out fossil based power by 2050. The research was conducted by means of computer simulations, using agent-based modeling, wherein data were generated and analyzed. The simulations incorporated key information about the location of geothermal resources, exploitation methods, transmission grid limits and enhancements, and demand centers and growth. The simulation suggested that rapid and aggressive deployment of geothermal power plants in high potential areas, combined with a phase out of coal and nuclear plants, would produce minimal disruptions in the supply of electrical power in the United States. The implications for social change include reduced risk of global warming for all humans on the planet, reduced pollution due to reduction or elimination of coal and nuclear power, increased stability in energy supply and prices in the United States, and increased employment of United States citizens in jobs related to domestic energy production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merrick, Dale E
A small community in Northern California is attempting to use a local geothermal resource to generate electrical power and cascade residual energy to an existing geothermal district heating system, greenhouse, and future fish farm and subsequent reinjection into the geothermal aquifer, creating a net-zero energy community, not including transportation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battocletti, E.C.
1998-02-01
This report was prepared to help small firm search for financing for geothermal energy projects. There are various financial and economics formulas. Costs of some small overseas geothermal power projects are shown. There is much discussion of possible sources of financing, especially for overseas projects. (DJE-2005)
Honey Lake Geothermal Project, Lassen County, California
NASA Astrophysics Data System (ADS)
1984-11-01
The drilling, completion, and testing of deep well WEN-2 for a hybrid electric power project which will use the area's moderate temperature geothermal fluids and locally procured wood fuel is reported. The project is located within the Wendel-Amedee Known Geothermal Resource Area.
Geothermal energy development in the Philippines: An overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sussman, D.; Javellana, S.P.; Benavidez, P.J.
1993-10-01
The Philippines is the third largest producer of geothermal electricity after the US and Mexico. Geothermal exploration was started in 1962, and the first large commercial power plants came on-line in 1979 in two fields. By 1984, four geothermal fields had a combined installed capacity of 890 MWe and in 1992 these plants supplied about 20% of the country`s electric needs. Geothermal energy development was stimulated in the mid-1970s by the oil crisis and rapidly growing power demand, government support, available foreign funding, and a combination of private and government investment and technical expertise. However, no new geothermal capacity hasmore » been added since 1984, despite the growing demand for energy and the continuing uncertainty in the supply of crude oil. The Philippines` geothermal capacity is expected to expand by 270--1,100 MWe by the end of 1999. Factors that will affect the rate growth in this decade include suitable legislation, environmental requirements, financing, degree of private involvement, politics, inter-island electric grid connections, and viability of the remaining prospects.« less
Space-Based Solar Power: A Technical, Economic, and Operational Assessment
2015-04-01
reports also address alternative and renew- able sources such as biomass, wind, geothermal , and solar (thermal and photovoltaic), which are becom- ing...2025 using solar, wind, biomass, and geothermal energy generation technologies.86 Table 3. Army Sites for Terrestrial Solar Photovoltaic Power
Geothermal Geodatabase for Wagon Wheel Hot Springs, Mineral County, Colorado
Richard Zehner
2012-11-01
This geodatabase was built to cover several geothermal targets developed by Flint Geothermal in 2012 during a search for high-temperature systems that could be exploited for electric power development. Several of the thermal springs at Wagon Wheel Gap have geochemistry and geothermometry values indicative of high-temperature systems. Datasets include: 1. Results of reconnaissance shallow (2 meter) temperature surveys 2. Air photo lineaments 3. Groundwater geochemistry 4. Power lines 5. Georeferenced geologic map of Routt County 6. Various 1:24,000 scale topographic maps
Occidental Geothermal, Inc. , Oxy Geothermal Power Plant No. 1: draft environmental impact report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-08-01
The following aspects of the proposed geothermal power plant are discussed: the project description; the environment in the vicinity of project as it exists before the project begins, from both a local and regional perspective; the adverse consequences of the project, any significant environmental effects which cannot be avoided, and any mitigation measures to minimize significant effects; the potential feasible alternatives to the proposed project; the significant unavoidable, irreversible, and long-term environmental impacts; and the growth inducing impacts. (MHR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The feasibility of constructing a 25-50 MWe geothermal power plant using low salinity hydrothermal fluid as the energy source was assessed. Here, the geotechnical aspects of geothermal power generation and their relationship to environmental impacts in the Imperial Valley of California were investigated. Geology, geophysics, hydrogeology, seismicity and subsidence are discussed in terms of the availability of data, state-of-the-art analytical techniques, historical and technical background and interpretation of current data. Estimates of the impact of these geotechnical factors on the environment in the Imperial Valley, if geothermal development proceeds, are discussed.
Tang, Li; Iddya, Arpita; Zhu, Xiaobo; Dudchenko, Alexander V; Duan, Wenyan; Turchi, Craig; Vanneste, Johann; Cath, Tzahi Y; Jassby, David
2017-11-08
The desalination of inland brackish groundwater offers the opportunity to provide potable drinking water to residents and industrial cooling water to industries located in arid regions. Geothermal brines are used to generate electricity, but often contain high concentrations of dissolved salt. Here, we demonstrate how the residual heat left in spent geothermal brines can be used to drive a membrane distillation (MD) process and recover desalinated water. Porous polypropylene membranes were coated with a carbon nanotube (CNT)/poly(vinyl alcohol) layer, resulting in composite membranes having a binary structure that combines the hydrophobic properties critical for MD with the hydrophilic and conductive properties of the CNTs. We demonstrate that the addition of the CNT layer increases membrane flux due to enhanced heat transport from the bulk feed to the membrane surface, a result of CNT's high thermal transport properties. Furthermore, we show how hydroxide ion generation, driven by water electrolysis on the electrically conducting membrane surface, can be used to efficiently dissolve silicate scaling that developed during the process of desalinating the geothermal brine, negating the need for chemical cleaning.
NASA Astrophysics Data System (ADS)
Sinaga, R. H. M.; Manik, Y.
2018-03-01
Sibayak Geothermal Power Plant (SGPP) is one of the plants being developed by Pertamina Geothermal Energy (PGE) at the upstream phase. At the downstream phase, State - owned Electricity Company (PLN) through PT. Dizamatra Powerindo is the developer. The gross capacity of the power plant is 13.3 MW, consisting 1 unit of Monoblock (2 MW) developed by PGE and 2 units (2×5.65 MW) operated through Energy Sales Contract by PLN. During the development phase of a geothermal power plant, there is a chance to reduce the utility power in order to increase the overall plant efficiency. Reducing the utility power can be attempted by utilizing the wet bulb temperature fluctuation. In this study, a modeling process is developed by using Engineering Equation Solver (EES) software version 9.430. The possibility of energy saving is indicated by condenser pressure changes as a result of wet bulb temperature fluctuation. The result of this study indicates that the change of condenser pressure is about 50.8% on the constant liquid/gas (L/G) condition of the wet bulb temperature of 15°C to 25°C. Further result indicates that in this power plant, Cooling Tower Fan (CTF) is the facility that has the greatest utility load, followed by Hot Well Pump (HWP). The saving of the greatest utility load is applied trough Variable Frequency Drive (VFD) instrumentation. The result of this modeling has been validated by actual operations data (log sheet). The developed model has also been reviewed trough Specific Steam Consumption (SSC), resulting that constant L/G condition allows the optimum condition on of the wet bulb temperature of 15°C to 25°C.
Exploration of Ulumbu Geothermal field, Flores-East Nusa Tenggara Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sulasdi, D.
1996-12-31
This paper describes the progress made in developing geothermal resources at Ulurnbu Flores, Indonesia for utilization mini geothermal power generation. Two deep exploratory wells drilling drilled by PLN confirmed the existence of the resources. The well measurement carried out during drilling and after completion of the well indicated that the major permeable zone at around 680 m depth and that this zone is a steam cap zone, which is likely to produce high enthalpy steam. The above information indicates that well ULB-01 will produce a mass flow at least 40 tonnes per hour, which will ensure a 3 MW (E)more » Ulumbu mini geothermal power plant.« less
Exploration of Ulumbu geothermal field, Flores-east nusa tenggara, Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sulasdi, Didi
1996-01-26
This paper describes the progress made in developing geothermal resources at Ulumbu Flores, Indonesia for utilization mini geothermal power generation. Two deep exploratory wells drilling drilled by PLN confirmed the existence of the resources. The well measurement carried out during drilling and after completion of the well indicated that the major permeable zone at around 680 m depth and that this zone is a steam cap zone, which is likely to produce high enthalpy steam. The above information indicates that well ULB-01 will produce a mass flow at least 40 tonnes per hour, which will ensure a 3 MW (E)more » Ulumbu mini geothermal power plant.« less
Geothermal Money Book [Geothermal Outreach and Project Financing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elizabeth Battocletti
2004-02-01
Small business lending is big business and growing. Loans under $1 million totaled $460 billion in June 2001, up $23 billion from 2000. The number of loans under $100,000 continued to grow at a rapid rate, growing by 10.1%. The dollar value of loans under $100,000 increased 4.4%; those of $100,000-$250,000 by 4.1%; and those between $250,000 and $1 million by 6.4%. But getting a loan can be difficult if a business owner does not know how to find small business-friendly lenders, how to best approach them, and the specific criteria they use to evaluate a loan application. This ismore » where the Geothermal Money Book comes in. Once a business and financing plan and financial proposal are written, the Geothermal Money Book takes the next step, helping small geothermal businesses locate and obtain financing. The Geothermal Money Book will: Explain the specific criteria potential financing sources use to evaluate a proposal for debt financing; Describe the Small Business Administration's (SBA) programs to promote lending to small businesses; List specific small-business friendly lenders for small geothermal businesses, including those which participate in SBA programs; Identify federal and state incentives which are relevant to direct use and small-scale (< 1 megawatt) power generation geothermal projects; and Provide an extensive state directory of financing sources and state financial incentives for the 19 states involved in the GeoPowering the West (GPW). GPW is a U.S. Department of Energy-sponsored activity to dramatically increase the use of geothermal energy in the western United States by promoting environmentally compatible heat and power, along with industrial growth and economic development. The Geothermal Money Book will not: Substitute for financial advice; Overcome the high exploration, development, and financing costs associated with smaller geothermal projects; Remedy the lack of financing for the exploration stage of a geothermal project; or Solve financing problems that are not related to the economic soundness of your project or are caused by things outside of your control.« less
Honduras geothermal development: Regulations and opportunities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goff, S.J.; Winchester, W.W.
1994-09-01
The US Department of Energy (DOE) through the Assistant Secretary for Policy, Planning, and Evaluation funded a project to review and evaluate existing power sector laws and regulations in Honduras. Also included in the scope of the project was a review of regulations pertaining to the privatization of state-run companies. We paid particular attention to regulations which might influence opportunities to develop and commercialize Honduras` geothermal resources. We believe that Honduras is well on the road to attracting foreign investment and has planned or has already in place much of the infrastructure and legal guarantees which encourage the influx ofmore » private funds from abroad. In addition, in light of current power rationing and Honduras` new and increasing awareness of the negative effects of power sector development on the environment, geothermal energy development is even more attractive. Combined, these factors create a variety of opportunities. The potential for private sector development of geothermal positive.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gayle, Phillip A., Jr.
The goal of the project was to demonstrate the commercial feasibility of geopressured-geothermal power development by exploiting the extraordinarily high pressured hot brines know to exist at depth near the Sweet Lake oil and gas field in Cameron Parish, Louisiana. The existence of a geopressured-geothermal system at Sweet Lake was confirmed in the 1970's and 1980's as part of DOE's Geopressured-Geothermal Program. That program showed that the energy prices at the time could not support commercial production of the resource. Increased electricity prices and technological advancements over the last two decades, combined with the current national support for developing clean,more » renewable energy and the job creation it would entail, provided the justification necessary to reevaluate the commercial feasibility of power generation from this vast resource.« less
Compilation of geothermal information: exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-01-01
The Database for Geothermal Energy Exploration and Evaluation is a printout of selected references to publications covering the development of geothermal resources from the identification of an area to the production of elecric power. This annotated bibliography contains four sections: references, author index, author affiliation index, and descriptor index.
Retrofitting a Geothermal Plant with Solar and Storage to Increase Power Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Guangdong; McTigue, Joshua Dominic P; Turchi, Craig S
Solar hybridization using concentrating solar power (CSP) can be an effective approach to augment the power generation and power cycle efficiency of a geothermal power plant with a declining resource. Thermal storage can further increase the dispatchability of a geothermal/solar hybrid system, which is particularly valued for a national grid with high renewable penetration. In this paper, a hybrid plant design with thermal storage is proposed based on the requirements of the Coso geothermal field in China Lake, California. The objective is to increase the power production by 4 MWe. In this system, a portion of the injection brine ismore » recirculated through a heat exchanger with the solar heat transfer fluid, before being mixed with the production well brine. In the solar heating loop the brine should be heated to at least 155 degrees C to increase the net power. The solar field and storage were sized based on solar data for China Lake. Thermal storage is used to store excess power at the high-solar-irradiation hours and generate additional power during the evenings. The solar field size, the type and capacity of thermal storage and the operating temperatures are critical factors in determining the most economic hybrid system. Further investigations are required to optimize the hybrid system and evaluate its economic feasibility.« less
Engineering Sedimentary Geothermal Resources for Large-Scale Dispatchable Renewable Electricity
NASA Astrophysics Data System (ADS)
Bielicki, Jeffrey; Buscheck, Thomas; Chen, Mingjie; Sun, Yunwei; Hao, Yue; Saar, Martin; Randolph, Jimmy
2014-05-01
Mitigating climate change requires substantial penetration of renewable energy and economically viable options for CO2 capture and storage (CCS). We present an approach using CO2 and N2 in sedimentary basin geothermal resources that (1) generates baseload and dispatchable power, (2) efficiently stores large amounts of energy, and (3) enables seasonal storage of solar energy, all which (5) increase the value of CO2 and render CCS commercially viable. Unlike the variability of solar and wind resources, geothermal heat is a constant source of renewable energy. Using CO2 as a supplemental geothermal working fluid, in addition to brine, reduces the parasitic load necessary to recirculate fluids. Adding N2 is beneficial because it is cheaper, will not react with materials and subsurface formations, and enables bulk energy storage. The high coefficients of thermal expansion of CO2 and N2 (a) augment reservoir pressure, (b) generate artesian flow at the production wells, and (c) produce self-convecting thermosiphons that directly convert reservoir heat to mechanical energy for fluid recirculation. Stored pressure drives fluid production and responds faster than conventional brine-based geothermal systems. Our design uses concentric rings of horizontal wells to create a hydraulic divide that stores supplemental fluids and pressure. Production and injection wells are controlled to schedule power delivery and time-shift the parasitic power necessary to separate N2 from air and compress it for injection. The parasitic load can be scheduled during minimum power demand or when there is excess electricity from wind or solar. Net power output can nearly equal gross power output during peak demand, and energy storage is almost 100% efficient because it is achieved by the time-shift. Further, per-well production rates can take advantage of the large productivity of horizontal wells, with greater leveraging of well costs, which often constitute a major portion of capital costs for geothermal power systems.
Thermoelectric Materials Development for Low Temperature Geothermal Power Generation
Tim Hansen
2016-01-29
Data includes characterization results for novel thermoelectric materials developed specifically for power generation from low temperature geothermal brines. Materials characterization data includes material density, thickness, resistance, Seebeck coefficient. This research was carried out by Novus Energy Partners in Cooperation with Southern Research Institute for a Department of Energy Sponsored Project.
Measurement of Subsidence in the Yangbajain Geothermal Fields from TerraSAR-X
NASA Astrophysics Data System (ADS)
Li, Yongsheng; Zhang, Jingfa; Li, Zhenhong
2016-08-01
Yangbajain contains the largest geothermal energy power station in China. Geothermal explorations in Yangbajain first started in 1976, and two plants were subsequently built in 1981 and 1986. A large amount of geothermal fluids have been extracted since then, leading to considerable surface subsidence around the geothermal fields. In this paper, InSAR time series analysis is applied to map the subsidence of the Yangbajain geothermal fields during the period from December 2011 to November 2012 using 16 senses of TerraSAR-X stripmap SAR images. Due to its high resolution and short repeat cycle, TerraSAR-X provides detailed surface deformation information at the Yangbajain geothermal fields.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-01
..., open-loop biomass, geothermal energy, solar energy, small irrigation power, municipal solid waste... electricity produced from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small... electricity produced from the qualified energy resources of wind, closed-loop biomass, geothermal energy, and...
30 CFR 1206.351 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... of electricity for sale or to convert geothermal energy into electrical energy for sale. Contract... energy of the geothermal resource for direct use purposes. Electrical facility means a power plant or... formations; (3) Heat or other associated energy found in geothermal formations; and (4) Any byproducts. Gross...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-03
... electricity from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small irrigation..., geothermal energy, solar energy, small irrigation power, municipal solid waste, qualified hydropower... from the qualified energy resources of wind, closed-loop biomass, geothermal energy, and solar energy...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-11
..., open-loop biomass, geothermal energy, solar energy, small irrigation power, municipal solid waste... electricity produced from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small... electricity produced from the qualified energy resources of wind, closed-loop biomass, geothermal energy, and...
Maps | Geospatial Data Science | NREL
Maps Maps NREL develops an array of maps to support renewable energy development and generation resource in the United States by county Geothermal Maps of geothermal power plants, resources for enhanced geothermal systems, and hydrothermal sites in the United States Hydrogen Maps of hydrogen production
77 FR 25881 - Debt Collection and Administrative Offset for Monies Due the Federal Government
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-02
... production of oil, natural gas, coal, geothermal energy, other minerals, and renewable energy from Federal... for the production of oil, natural gas, coal, geothermal energy, other minerals, and renewable energy..., gas, coal, any other mineral or geothermal resources, or power generation from renewable energy...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-19
..., open-loop biomass, geothermal energy, solar energy, small irrigation power, municipal solid waste... electricity produced from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small... electricity produced from the qualified energy resources of wind, closed-loop biomass, geothermal energy, and...
(SEPIO). His areas of expertise include low temperature geothermal power production systems; mineral recovery from geothermal brines; fuel cell systems analysis/manufacturing/engineering; instrumentation
A market survey of geothermal wellhead power generation systems
NASA Technical Reports Server (NTRS)
Leeds, M. W.
1978-01-01
The market potential for a portable geothermal wellhead power conversion device is assessed. Major study objectives included identifying the most promising applications for such a system, the potential impediments confronting their industrialization, and the various government actions needed to overcome these impediments. The heart of the study was a series of structured interviews with key decision-making individual in the various disciplines of the geothermal community. In addition, some technical and economic analyses of a candidate system were performed to support the feasibility of the basic concept.
Capture of Geothermal Heat as Chemical Energy
Jody, Bassam J.; Petchsingto, Tawatchai; Doctor, Richard D.; ...
2015-12-11
In this paper, fluids that undergo endothermic reactions were evaluated as potential chemical energy carriers of heat from geothermal reservoirs for power generation. Their performance was compared with that of H 2O and CO 2. The results show that (a) chemical energy carriers can produce more power from geothermal reservoirs than water and CO 2 and (b) working fluids should not be selected solely on the basis of their specific thermo-physical properties but rather on the basis of the rate of exergy (ideal power) they can deliver. Finally, this article discusses the results of the evaluation of two chemical energymore » carrier systems: ammonia and methanol/water mixtures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Signorelli, Riccardo; Cooley, John
2015-10-14
FastCAP Systems Corporation has successfully completed all milestones defined by the award DE-EE0005503. Under this program, FastCAP developed three critical subassemblies to TRL3 demonstrating proof of concept of a geothermal MWD power source. This power source includes an energy harvester, electronics and a novel high temperature ultracapacitor (“ultracap”) rechargeable energy storage device suitable for geothermal exploration applications. FastCAP’s ruggedized ultracapacitor (ultracap) technology has been proven and commercialized in oil and gas exploration operating to rated temperatures of 150°C. Characteristics of this technology are that it is rechargeable and relatively high power. This technology was the basis for the advancements inmore » rechargeable energy storage under this project. The ultracap performs reliably at 250°C and beyond and operates over a wide operating temperature range: -5°C to 250°C. The ultracap has significantly higher power density than lithium thionyl chloride batteries, a non-rechargeable incumbent used in oil and gas drilling today. Several hermetically sealed, prototype devices were tested in our laboratories at constant temperatures of 250°C showing no significant degradation over 2000 hours of operation. Other prototypes were tested at Sandia National Lab in the month of April, 2015 for a third party performance validation. These devices showed outstanding performance over 1000 hours of operation at three rated temperatures, 200°C, 225°C and 250°C, with negligible capacitance degradation and minimal equivalent series resistance (ESR) increase. Similarly, FastCAP’s ruggedized electronics have been proven and commercialized in oil and gas exploration operating to rated temperatures of 150°C. This technology was the basis for the advancements in downhole electronics under this project. Principal contributions here focused on design for manufacture innovations that have reduced the prototype build cycle time by a factor of 10x. The electronics have demonstrated a substantially reduced design cycle time by way of process and material selection innovations and have been qualified for 250°C / 10 Grms for at least 200 hours. FastCAP has also invented a rotary inertial energy generator (RIEG) to harvest various mechanical energy sources that exist downhole. This device is flow-independent and has been demonstrated as a proof of concept to survive geothermal well temperatures under this project. The herein energy harvester has been developed to provide operational power by harvesting rotational mechanical energy that exists downhole in geothermal drilling. The energy harvester has been tested at 250°C / 10 Grms for 200 hours. Deployment of these technologies in geothermal drilling and exploration applications could have an immediate and significant impact on the effectiveness and efficiency of drilling processes, particularly with regard to use of advanced logging and monitoring techniques. The ultimate goal of this work is to reduce drilling risk to make geothermal energy more attractive and viable to the customer. Generally speaking, we aim to support the transfer of MWD techniques from oil and gas to geothermal exploration with considerations toward the practical differences between the two. One of the most significant obstacles to the deployment of advanced drilling and production techniques in the geothermal context are limitations related to the maximum operating temperatures of downhole batteries used to provide power for downhole sensors, steering tools, telemetry equipment and other MWD/LWD technologies. FastCAP’s higher temperature ultracapacitor technology will provide power solutions for similar advanced drilling and production techniques, even in the harsher environments associated with geothermal energy production. This ultracapacitor will enable downhole power solutions for the geothermal industry capable of the same reliable and safe operation our team has demonstrated in the oil and gas context. Without batteries, geothermal MWD is left without a downhole power source. Some very high temperature turbines exist but provide unsteady, intermittent power and no power when the flow is off. In high loss formations common to geothermal exploration, it will be auspicious to support air drilling in which case there is no flow to power a turbine at all. In the best case, rechargeable energy storage will help to buffer unsteady power from non-battery power sources and in the worst case it will be needed to store energy from highly intermittent sources to provide a continuously operable power source to the tool.« less
NREL: News - NREL Wins Research and Development Awards
and chemicals, energy-efficient buildings, advanced vehicle design, geothermal energy and hydrogen the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) are among this year's 100 components in geothermal power plants; a solar power system that produces electricity while still allowing
76 FR 20320 - Renewable Energy and Energy Efficiency Executive Business Development Mission
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-12
... 20,000 MW of wind energy and 600 MW of geothermal energy capacity by 2023 (100th year anniversary of... power farms, 300 MW geothermal power plants come into operation by 2015. As part of the energy... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency...
Geothermal Technologies | NREL
clean, renewable, domestic power source for the United States. Photo of a geothermal power plant in a technical barriers. GeoVision Study Photo of large gears on a drilling apparatus Technology Innovation We're of a woman in a hard hat with a large, drilling apparatus behind her in a grassy field Partnerships
Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hays, Lance G
2014-07-07
A variable phase turbine assembly will be designed and manufactured having a turbine, operable with transcritical, two-phase or vapor flow, and a generator – on the same shaft supported by process lubricated bearings. The assembly will be hermetically sealed and the generator cooled by the refrigerant. A compact plate-fin heat exchanger or tube and shell heat exchanger will be used to transfer heat from the geothermal fluid to the refrigerant. The demonstration turbine will be operated separately with two-phase flow and with vapor flow to demonstrate performance and applicability to the entire range of low temperature geothermal resources. The vapormore » leaving the turbine is condensed in a plate-fin refrigerant condenser. The heat exchanger, variable phase turbine assembly and condenser are all mounted on single skids to enable factory assembly and checkout and minimize installation costs. The system will be demonstrated using low temperature (237F) well flow from an existing large geothermal field. The net power generated, 1 megawatt, will be fed into the existing power system at the demonstration site. The system will demonstrate reliable generation of inexpensive power from low temperature resources. The system will be designed for mass manufacturing and factory assembly and should cost less than $1,200/kWe installed, when manufactured in large quantities. The estimated cost of power for 300F resources is predicted to be less than 5 cents/kWh. This should enable a substantial increase in power generated from low temperature geothermal resources.« less
Electric power generation using geothermal brine resources for a proof of concept facility
NASA Technical Reports Server (NTRS)
Hankin, J. W.
1974-01-01
An exploratory systems study of a geothermal proof-of-concept facility is being conducted. This study is the initial phase (Phase 0) of a project to establish the technical and economic feasibility of using hot brine resources for electric power production and other industrial applications. Phase 0 includes the conceptual design of an experimental test-bed facility and a 10-MWe power generating facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillesheim, M.; Mosey, G.
2013-11-01
The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Lakeview Uranium Mill site in Lakeview, Oregon, for a feasibility study of renewable energy production. The EPA contracted with the National Renewable Energy Laboratory (NREL) to provide technical assistance for the project. The purpose of this report is to describe an assessment of the site for possible development of a geothermal power generation facility and to estimate the cost, performance, and site impacts for the facility. In addition, the report recommends development pathways that could assist in the implementation of a geothermal power systemmore » at the site.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-25
... leases being developed are already part of a geothermal unit, which is currently producing energy... Proposed Casa Diablo IV Geothermal Development Project, Mammoth Lakes, Mono County, CA AGENCY: Bureau of... Report (EIR) to consider approval of the development of a proposed 33-megawatt (MW) geothermal power...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lund, J.W.; McEuen, R.B.; Roberts, A.
1984-09-01
During the fall of 1983, a American delegation of 14 geothermal experts visited the People's Republic of China. The three-week trip included visits to Beijing (Peking), Chengdu, Lhasa, Yangbajing, and Kunming. By far the highlight of the trip was the journey to Tibet where the geothermal field and power station at Yangbajing were toured. Technical exchanges with Chinese and Tibetan geothermal scientists and engineers were made at Beijing, Lhasa, Yangbajing and Kunming. At Kunming in Yunnan Province, the geothermal field in the western part of the province was discussed, but not visited. This latter field is in the process ofmore » extensive investigation, but only minor direct-use development such as sulfur collection and wool washing is being undertaken. The drilling of wells and power plant construction is anticipated in the Rehai and Ridian fields in the near future. In general, Yunnan has one of the largest geothermal potentials in China with over 600 sites identified so far. The sites are widespread throughout the province, but the high temperature sites are located in the western part, a very mountainous area.« less
Materials selection guidelines for geothermal energy utilization systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, P.F. II; Conover, M.F.
1981-01-01
This manual includes geothermal fluid chemistry, corrosion test data, and materials operating experience. Systems using geothermal energy in El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, and the United States are described. The manual provides materials selection guidelines for surface equipment of future geothermal energy systems. The key chemical species that are significant in determining corrosiveness of geothermal fluids are identified. The utilization modes of geothermal energy are defined as well as the various physical fluid parameters that affect corrosiveness. Both detailed and summarized results of materials performance tests and applicable operating experiences from forty sites throughout the world aremore » presented. The application of various non-metal materials in geothermal environments are discussed. Included in appendices are: corrosion behavior of specific alloy classes in geothermal fluids, corrosion in seawater desalination plants, worldwide geothermal power production, DOE-sponsored utilization projects, plant availability, relative costs of alloys, and composition of alloys. (MHR)« less
DOE's Geothermal Program still in game
NASA Astrophysics Data System (ADS)
Bush, Susan
In the ongoing search to find cost-effective, renewable forms of energy that neither contribute to global warming nor threaten national security, geothermal energy remains a player. Although Department of Energy funding for geothermal research has declined over the past decade, from its peak in 1979 of $160 million, there is still tremendous potential in terms of geothermal development, said Gladys Hooper, program manager of DOE's Hot Dry Rock and Brine Chemistry divisions. Technology for harnessing geothermal power is by and large there, she said. What is needed is more awareness and publicity regarding the merits of geothermal energy.For fiscal year 1993, proposed DOE funding for geothermal research was $24 million, down from $27 million in fiscal 1992 and nearly $30 million in fiscal 1991. DOE's Geothermal Division oversees the network of national laboratories and universities involved in developing the nation's geothermal resources and bringing them into commercial competitiveness.
NASA Astrophysics Data System (ADS)
Hingerl, Ferdinand F.; Wagner, Thomas; Kulik, Dmitrii A.; Kosakowski, Georg; Driesner, Thomas; Thomsen, Kaj
2010-05-01
A consortium of research groups from ETH Zurich, EPF Lausanne, the Paul Scherrer Institut and the University of Bonn collaborates in a comprehensive program of basic research on key aspects of the Enhanced Geothermal Systems (EGSs). As part of this GEOTHERM project (www.geotherm.ethz.ch), we concentrate on the fundamental investigation of thermodynamic models suitable for describing fluid-rock interactions at geothermal conditions. Predictions of the fluid-rock interaction in EGS still face several major challenges. Slight variations in the input thermodynamic and kinetic parameters may result in significant differences in the predicted mineral solubilities and stable assemblage. Realistic modeling of mineral precipitation in turn has implications onto our understanding of the permeability evolution of the geothermal reservoir, as well as the scaling in technical installations. In order to reasonably model an EGS, thermodynamic databases and activity models must be tailored to geothermal conditions. We therefore implemented in GEMS code the Pitzer formalism, which is the standard model used for computing thermodynamic excess properties of brines at elevated temperatures and pressures. This model, however, depends on a vast amount of interaction parameters, which are to a substantial extend unknown. Furthermore, a high order polynomial temperature interpolation makes extrapolation unreliable if not impossible. As an alternative we additionally implemented the EUNIQUAC activity model. EUNIQUAC requires fewer empirical fit parameters (only binary interaction parameters needed) and uses simpler and more stable temperature and pressure extrapolations. This results in an increase in computation speed, which is of crucial importance when performing coupled long term simulations of geothermal reservoirs. To achieve better performance under geothermal conditions, we are currently partly reformulating EUNIQUAC and refitting the existing parameter set. First results of the Pitzer-EUNIQUAC benchmark applied to relevant aqueous solutions at elevated temperature, pressure and ionic strength will be presented.
Modelling of hydrogen sulfide dispersion from the geothermal power plants of Tuscany (Italy).
Somma, Renato; Granieri, Domenico; Troise, Claudia; Terranova, Carlo; De Natale, Giuseppe; Pedone, Maria
2017-04-01
We applied the Eulerian code DISGAS (DISpersion of GAS) to investigate the dispersion of the hydrogen sulfide (H 2 S) from 32 geothermal power plants (out of 35 active) belonging to the geothermal districts of Larderello, Travale-Radicondoli and Monte Amiata, in Tuscany (Italy). An updated geographic database, for use in a GIS environment, was realized in order to process input data required by the code and to handle the outputs. The results suggest that H 2 S plumes emitted from geothermal power plants are mainly concentrated around the stacks of emission (H 2 S concentration up to 1100μg/m 3 ) and rapidly dilute along the dominant local wind direction. Although estimated values of air H 2 S concentrations are orders of magnitude higher than in unpolluted areas, they do not indicate an immediate health risk for nearby communities, under the more frequent local atmospheric conditions. Starting from the estimated values, validated by measurements in the field, we make some considerations about the environmental impact of the H 2 S emission in all the geothermal areas of the Tuscany region. Copyright © 2017 Elsevier B.V. All rights reserved.
Performance of deep geothermal energy systems
NASA Astrophysics Data System (ADS)
Manikonda, Nikhil
Geothermal energy is an important source of clean and renewable energy. This project deals with the study of deep geothermal power plants for the generation of electricity. The design involves the extraction of heat from the Earth and its conversion into electricity. This is performed by allowing fluid deep into the Earth where it gets heated due to the surrounding rock. The fluid gets vaporized and returns to the surface in a heat pipe. Finally, the energy of the fluid is converted into electricity using turbine or organic rankine cycle (ORC). The main feature of the system is the employment of side channels to increase the amount of thermal energy extracted. A finite difference computer model is developed to solve the heat transport equation. The numerical model was employed to evaluate the performance of the design. The major goal was to optimize the output power as a function of parameters such as thermal diffusivity of the rock, depth of the main well, number and length of lateral channels. The sustainable lifetime of the system for a target output power of 2 MW has been calculated for deep geothermal systems with drilling depths of 8000 and 10000 meters, and a financial analysis has been performed to evaluate the economic feasibility of the system for a practical range of geothermal parameters. Results show promising an outlook for deep geothermal systems for practical applications.
Geothermal industry employment: Survey results & analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2005-09-01
The Geothermal Energy Association (GEA) is ofteh asked about the socioeconomic and employment impact of the industry. Since available literature dealing with employment involved in the geothermal sector appeared relatively outdated, unduly focused on certain activities of the industry (e.g. operation and maintenance of geothermal power plants) or poorly reliable, GEA, in consultation with the DOE, decided to conduct a new employment survey to provide better answers to these questions. The main objective of this survey is to assess and characterize the current workforce involved in geothermal activities in the US. Several initiatives have therefore been undertaken to reach asmore » many organizations involved in geothermal activities as possible and assess their current workforce. The first section of this document describes the methodology used to contact the companies involved in the geothermal sector. The second section presents the survey results and analyzes them. This analysis includes two major parts. The first part analyzes the survey responses, presents employment numbers that were captured and describes the major characteristics of the industry that have been identified. The second part of the analysis estimates the number of workers involved in companies that are active in the geothermal business but did not respond to the survey or could not be reached. Preliminary conclusions and the study limits and restrictions are then presented. The third section addresses the potential employment impact related to manufacturing and construction of new geothermal power facilities. Indirect and induced economic impacts related with such investment are also investigated.« less
NASA Astrophysics Data System (ADS)
Astisiasari; Van Westen, Cees; Jetten, Victor; van der Meer, Freek; Rahmawati Hizbaron, Dyah
2017-12-01
An operating geothermal power plant consists of installation units that work systematically in a network. The pipeline network connects various engineering structures, e.g. well pads, separator, scrubber, and power station, in the process of transferring geothermal fluids to generate electricity. Besides, a pipeline infrastructure also delivers the brine back to earth, through the injection well-pads. Despite of its important functions, a geothermal pipeline may bear a threat to its vicinity through a pipeline failure. The pipeline can be impacted by perilous events like landslides, earthquakes, and subsidence. The pipeline failure itself may relate to physical deterioration over time, e.g. due to corrosion and fatigue. The geothermal reservoirs are usually located in mountainous areas that are associated with steep slopes, complex geology, and weathered soil. Geothermal areas record a noteworthy number of disasters, especially due to landslide and subsidence. Therefore, a proper multi-risk assessment along the geothermal pipeline is required, particularly for these two types of hazard. This is also to mention that the impact on human fatality and injury is not presently discussed here. This paper aims to give a basic overview on the existing approaches for the assessment of multi-risk assessment along geothermal pipelines. It delivers basic principles on the analysis of risks and its contributing variables, in order to model the loss consequences. By considering the loss consequences, as well as the alternatives for mitigation measures, the environmental safety in geothermal working area could be enforced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vimmerstedt, L.
1998-11-30
The objective of this report is to provide information on small geothermal project (less than 5 MW) opportunities in Latin America, the Caribbean, and the Philippines. This overview of issues facing small geothermal projects is intended especially for those who are not already familiar with small geothermal opportunities. This is a summary of issues and opportunities and serves as a starting point in determining next steps to develop this market.
Application analysis of Monte Carlo to estimate the capacity of geothermal resources in Lawu Mount
DOE Office of Scientific and Technical Information (OSTI.GOV)
Supriyadi, E-mail: supriyadi-uno@yahoo.co.nz; Srigutomo, Wahyu; Munandar, Arif
2014-03-24
Monte Carlo analysis has been applied in calculation of geothermal resource capacity based on volumetric method issued by Standar Nasional Indonesia (SNI). A deterministic formula is converted into a stochastic formula to take into account the nature of uncertainties in input parameters. The method yields a range of potential power probability stored beneath Lawu Mount geothermal area. For 10,000 iterations, the capacity of geothermal resources is in the range of 139.30-218.24 MWe with the most likely value is 177.77 MWe. The risk of resource capacity above 196.19 MWe is less than 10%. The power density of the prospect area coveringmore » 17 km{sup 2} is 9.41 MWe/km{sup 2} with probability 80%.« less
About the geothermal electric power plant from the University of Oradea, Romania
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordan, M.I.; Maghiar, T.
1997-12-31
The purpose of this paper consists in the exposure of a short description of the geothermal electric power plant from Oradea, Romania, and of the research directions regarding the optimization of the behaviour of this plant, especially the determination of the optimal thermodynamic cycle based on the analysis of the practical results.
Tang, Li; Iddya, Arpita; Zhu, Xiaobo; ...
2017-10-13
The desalination of inland brackish groundwater offers the opportunity to provide potable drinking water to residents and industrial cooling water to industries located in arid regions. Geothermal brines are used to generate electricity, but often contain high concentrations of dissolved salt. Here in this paper, we demonstrate how the residual heat left in spent geothermal brines can be used to drive a membrane distillation (MD) process and recover desalinated water. Porous polypropylene membranes were coated with a carbon nanotube (CNT)/poly(vinyl alcohol) layer, resulting in composite membranes having a binary structure that combines the hydrophobic properties critical for MD with themore » hydrophilic and conductive properties of the CNTs. We demonstrate that the addition of the CNT layer increases membrane flux due to enhanced heat transport from the bulk feed to the membrane surface, a result of CNT's high thermal transport properties. Furthermore, we show how hydroxide ion generation, driven by water electrolysis on the electrically conducting membrane surface, can be used to efficiently dissolve silicate scaling that developed during the process of desalinating the geothermal brine, negating the need for chemical cleaning.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Li; Iddya, Arpita; Zhu, Xiaobo
The desalination of inland brackish groundwater offers the opportunity to provide potable drinking water to residents and industrial cooling water to industries located in arid regions. Geothermal brines are used to generate electricity, but often contain high concentrations of dissolved salt. Here in this paper, we demonstrate how the residual heat left in spent geothermal brines can be used to drive a membrane distillation (MD) process and recover desalinated water. Porous polypropylene membranes were coated with a carbon nanotube (CNT)/poly(vinyl alcohol) layer, resulting in composite membranes having a binary structure that combines the hydrophobic properties critical for MD with themore » hydrophilic and conductive properties of the CNTs. We demonstrate that the addition of the CNT layer increases membrane flux due to enhanced heat transport from the bulk feed to the membrane surface, a result of CNT's high thermal transport properties. Furthermore, we show how hydroxide ion generation, driven by water electrolysis on the electrically conducting membrane surface, can be used to efficiently dissolve silicate scaling that developed during the process of desalinating the geothermal brine, negating the need for chemical cleaning.« less
Energy Systems Integration Facility News | Energy Systems Integration
, 2018 News Release: NREL Taps Young to Oversee Geothermal Energy Program In her new role, Young will work closely with NREL management to establish the lab's geothermal energy portfolio, including research and development geared toward advancing the use of geothermal energy as a renewable power source
Geothermally Coupled Well-Based Compressed Air Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, Casie L.; Bearden, Mark D.; Horner, Jacob A.
2015-12-20
Previous work by McGrail et al. (2013, 2015) has evaluated the possibility of pairing compressed air energy storage with geothermal resources in lieu of a fossil-fired power generation component, and suggests that such applications may be cost competitive where geology is favorable to siting both the geothermal and CAES components of such a system. Those studies also note that the collocation of subsurface resources that meet both sets of requirements are difficult to find in areas that also offer infrastructure and near- to mid-term market demand for energy storage. This study examines a novel application for the compressed air storagemore » portion of the project by evaluating the potential to store compressed air in disused wells by amending well casings to serve as subsurface pressure vessels. Because the wells themselves would function in lieu of a geologic storage reservoir for the CAES element of the project, siting could focus on locations with suitable geothermal resources, as long as there was also existing wellfield infrastructure that could be repurposed for air storage. Existing wellfields abound in the United States, and with current low energy prices, many recently productive fields are now shut in. Should energy prices remain stagnant, these idle fields will be prime candidates for decommissioning unless they can be transitioned to other uses, such as redevelopment for energy storage. In addition to the nation’s ubiquitous oil and gas fields, geothermal fields, because of their phased production lifetimes, also may offer many abandoned wellbores that could be used for other purposes, often near currently productive geothermal resources. These existing fields offer an opportunity to decrease exploration and development uncertainty by leveraging data developed during prior field characterization, drilling, and production. They may also offer lower-cost deployment options for hybrid geothermal systems via redevelopment of existing well-field infrastructure. This project assessed the technical and economic feasibility of implementing geothermally coupled well-based CAES for grid-scale energy storage. Based on an evaluation of design specifications for a range of casing grades common in U.S. oil and gas fields, a 5-MW CAES project could be supported by twenty to twenty-five 5,000-foot, 7-inch wells using lower-grade casing, and as few as eight such wells for higher-end casing grades. Using this information, along with data on geothermal resources, well density, and potential future markets for energy storage systems, The Geysers geothermal field was selected to parameterize a case study to evaluate the potential match between the proven geothermal resource present at The Geysers and the field’s existing well infrastructure. Based on calculated wellbore compressed air mass, the study shows that a single average geothermal production well could provide enough geothermal energy to support a 15.4-MW (gross) power generation facility using 34 to 35 geothermal wells repurposed for compressed air storage, resulting in a simplified levelized cost of electricity (sLCOE) estimated at 11.2 ¢/kWh (Table S.1). Accounting for the power loss to the geothermal power project associated with diverting geothermal resources for air heating results in a net 2-MW decrease in generation capacity, increasing the CAES project’s sLCOE by 1.8 ¢/kWh.« less
A proposal to investigate higher enthalpy geothermal systems in the USA
NASA Astrophysics Data System (ADS)
Elders, W. A.
2013-12-01
After more than 50 years of development only ~3,400 MWe of electric power is currently being produced from geothermal resources in the USA. That is only about 0.33% of the country's total installed electrical capacity. In spite of the large demonstrated potential of geothermal resources, only ~2,500 MWe of new geothermal electrical capacity are under development, and the growth rate of this environmentally benign energy resource is overshadowed by the rapid increase in the installed capacity of wind and solar energy. Most of the new geothermal developments in the USA involve relatively small, moderate-temperature, geothermal systems. In contrast, development of higher enthalpy geothermal systems for power production has obvious advantages; specifically higher temperatures yield higher power outputs per well so that fewer wells are needed, leading to smaller environmental footprints for a given size of power plant. Disadvantages include that the fact that locations of suitable geothermal systems are restricted to young volcanic terrains, production of very high enthalpy fluids usually requires drilling deeper wells and may require enhanced geothermal (EGS) technology, and drilling deep into hot hostile environments is technologically challenging. However the potential for very favorable economic returns suggests that the USA should begin developing such a program. One approach to mitigating the cost issue is to form a consortium of industry, government and academia to share the costs and broaden the scope an investigation. An excellent example of such a collaboration is the Iceland Deep Drilling Project (IDDP) which is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs. This industry-government consortium planned to drill a deep well in the volcanic caldera of Krafla in NE Iceland. However drilling had to be terminated at 2.1 km depth when 900°C rhyolite magma flowed into the well. The resultant well was highly productive capable of generating >35 MWe from superheated steam at a well-head temperature of ~450°C. Plans for deep drilling to explore for deeper, much higher enthalpy, geothermal resources are already underway in the Taupo Volcanic Zone of New Zealand (Project HADES), and in northeast Japan the 'Beyond Brittle Project' (Project JBBP) is an ambitious program attempting to create an EGS reservoir in ~500oC rocks. However in the USA there is no comparable national program to develop such resources. There is a significant undeveloped potential for developing high-enthalpy geothermal systems in the western USA, Hawaii and Alaska. The purpose of this paper is to encourage the formation of a consortium to systematically explore, assess, and eventually develop such higher-enthalpy geothermal resources. Not only would this help develop large new sources of energy but it would permit scientific studies of pressure-temperature regimes not otherwise available for direct investigation, such as the coupling of magmatic and hydrothermal systems.
NASA Astrophysics Data System (ADS)
Kissinger, Alexander; Juan-Lien Ramírez, Alina; Class, Holger
2013-04-01
Global climate change, shortage of resources and the resulting turn towards renewable sources of energy lead to a growing demand for the utilization of subsurface systems. Among these competing uses are Carbon Capture and Storage (CCS), geothermal energy, nuclear waste disposal, "renewable" methane or hydrogen storage as well as the ongoing production of fossil resources like oil, gas, and coal. The different uses of the subsurface can result in competition for the limited subsurface space, but in some cases there may also be synergetic effects, if the technologies are combined in a clever way. The idea behind this case study is to investigate the effects of a CCS site on a geothermal power plant operated in its vicinity and present both positive and negative impacts. During CCS operations large quantities of carbon dioxide (CO2) are injected into a storage formation. This causes a pressure increase as the brine in the formation is displaced by CO2. These elevations in pressure can have an extent of several tens of kilometers from the injection well in contrast to the much smaller extent of the CO2 plume. If geothermal power plants operate in the range influenced by pressure evaluation, this may have an impact on their performance. For example: Increased discharge of "warm" brine could be favorable for geothermal power plants as the time until thermal depletion of the reservoir may also increase Early breakthrough of the cold water front between an injection and an extraction well due to a brine discharge "pushing" the cold water front towards the extraction well may lead to a decrease in performance of the power plant Of course, there is a huge number of possible hydrogeological settings and technical configurations for geothermal power production that may be combined to an even larger number of possible scenarios. In this work however we use a simple model setup in which we incorporate and vary the parameters that we think are crucial. Only porous (not fractured) aquifer systems are considered here with a geothermal doublet system (cold water injection and warm water withdrawal). The CCS operation is assumed to take place in the same layer as the geothermal power/heat generation. The CO2 injection itself is not simulated, instead the brine discharge is implemented by an increase of pressure at one side of the domain with respect to the initial conditions. The discharge is varied by changing the pressure at the boundary within a range plausible for CCS operations. Different configurations of the extraction and injection wells of the doublet system with respect to a CCS operation are tested and compared to a reference system without the effect of increased brine discharge. With this work we want to explore the relevance of possible positive or negative impacts of a CCS operation on the performance of a geothermal power plant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, K.M.
1983-07-01
The number of workers currently involved in the various aspects of geothermal development in the Geysers are identified. Using two different development scenarios, projections are made for the number of power plants needed to reach the electrical generation capacity of the steam resource in the Geysers. The report also projects the cumulative number of workers needed to develop the steam field and to construct, operate, and maintain these power plants. Although the number of construction workers fluctuates, most are not likely to become new, permanent residents of the KGRA counties. The administrative and public service costs of geothermal development tomore » local jurisdications are examined, and these costs are compared to geothermal revenues accruing to the local governments. Revenues do not cover the immediate fiscal needs resulting from increases in local road maintenance and school enrollment attributable to geothermal development. Several mitigation options are discussed and a framework presented for calculating mitigation costs for school and road impacts.« less
Low-temperature Stirling Engine for Geothermal Electricity Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stillman, Greg; Weaver, Samuel P.
Up to 2700 terawatt-hours per year of geothermal electricity generation capacity has been shown to be available within North America, typically with wells drilled into geologically active regions of the earth's crust where this energy is concentrated (Huttrer, 2001). Of this potential, about half is considered to have temperatures high enough for conventional (steam-based) power production, while the other half requires unconventional power conversion approaches, such as organic Rankine cycle systems or Stirling engines. If captured and converted effectively, geothermal power generation could replace up to 100GW of fossil fuel electric power generation, leading to a significant reduction of USmore » power sector emissions. In addition, with the rapid growth of hydro-fracking in oil and gas production, there are smaller-scale distributed power generation opportunities in heated liquids that are co-produced with the main products. Since 2006, Cool Energy, Inc. (CEI) has designed, fabricated and tested four generations of low-temperature (100°C to 300°C) Stirling engine power conversion equipment. The electric power output of these engines has been demonstrated at over 2kWe and over 16% thermal conversion efficiency for an input temperature of 215°C and a rejection temperature of 15°C. Initial pilot units have been shipped to development partners for further testing and validation, and significantly larger engines (20+ kWe) have been shown to be feasible and conceptually designed. Originally intended for waste heat recovery (WHR) applications, these engines are easily adaptable to geothermal heat sources, as the heat supply temperatures are similar. Both the current and the 20+ kWe designs use novel approaches of self-lubricating, low-wear-rate bearing surfaces, non-metallic regenerators, and high-effectiveness heat exchangers. By extending CEI's current 3 kWe SolarHeart® Engine into the tens of kWe range, many additional applications are possible, as one 20 kWe design produces nearly seven times the power output of the 3 kWe unit but at only 2.5 times the estimated fabrication cost. Phase I of the proposed SBIR program will therefore study the feasibility of generating electricity with one or more 20 kWe or larger Stirling engines, powered by geothermal heat produced by current and possibly some forward-looking borehole extraction methods, and from producing oil and gas wells. The feasibility study will include full analysis of the thermodynamic and heat transfer processes within the engine (necessary to produce optimum theoretical designs and performance maps), the cost of pumping the geothermal heat recovery fluid, and how the system tradeoffs impact the overall system economics. The goal is a geothermal system design that could be demonstrated during a Phase II follow-on program at a field test site.« less
Solar and Geothermal Energy: New Competition for the Atom
ERIC Educational Resources Information Center
Carter, Luther J.
1974-01-01
Describes new emphasis on research into solar and geothermal energy resources by governmental action and recent legislation and the decreased emphasis on atomic power in supplementing current energy shortages. (BR)
Assessment of the geothermal resources of the Socialist Republic of Vietnam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flynn, T.; Tien, Phan Cu; Schochert, D.
1997-12-31
More than 125 thermal springs, with temperatures greater than 30{degrees}C have been identified and catalogued by the General Department of Geology of Vietnam. Subsurface data are limited and fewer than 10 areas have been identified, on the basis of chemical geothermometers, as capable of supporting electric power production. Six sites in south-central Vietnam have recently been selected for exploration to determine their development potential for electrical power generation. Selected criteria included surface features, chemical geothermometers, proximity to regional faults trends, and regional requirements for electric power. Site visits were conducted to a total of eight areas in south central Vietnammore » where collateral economic developments suggest the need for a local, reliable source of electricity. Physical and visual information on geothermal springs and wells in Vietnam was compared to Nevada`s geothermal resources. Surface geothermal manifestations in Vietnam appear remarkably similar to those in Nevada. Outcrops adjacent to the geothermal areas indicate that Mesozoic-age granites are the most likely basement rocks. Quaternary basalts mapped throughout the study area may be responsible for the thermal anomaly. Initial exploration efforts will focus on three of the six sites, which together may be able to produce 40 to 60 MWe. A cooperative research program with selected Vietnamese governmental agencies includes geologic mapping, surface geophysical and geochemical surveys, and a graduated schedule of drilling programs, ranging in depth from 100 to 1,000 m. Results will be used to define a detailed, deep drilling and testing program at the three prime sites. Development of geothermal power in this region will boost local economic recovery and add stability to the national electric grid.« less
Impacts of geothermal energy developments on hydrological environment in hot spring areas
NASA Astrophysics Data System (ADS)
Taniguchi, M.
2015-12-01
Water-energy nexus such as geothermal energy developments and its impacts on groundwater, river water, and coastal water is one of the key issues for the sustainable society. This is because the demand of both water and energy resources will be increasing in near future, and the tradeoff between both resources and conflict between stakeholders will be arisen. Geothermal power generation, hot springs heat power generation, and steam power generation, are developing in hot spring areas in Ring of Fire countries including Japan, as renewable and sustainable energy. Impacts of the wasted hot water after using hot springs heat and steam power generation on ecosystem in the rivers have been observed in Beppu, Oita prefecture, Japan. The number of the fish species with wasted hot water in the Hirata river is much less than that without wasted hot water in Hiyakawa river although the dominant species of tilapia was found in the Hirata river with wasted hot water. The water temperature in Hirata rive is increased by wasted hot water by 10 degree C. The impacts of the developments of steam power generations on hot spring water and groundwater in downstream are also evaluated in Beppu. The decreases in temperature and volume of the hot spring water and groundwater after the development are concerning. Stakeholder analysis related to hot spa and power generation business and others in Beppu showed common interests in community development among stakeholders and gaps in prerequisite knowledge and recognition of the geothermal resource in terms of economic/non-economic value and utilization as power generation/hot-spring. We screened stakeholders of four categories (hot spring resorts inhabitants, industries, supporters, environmentalists), and set up three communities consisting of 50 persons of the above categories. One remarkable result regarding the pros and cons of geothermal power in general terms was that the supporter count increased greatly while the neutralities count decreased greatly after deliberation, suggesting a response from providing scientific evidence on the issue.
The helical screw expander evaluation project. [for geothermal wells
NASA Technical Reports Server (NTRS)
Mckay, R. A.
1977-01-01
A positive-displacement helical-screw expander of the Lysholm type has been adapted for geothermal service and successfully demonstrated in a 50 kW prototype power system. Evaluation of the expander by tests of a new model in a 1 MW power system under wellhead conditions in selected liquid-dominated geothermal fields is proposed. The objectives are to determine the performance characteristics of the expander and power system over a broad range of operating conditions and also to examine the concept of wellhead power plants. Throttling and fractionation of the fluids from the test wells is planned to simulate a wide range of wellhead pressures and steam fractions. Variation in the expander exhaust pressure is also planned. The investigation will include expander efficiency, corrosion, erosion, scale formation and control, and endurance testing. Interaction studies with the wells and an electric grid are also proposed.
NASA Astrophysics Data System (ADS)
Arellano-Baeza, A. A.; Montenegro A., C.
2010-12-01
The use of renewable and clean sources of energy is becoming crucial for sustainable development of all countries, including Chile. Chilean Government plays special attention to the exploration and exploitation of geothermal energy, total electrical power capacity of which could reach 16.000 MW. In Chile the main geothermal fields are located in the Central Andean Volcanic Chain in the North, between the Central valley and the border with Argentina in the center, and in the fault system Liquiñe-Ofqui in the South of the country. High resolution images from the Lansat satellite have been used to characterize the geothermal field in the region of the Puchuldiza geysers, Colchane, Region of Tarapaca, North of Chile, located at the altitude of 4000 m. Structure of lineaments associated to the geothermal field have been extracted from the images using the lineament detection technique developed by authors. These structures have been compared with the distribution of main geological structures obtained in the field. It was found that the lineament analysis is a power tool for the detection of faults and joint zones associated to the geothermal fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, C L; Bearden, Mark D; Horner, Jacob A
Previous work by McGrail et al. (2013, 2015) has evaluated the possibility of pairing compressed air energy storage with geothermal resources in lieu of a fossil-fired power generation component, and suggests that such applications may be cost competitive where geology is favorable to siting both the geothermal and CAES components of such a system. Those studies also note that the collocation of subsurface resources that meet both sets of requirements are difficult to find in areas that also offer infrastructure and near- to mid-term market demand for energy storage. This study examines a novel application for the compressed air storagemore » portion of the project by evaluating the potential to store compressed air in disused wells by amending well casings to serve as subsurface pressure vessels. Because the wells themselves would function in lieu of a geologic storage reservoir for the CAES element of the project, siting could focus on locations with suitable geothermal resources, as long as there was also existing wellfield infrastructure that could be repurposed for air storage. Existing wellfields abound in the United States, and with current low energy prices, many recently productive fields are now shut in. Should energy prices remain stagnant, these idle fields will be prime candidates for decommissioning unless they can be transitioned to other uses, such as redevelopment for energy storage. In addition to the nation’s ubiquitous oil and gas fields, geothermal fields, because of their phased production lifetimes, also may offer many abandoned wellbores that could be used for other purposes, often near currently productive geothermal resources. These existing fields offer an opportunity to decrease exploration and development uncertainty by leveraging data developed during prior field characterization, drilling, and production. They may also offer lower-cost deployment options for hybrid geothermal systems via redevelopment of existing well-field infrastructure. This project assessed the technical and economic feasibility of implementing geothermally coupled well-based CAES for grid-scale energy storage. Based on an evaluation of design specifications for a range of casing grades common in U.S. oil and gas fields, a 5-MW CAES project could be supported by twenty to twenty-five 5,000-foot, 7-inch wells using lower-grade casing, and as few as eight such wells for higher-end casing grades. Using this information, along with data on geothermal resources, well density, and potential future markets for energy storage systems, The Geysers geothermal field was selected to parameterize a case study to evaluate the potential match between the proven geothermal resource present at The Geysers and the field’s existing well infrastructure. Based on calculated wellbore compressed air mass, the study shows that a single average geothermal production well could provide enough geothermal energy to support a 15.4-MW (gross) power generation facility using 34 to 35 geothermal wells repurposed for compressed air storage, resulting in a simplified levelized cost of electricity (sLCOE) estimated at 11.2 ¢/kWh (Table S.1). Accounting for the power loss to the geothermal power project associated with diverting geothermal resources for air heating results in a net 2-MW decrease in generation capacity, increasing the CAES project’s sLCOE by 1.8 ¢/kWh.« less
Electric utility companies and geothermal power
NASA Technical Reports Server (NTRS)
Pivirotto, D. S.
1976-01-01
The requirements of the electric utility industry as the primary potential market for geothermal energy are analyzed, based on a series of structured interviews with utility companies and financial institution executives. The interviews were designed to determine what information and technologies would be required before utilities would make investment decisions in favor of geothermal energy, the time frame in which the information and technologies would have to be available, and the influence of the governmental politics. The paper describes the geothermal resources, electric utility industry, its structure, the forces influencing utility companies, and their relationship to geothermal energy. A strategy for federal stimulation of utility investment in geothermal energy is suggested. Possibilities are discussed for stimulating utility investment through financial incentives, amelioration of institutional barriers, and technological improvements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akar, Sertac; Turchi, Craig
Substantial drought and declines in potable groundwater in the United States over the last decade has increased the demand for fresh water. Desalination of saline water such as brackish surface or groundwater, seawater, brines co-produced from oil and gas operations, industrial wastewater, blow-down water from power plant cooling towers, and agriculture drainage water can reduce the volume of water that requires disposal while providing a source of high-quality fresh water for industrial or commercial use. Membrane distillation (MD) is a developing technology that uses low-temperature thermal energy for desalination. Geothermal heat can be an ideal thermal-energy source for MD desalinationmore » technology, with a target range of $1/m3 to $2/m3 for desalinated water depending on the cost of heat. Three different cases were analyzed to estimate levelized cost of heat (LCOH) for integration of MD desalination technology with low-grade geothermal heat: (1) residual heat from injection brine at a geothermal power plant, (2) heat from existing underutilized low-temperature wells, and (3) drilling new wells for low-temperature resources. The Central and Western United States have important low-temperature (<90 degrees C) geothermal resource potential with wide geographic distribution, but these resources are highly underutilized because they are inefficient for power production. According to the USGS, there are 1,075 identified low temperature hydrothermal systems, 55 low temperature sedimentary systems and 248 identified medium to high temperature geothermal systems in the United States. The estimated total beneficial heat potential from identified low temperature hydrothermal geothermal systems and residual beneficial heat from medium to high temperature systems is estimated as 36,300 MWth, which could theoretically produce 1.4 to 7 million m3/day of potable water, depending on desalination efficiency.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, D.S.
The potential of geothermal energy for future electric power generation in New York State is evaluated using estimates of temperatures of geothermal reservoir rocks. Bottom hole temperatures from over 2000 oil and gas wells in the region were integrated into subsurface maps of the temperatures for specific geothermal reservoirs. The Theresa/Potsdam formation provides the best potential for extraction of high volumes of geothermal fluids. The evaluation of the Theresa/Potsdam geothermal reservoir in upstate New York suggests that an area 30 miles east of Elmira, New York has the highest temperatures in the reservoir rock. The Theresa/Potsdam reservoir rock should havemore » temperatures about 136 {degrees}C and may have as much as 450 feet of porosity in excess of 8%. Estimates of the volumes of geothermal fluids that can be extracted are provided and environmental considerations for production from a geothermal well is discussed.« less
Transported Low-Temperature Geothermal Energy for Thermal End Uses Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhiyao; Liu, Xiaobing; Gluesenkamp, Kyle R
2016-10-01
The use of geothermal energy is an emerging area for improving the nation’s energy resiliency. Conventionally, geothermal energy applications have focused on power generation using high temperature hydrothermal resources or enhanced geothermal systems. However, many low temperature (below 150°C/300°F) geothermal resources are also available but have not been fully utilized. For example, it is estimated that 25 billion barrels of geothermal fluid (mostly water and some dissolved solids) at 176°F to 302°F (80°C to 150°C) is coproduced annually at oil and gas wells in the United States (DOE 2015). The heat contained in coproduced geothermal fluid (also referred as “coproducedmore » water”) is typically wasted because the fluid is reinjected back into the ground without extracting the heat.« less
The Lawrence Berkeley Laboratory geothermal program in northern Nevada
NASA Technical Reports Server (NTRS)
Mirk, K. F.; Wollenberg, H. A.
1974-01-01
The Lawrence Berkeley Laboratory's geothermal program began with consideration of regions where fluids in the temperature range of 150 to 230 C may be economically accessible. Three valleys, located in an area of high regional heat flow in north central Nevada, were selected for geological, geophysical, and geochemical field studies. The objective of these ongoing field activities is to select a site for a 10-MW demonstration plant. Field activities (which started in September 1973) are described. A parallel effort has been directed toward the conceptual design of a 10-MW isobutane binary plant which is planned for construction at the selected site. Design details of the plant are described. Project schedule with milestones is shown together with a cost summary of the project.
Complete Genome Sequence of Thermus thermophilus TMY, Isolated from a Geothermal Power Plant
Fujino, Yasuhiro; Nagayoshi, Yuko; Ohshima, Toshihisa; Ogata, Seiya
2017-01-01
ABSTRACT Thermus thermophilus TMY (JCM 10668) was isolated from silica scale formed at a geothermal power plant in Japan. Here, we report the complete genome sequence for this strain, which contains a chromosomal DNA of 2,121,526 bp with 2,500 predicted genes and a pTMY plasmid of 19,139 bp, with 28 predicted genes. PMID:28153912
Technology, market and policy aspects of geothermal energy in Europe
NASA Astrophysics Data System (ADS)
Shortall, Ruth; Uihlein, Andreas
2017-04-01
The Strategic Energy Technology Plan (SET-Plan) is the technology pillar of the EU's energy and climate policy. The goal of the SET-Plan is to achieve EU worldwide leadership in the production of energy technological solutions capable of delivering EU 2020 and 2050 targets for a low carbon economy. The Joint Research Centre (JRC) runs and manages the SET-Plan Information System (SETIS) to support the SET-Plan. Under SETIS, the JRC publishes a number of regularly updated key references on the state of low carbon technology, research and innovation in Europe. Within the framework of the SET-Plan, the geothermal sector is placed into context with other power and heat generation technologies. The talk will give an introduction to some of JRC's geothermal research activities. Amongst others, the JRC Geothermal status report will be presented. This report aims to contribute to the general knowledge about the geothermal sector, its technology, economics and policies, with a focus on innovation, research, development and deployment activities as well as policy support schemes within the European Union. The speech will present the main findings of the report, providing an overview of the activities and progress made by the geothermal energy sector, the status of its sub-technologies and current developments. In addition, the speech will discuss the economic, market and policy aspects of geothermal energy for power production, direct use and ground source heat pumps in Europe and beyond.
Geothermal reservoir simulation
NASA Technical Reports Server (NTRS)
Mercer, J. W., Jr.; Faust, C.; Pinder, G. F.
1974-01-01
The prediction of long-term geothermal reservoir performance and the environmental impact of exploiting this resource are two important problems associated with the utilization of geothermal energy for power production. Our research effort addresses these problems through numerical simulation. Computer codes based on the solution of partial-differential equations using finite-element techniques are being prepared to simulate multiphase energy transport, energy transport in fractured porous reservoirs, well bore phenomena, and subsidence.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-18
... proposed wind energy projects in eagle habitat, BLM wildlands policy, geothermal program review, Salt Wells Energy Projects Draft Environmental Impact Statement, field tour of ENEL Geothermal Power Plant at Salt...
Sass, John H.; Walters, Mark A.
1999-01-01
The Basin and Range Province of the Western United States covers most of Nevada and parts of adjoining states. It was formed by east-west tectonic extension that occurred mostly between 50 and 10 Ma, but which still is active in some areas. The northern Basin and Range, also known as the Great Basin, is higher in elevation, has higher regional heat flow and is more tectonically active than the southern Basin and Range which encompasses the Mojave and Sonoran Deserts. The Great Basin terrane contains the largest number of geothermal power plants in the United States, although most electrical production is at The Geysers and in the Salton Trough. Installed capacities of electrical power plants in the Great Basin vary from 1 to 260 MWe. Productivity is limited largely by permeability, relatively small productive reservoir volumes, available water, market conditions and the availability of transmission lines. Accessible, in-place heat is not a limiting condition for geothermal systems in the Great Basin. In many areas, economic temperatures (>120°C) can be found at economically drillable depths making it an appropriate region for implementation of the concept of "Enhanced Geothermal Systems" (EGS). An incremental approach to EGS would involve increasing the productivity and longevity of existing hydrothermal systems. Those geothermal projects that have an existing power plant and transmission facilities are the most attractive EGS candidates. Sites that were not developed owing to marginal size, lack of intrinsic permeability, and distance to existing electrical grid lines are also worthy of consideration for off-grid power production in geographically isolated markets such as ranches, farms, mines, and smelters.
The National Geothermal Energy Research Program
NASA Technical Reports Server (NTRS)
Green, R. J.
1974-01-01
The continuous demand for energy and the concern for shortages of conventional energy resources have spurred the nation to consider alternate energy resources, such as geothermal. Although significant growth in the one natural steam field located in the United States has occurred, a major effort is now needed if geothermal energy, in its several forms, is to contribute to the nation's energy supplies. From the early informal efforts of an Interagency Panel for Geothermal Energy Research, a 5-year Federal program has evolved whose objective is the rapid development of a commercial industry for the utilization of geothermal resources for electric power production and other products. The Federal program seeks to evaluate the realistic potential of geothermal energy, to support the necessary research and technology needed to demonstrate the economic and environmental feasibility of the several types of geothermal resources, and to address the legal and institutional problems concerned in the stimulation and regulation of this new industry.
Perspectives on geopressured resources within the geothermal program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dibona, B.
1980-06-01
This work reviews the potential of geothermal energy in the U.S. Current sources of and uses for geothermal energy are described. The study outlines how geopressured resources fit into the geothermal program of the U.S. Department of Energy (DOE). Description of the program status includes progress in drilling and assessing geopressured resources. The Division of Geothermal Energy within DOE is responsible for geothermal resources comprising point heat sources (igneous); high heat flow regions such as those between the Sierras and the Rockies; radiogenic heat sources of moderate temperatures of the eastern U.S. coast; geopressured zones; and hot dry rock systems.more » Interest in these resources focuses on electric power production, direct heat application, and methane production from the geopressured aquifers.« less
Prioritizing High-Temperature Geothermal Resources in Utah
Blackett, R.E.; Brill, T.C.; Sowards, G.M.
2002-01-01
The Utah Geological Survey and the Utah Energy Office recently released geothermal resource information for Utah as a "digital atlas." We are now expanding this project to include economic analyses of selected geothermal sites and previously unavailable resource information. The enhancements to the digital atlas will include new resource, demographic, regulatory, economic, and other information to allow analyses of economic factors for comparing and ranking geothermal resource sites in Utah for potential electric power development. New resource information includes temperature gradient and fluid chemistry data, which was previously proprietary. Economic analyses are based upon a project evaluation model to assess capital and operating expenses for a variety of geothermal powerplant configuration scenarios. A review of legal and institutional issues regarding geothermal development coupled with water development will also be included.
Deep geothermal resources in the Yangbajing Field, Tibet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Ping; Jin Jian; Duo Ji
1997-12-31
Since the first well was bored in July 1997 in the Yangbajing geothermal field, more than 80 wells have been drilled. The total of installed capacity is 25.18MWe for geothermal power plant that has generated about 1.0 x 10{sup 9} kWh electricity in all. Temperatures inside shallow reservoir are in the range from 150{degrees}C to 165{degrees}C. No high-temperature field if found below the shallow reservoir in the southern part. In order to enlarge the installed capacity and solve pressure decline in current productive wells, an exploration project of deep geothermal resources has been carried out in the northern part. Themore » highest temperature of 329{degrees}C was detected in well ZK4002 at 1850m depth in 1994. Well ZK4001 drilled in 1996 flows out high-enthalpy thermal fluid at the wellhead, in which the average temperature is 248{degrees}C in the feeding zones. There is a great potential for power generation in the northern part. The exploitation of deep geothermal resources would effect the production of existing wells.« less
Direct utilization of geothermal energy in the Peoples Republic of China
NASA Astrophysics Data System (ADS)
Lund, J. W.
1980-12-01
A brief review of the direct utilization of geothermal energy in three regions of the Peoples' Republic of China is presented, stressing a development outline for the next five to ten years. The geothermal resource of the Tianjin-Beijing area is mainly to be developed for space heating, whereas along the coastal area of Fujian and Guangdong, it will be developed for agriculture, and industrial and residential use. Electric power generation will be the main concern in the southwest at Tengchong. Most theoretical research will be done on geologic structure interpretation, corrosion of pump shafts and buried pipelines, and heat flow, with some interest in the study of geopressure and hot dry rock systems. Specific examples from the Tianjin area include a wool factory; a wool rug weaving shop; heating of a hotel; public bathing; and well drilling for apartment heating, fish breeding, and greenhouses. Direct use of geothermal energy in the Beijing area includes cotton dyeing, humidifying, medical purposes, and animal husbandry. Experimental geothermal electric power plants are summarized in table form.
Honey Lake Power Facility under construction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-12-01
Geothermal energy and wood waste are primary energy sources for the 30 megawatt, net, Honey Lake Power Facility, a cogeneration power plant. The facility 60% completed in January 1989, will use 1,300 tons per day of fuel obtained from selective forest thinnings and from logging residue combined with mill wastes. The power plant will be the largest industrial facility to use some of Lassen County's geothermal resources. The facility will produce 236 million kilowatt-hours of electricity annually. The plant consists of a wood-fired traveling grate furnace with a utility-type high pressure boiler. Fluids from a geothermal well will pass throughmore » a heat exchange to preheat boiler feedwater. Used geothermal fluid will be disposed of in an injection well. Steam will be converted to electrical power through a 35.5-megawatt turbine generator and transmitted 22 miles to Susanville over company-owned and maintained transmission lines. The plant includes pollution control for particulate removal, ammonia injection for removal of nitrogen oxides, and computer-controlled combustion systems to control carbon monoxide and hydrocarbons. The highly automated wood yard consists of systems to remove metal, handle oversized material, receive up to six truck loads of wood products per hour, and continuously deliver 58 tons per hour of fuel through redundant systems to ensure maximum on-line performance. The plant is scheduled to become operational in mid-1989.« less
Complete Genome Sequence of Thermus thermophilus TMY, Isolated from a Geothermal Power Plant.
Fujino, Yasuhiro; Nagayoshi, Yuko; Ohshima, Toshihisa; Ogata, Seiya; Doi, Katsumi
2017-02-02
Thermus thermophilus TMY (JCM 10668) was isolated from silica scale formed at a geothermal power plant in Japan. Here, we report the complete genome sequence for this strain, which contains a chromosomal DNA of 2,121,526 bp with 2,500 predicted genes and a pTMY plasmid of 19,139 bp, with 28 predicted genes. Copyright © 2017 Fujino et al.
Increasing Efficiency by Maximizing Electrical Output
2016-07-27
in a few limited areas, one being a geothermal flash plant at Naval Air Weapons Station China Lake. But, there are few other heat to electricity...generation sources (but, closest to geothermal because of the lack of combustion and the maintenance issues involved with combustion). [11] Clearly, a...of Energy Resources Technology, March 2009, Vol. 131 [4] “The Chena Hot Springs 400kW Geothermal Power Plant: Experience Gained During the First
Modelling of hydrogen sulfide dispersion from the geothermal power plants of Tuscany (Italy)
NASA Astrophysics Data System (ADS)
Renato, Somma; Domenico, Granieri; Claudia, Troise; Carlo, Terranova; Natale Giuseppe, De; Maria, Pedone
2017-04-01
The hydrogen sulfide (H2S) is one of the main gaseous substances contained in deep fluids exploited by geo-thermoelectric plant. Therefore, it is a "waste" pollutant product by plants for energy production. Hydrogen sulfide is perceived by humans at very low concentrations in the air ( 0,008 ppm, World Health Organization, hereafter WHO, 2003) but it becomes odorless in higher concentrations (> 100 ppm, WHO, 2003) and, for values close to the ones lethal (> 500 ppm), produces an almost pleasant smell. The typical concentration in urban areas is <0.001ppm (<1ppb); in volcanic plumes it reaches values between 0.1 and 0.5 ppm. WHO defines the concentration and relative effects on human health. We applied the Eulerian code DISGAS (DISpersion of GAS) to investigate the dispersion of the hydrogen sulfide (H2S) from 32 geothermal power plants (out of 35 active) belonging to the geothermal districts of Larderello, Travale-Radicondoli and Monte Amiata, in Tuscany (Italy). DISGAS code has simulated scenarios consistent with the prevailing wind conditions, estimating reasonable H2S concentrations for each area, and for each active power plant. The results suggest that H2S plumes emitted from geothermal power plants are mainly concentrated around the stacks of emission (H2S concentration up to 1100 ug/m3) and rapidly dilute along the dominant local wind direction. Although estimated values of air H2S concentrations are orders of magnitude higher than in unpolluted areas, they do not indicate an immediate health risk for nearby communities, under the more frequent local atmospheric conditions. Starting from the estimated values, validated by measurements in the field, we make some considerations about the environmental impact of the H2S emission in all the geothermal areas of the Tuscany region. Furthermore, this study indicates the potential of DISGAS as a tool for an improved understanding of the atmospheric and environmental impacts of the H2S continuous degassing from geothermal plants but also its potential for reliable prediction of H2S pollution in case of unexpected events, like the blowout of a geothermal well or the malfunctioning of a geothermal plant resulting in an anomalous and not-controlled emission of harmful gas in the atmosphere.
Quantifying the undiscovered geothermal resources of the United States
Williams, Colin F.; Reed, Marshall J.; DeAngelo, Jacob; Galanis, S. Peter
2009-01-01
In 2008, the U.S. Geological Survey (USGS) released summary results of an assessment of the electric power production potential from the moderate- and high-temperature geothermal resources of the United States (Williams et al., 2008a; USGS Fact Sheet 2008-3082; http://pubs.usgs.gov/fs/2008/3082). In the assessment, the estimated mean power production potential from undiscovered geothermal resources is 30,033 Megawatts-electric (MWe), more than three times the estimated mean potential from identified geothermal systems: 9057 MWe. The presence of significant undiscovered geothermal resources has major implications for future exploration and development activities by both the government and private industry. Previous reports summarize the results of techniques applied by the USGS and others to map the spatial distribution of undiscovered resources. This paper describes the approach applied in developing estimates of the magnitude of the undiscovered geothermal resource, as well as the manner in which that resource is likely to be distributed among geothermal systems of varying volume and temperature. A number of key issues constrain the overall estimate. One is the degree to which characteristics of the undiscovered resources correspond to those observed among identified geothermal systems. Another is the evaluation of exploration history, including both the spatial distribution of geothermal exploration activities relative to the postulated spatial distribution of undiscovered resources and the probability of successful discoveries from the application of standard geothermal exploration techniques. Also significant are the physical, chemical, and geological constraints on the formation and longevity of geothermal systems. Important observations from this study include the following. (1) Some of the largest identified geothermal systems, such as The Geysers vapor-dominated system in northern California and the diverse geothermal manifestations found in Yellowstone National Park, are unique in North America and highly unlikely to have counterparts with equivalent characteristics among the systems comprising the undiscovered resources. (2) Historical geothermal exploration has been limited in both the effectiveness of techniques employed and spatial coverage, since most exploration has targeted areas associated with surface thermal manifestations in the most easily accessible lands. (3) As noted by other investigators, in general, the hottest and largest geothermal systems are those with heat sources arising from recent magmatic activity. Consequently, a larger fraction of the undiscovered resource is associated with those areas favorable to the formation of this type of geothermal system, including some relatively remote areas, such as the Aleutian volcanic arc in Alaska.
The USGS national geothermal resource assessment: An update
Williams, C.F.; Reed, M.J.; Galanis, S.P.; DeAngelo, J.
2007-01-01
The U. S. Geological Survey (USGS) is working with the Department of Energy's (DOE) Geothermal Technologies Program and other geothermal organizations on a three-year effort to produce an updated assessment of available geothermal resources. The new assessment will introduce significant changes in the models for geothermal energy recovery factors, estimates of reservoir volumes, and limits to temperatures and depths for electric power production. It will also include the potential impact of evolving Enhanced Geothermal Systems (EGS) technology. An important focus in the assessment project is on the development of geothermal resource models consistent with the production histories and observed characteristics of exploited geothermal fields. New models for the recovery of heat from heterogeneous, fractured reservoirs provide a physically realistic basis for evaluating the production potential of both natural geothermal reservoirs and reservoirs that may be created through the application of EGS technology. Project investigators have also made substantial progress studying geothermal systems and the factors responsible for their formation through studies in the Great Basin-Modoc Plateau region, Coso, Long Valley, the Imperial Valley and central Alaska, Project personnel are also entering the supporting data and resulting analyses into geospatial databases that will be produced as part of the resource assessment.
NASA Astrophysics Data System (ADS)
Richard, Christopher L.
At the core of the geothermal industry is a need to identify how policy incentives can better be applied for optimal return. Literature from Bloomquist (1999), Doris et al. (2009), and McIlveen (2011) suggest that a more tailored approach to crafting geothermal policy is warranted. In this research the guiding theory is based on those suggestions and is structured to represent a policy analysis approach using analytical methods. The methods being used are focus on qualitative and quantitative results. To address the qualitative sections of this research an extensive review of contemporary literature is used to identify the frequency of use for specific barriers, and is followed upon with an industry survey to determine existing gaps. As a result there is support for certain barriers and justification for expanding those barriers found within the literature. This method of inquiry is an initial point for structuring modeling tools to further quantify the research results as part of the theoretical framework. Analytical modeling utilizes the levelized cost of energy as a foundation for comparative assessment of policy incentives. Model parameters use assumptions to draw conclusions from literature and survey results to reflect unique attributes held by geothermal power technologies. Further testing by policy option provides an opportunity to assess the sensitivity of each variable with respect to applied policy. Master limited partnerships, feed in tariffs, RD&D, and categorical exclusions all result as viable options for mitigating specific barriers associated to developing geothermal power. The results show reductions of levelized cost based upon the model's exclusive parameters. These results are also compared to contemporary policy options highlighting the need for tailored policy, as discussed by Bloomquist (1999), Doris et al. (2009), and McIlveen (2011). It is the intent of this research to provide the reader with a descriptive understanding of the role of geothermal power in the United States, and to recognize that not all policy or energy technology is created equal. Further study options are provide to expand the scope and granularity of this research design to better support a growing market.
Power-poor Philippines taps geothermal pool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-04-15
The current energy situation in the Philippines (75% imported oil) is reviewed and current and future activities in the area of geothermal energy use is discussed. It is estimated that by 1986, $830 million will be spent to develop the extensive geothermal sources to produce 13% of the nation's total energy. The high-quality geothermal sources are described as producing 162/sup 0/C water-steam mixture at a pressure of 6.68 kg/sec. Energy producing systems are described briefly as well as the environmental and equipment problems encountered already. The cost of geothermal energy is discussed (2.5 cents/kWh) and compared with energy costs ofmore » fossil-fuel and hydroelectricity. It is concluded that the geothermal energy sources should be a major contributor to the Philippines for at least 30 years. (MJJ)« less
Impact of enhanced geothermal systems on US energy supply in the twenty-first century.
Tester, Jefferson W; Anderson, Brian J; Batchelor, Anthony S; Blackwell, David D; DiPippo, Ronald; Drake, Elisabeth M; Garnish, John; Livesay, Bill; Moore, Michal C; Nichols, Kenneth; Petty, Susan; Toksoz, M Nafi; Veatch, Ralph W; Baria, Roy; Augustine, Chad; Murphy, Enda; Negraru, Petru; Richards, Maria
2007-04-15
Recent national focus on the value of increasing US supplies of indigenous renewable energy underscores the need for re-evaluating all alternatives, particularly those that are large and well distributed nationally. A panel was assembled in September 2005 to evaluate the technical and economic feasibility of geothermal becoming a major supplier of primary energy for US base-load generation capacity by 2050. Primary energy produced from both conventional hydrothermal and enhanced (or engineered) geothermal systems (EGS) was considered on a national scale. This paper summarizes the work of the panel which appears in complete form in a 2006 MIT report, 'The future of geothermal energy' parts 1 and 2. In the analysis, a comprehensive national assessment of US geothermal resources, evaluation of drilling and reservoir technologies and economic modelling was carried out. The methodologies employed to estimate geologic heat flow for a range of geothermal resources were utilized to provide detailed quantitative projections of the EGS resource base for the USA. Thirty years of field testing worldwide was evaluated to identify the remaining technology needs with respect to drilling and completing wells, stimulating EGS reservoirs and converting geothermal heat to electricity in surface power and energy recovery systems. Economic modelling was used to develop long-term projections of EGS in the USA for supplying electricity and thermal energy. Sensitivities to capital costs for drilling, stimulation and power plant construction, and financial factors, learning curve estimates, and uncertainties and risks were considered.
NASA Astrophysics Data System (ADS)
Buscheck, T. A.; Bielicki, J. M.; Randolph, J.; Chen, M.; Hao, Y.; Sun, Y.
2013-12-01
Abstract We present an approach to use CO2 to (1) generate dispatchable renewable power that can quickly respond to grid fluctuations and be cost-competitive with natural gas, (2) stabilize the grid by efficiently storing large quantities of energy, (3) enable seasonal storage of solar thermal energy for grid integration, (4) produce brine for power-plant cooling, all which (5) increase CO2 value, rendering CO2 capture to be commerically viable, while (6) sequestering huge quantities of CO2. These attributes reduce carbon intensity of electric power, and enable cost-competitive, dispatchable power from major sources of renewable energy: wind, solar, and geothermal. Conventional geothermal power systems circulate brine as the working fluid to extract heat, but the parasitic power load for this circulation can consume a large portion of gross power output. Recently, CO2 has been considered as a working fluid because its advantageous properties reduce this parasitic loss. We expand on this idea by using multiple working fluids: brine, CO2, and N2. N2 can be separated from air at lower cost than captured CO2, it is not corrosive, and it will not react with the formation. N2 also can improve the economics of energy production and enable energy storage, while reducing operational risk. Extracting heat from geothermal reservoirs often requires submersible pumps to lift brine, but these pumps consume much of the generated electricity. In contrast, our approach drives fluid circulation by injecting supplemental, compressible fluids (CO2, and N2) with high coefficients of thermal expansion. These fluids augment reservoir pressure, produce artesian flow at the producers, and reduce the parasitic load. Pressure augmentation is improved by the thermosiphon effect that results from injecting cold/dense CO2 and N2. These fluids are heated to reservoir temperature, greatly expand, and increase the artesian flow of brine and supplemental fluid at the producers. Rather than using pumps, the thermosiphon directly converts reservoir thermal energy into mechanical energy for fluid circulation. Because stored pressure drives fluid production, the response time is faster than that of conventional geothermal power, already considered to be dispatchable. For conventional geothermal, the parasitic power load is in phase with gross power output. In contrast, our approach can time-shift much of the parasitic power load, which is dominated by the power required to separate N2 from air and compress it for injection. Because N2 is readily available, it can be injected intermittently. Thus, most of the parasitic power load can be shifted to coincide with minimum power demand or when there is a surplus of renewable power. Such a time-shift also allows net power output to be nearly equal to gross power output during peak demand. Energy storage can be almost 100 percent efficient because it is achieved by shifting the parasitic load, which is more efficient than other methods used to store energy and stabilize the grid. This work was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Hybridizing a Geothermal Plant with Solar and Thermal Energy Storage to Enhance Power Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
McTigue, Joshua Dominic P; Zhu, Guangdong; Turchi, Craig S
The objective of this project is to identify cost-effective thermal storage systems for a geothermal/solar hybrid system in order to increase the plant dispatchability. Furthermore, an optimal quantity of thermal storage will also be determined to achieve the best economics of a geothermal/solar hybrid plant. NREL is working with Hyperlight Energy and Coso Operating Company to develop techno-economic models of such a system.
Advanced Low Temperature Geothermal Power Cycles (The ENTIV Organic Project) Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mugerwa, Michael
2015-11-18
Feasibility study of advanced low temperature thermal power cycles for the Entiv Organic Project. Study evaluates amonia-water mixed working fluid energy conversion processes developed and licensed under Kalex in comparison with Kalina cycles. Both cycles are developed using low temperature thermal resource from the Lower Klamath Lake Geothermal Area. An economic feasibility evaluation was conducted for a pilot plant which was deemed unfeasible by the Project Sponsor (Entiv).
Helical screw expander evaluation project
NASA Technical Reports Server (NTRS)
Mckay, R.
1982-01-01
A one MW helical rotary screw expander power system for electric power generation from geothermal brine was evaluated. The technology explored in the testing is simple, potentially very efficient, and ideally suited to wellhead installations in moderate to high enthalpy, liquid dominated field. A functional one MW geothermal electric power plant that featured a helical screw expander was produced and then tested with a demonstrated average performance of approximately 45% machine efficiency over a wide range of test conditions in noncondensing, operation on two-phase geothermal fluids. The Project also produced a computer equipped data system, an instrumentation and control van, and a 1000 kW variable load bank, all integrated into a test array designed for operation at a variety of remote test sites. Data are presented for the Utah testing and for the noncondensing phases of the testing in Mexico. Test time logged was 437 hours during the Utah tests and 1101 hours during the Mexico tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zorpette, G.
This paper reports that in a forest on the island of Hawaii, legal and regulatory activity has postponed the start-up of a small new power plant and imperilled the design and construction of several facilities like it. The same old story Hardly. The power plants at stake are not nuclear or coal- or even oil-fired, but geothermal, widely considered one of the more environmentally benign ways of generating electricity. In a further twist, the opposition is coming not only from the usual citizens; and environmental groups, but also from worshippers of a native good and, it has been alleged, growersmore » of marijuana, a lucrative local crop. The clash occurs just as geothermal power sources have finally proven commercially viable, experts say, adding that technological advances and industry trends in the United States and elsewhere seem to factor great expansion in its use.« less
Geothermal resources of California sedimentary basins
Williams, C.F.; Grubb, F.V.; Galanis, S.P.
2004-01-01
The 2004 Department of Energy (DOE) Strategic Plan for geothermal energy calls for expanding the geothermal resource base of the United States to 40,000 MW of electric power generating potential. This will require advances in technologies for exploiting unconventional geothermal resources, including Enhanced Geothermal Systems (EGS) and geopressured geothermal. An investigation of thermal conditions in California sedimentary basins through new temperature and heat flow measurements reveals significant geothermal potential in some areas. In many of the basins, the combined cooling effects of recent tectonic and sedimentary processes result in relatively low (<60 mW/m2) heat flow and geothermal gradients. For example, temperatures in the upper 3 km of San Joaquin, Sacramento and Ventura basins are typically less than 125??C and do not reach 200??c by 5 km. By contrast, in the Cuyama, Santa Maria and western Los Angeles basins, heat flow exceeds 80 mW/m2 and temperatures near or above 200??C occur at 4 to 5 km depth, which represents thermal conditions equivalent to or hotter than those encountered at the Soultz EGS geothermal site in Europe. Although the extractable geothermal energy contained in these basins is not large relative to the major California producing geothermal fields at The Geysers or Salton Sea, the collocation in the Los Angeles basin of a substantial petroleum extraction infrastructure and a major metropolitan area may make it attractive for eventual geothermal development as EGS technology matures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Tom; Snyder, Neil; Gosnold, Will
This paper discusses opportunities and challenges related to the technical and economic feasibility of developing power generation from geothermal resources at temperatures of 150 degrees C and lower. Insights from projects funded by the U.S. Department of Energy (DOE), Geothermal Technologies Office inform these discussions and provide the basis for some lessons learned to help guide decisions by DOE and the industry in further developing this resource. The technical basis for low-temperature geothermal energy is well established and the systems can be economic today in certain situations. However, these applications are far from a 'plug and play' product; successful developmentmore » today requires a good knowledge of geothermal system design and operation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Tom; Snyder, Neil; Gosnold, Will
This paper discusses opportunities and challenges related to the technical and economic feasibility of developing power generation from geothermal resources at temperatures of 150 degrees C and lower. Insights from projects funded by the U.S. Department of Energy (DOE), Geothermal Technologies Office inform these discussions and provide the basis for some lessons learned to help guide decisions by DOE and the industry in further developing this resource. The technical basis for low-temperature geothermal energy is well established and the systems can be economic today in certain situations. However, these applications are far from a 'plug and play' product; successful developmentmore » today requires a good knowledge of geothermal system design and operation.« less
Bridging worlds/charting new courses
NASA Astrophysics Data System (ADS)
This report describes the work being done within Sandia's renewable energy program. This work touches on four major disciplines. (1) Photovoltaics. The goal of this project is to develop costeffective, reliable energy system technologies for energy supplies worldwide produced by U.S. industry. It encompasses cell research and development, collector development, technology evaluation, systems engineering, domestic and international applications, and design assistance. (2) Solar Thermal. This project endeavors to develop and increase acceptance of solar thermal electric and industrial technologies as cost-competitive candidates for power generation and to promote their commercialization. Its' major activities are with dish/Stirling systems, the Solar Two power tower, design assistance to industry and users, technology development and research activities. (3) Wind. The wind project impacts domestic and international markets with commercially feasible systems for utility-scale and other applications of wind energy. The project conducts applied research in aerodynamics, structural dynamics, fatigue, materials and controls, and engineering systems, and develops cooperative work with industry. (4) Geothermal. This project is developing technology to increase proven geothermal reserves and is assisting industry in expanding geothermal power on-line. Development work is in stemhole drilling, drilling techniques, instrumentation for geothermal wells, acoustic telemetry, and drilling exploratory wells.
Environmentally Friendly Economical Sequestration of Rare Earth Metals from Geothermal Waters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stull, Dean P.
The purpose of this work was to complete a proof of concept study to apply and validate a novel method developed by Tusaar for the capture and recovery of rare earth elements (known as REEs) and other critical and valuable elements from geothermal waters produced from deep within the earth. Geothermal water provides heat for power production at many geothermal power plants in the western United States. The target elements, the REEs, are vital to modern day electronics, batteries, motors, automobiles and many other consumer favorites and necessities. Currently there are no domestic sources of REEs while domestic and internationalmore » demand for the products they are used in continues to rise. Many of the REEs are considered “strategically” important. A secure supply of REEs in the USA would benefit consumers and the country at large. A new method to recover these REEs from geothermal waters used at existing geothermal power plants around the country is a high priority and would benefit consumers and the USA. The result of this project was the successful development and demonstration of an integrated process for removal and recovery of the REEs from synthetic geothermal brines on a small laboratory scale. The work included preparation of model geothermal brines to test, selection of the most effective proprietary sorbent media to capture the REEs and testing of the media under a variety of potential operating conditions. Geothermal brines are generally very high in salt content and contain a wide range of elements and anions associated with the rock layers from which they are produced. Processing the geothermal water is difficult because it is corrosive and the dissolved minerals in the water precipitate easily once the temperature and pressure change. No commercial technologies have been shown to be effective or robust enough under these geothermal brine conditions to be commercially viable for removal of REEs. Technologies including ion exchange, traditional sorptive media and membrane concentration are too expensive, difficult or impossible to regenerate and easily rendered ineffective under these working conditions. The work completed during this project has demonstrated that a selective media that is robust and durable under the conditions associated with geothermal brines is possible. The initial economic analysis indicates that the process would not be financially viable at current market prices for REEs. The world market price for REEs has been turbulent over the past several years and are currently near historical lows. Historical trends and market forces suggest that the world price is stabilizing and will rise. At the same time, further development has the potential to reduce the costs associated with the technology. This work opened the door to the idea that a large scale process for removal and recovery of REEs from geothermal brines is possible. Upward price pressures coupled with technology improvements suggest that this process has the opportunity to be commercially successful at a point in the future.« less
Using Facilities And Potential Of Geothermal Resources In The Canakkale Province - NW Turkey
NASA Astrophysics Data System (ADS)
Deniz, Ozan; Acar Deniz, Zahide
2016-04-01
Turkey, due to its geological location, has a rich potential in point of geothermal resources. Çanakkale province is located northwestern (NW) part of Turkey and it has important geothermal fields in terms of geothermal energy potential. Geothermal resources reach to the surface both effects of past volcanic activity and extensions of fault zones associated with complex tectonic systems in the region. The aim of this study is to summarize hydrogeochemical characteristics, using facilities and potential of hot springs and spas located in the Çanakkale province. There are 13 geothermal fields in the region and the surface temperatures of hot springs are ranging between 28 centigrade degree and 175 centigrade degree. Hydrogeochemical compositions of thermal water display variable chemical compositions. Na, Ca, SO4, HCO3 and Cl are the dominant ions in these waters. Thermal waters of Tuzla and Kestanbol geothermal fields which is located the near coastal area can be noted NaCl type. Because these two geothermal waters have high TDS values, scaling problems are seen around the hot springs and pipelines. Geothermal waters in the province are meteoric origin according to oxygen-18, deuterium and tritium isotopes data. Long underground residence times of these waters and its temperatures have caused both more water - rock interaction and low tritium values. Geothermal energy is utilized in many areas in Turkey today. It is generally used for space heating, balneotherapy and electricity generation. Explorations of geothermal resources and investments in geothermal energy sector have risen rapidly in the recent years particularly in western Turkey. High-temperature geothermal fields are generally located in this region related to the Aegean Graben System and the North Anotalian Fault Zone. All geothermal power plants in Turkey are located in this region. Considering the Çanakkale province, most geothermal fields are suitable for multipurpose usage but many of them have been still used only for spa tourism. Residential heating and greenhouse activities do not exist in the region yet. However, the only geothermal power plant which is settled in NW Turkey is located in Tuzla geothermal field (7.5 MW capacity). This area is both the most high-temperature area in the region and one of the most important geothermal fields in Turkey. Very little thermal centers in Turkey have thermal water potential of the coastal area like Çanakkale province. Climatic features of this area allows both thermal and sea tourism applications in all season of a year such as open-air curing, heliotherapy and thalassotherapy. Çanakkale province is located in "Troy North Aegean Culture and Thermal Tourism Development Zone". This area is being planned within the framework of health, thermal and rural tourism by the Republic of Turkey Ministry of Culture and Tourism. Keywords: Geothermal, Hydrogeochemistry, Çanakkale, Turkey
Investigations of Very High Enthalpy Geothermal Resources in Iceland.
NASA Astrophysics Data System (ADS)
Elders, W. A.; Fridleifsson, G. O.
2012-12-01
The Iceland Deep Drilling Project (IDDP) is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs. Earlier modeling indicates that the power output of a geothermal well producing from a supercritical reservoir could potentially be an order of magnitude greater than that from a conventional hot geothermal reservoir, at the same volumetric flow rate. However, even in areas with an unusually high geothermal gradient, for normal hydrostatic pressure gradients reaching supercritical temperatures and pressures will require drilling to depths >4 km. In 2009 the IDDP attempted to drill the first deep supercritical well, IDDP-01, in the caldera of the Krafla volcano, in NE Iceland. However drilling had to be terminated at only 2.1 km depth when ~900°C rhyolite magma flowed into the well. Our studies indicate that this magma formed by partial melting of hydrothermally altered basalts within the Krafla caldera. Although this well was too shallow to reach supercritical pressures, it is highly productive, and is estimated to be capable of generating up to 36 MWe from the high-pressure, superheated steam produced from the upper contact zone of the intrusion. With a well-head temperature of ~440°C, it is at present apparently the hottest producing geothermal well in the world. A pilot plant is investigating the optimal utilization of this magmatically heated resource. A special issue of the journal Geothermics with 16 papers reporting on the IDDP-01 is in preparation. However, in order to continue the search for supercritical geothermal resources, planning is underway to drill a 4.5 km deep well at Reykjanes in SW Iceland in 2013-14. Although drilling deeper towards the heat source of this already developed high-temperature geothermal field will be more expensive, if a supercritical resource is found, this cost increase should be offset by the considerable increase in the power output and lifetime of the Reykjanes geothermal reservoir, without increasing its environmental foot print. If these efforts are successful, in future such very high enthalpy geothermal systems worldwide could become significant energy resources, where ever suitable young volcanic rocks occur, such as in the western USA, Hawaii, and Alaska.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akar, Sertac; Turchi, Craig
Substantial drought and declines in potable groundwater in the United States over the last decade has increased the demand for fresh water. Desalination of saline water such as brackish surface or groundwater, seawater, brines co-produced from oil and gas operations, industrial wastewater, blow-down water from power plant cooling towers, and agriculture drainage water can reduce the volume of water that requires disposal while providing a source of high-quality fresh water for industrial or commercial use. Membrane distillation (MD) is a developing technology that uses low-temperature thermal energy for desalination. Geothermal heat can be an ideal thermal-energy source for MD desalinationmore » technology, with a target range of $1/m3 to $2/m3 for desalinated water depending on the cost of heat. Three different cases were analyzed to estimate levelized cost of heat (LCOH) for integration of MD desalination technology with low-grade geothermal heat: (1) residual heat from injection brine at a geothermal power plant, (2) heat from existing underutilized low-temperature wells, and (3) drilling new wells for low-temperature resources. The Central and Western United States have important low-temperature (<90 degrees C) geothermal resource potential with wide geographic distribution, but these resources are highly underutilized because they are inefficient for power production. According to the USGS, there are 1,075 identified low temperature hydrothermal systems, 55 low temperature sedimentary systems and 248 identified medium to high temperature geothermal systems in the United States. The estimated total beneficial heat potential from identified low temperature hydrothermal geothermal systems and residual beneficial heat from medium to high temperature systems is estimated as 36,300 MWth, which could theoretically produce 1.4 to 7 million m3/day of potable water, depending on desalination efficiency.« less
Fiber Optic Sensor for Real-Time Sensing of Silica Scale Formation in Geothermal Water.
Okazaki, Takuya; Orii, Tatsuya; Ueda, Akira; Ozawa, Akiko; Kuramitz, Hideki
2017-06-13
We present a novel fiber optic sensor for real-time sensing of silica scale formation in geothermal water. The sensor is fabricated by removing the cladding of a multimode fiber to expose the core to detect the scale-formation-induced refractive index change. A simple experimental setup was constructed to measure the transmittance response using white light as a source and a spectroscopy detector. A field test was performed on geothermal water containing 980 mg/L dissolved silica at 93 °C in Sumikawa Geothermal Power Plant, Japan. The transmittance response of the fiber sensor decreased due to the formation of silica scale on the fiber core from geothermal water. An application of this sensor in the evaluation of scale inhibitors was demonstrated. In geothermal water containing a pH modifier, the change of transmittance response decreased with pH decrease. The effectiveness of a polyelectrolyte inhibitor in prevention of silica scale formation was easily detectable using the fiber sensor in geothermal water.
Environmental Assessment of the Hawaii Geothermal Project Well Flow Test Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1976-11-01
The Hawaii Geothermal Project, a coordinated research effort of the University of Hawaii, funded by the County and State of Hawaii, and ERDA, was initiated in 1973 in an effort to identify, generate, and use geothermal energy on the Big Island of Hawaii. A number of stages are involved in developing geothermal power resources: exploration, test drilling, production testing, field development, power plant and powerline construction, and full-scale production. Phase I of the Project, which began in the summer of 1973, involved conducting exploratory surveys, developing analytical models for interpretation of geophysical results, conducting studies on energy recovery from hotmore » brine, and examining the legal and economic implications of developing geothermal resources in the state. Phase II of the Project, initiated in the summer of 1975, centers on drilling an exploratory research well on the Island of Hawaii, but also continues operational support for the geophysical, engineering, and socioeconomic activities delineated above. The project to date is between the test drilling and production testing phase. The purpose of this assessment is to describe the activities and potential impacts associated with extensive well flow testing to be completed during Phase II.« less
NASA Astrophysics Data System (ADS)
Prabumukti, Grano; Purwanto; Widodo, Wahyu
2018-02-01
Indonesia posses 40% of the world's geothermal energy sources. The existence of hydrothermal sources is usually characterized by their surface manifestations such as hot springs, geysers and fumarole. Hot spring has a potential to be used as a heat source to generate electricity especially in a rural and isolated area. Hot springs can be converted into electricity by binary thermodynamic cycles such as Kalina cycle and ORC. The aim of this study is to obtain the best performances of cycle configuration and the potential power capacity. Simulation is conducted using UNISIM software with working fluid and its operating condition as the decision variables. The simulation result shows that R1234yf and propene with simple ORC as desired working fluid and cycle configuration. It reaches a maximum thermal efficiency up to 9.6% with a specific turbine inlet pressure. Higher temperature heat source will result a higher thermal efficiency‥ Cycle thermal efficiency varies from 4.7% to 9.6% depends on source of hot spring temperature. Power capacity that can be generated using Indonesia's hot spring is ranged from 2 kWe to 61.2 kWe. The highest capacity located in Kawah Sirung and the least located in Kaendi.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shevenell, Lisa; Coolbaugh, Mark; Hinz, Nick
This project brings a global perspective to volcanic arc geothermal play fairway analysis by developing statistics for the occurrence of geothermal reservoirs and their geoscience context worldwide in order to rank U.S. prospects. The focus of the work was to develop play fairways for the Cascade and Aleutian arcs to rank the individual volcanic centers in these arcs by their potential to host electricity grade geothermal systems. The Fairway models were developed by describing key geologic factors expected to be indicative of productive geothermal systems in a global training set, which includes 74 volcanic centers world-wide with current power production.more » To our knowledge, this is the most robust geothermal benchmark training set for magmatic systems to date that will be made public.« less
Multidisciplinary research of geothermal modeling
NASA Astrophysics Data System (ADS)
-Ing. Ulvi Arslan, Univ., ., Dr. _., Prof.; Heiko Huber, Dipl.-Ing.
2010-05-01
KEYWORDS Geothermal sciences, geothermics, research, theory and application, numerical calculation, geothermal modeling, Technical University Darmstadt, Ministry of Economics and Technology (BMWi) INTRODUCTION In times of global warming renewable, green energies are getting more and more important. The development of application of geothermal energy as a part of renewable energies in Germany is a multidisciplinary process of fast growing research and improvements. Geothermal energy is the energy, which is stored below earth's surface. The word geothermal derives from the Greek words geo (earth) and thermos (heat), so geothermal is a synonym to earth heat. Geothermal energy is one of the auspicious renewable energies. In average the temperature increases 3°C every 100 m of depth, which is termed as geothermal gradient. Therefore 99 percent of our planet is hotter than 1.000°C, while 99 percent of that last percent is even hotter than 100°C. Already in a depth of about 1 kilometer temperatures of 35 - 40°C can be achieved. While other renewable energies arise less or more from the sun, geothermal energy sources its heat from the earth's interior, which is caused mostly by radioactive decay of persistent isotopes. This means a possibility of a base-loadable form of energy supply. Especially efficient is the use of deep geothermal energy of high-enthalpie reservoirs, which means a high energy potential in low depths. In Germany no high-enthalpie reservoirs are given. To use the given low-enthalpie potential and to generate geothermal power efficiently inventions and improvements need to be performed. An important part of geothermal progresses is performed by universities with multidisciplinary research of geothermal modeling. Especially in deep geothermal systems numerical calculations are essential for a correct dimensioning of the geothermal system. Therefore German universities and state aided organizations are developing numerical programs for a detailed use of application on geothermal systems. The history of this multidisciplinary research of geothermal modeling performed by German universities is shown in this paper. Outstanding geothermal research programs of German universities and state aided organizations (BGR, LBEG, GGA) are pointed out. Actual geothermal modeling programs based on the Finite-Element-Method or the Finite-Differences-Method as well as analytical programs are introduced. National and international geothermal projects supported by German universities and state aided organizations are described. Examples of supervised shallow and deep geothermal systems are given. Actually the Technical University Darmstadt is performing a research program supported by a national organization, the Ministry of Economics and Technology (BMWi). Main aim of this research program titled experimental investigation for the verification of a Finite-Element-Multiphase-Model is to analyze the subsoil as a three-phases-model with separated consideration of conduction, convection and advection and their subsequent interaction. The latest developments of numerical projects as well as the actual state of the before mentioned research program are pointed out in the paper. REFERENCES Quick, H., Arslan, U., Meißner, S., Michael, J. 2007. Deep foundations and geothermal energy - a multi-purpose solution, IFHS: 8. International conference on multi-purpose high-rise towers and tall buildings, Abu Dhabi, 2007 Arslan, U. and Huber, H. 2008. Application of geothermal energy. University of Istanbul, Yapistanbul No. 3 / 2008, Turkey, 2008 Quick, Q., Michael, J., Arslan, U., Huber, H. 2010. History of International Geothermal Power Plants and Geothermal Projects in Germany, Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010 Arslan, U., Huber, H. 2010. Education of Geothermal Sciences in Germany as part of an application orientated research, Proceedings European Civil Engineering Education and Training (EUCEET III) Special Volume, 2010
NASA Technical Reports Server (NTRS)
Fredrickson, C. D.
1978-01-01
Various resource data are presented showing that geothermal energy has the potential of satisfying a singificant part of California's increasing energy needs. General factors slowing the development of geothermal energy in California are discussed and required actions to accelerate its progress are presented. Finally, scenarios for developing the most promising prospects in the state directed at timely on-line power are given. Specific actions required to realize each of these individual scenarios are identified.
Buscheck, Thomas A.; Bielicki, Jeffrey M.; Edmunds, Thomas A.; ...
2016-05-05
We present an approach that uses the huge fluid and thermal storage capacity of the subsurface, together with geologic carbon dioxide (CO 2) storage, to harvest, store, and dispatch energy from subsurface (geothermal) and surface (solar, nuclear, fossil) thermal resources, as well as excess energy on electric grids. Captured CO 2 is injected into saline aquifers to store pressure, generate artesian flow of brine, and provide a supplemental working fluid for efficient heat extraction and power conversion. Concentric rings of injection and production wells create a hydraulic mound to store pressure, CO 2, and thermal energy. This energy storage canmore » take excess power from the grid and excess/waste thermal energy, and dispatch that energy when it is demanded and thus enable higher penetration of variable renewable energy technologies (e.g., wind, solar). CO 2 stored in the subsurface functions as a cushion gas to provide enormous pressure-storage capacity and displace large quantities of brine, some of which can be treated for a variety of beneficial uses. Geothermal power and energy-storage applications may generate enough revenues to compensate for CO 2 capture costs. While our approach can use nitrogen (N 2), in addition to CO 2, as a supplemental fluid, and store thermal energy, this study focuses using CO 2 for geothermal energy production and grid-scale energy storage. We conduct a techno-economic assessment to determine the levelized cost of electricity of using this approach to generate geothermal power. We present a reservoir pressure-management strategy that diverts a small portion of the produced brine for beneficial consumptive use to reduce the pumping cost of fluid recirculation, while reducing the risk of seismicity, caprock fracture, and CO 2 leakage.« less
Geothermal Power Generation Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, Tonya
2013-12-01
Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196°F resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Coolingmore » water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.« less
Technical Feasibility Aspects of the Geothermal Resource Reporting Methodology (GRRM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badgett, Alex; Young, Katherine R; Dobson, Patrick F.
This paper reviews the technical assessment of the Geothermal Research Reporting Methodology (GRRM, http://en.openei.org/wiki/GRRM) being developed for reporting geothermal resources and project progress. The goal of the methodology is to provide the U.S. Department of Energy's Geothermal Technologies Office (GTO) with a consistent and comprehensible means of evaluating the impacts of its funding programs. The GRRM is designed to provide uniform assessment criteria for geothermal resource grades and developmental phases of geothermal resource exploration and development. This resource grade system provides information on twelve attributes of geothermal resource locations (e.g., temperature, permeability, land access) to indicate potential for geothermal development.more » The GTO plans to use these Protocols to help quantitatively identify the greatest barriers to geothermal development, develop measureable program goals that will have the greatest impact to geothermal deployment, objectively evaluate proposals based (in part) on a project's ability to contribute to program goals, monitor project progress, and report on GTO portfolio performance. The GRRM assesses three areas of geothermal potential: geological, socio-economic, and technical. Previous work and publications have discussed the work done on the geological aspects of this methodology (Young et al. 2015c); this paper details the development of the technical assessment of the GRRM. Technical development attributes considered include: reservoir management, drilling, logistics, and power conversion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuller, M.J.; LeMire, R.A.; Horner-Richardson, K.
1995-12-31
The Phillips Laboratory Power and Thermal Management Division (PL/VTP), with the support of ORION International Technologies, is investigating new methods of advanced thermal to electric power conversion for space and terrestrial applications. The alkali metal thermal-to-electric converter (AMTEC), manufactured primarily by Advanced Modular Power Systems (AMPS) of Ann Arbor, MI, has reached a level of technological maturity which would allow its use in a constant, unattended thermal source, such as a geothermal field. Approximately 95,000 square miles in the western United States has hot dry rock with thermal gradients of 60 C/km and higher. Several places in the United Statesmore » and the world have thermal gradients of 500 C/km. Such heat sources represent an excellent thermal source for a system of modular power units using AMTEC devices to convert the heat to electricity. AMTEC cells using sodium as a working fluid require heat input at temperatures between 500 and 1,000 C to generate power. The present state of the art is capable of 15% efficiency with 800 C heat input and has demonstrated 18% efficiency for single cells. This paper discusses the basics of AMTEC operation, current drilling technology as a cost driver, design of modular AMTEC power units, heat rejection technologies, materials considerations, and estimates of power production from a geothermal AMTEC concept.« less
Geothermal energy program summary: Volume 1: Overview Fiscal Year 1988
NASA Astrophysics Data System (ADS)
1989-02-01
Geothermal energy is a here-and-now technology for use with dry steam resources and high-quality hydrothermal liquids. These resources are supplying about 6 percent of all electricity used in California. However, the competitiveness of power generation using lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma still depends on the technology improvements sought by the DOE Geothermal Energy R and D Program. The successful outcome of the R and D initiatives will serve to benefit the U.S. public in a number of ways. First, if a substantial portion of our geothermal resources can be used economically, they will add a very large source of secure, indigenous energy to the nation's energy supply. In addition, geothermal plants can be brought on line quickly in case of a national energy emergency. Geothermal energy is also a highly reliable resource, with very high plant availability. For example, new dry steam plants at The Geysers are operable over 99 percent of the time, and the small flash plant in Hawaii, only the second in the United States, has an availability factor of 98 percent. Geothermal plants also offer a viable baseload alternative to fossil and nuclear plants -- they are on line 24 hours a day, unaffected by diurnal or seasonal variations. The hydrothermal power plants with modern emission control technology have proved to have minimal environmental impact. The results to date with geopressured and hot dry rock resources suggest that they, too, can be operated so as to reduce environmental effects to well within the limits of acceptability. Preliminary studies on magma are also encouraging. In summary, the character and potential of geothermal energy, together with the accomplishments of DOE's Geothermal R and D Program, ensure that this huge energy resource will play a major role in future U.S. energy markets.
Support services relating to geothermal programs. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-08-01
Activities designed to assist in the assessment of processes through which geopressured methane production and geopressure-geothermal power can be increased are discussed. Progress is reported on the following: general support, hot-dry-rock review, R and D plan, and the Edna Delcambre final report. (MHR)
NASA Astrophysics Data System (ADS)
Garapati, N.; Randolph, J.; Saar, M. O.
2013-12-01
CO2-Plume Geothermal (CPG) involves injection of CO2 as a working fluid to extract heat from naturally high permeable sedimentary basins. The injected CO2 forms a large subsurface CO2 plume that absorbs heat from the geothermal reservoir and eventually buoyantly rises to the surface. The heat density of sedimentary basins is typically relatively low.However, this drawback is likely counteracted by the large accessible volume of natural reservoirs compared to artificial, hydrofractured, and thus small-scale, reservoirs. Furthermore, supercritical CO2has a large mobility (inverse kinematic viscosity) and expansibility compared to water resulting in the formation of a strong thermosiphon which eliminates the need for parasitic pumping power requirements and significantly increasing electricity production efficiency. Simultaneously, the life span of the geothermal power plant can be increased by operating the CPG system such that it depletes the geothermal reservoir heat slowly. Because the produced CO2 is reinjected into the ground with the main CO2 sequestration stream coming from a CO2 emitter, all of the CO2 is ultimately geologically sequestered resulting in a CO2 sequestering geothermal power plant with a negative carbon footprint. Conventional geothermal process requires pumping of huge amount of water for the propagation of the fractures in the reservoir, but CPG process eliminates this requirement and conserves water resources. Here, we present results for performance of a CPG system as a function of various geologic properties of multilayered systemsincludingpermeability anisotropy, rock thermal conductivity, geothermal gradient, reservoir depth and initial native brine salinity as well as spacing between the injection and production wells. The model consists of a 50 m thick, radially symmetric grid with a semi-analytic heat exchange and no fluid flow at the top and bottom boundaries and no fluid and heat flow at the lateral boundaries. We design Plackett-Burman experiments resulting in 16 simulations for the seven parameters investigated. The reservoir is divided into 3-, 4-, or 5- layer systems with log-normal permeability distributions. We consider 10 sets of values for each case resulting in a total of 16x3x10 =480 simulations.We analyze the performance of the system to maximize the amount of heat energy extracted, minimize reservoir temperature depletion and maximize the CO2concentration in the produced fluid. Achieving the latter objective reduces power system problems as Welch and Boyle (GRC Trans. 2009) found that CO2 concentration should be >94% in the systems they investigated.
Geothermal energy production with supercritical fluids
Brown, Donald W.
2003-12-30
There has been invented a method for producing geothermal energy using supercritical fluids for creation of the underground reservoir, production of the geothermal energy, and for heat transport. Underground reservoirs are created by pumping a supercritical fluid such as carbon dioxide into a formation to fracture the rock. Once the reservoir is formed, the same supercritical fluid is allowed to heat up and expand, then is pumped out of the reservoir to transfer the heat to a surface power generating plant or other application.
Improvements in geothermal electric power and silica production
Hill, J.H.; Fulk, M.M.
Electricity is generated from hot geothermal solution by extracting heat therefrom, mineral solids which form in a so cooled geothermal solution are separated to recover minerals and facilitate reinjection of the solution into the ground. The separated solids are treated to recover silica by addition of an acid (amorphous silica precipitates) or a base (other minerals precipitate and soulble silicates are formed which are subsequently precipitated by acid neutralization). If desired, after silica is separated, other minerals can be separated and recovered.
"Assistance to States on Geothermal Energy"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linda Sikkema; Jennifer DeCesaro
2006-07-10
This final report summarizes work carried out under agreement with the U.S. Department of Energy, related to geothermal energy policy issues. This project has involved a combination of outreach and publications on geothermal energy—Contract Number DE-FG03-01SF22367—with a specific focus on educating state-level policymakers. Education of state policymakers is vitally important because state policy (in the form of incentives or regulation) is a crucial part of the success of geothermal energy. State policymakers wield a significant influence over all of these policies. They are also in need of high quality, non-biased educational resources which this project provided. This project provided outreachmore » to legislatures, in the form of responses to information requests on geothermal energy and publications. The publications addressed: geothermal leasing, geothermal policy, constitutional and statutory authority for the development of geothermal district energy systems, and state regulation of geothermal district energy systems. These publications were distributed to legislative energy committee members, and chairs, legislative staff, legislative libraries, and other related state officials. The effect of this effort has been to provide an extensive resource of information about geothermal energy for state policymakers in a form that is useful to them. This non-partisan information has been used as state policymakers attempt to develop their own policy proposals related to geothermal energy in the states. Coordination with the National Geothermal Collaborative: NCSL worked and coordinated with the National Geothermal Collaborative (NGC) to ensure that state legislatures were represented in all aspects of the NGC's efforts. NCSL participated in NGC steering committee conference calls, attended and participated in NGC business meetings and reviewed publications for the NGC. Additionally, NCSL and WSUEP staff drafted a series of eight issue briefs published by the NGC. The briefs addressed: Benefits of Geothermal Energy Common Questions about Geothermal Energy Geothermal Direct Use Geothermal Energy and Economic Development Geothermal Energy: Technologies and Costs Location of Geothermal Resources Geothermal Policy Options for States Guidelines for Siting Geothermal Power Plants and Electricity Transmission Lines« less
NASA Technical Reports Server (NTRS)
Bayliss, B. P.
1974-01-01
Integrating energy production and energy consumption to produce a total energy system within an energy industrial center which would result in more power production from a given energy source and less pollution of the environment is discussed. Strong governmental support would be required for the crash drilling program necessary to implement these concepts. Cooperation among the federal agencies, power producers, and private industry would be essential in avoiding redundant and fruitless projects, and in exploiting most efficiently our geothermal resources.
Crustal Deformation of Long Valley Caldera, Eastern California, Inferred from L-Band InSAR
NASA Astrophysics Data System (ADS)
Tanaka, Akiko
2008-11-01
SAR interferometric analyses using JERS-1/SAR and ALOS/PALSAR images of Long Valley caldera are performed. JERS-1/SAR interferogram (June 1993-August 1996) shows a small region of subsidence associated the Casa Diablo geothermal power plant, which is superimposed on a broad scale uplift/expansion of the resurgent dome. ALOS/PALSAR interferograms show no deformation of the resurgent dome as expected. However, it may show a small region of subsidence associated the Casa Diablo geothermal power plant.
NASA Astrophysics Data System (ADS)
Zbinden, Dominik; Rinaldi, Antonio Pio; Kraft, Toni; Diehl, Tobias; Wiemer, Stefan
2017-04-01
The St. Gallen deep geothermal project in 2013 was the second geothermal project in Switzerland with the objective of power production after the Enhanced Geothermal System in Basel in 2006. In St. Gallen, the seismic risk was expected to be smaller than in Basel, since the hydrothermal resource was an aquifer at a depth of about 4 km, not expected to require permeability enhancement and associated hydroshearing of the rock. However, after an injectivity test and two acid stimulations, unexpected gas release from an unidentified source forced the operators to inject drilling mud into the well to fight the gas kick. Subsequently, several seismic events were induced, the largest one having a local magnitude of 3.5, which was distinctly felt by the nearby living population. Even though the induced seismicity could not be handled properly, the community still strongly supported the geothermal project. The project was however halted because the target formation was not as permeable as required to deliver sufficient power. Still, controlling induced seismicity during deep geothermal projects is a key factor to successfully operate future geothermal projects. Hence, it is crucial to understand the physical relations of fluid injection, pressure and stress response at reservoir depth as well as associated induced seismicity. To date, these processes are yet not fully understood. In this study, we aim at developing a hydro-mechanical model reproducing the main features of the induced seismic sequence at the St. Gallen geothermal site. Here, we present the conceptual model and preliminary results accounting for hydraulic and mechanical parameters from the geothermal well, geological information from a seismic survey conducted in the St. Gallen region, and actual fluid injection rates from the injectivity tests. In a future step, we are going to use this model to simulate the physical interaction of injected fluid, gas release, hydraulic response of the rock, and induced seismicity during the St. Gallen project. The results will then allow us to more accurately estimate the seismic hazard for future geothermal projects.
NREL Researchers Receive Award for Excellence in Technology Transfer
. Department of Energy's National Renewable Energy Laboratory were honored May 10 with a Year 2000 Federal as applied in geothermal power plants. Award recipients are Desikan Bharathan, who developed the condenser technology, and the geothermal research team including Vahab Hassani, Yves Parent, Federica
The impact of H2S emissions on future geothermal power generation - The Geysers region, California
NASA Technical Reports Server (NTRS)
Leibowitz, L. P.
1977-01-01
The future potential for geothermal power generation in the Geysers region of California is as much as 10 times the current 502 MW(e) capacity. However, environmental factors such as H2S emissions and institutional considerations may play the primary role in determining the rate and ultimate level of development. In this paper a scenario of future geothermal generation capacity and H2S emissions in the Geysers region is presented. Problem areas associated with H2S emissions, H2S abatement processes, plant operations, and government agency resources are described. The impact of H2S emissions on future development and the views of effected organizations are discussed. Potential actions needed to remove these constraints are summarized.
Investigation on effective promotion of geothermal energy development
NASA Astrophysics Data System (ADS)
1991-03-01
Efficient and effective measures for promoting geothermal energy development are studied considering the present status and the problems of the geothermal energy development in Japan. To promote it smoothly, solutions to technical and socioeconomic problems are needed: There are many unclear points about the location and amount of geothermal resources. For geothermal energy development, it is necessary to establish a consensus of procedures for surveying the development and settlement of selling prices, and risk sharing in the development. It is indispensable to consider an adjustment with natural parks and hot springs for the development. Troubles in making an adjustment are seen in many cases, and it is necessary to make efforts for that understanding. Improvement of economical efficiency of geothermal power generation is an important subject. From the above mentioned studies, the conclusion is obtained that it is most effective to make rules for development and to expand and strengthen resource prospecting by the government. If the rules are made, reduction of the development cost and shortening of the development period are planned, and the future of the geothermal energy business is expected to be promising.
New Energy Villages in Taiwan and China
NASA Astrophysics Data System (ADS)
Lee, C. S.; Wang, S. C.
2015-12-01
Taiwan locates in the active tectonic subdution and collision belts, therefore, the geothermal gradient is very high and have found 128 sites of high geothermal areas; 20% of them have the temperature between 75 - 200 degree C in which they can be directly used for the electricity generation; 50% of them are in 50 - 74 degree C and the rest 30% are below 50 degree C. These areas need the deep drillings to get into higher temperature for power energy. The first 20% high temperature areas are mostly located in the coastal or mountain regions. The government is interesting to develop these areas as the "New Energy Villages" so that they can not only become self-energy sufficient sites, but also to protect themself from being the loss of electricity and water during the typhoon and earthquake hazards. The multiple usages of hot water (such as the first power generation and then the hot spring utilization) have its merits. China, in the other hand, is not within the present-day active tectonic zone. However, the recent Sino Probe Experiments (Deep Exploration in China) have mapped the Cetaceous plate boundaries in the coast of China. The heat is still possibly migrating to near the surface through the existing structures. For example, the Feng Shun Geothermal Power Station in north of Guangzhou, Guangdong Province, used the 96 degree C hot water from a well of 800 m producing a small amount of 300 KW power since 1984. The Guangdong Province is located in the edge of Mesozoic South China Plate. Further in land, the Huang Mountain, one of the world heritage sites, is located at the boundary of another Mesozoic Yangtze River Plate. There is not a geothermal power plant; however, a number of hot springs are in a booming tour business at the foot hill of the mountain. The electricity has to come from a long way of net working. If China develops the local, small, but sufficient power plants by using the modern geothermal exploration and drilling techniques. The "New Energy Villages" will be benefit to the energy and environment need.
Geothermal resources assessed in Honduras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-01-01
The investigation of the Platanares geothermal site is part of a joint Honduras (Empresa Nacional de Energia Electrica)/US (Los Alamos National Laboratory and US Geological Survey) assessment of the nationwide geothermal resource potential of Honduras. Platanares was selected as one of the initial sites for detailed study on the basis of previous geothermal reconnaissance work. The results of the geologic studies indicate that Platarnares' potential for development as an electrical power source is extremely good. This preliminary conclusion must be substantiated and refined through additional studies. Geophysical investigations are needed to further define the subsurface geology and fracture system. Severalmore » wells should be drilled to a depth of several hundred meters to measure thermal gradients. This will allow the calculation of the geothermal potential of the Platanares site and will indicate whether further development of the site is warranted.« less
DOE-GTO Low Temperture Projects Evaluation and Lessons Learned
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Tom; Snyder, Neil; Gosnold, Will
2017-05-01
This paper discusses opportunities and challenges related to the technical and economic feasibility of developing power generation from geothermal resources at temperatures of 150 degrees C and lower. Insights from projects funded by the U.S. Department of Energy (DOE), Geothermal Technologies Office inform these discussions and provide the basis for some lessons learned to help guide decisions by DOE and the industry in further developing this resource. The technical basis for low-temperature geothermal energy is well established and the systems can be economic today in certain situations. However, these applications are far from a 'plug and play' product; successful developmentmore » today requires a good knowledge of geothermal system design and operation.« less
Summary: High Temperature Downhole Motor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raymond, David W.
2017-10-01
Directional drilling can be used to enable multi-lateral completions from a single well pad to improve well productivity and decrease environmental impact. Downhole rotation is typically developed with a motor in the Bottom Hole Assembly (BHA) that develops drilling power (speed and torque) necessary to drive rock reduction mechanisms (i.e., the bit) apart from the rotation developed by the surface rig. Historically, wellbore deviation has been introduced by a “bent-sub,” located in the BHA, that introduces a small angular deviation, typically less than 3 degrees, to allow the bit to drill off-axis with orientation of the BHA controlled at themore » surface. The development of a high temperature downhole motor would allow reliable use of bent subs for geothermal directional drilling. Sandia National Laboratories is pursuing the development of a high temperature motor that will operate on either drilling fluid (water-based mud) or compressed air to enable drilling high temperature, high strength, fractured rock. The project consists of designing a power section based upon geothermal drilling requirements; modeling and analysis of potential solutions; and design, development and testing of prototype hardware to validate the concept. Drilling costs contribute substantially to geothermal electricity production costs. The present development will result in more reliable access to deep, hot geothermal resources and allow preferential wellbore trajectories to be achieved. This will enable development of geothermal wells with multi-lateral completions resulting in improved geothermal resource recovery, decreased environmental impact and enhanced well construction economics.« less
Federal policy documentation and geothermal water consumption: Policy gaps and needs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroeder, J. N.; Harto, C. B.; Clark, C. E.
With U.S. geothermal power production expected to more than triple by 2040, and the majority of this growth expected to occur in arid and water-constrained areas, it is imperative that decision-makers understand the potential long-term limitations to and tradeoffs of geothermal development due to water availability. To this end, water consumption data, including documentation triggered by the National Environmental Policy Act (NEPA) of 1969, production and injection data, and water permit data, were collected from state and federal environmental policy sources in an effort to determine water consumption across the lifecycle of geothermal power plants. Values extracted from these sourcesmore » were analyzed to estimate water usage during well drilling; to identify sourcing of water for well drilling, well stimulation, and plant operations; and to estimate operational water usage at the plant level. Nevada data were also compared on a facility-by-facility basis with other publicly available water consumption data, to create a complete picture of water usage and consumption at these facilities. This analysis represents a unique method of capturing project-level water data for geothermal projects; however, a lack of statutory and legal requirements for such data and data quality result in significant data gaps, which are also explored« less
Ancillary Service Revenue Potential for Geothermal Generators in California FY15 Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edmunds, T; Sotorrio, P
2015-04-16
Achieving California’s 33% renewable generation goal will substantially increase uncertainty and variability in grid operations. Geothermal power plant operators could mitigate this variability and uncertainty by operating plants in a more flexible mode. Plant operators would be compensated for flexibility through payments for ancillary services such as frequency regulation, load following, and spinning reserve. This study explores economic incentives for geothermal plant operators to provide such flexibility. Historical and forecast ancillary service prices are compared to operator compensation for energy under firm contracts at fixed prices, which are higher than current or year 2020 projected market clearing prices for ancillarymore » services in most hours of the year. Power purchase agreements recently executed by geothermal operators typically provide only energy payments at fixed energy prices and escalation rates. We postulate new contract structures that would allow a geothermal plant operator to switch from providing energy to providing ancillary services to the grid operator when it is advantageous to the plant operator to do so. Additional revenues would be earned through ancillary service payments. Estimates of these additional annual revenues a plant operator could realize are developed for a range of contract energy prices. The impacts of flexible operations on reservoir lifetimes and implications for project finance are also discussed.« less
Ancillary Service Revenue Potential for Geothermal Generators in California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edmunds, T.; Sotorrio, P.
2015-01-02
Achieving California’s 33% renewable generation goal will substantially increase uncertainty and variability in grid operations. Geothermal power plant operators could mitigate this variability and uncertainty by operating plants in a more flexible mode. Plant operators would be compensated for flexibility through payments for ancillary services such as frequency regulation, load following, and spinning reserve. This study explores economic incentives for geothermal plant operators to provide such flexibility. Historical and forecast ancillary service prices are compared to operator compensation for energy under firm contracts at fixed prices, which are higher than current or year 2020 projected market clearing prices for ancillarymore » services in most hours of the year. Power purchase agreements recently executed by geothermal operators typically provide only energy payments at fixed energy prices and escalation rates. We postulate new contract structures that would allow a geothermal plant operator to switch from providing energy to providing ancillary services to the grid operator when it is advantageous to the plant operator to do so. Additional revenues would be earned through ancillary service payments. Estimates of these additional annual revenues a plant operator could realize are developed for a range of contract energy prices. The impacts of flexible operations on reservoir lifetimes and implications for project finance are also discussed.« less
Environmental impact of geothermal power plants in Aydın, Turkey
NASA Astrophysics Data System (ADS)
Yilmaz, Ersel; Ali Kaptan, Mustafa
2017-10-01
Geothermal energy is classified as a clean and sustainable energy source, like all industrial activities, geothermal energy power plants (GEPP) technology has also some positive and negative effects on the environment. In this paper are presented by attent not only on environmental impacts of GEPP onto Büyük Menderes River and fresh water sources, which ere used for irrigation of agricultural fields from tousands of years in basin, but also on water quality contents like heavy metals and gases emition due to drilling and electricity producing technology of GEPP's. Aydın province is located in the southwestern part of the region and its city center has around 300000 population. The high geothermal potential of this region became from geographical location, which is held on active tectonic Alpine-Himalaya Orogen belt with active volcanoes and young faults. Since 1980's to 2016 there is about 70.97% (662.75 MW) of installed capacity by according to the Mineral Research and Exploration General Directorate, there are totally 290 well licensed (540 explore licenses and 76 business licenses), and 31 geothermal powerplants purposely installed. Topic is important because of number of GEPP increased rapidly after 2012 to now a days to 36 in whole basin.
Laboratory experimental investigation of heat transport in fractured media
NASA Astrophysics Data System (ADS)
Cherubini, Claudia; Pastore, Nicola; Giasi, Concetta I.; Allegretti, Nicoletta Maria
2017-01-01
Low enthalpy geothermal energy is a renewable resource that is still underexploited nowadays in relation to its potential for development in society worldwide. Most of its applications have already been investigated, such as heating and cooling of private and public buildings, road defrosting, cooling of industrial processes, food drying systems or desalination. Geothermal power development is a long, risky and expensive process. It basically consists of successive development stages aimed at locating the resources (exploration), confirming the power generating capacity of the reservoir (confirmation) and building the power plant and associated structures (site development). Different factors intervene in influencing the length, difficulty and materials required for these phases, thereby affecting their cost. One of the major limitations related to the installation of low enthalpy geothermal power plants regards the initial development steps that are risky and the upfront capital costs that are huge. Most of the total cost of geothermal power is related to the reimbursement of invested capital and associated returns. In order to increase the optimal efficiency of installations which use groundwater as a geothermal resource, flow and heat transport dynamics in aquifers need to be well characterized. Especially in fractured rock aquifers these processes represent critical elements that are not well known. Therefore there is a tendency to oversize geothermal plants. In the literature there are very few studies on heat transport, especially on fractured media. This study is aimed at deepening the understanding of this topic through heat transport experiments in fractured networks and their interpretation. Heat transfer tests have been carried out on the experimental apparatus previously employed to perform flow and tracer transport experiments, which has been modified in order to analyze heat transport dynamics in a network of fractures. In order to model the obtained thermal breakthrough curves, the Explicit Network Model (ENM) has been used, which is based on an adaptation of Tang's solution for the transport of the solutes in a semi-infinite single fracture embedded in a porous matrix. Parameter estimation, time moment analysis, tailing character and other dimensionless parameters have permitted a better understanding of the dynamics of heat transport and the efficiency of heat exchange between the fractures and the matrix. The results have been compared with the previous experimental studies on solute transport.
Global Value Chain and Manufacturing Analysis on Geothermal Power Plant Turbines: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akar, Sertac; Augustine, Chad R; Kurup, Parthiv
The global geothermal electricity market has significantly grown over the last decade and is expected to reach a total installed capacity of 18.4 GWe in 2021 (GEA, 2016). Currently, geothermal project developers customize the size of the power plant to fit the resource being developed. In particular, the turbine is designed and sized to optimize efficiency and resource utilization for electricity production; most often, other power plant components are then chosen to complement the turbine design. These custom turbine designs demand one-off manufacturing processes, which result in higher manufacturing setup costs, longer lead-times, and higher capital costs overall in comparisonmore » to larger-volume line manufacturing processes. In contrast, turbines produced in standard increments, manufactured in larger volumes, could result in lower costs per turbine. This study focuses on analysis of the global supply chain and manufacturing costs for Organic Rankine Cycle (ORC) turboexpanders and steam turbines used in geothermal power plants. In this study, we developed a manufacturing cost model to identify requirements for equipment, facilities, raw materials, and labor. We analyzed three different cases 1) 1 MWe geothermal ORC turboexpander 2) 5 MWe ORC turboexpander and 3) 20 MWe geothermal steam turbine, and calculated the cost of manufacturing the major components, such as the impellers/blades, shaft/rotor, nozzles, inlet guide lanes, disks, and casings. Then we used discounted cash flow (DCF) analysis to calculate the minimum sustainable price (MSP). MSP is the minimum price that a company must sell its product for in order to pay back the capital and operating expenses during the plant lifetime (CEMAC, 2017). The results showed that MSP could highly vary between 893 dollar/kW and 30 dollar/kW based on turbine size, standardization and volume of manufacturing. The analysis also showed that the economy of scale applies both to the size of the turbine and the number manufactured in a single run. Sensitivity analysis indicated these savings come largely from reduced labor costs for design and engineering and manufacturing setup.« less
Global Value Chain and Manufacturing Analysis on Geothermal Power Plant Turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akar, Sertac; Augustine, Chad R; Kurup, Parthiv
The global geothermal electricity market has significantly grown over the last decade and is expected to reach a total installed capacity of 18.4 GWe in 2021 (GEA, 2016). Currently, geothermal project developers customize the size of the power plant to fit the resource being developed. In particular, the turbine is designed and sized to optimize efficiency and resource utilization for electricity production; most often, other power plant components are then chosen to complement the turbine design. These custom turbine designs demand one-off manufacturing processes, which result in higher manufacturing setup costs, longer lead-times, and higher capital costs overall in comparisonmore » to larger-volume line manufacturing processes. In contrast, turbines produced in standard increments, manufactured in larger volumes, could result in lower costs per turbine. This study focuses on analysis of the global supply chain and manufacturing costs for Organic Rankine Cycle (ORC) turboexpanders and steam turbines used in geothermal power plants. In this study, we developed a manufacturing cost model to identify requirements for equipment, facilities, raw materials, and labor. We analyzed three different cases 1) 1 MWe geothermal ORC turboexpander 2) 5 MWe ORC turboexpander and 3) 20 MWe geothermal steam turbine, and calculated the cost of manufacturing the major components, such as the impellers/blades, shaft/rotor, nozzles, inlet guide lanes, disks, and casings. Then we used discounted cash flow (DCF) analysis to calculate the minimum sustainable price (MSP). MSP is the minimum price that a company must sell its product for in order to pay back the capital and operating expenses during the plant lifetime (CEMAC, 2017). The results showed that MSP could highly vary between 893 dollar/kW and 30 dollar/kW based on turbine size, standardization and volume of manufacturing. The analysis also showed that the economy of scale applies both to the size of the turbine and the number manufactured in a single run. Sensitivity analysis indicated these savings come largely from reduced labor costs for design and engineering and manufacturing setup.« less
Geologic controls on supercritical geothermal resources above magmatic intrusions
Scott, Samuel; Driesner, Thomas; Weis, Philipp
2015-01-01
A new and economically attractive type of geothermal resource was recently discovered in the Krafla volcanic system, Iceland, consisting of supercritical water at 450 °C immediately above a 2-km deep magma body. Although utilizing such supercritical resources could multiply power production from geothermal wells, the abundance, location and size of similar resources are undefined. Here we present the first numerical simulations of supercritical geothermal resource formation, showing that they are an integral part of magma-driven geothermal systems. Potentially exploitable resources form in rocks with a brittle–ductile transition temperature higher than 450 °C, such as basalt. Water temperatures and enthalpies can exceed 400 °C and 3 MJ kg−1, depending on host rock permeability. Conventional high-enthalpy resources result from mixing of ascending supercritical and cooler surrounding water. Our models reproduce the measured thermal conditions of the resource discovered at Krafla. Similar resources may be widespread below conventional high-enthalpy geothermal systems. PMID:26211617
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-10-01
These proceedings contain papers pertaining to current research and development of geothermal energy in the USA. The seven sections of the document are: Overview, The Geysers, Exploration and Reservoir Characterization, Drilling, Energy Conversion, Advanced Systems, and Potpourri. The Overview presents current DOE energy policy and industry perspectives. Reservoir studies, injection, and seismic monitoring are reported for the geysers geothermal field. Aspects of geology, geochemistry and models of geothermal exploration are described. The Drilling section contains information on lost circulation, memory logging tools, and slim-hole drilling. Topics considered in energy conversion are efforts at NREL, condensation on turbines and geothermal materials.more » Advanced Systems include hot dry rock studies and Fenton Hill flow testing. The Potpourri section concludes the proceedings with reports on low-temperature resources, market analysis, brines, waste treatment biotechnology, and Bonneville Power Administration activities. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.« less
Use of high-resolution satellite images for detection of geothermal reservoirs
NASA Astrophysics Data System (ADS)
Arellano-Baeza, A. A.
2012-12-01
Chile has an enormous potential to use the geothermal resources for electric energy generation. The main geothermal fields are located in the Central Andean Volcanic Chain in the North, between the Central valley and the border with Argentina in the center, and in the fault system Liquiñe-Ofqui in the South of the country. High resolution images from the LANDSAT and ASTER satellites have been used to delineate the geological structures related to the Calerias geothermal field located at the northern end of the Southern Volcanic Zone of Chile and Puchuldiza geothermal field located in the Region of Tarapaca. It was done by applying the lineament extraction technique developed by author. These structures have been compared with the distribution of main geological structures obtained in the fields. It was found that the lineament density increases in the areas of the major heat flux indicating that the lineament analysis could be a power tool for the detection of faults and joint zones associated to the geothermal fields.
Geologic controls on supercritical geothermal resources above magmatic intrusions.
Scott, Samuel; Driesner, Thomas; Weis, Philipp
2015-07-27
A new and economically attractive type of geothermal resource was recently discovered in the Krafla volcanic system, Iceland, consisting of supercritical water at 450 °C immediately above a 2-km deep magma body. Although utilizing such supercritical resources could multiply power production from geothermal wells, the abundance, location and size of similar resources are undefined. Here we present the first numerical simulations of supercritical geothermal resource formation, showing that they are an integral part of magma-driven geothermal systems. Potentially exploitable resources form in rocks with a brittle-ductile transition temperature higher than 450 °C, such as basalt. Water temperatures and enthalpies can exceed 400 °C and 3 MJ kg(-1), depending on host rock permeability. Conventional high-enthalpy resources result from mixing of ascending supercritical and cooler surrounding water. Our models reproduce the measured thermal conditions of the resource discovered at Krafla. Similar resources may be widespread below conventional high-enthalpy geothermal systems.
NASA Astrophysics Data System (ADS)
Angel, E.; Ortega, S.; Gonzalez-Duque, D.; Ruiz-Carrascal, D.
2016-12-01
Geothermal energy production depends on the difference between air temperature and the geothermal fluid temperature. The latter remains approximately constant over time, so the power generation varies according to local atmospheric conditions. Projected changes in near-surface air temperatures in the upper levels of the tropical belt are likely to exceed the projected temperature anomalies across many other latitudes, which implies that geothermal plants located in these regions may be affected, reducing their energy output. This study focuses on a hypothetical geothermal power plant, located in the headwaters of the Claro River watershed, a key high-altitude basin in Los Nevados Natural Park, on the El Ruiz-Tolima volcanic massif, in the Colombian Central Andes, a region with a known geothermal potential. Four different Atmospheric General Circulation Models where used to project temperature anomalies for the 2040-2069 prospective period. Their simulation outputs were merged in a differentially-weighted multi-model ensemble, whose weighting factors were defined according to the capability of individual models to reproduce ground truth data from a set of digital data-loggers installed in the basin since 2008 and from weather stations gathering climatic variables since the early 50s. Projected anomalies were computed for each of the Representative Concentration Pathways defined by the IPCC Fifth Assessment Report in the studied region. These climate change projections indicate that air temperatures will likely reach positive anomalies in the range +1.27 ºC to +3.47 ºC, with a mean value of +2.18 ºC. Under these conditions, the annual energy output declines roughly 1% per each degree of increase in near-surface temperature. These results must be taken into account in geothermal project evaluations in the region.
NASA Astrophysics Data System (ADS)
Elders, W. A.; Fridleifsson, G. O.; Bird, D. K.; Reed, M. H.; Schiffman, P.; Zierenberg, R.
2008-12-01
The IDDP is being carried out by an international industry-government consortium in Iceland (consisting of three leading Icelandic power companies, together with the National Energy Authority), Alcoa Inc. and StatoilHydro) with the objective of investigating the economic feasibility of producing electricity from supercritical geothermal fluids. This will require drilling to temperatures of 400-600°C and depths of 4 to 5 km. Modeling suggests that supercritical water could yield an order of magnitude greater power output than that produced by conventional geothermal wells. The consortium plans to test this concept in three different geothermal fields in Iceland. If successful, major improvements in the development of high-temperature geothermal resources could result worldwide. In June 2008 preparation of the first deep IDDP well commenced in the Krafla volcanic caldera in the active rift zone of NE Iceland. Selection of the first drill site for this well was based on geological, geophysical and geochemical data, and on the results of extensive geothermal drilling since 1971. During 1975-1984, a rifting episode occurred in the caldera, involving 9 volcanic eruptions. In parts of the geothermal field acid volcanic gases made steam from some of the existing wells unsuitable for power generation for the following decade. A large magma chamber at 3-7 km depth was detected by S-wave attenuation beneath the center of the caldera, believed to be the heat source of the geothermal system. A recent MT-survey has confirmed the existence of low resistivity bodies at shallow depths within the volcano. The IDDP well will be drilled and cased to 800m depth in September, before the winter snows, and in spring 2009 it will be drilled and cased to 3.5km depth and then deepened to 4.5 km in July. Several spot cores for scientific studies will be collected between 2400m and the total depth. After the well heats, it will be flow tested and, if successful, a pilot plant for power production should follow in 2010. During 2009-19 two new wells, ~4 km deep, will be drilled at the Hengill and the Reykjanes geothermal fields in southern Iceland, and subsequently deepened into the supercritical zone. In contrast to the fresh water systems at Krafla and Hengill, the Reykjanes geothermal system produces hydrothermally modified seawater on the Reykjanes peninsula, where the Mid-Atlantic Ridge comes on land. Processes at depth at Reykjanes should be more similar to those responsible for black smokers on oceanic rift systems. Because of the considerable international scientific opportunities afforded by the IDDP, the US National Science Foundation and the International Continental Scientific Drilling Program will jointly fund the coring and sampling for scientific studies. Research is underway on samples from existing wells in the targeted geothermal fields, and on active mid-ocean ridge systems that have conditions believed to be similar to those that will be encountered in deep drilling by the IDDP. Some of these initial scientific studies by US investigators are reported in the accompanying papers.
78 FR 77343 - Small Business Size Standards: Utilities
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-23
... (such as solar, wind, biomass, geothermal) as well as other industries, where power generation is...: namely NAICS 221114 (Solar Electric Power Generation), NAICS 221115 (Wind Electric Power Generation... Electric Power 4 million 250 employees. Generation. megawatt hours. [[Page 77348
Code of Federal Regulations, 2010 CFR
2010-07-01
... replacements • Customer located power generation based on photovoltaic, solar thermal, biomass, wind or geothermal resources • Swimming pool pump replacements • Gasket replacements • Maintenance/coil cleaning 1... photovoltaic, solar thermal, biomass, wind, and geothermal resources • Energy efficient office equipment...
Code of Federal Regulations, 2012 CFR
2012-07-01
... replacements • Customer located power generation based on photovoltaic, solar thermal, biomass, wind or geothermal resources • Swimming pool pump replacements • Gasket replacements • Maintenance/coil cleaning 1... photovoltaic, solar thermal, biomass, wind, and geothermal resources • Energy efficient office equipment...
Code of Federal Regulations, 2011 CFR
2011-07-01
... replacements • Customer located power generation based on photovoltaic, solar thermal, biomass, wind or geothermal resources • Swimming pool pump replacements • Gasket replacements • Maintenance/coil cleaning 1... photovoltaic, solar thermal, biomass, wind, and geothermal resources • Energy efficient office equipment...
Code of Federal Regulations, 2014 CFR
2014-07-01
... replacements • Customer located power generation based on photovoltaic, solar thermal, biomass, wind or geothermal resources • Swimming pool pump replacements • Gasket replacements • Maintenance/coil cleaning 1... photovoltaic, solar thermal, biomass, wind, and geothermal resources • Energy efficient office equipment...
Code of Federal Regulations, 2013 CFR
2013-07-01
... replacements • Customer located power generation based on photovoltaic, solar thermal, biomass, wind or geothermal resources • Swimming pool pump replacements • Gasket replacements • Maintenance/coil cleaning 1... photovoltaic, solar thermal, biomass, wind, and geothermal resources • Energy efficient office equipment...
Mechanical and Thermal Engineering Sciences | Research | NREL
. Geothermal Energy Developing cost-competitive technologies to advance the use of geothermal energy areas of energy efficiency, sustainable transportation, and renewable power. We provide engineering and scientific expertise to a variety of federal agencies, including the DOE Office of Energy Efficiency and
Geothermal Geodatabase for Routt Hot Springs, Routt County, Colorado
Richard Zehner
2012-11-01
This geodatabase was built to cover several geothermal targets developed by Flint Geothermal in 2012 during a search for high-temperature systems that could be exploited for electric power development. Several of the thermal springs and wells in the Routt Hot Spring and Steamboat Springs areahave geochemistry and geothermometry values indicative of high-temperature systems. Datasets include: 1. Results of reconnaissance shallow (2 meter) temperature surveys 2. Air photo lineaments 3. Groundwater geochemistry 5. Georeferenced geologic map of Routt County 6. Various 1:24,000 scale topographic maps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raridon, M.H.; Hicks, S.C.
1991-01-01
Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal article, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past two months. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements.
California's geothermal resource potential
NASA Technical Reports Server (NTRS)
Leibowitz, L. P.
1978-01-01
According to a U.S. Geological Survey estimate, recoverable hydrothermal energy in California may amount to 19,000 MW of electric power for a 30-year period. At present, a geothermal installation in the Geysers region of the state provides 502 MWe of capacity; an additional 1500 MWe of electric generating capacity is scheduled to be in operation in geothermal fields by 1985. In addition to hydrothermal energy sources, hot-igneous and conduction-dominated resources are under investigation for possible development. Land-use conflicts, environmental concerns and lack of risk capital may limit this development.
Greenhouse Gas emissions from California Geothermal Power Plants
Sullivan, John
2014-03-14
The information given in this file represents GHG emissions and corresponding emission rates for California flash and dry steam geothermal power plants. This stage of the life cycle is the fuel use component of the fuel cycle and arises during plant operation. Despite that no fossil fuels are being consumed during operation of these plants, GHG emissions nevertheless arise from GHGs present in the geofluids and dry steam that get released to the atmosphere upon passing through the system. Data for the years of 2008 to 2012 are analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trocki, L.K.
1989-09-01
The expected economic benefits from development of a geothermal power plant at Platanares in the Department of Copan, Honduras are evaluated in this report. The economic benefits of geothermal plants ranging in size from a 10-MW plant in the shallow reservoir to a 20-, 30-, 55-, or 110-MW plant in the assumed deeper reservoir were measured by computing optimal expansion plans for each size of geothermal plant. Savings are computed as the difference in present value cost between a plan that contains no geothermal plant and one that does. Present value savings in millions of 1987 dollars range from $25more » million for the 10-MW plant to $110 million for the 110-MW plant -- savings of 6% to 25% over the time period 1988 through 2008. 8 refs., 9 figs., 6 tabs.« less
2013 Renewable Energy Data Book (Book)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esterly, S.
2014-12-01
This Renewable Energy Data Book for 2013 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investment.
2016 Renewable Energy Data Book
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beiter, Philipp C; Elchinger, Michael A; Tian, Tian
The 2016 Renewable Energy Data Book provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.
2015 Renewable Energy Data Book
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beiter, Philipp; Tian, Tian
The 2015 Renewable Energy Data Book provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.
Geothermal energy program overview
NASA Astrophysics Data System (ADS)
1991-12-01
The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained within the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost-effective heat and electricity for our nation's energy needs. Geothermal energy - the heat of the Earth - is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40 percent of the total U.S. energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The U.S. Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma (the four types of geothermal energy), still depends on the technical advancements sought by DOE's Geothermal Energy Program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-07-01
This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the third quarter of FY98 (April--June, 1998). It describes 231 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with included requests for general information including material for high school and university students, and material on geothermal heat pumps, resource and well data, spacing heating and cooling, greenhouses, aquaculture, equipment, district heating, resorts and spas, industrial applications, snow melting and electric power. Research activities include work on model constructionmore » specifications for line shaft submersible pumps and plate heat exchangers, and a comprehensive aquaculture developers package. A brochure on Geothermal Energy in Klamath County was developed for state and local tourism use. Outreach activities include the publication of the Quarterly Bulletin (Vol. 19, No. 2) with articles on research at the Geo-Heat Center, sustainability of geothermal resources, injection well drilling in Boise, ID and a greenhouse project in the Azores. Other outreach activities include dissemination of information mainly through mailings of publications, tours of local geothermal uses, geothermal library acquisitions and use, participation in workshops, short courses and technical meetings by the staff, and progress monitor reports on geothermal activities.« less
Soil mercury levels in the area surrounding the Cerro Prieto geothermal complex, MEXICO.
Pastrana-Corral, M A; Wakida, F T; García-Flores, E; Rodriguez-Mendivil, D D; Quiñonez-Plaza, A; Piñon-Colin, T D J
2016-08-01
Even though geothermal energy is a renewable energy source that is seen as cost-effective and environmentally friendly, emissions from geothermal plants can impact air, soil, and water in the vicinity of geothermal power plants. The Cerro Prieto geothermal complex is located 30 km southeast of the city of Mexicali in the Mexican state of Baja California. Its installed electricity generation capacity is 720 MW, being the largest geothermal complex in Mexico. The objective of this study was to evaluate whether the emissions generated by the geothermal complex have increased the soil mercury concentration in the surrounding areas. Fifty-four surface soil samples were collected from the perimeter up to an approximate distance of 7660 m from the complex. Additionally, four soil depth profiles were performed in the vicinity of the complex. Mercury concentration in 69 % of the samples was higher than the mercury concentration found at the baseline sites. The mercury concentration ranged from 0.01 to 0.26 mg/kg. Our results show that the activities of the geothermal complex have led to an accumulation of mercury in the soil of the surrounding area. More studies are needed to determine the risk to human health and the ecosystems in the study area.
NASA Astrophysics Data System (ADS)
Tezel, O.; Ozcep, F.
2017-12-01
Geothermal energy is heat derived from the earth. It is the thermal energy contained in the rock and fluid (that fills the fractures and pores within the rock) in the earth's crust. These resources are always at a temperature higher than 20°C. Geothermal energy requires no fuel, and is therefore virtually emission free and independent of fluctuations in fuel cost. Since a geothermal power plant doesn't rely on transient sources of energy, unlike, for example, wind turbines or solar panels, its capacity factor can be quite large. Induced polarization (IP) results at geothermal regions show prominent, extended low resistivity zones. Environmental-IP methods can assist in the assessment of the acid generating potential of waste rock and tailings from mine operations. Resistivity can be used to map contamination plumes. Resistivity and chargeability values were determined using the IP method on geothermal resources in Balikesir Güre (Turkey). In this study we found low resistance values and high chargeability values at the geothermal resource. Finally drilling and IP results were correlated to verify our findings. After the positive results of obtained data, a similar study was carried out in Geyikli Area (Canakkale) and a geothermal resource with 450C temperature of 5 lt/sec was explored at a depth of 970 m.
Environmental impact assessment for alternative-energy power plants in México.
González-Avila, María E; Beltrán-Morales, Luis Felipe; Braker, Elizabeth; Ortega-Rubio, Alfredo
2006-07-01
Ten Environmental Impact Assessment Reports (EIAR) were reviewed for projects involving alternative power plants in Mexico developed during the last twelve years. Our analysis focused on the methods used to assess the impacts produced by hydroelectric and geothermal power projects. These methods used to assess impacts in EIARs ranged from the most simple, descriptive criteria, to quantitative models. These methods are not concordant with the level of the EIAR required by the environmental authority or even, with the kind of project developed. It is concluded that there is no correlation between the tools used to assess impacts and the assigned type of the EIAR. Because the methods to assess impacts produced by these power projects have not changed during 2000 years, we propose a quantitative method, based on ecological criteria and tools, to assess the impacts produced by hydroelectric and geothermal plants, according to the specific characteristics of the project. The proposed method is supported by environmental norms, and can assist environmental authorities in assigning the correct level and tools to be applied to hydroelectric and geothermal projects. The proposed method can be adapted to other production activities in Mexico and to other countries.
Geysers advanced direct contact condenser research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, J.; Bahning, T.; Bharathan, D.
1997-12-31
The first geothermal application of the Advanced Direct Contact Condenser (ADCC) technology developed by the National Renewable Energy Laboratory (NREL) is now operational and is being tested at The Geysers Power Plant Unit 11. This major research effort is being supported through the combined efforts of NREL, The Department of Energy (DOE), and Pacific Gas and Electric (PG&E). NREL and PG&E have entered into a Cooperative Research And Development Agreement (CRADA) for a project to improve the direct-contact condenser performance at The Geysers Power Plant. This project is the first geothermal adaptation of an advanced condenser design developed for themore » Ocean Thermal Energy Conversion (OTEC) systems. PG&E expects this technology to improve power plant performance and to help extend the life of the steam field by using steam more efficiently. In accordance with the CRADA, no money is transferred between the contracting parties. In this case the Department of Energy is funding NREL for their efforts in this project and PG&E is contributing funds in kind. Successful application of this technology at The Geysers will provide a basis for NREL to continue to develop this technology for other geothermal and fossil power plant systems.« less
NASA Astrophysics Data System (ADS)
Hopp, C. J.; Savage, M. K.; Townend, J.; Sherburn, S.
2016-12-01
Monitoring patterns in local microseismicity gives clues to the existence and location of subsurface structures. In the context of a geothermal reservoir, subsurface structures often indicate areas of high permeability and are vitally important in understanding fluid flow within the geothermal resource. Detecting and locating microseismic events within an area of power generation, however, is often challenging due to high levels of noise associated with nearby power plant infrastructure. In this situation, matched filter detection improves drastically upon standard earthquake detection techniques, specifically when events are likely induced by fluid injection and are therefore near-repeating. Using an earthquake catalog of 637 events which occurred between 1 January and 18 November 2015 as our initial dataset, we implemented a matched filtering routine for the Mighty River Power (MRP) geothermal fields at Rotokawa and Ngatamariki, central North Island, New Zealand. We detected nearly 21,000 additional events across both geothermal fields, a roughly 30-fold increase from the original catalog. On average, each of the 637 template events detected 45 additional events throughout the study period, with a maximum number of additional detections for a single template of 359. Cumulative detection rates for all template events, in general, do not mimic large scale changes in injection rates within the fields, however we do see indications of an increase in detection rate associated with power plant shutdown at Ngatamariki. Locations of detected events follow established patterns of historic seismicity at both Ngatamariki and Rotokawa. One large cluster of events persists in the southeastern portion of Rotokawa and is likely bounded to the northwest by a known fault dividing the injection and production sections of the field. Two distinct clusters of microseismicity occur in the North and South of Ngatamariki, the latter appearing to coincide with a structure dividing the production zone and the southern injection zone.
2015-09-01
Proposed MPMGR July 2015 JB MDL, New Jersey 2-2 Heating would be accomplished through electrical, geothermal , heat pump, or solar power. No fuel storage...emissions. Further, to the extent feasible, renewable energy (including, but not limited to solar, wind, geothermal 1 biogas, and biomass) and
The CHPM2030 H2020 Project: Combined Heat, Power and Metal extraction from ultra-deep ore bodies
NASA Astrophysics Data System (ADS)
Miklovicz, Tamas; Bodo, Balazs; Cseko, Adrienn; Hartai, Eva; Madarasz, Tamas
2017-04-01
The CHPM2030 project consortium is working on a novel technology solution that can provide both geothermal energy and minerals, in a single interlinked process. The CHPM technology involves an integrated approach to cross fertilize between two yet separated research areas: unconventional geothermal energy and mineral extraction. This places the project's research agenda onto the frontiers of geothermal resources development, mineral extraction and electro-metallurgy with the objectives of converting ultra-deep metallic mineral formations into an "orebody-enhanced geothermal system". In the envisioned facility, an EGS is established on a 3-4 km deep ore mineralisation. Metal content from the ore body is mobilised using mild leaching and/or nanoparticles, then metals are recovered by high-temperature, high-pressure geothermal fluid electrolysis and gas-diffusion electroprecipitation and electrocrystallisation. Salinity gradient power from pre-treated geothermal fluids will also be used. In the project, all these will be carried out at laboratory scale (technology readiness level of 4-5), providing data for the conceptual framework, process optimisation and simulations. Integrated sustainability assessment will also be carried out on the economic feasibility, social impact, policy considerations, environmental impact and ethics concerns. During the last stage of the research agenda, the work will focus on mapping converging technological areas, setting a background for pilot implementation and developing research roadmaps for 2030 and 2050. Pilot study areas include South West England, the Iberian Pyrite Belt in Portugal, the Banatitic Magmatic and Metallogenic Belt in Romania, and three mining districts in Sweden. The project started in January 2016 and lasts for 42 months. In the first phase, the metallogenesis of Europe was investigated and the potential ore formations have been identified. The rock-mechanical characteristics of orebodies have also been examined from an EGS perspective and the conceptual framework for an orebody-EGS has been formulated. Metal extraction from geothermal resources provides added value to the system, which has the potential to increase financial feasibility of geothermal development. This approach can contribute to a Europe-wide growth in industrial applications of geothermal resources in the future. The project also thrives to connect thousands of scientists, engineers, and decision-makers by establishing co-operative links to already running on critical raw materials, geothermal energy and other technology-driven projects.
2014 Renewable Energy Data Book
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beiter, Philipp
The Renewable Energy Data Book for 2014 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.
2015 Renewable Energy Data Book
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beiter, Philipp; Tian, Tian
The Renewable Energy Data Book for 2015 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.
Assessment of the Geothermal Potential Within the BPA Marketing Area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lund, John W.; Allen, Eliot D.
1980-07-01
The potential of geothermal energy is estimated that can be used for direct heat applications and electrical power generation within the Bonneville Power Administration (BPA) marketing area. The BPA marketing area includes three principal states of Oregon, Washington, and Idaho and portions of California, Montana, Wyoming, Nevada, and Utah bordering on these three states. This area covers approximately 384,000 square miles and has an estimated population of 6,760,000. The total electrical geothermal potential within this marketing area is 4077 MW/sub e/ from hydrothermal resources and 16,000 MW/sub e/ from igneous systems, whereas the total thermal (wellhead) potential is 16.15 xmore » 10/sup 15/ Btu/y. Approximately 200 geothermal resource sites were initially identified within the BPA marketing area. This number was then reduced to about 100 sites thought to be the most promising for development by the year 2000. These 100 sites, due to load area overlap, were grouped into 53 composite sites; 21-3/4 within BPA preference customer areas and 31-1/4 within nonpreference customer areas. The geothermal resource potential was then estimated for high-temperature (> 302/sup 0/F = 150/sup 0/C), intermediate-temperature (194 to 302/sup 0/F = 90 to 150/sup 0/C), and low-temperature (< 194/sup 0/F = 90/sup 0/C) resources.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allis, R.G.
1989-06-16
There are numerous documented cases of extraction of fluids from the ground causing surface subsidence. The cases include groundwater, oil and gas, as well as geothermal fluid withdrawal. A recent comprehensive review of all types of man-induced land subsidence was published by the Geological Survey of America. At the early stages of a geothermal power development project it is standard practice in most countries for an environmental impact report to be required. The possibility of geothermal subsidence has to be addressed, and usually it falls on the geophysicists and/or geologists to make some predictions. The advice given is vital formore » planning the power plant location and the borefield pipe and drain layout. It is not so much the vertical settlement that occurs with subsidence but the accompanying horizontal ground strains that can do the most damage to any man-made structure.« less
The Energy Crisis: Is It Fabrication or Miscalculation?
ERIC Educational Resources Information Center
Shaheen, Esber I.
1974-01-01
Issues surrounding the recent oil shortages are discussed and alternate sources reviewed are nuclear power, fusion, solar energy, geothermal energy, magnetohydrodynamics coal gasification, windmills and tidal power. (JP)
Sudurnes Regional Heating Corp.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lienau, P.J.
1996-11-01
The Svartsengi geothermal area is close to the town of Grindavik on the Rekjanes peninsula and is part of an active fissure swarm, lined with crater-rows and open fissures and faults. The high-temperature area has an area of 2 sq. km and shows only limited signs of geothermal activity at the surface. The reservoir, however, contains lots of energy and at least 8 wells supply the Svartsengi Power Plant with steam. The steam is not useable for domestic heating purposes so that heat exchangers are used to heat cold groundwater with the steam. Some steam is also used for producingmore » 16.4 MW{sub e} of electrical power. The article shows the distribution system piping hot water to nine towns and the Keflavik International Airport. The effluent brine from the Svartsengi Plant is disposed of into a surface pond, called the Blue Lagoon, popular to tourists and people suffering from psoriasis and other forms of eczema seeking therapeutic effects from the silica rich brine. This combined power plant and regional district heating system (cogeneration) is an interesting and unique design for the application of geothermal energy.« less
2012 Renewable Energy Data Book (Book)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelman, R.
2013-10-01
This Renewable Energy Data Book for 2012 provides facts and figures in a graphical format on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investment.
Phase 0 study for a geothermal superheated water proof of concept facility
NASA Technical Reports Server (NTRS)
Douglass, R. H.; Pearson, R. O.
1974-01-01
A Phase 0 study for the selection of a representative liquid-dominated geothermal resource of moderate salinity and temperature is discussed. Selection and conceptual design of a nominal 10-MWe energy conversion system, and implementation planning for Phase 1: subsystem (component, experiments) and Phase 2: final design, construction, and operation of experimental research facilities are reported. The objective of the overall program is to demonstrate the technical and economic viability of utilizing moderate temperature and salinity liquid-dominated resources with acceptable environmental impact, and thus encourage commercial scale development of geothermal electrical power generation.
Advanced Geothermal Turbodrill
DOE Office of Scientific and Technical Information (OSTI.GOV)
W. C. Maurer
2000-05-01
Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of largemore » diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.« less
Potential effects of the Hawaii Geothermal Project on ground-water resources on the island of Hawaii
Sorey, M.L.; Colvard, E.M.
1994-01-01
In 1990, the State of Hawaii proposed the Hawaii Geothermal Project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. This report uses data from 31 wells and 8 springs to describe the properties of the ground-water system in and adjacent to the East Rift Zone. Potential effects of this project on ground-water resources are also discussed. Data show differences in ground-water chemistry and heads within the study area that appear to be related to mixing of waters of different origins and ground-water impoundment by volcanic dikes. East of Pahoa, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the pumping of freshwater to support geothermal development in that part of the rift zone would have a minimal effect on ground-water levels. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying sufficient fresh water to support geothermal operations. Contamination of ground-water resources by accidental release of geothermal fluids into shallow aquifers is possible because of corrosive conditions in the geothermal wells, potential well blowouts, and high ground-water velocities in parts of the region. Hydrologic monitoring of water level, temperature, and chemistry in observation wells should continue throughout development of geothermal resources for the Hawaii Geothermal Project for early detection of leakage and migration of geothermal fluids within the groundwater system.
The Iceland Deep Drilling Project (IDDP): (I) A New Era in Geothermal Development?
NASA Astrophysics Data System (ADS)
Elders, W. A.; Fridleifsson, G. O.; Bird, D. K.; Reed, M. H.; Schiffman, P.; Zierenberg, R.
2007-12-01
The Iceland Deep Drilling Project (IDDP) announced in September 2007 that an international industrial consortium has signed a new contract to collaborate in exploratory deep drilling in Iceland. The main objective of the IDDP is to investigate whether it is economically feasible to produce energy from geothermal systems at supercritical conditions. This will require drilling to depths of 4 to 5 km in order to reach temperatures of 400 to 600°C. Today, geothermal wells in Iceland typically range up to 2.5 km in depth and produce steam at about 300°C, or less, at a rate sufficient to generate about 4 to 7 megawatts of electricity. It is estimated that producing steam from a well penetrating a reservoir with temperatures >450°C, and at a rate of 0.67 cubic meters a second, could generate 40 to 50 MWe. If IDDP's test of this concept proves successful, it could lead to major improvements in the development of high-temperature geothermal resources worldwide. The consortium collaborating to fund this investigation of supercritical geothermal energy consists of three leading Icelandic power companies, Hitaveita Sudurnesja Ltd., Landsvirkjun, Orkuveita Reykjavikur, together with Orkustofnun (the National Energy Authority) and Alcoa Inc. (an international aluminum company). The three power companies financed a feasibility study for the project that was completed in 2003. Each of the three power companies is committed to drill, at their own cost, a 3.5 to 4.0 km deep well in a geothermal field that they operate. The design of these wells will permit them to be deepened to 4.5 or 5.0 km by the IDDP, and funded by the consortium with additional funds from international scientific agencies. The first deep IDDP well will be drilled in the latter part of 2008 in the Krafla geothermal field near the northern end of the central rift zone of Iceland, within a volcanic caldera that has had recent volcanic activity. Two new wells, ~4 km deep, will then be drilled at the Hengill and the Reykjanes geothermal fields during 2009-2010, and subsequently deepened. In contrast to the fresh water systems at Krafla and Hengill, the Reykjanes geothermal system produces hydrothermally modified seawater on the Reykjanes peninsula, in southern Iceland, where the Mid-Atlantic Ridge comes on land in southern Iceland. Processes at depth at Reykjanes should be similar to those responsible for black smokers on ocean spreading centers. The IDDP has engendered considerable international scientific interest. The US National Science Foundation and the International Continental Scientific Drilling Program will jointly fund the coring and sampling for scientific studies. In preparation for studying the data and samples that will be recovered by deep drilling research is underway on samples from existing wells in the target geothermal fields, and on exposed "fossil" geothermal systems and active mid-ocean ridge systems that have conditions believed to be similar to those that will be encountered in deep drilling by the IDDP. Some of these initial scientific studies by US investigators are reported in the accompanying papers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levine, Aaron L; Young, Katherine R
Developers have identified many non-technical barriers to geothermal power development, including permitting. Activities required for permitting, such as the associated environmental reviews, can take a considerable amount of time and delay project development. This paper discusses the impacts to geothermal development timelines due to the permitting challenges, including the regulatory framework, environmental review process, and ancillary permits. We identified barriers that have the potential to prevent geothermal development or delay timelines and defined improvement scenarios that could assist in expediting geothermal development and permitting timelines and lead to the deployment of additional geothermal resources by 2030 and 2050: (1) themore » creation of a centralized federal geothermal permitting office and utilization of state permit coordination offices as well as (2) an expansion of existing categorical exclusions applicable to geothermal development on Bureau of Land Management public lands to include the oil and gas categorical exclusions passed as part of the Energy Policy Act of 2005. We utilized the Regional Energy Deployment System (ReEDS) and the Geothermal Electricity Technology Evaluation Model (GETEM) to forecast baseline geothermal deployment based on previous analysis of geothermal project development and permitting timelines. The model results forecast that reductions in geothermal project timelines can have a significant impact on geothermal deployment. For example, using the ReEDS model, we estimated that reducing timelines by two years, perhaps due to the creation of a centralized federal geothermal permitting office and utilization of state permit coordination offices, could result in deployment of an additional 204 MW by 2030 and 768 MW by 2050 - a 13% improvement when compared to the business as usual scenario. The model results forecast that a timeline improvement of four years - for example with an expansion of existing categorical exclusions coupled with the creation of a centralized federal geothermal permitting office and utilization of state permit coordination offices - could result in deployment of an additional 2,529 MW of geothermal capacity by 2030 and 6,917 MW of geothermal capacity by 2050 - an improvement of 116% when compared to the business as usual scenario. These results suggest that reducing development timelines could be a large driver in the deployment of geothermal resources.« less
Jobs and Economic Development Impact (JEDI) Model Geothermal User Reference Guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, C.; Augustine, C.; Goldberg, M.
2012-09-01
The Geothermal Jobs and Economic Development Impact (JEDI) model, developed through the National Renewable Energy Laboratory (NREL), is an Excel-based user-friendly tools that estimates the economic impacts of constructing and operating hydrothermal and Enhanced Geothermal System (EGS) power generation projects at the local level for a range of conventional and renewable energy technologies. The JEDI Model Geothermal User Reference Guide was developed to assist users in using and understanding the model. This guide provides information on the model's underlying methodology, as well as the parameters and references used to develop the cost data utilized in the model. This guide alsomore » provides basic instruction on model add-in features, operation of the model, and a discussion of how the results should be interpreted.« less
Anthropogenic seismicity rates and operational parameters at the Salton Sea Geothermal Field.
Brodsky, Emily E; Lajoie, Lia J
2013-08-02
Geothermal power is a growing energy source; however, efforts to increase production are tempered by concern over induced earthquakes. Although increased seismicity commonly accompanies geothermal production, induced earthquake rate cannot currently be forecast on the basis of fluid injection volumes or any other operational parameters. We show that at the Salton Sea Geothermal Field, the total volume of fluid extracted or injected tracks the long-term evolution of seismicity. After correcting for the aftershock rate, the net fluid volume (extracted-injected) provides the best correlation with seismicity in recent years. We model the background earthquake rate with a linear combination of injection and net production rates that allows us to track the secular development of the field as the number of earthquakes per fluid volume injected decreases over time.
NASA Astrophysics Data System (ADS)
Morris, W. F.; Stephens, F. B.
1981-08-01
Strict limitations on the emission of H2S from new geothermal power plants in The Geysers area of northern California were imposed by Lake and Northern Sonoma County Air Pollution Control Districts. Lake County, under new source review rules, stipulated that specific technologies should be utilized to limit H2S emissions to 5 lb/h as a condition for determination of compliance. The status of these technologies as well as other ongoing technology development efforts to conserve steam and abate H2S are evaluated.
Neutron imaging for geothermal energy systems
NASA Astrophysics Data System (ADS)
Bingham, Philip; Polsky, Yarom; Anovitz, Lawrence
2013-03-01
Geothermal systems extract heat energy from the interior of the earth using a working fluid, typically water. Three components are required for a commercially viable geothermal system: heat, fluid, and permeability. Current commercial electricity production using geothermal energy occurs where the three main components exist naturally. These are called hydrothermal systems. In the US, there is an estimated 30 GW of base load electrical power potential for hydrothermal sites. Next generation geothermal systems, named Enhanced Geothermal Systems (EGS), have an estimated potential of 4500 GW. EGSs lack in-situ fluid, permeability or both. As such, the heat exchange system must be developed or "engineered" within the rock. The envisioned method for producing permeability in the EGS reservoir is hydraulic fracturing, which is rarely practiced in the geothermal industry, and not well understood for the rocks typically present in geothermal reservoirs. High costs associated with trial and error learning in the field have led to an effort to characterize fluid flow and fracturing mechanisms in the laboratory to better understand how to design and manage EGS reservoirs. Neutron radiography has been investigated for potential use in this characterization. An environmental chamber has been developed that is suitable for reproduction of EGS pressures and temperatures and has been tested for both flow and precipitations studies with success for air/liquid interface imaging and 3D reconstruction of precipitation within the core.
Discovering geothermal supercritical fluids: a new frontier for seismic exploration.
Piana Agostinetti, Nicola; Licciardi, Andrea; Piccinini, Davide; Mazzarini, Francesco; Musumeci, Giovanni; Saccorotti, Gilberto; Chiarabba, Claudio
2017-11-06
Exploiting supercritical geothermal resources represents a frontier for the next generation of geothermal electrical power plant, as the heat capacity of supercritical fluids (SCF),which directly impacts on energy production, is much higher than that of fluids at subcritical conditions. Reconnaissance and location of intensively permeable and productive horizons at depth is the present limit for the development of SCF geothermal plants. We use, for the first time, teleseismic converted waves (i.e. receiver function) for discovering those horizons in the crust. Thanks to the capability of receiver function to map buried anisotropic materials, the SCF-bearing horizon is seen as the 4km-depth abrupt termination of a shallow, thick, ultra-high (>30%) anisotropic rock volume, in the center of the Larderello geothermal field. The SCF-bearing horizon develops within the granites of the geothermal field, bounding at depth the vapor-filled heavily-fractured rock matrix that hosts the shallow steam-dominated geothermal reservoirs. The sharp termination at depth of the anisotropic behavior of granites, coinciding with a 2 km-thick stripe of seismicity and diffuse fracturing, points out the sudden change in compressibility of the fluid filling the fractures and is a key-evidence of deep fluids that locally traversed the supercritical conditions. The presence of SCF and fracture permeability in nominally ductile granitic rocks open new scenarios for the understanding of magmatic systems and for geothermal exploitation.
2011 Renewable Energy Data Book (Book)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelman, R.
2012-10-01
This Renewable Energy Data Book for 2011 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.
Silver Peak Innovative Exploration Project (Ram Power Inc.)
Miller, Clay
2010-01-01
Data generated from the Silver Peak Innovative Exploration Project, in Esmeralda County, Nevada, encompasses a “deep-circulation (amagmatic)” meteoric-geothermal system circulating beneath basin-fill sediments locally blanketed with travertine in western Clayton Valley (lithium-rich brines from which have been mined for several decades). Spring- and shallow-borehole thermal-water geochemistry and geothermometry suggest that a Silver Peak geothermal reservoir is very likely to attain the temperature range 260- 300oF (~125-150oC), and may reach 300-340oF (~150-170oC) or higher (GeothermEx, Inc., 2006). Results of detailed geologic mapping, structural analysis, and conceptual modeling of the prospect (1) support the GeothermEx (op. cit.) assertion that the Silver Peak prospect has good potential for geothermal-power production; and (2) provide a theoretical geologic framework for further exploration and development of the resource. The Silver Peak prospect is situated in the transtensional (regional shearing coupled with extension) Walker Lane structural belt, and squarely within the late Miocene to Pliocene (11 Ma to ~5 Ma) Silver Peak-Lone Mountain metamorphic core complex (SPCC), a feature that accommodated initial displacement transfer between major right-lateral strike- slip fault zones on opposite sides of the Walker Lane. The SPCC consists essentially of a ductiley-deformed lower plate, or “core,” of Proterozoic metamorphic tectonites and tectonized Mesozoic granitoids separated by a regionally extensive, low-angle detachment fault from an upper plate of severely stretched and fractured structural slices of brittle, Proterozoic to Miocene-age lithologies. From a geothermal perspective, the detachment fault itself and some of the upper-plate structural sheets could function as important, if secondary, subhorizontal thermal-fluid aquifers in a Silver Peak hydrothermal system.
Geothermal alteration of basaltic core from the Snake River Plain, Idaho
NASA Astrophysics Data System (ADS)
Sant, Christopher J.
The Snake River Plain is located in the southern part of the state of Idaho. The eastern plain, on which this study focuses, is a trail of volcanics from the Yellowstone hotspot. Three exploratory geothermal wells were drilled on the Snake River Plain. This project analyzes basaltic core from the first well at Kimama, north of Burley, Idaho. The objectives of this project are to establish zones of geothermal alteration and analyze the potential for geothermal power production using sub-aquifer resources on the axial volcanic zone of the Snake River Plain. Thirty samples from 1,912 m of core were sampled and analyzed for clay content and composition using X-ray diffraction. Observations from core samples and geophysical logs are also used to establish alteration zones. Mineralogical data, geophysical log data and physical characteristics of the core suggest that the base of the Snake River Plain aquifer at the axial zone is located 960 m below the surface, much deeper than previously suspected. Swelling smectite clay clogs pore spaces and reduces porosity and permeability to create a natural base to the aquifer. Increased temperatures favor the formation of smectite clay and other secondary minerals to the bottom of the hole. Below 960 m the core shows signs of alteration including color change, formation of clay, and filling of other secondary minerals in vesicles and fractured zones of the core. The smectite clay observed is Fe-rich clay that is authigenic in some places. Geothermal power generation may be feasible using a low temperature hot water geothermal system if thermal fluids can be attained near the bottom of the Kimama well.
NASA Astrophysics Data System (ADS)
Arellano-Baeza, A. A.; Urzua, L.
2011-12-01
Chile has enormous potential to use the geothermal resources for electric energy generation. The main geothermal fields are located in the Central Andean Volcanic Chain in the North, between the Central valley and the border with Argentina in the center, and in the fault system Liquiñe-Ofqui in the South of the country. High resolution images from the LANDSAT and ASTER satellites have been used to delineate the geological structures related to the Calerias geothermal field located at the northern end of the Southern Volcanic Zone of Chile. It was done by applying the lineament extraction technique developed by authors. These structures have been compared with the distribution of main geological structures obtained in the field. It was found that the lineament density increases in the areas of the major heat flux indicating that the lineament analysis could be a power tool for the detection of faults and joint zones associated to the geothermal fields.
NASA Astrophysics Data System (ADS)
Among the topics discussed are the nuclear fuel cycle, advanced nuclear reactor designs, developments in central status power reactors, space nuclear reactors, magnetohydrodynamic devices, thermionic devices, thermoelectric devices, geothermal systems, solar thermal energy conversion systems, ocean thermal energy conversion (OTEC) developments, and advanced energy conversion concepts. Among the specific questions covered under these topic headings are a design concept for an advanced light water breeder reactor, energy conversion in MW-sized space power systems, directionally solidified cermet electrodes for thermionic energy converters, boron-based high temperature thermoelectric materials, geothermal energy commercialization, solar Stirling cycle power conversion, and OTEC production of methanol. For individual items see A84-30027 to A84-30055
Philippine geothermal resources: General geological setting and development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datuin, R.T.; Troncales, A.C.
1986-01-01
The Phillippine Archipelago has a composite geologic structure arising from the multi-stage development of volcanic-tectonic events evidenced by volcanism and seismic activity occurring along the active blocks of the major structural lines which traverse most of the major islands of the Phillipines. The widespread volcanic activity located along the active tectonic block has generated regions of high heat flow, where a vast number of potential rich geothermal resources could be exploited as an alternative source of energy. As part of a systematic geothermal development program launched by the Philippine government after the successful pilot study at the Tiwi geothermal fieldmore » in 1967 by the Commission on Volcanology (now called the Philippine Institute of Volcanology-PIV), the Philippines developed four geothermal fields in the period 1972-84. These four areas, Tiwi in Albay, Mak-Ban in Laguna, Tongonan in Leyte, and Palinpinon in Southern Negros, have already contributed 891 MW installed capacity to the total electrical power supply of the country, which is mainly dependent on oil resources. The Philippines envisaged that, with its accelerated geothermal energy programme, it would be able to achieve its target of reducing the country's dependence on imported fossil fuel by about 20% within the next decade through the utilization of its vast geothermal energy resources.« less
NASA Astrophysics Data System (ADS)
Ji-Yang, Wang; Mo-Xiang, Chen; Ji-An, Wang; Xiao, Deng; Jun, Wang; Hsien-Chieh, Shen; Liang-Ping, Hsiung; Shu-Zhen, Yan; Zhi-Cheng, Fan; Xiu-Wen, Liu; Ge-Shan, Huang; Wen-Ren, Zhang; Hai-Hui, Shao; Rong-Yan, Zhang
1981-01-01
Geothermal studies have been conducted in China continuously since the end of the 1950's with renewed activity since 1970. Three areas of research are defined: (1) fundamental theoretical research on geothermics, including subsurface temperatures, terrestrial heat flow and geothermal modeling; (2) exploration for geothermal resources and exploitation of geothermal energy; and (3) geothermal studies in mines. Regional geothermal studies have been conducted recently in North China and more than 2000 values of subsurface temperature have been obtained. Temperatures at a depth of 300 m generally range from 20 to 25°C with geothermal gradients from 20 to 40°C/km. These values are regarded as an average for the region with anomalies related to geological factors. To date, 22 reliable heat flow data from 17 sites have been obtained in North China and the data have been categorized according to fault block tectonics. The average heat flow value at 16 sites in the north is 1.3 HFU, varying from 0.7 to 1.8 HFU. It is apparent that the North China fault block is characterized by a relatively high heat flow with wide variations in magnitude compared to the mean value for similar tectonic units in other parts of the world. It is suggested that although the North China fault block can be traced back to the Archaean, the tectonic activity has been strengthening since the Mesozoic resulting in so-called "reactivation of platform" with large-scale faulting and magmatism. Geothermal resources in China are extensive; more than 2000 hot springs have been found and there are other manifestations including geysers, hydrothermal explosions, hydrothermal steam, fumaroles, high-temperature fountains, boiling springs, pools of boiling mud, etc. In addition, there are many Meso-Cenozoic sedimentary basins with widespread aquifers containing geothermal water resources in abundance. The extensive exploration and exploitation of these geothermal resources began early in the 1970's. Since then several experimental power stations using thermal water have been set up in Fengshun (Fungshun),
SImbol Materials Lithium Extraction Operating Data From Elmore and Featherstone Geothermal Plants
Stephen Harrison
2015-07-08
The data provided in this upload is summary data from its Demonstration Plant operation at the geothermal power production plants in the Imperial Valley. The data provided is averaged data for the Elmore Plant and the Featherstone Plant. Included is both temperature and analytical data (ICP_OES). Provide is the feed to the Simbol Process, post brine treatment and post lithium extraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The purpose of this report is to: (a) review the extensive published and unpublished literature on the geochemistry, hydrology and geology of Lake Magadi, Kenya, and its associated hot springs; (b) based on this review of field visits, estimate the temperature in the geothermal reservoir beneath the lake; and (c) from this, develop a plan to determine the potential for the development of geothermal electric power at Lake Magadi. 6 refs., 9 figs., 2 tabs.
Geologic setting and chemical characteristics of hot springs in central and western Alaska
Miller, Thomas P.; Barnes, Ivan; Pattan, William Wallace
1973-01-01
The geologic and chemical data are too preliminary to make an estimate of the potential of the hot springs as a geothermal resource. The data suggest, however, that most of the hot springs of central and western Alaska have relatively low subsurface temperatures and limited reservoir capacities in comparison with geothermal areas presently being utilized for electrical power generation.
Italy seeks geothermal renaissance
NASA Astrophysics Data System (ADS)
Cartlidge, Edwin
2009-03-01
Scientists in Italy are hoping to once again put their country at the forefront of geothermal energy research, by extracting power from one of the Earth's most explosive volcanic areas. Later this year they will drill a well 4 km deep into Campi Flegrei, a geological formation lying just to the west of Naples known as a caldera, which formed from the collapse of several volcanoes over thousands of years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stockli, Daniel F.
2015-11-30
The Pearl Host Spring Geothermal Project funded by the DoE Geothermal Program was a joint academic (KU/UT & OU) and industry collaboration (Sierra and Ram Power) to investigate structural controls and the importance of low-angle normal faults on geothermal fluid flow through a multifaceted geological, geophysical, and geochemical investigation in west-central Nevada. The study clearly showed that the geothermal resources in Clayton Valley are controlled by the interplay between low-angle normal faults and active deformation related to the Walker Lane. The study not only identified potentially feasible blind geothermal resource plays in eastern Clayton Valley, but also provide a transportablemore » template for exploration in the area of west-central Nevada and other regional and actively-deforming releasing fault bends. The study showed that deep-seated low-angle normal faults likely act as crustal scale permeability boundaries and could play an important role in geothermal circulation and funneling geothermal fluid into active fault zones. Not unique to this study, active deformation is viewed as an important gradient to rejuvenated fracture permeability aiding the long-term viability of blind geothermal resources. The technical approach for Phase I included the following components, (1) Structural and geological analysis of Pearl Hot Spring Resource, (2) (U-Th)/He thermochronometry and geothermometry, (3) detailed gravity data and modeling (plus some magnetic and resistivity), (4) Reflection and Refraction Seismic (Active Source), (5) Integration with existing and new geological/geophysical data, and (6) 3-D Earth Model, combining all data in an innovative approach combining classic work with new geochemical and geophysical methodology to detect blind geothermal resources in a cost-effective fashion.« less
Geothermal resources and reserves in Indonesia: an updated revision
NASA Astrophysics Data System (ADS)
Fauzi, A.
2015-02-01
More than 300 high- to low-enthalpy geothermal sources have been identified throughout Indonesia. From the early 1980s until the late 1990s, the geothermal potential for power production in Indonesia was estimated to be about 20 000 MWe. The most recent estimate exceeds 29 000 MWe derived from the 300 sites (Geological Agency, December 2013). This resource estimate has been obtained by adding all of the estimated geothermal potential resources and reserves classified as "speculative", "hypothetical", "possible", "probable", and "proven" from all sites where such information is available. However, this approach to estimating the geothermal potential is flawed because it includes double counting of some reserve estimates as resource estimates, thus giving an inflated figure for the total national geothermal potential. This paper describes an updated revision of the geothermal resource estimate in Indonesia using a more realistic methodology. The methodology proposes that the preliminary "Speculative Resource" category should cover the full potential of a geothermal area and form the base reference figure for the resource of the area. Further investigation of this resource may improve the level of confidence of the category of reserves but will not necessarily increase the figure of the "preliminary resource estimate" as a whole, unless the result of the investigation is higher. A previous paper (Fauzi, 2013a, b) redefined and revised the geothermal resource estimate for Indonesia. The methodology, adopted from Fauzi (2013a, b), will be fully described in this paper. As a result of using the revised methodology, the potential geothermal resources and reserves for Indonesia are estimated to be about 24 000 MWe, some 5000 MWe less than the 2013 national estimate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Means, Ken; Muring, Timothy M.; Sams, Neal W.
NETL has reviewed available information and evaluated the deep geothermal and natural gas resources located beneath the Camp Dawson National Guard Training Center in West Virginia. This facility is located in the northeastern portion of the state in Preston County, near the town of Kingwood. This study reviews options for the onsite drilling of wells for the production of geothermal heat or natural gas, as well as the utilization of these resources for on-site power and heating needs. Resources of potential interest are at subsurface depths between 7,000 feet and 15,000 feet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-06-01
This environmental impact assessment addresses the design, construction, and operation of an electric generating plant (3 to 4 MWe) and research station (Hawaii Geothermal Research Station (HGRS)) in the Puna district on the Island of Hawaii. The facility will include control and support buildings, parking lots, cooling towers, settling and seepage ponds, the generating plant, and a visitors center. Research activities at the facility will evaluate the ability of a successfully flow-tested well (42-day flow test) to provide steam for power generation over an extended period of time (two years). In future expansion, research activities may include direct heat applicationsmore » such as aquaculture and the effects of geothermal fluids on various plant components and specially designed equipment on test modules. 54 refs., 7 figs., 22 tabs.« less
NASA Astrophysics Data System (ADS)
Shanina, Violetta; Gerke, Kirill; Bichkov, Andrey; Korost, Dmitry
2013-04-01
Alternative renewable energy sources research is getting more and more attention due to its importance for future exploitation and low ecological impacts. Geothermal energy is quite abundant and represents a cheap and easily extractable power source for electricity generation or central heating. For these purposes naturally heated geothermal fluids are extracted via drilled wells; after cooling water is usually pumped back to the reservoir to create a circle, or dumped into local streams. In addition to fundamental interest in understanding natural geothermal processes inside the reservoir, in both cases fluids can significantly alter rock properties around the well or stream bed, which is of great practical and ecological importance for the geothermal industry. Detailed knowledge of these transformations is necessary for power plant construction and well design, geophysical modeling and the prediction of geological properties. Under natural conditions such processes occur within geological time frames and are hard to capture. To accelerate geothermal alteration and model deep reservoir high temperature and pressure conditions we use autoclave laboratory experiments. To represent different geothermal conditions, rock samples are autoclaved using a wide range of parameters: temperature (100-450°C), pressure (16-1000 Bars), solution chemistry (from acidic to alkali artificial solutions and natural geothermal fluids sampled in Kamchatka), duration (from weeks to 1 year). Rock samples represent unaltered andesite-dacite tuffs, basalts and andesite collected at the Kamchatka peninsula. Numerous rock properties, e.g., density (bulk and specific), porosity (total and effective), hygroscopicity, P/S wave velocities, geomechanical characteristics (compressive and tensile strength, elastic modulus), etc., were thoroughly analyzed before and after alteration in laboratory autoclave or natural conditions (in situ). To reveal structural changes, some samples were scanned using X-ray microtomography prior to any alteration and after the experiments. 3D images were used to quantify structural changes and to determine permeability values using a pore-scale modeling approach, as laboratory measurements with through flow are known to have a potential to modify the pore structure. Chemical composition and local mineral formations were investigated using a «Spectroscan Max GV» spectrometer and scanning electron microscope imaging. Our study revealed significant relationships between structure modifications, physical properties and alteration conditions. Main results and conclusions include: 1) initial porosity and its connectivity have substantial effect on alteration dynamics, rocks with higher porosity values and connected pore space exhibit more pronounced alterations; 2) under similar experimental conditions (pressure, temperature, duration) pH plays an important role, acidic conditions result in significant new mineral formation; 3) almost all physical properties, including porosity, permeability, and elastic properties, were seriously modified in the modeled geothermal processes within short (from geological point of view) time frames; 4) X-ray microtomography was found useful for mineral phases distribution and the pore-scale modeling approach was found to be a promising technique to numerically obtain rock properties based on 3D scans; 5) we conclude that alteration and change of reservoir rocks should be taken into account for re-injecting well and geothermal power-plant design.
Fluid-rock geochemical interaction for modelling calibration in geothermal exploration in Indonesia
NASA Astrophysics Data System (ADS)
Deon, Fiorenza; Barnhoorn, Auke; Lievens, Caroline; Ryannugroho, Riskiray; Imaro, Tulus; Bruhn, David; van der Meer, Freek; Hutami, Rizki; Sibarani, Besteba; Sule, Rachmat; Saptadij, Nenny; Hecker, Christoph; Appelt, Oona; Wilke, Franziska
2017-04-01
Indonesia with its large, but partially unexplored geothermal potential is one of the most interesting and suitable places in the world to conduct geothermal exploration research. This study focuses on geothermal exploration based on fluid-rock geochemistry/geomechanics and aims to compile an overview on geochemical data-rock properties from important geothermal fields in Indonesia. The research carried out in the field and in the laboratory is performed in the framework of the GEOCAP cooperation (Geothermal Capacity Building program Indonesia- the Netherlands). The application of petrology and geochemistry accounts to a better understanding of areas where operating power plants exist but also helps in the initial exploration stage of green areas. Because of their relevance and geological setting geothermal fields in Java, Sulawesi and the sedimentary basin of central Sumatra have been chosen as focus areas of this study. Operators, universities and governmental agencies will benefit from this approach as it will be applied also to new green-field terrains. By comparing the characteristic of the fluids, the alteration petrology and the rock geochemistry we also aim to contribute to compile an overview of the geochemistry of the important geothermal fields in Indonesia. At the same time the rock petrology and fluid geochemistry will be used as input data to model the reservoir fluid composition along with T-P parameters with the geochemical workbench PHREEQC. The field and laboratory data are mandatory for both the implementation and validation of the model results.
NASA Astrophysics Data System (ADS)
Pintoro, A.; Ambarita, H.; Nur, T. B.; Napitupulu, F. H.
2018-02-01
Indonesia has a high potential energy resources from geothermal activities. Base on the report of Asian Development Bank and World Bank, the estimated of Indonesian hydrothermal geothermal resource considered to be the largest among the world. If it’s can be utilized to produce the electric power, it’s can contribute to increasing the electrification rates in Indonesia. In this study, an experimental studied of electric power generation, utilizing the Organic Rankine Cycle (ORC) system to convert the low level heat of hydrothermal as an energy source. The temperature of hydrothermal was modelled as hot water from water boiler which has a temperature range from 60 °C - 100 °C to heat up the organic working fluid of ORC system. The system can generated 1,337.7 watts of electricity when operated using R134A with hot water inlet temperature of 100 °C. Changing system working fluid to R245fa, the net power obtained increase to 1,908.9 watts with the same heat source condition. This study showed that the ORC system can be implemented to utilize low temperature heat source of hydrothermal in Indonesia.
Geothermal Field Near Rotorua, New Zealand
NASA Technical Reports Server (NTRS)
2002-01-01
Historical sketches show the indigenous Maori cooking with natural hot waters and steam prior to the arrival of Europeans on North Island, New Zealand. Since the 1950s, geothermal heat and steam have been exploited for both heating and electrical power generation, and some excess electrical power is exported to South Island. The geothermal development can be identified by the unique patterns of infrastructure that look like tan beads on a string in the midst of otherwise green vegetation. This one near the town of Rotorua lies within a northeast-trending line of active volcanoes (Ruapehu, Tongariro, and White Island) that are the surface result of the Pacific tectonic plate descending beneath the Australian-Indian plate. Image STS110-726-10 was taken by space shuttle crewmembers in April 2002 using a Hasselblad film camera. Image provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.
In-ground operation of Geothermic Fuel Cells for unconventional oil and gas recovery
NASA Astrophysics Data System (ADS)
Sullivan, Neal; Anyenya, Gladys; Haun, Buddy; Daubenspeck, Mark; Bonadies, Joseph; Kerr, Rick; Fischer, Bernhard; Wright, Adam; Jones, Gerald; Li, Robert; Wall, Mark; Forbes, Alan; Savage, Marshall
2016-01-01
This paper presents operating and performance characteristics of a nine-stack solid-oxide fuel cell combined-heat-and-power system. Integrated with a natural-gas fuel processor, air compressor, reactant-gas preheater, and diagnostics and control equipment, the system is designed for use in unconventional oil-and-gas processing. Termed a ;Geothermic Fuel Cell; (GFC), the heat liberated by the fuel cell during electricity generation is harnessed to process oil shale into high-quality crude oil and natural gas. The 1.5-kWe SOFC stacks are packaged within three-stack GFC modules. Three GFC modules are mechanically and electrically coupled to a reactant-gas preheater and installed within the earth. During operation, significant heat is conducted from the Geothermic Fuel Cell to the surrounding geology. The complete system was continuously operated on hydrogen and natural-gas fuels for ∼600 h. A quasi-steady operating point was established to favor heat generation (29.1 kWth) over electricity production (4.4 kWe). Thermodynamic analysis reveals a combined-heat-and-power efficiency of 55% at this condition. Heat flux to the geology averaged 3.2 kW m-1 across the 9-m length of the Geothermic Fuel Cell-preheater assembly. System performance is reviewed; some suggestions for improvement are proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This Final Environmental Impact Statement and Environmental Impact Report (Final EIS/EIR) has been prepared to meet the requirements of the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA). The Proposed Action includes the construction, operation, and decommissioning of a 48 megawatt (gross) geothermal power plant with ancillary facilities (10-12 production well pads and 3-5 injection well pads, production and injection pipelines), access roads, and a 230-kilovolt (kV) transmission line in the Modoc National Forest in Siskiyou County, California. Alternative locations for the power plant site within a reasonable distance of the middle of the wellfield weremore » determined to be technically feasible. Three power plant site alternatives are evaluated in the Final EIS/EIR.« less
Development of scale deposit inhibition technology using turbine water-cooled nozzle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saito, S.; Sakanashi, H.; Suzuki, T.
1995-12-31
The scale deposition onto turbines in geothermal power stations is usually regarded as unavoidable whereas this is one of the most serious concerns which can affect the interval of periodical inspections. In common practice, scale is removed manually and mechanically during periodical inspections of power stations, but there are some cases of geothermal power stations where scale is removed from the turbines without stopping turbines by practicing the turbine washing operation. The jointly developed technology by Tohoku Electric Power Co., Ltd. and Mitsubishi Heavy Industries, Ltd. in the present work, is a technique capable preventing scale deposition and precipitation bymore » water-cooling the turbine first stage nozzle subjected to the highest deposition of scale and its effect has been confirmed through its model in the field test. This paper presents these test processes and the test results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruno, Mike S.; Detwiler, Russell L.; Lao, Kang
2012-12-13
There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. The primary objectives of this DOE research effort are to develop and document optimum design configurations and operating practices to produce geothermal power from hot permeable sedimentary and crystalline formations using advancedmore » horizontal well recirculation systems. During Phase I of this research project Terralog Technologies USA and The University of California, Irvine (UCI), have completed preliminary investigations and documentation of advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. We have also identified significant geologic resources appropriate for application of such technology. The main challenge for such recirculation systems is to optimize both the design configuration and the operating practices for cost-effective geothermal energy recovery. These will be strongly influenced by sedimentary formation properties, including thickness and dip, temperature, thermal conductivity, heat capacity, permeability, and porosity; and by working fluid properties.« less
Joe Iovenitti
2013-05-15
The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodlogy calibration purposes because, in the public domain, it is a highly characterized geothermal systems in the Basin and Range with a considerable amount of geoscience and most importantly, well data. This Baseline Conceptual Model report summarizes the results of the first three project tasks (1) collect and assess the existing public domain geoscience data, (2) design and populate a GIS database, and (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area (Dixie Valley Geothermal Wellfield) to identify EGS drilling targets at a scale of 5km x 5km. It presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.
Binary power multiplier for electromagnetic energy
Farkas, Zoltan D.
1988-01-01
A technique for converting electromagnetic pulses to higher power amplitude and shorter duration, in binary multiples, splits an input pulse into two channels, and subjects the pulses in the two channels to a number of binary pulse compression operations. Each pulse compression operation entails combining the pulses in both input channels and selectively steering the combined power to one output channel during the leading half of the pulses and to the other output channel during the trailing half of the pulses, and then delaying the pulse in the first output channel by an amount equal to half the initial pulse duration. Apparatus for carrying out each of the binary multiplication operation preferably includes a four-port coupler (such as a 3 dB hybrid), which operates on power inputs at a pair of input ports by directing the combined power to either of a pair of output ports, depending on the relative phase of the inputs. Therefore, by appropriately phase coding the pulses prior to any of the pulse compression stages, the entire pulse compression (with associated binary power multiplication) can be carried out solely with passive elements.
Richard Zehner
2012-11-01
This geodatabase was built to cover several geothermal targets developed by Flint Geothermal in 2012 during a search for high-temperature systems that could be exploited for electric power development. Several of the thermal springs have geochemistry and geothermometry values indicative of high-temperature systems. In addition, the explorationists discovered a very young Climax-style molybdenum porphyry system northeast of Rico, and drilling intersected thermal waters at depth. Datasets include: 1. Structural data collected by Flint Geothermal 2. Point information 3. Mines and prospects from the USGS MRDS dataset 4. Results of reconnaissance shallow (2 meter) temperature surveys 5. Air photo lineaments 6. Areas covered by travertine 7. Groundwater geochemistry 8. Land ownership in the Rico area 9. Georeferenced geologic map of the Rico Quadrangle, by Pratt et al. 10. Various 1:24,000 scale topographic maps
Integrated geophysical study of the geothermal system in the southern part of Nisyros Island, Greece
NASA Astrophysics Data System (ADS)
Lagios, E.; Apostolopoulos, G.
1995-10-01
The study of the high-enthalpy geothermal field of Nisyros Island is of great importance, because of the planned construction of a geothermal power station. The purpose of the applied geophysical surveys — gravity, SP, VLF and audio-magnetotelluric — in southernmost Nisyros was to investigate the major and minor faulting zones which are geothermally active, i.e. whether geothermal fluid circulation occurs in these zones. The survey lines, four parallel traverses of about 1500 m length, were chosen to be almost transverse to the main faults of the area. The SP method was the main reconnaissance technique, with the VLF and gravity measurements correlating with the "SP model". Previously proposed SP data acquisition and reduction techniques were used, followed by a 2-D interpretation of the SP map which apparently locates the position of the fracture zones (geothermally active). The SP and VLF anomalies are believed to be generated by the same source (subsurface flow of fluid, heat and ions). Hence, at the place of a vertical geothermal fluid circulation zone, the curve of SP dipole-like anomaly changes its behaviour and the curve of the VLF anomaly takes maximum values for the in-phase component and minimum values for the out-of-phase component. On the VLF map of the survey area, the zones detected with the SP interpretation coincide with the maximum values of the VLF in-phase component. The geothermal fluid circulation zones, detected by the SP method, appear to be well correlated with corresponding features derived from the gravity and the AMT surveys. In particular, the AMT soundings indicate two zones of geothermal fluid circulation instead of the one the SP method detected in the central part of the investigated area.
A simulated field trip: "The visual aspects of power plant sitings"
Bill Bottomly; Alex Young
1979-01-01
The growth of our economy is demanding construction of a variety of power plants to generate electricity which is having a significant impact on the visual environment. These power plants will consist of conventional thermal (fossil fuel and nuclear), geothermal, wind and solar power plants. There are several areas where solutions to the visual impacts of these power...
Geothermal chemical elements in lichens of Yellowstone National Park
Bennett, J.P.; Wetmore, C.M.
1999-01-01
Geothermal features (e.g. geysers, fumaroles, vents, and springs) emit gaseous mercury, sulfur and heavy metals and therefore, are natural sources of these elements in the atmosphere. Field studies of heavy metals in lichens in Italy have detected elevated concentrations near geothermal power plants, and have determined that the origin of mercury is from soil degassing, not soil particles. We studied this phenomenon in a geothermal area without power plants to determine the natural levels of mercury and other elements. Two common and abundant species of epiphytic Lichens, Bryoria fremontii and Letharia vulpina, were collected at six localities in Yellowstone National Park, USA in 1998 and analyzed for 22 chemical elements. Thirteen elements differed significantly between species. Some elements were significantly higher in the southern part of the park, while others were higher in the north. Levels of most elements were comparable with those in other national parks and wilderness areas in the region, except Hg, which was unusually high. The most likely sources of this element are the geothermal features, which are known emitters of Hg. Multivariate analyses revealed strong positive associations of Hg with S, and negative associations with soil elements, providing strong evidence that the Hg in the lichens is the result of soil degassing of elemental Hg rather than particulate Hg directly from soils. Average Hg levels in the lichens were 140 p.p.b. in Bryoria and 110 p.p.b. in Letharia, but maxima were 291 and 243 p.p.b., respectively. In spite of this, both species were healthy and abundant throughout the park.
Recent trends in the development of heat exchangers for geothermal systems
NASA Astrophysics Data System (ADS)
Franco, A.; Vaccaro, M.
2017-11-01
The potential use of geothermal resources has been a remarkable driver for market players and companies operating in the field of geothermal energy conversion. For this reason, medium to low temperature geothermal resources have been the object of recent rise in consideration, with strong reference to the perspectives of development of Organic Rankine Cycle (ORC) technology. The main components of geothermal plants based on ORC cycle are surely the heat exchangers. A lot of different heat exchangers are required for the operation of ORC plants. Among those it is surely of major importance the Recovery Heat Exchanger (RHE, typically an evaporator), in which the operating fluid is evaporated. Also the Recuperator, in regenerative Organic Rankine Cycle, is of major interest in technology. Another important application of the heat exchangers is connected to the condensation, according to the possibility of liquid or air cooling media availability. The paper analyzes the importance of heat exchangers sizing and the connection with the operation of ORC power plants putting in evidence the real element of innovation: the consideration of the heat exchangers as central element for the optimum design of ORC systems.
Reflection seismic imaging in the volcanic area of the geothermal field Wayang Windu, Indonesia
NASA Astrophysics Data System (ADS)
Polom, Ulrich; Wiyono, Wiyono; Pramono, Bambang; Krawczyk, CharLotte M.
2014-05-01
Reflection seismic exploration in volcanic areas is still a scientific challenge and requires major efforts to develop imaging workflows capable of an economic utilization, e.g., for geothermal exploration. The SESaR (Seismic Exploration and Safety Risk study for decentral geothermal plants in Indonesia) project therefore tackles still not well resolved issues concerning wave propagation or energy absorption in areas covered by pyroclastic sediments using both active P-wave and S-wave seismics. Site-specific exploration procedures were tested in different tectonic and lithological regimes to compare imaging conditions. Based on the results of a small-scale, active seismic pre-site survey in the area of the Wayang Windu geothermal field in November 2012, an additional medium-scale active seismic experiment using P-waves was carried out in August 2013. The latter experiment was designed to investigate local changes of seismic subsurface response, to expand the knowledge about capabilities of the vibroseis method for seismic surveying in regions covered by pyroclastic material, and to achieve higher depth penetration. Thus, for the first time in the Wayang Windu geothermal area, a powerful, hydraulically driven seismic mini-vibrator device of 27 kN peak force (LIAG's mini-vibrator MHV2.7) was used as seismic source instead of the weaker hammer blow applied in former field surveys. Aiming at acquiring parameter test and production data southeast of the Wayang Windu geothermal power plant, a 48-channel GEODE recording instrument of the Badan Geologi was used in a high-resolution configuration, with receiver group intervals of 5 m and source intervals of 10 m. Thereby, the LIAG field crew, Star Energy, GFZ Potsdam, and ITB Bandung acquired a nearly 600 m long profile. In general, we observe the successful applicability of the vibroseis method for such a difficult seismic acquisition environment. Taking into account the local conditions at Wayang Windu, the method is superior to the common seismic explosive source techniques, both with respect to production rate as well as resolution and data quality. Source signal frequencies of 20-80 Hz are most efficient for the attempted depth penetration, even though influenced by the dry subsurface conditions during the experiment. Depth penetration ranges between 0.5-1 km. Based on these new experimental data, processing workflows can be tested the first time for adapted imaging strategies. This will not only allow to focus on larger exploration depths covering the geothermal reservoir at the Wayang Windu power plant site itself, but also opens the possibility to transfer the lessons learned to other sites.
Novel Geothermal Development of Deep Sedimentary Systems in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Joseph; Allis, Rick
Economic and reservoir engineering models show that stratigraphic reservoirs have the potential to contribute significant geothermal power in the U.S. If the reservoir temperature exceeds about 150 – 200 °C at 2 – 4 km depth, respectively, and there is good permeability, then these resources can generate power with a levelized cost of electricity (LCOE) of close to 10 ¢/kWh (without subsidies) on a 100 MW power plant scale. There is considerable evidence from both groundwater geology and petroleum reservoir geology that relatively clean carbonates and sandstones have, and can sustain, the required high permeability to depths of at leastmore » 5 km. This paper identifies four attractive stratigraphic reservoir prospects which are all located in the eastern Great Basin, and have temperatures of 160 – 230 °C at 3 – 3.5 km depth. They are the Elko basins (Nevada), North Steptoe Valley (Nevada), Pavant Butte (Utah), and the Idaho Thrust Belt. The reservoir lithologies are Paleozoic carbonates in the first three, and Jurassic sandstone and carbonate in the Idaho Thrust Belt. All reservoir lithologies are known to have high permeability characteristics. At North Steptoe Valley and Pavant Butte, nearby transmission line options allow interconnection to the California power market. Modern techniques for drilling and developing tight oil and gas reservoirs are expected to have application to geothermal development of these reservoirs.« less
Solar Field Optical Characterization at Stillwater Geothermal/Solar Hybrid Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Guangdong; Turchi, Craig
Concentrating solar power (CSP) can provide additional thermal energy to boost geothermal plant power generation. For a newly constructed solar field at a geothermal power plant site, it is critical to properly characterize its performance so that the prediction of thermal power generation can be derived to develop an optimum operating strategy for a hybrid system. In the past, laboratory characterization of a solar collector has often extended into the solar field performance model and has been used to predict the actual solar field performance, disregarding realistic impacting factors. In this work, an extensive measurement on mirror slope error andmore » receiver position error has been performed in the field by using the optical characterization tool called Distant Observer (DO). Combining a solar reflectance sampling procedure, a newly developed solar characterization program called FirstOPTIC and public software for annual performance modeling called System Advisor Model (SAM), a comprehensive solar field optical characterization has been conducted, thus allowing for an informed prediction of solar field annual performance. The paper illustrates this detailed solar field optical characterization procedure and demonstrates how the results help to quantify an appropriate tracking-correction strategy to improve solar field performance. In particular, it is found that an appropriate tracking-offset algorithm can improve the solar field performance by about 15%. The work here provides a valuable reference for the growing CSP industry.« less
Solar Field Optical Characterization at Stillwater Geothermal/Solar Hybrid Plant
Zhu, Guangdong; Turchi, Craig
2017-01-27
Concentrating solar power (CSP) can provide additional thermal energy to boost geothermal plant power generation. For a newly constructed solar field at a geothermal power plant site, it is critical to properly characterize its performance so that the prediction of thermal power generation can be derived to develop an optimum operating strategy for a hybrid system. In the past, laboratory characterization of a solar collector has often extended into the solar field performance model and has been used to predict the actual solar field performance, disregarding realistic impacting factors. In this work, an extensive measurement on mirror slope error andmore » receiver position error has been performed in the field by using the optical characterization tool called Distant Observer (DO). Combining a solar reflectance sampling procedure, a newly developed solar characterization program called FirstOPTIC and public software for annual performance modeling called System Advisor Model (SAM), a comprehensive solar field optical characterization has been conducted, thus allowing for an informed prediction of solar field annual performance. The paper illustrates this detailed solar field optical characterization procedure and demonstrates how the results help to quantify an appropriate tracking-correction strategy to improve solar field performance. In particular, it is found that an appropriate tracking-offset algorithm can improve the solar field performance by about 15%. The work here provides a valuable reference for the growing CSP industry.« less
San Diego Gas and Electric Company Imperial Valley geothermal activities
NASA Technical Reports Server (NTRS)
Hinrichs, T. C.
1974-01-01
San Diego Gas and Electric and its wholly owned subsidiary New Albion Resources Co. have been affiliated with Magma Power Company, Magma Energy Inc. and Chevron Oil Company for the last 2-1/2 years in carrying out geothermal research and development in the private lands of the Imperial Valley. The steps undertaken in the program are reviewed and the sequence that must be considered by companies considering geothermal research and development is emphasized. Activities at the south end of the Salton Sea and in the Heber area of Imperial Valley are leading toward development of demonstration facilities within the near future. The current status of the project is reported.
Compendium of selected methods for sampling and analysis at geothermal facilities
NASA Astrophysics Data System (ADS)
Kindle, C. H.; Pool, K. H.; Ludwick, J. D.; Robertson, D. E.
1984-06-01
An independent study of the field has resulted in a compilation of the best methods for sampling, preservation and analysis of potential pollutants from geothermally fueled electric power plants. These methods are selected as the most usable over the range of application commonly experienced in the various geothermal plant sample locations. In addition to plant and well piping, techniques for sampling cooling towers, ambient gases, solids, surface and subsurface waters are described. Emphasis is placed on the use of sampling proves to extract samples from heterogeneous flows. Certain sampling points, constituents and phases of plant operation are more amenable to quality assurance improvement in the emission measurements than others and are so identified.
Coolbaugh, M.F.; Raines, G.L.; Zehner, R.E.; Shevenell, L.; Williams, C.F.
2006-01-01
Geothermal potential maps by themselves cannot directly be used to estimate undiscovered resources. To address the undiscovered resource base in the Great Basin, a new and relatively quantitative methodology is presented. The methodology involves three steps, the first being the construction of a data-driven probabilistic model of the location of known geothermal systems using weights of evidence. The second step is the construction of a degree-of-exploration model. This degree-of-exploration model uses expert judgment in a fuzzy logic context to estimate how well each spot in the state has been explored, using as constraints digital maps of the depth to the water table, presence of the carbonate aquifer, and the location, depth, and type of drill-holes. Finally, the exploration model and the data-driven occurrence model are combined together quantitatively using area-weighted modifications to the weights-of-evidence equations. Using this methodology in the state of Nevada, the number of undiscovered geothermal systems with reservoir temperatures ???100??C is estimated at 157, which is 3.2 times greater than the 69 known systems. Currently, nine of the 69 known systems are producing electricity. If it is conservatively assumed that an additional nine for a total of 18 of the known systems will eventually produce electricity, then the model predicts 59 known and undiscovered geothermal systems are capable of producing electricity under current economic conditions in the state, a figure that is more than six times higher than the current number. Many additional geothermal systems could potentially become economic under improved economic conditions or with improved methods of reservoir stimulation (Enhanced Geothermal Systems).This large predicted geothermal resource base appears corroborated by recent grass-roots geothermal discoveries in the state of Nevada. At least two and possibly three newly recognized geothermal systems with estimated reservoir temperatures ???150??C have been identified on the Pyramid Lake Paiute Reservation in west-central Nevada. Evidence of three blind geothermal systems has recently been uncovered near the borate-bearing playas at Rhodes, Teels, and Columbus Marshes in southwestern Nevada. Recent gold exploration drilling has resulted in at least four new geothermal discoveries, including the McGinness Hills geothermal system with an estimated reservoir temperature of roughly 200??C. All of this evidence suggests that the potential for expansion of geothermal power production in Nevada is significant.
The hydrothermal-convection systems of Kilauea: An historical perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, R.B.; Kauahikaua, J.P.
1993-08-01
Kilauea is one of only two basaltic volcanoes in the world where geothermal power has been produced commercially. Little is known about the origin, size and longevity of its hydrothermal-convection systems. The authors review the history of scientific studies aimed at understanding these systems and describe their commercial development. Geothermal energy is a controversial issue in Hawaii, partly because of hydrogen sulfide emissions and concerns about protection of rain forests.
Geothermal energy from deep sedimentary basins: The Valley of Mexico (Central Mexico)
NASA Astrophysics Data System (ADS)
Lenhardt, Nils; Götz, Annette E.
2015-04-01
The geothermal potential of the Valley of Mexico has not been addressed in the past, although volcaniclastic settings in other parts of the world contain promising target reservoir formations. A first assessment of the geothermal potential of the Valley of Mexico is based on thermophysical data gained from outcrop analogues, covering all lithofacies types, and evaluation of groundwater temperature and heat flow values from literature. Furthermore, the volumetric approach of Muffler and Cataldi (1978) leads to a first estimation of ca. 4000 TWh (14.4 EJ) of power generation from Neogene volcanic rocks within the Valley of Mexico. Comparison with data from other sedimentary basins where deep geothermal reservoirs are identified shows the high potential of the Valley of Mexico for future geothermal reservoir utilization. The mainly low permeable lithotypes may be operated as stimulated systems, depending on the fracture porosity in the deeper subsurface. In some areas also auto-convective thermal water circulation might be expected and direct heat use without artificial stimulation becomes reasonable. Thermophysical properties of tuffs and siliciclastic rocks qualify them as promising target horizons (Lenhardt and Götz, 2015). The here presented data serve to identify exploration areas and are valuable attributes for reservoir modelling, contributing to (1) a reliable reservoir prognosis, (2) the decision of potential reservoir stimulation, and (3) the planning of long-term efficient reservoir utilization. References Lenhardt, N., Götz, A.E., 2015. Geothermal reservoir potential of volcaniclastic settings: The Valley of Mexico, Central Mexico. Renewable Energy. [in press] Muffler, P., Cataldi, R., 1978. Methods for regional assessment of geothermal resources. Geothermics, 7, 53-89.
Geothermal energy: clean power from the Earth's heat
Duffield, Wendell A.; Sass, John H.
2003-01-01
Societies in the 21st century require enormous amounts of energy to drive the machines of commerce and to sustain the lifestyles that many people have come to expect. Today, most of this energy is derived from oil, natural gas, and coal, supplemented by nuclear power. Local exceptions exist, but oil is by far the most common source of energy worldwide. Oil resources, however, are nonrenewable and concentrated in only a few places around the globe, creating uncertainty in long-term supply for many nations. At the time of the Middle East oil embargo of the 1970s, about a third of the United States oil supply was imported, mostly from that region. An interruption in the flow of this import disrupted nearly every citizen’s daily life, as well as the Nation’s economy. In response, the Federal Government launched substantial programs to accelerate development of means to increasingly harness “alternative energies”—primarily biomass, geothermal, solar, and wind. The new emphasis on simultaneously pursuing development of several sources of energy recognized the timeless wisdom found in the proverb of “not putting all eggs in one basket.” This book helps explain the role that geothermal resources can play in helping promote such diversity and in satisfying our Nation’s vast energy needs as we enter a new millennium. For centuries, people have enjoyed the benefits of geothermal energy available at hot springs, but it is only through technological advances made during the 20th century that we can tap this energy source in the subsurface and use it in a variety of ways, including the generation of electricity. Geothermal resources are simply exploitable concentrations of the Earth’s natural heat (thermal energy). The Earth is a bountiful source of thermal energy, continuously producing heat at depth, primarily by the decay of naturally occurring radioactive isotopes—principally of uranium, thorium, and potassium—that occur in small amounts in all rocks. This heat then rises to and through the Earth’s surface, where it escapes into the atmosphere. The amount of heat that flows annually from the Earth into the atmosphere is enormous—equivalent to ten times the annual energy consumption of the United States and more than that needed to power all nations of the world, if it could be fully harnessed. Even if only 1 percent of the thermal energy contained within the uppermost 10 kilometers of our planet could be tapped, this amount would be 500 times that contained in all oil and gas resources of the world. How might we benefit from this vast amount of thermal energy beneath our feet? Where, by what means, and how much of the Earth’s natural heat can be usefully harnessed? These are especially important questions to contemplate, because global population is expected to soon exceed seven billion and many scientists believe that the world’s fossilfuel resources may be substantially depleted within this century. Faced with such prospects, both the public and private sectors are working toward more fully utilizing the Earth’s abundant thermal energy and other alternative energy resources. A skeptic might question the wisdom of devoting much national effort to geothermal energy development, especially because many experts think that geothermal heat can contribute at most about 10 percent to the Nation’s energy supply using current technologies. However, ongoing advances in exploration and heat-extraction technologies are improving our ability to use the resource and may substantially increase the geothermal contribution to the Nation’s energy supply. In an attempt to help national planners and average citizens alike understand the nature and energy potential of geothermal resources, this book (1) describes the distribution and nature of geothermal energy, (2) reviews the common types of geothermal systems that provide useful energy with current technology, (3) considers potential geothermal resources that might someday be tapped with developing technologies, and (4) summarizes the role of earth-science information in assessing and harnessing geothermal resources wherever they occur worldwide. The predecessor to this book (Tapping the Earth’s Natural Heat, U.S. Geological Survey Circular 1125, published in 1994) summarized the situation in the early 1990s. In an effort to support national energy planners, this new circular incorporates more recent advances in geothermal science and technology.
Reduction of operations and maintenance costs at geothermal power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruton, C.J.; Stevens, C.G.; Rard, J.A.
1997-12-31
To reduce chemical costs at geothermal power plants, we are investigating: (a) improved chemical processes associated with H{sub 2}S abatement techniques, and (b) the use of cross dispersive infrared spectrometry to monitor accurately, reliably, and continuously H{sub 2}S emissions from cooling towers. The latter is a new type of infrared optical technology developed by LLNL for non-proliferation verification. Initial work is focused at The Geysers in cooperation with Pacific Gas and Electric. Methods for deploying the spectrometer on-site at The Geysers are being developed. Chemical analysis of solutions involved in H{sub 2}S abatement technologies is continuing to isolate the chemicalmore » forms of sulfur produced.« less
Sharifi, Reza; Moore, Farid; Mohammadi, Zargham; Keshavarzi, Behnam
2016-01-01
Chemical analyses of water samples from 19 hot and cold springs are used to characterize Takab geothermal field, west of Iran. The springs are divided into two main groups based on temperature, host rock, total dissolved solids (TDS), and major and minor elements. TDS, electrical conductivity (EC), Cl(-), and SO4 (2-) concentrations of hot springs are all higher than in cold springs. Higher TDS in hot springs probably reflect longer circulation and residence time. The high Si, B, and Sr contents in thermal waters are probably the result of extended water-rock interaction and reflect flow paths and residence time. Binary, ternary, and Giggenbach diagrams were used to understand the deeper mixing conditions and locations of springs in the model system. It is believed that the springs are heated either by mixing of deep geothermal fluid with cold groundwater or low conductive heat flow. Mixing ratios are evaluated using Cl, Na, and B concentrations and a mass balance approach. Calculated quartz and chalcedony geothermometer give lower reservoir temperatures than cation geothermometers. The silica-enthalpy mixing model predicts a subsurface reservoir temperature between 62 and 90 °C. The δ(18)O and δD (δ(2)H) are used to trace and determine the origin and movement of water. Both hot and cold waters plot close to the local meteoric line, indicating local meteoric origin.
Geological model of supercritical geothermal reservoir related to subduction system
NASA Astrophysics Data System (ADS)
Tsuchiya, Noriyoshi
2017-04-01
Following the Great East Japan Earthquake and the accident at the Fukushima Daiichi Nuclear power station on 3.11 (11th March) 2011, geothermal energy came to be considered one of the most promising sources of renewable energy for the future in Japan. The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. Supercritical geothermal resources could be evaluated in terms of present volcanic activities, thermal structure, dimension of hydrothermal circulation, properties of fracture system, depth of heat source, depth of brittle factures zone, dimension of geothermal reservoir. On the basis of the GIS, potential of supercritical geothermal resources could be characterized into the following four categories. 1. Promising: surface manifestation d shallow high temperature, 2 Probability: high geothermal gradient, 3 Possibility: Aseismic zone which indicates an existence of melt, 4 Potential : low velocity zone which indicates magma input. Base on geophysical data for geothermal reservoirs, we have propose adequate tectonic model of development of the supercritical geothermal reservoirs. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550 °C under lithostatic pressures, and then pressures dropped drastically. The solubility of silica also dropped, resulting in formation of quartz veins under a hydrostatic pressure regime. Connections between the lithostatic and hydrostatic pressure regimes were key to the formation of the hydrothermal breccia veins, and the granite-porphyry system provides useful information for creation of fracture clouds in supercritical geothermal reservoirs. A granite-porphyry system, associated with hydrothermal activity and mineralization, provides a suitable natural analog for studying a deep-seated geothermal reservoir where stockwork fracture systems are created in the presence of supercritical geothermal fluids. I describe fracture networks and their formation mechanisms using petrology and fluid inclusion studies in order to understand this "beyond brittle" supercritical geothermal reservoir, and a geological model for "Beyond Brittle" and "Supercritical" geothermal reservoir in the subduction zone were was revealed.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-09
... a few types of equipment where quality and efficiency are important: Inverters for solar PV power.... Geothermal. Hydropower. Wind power. Solar power. Both Thailand and the Philippines rank high on ITA's... through resources such as solar, wind energy, hydro and biomass resources. Total installed capacity of the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowry, Thomas Stephen; Finger, John T.; Carrigan, Charles R.
This report documents the key findings from the Reservoir Maintenance and Development (RM&D) Task of the U.S. Department of Energy's (DOE), Geothermal Technologies Office (GTO) Geothermal Vision Study (GeoVision Study). The GeoVision Study had the objective of conducting analyses of future geothermal growth based on sets of current and future geothermal technology developments. The RM&D Task is one of seven tasks within the GeoVision Study with the others being, Exploration and Confirmation, Potential to Penetration, Institutional Market Barriers, Environmental and Social Impacts, Thermal Applications, and Hybrid Systems. The full set of findings and the details of the GeoVision Study canmore » be found in the final GeoVision Study report on the DOE-GTO website. As applied here, RM&D refers to the activities associated with developing, exploiting, and maintaining a known geothermal resource. It assumes that the site has already been vetted and that the resource has been evaluated to be of sufficient quality to move towards full-scale development. It also assumes that the resource is to be developed for power generation, as opposed to low-temperature or direct use applications. This document presents the key factors influencing RM&D from both a technological and operational standpoint and provides a baseline of its current state. It also looks forward to describe areas of research and development that must be pursued if the development geothermal energy is to reach its full potential.« less
NASA Astrophysics Data System (ADS)
Poux, Adeline; Wendel, Marco; Jaudin, Florence; Hiegl, Mathias
2010-05-01
Numerous advantages of geothermal energy like its widespread distribution, a base-load power and availability higher than 90%, a small footprint and low carbon emissions, and the growing concerns about climate changes strongly promote the development of geothermal projects. Geothermal energy as a local energy source implies needs on surface to be located close to the geothermal resource. Many European regions dispose of a good geothermal potential but it is mostly not sufficiently developed due to non-technical barriers occurring at the very early stages of the project. The GEOFAR Project carried out within the framework of EU's "Intelligent Energy Europe" (IEE) program, gathers a consortium of European partners from Germany, France, Greece, Spain and Portugal. Launched in September 2008, the aim of this research project is to analyze the mentioned non-technical barriers, focusing most particularly on economic and financial aspects. Based on this analysis GEOFAR aims at developing new financial and administrative schemes to overcome the main financial barriers for deep geothermal projects (for electricity and direct use, without heat pumps). The analysis of the current situation and the future development of geothermal energy in GEOFAR target countries (Germany, France, Greece, Spain, Portugal, Slovakia, Bulgaria and Hungary) was necessary to understand and expose the diverging status of the geothermal sector and the more and less complicated situation for geothermal projects in different Europeans Regions. A deeper analysis of 40 cases studies (operating, planned and failed projects) of deep geothermal projects also contributed to this detailed view. An exhaustive analysis and description of financial mechanisms already existing in different European countries and at European level to support investors completed the research on non-technical barriers. Based on this profound analysis, the GEOFAR project has made an overview of the difficulties met by project planners, developers and politicians when developing a new geothermal project. Each of the analyzed countries is facing a distinct bundle of non-technical barriers. Globally, deep geothermal projects are characterized by high up-front costs and are facing the geological risk of the non discovery of the resources in adequacy to the initial expectations. Moreover, investors are facing directly the competitiveness of fossils energy. The very long pay back period makes it also difficult for them to face the geological risk. GEOFAR will propose new targeting financing and funding schemes, in order to remove the financial barriers hindering the initial stages of geothermal energy projects. GEOFAR also considers a lack of awareness as important barrier hindering the future development of geothermal energy projects. Public opinion is globally positive to geothermal energy, but deep geothermal projects are often suffering from a lack of information leading sometimes to non public acceptance. By underlining the range of possibilities offered by the geothermal energy and the potential and emerging technologies, GEOFAR tends to increase the awareness of geothermal energy in order to boost the development and the investment in new geothermal energy projects. Geothermal energy is expected to contribute significantly to the future European energy sources and the GEOFAR project aims to facilitate it.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dellinger, M.; Allen, E.
A unique public/private partnership of local, state, federal, and corporate stakeholders are constructing the world`s first wastewater-to-electricity system at The Geysers. A rare example of a genuinely {open_quotes}sustainable{close_quote} energy system, three Lake County communities will recycle their treated wastewater effluent through the southeast portion of The Geysers steamfield to produce approximately 625,000 MWh annually from six existing geothermal power plants. In effect, the communities` effluent will produce enough power to indefinitely sustain their electric needs, along with enough extra power for thousands of other California consumers. Because of the project`s unique sponsorship, function, and environmental impacts, its implementation has required:more » (1) preparation of a consolidated state environmental impact report (EIR) and federal environmental impact statement (EIS), and seven related environmental agreements and management plans; (2) acquisition of 25 local, state, and federal permits; (3) negotiation of six federal and state financial assistance agreements; (4) negotiation of six participant agreements on construction, operation, and financing of the project; and (5) acquisition of 163 easements from private land owners for pipeline construction access and ongoing maintenance. The project`s success in efficiently and economically completing these requirements is a model for geothermal innovation and partnering throughout the Pacific Rim and elsewhere internationally.« less
Making the operation of a geothermal power plant cost competitive
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooley, D.
1997-12-31
In the late 1980s and the 1990s several forces combined to motivate geothermal generators at The Geysers into becoming more efficient. One is the declining steam resource, another is the {open_quotes}cliff{close_quote} of the Standard Offer 4 (ISO4) contract payments, and a third is the electric restructuring movement in California. Geothermal projects in California and Nevada have reported feeling these or other influences which have caused them to review their operations, the way that they have done things in the past and are doing things today, and the way that they want or need to do things in the future. Whilemore » there is no single or simple recipe for making a power plant cost competitive all of the generators at The Geysers have taken steps and implemented strategies to lower the cost of production at their power plant(s). This paper reviews some of these approaches and identifies several instances when the same or similar problems were addressed differently. Approaches differ because of internal economics, the degree to which a generator is willing or allowed to take risk, and the different opinions of what the future holds, especially as to what the market clearing price for energy will be in the deregulated electricity market of the future.« less
On numerical modeling of one-dimensional geothermal histories
Haugerud, R.A.
1989-01-01
Numerical models of one-dimensional geothermal histories are one way of understanding the relations between tectonics and transient thermal structure in the crust. Such models can be powerful tools for interpreting geochronologic and thermobarometric data. A flexible program to calculate these models on a microcomputer is available and examples of its use are presented. Potential problems with this approach include the simplifying assumptions that are made, limitations of the numerical techniques, and the neglect of convective heat transfer. ?? 1989.
Methodology for Prioritization of Investments to Support the Army Energy Strategy for Installations
2012-07-01
kind of energy source onto its own footprint. Whether this is a solar, wind, biomass, geothermal , or any other kind of renewable energy source, it...more common. Right now extortion and disgruntled employers are the attacked and not sophisticated enemies such as China . Our current nation power...users to: • Estimate the NPV cost of energy (COE) and levelized cost of energy (LCOE) from a range of solar, wind and geothermal electricity generation
Design and optimization of organic rankine cycle for low temperature geothermal power plant
NASA Astrophysics Data System (ADS)
Barse, Kirtipal A.
Rising oil prices and environmental concerns have increased attention to renewable energy. Geothermal energy is a very attractive source of renewable energy. Although low temperature resources (90°C to 150°C) are the most common and most abundant source of geothermal energy, they were not considered economical and technologically feasible for commercial power generation. Organic Rankine Cycle (ORC) technology makes it feasible to use low temperature resources to generate power by using low boiling temperature organic liquids. The first hypothesis for this research is that using ORC is technologically and economically feasible to generate electricity from low temperature geothermal resources. The second hypothesis for this research is redesigning the ORC system for the given resource condition will improve efficiency along with improving economics. ORC model was developed using process simulator and validated with the data obtained from Chena Hot Springs, Alaska. A correlation was observed between the critical temperature of the working fluid and the efficiency for the cycle. Exergy analysis of the cycle revealed that the highest exergy destruction occurs in evaporator followed by condenser, turbine and working fluid pump for the base case scenarios. Performance of ORC was studied using twelve working fluids in base, Internal Heat Exchanger and turbine bleeding constrained and non-constrained configurations. R601a, R245ca, R600 showed highest first and second law efficiency in the non-constrained IHX configuration. The highest net power was observed for R245ca, R601a and R601 working fluids in the non-constrained base configuration. Combined heat exchanger area and size parameter of the turbine showed an increasing trend as the critical temperature of the working fluid decreased. The lowest levelized cost of electricity was observed for R245ca followed by R601a, R236ea in non-constrained base configuration. The next best candidates in terms of LCOE were R601a, R245ca and R600 in non-constrained IHX configuration. LCOE is dependent on net power and higher net power favors to lower the cost of electricity. Overall R245ca, R601, R601a, R600 and R236ea show better performance among the fluids studied. Non constrained configurations display better performance compared to the constrained configurations. Base non-constrained offered the highest net power and lowest LCOE.
Performance Assessment of Flashed Steam Geothermal Power Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alt, Theodore E.
1980-12-01
Five years of operating experience at the Comision Federal de Electricidad (CFE) Cerro Prieto flashed steam geothermal power plant are evaluated from the perspective of U. S. utility operations. We focus on the design and maintenance of the power plant that led to the achievement of high plant capacity factors for Units No. 1 and 2 since commercial operation began in 1973. For this study, plant capacity factor is the ratio of the average load on the machines or equipment for the period of time considered to the capacity rating of the machines or equipment. The plant capacity factor ismore » the annual gross output in GWh compared to 657 GWh (2 x 37.5 MW x 8760 h). The CFE operates Cerro Prieto at base load consistent with the system connected electrical demand of the Baja California Division. The plant output was curtailed during the winter months of 1973-1975 when the system electric demand was less than the combined output capability of Cerro Prieto and the fossil fuel plant near Tijuana. Each year the system electric demand has increased and the Cerro Prieto units now operate at full load all the time. The CFE added Units 3 and 4 to Cerro Prieto in 1979 which increased the plant name plate capacity to 150 MW. Part of this additional capacity will supply power to San Diego Gas and Electric Company through an interconnection across the border. The achievement of a high capacity factor over an extensive operating period was influenced by operation, design, and maintenance of the geothermal flash steam power plant.« less
Update on Geothermal Direct-Use Installations in the United States
Beckers, Koenraad F.; Snyder, Diana M.; Young, Katherine R.
2017-03-02
An updated database of geothermal direct-use systems in the U.S. has been compiled and analyzed, building upon the Oregon Institute of Technology (OIT) Geo-Heat Center direct-use database. Types of direct-use applications examined include hot springs resorts and pools, aquaculture farms, greenhouses, and district heating systems, among others; power-generating facilities and ground-source heat pumps were excluded. Where possible, the current operation status, open and close dates, well data, and other technical data were obtained for each entry. The database contains 545 installations, of which 407 are open, 108 are closed, and 30 have an unknown status. A report is also included which details and analyzes current geothermal direct-use installations and barriers to further implementation.
NASA Astrophysics Data System (ADS)
Massiot, Cécile; Nicol, Andrew; McNamara, David D.; Townend, John
2017-08-01
Analysis of fracture orientation, spacing, and thickness from acoustic borehole televiewer (BHTV) logs and cores in the andesite-hosted Rotokawa geothermal reservoir (New Zealand) highlights potential controls on the geometry of the fracture system. Cluster analysis of fracture orientations indicates four fracture sets. Probability distributions of fracture spacing and thickness measured on BHTV logs are estimated for each fracture set, using maximum likelihood estimations applied to truncated size distributions to account for sampling bias. Fracture spacing is dominantly lognormal, though two subordinate fracture sets have a power law spacing. This difference in spacing distributions may reflect the influence of the andesitic sequence stratification (lognormal) and tectonic faults (power law). Fracture thicknesses of 9-30 mm observed in BHTV logs, and 1-3 mm in cores, are interpreted to follow a power law. Fractures in thin sections (˜5 μm thick) do not fit this power law distribution, which, together with their orientation, reflect a change of controls on fracture thickness from uniform (such as thermal) controls at thin section scale to anisotropic (tectonic) at core and BHTV scales of observation. However, the ˜5% volumetric percentage of fractures within the rock at all three scales suggests a self-similar behavior in 3-D. Power law thickness distributions potentially associated with power law fluid flow rates, and increased connectivity where fracture sets intersect, may cause the large permeability variations that occur at hundred meter scales in the reservoir. The described fracture geometries can be incorporated into fracture and flow models to explore the roles of fracture connectivity, stress, and mineral precipitation/dissolution on permeability in such andesite-hosted geothermal systems.
NASA Astrophysics Data System (ADS)
Akbar, Somaieh; Fathianpour, Nader
2016-12-01
The Curie point depth is of great importance in characterizing geothermal resources. In this study, the Curie iso-depth map was provided using the well-known method of dividing the aeromagnetic dataset into overlapping blocks and analyzing the power spectral density of each block separately. Determining the optimum block dimension is vital in improving the resolution and accuracy of estimating Curie point depth. To investigate the relation between the optimal block size and power spectral density, a forward magnetic modeling was implemented on an artificial prismatic body with specified characteristics. The top, centroid, and bottom depths of the body were estimated by the spectral analysis method for different block dimensions. The result showed that the optimal block size could be considered as the smallest possible block size whose corresponding power spectrum represents an absolute maximum in small wavenumbers. The Curie depth map of the Sabalan geothermal field and its surrounding areas, in the northwestern Iran, was produced using a grid of 37 blocks with different dimensions from 10 × 10 to 50 × 50 km2, which showed at least 50% overlapping with adjacent blocks. The Curie point depth was estimated in the range of 5 to 21 km. The promising areas with the Curie point depths less than 8.5 km are located around Mountain Sabalan encompassing more than 90% of known geothermal resources in the study area. Moreover, the Curie point depth estimated by the improved spectral analysis is in good agreement with the depth calculated from the thermal gradient data measured in one of the exploratory wells in the region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levine, Aaron L; Young, Katherine R
Developers have identified many non-technical barriers to geothermal power development, including access to land. Activities required for accessing land, such as environmental review and private and public leasing can take a considerable amount of time and can delay or prevent project development. This paper discusses the impacts to available geothermal resources and deployment caused by land access challenges, including tribal and cultural resources, environmentally sensitive areas, biological resources, land ownership, federal and state lease queues, and proximity to military installations. In this analysis, we identified challenges that have the potential to prevent development of identified and undiscovered hydrothermal geothermal resources.more » We found that an estimated 400 MW of identified geothermal resource potential and 4,000 MW of undiscovered geothermal resource potential were either unallowed for development or contained one or more significant barriers that could prevent development at the site. Potential improvement scenarios that could be employed to overcome these barriers include (1) providing continuous funding to the U.S. Forest Service (USFS) for processing geothermal leases and permit applications and (2) the creation of advanced environmental mitigation measures. The model results forecast that continuous funding to the USFS could result in deployment of an additional 80 MW of geothermal capacity by 2030 and 124 MW of geothermal capacity by 2050 when compared to the business-as-usual scenario. The creation of advanced environmental mitigation measures coupled with continuous funding to the USFS could result in deployment of an additional 97 MW of geothermal capacity by 2030 and 152 MW of geothermal capacity by 2050 when compared to the business-as-usual scenario. The small impact on potential deployment in these improvement scenarios suggests that these 4,400 MW have other barriers to development in addition to land access. In other words, simply making more resources available for development does not increase deployment; however, impacts to deployment could increase when coupled with other improvements (e.g., permitting, market and/or technology improvements).« less
Ground heat flux and power sources of low-enthalpy geothermal systems
NASA Astrophysics Data System (ADS)
Bayer, Peter; Blum, Philipp; Rivera, Jaime A.
2015-04-01
Geothermal heat pumps commonly extract energy from the shallow ground at depths as low as approximately 400 m. Vertical borehole heat exchangers are often applied, which are seasonally operated for decades. During this lifetime, thermal anomalies are induced in the ground and surface-near aquifers, which often grow over the years and which alleviate the overall performance of the geothermal system. As basis for prediction and control of the evolving energy imbalance in the ground, focus is typically set on the ground temperatures. This is reflected in regulative temperature thresholds, and in temperature trends, which serve as indicators for renewability and sustainability. In our work, we examine the fundamental heat flux and power sources, as well as their temporal and spatial variability during geothermal heat pump operation. The underlying rationale is that for control of ground temperature evolution, knowledge of the primary heat sources is fundamental. This insight is also important to judge the validity of simplified modelling frameworks. For instance, we reveal that vertical heat flux from the surface dominates the basal heat flux towards a borehole. Both fluxes need to be accounted for as proper vertical boundary conditions in the model. Additionally, the role of horizontal groundwater advection is inspected. Moreover, by adopting the ground energy deficit and long-term replenishment as criteria for system sustainability, an uncommon perspective is adopted that is based on the primary parameter rather than induced local temperatures. In our synthetic study and dimensionless analysis, we demonstrate that time of ground energy recovery after system shutdown may be longer than what is expected from local temperature trends. In contrast, unrealistically long recovery periods and extreme thermal anomalies are predicted without account for vertical ground heat fluxes and only when the energy content of the geothermal reservoir is considered.
NASA Astrophysics Data System (ADS)
Morteani, Giulio; Ruggieri, Giovanni; Möller, Peter; Preinfalk, Christine
2011-02-01
The CO2-rich geothermal fluids produced in the Piancastagnaio geothermal field (Mt. Amiata geothermal area, Southern Tuscany, Italy) show temperatures up to 360°C and pressures of about 200 bar at depths of around 3,500 m (Giolito, Ph.D. thesis, Università degli Studi di Firenze, Italy, pp 1-147, 2005). CaCO3- and/or SiO2-dominated scales are deposited in the pipes leading to the pressure and atmospheric separators of the geothermal wells. High content of metastibnite and/or stibnite in both calcite and silica scales and Sb contents of up to 50 mg/L in the fluids indicate their mineralising potential. The red or black colours of the scales depend on the predominance of red metastibnite or black stibnite, respectively. In our condensation experiments, as well as during deposition of the scales, metastibnite is the first Sb2S3 mineral to form. In a second stage, metastibnite is transformed to stibnite. During depressurization the Hg content of geothermal fluids partitions preferentially into the gas phase, whereas Sb and As remain in the liquid phase. This separation explains the often observed areal separation of Hg and Sb mineralization. The multistage deposition of Sb in the mining district of Tuscany is due to a periodic restoration of the permeability of the ore-bearing faults by microseismic events and subsequent host rock brecciation. The still ongoing microseismic events are induced by the accumulation of high-pressure CO2-rich fluids along faults followed by mechanical failure of the faults.
Geothermal Progress Monitor, report No. 13
NASA Astrophysics Data System (ADS)
1992-02-01
Geothermal Progress Monitor (GPM) Issue No. 13 documents that most related factors favor the growth and geographic expansion of the US geothermal industry and that the industry is being technologically prepared to meet those challenges into the next century. It is the function of GPM to identify trends in the use of this resource and to provide a historical record of its development pathway. The information assembled for this issue of GPM indicates that trends in the use of geothermal energy in this country and abroad continue to be very positive. Favorable sentiments as well as pertinent actions on the part of both government and industry are documented in almost every section. The FEDERAL BEAT points up that the National Energy Strategy (NES) developed at the highest levels of the US government recognizes the environmental and energy security advantages of renewable energy, including geothermal, and makes a commitment to 'substantial diversification' of US sources of energy. With the announcement of the construction of several new plants and plant expansions, the INDUSTRY SCENE illustrates industry's continued expectation that the use of geothermal energy will prove profitable to investors. In DEVELOPMENT STATUS, spokesmen for both an investor-owned utility and a major geothermal developer express strong support for geothermal power, particularly emphasizing its environmental advantages. DEVELOPMENT STATUS also reports that early successes have been achieved by joint DOE/industry R & D at The Geysers which will have important impacts on the future management of this mature field. Also there is increasing interest in hot dry rock. Analyses conducted in support of the NES indicate that if all the postulated technology developments occur in this field, the price of energy derived from hot dry rock in the US could drop.
Power, Politics and Purchasing.
ERIC Educational Resources Information Center
Moore, Deborah P.
2000-01-01
Explores the overlapping of energy efficiency, budget-cutting, and facility needs in K-12 schools. Utilities expenditures in schools are discussed for electricity and natural gas as are energy-saving alternatives such as daylighting, solar energy, wind production of power, and geothermal energy. Sources for further information conclude the…
Learning about Renewable Energy.
ERIC Educational Resources Information Center
Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.
This booklet provides an introduction to renewable energy, discussing: (1) the production of electricity from sunlight; (2) wind power; (3) hydroelectric power; (4) geothermal energy; and (5) biomass. Also provided are nine questions to answer (based on the readings), four additional questions to answer (which require additional information), and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustavson, T.C.; Reeder, F.S.; Badger, E.A.
Information collected and analyzed for a preliminary environmental analysis of geopressured geothermal prospect areas in Colorado and DeWitt Counties, Texas is presented. Specific environmental concerns for each geopressured geothermal prospect area are identified and discussed. Approximately 218 km/sup 2/(85 mi/sup 2/) were studied in the vicinity of each prospect area to: (1) conduct an environmental analysis to identify more and less suited areas for geopressured test wells; and (2) provide an environmental data base for future development of geopressured geothermal energy resources. A series of maps and tables are included to illustrate environmental characteristics including: geology, water resources, soils, currentmore » land use, vegetation, wildlife, and meteorological characteristics, and additional relevant information on cultural resources, power- and pipelines, and regulatory agencies. A series of transparent overlays at the scale of the original mapping has also been produced for the purposes of identifying and ranking areas of potential conflict between geopressured geothermal development and environmental characteristics. The methodology for ranking suitability of areas within the two prospect areas is discussed in the appendix. (MHR)« less
McGee Mountain Shallow (2m) Temperature Survey, Humboldt County, Nevada 2009
Richard Zehner
2009-01-01
This shapefile contains location and attribute data for a shallow (2 meter) temperature survey conducted by Geothermal Technical Partners, Inc. during late 2008 and early 2009. Temperatures at 2m depth were measured at 192 separate points as outlined by Coolbaugh et al., 2007. The purpose of the survey was to try and detect a shallow thermal anomaly associated with the McGee Mountain geothermal area as discovered by Phillips Petroleum and Earth Power Resources in the late 1970’s. Drilling identified ~120oC temperatures at ~100m depth. This 2-meter survey delineated what was interpreted as a steam-heated fault zone centered along a range front fault in the vicinity of the drilled holes and fumaroles. Coolbaugh, M.F., Sladek, C., Faulds, J.E., Zehner, R.E., and Oppliger, G.L., 2007, Use of rapid temperature measurements at a 2-meter depth to augment deeper temperature gradient drilling: Proceedings, 32nd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, Jan. 22-24, 2007, p. 109-116. Zehner, R., Tullar, K., and Rutledge, E., 2012, Effectiveness of 2-Meter and geoprobe shallow temperature surveys in early stage geothermal exploration: Geothermal Resources Council Transactions, v. 36, in press.
NANA Geothermal Assessment Program Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jay Hermanson
2010-06-22
In 2008, NANA Regional Corporation (NRC) assessed geothermal energy potential in the NANA region for both heat and/or electricity production. The Geothermal Assessment Project (GAP) was a systematic process that looked at community resources and the community's capacity and desire to develop these resources. In October 2007, the US Department of Energy's Tribal Energy Program awarded grant DE-FG36-07GO17075 to NRC for the GAP studies. Two moderately remote sites in the NANA region were judged to have the most potential for geothermal development: (1) Granite Mountain, about 40 miles south of Buckland, and (2) the Division Hot Springs area in themore » Purcell Mountains, about 40 miles south of Shungnak and Kobuk. Data were collected on-site at Granite Mountain Hot Springs in September 2009, and at Division Hot Springs in April 2010. Although both target geothermal areas could be further investigated with a variety of exploration techniques such as a remote sensing study, a soil geochemical study, or ground-based geophysical surveys, it was recommended that on-site or direct heat use development options are more attractive at this time, rather than investigations aimed more at electric power generation.« less
NASA Astrophysics Data System (ADS)
Shalev, E.; Kenedi, C. L.; Malin, P.
2008-12-01
The geothermal power plant in Puna, in southeastern Hawaii, is located in a section of the Kilauea Lower East Rift Zone that was resurfaced by lava flows as recently as 1955, 1960, and 1972. In 2006 a seismic array consisting of eight 3-component stations was installed around the geothermal field in Puna. The instrument depths range from 24 to 210 m. The shallower instruments have 2 Hz geophones and the deeper have 4.5 Hz geophones. 3-D tomographic analyses of P-wave velocity, S-wave velocity, and the Vp/Vs ratio show an area of very fast P-wave velocity at the relatively shallow depth of 2.5 km in the southern section of the field. The same area shows moderate S-wave velocity. This high P-wave velocity anomaly at the southern part of the geothermal field may indicate the presence of dense rock material usually found at greater depths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mapelli, Michela; Zampieri, Luca, E-mail: michela.mapelli@oapd.inaf.it
2014-10-10
We have run 600 N-body simulations of intermediate-mass (∼3500 M {sub ☉}) young star clusters (SCs; with three different metallicities (Z = 0.01, 0.1, and 1 Z {sub ☉}). The simulations include the dependence of stellar properties and stellar winds on metallicity. Massive stellar black holes (MSBHs) with mass >25 M {sub ☉} are allowed to form through direct collapse of very massive metal-poor stars (Z < 0.3 Z {sub ☉}). We focus on the demographics of black hole (BH) binaries that undergo mass transfer via Roche lobe overflow (RLO). We find that 44% of all binaries that undergo anmore » RLO phase (RLO binaries) formed through dynamical exchange. RLO binaries that formed via exchange (RLO-EBs) are powered by more massive BHs than RLO primordial binaries (RLO-PBs). Furthermore, the RLO-EBs tend to start the RLO phase later than the RLO-PBs. In metal-poor SCs (0.01-0.1 Z {sub ☉}), >20% of all RLO binaries are powered by MSBHs. The vast majority of RLO binaries powered by MSBHs are RLO-EBs. We have produced optical color-magnitude diagrams of the simulated RLO binaries, accounting for the emission of both the donor star and the irradiated accretion disk. We find that RLO-PBs are generally associated with bluer counterparts than RLO-EBs. We compare the simulated counterparts with the observed counterparts of nine ultraluminous X-ray sources. We discuss the possibility that IC 342 X-1, Ho IX X-1, NGC 1313 X-2, and NGC 5204 X-1 are powered by an MSBH.« less
International energy annual 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The International Energy Annual presents an overview of key international energy trends for production, consumption, imports, and exports of primary energy commodities in over 220 countries, dependencies, and areas of special sovereignty. Also included are population and gross domestic product data, as well as prices for crude oil and petroleum products in selected countries. Renewable energy reported in the International Energy Annual includes hydroelectric power and geothermal, solar, and wind electric power. Also included are biomass electric power for Brazil and the US, and biomass, geothermal, and solar energy produced in the US and not used for electricity generation. Thismore » report is published to keep the public and other interested parties fully informed of primary energy supplies on a global basis. The data presented have been largely derived from published sources. The data have been converted to units of measurement and thermal values (Appendices E and F) familiar to the American public. 93 tabs.« less
Nomogram Method as Means for Resource Potential Efficiency Predicative Aid of Petrothermal Energy
NASA Astrophysics Data System (ADS)
Gabdrakhmanova, K. F.; Izmailova, G. R.; Larin, P. A.; Vasilyeva, E. R.; Madjidov, M. A.; Marupov, S. R.
2018-05-01
The article describes the innovative approach when predicting the resource potential efficiency of petrothermal energy. Various geothermal gradients representative of Bashkortostan and Tatarstan republics regions were considered. With the help of nomograms, the authors analysed fluid temperature dependency graphs at the outlet and the thermal power versus fluid velocity along the wellbore. From the family of graphs plotted by us, velocities corresponding to specific temperature were found. Then, according to thermal power versus velocity curve, power levels corresponding to these velocities relative to the selected fluid temperature were found. On the basis of two dependencies obtained, nomograms were plotted. The result of determining the petrothermal energy production efficiency is a family of isocline lines that enables one to select the optimum temperature and injection rate to obtain the required amount of heat for a particular depth and geothermal gradient.
Control of broadband optically generated ultrasound pulses using binary amplitude holograms.
Brown, Michael D; Jaros, Jiri; Cox, Ben T; Treeby, Bradley E
2016-04-01
In this work, the use of binary amplitude holography is investigated as a mechanism to focus broadband acoustic pulses generated by high peak-power pulsed lasers. Two algorithms are described for the calculation of the binary holograms; one using ray-tracing, and one using an optimization based on direct binary search. It is shown using numerical simulations that when a binary amplitude hologram is excited by a train of laser pulses at its design frequency, the acoustic field can be focused at a pre-determined distribution of points, including single and multiple focal points, and line and square foci. The numerical results are validated by acoustic field measurements from binary amplitude holograms, excited by a high peak-power laser.
Assessing whether the 2017 Mw 5.4 Pohang earthquake in South Korea was an induced event
NASA Astrophysics Data System (ADS)
Kim, Kwang-Hee; Ree, Jin-Han; Kim, YoungHee; Kim, Sungshil; Kang, Su Young; Seo, Wooseok
2018-06-01
The moment magnitude (Mw) 5.4 Pohang earthquake, the most damaging event in South Korea since instrumental seismic observation began in 1905, occurred beneath the Pohang geothermal power plant in 2017. Geological and geophysical data suggest that the Pohang earthquake was induced by fluid from an enhanced geothermal system (EGS) site, which was injected directly into a near-critically stressed subsurface fault zone. The magnitude of the mainshock makes it the largest known induced earthquake at an EGS site.
Developing a 300C Analog Tool for EGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Normann, Randy
2015-03-23
This paper covers the development of a 300°C geothermal well monitoring tool for supporting future EGS (enhanced geothermal systems) power production. This is the first of 3 tools planed. This is an analog tool designed for monitoring well pressure and temperature. There is discussion on 3 different circuit topologies and the development of the supporting surface electronics and software. There is information on testing electronic circuits and component. One of the major components is the cable used to connect the analog tool to the surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-11-01
The Application for Certification for the construction of a 55 MW geothermal power plant and related facilities in Lake County was approved subject to terms identified in the Final Decision. The following are covered: findings on compliance with statutory site-certification requirements; final environmental impact report; procedural steps; evidentiary bases; need, environmental resources; public health and safety; plant and site safety and reliability; socioeconomic, land use, and cultural concerns, and transmission tap line. (MHR)
NASA Astrophysics Data System (ADS)
Viccaro, Marco; Pezzino, Antonino; Belfiore, Giuseppe Maria; Campisano, Carlo
2016-04-01
Despite the environmental-friendly energy systems are solar thermal technologies, photovoltaic and wind power, other advantageous technologies exist, although they have not found wide development in countries such as Italy. Given the almost absent environmental impact and the rather favorable cost/benefit ratio, low-enthalpy geothermal systems are, however, likely to be of strategic importance also in Italy during the next years. The importance of geology for a sustainable exploitation of the ground through geothermal systems from low-grade sources is becoming paramount. Specifically, understanding of the lithological characteristics of the subsurface along with structures and textures of rocks is essential for a correct planning of the probe/geo-exchanger field and their associated ground source heat pumps. The complex geology of Eastern Sicily (Southern Italy), which includes volcanic, sedimentary and metamorphic units over limited extension, poses the question of how thermal conductivity of rocks is variable at the scale of restricted areas (even within the same municipality). This is the innovative concept of geothermal microzonation, i.e., how variable is the geothermal potential as a function of geology at the microscale. Some pilot areas have been therefore chosen to test how the geological features of the subsurface can influence the low-enthalpy geothermal potential of an area. Our geologically based evaluation and micro-zonation of the low-grade source geothermal potential of the selected areas have been verified to be fundamental for optimization of all the main components of a low-enthalpy geothermal system. Saving realization costs and limiting the energy consumption through correct sizing of the system are main ambitions to have sustainable development of this technology with intensive utilization of the subsurface. The variegated territory of countries such as Italy implies that these goals can be only reached if, primarily, the geological features of the shallow subsurface (i.e., chemical-physical characteristics of rocks and fluids of the first 100 m below the ground) are appropriately constrained.
H2S Injection and Sequestration into Basalt - The SulFix Project
NASA Astrophysics Data System (ADS)
Gudbrandsson, S.; Moola, P.; Stefansson, A.
2014-12-01
Atmospheric H2S emissions are among major environmental concern associated with geothermal energy utilization. It is therefore of great importance for the geothermal power sector to reduce H2S emissions. Known solutions for H2S neutralization are both expensive and include production of elemental sulfur and sulfuric acid that needs to be disposed of. Icelandic energy companies that utilize geothermal power for electricity production have decided to try to find an environmentally friendly and economically feasible solution to reduce the H2S emission, in a joint venture called SulFix. The aim of SulFix project is to explore the possibilities of injecting H2S dissolved in water into basaltic formations in close proximity to the power plants for permanent fixation as sulfides. The formation of sulfides is a natural process in geothermal systems. Due to basalt being rich in iron and dissolving readily at acidic conditions, it is feasible to re-inject the H2S dissolved in water, into basaltic formations to form pyrite. To estimate the mineralization rates of H2S, in the basaltic formation, flow through experiments in columns were conducted at various H2S concentrations, temperatures (100 - 240°C) and both fresh and altered basaltic glass. The results indicate that pyrite rapidly forms during injection into fresh basalt but the precipiation in altered basalt is slower. Three different alteration stages, as a function of distance from inlet, can be observed in the column with fresh basaltic glass; (1) dissolution features along with precipitation, (2) precipitation increases, both sulfides and other secondary minerals and (3) the basalt looks to be unaltered and little if any precipitation is observed. The sulfur has precipitated in the first half of the column and thereafter the solution is possibly close to be supersaturated with respect to the rock. These results indicate that the H2S sequestration into basalt is possible under geothermal conditions. The rate limiting step is the availability of iron released from the dissolving rock. The rapid precipitation of secondary phases in the column suggests the possibility of decreased porosity in the vicinity of the injection well.
PETher - Physical Properties of Thermal Water under In-situ-Conditions
NASA Astrophysics Data System (ADS)
Herfurth, Sarah; Schröder, Elisabeth
2016-04-01
The objective of PETher, a research project funded by the German Federal Ministry for Economic Affairs and Energy (BMWi), is to experimentally determine thermo-physical properties (specific isobaric heat capacity, kinematic viscosity, density and thermal conductivity) of geothermal water in-situ-conditions (pressure, temperature, chemical composition including gas content of the brine) present in geothermal applications. Knowing these thermo-physical properties reduces the uncertainties with respect to estimating the thermal output and therefore the economic viability of the power plant. Up to now, only a limited number of measurements of selected physical properties have been made, usually under laboratory conditions and for individual geothermal plants. In-situ measured parameters, especially in the temperature range of 120°C and higher, at pressures of 20 bar and higher, as well as with a salinity of up to 250 g/l, are sparse to non-existing. Therefore, pure water properties are often used as reference data and for designing the power plant and its components. Currently available numerical models describing the thermo-physical properties are typically not valid for the conditions in geothermal applications and do not consider the substantial influence of the chemical composition of the thermal water. Also, actual geothermal waters have not been subject of detailed measurements systematically performed under operational conditions on a large-scale basis. Owing to the lack of reliable data, a validation of numerical models for investigating geothermal systems is not possible. In order to determine the dependency of the thermo-physical properties of geothermal water on temperature, pressure and salinity in-situ measurements are conducted. The measurements are taking place directly at several geothermal applications located in Germany's hydrogeothermal key regions. In order to do this, a mobile testing unit was developed and refined with instruments specifically designed in-house to meet any geothermal reservoir conditions present in Germany. The obtained results will be compared with standard analytical methods as well as used to calibrate laboratory measurements that simulate the encountered in-situ conditions. A series of measurements will be performed to create a data base. In addition, these data can be used as reference data for developing and validating numerical models. In-situ measurements - in contrast to laboratory measurements - record the data online and instantaneously during normal operation of the plant and without changing the properties of the investigated fluid (pressure, temperature, etc.). Due to this, the uncertainties in the thermo-physical properties caused by degassing and precipitation are studiously avoided. As a result, the thermo-physical properties density, specific isobaric heat capacity, kinematic viscosity and thermal conductivity have been measured as functions of the geothermal water temperature, pressure and salinity at five sites, up to now. The measurements show that the thermo-physical properties correlate strongly with the salinity and therefore differ considerably from pure water values when a significant salt content is present.
7 CFR 4290.720 - Enterprises that may be ineligible for Financing.
Code of Federal Regulations, 2012 CFR
2012-01-01
... wells, wind farms, or power facilities (including solar, geothermal, hydroelectric, or biomass power... the majority of the activities of the Enterprise. Examples include motion pictures. (e) Farm land... ineligible for Farm Credit System Assistance. If one or more Farm Credit System Institutions or their...
75 FR 61742 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-06
...- 1255-004. Applicants: ArcLight Energy Marketing, LLC, Oak Creek Wind Power, LLC, Coso Geothermal Power...] listed above, do not institute a proceeding regarding qualifying facility status. A notice of self... the FERC Online links at http://www.ferc.gov . To facilitate electronic service, persons with Internet...
The Economics of America's Energy Future.
ERIC Educational Resources Information Center
Simmons, Henry
This is an Energy Research and Development Administration (ERDA) pamphlet which reviews economic and technical considerations for the future development of energy sources. Included are sections on petroleum, synthetic fuels, oil shale, nuclear power, geothermal power, and solar energy. Also presented are data pertaining to U.S. energy production…
Energy for the 21st Century World Economy: Problems and Opportunities
NASA Astrophysics Data System (ADS)
Bauer, Wolfgang
2012-10-01
Humans currently use approximately 16 TW of power. More than 80% of this power is generated from fossil fuels, which is unsustainable. But there are alternatives (solar, wind, hydro, biomass, geothermal, and nuclear). In this presentation I will review their costs and benefits.
Temperature dependent structural and dynamical properties of liquid Cu80Si20 binary alloy
NASA Astrophysics Data System (ADS)
Suthar, P. H.; Shah, A. K.; Gajjar, P. N.
2018-05-01
Ashcroft and Langreth binary structure factor have been used to study for pair correlation function and the study of dynamical variable: velocity auto correlation functions, power spectrum and mean square displacement calculated based on the static harmonic well approximation in liquid Cu80Si20 binary alloy at wide temperature range (1140K, 1175K, 1210K, 1250K, 1373K, 1473K.). The effective interaction for the binary alloy is computed by our well established local pseudopotential along with the exchange and correction functions Sarkar et al(S). The negative dip in velocity auto correlation decreases as the various temperature is increases. For power spectrum as temperature increases, the peak of power spectrum shifts toward lower ω. Good agreement with the experiment is observed for the pair correlation functions. Velocity auto correlation showing the transferability of the local pseudopotential used for metallic liquid environment in the case of copper based binary alloys.
Advanced concepts and solutions for geothermal heating applied in Oradea, Romania
NASA Astrophysics Data System (ADS)
Antal, C.; Popa, F.; Mos, M.; Tigan, D.; Popa, B.; Muresan, V.
2017-01-01
Approximately 70% of the total population of Oradea benefits from centralized heating, about 55,000 apartments and 159,000 inhabitants are connected. The heating system of Oradea consists of: sources of thermal energy production (Combined heat and power (CHP) I Oradea and geothermal water heating plants); a transport network of heat; heat distribution network for heating and domestic hot water; substations, most of them equipped with worn and obsolete equipment. Recently, only a few heat exchangers were rehabilitated and electric valves were installed to control the water flow. After heat extraction, geothermal chilled waters from the Oradea area are: discharged into the sewer system of the city, paying a fee to the local water company which manages the city’s sewers; discharged into the small river Peta; or re-injected into the reservoir. In order to ensure environmental protection and a sustainable energy development in Oradea, renewable sources of energy have been promoted in recent years. In this respect, the creation of a new well for geothermal water re-injection into the reservoir limits any accidental thermal pollution of the environment, while ensuring the conservation properties of the aquifer by recharging with geothermal chilled water. The paper presents the achievements of such a project whose aim is to replace thermal energy obtained from coal with geothermal heating. The novelty consists in the fact that within the substation we will replace old heat exchangers, circulation pumps and valves with fully automated substations operating in parallel on both a geothermal system and on a primary heating system of a thermal plant.
Study on Improving Partial Load by Connecting Geo-thermal Heat Pump System to Fuel Cell Network
NASA Astrophysics Data System (ADS)
Obara, Shinya; Kudo, Kazuhiko
Hydrogen piping, the electric power line, and exhaust heat recovery piping of the distributed fuel cells are connected with network, and operational planning is carried out. Reduction of the efficiency in partial load is improved by operation of the geo-thermal heat pump linked to the fuel cell network. The energy demand pattern of the individual houses in Sapporo was introduced. And the analysis method aiming at minimization of the fuel rate by the genetic algorithm was described. The fuel cell network system of an analysis example assumed connecting the fuel cell co-generation of five houses. When geo-thermal heat pump was introduced into fuel cell network system stated in this paper, fuel consumption was reduced 6% rather than the conventional method
The Geysers Geothermal Field Update1990/2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brophy, P.; Lippmann, M.; Dobson, P.F.
2010-10-01
In this report, we have presented data in four sections: (1) THE GEYSERS HISTORICAL UPDATE 1990-2010 - A historical update of the primary developments at The Geysers between 1990 and 2010 which uses as its start point Section IIA of the Monograph - 'Historical Setting and History of Development' that included articles by James Koenig and Susan Hodgson. (2) THE GEYSERS COMPREHENSIVE REFERENCE LIST 1990-2010 - In this section we present a rather complete list of technical articles and technical related to The Geysers that were issued during the period 1990-2010. The list was compiled from many sources including, butmore » not limited to scientific journals and conference proceedings. While the list was prepared with care and considerable assistance from many geothermal colleagues, it is very possible that some papers could have been missed and we apologize to their authors in advance. The list was subdivided according to the following topics: (1) Field characterization; (2) Drilling; (3) Field development and management; (4) Induced seismicity; (5) Enhanced Geothermal Systems; (6) Power production and related issues; (7) Environment-related issues; and (8) Other topics. (3) GRC 2010 ANNUAL MEETING GEYSERS PAPERS - Included in this section are the papers presented at the GRC 2010 Annual Meeting that relate to The Geysers. (4) ADDITIONAL GEYSERS PAPERS 1990-2010 - Eighteen additional technical papers were included in this publication in order to give a broad background to the development at The Geysers after 1990. The articles issued during the 1990-2010 period were selected by colleagues considered knowledgeable in their areas of expertise. We forwarded the list of references given in Section 2 to them asking to send us with their selections with a preference, because of limited time, to focus on those papers that would not require lengthy copyright approval. We then chose the articles presented in this section with the purpose of providing the broadest possible view across all technical fields, as related to The Geysers steam-dominated geothermal system. The Geysers has seen many fundamental changes between 1990-2010 and yet the geothermal resource seems still to be robust to the extent that, long after its anticipated life span, we are seeing new geothermal projects being developed on the north and west peripheries of the field. It is hoped that this report provides a focused data source particularly for those just starting their geothermal careers, as well as those who have been involved in the interesting and challenging field of geothermal energy for many years. Despite many hurdles The Geysers has continued to generate electrical power for 50 years and its sustainability has exceeded many early researchers expectations. It also seems probable that, with the new projects described above, generation will continue for many years to come. The success of The Geysers is due to the technical skills and the financial acumen of many people, not only over the period covered by this report (1990-2010), but since the first kilowatt of power was generated in 1960. This Special Report celebrates those 50 years of geothermal development at The Geysers and attempts to document the activities that have brought success to the project so that a permanent record can be maintained. It is strongly hoped and believed that a publication similar to this one will be necessary in another 20 years to document further activities in the field.« less
NASA Astrophysics Data System (ADS)
Guo, Qinghai; Wang, Yanxin; Liu, Wei
2008-11-01
Thermal waters from the Yangbajing geothermal field, Tibet, contain high concentrations of B, As, and F, up to 119, 5.7 and 19.6 mg/L, respectively. In this paper, the distribution of B, As, and F in the aquatic environment at Yangbajing was surveyed. The results show that most river water samples collected downstream of the Zangbo River have comparatively higher concentrations of B, As, and F (up to 3.82, 0.27 and 1.85 mg/L, respectively), indicating that the wastewater discharge of the geothermal power plant at Yangbajing has resulted in B, As, and F contamination in the river. Although the concentrations of B, As, and F of the Zangbo river waters decline downstream of the wastewater discharge site due to dilution effect and sorption onto bottom sediments, the sample from the conjunction of the Zangbo River and the Yangbajing River has higher contents of B, As, and F as compared with their predicted values obtained using our regression analysis models. The differences between actual and calculated contents of B, As, and F can be attributed to the contribution from upstream of the Yangbajing River. Water quality deterioration of the river has induced health problems among dwellers living in and downstream of Yangbajing. Effective measures, such as decontamination of wastewater and reinjection into the geothermal field, should be taken to protect the environment at Yangbajing.
75 FR 61712 - Combined Notice of Filings # 1
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-06
...- 1255-004. Applicants: ArcLight Energy Marketing, LLC, Oak Creek Wind Power, LLC, Coso Geothermal Power... of self-certification [or self-recertification] listed above, do not institute a proceeding regarding... interventions in lieu of paper, using the FERC Online links at http://www.ferc.gov . To facilitate electronic...
18 CFR 292.601 - Exemption to qualifying facilities from the Federal Power Act.
Code of Federal Regulations, 2010 CFR
2010-04-01
... such facility uses any primary energy source other than geothermal resources. (c) General rule. Any... FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY REGULATORY... Federal Power Act, except: (1) Sections 205 and 206; however, sales of energy or capacity made by...
30 CFR 1206.354 - How do I determine generating deductions?
Code of Federal Regulations, 2011 CFR
2011-07-01
... electricity from the plant tailgate value of the electricity (usually the transmission-reduced value of the...'s-length power plant contract. (b)(1) You must base your generating costs deduction on your actual annual costs associated with the construction and operation of a geothermal power plant. (i) You must...
7 CFR 4290.720 - Enterprises that may be ineligible for Financing.
Code of Federal Regulations, 2010 CFR
2010-01-01
... wells, wind farms, or power facilities (including solar, geothermal, hydroelectric, or biomass power... ineligible for Farm Credit System Assistance. If one or more Farm Credit System Institutions or their... that is not otherwise eligible to receive Financing from the Farm Credit System under the Farm Credit...
7 CFR 4290.720 - Enterprises that may be ineligible for Financing.
Code of Federal Regulations, 2011 CFR
2011-01-01
... wells, wind farms, or power facilities (including solar, geothermal, hydroelectric, or biomass power... ineligible for Farm Credit System Assistance. If one or more Farm Credit System Institutions or their... that is not otherwise eligible to receive Financing from the Farm Credit System under the Farm Credit...
Cascades/Aleutian Play Fairway Analysis: Data and Map Files
Lisa Shevenell
2015-11-15
Contains Excel data files used to quantifiably rank the geothermal potential of each of the young volcanic centers of the Cascade and Aleutian Arcs using world power production volcanic centers as benchmarks. Also contains shapefiles used in play fairway analysis with power plant, volcano, geochemistry and structural data.
Engineering JoshuaDominic.McTigue@nrel.gov | 303-275-4682 Josh joined the Thermal Systems Group at NREL in integrate geothermal power, concentrating solar power and thermal energy storage. For his graduate work , Josh researched packed-bed thermal storage with an emphasis on exergy analysis and system design and
Improving the analysis of composite endpoints in rare disease trials.
McMenamin, Martina; Berglind, Anna; Wason, James M S
2018-05-22
Composite endpoints are recommended in rare diseases to increase power and/or to sufficiently capture complexity. Often, they are in the form of responder indices which contain a mixture of continuous and binary components. Analyses of these outcomes typically treat them as binary, thus only using the dichotomisations of continuous components. The augmented binary method offers a more efficient alternative and is therefore especially useful for rare diseases. Previous work has indicated the method may have poorer statistical properties when the sample size is small. Here we investigate small sample properties and implement small sample corrections. We re-sample from a previous trial with sample sizes varying from 30 to 80. We apply the standard binary and augmented binary methods and determine the power, type I error rate, coverage and average confidence interval width for each of the estimators. We implement Firth's adjustment for the binary component models and a small sample variance correction for the generalized estimating equations, applying the small sample adjusted methods to each sub-sample as before for comparison. For the log-odds treatment effect the power of the augmented binary method is 20-55% compared to 12-20% for the standard binary method. Both methods have approximately nominal type I error rates. The difference in response probabilities exhibit similar power but both unadjusted methods demonstrate type I error rates of 6-8%. The small sample corrected methods have approximately nominal type I error rates. On both scales, the reduction in average confidence interval width when using the adjusted augmented binary method is 17-18%. This is equivalent to requiring a 32% smaller sample size to achieve the same statistical power. The augmented binary method with small sample corrections provides a substantial improvement for rare disease trials using composite endpoints. We recommend the use of the method for the primary analysis in relevant rare disease trials. We emphasise that the method should be used alongside other efforts in improving the quality of evidence generated from rare disease trials rather than replace them.
Energy: An annotated selected bibliography
NASA Technical Reports Server (NTRS)
Blow, S. J. (Compiler); Peacock, R. W. (Compiler); Sholy, J. J. (Compiler)
1979-01-01
This updated bibliography contains approximately 7,000 selected references on energy and energy related topics from bibliographic and other data sources from June 1977. Under each subject heading the entries are arranged by the date, with the latest works first. Geothermal, solar, wind, and ocean/water power sources are included. Magnetohydrodynamics and electrohydrodynamics, electric power engineering, automotive power plants, and energy storage are also covered.
Rule, Bridget M; Worth, Zeb J; Boyle, Carol A
2009-08-15
In order to make the best choice between renewable energy technologies, it is important to be able to compare these technologies on the basis of their sustainability, which may include a variety of social, environmental, and economic indicators. This study examined the comparative sustainability of four renewable electricity technologies in terms of their life cycle CO2 emissions and embodied energy, from construction to decommissioning and including maintenance (periodic component replacement plus machinery use), using life cycle analysis. The models developed were based on case studies of power plants in New Zealand, comprising geothermal, large-scale hydroelectric, tidal (a proposed scheme), and wind-farm electricity generation. The comparative results showed that tidal power generation was associated with 1.8 g of CO2/kWh, wind with 3.0 g of CO2/kWh, hydroelectric with 4.6 g of CO2/kWh, and geothermal with 5.6 g of CO2/kWh (not including fugitive emissions), and that tidal power generation was associated with 42.3 kJ/kWh, wind with 70.2 kJ/kWh, hydroelectric with 55.0 kJ/kWh, and geothermal with 94.6 kJ/kWh. Other environmental indicators, as well as social and economic indicators, should be applied to gain a complete picture of the technologies studied.
Hot dry rock geothermal energy: A renewable energy resource that is ready for development now
NASA Astrophysics Data System (ADS)
Brown, D. W.; Potter, R. M.; Myers, C. W.
Hot dry rock (HDR) geothermal energy, which utilizes the natural heat contained in the earth's crust, is a very large and well-distributed resource of nonpolluting, and essentially renewable, energy that is available globally. Its use could help mitigate climatic change and reduce acid rain, two of the major environmental consequences of our ever-increasing use of fossil fuels for heating and power generation. In addition, HDR, as a readily available source of indigenous energy, can reduce our nations's dependence on imported oil, enhancing national security and reducing our trade deficit. On a national scale we can begin to develop this new source, using it directly for power generation or for direct-heat applications, or indirectly in hybrid geothermal/fossil-fuel power plants. In the HDR concept, which has been demonstrated in the field in two different applications and flow-tested for periods up to one year, heat is recovered from the earth by pressurized water in a closed-loop circulation system. As a consequence, minimal effluents are released to the atmosphere, and no wastes are produced. This paper describes the nature of the HDR resource and the technology required to implement the heat-mining concept. An assessment of the requirements for establishing HDR feasibility is presented in the context of providing a commercially competitive energy source.
Richard Zehner
2012-02-01
These line shapefiles trace apparent topographic and air-photo lineaments in various counties in Colorado. It was made in order to identify possible fault and fracture systems that might be conduits for geothermal fluids, as part of a DOE reconnaissance geothermal exploration program. Geothermal fluids commonly utilize fault and fractures in competent rocks as conduits for fluid flow. Geothermal exploration involves finding areas of high near-surface temperature gradients, along with a suitable "plumbing system" that can provide the necessary permeability. Geothermal power plants can sometimes be built where temperature and flow rates are high. This line shapefile is an attempt to use desktop GIS to delineate possible faults and fracture orientations and locations in highly prospective areas prior to an initial site visit. Geochemical sampling and geologic mapping could then be centered around these possible faults and fractures. To do this, georeferenced topographic maps and aerial photographs were utilized in an existing GIS, using ESRI ArcMap 10.0 software. The USA_Topo_Maps and World_Imagery map layers were chosen from the GIS Server at server.arcgisonline.com, using a UTM Zone 13 NAD27 projection. This line shapefile was then constructed over that which appeared to be through-going structural lineaments in both the aerial photographs and topographic layers, taking care to avoid manmade features such as roads, fence lines, and utility right-of-ways. Still, it is unknown what actual features these lineaments, if they exist, represent. Although the shapefiles are arranged by county, not all areas within any county have been examined for lineaments. Work was focused on either satellite thermal infrared anomalies, known hot springs or wells, or other evidence of geothermal systems. Finally, lineaments may be displaced somewhat from their actual location, due to such factors as shadow effects with low sun angles in the aerial photographs. Credits: These lineament shapefile was created by Geothermal Development Associates, as part of a geothermal geologic reconnaissance performed by Flint Geothermal, LLC, of Denver Colorado. Use Limitation: These shapefiles were constructed as an aid to geothermal exploration in preparation for a site visit for field checking. We make no claims as to the existence of the lineaments, their location, orientation, and/or nature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noel, Donna
This project integrated state-of-the-art exploration technologies with a geologic framework and reservoir modeling to ultimately determine the efficacy of future geothermal production within the PLPT reservation. The information gained during this study should help the PLPT to make informed decisions regarding construction of a geothermal power plant. Additional benefits included the transfer of new technologies and geothermal data to the geothermal industry and it created and/or preserved nearly three dozen jobs accordance with the American Recovery and Reinvestment Act of 2009. A variety of tasks were conducted to achieve the above stated objectives. The following are the tasks completed withinmore » the project: 1. Permitting 2. Shallow temperature survey 3. Seismic data collection and analysis 4. Fracture stress analysis 5. Phase I reporting Permitting 7. Shallow temperature survey 8. Seismic data collection and analysis 9. Fracture stress analysis 10. Phase I reporting 11. Drilling two new wells 12. Borehole geophysics 13. Phase II reporting 14. Well testing and geochemical analysis 15. Three-dimensional geologic model 16. Three-dimensional reservoir analysis 17. Reservation wide geothermal potential analysis 18. Phase III reporting Phase I consisted of tasks 1 – 5, Phase II tasks 6 – 8, and Phase III tasks 9 – 13. This report details the results of Phase III tasks. Reports are available for Phase I, and II as separate documents.« less
Adding Impacts and Mitigation Measures to OpenEI's RAPID Toolkit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogel, Erin
The Open Energy Information platform hosts the Regulatory and Permitting Information Desktop (RAPID) Toolkit to provide renewable energy permitting information on federal and state regulatory processes. One of the RAPID Toolkit's functions is to help streamline the geothermal permitting processes outlined in the National Environmental Policy Act (NEPA). This is particularly important in the geothermal energy sector since each development phase requires separate land analysis to acquire exploration, well field drilling, and power plant construction permits. Using the Environmental Assessment documents included in RAPID's NEPA Database, the RAPID team identified 37 resource categories that a geothermal project may impact. Examplesmore » include impacts to geology and minerals, nearby endangered species, or water quality standards. To provide federal regulators, project developers, consultants, and the public with typical impacts and mitigation measures for geothermal projects, the RAPID team has provided overview webpages of each of these 37 resource categories with a sidebar query to reference related NEPA documents in the NEPA Database. This project is an expansion of a previous project that analyzed the time to complete NEPA environmental review for various geothermal activities. The NEPA review not only focused on geothermal projects within the Bureau of Land Management and U.S. Forest Service managed lands, but also projects funded by the Department of Energy. Timeline barriers found were: extensive public comments and involvement; content overlap in NEPA documents, and discovery of impacted resources such as endangered species or cultural sites.« less
Controlling total spot power from holographic laser by superimposing a binary phase grating.
Liu, Xiang; Zhang, Jian; Gan, Yu; Wu, Liying
2011-04-25
By superimposing a tunable binary phase grating with a conventional computer-generated hologram, the total power of multiple holographic 3D spots can be easily controlled by changing the phase depth of grating with high accuracy to a random power value for real-time optical manipulation without extra power loss. Simulation and experiment results indicate that a resolution of 0.002 can be achieved at a lower time cost for normalized total spot power.
Energy and remote sensing. [satellite exploration, monitoring, siting
NASA Technical Reports Server (NTRS)
Summers, R. A.; Smith, W. L.; Short, N. M.
1977-01-01
Exploration for uranium, thorium, oil, gas and geothermal activity through remote sensing techniques is considered; satellite monitoring of coal-derived CO2 in the atmosphere, and the remote assessment of strip mining and land restoration are also mentioned. Reference is made to color ratio composites based on Landsat data, which may aid in the detection of uranium deposits, and to computer-enhanced black and white airborne scanning imagery, which may locate geothermal anomalies. Other applications of remote sensing to energy resources management, including mapping of transportation networks and power plant siting, are discussed.
Occidental Geothermal, Inc. , Oxy geothermal power plant No. 1. Final environmental impact report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-12-01
The project-specific environmental analysis covers the following: geology, soils, water resources, biology, air quality, noise, waste management, health, safety, transportation, energy and material resources, cultural resources, socioeconomics, public services, land use, and aesthetics. Other topics covered are: the cumulative envionmental analysis; unavoidable significant adverse environmental effects; irreversible environmental changes and irretrievable commitments of energy and materials; the relationship between local short-term uses of man's environment and the maintenance and enhancement of long-term productivity; growth-inducing impacts; and alternatives to the proposed action. (MHR)
Mazor, E.; Levitte, D.; Truesdell, A.H.; Healy, J.; Nissenbaum, A.
1980-01-01
No indications are available for the existence of above-boiling geothermal systems in the Jordan Rift Valley. Slightly higher than observed temperatures are concluded for a deep component at the springs of Hammat Gader (67°C), Gofra (68°C), the Russian Garden (40°C), and the Yesha well (53–65°C). These temperatures may encourage further developments for spas and bathing installations and, to a limited extent, for space heating, but are not favorable for geothermal power generation.
2014-09-01
These renewable energy sources can include solar, wind, geothermal , biomass, hydroelectric, and nuclear. Of these sources, photovoltaic (PV) arrays...renewable energy source [1]. These renewable energy sources can include solar, wind, geothermal , biomass, hydroelectric, and nuclear. Of these sources...26, May 2011. [6] H. G. Xu, J. P. He, Y. Qin, and Y. H. Li, “Energy management and control strategy for DC micro-grid in data center,” China
Thermal modeling of step-out targets at the Soda Lake geothermal field, Churchill County, Nevada
NASA Astrophysics Data System (ADS)
Dingwall, Ryan Kenneth
Temperature data at the Soda Lake geothermal field in the southeastern Carson Sink, Nevada, highlight an intense thermal anomaly. The geothermal field produces roughly 11 MWe from two power producing facilities which are rated to 23 MWe. The low output is attributed to the inability to locate and produce sufficient volumes of fluid at adequate temperature. Additionally, the current producing area has experienced declining production temperatures over its 40 year history. Two step-out targets adjacent to the main field have been identified that have the potential to increase production and extend the life of the field. Though shallow temperatures in the two subsidiary areas are significantly less than those found within the main anomaly, measurements in deeper wells (>1,000 m) show that temperatures viable for utilization are present. High-pass filtering of the available complete Bouguer gravity data indicates that geothermal flow is present within the shallow sediments of the two subsidiary areas. Significant faulting is observed in the seismic data in both of the subsidiary areas. These structures are highlighted in the seismic similarity attribute calculated as part of this study. One possible conceptual model for the geothermal system(s) at the step-out targets indicated upflow along these faults from depth. In order to test this hypothesis, three-dimensional computer models were constructed in order to observe the temperatures that would result from geothermal flow along the observed fault planes. Results indicate that the observed faults are viable hosts for the geothermal system(s) in the step-out areas. Subsequently, these faults are proposed as targets for future exploration focus and step-out drilling.
NASA Astrophysics Data System (ADS)
Pastoriza, L. R.; Holdsworth, R.; McCaffrey, K. J. W.; Dempsey, E. D.; Walker, R. J.; Gluyas, J.; Reyes, J. K.
2016-12-01
Fluid flow pathway characterization is critical to geothermal exploration and exploitation. It requires a good understanding of the structural evolution, fault distribution and fluid flow properties. A dominantly fieldwork-based approach has been used to evaluate the potential fracture permeability characteristics of a typical high-temperature geothermal reservoir in the Southern Negros Geothermal Field, Philippines. This is a liquid-dominated geothermal resource hosted in the andesitic to dacitic Quaternary Cuernos de Negros Volcano in Negros Island. Fieldwork reveals two main fracture groups based on fault rock characteristics, alteration type, relative age of deformation, and associated thermal manifestation, with the younger fractures mainly related to the development of the modern geothermal system. Palaeostress analyses of cross-cutting fault and fracture arrays reveal a progressive counterclockwise rotation of stress axes from the (?)Pliocene up to the present-day, which is consistent with the regional tectonic models. A combined slip and dilation tendency analysis of the mapped faults indicates that NW-SE structures should be particularly promising drilling targets. Frequency versus length and aperture plots of fractures across six to eight orders of magnitude show power-law relationships with a change in scaling exponent in the region of 100 to 500m length-scales. Finally, evaluation of the topology of the fracture branches shows the dominance of Y-nodes that are mostly doubly connected suggesting good connectivity and permeability within the fracture networks. The results obtained in this study illustrate the value of methods that can be globally applied during exploration to better characterize fracture systems in geothermal reservoirs using multiscale datasets.
NASA Astrophysics Data System (ADS)
Pastoriza, Loraine; Holdsworth, Robert; McCaffrey, Kenneth; Dempsey, Eddie; Walker, Richard; Gluyas, Jon; Reyes, Jonathan
2017-04-01
Fluid flow pathway characterisation is critical to geothermal exploration and exploitation. It requires a good understanding of the structural evolution, fault distribution and fluid flow properties. A dominantly fieldwork-based approach has been used to evaluate the potential fracture permeability characteristics of a typical high-temperature geothermal reservoir in the Southern Negros Geothermal Field, Philippines. This is a liquid-dominated geothermal resource hosted in the andesitic to dacitic Quaternary Cuernos de Negros Volcano in Negros Island. Fieldwork reveals two main fracture groups based on fault rock characteristics, alteration type, relative age of deformation, and associated thermal manifestation, with the younger fractures mainly related to the development of the modern geothermal system. Palaeostress analyses of cross-cutting fault and fracture arrays reveal a progressive counterclockwise rotation of stress axes from the (?)Pliocene up to the present-day, which is consistent with the regional tectonic models. A combined slip and dilation tendency analysis of the mapped faults indicates that NW-SE structures should be particularly promising drilling targets. Frequency versus length and aperture plots of fractures across six to eight orders of magnitude show power-law relationships with a change in scaling exponent in the region of 100 to 500m length-scales. Finally, evaluation of the topology of the fracture branches shows the dominance of Y-nodes that are mostly doubly connected suggesting good connectivity and permeability within the fracture networks. The results obtained in this study illustrate the value of methods that can be globally applied during exploration to better characterize fracture systems in geothermal reservoirs using multiscale datasets.
Theory and Tests of Two-Phase Turbines
NASA Technical Reports Server (NTRS)
Elliott, D. G.
1986-01-01
New turbines open possibility of new types of power cycles. Report describes theoretical analysis and experimental testing of two-phase impulse turbines. Such turbines open possibility of new types of power cycles operating with extremely wet mixtures of steam and water, organic fluids, or immiscible liquids and gases. Possible applications are geothermal power, waste-heat recovery, refrigerant expansion, solar conversion, transportation, and engine-bottoming cycles.
NASA Astrophysics Data System (ADS)
Engen, I. A.
1981-11-01
This feasibility study and preliminary conceptual design effect assesses the conversion of a high school and gym, and a middle school building to geothermal space heating is assessed. A preliminary cost benefit assessment made on the basis of estimated costs for conversion, system maintenance, debt service, resource development, electricity to power pumps, and savings from from reduced natural gas consumption concluded that an economic conversion depended on development of an adequate geothermal resource (approximately 1500F, 400 gpm). Material selection assumed that the geothermal water to the main supply system was isolated to minimize effects of corrosion and deposition, and that system compatible components are used for the building modifications. Asbestos cement distribution pipe, a stainless steel heat exchanger, and stainless steel lined valves were recommended for the supply, heat transfer, and disposal mechanisms, respectively. A comparison of the calculated average gas consumption cost, escalated at 10% per year, with conversion project cost, both in 1977 dollars, showed that the project could be amortized over less than 20 years at current interest rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, A.; Dennis, B.; Van Eeckhout, E.
1991-07-01
The well logging team from Los Alamos and its counterpart from Central America were tasked to investigate the condition of four producing geothermal wells in the Zunil Geothermal Field. The information obtained would be used to help evaluate the Zunil geothermal reservoir in terms of possible additional drilling and future power plant design. The field activities focused on downhole measurements in four production wells (ZCQ-3, ZCQ-4, ZCQ-5, and ZCQ-6). The teams took measurements of the wells in both static (shut-in) and flowing conditions, using the high-temperature well logging tools developed at Los Alamos National Laboratory. Two well logging missions weremore » conducted in the Zunil field. In October 1988 measurements were made in well ZCQ-3, ZCQ-5, and ZCQ-6. In December 1989 the second field operation logged ZCQ-4 and repeated logs in ZCQ-3. Both field operations included not only well logging but the collecting of numerous fluid samples from both thermal and nonthermal waters. 18 refs., 22 figs., 7 tabs.« less
The utility of geothermal energy on Mars
NASA Astrophysics Data System (ADS)
Fogg, Martyn J.
1997-01-01
The exploitation of geothermal energy has been absent from previous considerations of providing power for settlements on Mars. The reason for this is the prevailing paradigm that places all of Mars' volcanic activity in the remote past and hence postulates a crust that is frozen to great depths. It is argued in this paper that this view may be true in general, but false in particular. Geological evidence is reviewed that suggests that magmatism may have been active on Mars until recent times and may hence still be ongoing. Thus, the presence of significant, localized, hyperthermal areas cannot be ruled out on the basis of the low mean heat flows predicted by global heat flow models. The possibility of the presence of useful geothermal fields is further strengthened by observations of fluvial outflows that seem to have been associated with certain magmatic extrusions and which therefore hint at favorable groundwater conditions. Such a geothermal energy source would be of great potential economic value, being of use for the generation of electricity and direct heating for industry and habitation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-02-01
The Electric Power Research Institute (EPRI) has been studying the feasibility of a Low Salinity Hydrothermal Demonstration Plant as part of its Geothermal Energy Program. The Heber area of the Imperial Valley was selected as one of the candidate geothermal reservoirs. Documentation of the environmental conditions presently existing in the Heber area is required for assessment of environmental impacts of future development. An environmental baseline data acquisition program to compile available data on the environment of the Heber area is reported. The program included a review of pertinent existing literature, interviews with academic, governmental and private entities, combined with fieldmore » investigations and meteorological monitoring to collect primary data. Results of the data acquisition program are compiled in terms of three elements: the physical, the biological and socioeconomic settings.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloomquist, R.Gordon
1991-10-01
The actual geothermal exploration and development may appear to be a simple and straightforward process in comparison to the legal and institutional maze which the developer must navigate in order to obtain all of the federal, state, and local leases, permits, licenses, and approvals necessary at each step in the process. Finally, and often most difficult, is obtaining a contract for the sale of thermal energy, brine, steam, or electricity. This guide is designed to help developers interested in developing geothermal resource sites in the Bonneville Power Administration Service Territory in the state of Idaho, Montana, Oregon, and Washington bettermore » understand the federal, state, and local institutional process, the roles and responsibilities of each agency, and how and when to make contact in order to obtain the necessary documents.« less
Critiquing ';pore connectivity' as basis for in situ flow in geothermal systems
NASA Astrophysics Data System (ADS)
Kenedi, C. L.; Leary, P.; Malin, P.
2013-12-01
Geothermal system in situ flow systematics derived from detailed examination of grain-scale structures, fabrics, mineral alteration, and pore connectivity may be extremely misleading if/when extrapolated to reservoir-scale flow structure. In oil/gas field clastic reservoir operations, it is standard to assume that small scale studies of flow fabric - notably the Kozeny-Carman and Archie's Law treatments at the grain-scale and well-log/well-bore sampling of formations/reservoirs at the cm-m scale - are adequate to define the reservoir-scale flow properties. In the case of clastic reservoirs, however, a wide range of reservoir-scale data wholly discredits this extrapolation: Well-log data show that grain-scale fracture density fluctuation power scales inversely with spatial frequency k, S(k) ~ 1/k^β, 1.0 < β < 1.2, 1cycle/km < k < 1cycle/cm; the scaling is a ';universal' feature of well-logs (neutron porosity, sonic velocity, chemical abundance, mass density, resistivity, in many forms of clastic rock and instances of shale bodies, for both horizontal and vertical wells). Grain-scale fracture density correlates with in situ porosity; spatial fluctuations of porosity φ in well-core correlate with spatial fluctuations in the logarithm of well-core permeability, δφ ~ δlog(κ) with typical correlation coefficient ~ 85%; a similar relation is observed in consolidating sediments/clays, indicating a generic coupling between fluid pressure and solid deformation at pore sites. In situ macroscopic flow systems are lognormally distributed according to κ ~ κ0 exp(α(φ-φ0)), α >>1 an empirical parameter for degree of in situ fracture connectivity; the lognormal distribution applies to well-productivities in US oil fields and NZ geothermal fields, ';frack productivity' in oil/gas shale body reservoirs, ore grade distributions, and trace element abundances. Although presently available evidence for these properties in geothermal reservoirs is limited, there are indications that geothermal system flow essentially obeys the same ';universal' in situ flow rules as does clastic rock: Well-log data from Los Azufres, MX, show power-law scaling S(k) ~ 1/k^β, 1.2 < β < 1.4, for spatial frequency range 2cycles/km to 0.5cycle/m; higher β-values are likely due to the relatively fresh nature of geothermal systems; Well-core at Bulalo (PH) and Ohaaki (NZ) show statistically significant spatial correlation, δφ ~ δlog(κ) Well productivity at Ohaaki/Ngawha (NZ) and in geothermal systems elsewhere are lognormally distributed; K/Th/U abundances lognormally distributed in Los Azufres well-logs We therefore caution that small-scale evidence for in situ flow fabric in geothermal systems that is interpreted in terms of ';pore connectivity' may in fact not reflect how small-scale chemical processes are integrated into a large-scale geothermal flow structure. Rather such small scale studies should (perhaps) be considered in term of the above flow rules. These flow rules are easily incorporated into standard flow simulation codes, in particular the OPM = Open Porous Media open-source industry-standard flow code. Geochemical transport data relevant to geothermal systems can thus be expected to be well modeled by OPM or equivalent (e.g., INL/LANL) codes.
Complex Systems Analysis | Energy Analysis | NREL
Generators, Transmission Infrastructure. A Power Plant drawing is above the text boxes. Solar Arrays drawing Flexibility and Storage. An Industry plant drawing and a house with the label Monitor Energy Use is connected to Transmission Infrastructure. A Geothermal Power Plant drawing and a Rooftop PV drawing is connect
, building energy efficiency, solar industrial process heat, geothermal power, and concentrating solar power . He is an American Solar Energy Society (ASES) Fellow and served as the ASES Chair in 2000-2001. He is editor of the 200-page ASES report, Tackling Climate Change in the U.S., which details how energy
18 CFR 292.601 - Exemption to qualifying facilities from the Federal Power Act.
Code of Federal Regulations, 2011 CFR
2011-04-01
... megawatts, if such facility uses any primary energy source other than geothermal resources. (c) General rule... FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY REGULATORY... of the Federal Power Act, except: (1) Sections 205 and 206; however, sales of energy or capacity made...
75 FR 79365 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-20
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Combined Notice of Filings 1 December 9...: ER07-1106-009; ER08-1255-003; ER08-1255-004; ER10- 566-001; ER10-566-002. Applicants: ArcLight Energy Marketing, LLC, Oak Creek Wind Power, LLC, Coso Geothermal Power Holdings, LLC. Description: Supplement to...
NASA Astrophysics Data System (ADS)
Mochinaga, H.; Aoki, N.; Mouri, T.
2017-12-01
We propose a robust workflow of 3D geological modelling based on integrated analysis while honouring seismic, gravity, and wellbore data for exploration and development at flash steam geothermal power plants. We design the workflow using temperature logs at less than 10 well locations for practical use at an early stage of geothermal exploration and development. In the workflow, geostatistical technique, multi-attribute analysis, and artificial neural network are employed for the integration of multi geophysical data. The geological modelling is verified by using a 3D seismic data which was acquired in the Yamagawa Demonstration Area (approximately 36 km2), located at the city of Ibusuki in Kagoshima, Japan in 2015. Temperature-depth profiles are typically characterized by heat transfer of conduction, outflow, and up-flow which have low frequency trends. On the other hand, feed and injection zones with high permeability would cause high frequency perturbation on temperature-depth profiles. Each trend is supposed to be caused by different geological properties and subsurface structures. In this study, we estimate high frequency (> 2 cycles/km) and low frequency (< 1 cycle/km) models separately by means of different types of attribute volumes. These attributes are mathematically generated from P-impedance and density volumes derived from seismic inversion, an ant-tracking seismic volume, and a geostatistical temperature model prior to application of artificial neural network on the geothermal modelling. As a result, the band-limited stepwise approach predicts a more precise geothermal model than that of full-band temperature profiles at a time. Besides, lithofacies interpretation confirms reliability of the predicted geothermal model. The integrated interpretation is significantly consistent with geological reports from previous studies. Isotherm geobodies illustrate specific features of geothermal reservoir and cap rock, shallow aquifer, and its hydrothermal circulation in 3D visualization. The advanced workflow of 3D geological modelling is suitable for optimization of well locations for production and reinjection in geothermal fields.
Development and bottlenecks of renewable electricity generation in China: a critical review.
Hu, Yuanan; Cheng, Hefa
2013-04-02
This review provides an overview on the development and status of electricity generation from renewable energy sources, namely hydropower, wind power, solar power, biomass energy, and geothermal energy, and discusses the technology, policy, and finance bottlenecks limiting growth of the renewable energy industry in China. Renewable energy, dominated by hydropower, currently accounts for more than 25% of the total electricity generation capacity. China is the world's largest generator of both hydropower and wind power, and also the largest manufacturer and exporter of photovoltaic cells. Electricity production from solar and biomass energy is at the early stages of development in China, while geothermal power generation has received little attention recently. The spatial mismatch in renewable energy supply and electricity demand requires construction of long-distance transmission networks, while the intermittence of renewable energy poses significant technical problems for feeding the generated electricity into the power grid. Besides greater investment in research and technology development, effective policies and financial measures should also be developed and improved to better support the healthy and sustained growth of renewable electricity generation. Meanwhile, attention should be paid to the potential impacts on the local environment from renewable energy development, despite the wider benefits for climate change.
Feasibility survey of thermoelectric conversion technology using semiconductors
NASA Astrophysics Data System (ADS)
1993-03-01
The paper takes notice to thermoelectric conversion technology using semiconductors and investigates it in a wide range from high temperature to low temperature to study its feasibility. It is found that in Bi-Te alloy elements applicable to a temperature range of around 200(degree)C, some are over 3.5(times)10(sup -3)K(sup -1) in performance index, and performance of the element can be practically improved in the near future. The thermoelectric power generation system using waste heat from the fuel cell power plant, which is 5-6% in conversion efficiency, can generate output more than 100kW and is expected to improve by approximately 1% in plant overall efficiency. The construction cost, however, is around 1.6-1.9 million yen/kW. The thermoelectric power generation plant which is modeled on No.2 generator of Hatchobaru geothermal power plant can generate electric output of 10-12.5MW, which is smaller than that of the conventional geothermal power generation. The construction cost is around 3.2-4.1 million yen/kW. Even if advantage of the system in running cost is considered, attractive systematization seems to be difficult.
Deformation at Krafla and Bjarnarflag geothermal areas, Northern Volcanic Zone of Iceland, 1993-2015
NASA Astrophysics Data System (ADS)
Drouin, Vincent; Sigmundsson, Freysteinn; Verhagen, Sandra; Ófeigsson, Benedikt G.; Spaans, Karsten; Hreinsdóttir, Sigrún
2017-09-01
The Krafla volcanic system has geothermal areas within the Krafla caldera and at Bjarnarflag in the Krafla fissure swarm, 9-km south of the Krafla caldera. Arrays of boreholes extract geothermal fluids for power plants in both areas. We collected and analyzed InSAR, GPS, and leveling data spanning 1993-2015 in order to investigate crustal deformation in these areas. The volcanic zone hosting the geothermal areas is also subject to large scale regional deformation processes, including plate spreading and deflation of the Krafla volcanic system. These deformation processes have to be taken into account in order to isolate the geothermal deformation signal. Plate spreading produces the largest horizontal displacements, but the regional deformation pattern also suggests readjustment of the Krafla system at depth after the 1975-1984 Krafla rifting episode. Observed deformation can be fit by an inflation source at about 20 km depth north of Krafla and a deflation source at similar depth directly below the Krafla caldera. Deflation signal along the fissure swarm can be reproduced by a 1-km wide sill at 4 km depth closing by 2-4 cm per year. These sources are considered to approximate the combined effects of vertical deformation associated with plate spreading and post-rifting response. Local deformation at the geothermal areas is well resolved in addition to these signals. InSAR shows that deformation at Bjarnarflag is elongated along the direction of the Krafla fissure swarm (∼ 4 km by ∼ 2 km) while it is circular at Krafla (∼ 5 km diameter). Rates of deflation at Krafla and Bjarnarflag geothermal areas have been relatively steady. Average volume decrease of about 6.6 × 105 m3/yr for Krafla and 3.9 × 105 m3/yr for Bjanarflag are found at sources located at ∼ 1.5 km depth, when interpreted by a spherical point source of pressure. This volume change represents about 8 × 10-3 m3/ton of the mass of geothermal fluid extracted per year, indicating important renewal of the geothermal reservoir by water flow.
Towards a Geocognition of Geothermal Energy: an Evolving Research Partnership in South West England
NASA Astrophysics Data System (ADS)
Gibson, H.; Stewart, I. S.; Ledingham, P.
2017-12-01
The development and deployment of novel geological technologies in industry often raise anxiety in the public sphere. New technologies are intrinsically unfamiliar, not only to the public, but also to other technical specialists in the field. This can focus conflict and uncertainty around issues that may not actually be problematic, or obscure other issues that may actually warrant closer inspection. An example of an emergent geo-technology that has received little attention in the public or general technical spheres is the introduction of Enhanced Geothermal Power in the UK. In early 2018, a project testing the viability of deep geothermal heat and power will begin in Cornwall, England, and is likely to face contested issues of public perception that have confronted other novel geological technologies, such as Carbon Capture and Storage and hydraulic fracturing. To address concerns about how the UK public will conceptualise this new technology, the Cornish deep geothermal project has developed an innovative partnership between the industry partner operating the test drilling site and a geoscience cognition research partner. That research partner integrates geoscience, cognitive psychology and media communication specialists in a three-year project that will track evolving public perceptions of and community attitudes to geothermal energy; from initial community engagements to the drilling operations and, ultimately, to the operation of the facility. Key in this study will be an exploration of how the industrial partnership impacts and affects the research process as the site testing proceeds, but also how the research process can engage with issues of communication between the industrial partner and the public. Overall, the interdisciplinary research aims to better understand how public/industry partnerships develop and evolve over the lifetime of an active geo-energy project and thereby help inform and improve community-centred geo-communication around novel energy technologies in the future.
COTHERM: Geophysical Modeling of High Enthalpy Geothermal Systems
NASA Astrophysics Data System (ADS)
Grab, Melchior; Maurer, Hansruedi; Greenhalgh, Stewart
2014-05-01
In recent years geothermal heating and electricity generation have become an attractive alternative energy resource, especially natural high enthalpy geothermal systems such as in Iceland. However, the financial risk of installing and operating geothermal power plants is still high and more needs to be known about the geothermal processes and state of the reservoir in the subsurface. A powerful tool for probing the underground system structure is provided by geophysical techniques, which are able to detect flow paths and fracture systems without drilling. It has been amply demonstrated that small-scale features can be well imaged at shallow depths, but only gross structures can be delineated for depths of several kilometers, where most high enthalpy systems are located. Therefore a major goal of our study is to improve geophysical mapping strategies by multi-method geophysical simulations and synthetic data inversions, to better resolve structures at greater depth, characterize the reservoir and monitor any changes within it. The investigation forms part of project COTHERM - COmbined hydrological, geochemical and geophysical modeling of geoTHERMal systems - in which a holistic and synergistic approach is being adopted to achieve multidisciplinary cooperation and mutual benefit. The geophysical simulations are being performed in combination with hydrothermal fluid flow modeling and chemical fluid rock interaction modeling, to provide realistic constraints on lithology, pressure, temperature and fluid conditions of the subsurface. Two sites in Iceland have been selected for the study, Krafla and Reykjanes. As a starting point for the geophysical modeling, we seek to establish petrophysical relations, connecting rock properties and reservoir conditions with geophysical parameters such as seismic wave speed, attenuation, electrical conductivity and magnetic susceptibility with a main focus on seismic properties. Therefore, we follow a comprehensive approach involving three components: (1) A literature study to find relevant, existing theoretical models, (2) laboratory determinations to confirm their validity for Icelandic rocks of interest and (3) a field campaign to obtain in-situ, shallow rock properties from seismic and resistivity tomography surveys over a fossilized and exhumed geothermal system. Theoretical models describing physical behavior for rocks with strong inhomogeneities, complex pore structure and complicated fluid-rock interaction mechanisms are often poorly constrained and require the knowledge about a wide range of parameters that are difficult to quantify. Therefore we calibrate the theoretical models by laboratory measurements on samples of rocks, forming magmatic geothermal reservoirs. Since the samples used in the laboratory are limited in size, and laboratory equipment operates at much higher frequency than the instruments used in the field, the results need to be up-scaled from the laboratory scale to field scale. This is not a simple process and entails many uncertainties.
Shear velocity of the Rotokawa geothermal field using ambient noise
NASA Astrophysics Data System (ADS)
Civilini, F.; Savage, M. K.; Townend, J.
2014-12-01
Ambient noise correlation is an increasingly popular seismological technique that uses the ambient seismic noise recorded at two stations to construct an empirical Green's function. Applications of this technique include determining shear velocity structure and attenuation. An advantage of ambient noise is that it does not rely on external sources of seismic energy such as local or teleseismic earthquakes. This method has been used in the geothermal industry to determine the depths at which magmatic processes occur, to distinguish between production and non-production areas, and to observe seismic velocity perturbations associated with fluid extraction. We will present a velocity model for the Rotokawa geothermal field near Taupo, New Zealand, produced from ambient noise cross correlations. Production at Rotokawa is based on the "Rotokawa A" combined cycle power station established in 1997 and the "Nga Awa Purua" triple flash power plant established in 2010. Rotokawa Joint Venture, a partnership between Mighty River Power and Tauhara North No. 2 Trust currently operates 174 MW of generation at Rotokawa. An array of short period seismometers was installed in 2008 and occupies an area of roughly 5 square kilometers around the site. Although both cultural and natural noise sources are recorded at the stations, the instrument separation distance provides a unique challenge for analyzing cross correlations produced by both signal types. The inter-station spacing is on the order of a few kilometers, so waves from cultural sources generally are not coherent from one station to the other, while the wavelength produced by natural noise is greater than the station separation. Velocity models produced from these two source types will be compared to known geological models of the site. Depending on the amount of data needed to adequately construct cross-correlations, a time-dependent model of velocity will be established and compared with geothermal production processes.
Swings between rotation and accretion power in a binary millisecond pulsar.
Papitto, A; Ferrigno, C; Bozzo, E; Rea, N; Pavan, L; Burderi, L; Burgay, M; Campana, S; Di Salvo, T; Falanga, M; Filipović, M D; Freire, P C C; Hessels, J W T; Possenti, A; Ransom, S M; Riggio, A; Romano, P; Sarkissian, J M; Stairs, I H; Stella, L; Torres, D F; Wieringa, M H; Wong, G F
2013-09-26
It is thought that neutron stars in low-mass binary systems can accrete matter and angular momentum from the companion star and be spun-up to millisecond rotational periods. During the accretion stage, the system is called a low-mass X-ray binary, and bright X-ray emission is observed. When the rate of mass transfer decreases in the later evolutionary stages, these binaries host a radio millisecond pulsar whose emission is powered by the neutron star's rotating magnetic field. This evolutionary model is supported by the detection of millisecond X-ray pulsations from several accreting neutron stars and also by the evidence for a past accretion disc in a rotation-powered millisecond pulsar. It has been proposed that a rotation-powered pulsar may temporarily switch on during periods of low mass inflow in some such systems. Only indirect evidence for this transition has hitherto been observed. Here we report observations of accretion-powered, millisecond X-ray pulsations from a neutron star previously seen as a rotation-powered radio pulsar. Within a few days after a month-long X-ray outburst, radio pulses were again detected. This not only shows the evolutionary link between accretion and rotation-powered millisecond pulsars, but also that some systems can swing between the two states on very short timescales.
40 CFR 144.81 - Does this subpart apply to me?
Code of Federal Regulations, 2010 CFR
2010-07-01
... geothermal energy for heating, aquaculture and production of electric power; (12) Wells used for solution... and used car dealership, specialty repair shop (e.g., transmission and muffler repair shop), or any...
Operating results and reinjection of Milos field in Greece
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hibara, Y.; Tahara, M.; Sakanashi, H.
1989-01-01
The Milos geothermal prospect located on one of the Cycladean islands of Greece represents a high temperature (320{sup 0}C), high silica content (1150 ppm) modified sea water resource. The program of development under taken by the Public Power Corporation (PPC) of Greece started with the drilling of a number of wells and has progressed to the installation of a pilot-style 2MW(e) condensing power plant which went on-line in December 1986. This plant has been provided by Mitsubishi Heavy Industries (MHI) under a contract with PPC. Geothermal South Pacific (GEOSPAC) was sub-contracted to MHI to provide technical and scientific assistance inmore » connection with reservoir related matters. The authors present the various studies and modification that were done to establish an acceptable method of plant operation and waste disposal.« less
NASA Astrophysics Data System (ADS)
Vaysman, Ya I.; Surkov, AA; Surkova, Yu I.; Kychkin, AV
2017-06-01
The article is devoted to the use of renewable energy sources and the assessment of the feasibility of their use in the climatic conditions of the Western Urals. A simulation model that calculates the efficiency of a combined power installations (CPI) was (RES) developed. The CPI consists of the geothermal heat pump (GHP) and the vacuum solar collector (VCS) and is based on the research model. This model allows solving a wide range of problems in the field of energy and resource efficiency, and can be applied to other objects using RES. Based on the research recommendations for optimizing the management and the application of CPI were given. The optimization system will give a positive effect in the energy and resource consumption of low-rise residential buildings projects.
NASA Astrophysics Data System (ADS)
Ranaldi, Massimo; Lelli, Matteo; Tarchini, Luca; Carapezza, Maria Luisa; Patera, Antonio
2016-04-01
High-enthalpy geothermal fields of Central Italy are hosted in deeply fractured carbonate reservoirs occurring in thermally anomalous and seismically active zones. However, the Mts. Sabatini volcanic district, located north of Rome, has an interesting deep temperatures (T), but it is characterized by low to very low seismicity and permeability in the reservoir rocks (mostly because of hydrothermal self-sealing processes). Low PCO2 facilitates the complete sealing of the reservoir fractures, preventing hot fluids rising and, determining a low CO2 flux at the surface. Conversely, high CO2 flux generally reflects a high pressure of CO2, suggesting that an active geothermal reservoir is present at depth. In Mts. Sabatini district, the Caldara of Manziana (CM) is the only zone characterized by a very high CO2 flux (188 tons/day) from a surface of 0.15 km2) considering both the diffuse and viscous CO2 emission. This suggests the likely presence of an actively degassing geothermal reservoir at depth. Emitted gas is dominated by CO2 (>97 vol.%). Triangular irregular networks (TINs) have been used to represent the morphology of the bottom of the surficial volcanic deposits, the thickness of the impervious formation and the top of the geothermal reservoir. The TINs, integrated by T-gradient and deep well data, allowed to estimate the depth and the temperature of the top of the geothermal reservoir, respectively to ~-1000 m from the surface and to ~130°C. These estimations are fairly in agreement with those obtained by gas chemistry (818
NASA Astrophysics Data System (ADS)
Kenedi, C. L.; Shalev, E.; Malin, P.; Kaleikini, M.; Dahl, G.
2008-12-01
Borehole seismometer arrays have proven successful in both the exploration and monitoring of geothermal fields. Because the seismometers are located at depth, they are isolated from human noise and record microearthquakes with clearly identifiable seismic phases that can be used for event location. Further analysis of these events can be used to resolve earthquake clouds into identifiable faults. The local fault and dike structures in Puna, in southeastern Hawaii, are of interest both in terms of electricity production and volcanic hazard monitoring. The geothermal power plant at Puna has a 30MW capacity and is built on a section of the Kilauea Lower East Rift Zone where lava flows erupted as recently as 1955. In order to improve seismic monitoring in this area, we installed eight 3-component borehole seismometers. The instrument depths range from 24 to 210 m (80 to 690 ft); the shallower instruments have 2 Hz geophones and the deepest have 4.5 Hz geophones. The seismometers are located at the vertices of two rhombs, 2 km wide x 4 km long and 4 km wide x 8 km long, both centered at the power plant. Since June 2006, we have located >4500 earthquakes; P- and S-wave arrivals were hand picked and events located using Hypoinverse-2000. Most of the earthquakes occurred at depths between 2.5 and 3 km. The large majority of events were M-0.5 to M0.5; the Gutenberg-Richter b-value is 1.4, which is consistent with microearthquake swarms. Frequency analysis indicates a 7-day periodicity; a Schuster diagram confirms increased seismicity on a weekly cycle. The location, depth, and period of the microearthquakes suggest that power plant activity affects local seismicity. Southwest of the geothermal facility, up-rift towards the Kilauea summit, earthquakes were progressively deeper at greater distances. Depths also increased towards the south, which is consistent with the eastern extension of the south-dipping, east-striking Hilina fault system. To the northeast, down-rift of the array, there is a sudden cessation of seismicity not accounted for by known geologic structures. This borehole seismometer network is providing essential data for the detailed characterization of the Kilauea Lower East Rift Zone and the Puna geothermal field.
NASA Astrophysics Data System (ADS)
Salehi, Hadi; Das, Saptarshi; Chakrabartty, Shantanu; Biswas, Subir; Burgueño, Rigoberto
2017-04-01
This study proposes a novel strategy for damage identification in aircraft structures. The strategy was evaluated based on the simulation of the binary data generated from self-powered wireless sensors employing a pulse switching architecture. The energy-aware pulse switching communication protocol uses single pulses instead of multi-bit packets for information delivery resulting in discrete binary data. A system employing this energy-efficient technology requires dealing with time-delayed binary data due to the management of power budgets for sensing and communication. This paper presents an intelligent machine-learning framework based on combination of the low-rank matrix decomposition and pattern recognition (PR) methods. Further, data fusion is employed as part of the machine-learning framework to take into account the effect of data time delay on its interpretation. Simulated time-delayed binary data from self-powered sensors was used to determine damage indicator variables. Performance and accuracy of the damage detection strategy was examined and tested for the case of an aircraft horizontal stabilizer. Damage states were simulated on a finite element model by reducing stiffness in a region of the stabilizer's skin. The proposed strategy shows satisfactory performance to identify the presence and location of the damage, even with noisy and incomplete data. It is concluded that PR is a promising machine-learning algorithm for damage detection for time-delayed binary data from novel self-powered wireless sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harto, C. B.; Schroeder, J. N.; Horner, R. M.
According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel–based electricity generation; however, the long-term sustainability ofmore » geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.« less
Schroeder, Jenna N.
2014-12-16
According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel?based electricity generation; however, the long-term sustainability of geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.
The Energy Imperative: Report Update
2008-11-01
projections for 2030.2 • Renewable power generation from solar , wind, biomass, and geothermal resources is growing rapidly, but these sources still...consistent policy approach to address cost, regulatory, and transmission infrastructure challenges. For solar photovoltaic (PV) technology, basic...research is particularly important to make the needed improvements in cost and performance. • Solar power can help meet peak load electricity demand
Comments Regarding the Binary Power Law for Heterogeneity of Disease Incidence
USDA-ARS?s Scientific Manuscript database
The binary power law (BPL) has been successfully used to characterize heterogeneity (over dispersion or small-scale aggregation) of disease incidence for many plant pathosystems. With the BPL, the log of the observed variance is a linear function of the log of the theoretical variance for a binomial...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Letlow, K.; Lopreato, S.C.; Meriwether, M.
The institutional aspect of the study attempts to identify possible effects of geothermal research, development, and utilization on the area and its inhabitants in three chapters. Chapters I and II address key socio-economic and demographic variables. The initial chapter provides an overview of the area where the resource is located. Major data are presented that can be used to establish a baseline description of the region for comparison over time and to delineate crucial area for future study with regard to geothermal development. The chapter highlights some of the variables that reflect the cultural nature of the Gulf Coast, itsmore » social characteristics, labor force, and service in an attempt to delineate possible problems with and barriers to the development of geothermal energy in the region. The following chapter focuses on the local impacts of geothermal wells and power-generating facilities using data on such variables as size and nature of construction and operating crews. Data are summarized for the areas studied. A flow chart is utilized to describe research that is needed in order to exploit the resource as quickly and effectively as possible. Areas of interface among various parts of the research that will include exchange of data between the social-cultural group and the institutional, legal, environmental, and resource utilization groups are identified. (MCW)« less
NASA Astrophysics Data System (ADS)
Faust, Charles R.; Mercer, James W.; Thomas, Stephen D.; Balleau, W. Pete
1984-05-01
The Baca geothermal reservoir and adjacent aquifers in the Jemez Mountains of New Mexico comprise an integrated hydrogeologic system. Analysis of the geothermal reservoir either under natural conditions or subject to proposed development should account for the mass (water) and energy (heat) balances of adjacent aquifers as well as the reservoir itself. A three-dimensional model based on finite difference approximations is applied to this integrated system. The model simulates heat transport associated with the flow of steam and water through an equivalent porous medium. The Baca geothermal reservoir is dominated by flow in fractures and distinct strata, but at the scale of application the equivalent porous media concept is appropriate. The geothermal reservoir and adjacent aquifers are simulated under both natural conditions and proposed production strategies. Simulation of natural conditions compares favorably with observed pressure, temperature, and thermal discharge data. The history matching simulations show that the results used for comparison are most sensitive to vertical permeability and the area of an assumed high-permeability zone connecting the reservoir to a deep hydrothermal source. Simulations using proposed production strategies and optimistic estimates of certain hydrologic parameters and reservoir extent indicate that a 50-MW power plant could be maintained for a period greater than 30 years. This production, however, will result in significant decreases in the total water discharge to the Jemez River.
Archuleta County CO Lineaments
Richard E. Zehner
2012-01-01
This layer traces apparent topographic and air-photo lineaments in the area around Pagosa springs in Archuleta County, Colorado. It was made in order to identify possible fault and fracture systems that might be conduits for geothermal fluids. Geothermal fluids commonly utilize fault and fractures in competent rocks as conduits for fluid flow. Geothermal exploration involves finding areas of high near-surface temperature gradients, along with a suitable plumbing system that can provide the necessary permeability. Geothermal power plants can sometimes be built where temperature and flow rates are high. To do this, georeferenced topographic maps and aerial photographs were utilized in an existing GIS, using ESRI ArcMap 10.0 software. The USA_Topo_Maps and World_Imagery map layers were chosen from the GIS Server at server.arcgisonline.com, using a UTM Zone 13 NAD27 projection. This line shapefile was then constructed over that which appeared to be through-going structural lineaments in both the aerial photographs and topographic layers, taking care to avoid manmade features such as roads, fence lines, and right-of-ways. These lineaments may be displaced somewhat from their actual location, due to such factors as shadow effects with low sun angles in the aerial photographs. Note: This shape file was constructed as an aid to geothermal exploration in preparation for a site visit for field checking. We make no claims as to the existence of the lineaments, their location, orientation, and nature.
Dark jets in the soft X-ray state of black hole binaries?
NASA Astrophysics Data System (ADS)
Drappeau, S.; Malzac, J.; Coriat, M.; Rodriguez, J.; Belloni, T. M.; Belmont, R.; Clavel, M.; Chakravorty, S.; Corbel, S.; Ferreira, J.; Gandhi, P.; Henri, G.; Petrucci, P.-O.
2017-04-01
X-ray binary observations led to the interpretation that powerful compact jets, produced in the hard state, are quenched when the source transitions to its soft state. The aim of this paper is to discuss the possibility that a powerful dark jet is still present in the soft state. Using the black hole X-ray binaries GX339-4 and H1743-322 as test cases, we feed observed X-ray power density spectra in the soft state of these two sources to an internal shock jet model. Remarkably, the predicted radio emission is consistent with current upper limits. Our results show that for these two sources, a compact dark jet could persist in the soft state with no major modification of its kinetic power compared to the hard state.
Experimental investigation of an ammonia-based combined power and cooling cycle
NASA Astrophysics Data System (ADS)
Tamm, Gunnar Olavi
A novel ammonia-water thermodynamic cycle, capable of producing both power and refrigeration, was proposed by D. Yogi Goswami. The binary mixture exhibits variable boiling temperatures during the boiling process, which leads to a good thermal match between the heating fluid and working fluid for efficient heat source utilization. The cycle can be driven by low temperature sources such as solar, geothermal, and waste heat from a conventional power cycle, reducing the reliance on high temperature sources such as fossil fuels. A theoretical simulation of the cycle at heat source temperatures obtainable from low and mid temperature solar collectors showed that the ideal cycle could produce power and refrigeration at a maximum exergy efficiency, defined as the ratio of the net work and refrigeration output to the change in availability of the heat source, of over 60%. The exergy efficiency is a useful measure of the cycle's performance as it compares the effectiveness of different cycles in harnessing the same source. An experimental system was constructed to demonstrate the feasibility of the cycle and to compare the experimental results with the theoretical simulations. In this first phase of experimentation, the turbine expansion was simulated with a throttling valve and a heat exchanger. Results showed that the vapor generation and absorption condensation processes work experimentally. The potential for combined turbine work and refrigeration output was evidenced in operating the system. Analysis of losses led to modifications in the system design, which were implemented to yield improvements in heat exchange, vapor generation, pump performance and overall stability. The research that has been conducted verifies the potential of the power and cooling cycle as an alternative to using conventional fossil fuel technologies. The research that continues is to further demonstrate the concept and direct it towards industry. On the large scale, the cycle can be used for industrial power production or as a central power plant for a community, with refrigeration produced as required by the application. On the small scale, an affordable residential or commercial unit could allow independent electricity generation for the home or business while also cooling it.
Thermally driven electrokinetic energy conversion with liquid water microjets
Lam, Royce K.; Gamlieli, Zach; Harris, Stephen J.; ...
2015-11-01
One goal of current energy research is to design systems and devices that can efficiently exploit waste heat and utilize solar or geothermal heat energy for electrical power generation. We demonstrate a novel technique exploiting water's large coefficient of thermal expansion, wherein modest thermal gradients produce the requisite high pressure for driving fast-flowing liquid water microjets, which can effect the direct conversion of the kinetic energy into electricity and gaseous hydrogen. Waste heat in thermoelectric generating plants and combustion engines, as well as solar and geothermal energy could be used to drive these systems.
Thermally driven electrokinetic energy conversion with liquid water microjets
NASA Astrophysics Data System (ADS)
Lam, Royce K.; Gamlieli, Zach; Harris, Stephen J.; Saykally, Richard J.
2015-11-01
A goal of current energy research is to design systems and devices that can efficiently exploit waste heat and utilize solar or geothermal heat energy for electrical power generation. We demonstrate a novel technique exploiting water's large coefficient of thermal expansion, wherein modest thermal gradients produce the requisite high pressure for driving fast-flowing liquid water microjets, which can effect the direct conversion of the kinetic energy into electricity and gaseous hydrogen. Waste heat in thermoelectric generating plants and combustion engines, as well as solar and geothermal energy could be used to drive these systems.
Geothermal pump down-hole energy regeneration system
Matthews, Hugh B.
1982-01-01
Geothermal deep well energy extraction apparatus is provided of the general kind in which solute-bearing hot water is pumped to the earth's surface from a subterranean location by utilizing thermal energy extracted from the hot water for operating a turbine motor for driving an electrical power generator at the earth 3 s surface, the solute bearing water being returned into the earth by a reinjection well. Efficiency of operation of the total system is increased by an arrangement of coaxial conduits for greatly reducing the flow of heat from the rising brine into the rising exhaust of the down-well turbine motor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-07-31
The GRIPS (Geothermal Resources Impact Projection Study) Commission was established by a Joint Powers Agreement between the California Counties of Lake, Mendocino, Napa, and Sonoma. The objectives of GRIPS are primarily to develop and use a cooperative environmental data collection and use system including natural, social, and economic considerations to facilitate their independent decisions and those of State and Federal agencies related to the environmental effects of geothermal development. This GRIPS Plan was prepared from a wide range of studies, workshops, and staff analyses. The plan is presented in four parts: summary and introduction; environmental data status report; planned programs;more » and budget. (MHR)« less
78 FR 17355 - Endangered and Threatened Species; Take of Anadromous Fish
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-21
...). The proposed research permit is intended to increase knowledge of the species and to help guide... watershed has been developed for geothermal power production by the Calpine Corporation, but is otherwise...
Effects of variability of X-ray binaries on the X-ray luminosity functions of Milky Way
NASA Astrophysics Data System (ADS)
Islam, Nazma; Paul, Biswajit
2016-08-01
The X-ray luminosity functions of galaxies have become a useful tool for population studies of X-ray binaries in them. The availability of long term light-curves of X-ray binaries with the All Sky X-ray Monitors opens up the possibility of constructing X-ray luminosity functions, by also including the intensity variation effects of the galactic X-ray binaries. We have constructed multiple realizations of the X-ray luminosity functions (XLFs) of Milky Way, using the long term light-curves of sources obtained in the 2-10 keV energy band with the RXTE-ASM. The observed spread seen in the value of slope of both HMXB and LMXB XLFs are due to inclusion of variable luminosities of X-ray binaries in construction of these XLFs as well as finite sample effects. XLFs constructed for galactic HMXBs in the luminosity range 1036-1039 erg/sec is described by a power-law model with a mean power-law index of -0.48 and a spread due to variability of HMXBs as 0.19. XLFs constructed for galactic LMXBs in the luminosity range 1036-1039 erg/sec has a shape of cut-off power-law with mean power-law index of -0.31 and a spread due to variability of LMXBs as 0.07.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solis, R.P.; Chavez, F.C.; Garcia, S.E.
1997-12-31
In any operating geothermal power plant, steam quality is one of the most important parameters being monitored. In the Bacon-Manito Geothermal Production Field (BGPF), an online steam quality monitoring system have been installed in two operating power plants which provides an accurate, efficient and continuous real-time data which is more responsive to the various requirements of the field operation. The system utilizes sodium as an indicator of steam purity. Sodium concentration is read by the flame photometer located at the interface after aspirating a sample of the condensed steam through a continuous condensate sampler. The condensate has been degassed throughmore » a condensate-NCG separator. The flame photometer analog signal is then converted by a voltage-to-current converter/transmitter and relayed to the processor which is located at the control center through electrical cable to give a digital sodium concentration read-out at the control panel. The system features a high and high-high sodium level alarm, a continuous strip-chart recorder and a central computer for data capture, retrieval, and processing for further interpretation. Safety devices, such as the flame-off indicator at the control center and the automatic fuel cut-off device along the fuel line, are incorporated in the system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
This fact sheet summarizes the research highlights for the Clean Energy Manufacturing Analysis Center (CEMAC) for Fiscal Year 2106. Topics covered include additive manufacturing for the wind industry, biomass-based chemicals substitutions, carbon fiber manufacturing facility siting, geothermal power plant turbines, hydrogen refueling stations, hydropower turbines, LEDs and lighting, light-duty automotive lithium-ion cells, magnetocaloric refrigeration, silicon carbide power electronics for variable frequency motor drives, solar photovoltaics, and wide bandgap semiconductor opportunities in power electronics.