Sample records for binary ice technology

  1. BINARY: an optical freezing array for assessing temperature and time dependence of heterogeneous ice nucleation

    NASA Astrophysics Data System (ADS)

    Budke, C.; Koop, T.

    2014-09-01

    A new optical freezing array for the study of heterogeneous ice nucleation in microliter-sized droplets is introduced, tested and applied to the study of immersion freezing in aqueous Snomax® suspensions. In the Bielefeld Ice Nucleation ARraY (BINARY) ice nucleation can be studied simultaneously in 36 droplets at temperatures down to -40 °C (233 K) and at cooling rates between 0.1 K min-1 and 10 K min-1. The droplets are separated from each other in individual compartments, thus preventing a Wegener-Bergeron-Findeisen type water vapor transfer between droplets as well as avoiding the seeding of neighboring droplets by formation and surface growth of frost halos. Analysis of freezing and melting occurs via an automated real time image analysis of the optical brightness of each individual droplet. As an application ice nucleation in water droplets containing Snomax® at concentrations from 1 ng mL-1 to 1 mg mL-1 was investigated. Using different cooling rates a minute time dependence of ice nucleation induced by Class A and Class C ice nucleators contained in Snomax® was detected. For the Class A IN a very strong increase of the heterogeneous ice nucleation rate coefficient with decreasing temperature of λ ≡ -dln(jhet)/dT = 8.7 K-1 was observed emphasizing the capability of the BINARY device. This value is larger than those of other types of IN reported in the literature, suggesting that the BINARY setup is suitable for quantifying time dependence for most other IN of atmospheric interest, making it a useful tool for future investigations.

  2. BINARY: an optical freezing array for assessing temperature and time dependence of heterogeneous ice nucleation

    NASA Astrophysics Data System (ADS)

    Budke, C.; Koop, T.

    2015-02-01

    A new optical freezing array for the study of heterogeneous ice nucleation in microliter-sized droplets is introduced, tested and applied to the study of immersion freezing in aqueous Snomax® suspensions. In the Bielefeld Ice Nucleation ARraY (BINARY) ice nucleation can be studied simultaneously in 36 droplets at temperatures down to -40 °C (233 K) and at cooling rates between 0.1 and 10 K min-1. The droplets are separated from each other in individual compartments, thus preventing a Wegener-Bergeron-Findeisen type water vapor transfer between droplets as well as avoiding the seeding of neighboring droplets by formation and surface growth of frost halos. Analysis of freezing and melting occurs via an automated real-time image analysis of the optical brightness of each individual droplet. As an application ice nucleation in water droplets containing Snomax® at concentrations from 1 ng mL-1 to 1 mg mL-1 was investigated. Using different cooling rates, a small time dependence of ice nucleation induced by two different classes of ice nucleators (INs) contained in Snomax® was detected and the corresponding heterogeneous ice nucleation rate coefficient was quantified. The observed time dependence is smaller than those of other types of INs reported in the literature, suggesting that the BINARY setup is suitable for quantifying time dependence for most other INs of atmospheric interest, making it a useful tool for future investigations.

  3. Enhanced decolorization of methyl orange in aqueous solution using iron-carbon micro-electrolysis activation of sodium persulfate.

    PubMed

    Li, Peng; Liu, Zhipeng; Wang, Xuegang; Guo, Yadan; Wang, Lizhang

    2017-08-01

    Reactivity of sodium persulfate (PS) in the decolorization of methyl orange (MO) in aqueous solution using an iron-carbon micro-electrolysis (ICE) method was investigated. The effects of sodium persulfate doses, pH, Fe-to-C mass ratios, initial MO concentration as well as the reaction temperature were comprehensively studied in batch experiments. The ICE-PS coupled process was more suitable for wide ranges of pH, initial MO concentration and reaction temperature, accompanied by the reduction of Fe compared ICE. The MO removal efficiency improved substantially by ICE-PS technique, 76.03% for ICE and 91.27% for ICE-PS at experimental conditions of pH 3.0, Fe-to-C mass ratio 3:1, PS addition 10 mM and initial MO concentration 0.61 mM. Furthermore, the biodegradability index (BI) dramatically increased from 0.26 to 0.65. The binary hydroxyl and sulfate radicals that non-selectively degrade MO to the derivatives with small molecules are ascribed to ICE-PS method as detected by the UV-vis spectra. The PS activation resource was Fe 2+ through the hydroxyl radical quenching reaction by the additive tert-butanol (TBA). This study provides an in-depth theoretical understanding of the development and wide commercial application of the ICE technology to refractory industrial dye wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. UV IRRADIATION OF AROMATIC NITROGEN HETEROCYCLES IN INTERSTELLAR ICE ANALOGS

    NASA Technical Reports Server (NTRS)

    Elsila, J. E.; Bernstein, M. P.; Sanford, S. A.

    2005-01-01

    Here, we present information on the properties of the ANH quinoline frozen in interstellar water-ice analogs. Quinoline is a two-ring compound structurally analogous to the PAH naphthalene. In this work, binary mixtures of water and quinoline were frozen to create interstellar ice analogs, which were then subjected to ultraviolet photolysis. We will present the infrared spectra of the resulting ices at various temperatures, as well as chromatographic analysis of the residues remaining upon warm-up of these ices to room temperature.

  5. Measurements of thermodynamic and optical properties of selected aqueous organic and organic-inorganic mixtures of atmospheric relevance.

    PubMed

    Lienhard, Daniel M; Bones, David L; Zuend, Andreas; Krieger, Ulrich K; Reid, Jonathan P; Peter, Thomas

    2012-10-11

    Atmospheric aerosol particles can exhibit liquid solution concentrations supersaturated with respect to the dissolved organic and inorganic species and supercooled with respect to ice. In this study, thermodynamic and optical properties of sub- and supersaturated aqueous solutions of atmospheric interest are presented. The density, refractive index, water activity, ice melting temperatures, and homogeneous ice freezing temperatures of binary aqueous solutions containing L(+)-tartaric acid, tannic acid, and levoglucosan and ternary aqueous solutions containing levoglucosan and one of the salts NH(4)HSO(4), (NH(4))(2)SO(4), and NH(4)NO(3) have been measured in the supersaturated concentration range for the first time. In addition, the density and refractive index of binary aqueous citric acid and raffinose solutions and the glass transition temperatures of binary aqueous L(+)-tartaric acid and levoglucosan solutions have been measured. The data presented here are derived from experiments on single levitated microdroplets and bulk solutions and should find application in thermodynamic and atmospheric aerosol models as well as in food science applications.

  6. Solidification and microstructures of binary ice-I/hydrate eutectic aggregates

    USGS Publications Warehouse

    McCarthy, C.; Cooper, R.F.; Kirby, S.H.; Rieck, K.D.; Stern, L.A.

    2007-01-01

    The microstructures of two-phase binary aggregates of ice-I + salt-hydrate, prepared by eutectic solidification, have been characterized by cryogenic scanning electron microscopy (CSEM). The specific binary systems studied were H2O-Na2SO4, H2O-MgSO4, H2O-NaCl, and H2O-H2SO4; these were selected based on their potential application to the study of tectonics on the Jovian moon Europa. Homogeneous liquid solutions of eutectic compositions were undercooled modestly (??T - 1-5 ??C); similarly cooled crystalline seeds of the same composition were added to circumvent the thermodynamic barrier to nucleation and to control eutectic growth under (approximately) isothermal conditions. CSEM revealed classic eutectic solidification microstructures with the hydrate phase forming continuous lamellae, discontinuous lamellae, or forming the matrix around rods of ice-I, depending on the volume fractions of the phases and their entropy of dissolving and forming a homogeneous aqueous solution. We quantify aspects of the solidification behavior and microstructures for each system and, with these data articulate anticipated effects of the microstructure on the mechanical responses of the materials.

  7. Direct micropatterning of polymer materials by ice mold

    NASA Astrophysics Data System (ADS)

    Yu, Xinhong; Xing, Rubo; Luan, Shifang; Wang, Zhe; Han, Yanchun

    2006-10-01

    Micropatterning of functional polymer materials by micromolding in capillaries (MIMIC) with ice mold is reported in this paper. Ice mold was selected due to its thaw or sublimation. Thus, the mold can be easily removed. Furthermore, the polymer solution did not react with, swell, or adhere to the ice mold, so the method is suitable for many kinds of materials (such as P3HT, PMMA Alq 3/PVK, PEDOT: PSS, PS, P2VP, etc.). Freestanding polymer microstructures, binary polymer pattern, and microchannels have been fabricated by the use of ice mold freely.

  8. Mechanical and thermal properties of planetologically important ices

    NASA Technical Reports Server (NTRS)

    Croft, Steven K.

    1987-01-01

    Two squences of ice composition were proposed for the icy satellites: a dense nebula model and a solar nebula model. Careful modeling of the structure, composition, and thermal history of satellites composed of these various ices requires quantitative information on the density, compressibility, thermal expansion, heat capacity, and thermal conductivity. Equations of state were fitted to the density data of the molecular ices. The unusual thermal and mechanical properties of the molecular and binary ices suggest a larger range of phenomena than previously anticipated, sufficiently complex perhaps to account for many of the unusual geologic phenomena found on the icy satellites.

  9. Controllable Thermal Rectification Realized in Binary Phase Change Composites

    PubMed Central

    Chen, Renjie; Cui, Yalong; Tian, He; Yao, Ruimin; Liu, Zhenpu; Shu, Yi; Li, Cheng; Yang, Yi; Ren, Tianling; Zhang, Gang; Zou, Ruqiang

    2015-01-01

    Phase transition is a natural phenomenon happened around our daily life, represented by the process from ice to water. While melting and solidifying at a certain temperature, a high heat of fusion is accompanied, classified as the latent heat. Phase change material (PCM) has been widely applied to store and release large amount of energy attributed to the distinctive thermal behavior. Here, with the help of nanoporous materials, we introduce a general strategy to achieve the binary eicosane/PEG4000 stuffed reduced graphene oxide aerogels, which has two ends with different melting points. It's successfully demonstrated this binary PCM composites exhibits thermal rectification characteristic. Partial phase transitions within porous networks instantaneously result in one end of the thermal conductivity saltation at a critical temperature, and therefore switch on or off the thermal rectification with the coefficient up to 1.23. This value can be further raised by adjusting the loading content of PCM. The uniqueness of this device lies in its performance as a normal thermal conductor at low temperature, only exhibiting rectification phenomenon when temperature is higher than a critical value. The stated technology has broad applications for thermal energy control in macroscopic scale such as energy-efficiency building or nanodevice thermal management. PMID:25748640

  10. Controllable Thermal Rectification Realized in Binary Phase Change Composites

    NASA Astrophysics Data System (ADS)

    Chen, Renjie; Cui, Yalong; Tian, He; Yao, Ruimin; Liu, Zhenpu; Shu, Yi; Li, Cheng; Yang, Yi; Ren, Tianling; Zhang, Gang; Zou, Ruqiang

    2015-03-01

    Phase transition is a natural phenomenon happened around our daily life, represented by the process from ice to water. While melting and solidifying at a certain temperature, a high heat of fusion is accompanied, classified as the latent heat. Phase change material (PCM) has been widely applied to store and release large amount of energy attributed to the distinctive thermal behavior. Here, with the help of nanoporous materials, we introduce a general strategy to achieve the binary eicosane/PEG4000 stuffed reduced graphene oxide aerogels, which has two ends with different melting points. It's successfully demonstrated this binary PCM composites exhibits thermal rectification characteristic. Partial phase transitions within porous networks instantaneously result in one end of the thermal conductivity saltation at a critical temperature, and therefore switch on or off the thermal rectification with the coefficient up to 1.23. This value can be further raised by adjusting the loading content of PCM. The uniqueness of this device lies in its performance as a normal thermal conductor at low temperature, only exhibiting rectification phenomenon when temperature is higher than a critical value. The stated technology has broad applications for thermal energy control in macroscopic scale such as energy-efficiency building or nanodevice thermal management.

  11. MODIS Snow and Sea Ice Products

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.

    2004-01-01

    In this chapter, we describe the suite of Earth Observing System (EOS) Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua snow and sea ice products. Global, daily products, developed at Goddard Space Flight Center, are archived and distributed through the National Snow and Ice Data Center at various resolutions and on different grids useful for different communities Snow products include binary snow cover, snow albedo, and in the near future, fraction of snow in a 5OO-m pixel. Sea ice products include ice extent determined with two different algorithms, and sea ice surface temperature. The algorithms used to develop these products are described. Both the snow and sea ice products, available since February 24,2000, are useful for modelers. Validation of the products is also discussed.

  12. Surface structure, crystallographic and ice-nucleating properties of cellulose

    NASA Astrophysics Data System (ADS)

    Hiranuma, Naruki; Möhler, Ottmar; Kiselev, Alexei; Saathoff, Harald; Weidler, Peter; Shutthanandan, Shuttha; Kulkarni, Gourihar; Jantsch, Evelyn; Koop, Thomas

    2015-04-01

    Increasing evidence of the high diversity and efficient freezing ability of biological ice-nucleating particles is driving a reevaluation of their impact upon climate. Despite their potential importance, little is known about their atmospheric abundance and ice nucleation efficiency, especially non-proteinaceous ones, in comparison to non-biological materials (e.g., mineral dust). Recently, microcrystalline cellulose (MCC; non-proteinaceous plant structural polymer) has been identified as a potential biological ice-nucleating particle. However, it is still uncertain if the ice-nucleating activity is specific to the MCC structure or generally relevant to all cellulose materials, such that the results of MCC can be representatively scaled up to the total cellulose content in the atmosphere to address its role in clouds and the climate system. Here we use the helium ion microscopy (HIM) imaging and the X-ray diffraction (XRD) technique to characterize the nanoscale surface structure and crystalline properties of the two different types of cellulose (MCC and fibrous cellulose extracted from natural wood pulp) as model proxies for atmospheric cellulose particles and to assess their potential accessibility for water molecules. To complement these structural characterizations, we also present the results of immersion freezing experiments using the cold stage-based droplet freezing BINARY (Bielefeld Ice Nucleation ARaY) technique. The HIM results suggest that both cellulose types have a complex porous morphology with capillary spaces between the nanoscale fibrils over the microfiber surface. These surface structures may make cellulose accessible to water. The XRD results suggest that the structural properties of both cellulose materials are in agreement (i.e., P21 space group; a=7.96 Å, b=8.35 Å, c=10.28 Å) and comparable to the crystallographic properties of general monoclinic cellulose (i.e., Cellulose Iβ). The results obtained from the BINARY measurements suggest that there is no significant difference of the immersion ice nucleation activity of MCC and fibrous cellulose in supercooled water. Overall, our findings support the view that MCC may be a good proxy for inferring water uptake, wettability and ice nucleating properties of various cellulose materials. In addition, we discuss the ice-nucleating efficiencies of both cellulose samples and plant debris from the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) chamber experiments in comparison to the BINARY results. The influence of the acid processing of cellulose on its ice nucleation propensity may also be discussed to further demonstrate their atmospheric relevancy. Acknowledgement: We acknowledge support by German Research Society (DFG) and Ice Nuclei research UnIT (FOR 1525 INUIT).

  13. Study of the photon-induced formation and subsequent desorption of CH3OH and H2CO in interstellar ice analogs

    NASA Astrophysics Data System (ADS)

    Martín-Doménech, R.; Muñoz Caro, G. M.; Cruz-Díaz, G. A.

    2016-05-01

    Context. Methanol and formaldehyde are two simple organic molecules that are ubiquitously detected in the interstellar medium, in both the solid and gaseous phases. An origin in the solid phase and a subsequent nonthermal desorption into the gas phase is often invoked to explain their abundances in some of the environments where they are found. Experimental simulations under astrophysically relevant conditions have been carried out in the past four decades in order to find a suitable mechanism for that process. Aims: In particular, photodesorption from pure methanol ice (and presumably from pure formaldehyde ice) has been found to be negligible in previous works, probably because both molecules are very readily dissociated by vacuum-UV photons. Therefore, we explore the in situ formation and subsequent photon-induced desorption of these species, studying the UV photoprocessing of pure ethanol ice, and a more realistic binary H2O:CH4 ice analog. Methods: Experimental simulations were performed in an ultra-high vacuum chamber. Pure ethanol and binary H2O:CH4 ice samples deposited onto an infrared transparent window at 8 K were UV-irradiated using a microwave-discharged hydrogen flow lamp. Evidence of photochemical production of these two species and subsequent UV-photon-induced desorption into the gas phase were searched for by means of a Fourier transform infrared spectrometer and a quadrupole mass spectrometer, respectively. After irradiation, ice samples were warmed up to room temperature until complete sublimation was attained for detection of volatile products. Results: Formation of CH3OH was only observed during photoprocessing of the H2O:CH4 ice analog, accounting for ~4% of the initial CH4 ice column density, but no photon-induced desorption was detected. Photochemical production of H2CO was observed in both series of experiments. Formation of formaldehyde accounted for ≤45% conversion of the initial ethanol ice, but it could not be quantified during irradiation of the binary H2O:CH4 ice analogs. Photochemidesorption of formaldehyde, I.e., photon-induced formation on the ice surface and inmediate desorption, was observed, with a yield of ~6 × 10-5 (molecules/incident photon) in the case of the pure ethanol ice experiments, and ~4.4 × 10-5 (molecules/incident photon) when the H2O:CH4 ice analogs were photoprocessed. Photoprocessing of the ice analogs lead to formation of other species. Some of them were also found to desorb upon UV irradiation. Conclusions: While certain C-bearing species, in particular H2CO, were found to desorb upon irradiation, nonthermal desorption of CH3OH was not observed. So far, there is no experimental evidence of any efficient CH3OH desorption induced by UV photons. On the other hand, the observed photon-induced desorption of H2CO could account for the total formaldehyde abundance observed in the Horsehead photodissociation-dominated region.

  14. "Man-Up, Go and Get an Ice-Pack." Gendered Stereotypes and Binaries within the Primary Classroom: A Thing of the Past?

    ERIC Educational Resources Information Center

    Hamilton, Paula; Roberts, Bethan

    2017-01-01

    Gendered expectations are deeply embedded within the fabric of a society and the classroom is no exception; binaries habitually pervade attitudes, practices and pedagogies. This small-scale qualitative-interpretive study, undertaken in one rural primary school in North Wales, explores how the learning of gender is constructed, enacted and…

  15. Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, A.; André, M.; Anghinolfi, M.

    The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by the Fermi Gamma-ray Burst Monitor (Fermi-GBM), and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory (INTEGRAL), indicating particle acceleration by the source. The precise location of the event was determined by optical detections of emission following the merger. We searched for high-energy neutrinos from the merger in the GeV–EeV energy range using the Antares, IceCube, and Pierre Auger Observatories. No neutrinos directionally coincidentmore » with the source were detected within ±500 s around the merger time. Additionally, no MeV neutrino burst signal was detected coincident with the merger. We further carried out an extended search in the direction of the source for high-energy neutrinos within the 14 day period following the merger, but found no evidence of emission. We used these results to probe dissipation mechanisms in relativistic outflows driven by the binary neutron star merger. The non-detection is consistent with model predictions of short GRBs observed at a large off-axis angle.« less

  16. Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory

    DOE PAGES

    Albert, A.; André, M.; Anghinolfi, M.; ...

    2017-11-29

    The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by the Fermi Gamma-ray Burst Monitor (Fermi-GBM), and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory (INTEGRAL), indicating particle acceleration by the source. The precise location of the event was determined by optical detections of emission following the merger. We searched for high-energy neutrinos from the merger in the GeV–EeV energy range using the Antares, IceCube, and Pierre Auger Observatories. No neutrinos directionally coincidentmore » with the source were detected within ±500 s around the merger time. Additionally, no MeV neutrino burst signal was detected coincident with the merger. We further carried out an extended search in the direction of the source for high-energy neutrinos within the 14 day period following the merger, but found no evidence of emission. We used these results to probe dissipation mechanisms in relativistic outflows driven by the binary neutron star merger. The non-detection is consistent with model predictions of short GRBs observed at a large off-axis angle.« less

  17. Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Albert, A.; André, M.; Anghinolfi, M.; Ardid, M.; Aubert, J.-J.; Aublin, J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Belhorma, B.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M. C.; Brânzaş, H.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Cherkaoui El Moursli, R.; Chiarusi, T.; Circella, M.; Coelho, J. A. B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Díaz, A. F.; Deschamps, A.; De Bonis, G.; Distefano, C.; Di Palma, I.; Domi, A.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; El Khayati, N.; Elsässer, D.; Enzenhöfer, A.; Ettahiri, A.; Fassi, F.; Felis, I.; Fusco, L. A.; Gay, P.; Giordano, V.; Glotin, H.; Grégoire, T.; Ruiz, R. Gracia; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Navas, S.; Nezri, E.; Organokov, M.; Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sánchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schüssler, F.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tönnis, C.; Vallage, B.; Van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzoca, A.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; ANTARES Collaboration; Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Samarai, I. Al; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Barron, J. P.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Bourbeau, E.; Bourbeau, J.; Bradascio, F.; Braun, J.; Brayeur, L.; Brenzke, M.; Bretz, H.-P.; Bron, S.; Brostean-Kaiser, J.; Burgman, A.; Carver, T.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; DeLaunay, J. J.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Dvorak, E.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; Hünnefeld, M.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kalaczynski, P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koschinsky, J. P.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lesiak-Bzdak, M.; Leuermann, M.; Liu, Q. R.; Lu, L.; Lünemann, J.; Luszczak, W.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.; Momenté, G.; Montaruli, T.; Moore, R. W.; Moulai, M.; Nahnhauer, R.; Nakarmi, P.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O’Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Plum, M.; Pranav, D.; Price, P. B.; Przybylski, G. T.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Rea, I. C.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sälzer, T.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soedingrekso, J.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strotjohann, N. L.; Stuttard, T.; Sullivan, G. W.; Sutherland, M.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Turley, C. F.; Ty, B.; Unger, E.; Usner, M.; Vandenbroucke, J.; Van Driessche, W.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Vehring, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandler, F. D.; Wandkowsky, N.; Waza, A.; Weaver, C.; Weiss, M. J.; Wendt, C.; Werthebach, J.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, J.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Yuan, T.; Zoll, M.; IceCube Collaboration; Aab, A.; Abreu, P.; Aglietta, M.; Albuquerque, I. F. M.; Albury, J. M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arsene, N.; Asorey, H.; Assis, P.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Barbato, F.; Barreira Luz, R. J.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caruso, R.; Castellina, A.; Catalani, F.; Cataldi, G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Cobos Cerutti, A. C.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Consolati, G.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D’Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; Day, J. A.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D’Olivo, J. C.; Dorosti, Q.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Farmer, J.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Feldbusch, F.; Fenu, F.; Fick, B.; Figueira, J. M.; Filipčič, A.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaïor, R.; García, B.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gorgi, A.; Gottowik, M.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Halliday, R.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harvey, V. M.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Johnsen, J. A.; Josebachuili, M.; Jurysek, J.; Kääpä, A.; Kampert, K. H.; Keilhauer, B.; Kemmerich, N.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; Lago, B. L.; LaHurd, D.; Lang, R. G.; Lauscher, M.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lo Presti, D.; Lopes, L.; López, R.; López Casado, A.; Lorek, R.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Merenda, K.-D.; Michal, S.; Micheletti, M. I.; Middendorf, L.; Miramonti, L.; Mitrica, B.; Mockler, D.; Mollerach, S.; Montanet, F.; Morello, C.; Morlino, G.; Mostafá, M.; Müller, A. L.; Müller, G.; Muller, M. A.; Müller, S.; Mussa, R.; Naranjo, I.; Nellen, L.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Núñez, L. A.; Oikonomou, F.; Olinto, A.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perlin, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Pierog, T.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Poh, J.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.; Ravignani, D.; Ridky, J.; Riehn, F.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl, P.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Schauer, M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schröder, S.; Schulz, A.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Soriano, J. F.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Stassi, P.; Stolpovskiy, M.; Strafella, F.; Streich, A.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Šupík, J.; Swain, J.; Szadkowski, Z.; Taboada, A.; Taborda, O. A.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Torralba Elipe, G.; Travnicek, P.; Trini, M.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Vázquez, R. A.; Veberič, D.; Ventura, C.; Vergara Quispe, I. D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiedeński, M.; Wiencke, L.; Wilczyński, H.; Wirtz, M.; Wittkowski, D.; Wundheiler, B.; Yang, L.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.; The Pierre Auger Collaboration; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D’Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O’Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O’Reilly, B.; Ormiston, R.; Ortega, L. F.; O’Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2017-12-01

    The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by the Fermi Gamma-ray Burst Monitor (Fermi-GBM), and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory (INTEGRAL), indicating particle acceleration by the source. The precise location of the event was determined by optical detections of emission following the merger. We searched for high-energy neutrinos from the merger in the GeV–EeV energy range using the ANTARES, IceCube, and Pierre Auger Observatories. No neutrinos directionally coincident with the source were detected within ±500 s around the merger time. Additionally, no MeV neutrino burst signal was detected coincident with the merger. We further carried out an extended search in the direction of the source for high-energy neutrinos within the 14 day period following the merger, but found no evidence of emission. We used these results to probe dissipation mechanisms in relativistic outflows driven by the binary neutron star merger. The non-detection is consistent with model predictions of short GRBs observed at a large off-axis angle.

  18. Binary optics: Trends and limitations

    NASA Technical Reports Server (NTRS)

    Farn, Michael W.; Veldkamp, Wilfrid B.

    1993-01-01

    We describe the current state of binary optics, addressing both the technology and the industry (i.e., marketplace). With respect to the technology, the two dominant aspects are optical design methods and fabrication capabilities, with the optical design problem being limited by human innovation in the search for new applications and the fabrication issue being limited by the availability of resources required to improve fabrication capabilities. With respect to the industry, the current marketplace does not favor binary optics as a separate product line and so we expect that companies whose primary purpose is the production of binary optics will not represent the bulk of binary optics production. Rather, binary optics' more natural role is as an enabling technology - a technology which will directly result in a competitive advantage in a company's other business areas - and so we expect that the majority of binary optics will be produced for internal use.

  19. Three-Phase Melting Curves in the Binary System of Carbon Dioxide and Water

    NASA Astrophysics Data System (ADS)

    Abramson, E. H.

    2017-10-01

    Invariant, three-phase melting curves, of ice VI in equilibrium with solid CO2, of ice VII in equilibrium with solid CO2, and of solid CO2 in simultaneous equilibrium with a majority aqueous and a majority CO2 fluid, were explored in the binary system of carbon dioxide and water. Diamond-anvil cells were used to develop pressures of 5 GPa. Water exhibits a large melting temperature depression (73°C less than its pure melting temperature of 253°C at 5 GPa) indicative of large concentrations of CO2 in the aqueous solution. The melting point of water-saturated CO2 does not show a measureable departure from that of the pure system at temperatures lower than ∼200°C and only 10°C at 5 GPa (from 327°C).

  20. Prediction of ice content in biological model solutions when frozen under high pressure.

    PubMed

    Guignon, B; Aparicio, C; Otero, L; Sanz, P D

    2009-01-01

    High pressure is, at least, as effective as cryoprotective agents (CPAs) and are used for decreasing both homogenous nucleation and freezing temperatures. This fact gives rise to a great variety of possible cryopreservation processes under high pressure. They have not been optimized yet, since they are relatively recent and are mainly based on the pressure-temperature phase diagram of pure water. Very few phase diagrams of biological material are available under pressure. This is owing to the lack of suitable equipment and to the difficulties encountered in carrying out the measurements. Different aqueous solutions of salt and CPAs as biological models are studied in the range of 0 degrees C down to -35 degrees C, 0.1 up to 250 MPa, and 0-20% w/w total solute concentration. The phase transition curves of glycerol and of sodium chloride with either glycerol or sucrose in aqueous solutions are determined in a high hydrostatic pressure vessel. The experimental phase diagrams of binary solutions were well described by a third-degree polynomial equation. It was also shown that Robinson and Stokes' equation at high pressure succeeds in predicting the phase diagrams of both binary and ternary solutions. The solute cryoconcentration and the ice content were calculated as a function of temperature and pressure conditions during the freezing of a binary solution. This information should provide a basis upon which high-pressure cryopreservation processes may be performed and the damages derived from ice formation evaluated. (c) 2009 American Institute of Chemical Engineers Biotechnol.

  1. Investigation of heterogeneous ice nucleation in pollen suspensions and washing water

    NASA Astrophysics Data System (ADS)

    Dreischmeier, Katharina; Budke, Carsten; Koop, Thomas

    2014-05-01

    Biological particles such as pollen often show ice nucleation activity at temperatures higher than -20 °C. Immersion freezing experiments of pollen washing water demonstrate comparable ice nucleation behaviour as water containing the whole pollen bodies (Pummer et al., 2012). It was suggested that polysaccharide molecules leached from the grains are responsible for the ice nucleation. Here, heterogeneous ice nucleation in birch pollen suspensions and their washing water was investigated by two different experimental methods. The optical freezing array BINARY (Bielefeld Ice Nucleation ARraY) allows the direct observation of freezing of microliter-sized droplets. The IN spectra obtained from such experiments with birch pollen suspensions over a large concentration range indicate several different ice nucleation active species, two of which are present also in the washing water. The latter was probed also in differential scanning calorimeter (DSC) experiments of emulsified sub-picoliter droplets. Due to the small droplet size in the emulsion samples and at small concentration of IN in the washing water, such DSC experiments can exhibit the ice nucleation behaviour of a single nucleus. The two heterogeneous freezing signals observed in the DSC thermograms can be assigned to two different kinds of ice nuclei, confirming the observation from the BINARY measurements, and also previous studies on Swedish birch pollen washing water (Augustin et al., 2012). The authors gratefully acknowledge funding by the German Research Foundation (DFG) through the project BIOCLOUDS (KO 2944/1-1) and through the research unit INUIT (FOR 1525) under KO 2944/2-1. We particularly thank our INUIT partners for fruitful collaboration and sharing of ideas and IN samples. S. Augustin, H. Wex, D. Niedermeier, B. Pummer, H. Grothe, S. Hartmann, L. Tomsche, T. Clauss, J. Voigtländer, K. Ignatius, and F. Stratmann, Immersion freezing of birch pollen washing water, Atmos. Chem. Phys., 13, 10989-11003, 2013. B. Pummer, H Bauer, J. Bernardi, S. Bleicher, H. Grothe, Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen, Atmos. Chem. Phys., 12, 2541-2550, 2012.

  2. Predicting the Kinetics of Ice Recrystallization in Aqueous Sugar Solutions

    PubMed Central

    2018-01-01

    The quality of stored frozen products such as foods and biomaterials generally degrades in time due to the growth of large ice crystals by recrystallization. While there is ample experimental evidence that recrystallization within such products (or model systems thereof) is often dominated by diffusion-limited Ostwald ripening, the application of Ostwald-ripening theories to predict measured recrystallization rates has only met with limited success. For a model system of polycrystalline ice within an aqueous solution of sugars, we here show recrystallization rates can be predicted on the basis of Ostwald ripening theory, provided (1) the theory accounts for the fact the solution can be nonideal, nondilute and of different density than the crystals, (2) the effect of ice-phase volume fraction on the diffusional flux of water between crystals is accurately described, and (3) all relevant material properties (involving binary Fick diffusion coefficients, the thermodynamic factor of the solution, and the surface energy of ice) are carefully estimated. To enable calculation of material properties, we derive an alternative formulation of Ostwald ripening in terms of the Maxwell–Stefan instead of the Fick approach to diffusion. First, this leads to a cancellation of the thermodynamic factor (a measure for the nonideality of a solution), which is a notoriously difficult property to obtain. Second, we show that Maxwell–Stefan diffusion coefficients can to a reasonable approximation be related to self-diffusion coefficients, which are relatively easy to measure or predict in comparison to Fick diffusion coefficients. Our approach is validated for a binary system of water and sucrose, for which we show predicted recrystallization rates of ice compare well to experimental results, with relative deviations of at most a factor of 2. PMID:29651228

  3. Predicting the Kinetics of Ice Recrystallization in Aqueous Sugar Solutions.

    PubMed

    van Westen, Thijs; Groot, Robert D

    2018-04-04

    The quality of stored frozen products such as foods and biomaterials generally degrades in time due to the growth of large ice crystals by recrystallization. While there is ample experimental evidence that recrystallization within such products (or model systems thereof) is often dominated by diffusion-limited Ostwald ripening, the application of Ostwald-ripening theories to predict measured recrystallization rates has only met with limited success. For a model system of polycrystalline ice within an aqueous solution of sugars, we here show recrystallization rates can be predicted on the basis of Ostwald ripening theory, provided (1) the theory accounts for the fact the solution can be nonideal, nondilute and of different density than the crystals, (2) the effect of ice-phase volume fraction on the diffusional flux of water between crystals is accurately described, and (3) all relevant material properties (involving binary Fick diffusion coefficients, the thermodynamic factor of the solution, and the surface energy of ice) are carefully estimated. To enable calculation of material properties, we derive an alternative formulation of Ostwald ripening in terms of the Maxwell-Stefan instead of the Fick approach to diffusion. First, this leads to a cancellation of the thermodynamic factor (a measure for the nonideality of a solution), which is a notoriously difficult property to obtain. Second, we show that Maxwell-Stefan diffusion coefficients can to a reasonable approximation be related to self-diffusion coefficients, which are relatively easy to measure or predict in comparison to Fick diffusion coefficients. Our approach is validated for a binary system of water and sucrose, for which we show predicted recrystallization rates of ice compare well to experimental results, with relative deviations of at most a factor of 2.

  4. NASA's aircraft icing technology program

    NASA Technical Reports Server (NTRS)

    Reinmann, John J.

    1991-01-01

    NASA' Aircraft Icing Technology program is aimed at developing innovative technologies for safe and efficient flight into forecasted icing. The program addresses the needs of all aircraft classes and supports both commercial and military applications. The program is guided by three key strategic objectives: (1) numerically simulate an aircraft's response to an in-flight icing encounter, (2) provide improved experimental icing simulation facilities and testing techniques, and (3) offer innovative approaches to ice protection. Our research focuses on topics that directly support stated industry needs, and we work closely with industry to assure a rapid and smooth transfer of technology. This paper presents selected results that illustrate progress towards the three strategic objectives, and it provides a comprehensive list of references on the NASA icing program.

  5. Advancing Technologies for Climate Observation

    NASA Technical Reports Server (NTRS)

    Wu, D.; Esper, J.; Ehsan, N.; Johnson, T.; Mast, W.; Piepmeier, J.; Racette, P.

    2014-01-01

    Climate research needs Accurate global cloud ice measurements Cloud ice properties are fundamental controlling variables of radiative transfer and precipitation Cost-effective, sensitive instruments for diurnal and wide-swath coverage Mature technology for space remote sensing IceCube objectivesDevelop and validate a flight-qualified 883 GHz receiver for future use in ice cloud radiometer missions Raise TRL (57) of 883 GHz receiver technology Reduce instrument cost and risk by developing path to space for COTS sub-mm-wave receiver systems Enable remote sensing of global cloud ice with advanced technologies and techniques

  6. NASA's program on icing research and technology

    NASA Technical Reports Server (NTRS)

    Reinmann, John J.; Shaw, Robert J.; Ranaudo, Richard J.

    1989-01-01

    NASA's program in aircraft icing research and technology is reviewed. The program relies heavily on computer codes and modern applied physics technology in seeking icing solutions on a finer scale than those offered in earlier programs. Three major goals of this program are to offer new approaches to ice protection, to improve our ability to model the response of an aircraft to an icing encounter, and to provide improved techniques and facilities for ground and flight testing. This paper reviews the following program elements: (1) new approaches to ice protection; (2) numerical codes for deicer analysis; (3) measurement and prediction of ice accretion and its effect on aircraft and aircraft components; (4) special wind tunnel test techniques for rotorcraft icing; (5) improvements of icing wind tunnels and research aircraft; (6) ground de-icing fluids used in winter operation; (7) fundamental studies in icing; and (8) droplet sizing instruments for icing clouds.

  7. Engineering of frustration in colloidal artificial ices realized on microfeatured grooved lattices

    PubMed Central

    Ortiz-Ambriz, Antonio; Tierno, Pietro

    2016-01-01

    Artificial spin ice systems, namely lattices of interacting single domain ferromagnetic islands, have been used to date as microscopic models of frustration induced by lattice topology, allowing for the direct visualization of spin arrangements and textures. However, the engineering of frustrated ice states in which individual spins can be manipulated in situ and the real-time observation of their collective dynamics remain both challenging tasks. Inspired by recent theoretical advances, here we realize a colloidal version of an artificial spin ice system using interacting polarizable particles confined to lattices of bistable gravitational traps. We show quantitatively that ice-selection rules emerge in this frustrated soft matter system by tuning the strength of the pair interactions between the microscopic units. Via independent control of particle positioning and dipolar coupling, we introduce monopole-like defects and strings and use loops with defined chirality as an elementary unit to store binary information. PMID:26830629

  8. Engineering of frustration in colloidal artificial ices realized on microfeatured grooved lattices.

    PubMed

    Ortiz-Ambriz, Antonio; Tierno, Pietro

    2016-02-01

    Artificial spin ice systems, namely lattices of interacting single domain ferromagnetic islands, have been used to date as microscopic models of frustration induced by lattice topology, allowing for the direct visualization of spin arrangements and textures. However, the engineering of frustrated ice states in which individual spins can be manipulated in situ and the real-time observation of their collective dynamics remain both challenging tasks. Inspired by recent theoretical advances, here we realize a colloidal version of an artificial spin ice system using interacting polarizable particles confined to lattices of bistable gravitational traps. We show quantitatively that ice-selection rules emerge in this frustrated soft matter system by tuning the strength of the pair interactions between the microscopic units. Via independent control of particle positioning and dipolar coupling, we introduce monopole-like defects and strings and use loops with defined chirality as an elementary unit to store binary information.

  9. Engineering of frustration in colloidal artificial ices realized on microfeatured grooved lattices

    NASA Astrophysics Data System (ADS)

    Tierno, Pietro

    Artificial spin-ice systems, namely lattices of interacting single domain ferromagnetic islands, have been used to date as microscopic models of frustration induced by lattice topology, allowing for the direct visualization of spin arrangements and textures. However, the engineering of frustrated ice states in which individual spins can be manipulated in situ and the real-time observation of their collective dynamics remain both challenging tasks. Inspired by recent theoretical advances, we realize a colloidal version of an artificial spin ice system using interacting polarizable particles confined to lattices of bistable gravitational traps. We show quantitatively that ice-selection rules emerge in this frustrated soft matter system by tuning the strength of the pair-interactions between the microscopic units. Via independent control of particle positioning and dipolar coupling, we introduce monopole-like defects and strings and use loops with defined chirality as an elementary unit to store binary information.

  10. Engineering of frustration in colloidal artificial ices realized on microfeatured grooved lattices

    NASA Astrophysics Data System (ADS)

    Ortiz-Ambriz, Antonio; Tierno, Pietro

    2016-02-01

    Artificial spin ice systems, namely lattices of interacting single domain ferromagnetic islands, have been used to date as microscopic models of frustration induced by lattice topology, allowing for the direct visualization of spin arrangements and textures. However, the engineering of frustrated ice states in which individual spins can be manipulated in situ and the real-time observation of their collective dynamics remain both challenging tasks. Inspired by recent theoretical advances, here we realize a colloidal version of an artificial spin ice system using interacting polarizable particles confined to lattices of bistable gravitational traps. We show quantitatively that ice-selection rules emerge in this frustrated soft matter system by tuning the strength of the pair interactions between the microscopic units. Via independent control of particle positioning and dipolar coupling, we introduce monopole-like defects and strings and use loops with defined chirality as an elementary unit to store binary information.

  11. ON THE FORMATION OF BENZOIC ACID AND HIGHER-ORDER BENZENE CARBOXYLIC ACIDS IN INTERSTELLAR MODEL ICE GRAINS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMurtry, Brandon M.; Saito, Sean E. J.; Turner, A

    With a binary ice mixture of benzene (C{sub 6}H{sub 6}) and carbon dioxide (CO{sub 2}) at 10 K under contamination-free ultrahigh vacuum conditions, the formation of benzene carboxylic acids in interstellar ice grains was studied. Fourier transform infrared spectroscopy was used to probe for the formation of new species during the chemical processing of the ice mixture and during the following temperature-programmed desorption. Newly formed benzene carboxylic acid species, i.e., benzoic acid, as well as meta - and para -benzene dicarboxylic acid, were assigned using newly emerging bands in the infrared spectrum; a reaction mechanism, along with rate constants, wasmore » proposed utilizing the kinetic fitting of the coupled differential equations.« less

  12. Heber Binary Project. Binary Cycle Geothermal Demonstration Power Plant (RP1900-1)

    NASA Astrophysics Data System (ADS)

    Lacy, R. G.; Nelson, T. T.

    1982-12-01

    The Heber Binary Project (1) demonstrates the potential of moderate temperature (below 410 F) geothermal energy to produce economic electric power with binary cycle conversion technology; (2) allows the scaling up and evaluation of the performance of binary cycle technology in geothermal service; (3) establishes schedule, cost and equipment performance, reservoir performance, and the environmental acceptability of such plants; and (4) resolves uncertainties associated with the reservoir performance, plant operation, and economics.

  13. Searches for Periodic Neutrino Emission from Binary Systems with 22 and 40 Strings of IceCube

    NASA Technical Reports Server (NTRS)

    Abassi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Allen, M. M.; Altmann, D.; Andeen, K.; hide

    2011-01-01

    Recent observations of GeV /TeV photon emission from several X-ray binaries have sparked a renewed interest in these objects as galactic particle accelerators. In spite of the available multi-wavelength data, their acceleration mechanisms are not determined, and the nature of the accelerated particles (hadrons or leptons) is unknown. While much evidence favors leptonic emission, it is very likely that a hadronic component is also accelerated in the jets of these binary systems. The observation of neutrino emission would be clear evidence for the presence of a hadronic component in the outflow of these sources. In this paper we look for periodic neutrino emission from binary systems. Such modulation, observed in the photon flux, would be caused by the geometry of these systems. The results of two searches are presented that differ in the treatment of the spectral shape and phase of the emission. The 'generic' search allows parameters to vary freely and best fit values, in a 'model-dependent' search, predictions are used to constrain these parameters. We use the IceCube data taken from May 31, 2007 to April 5, 2008 with its 22-string configuration, and from April 5, 2008 and May 20, 2009 with its 40-string configuration. For the generic search and the 40 string sample, we find that the most significant source in the catalog of 7 binary stars is Cygnus X-3 with a 1.8% probability after trials (2.10" sigma one-sided) of being produced by statistical fluctuations of the background. The model-dependent method tested a range of system geometries - the inclination and the massive star's disk size - for LS I+61 deg 303, no significant excess was found.

  14. Solubility of sodium chloride in superionic water ice

    NASA Astrophysics Data System (ADS)

    Hernandez, Jean-Alexis; Caracas, Razvan

    2017-04-01

    In icy planets, complex interactions are expected to occur at the interface between the rocky core and the icy mantle composed of mixtures based on water, methane, and ammonia [1, 2]. The hydration of the silicate layer produces salts (MgSO4, NaCl, KCl) that could mix with the ice, and change considerably its properties [3]. Here, we used first-principles molecular dynamics to investigate the stability and the properties of the binary system NaCl-H2O at the relevant thermodynamic conditions for planetary interiors up to ice giants. In these conditions, pure water ice undergoes several transitions that affect considerably its ionic conductivity and its elastic properties [4]. We calculated the Gibbs free energy of mixing along the NaCl-H2O binary by applying Boltzmann statistics to account for energy differences between configurations. We evaluated vibrational entropy from the vibrational spectra of the nuclei motion using the recently developed two phases thermodynamic memory function (2PT-MF) model for multicomponent systems [5, 6]. We show that the solubility of NaCl in water ice at 1600 K is less than 0.78 mol%. We find that salty ices present an extended superionic domain toward high pressures in comparison to pure water ice. Finally, we predict that the complete symmetrization of the hydrogen bonds (i.e. transition to ice X) occurs at higher pressure than in pure water ice, as observed in LiCl doped water ice at ambient temperature [7]. References: [1] M. R. Frank, C. E. Runge, H. P. Scott, S. J. Maglio, J. Olson, V. B. Prakapenka, G. Shen, PEPI 155 (2006) 152-162 [2] B. Journaux, I. Daniel, R. Caracas, G. Montagnac, H. Cardon, Icarus 226 (2013) 355-363 [3] S. Klotz, L. E. Bove, T. Strässle, T. C. Hansen, A. M. Saitta, Nature Materials 8 (2009) 405-409 [4] J. -A. Hernandez, R. Caracas, Phys. Rev. Lett. 117 (2016) 135503 [5] M. P. Desjarlais, Phys. Rev. E 88 (2013) 062145 [6] M. French, M. P. Desjarlais, R. Redmer, Phys. Rev. E 93 (2016) 022140 [7] L. E. Bove, R. Gaal, Z. Raza, A. -A. Lüdl, S. Klotz, A. M. Saitta, A. F. Goncharov, P. Gillet, PNAS 112 (2015) 8216-8220

  15. Icing: Accretion, Detection, Protection

    NASA Technical Reports Server (NTRS)

    Reinmann, John J.

    1994-01-01

    The global aircraft industry and its regulatory agencies are currently involved in three major icing efforts: ground icing; advanced technologies for in-flight icing; and tailplane icing. These three major icing topics correspondingly support the three major segments of any aircraft flight profile: takeoff; cruise and hold; and approach and land. This lecture addressess these three topics in the same sequence as they appear in flight, starting with ground deicing, followed by advanced technologies for in-flight ice protection, and ending with tailplane icing.

  16. The NASA aircraft icing research program

    NASA Technical Reports Server (NTRS)

    Shaw, Robert J.; Reinmann, John J.

    1990-01-01

    The objective of the NASA aircraft icing research program is to develop and make available to industry icing technology to support the needs and requirements for all-weather aircraft designs. Research is being done for both fixed wing and rotary wing applications. The NASA program emphasizes technology development in two areas, advanced ice protection concepts and icing simulation. Reviewed here are the computer code development/validation, icing wind tunnel testing, and icing flight testing efforts.

  17. Changes in zinc and cadmium concentrations in Greenland ice during the past 7760 years

    NASA Astrophysics Data System (ADS)

    Hong, Sungmin; Candelone, Jean-Pierre; Boutron, Claude F.

    Analysis of Zn and Cd in Greenland Holocene ice dated from 7760 to 471 yr ago shows no significant changes during the Greek, Roman and medieval times. It indicates that emissions from early mining and smelting operations were not intense enough for these two metals to have left detectable signals in Greenland ice above natural background, contrary to what was previously observed for Pb and Cu. Zn was especially used during Antiquity to make brass, the important binary CuZn alloy which was probably produced as early as ˜4000 yr ago. Rock and soil dust and continental biogenic sources are found to be important contributors to natural Zn and Cd in Holocene Greenland ice. During periods without major volcanic events, contribution from volcanoes was probably insignificant for Zn but could be important for Cd.

  18. Ice Recrystallization in a Solution of a Cryoprotector and Its Inhibition by a Protein: Synchrotron X-Ray Diffraction Study.

    PubMed

    Zakharov, Boris; Fisyuk, Alexander; Fitch, Andy; Watier, Yves; Kostyuchenko, Anastasia; Varshney, Dushyant; Sztucki, Michael; Boldyreva, Elena; Shalaev, Evgenyi

    2016-07-01

    Ice formation and recrystallization is a key phenomenon in freezing and freeze-drying of pharmaceuticals and biopharmaceuticals. In this investigation, high-resolution synchrotron X-ray diffraction is used to quantify the extent of disorder of ice crystals in binary aqueous solutions of a cryoprotectant (sorbitol) and a protein, bovine serum albumin. Ice crystals in more dilute (10 wt%) solutions have lower level of microstrain and larger crystal domain size than these in more concentrated (40 wt%) solutions. Warming the sorbitol-water mixtures from 100 to 228 K resulted in partial ice melting, with simultaneous reduction in the microstrain and increase in crystallite size, that is, recrystallization. In contrast to sorbitol solutions, ice crystals in the BSA solutions preserved both the microstrain and smaller crystallite size on partial melting, demonstrating that BSA inhibits ice recrystallization. The results are consistent with BSA partitioning into quasi-liquid layer on ice crystals but not with a direct protein-ice interaction and protein sorption on ice surface. The study shows for the first time that a common (i.e., not-antifreeze) protein can have a major impact on ice recrystallization and also presents synchrotron X-ray diffraction as a unique tool for quantification of crystallinity and disorder in frozen aqueous systems. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  19. Searches for Periodic Neutrino Emission from Binary Systems with 22 and 40 Strings of IceCube

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Allen, M. M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brown, A. M.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; Cruz Silva, A. H.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; Degner, T.; Demirörs, L.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, B.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kroll, G.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pérez de los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schönwald, A.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Stüer, M.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.; IceCube Collaboration

    2012-04-01

    In this paper, we present the results of searches for periodic neutrino emission from a catalog of binary systems. Such modulation, observed in the photon flux, would be caused by the geometry of these systems. In the analysis, the period is fixed by these photon observations, while the phase and duration of the neutrino emission are treated as free parameters to be fit with the data. If the emission occurs during ~20% or less of the total period, this analysis achieves better sensitivity than a time-integrated analysis. We use the IceCube data taken from 2007 May 31 to 2008 April 5 with its 22 string configuration and from 2008 April 5 to 2009 May 20 with its 40 string configuration. No evidence for neutrino emission is found, with the strongest excess occurring for Cygnus X-3 at 2.1σ significance after accounting for trials. Neutrino flux upper limits for both periodic and time-integrated emission are provided.

  20. Aviation Safety Program Atmospheric Environment Safety Technologies (AEST) Project

    NASA Technical Reports Server (NTRS)

    Colantonio, Ron

    2011-01-01

    Engine Icing: Characterization and Simulation Capability: Develop knowledge bases, analysis methods, and simulation tools needed to address the problem of engine icing; in particular, ice-crystal icing Airframe Icing Simulation and Engineering Tool Capability: Develop and demonstrate 3-D capability to simulate and model airframe ice accretion and related aerodynamic performance degradation for current and future aircraft configurations in an expanded icing environment that includes freezing drizzle/rain Atmospheric Hazard Sensing and Mitigation Technology Capability: Improve and expand remote sensing and mitigation of hazardous atmospheric environments and phenomena

  1. Engineering of frustration in colloidal artificial ice (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ortiz-Ambriz, Antonio; Tierno, Pietro

    2016-09-01

    Artificial spin-ice systems have been used to date as microscopic models of frustration induced by lattice topology, as they allow for the direct visualization of spin arrangements and textures. However, the engineering of frustrated ice states in which individual spins can be manipulated in situ and the real-time observation of their collective dynamics remain both challenging tasks. Recently, an analogue system has been proposed theoretically, where an optical landscape confined colloidal particles that interacted electrostatically. Here we realize experimentally another version of a colloidal artificial ice system using interacting magnetically polarizable particles confined to lattices of bistable gravitational traps. We show quantitatively that ice-selection rules emerge in this frustrated soft matter system by tuning the strength of the pair-interactions between the microscopic units. By using optical tweezers, we can control particle positioning and dipolar coupling, we introduce monopole-like defects and strings and use loops with defined chirality as an elementary unit to store binary information.

  2. POROSITY AND BAND-STRENGTH MEASUREMENTS OF MULTI-PHASE COMPOSITE ICES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bossa, Jean-Baptiste; Fransen, Coen; Cazaux, Stéphanie

    2015-11-20

    We use experimental mid-infrared optical constants and extended effective medium approximations to determine the porosity and the band strengths of multi-phase composite ices grown at 30 K. A set of porous H{sub 2}O:CH{sub 4} ices are taken as a prototypical example. As a benchmark and proof of concept, the stoichiometry of the ice constituents is retreived with good accuracy from the refractive indices and the extinction coefficients of the reference binary ice mixtures with known compositions. Accurate band strengths are then calculated from experimental mid-infrared spectra of complex ices. We notice that the presence of pores has only a smallmore » effect on the overall band strengths, whereas a water dilution can considerably alter them. Different levels of porosity are observed depending on the abundance of methane used as a gas contaminant premixed with water prior to background deposition. The absorption profiles are also found to vary with deposition rate. To explain this, we use Monte Carlo simulations and we observe that the deposition rate strongly affects the pore size distribution as well as the ice morphology through reorganization processes. Extrapolated to genuine interstellar ices, the methodology presented in this paper can be used to evaluate the porosity and to quantify the relative abundances from observational data.« less

  3. Improving geothermal power plants with a binary cycle

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2015-12-01

    The recent development of binary geothermal technology is analyzed. General trends in the introduction of low-temperature geothermal sources are summarized. The use of single-phase low-temperature geothermal fluids in binary power plants proves possible and expedient. The benefits of power plants with a binary cycle in comparison with traditional systems are shown. The selection of the working fluid is considered, and the influence of the fluid's physicochemical properties on the design of the binary power plant is discussed. The design of binary power plants is based on the chemical composition and energy potential of the geothermal fluids and on the landscape and climatic conditions at the intended location. Experience in developing a prototype 2.5 MW Russian binary power unit at Pauzhetka geothermal power plant (Kamchatka) is outlined. Most binary systems are designed individually for a specific location. Means of improving the technology and equipment at binary geothermal power plants are identified. One option is the development of modular systems based on several binary systems that employ the heat from the working fluid at different temperatures.

  4. Bioinspired Surfaces with Superwettability for Anti-Icing and Ice-Phobic Application: Concept, Mechanism, and Design.

    PubMed

    Zhang, Songnan; Huang, Jianying; Cheng, Yan; Yang, Hui; Chen, Zhong; Lai, Yuekun

    2017-12-01

    Ice accumulation poses a series of severe issues in daily life. Inspired by the nature, superwettability surfaces have attracted great interests from fundamental research to anti-icing and ice-phobic applications. Here, recently published literature about the mechanism of ice prevention is reviewed, with a focus on the anti-icing and ice-phobic mechanisms, encompassing the behavior of condensate microdrops on the surface, wetting, ice nucleation, and freezing. Then, a detailed account of the innovative fabrication and fundamental research of anti-icing materials with special wettability is summarized with a focus on recent progresses including low-surface energy coatings and liquid-infused layered coatings. Finally, special attention is paid to a discussion about advantages and disadvantages of the technologies, as well as factors that affect the anti-icing and ice-phobic efficiency. Outlooks and the challenges for future development of the anti-icing and ice-phobic technology are presented and discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Remote Sensing of In-Flight Icing Conditions: Operational, Meteorological, and Technological Considerations

    NASA Technical Reports Server (NTRS)

    Ryerson, Charles C.

    2000-01-01

    Remote-sensing systems that map aircraft icing conditions in the flight path from airports or aircraft would allow icing to be avoided and exited. Icing remote-sensing system development requires consideration of the operational environment, the meteorological environment, and the technology available. Operationally, pilots need unambiguous cockpit icing displays for risk management decision-making. Human factors, aircraft integration, integration of remotely sensed icing information into the weather system infrastructures, and avoid-and-exit issues need resolution. Cost, maintenance, power, weight, and space concern manufacturers, operators, and regulators. An icing remote-sensing system detects cloud and precipitation liquid water, drop size, and temperature. An algorithm is needed to convert these conditions into icing potential estimates for cockpit display. Specification development requires that magnitudes of cloud microphysical conditions and their spatial and temporal variability be understood at multiple scales. The core of an icing remote-sensing system is the technology that senses icing microphysical conditions. Radar and microwave radiometers penetrate clouds and can estimate liquid water and drop size. Retrieval development is needed; differential attenuation and neural network assessment of multiple-band radar returns are most promising to date. Airport-based radar or radiometers are the most viable near-term technologies. A radiometer that profiles cloud liquid water, and experimental techniques to use radiometers horizontally, are promising. The most critical operational research needs are to assess cockpit and aircraft system integration, develop avoid-and-exit protocols, assess human factors, and integrate remote-sensing information into weather and air traffic control infrastructures. Improved spatial characterization of cloud and precipitation liquid-water content, drop-size spectra, and temperature are needed, as well as an algorithm to convert sensed conditions into a measure of icing potential. Technology development also requires refinement of inversion techniques. These goals can be accomplished with collaboration among federal agencies including NASA, the FAA, the National Center for Atmospheric Research, NOAA, and the Department of Defense. This report reviews operational, meteorological, and technological considerations in developing the capability to remotely map in-flight icing conditions from the ground and from the air.

  6. Preliminary Findings of Inflight Icing Field Test to Support Icing Remote Sensing Technology Assessment

    NASA Technical Reports Server (NTRS)

    King, Michael; Reehorst, Andrew; Serke, Dave

    2015-01-01

    NASA and the National Center for Atmospheric Research have developed an icing remote sensing technology that has demonstrated skill at detecting and classifying icing hazards in a vertical column above an instrumented ground station. This technology has recently been extended to provide volumetric coverage surrounding an airport. Building on the existing vertical pointing system, the new method for providing volumetric coverage will utilize a vertical pointing cloud radar, a multifrequency microwave radiometer with azimuth and elevation pointing, and a NEXRAD radar. The new terminal area icing remote sensing system processes the data streams from these instruments to derive temperature, liquid water content, and cloud droplet size for each examined point in space. These data are then combined to ultimately provide icing hazard classification along defined approach paths into an airport.

  7. The Binary Fission Model for the Formation of the Pluto system

    NASA Astrophysics Data System (ADS)

    Prentice, Andrew

    2016-10-01

    The ratio F of the mass of Pluto (P) to Charon (C), viz. F ≈ 8:1, is the largest ratio of any planet-satellite pair in the solar system. Another measure of the PC binary is its normalized angular momentum density J (see McKinnon 1989). Analysis of astrometric data (Brozovic et al 2015) acquired before the New Horizons (NH) arrival at Pluto and new measurements made by NH (Stern et al 2015) show that J = 0.39. Yet these F & J values are ones expected if the PC binary had formed by the rotational fission of a single liquid mass (Darwin 1902; Lyttleton 1953). At first glance, therefore, the fission model seems to be a viable model for the formation of the Pluto system. In fact, Prentice (1993 Aust J Astron 5 111) had used this model to successfully predict the existence of several moons orbiting beyond Charon, before their discovery in 2005-2012. The main problem with the fission model is that the observed mean density of Charon, namely 1.70 g/cm3, greatly exceeds that of water ice. Charon thus could not have once been a globe of pure water. Here I review the fission model within the framework of the modern Laplacian theory of solar system origin (Prentice 1978 Moon Planets 19 341; 2006 PASA 23 1) and the NH results. I assume that Pluto and Charon were initially a single object (proto-Pluto [p-P]) which had condensed within the same gas ring shed by the proto-solar cloud at orbital distance ~43 AU, where the Kuiper belt was born. The temperature of this gas ring is 26 K and the mean orbit pressure is 1.3 × 10-9 bar. After the gas ring is shed, chemical condensation takes place. The bulk chemical composition of the condensate is anhydrous rock (mass fraction 0.5255), graphite (0.0163), water ice (0.1858), CO2 ice (0.2211) and methane ice (0.0513). Next I assume that melting of the ices in p-P takes place through the decay of short-lived radioactive nuclides, thus causing internal segregation of the rock & graphite. Settling of heavy grains to the centre lowers the MOI of p-P, so triggering rotational disruption. Pluto's moons would then form from liquid water and liquid CO2, as well as entrained rock-graphite grains. Charon's mean density implies that the rock-graphite mass fraction of the fissioned mass was ˜0.41.

  8. The Gaseous Phase as a Probe of the Astrophysical Solid Phase Chemistry

    NASA Astrophysics Data System (ADS)

    Abou Mrad, Ninette; Duvernay, Fabrice; Isnard, Robin; Chiavassa, Thierry; Danger, Grégoire

    2017-09-01

    In support of space missions and spectroscopic observations, laboratory experiments on ice analogs enable a better understanding of organic matter formation and evolution in astrophysical environments. Herein, we report the monitoring of the gaseous phase of processed astrophysical ice analogs to determine if the gaseous phase can elucidate the chemical mechanisms and dominant reaction pathways occurring in the solid ice subjected to vacuum ultra-violet (VUV) irradiation at low temperature and subsequently warmed. Simple (CH3OH), binary (H2O:CH3OH, CH3OH:NH3), and ternary ice analogs (H2O:CH3OH:NH3) were VUV-processed and warmed. The evolution of volatile organic compounds in the gaseous phase shows a direct link between their relative abundances in the gaseous phase, and the radical and thermal chemistries modifying the initial ice composition. The correlation between the gaseous and solid phases may play a crucial role in deciphering the organic composition of astrophysical objects. As an example, possible solid compositions of the comet Lovejoy are suggested using the abundances of organics in its comae.

  9. On the formation of niacin (vitamin B3) and pyridine carboxylic acids in interstellar model ices

    NASA Astrophysics Data System (ADS)

    McMurtry, Brandon M.; Turner, Andrew M.; Saito, Sean E. J.; Kaiser, Ralf I.

    2016-06-01

    The formation of pyridine carboxylic acids in interstellar ice grains was simulated by electron exposures of binary pyridine (C5H5N)-carbon dioxide (CO2) ice mixtures at 10 K under contamination-free ultrahigh vacuum conditions. Chemical processing of the pristine ice and subsequent warm-up phase was monitored on line and in situ via Fourier transform infrared spectroscopy to probe for the formation of new radiation induced species. In the infrared spectra of the irradiated ice, bands assigned to nicotinic acid (niacin; vitamin B3; m-C5H4NCOOH) along with 2,3-, 2,5-, 3,4-, and 3,5-pyridine dicarboxylic acid (C5H3N(COOH)2) were unambiguously identified along with the hydroxycarbonyl (HOCO) radical. Our study suggests that the reactive pathway responsible for pyridine carboxylic acids formation involves a HOCO intermediate, which forms through the reaction of suprathermal hydrogen ejected from pyridine with carbon dioxide. The newly formed pyridinyl radical may then undergo radical-radical recombination with a hydroxycarbonyl radical to form a pyridine carboxylic acid.

  10. Laboratory IR Studies and Astrophysical Implications of C2H2-Containing Binary Ices

    NASA Technical Reports Server (NTRS)

    Knez, C.; Moore, M.; Ferrante, R.; Hudson, R.

    2012-01-01

    Studies of molecular hot cores and protostellar environments have shown that the observed abundance of gas-phase acetylene (C2H2) cannot be matched by chemical models without the inclusion of C2H2 molecules subliming from icy grain mantles. Searches for infrared (IR) spectral features of solid-phase acetylene are under way, but few laboratory reference spectra of C2H2 in icy mixtures, which are needed for spectral fits to observational data, have been published. Here, we report a systematic study of the IR spectra of condensed-phase pure acetylene and acetylene in ices dominated by carbon monoxide (CO), carbon dioxide (CO2), methane (CH4), and water (H2O). We present new spectral data for these ices, including band positions and intrinsic band strengths. For each ice mixture and concentration, we also explore the dependence of acetylene's nu5-band position (743 cm-1, 13.46 micrometers) and FWHM on temperature. Our results show that the nu5 feature is much more cleanly resolved in ices dominated by non-polar and low-polarity molecules, specifically CO, CO2, and CH4, than in mixtures dominated by H2O-ice. We compare our laboratory ice spectra with observations of a quiescent region in Serpens.

  11. Impact of Ice Morphology on Design Space of Pharmaceutical Freeze-Drying.

    PubMed

    Goshima, Hiroshika; Do, Gabsoo; Nakagawa, Kyuya

    2016-06-01

    It has been known that the sublimation kinetics of a freeze-drying product is affected by its internal ice crystal microstructures. This article demonstrates the impact of the ice morphologies of a frozen formulation in a vial on the design space for the primary drying of a pharmaceutical freeze-drying process. Cross-sectional images of frozen sucrose-bovine serum albumin aqueous solutions were optically observed and digital pictures were acquired. Binary images were obtained from the optical data to extract the geometrical parameters (i.e., ice crystal size and tortuosity) that relate to the mass-transfer resistance of water vapor during the primary drying step. A mathematical model was used to simulate the primary drying kinetics and provided the design space for the process. The simulation results predicted that the geometrical parameters of frozen solutions significantly affect the design space, with large and less tortuous ice morphologies resulting in wide design spaces and vice versa. The optimal applicable drying conditions are influenced by the ice morphologies. Therefore, owing to the spatial distributions of the geometrical parameters of a product, the boundary curves of the design space are variable and could be tuned by controlling the ice morphologies. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. Energy-Efficient Systems Eliminate Icing Danger for UAVs

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Ames Research Center engineer Leonard Haslim invented an anti-icing t echnology called an electroexpulsive separation system, which uses m echanical force to shatter potentially dangerous ice buildup on an ai rcraft surface. Temecula, California-based Ice Management Systems (no w known as IMS-ESS) licensed the technology from Ames and has discov ered a niche market for the lightweight, energy-efficient technology: unmanned aerial vehicles (UAVs). IMS-ESS systems now prevent damagi ng ice accumulation on military UAVs, allowing the vehicles to carry out crucial missions year round.

  13. An Ice Protection and Detection Systems Manufacturer's Perspective

    NASA Technical Reports Server (NTRS)

    Sweet, Dave

    2009-01-01

    Accomplishments include: World Class Aircraft Icing Research Center and Facility. Primary Sponsor/Partner - Aircraft Icing Consortia/Meetings. Icing Research Tunnel. Icing Test Aircraft. Icing Codes - LEWICE/Scaling, et al. Development of New Technologies (SBIR, STTR, et al). Example: Look Ahead Ice Detection. Pilot Training Materials. Full Cooperation with Academia, Government and Industry.

  14. Light transport and general aviation aircraft icing research requirements

    NASA Technical Reports Server (NTRS)

    Breeze, R. K.; Clark, G. M.

    1981-01-01

    A short term and a long term icing research and technology program plan was drafted for NASA LeRC based on 33 separate research items. The specific items listed resulted from a comprehensive literature search, organized and assisted by a computer management file and an industry/Government agency survey. Assessment of the current facilities and icing technology was accomplished by presenting summaries of ice sensitive components and protection methods; and assessments of penalty evaluation, the experimental data base, ice accretion prediction methods, research facilities, new protection methods, ice protection requirements, and icing instrumentation. The intent of the research plan was to determine what icing research NASA LeRC must do or sponsor to ultimately provide for increased utilization and safety of light transport and general aviation aircraft.

  15. Modeling the processing of interstellar ices by energetic particles

    NASA Astrophysics Data System (ADS)

    Kalvāns, J.; Shmeld, I.

    2013-06-01

    Context. Interstellar ice is the main form of metal species in dark molecular clouds. Experiments and observations have shown that the ice is significantly processed after the freeze-out of molecules onto grains. The processing is caused by cosmic-ray particles and cosmic-ray-induced UV photons. These transformations are included in current astrochemical models only to a very limited degree. Aims: We aim to establish a model of the "cold" chemistry in interstellar ices and to evaluate its general impact on the composition of interstellar ices. Methods: The ice was treated as consisting of two layers - the surface and the mantle (or subsurface) layer. Subsurface chemical processes are described with photodissociation of ice species and binary reactions on the surfaces of cavities inside the mantle. Hydrogen atoms and molecules can diffuse between the layers. We also included deuterium chemistry. Results: The modeling results show that the content of chemically bound H is reduced in subsurface molecules by about 30% on average. This promotes the formation of more hydrogen-poor species in the ice. The enrichment of ice molecules with deuterium is significantly reduced by the subsurface processes. On average, it follows the gas-phase atomic D/H abundance ratio, with a delay. The delay produced by the model is on the order of several Myr. Conclusions: The processing of ice may place new constraints on the production of deuterated species on grains. In a mantle with a two-layer structure the upper layer (CO) should be processed substantially more intensively than the lower layer (H2O). Chemical explosions in interstellar ice might not be an important process. They destroy the structure of the mantle, which forms over long timescales. Besides, ices may lack the high radical content needed for the explosions.

  16. Aviation Trends Related to Atmospheric Environment Safety Technologies Project Technical Challenges

    NASA Technical Reports Server (NTRS)

    Reveley, Mary S.; Withrow, Colleen A.; Barr, Lawrence C.; Evans, Joni K.; Leone, Karen M.; Jones, Sharon M.

    2014-01-01

    Current and future aviation safety trends related to the National Aeronautics and Space Administration's Atmospheric Environment Safety Technologies Project's three technical challenges (engine icing characterization and simulation capability; airframe icing simulation and engineering tool capability; and atmospheric hazard sensing and mitigation technology capability) were assessed by examining the National Transportation Safety Board (NTSB) accident database (1989 to 2008), incidents from the Federal Aviation Administration (FAA) accident/incident database (1989 to 2006), and literature from various industry and government sources. The accident and incident data were examined for events involving fixed-wing airplanes operating under Federal Aviation Regulation (FAR) Parts 121, 135, and 91 for atmospheric conditions related to airframe icing, ice-crystal engine icing, turbulence, clear air turbulence, wake vortex, lightning, and low visibility (fog, low ceiling, clouds, precipitation, and low lighting). Five future aviation safety risk areas associated with the three AEST technical challenges were identified after an exhaustive survey of a variety of sources and include: approach and landing accident reduction, icing/ice detection, loss of control in flight, super density operations, and runway safety.

  17. Validation of NASA Thermal Ice Protection Computer Codes Part 2 - LEWICE/Thermal

    DOT National Transportation Integrated Search

    1996-01-01

    The Icing Technology Branch at NASA Lewis has been involved in an effort to validate two thermal ice protection codes developed at the NASA Lewis Research Center: LEWICE/Thermal 1 (electrothermal de-icing and anti-icing), and ANTICE 2 (hot gas and el...

  18. The Gaseous Phase as a Probe of the Astrophysical Solid Phase Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abou Mrad, Ninette; Duvernay, Fabrice; Isnard, Robin

    2017-09-10

    In support of space missions and spectroscopic observations, laboratory experiments on ice analogs enable a better understanding of organic matter formation and evolution in astrophysical environments. Herein, we report the monitoring of the gaseous phase of processed astrophysical ice analogs to determine if the gaseous phase can elucidate the chemical mechanisms and dominant reaction pathways occurring in the solid ice subjected to vacuum ultra-violet (VUV) irradiation at low temperature and subsequently warmed. Simple (CH{sub 3}OH), binary (H{sub 2}O:CH{sub 3}OH, CH{sub 3}OH:NH{sub 3}), and ternary ice analogs (H{sub 2}O:CH{sub 3}OH:NH{sub 3}) were VUV-processed and warmed. The evolution of volatile organic compoundsmore » in the gaseous phase shows a direct link between their relative abundances in the gaseous phase, and the radical and thermal chemistries modifying the initial ice composition. The correlation between the gaseous and solid phases may play a crucial role in deciphering the organic composition of astrophysical objects. As an example, possible solid compositions of the comet Lovejoy are suggested using the abundances of organics in its comae.« less

  19. Fixed automated spray technology.

    DOT National Transportation Integrated Search

    2011-04-19

    This research project evaluated the construction and performance of Boschungs Fixed Automated : Spray Technology (FAST) system. The FAST system automatically sprays de-icing material on : the bridge when icing conditions are about to occur. The FA...

  20. Investigating the heterogeneous freezing behavior of supercooled droplets containing different amounts of SNOMAX

    NASA Astrophysics Data System (ADS)

    Niedermeier, D.; Budke, C.; Koop, T.; Hartmann, S.; Augustin, S.; Stratmann, F.; Wex, H.

    2013-12-01

    Heterogeneous ice nucleation, a fundamental process for ice formation in the atmosphere, has been observed to occur in clouds at temperatures higher than -20 °C (Kanitz et al., 2011). However, laboratory studies showed that mineral dust particles, which are the most abundant atmospheric ice nuclei (IN), are ice active at lower temperature (Murray et al., 2012). Biological particles such as bacteria nucleate ice at higher temperatures similar to those observed in the atmosphere. But their atmospheric relevance is controversially discussed (Hartmann et al., 2013; Hoose et al., 2010). In order to achieve a better understanding, fundamental processes underlying ice nucleation on bacteria should be investigated. Within the Ice Nuclei research UnIT (INUIT), the ice nucleating ability of SNOMAX, which contains non-viable Pseudomonas syringae bacteria as well as their fragments, was quantified using different measurement devices featuring different measurement techniques. Here, results determined with the Bielefeld Ice Nucleation ARraY (BINARY, Budke et al., 2013) and the Leipzig Aerosol Cloud Interaction Simulator (LACIS, Hartmann et al., 2011) are presented exemplarily. Within these devices, droplets with different amounts of SNOMAX were exposed to supercooling temperatures until they froze (BINARY: cooling rate: 1K/min; LACIS: residence time of supercooled droplets at a certain temperature: ~0.2s). Frozen fractions were determined in a temperature range of ca. -4 to -20 °C. These fractions increase steeply and, in part, level off at values lower than 100% (i.e., they reach a plateau value indicating the number of SNOMAX IN per droplet) depending on the SNOMAX concentration. With increasing amount of SNOMAX per droplet, the frozen fraction curve is shifted to higher temperature and the plateau value increases, reaching 100% for the highest SNOMAX concentrations. It has been suggested that ice nucleation active (INA) macromolecules, i.e. protein complexes in the case of bacteria, initiate the freezing process (Wolber et al. 1986). The Soccer ball model (Niedermeier et al., 2011) was used to parameterize the ice nucleation behavior of these INA macromolecules. One parameter set (mean contact angle and its standard deviation) could be derived that matches the experimental results of both devices. This parameterization can be used to describe the ice nucleation behavior of the INA bacteria in atmospheric models for a given number concentration being present in the atmosphere. Acknowledgement This work is funded by the German Research Foundation (DFG projects WE 4722/1-1 and KO 2944/2-1, both part of the research unit INUIT). References Budke et al., Proc.19th ICNAA, Fort Collins, CO, USA, 949-951, 2013. Hartmann et al., Atmos. Chem. Phys., 11, 1753-1767, 2011. Hartmann et al., Atmos. Chem. Phys., 13, 5751-5766, 2013. Hoose et al., Environ. Res. Lett. 5, 024009, 2010. Kanitz et al., Geophys. Res. Lett., 38, L17802, 2011. Niedermeier et al., Atmos. Chem. Phys., 11, 8767-8775, 2011. Murray et al., Chem. Soc. Rev., 41, 6519-6554, 2012. Wolber et al., P. Natl. A. Sci., 83, 7256-7260, 1986.

  1. Analysis of 2015 Winter In-Flight Icing Case Studies with Ground-Based Remote Sensing Systems Compared to In-Situ SLW Sondes

    NASA Technical Reports Server (NTRS)

    Serke, David J.; King, Michael Christopher; Hansen, Reid; Reehorst, Andrew L.

    2016-01-01

    National Aeronautics and Space Administration (NASA) and the National Center for Atmospheric Research (NCAR) have developed an icing remote sensing technology that has demonstrated skill at detecting and classifying icing hazards in a vertical column above an instrumented ground station. This technology has recently been extended to provide volumetric coverage surrounding an airport. Building on the existing vertical pointing system, the new method for providing volumetric coverage utilizes a vertical pointing cloud radar, a multi-frequency microwave radiometer with azimuth and elevation pointing, and a NEXRAD radar. The new terminal area icing remote sensing system processes the data streams from these instruments to derive temperature, liquid water content, and cloud droplet size for each examined point in space. These data are then combined to ultimately provide icing hazard classification along defined approach paths into an airport. To date, statistical comparisons of the vertical profiling technology have been made to Pilot Reports and Icing Forecast Products. With the extension into relatively large area coverage and the output of microphysical properties in addition to icing severity, the use of these comparators is not appropriate and a more rigorous assessment is required. NASA conducted a field campaign during the early months of 2015 to develop a database to enable the assessment of the new terminal area icing remote sensing system and further refinement of terminal area icing weather information technologies in general. In addition to the ground-based remote sensors listed earlier, in-situ icing environment measurements by weather balloons were performed to produce a comprehensive comparison database. Balloon data gathered consisted of temperature, humidity, pressure, super-cooled liquid water content, and 3-D position with time. Comparison data plots of weather balloon and remote measurements, weather balloon flight paths, bulk comparisons of integrated liquid water content and icing cloud extent agreement, and terminal-area hazard displays are presented. Discussions of agreement quality and paths for future development are also included.

  2. The spectral albedo of sea ice and salt crusts on the tropical ocean of Snowball Earth: 1. Laboratory measurements

    NASA Astrophysics Data System (ADS)

    Light, Bonnie; Carns, Regina C.; Warren, Stephen G.

    2016-07-01

    The ice-albedo feedback mechanism likely contributed to global glaciation during the Snowball Earth events of the Neoproterozoic era (1 Ga to 544 Ma). This feedback results from the albedo contrast between sea ice and open ocean. Little is known about the optical properties of some of the possible surface types that may have been present, including sea ice that is both snow-free and cold enough for salts to precipitate within brine inclusions. A proxy surface for such ice was grown in a freezer laboratory using the single salt NaCl and kept below the eutectic temperature (-21.2°C) of the NaCl-H2O binary system. The resulting ice cover was composed of ice and precipitated hydrohalite crystals (NaCl · 2H2O). As the cold ice sublimated, a thin lag-deposit of salt formed on the surface. To hasten its growth in the laboratory, the deposit was augmented by addition of a salt-enriched surface crust. Measurements of the spectral albedo of this surface were carried out over 90 days as the hydrohalite crust thickened due to sublimation of ice, and subsequently over several hours as the crust warmed and dissolved, finally resulting in a surface with puddled liquid brine. The all-wave solar albedo of the subeutectic crust is 0.93 (in contrast to 0.83 for fresh snow and 0.67 for melting bare sea ice). Incorporation of these processes into a climate model of Snowball Earth will result in a positive salt-albedo feedback operating between -21°C and -36°C.

  3. Mechanistical studies on the formation of carbon dioxide in extraterrestrial carbon monoxide ice analog samples.

    PubMed

    Bennett, Chris J; Jamieson, Corey S; Kaiser, Ralf I

    2009-06-07

    Binary ice mixtures of two carbon monoxide isotopomers, (13)C(16)O and (12)C(18)O, were subjected at 10 K to energetic electrons to investigate the interaction of ionizing radiation with extraterrestrial, carbon monoxide bearing ices. The chemical modifications were monitored on line and in situ via absorption-reflection-absorption Fourier transform infrared spectroscopy as well as in the gas-phase via a quadrupole mass spectrometer. Detected products include two newly formed carbon monoxide isotopomers ((12)C(16)O and (13)C(18)O), carbon dioxide ((12)C(16)O(2), (12)C(18)O(16)O, (12)C(18)O(2), (13)C(16)O(2), (13)C(18)O(16)O, and (13)C(18)O(2)), and dicarbon monoxide ((12)C(13)C(16)O and (13)C(13)C(16)O). Kinetic profiles of carbon monoxide and of carbon dioxide were extracted and fit to derive reaction mechanisms and information on the decomposition of carbon monoxide and on the formation of carbon dioxide in extraterrestrial ice analog samples.

  4. Detection of the Simplest Sugar, Glycolaldehyde, in a Solar-type Protostar with ALMA

    NASA Astrophysics Data System (ADS)

    Jørgensen, Jes K.; Favre, Cécile; Bisschop, Suzanne E.; Bourke, Tyler L.; van Dishoeck, Ewine F.; Schmalzl, Markus

    2012-09-01

    Glycolaldehyde (HCOCH2OH) is the simplest sugar and an important intermediate in the path toward forming more complex biologically relevant molecules. In this Letter we present the first detection of 13 transitions of glycolaldehyde around a solar-type young star, through Atacama Large Millimeter Array (ALMA) observations of the Class 0 protostellar binary IRAS 16293-2422 at 220 GHz (6 transitions) and 690 GHz (7 transitions). The glycolaldehyde lines have their origin in warm (200-300 K) gas close to the individual components of the binary. Glycolaldehyde co-exists with its isomer, methyl formate (HCOOCH3), which is a factor 10-15 more abundant toward the two sources. The data also show a tentative detection of ethylene glycol, the reduced alcohol of glycolaldehyde. In the 690 GHz data, the seven transitions predicted to have the highest optical depths based on modeling of the 220 GHz lines all show redshifted absorption profiles toward one of the components in the binary (IRAS 16293B) indicative of infall and emission at the systemic velocity offset from this by about 0farcs2 (25 AU). We discuss the constraints on the chemical formation of glycolaldehyde and other organic species—in particular, in the context of laboratory experiments of photochemistry of methanol-containing ices. The relative abundances appear to be consistent with UV photochemistry of a CH3OH-CO mixed ice that has undergone mild heating. The order of magnitude increase in line density in these early ALMA data illustrates its huge potential to reveal the full chemical complexity associated with the formation of solar system analogs.

  5. Immersion freezing by SnomaxTM particles: Comparison of results from different instruments

    NASA Astrophysics Data System (ADS)

    Wex, Heike; Stratmann, Frank; Rösch, Michael; Niedermeier, Dennis; Nilius, Björn; Möhler, Ottmar; Mitra, Subir K.; Koop, Thomas; Jantsch, Evelyn; Hiranuma, Naruki; Diehl, Karoline; Curtius, Joachim; Budke, Carsten; Boose, Yvonne; Augustin, Stefanie

    2014-05-01

    Within the DFG funded research unit INUIT (Ice Nucleation research UnIT, FOR 1525), an effort was made to compare results on immersion freezing from a suite of different instruments. Besides mineral dusts, SnomaxTM was picked as one of the substances that were examined by all participating groups. Here, the comparison of the results for SnomaxTM is presented. Every participating group used SnomaxTM from the same batch and, as far as possible, the same particle generation set-up. Instruments participating in the comparison were, in alphabetical order, an acoustic levitator (Diehl et al., 2009), AIDA (Connolly et al., 2009), BINARY (Budke et al., 2013), FINCH (Bundke et al., 2008), LACIS (Hartmann et al., 2011), PINC (Chou et al., 2011) and the Mainz vertical windtunnel (Diehl et al., 2011). Some of the instruments examined droplets directly produced from SnomaxTM suspensions, where the suspensions could have a wide range of concentrations. Other instruments used size segregated particles which were generated via atomization from a SnomaxTM suspension and subsequent drying, followed by size selection with a DMA (Differential Mobility Analyzer). These particles were then activated to droplets and cooled subsequently. For these, the number of ice nucleation active protein complexes present in the droplets depended on the original particle size (for details see e.g. Hartmann et al., 2013). Also, the different measurements spanned a range of different time scales. The shortest residence time of roughly 1 second was used for LACIS measurements, and the longest one was about 6 seconds used in the BINARY setup with a cooling rate of 1 K/min. All data were evaluated using two different approaches: 1) a time dependent approach following Classical Nucleation Theory which included the use of a contact angle distribution (see Niedermeier et al., 2014); 2) a singular approach using an active site density per mass (see Vali, 1971, Murray et al., 2012). Both approaches were found to work equally well, hence freezing by SnomaxTM can be considered to show no time dependence. Particularly data from LACIS and BINARY, i.e. from the "fastest" and "slowest" measurements, were found to agree very well. Acknowledgement: This work was done within the framework of the DFG funded Ice Nucleation research UnIT (INUIT, FOR 1525). Literature Budke et al. (2013), Investigation of Heterogeneous Ice Nucleation Using a Novel Optical Freezing Array, AIP Conference Proceedings, 1527, 949-951, doi: 10.1064/1.4803429. Bundke et al. (2008), The fast Ice Nucleus chamber FINCH, Atmos. Res. 90, 180-186. Chou et al. (2011), Ice nuclei properties within a Saharan dust event at the Jungfraujoch in the Swiss Alps, Atmos. Chem. Phys., 11, 4725-4738. Connolly, et al. (2009), Studies of heterogeneous freezing by three different desert dust samples, Atmos. Chem. Phys., 9, 2805-2824. Diehl et al. (2011), The Mainz vertical wind tunnel facility: A review of 25 years of laboratory experiments on cloud physics and chemistry. In: J.D. Pereira (Ed.), Wind tunnels: Aerodynamics, models, and experiments. Nova Science Publishers, Inc., Chapter 2. Diehl et al. (2009), Homogeneous freezing of single sulfuric and nitric acid solution drops levitated in an acoustic trap, Atm. Res., 94, 356-361, doi:10.1016/j.atmosres.2009.06.001. Hartmann et al. (2011), Homogeneous and heterogeneous ice nucleation at LACIS: Operating principle and theoretical studies, Atmos. Chem. Phys., 11, 1753-1767. Hartmann et al. (2013), Immersion freezing of ice nucleating active protein complexes, Atmos. Chem. Phys., 13, 5751-5766. Murray et al. (2012), Ice nucleation by particles immersed in supercooled cloud droplets, Chem. Soc. Rev., 41, 6519-6554. Niedermeier et al. (2014), A computationally-efficient description of heterogeneous freezing: A simplified version of the Soccer ball model, Geophys. Res. Lett., 10.1002/2013GL058684. Vali, G. (1971), Quantitative evaluation of experimental results on heterogeneous freezing nucleation of supercooled liquids, J. Atmos. Sci., 28(3), 402-409.

  6. The Phases Differential Astrometry Data Archive. 2. Updated Binary Star Orbits and a Long Period Eclipsing Binary

    DTIC Science & Technology

    2010-12-01

    Mathematics and Astronomy , 105-24 California Institute of Technology, Pasadena, CA 91125, USA 6 Nicolaus Copernicus Astronomical Center, Polish Academy of...Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA 10 Department of Astronomy , University of California...PHASES is funded in part by the California Institute of Technology Astronomy Department and by the National Aeronautics and Space Administration under

  7. Review of technology for Arctic offshore oil and gas recovery. Appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sackinger, W. M.

    1980-06-06

    This volume contains appendices of the following: US Geological Survey Arctic operating orders, 1979; Det Noske Vertas', rules for the design, construction and inspection of offshore technology, 1977; Alaska Oil and Gas Association, industry research projects, March 1980; Arctic Petroleum Operator's Association, industry research projects, January 1980; selected additional Arctic offshore bibliography on sea ice, icebreakers, Arctic seafloor conditions, ice-structures, frost heave and structure icing.

  8. An archival analysis of stall warning system effectiveness during airborne icing encounters

    NASA Astrophysics Data System (ADS)

    Maris, John Michael

    An archival study was conducted to determine the influence of stall warning system performance on aircrew decision-making outcomes during airborne icing encounters. A Conservative Icing Response Bias (CIRB) model was developed to explain the historical variability in aircrew performance in the face of airframe icing. The model combined Bayes' Theorem with Signal Detection Theory (SDT) concepts to yield testable predictions that were evaluated using a Binary Logistic Regression (BLR) multivariate technique applied to two archives: the NASA Aviation Safety Reporting System (ASRS) incident database, and the National Transportation Safety Board (NTSB) accident databases, both covering the period January 1, 1988 to October 2, 2015. The CIRB model predicted that aircrew would experience more incorrect response outcomes in the face of missed stall warnings than with stall warning False Alarms. These predicted outcomes were observed at high significance levels in the final sample of 132 NASA/NTSB cases. The CIRB model had high sensitivity and specificity, and explained 71.5% (Nagelkerke R2) of the variance of aircrew decision-making outcomes during the icing encounters. The reliability and validity metrics derived from this study suggest indicate that the findings are generalizable to the population of U.S. registered turbine-powered aircraft. These findings suggest that icing-related stall events could be reduced if the incidence of stall warning Misses could be minimized. Observed stall warning Misses stemmed from three principal causes: aerodynamic icing effects, which reduced the stall angle-of-attack (AoA) to below the stall warning calibration threshold; tail stalls, which are not monitored by contemporary protection systems; and icing-induced system issues (such as frozen pitot tubes), which compromised stall warning system effectiveness and airframe envelope protections. Each of these sources of missed stall warnings could be addressed by Aerodynamic Performance Monitoring (APM) systems that directly measure the boundary layer airflow adjacent to the affected aerodynamic surfaces, independent of other aircraft stall protection, air data, and AoA systems. In addition to investigating APM systems, measures should also be taken to include the CIRB phenomenon in aircrew training to better prepare crews to cope with airborne icing encounters. The SDT/BLR technique would allow the forecast gains from these improved systems and training processes to be evaluated objectively and quantitatively. The SDT/BLR model developed for this study has broad application outside the realm of airborne icing. The SDT technique has been extensively validated by prior research, and the BLR is a very robust multivariate technique. Combined, they could be applied to evaluate high order constructs (such as stall awareness for this study), in complex and dynamic environments. The union of SDT and BLR reduces the modeling complexities for each variable into the four binary SDT categories of Hit, Miss, False Alarm, and Correct Rejection, which is the optimum format for the BLR. Despite this reductionist approach to complex situations, the method has demonstrated very high statistical and practical significance, as well as excellent predictive power, when applied to the airborne icing scenario.

  9. Clean Sampling of an Englacial Conduit at Blood Falls, Antarctica - Some Experimental and Numerical Results

    NASA Astrophysics Data System (ADS)

    Kowalski, Julia; Francke, Gero; Feldmann, Marco; Espe, Clemens; Heinen, Dirk; Digel, Ilya; Clemens, Joachim; Schüller, Kai; Mikucki, Jill; Tulaczyk, Slawek M.; Pettit, Erin; Berry Lyons, W.; Dachwald, Bernd

    2017-04-01

    There is significant interest in sampling subglacial environments for geochemical and microbiological studies, yet those environments are typically difficult to access. Existing ice-drilling technologies make it cumbersome to maintain microbiologically clean access for sample acquisition and environmental stewardship of potentially fragile subglacial aquatic ecosystems. With the "IceMole", a minimally invasive, maneuverable subsurface ice probe, we have developed a clean glacial exploration technology for in-situ analysis and sampling of glacial ice and sub- and englacial materials. Its design is based on combining melting and mechanical stabilization, using an ice screw at the tip of the melting head to maintain firm contact between the melting head and the ice. The IceMole can change its melting direction by differential heating of the melting head and optional side wall heaters. Downward, horizontal and upward melting, as well as curve driving and penetration of particulate-ladden layers has already been demonstrated in several field tests. This maneuverability of the IceMole also necessitates a sophisticated on-board navigation system, capable of autonomous operations. Therefore, between 2012 and 2014, a more advanced probe was developed as part of the "Enceladus Explorer" (EnEx) project. The EnEx-IceMole offers systems for accurate positioning, based on in-ice attitude determination, acoustic positioning, ultrasonic obstacle and target detection, which is all integrated through a high-level sensor fusion algorithm. In December 2014, the EnEx-IceMole was used for clean access into a unique subglacial aquatic environment at Blood Falls, Antarctica, where an englacial brine sample was successfully obtained after about 17 meters of oblique melting. Particular attention was paid to clean protocols for sampling for geochemical and microbiological analysis. In this contribution, we will describe the general technological approach of the IceMole and report on the results of its deployment at Blood Falls. In contrast to conventional melting-probe applications, which can only melt vertically, the IceMole realized an oblique melting path to penetrate the englacial conduit. Experimental and numerical results on melting at oblique angles are rare. Besides reporting on the IceMole technology and the field deployment itself, we will compare and discuss the observed melting behavior with re-analysis results in the context of a recently developed numerical model. Finally, we will present our first steps in utilizing the model to infer on the ambient cryo-environment.

  10. Mid- and far-infrared spectroscopic studies of the influence of temperature, ultraviolet photolysis and ion irradiation on cosmic-type ices.

    PubMed

    Moore, M H; Hudson, R L; Gerakines, P A

    2001-03-15

    Infrared (IR) studies of laboratory ices can provide information on the evolution of cosmic-type ices as a function of different simulated space environments involving thermal, ultraviolet (UV), or ion processing. Laboratory radiation experiments can lead to the formation of complex organic molecules. However, because of our lack of knowledge about UV photon and ion fluxes, and exposure lifetimes, it is not certain how well our simulations represent space conditions. Appropriate laboratory experiments are also limited by the absence of knowledge about the composition, density, and temperature of ices in different regions of space. Our current understanding of expected doses due to UV photons and cosmic rays is summarized here, along with an inventory of condensed-phase molecules identified on outer solar system surfaces, comets and interstellar grains. Far-IR spectra of thermally cycled H2O are discussed since these results reflect the dramatic difference between the amorphous and crystalline phases of H2O ice, the most dominant condensed-phase molecule in cosmic ices. A comparison of mid-IR spectra of products in proton-irradiated and UV-photolyzed ices shows that few differences are observed for these two forms of processing for the simple binary mixtures studied to date. IR identification of radiation products and experiments to determine production rates of new molecules in ices during processing are discussed. A new technique for measuring intrinsic IR band strengths of several unstable molecules is presented. An example of our laboratory results applied to Europa observations is included.

  11. A 4-D dataset for validation of crystal growth in a complex three-phase material, ice cream

    NASA Astrophysics Data System (ADS)

    Rockett, P.; Karagadde, S.; Guo, E.; Bent, J.; Hazekamp, J.; Kingsley, M.; Vila-Comamala, J.; Lee, P. D.

    2015-06-01

    Four dimensional (4D, or 3D plus time) X-ray tomographic imaging of phase changes in materials is quickly becoming an accepted tool for quantifying the development of microstructures to both inform and validate models. However, most of the systems studied have been relatively simple binary compositions with only two phases. In this study we present a quantitative dataset of the phase evolution in a complex three-phase material, ice cream. The microstructure of ice cream is an important parameter in terms of sensorial perception, and therefore quantification and modelling of the evolution of the microstructure with time and temperature is key to understanding its fabrication and storage. The microstructure consists of three phases, air cells, ice crystals, and unfrozen matrix. We perform in situ synchrotron X-ray imaging of ice cream samples using in-line phase contrast tomography, housed within a purpose built cold-stage (-40 to +20oC) with finely controlled variation in specimen temperature. The size and distribution of ice crystals and air cells during programmed temperature cycling are determined using 3D quantification. The microstructural evolution of three-phase materials has many other important applications ranging from biological to structural and functional material, hence this dataset can act as a validation case for numerical investigations on faceted and non-faceted crystal growth in a range of materials.

  12. Proceedings of the Airframe Icing Workshop

    NASA Technical Reports Server (NTRS)

    Colantonio, Ron O. (Editor)

    2009-01-01

    The NASA Glenn Research Center (GRC) has a long history of working with its partners towards the understanding of ice accretion formation and its associated degradation of aerodynamic performance. The June 9, 2009, Airframe Icing Workshop held at GRC provided an opportunity to examine the current NASA airframe icing research program and to dialogue on remaining and emerging airframe icing issues and research with the external community. Some of the airframe icing gaps identified included, but are not limited to, ice accretion simulation enhancements, three-dimensional benchmark icing database development, three-dimensional iced aerodynamics modeling, and technology development for a smart icing system.

  13. Candidate Binary Trojan and Hilda Asteroids from Rotational Light Curves

    NASA Astrophysics Data System (ADS)

    Sonnett, Sarah M.; Mainzer, Amy K.; Grav, Tommy; Masiero, Joseph R.; Bauer, James M.; Kramer, Emily A.

    2017-10-01

    Jovian Trojans (hereafter, Trojans) are asteroids in stable orbits at Jupiter's L4 and L5 Lagrange points, and Hilda asteroids are inwards of the Trojans in 3:2 mean-motion resonance with Jupiter. Due to their special dynamical properties, observationally constraining the formation location and dynamical histories of Trojans and HIldas offers key input for giant planet migration models. A fundamental parameter in assessing formation location is the bulk density - with low-density objects associated with an ice-rich formation environment in the outer solar system and high-density objects typically linked to the warmer inner solar system. Bulk density can only be directly measured during a close fly-by or by determining the mutual orbits of binary asteroid systems. With the aim of determining densities for a statistically significant sample of Trojans and Hildas, we are undertaking an observational campaign to confirm and characterize candidate binary asteroids published in Sonnett et al. (2015). These objects were flagged as binary candidates because their large NEOWISE brightness variations imply shapes so elongated that they are not likely explained by a singular equilibrium rubble pile and instead may be two elongated, gravitationally bound asteroids. We are obtaining densely sampled rotational light curves of these possible binaries to search for light curve features diagnostic of binarity and to determine the orbital properties of any confirmed binary systems by modeling the light curve. We compare the We present an update on this follow-up campaign and comment on future steps.

  14. Glacier Frontal Line Extraction from SENTINEL-1 SAR Imagery in Prydz Area

    NASA Astrophysics Data System (ADS)

    Li, F.; Wang, Z.; Zhang, S.; Zhang, Y.

    2018-04-01

    Synthetic Aperture Radar (SAR) can provide all-day and all-night observation of the earth in all-weather conditions with high resolution, and it is widely used in polar research including sea ice, sea shelf, as well as the glaciers. For glaciers monitoring, the frontal position of a calving glacier at different moments of time is of great importance, which indicates the estimation of the calving rate and flux of the glaciers. In this abstract, an automatic algorithm for glacier frontal extraction using time series Sentinel-1 SAR imagery is proposed. The technique transforms the amplitude imagery of Sentinel-1 SAR into a binary map using SO-CFAR method, and then frontal points are extracted using profile method which reduces the 2D binary map to 1D binary profiles, the final frontal position of a calving glacier is the optimal profile selected from the different average segmented profiles. The experiment proves that the detection algorithm for SAR data can automatically extract the frontal position of glacier with high efficiency.

  15. The Winter Olympics--On Ice.

    ERIC Educational Resources Information Center

    Hoover, Barbara G.

    1998-01-01

    Describes several science activities designed around the upcoming Winter Olympics ice skating events which demonstrate the scientific principles behind the sport. Students learn that increasing the pressure on ice will lead to the ice melting, the principle involved in the spinning swing, and the technology of skates and skating outfits. (PVD)

  16. A survey of anti-icing practice in Virginia.

    DOT National Transportation Integrated Search

    1997-01-01

    This study documents the current Virginia Department of Transportation's anti-icing practice so that development of a coordinated statewide plan for implementing anti-icing technology can be considered. The researcher surveyed VDOT managers to determ...

  17. Thin, Light, Flexible Heaters Save Time and Energy

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Icing Branch at NASA's Glenn Research Center uses the Center's Icing Research Tunnel (IRT) and Icing Research Aircraft to research methods for evaluating and simulating the growth of ice on aircraft, the effects that ice may have on aircraft in flight, and the development and effectiveness of various ice protection and detection systems. EGC Enterprises Inc. (EGC), of Chardon, Ohio, used the IRT to develop thermoelectric thin-film heater technology to address in-flight icing on aircraft wings. Working with researchers at Glenn and the original equipment manufacturers of aircraft parts, the company tested various thin, flexible, durable, lightweight, and efficient heaters. Development yielded a thin-film heater technology that can be used in many applications in addition to being an effective deicer for aircraft. This new thermoelectric heater was dubbed the QoFoil Rapid Response Thin-Film Heater, or QoFoil, for short. The product meets all criteria for in-flight use and promises great advances in thin-film, rapid response heater technology for a broad range of industrial applications. Primary advantages include time savings, increased efficiency, and improved temperature uniformity. In addition to wing deicing, EGC has begun looking at the material's usefulness for applications including cooking griddles, small cabinet heaters, and several laboratory uses.

  18. Binary Number System Training for Graduate Foreign Students at New York Institute of Technology.

    ERIC Educational Resources Information Center

    Sudsataya, Nuntawun

    This thesis describes the design, development, implementation, and evaluation of a training module to instruct graduate foreign students to learn the representation of the binary system and the method of decimal-binary conversion. The designer selected programmed instruction as the method of instruction and used the "lean" approach to…

  19. Development of sea ice monitoring with aerial remote sensing technology

    NASA Astrophysics Data System (ADS)

    Jiang, Xuhui; Han, Lei; Dong, Liang; Cui, Lulu; Bie, Jun; Fan, Xuewei

    2014-11-01

    In the north China Sea district, sea ice disaster is very serious every winter, which brings a lot of adverse effects to shipping transportation, offshore oil exploitation, and coastal engineering. In recent years, along with the changing of global climate, the sea ice situation becomes too critical. The monitoring of sea ice is playing a very important role in keeping human life and properties in safety, and undertaking of marine scientific research. The methods to monitor sea ice mainly include: first, shore observation; second, icebreaker monitoring; third, satellite remote sensing; and then aerial remote sensing monitoring. The marine station staffs use relevant equipments to monitor the sea ice in the shore observation. The icebreaker monitoring means: the workers complete the test of the properties of sea ice, such as density, salinity and mechanical properties. MODIS data and NOAA data are processed to get sea ice charts in the satellite remote sensing means. Besides, artificial visual monitoring method and some airborne remote sensors are adopted in the aerial remote sensing to monitor sea ice. Aerial remote sensing is an important means in sea ice monitoring because of its strong maneuverability, wide watching scale, and high resolution. In this paper, several methods in the sea ice monitoring using aerial remote sensing technology are discussed.

  20. Arctic Technology Evaluation 2014 Oil-in-Ice Demonstration Report

    DTIC Science & Technology

    2015-03-01

    Spills in Ice”, 2014 International Oil Spill Conference, Savannah, GA, May, 2014. Hansen, Kurt A., Scot T. Trip, Rich L. Hansen (2014) “Evaluating...Operations”, Woods Hole Oceanographic Institution (WHOI) report to BSEE, 2013. Arctic Technology Evaluation 2014 Oil-in-Ice Demonstration Report 40

  1. 75 FR 33319 - Agency Information Collection Activities: New Information Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ... Information Collection; ICE Mutual Agreement Between Government and Employers (IMAGE). The Department of... technological collection techniques or other forms of information technology, e.g., permitting electronic... information collection. (2) Title of the Form/Collection: ICE Mutual Agreement between Government and...

  2. A Terminal Area Icing Remote Sensing System

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Serke, David J.

    2014-01-01

    NASA and the National Center for Atmospheric Research (NCAR) have developed an icing remote sensing technology that has demonstrated skill at detecting and classifying icing hazards in a vertical column above an instrumented ground station. This technology is now being extended to provide volumetric coverage surrounding an airport. With volumetric airport terminal area coverage, the resulting icing hazard information will be usable by aircrews, traffic control, and airline dispatch to make strategic and tactical decisions regarding routing when conditions are conducive to airframe icing. Building on the existing vertical pointing system, the new method for providing volumetric coverage will utilize cloud radar, microwave radiometry, and NEXRAD radar. This terminal area icing remote sensing system will use the data streams from these instruments to provide icing hazard classification along the defined approach paths into an airport. Strategies for comparison to in-situ instruments on aircraft and weather balloons for a planned NASA field test are discussed, as are possible future applications into the NextGen airspace system.

  3. A binary main-belt comet.

    PubMed

    Agarwal, Jessica; Jewitt, David; Mutchler, Max; Weaver, Harold; Larson, Stephen

    2017-09-20

    Asteroids are primitive Solar System bodies that evolve both collisionally and through disruptions arising from rapid rotation. These processes can lead to the formation of binary asteroids and to the release of dust, both directly and, in some cases, through uncovering frozen volatiles. In a subset of the asteroids called main-belt comets, the sublimation of excavated volatiles causes transient comet-like activity. Torques exerted by sublimation measurably influence the spin rates of active comets and might lead to the splitting of bilobate comet nuclei. The kilometre-sized main-belt asteroid 288P (300163) showed activity for several months around its perihelion 2011 (ref. 11), suspected to be sustained by the sublimation of water ice and supported by rapid rotation, while at least one component rotates slowly with a period of 16 hours (ref. 14). The object 288P is part of a young family of at least 11 asteroids that formed from a precursor about 10 kilometres in diameter during a shattering collision 7.5 million years ago. Here we report that 288P is a binary main-belt comet. It is different from the known asteroid binaries in its combination of wide separation, near-equal component size, high eccentricity and comet-like activity. The observations also provide strong support for sublimation as the driver of activity in 288P and show that sublimation torques may play an important part in binary orbit evolution.

  4. MORICE--new technology for mechanical oil recovery in ice infested waters.

    PubMed

    Jensen, Hans V; Mullin, Joseph V

    2003-01-01

    Mechanical oil recovery in ice infested waters (MORICE) was initiated in 1995 to develop technology for the recovery of oil spills in ice. It has been a multinational effort involving Norwegian, Canadian, American and German organizations and researchers. Through a stepwise approach with the development organized in six separate phases, laboratory tests and field experiments have been conducted to study various ideas and concepts, and to refine the ideas that were considered to have the best potential for removing oil in ice. Put together in one unit, these concepts included ice processing equipment and two alternative oil recovery units installed on a work platform. In January 2002, the final oil and ice testing with MORICE concepts was conducted at the Ohmsett test facility in Leonardo, New Jersey. The unit has been referred to as a harbor version to indicate the size and operating conditions, but the concepts could be scaled up to increase the capacity of oil and ice processing. For heavier ice conditions it would also be necessary to increase the overall strength.

  5. Assessment of Superstructure Ice Protection as Applied to Offshore Oil Operations Safety: Ice Protection Technologies, Safety Enhancements, and Development Needs

    DTIC Science & Technology

    2009-04-01

    companies and Web site own- ers to use their tables and figures. This report was prepared under the general supervision of Janet Hardy, Chief...through reports about the technologies, sales and engineering literature, Web sites, and patents. Information in some circumstances was available from...the technologies are proprietary, some information sources were limited to Web sites and open literature. 5. TRL: Technology Readiness Level (TRL

  6. Outreach/education interface for Cryosphere models using the Virtual Ice Sheet Laboratory

    NASA Astrophysics Data System (ADS)

    Larour, E. Y.; Halkides, D. J.; Romero, V.; Cheng, D. L.; Perez, G.

    2014-12-01

    In the past decade, great strides have been made in the development of models capable of projecting the future evolution of glaciers and the polar ice sheets in a changing climate. These models are now capable of replicating some of the trends apparent in satellite observations. However, because this field is just now maturing, very few efforts have been dedicated to adapting these capabilities to education. Technologies that have been used in outreach efforts in Atmospheric and Oceanic sciences still have not been extended to Cryospheric Science. We present a cutting-edge, technologically driven virtual laboratory, geared towards outreach and k-12 education, dedicated to the polar ice sheets on Antarctica and Greenland, and their role as major contributors to sea level rise in coming decades. VISL (Virtual Ice Sheet Laboratory) relies on state-of-the art Web GL rendering of polar ice sheets, Android/iPhone and web portability using Javascript, as well as C++ simulations (back-end) based on the Ice Sheet System Model, the NASA model for simulating the evolution of polar ice sheets. Using VISL, educators and students can have an immersive experience into the world of polar ice sheets, while at the same exercising the capabilities of a state-of-the-art climate model, all of it embedded into an education experience that follows the new STEM standards for education.This work was performed at the California Institute of Technology's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration's Cryosphere Science Program.

  7. Glycine formation in CO2:CH4:NH3 ices induced by 0-70 eV electrons

    NASA Astrophysics Data System (ADS)

    Esmaili, Sasan; Bass, Andrew D.; Cloutier, Pierre; Sanche, Léon; Huels, Michael A.

    2018-04-01

    Glycine (Gly), the simplest amino-acid building-block of proteins, has been identified on icy dust grains in the interstellar medium, icy comets, and ice covered meteorites. These astrophysical ices contain simple molecules (e.g., CO2, H2O, CH4, HCN, and NH3) and are exposed to complex radiation fields, e.g., UV, γ, or X-rays, stellar/solar wind particles, or cosmic rays. While much current effort is focused on understanding the radiochemistry induced in these ices by high energy radiation, the effects of the abundant secondary low energy electrons (LEEs) it produces have been mostly assumed rather than studied. Here we present the results for the exposure of multilayer CO2:CH4:NH3 ice mixtures to 0-70 eV electrons under simulated astrophysical conditions. Mass selected temperature programmed desorption (TPD) of our electron irradiated films reveals multiple products, most notably intact glycine, which is supported by control measurements of both irradiated or un-irradiated binary mixture films, and un-irradiated CO2:CH4:NH3 ices spiked with Gly. The threshold of Gly formation by LEEs is near 9 eV, while the TPD analysis of Gly film growth allows us to determine the "quantum" yield for 70 eV electrons to be about 0.004 Gly per incident electron. Our results show that simple amino acids can be formed directly from simple molecular ingredients, none of which possess preformed C—C or C—N bonds, by the copious secondary LEEs that are generated by ionizing radiation in astrophysical ices.

  8. Glycine formation in CO2:CH4:NH3 ices induced by 0-70 eV electrons.

    PubMed

    Esmaili, Sasan; Bass, Andrew D; Cloutier, Pierre; Sanche, Léon; Huels, Michael A

    2018-04-28

    Glycine (Gly), the simplest amino-acid building-block of proteins, has been identified on icy dust grains in the interstellar medium, icy comets, and ice covered meteorites. These astrophysical ices contain simple molecules (e.g., CO 2 , H 2 O, CH 4 , HCN, and NH 3 ) and are exposed to complex radiation fields, e.g., UV, γ, or X-rays, stellar/solar wind particles, or cosmic rays. While much current effort is focused on understanding the radiochemistry induced in these ices by high energy radiation, the effects of the abundant secondary low energy electrons (LEEs) it produces have been mostly assumed rather than studied. Here we present the results for the exposure of multilayer CO 2 :CH 4 :NH 3 ice mixtures to 0-70 eV electrons under simulated astrophysical conditions. Mass selected temperature programmed desorption (TPD) of our electron irradiated films reveals multiple products, most notably intact glycine, which is supported by control measurements of both irradiated or un-irradiated binary mixture films, and un-irradiated CO 2 :CH 4 :NH 3 ices spiked with Gly. The threshold of Gly formation by LEEs is near 9 eV, while the TPD analysis of Gly film growth allows us to determine the "quantum" yield for 70 eV electrons to be about 0.004 Gly per incident electron. Our results show that simple amino acids can be formed directly from simple molecular ingredients, none of which possess preformed C-C or C-N bonds, by the copious secondary LEEs that are generated by ionizing radiation in astrophysical ices.

  9. Technology for Ice Rinks

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Ron Urban's International Ice Shows set up portable ice rinks for touring troupes performing on temporary rinks at amusement parks, sports arenas, dinner theaters, shopping malls and civic centers. Key to enhanced rink portability, fast freezing and maintaining ice consistency is a mat of flexible tubing called ICEMAT, an offshoot of a solar heating system developed by Calmac, Mfg. under contract with Marshall.

  10. Hadronic gamma-ray and neutrino emission from Cygnus X-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahakyan, N.; Piano, G.; Tavani, M., E-mail: narek@icra.it

    2014-01-01

    Cygnus X-3 (Cyg X-3) is a remarkable Galactic microquasar (X-ray binary) emitting from radio to γ-ray energies. In this paper, we consider the hadronic model of emission of γ-rays above 100 MeV and their implications. We focus on the joint γ-ray and neutrino production resulting from proton-proton interactions within the binary system. We find that the required proton injection kinetic power, necessary to explain the γ-ray flux observed by AGILE and Fermi-LAT, is L{sub p} ∼ 10{sup 38} erg s{sup –1}, a value in agreement with the average bolometric luminosity of the hypersoft state (when Cyg X-3 was repeatedly observedmore » to produce transient γ-ray activity). If we assume an increase of the wind density at the superior conjunction, the asymmetric production of γ-rays along the orbit can reproduce the observed modulation. According to observational constraints and our modeling, a maximal flux of high-energy neutrinos would be produced for an initial proton distribution with a power-law index α = 2.4. The predicted neutrino flux is almost two orders of magnitude less than the two-month IceCube sensitivity at ∼1 TeV. If the protons are accelerated up to PeV energies, the predicted neutrino flux for a prolonged 'soft X-ray state' would be a factor of about three lower than the one-year IceCube sensitivity at ∼10 TeV. This study shows that, for a prolonged soft state (as observed in 2006) possibly related to γ-ray activity and a hard distribution of injected protons, Cyg X-3 might be close to being detectable by cubic-kilometer neutrino telescopes such as IceCube.« less

  11. Thermo-solutal growth of an anisotropic dendrite with six-fold symmetry

    NASA Astrophysics Data System (ADS)

    Alexandrov, D. V.; Galenko, P. K.

    2018-03-01

    A stable growth of dendritic crystal with the six-fold crystalline anisotropy is analyzed in a binary nonisothermal mixture. A selection criterion representing a relationship between the dendrite tip velocity and its tip diameter is derived on the basis of morphological stability analysis and solvability theory. A complete set of nonlinear equations, consisting of the selection criterion and undercooling balance condition, which determines implicit dependencies of the dendrite tip velocity and tip diameter as functions of the total undercooling, is formulated. Exact analytical solutions of these nonlinear equations are found in a parametric form. Asymptotic solutions describing the crystal growth at small Péclet numbers are determined. Theoretical predictions are compared with experimental data obtained for ice dendrites growing in binary water-ethylenglycol solutions as well as in pure water.

  12. A novel optical freezing array for the examination of cooling rate dependence in heterogeneous ice nucleation

    NASA Astrophysics Data System (ADS)

    Budke, Carsten; Dreischmeier, Katharina; Koop, Thomas

    2014-05-01

    Homogeneous ice nucleation is a stochastic process, implying that it is not only temperature but also time dependent. For heterogeneous ice nucleation it is still under debate whether there is a significant time dependence or not. In case of minor time dependence it is probably sufficient to use a singular or slightly modified singular approach, which mainly supposes temperature dependence and just small stochastic variations. We contribute to this discussion using a novel optical freezing array termed BINARY (Bielefeld Ice Nucleation ARraY). The setup consists of an array of microliter-sized droplets on a Peltier cooling stage. The droplets are separated from each other with a polydimethylsiloxane (PDMS) spacer to prevent a Bergeron-Findeisen process, in which the first freezing droplets grow at the expense of the remaining liquid ones due to their vapor pressure differences. An automatic detection of nucleation events is realized optically by the change in brightness during freezing. Different types of ice nucleating agents were tested with the presented setup, e. g. pollen and clay mineral dust. Exemplarily, cooling rate dependent measurements are shown for the heterogeneous ice nucleation induced by Snomax®. The authors gratefully acknowledge funding by the German Research Foundation (DFG) through the project BIOCLOUDS (KO 2944/1-1) and through the research unit INUIT (FOR 1525) under KO 2944/2-1. We particularly thank our INUIT partners for fruitful collaboration and sharing of ideas and IN samples.

  13. Pre-cometary ice composition from hot core chemistry.

    PubMed

    Tornow, Carmen; Kührt, Ekkehard; Motschmann, Uwe

    2005-10-01

    Pre-cometary ice located around star-forming regions contains molecules that are pre-biotic compounds or pre-biotic precursors. Molecular line surveys of hot cores provide information on the composition of the ice since it sublimates near these sites. We have combined a hydrostatic hot core model with a complex network of chemical reactions to calculate the time-dependent abundances of molecules, ions, and radicals. The model considers the interaction between the ice and gas phase. It is applied to the Orion hot core where high-mass star formation occurs, and to the solar-mass binary protostar system IRAS 16293-2422. Our calculations show that at the end of the hot core phase both star-forming sites produce the same prebiotic CN-bearing molecules. However, in the Orion hot core these molecules are formed in larger abundances. A comparison of the calculated values with the abundances derived from the observed line data requires a chemically unprocessed molecular cloud as the initial state of hot core evolution. Thus, it appears that these objects are formed at a much younger cloud stage than previously thought. This implies that the ice phase of the young clouds does not contain CN-bearing molecules in large abundances before the hot core has been formed. The pre-biotic molecules synthesized in hot cores cause a chemical enrichment in the gas phase and in the pre-cometary ice. This enrichment is thought to be an important extraterrestrial aspect of the formation of life on Earth and elsewhere.

  14. Ice-Release and Erosion Resistant Materials for Wind Turbines

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Brinn, Cameron; Cook, Alex; Pascual-Marquez, Fernando

    2017-11-01

    Icing conditions may cause wind turbine generators to partially lose productivity or to be completely shut down to avoid structural damage. At present, commercially available technologies to mitigate this problem consist of expensive, energy hungry heating elements, which costs roughly 70,000 euro per medium size turbine. Conventional passive ice protection coating systems heavily rely on delicate surface structures and expensive materials to create water repellent superhydrophobic / low surface energy surfaces, which have been proven to be ineffective against ice accumulation. The lack of performance among conventional ice protection materials stems from a flaw in the approach to the problem: failure to recognize that water in its liquid form (WATER) and water in its solid form (ICE) are two different things. Something that works for WATER does not automatically work for ICE. Another reason is that many superhydrophobic materials are often reliant upon often fragile micro-structured surfaces to achieve their intended effects. This paper discusses a fundamentally different approach to the creation of a robust, low cost, durable, and multifunctional materials for ice release and erosion resistance. This National Science Foundation sponsored ice-release coating technology holds promise for protecting wind turbine blades and towers, thus potentially increasing reliability for power generation under icing conditions. Because of the vulnerability of wind turbine blades to ice buildup and erosion damages, wind farm facilities stand to reap considerable benefits.

  15. On the state of methane and nitrogen ice on Pluto and Triton: Implications of the binary phase diagram

    NASA Astrophysics Data System (ADS)

    Trafton, Laurence M.

    2015-01-01

    Compositional analyses of Pluto's surface ice in the literature typically include large areas on the body where CH4 and other volatiles are segregated in the pure form from the solid solution N2:CH4 in which CH4 is diluted. However, the existence of continent-size areas of pure CH4 are in conflict with both of the alternative models that successfully explain the enhancement of CH4 in Pluto's atmosphere, the Detailed Balancing thermal equilibrium model and the Hot Methane Patch model. Pluto's spectrum includes an apparently unshifted CH4 component while Triton's does not, and 93% of the concentration range of the binary phase diagram at 38 K shows that these species exist as a mixture of two saturated solid solution phases. Recognizing this, we propose that both of these saturated phases are present on Pluto and the CH4-rich phase of the mixture, CH4:N2, is the source of the relatively unshifted CH4 spectrum attributed to pure CH4. We also propose that CH4 is less abundant in Triton's ice to the point where either the ice is not saturated or the saturated CH4:N2 phase has not been detected. In this scenario, the partial vapor pressures do not change when the relative proportions of these saturated phases are varied in the mixture. Thus, the partial vapor pressures are independent of N2-CH4 concentrations if both saturated phases are present. Accordingly, the longitudinal and seasonal variations of CH4 and N2 features in Pluto's spectrum would be attributed to spatial variations in the relative proportions of these species. This may occur during volatile transport in the sublimation wind through extensive influences. The lower, unsaturated, values of the mole fraction of CH4 in the ice reported by Owen et al. (Owen et al. [1993]. Science 261, 745-748) and Cruikshank et al. (Cruikshank, D.P., Rush, T.L., Owen, T.C., Quirico, E., de Bergh, C. [1998]. The surface compositions of Triton, Pluto, and Charon. In: Solar System Ices. Astrophysics and Space Science Library Series, vol. 227. Kluwer Academic Publishers, Dordrecht), and by Doute et al. (Doute, S., Schmitt, B., Quirico, E., Owen, T.C., Cruikshank, D.P., de Bergh, C., Geballe, T.R., Roush, T.L. [1999]. Icarus 142, 421-444) based on a compositional analysis of Pluto's surface, were not obtained using optical constants for components consistent with the constraints of the phase diagram.

  16. Artificial Intelligence in Astronomy

    NASA Astrophysics Data System (ADS)

    Devinney, E. J.; Prša, A.; Guinan, E. F.; Degeorge, M.

    2010-12-01

    From the perspective (and bias) as Eclipsing Binary researchers, we give a brief overview of the development of Artificial Intelligence (AI) applications, describe major application areas of AI in astronomy, and illustrate the power of an AI approach in an application developed under the EBAI (Eclipsing Binaries via Artificial Intelligence) project, which employs Artificial Neural Network technology for estimating light curve solution parameters of eclipsing binary systems.

  17. In-Flight Icing Training for Pilots Using Multimedia Technology

    NASA Technical Reports Server (NTRS)

    Burke, Kevin M.; VanZante, Judith Foss; Bond, Thomas H.

    2004-01-01

    Over the last five years, the Aircraft Icing Project of the NASA Aviation Safety Program has developed a number of in-flight icing education and training aids to support increased awareness for pilots of the hazards associated with atmospheric icing conditions. Through the development of this work, a number of new instructional design approaches and media delivery methods have been introduced to enhance the learning experience, expand user interactivity and participation, and, hopefully, increase the learner retention rates. The goal of using these multimedia techniques is to increase the effectiveness of the training materials. This paper will describe the mutlimedia technology that has been introduced and give examples of how it was used.

  18. 4th International Conference on Energy and Environment 2013 (ICEE 2013)

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Chandan Kumar; Shamsuddin, Abd Halim Bin; Ahmad, Ibrahim Bin; Desa, Mohamed Nor Bin Mohamed; Din, Norashidah Bte Md; Bte Mohd, Lariyah; Hamid, Nasri A.; See, Ong Hang; Hafiz Nagi, Farrukh; Yong, Lee Choon; Pasupuleti, Jagadeesh; Mei, Goh Su; Abdullah, Fairuz Bin; Satgunam, Meenaloshini

    2013-06-01

    The 4th International Conference on Energy & Environment 2013 (ICEE2013) was organized by the Universiti Tenaga Nasional (UNITEN) to provide a platform for creating and sharing ideas among engineers, researchers, scientists, industrialists and students in sustainable green energy and technologies. The theme 'Shaping a Sustainable Future through Advancement in Green Energy Technology' is in line with the University's vision to be a leading global energy university that shapes a sustainable future. The general scopes of the conference are renewable energy, smart grid, green technology, energy policies and economics, sustainable green energy and environment, sustainable education, international cooperation and innovation and technology transfer. Five international keynote speakers delivered their speeches in specialized areas of green energy technology and sustainability. In addition, the conference highlights several special parallel sessions by notable invited presenters in their niche areas, which are: Hybrid Energy Power Quality & Distributed Energy Smart Grid Nuclear Power & Technologies Geohazard Management Greener Environment for Sustainability Advances in Computational Fluid Dynamics The research papers presented in ICEE2013 are included in this volume of IOP Conference Series: Earth and Environmental Science (EES). EES is abstracted and indexed in SCOPUS, GeoBase, GeoRef, Compendex, Inspec, Chemical Abstracts Service, NASA Astrophysics Data System, and International Nuclear Information System (INIS). With the comprehensive programme outline, the organizing committee hopes that the ICEE2013 was a notable intellectual sharing session for the research and academic community in Malaysia and regionally. The organizing committee expresses gratitude to the ICEE2013 delegates for their great support and contributions to the event.

  19. The Arctic Gakkel Vents (AGAVE) Expedition: Technology Development and the Search for Deep-Sea Hydrothermal Vent Fields Under the Arctic Ice Cap

    NASA Astrophysics Data System (ADS)

    Reves-Sohn, R. A.; Singh, H.; Humphris, S.; Shank, T.; Jakuba, M.; Kunz, C.; Murphy, C.; Willis, C.

    2007-12-01

    Deep-sea hydrothermal fields on the Gakkel Ridge beneath the Arctic ice cap provide perhaps the best terrestrial analogue for volcanically-hosted chemosynthetic biological communities that may exist beneath the ice-covered ocean of Europa. In both cases the key enabling technologies are robotic (untethered) vehicles that can swim freely under the ice and the supporting hardware and software. The development of robotic technology for deep- sea research beneath ice-covered oceans thus has relevance to both polar oceanography and future astrobiological missions to Europa. These considerations motivated a technology development effort under the auspices of NASA's ASTEP program and NSF's Office of Polar Programs that culminated in the AGAVE expedition aboard the icebreaker Oden from July 1 - August 10, 2007. The scientific objective was to study hydrothermal processes on the Gakkel Ridge, which is a key target for global studies of deep-sea vent fields. We developed two new autonomous underwater vehicles (AUVs) for the project, and deployed them to search for vent fields beneath the ice. We conducted eight AUV missions (four to completion) during the 40-day long expedition, which also included ship-based bathymetric surveys, CTD/rosette water column surveys, and wireline photographic and sampling surveys of remote sections of the Gakkel Ridge. The AUV missions, which lasted 16 hours on average and achieved operational depths of 4200 meters, returned sensor data that showed clear evidence of hydrothermal venting, but for a combination of technical reasons and time constraints, the AUVs did not ultimately return images of deep-sea vent fields. Nevertheless we used our wireline system to obtain images and samples of extensive microbial mats that covered fresh volcanic surfaces on a newly discovered set of volcanoes. The microbes appear to be living in regions where reducing and slightly warm fluids are seeping through cracks in the fresh volcanic terrain. These discoveries shed new light on the nature of volcanic and hydrothermal processes in the Arctic basin, and also demonstrate the importance of new technologies for advancing science beneath ice-covered oceans. Operationally, the AUV missions pushed the envelope of deep-sea technology. The recoveries were particularly difficult as it was necessary to have the vehicle find small pools of open water next to the ship, but in some cases the ice was in a state of regional compression such that no open water could be found or created. In these cases a well-calibrated, ship-based, short-baseline acoustic system was essential for successful vehicle recoveries. In all we were able to achieve a variety of operational and technological advances that provide stepping stones for future under-ice robotic missions, both on Earth and perhaps eventually on Europa.

  20. ICE911 Research: Floating Safe Inert Materials to Preserve Ice and Conserve Water in Order to Mitigate Climate Change Impacts

    NASA Astrophysics Data System (ADS)

    Field, L. A.; Manzara, A.; Chetty, S.; Venkatesh, S.; Scholtz, A.

    2015-12-01

    Ice911 Research has conducted years of field testing to develop and test localized reversible engineering techniques to mitigate the negative impacts of polar ice melt. The technology uses environmentally safe materials to reflect energy in carefully selected, limited areas from summertime polar sun. The technology is now being adapted to help with California's drought. We have tested the albedo modification technique on a small scale over seven Winter/Spring seasons at sites including California's Sierra Nevada Mountains, a Canadian lake, and a small artificial pond in Minnesota about 100 ft in diameter and 6 ft deep at the center, using various materials and an evolving array of instrumentation. On the pond in Minnesota, this year's test results for ice preservation, using hollow glass spheres deployed over our largest test areas yet, showed that glass bubbles can provide an effective material for increasing albedo, significantly reducing the melting rate of ice. This year Ice911 also undertook its first small Arctic field test in Barrow, Alaska on a lake in Barrow's BEO area, and results are still coming in. The technology that Ice911 has been developing for ice preservation has also been shown to keep small test areas of water cooler, in various small-scale tests spanning years. We believe that with some adaptations of the technology, the materials can be applied to reservoirs and lakes to help stretch these precious resources further in California's ongoing drought. There are several distinct advantages for this method over alternatives such as large reverse osmosis projects or building new reservoirs, which could possibly allow a drought-stricken state to build fewer of these more-costly alternatives. First, applying an ecologically benign surface treatment of Ice911's materials can be accomplished within a season, at a lower cost, with far less secondary environmental impact, than such capital-and-time-intensive infrastructure projects. Second, keeping bodies of water cooler using these floating materials could help avoid scenarios like the overheated lakes and streams that led to millions of fish killed this summer in Washington State. Third, Ice911's materials can later be removed if no longer needed, and could be repurposed to another area in need.

  1. Controlled ice nucleation in the field of freeze-drying: fundamentals and technology review.

    PubMed

    Geidobler, R; Winter, G

    2013-10-01

    In the scientific community as well as in commercial freeze-drying, controlled ice nucleation has received a lot of attention because increasing the ice nucleation temperature can significantly reduce primary drying duration. Furthermore, controlled ice nucleation enables to reduce the randomness of the ice nucleation temperature, which can be a serious scale-up issue during process development. In this review, fundamentals of ice nucleation in the field of freeze-drying are presented. Furthermore, the impact of controlled ice nucleation on product qualities is discussed, and methods to achieve controlled ice nucleation are presented. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Shell-binary nanoparticle materials with variable electrical and electro-mechanical properties.

    PubMed

    Zhang, P; Bousack, H; Dai, Y; Offenhäusser, A; Mayer, D

    2018-01-18

    Nanoparticle (NP) materials with the capability to adjust their electrical and electro-mechanical properties facilitate applications in strain sensing technology. Traditional NP materials based on single component NPs lack a systematic and effective means of tuning their electrical and electro-mechanical properties. Here, we report on a new type of shell-binary NP material fabricated by self-assembly with either homogeneous or heterogeneous arrangements of NPs. Variable electrical and electro-mechanical properties were obtained for both materials. We show that the electrical and electro-mechanical properties of these shell-binary NP materials are highly tunable and strongly affected by the NP species as well as their corresponding volume fraction ratio. The conductivity and the gauge factor of these shell-binary NP materials can be altered by about five and two orders of magnitude, respectively. These shell-binary NP materials with different arrangements of NPs also demonstrate different volume fraction dependent electro-mechanical properties. The shell-binary NP materials with a heterogeneous arrangement of NPs exhibit a peaking of the sensitivity at medium mixing ratios, which arises from the aggregation induced local strain enhancement. Studies on the electron transport regimes and micro-morphologies of these shell-binary NP materials revealed the different mechanisms accounting for the variable electrical and electro-mechanical properties. A model based on effective medium theory is used to describe the electrical and electro-mechanical properties of such shell-binary nanomaterials and shows an excellent match with experiment data. These shell-binary NP materials possess great potential applications in high-performance strain sensing technology due to their variable electrical and electro-mechanical properties.

  3. Electron Irradiation of Kuiper Belt Surface Ices: Ternary N2-CH4-CO Mixtures as a Case Study

    NASA Astrophysics Data System (ADS)

    Kim, Y. S.; Kaiser, R. I.

    2012-10-01

    The space weathering of icy Kuiper Belt Objects was investigated in this case study by exposing methane (CH4) and carbon monoxide (CO) doped nitrogen (N2) ices at 10 K to ionizing radiation in the form of energetic electrons. Online and in situ Fourier transform infrared spectroscopy was utilized to monitor the radiation-induced chemical processing of these ices. Along with isocyanic acid (HNCO), the products could be mainly derived from those formed in irradiated binary ices of the N2-CH4 and CO-CH4 systems: nitrogen-bearing products were found in the form of hydrogen cyanide (HCN), hydrogen isocyanide (HNC), diazomethane (CH2N2), and its radical fragment (HCN2); oxygen-bearing products were of acetaldehyde (CH3CHO), formyl radical (HCO), and formaldehyde (H2CO). As in the pure ices, the methyl radical (CH3) and ethane (C2H6) were also detected, as were carbon dioxide (CO2) and the azide radical (N3). Based on the temporal evolution of the newly formed products, kinetic reaction schemes were then developed to fit the temporal profiles of the newly formed species, resulting in numerical sets of rate constants. The current study highlights important constraints on the preferential formation of isocyanic acid (HNCO) over hydrogen cyanide (HCN) and hydrogen isocyanide (HNC), thus guiding the astrobiological and chemical evolution of those distant bodies.

  4. Gas chromatography using ice-coated fused silica columns: study of adsorption of sulfur dioxide on water ice

    NASA Astrophysics Data System (ADS)

    Langenberg, Stefan; Schurath, Ulrich

    2018-05-01

    The well established technique of gas chromatography is used to investigate interactions of sulfur dioxide with a crystalline ice film in a fused silica wide bore column. Peak shape analysis of SO2 chromatograms measured in the temperature range 205-265 K is applied to extract parameters describing a combination of three processes: (i) physisorption of SO2 at the surface, (ii) dissociative reaction with water and (iii) slow uptake into bulk ice. Process (ii) is described by a dissociative Langmuir isotherm. The pertinent monolayer saturation capacity is found to increase with temperature. The impact of process (iii) on SO2 peak retention time is found to be negligible under our experimental conditions. By analyzing binary chromatograms of hydrophobic n-hexane and hydrophilic acetone, the premelt surface layer is investigated in the temperature range 221-263 K, possibly giving rise to irregular adsorption. Both temperature dependencies fit simple van't Hoff equations as expected for process (i), implying that irregular adsorption of acetone is negligible in the investigated temperature range. Adsorption enthalpies of -45 ± 5 and -23±2 kJ mol-1 are obtained for acetone and n-hexane. The motivation of our study was to assess the vertical displacement of SO2 and acetone in the wake of aircraft by adsorption on ice particles and their subsequent sedimentation. Our results suggest that this transport mechanism is negligible.

  5. Upper-Tropospheric Cloud Ice from IceCube

    NASA Astrophysics Data System (ADS)

    Wu, D. L.

    2017-12-01

    Cloud ice plays important roles in Earth's energy budget and cloud-precipitation processes. Knowledge of global cloud ice and its properties is critical for understanding and quantifying its roles in Earth's atmospheric system. It remains a great challenge to measure these variables accurately from space. Submillimeter (submm) wave remote sensing has capability of penetrating clouds and measuring ice mass and microphysical properties. In particular, the 883-GHz frequency is a highest spectral window in microwave frequencies that can be used to fill a sensitivity gap between thermal infrared (IR) and mm-wave sensors in current spaceborne cloud ice observations. IceCube is a cubesat spaceflight demonstration of 883-GHz radiometer technology. Its primary objective is to raise the technology readiness level (TRL) of 883-GHz cloud radiometer for future Earth science missions. By flying a commercial receiver on a 3U cubesat, IceCube is able to achieve fast-track maturation of space technology, by completing its development, integration and testing in 2.5 years. IceCube was successfully delivered to ISS in April 2017 and jettisoned from the International Space Station (ISS) in May 2017. The IceCube cloud-ice radiometer (ICIR) has been acquiring data since the jettison on a daytime-only operation. IceCube adopted a simple design without payload mechanism. It makes maximum utilization of solar power by spinning the spacecraft continuously about the Sun vector at a rate of 1.2° per second. As a result, the ICIR is operated under the limited resources (8.6 W without heater) and largely-varying (18°C-28°C) thermal environments. The spinning cubesat also allows ICIR to have periodical views between the Earth (atmosphere and clouds) and cold space (calibration), from which the first 883-GHz cloud map is obtained. The 883-GHz cloud radiance, sensitive to ice particle scattering, is proportional to cloud ice amount above 10 km. The ICIR cloud map acquired during June 20-July 2, 2017 shows a clear distribution of the inter-tropical convergence zone (ITCZ), as well as the classic Gill-model pattern over the Western Pacific and Indian monsoon regions. Like the ISS, the coverage of ICIR observations is limited to low-to-mid latitudes. More science results and IceCube experiments with the cubesat operation will be discussed.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bingbing; Knopf, Daniel A.; China, Swarup

    Heterogeneous ice nucleation is a physical chemistry process of critical relevance to a range of topics in the fundamental and the applied sciences and technologies. Heterogeneous ice nucleation remains insufficiently understood. This is in part due to the lack of experimental methods capable of in situ visualization of ice formation over nucleating substrates with microscopically characterized morphology and composition. We present development, validation and first applications of a novel electron microscopy platform allowing observation of individual ice nucleation events at temperature and relative humidity (RH) relevant for ice formation in a broad range of environmental and applied technology processes. Themore » approach utilizes a custom-built ice nucleation cell, interfaced with an Environmental Scanning Electron Microscope (IN-ESEM system). The IN-ESEM system allows dynamic observations of individual ice formation events over particles of atmospheric relevance and determination of the ice nucleation mechanisms. Additional IN-ESEM experiments allow examination of the location of ice formation on the surface of individual particles and micro-spectroscopy analysis of the ice nucleating particles (INPs). This includes elemental composition detected by the energy dispersed analysis of X-rays (EDX), speciation of the organic content in particles using scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS), and Helium ion microscopy (HeIM). The capabilities of the IN-ESEM experimental platform are demonstrated first on laboratory standards and then by chemical imaging of INPs using a complex sample of ambient particles.« less

  7. New Fluid Prevents Railway Ice

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Through a licensing agreement between NASA's Ames Research Center and Midwest Industrial Supply, Inc. (MIS), two MIS products have been enhanced with NASA's anti-icing fluid technology. MIS offers the new fluid in two commercial products, the Zero Gravity(TM) Third Rail Anti-Icer/Deicer and the Ice Free Switch(R). Using NASA's fluid technology, these products form a protective-coating barrier that prevents the buildup of ice and snow. Applying the fluid to the railway components prior to ice or snowstorm works as an anti-icing fluid, remaining in place to melt precipitation as it hits the surface. It also functions as a deicing fluid. If applied to an already frozen switch or rail, it will quickly melt the ice, free the frozen parts, and then remain in place to prevent refreezing. Additional benefits include the ability to cling to vertical rail surfaces and resist the effects of rain and wind. With the Ice Free Switch, it takes only five minutes to treat the switch by spraying, brushing, or pouring on the product. Ice Free Switch requires as little as one gallon per switch whereas other deicing fluids require five to ten gallons of liquid to effectively melt ice. Zero Gravity serves the same anti-icing/deicing purposes but applies fluid to the third rail through a system that is easily installed onto mass transit cars. A tank of fluid and a dispensing system are placed underneath the train car and the fluid is applied as the train runs its route.

  8. Ice-Ocean Environmental Buoys (IOEB); Technology and Deployment in 1991- 1992

    DTIC Science & Technology

    1993-10-01

    110 Appendix D Sedim ent trap and W TS schedules ...ICE(15 ICZ 15 ICEPTTb STES TRSSI (42) (42) (42) ICE ICE ICESLAXAT & THEIRMS SEACAT k THMISd SEACAT & THEMJ (6,o) (10 (6 (1o0) (56) (,11o) Schedule ...user to schedule the time between filtering events, as well as the characteristics and limitations of the pumping operation. During the deployment of

  9. High response speed microfluidic ice valves with enhanced thermal conductivity and a movable refrigeration source

    PubMed Central

    Si, Chaorun; Hu, Songtao; Cao, Xiaobao; Wu, Weichao

    2017-01-01

    Due to their ease of fabrication, facile use and low cost, ice valves have great potential for use in microfluidic platforms. For this to be possible, a rapid response speed is key and hence there is still much scope for improvement in current ice valve technology. Therefore, in this study, an ice valve with enhanced thermal conductivity and a movable refrigeration source has been developed. An embedded aluminium cylinder is used to dramatically enhance the heat conduction performance of the microfluidic platform and a movable thermoelectric unit eliminates the thermal inertia, resulting in a faster cooling process. The proposed ice valve achieves very short closing times (0.37 s at 10 μL/min) and also operates at high flow rates (1150 μL/min). Furthermore, the response time of the valve decreased by a factor of 8 when compared to current state of the art technology. PMID:28084447

  10. High response speed microfluidic ice valves with enhanced thermal conductivity and a movable refrigeration source

    NASA Astrophysics Data System (ADS)

    Si, Chaorun; Hu, Songtao; Cao, Xiaobao; Wu, Weichao

    2017-01-01

    Due to their ease of fabrication, facile use and low cost, ice valves have great potential for use in microfluidic platforms. For this to be possible, a rapid response speed is key and hence there is still much scope for improvement in current ice valve technology. Therefore, in this study, an ice valve with enhanced thermal conductivity and a movable refrigeration source has been developed. An embedded aluminium cylinder is used to dramatically enhance the heat conduction performance of the microfluidic platform and a movable thermoelectric unit eliminates the thermal inertia, resulting in a faster cooling process. The proposed ice valve achieves very short closing times (0.37 s at 10 μL/min) and also operates at high flow rates (1150 μL/min). Furthermore, the response time of the valve decreased by a factor of 8 when compared to current state of the art technology.

  11. Polar Ice Caps: a Canary for the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Honsaker, W.; Lowell, T. V.; Sagredo, E.; Kelly, M. A.; Hall, B. L.

    2010-12-01

    Ice caps are glacier masses that are highly sensitive to climate change. Because of their hypsometry they can have a binary state. When relatively slight changes in the equilibrium line altitude (ELA) either intersect or rise above the land the ice can become established or disappear. Thus these upland ice masses have a fast response time. Here we consider a way to extract the ELA signal from independent ice caps adjacent to the Greenland Ice Sheet margin. It may be that these ice caps are sensitive trackers of climate change that also impact the ice sheet margin. One example is the Istorvet Ice Cap located in Liverpool Land, East Greenland (70.881°N, 22.156°W). The ice cap topography and the underlying bedrock surface dips to the north, with peak elevation of the current ice ranging in elevation from 1050 to 745 m.a.s.l. On the eastern side of the ice mass the outlet glaciers extending down to sea level. The western margin has several small lobes in topographic depressions, with the margin reaching down to 300 m.a.s.l. Topographic highs separate the ice cap into at least 5 main catchments, each having a pair of outlet lobes toward either side of the ice cap. Because of the regional bedrock slope each catchment has its own elevation range. Therefore, as the ELA changes it is possible for some catchments of the ice cap to experience positive mass balance while others have a negative balance. Based on weather observations we estimate the present day ELA to be ~1000 m.a.s.l, meaning mass balance is negative for the majority of the ice cap. By tracking glacier presence/absence in these different catchments, we can reconstruct small changes in the ELA. Another example is the High Ice Cap (informal name) in Milne Land (70.903°N, 25.626°W, 1080 m), East Greenland. Here at least 4 unconformities in ice layers found near the southern margin of the ice cap record changing intervals of accumulation and ablation. Therefore, this location may also be sensitive to slight changes in ELA where you can track an “on-off” type of mass balance switch. To place these ELA changes into temporal context, we propose to investigate proglacial lake environments below the various catchments. We intend to take rock flour as an indicator that the individual catchment is above the ELA. By contrasting the chronology from different catchments we can assemble minor ELA changes. Such an approach could be applied for other ice caps in Greenland and other areas, such as the Quelccaya Ice Cap, Peru.

  12. High-contrast observations of (136108) Haumea. A crystalline water-ice multiple system

    NASA Astrophysics Data System (ADS)

    Dumas, C.; Carry, B.; Hestroffer, D.; Merlin, F.

    2011-04-01

    Context. The trans-Neptunian region of the Solar System is populated by a wide variety of icy bodies showing great diversity in orbital behavior, size, surface color, and composition. One can also see there are dynamical families and binary systems. One surprising feature detected in the spectra of some of the largest trans-Neptunians is the presence of crystalline water-ice. This is the case for the large TNO (136 108) Haumea (2003 EL61). Aims: We seek to constrain the state of the water ice of Haumea and its satellites and to investigate possible energy sources that maintain the water ice in its crystalline form. Methods: Spectro-imaging observations in the near infrared were performed with the integral field spectrograph SINFONI mounted on UT4 at the ESO Very Large Telescope. The spectra of both Haumea and its larger satellite Hi'iaka were analyzed. Relative astrometry of the components was also measured, providing a check of the orbital solutions and equinox seasons. Results: We describe the physical characteristics of the crystalline water-ice present on the surface of Haumea and its largest satellite Hi'iaka and analyze possible sources of heating to maintain water in a crystalline state: tidal dissipation in the system components vs. radiogenic source. The surface of Hi'iaka appears to be covered by large grains of water ice, almost entirely in its crystalline form. Under some restricted conditions, both radiogenic heating and tidal forces between Haumea and Hi'iaka could provide the energy needed to maintain the ice in its crystalline state. Based on observations collected at the European Southern Observatory, Paranal, Chile - 60.A-9235.

  13. Control of ice chromatographic retention mechanism by changing temperature and dopant concentration.

    PubMed

    Tasaki, Yuiko; Okada, Tetsuo

    2011-12-15

    A liquid phase coexists with solid water ice in a typical binary system, such as NaCl-water, in the temperature range between the freezing point and the eutectic point (t(eu)) of the system. In ice chromatography with salt-doped ice as the stationary phase, both solid and liquid phase can contribute to solute retention in different fashions; that is, the solid ice surface acts as an adsorbent, while a solute can be partitioned into the liquid phase. Thus, both adsorption and partition mechanisms can be utilized for ice chromatographic separation. An important feature in this approach is that the liquid phase volume can be varied by changing the temperature and the concentration of a salt incorporated into the ice stationary phase. Thus, we can control the relative contribution from the partition mechanism in the entire retention because the liquid phase volume can be estimated from the freezing depression curve. Separation selectivity can thereby be modified. The applicability of this concept has been confirmed for the solutes of different adsorption and partition abilities. The predicted retention based on thermodynamics basically agrees well with the corresponding experimental retention. However, one important inconsistency has been found. The calculation predicts a step-like discontinuity of the solute retention at t(eu) because the phase diagram suggests that the liquid phase abruptly appears at t(eu) when the temperature increases. In contrast, the corresponding experimental plots are continuous over the wider range including the subeutectic temperatures. This discrepancy is explained by the existence of the liquid phase below t(eu). A difference between predicted and measured retention factors allows the estimation of the volume of the subeutectic liquid phase.

  14. Arctic lead detection using a waveform unmixing algorithm from CryoSat-2 data

    NASA Astrophysics Data System (ADS)

    Lee, S.; Im, J.

    2016-12-01

    Arctic areas consist of ice floes, leads, and polynyas. While leads and polynyas account for small parts in the Arctic Ocean, they play a key role in exchanging heat flux, moisture, and momentum between the atmosphere and ocean in wintertime because of their huge temperature difference In this study, a linear waveform unmixing approach was proposed to detect lead fraction. CryoSat-2 waveforms for pure leads, sea ice, and ocean were used as end-members based on visual interpretation of MODIS images coincident with CryoSat-2 data. The unmixing model produced lead, sea ice, and ocean abundances and a threshold (> 0.7) was applied to make a binary classification between lead and sea ice. The unmixing model produced better results than the existing models in the literature, which are based on simple thresholding approaches. The results were also comparable with our previous research using machine learning based models (i.e., decision trees and random forest). A monthly lead fraction was calculated, dividing the number of detected leads by the total number of measurements. The lead fraction around Beaufort Sea and Fram strait was high due to the anti-cyclonic rotation of Beaufort Gyre and the outflows of sea ice to the Atlantic. The lead fraction maps produced in this study were matched well with monthly lead fraction maps in the literature. The areas with thin sea ice identified from our previous research correspond to the high lead fraction areas in the present study. Furthermore, sea ice roughness from ASCAT scatterometer was compared to a lead fraction map to see the relationship between surface roughness and lead distribution.

  15. Validation of NASA Thermal Ice Protection Computer Codes. Part 3; The Validation of Antice

    NASA Technical Reports Server (NTRS)

    Al-Khalil, Kamel M.; Horvath, Charles; Miller, Dean R.; Wright, William B.

    2001-01-01

    An experimental program was generated by the Icing Technology Branch at NASA Glenn Research Center to validate two ice protection simulation codes: (1) LEWICE/Thermal for transient electrothermal de-icing and anti-icing simulations, and (2) ANTICE for steady state hot gas and electrothermal anti-icing simulations. An electrothermal ice protection system was designed and constructed integral to a 36 inch chord NACA0012 airfoil. The model was fully instrumented with thermo-couples, RTD'S, and heat flux gages. Tests were conducted at several icing environmental conditions during a two week period at the NASA Glenn Icing Research Tunnel. Experimental results of running-wet and evaporative cases were compared to the ANTICE computer code predictions and are presented in this paper.

  16. Rotorcraft aviation icing research requirements: Research review and recommendations

    NASA Technical Reports Server (NTRS)

    Peterson, A. A.; Dadone, L.; Bevan, A.

    1981-01-01

    The status of rotorcraft icing evaluation techniques and ice protection technology was assessed. Recommendations are made for near and long term icing programs that describe the needs of industry. These recommended programs are based on a consensus of the major U.S. helicopter companies. Specific activities currently planned or underway by NASA, FAA and DOD are reviewed to determine relevance to the overall research requirements. New programs, taking advantage of current activities, are recommended to meet the long term needs for rotorcraft icing certification.

  17. Test and Evaluation Project No. 28: Anti-icing Technology, Field Evaluation Report

    DOT National Transportation Integrated Search

    1998-03-01

    The report provides a detailed glimpse at the state-of-the-art of U.S. anti-icing operations, and simultaneous road and weather conditions, prior to the 1996 publication of the anti-icing Manual of Practice. It will be useful to those who wish to exa...

  18. Ice Storage System for School Complex.

    ERIC Educational Resources Information Center

    Montgomery, Ross D.

    1998-01-01

    Describes a project at the Manatee Education Center in Naples, Florida, which won an ASHRAE award. Project involved the implementation of ice-storage technology in 19 schools. Compares the performance of ice-storage systems with traditional chiller designs in two other schools. Tables illustrate costs for the campuses. Addresses the maintenance…

  19. Distribution, physical state and mixing of materials at the surface of Pluto from New Horizons

    NASA Astrophysics Data System (ADS)

    Schmitt, Bernard; Philippe, Sylvain; Grundy, Will; Reuter, D. C.; Quirico, Eric; Protopapa, Silvia; Côte, Rémi; Young, Leslie; Binzel, Richard; Cook, Jason C.; Cruikshank, Dale P.; Dalle Ore, Cristina M.; Earle, Alissa M.; Ennico, Kimberly; Howett, Carly; Jennings, Donald; Linscott, Ivan; Lunsford, A. W.; Olkin, Catherine B.; Parker, Joel Wm.; Parker, Alex; Singer, Kelsi N.; Spencer, John R.; Stansberry, John A.; Stern, S. Alan; Tsang, Constantine; Verbiscer, Anne J.; Weaver, Harold A.; New Horizons Science Team

    2016-10-01

    In July 2015 the New Horizons spacecraft recorded a large set of data on Pluto, in particular with the LEISA spectro-imager dedicated to the study of the surface composition.In this talk we report a study of the distribution and physical state of the ices and non-ice materials on Pluto's surface and their mode and degree of mixing. Principal Component analysis as well as specific spectral indicators and correlation plots are used on high resolution LEISA spectro-images covering the whole illuminated face of Pluto. Qualitative distribution maps have been obtained for the 4 main condensed molecules, N2, CH4, CO, H2O as well as for the visible-dark red material. These maps indicate the presence of 3 different types of ices: N2-rich:CH4:CO ices, CH4-rich:(CO:N2?) ices and H2O ice. Their mixing lines and with the dark reddish material are studied. CH4 is mixed at the molecular level with N2 and CO, thus forming a ternary molecular mixture that follows its phase diagram with low solubility limits. The occurrence of a N2-rich - CH4-rich ices mixing line associated with a decrease of the CO/CH4 ratio tell us that a fractionation sublimation sequence transforms N2-rich ice into either a N2-rich - CH4-rich binary mixture at the surface or an upper CH4-rich(:CO:N2) ice crust that may hide the N2-rich ice below. The CH4-rich - H2O mixing line witnesses the subsequent sublimation of CH4 ice left behind by the N2:CO sublimation (N spring-summer), or a direct condensation of CH4 ice on cold H2O ice (S autumn). The very sharp spatial transitions between CH4-containing ices and the dark red material are probably due to thermal incompatibility. Finally there is some spatial mixing of the reddish material covering H2O ice. H2O ice appears to be the substratum on which other ices condense or non-volatile organic material is deposited from the atmosphere. The spatial distribution of these materials is very complex.The high spatial definition of all these composition maps will allow us to compare them with Pluto's geologic features observed by LORRI panchromatic and MVIC multispectral imagers to better understand the geophysical processes in action at the surface of this astonishingly active cold world.

  20. Semi-automated Digital Imaging and Processing System for Measuring Lake Ice Thickness

    NASA Astrophysics Data System (ADS)

    Singh, Preetpal

    Canada is home to thousands of freshwater lakes and rivers. Apart from being sources of infinite natural beauty, rivers and lakes are an important source of water, food and transportation. The northern hemisphere of Canada experiences extreme cold temperatures in the winter resulting in a freeze up of regional lakes and rivers. Frozen lakes and rivers tend to offer unique opportunities in terms of wildlife harvesting and winter transportation. Ice roads built on frozen rivers and lakes are vital supply lines for industrial operations in the remote north. Monitoring the ice freeze-up and break-up dates annually can help predict regional climatic changes. Lake ice impacts a variety of physical, ecological and economic processes. The construction and maintenance of a winter road can cost millions of dollars annually. A good understanding of ice mechanics is required to build and deem an ice road safe. A crucial factor in calculating load bearing capacity of ice sheets is the thickness of ice. Construction costs are mainly attributed to producing and maintaining a specific thickness and density of ice that can support different loads. Climate change is leading to warmer temperatures causing the ice to thin faster. At a certain point, a winter road may not be thick enough to support travel and transportation. There is considerable interest in monitoring winter road conditions given the high construction and maintenance costs involved. Remote sensing technologies such as Synthetic Aperture Radar have been successfully utilized to study the extent of ice covers and record freeze-up and break-up dates of ice on lakes and rivers across the north. Ice road builders often used Ultrasound equipment to measure ice thickness. However, an automated monitoring system, based on machine vision and image processing technology, which can measure ice thickness on lakes has not been thought of. Machine vision and image processing techniques have successfully been used in manufacturing to detect equipment failure and identify defective products at the assembly line. The research work in this thesis combines machine vision and image processing technology to build a digital imaging and processing system for monitoring and measuring lake ice thickness in real time. An ultra-compact USB camera is programmed to acquire and transmit high resolution imagery for processing with MATLAB Image Processing toolbox. The image acquisition and transmission process is fully automated; image analysis is semi-automated and requires limited user input. Potential design changes to the prototype and ideas on fully automating the imaging and processing procedure are presented to conclude this research work.

  1. Hyperparameter Classification of Arctic Sea Ice and Snow Based on Aerial Laser Data, Passive Microwave Data and Field Data

    NASA Astrophysics Data System (ADS)

    Herzfeld, U. C.; Maslanik, J.; Williams, S.; Sturm, M.; Cavalieri, D.

    2006-12-01

    In the past year, the Arctic sea-ice cover has been shrinking at an alarming rate. Remote-sensing technologies provide opportunities for observations of the sea ice at unprecedented repetition rates and spatial resolutions. The advance of new observational technologies is not only fascinating, it also brings with it the challenge and necessity to derive adequate new geoinformatical and geomathematical methods as a basis for analysis and geophysical interpretation of new data types. Our research includes validation and analysis of NASA EOS data, development of observational instrumentation and advanced geoinformatics. In this talk we emphasize the close linkage between technological development and geoinformatics along case studies of sea-ice near Point Barrow, Alaska, based on the following data types: AMSR-E and PSR passive microwave data, RADARSAT and ERS SAR data, manually-collected snow-depth data and laser-elevation data from unmanned aerial vehicles. The hyperparameter concept is introduced to facilitate characterization and classification of the same sea-ice properties and spatial structures from these data sets, which differ with respect to spatial resolution, measured parameters and observed geophysical variables. Mathematically, this requires parameter identification in undersampled, oversampled or overprinted situations.

  2. Emerging techniques for assisting and accelerating food freezing processes: A review of recent research progresses.

    PubMed

    Cheng, Lina; Sun, Da-Wen; Zhu, Zhiwei; Zhang, Zi

    2017-03-04

    Freezing plays an important role in food preservation and the emergence of rapid freezing technologies can be highly beneficial to the food industry. This paper reviews some novel food freezing technologies, including high-pressure freezing (HPF), ultrasound-assisted freezing (UAF), electrically disturbed freezing (EF) and magnetically disturbed freezing (MF), microwave-assisted freezing (MWF), and osmo-dehydro-freezing (ODF). HPF and UAF can initiate ice nucleation rapidly, leading to uniform distribution of ice crystals and the control of their size and shape. Specifically, the former is focused on increasing the degree of supercooling, whereas the latter aims to decrease it. Direct current electric freezing (DC-EF) and alternating current electric freezing (AC-EF) exhibit different effects on ice nucleation. DC-EF can promote ice nucleation and AC-EF has the opposite effect. Furthermore, ODF has been successfully used for freezing various vegetables and fruit. MWF cannot control the nucleation temperature, but can decrease supercooling degree, thus decreasing the size of ice crystals. The heat and mass transfer processes during ODF have been investigated experimentally and modeled mathematically. More studies should be carried out to understand the effects of these technologies on food freezing process.

  3. Trapping in water - an important prerequisite for complex reactivity in astrophysical ices: the case of acetone (CH3)2C = O and ammonia NH3

    NASA Astrophysics Data System (ADS)

    Fresneau, Aurélien; Danger, Grégoire; Rimola, Albert; Theule, Patrice; Duvernay, Fabrice; Chiavassa, Thierry

    2014-10-01

    Water is the most abundant compound in interstellar and cometary ices. Laboratory experiments on ice analogues have shown that water has a great influence on the chemical activity of these ices. In this study, we investigated the reactivity of acetone-ammonia ices, showing that water is an essential component in chemical reactions with high activation energies. In a water-free binary ice, acetone and ammonia do not react due to high activation energy, as the reactants desorb before reacting (at 120 and 140 K, respectively). By contrast, our study shows that under experimental conditions of ˜150 K, this reaction does occur in the presence of water. Here, water traps reactants in the solid phase above their desorption temperatures, allowing them to gather thermal energy as the reaction proceeds. Using infrared spectroscopy and mass spectrometry associated with isotopic labelling, as well as quantum chemical calculations, 2-aminopropan-2-ol (2HN-C(CH3)2-OH) was identified as the acetone-ammonia reaction product. The formation of this product may represent the first step towards formation of 2-aminoisobutyric acid (AIB) in the Strecker synthesis. The activation energy for the formation of 2-aminopropan-2-ol was measured to be 42 ± 3 kJ mol-1, while its desorption energy equalled 61.3 ± 0.1 kJ mol-1. Our work demonstrates that astrophysical water, rather than being a non-thermally reactive species, is crucial for the evolution of complex chemistry occurring in the Universe.

  4. Origins and spread of fluted-point technology in the Canadian Ice-Free Corridor and eastern Beringia.

    PubMed

    Smith, Heather L; Goebel, Ted

    2018-04-17

    Fluted projectile points have long been recognized as the archaeological signature of early humans dispersing throughout the Western Hemisphere; however, we still lack a clear understanding of their appearance in the interior "Ice-Free Corridor" of western Canada and eastern Beringia. To solve this problem, we conducted a geometric morphometric shape analysis and a phylogenetic analysis of technological traits on fluted points from the archaeological records of northern Alaska and Yukon, in combination with artifacts from further south in Canada, the Great Plains, and eastern United States to investigate the plausibility of historical relatedness and evolutionary patterns in the spread of fluted-point technology in the latest Pleistocene and earliest Holocene. Results link morphologies and technologies of Clovis, certain western Canadian, and northern fluted points, suggesting that fluting technology arrived in the Arctic from a proximate source in the interior Ice-Free Corridor and ultimately from the earliest populations in temperate North America, complementing new genomic models explaining the peopling of the Americas.

  5. Icing Management for Coast Guard Assets

    DTIC Science & Technology

    2013-04-01

    Homola et al. (2006) summarized many ice detection concepts and assessed their near-term application potential to wind turbines . This re- port will...is attached, using adhe- sive, to the leading edge of an airfoil, aircraft or wind turbine , or any other surface that must be protected from icing...for ap- plication to wind turbines . ERDC/CRREL TR-13-7 287 Five optical ice detectors are currently mature technologies, but not all are

  6. SEARCH FOR SOURCES OF HIGH-ENERGY NEUTRONS WITH FOUR YEARS OF DATA FROM THE ICETOP DETECTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.

    IceTop is an air-shower array located on the Antarctic ice sheet at the geographic South Pole. IceTop can detect an astrophysical flux of neutrons from Galactic sources as an excess of cosmic-ray air showers arriving from the source direction. Neutrons are undeflected by the Galactic magnetic field and can typically travel 10 ( E /PeV) pc before decay. Two searches are performed using 4 yr of the IceTop data set to look for a statistically significant excess of events with energies above 10 PeV (10{sup 16} eV) arriving within a small solid angle. The all-sky search method covers from −90°more » to approximately −50° in declination. No significant excess is found. A targeted search is also performed, looking for significant correlation with candidate sources in different target sets. This search uses a higher-energy cut (100 PeV) since most target objects lie beyond 1 kpc. The target sets include pulsars with confirmed TeV energy photon fluxes and high-mass X-ray binaries. No significant correlation is found for any target set. Flux upper limits are determined for both searches, which can constrain Galactic neutron sources and production scenarios.« less

  7. Characterizing the information content of cloud thermodynamic phase retrievals from the notional PACE OCI shortwave reflectance measurements

    NASA Astrophysics Data System (ADS)

    Coddington, O. M.; Vukicevic, T.; Schmidt, K. S.; Platnick, S.

    2017-08-01

    We rigorously quantify the probability of liquid or ice thermodynamic phase using only shortwave spectral channels specific to the National Aeronautics and Space Administration's Moderate Resolution Imaging Spectroradiometer, Visible Infrared Imaging Radiometer Suite, and the notional future Plankton, Aerosol, Cloud, ocean Ecosystem imager. The results show that two shortwave-infrared channels (2135 and 2250 nm) provide more information on cloud thermodynamic phase than either channel alone; in one case, the probability of ice phase retrieval increases from 65 to 82% by combining 2135 and 2250 nm channels. The analysis is performed with a nonlinear statistical estimation approach, the GEneralized Nonlinear Retrieval Analysis (GENRA). The GENRA technique has previously been used to quantify the retrieval of cloud optical properties from passive shortwave observations, for an assumed thermodynamic phase. Here we present the methodology needed to extend the utility of GENRA to a binary thermodynamic phase space (i.e., liquid or ice). We apply formal information content metrics to quantify our results; two of these (mutual and conditional information) have not previously been used in the field of cloud studies.

  8. Solid/liquid phase diagram of the ammonium sulfate/glutaric acid/water system.

    PubMed

    Beyer, Keith D; Pearson, Christian S; Henningfield, Drew S

    2013-05-02

    We have studied the low temperature phase diagram and water activities of the ammonium sulfate/glutaric acid/water system using differential scanning calorimetry, infrared spectroscopy of thin films, and a new technique: differential scanning calorimetry-video microscopy. Using these techniques, we have determined that there is a temperature-dependent kinetic effect to the dissolution of glutaric acid in aqueous solution. We have mapped the solid/liquid ternary phase diagram, determined the water activities based on the freezing point depression, and determined the ice/glutaric acid phase boundary as well as the ternary eutectic composition and temperature. We have also modified our glutaric acid/water binary phase diagram previously published based on these new results. We compare our results for the ternary system to the predictions of the Extended AIM Aerosol Thermodynamics Model (E-AIM), and find good agreement for the ice melting points in the ice primary phase field of this system; however, significant differences were found with respect to phase boundaries, concentration and temperature of the ternary eutectic, and glutaric acid dissolution.

  9. Fabricating binary optics: An overview of binary optics process technology

    NASA Technical Reports Server (NTRS)

    Stern, Margaret B.

    1993-01-01

    A review of binary optics processing technology is presented. Pattern replication techniques have been optimized to generate high-quality efficient microoptics in visible and infrared materials. High resolution optical photolithography and precision alignment is used to fabricate maximally efficient fused silica diffractive microlenses at lambda = 633 nm. The degradation in optical efficiency of four-phase-level fused silica microlenses resulting from an intentional 0.35 micron translational error has been systematically measured as a function of lens speed (F/2 - F/60). Novel processes necessary for high sag refractive IR microoptics arrays, including deep anisotropic Si-etching, planarization of deep topography and multilayer resist techniques, are described. Initial results are presented for monolithic integration of photonic and microoptic systems.

  10. Controlled ice nucleation using freeze-dried Pseudomonas syringae encapsulated in alginate beads.

    PubMed

    Weng, Lindong; Tessier, Shannon N; Swei, Anisa; Stott, Shannon L; Toner, Mehmet

    2017-04-01

    The control of ice nucleation is of fundamental significance in many process technologies related to food and pharmaceutical science and cryobiology. Mechanical perturbation, electromagnetic fields and ice-nucleating agents (INAs) have been known to induce ice nucleation in a controlled manner. But these ice-nucleating methods may suffer from cumbersome manual operations, safety concerns of external fields, and biocompatibility and recovery issues of INA particles, especially when used in living systems. Given the automatic ice-seeding nature of INAs, a promising solution to overcome some of the above limitations is to engineer a biocomposite that accommodates the INA particles but minimizes their interactions with biologics, as well as enabling the recovery of used particles. In this study, freeze-dried Pseudomonas syringae, a model ice-nucleating agent, was encapsulated into microliter-sized alginate beads. We evaluated the performance of the bacterial hydrogel beads to initiate ice nucleation in water and aqueous glycerol solution by investigating factors including the size and number of the beads and the local concentration of INA particles. In the aqueous sample of a fixed volume, the total mass of the INA particles (m) was found to be the governing parameter that is solely responsible for determining the ice nucleation performance of the bacterial hydrogel beads. The freezing temperature has a strong positive linear correlation with log 10 m. The findings in this study provide an effective, predictable approach to control ice nucleation, which can improve the outcome and standardization of many ice-assisted process technologies. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube

    NASA Astrophysics Data System (ADS)

    Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coelho, J. A. B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; de Bonis, G.; Distefano, C.; di Palma, I.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Felis, I.; Fusco, L. A.; Galatà, S.; Gay, P.; Giordano, V.; Glotin, H.; Grégoire, T.; Gracia Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu, A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Nezri, E.; Pǎvǎlaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sánchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schüssler, F.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tönnis, C.; Vallage, B.; Vallée, C.; van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzoca, A.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Benzvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Bradascio, F.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Bron, S.; Burgman, A.; Carver, T.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; de Clercq, C.; Del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; Deyoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Gladstone, L.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; in, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.; Momenté, G.; Montaruli, T.; Moulai, M.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Penek, Ö.; Pepper, J. A.; Pérez de Los Heros, C.; Pieloth, D.; Pinat, E.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sabbatini, L.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Unger, E.; Usner, M.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Vehring, M.; Voge, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Waza, A.; Weaver, Ch.; Weiss, M. J.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; de, S.; Debra, D.; Debreczeni, G.; Degallaix, J.; de Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; Derosa, R. T.; Desalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; di Fiore, L.; di Giovanni, M.; di Girolamo, T.; di Lieto, A.; di Pace, S.; di Palma, I.; di Virgilio, A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; Macinnis, M.; MacLeod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGrath, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; ANTARES Collaboration

    2017-07-01

    The Advanced LIGO observatories detected gravitational waves from two binary black hole mergers during their first observation run (O1). We present a high-energy neutrino follow-up search for the second gravitational wave event, GW151226, as well as for gravitational wave candidate LVT151012. We find two and four neutrino candidates detected by IceCube, and one and zero detected by Antares, within ±500 s around the respective gravitational wave signals, consistent with the expected background rate. None of these neutrino candidates are found to be directionally coincident with GW151226 or LVT151012. We use nondetection to constrain isotropic-equivalent high-energy neutrino emission from GW151226, adopting the GW event's 3D localization, to less than 2 ×1 051- 2 ×1 054 erg .

  12. The ALMA Protostellar Interferometric Line Survey (PILS). First results from an unbiased submillimeter wavelength line survey of the Class 0 protostellar binary IRAS 16293-2422 with ALMA

    NASA Astrophysics Data System (ADS)

    Jørgensen, J. K.; van der Wiel, M. H. D.; Coutens, A.; Lykke, J. M.; Müller, H. S. P.; van Dishoeck, E. F.; Calcutt, H.; Bjerkeli, P.; Bourke, T. L.; Drozdovskaya, M. N.; Favre, C.; Fayolle, E. C.; Garrod, R. T.; Jacobsen, S. K.; Öberg, K. I.; Persson, M. V.; Wampfler, S. F.

    2016-11-01

    Context. The inner regions of the envelopes surrounding young protostars are characterized by a complex chemistry, with prebiotic molecules present on the scales where protoplanetary disks eventually may form. The Atacama Large Millimeter/submillimeter Array (ALMA) provides an unprecedented view of these regions zooming in on solar system scales of nearby protostars and mapping the emission from rare species. Aims: The goal is to introduce a systematic survey, the Protostellar Interferometric Line Survey (PILS), of the chemical complexity of one of the nearby astrochemical templates, the Class 0 protostellar binary IRAS 16293-2422, using ALMA in order to understand the origin of the complex molecules formed in its vicinity. In addition to presenting the overall survey, the analysis in this paper focuses on new results for the prebiotic molecule glycolaldehyde, its isomers, and rarer isotopologues and other related molecules. Methods: An unbiased spectral survey of IRAS 16293-2422 covering the full frequency range from 329 to 363 GHz (0.8 mm) has been obtained with ALMA, in addition to a few targeted observations at 3.0 and 1.3 mm. The data consist of full maps of the protostellar binary system with an angular resolution of 0.5'' (60 AU diameter), a spectral resolution of 0.2 km s-1, and a sensitivity of 4-5 mJy beam-1 km s-1, which is approximately two orders of magnitude better than any previous studies. Results: More than 10 000 features are detected toward one component in the protostellar binary, corresponding to an average line density of approximately one line per 3 km s-1. Glycolaldehyde; its isomers, methyl formate and acetic acid; and its reduced alcohol, ethylene glycol, are clearly detected and their emission well-modeled with an excitation temperature of 300 K. For ethylene glycol both lowest state conformers, aGg' and gGg', are detected, the latter for the first time in the interstellar medium (ISM). The abundance of glycolaldehyde is comparable to or slightly larger than that of ethylene glycol. In comparison to the Galactic Center these two species are over-abundant relative to methanol, possibly an indication of formation of the species at low temperatures in CO-rich ices during the infall of the material toward the central protostar. Both 13C and the deuterated isotopologues of glycolaldehyde are detected, also for the first time ever in the ISM. For the deuterated species, a D/H ratio of ≈5% is found with no differences between the deuteration in the different functional groups of glycolaldehyde, in contrast to previous estimates for methanol and recent suggestions of significant equilibration between water and -OH functional groups at high temperatures. Measurements of the 13C-species lead to a 12C:13C ratio of ≈30, lower than the typical ISM value. This low ratio may reflect an enhancement of 13CO in the ice due to either ion-molecule reactions in the gas before freeze-out or to differences in the temperatures where 12CO and 13CO ices sublimate. Conclusions: The results reinforce the importance of low-temperature grain surface chemistry for the formation of prebiotic molecules seen here in the gas after sublimation of the entire ice mantle. Systematic surveys of the molecules thought to be chemically related, as well as the accurate measurements of their isotopic composition, hold strong promise for understanding the origin of prebiotic molecules in the earliest stages of young stars.

  13. Equipment of the binary-cycle geothermal power unit at the Pauzhet geothermal power station

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Nikol'skii, A. I.; Semenov, V. N.; Shipkov, A. A.

    2014-06-01

    The equipment of and technological processes in the pilot industrial model of the domestically produced binary-cycle geothermal power unit operating on the discharge separate at the Pauzhet geothermal power station are considered. The development principles, the design and operational features, and the data on selecting the metal in manufacturing the main equipment of the 2.5-MW binary power unit of the geothermal power station are described.

  14. CUDA GPU based full-Stokes finite difference modelling of glaciers

    NASA Astrophysics Data System (ADS)

    Brædstrup, C. F.; Egholm, D. L.

    2012-04-01

    Many have stressed the limitations of using the shallow shelf and shallow ice approximations when modelling ice streams or surging glaciers. Using a full-stokes approach requires either large amounts of computer power or time and is therefore seldom an option for most glaciologists. Recent advances in graphics card (GPU) technology for high performance computing have proven extremely efficient in accelerating many large scale scientific computations. The general purpose GPU (GPGPU) technology is cheap, has a low power consumption and fits into a normal desktop computer. It could therefore provide a powerful tool for many glaciologists. Our full-stokes ice sheet model implements a Red-Black Gauss-Seidel iterative linear solver to solve the full stokes equations. This technique has proven very effective when applied to the stokes equation in geodynamics problems, and should therefore also preform well in glaciological flow probems. The Gauss-Seidel iterator is known to be robust but several other linear solvers have a much faster convergence. To aid convergence, the solver uses a multigrid approach where values are interpolated and extrapolated between different grid resolutions to minimize the short wavelength errors efficiently. This reduces the iteration count by several orders of magnitude. The run-time is further reduced by using the GPGPU technology where each card has up to 448 cores. Researchers utilizing the GPGPU technique in other areas have reported between 2 - 11 times speedup compared to multicore CPU implementations on similar problems. The goal of these initial investigations into the possible usage of GPGPU technology in glacial modelling is to apply the enhanced resolution of a full-stokes solver to ice streams and surging glaciers. This is a area of growing interest because ice streams are the main drainage conjugates for large ice sheets. It is therefore crucial to understand this streaming behavior and it's impact up-ice.

  15. Results of low power deicer tests on a swept inlet component in the NASA Lewis icing research tunnel

    NASA Technical Reports Server (NTRS)

    Bond, Thomas H.; Shin, Jaiwon

    1993-01-01

    Tests were conducted under a USAF/NASA Low Power Deicer program on two expulsive technologies to examine system performance on hardware representative of a modern aircraft part. The BF Goodrich Electro-Expulsive Deicing System and Pneumatic Impulse Ice Protection System were installed on a swept, compound curve, engine inlet component with varying leading edge radius, and tested through a range of icing and system operating conditions in the NASA Lewis Icing Research Tunnel. A description of the experimental procedure and results, including residual ice thickness, shed ice particle size, and changes in system energy/pressure characteristics are presented.

  16. Results of Low Power Deicer tests on a swept inlet component in the NASA Lewis Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Bond, Thomas H.; Shin, Jaiwon

    1993-01-01

    Tests were conducted under a USAF/NASA Low Power Deicer program on two expulsive technologies to examine system performance on hardware representative of a modern aircraft part. The BF Goodrich Electro-Expulsive Deicing System and Pneumatic Impulse Ice Protection system were installed on a swept, compound curve, engine inlet component with varying leading edge radius, and tested through a range of icing and system operating conditions in the NASA Lewis Icing Research Tunnel. A description of the experimental procedure and results, including residual ice thickness, shed ice particle size, and changes in system energy/pressure characteristics are presented.

  17. Ice-Binding Proteins and Their Function.

    PubMed

    Bar Dolev, Maya; Braslavsky, Ido; Davies, Peter L

    2016-06-02

    Ice-binding proteins (IBPs) are a diverse class of proteins that assist organism survival in the presence of ice in cold climates. They have different origins in many organisms, including bacteria, fungi, algae, diatoms, plants, insects, and fish. This review covers the gamut of IBP structures and functions and the common features they use to bind ice. We discuss mechanisms by which IBPs adsorb to ice and interfere with its growth, evidence for their irreversible association with ice, and methods for enhancing the activity of IBPs. The applications of IBPs in the food industry, in cryopreservation, and in other technologies are vast, and we chart out some possibilities.

  18. An Aerodynamic Simulation Process for Iced Lifting Surfaces and Associated Issues

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Vickerman, Mary B.; Hackenberg, Anthony W.; Rigby, David L.

    2003-01-01

    This paper discusses technologies and software tools that are being implemented in a software toolkit currently under development at NASA Glenn Research Center. Its purpose is to help study the effects of icing on airfoil performance and assist with the aerodynamic simulation process which consists of characterization and modeling of ice geometry, application of block topology and grid generation, and flow simulation. Tools and technologies for each task have been carefully chosen based on their contribution to the overall process. For the geometry characterization and modeling, we have chosen an interactive rather than automatic process in order to handle numerous ice shapes. An Appendix presents features of a software toolkit developed to support the interactive process. Approaches taken for the generation of block topology and grids, and flow simulation, though not yet implemented in the software, are discussed with reasons for why particular methods are chosen. Some of the issues that need to be addressed and discussed by the icing community are also included.

  19. Wave Climate and Wave Mixing in the Marginal Ice Zones of Arctic Seas, Observations and Modelling

    DTIC Science & Technology

    2014-09-30

    At the same time, the PIs participate in Australian efforts of developing wave-ocean- ice coupled models for Antarctica . Specific new physics modules...Wave Mixing in the Marginal Ice Zones of Arctic Seas, Observations and Modelling Alexander V. Babanin Swinburne University of Technology, PO Box...operational forecast. Altimeter climatology and the wave models will be used to study the current and future wind/wave and ice trends. APPROACH

  20. From ice-binding proteins to bio-inspired antifreeze materials.

    PubMed

    Voets, I K

    2017-07-19

    Ice-binding proteins (IBP) facilitate survival under extreme conditions in diverse life forms. IBPs in polar fishes block further growth of internalized environmental ice and inhibit ice recrystallization of accumulated internal crystals. Algae use IBPs to structure ice, while ice adhesion is critical for the Antarctic bacterium Marinomonas primoryensis. Successful translation of this natural cryoprotective ability into man-made materials holds great promise but is still in its infancy. This review covers recent advances in the field of ice-binding proteins and their synthetic analogues, highlighting fundamental insights into IBP functioning as a foundation for the knowledge-based development of cheap, bio-inspired mimics through scalable production routes. Recent advances in the utilisation of IBPs and their analogues to e.g. improve cryopreservation, ice-templating strategies, gas hydrate inhibition and other technologies are presented.

  1. Drilling Automation Demonstrations in Subsurface Exploration for Astrobiology

    NASA Technical Reports Server (NTRS)

    Glass, Brian; Cannon, H.; Lee, P.; Hanagud, S.; Davis, K.

    2006-01-01

    This project proposes to study subsurface permafrost microbial habitats at a relevant Arctic Mars-analog site (Haughton Crater, Devon Island, Canada) while developing and maturing the subsurface drilling and drilling automation technologies that will be required by post-2010 missions. It builds on earlier drilling technology projects to add permafrost and ice-drilling capabilities to 5m with a lightweight drill that will be automatically monitored and controlled in-situ. Frozen cores obtained with this drill under sterilized protocols will be used in testing three hypotheses pertaining to near-surface physical geology and ground H2O ice distribution, viewed as a habitat for microbial life in subsurface ice and ice-consolidated sediments. Automation technologies employed will demonstrate hands-off diagnostics and drill control, using novel vibrational dynamical analysis methods and model-based reasoning to monitor and identify drilling fault states before and during faults. Three field deployments, to a Mars-analog site with frozen impact crater fallback breccia, will support science goals, provide a rigorous test of drilling automation and lightweight permafrost drilling, and leverage past experience with the field site s particular logistics.

  2. Airframe Icing Research Gaps: NASA Perspective

    NASA Technical Reports Server (NTRS)

    Potapczuk, Mark

    2009-01-01

    qCurrent Airframe Icing Technology Gaps: Development of a full 3D ice accretion simulation model. Development of an improved simulation model for SLD conditions. CFD modeling of stall behavior for ice-contaminated wings/tails. Computational methods for simulation of stability and control parameters. Analysis of thermal ice protection system performance. Quantification of 3D ice shape geometric characteristics Development of accurate ground-based simulation of SLD conditions. Development of scaling methods for SLD conditions. Development of advanced diagnostic techniques for assessment of tunnel cloud conditions. Identification of critical ice shapes for aerodynamic performance degradation. Aerodynamic scaling issues associated with testing scale model ice shape geometries. Development of altitude scaling methods for thermal ice protections systems. Development of accurate parameter identification methods. Measurement of stability and control parameters for an ice-contaminated swept wing aircraft. Creation of control law modifications to prevent loss of control during icing encounters. 3D ice shape geometries. Collection efficiency data for ice shape geometries. SLD ice shape data, in-flight and ground-based, for simulation verification. Aerodynamic performance data for 3D geometries and various icing conditions. Stability and control parameter data for iced aircraft configurations. Thermal ice protection system data for simulation validation.

  3. Icing Simulation Research Supporting the Ice-Accretion Testing of Large-Scale Swept-Wing Models

    NASA Technical Reports Server (NTRS)

    Yadlin, Yoram; Monnig, Jaime T.; Malone, Adam M.; Paul, Bernard P.

    2018-01-01

    The work summarized in this report is a continuation of NASA's Large-Scale, Swept-Wing Test Articles Fabrication; Research and Test Support for NASA IRT contract (NNC10BA05 -NNC14TA36T) performed by Boeing under the NASA Research and Technology for Aerospace Propulsion Systems (RTAPS) contract. In the study conducted under RTAPS, a series of icing tests in the Icing Research Tunnel (IRT) have been conducted to characterize ice formations on large-scale swept wings representative of modern commercial transport airplanes. The outcome of that campaign was a large database of ice-accretion geometries that can be used for subsequent aerodynamic evaluation in other experimental facilities and for validation of ice-accretion prediction codes.

  4. Automatic detection of Floating Ice at Antarctic Continental Margin from Remotely Sensed Image with Object-oriented Matching

    NASA Astrophysics Data System (ADS)

    Zhao, Z.

    2011-12-01

    Changes in ice sheet and floating ices around that have great significance for global change research. In the context of global warming, rapidly changing of Antarctic continental margin, caving of ice shelves, movement of iceberg are all closely related to climate change and ocean circulation. Using automatic change detection technology to rapid positioning the melting Region of Polar ice sheet and the location of ice drift would not only strong support for Global Change Research but also lay the foundation for establishing early warning mechanism for melting of the polar ice and Ice displacement. This paper proposed an automatic change detection method using object-based segmentation technology. The process includes three parts: ice extraction using image segmentation, object-baed ice tracking, change detection based on similarity matching. An approach based on similarity matching of eigenvector is proposed in this paper, which used area, perimeter, Hausdorff distance, contour, shape and other information of each ice-object. Different time of LANDSAT ETM+ data, Chinese environment disaster satellite HJ1B date, MODIS 1B date are used to detect changes of Floating ice at Antarctic continental margin respectively. We select different time of ETM+ data(January 7, 2003 and January 16, 2003) with the area around Antarctic continental margin near the Lazarev Bay, which is from 70.27454853 degrees south latitude, longitude 12.38573410 degrees to 71.44474167 degrees south latitude, longitude 10.39252222 degrees,included 11628 sq km of Antarctic continental margin area, as a sample. Then we can obtain the area of floating ices reduced 371km2, and the number of them reduced 402 during the time. In addition, the changes of all the floating ices around the margin region of Antarctic within 1200 km are detected using MODIS 1B data. During the time from January 1, 2008 to January 7, 2008, the floating ice area decreased by 21644732 km2, and the number of them reduced by 83080. The results show that the object-based information extraction algorithm can obtain more precise details of a single object, while the change detection method based on similarity matching can effectively tracking the change of floating ice.

  5. Tse computers. [ultrahigh speed optical processing for two dimensional binary image

    NASA Technical Reports Server (NTRS)

    Schaefer, D. H.; Strong, J. P., III

    1977-01-01

    An ultra-high-speed computer that utilizes binary images as its basic computational entity is being developed. The basic logic components perform thousands of operations simultaneously. Technologies of the fiber optics, display, thin film, and semiconductor industries are being utilized in the building of the hardware.

  6. Multiscale crack initiator promoted super-low ice adhesion surfaces.

    PubMed

    He, Zhiwei; Xiao, Senbo; Gao, Huajian; He, Jianying; Zhang, Zhiliang

    2017-09-27

    Preventing icing on exposed surfaces is important for life and technology. While suppressing ice nucleation by surface structuring and local confinement is highly desirable and yet to be achieved, a realistic roadmap of icephobicity is to live with ice, but with lowest possible ice adhesion. According to fracture mechanics, the key to lower ice adhesion is to maximize crack driving forces at the ice-substrate interface. Herein, we present a novel integrated macro-crack initiator mechanism combining nano-crack and micro-crack initiators, and demonstrate a new approach to designing super-low ice adhesion surfaces by introducing sub-structures into smooth polydimethylsiloxane coatings. Our design promotes the initiation of macro-cracks and enables the reduction of ice adhesion by at least ∼50% regardless of the curing temperature, weight ratio and size of internal holes, reaching a lowest ice adhesion of 5.7 kPa. The multiscale crack initiator mechanisms provide an unprecedented and versatile strategy towards designing super-low ice adhesion surfaces.

  7. Proposed experiment to test fundamentally binary theories

    NASA Astrophysics Data System (ADS)

    Kleinmann, Matthias; Vértesi, Tamás; Cabello, Adán

    2017-09-01

    Fundamentally binary theories are nonsignaling theories in which measurements of many outcomes are constructed by selecting from binary measurements. They constitute a sensible alternative to quantum theory and have never been directly falsified by any experiment. Here we show that fundamentally binary theories are experimentally testable with current technology. For that, we identify a feasible Bell-type experiment on pairs of entangled qutrits. In addition, we prove that, for any n , quantum n -ary correlations are not fundamentally (n -1 ) -ary. For that, we introduce a family of inequalities that hold for fundamentally (n -1 ) -ary theories but are violated by quantum n -ary correlations.

  8. Mapping sea ice leads with a coupled numeric/symbolic system

    NASA Technical Reports Server (NTRS)

    Key, J.; Schweiger, A. J.; Maslanik, J. A.

    1990-01-01

    A method is presented which facilitates the detection and delineation of leads with single-channel Landsat data by coupling numeric and symbolic procedures. The procedure consists of three steps: (1) using the dynamic threshold method, an image is mapped to a lead/no lead binary image; (2) the likelihood of fragments to be real leads is examined with a set of numeric rules; and (3) pairs of objects are examined geometrically and merged where possible. The processing ends when all fragments are merged and statistical characteristics are determined, and a map of valid lead objects are left which summarizes useful physical in the lead complexes. Direct implementation of domain knowledge and rapid prototyping are two benefits of the rule-based system. The approach is found to be more successfully applied to mid- and high-level processing, and the system can retrieve statistics about sea-ice leads as well as detect the leads.

  9. Searching for Unresolved Binary Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Albretsen, Jacob; Stephens, Denise

    2007-10-01

    There are currently L and T brown dwarfs (BDs) with errors in their classification of +/- 1 to 2 spectra types. Metallicity and gravitational differences have accounted for some of these discrepancies, and recent studies have shown unresolved binary BDs may offer some explanation as well. However limitations in technology and resources often make it difficult to clearly resolve an object that may be binary in nature. Stephens and Noll (2006) identified statistically strong binary source candidates from Hubble Space Telescope (HST) images of Trans-Neptunian Objects (TNOs) that were apparently unresolved using model point-spread functions for single and binary sources. The HST archive contains numerous observations of BDs using the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) that have never been rigorously analyzed for binary properties. Using methods developed by Stephens and Noll (2006), BD observations from the HST data archive are being analyzed for possible unresolved binaries. Preliminary results will be presented. This technique will identify potential candidates for future observations to determine orbital information.

  10. The Development Of Enabling Technologies For Submillimeter-Wave Remote Sensing of Ice Clouds From Space

    NASA Technical Reports Server (NTRS)

    Racette, Paul; Wang, James R.; Ackerman, Steven; Skofronick-Jackson, Gail; Evans, K. Frank; O'CStarr, David

    2006-01-01

    This paper presents the chronological development of technologies and techniques that have led to a satellite mission concept aimed at quantifying the temporal and spatial distributions of upper tropospheric ice clouds. The Submillimeter-wave and Infrared Ice Cloud Experiment (SIRICE) is an Earth System Science Pathfinder mission concept designed to improve our understanding of the upper tropospheric water cycle and its coupling to the Earth s radiation budget. Ice outflow from convective storm systems is known to play an important role in regional energy budgets; however, ice generation and subsequent precipitation and sublimation are poorly quantified. SIRICE will provide measurements of ice cloud distributions and microphysical properties which are needed for understanding the crucial link between the hydrologic and energy cycles. The SIRICE measurement platform is comprised of two integrated instruments, the Submillimeter/millimeter-wave radiometer (SM4) and the Infrared Cloud Ice Radiometer (IRCIR). The primary instrument is the SM4, a conical scanner that provides a 1600 km swath of the Earth's surface at 53 degree incidence. The SM4 has 6 linearly polarized receivers measuring 12 spectral bands centered at 183 GHz, 325 GHz, 448 GHz, 643 GHz and 874 GHz; two receivers at 643 GHz measure horizontal and vertical polarizations. Submillimeter-wavelengths are well suited to the remote sensing of ice clouds due to the relative size of the wavelengths to particle sizes. Upwelling emission from lower tropospheric water vapor is scattered by the ice clouds thus causing a brightness temperature depression at submillimeter wavelengths. The IRCIR is a push broom imager with approximately 1500 km swath and spectral channels at 11 and 12 micrometers. This combination of coincident infrared and submillimeter-wavelength measurements were chosen because of its ability to provide retrieval of ice water path and median particle size for a wide range of ice clouds from thin cirrus to thick anvil structures. Over the past decade there has been a parallel development of submillimeter-wave technologies, demonstration instruments, and remote sensing techniques that have led to the present SIRICE mission concept. Mapping of these developmental paths reveals the origins, rational and maturity of features of the SIRICE payload such as its channel selection, compact design, and multipoint calibration. This presentation traces the evolution of the SIRICE mission concept from the early 1990's to its present status.

  11. From ice-binding proteins to bio-inspired antifreeze materials

    PubMed Central

    Voets, I. K.

    2017-01-01

    Ice-binding proteins (IBP) facilitate survival under extreme conditions in diverse life forms. IBPs in polar fishes block further growth of internalized environmental ice and inhibit ice recrystallization of accumulated internal crystals. Algae use IBPs to structure ice, while ice adhesion is critical for the Antarctic bacterium Marinomonas primoryensis. Successful translation of this natural cryoprotective ability into man-made materials holds great promise but is still in its infancy. This review covers recent advances in the field of ice-binding proteins and their synthetic analogues, highlighting fundamental insights into IBP functioning as a foundation for the knowledge-based development of cheap, bio-inspired mimics through scalable production routes. Recent advances in the utilisation of IBPs and their analogues to e.g. improve cryopreservation, ice-templating strategies, gas hydrate inhibition and other technologies are presented. PMID:28657626

  12. Advanced ice protection systems test in the NASA Lewis icing research tunnel

    NASA Technical Reports Server (NTRS)

    Bond, Thomas H.; Shin, Jaiwon; Mesander, Geert A.

    1991-01-01

    Tests of eight different deicing systems based on variations of three different technologies were conducted in the NASA Lewis Research Center Icing Research Tunnel (IRT) in June and July 1990. The systems used pneumatic, eddy current repulsive, and electro-expulsive means to shed ice. The tests were conducted on a 1.83 m span, 0.53 m chord NACA 0012 airfoil operated at a 4 degree angle of attack. The models were tested at two temperatures: a glaze condition at minus 3.9 C and a rime condition at minus 17.2 C. The systems were tested through a range of icing spray times and cycling rates. Characterization of the deicers was accomplished by monitoring power consumption, ice shed particle size, and residual ice. High speed video motion analysis was performed to quantify ice particle size.

  13. Geometry Modeling and Grid Generation for Computational Aerodynamic Simulations Around Iced Airfoils and Wings

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Slater, John W.; Vickerman, Mary B.; VanZante, Judith F.; Wadel, Mary F. (Technical Monitor)

    2002-01-01

    Issues associated with analysis of 'icing effects' on airfoil and wing performances are discussed, along with accomplishments and efforts to overcome difficulties with ice. Because of infinite variations of ice shapes and their high degree of complexity, computational 'icing effects' studies using available software tools must address many difficulties in geometry acquisition and modeling, grid generation, and flow simulation. The value of each technology component needs to be weighed from the perspective of the entire analysis process, from geometry to flow simulation. Even though CFD codes are yet to be validated for flows over iced airfoils and wings, numerical simulation, when considered together with wind tunnel tests, can provide valuable insights into 'icing effects' and advance our understanding of the relationship between ice characteristics and their effects on performance degradation.

  14. Phase Behavior of Binary Mixture of Heptaethylene Glycol Decyl Ether and Water: Formation of Phase Compound in Solid Phase

    PubMed

    Nibu; Suemori; Inoue

    1997-07-01

    Differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR) were used to construct and characterize the phase diagram for a binary mixture of heptaethylene glycol decyl ether (C10 E7 ) and water in the temperature range from -60 to 80°C. Plots of the endothermic peak temperatures obtained by DSC measurements against compositions provided eutectic solid-liquid phase boundaries with a eutectic composition of 34 wt% of H2 O. On the other hand, heat of fusion per unit weight of the mixture changed discretely at the composition corresponding to the "eutectic" composition. Furthermore, the IR spectra obtained for the mixture in the solid phase were well reproduced as a superposition of those for the mixture of 34 wt% H2 O and pure components but were not reproduced by superimposing the spectra obtained for the solid surfactant and ice. These observations indicate that a solid phase compound is formed between C10 E7 and water with a stoichiometry of 1:14 and that the compound and pure components exist as separate phases, rather than the phases separating into surfactant and ice, which would be expected if the C10 E7 /water mixture formed a true eutectic mixture system. It is estimated from the composition corresponding to the phase compounds that two molecules of water per oxyethylene unit are bound to hydrophilic polyoxyethylene chain of C10 E7 to form a hydrated compound.

  15. Evaluation of Ice sheet evolution and coastline changes from 1960s in Amery Ice Shelf using multi-source remote sensing images

    NASA Astrophysics Data System (ADS)

    Qiao, G.; Ye, W.; Scaioni, M.; Liu, S.; Feng, T.; Liu, Y.; Tong, X.; Li, R.

    2013-12-01

    Global change is one of the major challenges that all the nations are commonly facing, and the Antarctica ice sheet changes have been playing a critical role in the global change research field during the past years. Long time-series of ice sheet observations in Antarctica would contribute to the quantitative evaluation and precise prediction of the effects on global change induced by the ice sheet, of which the remote sensing technology would make critical contributions. As the biggest ice shelf and one of the dominant drainage systems in East Antarctic, the Amery Ice Shelf has been making significant contributions to the mass balance of the Antarctic. Study of Amery Ice shelf changes would advance the understanding of Antarctic ice shelf evolution as well as the overall mass balance. At the same time, as one of the important indicators of Antarctica ice sheet characteristics, coastlines that can be detected from remote sensing imagery can help reveal the nature of the changes of ice sheet evolution. Most of the scientific research on Antarctica with satellite remote sensing dated from 1970s after LANDSAT satellite was brought into operation. It was the declassification of the cold war satellite reconnaissance photographs in 1995, known as Declassified Intelligence Satellite Photograph (DISP) that provided a direct overall view of the Antarctica ice-sheet's configuration in 1960s, greatly extending the time span of Antarctica surface observations. This paper will present the evaluation of ice-sheet evolution and coastline changes in Amery Ice Shelf from 1960s, by using multi-source remote sensing images including the DISP images and the modern optical satellite images. The DISP images scanned from negatives were first interior-oriented with the associated parameters, and then bundle block adjustment technology was employed based on the tie points and control points, to derive the mosaic image of the research region. Experimental results of coastlines generated from DISP images and that from ASTER images were analyzed, and the changes and evolution of Amery ice shelf were then evaluated, following by the discussion of the possible drives.

  16. The Prospect of Neutrinos with Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-10-01

    With the first detection of gravitational waves in 2015, scientists celebrated the opening of a new window to the universe. But multi-messenger astronomy astronomy based on detections of not just photons, but other signals as well was not a new idea at the time: we had already detected tiny, lightweight neutrinos emitted from astrophysical sources. Will we be able to combine observations of neutrinos and gravitational waves in the future to provide a deeper picture of astrophysical events?Signs of a MergerArtists impression of the first stage of a binary neutron star merger. [NASA, ESA, and A. Feild (STScI)]If the answer is yes, the key will probably be short gamma-ray bursts (SGRBs). Theory predicts that when a neutron star merges with another compact object (either another neutron star or a black hole), a number of signals may be observable. These include:gravitational waves as the binary spirals inward,a brief burst of gamma rays at merger (this is the SGRB),high-energy neutrino emission during the SGRB,optical and infrared emission after the merger in the form of a kilonova, andradio afterglows of the merger remnants.While weve observed the various electromagnetic components of this picture, the multi-messenger part is lacking: gravitational-wave detections havent been made in conjunction with electromagnetic counterparts thus far, and the only confirmed astrophysical sources of neutrinos are the Sun and Supernova 1987A.Pedicted neutrino fluxes during different stages of emission in an SGRB. [Kimura et al. 2017]Can we expect this to change in the future? A team of authors led by Shigeo Kimura (Pennsylvania State University) has now explored the likelihood that well be able to detect high-energy neutrinos in association with future gravitational-wave events.Detecting the SGRB NeutrinosKimura and collaborators first estimate the flux of high-energy neutrinos expected during various emission phases of an SGRB. They show that a period of late-time emission, known as the extended emission phase, may produce high-energy neutrinos more efficiently than the other phases. But would we be able to see these neutrinos?A comparison of IceCubes detection capabilities (top) to those of the planned IceCube-Gen2 (bottom), for different models of neutrino emission during an SGRB. [Kimura et al. 2017]To answer this, the authors calculate the probability of detection for neutrinos coming from a distance of 300 Mpc the predicted sensitivity range of advanced LIGO for gravitational-wave detection from a face-on neutron-star binary. They find that the IceCube Neutrino Observatory could detect neutrinos from around 10% of average extended-emission events or perhaps up to half in the most optimistic scenario. The planned next iteration of the detector, IceCube-Gen2, should do better, however: Kimura and collaborators estimate that a quarter of the extended emission events will be detectable in the general case, and up to three quarters of them may be seen in the optimistic case.The authors calculations suggest that within several years of operation of IceCube-Gen2, there is a good chance that well be able to simultaneously detect gamma rays, neutrinos, and gravitational waves from bright SGRBs. This will provide us with powerful tools for learning about the physics of these energetic events.CitationShigeo S. Kimura et al 2017 ApJL 848 L4. doi:10.3847/2041-8213/aa8d14

  17. Computational Simulation of the Formation and Material Behavior of Ice

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Singhal, Surendra N.; Chamis, Christos C.

    1994-01-01

    Computational methods are described for simulating the formation and the material behavior of ice in prevailing transient environments. The methodology developed at the NASA Lewis Research Center was adopted. A three dimensional finite-element heat transfer analyzer was used to predict the thickness of ice formed under prevailing environmental conditions. A multi-factor interaction model for simulating the material behavior of time-variant ice layers is presented. The model, used in conjunction with laminated composite mechanics, updates the material properties of an ice block as its thickness increases with time. A sample case of ice formation in a body of water was used to demonstrate the methodology. The results showed that the formation and the material behavior of ice can be computationally simulated using the available composites technology.

  18. Proceedings of oceans 87. The ocean - an international workplace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-01-01

    This book includes proceedings containing 347 papers. Some of the topics are: ICE -Cold ocean and ice research; ICE-1-Icebergs; ICE-2-Sea ice and structures; IE-3-Cold ocean instrumentation; ICE-4-Ocean and ice; INS-Oceanographic instrumentation; INS-1-Acoustic Doppler Current profilers; ENG-1-New solutions to old problems; ENG-2-energy from the ocean; ENG-3-Cables and connectors; POL-Policy, education and technology transfer; POL-1-International issues; POL-2-Ocean space utilization; POL-3-Economics, planning and management; SCI-6-fish stock assessment; ACI-7-Coastal currents and sediment; SCI-9-Satellite navigation; SCI-10-Deep sea minerals and methods of recovery; ODS-Fifth working symposium on oceanographic data system; ODS-1-Data base management; UND-Underwater work systems; UND-1-Diving for science.

  19. HybridICE® filter: ice separation in freeze desalination of mine waste waters.

    PubMed

    Adeniyi, A; Maree, J P; Mbaya, R K K; Popoola, A P I; Mtombeni, T; Zvinowanda, C M

    2014-01-01

    Freeze desalination is an alternative method for the treatment of mine waste waters. HybridICE(®) technology is a freeze desalination process which generates ice slurry in surface scraper heat exchangers that use R404a as the primary refrigerant. Ice separation from the slurry takes place in the HybridICE filter, a cylindrical unit with a centrally mounted filter element. Principally, the filter module achieves separation of the ice through buoyancy force in a continuous process. The HybridICE filter is a new and economical means of separating ice from the slurry and requires no washing of ice with water. The performance of the filter at a flow-rate of 25 L/min was evaluated over time and with varied evaporating temperature of the refrigerant. Behaviours of the ice fraction and residence time were also investigated. The objective was to find ways to improve the performance of the filter. Results showed that filter performance can be improved by controlling the refrigerant evaporating temperature and eliminating overflow.

  20. EPR Evidence of Liquid Water in Ice: An Intrinsic Property of Water or a Self-Confinement Effect?

    PubMed

    Thangswamy, Muthulakshmi; Maheshwari, Priya; Dutta, Dhanadeep; Rane, Vinayak; Pujari, Pradeep K

    2018-06-01

    Liquid water (LW) existence in pure ice below 273 K has been a controversial aspect primarily because of the lack of experimental evidence. Recently, electron paramagnetic resonance (EPR) has been used to study deeply supercooled water in a rapidly frozen polycrystalline ice. The same technique can also be used to probe the presence of LW in polycrystalline ice that has formed through a more conventional, slow cooling one. In this context, the present study aims to emphasize that in case of an external probe involving techniques such as EPR, the results are influenced by the binary phase (BP) diagram of the probe-water system, which also predicts the existence of LW domains in ice, up to the eutectic point. Here we report the results of our such EPR spin-probe studies on water, which demonstrate that smaller the concentration of the probe stronger is the EPR evidence of liquid domains in polycrystalline ice. We used computer simulations based on stochastic Liouville theory to analyze the lineshapes of the EPR spectra. We show that the presence of the spin probe modifies the BP diagram of water, at very low concentrations of the spin probe. The spin probe thus acts, not like a passive reporter of the behavior of the solvent and its environment, but as an active impurity to influence the solvent. We show that there exists a lower critical concentration, below which BP diagram needs to be modified, by incorporating the effect of confinement of the spin probe. With this approach, we demonstrate that the observed EPR evidence of LW domains in ice can be accounted for by the modified BP diagram of the probe-water system. The present work highlights the importance of taking cognizance of the possibility of spin probes affecting the host systems, when interpreting the EPR (or any other probe based spectroscopic) results of phase transitions of host, as its ignorance may lead to serious misinterpretations.

  1. The Linear Mixing Approximation for Planetary Ices

    NASA Astrophysics Data System (ADS)

    Bethkenhagen, M.; Meyer, E. R.; Hamel, S.; Nettelmann, N.; French, M.; Scheibe, L.; Ticknor, C.; Collins, L. A.; Kress, J. D.; Fortney, J. J.; Redmer, R.

    2017-12-01

    We investigate the validity of the widely used linear mixing approximation for the equations of state (EOS) of planetary ices, which are thought to dominate the interior of the ice giant planets Uranus and Neptune. For that purpose we perform density functional theory molecular dynamics simulations using the VASP code.[1] In particular, we compute 1:1 binary mixtures of water, ammonia, and methane, as well as their 2:1:4 ternary mixture at pressure-temperature conditions typical for the interior of Uranus and Neptune.[2,3] In addition, a new ab initio EOS for methane is presented. The linear mixing approximation is verified for the conditions present inside Uranus ranging up to 10 Mbar based on the comprehensive EOS data set. We also calculate the diffusion coefficients for the ternary mixture along different Uranus interior profiles and compare them to the values of the pure compounds. We find that deviations of the linear mixing approximation from the real mixture are generally small; for the EOS they fall within about 4% uncertainty while the diffusion coefficients deviate up to 20% . The EOS of planetary ices are applied to adiabatic models of Uranus. It turns out that a deep interior of almost pure ices is consistent with the gravity field data, in which case the planet becomes rather cold (T core ˜ 4000 K). [1] G. Kresse and J. Hafner, Physical Review B 47, 558 (1993). [2] R. Redmer, T.R. Mattsson, N. Nettelmann and M. French, Icarus 211, 798 (2011). [3] N. Nettelmann, K. Wang, J. J. Fortney, S. Hamel, S. Yellamilli, M. Bethkenhagen and R. Redmer, Icarus 275, 107 (2016).

  2. THz and mid-IR spectroscopy of interstellar ice analogs: methyl and carboxylic acid groups.

    PubMed

    Ioppolo, S; McGuire, B A; Allodi, M A; Blake, G A

    2014-01-01

    A fundamental problem in astrochemistry concerns the synthesis and survival of complex organic molecules (COMs) throughout the process of star and planet formation. While it is generally accepted that most complex molecules and prebiotic species form in the solid phase on icy grain particles, a complete understanding of the formation pathways is still largely lacking. To take full advantage of the enormous number of available THz observations (e.g., Herschel Space Observatory, SOFIA, and ALMA), laboratory analogs must be studied systematically. Here, we present the THz (0.3-7.5 THz; 10-250 cm(-1)) and mid-IR (400-4000 cm(-1)) spectra of astrophysically-relevant species that share the same functional groups, including formic acid (HCOOH) and acetic acid (CH3COOH), and acetaldehyde (CH3CHO) and acetone ((CH3)2CO), compared to more abundant interstellar molecules such as water (H2O), methanol (CH3OH), and carbon monoxide (CO). A suite of pure and mixed binary ices are discussed. The effects on the spectra due to the composition and the structure of the ice at different temperatures are shown. Our results demonstrate that THz spectra are sensitive to reversible and irreversible transformations within the ice caused by thermal processing, suggesting that THz spectra can be used to study the composition, structure, and thermal history of interstellar ices. Moreover, the THz spectrum of an individual species depends on the functional group(s) within that molecule. Thus, future THz studies of different functional groups will help in characterizing the chemistry and physics of the interstellar medium (ISM).

  3. Ocean-Forced Ice-Shelf Thinning in a Synchronously Coupled Ice-Ocean Model

    NASA Astrophysics Data System (ADS)

    Jordan, James R.; Holland, Paul R.; Goldberg, Dan; Snow, Kate; Arthern, Robert; Campin, Jean-Michel; Heimbach, Patrick; Jenkins, Adrian

    2018-02-01

    The first fully synchronous, coupled ice shelf-ocean model with a fixed grounding line and imposed upstream ice velocity has been developed using the MITgcm (Massachusetts Institute of Technology general circulation model). Unlike previous, asynchronous, approaches to coupled modeling our approach is fully conservative of heat, salt, and mass. Synchronous coupling is achieved by continuously updating the ice-shelf thickness on the ocean time step. By simulating an idealized, warm-water ice shelf we show how raising the pycnocline leads to a reduction in both ice-shelf mass and back stress, and hence buttressing. Coupled runs show the formation of a western boundary channel in the ice-shelf base due to increased melting on the western boundary due to Coriolis enhanced flow. Eastern boundary ice thickening is also observed. This is not the case when using a simple depth-dependent parameterized melt, as the ice shelf has relatively thinner sides and a thicker central "bulge" for a given ice-shelf mass. Ice-shelf geometry arising from the parameterized melt rate tends to underestimate backstress (and therefore buttressing) for a given ice-shelf mass due to a thinner ice shelf at the boundaries when compared to coupled model simulations.

  4. Icing Sensor Probe

    NASA Technical Reports Server (NTRS)

    Emery, Edward; Kok, Gregory L.

    2002-01-01

    Aircraft icing is a serious safety problem for the general aviation and some commuter transport airplanes. There has been tremendous growth in the commuter aviation industry in the last few years, Since these type of aircraft generally operate at lower altitudes they consequently spend a far greater proportion of their time operating in icing conditions. For the past thirty years airborne and ground based facilities have relied primarily on two types of cloud physics instrumentation to measure the characteristics of icing clouds: hot wire liquid water content probes and laser based particle sizing probes for the measurement of water droplet size. The instrumentation is severely limited by the technology that was developed during the 1970's and is quite large in size. The goal of this research is to develop one instrument with a wide bandwidth, better response time, higher resolution, user selectability, and small and lightweight. NASA Glenn Research Center, Droplet Measurement Technology, and Meteorology Society of Canada have developed a collaborative effort to develop such an instrument. This paper describes the development and test results of the prototype Icing Sensor Probe.

  5. Exploring ways to prevent bonding of ice to pavement.

    DOT National Transportation Integrated Search

    1998-01-01

    The objective of this study was to explore all possible means of preventing ice from bonding to pavement. New technologies, including new chemicals, new means of application, pavement conditioning, and timing of chemical application, were explored. T...

  6. Planetary Ices and the Linear Mixing Approximation

    DOE PAGES

    Bethkenhagen, M.; Meyer, Edmund Richard; Hamel, S.; ...

    2017-10-10

    Here, the validity of the widely used linear mixing approximation (LMA) for the equations of state (EOSs) of planetary ices is investigated at pressure–temperature conditions typical for the interiors of Uranus and Neptune. The basis of this study is ab initio data ranging up to 1000 GPa and 20,000 K, calculated via density functional theory molecular dynamics simulations. In particular, we determine a new EOS for methane and EOS data for the 1:1 binary mixtures of methane, ammonia, and water, as well as their 2:1:4 ternary mixture. Additionally, the self-diffusion coefficients in the ternary mixture are calculated along three different Uranus interior profiles and compared to the values of the pure compounds. We find that deviations of the LMA from the results of the real mixture are generally small; for the thermal EOSs they amount to 4% or less. The diffusion coefficients in the mixture agree with those of the pure compounds within 20% or better. Finally, a new adiabatic model of Uranus with an inner layer of almost pure ices is developed. The model is consistent with the gravity field data and results in a rather cold interior (more » $${T}_{\\mathrm{core}}\\sim 4000$$ K).« less

  7. Process Analytical Technology in Freeze-Drying: Detection of the Secondary Solute + Water Crystallization with Heat Flux Sensors.

    PubMed

    Wang, Qiming; Shalaev, Evgenyi

    2018-04-01

    In situ and non-invasive detection of solute crystallization during freeze-drying would facilitate cycle optimization and scale-up from the laboratory to commercial manufacturing scale. The objective of the study is to evaluate heat flux sensor (HFS) as a tool for monitoring solute crystallization and other first-order phase transitions (e.g., onset of freezing). HFS is a thin-film differential thermopile, which acts as a transducer to generate an electrical signal proportional to the total heat applied to its surface. In this study, HFS is used to detect both primary (ice formation) and secondary (also known as eutectic) solute + water crystallization during cooling and heating of solutions in a freeze-dryer. Binary water-solute mixtures with typical excipients concentrations (e.g., 0.9% of NaCl and 5% mannitol) and fill volumes (1 to 3 ml/vial) are studied. Secondary crystallization is detected by the HFS during cooling in all experiments with NaCl solutions, whereas timing of mannitol crystallization depends on the cooling conditions. In particular, mannitol crystallization takes place during cooling, if the cooling rate is lower than the critical value. On the other hand, if the cooling rate exceeds the critical cooling rate, mannitol crystallization during cooling is prevented, and crystallization occurs during subsequent warming or annealing. It is also observed that, while controlled ice nucleation allows initiation of the primary freezing event in different vials simultaneously, there is a noticeable vial-to-vial difference in the timing of secondary crystallization. The HFS could be a valuable process monitoring tool for non-invasive detection of various crystallization events during freeze-drying manufacturing.

  8. Glass polymorphism in glycerol–water mixtures: II. Experimental studies

    PubMed Central

    Bachler, Johannes; Fuentes-Landete, Violeta; Jahn, David A.; Wong, Jessina; Giovambattista, Nicolas

    2016-01-01

    We report a detailed experimental study of (i) pressure-induced transformations in glycerol–water mixtures at T = 77 K and P = 0–1.8 GPa, and (ii) heating-induced transformations of glycerol–water mixtures recovered at 1 atm and T = 77 K. Our samples are prepared by cooling the solutions at ambient pressure at various cooling rates (100 K s–1–10 K h–1) and for the whole range of glycerol mole fractions, χ g. Depending on concentration and cooling rates, cooling leads to samples containing amorphous ice (χ g ≥ 0.20), ice (χ g ≤ 0.32), and/or “distorted ice” (0 < χ g ≤ 0.38). Upon compression, we find that (a) fully vitrified samples at χ g ≥ 0.20 do not show glass polymorphism, in agreement with previous works; (b) samples containing ice show pressure-induced amorphization (PIA) leading to the formation of high-density amorphous ice (HDA). PIA of ice domains within the glycerol–water mixtures is shown to be possible only up to χ g ≈ 0.32 (T = 77 K). This is rather surprising since it has been known that at χ g < 0.38, cooling leads to phase-separated samples with ice and maximally freeze-concentrated solution of χ g ≈ 0.38. Accordingly, in the range 0.32 < χ g < 0.38, we suggest that the water domains freeze into an interfacial ice, i.e., a highly-distorted form of layered ice, which is unable to transform to HDA upon compression. Upon heating samples recovered at 1 atm, we observe a rich phase behavior. Differential scanning calorimetry indicates that only at χ g ≤ 0.15, the water domains within the sample exhibit polyamorphism, i.e., the HDA-to-LDA (low-density amorphous ice) transformation. At 0.15 < χ g ≤ 0.38, samples contain ice, interfacial ice, and/or HDA domains. All samples (χ g ≤ 0.38) show: the crystallization of amorphous ice domains, followed by the glass transition of the vitrified glycerol–water domains and, finally, the melting of ice at high temperatures. Our work exemplifies the complex “phase” behavior of glassy binary mixtures due to phase-separation (ice formation) and polyamorphism, and the relevance of sample preparation, concentration as well as cooling rates. The presence of the distorted ice (called “interphase” by us) also explains the debated “drift anomaly” upon melting. These results are compatible with the high-pressure study by Suzuki and Mishima indicating disappearance of polyamorphism at P ≈ 0.03–0.05 GPa at χ g ≈ 0.12–0.15 [J. Chem. Phys., 2014, 141, 094505]. PMID:27044677

  9. An investigation of air transportation technology at the Massachusetts Institute of Technology, 1990-1991

    NASA Technical Reports Server (NTRS)

    Simpson, Robert W.

    1991-01-01

    Brief summaries are given of research activities at the Massachusetts Institute of Technology (MIT) under the sponsorship of the FAA/NASA Joint University Program. Topics covered include hazard assessment and cockpit presentation issues for microburst alerting systems; the situational awareness effect of automated air traffic control (ATC) datalink clearance amendments; a graphical simulation system for adaptive, automated approach spacing; an expert system for temporal planning with application to runway configuration management; deterministic multi-zone ice accretion modeling; alert generation and cockpit presentation for an integrated microburst alerting system; and passive infrared ice detection for helicopter applications.

  10. Iceproofing Helicopters

    NASA Technical Reports Server (NTRS)

    1977-01-01

    NASA aircraft-icing research has been applied to expand the utility of the big flying-crane helicopter built by the Sikorsky Aircraft Division of United Technologies in Stratford, Conn. Sikorsky wanted to adapt the Skycrane, used in both military and commercial service, to lift heavy external loads in areas where icing conditions occur; ice build-up around the engine air inlets caused the major problem. NASA-Lewis has a special wind tunnel for injecting super cooled water droplets into the wind thereby simulating a natural icing cloud and observing how ice builds up on various shaped surfaces. From Lewis, Sikorsky engineers obtained information which optimized the design of the inlet anti-ice system. The resulting design proved to be an effective anti-icing modification for the flying crane. Sikorsky is also using additional Lewis Icing Research Tunnel data in its development of a new VTOL (Vertical Take-Off and Landing) aircraft.

  11. ICE SLURRY APPLICATIONS

    PubMed Central

    Kauffeld, M.; WANG, M. J.; Goldstein, V.; Kasza, K. E.

    2011-01-01

    The role of secondary refrigerants is expected to grow as the focus on the reduction of greenhouse gas emissions increases. The effectiveness of secondary refrigerants can be improved when phase changing media are introduced in place of single phase media. Operating at temperatures below the freezing point of water, ice slurry facilitates several efficiency improvements such as reductions in pumping energy consumption as well as lowering the required temperature difference in heat exchangers due to the beneficial thermo-physical properties of ice slurry. Research has shown that ice slurry can be engineered to have ideal ice particle characteristics so that it can be easily stored in tanks without agglomeration and then be extractable for pumping at very high ice fraction without plugging. In addition ice slurry can be used in many direct contact food and medical protective cooling applications. This paper provides an overview of the latest developments in ice slurry technology. PMID:21528014

  12. Technology for a Thermo-chemical Ice Penetrator for Icy Moons

    NASA Astrophysics Data System (ADS)

    Arenberg, Jonathan; Harpole, George; Zamel, James; Sen, Bashwar; Lee, Greg; Ross, Floyd; Retherford, Kurt D.

    2016-10-01

    The ability to place sensors or to take samples below the ice surface enables a wide variety of potential scientific investigations. Penetrating an ice cap can be accomplished via a mechanical drill, laser drill, kinetic impactor, or heated penetrator. This poster reports on the development of technology for the latter most option, namely a self-heated probe driven by an exothermic chemical reaction: a Thermo-chemical ice penetrator (TChIP). Our penetrator design employs a eutectic mix of alkali metals that produce an exothermic reaction upon contact with an icy surface. This reaction increases once the ice starts melting, so no external power is required. This technology is inspired by a classified Cold-War era program developed at Northrop Grumman for the US Navy. Terrestrial demonstration of this technology took place in the Arctic; however, this device cannot be considered high TRL for application at the icy moons of the solar system due to the environmental differences between Earth's Arctic and the icy moons. These differences demand a TChIP design specific to these cold, low mass, airless worlds. It is expected that this model of TChIP performance will be complex, incorporating all of the forces on the penetrator, gravity, the thermo-chemistry at the interface between penetrator and ice, and multi-phase heat and mass transport, and hydrodynamics. Our initial efforts are aimed at the development of a validated set of tools and simulations to predict the performance of the penetrator for both the environment found on these icy moons and for a terrestrial environment. The purpose of the inclusion of the terrestrial environment is to aid in model validation. Once developed and validated, our models will allow us to design penetrators for a specific scientific application on a specific body. This poster discusses the range of scientific investigations that are enabled by TChIP. We also introduce the development plan to advance TChIP to the point where it can be considered for infusion into a program.

  13. A Vision for Ice Giant Exploration

    NASA Technical Reports Server (NTRS)

    Hofstadter, M.; Simon, A.; Atreya, S.; Banfield, D.; Fortney, J.; Hayes, A.; Hedman, M.; Hospodarsky, G.; Mandt, K.; Masters, A.; hide

    2017-01-01

    From Voyager to a Vision for 2050: NASA and ESA have just completed a study of candidate missionsto Uranus and Neptune, the so-called ice giant planets. It is a Pre-Decadal Survey Study, meant to inform the next Planetary Science Decadal Survey about opportunities for missions launching in the 2020's and early 2030's. There have been no space flight missions to the ice giants since the Voyager 2 flybys of Uranus in 1986 and Neptune in 1989. This paper presents some conclusions of that study (hereafter referred to as The Study), and how the results feed into a vision for where planetary science can be in 2050. Reaching that vision will require investments in technology andground-based science in the 2020's, flight during the 2030's along with continued technological development of both ground- and space-based capabilities, and data analysis and additional flights in the 2040's. We first discuss why exploring the ice giants is important. We then summarize the science objectives identified by The Study, and our vision of the science goals for 2050. We then review some of the technologies needed to make this vision a reality.

  14. Systematic Review of Life Cycle Greenhouse Gas Emissions from Geothermal Electricity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eberle, Annika; Heath, Garvin A.; Carpenter Petri, Alberta C.

    The primary goal of this work was to assess the magnitude and variability of published life cycle greenhouse gas (GHG) emission estimates for three types of geothermal electricity generation technologies: enhanced geothermal systems (EGS) binary, hydrothermal (HT) flash, and HT binary. These technologies were chosen to align the results of this report with technologies modeled in National Renewable Energy Laboratory's (NREL's) Regional Energy Deployment Systems (ReEDs) model. Although we did gather and screen life cycle assessment (LCA) literature on hybrid systems, dry steam, and two geothermal heating technologies, we did not analyze published GHG emission estimates for these technologies. Inmore » our systematic literature review of the LCA literature, we screened studies in two stages based on a variety of criteria adapted from NREL's Life Cycle Assessment (LCA) Harmonization study (Heath and Mann 2012). Of the more than 180 geothermal studies identified, only 29 successfully passed both screening stages and only 26 of these included estimates of life cycle GHG emissions. We found that the median estimate of life cycle GHG emissions (in grams of carbon dioxide equivalent per kilowatt-hour generated [g CO2eq/kWh]) reported by these studies are 32.0, 47.0, and 11.3 for EGS binary, HT flash, and HT binary, respectively (Figure ES-1). We also found that the total life cycle GHG emissions are dominated by different stages of the life cycle for different technologies. For example, the GHG emissions from HT flash plants are dominated by the operations phase owing to the flash cycle being open loop whereby carbon dioxide entrained in the geothermal fluids is released to the atmosphere. This is in contrast to binary plants (using either EGS or HT resources), whose GHG emissions predominantly originate in the construction phase, owing to its closed-loop process design. Finally, by comparing this review's literature-derived range of HT flash GHG emissions to data from currently operating geothermal plants, we found that emissions from operational plants exhibit more variability and the median of emissions from operational plants is twice the median of operational emissions reported by LCAs. Further investigation is warranted to better understand the cause of differences between published LCAs and estimates from operational plants and to develop LCA analytical approaches that can yield estimates closer to actual emissions.« less

  15. Recalculated Areas for Maximum Ice Extents of the Baltic Sea During Winters 1971-2008

    NASA Astrophysics Data System (ADS)

    Niskanen, T.; Vainio, J.; Eriksson, P.; Heiler, I.

    2009-04-01

    Publication of operational ice charts in Finland was started from the Baltic Sea in a year 1915. Until year 1993 all ice charts were hand drawn paper copies but in the year 1993 ice charting software IceMap was introduced. Since then all ice charts were produced digitally. Since the year 1996 IceMap has had an option that user can calculate areas of single ice area polygons in the chart. Using this option the area of the maximum ice extent can be easily solved fully automatically. Before this option was introduced (and in full operation) all maximum extent areas were calculated manually by a planimeter. During recent years it has become clear that some areas calculated before 1996 don't give the same result as IceMap. Differences can come from for example inaccuracy of old coastlines, map projections, the calibration of the planimeter or interpretation of old ice area symbols. Old ice charts since winter 1970-71 have now been scanned, rectified and re-drawn. New maximum ice extent areas for Baltic Sea have now been re-calculated. By these new technological tools it can be concluded that in some cases clear differences can be found.

  16. Experimental study on an electrical deicing technology utilizing carbon fiber tape.

    DOT National Transportation Integrated Search

    2012-11-01

    In cold regions, snow and ice cause serious safety problems to transportation systems. South central Alaska, particularly Anchorage, is susceptible to a number of icing : events due to frequent freeze/thaw cycles in the winter season. Traditionally, ...

  17. Comparative Study of Alternative Fuel Icing Inhibitor Additive Properties & Chemical Analysis of Metal Speciation in Aviation Fuels

    DTIC Science & Technology

    2010-08-01

    paraffins, olefins, cyclo-parafins ( naphthenes ), aromatics and a host of trace species. Petroleum distillates such as jet fuels are also a complex...LC method consisted of: Mobile Phase: 95% CH3OH + 0.1% (vol) Acetic Acid 5% De-Ionized H2O Injection Volume: 5 µL Needle Wash in Flush...Port for 20 seconds using mobile phase CH3OH + 0.1% (vol) Acetic- Acid Run Time: 10 minute Post Time: 1 minute Binary Pump SL Flow Rate: 0.3 ml/min

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curran, Scott; Wagner, Robert M.; Campbell, Russ

    The SAE 2016 Range Extenders for Electric Vehicles Symposium was a 2-day technical meeting focused on the role of advanced internal combustion engines (ICEs) and other novel energy converter technologies for extending the range of electric vehicles (EVs). The first-of-its-kind symposium was notable for focusing solely on the range extender (REx) technologies and not the EVs. The technical program featured presentations from international leaders from industry, government, national laboratories, and academia. The opening keynote presentations covered a broad range of topics including consumer behavior, policy implications, regulatory considerations, and REx architectures as enablers for advanced technologies. The technical sessions focusedmore » on an array of REx technologies including conventional ICEs, as well as less conventional or emerging technologies such as microturbines, fuel cells, low-temperature combustion engines, and aluminum-air batteries. The symposium included two panel sessions. The trend toward increasing vehicle electrification and the changing role of ICEs and other auxiliary power unit technologies for use as REx’s is leading to new research and design development needs. The symposium captured the interest of the industry and research communities in exploring the opportunities and challenges associated with REx’s for EVs. This report includes key takeaways, summarized below, and draft notes for each presentation and panel discussion.« less

  19. Bibliography on Cold Regions Science and Technology. Volume 44, Part 1, 1990

    DTIC Science & Technology

    1990-12-01

    Design criteria. Ice mechanics, composition. 44-975 44.985 44-966 Theoretical and experimental analyses of glacial Primary production, chlorophyll...44-1209 New methods and materials for molding and casting Murrell, S.A.F., Rist, M.A. - Experimental methodologies to support aircraft icing ice...Safety Dynamic loads, Moisture, Design , Thermocouples, Leavesley, G.H., Hydrological sciences journal, Dec. Bitumens, Experimentation . 1989, 34(6), p.6 17

  20. Redundant binary number representation for an inherently parallel arithmetic on optical computers.

    PubMed

    De Biase, G A; Massini, A

    1993-02-10

    A simple redundant binary number representation suitable for digital-optical computers is presented. By means of this representation it is possible to build an arithmetic with carry-free parallel algebraic sums carried out in constant time and parallel multiplication in log N time. This redundant number representation naturally fits the 2's complement binary number system and permits the construction of inherently parallel arithmetic units that are used in various optical technologies. Some properties of this number representation and several examples of computation are presented.

  1. Under-Ice Operations with AUVS in High Latitudes

    NASA Astrophysics Data System (ADS)

    Ferguson, J.; Kaminski, C. D.

    2012-12-01

    In 2010 and 2011, ISE Explorer Autonomous Underwater Vehicles (AUV), built for Natural Resources Canada (NRCan), were deployed to Canada's high Arctic. The mission was to undertake under-ice bathymetric surveys supporting Canada's submission under the United Nations Convention on the Law of the Sea (UNCLOS). During these deployments several under-ice records were broken and several new technologies were demonstrated. The NRCan AUV is a 5000 meter depth rated vehicle, with several innovative additions to make it suitable for arctic survey work. Most notable are a depth rated variable ballast system, a 1300 Hz long-range homing system, and under-ice charging and data transfer capabilities. The Explorer's range was extended to approximately 450 km by adding a hull section to accommodate extra batteries. The scientific payload onboard included a Seabird SBE49 Conductivity-Temperature-Depth (CTD) sensor, Knudsen singlebeam echosounder, and a Kongsberg Simrad EM2000 multibeam echosounder. In 2010, operations were conducted from an ice camp near Borden Island (78°14'N, 112°39'W) operating through an ice hole. Following several test missions, the AUV spent 10 days surveying under ice before being successfully recovered. In total, close to 1100 km of under-ice survey was undertaken at depths to 3160 meters. A further set of operations was carried out in August and September 2011 from the Canadian Icebreaker CCGS Louis St. Laurent operating with the American Icebreaker USCGS Healy. Here the operations were much further north to latitudes of 88°30' N and to depths of 3500 meters. In this paper, the 2010 ice camp and the 2011 icebreaker missions are described, with an outline of technology developments that were undertaken, the preparations that were necessary for the success of the missions and finally, the outcome of the missions themselves.

  2. Binary Format for Scene (BIFS): combining MPEG-4 media to build rich multimedia services

    NASA Astrophysics Data System (ADS)

    Signes, Julien

    1998-12-01

    In this paper, we analyze the design concepts and some technical details behind the MPEG-4 standard, particularly the scene description layer, commonly known as the Binary Format for Scene (BIFS). We show how MPEG-4 may ease multimedia proliferation by offering a unique, optimized multimedia platform. Lastly, we analyze the potential of the technology for creating rich multimedia applications on various networks and platforms. An e-commerce application example is detailed, highlighting the benefits of the technology. Compression results show how rich applications may be built even on very low bit rate connections.

  3. Recent Ice Sheet and Glacier Elevation Changes in Greenland from Aircraft Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Krabill, William B.; Thomas, R.; Sonntag, J.; Manizade, S.; Yungel, J.

    2008-01-01

    The Arctic Ice Mapping group (Project AIM) at the NASA Goddard Space Flight Center Wallops Flight Facility has been conducting systematic topographic surveys of the Greenland Ice Sheet (GIS) since 1993, using scanning airborne laser altimeters combined with Global Positioning System (UPS) technology. Earlier surveys showed the ice sheet above 2000-rn elevation to be in balance, but with localized regions of thickening or thinning. Thinning predominates at lower elevations and thinning rates have recently increased, resulting in a negative mass balance for the entire ice sheet. Recently, critical segments of near-coastal flight lines in Greenland were resurveyed. Results from the new data will be presented.

  4. Tradition and Technology: Sea Ice Science on Inuit Sleds

    NASA Astrophysics Data System (ADS)

    Wilkinson, Jeremy P.; Hanson, Susanne; Hughes, Nick E.; James, Alistair; Jones, Bryn; MacKinnon, Rory; Rysgaard, Søren; Toudal, Leif

    2011-01-01

    The Arctic is home to a circumpolar community of native people whose culture and traditions have enabled them to thrive in what most would perceive as a totally inhospitable and untenable environment. In many ways, sea ice can be viewed as the glue that binds these northern communities together; it is utilized in all aspects of their daily life. Sea ice acts as highways of the north; indeed, one can travel on these highways with dogsleds and snowmobiles. These travels over the frozen ocean occur at all periods of the sea ice cycle and over different ice types and ages. Excursions may be hunting trips to remote regions or social visits to nearby villages. Furthermore, hunting on the sea ice contributes to the health, culture, and commercial income of a community.

  5. A (Mis)Match of User Needs, Science Priorities, and Funder Support: A Case Study of Arctic Sea Ice Knowledge

    NASA Astrophysics Data System (ADS)

    Sheffield Guy, L.; Wiggins, H. V.; Turner-Bogren, E. J.; Myers, B.

    2016-12-01

    Declining Arctic sea ice, and its impacts on the Arctic and globe, is a topic of increasing attention by scientists, diverse stakeholder groups, and the media. Research on Arctic sea ice is broad and inter-disciplinary, ranging from new technologies to monitor sea ice, to process studies, to examining the impacts of declining sea ice on ecosystems and people. There remain barriers, however, in transferring scientific knowledge of sea ice to serve decision-maker needs. This poster will examine possible causes of these barriers—including issues of communications across disciplines and perspectives, professional culture, funding agency restrictions, and the state of the science—through the lens of Arctic sea ice efforts that have occurred over the past several years. The poster will draw on experiences from the Sea Ice for Walrus Outlook (https://www.arcus.org/search-program/siwo), the Sea Ice Outlook (https://www.arcus.org/sipn/sea-ice-outlook), and various science planning exercises. Finally, the poster will synthesize relevant efforts in this arena and highlight opportunities for improvement.

  6. Space Solar Power Technology Demonstration for Lunar Polar Applications

    NASA Technical Reports Server (NTRS)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, J.

    2002-01-01

    A solar power generation station on a mountaintop near the moon's North or South pole can receive sunlight 708 hours per lunar day, for continuous power generation. Power can be beamed from this station over long distances using a laser-based wireless power transmission system and a photo-voltaic receiver. This beamed energy can provide warmth, electricity, and illumination for a robotic rover to perform scientific experiments in cold, dark craters where no other power source is practical. Radio-frequency power transmission may also be demonstrated in lunar polar applications to locate and recover sub-surface deposits of volatile material, such as water ice. High circular polarization ratios observed in data from Clementine spacecraft and Arecibo radar reflections from the moon's South pole suggest that water ice is indeed present in certain lunar polar craters. Data from the Lunar Prospector spacecraft's epi-thermal neutron spectrometer also indicate that hydrogen is present at the moon's poles. Space Solar Power technology enables investigation of these craters, which may contain a billion-year-old stratigraphic record of tremendous scientific value. Layers of ice, preserved at the moon's poles, could help us determine the sequence and composition of comet impacts on the moon. Such ice deposits may even include distinct strata deposited by secondary ejecta following significant Earth (ocean) impacts, linked to major extinctions of life on Earth. Ice resources at the moon's poles could provide water and air for human exploration and development of space as well as rocket propellant for future space transportation. Technologies demonstrated and matured via lunar polar applications can also be used in other NASA science missions (Valles Marineris. Phobos, Deimos, Mercury's poles, asteroids, etc.) and in future large-scale SSP systems to beam energy from space to Earth. Ground-based technology demonstrations are proceeding to mature the technology for such a near-term scientific mission to the moon. This paper reviews the progress to date in demonstrating this technology on Earth and details the plans for near-term applications, to meet NASA's needs, in the moon's polar regions.

  7. Smart skin technology development for measuring ice accretion, stall, and high AOA aircraft performance. Part 1: Capacitive ice detector development

    NASA Technical Reports Server (NTRS)

    Pruzan, Daniel A.; Khatkhate, Ateen A.; Gerardi, Joseph J.; Hickman, Gail A.

    1993-01-01

    A reliable way to detect and measure ice accretion during flight is required to reduce the hazards of icing currently threatening present day aircraft. Many of the sensors used for this purpose are invasive (probe) sensors which must be placed in areas of the airframe where ice does not naturally form. Due to the difference in capture efficiency of the exposed surface, difficulties result in correlating the ice accretion on the probe to what is happening on a number of vastly different airfoil sections. Most flush mounted sensors in use must be integrated into the aircraft surface by cutting or drilling the aircraft surface. An alternate type of ice detector which is based on a NASA patent is currently being investigated at Innovative Dynamics, Inc. (IDI). Results of the investigation into the performance of different capacitive type sensor designs, both rigid as well as elastic, are presented.

  8. The Glacier and Land Ice Surface Topography Interferometer (GLISTIN): A Novel Ka-band Digitally Beamformed Interferometer

    NASA Technical Reports Server (NTRS)

    Moller, Delwyn K.; Heavey, Brandon; Hodges, Richard; Rengarajan, Sembiam; Rignot, Eric; Rogez, Francois; Sadowy, Gregory; Simard, Marc; Zawadzki, Mark

    2006-01-01

    The estimation of the mass balance of ice sheets and glaciers on Earth is a problem of considerable scientific and societal importance. A key measurement to understanding, monitoring and forecasting these changes is ice-surface topography, both for ice-sheet and glacial regions. As such NASA identified 'ice topographic mapping instruments capable of providing precise elevation and detailed imagery data for measurements on glacial scales for detailed monitoring of ice sheet, and glacier changes' as a science priority for the most recent Instrument Incubator Program (IIP) opportunities. Funded under this opportunity is the technological development for a Ka-Band (35GHz) single-pass digitally beamformed interferometric synthetic aperture radar (InSAR). Unique to this concept is the ability to map a significant swath impervious of cloud cover with measurement accuracies comparable to laser altimeters but with variable resolution as appropriate to the differing scales-of-interest over ice-sheets and glaciers.

  9. Applied high-speed imaging for the icing research program at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Slater, Howard; Owens, Jay; Shin, Jaiwon

    1992-01-01

    The Icing Research Tunnel at NASA Lewis Research Center provides scientists a scaled, controlled environment to simulate natural icing events. The closed-loop, low speed, refrigerated wind tunnel offers the experimental capability to test for icing certification requirements, analytical model validation and calibration techniques, cloud physics instrumentation refinement, advanced ice protection systems, and rotorcraft icing methodology development. The test procedures for these objectives all require a high degree of visual documentation, both in real-time data acquisition and post-test image processing. Information is provided to scientific, technical, and industrial imaging specialists as well as to research personnel about the high-speed and conventional imaging systems will be on the recent ice protection technology program. Various imaging examples for some of the tests are presented. Additional imaging examples are available from the NASA Lewis Research Center's Photographic and Printing Branch.

  10. Applied high-speed imaging for the icing research program at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Slater, Howard; Owens, Jay; Shin, Jaiwon

    1991-01-01

    The Icing Research Tunnel at NASA Lewis Research Center provides scientists a scaled, controlled environment to simulate natural icing events. The closed-loop, low speed, refrigerated wind tunnel offers the experimental capability to test for icing certification requirements, analytical model validation and calibration techniques, cloud physics instrumentation refinement, advanced ice protection systems, and rotorcraft icing methodology development. The test procedures for these objectives all require a high degree of visual documentation, both in real-time data acquisition and post-test image processing. Information is provided to scientific, technical, and industrial imaging specialists as well as to research personnel about the high-speed and conventional imaging systems will be on the recent ice protection technology program. Various imaging examples for some of the tests are presented. Additional imaging examples are available from the NASA Lewis Research Center's Photographic and Printing Branch.

  11. Particle Size Measurements From the First Fundamentals of Ice Crystal Icing Physics Test in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    King, Michael C.; Bachalo, William; Kurek, Andrzej

    2017-01-01

    This paper presents particle measurements by the Artium Technologies, Inc. Phase Doppler Interferometer and High Speed Imaging instruments from the first Fundamental Ice Crystal Icing Physics test conducted in the NASA Propulsion Systems Laboratory. The work focuses on humidity sweeps at a larger and a smaller median volumetric diameter. The particle size distribution, number density, and water content measured by the Phase Doppler Interferometer and High Speed Imaging instruments from the sweeps are presented and compared. The current capability for these two instruments to measure and discriminate ICI conditions is examined.

  12. Particle Size Measurements from the first Fundamentals of Ice Crystal Icing Physics Test in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    King, Michael C.; Bachalo, William; Kurek, Andrzej

    2017-01-01

    This presentation shows particle measurements by the Artium Technologies, Inc. Phase Doppler Interferometer and High Speed Imaging instruments from the first Fundamental Ice Crystal Icing Physics test conducted in the NASA Propulsion Systems Laboratory. The work focuses on humidity sweeps at a larger and a smaller median volumetric diameter. The particle size distribution, number density, and water content measured by the Phase Doppler Interferometer and High Speed Imaging instruments from the sweeps are presented and compared. The current capability for these two instruments to measure and discriminate ICI conditions is examined.

  13. Yellow River Icicle Hazard Dynamic Monitoring Using UAV Aerial Remote Sensing Technology

    NASA Astrophysics Data System (ADS)

    Wang, H. B.; Wang, G. H.; Tang, X. M.; Li, C. H.

    2014-02-01

    Monitoring the response of Yellow River icicle hazard change requires accurate and repeatable topographic surveys. A new method based on unmanned aerial vehicle (UAV) aerial remote sensing technology is proposed for real-time data processing in Yellow River icicle hazard dynamic monitoring. The monitoring area is located in the Yellow River ice intensive care area in southern BaoTou of Inner Mongolia autonomous region. Monitoring time is from the 20th February to 30th March in 2013. Using the proposed video data processing method, automatic extraction covering area of 7.8 km2 of video key frame image 1832 frames took 34.786 seconds. The stitching and correcting time was 122.34 seconds and the accuracy was better than 0.5 m. Through the comparison of precise processing of sequence video stitching image, the method determines the change of the Yellow River ice and locates accurate positioning of ice bar, improving the traditional visual method by more than 100 times. The results provide accurate aid decision information for the Yellow River ice prevention headquarters. Finally, the effect of dam break is repeatedly monitored and ice break five meter accuracy is calculated through accurate monitoring and evaluation analysis.

  14. Overview of Mount Washington Icing Sensors Project

    NASA Technical Reports Server (NTRS)

    Ryerson, Charles C.; Politovich, Marcia K.; Rancourt, Kenneth L.; Koenig, George G.; Reinking, Roger F.; Miller, Dean R.

    2003-01-01

    NASA, the FAA, the Department of Defense, the National Center for Atmospheric Research and NOAA are developing techniques for retrieving cloud microphysical properties from a variety of remote sensing technologies. The intent is to predict aircraft icing conditions ahead of aircraft. The Mount Washington Icing Sensors Project MWISP), conducted in April, 1999 at Mt. Washington, NH, was organized to evaluate technologies for the prediction of icing conditions ahead of aircraft in a natural environment, and to characterize icing cloud and drizzle environments. April was selected for operations because the Summit is typically in cloud, generally has frequent freezing precipitation in spring, and the clouds have high liquid water contents. Remote sensing equipment, consisting of radars, radiometers and a lidar, was placed at the base of the mountain, and probes measuring cloud particles, and a radiometer, were operated from the Summit. NASA s Twin Otter research aircraft also conducted six missions over the site. Operations spanned the entire month of April, which was dominated by wrap-around moisture from a low pressure center stalled off the coast of Labrador providing persistent upslope clouds with relatively high liquid water contents and mixed phase conditions. Preliminary assessments indicate excellent results from the lidar, radar polarimetry, radiosondes and summit and aircraft measurements.

  15. FTIR study of CO2 and H2O/CO2 nanoparticles and their temporal evolution at 80 K.

    PubMed

    Taraschewski, M; Cammenga, H K; Tuckermann, R; Bauerecker, S

    2005-04-21

    Fourier transform infrared (FTIR) spectroscopy combined with a long-path collisional cooling cell was used to investigate the temporal evolution of CO2 nanoparticles and binary H2O/CO2 nanocomposites in the aerosol phase at 80 K. The experimental conditions for the formation of different CO2 particle shapes as slab, shell, sphere, cube, and needle have been studied by comparison with calculated data from the literature. The H2O/CO2 nanoparticles were generated with a newly developed multiple-pulse injection technique and with the simpler flow-in technique. The carbon dioxide nu3-vibration band at 2360 cm(-1) and the water ice OH-dangling band at 3700 cm(-1) were used to study the evolution of structure, shape, and contact area of the nanocomposites over 150 s. Different stages of binary nanocomposites with primary water ice cores were identified dependent on the injected CO2 portion: (a) disordered (amorphous) CO2 slabs on water particle surfaces, (b) globular crystalline CO2 humps sticking on the water cores, and (c) water cores being completely enclosed in bigger predominantly crystalline CO2 nanoparticles. However, regular CO2 shell structures on primary water particles showing both longitudinal (LO) and transverse (TO) optical mode features of the nu3-vibration band could not be observed. Experiments with reversed nucleation order indicate that H2O/CO2 composite particles with different initial structures evolve toward similar molecular nanocomposites with separated CO2 and H2O regions.

  16. R-O-C(triple bond)N species produced by ion irradiation of ice mixtures: comparison with astronomical observations

    NASA Technical Reports Server (NTRS)

    Palumbo, M. E.; Strazzulla, G.; Pendleton, Y. J.; Tielens, A. G.

    2000-01-01

    We have investigated the effects induced by ion bombardment of mixtures containing nitrogen-bearing compounds at low temperatures. The results show the formation of a band at 2080 cm-1 in binary mixtures, NH3:CH4 and N2:CH4, which we attribute to HCN embedded in the organic residue formed by ion irradiation. In addition to this band, ternary mixtures containing an oxygen-bearing species (i.e., H2O) form a compound with a prominent absorption band at about 2165 cm-1 (4.62 microns). We ascribe this band to a nitrile compound containing O that is bonded to the organic residue. A detailed comparison of the laboratory results with astronomical data of the 4.62 microns absorption band in protostellar spectra shows good agreement in peak position and profile. Our experimental studies show that N2, which is a more likely interstellar ice component than NH3, can be the molecular progenitor of the carrier of the interstellar band. This is an alternative to the pathway by which UV photolysis of NH3-containing ices produces the 4.62 microns band and implies that ion bombardment may well play an important role in the evolution of interstellar ices. Here, we discuss the implications of our studies for the chemical route by which the carrier of the 4.62 microns band is formed in these laboratory experiments.

  17. R-O-C(triple bond)N species produced by ion irradiation of ice mixtures: comparison with astronomical observations.

    PubMed

    Palumbo, M E; Strazzulla, G; Pendleton, Y J; Tielens, A G

    2000-05-10

    We have investigated the effects induced by ion bombardment of mixtures containing nitrogen-bearing compounds at low temperatures. The results show the formation of a band at 2080 cm-1 in binary mixtures, NH3:CH4 and N2:CH4, which we attribute to HCN embedded in the organic residue formed by ion irradiation. In addition to this band, ternary mixtures containing an oxygen-bearing species (i.e., H2O) form a compound with a prominent absorption band at about 2165 cm-1 (4.62 microns). We ascribe this band to a nitrile compound containing O that is bonded to the organic residue. A detailed comparison of the laboratory results with astronomical data of the 4.62 microns absorption band in protostellar spectra shows good agreement in peak position and profile. Our experimental studies show that N2, which is a more likely interstellar ice component than NH3, can be the molecular progenitor of the carrier of the interstellar band. This is an alternative to the pathway by which UV photolysis of NH3-containing ices produces the 4.62 microns band and implies that ion bombardment may well play an important role in the evolution of interstellar ices. Here, we discuss the implications of our studies for the chemical route by which the carrier of the 4.62 microns band is formed in these laboratory experiments.

  18. Mars in Situ Resource Utilization Technology Evaluation

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony C.; Santago-Maldonado, Edgardo

    2012-01-01

    We have examined the technologies required to enable Mars In-Situ Resource Utilization (ISRU) because our understanding of Mars resources has changed significantly in the last five years as a result of recent robotic missions to the red planet. Two major developments, (1) confirmation of the presence of near-surface water in the form of ice in very large amounts at high latitudes by the Phoenix Lander and (2) the likely existence of water at lower latitudes in the form of hydrates or ice in the top one meter of the regolith, have the potential to change ISRU technology selection. A brief technology assessment was performed for the most promising Mars atmospheric gas processing techniques: Reverse Water Gas Shift (RWGS) and Methanation (aka Sabatier), as well as an overview of soil processing technology to extract water from Martian soil.

  19. Mars In-Situ Resource Utilization Technology Evaluation

    NASA Technical Reports Server (NTRS)

    Santiago-Maldonado, Edgardo; Muscatello, Anthony

    2011-01-01

    We have examined the technologies required to enable Mars Tn-Situ Resource Utilization (ISRU) because our understanding of Mars resources has changed significantly in the last five years as a result of recent robotic missions to the red planet [1-4]. Two major developments, (1) confirmation of the presence of near-surface water in the form of ice in very large amounts at high latitudes by the Phoenix Lander and (2) the likely existence of water at lower latitudes in the form of hydrates or ice in the top one meter of the regolith, have the potential to change ISRU technology selection. A brief technology assessment was performed for the most promising Mars atmospheric gas processing techniques: Reverse Water Gas Shift (RWGS) and Methanation (aka Sabatier), as well as an overview of soil.processing technology to extract water from Martian soil.

  20. Studies of solid carbon dioxide in interstellar ice analogs subject to thermal processing

    NASA Astrophysics Data System (ADS)

    White, Douglas W.

    2010-09-01

    Solid CO2 has been detected in many lines of sight in the interstellar medium from infrared observatories. Spectral profiles from space-based observatories have suggested that CO2 on icy grain mantles is mixed with other common molecules such as H2O and CH 3OH in interstellar regions and that thermal annealing has occurred. The vibrational mode at 658 cm-1 (15.2 mum) is suspected to be a powerful diagnostic tool as to the composition of species on icy grain mantles as well as thermal histories. However, previous studies have not systematically investigated ice composition and temperature. Laboratory spectra of interstellar ice analogs have been created in this study order to better understand the physical properties of solid CO2 in these interstellar environments. Existing databases of ice composition studies and effects of ice thermal history were updated in this study to include a more systematic approach. The 658 cm-1 (15.2 mum) bending mode feature of CO2 is examined here and the subsequent astrophysical implications stated. In the first set of experiments, 47 mixtures of H2O,CH3OH, andCO2 were slowly warmed and mid-infrared absorption spectra were recorded at 5K intervals. The second set of experiments involved examining the CO2 bending mode feature of 10 different CO2-containing ice mixtures at different temperatures where ice segregation was suspected. In these experiments, the ice mixtures were slowly heated to the desired temperature for increasing time intervals before cooling down and recording mid-IR absorption spectra. These studies may be used to analyze IR data from space-based observatories such as the Spitzer Space Telescope Infrared Spectrograph as well other future IR observations of the interstellar medium. Finally, mass spectroscopy measurements were taken from temperature programmed desorption (TPD) experiments performed on several binary mixtures of H2O + CO2 and CH 3OH + CO2. Physical properties such as desorption energy of CO2 can be determined from the TPD traces of these experiments. The work provided here addresses the physical properties of solid CO 2 thermally processed in ice mixtures in interstellar environments by laboratory simulations spectroscopically analyzed by mid-infrared absorption profiles and TPD.

  1. Higher-order ice-sheet modelling accelerated by multigrid on graphics cards

    NASA Astrophysics Data System (ADS)

    Brædstrup, Christian; Egholm, David

    2013-04-01

    Higher-order ice flow modelling is a very computer intensive process owing primarily to the nonlinear influence of the horizontal stress coupling. When applied for simulating long-term glacial landscape evolution, the ice-sheet models must consider very long time series, while both high temporal and spatial resolution is needed to resolve small effects. The use of higher-order and full stokes models have therefore seen very limited usage in this field. However, recent advances in graphics card (GPU) technology for high performance computing have proven extremely efficient in accelerating many large-scale scientific computations. The general purpose GPU (GPGPU) technology is cheap, has a low power consumption and fits into a normal desktop computer. It could therefore provide a powerful tool for many glaciologists working on ice flow models. Our current research focuses on utilising the GPU as a tool in ice-sheet and glacier modelling. To this extent we have implemented the Integrated Second-Order Shallow Ice Approximation (iSOSIA) equations on the device using the finite difference method. To accelerate the computations, the GPU solver uses a non-linear Red-Black Gauss-Seidel iterator coupled with a Full Approximation Scheme (FAS) multigrid setup to further aid convergence. The GPU finite difference implementation provides the inherent parallelization that scales from hundreds to several thousands of cores on newer cards. We demonstrate the efficiency of the GPU multigrid solver using benchmark experiments.

  2. Remote Oil Spill Detection and Monitoring Beneath Sea Ice

    NASA Astrophysics Data System (ADS)

    Polak, Adam; Marshall, Stephen; Ren, Jinchang; Hwang, Byongjun (Phil); Hagan, Bernard; Stothard, David J. M.

    2016-08-01

    The spillage of oil in Polar Regions is particularly serious due to the threat to the environment and the difficulties in detecting and tracking the full extent of the oil seepage beneath the sea ice. Development of fast and reliable sensing techniques is highly desirable. In this paper hyperspectral imaging combined with signal processing and classification techniques are proposed as a potential tool to detect the presence of oil beneath the sea ice. A small sample, lab based experiment, serving as a proof of concept, resulted in the successful identification of oil presence beneath the thin ice layer as opposed to the other sample with ice only. The paper demonstrates the results of this experiment that granted a financial support to execute full feasibility study of this technology for oil spill detection beneath the sea ice.

  3. The Behavior of Regular Satellites during the Nice Model's Planetary Close Encounters

    NASA Astrophysics Data System (ADS)

    Nogueira, E. C.; Gomes, R. S.; Brasser, R.

    2014-10-01

    In order to explain the behavior of the regular satellites of the ice planets during the instability phase of the Nice model, we used numerical simulations to investigate the evolution of the satellite systems when these two planets experienced encounters with the gas giants. For the initial conditions we placed an ice planet in between Jupiter and Saturn, according to the evolution of Nice model simulations in a jumping Jupiter scenario (Brasser et al. 2009). We used the MERCURY integrator (Chambers 1999) and we obtained 101 successful runs which kept all planets, of which 24 were jumping Jupiter cases. Subsequently we performed additional numerical integrations in which the ice giant that encountered a gas giant was started on the same orbit but with its regular satellites included. This is done as follows: For each of the 101 basic runs, we save the orbital elements of all objects in the integration at all close encounter events. Then we performed a backward integration to start the system 100 years before the encounter and re-enacted the forward integration with the regular satellites around the ice giant. The final orbital elements of the satellites with respect to the ice planet were used to restart the integration for the next planetary encounter. If we assume that Uranus is the ice planet that had encounters with a gas giant, we considered the satellites Miranda, Ariel, Umbriel, Titania and Oberon with their present orbits. For Neptune we introduced Triton with an orbit with a 15% larger than the actual semi-major axis to account for the tidal decay from the LHB to present time. We also assume that Triton was captured through binary disruption (Agnor and Hamilton 2006, Nogueira et al. 2011) and its orbit was circularized by tides during the 500 million years before the LHB.

  4. PAM-4 Signaling over VCSELs with 0.13µm CMOS Chip Technology

    NASA Astrophysics Data System (ADS)

    Cunningham, J. E.; Beckman, D.; Zheng, Xuezhe; Huang, Dawei; Sze, T.; Krishnamoorthy, A. V.

    2006-12-01

    We present results for VCSEL based links operating PAM-4 signaling using a commercial 0.13µm CMOS technology. We perform a complete link analysis of the Bit Error Rate, Q factor, random and deterministic jitter by measuring waterfall curves versus margins in time and amplitude. We demonstrate that VCSEL based PAM 4 can match or even improve performance over binary signaling under conditions of a bandwidth limited, 100meter multi-mode optical link at 5Gbps. We present the first sensitivity measurements for optical PAM-4 and compare it with binary signaling. Measured benefits are reconciled with information theory predictions.

  5. PAM-4 Signaling over VCSELs with 0.13microm CMOS Chip Technology.

    PubMed

    Cunningham, J E; Beckman, D; Zheng, Xuezhe; Huang, Dawei; Sze, T; Krishnamoorthy, A V

    2006-12-11

    We present results for VCSEL based links operating PAM-4 signaling using a commercial 0.13microm CMOS technology. We perform a complete link analysis of the Bit Error Rate, Q factor, random and deterministic jitter by measuring waterfall curves versus margins in time and amplitude. We demonstrate that VCSEL based PAM-4 can match or even improve performance over binary signaling under conditions of a bandwidth limited, 100meter multi-mode optical link at 5Gbps. We present the first sensitivity measurements for optical PAM-4 and compare it with binary signaling. Measured benefits are reconciled with information theory predictions.

  6. Northern Sea Route and Icebreaking Technology

    DTIC Science & Technology

    1994-06-01

    waterlines at the extreme forward end, extended beam, a low stem angle with an ice-clearing forefoot , and a high flare angle below the water- line. The ice...world. Reports of protests and labor strikes , stemming from poor wages sectors of the economy. The Gross and living conditions, are common. With

  7. Reinforcing In-Service Teachers Education via ICT

    ERIC Educational Resources Information Center

    Thorsteinsson, Gisli

    2012-01-01

    Earlier educational models have not managed to take into account novel contextual and mobile methods of learning with the advances in technology-mediated learning. The article firstly reports an educational approach, namely, future innovative in-service teacher education in Europe (ICE-ED). This project was supported by the European Union Comenius…

  8. Numerical simulation of the interaction of biological cells with an ice front during freezing

    NASA Astrophysics Data System (ADS)

    Carin, M.; Jaeger, M.

    2001-12-01

    The goal of this study is a better understanding of the interaction between cells and a solidification front during a cryopreservation process. This technique of freezing is commonly used to conserve biological material for long periods at low temperatures. However the biophysical mechanisms of cell injuries during freezing are difficult to understand because a cell is a very sophisticated microstructure interacting with its environment. We have developed a finite element model to simulate the response of cells to an advancing solidification front. A special front-tracking technique is used to compute the motion of the cell membrane and the ice front during freezing. The model solves the conductive heat transfer equation and the diffusion equation of a solute on a domain containing three phases: one or more cells, the extra-cellular solution and the growing ice. This solid phase growing from a binary salt solution rejects the solute in the liquid phase and increases the solute gradient around the cell. This induces the shrinkage of the cell. The model is used to simulate the engulfment of one cell modelling a red blood cell by an advancing solidification front initially planar or not is computed. We compare the incorporation of a cell with that of a solid particle.

  9. The Surface Compositions of Triton, Pluto, and Charon

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.; Roush, Ted L.; Owen, Tobias C.; Quirico, Eric; DeBergh, Catherine

    1995-01-01

    Neptune's satellite Triton, and the planet-satellite binary Pluto and Charon, are the most distant planetary bodies on which ices have been directly detected. Triton and Pluto have very similar dimensions and mean densities, suggesting a similar or common origin. Through earth-based spectroscopic observations in the near-infrared, solid N2, CH4, and CO have been found on both bodies, with the additional molecule C02 on Triton. N2 dominates both surfaces, although the coverage is not spatially uniform. On Triton, the CH4 and CO are mostly or entirely frozen in the N2 matrix, while CO2 may be spatially segregated. On Pluto, some CH4 and the CO are frozen in the N2 matrix, but there is evidence for additional CH4 in a pure state, perhaps lying as a lag deposit on a subsurface layer of N2. Despite their compositional and dimensional similarities, Pluto and Triton are quite different from one another in detail. Additional hydrocarbons and other volatile ices have been sought spectroscopically but not yet have been detected. The only molecule identified on Pluto's satellite Charon is solid H2O, but the spectroscopic data are of low precision and admit the presence of other ices such as CH4.

  10. Investment and operating costs of binary cycle geothermal power plants

    NASA Technical Reports Server (NTRS)

    Holt, B.; Brugman, J.

    1974-01-01

    Typical investment and operating costs for geothermal power plants employing binary cycle technology and utilizing the heat energy in liquid-dominated reservoirs are discussed. These costs are developed as a function of reservoir temperature. The factors involved in optimizing plant design are discussed. A relationship between the value of electrical energy and the value of the heat energy in the reservoir is suggested.

  11. High-speed high-accuracy three-dimensional shape measurement using digital binary defocusing method versus sinusoidal method

    NASA Astrophysics Data System (ADS)

    Hyun, Jae-Sang; Li, Beiwen; Zhang, Song

    2017-07-01

    This paper presents our research findings on high-speed high-accuracy three-dimensional shape measurement using digital light processing (DLP) technologies. In particular, we compare two different sinusoidal fringe generation techniques using the DLP projection devices: direct projection of computer-generated 8-bit sinusoidal patterns (a.k.a., the sinusoidal method), and the creation of sinusoidal patterns by defocusing binary patterns (a.k.a., the binary defocusing method). This paper mainly examines their performance on high-accuracy measurement applications under precisely controlled settings. Two different projection systems were tested in this study: a commercially available inexpensive projector and the DLP development kit. Experimental results demonstrated that the binary defocusing method always outperforms the sinusoidal method if a sufficient number of phase-shifted fringe patterns can be used.

  12. High-speed 3D imaging using digital binary defocusing method vs sinusoidal method

    NASA Astrophysics Data System (ADS)

    Zhang, Song; Hyun, Jae-Sang; Li, Beiwen

    2017-02-01

    This paper presents our research findings on high-speed 3D imaging using digital light processing (DLP) technologies. In particular, we compare two different sinusoidal fringe generation techniques using the DLP projection devices: direct projection of 8-bit computer generated sinusoidal patterns (a.k.a, the sinusoidal method), and the creation of sinusoidal patterns by defocusing binary patterns (a.k.a., the binary defocusing method). This paper mainly examines their performance on high-accuracy measurement applications under precisely controlled settings. Two different projection systems were tested in this study: the commercially available inexpensive projector, and the DLP development kit. Experimental results demonstrated that the binary defocusing method always outperforms the sinusoidal method if a sufficient number of phase-shifted fringe patterns can be used.

  13. Investigation of air transportation technology at Massachusetts Institute of Technology, 1985

    NASA Technical Reports Server (NTRS)

    Simpson, Robert W.

    1987-01-01

    Two areas of research are discussed, an investigation into runway approach flying with Loran C and a series of research topics in the development of experimental validation of methodologies to support aircraft icing analysis. Flight tests with the Loran C led to the conclusion that it is a suitable system for non-precision approaches, and that time-difference corrections made every eight weeks in the instrument approach plates will produce acceptable errors. In the area of aircraft icing analysis, wind tunnel and flight test results are discussed.

  14. Possible Geological Records of the Symbiotic Binary R Aquarii's Historical Outbursts

    NASA Astrophysics Data System (ADS)

    Tanabe, Kenji

    2015-08-01

    R Aquarii, known as one of the most enigmatic variable stars, seems to experience several outbursts as suggested by its surrounding nebulosity. Fortunately,in Korean ancient official books two outbursts in A.D.1073 and 1074 are recorded precisely (both its position and brightness). These two events possibly coincide with the two prominent spikes of nitrate ion frozen in the ice core extracted in 2001 from the top of Dome Fuji(3810 mheight) at the Japanese Antarctic station.We shall discuss whether such a coincidence is plausible or not from the point of viw of time resolution and age determination.

  15. A computer assisted intelligent storm outage evaluator for power distribution systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balakrishnan, R.; Pahwa, A.

    1990-07-01

    The lower voltage part of the power distribution system (primary and secondary sub-systems) does not have the provision for real-time status feedback, and as a result evaluation of outages is an extremely difficult task, especially during system emergencies caused by tornadoes and ice-storms. In this paper, a knowledge based approach is proposed for evaluation of storm related outages in the distribution systems. At the outset, binary voltage sensors capable of transmitting the real-time voltage on/off symptoms are recommended to be installed at strategic locations in the distribution system.

  16. High Performance Computing Technologies for Modeling the Dynamics and Dispersion of Ice Chunks in the Arctic Ocean

    DTIC Science & Technology

    2016-08-23

    SECURITY CLASSIFICATION OF: Hybrid finite element / finite volume based CaMEL shallow water flow solvers have been successfully extended to study wave...effects on ice floes in a simplified 10 sq-km ocean domain. Our solver combines the merits of both the finite element and finite volume methods and...ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 sea ice dynamics, shallow water, finite element , finite volume

  17. Bibliography on Cold Regions Science and Technology. Volume 52. Part 2,

    DTIC Science & Technology

    1998-12-01

    eng] 52-5087 spheric gases from antarctic ice cores. Gillaik, T., et al, in sediments and biota from four US arctic lakes. Allen-Gil, Study of the...1996,eng] 52-2678 52-690 Solomon , S., et at, [1997,eng] 52-879 Studies of cloud ice water path and optical thickness during Homogeneous ice...of clouds: a wave ota, D., et al, [1995,eng] 52-5364 flash rate. Solomon , R.C., [1997,eng] 52-1070 cloud case study . Ackerman, S.A., et al, [1998,eng

  18. Bibliography on Cold Regions Science and Technology. Volume 40, Part 2, 1986

    DTIC Science & Technology

    1986-12-01

    affecting teabird oc- currence in the Scotia and Weddell Seaa [1984, |> 119-121, eng] 40-22« Ice edges and seabird occurrence in Antarctica [1^36...catclunent[1989, p.Ul-147, eng] 40-2411 Brl>tM,E. Obacrvatioiu of plankton organianu obtained by bongo ueta during the Nove nber-December 1983 ice-edge...p.293-312, eng] 40-2510 Characteristics of marine icing in Canadian waten [1989, p.78-94, eng] 40-2498 Climatology of severe storms affecting

  19. Cloudy with a Chance of Ice: The Stratification of Titan's Vernal Ponds and Formation of Ethane Ice

    NASA Astrophysics Data System (ADS)

    Soderblom, J. M.; Steckloff, J. K.

    2017-12-01

    Cassini ISS observations revealed regions on Saturn's moon Titan that become significantly darker (lower albedo) following storm events [1]. These regions are observed to be topographically low [2], indicating that liquid (predominantly methane-ethane-nitrogen) is pooling on Titan after these storm events. These dark ponds, however, are then observed to significantly brighten (higher albedo relative to pre-storm albedo), before fading to their pre-storm albedos [2-3]. We interpret these data to indicate ethane ice formation, which cools from evaporation of methane. The formation of ethane ices results from a unique sequence of thermophysical and thermochemical phenomena. Initially, the methane in the mixture evaporates, cooling the pond. Nitrogen, dissolved primarily in the methane, exsolves, further cooling the liquid. However, because nitrogen is significantly more soluble in cooler methane-hydrocarbon mixtures, relatively more methane than nitrogen leaves the fluid, increasing the relative fraction of nitrogen. This increased nitrogen fraction increases the density of the liquid, as nitrogen is significantly denser than methane or ethane (pure ethane's density is intermediate to that of methane and nitrogen). At around 85 K the mixture is as dense as pure liquid ethane. Thus, further evaporative methane loss and cooling at the pond's surface leads to a chemical stratification, with an increasingly ethane rich epilimnion (surface layer) overlying a methane rich hypolimnion (subsurface layer). Further evaporation of methane from the ethane-rich epilimnion drives its temperature and composition toward the methane-ethane-nitrogen liquidus curve, causing pure ethane ice to precipitate out of solution and settle to the bottom of the pool. This settling would obscure the ethane ice from Cassini VIMS and ISS, which would instead continue to appear as a dark pond on the surface. As the ethane precipitates out completely, a binary methane-nitrogen liquid mixture remains. Eventually, this residual liquid evaporates away, exposing the submerged ethane ice, which Cassini VIMS and ISS would observe as a dramatic brightening of the surface, consistent with observations. [1] Turtle et al. 2009, GRL; 2011, Science; [2] Soderblom et al. 2014, DPS; [3] Barnes et al. 2013 Planet. Sci

  20. Ice, Ice, Baby: A Program for Sustained, Classroom-Based K-8 Teacher Professional Development

    NASA Astrophysics Data System (ADS)

    Hamilton, C.

    2009-12-01

    Ice, Ice, Baby is a K-8 science program created by the education team at the Center for the Remote Sensing of Ice Sheets (CReSIS), an NSF-funded science and technology center headquartered at the University of Kansas. The twenty-four hands-on activities, which constitute the Ice, Ice, Baby curriculum, were developed to help students understand the role of polar ice sheets in sea level rise. These activities, presented in classrooms by CReSIS' Educational Outreach Coordinator, demonstrate many of the scientific properties of ice, including displacement and density. Student journals are utilized with each lesson as a strategy for improving students' science process skills. Journals also help the instructor identify misconceptions, assess comprehension, and provide students with a year-long science reference log. Pre- and post- assessments are given to both teachers and students before and after the program, providing data for evaluation and improvement of the Ice, Ice, Baby program. While students are actively engaged in hands-on learning about the unusual topics of ice sheets, glaciers, icebergs and sea ice, the CReSIS' Educational Coordinator is able to model best practices in science education, such as questioning and inquiry-based methods of instruction. In this way, the Ice, Ice, Baby program also serves as ongoing, in-class, professional development for teachers. Teachers are also provided supplemental activities to do with their classes between CReSIS' visits to encourage additional science lessons, reinforce concepts taught in the Ice, Ice, Baby program, and to foster teachers' progression toward more reform-based science instruction.

  1. Whillans Ice Stream Subglacial Access Research Drilling (WISSARD): Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats (Invited)

    NASA Astrophysics Data System (ADS)

    Tulaczyk, S. M.; Anandakrishnan, S.; Behar, A. E.; Christner, B. C.; Fisher, A. T.; Fricker, H. A.; Holland, D. M.; Jacobel, R. W.; Mikucki, J.; Mitchell, A. C.; Powell, R. D.; Priscu, J. C.; Scherer, R. P.; Severinghaus, J. P.

    2009-12-01

    The WISSARD project is a large, NSF-funded, interdisciplinary initiative focused on scientific drilling, exploration, and investigation of Antarctic subglacial aquatic environments. The project consists of three interrelated components: (1) LISSARD - Lake and Ice Stream Subglacial Access Research Drilling, (2) RAGES - Robotic Access to Grounding-zones for Exploration and Science, and (3) GBASE - GeomicroBiology of Antarctic Subglacial Environments). A number of previous studies in West Antarctica highlighted the importance of understanding ice sheet interactions with water, either at the basal boundary where ice streams come in contact with active subglacial hydrologic and geological systems or at the marine margin where the ice sheet is exposed to forcing from the global ocean and sedimentation. Recent biological investigations of Antarctic subglacial environments show that they provide a significant habitat for life and source of bacterial carbon in a setting that was previously thought to be inhospitable. Subglacial microbial ecosystems also enhance biogeochemical weathering, mobilizing elements from long term geological storage. The overarching scientific objective of WISSARD is to examine the subglacial hydrological system of West Antarctica in glaciological, geological, microbiological, geochemical, and oceanographic contexts. Direct sampling will yield seminal information on these systems and test the overarching hypothesis that active hydrological systems connect various subglacial environments and exert major control on ice sheet dynamics, subglacial sediment transfer, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations and geological records of ice sheet history. Technological advances during WISSARD will provide the US-science community with a capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and it will be available for future use. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments.

  2. Development of technology for manufacture of ragi ice cream.

    PubMed

    Patel, I J; Dharaiya, C N; Pinto, S V

    2015-07-01

    Ragi (Finger millet) improves the nutritional value of ice cream by enhancing the iron and fibre content. Caramel flavoured medium fat ice cream (6 % fat) was prepared by addition of gelatinized malted ragi flour roasted in butter (MRB) @ 8 %, 9 % and 10 % by weight of mix and compared with control (C) i.e. vanilla ice cream containing 10 % fat. The overall acceptability score of product prepared using 9 % MRB was statistically (P > 0.05) at par with the C, hence, it was selected. In the next part of the study, ragi ice cream was prepared using 4 different flavours viz. vanilla, mango, chocolate and caramel. Chocolate flavoured ragi ice cream was adjudged as best, followed by mango, caramel and vanilla ice cream. The iron and fibre content of chocolate flavoured ragi ice cream was found to be 12.8 ppm and 1.36 % respectively. vs. 1.5 ppm and 0.18 % respectively in control (C). Heat shock treatment as well as storage up to 30 days had no adverse effect on the sensory quality of the chocolate flavored ragi ice cream. Incorporation of finger millet in ice cream resulted in reduction in the amount of stabilizer used and effectively functioned as fat replacer in ice cream.

  3. A 100-Year Review: Milestones in the development of frozen desserts.

    PubMed

    Hartel, R W; Rankin, S A; Bradley, R L

    2017-12-01

    Ice cream has come a long way since the first snow cone was made. Innovations in a variety of areas over the past century have led to the development of highly sophisticated, automated manufacturing plants that churn out pint after pint of ice cream. Significant advances in fields such as mechanical refrigeration, chilling and freezing technologies, cleaning and sanitation, packaging, and ingredient functionality have shaped the industry. Advances in our understanding of the science of ice cream, particularly related to understanding the complex structures that need to be controlled to create a desirable product, have also enhanced product quality and shelf stability. Although significant advances have been made, there remain numerous opportunities for further advancement both scientifically and technologically. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. The Earth's Cryosphere: Current State and Recent Changes

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    2006-01-01

    The Earth continues to have a third of the ice that it had at the peak of the last ice age, although that ice continues to decrease, as it has, overall, for the past 18,000 years. Over the last 100 years, the retreat signal has been especially strong in ice shelves of the Arctic and along the Antarctic Peninsula, with a more mixed signal elsewhere. For instance, since the early 1990s the massive Greenland and Antarctic ice sheets have thinned along the coasts but thickened in the interior, and since the late 1970s sea ice has decreased in the Arctic but increased (slightly) in the Antarctic. Major difficulties in the interpretations of the climate record come from the high interannual variability of most cryosphere components and the lack of consistent long-term global data records, the latter problem now being slowly remedied, in part, through satellite technology.

  5. Phase diagram and density of fluids in the water-methanol system: experiments and implications for the crystallization and dynamics of subsurface oceans in icy moons

    NASA Astrophysics Data System (ADS)

    Yao, C.; Mantegazzi, D.; Deschamps, F.; Sanchez-Valle, C.

    2013-12-01

    Methanol, CH3OH, has been recently observed in several comets and at the surface of Saturn's icy moon Enceladus, [Hodyss et al., 2009]. Its plausible presence in the subsurface ocean could significantly affect the thermal and structural evolution of the satellite [Deschamps et al., 2010]. Methanol lowers the melting temperature of water ice [Vuillard & Sanchez, 1961; Miller & Carpenter, 1964], hence decreasing the efficiency of convective heat transfer through the outer ice Ih shell, and affects the subsurface ocean density and thermo-chemical evolution. However, the phase diagram and the fluid density of the H2O - CH3OH system remains largely unknown at the high pressures and low temperature conditions relevant for the icy moon interiors. In this study, we determined experimentally the liquidus temperature of Ice Ih and Ice VI and the fluid density in the binary water-methanol system (5, 10 and 20 w% CH3OH) from sound velocity measurments by Brillouin scattering spectroscopy over the P-T range 230 - 300 K and 10-4 - 1.2 GPa. The experiments were conducted using a membrane-type diamond anvil cell (mDAC) and an in-house designed Peltier cooling system to achieve the low temperatures of interest. Melting and crystallization in the system was visually monitored and confirmed from changes in the Brillouin spectra and in the pressure dependence of the measured sound velocities. The density of fluids ρ(P, T,x) in the binary system weas determined from the inversion of sound velocities measured in the fluids as a function of pressure along isotherms from 230 to 300 K. The results are used to propose a thermodynamic model for the CH3OH-H2O system over the investigated P-T range and further used to examine the effect of the methanol on the crystallization and thermo-chemical evolution of the subsurface ocean. The implications of these results for the thermal and structural evolution of icy moons, with particular applications to Titan, will be further discussed. References : Deschamps, F., Mousis, O., Sanchez-Valle, C., and Lunine, J.I., Astrophys. J., 2010. Hodyss, R., Parkinson, C.D. Johnson, V.D., Stern, J.V., Goguen, J.D, Yung, Y.L., and Kanik, I., Geophys. Res. Lett., 1992. Miller, G.A., and Carpenter, D.A., J. Chem. Eng. Data, 1964. Vuillard, G., and Sanchez, M., Bull. Soc. Chim. France, 1961.

  6. SIIOS in Alaska: Testing an "In-Vault" Option for a Europa Lander Seismometer Experiment

    NASA Technical Reports Server (NTRS)

    Bray, Veronica J.; Weber, Renee C.; DellaGiustina, Daniella N.; Bailey, S. H. (Hop); Schmerr, Nicholas C.; Pettit, Erin C.; Avenson, Brad; Marusiak, Angela G.; Dahl, Peter; Carr, Christina; hide

    2017-01-01

    The icy moons of Europa and Enceladus are thought to have global subsurface oceans in contact with mineral-rich silicate interiors, likely providing the three ingredients needed for life as we know it: liquid water, essential chemicals, and a source of energy. The possibility of life forming in their subsurface oceans relies in part on transfer of oxidants from the irradiated ice surface to the sheltered ocean below. Constraining the mechanisms and location of material exchange between the ice surface, the ice shell, and the subsurface ocean, however, is not possible without knowledge of ice thickness and liquid water depths. In a future lander-based experiment seismic measurements will be a key geophysical tool for obtaining this critical knowledge. The Seismometer to Investigate Ice and Ocean Structure (SIIOS) field-tests flight-ready technologies and develops the analytical methods necessary to make a seismic study of Europa and Enceladus a reality. We have been performing small-array seismology with a flight-candidate sensor in analog environments that exploit passive sources. Determining the depth to a subsurface ocean and any intermediate bodies of water is a priority for Ocean Worlds missions as it allows assessment of the habitability of these worlds and provides vital information for evaluating the spacecraft technologies required to access their oceans.

  7. Impacts of Changed Extratropical Storm Tracks on Arctic Sea Ice Export through Fram Strait

    NASA Astrophysics Data System (ADS)

    Wei, J.; Zhang, X.; Wang, Z.

    2017-12-01

    Studies have indicated a poleward shift of extratropical storm tracks and intensification of Arctic storm activities, in particular on the North Atlantic side of the Arctic Ocean. To improve understanding of dynamic effect on changes in Arctic sea ice mass balance, we examined the impacts of the changed storm tracks and activities on Arctic sea ice export through Fram Strait through ocean-sea ice model simulations. The model employed is the high-resolution Massachusetts Institute of Technology general circulation model (MITgcm), which was forced by the Japanese 25-year Reanalysis (JRA-25) dataset. The results show that storm-induced strong northerly wind stress can cause simultaneous response of daily sea ice export and, in turn, exert cumulative effects on interannual variability and long-term changes of sea ice export. Further analysis indicates that storm impact on sea ice export is spatially dependent. The storms occurring southeast of Fram Strait exhibit the largest impacts. The weakened intensity of winter storms in this region after 1994/95 could be responsible for the decrease of total winter sea ice export during the same time period.

  8. Passive Polarimetric Remote Sensing of Snow and Ice

    DTIC Science & Technology

    1997-09-30

    In recent years, polarimetric radiometry has shown great potential to revolutionize passive remote sensing of the ocean surface. As a result, several...polarimetric radiometer, in 2001. This project explores the possibility of applying this new technology to remote sensing in the Polar Regions by investigating the polarimetric signature of ice and snow.

  9. Concept, Simulation, and Instrumentation for Radiometric Inflight Icing Detection

    NASA Technical Reports Server (NTRS)

    Ryerson, Charles; Koenig, George G.; Reehorst, Andrew L.; Scott, Forrest R.

    2009-01-01

    The multi-agency Flight in Icing Remote Sensing Team (FIRST), a consortium of the National Aeronautics and Space Administration (NASA), the Federal Aviation Administration (FAA), the National Center for Atmospheric Research (NCAR), the National Oceanographic and Atmospheric Administration (NOAA), and the Army Corps of Engineers (USACE), has developed technologies for remotely detecting hazardous inflight icing conditions. The USACE Cold Regions Research and Engineering Laboratory (CRREL) assessed the potential of onboard passive microwave radiometers for remotely detecting icing conditions ahead of aircraft. The dual wavelength system differences the brightness temperature of Space and clouds, with greater differences potentially indicating closer and higher magnitude cloud liquid water content (LWC). The Air Force RADiative TRANsfer model (RADTRAN) was enhanced to assess the flight track sensing concept, and a 'flying' RADTRAN was developed to simulate a radiometer system flying through simulated clouds. Neural network techniques were developed to invert brightness temperatures and obtain integrated cloud liquid water. In addition, a dual wavelength Direct-Detection Polarimeter Radiometer (DDPR) system was built for detecting hazardous drizzle drops. This paper reviews technology development to date and addresses initial polarimeter performance.

  10. Physical State and Distribution of Materials at the Surface of Pluto from New Horizons LEISA Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Schmitt, B.; Philippe, S.; Grundy, W. M.; Reuter, D. C.; Cote, R.; Quirico, E.; Protopappa, S.; Young, L. A.; Binzel, R. P.; Cook, J. C.; hide

    2016-01-01

    From Earth based observations Pluto is known to be the host of N2, CH4 and CO ices and also a dark red material. Very limited spatial distribution information is available from rotational visible and near-infrared spectral curves obtained from hemispheric measurements. In July 2015 the New Horizons spacecraft reached Pluto and its satellite system and recorded a large set of data. The LEISA spectro-imager of the RALPH instruments are dedicated to the study of the composition and physical state of the materials composing the surface. In this paper we report a study of the distribution and physical state of the ices and non-ice materials on Pluto's illuminated surface and their mode and degree of mixing. Principal Component analysis as well as various specific spectral indicators and correlation plots are used on the first set of 2 high resolution spectro-images from the LEISA instrument covering the whole illuminated face of Pluto at the time of the New Horizons encounter. Qualitative distribution maps have been obtained for the 4 main condensed molecules, N2, CH4, CO, H2O as well as for the visible-dark red material. Based on specific spectral indicators, using either the strength or the position of absorption bands, these 4 molecules are found to indicate the presence of 3 different types of ices: N2-rich:CH4:CO ices, CH4-rich(:CO:N2?) ices and H2O ice. The mixing lines between these ices and with the dark red material are studied using scatter plots between the various spectral indicators. CH4 is mixed at the molecular level with N2, most probably also with CO, thus forming a ternary molecular mixture that follows its phase diagram with low solubility limits. The occurrence of a N2-rich - CH4-rich ices mixing line associated with a progressive decrease of the CO/CH4 ratio tells us that a fractionation sublimation sequence transforms one type of ice to the other forming either a N2-rich - CH4-rich binary mixture at the surface or an upper CH4-rich ice crust that may hide the N2-rich ice below. The strong CH4-rich - H2O mixing line witnesses the subsequent sublimation of the CH4-rich ice lag left behind by the N2:CO sublimation (N spring-summer), or a direct condensation of CH4 ice on the cold H2O ice (S autumn). The weak mixing line between CH4-containing ices and the dark red material and the very sharp spatial transitions between these ices and this non-volatile material are probably due to thermal incompatibility. Finally the occurrence of a H2O ice - red material mixing line advocates for a spatial mixing of the red material covering H2O ice, with possibly a small amount intimately mixed in water ice. From this analysis of the different materials distribution and their relative mixing lines, H2O ice appears to be the substratum on which other ices condense or non-volatile organic material is deposited from the atmosphere. N2-rich ices seem to evolve to CH4-dominated ices, possibly still containing traces of CO and N2, as N2 and CO sublimate away. The spatial distribution of these materials is very complex. The high spatial definition of all these composition maps, as well as those at even higher resolution that will be soon available, will allow us to compare them with Pluto's geologic features observed by LORRI panchromatic and MVIC multispectral imagers to better understand the geophysical processes in action at the surface of this astonishingly active frozen world.

  11. Physical state and distribution of materials at the surface of Pluto from New Horizons LEISA imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Schmitt, B.; Philippe, S.; Grundy, W. M.; Reuter, D. C.; Côte, R.; Quirico, E.; Protopapa, S.; Young, L. A.; Binzel, R. P.; Cook, J. C.; Cruikshank, D. P.; Dalle Ore, C. M.; Earle, A. M.; Ennico, K.; Howett, C. J. A.; Jennings, D. E.; Linscott, I. R.; Lunsford, A. W.; Olkin, C. B.; Parker, A. H.; Parker, J. Wm.; Singer, K. N.; Spencer, J. R.; Stansberry, J. A.; Stern, S. A.; Tsang, C. C. C.; Verbiscer, A. J.; Weaver, H. A.; New Horizons Science Team

    2017-05-01

    From Earth based observations Pluto is known to be the host of N2, CH4 and CO ices and also a dark red material. Very limited spatial distribution information is available from rotational visible and near-infrared spectral curves obtained from hemispheric measurements. In July 2015 the New Horizons spacecraft reached Pluto and its satellite system and recorded a large set of data. The LEISA spectro-imager of the RALPH instruments are dedicated to the study of the composition and physical state of the materials composing the surface. In this paper we report a study of the distribution and physical state of the ices and non-ice materials on Pluto's illuminated surface and their mode and degree of mixing. Principal Component analysis as well as various specific spectral indicators and correlation plots are used on the first set of 2 high resolution spectro-images from the LEISA instrument covering the whole illuminated face of Pluto at the time of the New Horizons encounter. Qualitative distribution maps have been obtained for the 4 main condensed molecules, N2, CH4, CO, H2O as well as for the visible-dark red material. Based on specific spectral indicators, using either the strength or the position of absorption bands, these 4 molecules are found to indicate the presence of 3 different types of ices: N2-rich:CH4:CO ices, CH4-rich(:CO:N2?) ices and H2O ice. The mixing lines between these ices and with the dark red material are studied using scatter plots between the various spectral indicators. CH4 is mixed at the molecular level with N2, most probably also with CO, thus forming a ternary molecular mixture that follows its phase diagram with low solubility limits. The occurrence of a N2-rich - CH4-rich ices mixing line associated with a progressive decrease of the CO/CH4 ratio tells us that a fractionation sublimation sequence transforms one type of ice to the other forming either a N2-rich - CH4-rich binary mixture at the surface or an upper CH4-rich ice crust that may hide the N2-rich ice below. The strong CH4-rich - H2O mixing line witnesses the subsequent sublimation of the CH4-rich ice lag left behind by the N2:CO sublimation (N spring-summer), or a direct condensation of CH4 ice on the cold H2O ice (S autumn). The weak mixing line between CH4-containing ices and the dark red material and the very sharp spatial transitions between these ices and this non-volatile material are probably due to thermal incompatibility. Finally the occurrence of a H2O ice - red material mixing line advocates for a spatial mixing of the red material covering H2O ice, with possibly a small amount intimately mixed in water ice. From this analysis of the different materials distribution and their relative mixing lines, H2O ice appears to be the substratum on which other ices condense or non-volatile organic material is deposited from the atmosphere. N2-rich ices seem to evolve to CH4-dominated ices, possibly still containing traces of CO and N2, as N2 and CO sublimate away. The spatial distribution of these materials is very complex. The high spatial definition of all these composition maps, as well as those at even higher resolution that will be soon available, will allow us to compare them with Pluto's geologic features observed by LORRI panchromatic and MVIC multispectral imagers to better understand the geophysical processes in action at the surface of this astonishingly active frozen world.

  12. Binary-mask generation for diffractive optical elements using microcomputers.

    PubMed

    O'Shea, D C; Beletic, J W; Poutous, M

    1993-05-10

    A new technique for generation of binary masks for the fabrication of diffractive optical elements is investigated. This technique, which uses commercially available desktop-publishing hardware and software in conjunction with a standard photoreduction camera, is much faster and less expensive thanhe conventional methods. The short turnaround time and low cost should give researchers a much greater degree of flexibility in the field of binary optics and enable wider application of diffractive-optics technology. Techniques for generating optical elements by using standard software packages that produce PostScript output are described. An evaluation of the dimensional fidelity of the mask reproduction from design to its realization in photoresist is presented.

  13. Binary phase digital reflection holograms - Fabrication and potential applications

    NASA Technical Reports Server (NTRS)

    Gallagher, N. C., Jr.; Angus, J. C.; Coffield, F. E.; Edwards, R. V.; Mann, J. A., Jr.

    1977-01-01

    A novel technique for the fabrication of binary-phase computer-generated reflection holograms is described. By use of integrated circuit technology, the holographic pattern is etched into a silicon wafer and then aluminum coated to make a reflection hologram. Because these holograms reflect virtually all the incident radiation, they may find application in machining with high-power lasers. A number of possible modifications of the hologram fabrication procedure are discussed.

  14. Processing Of Binary Images

    NASA Astrophysics Data System (ADS)

    Hou, H. S.

    1985-07-01

    An overview of the recent progress in the area of digital processing of binary images in the context of document processing is presented here. The topics covered include input scan, adaptive thresholding, halftoning, scaling and resolution conversion, data compression, character recognition, electronic mail, digital typography, and output scan. Emphasis has been placed on illustrating the basic principles rather than descriptions of a particular system. Recent technology advances and research in this field are also mentioned.

  15. Three-dimensional modeling of radiative disks in binaries

    NASA Astrophysics Data System (ADS)

    Picogna, G.; Marzari, F.

    2013-08-01

    Context. Circumstellar disks in binaries are perturbed by the companion gravity causing significant alterations of the disk morphology. Spiral waves due to the companion tidal force also develop in the vertical direction and affect the disk temperature profile. These effects may significantly influence the process of planet formation. Aims: We perform 3D numerical simulations of disks in binaries with different initial dynamical configurations and physical parameters. Our goal is to investigate their evolution and their propensity to grow planets. Methods: We use an improved version of the SPH code VINE modified to better account for momentum and energy conservation via variable smoothing and softening length. The energy equation includes a flux-limited radiative transfer algorithm. The disk cooling is obtained with the use of "boundary particles" populating the outer surfaces of the disk and radiating to infinity. We model a system made of star/disk + star/disk where the secondary star (and relative disk) is less massive than the primary. Results: The numerical simulations performed for different values of binary separation and disk density show that trailing spiral shock waves develop when the stars approach their pericenter. Strong hydraulic jumps occur at the shock front, in particular for small separation binaries, creating breaking waves, and a consistent mass stream between the two disks. Both shock waves and mass transfer cause significant heating of the disk. At apocenter these perturbations are reduced and the disks are cooled down and less eccentric. Conclusions: The disk morphology is substantially affected by the companion perturbations, in particular in the vertical direction. The hydraulic jumps may slow down or even halt the dust coagulation process. The disk is significantly heated up by spiral waves and mass transfer, and the high gas temperature may prevent the ice condensation by moving the "snow line" outward. The disordered motion triggered by the spiral waves may, on the other hand, favor direct formation of large planetesimals from pebbles. The strength of the hydraulic jumps, disk heating, and mass exchange depends on the binary separation, and for larger semi-major axes, the tidal spiral pattern is substantially reduced. The environment then appears less hostile to planet formation.

  16. Sea Ice Detection Based on an Improved Similarity Measurement Method Using Hyperspectral Data.

    PubMed

    Han, Yanling; Li, Jue; Zhang, Yun; Hong, Zhonghua; Wang, Jing

    2017-05-15

    Hyperspectral remote sensing technology can acquire nearly continuous spectrum information and rich sea ice image information, thus providing an important means of sea ice detection. However, the correlation and redundancy among hyperspectral bands reduce the accuracy of traditional sea ice detection methods. Based on the spectral characteristics of sea ice, this study presents an improved similarity measurement method based on linear prediction (ISMLP) to detect sea ice. First, the first original band with a large amount of information is determined based on mutual information theory. Subsequently, a second original band with the least similarity is chosen by the spectral correlation measuring method. Finally, subsequent bands are selected through the linear prediction method, and a support vector machine classifier model is applied to classify sea ice. In experiments performed on images of Baffin Bay and Bohai Bay, comparative analyses were conducted to compare the proposed method and traditional sea ice detection methods. Our proposed ISMLP method achieved the highest classification accuracies (91.18% and 94.22%) in both experiments. From these results the ISMLP method exhibits better performance overall than other methods and can be effectively applied to hyperspectral sea ice detection.

  17. Sea Ice Detection Based on an Improved Similarity Measurement Method Using Hyperspectral Data

    PubMed Central

    Han, Yanling; Li, Jue; Zhang, Yun; Hong, Zhonghua; Wang, Jing

    2017-01-01

    Hyperspectral remote sensing technology can acquire nearly continuous spectrum information and rich sea ice image information, thus providing an important means of sea ice detection. However, the correlation and redundancy among hyperspectral bands reduce the accuracy of traditional sea ice detection methods. Based on the spectral characteristics of sea ice, this study presents an improved similarity measurement method based on linear prediction (ISMLP) to detect sea ice. First, the first original band with a large amount of information is determined based on mutual information theory. Subsequently, a second original band with the least similarity is chosen by the spectral correlation measuring method. Finally, subsequent bands are selected through the linear prediction method, and a support vector machine classifier model is applied to classify sea ice. In experiments performed on images of Baffin Bay and Bohai Bay, comparative analyses were conducted to compare the proposed method and traditional sea ice detection methods. Our proposed ISMLP method achieved the highest classification accuracies (91.18% and 94.22%) in both experiments. From these results the ISMLP method exhibits better performance overall than other methods and can be effectively applied to hyperspectral sea ice detection. PMID:28505135

  18. Exploration Strategy for the Ice Dwarf Planets 2013-2022

    NASA Astrophysics Data System (ADS)

    Grundy, W. M.; McKinnon, W. B.

    2009-12-01

    The past decade saw the discovery of many ice dwarf planets, a new category distinct from terrestrial and giant planets. Future ice dwarf missions depend on increasing our knowledge of these objects as a class. Competing needs to broaden the sample and to explore individual objects in greater detail must be balanced so that neither is excluded. A balance also needs to be struck between development of enabling technologies and making use of those available today. We propose this strategy for dwarf planet investigation during 2013-2022: 1. NASA should encourage and support ground- and space-based observations along with associated theoretical and laboratory work to investigate the ice dwarfs as a population, to motivate missions to individual objects and to provide context for mission results. Access to a range of telescope capabilities is essential to complete the inventory of ice dwarfs, determine their gross characteristics, and monitor their seasonal behavior. NASA's best course of action is to ensure adequate community access to facilities such as HST, Keck, VLT, Herschel, etc., to work for access to and ensure moving target tracking capabilities in future projects such as JWST, ALMA, SIM, and future large aperture ground-based telescopes still on the drawing board, and to support improvements to the IRTF. Funding support is needed for observational, laboratory, and theoretical studies to ensure availability of researchers to undertake needed work and to inform mission development activities, independent of whether or not there is a new mission start for ice dwarfs. Additional increments are also needed for thorough analysis of New Horizons and Dawn data. 2. A New Frontiers class mission using existing, proven technology to an unexplored ice dwarf should be a candidate for NASA AOs during the next decade. The Haumea system could be a particularly compelling target, as it could significantly advance understanding of the diversity and the role of collisions in ice dwarf formation and evolution. 3. New technologies need to be developed to enable more ambitious spacecraft exploration. NASA should flight-qualify ASRG power systems, secure an adequate supply of 238Pu, and develop the long-lived, low-mass, low-power instruments and flight systems necessary to enable new missions to the edge of the solar system. These developments are given a higher priority during the next decade than consideration of Flagship or Discovery class missions.

  19. Thermo-chemical Ice Penetrator for Icy Moons

    NASA Astrophysics Data System (ADS)

    Arenberg, J. W.; Lee, G.; Harpole, G.; Zamel, J.; Sen, B.; Ross, F.; Retherford, K. D.

    2016-12-01

    The ability to place sensors or to take samples below the ice surface enables a wide variety of potential scientific investigations. Penetrating an ice cap can be accomplished via a mechanical drill, laser drill, kinetic impactor, or heated penetrator. This poster reports on the development of technology for the latter most option, namely a self-heated probe driven by an exothermic chemical reaction: a Thermo-chemical ice penetrator (TChIP). Our penetrator design employs a eutectic mix of alkali metals that produce an exothermic reaction upon contact with an icy surface. This reaction increases once the ice starts melting, so no external power is required. This technology is inspired by a classified Cold-War era program developed at Northrop Grumman for the US Navy. Terrestrial demonstration of this technology took place in the Arctic; however, this device cannot be considered high TRL for application at the icy moons of the solar system due to the environmental differences between Earth's Arctic and the icy moons. These differences demand a TChIP design specific to these cold, low mass, airless worlds. It is expected that this model of TChIP performance will be complex, incorporating all of the forces on the penetrator, gravity, the thermo-chemistry at the interface between penetrator and ice, and multi-phase heat and mass transport, and hydrodynamics. Our initial efforts are aimed at the development of a validated set of tools and simulations to predict the performance of the penetrator for both the environment found on these icy moons and for a terrestrial environment. The purpose of the inclusion of the terrestrial environment is to aid in model validation. Once developed and validated, our models will allow us to design penetrators for a specific scientific application on a specific body. This poster discusses the range of scientific investigations that are enabled by TChIP. We also introduce the development plan to advance TChIP to the point where it can be considered for infusion into a program.

  20. High Resolution Imaging of Very Low Mass Spectral Binaries: Three Resolved Systems and Detection of Orbital Motion in an L/T Transition Binary

    NASA Astrophysics Data System (ADS)

    Bardalez Gagliuffi, Daniella C.; Gelino, Christopher R.; Burgasser, Adam J.

    2015-11-01

    We present high resolution Laser Guide Star Adaptive Optics imaging of 43 late-M, L and T dwarf systems with Keck/NIRC2. These include 17 spectral binary candidates, systems whose spectra suggest the presence of a T dwarf secondary. We resolve three systems: 2MASS J1341-3052, SDSS J1511+0607 and SDSS J2052-1609 the first two are resolved for the first time. All three have projected separations <8 AU and estimated periods of 14-80 years. We also report a preliminary orbit determination for SDSS J2052-1609 based on six epochs of resolved astrometry between 2005 and 2010. Among the 14 unresolved spectral binaries, 5 systems were confirmed binaries but remained unresolved, implying a minimum binary fraction of {47}-11+12% for this sample. Our inability to resolve most of the spectral binaries, including the confirmed binaries, supports the hypothesis that a large fraction of very low mass systems have relatively small separations and are missed with direct imaging. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  1. Rapid Access Ice Drill: A New Tool for Exploration of the Deep Antarctic Ice Sheets and Subglacial Geology

    NASA Astrophysics Data System (ADS)

    Goodge, J. W.; Severinghaus, J. P.

    2014-12-01

    The Rapid Access Ice Drill (RAID) will penetrate the Antarctic ice sheets in order to core through deep ice, the glacial bed, and into bedrock below. This new technology will provide a critical first look at the interface between major ice caps and their subglacial geology. Currently in construction, RAID is a mobile drilling system capable of making several long boreholes in a single field season in Antarctica. RAID is interdisciplinary and will allow access to polar paleoclimate records in ice >1 Ma, direct observation at the base of the ice sheets, and recovery of rock cores from the ice-covered East Antarctic craton. RAID uses a diamond rock-coring system as in mineral exploration. Threaded drill-pipe with hardened metal bits will cut through ice using reverse circulation of Estisol for pressure-compensation, maintenance of temperature, and removal of ice cuttings. Near the bottom of the ice sheet, a wireline bottom-hole assembly will enable diamond coring of ice, the glacial bed, and bedrock below. Once complete, boreholes will be kept open with fluid, capped, and made available for future down-hole measurement of thermal gradient, heat flow, ice chronology, and ice deformation. RAID will also sample for extremophile microorganisms. RAID is designed to penetrate up to 3,300 meters of ice and take sample cores in less than 200 hours. This rapid performance will allow completion of a borehole in about 10 days before moving to the next drilling site. RAID is unique because it can provide fast borehole access through thick ice; take short ice cores for paleoclimate study; sample the glacial bed to determine ice-flow conditions; take cores of subglacial bedrock for age dating and crustal history; and create boreholes for use as an observatory in the ice sheets. Together, the rapid drilling capability and mobility of the drilling system, along with ice-penetrating imaging methods, will provide a unique 3D picture of the interior Antarctic ice sheets.

  2. Examination of Icing Induced Loss of Control and Its Mitigations

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Addy, Harold E., Jr.; Colantonio, Renato O.

    2010-01-01

    Factors external to the aircraft are often a significant causal factor in loss of control (LOC) accidents. In today s aviation world, very few accidents stem from a single cause and typically have a number of causal factors that culminate in a LOC accident. Very often the "trigger" that initiates an accident sequence is an external environment factor. In a recent NASA statistical analysis of LOC accidents, aircraft icing was shown to be the most common external environmental LOC causal factor for scheduled operations. When investigating LOC accident or incidents aircraft icing causal factors can be categorized into groups of 1) in-flight encounter with super-cooled liquid water clouds, 2) take-off with ice contamination, or 3) in-flight encounter with high concentrations of ice crystals. As with other flight hazards, icing induced LOC accidents can be prevented through avoidance, detection, and recovery mitigations. For icing hazards, avoidance can take the form of avoiding flight into icing conditions or avoiding the hazard of icing by making the aircraft tolerant to icing conditions. Icing detection mitigations can take the form of detecting icing conditions or detecting early performance degradation caused by icing. Recovery from icing induced LOC requires flight crew or automated systems capable of accounting for reduced aircraft performance and degraded control authority during the recovery maneuvers. In this report we review the icing induced LOC accident mitigations defined in a recent LOC study and for each mitigation describe a research topic required to enable or strengthen the mitigation. Many of these research topics are already included in ongoing or planned NASA icing research activities or are being addressed by members of the icing research community. These research activities are described and the status of the ongoing or planned research to address the technology needs is discussed

  3. Microfluidic Cold-Finger Device for the Investigation of Ice-Binding Proteins.

    PubMed

    Haleva, Lotem; Celik, Yeliz; Bar-Dolev, Maya; Pertaya-Braun, Natalya; Kaner, Avigail; Davies, Peter L; Braslavsky, Ido

    2016-09-20

    Ice-binding proteins (IBPs) bind to ice crystals and control their structure, enlargement, and melting, thereby helping their host organisms to avoid injuries associated with ice growth. IBPs are useful in applications where ice growth control is necessary, such as cryopreservation, food storage, and anti-icing. The study of an IBP's mechanism of action is limited by the technological difficulties of in situ observations of molecules at the dynamic interface between ice and water. We describe herein a new, to our knowledge, apparatus designed to generate a controlled temperature gradient in a microfluidic chip, called a microfluidic cold finger (MCF). This device allows growth of a stable ice crystal that can be easily manipulated with or without IBPs in solution. Using the MCF, we show that the fluorescence signal of IBPs conjugated to green fluorescent protein is reduced upon freezing and recovers at melting. This finding strengthens the evidence for irreversible binding of IBPs to their ligand, ice. We also used the MCF to demonstrate the basal-plane affinity of several IBPs, including a recently described IBP from Rhagium inquisitor. Use of the MCF device, along with a temperature-controlled setup, provides a relatively simple and robust technique that can be widely used for further analysis of materials at the ice/water interface. Copyright © 2016. Published by Elsevier Inc.

  4. WFIRST: Searching for Microlens Planets in Very Wide Orbits and the MOA Microlensing Data Release

    NASA Astrophysics Data System (ADS)

    Hirao, Yuki; Bennett, David; Sumi, Takahiro; MOA Collaboration

    2018-01-01

    Gravitational microlensing is an unique technique to detect exoplanets down to low mass planets beyond the snow line because it is sensitive to planets orbiting near the Einstein ring radius of a few AU away from its host star, which is complementary to the other methods. Detecting such planets are important for understanding the formation of our solar system because gas giants and ice giants planets are believed to be formed beyond the snow line, where the protoplanetary disk is cold enough for ice to condense, in the core accretion theory. Microlensing Observations in Astrophysics (MOA) group has conducted high cadence survey observations towards the Galactic bulge to detect exoplanets since 2006 at Mt.John University Observatory in NZ using MOA-II 1.8 meter telescope equipped with a very wide field-of-view MOA-cam3 CCD camera. MOA has alerted about 600 microlensing events every year and detected dozens of exoplanets in wide orbits. Future space telescope, WFIRST will conduct survey observations towards the Galactic bulge and is expected to detect thousands of planets in wide orbit via microlensing to complete the census of exoplanets begun by Kepler Space telescope which found planets in close orbits via transit method. To contribute to the WFIRST and make the microlensing community larger, MOA will open its data from 2006 to 2014 to the public. Through the off-line analysis, we have found some short binary events which were not detected in the real time analysis. Short-timescale microlensing events are important because they are candidates of free-floating or wide-separation planets. The poster will present the data release and some results of the analysis of short-timescale binary events.

  5. NASA Research Being Shared Through Live, Interactive Video Tours

    NASA Technical Reports Server (NTRS)

    Petersen, Ruth A.; Zona, Kathleen A.

    2001-01-01

    On June 2, 2000, the NASA Glenn Research Center Learning Technologies Project (LTP) coordinated the first live remote videoconferencing broadcast from a Glenn facility. The historic event from Glenn's Icing Research Tunnel featured wind tunnel technicians and researchers performing an icing experiment, obtaining results, and discussing the relevance to everyday flight operations and safety. After a brief overview of its history, students were able to "walk through" the tunnel, stand in the control room, and observe a live icing experiment that demonstrated how ice would grow on an airplane wing in flight through an icing cloud. The tour was interactive, with a spirited exchange of questions and explanations between the students and presenters. The virtual tour of the oldest and largest refrigerated icing research tunnel in the world was the second of a series of videoconferencing connections with the AP Physics students at Bay Village High School, Bay Village, Ohio. The first connection, called Aircraft Safety and Icing Research, introduced the Tailplane Icing Program. In an effort to improve aircraft safety by reducing the number of in-flight icing events, Glenn's Icing Branch uses its icing research aircraft to conduct flight tests. The presenter engaged the students in discussions of basic aircraft flight mechanics and the function of the horizontal tailplane, as well as the effect of ice on airfoil (wing or tail) surfaces. A brief video of actual flight footage provided a view of the pilot's actions and reactions and of the horizon during tailplane icing conditions.

  6. Probing Individual Ice Nucleation Events with Environmental Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Bingbing; China, Swarup; Knopf, Daniel; Gilles, Mary; Laskin, Alexander

    2016-04-01

    Heterogeneous ice nucleation is one of the processes of critical relevance to a range of topics in the fundamental and the applied science and technologies. Heterogeneous ice nucleation initiated by particles proceeds where microscopic properties of particle surfaces essentially control nucleation mechanisms. Ice nucleation in the atmosphere on particles governs the formation of ice and mixed phase clouds, which in turn influence the Earth's radiative budget and climate. Heterogeneous ice nucleation is still insufficiently understood and poses significant challenges in predictive understanding of climate change. We present a novel microscopy platform allowing observation of individual ice nucleation events at temperature range of 193-273 K and relative humidity relevant for ice formation in the atmospheric clouds. The approach utilizes a home built novel ice nucleation cell interfaced with Environmental Scanning Electron Microscope (IN-ESEM system). The IN-ESEM system is applied for direct observation of individual ice formation events, determining ice nucleation mechanisms, freezing temperatures, and relative humidity onsets. Reported microanalysis of the ice nucleating particles (INP) include elemental composition detected by the energy dispersed analysis of X-rays (EDX), and advanced speciation of the organic content in particles using scanning transmission x-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). The performance of the IN-ESEM system is validated through a set of experiments with kaolinite particles with known ice nucleation propensity. We demonstrate an application of the IN-ESEM system to identify and characterize individual INP within a complex mixture of ambient particles.

  7. Innovative Ingredients and Emerging Technologies for Controlling Ice Recrystallization, Texture, and Structure Stability in Frozen Dairy Desserts: A Review.

    PubMed

    Soukoulis, Christos; Fisk, Ian

    2016-11-17

    Over the past decade, ice cream manufacturers have developed a strong understanding of the functionality of key ingredients and processing, developing effective explanations for the link between structure forming agents, stability mechanisms, and perceived quality. Increasing demand for products perceived as healthier/more natural with minimal processing has identified a number of new tools to improve quality and storage stability of frozen dairy desserts. Ingredients such as dietary fiber, polysaccharides, prebiotics, alternate sweeteners, fat sources rich in unsaturated fatty acids and ice strucsturing proteins (ISP) have been successfully applied as cryoprotective, texturizing, and structuring agents. Emerging minimal processing technologies including hydrostatic pressure processing, ultrasonic or high pressure assisted freezing, low temperature extrusion and enzymatically induced biopolymers crosslinking have been evaluated for their ability to improve colloidal stability, texture and sensory quality. It is therefore timely for a comprehensive review.

  8. Laser Transmitter Design and Performance for the Slope Imaging Multi-Polarization Photon-Counting Lidar (SIMPL) Instrument

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Harding, David J.; Dabney, Philip W.

    2016-01-01

    The Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) instrument is a polarimetric, two-color, multibeam push broom laser altimeter developed through the NASA Earth Science Technology Office Instrument Incubator Program and has been flown successfully on multiple airborne platforms since 2008. In this talk we will discuss the laser transmitter performance and present recent science data collected over the Greenland ice sheet and sea ice in support of the NASA Ice Cloud and land Elevation Satellite 2 (ICESat-2) mission to be launched in 2017.

  9. Neutrinos from colliding wind binaries: future prospects for PINGU and ORCA

    NASA Astrophysics Data System (ADS)

    Becker Tjus, J.

    2014-05-01

    Massive stars play an important role in explaining the cosmic ray spectrum below the knee, possibly even up to the ankle, i.e. up to energies of 1015 or 1018.5 eV, respectively. In particular, Supernova Remnants are discussed as one of the main candidates to explain the cosmic ray spectrum. Even before their violent deaths, during the stars' regular life times, cosmic rays can be accelerated in wind environments. High-energy gamma-ray measurements indicate hadronic acceleration binary systems, leading to both periodic gamma-ray emission from binaries like LSI + 60 303 and continuous emission from colliding wind environments like η-Carinae. The detection of neutrinos and photons from hadronic interactions are one of the most promising methods to identify particle acceleration sites. In this paper, future prospects to detect neutrinos from colliding wind environments in massive stars are investigated. In particular, the seven most promising candidates for emission from colliding wind binaries are investigated to provide an estimate of the signal strength. The expected signal of a single source is about a factor of 5-10 below the current IceCube sensitivity and it is therefore not accessible at the moment. What is discussed in addition is future the possibility to measure low-energy neutrino sources with detectors like PINGU and ORCA: the minimum of the atmospheric neutrino flux at around 25 GeV from neutrino oscillations provides an opportunity to reduce the background and increase the significance to searches for GeV-TeV neutrino sources. This paper presents the first idea, detailed studies including the detector's effective areas will be necessary in the future to test the feasibility of such an approach.

  10. Influence of ice thickness and surface properties on light transmission through Arctic sea ice.

    PubMed

    Katlein, Christian; Arndt, Stefanie; Nicolaus, Marcel; Perovich, Donald K; Jakuba, Michael V; Suman, Stefano; Elliott, Stephen; Whitcomb, Louis L; McFarland, Christopher J; Gerdes, Rüdiger; Boetius, Antje; German, Christopher R

    2015-09-01

    The observed changes in physical properties of sea ice such as decreased thickness and increased melt pond cover severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of sea-ice-melt and under-ice primary production. Recent developments in underwater technology provide new opportunities to study light transmission below the largely inaccessible underside of sea ice. We measured spectral under-ice radiance and irradiance using the new Nereid Under-Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely piloted and autonomous surveys underneath land-fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under-ice optical measurements with three dimensional under-ice topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying ice-thickness and surface properties on the spatial variability of light transmittance during summer. Our results show that surface properties such as melt ponds dominate the spatial distribution of the under-ice light field on small scales (<1000 m 2 ), while sea ice-thickness is the most important predictor for light transmission on larger scales. In addition, we propose the use of an algorithm to obtain histograms of light transmission from distributions of sea ice thickness and surface albedo.

  11. High Ice Water Content: DC-8 Aeronautics Campaign

    NASA Image and Video Library

    2015-09-10

    During the month of August, NASA’s DC-8 completed flights in Florida aimed at collecting data on high-altitude crystals for the High Ice Water Content (HIWC) mission. High ice water content can be found within large convective storms and can result in aircraft engines losing power or not functioning properly. Researchers will use the data to develop technology that can be used onboard commercial aircraft to avoid high ice water content conditions and provide a safer flight for passengers. This video gives an inside look at the HIWC mission, including research done in and around Hurricane Danny, as well as a look at the instruments being used onboard the research aircraft. Researchers and pilots onboard worked with satellite information from the ground to find regions of high ice water content within the convective systems.

  12. The clinical potential of Enhanced-ice-COLD-PCR.

    PubMed

    Tost, Jörg

    2016-01-01

    Enhanced-ice-COLD-PCR (E-ice-COLD-PCR) is a novel assay format that allows for the efficient enrichment and sensitive detection of all mutations in a region of interest using a chemically modified blocking oligonucleotide, which impedes the amplification of wild-type sequences. The assay is compatible with DNA extracted from tissue and cell-free circulating DNA. The main features of E-ice-COLD-PCR are the simplicity of the setup and the optimization of the assay, the use of standard laboratory equipment and the very short time to results (~4 h including DNA extraction, enrichment and sequence-based identification of mutations). E-ice-COLD-PCR is therefore a highly promising technology for a number of basic research as well as clinical applications including detection of clinically relevant mutated subclones and monitoring of treatment response or disease recurrence.

  13. In situ ESEM imaging of the vapor-pressure-dependent sublimation-induced morphology of ice

    NASA Astrophysics Data System (ADS)

    Nair, Malavika; Husmann, Anke; Cameron, Ruth E.; Best, Serena M.

    2018-04-01

    Sublimation is a fundamental phase transition that has a profound impact on both natural phenomena and advanced manufacturing technologies. Although great strides have been made in the study of ice growth from melt and vapor, little consideration has been given to the effect of sublimation on the morphological features that develop in the ice microstructure. In this experimental study, we demonstrate the effect of vapor pressure on the mesoscopic faceting observed and show that a vapor-pressure-specific wavelength characterizes the periodic features that arise during sublimation. The ability to control the length scale of these features not only provides us with new insights into the mesoscopic roughness of ice crystals, but also presents the potential to exploit this effect in a plethora of applications from comet dating to ice-templated tissue engineering scaffolds.

  14. Diffractive optics technology and the NASA Geostationary Earth Observatory (GEO)

    NASA Technical Reports Server (NTRS)

    Morris, G. Michael; Michaels, Robert L.; Faklis, Dean

    1992-01-01

    Diffractive (or binary) optics offers unique capabilities for the development of large-aperture, high-performance, light-weight optical systems. The Geostationary Earth Observatory (GEO) will consist of a variety of instruments to monitor the environmental conditions of the earth and its atmosphere. The aim of this investigation is to analyze the design of the GEO instrument that is being proposed and to identify the areas in which diffractive (or binary) optics technology can make a significant impact in GEO sensor design. Several potential applications where diffractive optics may indeed serve as a key technology for improving the performance and reducing the weight and cost of the GEO sensors have been identified. Applications include the use of diffractive/refractive hybrid lenses for aft-optic imagers, diffractive telescopes for narrowband imaging, subwavelength structured surfaces for anti-reflection and polarization control, and aberration compensation for reflective imaging systems and grating spectrometers.

  15. Dry etching technologies for the advanced binary film

    NASA Astrophysics Data System (ADS)

    Iino, Yoshinori; Karyu, Makoto; Ita, Hirotsugu; Yoshimori, Tomoaki; Azumano, Hidehito; Muto, Makoto; Nonaka, Mikio

    2011-11-01

    ABF (Advanced Binary Film) developed by Hoya as a photomask for 32 (nm) and larger specifications provides excellent resistance to both mask cleaning and 193 (nm) excimer laser and thereby helps extend the lifetime of the mask itself compared to conventional photomasks and consequently reduces the semiconductor manufacturing cost [1,2,3]. Because ABF uses Ta-based films, which are different from Cr film or MoSi films commonly used for photomask, a new process is required for its etching technology. A patterning technology for ABF was established to perform the dry etching process for Ta-based films by using the knowledge gained from absorption layer etching for EUV mask that required the same Ta-film etching process [4]. Using the mask etching system ARES, which is manufactured by Shibaura Mechatronics, and its optimized etching process, a favorable CD (Critical Dimension) uniformity, a CD linearity and other etching characteristics were obtained in ABF patterning. Those results are reported here.

  16. Splicing the Divide: A Review of Research on the Evolving Digital Divide among K-12 Students

    ERIC Educational Resources Information Center

    Dolan, Jennifer E.

    2016-01-01

    The digital divide has narrowed with regard to one definition of access to technology--the binary view of the "haves" and "have-nots." However, use of technology at home and in school is not equitable for all students. According to recent literature, a broader and more nuanced definition of the technological divide is necessary…

  17. Converging Instructional Technology and Critical Intercultural Pedagogy in Teacher Education

    ERIC Educational Resources Information Center

    Pittman, Joyce

    2007-01-01

    Purpose: This paper aims to postulate an emerging unified cultural-convergence framework to converge the delivery of instructional technology and intercultural education (ICE) that extends beyond web-learning technologies to inculcate inclusive pedagogy in teacher education. Design/methodology/approach: The paper explores the literature and a…

  18. On Line Service Composition in the Integrated Clinical Environment for eHealth and Medical Systems

    PubMed Central

    García-Valls, Marisol; Touahria, Imad Eddine

    2017-01-01

    Medical and eHealth systems are progressively realized in the context of standardized architectures that support safety and ease the integration of the heterogeneous (and often proprietary) medical devices and sensors. The Integrated Clinical Environment (ICE) architecture appeared recently with the goal of becoming a common framework for defining the structure of the medical applications as concerns the safe integration of medical devices and sensors. ICE is simply a high level architecture that defines the functional blocks that should be part of a medical system to support interoperability. As a result, the underlying communication backbone is broadly undefined as concerns the enabling software technology (including the middleware) and associated algorithms that meet the ICE requirements of the flexible integration of medical devices and services. Supporting the on line composition of services in a medical system is also not part of ICE; however, supporting this behavior would enable flexible orchestration of functions (e.g., addition and/or removal of services and medical equipment) on the fly. iLandis one of the few software technologies that supports on line service composition and reconfiguration, ensuring time-bounded transitions across different service orchestrations; it supports the design, deployment and on line reconfiguration of applications, which this paper applies to service-based eHealth domains. This paper designs the integration between ICE architecture and iLand middleware to enhance the capabilities of ICE with on line service composition and the time-bounded reconfiguration of medical systems based on distributed services. A prototype implementation of a service-based eHealth system for the remote monitoring of patients is described; it validates the enhanced capacity of ICE to support dynamic reconfiguration of the application services. Results show that the temporal cost of the on line reconfiguration of the eHealth application is bounded, achieving a low overhead resulting from the addition of ICE compliance. PMID:28594371

  19. On Line Service Composition in the Integrated Clinical Environment for eHealth and Medical Systems.

    PubMed

    García-Valls, Marisol; Touahria, Imad Eddine

    2017-06-08

    Medical and eHealth systems are progressively realized in the context of standardized architectures that support safety and ease the integration of the heterogeneous (and often proprietary) medical devices and sensors. The Integrated Clinical Environment (ICE) architecture appeared recently with the goal of becoming a common framework for defining the structure of the medical applications as concerns the safe integration of medical devices and sensors. ICE is simply a high level architecture that defines the functional blocks that should be part of a medical system to support interoperability. As a result, the underlying communication backbone is broadly undefined as concerns the enabling software technology (including the middleware) and associated algorithms that meet the ICE requirements of the flexible integration of medical devices and services. Supporting the on line composition of services in a medical system is also not part of ICE; however, supporting this behavior would enable flexible orchestration of functions (e.g., addition and/or removal of services and medical equipment) on the fly. iLandis one of the few software technologies that supports on line service composition and reconfiguration, ensuring time-bounded transitions across different service orchestrations; it supports the design, deployment and on line reconfiguration of applications, which this paper applies to service-based eHealth domains. This paper designs the integration between ICE architecture and iLand middleware to enhance the capabilities of ICE with on line service composition and the time-bounded reconfiguration of medical systems based on distributed services. A prototype implementation of a service-based eHealth system for the remote monitoring of patients is described; it validates the enhanced capacity of ICE to support dynamic reconfiguration of the application services. Results show that the temporal cost of the on line reconfiguration of the eHealth application is bounded, achieving a low overhead resulting from the addition of ICE compliance.

  20. Towards development of an operational snow on sea ice product

    NASA Astrophysics Data System (ADS)

    Stroeve, J.; Liston, G. E.; Barrett, A. P.; Tschudi, M. A.; Stewart, S.

    2017-12-01

    Sea ice has been visibly changing over the past couple of decades; most notably the annual minimum extent which has shown a distinct downward, and recently accelerating, trend. September mean sea ice extent was over 7×106 km2 in the 1980's, but has averaged less than 5×106 km2 in the last decade. Should this loss continue, there will be wide-ranging impacts on marine ecosystems, coastal communities, prospects for resource extraction and marine activity, and weather conditions in the Arctic and beyond. While changes in the spatial extent of sea ice have been routinely monitored since the 1970s, less is known about how the thickness of the ice cover has changed. While estimates of ice thickness across the Arctic Ocean have become available over the past 20 years based on data from ERS-1/2, Envisat, ICESat, CryoSat-2 satellites and Operation IceBridge aircraft campaigns, the variety of these different measurement approaches, sensor technologies and spatial coverage present formidable challenges. Key among these is that measurement techniques do not measure ice thickness directly - retrievals also require snow depth and density. Towards that end, a sophisticated snow accumulation model is tested in a Lagrangian framework to map daily snow depths across the Arctic sea ice cover using atmospheric reanalysis data as input. Accuracy of the snow accumulation is assessed through comparison with Operation IceBridge data and ice mass balance buoys (IMBs). Impacts on ice thickness retrievals are further discussed.

  1. Ammonia clathrate hydrates as new solid phases for Titan, Enceladus, and other planetary systems.

    PubMed

    Shin, Kyuchul; Kumar, Rajnish; Udachin, Konstantin A; Alavi, Saman; Ripmeester, John A

    2012-09-11

    There is interest in the role of ammonia on Saturn's moons Titan and Enceladus as the presence of water, methane, and ammonia under temperature and pressure conditions of the surface and interior make these moons rich environments for the study of phases formed by these materials. Ammonia is known to form solid hemi-, mono-, and dihydrate crystal phases under conditions consistent with the surface of Titan and Enceladus, but has also been assigned a role as water-ice antifreeze and methane hydrate inhibitor which is thought to contribute to the outgassing of methane clathrate hydrates into these moons' atmospheres. Here we show, through direct synthesis from solution and vapor deposition experiments under conditions consistent with extraterrestrial planetary atmospheres, that ammonia forms clathrate hydrates and participates synergistically in clathrate hydrate formation in the presence of methane gas at low temperatures. The binary structure II tetrahydrofuran + ammonia, structure I ammonia, and binary structure I ammonia + methane clathrate hydrate phases synthesized have been characterized by X-ray diffraction, molecular dynamics simulation, and Raman spectroscopy methods.

  2. Ammonia clathrate hydrates as new solid phases for Titan, Enceladus, and other planetary systems

    PubMed Central

    Shin, Kyuchul; Kumar, Rajnish; Udachin, Konstantin A.; Alavi, Saman; Ripmeester, John A.

    2012-01-01

    There is interest in the role of ammonia on Saturn’s moons Titan and Enceladus as the presence of water, methane, and ammonia under temperature and pressure conditions of the surface and interior make these moons rich environments for the study of phases formed by these materials. Ammonia is known to form solid hemi-, mono-, and dihydrate crystal phases under conditions consistent with the surface of Titan and Enceladus, but has also been assigned a role as water-ice antifreeze and methane hydrate inhibitor which is thought to contribute to the outgassing of methane clathrate hydrates into these moons’ atmospheres. Here we show, through direct synthesis from solution and vapor deposition experiments under conditions consistent with extraterrestrial planetary atmospheres, that ammonia forms clathrate hydrates and participates synergistically in clathrate hydrate formation in the presence of methane gas at low temperatures. The binary structure II tetrahydrofuran + ammonia, structure I ammonia, and binary structure I ammonia + methane clathrate hydrate phases synthesized have been characterized by X-ray diffraction, molecular dynamics simulation, and Raman spectroscopy methods. PMID:22908239

  3. The SPectrometer for Ice Nuclei (SPIN): An instrument to investigate ice nucleation

    DOE PAGES

    Garimella, Sarvesh; Kristensen, Thomas Bjerring; Ignatius, Karolina; ...

    2016-07-06

    The SPectrometer for Ice Nuclei (SPIN) is a commercially available ice nucleating particle (INP) counter manufactured by Droplet Measurement Technologies in Boulder, CO. The SPIN is a continuous flow diffusion chamber with parallel plate geometry based on the Zurich Ice Nucleation Chamber and the Portable Ice Nucleation Chamber. This study presents a standard description for using the SPIN instrument and also highlights methods to analyze measurements in more advanced ways. It characterizes and describes the behavior of the SPIN chamber, reports data from laboratory measurements, and quantifies uncertainties associated with the measurements. Experiments with ammonium sulfate are used to investigatemore » homogeneous freezing of deliquesced haze droplets and droplet breakthrough. Experiments with kaolinite, NX illite, and silver iodide are used to investigate heterogeneous ice nucleation. SPIN nucleation results are compared to those from the literature. A machine learning approach for analyzing depolarization data from the SPIN optical particle counter is also presented (as an advanced use). Altogether, we report that the SPIN is able to reproduce previous INP counter measurements.« less

  4. Predehydration and Ice Seeding in the Presence of Trehalose Enable Cell Cryopreservation

    PubMed Central

    2017-01-01

    Conventional approaches for cell cryopreservation require the use of toxic membrane-penetrating cryoprotective agents (pCPA), which limits the clinical application of cryopreserved cells. Here, we show intentionally induced ice formation at a high subzero temperature (> −10 °C) during cryopreservation, which is often referred to as ice seeding, could result in significant cell injury in the absence of any pCPA. This issue can be mitigated by predehydrating cells using extracellular trehalose to their minimal volume with minimized osmotically active water before ice seeding. We further observe that ice seeding can minimize the interfacial free energy that drives the devastating ice recrystallization-induced cell injury during warming cryopreserved samples. Indeed, by combining predehydration using extracellular trehalose with ice seeding at high subzero temperatures, high cell viability or recovery is achieved for fibroblasts, adult stem cells, and red blood cells after cryopreservation without using any pCPA. The pCPA-free technology developed in this study may greatly facilitate the long-term storage and ready availability of living cells, tissues, and organs that are of high demand by modern cell-based medicine. PMID:28824959

  5. UAV Applications for Thermodynamic Profiling:Emphasis on Ice Fog Visibility

    NASA Astrophysics Data System (ADS)

    Gultepe, Ismail; Heymsfield, Andrew; Fernando, Joseph; hoch, sebastian; pardyjack, Eric; Boudala, faisal; Ware, Randolph

    2017-04-01

    Ice fog often occurs over the Arctic, in cold climates, and near mountainous regions about 30% of time when temperatures (T) drop to -10°C or below. Ice fog affects aviation operations, transportation, and local climate. Ice Nucleation (IN) and radiative cooling play an important role by controlling the intensity of ice fog conditions. Ice fog can also occur at T above -10°C, but close to 0°C it mainly occurs due to freezing of supercooled droplets that contain an IN. To better document ice fog conditions, observations from ice fog events of the Indirect and Semi-Direct Aerosol effects on Climate (ISDAC) project (Barrow, Alaska), Fog Remote Sensing And Modeling (FRAM) project (Yellowknife, Northwest Territories), and the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) project (Heber City, Utah), were analyzed. Difficulties in measuring small ice fog particles at low temperatures and low-level research aircraft flying restrictions prevent observations from aircraft within the atmospheric boundary layer. However, Unmanned Aerial Vehicles (UAVs) can be operated safely to measure IN number concentration, Relative Humidity with respect to ice (RHi), T, horizontal wind speed (Uh) and direction, visibility, and possibly even measuring ice crystal spectra below about 500 micron, to provide a method for future research of ice fog. In this study, thermodynamic profiling was conducted using a Radiometrics Microwave Radiometer (PMWR) and Vaisala CL51 ceilometer to describe vertical spatial and temporal development of ice fog conditions. Overall, ice fog characteristics and its thermodynamic environment will be presented using both ground-based and airborne platforms such as a UAV with new sensors. Some examples of measurements from the UAV and a DMT GCIP (Droplet Measurement Technologies Ground Cloud Imaging Probe), and challenges related to both ice fog measurements and visibility parameterization will also be presented.

  6. Breaking Binaries? Biomedicine and Serostatus Borderlands among Couples with Mixed HIV Status.

    PubMed

    Persson, Asha; Newman, Christy E; Ellard, Jeanne

    2017-01-01

    With recent breakthroughs in HIV treatment and prevention, the meanings of HIV-positivity and HIV-negativity are changing at biomedical and community levels. We explore how binary constructions of HIV serostatus identities are giving way to something more complex that brings both welcome possibilities and potential concerns. We draw on research with couples with mixed HIV status to argue that, in the context of lived experiences, serostatus identities have always been more ambiguous than allowed for in HIV discourse. However, their supposed dichotomous quality seems even more dubious now in view of contemporary biomedical technologies. Invoking the anthropological concept of "borderlands," we consider how biomedicine is generating more diverse serostatus identities, widening the options for how to live with HIV, and eroding the stigmatizing serostatus binary that has haunted the epidemic. But we also ask whether this emerging borderland, and its "normalizing" tendencies, is concomitantly giving rise to new and troubling binaries.

  7. Obtaining gravitational waves from inspiral binary systems using LIGO data

    NASA Astrophysics Data System (ADS)

    Antelis, Javier M.; Moreno, Claudia

    2017-01-01

    The discovery of the astrophysical events GW150926 and GW151226 has experimentally confirmed the existence of gravitational waves (GW) and has demonstrated the existence of binary stellar-mass black hole systems. This finding marks the beginning of a new era that will reveal unexpected features of our universe. This work presents a basic insight to the fundamental theory of GW emitted by inspiral binary systems and describes the scientific and technological efforts developed to measure these waves using the interferometer-based detector called LIGO. Subsequently, the work presents a comprehensive data analysis methodology based on the matched filter algorithm, which aims to recovery GW signals emitted by inspiral binary systems of astrophysical sources. This algorithm was evaluated with freely available LIGO data containing injected GW waveforms. Results of the experiments performed to assess detection accuracy showed the recovery of 85% of the injected GW.

  8. The ‘ideal selectivity’ vs ‘true selectivity’ for permeation of gas mixture in nanoporous membranes

    NASA Astrophysics Data System (ADS)

    He, Zhou; Wang, Kean

    2018-03-01

    In this study, we proposed and validated a novel and non-destructive experimental technology for measuring the permeation of binary gas mixture in nanoporous membranes. The traditional time lag rig was modified to examine the permeation characteristics of each gas component as well as that of the binary gas mixtures. The difference in boiling points of each species were explored. Binary gas mixtures of CO2/He were permeated through the nanoporous carbon molecular sieve membrane (CMSM). The results showed that, due to the strong interaction among different molecules and with the porous network of the membrane, the measured perm-selectivity or ‘true selectivity’ of a binary mixture can significantly deviate from the ‘ideal selectivity’ calculated form the permeation flux of each pure species, and this deviation is a complicated function of the molecular properties and operation conditions.

  9. First Principles Simulations of Ice Nucleation at Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Michaelides, Angelos

    2005-03-01

    Ice nucleation at solid surfaces is of relevance to countless scientific and technological processes. In particular the nucleation of ice nano-crystals on metal surfaces is often a key first step in cloud formation and corrosion [1]. Yet unfortunately this remains one of the most poorly understood natural phenomena; severely lacking in atomic level understanding. Here, we discuss detailed density functional theory studies aimed at putting our understanding of ice nucleation at metals on a much firmer footing. Specifically the properties of H2O hexamers - the smallest `building blocks' of ice - adsorbed on a number of close-packed transition metal surfaces have been examined. We find that the competing influences of substrate reactivity and hexamer-substrate epitaxial mismatch conspire to yield a rich variety of (novel) hexameric ice structures, some of which have been observed by recent scanning tunnelling microscopy experiments [2]. [1] H.R. Pruppacher and J.D. Klett, Microphysics of Clouds and Precipitation, (Kluwer, Dordrecht, 2003). [2] K. Morgenstern, et al., (To be published).

  10. Comparison of skating kinetics and kinematics on ice and on a synthetic surface.

    PubMed

    Stidwill, T J; Pearsall, David; Turcotte, Rene

    2010-03-01

    The recent popularization and technological improvements of synthetic or artificial ice surfaces provide an attractive alternative to real ice in venues where the latter is impractical to install. Potentially, synthetic ice (SI) may be installed in controlled laboratory settings to permit detailed biomechanical analysis of skating manoeuvres. Unknown, however, is the extent to which skating on SI replicates skating on traditional ice (ICE). Hence, the purpose of this study was to compare kinetic and kinematic forward skating parameters between SI and ICE surfaces. With 11 male hockey players, a portable strain gauge system adhered to the outside of the skate blade holder was used to measure skate propulsive force synchronized with electrogoniometers for tracking dynamic knee and ankle movements during forward skating acceleration. In general, the kinetic and kinematic variables investigated in this study showed minimal differences between the two surfaces (P > 0.06), and no individual variable differences were identified between the two surfaces (P > or = 0.1) with the exception of greater knee extension on SI than ICE (15.2 degrees to 11.0 degrees; P < or = 0.05). Overall, SI surfaces permit comparable mechanics for on-ice forward skating, and thus offer the potential for valid analogous conditions for in-lab testing and training.

  11. Aircraft Icing Weather Data Reporting and Dissemination System

    NASA Technical Reports Server (NTRS)

    Bass, Ellen J.; Minsk, Brian; Lindholm, Tenny; Politovich, Marcia; Reehorst, Andrew (Technical Monitor)

    2002-01-01

    The long-term operational concept of this research is to develop an onboard aircraft system that assesses and reports atmospheric icing conditions automatically and in a timely manner in order to improve aviation safety and the efficiency of aircraft operations via improved real-time and forecast weather products. The idea is to use current measurement capabilities on aircraft equipped with icing sensors and in-flight data communication technologies as a reporting source. Without requiring expensive avionics upgrades, aircraft data must be processed and available for downlink. Ideally, the data from multiple aircraft can then be integrated (along with other real-time and modeled data) on the ground such that aviation-centered icing hazard metrics for volumes of airspace can be assessed. As the effect of icing on different aircraft types can vary, the information should be displayed in meaningful ways such that multiple types of users can understand the information. That is, information must be presented in a manner to allow users to understand the icing conditions with respect to individual concerns and aircraft capabilities. This research provides progress toward this operational concept by: identifying an aircraft platform capable of digitally capturing, processing, and downlinking icing data; identifying the required in situ icing data processing; investigating the requirements for routing the icing data for use by weather products; developing an icing case study in order to gain insight into major air carrier needs; developing and prototyping icing display concepts based on the National Center for Atmospheric Research's existing diagnostic and forecast experimental icing products; and conducting a usability study for the prototyped icing display concepts.

  12. Validation of NASA Thermal Ice Protection Computer Codes. Part 1; Program Overview

    NASA Technical Reports Server (NTRS)

    Miller, Dean; Bond, Thomas; Sheldon, David; Wright, William; Langhals, Tammy; Al-Khalil, Kamel; Broughton, Howard

    1996-01-01

    The Icing Technology Branch at NASA Lewis has been involved in an effort to validate two thermal ice protection codes developed at the NASA Lewis Research Center. LEWICE/Thermal (electrothermal deicing & anti-icing), and ANTICE (hot-gas & electrothermal anti-icing). The Thermal Code Validation effort was designated as a priority during a 1994 'peer review' of the NASA Lewis Icing program, and was implemented as a cooperative effort with industry. During April 1996, the first of a series of experimental validation tests was conducted in the NASA Lewis Icing Research Tunnel(IRT). The purpose of the April 96 test was to validate the electrothermal predictive capabilities of both LEWICE/Thermal, and ANTICE. A heavily instrumented test article was designed and fabricated for this test, with the capability of simulating electrothermal de-icing and anti-icing modes of operation. Thermal measurements were then obtained over a range of test conditions, for comparison with analytical predictions. This paper will present an overview of the test, including a detailed description of: (1) the validation process; (2) test article design; (3) test matrix development; and (4) test procedures. Selected experimental results will be presented for de-icing and anti-icing modes of operation. Finally, the status of the validation effort at this point will be summarized. Detailed comparisons between analytical predictions and experimental results are contained in the following two papers: 'Validation of NASA Thermal Ice Protection Computer Codes: Part 2- The Validation of LEWICE/Thermal' and 'Validation of NASA Thermal Ice Protection Computer Codes: Part 3-The Validation of ANTICE'

  13. Ground-Based Icing Condition Remote Sensing System Definition

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Koenig, George G.

    2001-01-01

    This report documents the NASA Glenn Research Center activities to assess and down select remote sensing technologies for the purpose of developing a system capable of measuring icing condition hazards aloft. The information generated by such a remote sensing system is intended for use by the entire aviation community, including flight crews. air traffic controllers. airline dispatchers, and aviation weather forecasters. The remote sensing system must be capable of remotely measuring temperature and liquid water content (LWC), and indicating the presence of super-cooled large droplets (SLD). Technologies examined include Profiling Microwave Radiometer, Dual-Band Radar, Multi-Band Radar, Ka-Band Radar. Polarized Ka-Band Radar, and Multiple Field of View (MFOV) Lidar. The assessment of these systems took place primarily during the Mt. Washington Icing Sensors Project (MWISP) in April 1999 and the Alliance Icing Research Study (AIRS) from November 1999 to February 2000. A discussion of the various sensing technologies is included. The result of the assessment is that no one sensing technology can satisfy all of the stated project goals. Therefore a proposed system includes radiometry and Ka-band radar. A multilevel approach is proposed to allow the future selection of the fielded system based upon required capability and available funding. The most basic level system would be the least capable and least expensive. The next level would increase capability and cost, and the highest level would be the most capable and most expensive to field. The Level 1 system would consist of a Profiling Microwave Radiometer. The Level 2 system would add a Ka-Band Radar. The Level 3 system would add polarization to the Ka-Band Radar. All levels of the system would utilize hardware that is already under development by the U.S. Government. However, to meet the needs of the aviation community, all levels of the system will require further development. In addition to the proposed system, it is also recommended that NASA continue to foster the development of Multi-Band Radar and airborne microwave radiometer technologies.

  14. Designing defect-based qubit candidates in wide-gap binary semiconductors for solid-state quantum technologies

    NASA Astrophysics Data System (ADS)

    Seo, Hosung; Ma, He; Govoni, Marco; Galli, Giulia

    2017-12-01

    The development of novel quantum bits is key to extending the scope of solid-state quantum-information science and technology. Using first-principles calculations, we propose that large metal ion-vacancy pairs are promising qubit candidates in two binary crystals: 4 H -SiC and w -AlN. In particular, we found that the formation of neutral Hf- and Zr-vacancy pairs is energetically favorable in both solids; these defects have spin-triplet ground states, with electronic structures similar to those of the diamond nitrogen-vacancy center and the SiC divacancy. Interestingly, they exhibit different spin-strain coupling characteristics, and the nature of heavy metal ions may allow for easy defect implantation in desired lattice locations and ensure stability against defect diffusion. To support future experimental identification of the proposed defects, we report predictions of their optical zero-phonon line, zero-field splitting, and hyperfine parameters. The defect design concept identified here may be generalized to other binary semiconductors to facilitate the exploration of new solid-state qubits.

  15. Bibliography on Cold Regions Science and Technology, Volume 45, Part 1

    DTIC Science & Technology

    1991-12-01

    Island. High pressure ice, Amorphous ice, Molecular struc- tVelikaia prilednikovala sistema stoka Severnol Ev- over the past three years. The work has...Maad land shelf III detrmine the eel5 uty andu stra in 1Ii the eI t he netl t I \\ A -In iinosmasuet n ihei toC . I SN- it-i H ului-cho - nasurenrenis

  16. Cryosphere Science Outreach using the Ice Sheet System Model and a Virtual Ice Sheet Laboratory

    NASA Astrophysics Data System (ADS)

    Cheng, D. L. C.; Halkides, D. J.; Larour, E. Y.

    2015-12-01

    Understanding the role of Cryosphere Science within the larger context of Sea Level Rise is both a technical and educational challenge that needs to be addressed if the public at large is to trulyunderstand the implications and consequences of Climate Change. Within this context, we propose a new approach in which scientific tools are used directly inside a mobile/website platform geared towards Education/Outreach. Here, we apply this approach by using the Ice Sheet System Model, a state of the art Cryosphere model developed at NASA, and integrated within a Virtual Ice Sheet Laboratory, with the goal is to outreach Cryospherescience to K-12 and College level students. The approach mixes laboratory experiments, interactive classes/lessons on a website, and a simplified interface to a full-fledged instance of ISSM to validate the classes/lessons. This novel approach leverages new insights from the Outreach/Educational community and the interest of new generations in web based technologies and simulation tools, all of it delivered in a seamlessly integrated web platform. This work was performed at the California Institute of Technology's Jet Propulsion Laboratory undera contract with the National Aeronautics and Space Administration's Cryosphere Science Program.

  17. Quantifying the Floe Size Distribution in the Marginal Ice Zone from Satellite Imagery for use in Model Development and Validation

    NASA Astrophysics Data System (ADS)

    Schweiger, A. J.; Stern, H. L.; Stark, M.; Zhang, J.; Hwang, P.; Steele, M.

    2013-12-01

    Several key processes in the Marginal Ice Zone (MIZ) of the Arctic Ocean are related to the size of the ice floes, whose diameters range from meters to tens of kilometers. The floe size distribution (FSD) influences mechanical properties of the ice and thus its response to winds, currents, and waves, which is likely to modify the air-sea momentum transfer. The FSD also influences the air-sea heat transfer and the response of the MIZ ice cover to the thermal forcing. The FSD also has a significant role in lateral melting. No existing sea-ice/ocean models currently simulate the FSD in the MIZ. Significant uncertainties in FSD-related processes hinder model incorporation of the FSD, and model development must heavily depend on observations of the FSD for parameterization, calibration, and validation. To support the development and implementation of the FSD in the Marginal Ice Zone Modeling and Assimilation System (MIZMAS), we have conducted an analysis of the FSD in the Beaufort and Chukchi seas using three sources of satellite imagery: NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua satellites, the Canadian Space Agency's synthetic aperture radar (SAR) on RADARSAT, and declassified National Technical Means imagery from the Global Fiducials Library (GFL) of the U.S. Geological Survey. The MODIS visible and short-wave infrared bands have a pixel size of 250 meters, and are only useful in cloud-free regions. The SAR imagery is unaffected by clouds and darkness, and has a pixel size of 50 meters. The GFL visible imagery, with a pixel size of 1 meter, is only useful in cloud-free regions. The resolution and spatial extent of the various image products allows us to identify ice floes of all sizes from 10 meters to 100 kilometers. The general procedure for identifying ice floes in the imagery is as follows: delineate cloud-free regions (if necessary); choose a threshold to separate ice from water, and create a binary image; apply the morphological erosion operation to separate floes that touch each other; identify contiguous sets of pixels (floes) by a recursive algorithm; and apply the morphological dilation operation to restore (approximately) the floes to their original sizes and shapes. Once the floes in an image have been identified, any number of properties may be calculated: the centroid, length, width, area, perimeter, orientation, convexity, etc. We calculate the mean caliper diameter as a simple, single measure of the size of a floe. We report results on the observed FSD in the Beaufort and Chukchi seas, including its seasonal evolution and spatial variability. We outline how the results will be used in model development and validation of the FSD in the MIZMAS.

  18. Numerical study on the aerodynamic characteristics of both static and flapping wing with attachments

    NASA Astrophysics Data System (ADS)

    Xie, Lingwang; Zhang, Xingwei; Luo, Pan; Huang, Panpan

    2017-10-01

    The purpose of this paper is to investigate the aerodynamic mechanism of airfoils under different icing situations which are different icing type, different icing time, and different icing position. Numerical simulation is carried out by using the finite volume method for both static and flapping airfoils, when Reynolds number is kept at 135000. The difference of aerodynamic performance between the airfoil with attachments and without attachments are be investigated by comparing the force coefficients, lift-to-drag ratios and flow field contour. The present simulations reveal that some influences of attachment are similar in the static airfoil and the flapping airfoil. Specifically, the airfoil with the attachment derived from glaze ice type causes the worse aerodynamic performance than that derived from rime ice type. The longer the icing time, the greater influence of aerodynamic performance the attachment causes. The attachments on the leading-edge have the greater influence of aerodynamic performance than other positions. Moreover, there are little differences between the static airfoil and the flapping airfoil. Compared with the static airfoil, the flapping airfoil which attachment located on the trailing edge causes a worse aerodynamic performance. Both attachments derived from rime ice type and glaze ice type all will deteriorate the aerodynamic performance of the asymmetrical airfoils. Present work provides the systematic and comprehensive study about icing blade which is conducive to the development of the wind power generation technology.

  19. Ice-assisted transfer of carbon nanotube arrays.

    PubMed

    Wei, Haoming; Wei, Yang; Lin, Xiaoyang; Liu, Peng; Fan, Shoushan; Jiang, Kaili

    2015-03-11

    Decoupling the growth and the application of nanomaterials by transfer is an important issue in nanotechnology. Here, we developed an efficient transfer technique for carbon nanotube (CNT) arrays by using ice as a binder to temporarily bond the CNT array and the target substrate. Ice makes it an ultraclean transfer because the evaporation of ice ensures that no contaminants are introduced. The transferred superaligned carbon nanotube (SACNT) arrays not only keep their original appearance and initial alignment but also inherit their spinnability, which is the most desirable feature. The transfer-then-spin strategy can be employed to fabricate patterned CNT arrays, which can act as 3-dimensional electrodes in CNT thermoacoustic chips. Besides, the flip-chipped CNTs are promising field electron emitters. Furthermore, the ice-assisted transfer technique provides a cost-effective solution for mass production of SACNTs, giving CNT technologies a competitive edge, and this method may inspire new ways to transfer other nanomaterials.

  20. Ice crystals classification using airborne measurements in mixing phase

    NASA Astrophysics Data System (ADS)

    Sorin Vajaiac, Nicolae; Boscornea, Andreea

    2017-04-01

    This paper presents a case study of ice crystals classification from airborne measurements in mixed-phase clouds. Ice crystal shadow is recorded with CIP (Cloud Imaging Probe) component of CAPS (Cloud, Aerosol, and Precipitation Spectrometer) system. The analyzed flight was performed in the south-western part of Romania (between Pietrosani, Ramnicu Valcea, Craiova and Targu Jiu), with a Beechcraft C90 GTX which was specially equipped with a CAPS system. The temperature, during the fly, reached the lowest value at -35 °C. These low temperatures allow the formation of ice crystals and influence their form. For the here presented ice crystals classification a special software, OASIS (Optical Array Shadow Imaging Software), developed by DMT (Droplet Measurement Technologies), was used. The obtained results, as expected are influenced by the atmospheric and microphysical parameters. The particles recorded where classified in four groups: edge, irregular, round and small.

  1. Pond Hockey on Whitmore Lacus: the Formation of Ponds and Ethane Ice Deposits Following Storm Events on Titan

    NASA Astrophysics Data System (ADS)

    Steckloff, Jordan; Soderblom, Jason M.

    2017-10-01

    Cassini ISS observations reveled regions, later identified as topographic low spots (Soderblom et al. 2014, DPS) on Saturn’s moon Titan become significantly darker (lower albedo) following storm events (Turtle et al. 2009, GRL; 2011, Science), suggesting pools of liquid hydrocarbon mixtures (predominantly methane-ethane-nitrogen). However, these dark ponds then significantly brighten (higher albedo relative to pre-storm albedo), before fading to their pre-storm albedos (Barnes et al. 2013 Planet. Sci; Soderblom et al. 2014, DPS). We interpret these data to be the result of ethane ice formation, which cools from evaporation of methane. The formation of ethane ices results from a unique sequence of thermophysical processes. Initially, the methane in the ternary mixture evaporates, cooling the pond. Nitrogen, dissolved primarily in the methane, exsolves, further cooling the liquid. However, because nitrogen is significantly more soluble in cooler methane-hydrocarbon mixtures, the relative concentration of nitrogen in the solution increases as it cools. This increased nitrogen fraction increases the density of the pond, as nitrogen is significantly more dense thane methane or ethane (pure ethane’s density is intermediate to that of methane and nitrogen). At around ~85 K the mixture is as dense as pure liquid ethane. Thus, further evaporative methane loss and cooling at the pond’s surface leads to a chemical stratification, with an increasingly ethane rich epilimnion (surface layer) overlying a methane rich hypolimnion (subsurface layer). Further evaporation of methane from the ethane-rich epilimnion drives its temperature and composition toward the methane-ethane-nitrogen liquidus curve, causing pure ethane ice to precipitate out of solution and settle to the bottom of the pool. This settling would obscure the ethane ice from Cassini VIMS and ISS, which would instead continue to appear as a dark pond on the surface. As the ethane precipitates out completely, a binary methane-nitrogen liquid mixture remains. Eventually, this residual liquid evaporates away, exposing the submerged ethane ice, which Cassini VIMS and ISS would observe as a dramatic brightening of the surface, consistent with observations.

  2. Generation of two-dimensional binary mixtures in complex plasmas

    NASA Astrophysics Data System (ADS)

    Wieben, Frank; Block, Dietmar

    2016-10-01

    Complex plasmas are an excellent model system for strong coupling phenomena. Under certain conditions the dust particles immersed into the plasma form crystals which can be analyzed in terms of structure and dynamics. Previous experiments focussed mostly on monodisperse particle systems whereas dusty plasmas in nature and technology are polydisperse. Thus, a first and important step towards experiments in polydisperse systems are binary mixtures. Recent experiments on binary mixtures under microgravity conditions observed a phase separation of particle species with different radii even for small size disparities. This contradicts several numerical studies of 2D binary mixtures. Therefore, dedicated experiments are required to gain more insight into the physics of polydisperse systems. In this contribution first ground based experiments on two-dimensional binary mixtures are presented. Particular attention is paid to the requirements for the generation of such systems which involve the consideration of the temporal evolution of the particle properties. Furthermore, the structure of these two-component crystals is analyzed and compared to simulations. This work was supported by the Deutsche Forschungsgemeinschaft DFG in the framework of the SFB TR24 Greifswald Kiel, Project A3b.

  3. Brine rejection from freezing salt solutions: a molecular dynamics study.

    PubMed

    Vrbka, Lubos; Jungwirth, Pavel

    2005-09-30

    The atmospherically and technologically very important process of brine rejection from freezing salt solutions is investigated with atomic resolution using molecular dynamics simulations. The present calculations allow us to follow the motion of each water molecule and salt ion and to propose a microscopic mechanism of brine rejection, in which a fluctuation (reduction) of the ion density in the vicinity of the ice front is followed by the growth of a new ice layer. The presence of salt slows down the freezing process, which leads to the formation of an almost neat ice next to a disordered brine layer.

  4. First results from a new interdisciplinary robotic vehicle for under-ice research

    NASA Astrophysics Data System (ADS)

    Nicolaus, M.; Katlein, C.; Schiller, M.

    2016-12-01

    Research at the ice-water interface below drifting sea-ice is crucial for the investigation of the fluxes of energy, momentum and matter across the atmosphere-ice-ocean boundary. Transmission of solar energy through the ice and snow layers causes warming of the upper ocean and melting of the ice itself. It is also a key factor for in and under-ice primary production, supplying the ice associated food-chain and causing carbon export to deeper water layers and the sea floor. The complex geometry of sea ice does not only cause a large spatial variability in optical properties of the ice cover, but also influences biomass accumulations and especially the hydrodynamic interaction between the ice cover and the uppermost layers of the ocean. Access to the ice underside is however still sparse, as diving operations are risky and logistically challenging. In the last decade, robotic underwater technologies have evolved significantly and enabled the first targeted large-scale observations by remotely operated and autonomous underwater vehicles. A new remotely operated vehicle was commissioned for under ice research at the Alfred Wegener Institute supported by the FRAM infrastructure program of the Helmholtz-Society. Apart from proven under-ice navigation and operation capabilities, the vehicle provides an extended interdisciplinary sensor platform supporting oceanographic, biological, biogeochemical and physical sea-ice research. Here we present the first preliminary data obtained with the new vehicle during the PS101 expedition of the German icebreaker RV Polarstern to the Central Arctic in September and October 2016. Apart from measurements of spectral light transmittance of sea ice during the autumn freeze-up, we show vertical profiles of the bio-optical and oceanographic properties of the upper water column. This data is combined with under-ice topography obtained from upward-looking multibeam sonar, still imagery and HD-video material.

  5. Iced Aircraft Flight Data for Flight Simulator Validation

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; Blankenship, Kurt; Rieke, William; Brinker, David J.

    2003-01-01

    NASA is developing and validating technology to incorporate aircraft icing effects into a flight training device concept demonstrator. Flight simulation models of a DHC-6 Twin Otter were developed from wind tunnel data using a subscale, complete aircraft model with and without simulated ice, and from previously acquired flight data. The validation of the simulation models required additional aircraft response time histories of the airplane configured with simulated ice similar to the subscale model testing. Therefore, a flight test was conducted using the NASA Twin Otter Icing Research Aircraft. Over 500 maneuvers of various types were conducted in this flight test. The validation data consisted of aircraft state parameters, pilot inputs, propulsion, weight, center of gravity, and moments of inertia with the airplane configured with different amounts of simulated ice. Emphasis was made to acquire data at wing stall and tailplane stall since these events are of primary interest to model accurately in the flight training device. Analyses of several datasets are described regarding wing and tailplane stall. Key findings from these analyses are that the simulated wing ice shapes significantly reduced the C , max, while the simulated tail ice caused elevator control force anomalies and tailplane stall when flaps were deflected 30 deg or greater. This effectively reduced the safe operating margins between iced wing and iced tail stall as flap deflection and thrust were increased. This flight test demonstrated that the critical aspects to be modeled in the icing effects flight training device include: iced wing and tail stall speeds, flap and thrust effects, control forces, and control effectiveness.

  6. Map of Martian Polar Hydrogen

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This gamma ray spectrometer map centered on the north pole of Mars is based on gamma-rays from the element hydrogen. In this region, hydrogen is mainly in the form of water ice. Regions of high ice content are shown in red and those low in ice content are shown in blue. The very ice-rich region at the north pole is due to a permanent polar cap of water ice on the surface. Elsewhere in this region, the ice is buried under several to a few tens of centimeters of dry soil. The sub-surface ice is not uniformly distributed in the north, but varies with both latitude and longitude. In the north, the soil is well over 50 percent ice, which is more than can be accommodated by just filling the pore space in pre-existing soil. This high ice content implies that the ice may have been slowly co-deposited with dust in the past when conditions were wetter. Deposition of ice by this process means it is more likely that the ice deposits are very thick and may even be deep enough to have liquid water at their base.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The gamma ray spectrometer was provided by the University of Arizona, Tucson. Lockheed Martin Astronautics, Denver, Colo., is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. Safety Relevant Observations on the ICE High Speed Train

    DOT National Transportation Integrated Search

    1991-07-01

    The safety of high speed rail technology proposed for possible application in the United States is of concern to the Federal Railroad Administration. This report, one in a series of reports planned for high speed rail technologies presents an initial...

  8. Advances in Telescope and Detector Technologies - Impacts on the Study and Understanding of Binary Star and Exoplanet Systems

    NASA Astrophysics Data System (ADS)

    Guinan, Edward F.; Engle, Scott; Devinney, Edward J.

    2012-04-01

    Current and planned telescope systems (both on the ground and in space) as well as new technologies will be discussed with emphasis on their impact on the studies of binary star and exoplanet systems. Although no telescopes or space missions are primarily designed to study binary stars (what a pity!), several are available (or will be shortly) to study exoplanet systems. Nonetheless those telescopes and instruments can also be powerful tools for studying binary and variable stars. For example, early microlensing missions (mid-1990s) such as EROS, MACHO and OGLE were initially designed for probing dark matter in the halos of galaxies but, serendipitously, these programs turned out to be a bonanza for the studies of eclipsing binaries and variable stars in the Magellanic Clouds and in the Galactic Bulge. A more recent example of this kind of serendipity is the Kepler Mission. Although Kepler was designed to discover exoplanet transits (and so far has been very successful, returning many planetary candidates), Kepler is turning out to be a ``stealth'' stellar astrophysics mission returning fundamentally important and new information on eclipsing binaries, variable stars and, in particular, providing a treasure trove of data of all types of pulsating stars suitable for detailed Asteroseismology studies. With this in mind, current and planned telescopes and networks, new instruments and techniques (including interferometers) are discussed that can play important roles in our understanding of both binary star and exoplanet systems. Recent advances in detectors (e.g. laser frequency comb spectrographs), telescope networks (both small and large - e.g. Super-WASP, HAT-net, RoboNet, Las Combres Observatory Global Telescope (LCOGT) Network), wide field (panoramic) telescope systems (e.g. Large Synoptic Survey Telescope (LSST) and Pan-Starrs), huge telescopes (e.g. the Thirty Meter Telescope (TMT), the Overwhelming Large Telescope (OWL) and the Extremely Large Telescope (ELT)), and space missions, such as the James Webb Space Telescope (JWST), the possible NASA Explorer Transiting Exoplanet Survey Satellite (TESS - recently approved for further study) and Gaia (due for launch during 2013) will all be discussed. Also highlighted are advances in interferometers (both on the ground and from space) and imaging now possible at sub-millimeter wavelengths from the Extremely Long Array (ELVA) and Atacama Large Millimeter Array (ALMA). High precision Doppler spectroscopy, for example with HARPS, HIRES and more recently the Carnegie Planet Finder Spectrograph, are currently returning RVs typically better than ~2-m/s for some brighter exoplanet systems. But soon it should be possible to measure Doppler shifts as small as ~10-cm/s - sufficiently sensitive for detecting Earth-size planets. Also briefly discussed is the impact these instruments will have on the study of eclipsing binaries, along with future possibilities of utilizing methods from the emerging field of Astroinformatics, including: the Virtual Observatory (VO) and the possibilities of analyzing these huge datasets using Neural Network (NN) and Artificial Intelligence (AI) technologies.

  9. Science and Technology Text Mining: Near-Earth Space

    DTIC Science & Technology

    2003-07-21

    TRANSFER; 177SATELLITE IMAGES; 175 SPATIAL RESOLUTION ; 174 SEA ICE; 166 SYSTEM GPS; 166 TOPEX POSEIDON; 165 SATELLITE MEASUREMENTS; 163 RADIATION BUDGET...1073 ICE; 1065 SATELLITES; 1062 PAPER; 1009 EARTH; 1008 RESOLUTION ; 1000 MODELS; 962 RADIATION; 943 DERIVED; 938 OCEAN; 928 CURRENT; 925 SPATIAL ; 899...PARAMETERS; 729 TECHNIQUE; 714 OPTICAL; 714 SPACECRAFT; 711 DEGREE; 702 TRANSMISSION; 696 LARGE; 693 TEST; 686 NUMBER; 671 EFFECTS ; 662 SPECTRAL ; 661

  10. NPOI: recent technology and science

    NASA Astrophysics Data System (ADS)

    Benson, James A.; Hutter, Donald J.; Johnston, Kenneth J.; Zavala, Robert T.; White, Nathaniel M.; Pauls, Thomas A.; Gilbreath, G. C.; Armstrong, J. T.; Hindsley, Robert B.

    2004-10-01

    We describe recent science projects that the Navy Prototype Optical Interferometer (NPOI) scientific staff and collaborators are pursuing. Recent results from the wide angle astrometric program and imaging programs (rapid rotators, binaries and Be stars) will be summarized. We discuss some of the technology that enables the NPOI to operate routinely as an observatory astronomical instrument.

  11. Influence of ice thickness and surface properties on light transmission through Arctic sea ice

    PubMed Central

    Arndt, Stefanie; Nicolaus, Marcel; Perovich, Donald K.; Jakuba, Michael V.; Suman, Stefano; Elliott, Stephen; Whitcomb, Louis L.; McFarland, Christopher J.; Gerdes, Rüdiger; Boetius, Antje; German, Christopher R.

    2015-01-01

    Abstract The observed changes in physical properties of sea ice such as decreased thickness and increased melt pond cover severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of sea‐ice‐melt and under‐ice primary production. Recent developments in underwater technology provide new opportunities to study light transmission below the largely inaccessible underside of sea ice. We measured spectral under‐ice radiance and irradiance using the new Nereid Under‐Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H‐ROV) designed for both remotely piloted and autonomous surveys underneath land‐fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under‐ice optical measurements with three dimensional under‐ice topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying ice‐thickness and surface properties on the spatial variability of light transmittance during summer. Our results show that surface properties such as melt ponds dominate the spatial distribution of the under‐ice light field on small scales (<1000 m2), while sea ice‐thickness is the most important predictor for light transmission on larger scales. In addition, we propose the use of an algorithm to obtain histograms of light transmission from distributions of sea ice thickness and surface albedo. PMID:27660738

  12. Leveraging natural dynamical structures to explore multi-body systems

    NASA Astrophysics Data System (ADS)

    Bosanac, Natasha

    Multi-body systems have become the target of an increasing number of mission concepts and observations, supplying further information about the composition, origin and dynamical environment of bodies within the solar system and beyond. In many of these scenarios, identification and characterization of the particular solutions that exist in a circular restricted three-body model is valuable. This insight into the underlying natural dynamical structures is achieved via the application of dynamical systems techniques. One application of such analysis is trajectory design for CubeSats, which are intended to explore cislunar space and other planetary systems. These increasingly complex mission objectives necessitate innovative trajectory design strategies for spacecraft within our solar system, as well as the capability for rapid and well-informed redesign. Accordingly, a trajectory design framework is constructed using dynamical systems techniques and demonstrated for the Lunar IceCube mission. An additional application explored in this investigation involves the motion of an exoplanet near a binary star system. Due to the strong gravitational field near a binary star, physicists have previously leveraged these systems as testbeds for examining the validity of gravitational and relativistic theories. In this investigation, a preliminary analysis into the effect of an additional three-body interaction on the dynamical environment near a large mass ratio binary system is conducted. As demonstrated through both of these sample applications, identification and characterization of the natural particular solutions that exist within a multi-body system supports a well-informed and guided analysis.

  13. Constraining the Antarctic contribution to global sea-level change: ANDRILL and beyond

    NASA Astrophysics Data System (ADS)

    Naish, Timothy

    2016-04-01

    Observations, models and paleoclimate reconstructions suggest that Antarctica's marine-based ice sheets behave in an unstable manner with episodes of rapid retreat in response to warming climate. Understanding the processes involved in this "marine ice sheet instability" is key for improving estimates of Antarctic ice sheet contribution to future sea-level rise. Another motivating factor is that far-field sea-level reconstructions and ice sheet models imply global mean sea level (GMSL) was up to 20m and 10m higher, respectively, compared with present day, during the interglacials of the warm Pliocene (~4-3Ma) and Late Pleistocene (at ~400ka and 125ka). This was when atmospheric CO2 was between 280 and 400ppm and global average surface temperatures were 1 to 3°C warmer, suggesting polar ice sheets are highly sensitive to relatively modest increases in climate forcing. Such magnitudes of GMSL rise not only require near complete melt of the Greenland Ice Sheet and the West Antarctic Ice Sheet, but a substantial retreat of marine-based sectors of East Antarctic Ice Sheet. Recent geological drilling initiatives on the continental margin of Antarctica from both ship- (e.g. IODP; International Ocean Discovery Program) and ice-based (e.g. ANDRILL/Antarctic Geological Drilling) platforms have provided evidence supporting retreat of marine-based ice. However, without direct access through the ice sheet to archives preserved within sub-glacial sedimentary basins, the volume and extent of ice sheet retreat during past interglacials cannot be directly constrained. Sediment cores have been successfully recovered from beneath ice shelves by the ANDRILL Program and ice streams by the WISSARD (Whillans Ice Stream Sub-glacial Access Research Drilling) Project. Together with the potential of the new RAID (Rapid Access Ice Drill) initiative, these demonstrate the technological feasibility of accessing the subglacial bed and deeper sedimentary archives. In this talk I will outline the scientific challenges, some potential sub-glacial sedimentary targets, and a strategy for future drilling of sub-glacial sedimentary basins.

  14. Constraining the Antarctic contribution to interglacial sea-level rise

    NASA Astrophysics Data System (ADS)

    Naish, T.; Mckay, R. M.; Barrett, P. J.; Levy, R. H.; Golledge, N. R.; Deconto, R. M.; Horgan, H. J.; Dunbar, G. B.

    2015-12-01

    Observations, models and paleoclimate reconstructions suggest that Antarctica's marine-based ice sheets behave in an unstable manner with episodes of rapid retreat in response to warming climate. Understanding the processes involved in this "marine ice sheet instability" is key for improving estimates of Antarctic ice sheet contribution to future sea-level rise. Another motivating factor is that far-field sea-level reconstructions and ice sheet models imply global mean sea level (GMSL) was up to 20m and 10m higher, respectively, compared with present day, during the interglacials of the warm Pliocene (~4-3Ma) and Late Pleistocene (at ~400ka and 125ka). This was when atmospheric CO2 was between 280 and 400ppm and global average surface temperatures were 1- 3°C warmer, suggesting polar ice sheets are highly sensitive to relatively modest increases in climate forcing. Such magnitudes of GMSL rise not only require near complete melt of the Greenland Ice Sheet and the West Antarctic Ice Sheet, but a substantial retreat of marine-based sectors of East Antarctic Ice Sheet. Recent geological drilling initiatives on the continental margin of Antarctica from both ship- (e.g. IODP; International Ocean Discovery Program) and ice-based (e.g. ANDRILL/Antarctic Geological Drilling) platforms have provided evidence supporting retreat of marine-based ice. However, without direct access through the ice sheet to archives preserved within sub-glacial sedimentary basins, the volume and extent of ice sheet retreat during past interglacials cannot be directly constrained. Sediment cores have been successfully recovered from beneath ice shelves by the ANDRILL Program and ice streams by the WISSARD (Whillans Ice Stream Sub-glacial Access Research Drilling) Project. Together with the potential of the new RAID (Rapid Access Ice Drill) initiative, these demonstrate the technological feasibility of accessing the subglacial bed and deeper sedimentary archives. In this talk I will outline the scientific challenges, some potential sub-glacial sedimentary targets, and a strategy for future drilling of sub-glacial sedimentary basins.

  15. Intracardiac Echocardiography for Structural Heart and Electrophysiological Interventions.

    PubMed

    Basman, Craig; Parmar, Yuvrajsinh J; Kronzon, Itzhak

    2017-09-06

    With an increasing number of interventional procedures performed for structural heart disease and cardiac arrhythmias each year, echocardiographic guidance is necessary for safe and efficient results. The purpose of this review article is to overview the principles of intracardiac echocardiography (ICE) and describes the peri-interventional role of ICE in a variety of structural heart disease and electrophysiological interventions. Both transthoracic (TTE) and transesophageal echocardiography have limitations. ICE provides the advantage of imaging from within the heart, providing shorter image distances and higher resolution. ICE may be performed without sedation and avoids esophageal intubation as with transesophageal echocardiography (TEE). Limitations of ICE include the need for additional venous access with possibility of vascular complications, potentially higher costs, and a learning curve for new operators. Data supports the use of ICE in guiding device closure of interatrial shunts, transseptal puncture, and electrophysiologic procedures. This paper reviews the more recent reports that ICE may be used for primary guidance or as a supplement to TEE in patients undergoing left atrial appendage (LAA) closure, interatrial shunt closure, transaortic valve implantation (TAVI), percutaneous mitral valve repair (PMVR), paravalvular leak (PVL) closure, aortic interventions, transcatheter pulmonary valve replacement (tPVR), ventricular septal defect (VSD), and patent ductus arteriosus (PDA) closure. ICE imaging technology will continue to expand and help improve structural heart and electrophysiology interventions.

  16. Preliminary studies of electromagnetic sounding of cometary nuclei

    NASA Technical Reports Server (NTRS)

    Gabriel, A.; Warne, L.; Bednarczyk, S.; Elachi, C.

    1978-01-01

    The internal structure of a comet could be determined with a spacecraft borne electromagnetic sounder. A dielectric profile of the comet could be produced in direct analogy with terrestrial glacier and ice sheet sounding experiments. This profile would allow the detection of a rocky core or ice layers if they exist, just as layers in the ice and the bedrock interface have been clearly observed through the Greenland ice sheet. It would also provide a gross estimate of the amount of dust in the icy region. Models for the response of the nucleus and cometary plasma to electromagnetic sounding are developed and used to derive experimental parameters. A point system design was completed. Preliminary engineering study results indicate that the sounder is well within the bounds of current space technology.

  17. First measurement of ice-bedrock interface of alpine glaciers by cosmic muon radiography

    NASA Astrophysics Data System (ADS)

    Nishiyama, R.; Ariga, A.; Ariga, T.; Käser, S.; Lechmann, A.; Mair, D.; Scampoli, P.; Vladymyrov, M.; Ereditato, A.; Schlunegger, F.

    2017-06-01

    The shape of the bedrock underneath alpine glaciers bears vital information on the erosional mechanism related to the flow of ice. So far, several geophysical exploration methods have been proposed to map the bedrock topography though with limited accuracy. Here we illustrate the first results from a technology, called cosmic ray muon radiography, newly applied in glacial geology to investigate the bedrock geometry beneath the Aletsch Glacier situated in the Central Swiss Alps. For this purpose we installed new cosmic muon detectors made of emulsion films at three sites along the Jungfrau railway tunnel and measured the shape of the bedrock under the uppermost part of Aletsch Glacier (Jungfraufirn). Our results constrain the continuation of the bedrock-ice interface up to a depth of 50 m below the surface, where the bedrock underneath the glacier strikes NE-SW and dips at 45° ± 5°. This documents the first successful application of this technology to a glaciated environment.

  18. Subsurface Exploration Technologies and Strategies for Europa

    NASA Technical Reports Server (NTRS)

    French, L. C.; Anderson, F. S.; Carsey, F. D.; Green, J. R.; Lane, A. L.; Zimmerman, W. F.

    2001-01-01

    The Galileo data from Europa has resulted in the strong suggestion of a large, cold, salty, old subglacial ocean and is of great importance. We have examined technology requirements for subsurface exploration of Europa and determined that scientific access to the hypothesized Europa ocean is a key requirement. By 'scientific access' we intend to direct attention to the fact that several aspects of exploration of a site such as Europa must be addressed at the system level. Specifically needed are a robotic vehicle that can descend through ice, scientific instrumentation that can interrogate the ice near the vehicle (but largely unaffected by its presence), scientific instrumentation for the subglacial ocean, communication for data and control, chemical analysis of the environment of the vehicle in the ice as well as the ocean, and methods for conducting the mission without contamination. We have embarked on a part of this extremely ambitious development sequence by developing the Active Thermal Probe, or Cryobot. Additional information is contained in the original extended abstract.

  19. Investigation of air transportation technology at Massachusetts Institute of Technology, 1984

    NASA Technical Reports Server (NTRS)

    Simpson, Robert W.

    1987-01-01

    Three projects sponsored by the Joint University Program at MIT are summarized. Two projects were focussed on the potential application of Loran-C in flying nonprecision approaches to general aviation runways, and the third project involved research on aircraft icing. In one Loran-C project, Aircraft Approach Guidance Using Relative Loran-C Navigation, the concept was flight tested. It used the difference in TD's from those of the touchdown point to simplify and speed navigation computer processing and took advantage of the short term accuracy of less than 100 feet for Loran-C. The goal of the project, Probabilistic Modelling of Loran-C Error for Nonprecision Approaches, was to develop a mathematical model which would predict the probability that an approach flown to a runway with a particular Loran-C receiver would fall within a given standard. The Aircraft Icing project focussed on measurement of droplet trajectories and droplet impingement/runback characteristics and measurement of real time ice accretion using ultrasonic pulse echo techniques.

  20. Oil spill response capabilities and technologies for ice-covered Arctic marine waters: A review of recent developments and established practices.

    PubMed

    Wilkinson, Jeremy; Beegle-Krause, C J; Evers, Karl-Ulrich; Hughes, Nick; Lewis, Alun; Reed, Mark; Wadhams, Peter

    2017-12-01

    Renewed political and commercial interest in the resources of the Arctic, the reduction in the extent and thickness of sea ice, and the recent failings that led to the Deepwater Horizon oil spill, have prompted industry and its regulatory agencies, governments, local communities and NGOs to look at all aspects of Arctic oil spill countermeasures with fresh eyes. This paper provides an overview of present oil spill response capabilities and technologies for ice-covered waters, as well as under potential future conditions driven by a changing climate. Though not an exhaustive review, we provide the key research results for oil spill response from knowledge accumulated over many decades, including significant review papers that have been prepared as well as results from recent laboratory tests, field programmes and modelling work. The three main areas covered by the review are as follows: oil weathering and modelling; oil detection and monitoring; and oil spill response techniques.

  1. Global ice sheet/RSL simulations using the higher-order Ice Sheet System Model.

    NASA Astrophysics Data System (ADS)

    Larour, E. Y.; Ivins, E. R.; Adhikari, S.; Schlegel, N.; Seroussi, H. L.; Morlighem, M.

    2017-12-01

    Relative sea-level rise is driven by processes that are intimately linked to the evolution ofglacial areas and ice sheets in particular. So far, most Earth System models capable of projecting theevolution of RSL on decadal to centennial time scales have relied on offline interactions between RSL andice sheets. In particular, grounding line and calving front dynamics have not been modeled in a way that istightly coupled with Elasto-Static Adjustment (ESA) and/or Glacial-Isostatic Adjustment (GIA). Here, we presenta new simulation of the entire Earth System in which both Greenland and Antarctica ice sheets are tightly coupledto an RSL model that includes both ESA and GIA at resolutions and time scales compatible with processes suchas grounding line dynamics for Antarctica ice shelves and calving front dynamics for Greenland marine-terminatingglaciers. The simulations rely on the Ice Sheet System Model (ISSM) and show the impact of higher-orderice flow dynamics and coupling feedbacks between ice flow and RSL. We quantify the exact impact of ESA andGIA inclusion on grounding line evolution for large ice shelves such as the Ronne and Ross ice shelves, as well asthe Agasea Embayment ice streams, and demonstate how offline vs online RSL simulations diverge in the long run,and the consequences for predictions of sea-level rise.This work was performed at the California Institute of Technology's Jet Propulsion Laboratory undera contract with the National Aeronautics and Space Administration's Cryosphere Science Program.

  2. High-precision GPS autonomous platforms for sea ice dynamics and physical oceanography

    NASA Astrophysics Data System (ADS)

    Elosegui, P.; Wilkinson, J.; Olsson, M.; Rodwell, S.; James, A.; Hagan, B.; Hwang, B.; Forsberg, R.; Gerdes, R.; Johannessen, J.; Wadhams, P.; Nettles, M.; Padman, L.

    2012-12-01

    Project "Arctic Ocean sea ice and ocean circulation using satellite methods" (SATICE), is the first high-rate, high-precision, continuous GPS positioning experiment on sea ice in the Arctic Ocean. The SATICE systems collect continuous, dual-frequency carrier-phase GPS data while drifting on sea ice. Additional geophysical measurements also collected include ocean water pressure, ocean surface salinity, atmospheric pressure, snow-depth, air-ice-ocean temperature profiles, photographic imagery, and others, enabling sea ice drift, freeboard, weather, ice mass balance, and sea-level height determination. Relatively large volumes of data from each buoy are streamed over a satellite link to a central computer on the Internet in near real time, where they are processed to estimate the time-varying buoy positions. SATICE system obtains continuous GPS data at sub-minute intervals with a positioning precision of a few centimetres in all three dimensions. Although monitoring of sea ice motions goes back to the early days of satellite observations, these autonomous platforms bring out a level of spatio-temporal detail that has never been seen before, especially in the vertical axis. These high-resolution data allows us to address new polar science questions and challenge our present understanding of both sea ice dynamics and Arctic oceanography. We will describe the technology behind this new autonomous platform, which could also be adapted to other applications that require high resolution positioning information with sustained operations and observations in the polar marine environment, and present results pertaining to sea ice dynamics and physical oceanography.

  3. How Will Sea Ice Loss Affect the Greenland Ice Sheet? On the Puzzling Features of Greenland Ice-Core Isotopic Composition

    NASA Technical Reports Server (NTRS)

    Pausata, Francesco S. R.; Legrande, Allegra N.; Roberts, William H. G.

    2016-01-01

    The modern cryosphere, Earth's frozen water regime, is in fast transition. Greenland ice cores show how fast theses changes can be, presenting evidence of up to 15 C warming events over timescales of less than a decade. These events, called Dansgaard/Oeschger (D/O) events, are believed to be associated with rapid changes in Arctic sea ice, although the underlying mechanisms are still unclear. The modern demise of Arctic sea ice may, in turn, instigate abrupt changes on the Greenland Ice Sheet. The Arctic Sea Ice and Greenland Ice Sheet Sensitivity (Ice2Ice Chttps://ice2ice.b.uib.noD) initiative, sponsored by the European Research Council, seeks to quantify these past rapid changes to improve our understanding of what the future may hold for the Arctic. Twenty scientists gathered in Copenhagen as part of this initiative to discuss the most recent observational, technological, and model developments toward quantifying the mechanisms behind past climate changes in Greenland. Much of the discussion focused on the causes behind the changes in stable water isotopes recorded in ice cores. The participants discussed sources of variability for stable water isotopes and framed ways that new studies could improve understanding of modern climate. The participants also discussed how climate models could provide insights into the relative roles of local and nonlocal processes in affecting stable water isotopes within the Greenland Ice Sheet. Presentations of modeling results showed how a change in the source or seasonality of precipitation could occur not only between glacial and modern climates but also between abrupt events. Recent fieldwork campaigns illustrate an important role of stable isotopes in atmospheric vapor and diffusion in the final stable isotope signal in ice. Further, indications from recent fieldwork campaigns illustrate an important role of stable isotopes in atmospheric vapor and diffusion in the final stable isotope signal in ice. This feature complicates the quantitative interpretation of ice core signals but also makes the stable ice isotope signal a more robust regional indicator of climate, speakers noted. Meeting participants agreed that to further our understanding of these relationships, we need more process-focused field and laboratory campaigns.

  4. Rational nanostructuring of surfaces for extraordinary icephobicity

    NASA Astrophysics Data System (ADS)

    Eberle, Patric; Tiwari, Manish K.; Maitra, Tanmoy; Poulikakos, Dimos

    2014-04-01

    Icing of surfaces is commonplace in nature, technology and everyday life, bringing with it sometimes catastrophic consequences. A rational methodology for designing materials with extraordinary resistance to ice formation and adhesion remains however elusive. We show that ultrafine roughnesses can be fabricated, so that the ice nucleation-promoting effect of nanopits on surfaces is effectively counteracted in the presence of an interfacial quasiliquid layer. The ensuing interface confinement strongly suppresses the stable formation of ice nuclei. We explain why such nanostructuring leads to the same extremely low, robust nucleation temperature of ~-24 °C for over three orders of magnitude change in RMS size (~0.1 to ~100 nm). Overlaying such roughnesses on pillar-microtextures harvests the additional benefits of liquid repellency and low ice adhesion. When tested at a temperature of -21 °C, such surfaces delayed the freezing of a sessile supercooled water droplet at the same temperature by a remarkable 25 hours.Icing of surfaces is commonplace in nature, technology and everyday life, bringing with it sometimes catastrophic consequences. A rational methodology for designing materials with extraordinary resistance to ice formation and adhesion remains however elusive. We show that ultrafine roughnesses can be fabricated, so that the ice nucleation-promoting effect of nanopits on surfaces is effectively counteracted in the presence of an interfacial quasiliquid layer. The ensuing interface confinement strongly suppresses the stable formation of ice nuclei. We explain why such nanostructuring leads to the same extremely low, robust nucleation temperature of ~-24 °C for over three orders of magnitude change in RMS size (~0.1 to ~100 nm). Overlaying such roughnesses on pillar-microtextures harvests the additional benefits of liquid repellency and low ice adhesion. When tested at a temperature of -21 °C, such surfaces delayed the freezing of a sessile supercooled water droplet at the same temperature by a remarkable 25 hours. Electronic supplementary information (ESI) available: Thermodynamic framework and statistical methods for data analyses; details of ice nucleation delay measurements and prediction of the delays around the median nucleation temperature; additional SEM and AFM images not shown in the main paper and complete contact angle characterization; derivation of the nanoscale interface confinement effect; an error assessment, detailed results of droplet impact experiments on hydrophilic and hydrophobic substrates; methods for surface preparation and characterization; description of the experimental set-up and protocols; five videos supporting the text. See DOI: 10.1039/c3nr06644d

  5. IceCube: CubeSat 883-GHz Radiometry for Future Ice Cloud Remote Sensing

    NASA Technical Reports Server (NTRS)

    Wu, Dongliang; Esper, Jaime; Ehsan, Negar; Johnson, Thomas; Mast, William; Piepmeier, Jeffery R.; Racette, Paul E.

    2015-01-01

    Ice clouds play a key role in the Earth's radiation budget, mostly through their strong regulation of infrared radiation exchange. Accurate observations of global cloud ice and its distribution have been a challenge from space, and require good instrument sensitivities to both cloud mass and microphysical properties. Despite great advances from recent spaceborne radar and passive sensors, uncertainty of current ice water path (IWP) measurements is still not better than a factor of 2. Submillimeter (submm) wave remote sensing offers great potential for improving cloud ice measurements, with simultaneous retrievals of cloud ice and its microphysical properties. The IceCube project is to enable this cloud ice remote sensing capability in future missions, by raising 874-GHz receiver technology TRL from 5 to 7 in a spaceflight demonstration on 3-U CubeSat in a low Earth orbit (LEO) environment. The NASAs Goddard Space Flight Center (GSFC) is partnering with Virginia Diodes Inc (VDI) on the 874-GHz receiver through its Vector Network Analyzer (VNA) extender module product line, to develop an instrument with precision of 0.2 K over 1-second integration and accuracy of 2.0 K or better. IceCube is scheduled to launch to and subsequent release from the International Space Station (ISS) in mid-2016 for nominal operation of 28 plus days. We will present the updated design of the payload and spacecraft systems, as well as the operation concept. We will also show the simulated 874-GHz radiances from the ISS orbits and cloud scattering signals as expected for the IceCube cloud radiometer.

  6. Chemical and physical characterization of fertile soil-derived ice residuals from the Fifth International Ice Nucleation workshop in November 2014 (FIN-1)

    NASA Astrophysics Data System (ADS)

    Hiranuma, Naruki; Möhler, Ottmar; Kulkarni, Gourihar; Laskin, Alexander; Zelenyuk, Alla

    2017-04-01

    The climate impact of ice-nucleating particles (INPs) derived from fertile soils on global scale has been recently accented by their diversity and efficient freezing ability. However, their representation in atmospheric models is limited in part due to our incomplete knowledge of fertile soil composition, abundance and associated sensitivity to heterogeneous ice nucleation. To fill given knowledge gap, we have investigated a unique/rich set of ice crystal residual samples derived from a variety of fertile soil samples obtained through our participation in the Fifth International Ice Nucleation workshop (FIN-1). FIN-1 was held at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) facility at Karlsruhe Institute of Technology (KIT), which is the world's foremost facility for studying ice clouds in a controlled setting, in November 2014 to comprehensively study the heterogeneous ice formation in the atmosphere with collaboration among 10 international groups that were funded through European consortium, NSF and USDOE agencies. Here, we will present the nanoscale surface morphology and elemental/molecular composition of ice crystal residuals as well as that of total aerosol samples from the FIN-1 activity to identify and classify any specific mineral and organic inclusions that may have promoted nucleation of ice. Comparing total aerosols to residuals will shed light on the composition and abundance of certain particle types in INPs. Acknowledgements: The valuable contributions of the INUIT (Ice Nuclei Research Unit) collaborators, the FIN organizers, their institutions and the FIN-1 Workshop science team are gratefully acknowledged.

  7. Gold Nanoparticle Aggregation as a Probe of Antifreeze (Glyco) Protein-Inspired Ice Recrystallization Inhibition and Identification of New IRI Active Macromolecules

    NASA Astrophysics Data System (ADS)

    Mitchell, Daniel E.; Congdon, Thomas; Rodger, Alison; Gibson, Matthew I.

    2015-10-01

    Antifreeze (glyco)proteins are found in polar fish species and act to slow the rate of growth of ice crystals; a property known as ice recrystallization inhibition. The ability to slow ice growth is of huge technological importance especially in the cryopreservation of donor cells and tissue, but native antifreeze proteins are often not suitable, nor easily available. Therefore, the search for new materials that mimic this function is important, but currently limited by the low-throughout assays associated with the antifreeze properties. Here 30 nm gold nanoparticles are demonstrated to be useful colorimetric probes for ice recrystallization inhibition, giving a visible optical response and is compatible with 96 well plates for high-throughout studies. This method is faster, requires less infrastructure, and has easier interpretation than the currently used ‘splat’ methods. Using this method, a series of serum proteins were identified to have weak, but specific ice recrystallization inhibition activity, which was removed upon denaturation. It is hoped that high-throughput tools such as this will accelerate the discovery of new antifreeze mimics.

  8. Micro-Tomographic Investigation of Ice and Clathrate Formation and Decomposition under Thermodynamic Monitoring.

    PubMed

    Arzbacher, Stefan; Petrasch, Jörg; Ostermann, Alexander; Loerting, Thomas

    2016-08-08

    Clathrate hydrates are inclusion compounds in which guest molecules are trapped in a host lattice formed by water molecules. They are considered an interesting option for future energy supply and storage technologies. In the current paper, time lapse 3D micro computed tomographic (µCT) imaging with ice and tetrahydrofuran (THF) clathrate hydrate particles is carried out in conjunction with an accurate temperature control and pressure monitoring. µCT imaging reveals similar behavior of the ice and the THF clathrate hydrate at low temperatures while at higher temperatures (3 K below the melting point), significant differences can be observed. Strong indications for micropores are found in the ice as well as the THF clathrate hydrate. They are stable in the ice while unstable in the clathrate hydrate at temperatures slightly below the melting point. Significant transformations in surface and bulk structure can be observed within the full temperature range investigated in both the ice and the THF clathrate hydrate. Additionally, our results point towards an uptake of molecular nitrogen in the THF clathrate hydrate at ambient pressures and temperatures from 230 K to 271 K.

  9. Gold Nanoparticle Aggregation as a Probe of Antifreeze (Glyco) Protein-Inspired Ice Recrystallization Inhibition and Identification of New IRI Active Macromolecules

    PubMed Central

    Mitchell, Daniel E.; Congdon, Thomas; Rodger, Alison; Gibson, Matthew I.

    2015-01-01

    Antifreeze (glyco)proteins are found in polar fish species and act to slow the rate of growth of ice crystals; a property known as ice recrystallization inhibition. The ability to slow ice growth is of huge technological importance especially in the cryopreservation of donor cells and tissue, but native antifreeze proteins are often not suitable, nor easily available. Therefore, the search for new materials that mimic this function is important, but currently limited by the low-throughout assays associated with the antifreeze properties. Here 30 nm gold nanoparticles are demonstrated to be useful colorimetric probes for ice recrystallization inhibition, giving a visible optical response and is compatible with 96 well plates for high-throughout studies. This method is faster, requires less infrastructure, and has easier interpretation than the currently used ‘splat’ methods. Using this method, a series of serum proteins were identified to have weak, but specific ice recrystallization inhibition activity, which was removed upon denaturation. It is hoped that high-throughput tools such as this will accelerate the discovery of new antifreeze mimics. PMID:26499135

  10. Gold Nanoparticle Aggregation as a Probe of Antifreeze (Glyco) Protein-Inspired Ice Recrystallization Inhibition and Identification of New IRI Active Macromolecules.

    PubMed

    Mitchell, Daniel E; Congdon, Thomas; Rodger, Alison; Gibson, Matthew I

    2015-10-26

    Antifreeze (glyco)proteins are found in polar fish species and act to slow the rate of growth of ice crystals; a property known as ice recrystallization inhibition. The ability to slow ice growth is of huge technological importance especially in the cryopreservation of donor cells and tissue, but native antifreeze proteins are often not suitable, nor easily available. Therefore, the search for new materials that mimic this function is important, but currently limited by the low-throughout assays associated with the antifreeze properties. Here 30 nm gold nanoparticles are demonstrated to be useful colorimetric probes for ice recrystallization inhibition, giving a visible optical response and is compatible with 96 well plates for high-throughout studies. This method is faster, requires less infrastructure, and has easier interpretation than the currently used 'splat' methods. Using this method, a series of serum proteins were identified to have weak, but specific ice recrystallization inhibition activity, which was removed upon denaturation. It is hoped that high-throughput tools such as this will accelerate the discovery of new antifreeze mimics.

  11. Evolution of ocean-induced ice melt beneath Zachariæ Isstrøm, Northeast Greenland combining observations and an ocean general circulation model from 1978 to present

    NASA Astrophysics Data System (ADS)

    Cai, C.; Rignot, E. J.; Menemenlis, D.; Millan, R.; Bjørk, A. A.; Khan, S. A.; Charolais, A.

    2017-12-01

    Zachariæ Isstrøm, a major ice stream in northeast Greenland, lost a large fraction of its ice shelf during the last decade. We study the evolution of subaqueous melting of its floating section from 1978 to present. The ice shelf melt rate depends on thermal forcing from warm, salty, subsurface ocean waters of Atlantic origin (AW), the mixing of AW with fresh, buoyant subglacial discharge at the calving margin, and the shape of the sub-ice-shelf cavity. Subglacial discharge doubled as a result of enhanced ice sheet runoff caused by warmer air temperatures. Ocean thermal forcing has increased due to enhanced advection of AW. Using an Eulerian method, MEaSUREs ice velocity, Operation IceBridge (OIB) ice thickness, and RACMO2.3 surface balance data, we evaluate the ice shelf melt rate in 1978, 1999 and 2010. The melt rate doubled from 1999 to 2010. Using a Lagrangian method with World View imagery, we map the melt rate in detail from 2011 to 2016. We compare the results with 2D simulations from the Massachusetts Institute of Technology general circulation model (MITgcm), at a high spatial resolution (20-m horizontal and 40-m vertical grid spacing), using OIB ice thickness and sub-ice-shelf cavity for years 1978, 1996, 2010 and 2011, combined with in-situ ocean temperature/salinity data from Ocean Melting Greenland (OMG) 2017. We find that winter melt rates are 2 3 times smaller than summer rates and melt rates increase by one order magnitude during the transition from ice shelf termination to near-vertical calving wall termination. As the last remaining bits of floating ice shelf disappear, ice-ocean interaction will therefore play an increasing role in driving the glacier retreat into its marine-based basin. This work was performed under a contract with NASA Cryosphere Program at UC Irvine and Caltech's Jet Propulsion Laboratory.

  12. Custom-designed nanomaterial libraries for testing metal oxide toxicity

    PubMed Central

    Pokhrel, Suman; Nel, André E.; Mädler, Lutz

    2014-01-01

    Conspectus Advances in aerosol technology over the past 10 years have provided methods that enable the generation and design of ultrafine nanoscale materials for different applications. The particles are produced combusting a precursor solution and its chemical reaction in the in the gas phase. Flame spray pyrolysis (FSP) is a highly versatile technique for single step and scalable synthesis of nanoscale materials. New innovations in particle synthesis using FSP technology and its precursor chemistry have enabled flexible dry synthesis of loosely-agglomerated highly crystalline ultrafine powders (porosity ≥ 90%) of binary, ternary and mixed binary or ternary oxides. The flame spray pyrolysis lies at the intersection of combustion science, aerosols technology and materials chemistry. The interdisciplinary research is not only inevitable but is becoming increasingly crucial in the design of nanoparticles (NPs) made in the gas phase. The increasing demand especially in the bio-applications for particles with specific material composition, high purity and crystallinity can be often fulfilled with the fast, single step FSP technique. PMID:23194152

  13. IceCube Polar Virtual Reality exhibit: immersive learning for learners of all ages

    NASA Astrophysics Data System (ADS)

    Madsen, J.; Bravo Gallart, S.; Chase, A.; Dougherty, P.; Gagnon, D.; Pronto, K.; Rush, M.; Tredinnick, R.

    2017-12-01

    The IceCube Polar Virtual Reality project is an innovative, interactive exhibit that explains the operation and science of a flagship experiment in polar research, the IceCube Neutrino Observatory. The exhibit allows users to travel from the South Pole, where the detector is located, to the furthest reaches of the universe, learning how the detection of high-energy neutrinos has opened a new view to the universe. This novel exhibit combines a multitouch tabletop display system and commercially available virtual reality (VR) head-mounted displays to enable informal STEM learning of polar research. The exhibit, launched in early November 2017 during the Wisconsin Science Festival in Madison, WI, will study how immersive VR can enhance informal STEM learning. The foundation of this project is built upon a strong collaborative effort between the Living Environments Laboratory (LEL), the Wisconsin IceCube Particle Astrophysics Center (WIPAC), and the Field Day Laboratory groups from the University of Wisconsin-Madison campus. The project is funded through an NSF Advancing Informal STEM Learning (AISL) grant, under a special call for engaging students and the public in polar research. This exploratory pathways project seeks to build expertise to allow future extensions. The plan is to submit a subsequent AISL Broad Implementation proposal to add more 3D environments for other Antarctic research topics and locations in the future. We will describe the current implementation of the project and discuss the challenges and opportunities of working with an interdisciplinary team of scientists and technology and education researchers. We will also present preliminary assessment results, which seek to answer questions such as: Did users gain a better understanding of IceCube research from interacting with the exhibit? Do both technologies (touch table and VR headset) provide the same level of engagement? Is one technology better suited for specific learning outcomes?

  14. Sea Ice in McClure Strait

    NASA Image and Video Library

    2017-12-08

    NASA image acquired August 17, 2010 In mid-August 2010, the Northwest Passage was almost—but not quite—free of ice. The ice content in the northern route through the passage (through the Western Parry Channel) was very light, but ice remained in McClure (or M’Clure) Strait. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite captured this natural-color image on August 17, 2010. Although most of McClure Strait looks perfectly ice-free, immediately west of Prince Patrick Island, a band of sea ice stretches southward across the strait (left edge of the image). The National Snow and Ice Data Center Sea Ice News and Analysis blog reported that even more ice remained in the southern route (through Amundsen’s Passage) of the Northwest Passage in mid-August 2010. Nevertheless, the ice content in the northern route was not only well below the 1968–2000 average, but also nearly a month ahead of the clearing observed in 2007, when Arctic sea ice set a record low. As of mid-August 2010, however, overall sea ice extent was higher than it had been at the same time of year in 2007. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team Caption by Michon Scott. To learn more go to: earthobservatory.nasa.gov/NaturalHazards/view.php?id=45333 Instrument: Terra - MODIS NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook Click here to see more images from NASA Goddard’s Earth Observatory

  15. Drive Fan of the NACA's Icing Research Tunnel

    NASA Image and Video Library

    1956-10-21

    A researcher examines the drive fan inside the Icing Research Tunnel at the National Advisory Committee for Aeronautics (NACA) Flight Propulsion Research Laboratory in Cleveland, Ohio. The facility was built in the mid-1940s to simulate the atmospheric conditions that caused ice to build up on aircraft. Carrier Corporation refrigeration equipment reduced the internal air temperature to -45⁰ F, and a spray bar system injected water droplets into the air stream. The 24-foot diameter drive fan, seen in this photograph, created air flow velocities up to 400 miles per hour. The 1950s were prime years for the Icing Research Tunnel. NACA engineers had spent the 1940s trying to resolve the complexities of the spray bar system. The final system put into operation in 1950 included six horizontal spray bars with 80 nozzles that produced a 4- by 4-foot cloud in the test section. The icing tunnel was used for extensive testing of civilian and military aircraft components in the 1950s. The NACA also launched a major investigation of the various methods of heating leading edge surfaces. The hot-air anti-icing technology used on today’s commercial transports was largely developed in the facility during this period. Lewis researchers also made significant breakthroughs with icing on radomes and jet engines. Although the Icing Research Tunnel yielded major breakthroughs in the 1950s, the Lewis icing research program began tapering off as interest in the space program grew. The icing tunnel’s use declined in 1956 and 1957. The launch of Sputnik in October 1957 signaled the end of the facility’s operation. The icing staff was transferred to other research projects and the icing tunnel was temporarily mothballed.

  16. Advances in Understanding the Role of Aerosols on Ice Clouds from the Fifth International Ice Nucleation (FIN) Workshops

    NASA Astrophysics Data System (ADS)

    Cziczo, D. J.; Moehler, O.; DeMott, P. J.

    2015-12-01

    The relationship of ambient aerosol particles to the formation of ice-containing clouds is one of the largest uncertainties in understanding climate. This is due to several poorly understood processes including the microphysics of how particles nucleate ice, the number of effective heterogeneous ice nuclei and their atmospheric distribution, the role of anthropogenic activities in producing or changing the behavior of ice forming particles and the interplay between effective heterogeneous ice nuclei and homogeneous ice formation. Our team recently completed a three-part international workshop to improve our understanding of atmospheric ice formation. Termed the Fifth International Ice Nucleation (FIN) Workshops, our motivation was the limited number of measurements and a lack of understanding of how to compare data acquired by different groups. The first activity, termed FIN1, addressed the characterization of ice nucleating particle size, number and chemical composition. FIN2 addressed the determination of ice nucleating particle number density. Groups modeling ice nucleation joined FIN2 to provide insight on measurements critically needed to model atmospheric ice nucleation and to understand the performance of ice chambers. FIN1 and FIN2 took place at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) chamber at the Karlsruhe Institute of Technology. A particular emphasis of FIN1 and FIN2 was the use of 'blind' intercomparisons using a highly characterized, but unknown to the instrument operators, aerosol sample. The third activity, FIN3, took place at the Desert Research Institute's Storm Peak Laboratory (SPL). A high elevation site not subject to local emissions, SPL allowed for a comparison of ice chambers and subsequent analysis of the ice residuals under the challenging conditions of low particle loading, temperature and pressure found in the atmosphere. The presentation focuses on the improvement in understanding how mass spectra from different instruments can be compared from FIN1 and FIN3. The complementary nature of different ice chamber to access the diverse regimes of temperature and relative humidity space will also be discussed. As a result of the FIN Workshops we believe the performance of instruments in the field can now be quantified and compared.

  17. Electrical deicing utilizing carbon fiber tape for asphalt approach and crosswalk phase I - literature review.

    DOT National Transportation Integrated Search

    2016-06-30

    The purpose of this study is to provide a comprehensive literature review of electrical deicing technology for possible application in asphalt approach and crosswalks. A : thorough review of existing and emerging deicing technology for snow/ice melti...

  18. Does Change in the Arctic Sea Ice Indicate Climate Change? A Lesson Using Geospatial Technology

    ERIC Educational Resources Information Center

    Bock, Judith K.

    2011-01-01

    The Arctic sea ice has not since melted to the 2007 extent, but annual summer melt extents do continue to be less than the decadal average. Climate fluctuations are well documented by geologic records. Averages are usually based on a minimum of 10 years of averaged data. It is typical for fluctuations to occur from year to year and season to…

  19. Computation of Low Speed Cavity Noise

    NASA Technical Reports Server (NTRS)

    Blech, Richard A. (Technical Monitor); Loh, Ching Y.

    2004-01-01

    Over the last five years, the Aircraft Icing Project of the NASA Aviation Safety Program has developed a number of in-flight icing education and training aids to support increased awareness for pilots of the hazards associated with atmospheric icing conditions. Through the development of this work, a number of new instructional design approaches and media delivery methods have been introduced to enhance the learning experience, expand user interactivity and participation, and, hopefully, increase the learner retention rates. The goal of using these multimedia techniques is to increase the effectiveness of the training materials. This paper will describe the multimedia technology that has been introduced and give examples of how it was used.

  20. Binary Lives: Digital Citizenship and Disability Participation in a User Content Created Virtual World

    ERIC Educational Resources Information Center

    Vizenor, Katie Virginia

    2014-01-01

    Digital Citizenship is a concept typically used in discussions of how technology impacts our relationships with others and our physical world communities. It is also used to describe ways that we can leverage our technology use and skill to make our communities and nations better and stronger. Educators are now teaching "good digital…

  1. Recent Observations of Increased Thinning of the Greenland Ice Sheet Measured by Aircraft GPS and Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Krabill, William B.

    2004-01-01

    The Arctic Ice Mapping group (Project AIM) at the NASA Goddard Space Flight Center Wallops Flight Facility has been conducting systematic topographic surveys of the Greenland Ice Sheet (GIs) since 1993, using scanning airborne laser altimeters combined with Global Positioning System (GPS) technology onboard NASA's P-3 aircraft. Flight lines have covered all major ice drainage basins, with repeating surveys after a 5-year interval during the decade of the 90's. Analysis of this data documented significant thinning in many areas near the ice sheet margins and an overall negative mass balance of the GIS (Science, 2000). In 2001, 2002, and 2003 many of these flight lines were re-surveyed, providing evidence of continued or accelerated thinning in all observed areas around the margin of the GIs. Additionally, however, a highly-anomalous snowfall was observed between 2002 and 2003 in SE Greenland - perhaps an indicator of a shift in the regional climate?

  2. A novel fast ion chromatographic method for the analysis of fluoride in Antarctic snow and ice.

    PubMed

    Severi, Mirko; Becagli, Silvia; Frosini, Daniele; Marconi, Miriam; Traversi, Rita; Udisti, Roberto

    2014-01-01

    Ice cores are widely used to reconstruct past changes of the climate system. For instance, the ice core record of numerous water-soluble and insoluble chemical species that are trapped in snow and ice offer the possibility to investigate past changes of various key compounds present in the atmosphere (i.e., aerosol, reactive gases). We developed a new method for the quantitative determination of fluoride in ice cores at sub-μg L(-1) levels by coupling a flow injection analysis technique with a fast ion chromatography separation based on the "heart cut" column switching technology. Sensitivity, linear range (up to 60 μg L(-1)), reproducibility, and detection limit (0.02 μg L(-1)) were evaluated for the new method. This method was successfully applied to the analysis of fluoride at trace levels in more than 450 recent snow samples collected during the 1998-1999 International Trans-Antarctica Scientific Expedition traverse in East Antarctica at sites located between 170 and 850 km from the coastline.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garimella, Sarvesh; Kristensen, Thomas Bjerring; Ignatius, Karolina

    The SPectrometer for Ice Nuclei (SPIN) is a commercially available ice nucleating particle (INP) counter manufactured by Droplet Measurement Technologies in Boulder, CO. The SPIN is a continuous flow diffusion chamber with parallel plate geometry based on the Zurich Ice Nucleation Chamber and the Portable Ice Nucleation Chamber. This study presents a standard description for using the SPIN instrument and also highlights methods to analyze measurements in more advanced ways. It characterizes and describes the behavior of the SPIN chamber, reports data from laboratory measurements, and quantifies uncertainties associated with the measurements. Experiments with ammonium sulfate are used to investigatemore » homogeneous freezing of deliquesced haze droplets and droplet breakthrough. Experiments with kaolinite, NX illite, and silver iodide are used to investigate heterogeneous ice nucleation. SPIN nucleation results are compared to those from the literature. A machine learning approach for analyzing depolarization data from the SPIN optical particle counter is also presented (as an advanced use). Altogether, we report that the SPIN is able to reproduce previous INP counter measurements.« less

  4. Astrobiology of Antarctic ice Covered Lakes

    NASA Astrophysics Data System (ADS)

    Doran, P. T.; Fritsen, C. H.

    2005-12-01

    Antarctica contains a number of permanently ice-covered lakes which have often been used as analogs of purported lakes on Mars in the past. Antarctic subglacial lakes, such as Lake Vostok, have also been viewed as excellent analogs for an ice covered ocean on the Jovian moon Europa, and to a lesser extend on Mars. Lakes in the McMurdo Dry Valleys of East Antarctica have ice covers that range from 3 to 20 meters thick. Water salinities range from fresh to hypersaline. The thinner ice-covered lakes have a well-documented ecology that relies on the limited available nutrients and the small amount of light energy that penetrates the ice covers. The thickest ice-covered lake (Lake Vida in Victoria Valley) has a brine beneath 20 m of ice that is 7 times sea water and maintains a temperature below -10 degrees Celsius. This lake is vastly different from the thinner ice-covered lakes in that there is no communication with the atmosphere. The permanent ice cover is so thick, that summer melt waters can not access the sub-ice brine and so the ice grows from the top up, as well as from the bottom down. Brine trapped beneath the ice is believed to be ancient, stranded thousands of years ago when the ice grew thick enough to isolate it from the surface. We view Lake Vida as an excellent analog for the last aquatic ecosystem to have existed on Mars under a planetary cooling. If, as evidence is now increasingly supporting, standing bodies of water existed on Mars in the past, their fate under a cooling would be to go through a stage of permanent ice cover establishment, followed by a thickening of that ice cover until the final stage just prior to a cold extinction would be a Lake Vida-like lake. If dust storms or mass movements covered these ancient lakes, remnants may well be in existence in the subsurface today. A NASA Astrobiology Science and Technology for Exploring Planets (ASTEP) project will drill the Lake Vida ice cover and access the brine and sediments beneath in November 2005. This presentation will include an update from the field.

  5. Performance and durability tests of smart icephobic coatings to reduce ice adhesion

    NASA Astrophysics Data System (ADS)

    Janjua, Zaid A.; Turnbull, Barbara; Choy, Kwang-Leong; Pandis, Christos; Liu, Junpeng; Hou, Xianghui; Choi, Kwing-So

    2017-06-01

    The accretion of ice can cause damage in applications ranging from power lines and shipping decks, to wind turbines and rail infrastructure. In particular on aircraft, it can change aerodynamic characteristics, greatly affecting the flight safety. Commercial aircraft are therefore required to be equipped with de-icing devices, such as heating mats over the wings. The application of icephobic coatings near the leading edge of a wing can in theory reduce the high power requirements of heating mats, which melt ice that forms there. Such coatings are effective in preventing the accretion of runback ice, formed from airborne supercooled droplets, or the water that the heating mats generate as it is sheared back over the wing's upper surface. However, the durability and the practicality of applying them over a large wing surface have been prohibitive factors in deploying this technology so far. Here, we evaluated the ice adhesion strength of four non-conductive coatings and seven thermally conductive coatings by shearing ice samples from coated plates by spinning them in a centrifuge device. The durability of the coating performance was also assessed by repeating the tests, each time regrowing ice samples on the previously-used coatings. Contact angle parameters of each coating were tested for each test to determine influence on ice adhesion strength. The results indicate that contact angle hysteresis is a crucial parameter in determining icephobicity of a coating and hydrophobicity is not necessarily linked to icephobicity.

  6. Quantifying Local Ablation Rates for the Greenland Ice Sheet Using Terrestrial LIDAR

    NASA Astrophysics Data System (ADS)

    Kershner, C. M.; Pitcher, L. H.; LeWinter, A.; Finnegan, D. C.; Overstreet, B. T.; Miège, C.; Cooper, M. G.; Smith, L. C.; Rennermalm, A. K.

    2016-12-01

    Quantifying accurate ice surface ablation or melt rates for the Greenland Ice Sheet is important for calibrating and validating surface mass balance models and constraining sea level rise estimates. Common practice is to monitor surface ablation at defined points by manually measuring ice surface lowering in relation to stakes inserted into the ice / snow. However, this method does not account for the effects of local topography, solar zenith angle, and local variations in ice surface albedo/impurities on ablation rates. To directly address these uncertainties, we use a commercially available terrestrial LIDAR scanner (TLS) to monitor daily melt rates in the ablation zone of the Greenland Ice Sheet for 7 consecutive days in July 2016. Each survey is registered to previous scans using retroreflective cylinders and is georeferenced using static GPS measurements. Bulk ablation will be calculated using multi-temporal differential LIDAR techniques, and difficulties in referencing scans and collecting high quality surveys in this dynamic environment will be discussed, as well as areas for future research. We conclude that this novel application of TLS technology provides a spatially accurate, higher fidelity measurements of ablation across a larger area with less interpolation and less time spent than using traditional manual point based methods alone. Furthermore, this sets the stage for direct calibration, validation and cross-comparison with existing airborne (e.g. NASA's Airborne Topographic Mapper - ATM - onboard Operation IceBridge and NASA's Land, Vegetation & Ice Sensor - LVIS) and forthcoming spaceborne sensors (e.g. NASA's ICESat-2).

  7. An Imaging System capable of monitoring en-glacial and sub-glacial processes of glaciers, streaming ice and ice margins

    NASA Astrophysics Data System (ADS)

    Frearson, N.

    2012-12-01

    Columbia University in New York is developing a geophysical instrumentation package that is capable of monitoring dynamic en-glacial and sub-glacial processes. The instruments include a Riegl Scanning Laser for precise measurements of the ice surface elevation, Stereo photogrammetry from a high sensitivity (~20mK) Infra-Red camera and a high resolution Visible Imaging camera (2456 x 2058 pixels) to document fine scale ice temperature changes and surface features, near surface ice penetrating radar and an ice depth measuring radar that can be used to study interior and basal processes of ice shelves, glaciers, ice streams and ice-sheets. All instrument data sets will be time-tagged and geo-referenced using precision GPS satellite data. Aircraft orientation will be corrected using inertial measurement technology integrated into the pod. This instrumentation will be flown across some of the planets largest outlet glaciers in Antarctica and Greenland. However, a key aspect of the design is that at the conclusion of the program, the Pod, Deployment Arm, Data Acquisition and Power and Environmental Management system will become available for use by the science community at large to install their own instruments onto. It will also be possible to mount the Icepod onto other airframes. The sensor system will become part of a research facility operated for the science community, and data will be maintained at and made available through a Polar Data Center.

  8. Changes of the Bacterial Abundance and Communities in Shallow Ice Cores from Dunde and Muztagata Glaciers, Western China

    PubMed Central

    Chen, Yong; Li, Xiang-Kai; Si, Jing; Wu, Guang-Jian; Tian, Li-De; Xiang, Shu-Rong

    2016-01-01

    In this study, six bacterial community structures were analyzed from the Dunde ice core (9.5-m-long) using 16S rRNA gene cloning library technology. Compared to the Muztagata mountain ice core (37-m-long), the Dunde ice core has different dominant community structures, with five genus-related groups Blastococcus sp./Propionibacterium, Cryobacterium-related., Flavobacterium sp., Pedobacter sp., and Polaromas sp. that are frequently found in the six tested ice layers from 1990 to 2000. Live and total microbial density patterns were examined and related to the dynamics of physical-chemical parameters, mineral particle concentrations, and stable isotopic ratios in the precipitations collected from both Muztagata and Dunde ice cores. The Muztagata ice core revealed seasonal response patterns for both live and total cell density, with high cell density occurring in the warming spring and summer months indicated by the proxy value of the stable isotopic ratios. Seasonal analysis of live cell density for the Dunde ice core was not successful due to the limitations of sampling resolution. Both ice cores showed that the cell density peaks were frequently associated with high concentrations of particles. A comparison of microbial communities in the Dunde and Muztagata glaciers showed that similar taxonomic members exist in the related ice cores, but the composition of the prevalent genus-related groups is largely different between the two geographically different glaciers. This indicates that the micro-biogeography associated with geographic differences was mainly influenced by a few dominant taxonomic groups. PMID:27847503

  9. Small-scale Geothermal Power Plants Using Hot Spring Water

    NASA Astrophysics Data System (ADS)

    Tosha, T.; Osato, K.; Kiuchi, T.; Miida, H.; Okumura, T.; Nakashima, H.

    2013-12-01

    The installed capacity of the geothermal power plants has been summed up to be about 515MW in Japan. However, the electricity generated by the geothermal resources only contributes to 0.2% of the whole electricity supply. After the catastrophic earthquake and tsunami devastated the Pacific coast of north-eastern Japan on Friday, March 11, 2011, the Japanese government is encouraging the increase of the renewable energy supply including the geothermal. It needs, however, more than 10 years to construct the geothermal power plant with more than 10MW capacity since the commencement of the development. Adding the problem of the long lead time, high temperature fluid is mainly observed in the national parks and the high quality of the geothermal resources is limited. On the other hand hot springs are often found. The utilisation of the low temperature hot water becomes worthy of notice. The low temperature hot water is traditionally used for bathing and there are many hot springs in Japan. Some of the springs have enough temperature and enthalpy to turn the geothermal turbine but a new technology of the binary power generation makes the lower temp fluid to generate electricity. Large power generators with the binary technology are already installed in many geothermal fields in the world. In the recent days small-scale geothermal binary generators with several tens to hundreds kW capacity are developed, which are originally used by the waste heat energy in an iron factory and so on. The newly developed binary unit is compact suitable for the installation in a Japanese inn but there are the restrictions for the temperature of the hot water and the working fluid. The binary power unit using alternatives for chlorofluorocarbon as the working fluid is relatively free from the restriction. KOBELCO, a company of the Kobe Steel Group, designed and developed the binary power unit with an alternative for chlorofluorocarbon. The unit has a 70 MW class electric generator. Three units have been installed in Obama Hot Spring area, Nagasaki Prefecture, where about 15,000 tonnes of hot water are produced in a day and more than 35% of the hot water flow directly to the sea. Another demonstration experiments are also conducted in several hot spring areas. In this study we will review several examples to utilise low temperature hot springs in Japan. Binary Power Unit at Obama (Fujino, 2013)

  10. Ice flood velocity calculating approach based on single view metrology

    NASA Astrophysics Data System (ADS)

    Wu, X.; Xu, L.

    2017-02-01

    Yellow River is the river in which the ice flood occurs most frequently in China, hence, the Ice flood forecasting has great significance for the river flood prevention work. In various ice flood forecast models, the flow velocity is one of the most important parameters. In spite of the great significance of the flow velocity, its acquisition heavily relies on manual observation or deriving from empirical formula. In recent years, with the high development of video surveillance technology and wireless transmission network, the Yellow River Conservancy Commission set up the ice situation monitoring system, in which live videos can be transmitted to the monitoring center through 3G mobile networks. In this paper, an approach to get the ice velocity based on single view metrology and motion tracking technique using monitoring videos as input data is proposed. First of all, River way can be approximated as a plane. On this condition, we analyze the geometry relevance between the object side and the image side. Besides, we present the principle to measure length in object side from image. Secondly, we use LK optical flow which support pyramid data to track the ice in motion. Combining the result of camera calibration and single view metrology, we propose a flow to calculate the real velocity of ice flood. At last we realize a prototype system by programming and use it to test the reliability and rationality of the whole solution.

  11. Ice formation on kaolinite: Insights from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Sosso, Gabriele C.; Tribello, Gareth A.; Zen, Andrea; Pedevilla, Philipp; Michaelides, Angelos

    2016-12-01

    The formation of ice affects many aspects of our everyday life as well as important technologies such as cryotherapy and cryopreservation. Foreign substances almost always aid water freezing through heterogeneous ice nucleation, but the molecular details of this process remain largely unknown. In fact, insight into the microscopic mechanism of ice formation on different substrates is difficult to obtain even if state-of-the-art experimental techniques are used. At the same time, atomistic simulations of heterogeneous ice nucleation frequently face extraordinary challenges due to the complexity of the water-substrate interaction and the long time scales that characterize nucleation events. Here, we have investigated several aspects of molecular dynamics simulations of heterogeneous ice nucleation considering as a prototypical ice nucleating material the clay mineral kaolinite, which is of relevance in atmospheric science. We show via seeded molecular dynamics simulations that ice nucleation on the hydroxylated (001) face of kaolinite proceeds exclusively via the formation of the hexagonal ice polytype. The critical nucleus size is two times smaller than that obtained for homogeneous nucleation at the same supercooling. Previous findings suggested that the flexibility of the kaolinite surface can alter the time scale for ice nucleation within molecular dynamics simulations. However, we here demonstrate that equally flexible (or non flexible) kaolinite surfaces can lead to very different outcomes in terms of ice formation, according to whether or not the surface relaxation of the clay is taken into account. We show that very small structural changes upon relaxation dramatically alter the ability of kaolinite to provide a template for the formation of a hexagonal overlayer of water molecules at the water-kaolinite interface, and that this relaxation therefore determines the nucleation ability of this mineral.

  12. Cool Science Explains a Warming World: Using Ice Core Science to Bridge the Gap Between Researchers and the K-12 Classroom

    NASA Astrophysics Data System (ADS)

    Huffman, L. T.

    2017-12-01

    Changing ice has urgent implications for people around the world. The Ice Drilling Program Office (IDPO) provides scientific leadership and oversight of ice coring and drilling activities funded by the US National Science Foundation and also has goals to enhance education and communication of current research information. In a time when misinformation is rampant and climate change science is suspect, it is essential that students receive accurate scientific information and engage in learning activities that model complex ideas through engaging and age appropriate ways, while also learning to validate and recognize reliable sources. The IDPO Education and Outreach (EO) office works to create resources, activities and professional development that bridge the gap between ice core science research and educators and their students. Ice core science is on the cutting edge of new discoveries about climate change and understanding better the past to predict the future. Hands-on inquiry activities based on ice core data allow teachers to lead their students to new discoveries about climate secrets hidden deep in the ice. Capitalizing on the inherent interest in the extremes of the Polar Regions, IDPO materials engage students in activities aligned with NGSS standards. Ice drilling technologies make an ideal platform for intertwining engineering concepts and practices with science research to meet the SEP (Science and Engineering Practices) in the NGSS. This session will highlight how the IDPO EO office has built a community of ice core scientists willing to take part in education and outreach projects and events and share some of the resources available to K-12 educators. We will highlight some of the successes and lessons learned as we continually evolve our work toward more effective science education and communication highlighting ice core and climate change science.

  13. Simulating Ice Dynamics in the Amundsen Sea Sector

    NASA Astrophysics Data System (ADS)

    Schwans, E.; Parizek, B. R.; Morlighem, M.; Alley, R. B.; Pollard, D.; Walker, R. T.; Lin, P.; St-Laurent, P.; LaBirt, T.; Seroussi, H. L.

    2017-12-01

    Thwaites and Pine Island Glaciers (TG; PIG) exhibit patterns of dynamic retreat forced from their floating margins, and could act as gateways for destabilization of deep marine basins in the West Antarctic Ice Sheet (WAIS). Poorly constrained basal conditions can cause model predictions to diverge. Thus, there is a need for efficient simulations that account for shearing within the ice column, and include adequate basal sliding and ice-shelf melting parameterizations. To this end, UCI/NASA JPL's Ice Sheet System Model (ISSM) with coupled SSA/higher-order physics is used in the Amundsen Sea Embayment (ASE) to examine threshold behavior of TG and PIG, highlighting areas particularly vulnerable to retreat from oceanic warming and ice-shelf removal. These moving-front experiments will aid in targeting critical areas for additional data collection in ASE as well as for weighting accuracy in further melt parameterization development. Furthermore, a sub-shelf melt parameterization, resulting from Regional Ocean Modeling System (ROMS; St-Laurent et al., 2015) and coupled ISSM-Massachusetts Institute of Technology general circulation model (MITgcm; Seroussi et al., 2017) output, is incorporated and initially tested in ISSM. Data-guided experiments include variable basal conditions and ice hardness, and are also forced with constant modern climate in ISSM, providing valuable insight into i) effects of different basal friction parameterizations on ice dynamics, illustrating the importance of constraining the variable bed character beneath TG and PIG; ii) the impact of including vertical shear in ice flow models of outlet glaciers, confirming its role in capturing complex feedbacks proximal to the grounding zone; and iii) ASE's sensitivity to sub-shelf melt and ice-front retreat, possible thresholds, and how these affect ice-flow evolution.

  14. Decision Models for Conducting an Economic Analysis of Alternative Fuels for the Ice Engine.

    DTIC Science & Technology

    1983-03-01

    p.cduc.d ICE vehicles. This analysis focusqs on electric vehicles d=.signed for commercial use. Electric hybrid vehicles which combine electric...ccntain -:he minimum gross veicle weight, engine size, and other characterist-ca of vehicles generally procured by the Federal governmen. The ir...Electric and Hybrid Vehicles, Energy Technology Review Nc. 44 published by Noyes Data Corpora’-ion. It summarizes data cn characteristics, cost, maints

  15. An Arctic Ice/Ocean Coupled Model with Wave Interactions

    DTIC Science & Technology

    2015-09-30

    seas within and in the waters adjoining MIZs, using a conservative, multiple wave scattering approach in a medium with random geometrical properties...relating to wave-ice interactions have been collected since the MIZEX campaign of the 1980s, aside from a small number of ad hoc field experiments. This...from the better technology and analysis tools now available, including those related to the field experiments supported by an intensive remote sensing

  16. The 1991 LLWAS anemometer test program

    NASA Astrophysics Data System (ADS)

    Phillips, Charles O.; Burnham, David; Jacobs, Leo; Hazen, David

    1992-09-01

    Performance tests of anemometers under icing and snow conditions were conducted during 1990-1991 on the test field at Rochester, MN and in icing chambers and wind tunnels at Sterling, VA. These tests were done for the FAA Low Level Windshear Alert System (LLWAS) program to test sensors for the next phase of LLWAS. Sensors from ten manufacturers were accepted into the test program from the respondents to the Commerce Business Daily. These sensors were required first to pass an icing chamber test in order to be field tested. The field tests lasted from Nov. 1990 to Jul. 1991. Afterwards, all sensors were sent to Sterling, VA for wind tunnel tests in September 1991. All units from the eight manufacturers that passed the icing chamber test were in the field test. A propeller/vane sensor that failed the icing chamber test was put in the field as a reference. All the units that passed were not affected by icing during the field test although a mechanical unit was affected by snow during one event. The propeller/vane was affected by icing during one event. Wind tunnel tests were done to check starting thresholds and calibration anomalies found in the field. It was concluded that there is no one winning technology that could be found from the tests.

  17. Metasurfaces Leveraging Solar Energy for Icephobicity.

    PubMed

    Mitridis, Efstratios; Schutzius, Thomas M; Sicher, Alba; Hail, Claudio U; Eghlidi, Hadi; Poulikakos, Dimos

    2018-06-29

    Inhibiting ice accumulation on surfaces is an energy-intensive task and is of significant importance in nature and technology where it has found applications in windshields, automobiles, aviation, renewable energy generation, and infrastructure. Existing methods rely on on-site electrical heat generation, chemicals, or mechanical removal, with drawbacks ranging from financial costs to disruptive technical interventions and environmental incompatibility. Here we focus on applications where surface transparency is desirable and propose metasurfaces with embedded plasmonically enhanced light absorption heating, using ultrathin hybrid metal-dielectric coatings, as a passive, viable approach for de-icing and anti-icing, in which the sole heat source is renewable solar energy. The balancing of transparency and absorption is achieved with rationally nanoengineered coatings consisting of gold nanoparticle inclusions in a dielectric (titanium dioxide), concentrating broadband absorbed solar energy into a small volume. This causes a > 10 °C temperature increase with respect to ambient at the air-solid interface, where ice is most likely to form, delaying freezing, reducing ice adhesion, when it occurs, to negligible levels (de-icing) and inhibiting frost formation (anti-icing). Our results illustrate an effective unexplored pathway toward environmentally compatible, solar-energy-driven icephobicity, enabled by respectively tailored plasmonic metasurfaces, with the ability to design the balance of transparency and light absorption.

  18. Changes in the Areal Extent of Arctic Sea Ice: Observations from Satellites

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    2000-01-01

    Wintertime sea ice covers 15 million square kilometers of the north polar region, an area exceeding one and a half times the area of the U. S. Even at the end of the summer melt season, sea ice still covers 7 million square kilometers. This vast ice cover is an integral component of the climate system, being moved around by winds and waves, restricting heat and other exchanges between the ocean and atmosphere, reflecting most of the solar radiation incident on it, transporting cold, relatively fresh water equatorward, and affecting the overturning of ocean waters underneath, with impacts that can be felt worldwide. Sea ice also is a major factor in the Arctic ecosystem, affecting life forms ranging from minute organisms living within the ice, sometimes to the tune of millions in a single ice floe, to large marine mammals like walruses that rely on sea ice as a platform for resting, foraging, social interaction, and breeding. Since 1978, satellite technology has allowed the monitoring of the vast Arctic sea ice cover on a routine basis. The satellite observations reveal that, overall, the areal extent of Arctic sea ice has been decreasing since 1978, at an average rate of 2.7% per decade through the end of 1998. Through 1998, the greatest rates of decrease occurred in the Seas of Okhotsk and Japan and the Kara and Barents Seas, with most other regions of the Arctic also experiencing ice extent decreases. The two regions experiencing ice extent increases over this time period were the Bering Sea and the Gulf of St. Lawrence. Furthermore, the satellite data reveal that the sea ice season shortened by over 25 days per decade in the central Sea of Okhotsk and the eastern Barents Sea, and by lesser amounts throughout much of the rest of the Arctic seasonal sea ice region, although not in the Bering Sea or the Gulf of St. Lawrence. Concern has been raised that if the trends toward shortened sea ice seasons and lesser sea ice coverage continue, this could entail major consequences to the polar climate and to the lifestyles (and perhaps even the survivability) of polar bears and other polar species.

  19. Triple Isotope Water Measurements of Lake Untersee Ice using Off-Axis ICOS

    NASA Astrophysics Data System (ADS)

    Berman, E. S.; Huang, Y. W.; Andersen, D. T.; Gupta, M.; McKay, C. P.

    2015-12-01

    Lake Untersee (71.348°S, 13.458°E) is the largest surface freshwater lake in the interior of the Gruber Mountains of central Queen Maud Land in East Antarctica. The lake is permanently covered with ice, is partly bounded by glacier ice and has a mean annual air temperature of -10°C. In contrast to other Antarctic lakes the dominating physical process controlling ice-cover dynamics is low summer temperatures and high wind speeds resulting in sublimation rather than melting as the main mass-loss process. The ice-cover of the lake is composed of lake-water ice formed during freeze-up and rafted glacial ice derived from the Anuchin Glacier. The mix of these two fractions impacts the energy balance of the lake, which directly affects ice-cover thickness. Ice-cover is important if one is to understand the physical, chemical, and biological linkages within these unique, physically driven ecosystems. We have analyzed δ2H, δ18O, and δ17O from samples of lake and glacier ice collected at Lake Untersee in Dec 2014. Using these data we seek to answer two specific questions: Are we able to determine the origin and history of the lake ice, discriminating between rafted glacial ice and lake water? Can isotopic gradients in the surface ice indicate the ablation (sublimation) rate of the surface ice? The triple isotope water analyzer developed by Los Gatos Research (LGR 912-0032) uses LGR's patented Off-Axis ICOS (Integrated Cavity Output Spectroscopy) technology and incorporates proprietary internal thermal control for high sensitivity and optimal instrument stability. This analyzer measures δ2H, δ18O, and δ17O from water, as well as the calculated d-excess and 17O-excess. The laboratory precision in high performance mode for both δ17O and δ18O is 0.03 ‰, and for δ2H is 0.2 ‰. Methodology and isotope data from Lake Untersee samples are presented. Figure: Ice samples were collected across Lake Untersee from both glacial and lake ice regions for this study.

  20. Can Colleges Really Collaborate?

    ERIC Educational Resources Information Center

    Welch, Edwin H.

    2008-01-01

    Seven small private colleges in three states have found a way to reduce their administrative technology costs and expand their technological capability at the same time. They have done it by choosing the common-sense, yet unconventional, college and university strategy of genuine collaboration. The result, the Independent College Enterprise (ICE),…

  1. 78 FR 45550 - Agency Information Collection Activities: Extension, Without Change, of an Existing Information...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    ... Request. ACTION: 30-Day Notice of Information Collection; 73-028; ICE Mutual Agreement between Government... technological collection techniques or other forms of information technology, e.g., permitting electronic... program. The information provided by the company plays a vital role in determining that company's...

  2. Understanding Ice Shelf Basal Melting Using Convergent ICEPOD Data Sets: ROSETTA-Ice Study of Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Frearson, N.; Tinto, K. J.; Das, I.; Fricker, H. A.; Siddoway, C. S.; Padman, L.

    2017-12-01

    The future stability of the ice shelves surrounding Antarctica will be susceptible to increases in both surface and basal melt as the atmosphere and ocean warm. The ROSETTA-Ice program is targeted at using the ICEPOD airborne technology to produce new constraints on Ross Ice Shelf, the underlying ocean, bathymetry, and geologic setting, using radar sounding, gravimetry and laser altimetry. This convergent approach to studying the ice-shelf and basal processes enables us to develop an understanding of the fundamental controls on ice-shelf evolution. This work leverages the stratigraphy of the ice shelf, which is detected as individual reflectors by the shallow-ice radar and is often associated with surface scour, form close to the grounding line or pinning points on the ice shelf. Surface accumulation on the ice shelf buries these reflectors as the ice flows towards the calving front. This distinctive stratigraphy can be traced across the ice shelf for the major East Antarctic outlet glaciers and West Antarctic ice streams. Changes in the ice thickness below these reflectors are a result of strain and basal melting and freezing. Correcting the estimated thickness changes for strain using RIGGS strain measurements, we can develop decadal-resolution flowline distributions of basal melt. Close to East Antarctica elevated melt-rates (>1 m/yr) are found 60-100 km from the calving front. On the West Antarctic side high melt rates primarily develop within 10 km of the calving front. The East Antarctic side of Ross Ice Shelf is dominated by melt driven by saline water masses that develop in Ross Sea polynyas, while the melting on the West Antarctic side next to Hayes Bank is associated with modified Continental Deep Water transported along the continental shelf. The two sides of Ross Ice Shelf experience differing basal melt in part due to the duality in the underlying geologic structure: the East Antarctic side consists of relatively dense crust, with low amplitude magnetic anomalies, and deep bathymetry. The West Antarctic side displays high amplitude magnetic anomalies, lower densities and shallower water depths. The geologically-controlled bathymetry influences the access of water masses capable of basal melting into the ice shelf cavity with the deep troughs on the East Antarctic side facilitating melting.

  3. The Complex History of Trojan Asteroids

    NASA Astrophysics Data System (ADS)

    Emery, J. P.; Marzari, F.; Morbidelli, A.; French, L. M.; Grav, T.

    The Trojan asteroids, orbiting the Sun in Jupiter's stable Lagrange points, provide a unique perspective on the history of our solar system. As a large population of small bodies, they record important gravitational interactions in the dynamical evolution of the solar system. As primitive bodies, their compositions and physical properties provide windows into the conditions in the solar nebula in the region in which they formed. In the past decade, significant advances have been made in understanding their physical properties, and there has been a revolution in thinking about the origin of Trojans. The ice and organics generally presumed to be a significant part of Trojan composition have yet to be detected directly, although the low density of the binary system Patroclus (and possibly low density of the binary/moonlet system Hektor) is consistent with an interior ice component. By contrast, fine-grained silicates that appear to be similar to cometary silicates in composition have been detected, and a color bimodality may indicate distinct compositional groups among the Trojans. Whereas Trojans had traditionally been thought to have formed near 5 AU, a new paradigm has developed in which the Trojans formed in the proto-Kuiper belt, and were scattered inward and captured in the Trojan swarms as a result of resonant interactions of the giant planets. Whereas the orbital and population distributions of current Trojans are consistent with this origin scenario, there are significant differences between current physical properties of Trojans and those of Kuiper belt objects. These differences may be indicative of surface modification due to the inward migration of objects that became the Trojans, but understanding of appropriate modification mechanisms is poor and would benefit from additional laboratory studies. Many open questions about this intriguing population remain, and the future promises significant strides in our understanding of Trojans. The time is ripe for a spacecraft mission to the Trojans, to transform these objects into geologic worlds that can be studied in detail to unravel their complex history.

  4. Dynamics of landfast sea ice near Jangbogo Antarctic Research Station observed by SAR interferometry

    NASA Astrophysics Data System (ADS)

    Lee, H.; Han, H.

    2015-12-01

    Landfast sea ice is a type of sea ice adjacent to the coast and immobile for a certain period of time. It is important to analyze the temporal and spatial variation of landfast ice because it has significant influences on marine ecosystem and the safe operation of icebreaker vessels. However, it has been a difficult task for both remote sensing and in situ observation to discriminate landfast ice from other types of sea ice, such as pack ice, and also to understand the dynamics and internal strss-strain of fast ice. In this study, we identify landfast ice and its annual variation in Terra Nova Bay (74° 37' 4"S, 164° 13' 7"E), East Antarctica, where Jangbogo Antarctic Research Station has recently been constructed in 2014, by using Interferometric Synthetic Aperture Radar (InSAR) technology. We generated 38 interferograms having temporal baselines of 1-9 days out of 62 COSMO-SkyMed SAR images over Terra Nova Bay obtained from December 2010 to January 2012. Landfast ice began to melt in November 2011 when air temperature raised above freezing point but lasted more than two month to the end of the study period in January 2012. No meaningful relationship was found between sea ice extent and wind and current. Glacial strain (~67cm/day) is similar to tidal strain (~40 cm) so that they appear similar in one-day InSAR. As glacial stress is cumulative while tidal stress is oscillatory, InSAR images with weekly temporal baseline (7~9 days) revealed that a consistent motion of Campbell Glacier Tongue (CGT) is pushing the sea ice continuously to make interferometric fringes parallel to the glacier-sea ice contacts. Glacial interferometric fringe is parallel to the glacier-sea ice contact lines while tidal strain should be parallel to the coastlines defined by sea shore and glacier tongue. DDInSAR operation removed the consistent glacial strain leaving tidal strain alone so that the response of fast ice to tide can be used to deduce physical properties of sea ice in various ice stages. One-day InSAR images revealed that fast ice is not attached to CGT in the early ice formation stages while they began to couple with each other so that the entire glacial motion of up to 67cm/day is transferred directly to fast ice. In the final thawing stage just before ice breakage, ocean wave travelling through the fast ice is also observed by one-day InSAR.

  5. Aeropropulsion 1987. Session 5: Subsonic Propulsion Technology

    NASA Technical Reports Server (NTRS)

    1987-01-01

    NASA is conducting aeropropulsion research over a broad range of Mach numbers. In addition to the high-speed propulsion research described, major progress was recorded in research aimed at the subsonic flight regimes of interest to many commercial and military users. Recent progress and future directions in such areas as small engine technology, rotorcraft transmissions, icing, Hot Section Technology (HOST) and the Advanced Turboprop Program (ATP) are covered.

  6. Aeropropulsion '87. Session 5: Subsonic propulsion technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-11-01

    NASA is conducting aeropropulsion research over a broad range of Mach numbers. In addition to the high-speed propulsion research described, major progress was recorded in research aimed at the subsonic flight regimes of interest to many commercial and military users. Recent progress and future directions in such areas as small engine technology, rotorcraft transmissions, icing, Hot Section Technology (HOST) and the Advanced Turboprop Program (ATP) are covered.

  7. Micro-Tomographic Investigation of Ice and Clathrate Formation and Decomposition under Thermodynamic Monitoring

    PubMed Central

    Arzbacher, Stefan; Petrasch, Jörg; Ostermann, Alexander; Loerting, Thomas

    2016-01-01

    Clathrate hydrates are inclusion compounds in which guest molecules are trapped in a host lattice formed by water molecules. They are considered an interesting option for future energy supply and storage technologies. In the current paper, time lapse 3D micro computed tomographic (µCT) imaging with ice and tetrahydrofuran (THF) clathrate hydrate particles is carried out in conjunction with an accurate temperature control and pressure monitoring. µCT imaging reveals similar behavior of the ice and the THF clathrate hydrate at low temperatures while at higher temperatures (3 K below the melting point), significant differences can be observed. Strong indications for micropores are found in the ice as well as the THF clathrate hydrate. They are stable in the ice while unstable in the clathrate hydrate at temperatures slightly below the melting point. Significant transformations in surface and bulk structure can be observed within the full temperature range investigated in both the ice and the THF clathrate hydrate. Additionally, our results point towards an uptake of molecular nitrogen in the THF clathrate hydrate at ambient pressures and temperatures from 230 K to 271 K. PMID:28773789

  8. Augmenting WFIRST Microlensing with a Ground-Based Telescope Network

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Gould, Andrew

    2016-06-01

    Augmenting the Wide Field Infrared Survey Telescope (WFIRST) microlensing campaigns with intensive observations from a ground-based network of wide-field survey telescopes would have several major advantages. First, it would enable full two-dimensional (2-D) vector microlens parallax measurements for a substantial fraction of low-mass lenses as well as planetary and binary events that show caustic crossing features. For a significant fraction of the free-floating planet (FFP) events and all caustic-crossing planetary/binary events, these 2-D parallax measurements directly lead to complete solutions (mass, distance, transverse velocity) of the lens object (or lens system). For even more events, the complementary ground-based observations will yield 1-D parallax measurements. Together with the 1-D parallaxes from WFIRST alone, they can probe the entire mass range M > M_Earth. For luminous lenses, such 1-D parallax measurements can be promoted to complete solutions (mass, distance, transverse velocity) by high-resolution imaging. This would provide crucial information not only about the hosts of planets and other lenses, but also enable a much more precise Galactic model. Other benefits of such a survey include improved understanding of binaries (particularly with low mass primaries), and sensitivity to distant ice-giant and gas-giant companions of WFIRST lenses that cannot be detected by WFIRST itself due to its restricted observing windows. Existing ground-based microlensing surveys can be employed if WFIRST is pointed at lower-extinction fields than is currently envisaged. This would come at some cost to the event rate. Therefore the benefits of improved characterization of lenses must be weighed against these costs.

  9. Metal hydrides as negative electrode materials for Ni- MH batteries

    NASA Astrophysics Data System (ADS)

    Yartys, V.; Noreus, D.; Latroche, M.

    2016-01-01

    Structural, thermodynamical and electrochemical properties of metallic hydrides belonging to the pseudo-binary family A-Mg-Ni ( A: rare earths) are reviewed and compared. Technology aspects of bipolar cells are also discussed.

  10. The Behavior of Regular Satellites During the Planetary Migration

    NASA Astrophysics Data System (ADS)

    Nogueira, Erica Cristina; Gomes, R. S.; Brasser, R.

    2013-05-01

    Abstract (2,250 Maximum Characters): The behavior of the regular satellites of the giant planets during the instability phase of the Nice model needs to be better understood. In order to explain this behavior, we used numerical simulations to investigate the evolution of the regular satellite systems of the ice giants when these two planets experienced encounters with the gas giants. For the initial conditions we placed an ice planet in between Jupiter and Saturn, according to the evolution of Nice model simulations in a ‘jumping Jupiter’ scenario (Brasser et al. 2009). We used the MERCURY integrator (Chambers 1999) and cloned simulations by slightly modifying the Hybrid integrator changeover parameter. We obtained 101 successful runs which kept all planets, of which 24 were jumping Jupiter cases. Subsequently we performed additional numerical integrations in which the ice giant that encountered a gas giant was started on the same orbit but with its regular satellites included. This is done as follows: For each of the 101 basic runs, we save the orbital elements of all objects in the integration at all close encounter events. Then we performed a backward integration to start the system 100 years before the encounter and re-enacted the forward integration with the regular satellites around the ice giant. These integrations ran for 1000 years. The final orbital elements of the satellites with respect to the ice planet were used to restart the integration for the next planetary encounter (if any). If we assume that Uranus is the ice planet that had encounters with a gas giant, we considered the satellites Miranda, Ariel, Umbriel, Titania and Oberon with their present orbits around the planet. For Neptune we introduced Triton with an orbit with a 15% larger than the actual semi-major axis to account for the tidal decay from the LHB to present time. We also assume that Triton was captured through binary disruption (Agnor and Hamilton 2006, Nogueira et al. 2011) and its orbit was circularized by tides during the ~500 million years before the LHB. References: Agnor & Hamilton 2006, Nature 441, 192 Brasser et al. 2009, A&A 507, 1053 Chambers 1999, Mon. Not. R. Astron. Soc. 304, 793 Nogueira et al. 2011, Icarus 214, 113

  11. Validation of a Climate-Data Record of the "Clear-Kky" Surface Temperature of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Box, Jason E.; Koenig, Lora S.; DiGirolamo, Nicolo E.; Comiso, Josefino C.; Shuman, Christopher A.

    2011-01-01

    Surface temperatures on the Greenland Ice Sheet have been studied on the ground, using automatic weather station (AWS) data from the Greenland-Climate Network (GC-Net), and from analysis of satellite sensor data. Using Advanced Very High Frequency Radiometer (AVHRR) weekly surface temperature maps, warming of the surface of the Greenland Ice Sheet has been documented since 1981. We extended and refined this record using higher-resolution Moderate-Resolution Imaging Spectroradiometer (MODIS) data from March 2000 to the present. We developed a daily and monthly climate-data record (CDR) of the "clear-sky" surface temperature of the Greenland Ice Sheet using an ice-surface temperature (1ST) algorithm developed for use with MODIS data. Validation of this CDR is ongoing. MODIS Terra swath data are projected onto a polar stereographic grid at 6.25-km resolution to develop binary, gridded daily and mean-monthly 1ST maps. Each monthly map also has a color-coded image map that is available to download. Also included with the monthly maps is an accompanying map showing number of days in the month that were used to calculate the mean-monthly 1ST. This is important because no 1ST decision is made by the algorithm for cells that are considered cloudy by the internal cloud mask, so a sufficient number of days must be available to produce a mean 1ST for each grid cell. Validation of the CDR consists of several facets: 1) comparisons between ISTs and in-situ measurements; 2) comparisons between ISTs and AWS data; and 3) comparisons of ISTs with surface temperatures derived from other satellite instruments such as the Thermal Emission and Reflection Radiometer (ASTER) and Enhanced Thematic Mapper Plus (ETM+). Previous work shows that Terra MODIS ISTs are about 3 C lower than in-situ temperatures measured at Summit Camp, during the winter of 2008-09 under clear skies. In this work we begin to compare surface temperatures derived from AWS data with ISTs from the MODIS CDR. The Greenland Ice Sheet 1ST CDR will be useful for monitoring surface-temperature trends and can be used as input or for validation of climate models. The CDR can be extended into the future using MODIS Terra, Aqua and NPOESS Preparatory Project Visible Infrared Imager Radiometer Suite (VII RS) data.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bethkenhagen, M.; Meyer, Edmund Richard; Hamel, S.

    Here, the validity of the widely used linear mixing approximation (LMA) for the equations of state (EOSs) of planetary ices is investigated at pressure–temperature conditions typical for the interiors of Uranus and Neptune. The basis of this study is ab initio data ranging up to 1000 GPa and 20,000 K, calculated via density functional theory molecular dynamics simulations. In particular, we determine a new EOS for methane and EOS data for the 1:1 binary mixtures of methane, ammonia, and water, as well as their 2:1:4 ternary mixture. Additionally, the self-diffusion coefficients in the ternary mixture are calculated along three different Uranus interior profiles and compared to the values of the pure compounds. We find that deviations of the LMA from the results of the real mixture are generally small; for the thermal EOSs they amount to 4% or less. The diffusion coefficients in the mixture agree with those of the pure compounds within 20% or better. Finally, a new adiabatic model of Uranus with an inner layer of almost pure ices is developed. The model is consistent with the gravity field data and results in a rather cold interior (more » $${T}_{\\mathrm{core}}\\sim 4000$$ K).« less

  13. Planetary Drilling and Resources at the Moon and Mars

    NASA Technical Reports Server (NTRS)

    George, Jeffrey A.

    2012-01-01

    Drilling on the Moon and Mars is an important capability for both scientific and resource exploration. The unique requirements of spaceflight and planetary environments drive drills to different design approaches than established terrestrial technologies. A partnership between NASA and Baker Hughes Inc. developed a novel approach for a dry rotary coring wireline drill capable of acquiring continuous core samples at multi-meter depths for low power and mass. The 8.5 kg Bottom Hole Assembly operated at 100 We and without need for traditional drilling mud or pipe. The technology was field tested in the Canadian Arctic in sandstone, ice and frozen gumbo. Planetary resources could play an important role in future space exploration. Lunar regolith contains oxygen and metals, and water ice has recently been confirmed in a shadowed crater at the Moon.s south pole. Mars possesses a CO2 atmosphere, frozen water ice at the poles, and indications of subsurface aquifers. Such resources could provide water, oxygen and propellants that could greatly simplify the cost and complexity of exploration and survival. NASA/JSC/EP/JAG

  14. The Nature of Double-peaked [O III] Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Fu, Hai; Yan, Lin; Myers, Adam D.; Stockton, Alan; Djorgovski, S. G.; Aldering, G.; Rich, Jeffrey A.

    2012-01-01

    Active galactic nuclei (AGNs) with double-peaked [O III] lines are suspected to be sub-kpc or kpc-scale binary AGNs. However, pure gas kinematics can produce the same double-peaked line profile in spatially integrated spectra. Here we combine integral-field spectroscopy and high-resolution imaging of 42 double-peaked [O III] AGNs from the Sloan Digital Sky Survey to investigate the constituents of the population. We find two binary AGNs where the line splitting is driven by the orbital motion of the merging nuclei. Such objects account for only ~2% of the double-peaked AGNs. Almost all (~98%) of the double-peaked AGNs were selected because of gas kinematics; and half of those show spatially resolved narrow-line regions that extend 4-20 kpc from the nuclei. Serendipitously, we find two spectrally unresolved binary AGNs where gas kinematics produced the double-peaked [O III] lines. The relatively frequent serendipitous discoveries indicate that only ~1% of binary AGNs would appear double-peaked in Sloan spectra and 2.2+2.5 -0.8% of all Sloan AGNs are binary AGNs. Therefore, the double-peaked sample does not offer much advantage over any other AGN samples in finding binary AGNs. The binary AGN fraction implies an elevated AGN duty cycle (8+8 -3%), suggesting galaxy interactions enhance nuclear accretion. We illustrate that integral-field spectroscopy is crucial for identifying binary AGNs: several objects previously classified as "binary AGNs" with long-slit spectra are most likely single AGNs with extended narrow-line regions (ENLRs). The formation of ENLRs driven by radiation pressure is also discussed. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  15. Introducing two Random Forest based methods for cloud detection in remote sensing images

    NASA Astrophysics Data System (ADS)

    Ghasemian, Nafiseh; Akhoondzadeh, Mehdi

    2018-07-01

    Cloud detection is a necessary phase in satellite images processing to retrieve the atmospheric and lithospheric parameters. Currently, some cloud detection methods based on Random Forest (RF) model have been proposed but they do not consider both spectral and textural characteristics of the image. Furthermore, they have not been tested in the presence of snow/ice. In this paper, we introduce two RF based algorithms, Feature Level Fusion Random Forest (FLFRF) and Decision Level Fusion Random Forest (DLFRF) to incorporate visible, infrared (IR) and thermal spectral and textural features (FLFRF) including Gray Level Co-occurrence Matrix (GLCM) and Robust Extended Local Binary Pattern (RELBP_CI) or visible, IR and thermal classifiers (DLFRF) for highly accurate cloud detection on remote sensing images. FLFRF first fuses visible, IR and thermal features. Thereafter, it uses the RF model to classify pixels to cloud, snow/ice and background or thick cloud, thin cloud and background. DLFRF considers visible, IR and thermal features (both spectral and textural) separately and inserts each set of features to RF model. Then, it holds vote matrix of each run of the model. Finally, it fuses the classifiers using the majority vote method. To demonstrate the effectiveness of the proposed algorithms, 10 Terra MODIS and 15 Landsat 8 OLI/TIRS images with different spatial resolutions are used in this paper. Quantitative analyses are based on manually selected ground truth data. Results show that after adding RELBP_CI to input feature set cloud detection accuracy improves. Also, the average cloud kappa values of FLFRF and DLFRF on MODIS images (1 and 0.99) are higher than other machine learning methods, Linear Discriminate Analysis (LDA), Classification And Regression Tree (CART), K Nearest Neighbor (KNN) and Support Vector Machine (SVM) (0.96). The average snow/ice kappa values of FLFRF and DLFRF on MODIS images (1 and 0.85) are higher than other traditional methods. The quantitative values on Landsat 8 images show similar trend. Consequently, while SVM and K-nearest neighbor show overestimation in predicting cloud and snow/ice pixels, our Random Forest (RF) based models can achieve higher cloud, snow/ice kappa values on MODIS and thin cloud, thick cloud and snow/ice kappa values on Landsat 8 images. Our algorithms predict both thin and thick cloud on Landsat 8 images while the existing cloud detection algorithm, Fmask cannot discriminate them. Compared to the state-of-the-art methods, our algorithms have acquired higher average cloud and snow/ice kappa values for different spatial resolutions.

  16. Observing Arctic Sea Ice from Bow to Screen: Introducing Ice Watch, the Data Network of Near Real-Time and Historic Observations from the Arctic Shipborne Sea Ice Standardization Tool (ASSIST)

    NASA Astrophysics Data System (ADS)

    Orlich, A.; Hutchings, J. K.; Green, T. M.

    2013-12-01

    The Ice Watch Program is an open source forum to access in situ Arctic sea ice conditions. It provides the research community and additional stakeholders a convenient resource to monitor sea ice and its role in understanding the Arctic as a system by implementing a standardized observation protocol and hosting a multi-service data portal. International vessels use the Arctic Shipborne Sea Ice Standardization Tool (ASSIST) software to report near-real time sea ice conditions while underway. Essential observations of total ice concentration, distribution of multi-year ice and other ice types, as well as their respective stage of melt are reported. These current and historic sea ice conditions are visualized on interactive maps and in a variety of statistical analyses, and with all data sets available to download for further investigation. The summer of 2012 was the debut of the ASSIST software and the Ice Watch campaign, with research vessels from six nations reporting from a wide spatio-temporal scale spanning from the Beaufort Sea, across the North Pole and Arctic Basin, the coast of Greenland and into the Kara and Barents Seas during mid-season melt and into the first stages of freeze-up. The 2013 summer field season sustained the observation and data archiving record, with participation from some of the same cruises as well as other geographic and seasonal realms covered by new users. These results are presented to illustrate the evolution of the program, increased participation and critical statistics of ice regime change and record of melt and freeze processes revealed by the data. As an ongoing effort, Ice Watch/ASSIST aims to standardize observations of Arctic-specific sea ice features and conditions while utilizing nomenclature and coding based on the World Meteorological Organization (WMO) standards and the Antarctic Sea Ice and Processes & Climate (ASPeCt) protocol. Instigated by members of the CliC Sea Ice Working Group, the program has evolved with coordination from the International Arctic Research Center, software development by the Geographic Information Network of Alaska, and funding support from the Japanese Aerospace Exploration Agency (JAXA), the Japan Agency for Marine-Earth Science & Technology (JAMSTEC), and the National Science Foundation (NSF).

  17. All-weather ice information system for Alaskan arctic coastal shipping

    NASA Technical Reports Server (NTRS)

    Gedney, R. T.; Jirberg, R. J.; Schertler, R. J.; Mueller, R. A.; Chase, T. L.; Kramarchuk, I.; Nagy, L. A.; Hanlon, R. A.; Mark, H.

    1977-01-01

    A near real-time ice information system designed to aid arctic coast shipping along the Alaskan North Slope is described. The system utilizes a X-band Side Looking Airborne Radar (SLAR) mounted aboard a U.S. Coast Guard HC-130B aircraft. Radar mapping procedures showing the type, areal distribution and concentration of ice cover were developed. In order to guide vessel operational movements, near real-time SLAR image data were transmitted directly from the SLAR aircraft to Barrow, Alaska and the U.S. Coast Guard icebreaker Glacier. In addition, SLAR image data were transmitted in real time to Cleveland, Ohio via the NOAA-GOES Satellite. Radar images developed in Cleveland were subsequently facsimile transmitted to the U.S. Navy's Fleet Weather Facility in Suitland, Maryland for use in ice forecasting and also as a demonstration back to Barrow via the Communications Technology Satellite.

  18. Results From the First 118 GHz Passive Microwave Observations Over Antarctica

    NASA Astrophysics Data System (ADS)

    McAllister, R.; Gallaher, D. W.; Gasiewski, A. J.; Periasamy, L.; Belter, R.; Hurowitz, M.; Hosack, W.; Sanders, B. T.

    2017-12-01

    Cooperation between the University of Colorado (Center for Environmental Technology, National Snow and Ice Data Center, and Colorado Space Grant Consortium) and the private corporation Orbital Micro Systems (OMS) has resulted in a highly miniturized passive microwave sensor. This sensor was successfully flown over Antarctica in onboard NASA's DC-8 in Operation Ice Bridge (OIB) in October / November of 2016. Data was collected from the "MiniRad" 8 channel miniaturized microwave sensor, which operated as both a sounder and an imager. The non-calibrated observation included both high and low altitude observations over clouds, sea, ice, ice sheets, and mountains as well as terrain around Tierra del Fuego. Sample results and their significance will be discussed. The instrument is in a form factor suitable for deployment in cubesats and will be launched into orbit next year. Commercial deployments by OMS in a constellation configuration will shortly follow.

  19. In Situ Airborne Instrumentation: Addressing and Solving Measurement Problems in Ice Clouds

    DOE PAGES

    Baumgardner, Darrel; Kok, Greg; Avallone, L.; ...

    2012-02-01

    A meeting of 31 international experts on in situ measurements from aircraft was held to identify unresolved questions concerning ice formation and evolution in ice clouds, assess the current state of instrumentation that can address these problems, introduce emerging technology that may overcome current measurement issues and recommend future courses of action that can improve our understanding of ice cloud microphysical processes and their impact on the environment. The meeting proceedings and outcome has been described in detail in a manuscript submitted to the Bulletin of the American Meteorological Society (BAMS) on March 24, 2011. This paper is currently undermore » review. The remainder of this summary, in the following pages, is the text of the BAMS article. A technical note that will be published by the National Center for Atmospheric Research is currently underway and is expected to be published before the end of the year.« less

  20. Bibliography on Cold Regions Science and Technology. Volume 39, Part 1, 1985,

    DTIC Science & Technology

    1985-12-01

    ad their effect on ship speed . te.394678 Borodsachev, V.E., Dynamics of ice cover. Edited by 349Jskobshsnvna Glacier drainage basis: a balaneaess L.A...39-1856 lee navigation, Ships , lee conditions, Ice loads, Dam- Metzner, R.C., Hanson, A ., Johnson, J.. " s Environmental and performance monitoring...Russian. t1I 39-2594 Logistics, Marine transportation, Cargo . Ships . a refs. Deployment of satellite automatic weather sensing A brief-ree is heno (if the

  1. Continued evolution of Europa subsurface exploration technologies

    NASA Technical Reports Server (NTRS)

    Carsey, F. D.; Hecht, M. H.; Lane, A. L.; Mogensen, C.; Zimmerman, W.

    2002-01-01

    The Galileo results convincingly indicate that Europa has a deep salty ocean covered by a shell of water ice a few tens of kilometers thick; this physical description gives rise to a host of thoughtful speculation as to the nature of the ocean, its seafloor, and the likelihood of microbial life within it. We argue that this situation points to the high desirability of a series of in-situ missions to examine the ice and, ultimately, the ocean.

  2. Ice particle collisions

    NASA Astrophysics Data System (ADS)

    Sampara, Naresh; Turnbull, Barbara; Hill, Richard; Swift, Michael

    2017-04-01

    Granular interactions of ice occur in a range of geophysical, astrophysical and industrial applications. For example, Saturn's Rings are composed of icy particles from micrometers to kilometres in size - inertial and yet too small to interact gravitationally. In clouds, ice crystals are smashed to pieces before they re-aggregate to for snow floccules in a process that is very much open to interpretation. In a granular flow of ice particles, the energy spent in collisions can lead to localized surface changes and wetting, which in turn can promote aggregation. To understand the induced wetting and its effects, we present two novel experimental methods which provide snippets of insight into the collisional behaviour of macroscopic ice particles. Experiment 1: Microgravity experiments provide minute details of the contact between the ice particles during the collision. A diamagnetic levitation technique, as alternative to the parabolic flight or falling tower experiments, was used to understand the collisional behaviour of individual macroscopic icy bodies. A refrigerated cylinder, that can control ambient conditions, was inserted into the bore of an 18 Tesla superconducting magnet and cooled to -10°C. Initial binary collisions were created, where one 4 mm ice particle was levitated in the magnet bore whilst another particle was dropped vertically from the top of the bore. The trajectories of both particles were captured by high speed video to provide the three-dimensional particle velocities and track the collision outcome. Introducing complexity, multiple particles were levitated in the bore and an azimuthal turbulent air flow introduced, allowing the particles to collide with other particles within a coherent fluid structure (mimicking Saturn's rings, or an eddy in a cloud). In these experiments, a sequence of collisions occur, each one different to the previous one due to the changes in surface characteristics created by the collisions themselves. Aggregation becomes more likely when the particles are new and rough, but also after they have been through many collisions. Experiment 2: To create an even higher collision density and to understand the collective behaviour of these ice particles, a sample of them were placed to cover the tray of an electromagnetic shaker, mounted in an environment controlled chamber at -2°C. Continuous shaking of this system permitted observation of a spontaneous transition from dry granular behaviour to that of wetted granules. Vibrating with a fixed acceleration, image sequences were recorded every 10 min to show that at early stage (<15min) the particles adopted the dry granular flow (particles are free to bounce on the vibrating plate). After circa 40 min 90% particles became spontaneously immobile in an approximately hexagonally packed 2 dimensional sheet.

  3. Three Investigations of Low Mass Stars in the Milky Way Using New Technology Surveys

    NASA Astrophysics Data System (ADS)

    Lurie, John C.

    At least 80% of stars in the Milky Way have masses less than or equal to the Sun. These long lived stars are the most likely hosts of planets where complex life can develop. Although relatively stable on the timescale of billions of years, many low mass stars possess strong magnetic fields that are manifested in energetic surface activity, which may pose a hazard to both life and technology. Magnetic activity also influences the evolution of a low mass star through a feedback process that slows the rotation rate, which in turn tends to decrease the amount of activity. In this way, the rotation rate and activity level of a low mass star may provide an estimate of its age. Beyond their rotation-activity evolution as isolated objects, a small but important fraction of low mass stars have a close binary companion that influences the rotational and orbital properties of the system. Binary interaction can lead to phenomena such as supernovae, cataclysmic variables, and degenerate object mergers. From a larger perspective, low mass stars trace Galactic structure, and through their longevity serve as archives of the dynamical and chemical history of the Milky Way. Thus a full picture of low mass stars, and by extension the Milky Way, requires understanding their rotation and activity; their interaction in close binaries; and their spatial and kinematic distribution throughout the Galaxy. Historically, these topics have been approached from two separate but complementary modes of observation. Time series photometric surveys measure the stellar variability caused by rotation, activity, and binary interaction, while wide field surveys measure the brightnesses and colors of millions of stars to map their distribution in the Galaxy. The first generation of digital detectors and computing technology limited intensive time series surveys to a small number of stars, and limited wide field surveys to little if any variability information. Today those limitations are falling away. This thesis is composed of three investigations of low mass stars using two recent surveys at the cutting edge of detector technology. The Kepler space telescope carried the largest camera ever launched into space, and continuously monitored the brightnesses of hundreds of thousands of stars with unprecedented precision and cadence. The Pan-STARRS survey was equipped with the largest camera ever constructed, and imaged 75% percent of the sky to greater depth than any previous optical survey. The first investigation in this thesis used Kepler observations of a binary system containing two stars that are about one third the mass of the Sun. The convective motions in these stars extend to their centers, and so there is no interface with a radiative core to drive a solar-like dynamo that powers the magnetic activity of stars like the Sun. By virtue of being in a binary, the stars have the same age, providing a control for the interdependent effects of activity and rotation. The investigation found that the stars have nearly the same level of activity, despite one star rotating almost three times faster than the other. This suggests that in fully convective stars, there is a threshold rotation rate above which activity is no longer correlated with rotation. The second investigation also used Kepler observations, but in this case focused on low mass stars in close binaries, where tidal interactions are expected to circularize the orbit and synchronize the rotation rates to the orbital period. Prior to this investigation, there were few observational constraints on the tidal synchronization of stars with convective envelopes, and this investigation resulted in rotation period measurements for over 800 such stars. At orbital periods below approximately ten days, nearly all binaries are synchronized, while beyond ten days most binaries have eccentric orbits and rotation rates that are synchronized to the angular velocity at periastron. An unexpected result was that 15% of binaries with orbital periods below ten days are rotating about 13% slower than the synchronized rate. It was suggested that the equators of the stars are in fact synchronized, and that the subsynchronous signal originates from slower rotating high latitudes. The subsynchronous population presents a new test for theories of activity and differential rotation in tidally interacting binaries. The final investigation used Pan-STARRS observations to search for asymmetries in the disk of the Milky Way. In this case, low mass stars served as tracers of Galactic structure. Previous deep optical surveys avoided the Galactic plane, but Pan-STARRS enabled a comprehensive search. In particular, asymmetries in the stellar density distribution may be the result of interactions with satellite galaxies, and the frequency and nature of the interactions provide an observational test case for theories of galaxy formation. (Abstract shortened by ProQuest.).

  4. Pluto's Paleoglaciation: Processes and Bounds

    NASA Astrophysics Data System (ADS)

    Umurhan, Orkan; Howard, Alan D.; White, Oliver L.; Moore, Jeffrey M.; Grundy, William M.; Schenk, Paul M.; Beyer, Ross A.; McKinnon, William B.; Singer, Kelsi N.; Lauer, Tod R.; Cheng, Andrew F.; Stern, S. Alan; Weaver, Harold A.; Young, Leslie; Ennico, Kimberly; Olkin, Catherine; New Horizons Science Team

    2017-10-01

    New Horizons imaging of Pluto’s surface shows eroded landscapes reminiscent of assorted glaciated terrains found on the Earth such as alpine valleys, dendritic networks and others. For example, LORRI imaging of fluted craters show radially oriented ridging which also resembles Pluto’s washboard terrain. Digital elevation modeling indicates that these down-gradient oriented ridges are about 3-4 km spaced apart with depths ranging from 0.2-0.5 km. Present day glaciation on Pluto is characterized by moving N2 ice blocks presumably riding over a H2O ice bedrock substrate. Assuming Pluto’s ancient surface was sculpted by N2 glaciation, what remains a mystery is the specific nature of the glacial erosion mechanism(s) responsible for the observed features.To better resolve this puzzle, we perform landform evolution modeling of several glacial erosion processes known from terrestrial H2O ice glaciation studies. These terrestrial processes, which depend upon whether or not the glacier’s base is wet or dry, include quarrying/plucking and fluvial erosion. We also consider new erosional processes (to be described in this presentation) which are unique to the highly insulating character of solid N2 including both phase change induced hydrofracture and geothermally driven basal melt. Until improvements in our knowledge of solid N2’s rheology are made available (including its mechanical behavior as a binary/trinary mixture of CH4 and CO), it is difficult to assess with high precision which of the aforementioned erosion mechanisms are responsible for the observed surface etchings.Nevertheless, we consider a model crater surface and examine its erosional development due to flowing N2 glacial ice as built up over time according to N2 deposition rates based on GCM modeling of Pluto’s ancient atmosphere. For given erosional mechanism our aim is to determine the permissible ranges of model input parameters (e.g., ice strength, flow rates, grain sizes, quarrying rates, etc.) that best reproduces the observed length scales found on the observed fluted craters. As of the writing of this abstract, both the processes of quarrying and phase change induced hydrofracture appear to be most promising at explaining the fluted crater ridging.

  5. Pluto's Paleoglaciation: Processes and Bounds.

    NASA Astrophysics Data System (ADS)

    Umurhan, O. M.; Howard, A. D.; White, O. L.; Moore, J. M.; Grundy, W. M.; Schenk, P.; Beyer, R. A.; McKinnon, W. B.; Singer, K. N.; Lauer, T.; Cheng, A. F.; Stern, A.; Weaver, H. A., Jr.; Young, L. A.; Ennico Smith, K.; Olkin, C.

    2017-12-01

    New Horizons imaging of Pluto's surface shows eroded landscapes reminiscent of assorted glaciated terrains found on the Earth such as alpine valleys, dendritic networks and others. For example, LORRI imaging of fluted craters show radially oriented ridging which also resembles Pluto's washboard terrain. Digital elevation modeling indicates that these down-gradient oriented ridges are about 3-4 km spaced apart with depths ranging from 0.2-0.5 km. Present day glaciation on Pluto is characterized by moving N2 ice blocks presumably riding over a H2O ice bedrock substrate. Assuming Pluto's ancient surface was sculpted by N2 glaciation, what remains a mystery is the specific nature of the glacial erosion mechanism(s) responsible for the observed features. To better resolve this puzzle, we perform landform evolution modeling of several glacial erosion processes known from terrestrial H2O ice glaciation studies. These terrestrial processes, which depend upon whether or not the glacier's base is wet or dry, include quarrying/plucking and fluvial erosion. We also consider new erosional processes (to be described in this presentation) which are unique to the highly insulating character of solid N2 including both phase change induced hydrofracture and geothermally driven basal melt. Until improvements in our knowledge of solid N2's rheology are made available (including its mechanical behavior as a binary/trinary mixture of CH4 and CO), it is difficult to assess with high precision which of the aforementioned erosion mechanisms are responsible for the observed surface etchings. Nevertheless, we consider a model crater surface and examine its erosional development due to flowing N2 glacial ice as built up over time according to N2 deposition rates based on GCM modeling of Pluto's ancient atmosphere. For given erosional mechanism our aim is to determine the permissible ranges of model input parameters (e.g., ice strength, flow rates, grain sizes, quarrying rates, etc.) that best reproduces the observed length scales found on the observed fluted craters. As of the writing of this abstract, both the processes of quarrying and phase change induced hydrofracture appear to be most promising at explaining the fluted crater ridging.

  6. Validation of a Climate-Data Record of the "Clear-Sky" Surface Temperature of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Box, Jason E.; Koenig, Lora S.; DiGirolamo, Nicolo E.; Comiso, Josefino C.; Shuman, Christopher A.

    2011-01-01

    Surface temperatures on the Greenland Ice Sheet have been studied on the ground, using automatic weather station (AWS) data from the Greenland-Climate Network (GC-Net), and from analysis of satellite sensor data. Using Advanced Very High Frequency Radiometer (AVHRR) weekly surface temperature maps, warming of the surface of the Greenland Ice Sheet has been documented since 1981. We extended and refined this record using higher-resolution Moderate-Resolution Imaging Spectroradiometer (MODIS) data from March 2000 to the present. We developed a daily and monthly climate-data record (CDR) of the "clear-sky" surface temperature of the Greenland Ice Sheet using an ice-surface temperature (1ST) algorithm developed for use with MODIS data. Validation of this CDR is ongoing. MODIS Terra swath data are projected onto a polar stereographic grid at 6.25-km resolution to develop binary, gridded daily and mean-monthly 1ST maps. Each monthly map also has a color-coded image map that is available to download. Also included with the monthly maps is an accompanying map showing number of days in the month that were used to calculate the mean-monthly 1ST. This is important because no 1ST decision is made by the algorithm for cells that are considered cloudy by the internal cloud mask, so a sufficient number of days must be available to produce a mean 1ST for each grid cell. Validation of the CDR consists of several facets: 1) comparisons between ISTs and in-situ measurements; 2) comparisons between ISTs and AWS data; and 3) comparisons of ISTs with surface temperatures derived from other satellite instruments such as the Thermal Emission and Reflection Radiometer (ASTER) and Enhanced Thematic Mapper Plus (ETM+). Previous work shows that Terra MODIS ISTs are about 3 C lower than in-situ temperatures measured at Summit Camp, during the winter of 2008-09 under clear skies. In this work we begin to compare surface temperatures derived from AWS data with ISTs from the MODIS CDR.

  7. Web-based Tools for Educators: Outreach Activities of the Polar Radar for Ice Sheet Measurements (PRISM) Project

    NASA Astrophysics Data System (ADS)

    Braaten, D. A.; Holvoet, J. F.; Gogineni, S.

    2003-12-01

    The Radar Systems and Remote Sensing Laboratory at the University of Kansas (KU) has implemented extensive outreach activities focusing on Polar Regions as part of the Polar Radar for Ice Sheet Measurements (PRISM) project. The PRISM project is developing advanced intelligent remote sensing technology that involves radar systems, an autonomous rover, and communications systems to measure detailed ice sheet characteristics, and to determine bed conditions (frozen or wet) below active ice sheets in both Greenland and Antarctica. These measurements will provide a better understanding of the response of polar ice sheets to global climate change and the resulting impact the ice sheets will have on sea level rise. Many of the research and technological development aspects of the PRISM project, such as robotics, radar systems, climate change and exploration of harsh environments, can kindle an excitement and interest in students about science and technology. These topics form the core of our K-12 education and training outreach initiatives, which are designed to capture the imagination of young students, and prompt them to consider an educational path that will lead them to scientific or engineering careers. The K-12 PRISM outreach initiatives are being developed and implemented in a collaboration with the Advanced Learning Technology Program (ALTec) of the High Plains Regional Technology in Education Consortium (HPR*TEC). ALTec is associated with the KU School of Education, and is a well-established educational research center that develops and hosts web tools to enable teachers nationwide to network, collaborate, and share resources with other teachers. An example of an innovative and successful web interface developed by ALTec is called TrackStar. Teachers can use TrackStar over the Web to develop interactive, resource-based lessons (called tracks) on-line for their students. Once developed, tracks are added to the TrackStar database and can be accessed and modified (if necessary) by teachers everywhere. The PRISM project has added a search engine for polar related tracks, and has developed numerous new tracks on robotics, polar exploration, and climate change under the guidance of a K-12 teacher advisory group. The PRISM project is also developing and hosting several other web-based lesson design tools and resources for K-12 educators and students on the PRISM project web page (http://www.ku-prism.org). These tools and resources include: i) "Polar Scientists and Explorers, Past and Present" covering the travels and/or unknown fate of polar explorers and scientists; ii) "Polar News" providing links to current news articles related to polar regions; iii) "Letter of Global Concern", which is a tool to help students draft a letter to a politician, government official, or business leader; iv) "Graphic Sleuth", which is an online utility that allows teachers to make lessons for student use; v) "Bears on Ice" for students in grades K - 6 that can follow the adventures of two stuffed bears that travel with scientists into polar regions; and vi) "K-12 Polar Resources," which provides teachers with images, information, TrackStar lessons, and a search engine designed to identify polar related lessons. In our presentation, we will describe and show examples of these tools and resources, and provide an assessment of their popularity with teachers nationwide.

  8. Changes in Black Carbon Deposition to Antarctica from Two Ice Core Records, A.D. 1850-2000

    NASA Technical Reports Server (NTRS)

    Bisiaux, Marion M.; Edward, Ross; McConnell, Joseph R.; Curran, Mark A. J.; VanOmmen, Tas D.; Smith, Andrew M.; Neumann, Thomas A.; Pasteris, Daniel R.; Penner, Joyce E.; Taylor, Kendrick

    2012-01-01

    Continuous flow analysis was based on a steady sample flow and in-line detection of BC and other chemical substances as described in McConnell et al. (2007). In the cold room, previously cut one meter ice core sticks of 3x3cm, are melted continuously on a heated melter head specifically designed to eliminate contamination from the atmosphere or by the external parts of the ice. The melted ice from the most inner part of the ice stick is continuously pumped by a peristaltic pump and carried to a clean lab by Teflon lines. The recorded signal is continuous, integrating a sample volume of about 0.05 mL, for which the temporal resolution depends on the speed of melting, ice density and snow accumulation rate at the ice core drilling site. For annual accumulation derived from the WAIS and Law Dome ice cores, we assumed 3.1 cm water equivalent uncertainty in each year's accumulation from short scale spatial variability (glaciological noise) which was determined from several measurements of annual accumulation in multiple parallel ice cores notably from the WAIS Divide ice core site (Banta et al., 2008) and from South Pole site (McConnell et al., 1997; McConnell et al., 2000). Refractory black carbon (rBC) concentrations were determined using the same method as in (Bisiaux et al., 2011) and adapted to continuous flow measurements as described by (McConnell et al., 2007). The technique uses a single particle intracavity laser induced incandescence photometer (SP2, Droplet Measurement Technologies, Boulder, Colorado) coupled to an ultrasonic nebulizer/desolvation (CETAC UT5000) Flow Injection Analysis (FIA). All analyses, sample preparation etc, were performed in a class 100 cleanroom using anti contamination "clean techniques". The samples were not acidified.

  9. Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds

    NASA Astrophysics Data System (ADS)

    Schnaiter, Martin; Järvinen, Emma; Vochezer, Paul; Abdelmonem, Ahmed; Wagner, Robert; Jourdan, Olivier; Mioche, Guillaume; Shcherbakov, Valery N.; Schmitt, Carl G.; Tricoli, Ugo; Ulanowski, Zbigniew; Heymsfield, Andrew J.

    2016-04-01

    This study reports on the origin of small-scale ice crystal complexity and its influence on the angular light scattering properties of cirrus clouds. Cloud simulation experiments were conducted at the AIDA (Aerosol Interactions and Dynamics in the Atmosphere) cloud chamber of the Karlsruhe Institute of Technology (KIT). A new experimental procedure was applied to grow and sublimate ice particles at defined super- and subsaturated ice conditions and for temperatures in the -40 to -60 °C range. The experiments were performed for ice clouds generated via homogeneous and heterogeneous initial nucleation. Small-scale ice crystal complexity was deduced from measurements of spatially resolved single particle light scattering patterns by the latest version of the Small Ice Detector (SID-3). It was found that a high crystal complexity dominates the microphysics of the simulated clouds and the degree of this complexity is dependent on the available water vapor during the crystal growth. Indications were found that the small-scale crystal complexity is influenced by unfrozen H2SO4 / H2O residuals in the case of homogeneous initial ice nucleation. Angular light scattering functions of the simulated ice clouds were measured by the two currently available airborne polar nephelometers: the polar nephelometer (PN) probe of Laboratoire de Métérologie et Physique (LaMP) and the Particle Habit Imaging and Polar Scattering (PHIPS-HALO) probe of KIT. The measured scattering functions are featureless and flat in the side and backward scattering directions. It was found that these functions have a rather low sensitivity to the small-scale crystal complexity for ice clouds that were grown under typical atmospheric conditions. These results have implications for the microphysical properties of cirrus clouds and for the radiative transfer through these clouds.

  10. Overview of High Speed Close-Up Imaging in an Icing Environment

    NASA Technical Reports Server (NTRS)

    Miller, Dean R.; Lynch, Christopher J.; Tate, Peter A.

    2004-01-01

    The Icing Branch and Imaging Technology Center at NASA Glenn Research Center have recently been involved in several projects where high speed close-up imaging was used to investigate water droplet impact/splash, and also ice particle impact/bounce in an icing wind tunnel. The combination of close-up and high speed imaging capabilities were required because the particles being studied were relatively small (d < 1 mm in diameter), and the impact process occurred in a very short time period (t(sub impact) << 1 sec). High speed close-up imaging was utilized to study the dynamics of droplet impact and splash in simulated Supercooled Large Droplet (SLD) icing conditions. The objective of this test was to evaluate the capability of a ultra high speed camera system to acquire quantitative information about the impact process (e.g., droplet size, velocity). Imaging data were obtained in an icing wind tunnel for spray cloud MVD > 50 m. High speed close-up imaging was also utilized to characterize the impact of ice particles on an airfoil with a thermally protected leading edge. The objective of this investigation was to determine whether ice particles tend to "stick" or "bounce" after impact. Imaging data were obtained for cases where the airfoil surface was heated and unheated. Based on the results from this test, follow on tests were conducted to investigate ice particle impact on the sensing elements of water content measurement devices. This paper will describe the use of the imaging systems to support these experimental investigations, present some representative results, and summarize what was learned about the use of these systems in an icing environment.

  11. Uncertainty Quantification for Ice Sheet Science and Sea Level Projections

    NASA Astrophysics Data System (ADS)

    Boening, C.; Schlegel, N.; Limonadi, D.; Schodlok, M.; Seroussi, H. L.; Larour, E. Y.; Watkins, M. M.

    2017-12-01

    In order to better quantify uncertainties in global mean sea level rise projections and in particular upper bounds, we aim at systematically evaluating the contributions from ice sheets and potential for extreme sea level rise due to sudden ice mass loss. Here, we take advantage of established uncertainty quantification tools embedded within the Ice Sheet System Model (ISSM) as well as sensitivities to ice/ocean interactions using melt rates and melt potential derived from MITgcm/ECCO2. With the use of these tools, we conduct Monte-Carlo style sampling experiments on forward simulations of the Antarctic ice sheet, by varying internal parameters and boundary conditions of the system over both extreme and credible worst-case ranges. Uncertainty bounds for climate forcing are informed by CMIP5 ensemble precipitation and ice melt estimates for year 2100, and uncertainty bounds for ocean melt rates are derived from a suite of regional sensitivity experiments using MITgcm. Resulting statistics allow us to assess how regional uncertainty in various parameters affect model estimates of century-scale sea level rise projections. The results inform efforts to a) isolate the processes and inputs that are most responsible for determining ice sheet contribution to sea level; b) redefine uncertainty brackets for century-scale projections; and c) provide a prioritized list of measurements, along with quantitative information on spatial and temporal resolution, required for reducing uncertainty in future sea level rise projections. Results indicate that ice sheet mass loss is dependent on the spatial resolution of key boundary conditions - such as bedrock topography and melt rates at the ice-ocean interface. This work is performed at and supported by the California Institute of Technology's Jet Propulsion Laboratory. Supercomputing time is also supported through a contract with the National Aeronautics and Space Administration's Cryosphere program.

  12. Bacterial Ice Nucleation in Monodisperse D2O and H2O-in-Oil Emulsions.

    PubMed

    Weng, Lindong; Tessier, Shannon N; Smith, Kyle; Edd, Jon F; Stott, Shannon L; Toner, Mehmet

    2016-09-13

    Ice nucleation is of fundamental significance in many areas, including atmospheric science, food technology, and cryobiology. In this study, we investigated the ice-nucleation characteristics of picoliter-sized drops consisting of different D2O and H2O mixtures with and without the ice-nucleating bacteria Pseudomonas syringae. We also studied the effects of commonly used cryoprotectants such as ethylene glycol, propylene glycol, and trehalose on the nucleation characteristics of D2O and H2O mixtures. The results show that the median freezing temperature of the suspension containing 1 mg/mL of a lyophilized preparation of P. syringae is as high as -4.6 °C for 100% D2O, compared to -8.9 °C for 100% H2O. As the D2O concentration increases every 25% (v/v), the profile of the ice-nucleation kinetics of D2O + H2O mixtures containing 1 mg/mL Snomax shifts by about 1 °C, suggesting an ideal mixing behavior of D2O and H2O. Furthermore, all of the cryoprotectants investigated in this study are found to depress the freezing phenomenon. Both the homogeneous and heterogeneous freezing temperatures of these aqueous solutions depend on the water activity and are independent of the nature of the solute. These findings enrich our fundamental knowledge of D2O-related ice nucleation and suggest that the combination of D2O and ice-nucleating agents could be a potential self-ice-nucleating formulation. The implications of self-nucleation include a higher, precisely controlled ice seeding temperature for slow freezing that would significantly improve the viability of many ice-assisted cryopreservation protocols.

  13. Human locomotion on ice: the evolution of ice-skating energetics through history.

    PubMed

    Formenti, Federico; Minetti, Alberto E

    2007-05-01

    More than 3000 years ago, peoples living in the cold North European regions started developing tools such as ice skates that allowed them to travel on frozen lakes. We show here which technical and technological changes determined the main steps in the evolution of ice-skating performance over its long history. An in-depth historical research helped identify the skates displaying significantly different features from previous models and that could consequently determine a better performance in terms of speed and energy demand. Five pairs of ice skates were tested, from the bone-skates, dated about 1800 BC, to modern ones. This paper provides evidence for the fact that the metabolic cost of locomotion on ice decreased dramatically through history, the metabolic cost of modern ice-skating being only 25% of that associated with the use of bone-skates. Moreover, for the same metabolic power, nowadays skaters can achieve speeds four times higher than their ancestors could. In the range of speeds considered, the cost of travelling on ice was speed independent for each skate model, as for running. This latter finding, combined with the accepted relationship between time of exhaustion and the sustainable fraction of metabolic power, gives the opportunity to estimate the maximum skating speed according to the distance travelled. Ice skates were probably the first human powered locomotion tools to take the maximum advantage from the biomechanical properties of the muscular system: even when travelling at relatively high speeds, the skating movement pattern required muscles to shorten slowly so that they could also develop a considerable amount of force.

  14. Phase-sensitive radar on thick Antarctic ice - how well does it work?

    NASA Astrophysics Data System (ADS)

    Binder, Tobias; Eisen, Olaf; Helm, Veit; Humbert, Angelika; Steinhage, Daniel

    2016-04-01

    Phase-sensitive radar (pRES) has become one of the mostly used tools to determine basal melt rates as well as vertical strain in ice sheets. Whereas most applications are performed on ice shelves, only few experiments were conducted on thick ice in Greenland or Antarctica. The technical constrains on an ice shelf to deduce basal melt rates are less demanding than on inland ice of more than 2 km thickness. First, the ice itself is usually only several 100s of meters thick; and, second, the reflection coefficient at the basal interface between sea water and ice is the second strongest one possible. Although the presence of marine ice with higher conductivities might increase attenuation in the lower parts, most experiments on shelves were successful. To transfer this technology to inland regions, either for the investigation of basal melt rates of subglacial hydrological networks or for determining vertical strain rates in basal regions, a reliable estimate of the current system performance is necessary. To this end we conducted an experiment at and in the vicinity of the EPICA deep ice core drill site EDML in Dronning Maud Land, Antarctica. That site has been explored in extraordinary detail with different geophysical methods and provides an already well-studied ice core and borehole, in particular with respect to physical properties like crystal orientation fabric, dielectric properties and matching of internal radar horizons with conductivity signals. We present data from a commercially available pRES system initially recorded in January 2015 and repeated measurements in January 2016. The pRES data are matched to existing and already depth-calibrated airborne radar data. Apart from identifying prominent internal layers, e.g. the one originating from the deposits of the Toba eruption at around 75 ka, we put special focus on the identification of the basal reflection at multiple polarizations. We discuss the potential uncertainty estimates and requirements to unambiguously identify the basal melt rate on thick grounded ice in Antarctica.

  15. Effect of MeV Electron Radiation on Europa’s Surface Ice Analogs

    NASA Astrophysics Data System (ADS)

    Gudipati, Murthy; Henderson, Bryana; Bateman, Fred

    2017-10-01

    MeV electrons that impact Europa’s trailing hemisphere and cause both physical and chemical alteration of the surface and near-surface. The trailing hemisphere receives far lower fluxes above 25 MeV as compared with lower energy particles, but can cause significant chemical and physical modifications at these energies. With NASA's planned Europa Clipper mission and a Europa Lander Concept on the horizon, it is critical to understand and quantify the effect of Europa’s radiation environment on the surface and near surface.Electrons penetrate through ice by far the deepest at any given energy compared to protons and ions, making the role of electrons very important to understand. In addition, secondary radiation - Bremsstrahlung, in X-ray wavelengths - is generated during high-energy particle penetration through solids. Secondary X-rays are equally lethal to life and penetrate even deeper than electrons, making the cumulative effect of radiation on damaging organic matter on the near surface of Europa a complex process that could have effects several meters below Europa’s surface. Other physical properties such as coloration could be caused by radiation.In order to quantify this effect under realistic Europa trailing hemisphere conditions, we devised, built, tested, and obtained preliminary results using our ICE-HEART instrument prototype totally funded by JPL’s internal competition funding for Research and Technology Development. Our Ice Chamber for Europa High-Energy Electron And Radiation-Environment Testing (ICE-HEART) operates at ~100 K. We have also implemented a magnet that is used to remove primary electrons subsequent to passing through an ice column, in order to determine the flux of secondary X-radiation and its penetration through ice.Some of the first results from these studies will be presented and their relevance to understand physical and chemical properties of Europa’s trailing hemisphere surface.This work has been carried out at Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration, and funded by JPL’s R&TD Program and NASA Solar System Workings Program.

  16. Eighteenth annual offshore technology conference. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-01-01

    These sixty papers were given at a conference on offshore technology. Topics covered include friction effects of driving piles into sea beds of various compositions, wave forces on offshore platforms, stability, materials testing of various components such as plates, legs, wellheads, pipe joints, and protection of offshore platforms against ice and collision with icebergs.

  17. Making Ice Creep in the Classroom

    NASA Astrophysics Data System (ADS)

    Prior, David; Vaughan, Matthew; Banjan, Mathilde; Hamish Bowman, M.; Craw, Lisa; Tooley, Lauren; Wongpan, Pat

    2017-04-01

    Understanding the creep of ice has direct application to the role of ice sheet flow in sea level and climate change and to modelling of icy planets and satellites of the outer solar system. Additionally ice creep can be used as an analogue for the high temperature creep of rocks, most particularly quartzites. We adapted technologies developed for ice creep experiments in the research lab, to build some inexpensive ( EU200) rigs to conduct ice creep experiments in an undergraduate (200 and 300 level) class in rock deformation. The objective was to give the students an experience of laboratory rock deformation experiments so that they would understand better what controls the creep rate of ice and rocks. Students worked in eight groups of 5/6 students. Each group had one deformation rig and temperature control system. Each group conducted two experiments over a 2 week period. The results of all 16 experiments were then shared so that all students could analyse the mechanical data and generate a "flow law" for ice. Additionally thin sections were made of each deformed sample so that some microstructural analysis could be incorporated in the data analysis. Students were able to derive a flow law that showed the relationship of creep rate to both stress and temperature. The flow law matches with those from published research. The class did provide a realistic introduction to laboratory rock deformation experiments and helped students' understanding of what controls the creep of rocks.

  18. ARM West Antarctic Radiation Experiment (AWARE) Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lubin, Daniel; Bromwich, David H; Vogelmann, Andrew M

    The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment (AWARE) is the most technologically advanced atmospheric and climate science campaign yet fielded in Antarctica. AWARE was motivated be recent concern about the impact of cryospheric mass loss on global sea level rise. Specifically, the West Antarctic Ice Sheet (WAIS) is now the second largest contributor to rising sea level, after the Greenland Ice Sheet. As steadily warming ocean water erodes the grounding lines of WAIS components where they meet the Amundsen and Bellingshausen Seas, the retreating grounding lines moving inland and downslope on the underlyingmore » terrain imply mechanical instability of the entire WAIS. There is evidence that this point of instability may have already been reached, perhaps signifying more rapid loss of WAIS ice mass. At the same time, the mechanical support provided by adjacent ice shelves, and also the fundamental stability of exposed ice cliffs at the ice sheet grounding lines, will be adversely impacted by a warming atmosphere that causes more frequent episodes of surface melting. The surface meltwater damages the ice shelves and ice cliffs through hydrofracturing. With the increasing concern regarding these rapid cryospheric changes, AWARE was motivated by the need to (a) diagnose the surface energy balance in West Antarctica as related to both summer season climatology and potential surface melting, and (b) improve global climate model (GCM) performance over Antarctica, such that future cryospheric projections can be more reliable.« less

  19. Shape-Memory-Alloy-Based Deicing System Developed

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Ice buildup on aircraft leading edge surfaces has historically been a problem. Most conventional deicing systems rely either on surface heating to melt the accreted ice or pneumatic surface inflation to mechanically debond the ice. Deicers that rely solely on surface heating require large amounts of power. Pneumatic deicers usually cannot remove thin layers of ice and lack durability. Thus, there is a need for an advanced, low-power ice protection system. As part of the NASA Small Business and Innovation Research (SBIR) program, Innovative Dynamics, Inc., developed an aircraft deicing system that utilizes the properties of Shape Memory Alloys (SMA). The SMA-based system has achieved promising improvements in energy efficiency and durability over more conventional deicers. When they are thermally activated, SMA materials change shape; this is analogous to a conventional thermal expansion. The thermal input is currently applied via conventional technology, but there are plans to implement a passive thermal input that is supplied from the energy transfer due to the formation of the ice itself. The actively powered deicer was tested in the NASA Lewis Icing Research Tunnel on a powered rotating rig in early 1995. The system showed promise, deicing both rime and glaze ice shapes as thin as 1/8 in. The first prototype SMA deicer reduced power usage by 45 percent over existing electrothermal systems. This prototype system was targeted for rotorcraft system development. However, there are current plans underway to develop a fixed-wing version of the deicer.

  20. Shock waves in binary oxides memristors

    NASA Astrophysics Data System (ADS)

    Tesler, Federico; Tang, Shao; Dobrosavljević, Vladimir; Rozenberg, Marcelo

    2017-09-01

    Progress of silicon based technology is nearing its physical limit, as minimum feature size of components is reaching a mere 5 nm. The resistive switching behavior of transition metal oxides and the associated memristor device is emerging as a competitive technology for next generation electronics. Significant progress has already been made in the past decade and devices are beginning to hit the market; however, it has been mainly the result of empirical trial and error. Hence, gaining theoretical insight is of essence. In the present work we report a new connection between the resistive switching and shock wave formation, a classic topic of non-linear dynamics. We argue that the profile of oxygen ions that migrate during the commutation in insulating binary oxides may form a shock wave, which propagates through a poorly conductive region of the device. We validate the scenario by means of model simulations.

  1. X-Rays from Galaxies Teeming with Black Holes and Neutron Stars

    NASA Technical Reports Server (NTRS)

    Hornschemeier, Ann

    2010-01-01

    Thanks to more than forty years of investment in space-based technology capable of observing the Universe in the x-ray band (0.5 - 100 keV), we have learned quite a bit about the X-ray universe. It has become clear that most of the glow of the X-ray sky is attributed to accretion onto supermassive black holes. However, as we push ever fainter in our detection methods, we find an interesting population of very faint sources arising. These are normal "Milky-way-type" galaxies that also glow in X-rays. The X-ray emission from these galaxies arises from populations of accreting black holes and neutron stars contained in binary systems. This talk will describe our understanding of this population, including some strange regularity in the production of such accreting binary systems. The future, including new technology planned for the next 5-10 years and anticipated theoretical advancements, will also be discussed.

  2. The first frost in the Pipe Nebula

    NASA Astrophysics Data System (ADS)

    Goto, Miwa; Bailey, Jeffrey D.; Hocuk, Seyit; Caselli, Paola; Esplugues, Gisela B.; Cazaux, Stephanie; Spaans, Marco

    2018-02-01

    Context. Spectroscopic studies of ices in nearby star-forming regions indicate that ice mantles form on dust grains in two distinct steps, starting with polar ice formation (H2O rich) and switching to apolar ice (CO rich). Aims: We test how well the picture applies to more diffuse and quiescent clouds where the formation of the first layers of ice mantles can be witnessed. Methods: Medium-resolution near-infrared spectra are obtained toward background field stars behind the Pipe Nebula. Results: The water ice absorption is positively detected at 3.0 μm in seven lines of sight out of 21 sources for which observed spectra are successfully reduced. The peak optical depth of the water ice is significantly lower than those in Taurus with the same AV. The source with the highest water-ice optical depth shows CO ice absorption at 4.7 μm as well. The fractional abundance of CO ice with respect to water ice is 16-6+7%, and about half as much as the values typically seen in low-mass star-forming regions. Conclusions: A small fractional abundance of CO ice is consistent with some of the existing simulations. Observations of CO2 ice in the early diffuse phase of a cloud play a decisive role in understanding the switching mechanism between polar and apolar ice formation. Based on data collected by SpeX at the Infrared Telescope Facility, which is operated by the University of Hawaii under contract NNH14CK55B with the National Aeronautics and Space Administration.Based also on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.The final reduced spectra (FITS format) are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A9

  3. Subaqueous melting in Zachariae Isstrom, Northeast Greenland combining observations and an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Cai, C.; Rignot, E. J.; Menemenlis, D.

    2015-12-01

    Zachariae Isstrom, a major ice stream in northeast Greenland, has lost its entire ice shelf in the past decade. Here, we study the evolution of subaqueous melting of its floating section during the transition. Observations show that the rate of ice shelf melting has doubled during 1999-2010 and is twice higher than that maintaining the ice shelf in a state of mass equilibrium. The ice shelf melt rate depends on the thermal forcing from warm, salty, subsurface ocean water of Atlantic origin (AW), and - in contrast with Antarctic ice shelves - on the mixing of AW with fresh buoyant subglacial discharge. Subglacial discharge has increased as result of enhanced ice sheet runoff driven by warmer air temperature; ocean thermal forcing has increased due enhanced advection of AW. Here, we employ the Massassuchetts Institute of Technology general circulation model (MITgcm) at a high spatial resolution (1 m horizontal and 1 m vertical spacing near the grounding line) to simulate the melting process in 3-D. The model is constrained by ice thickness from mass conservation, oceanic bathymetry from NASA Operation IceBridge gravity data, in-situ ocean temperature/salinity data, ocean tide height and current from the Arctic Ocean Tidal Inverse Model (AOTIM-5) and subglacial discharge from output products of the Regional Atmospheric Climate Model (RACMO). We compare the results in winter (no runoff) with summer (maximum runoff) at two different stages with (prior to 2012) and without the ice shelf (after 2012) to subaqueous melt rates deduced from remote sensing observations. We show that ice melting by the ocean has increased by one order of magnitude as a result of the transition from ice shelf terminating to near-vertical calving front terminating. We also find that subglacial discharge has a significant impact on the ice shelf melt rates in Greenland. We conclude on the impact of ocean warming and air temperature warming on the melting regime of the ice margin of Zachariae Isstrom, Greenland. This work was performed under a contract with NASA Cryosphere Program at UC Irvine and Caltech's Jet Propulsion Laboratory.

  4. Homogeneous freezing of single sulfuric and nitric acid solution drops levitated in an acoustic trap

    NASA Astrophysics Data System (ADS)

    Diehl, Karoline; Ettner-Mahl, Matthias; Hannemann, Anke; Mitra, Subir K.

    2009-10-01

    The freezing temperatures of single supercooled drops of binary and ternary sulfuric and nitric acid solutions were measured while varying the acid concentration. An acoustic levitator was used which allows to freely suspend single solution drops in air without electrical charges thereby avoiding any electrical influences which may affect the freezing process. The drops of typically 500 µm in radius were monitored by a video camera during cooling cycles down to - 85 °C to simulate the upper tropospheric and stratospheric temperature range. The present data confirm that liquid solution droplets can be supercooled far below the equilibrium melting point by approximately 35 °C. They follow the general trend of the expected freezing temperatures for homogeneous ice nucleation.

  5. Modeling of submarine melting in Petermann Fjord, Northwestern Greenland using an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Cai, C.; Rignot, E. J.; Xu, Y.; An, L.

    2013-12-01

    Basal melting of the floating tongue of Petermann Glacier, in northwestern Greenland is by far the largest process of mass ablation. Melting of the floating tongue is controlled by the buoyancy of the melt water plume, the pressure-dependence of the melting point of sea ice, and the mixing of warm subsurface water with fresh buoyant subglacial discharge. In prior simulations of this melting process, the role of subglacial discharge has been neglected because in similar configurations (floating ice shelves) in the Antarctic, surface runoff is negligible; this is however not true in Greenland. Here, we use the Mass Institute of Technology general circulation model (MITgcm) at a high spatial resolution (10 m x 10 m) to simulate the melting process of the ice shelf in 2-D. the model is constrained by ice shelf bathymetry and ice thickness from NASA Operation IceBridge, ocean temperature/salinity data from Johnson et al. (2011), and subglacial discharge estimated from output products of the Regional Atmospheric Climate Model (RACMO). We compare the results obtained in winter (no runoff) with summer, and the sensitivity of the results to thermal forcing from the ocean, and to the magnitude of subglacial runoff. We conclude on the impact of the ocean and surface melting on the melting regime of the floating ice tongue of Petermann. This work is performed under a contract with NASA Cryosphere Program.

  6. Ecology of southern ocean pack ice.

    PubMed

    Brierley, Andrew S; Thomas, David N

    2002-01-01

    Around Antarctica the annual five-fold growth and decay of sea ice is the most prominent physical process and has a profound impact on marine life there. In winter the pack ice canopy extends to cover almost 20 million square kilometres--some 8% of the southern hemisphere and an area larger than the Antarctic continent itself (13.2 million square kilometres)--and is one of the largest, most dynamic ecosystems on earth. Biological activity is associated with all physical components of the sea-ice system: the sea-ice surface; the internal sea-ice matrix and brine channel system; the underside of sea ice and the waters in the vicinity of sea ice that are modified by the presence of sea ice. Microbial and microalgal communities proliferate on and within sea ice and are grazed by a wide range of proto- and macrozooplankton that inhabit the sea ice in large concentrations. Grazing organisms also exploit biogenic material released from the sea ice at ice break-up or melt. Although rates of primary production in the underlying water column are often low because of shading by sea-ice cover, sea ice itself forms a substratum that provides standing stocks of bacteria, algae and grazers significantly higher than those in ice-free areas. Decay of sea ice in summer releases particulate and dissolved organic matter to the water column, playing a major role in biogeochemical cycling as well as seeding water column phytoplankton blooms. Numerous zooplankton species graze sea-ice algae, benefiting additionally because the overlying sea-ice ceiling provides a refuge from surface predators. Sea ice is an important nursery habitat for Antarctic krill, the pivotal species in the Southern Ocean marine ecosystem. Some deep-water fish migrate to shallow depths beneath sea ice to exploit the elevated concentrations of some zooplankton there. The increased secondary production associated with pack ice and the sea-ice edge is exploited by many higher predators, with seals, seabirds and whales aggregating there. As a result, much of the Southern Ocean pelagic whaling was concentrated at the edge of the marginal ice zone. The extent and duration of sea ice fluctuate periodically under the influence of global climatic phenomena including the El Niño Southern Oscillation. Life cycles of some associated species may reflect this periodicity. With evidence for climatic warming in some regions of Antarctica, there is concern that ecosystem change may be induced by changes in sea-ice extent. The relative abundance of krill and salps appears to change interannually with sea-ice extent, and in warm years, when salps proliferate, krill are scarce and dependent predators suffer severely. Further research on the Southern Ocean sea-ice system is required, not only to further our basic understanding of the ecology, but also to provide ecosystem managers with the information necessary for the development of strategies in response to short- and medium-term environmental changes in Antarctica. Technological advances are delivering new sampling platforms such as autonomous underwater vehicles that are improving vastly our ability to sample the Antarctic under sea-ice environment. Data from such platforms will enhance greatly our understanding of the globally important Southern Ocean sea-ice ecosystem.

  7. Bayesian performance metrics and small system integration in recent homeland security and defense applications

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Kostrzewski, Andrew; Patton, Edward; Pradhan, Ranjit; Shih, Min-Yi; Walter, Kevin; Savant, Gajendra; Shie, Rick; Forrester, Thomas

    2010-04-01

    In this paper, Bayesian inference is applied to performance metrics definition of the important class of recent Homeland Security and defense systems called binary sensors, including both (internal) system performance and (external) CONOPS. The medical analogy is used to define the PPV (Positive Predictive Value), the basic Bayesian metrics parameter of the binary sensors. Also, Small System Integration (SSI) is discussed in the context of recent Homeland Security and defense applications, emphasizing a highly multi-technological approach, within the broad range of clusters ("nexus") of electronics, optics, X-ray physics, γ-ray physics, and other disciplines.

  8. Investigations on the system boron-carbon silicon

    NASA Technical Reports Server (NTRS)

    Kieffer, R.; Gugel, E.; Leimer, G.; Ettmayer, P.

    1983-01-01

    The above elements form with each other binary compounds which are very interesting from the point of view of their structure and their chemistry and which are important for technology. The present investigation is concerned with the three-component system and the behavior of the binary compounds occurring in it. Investigations employing various techniques, such as X-ray, chemical analysis, microscopy and fusion experiments showed that no ternary phase exists within the boundary of the ternary system. There is no compound with a higher abrasion capacity than boron carbide. The probable phase field divisions at two isothermic intersections and the fusion isotherms are indicated.

  9. Three-port beam splitter of a binary fused-silica grating.

    PubMed

    Feng, Jijun; Zhou, Changhe; Wang, Bo; Zheng, Jiangjun; Jia, Wei; Cao, Hongchao; Lv, Peng

    2008-12-10

    A deep-etched polarization-independent binary fused-silica phase grating as a three-port beam splitter is designed and manufactured. The grating profile is optimized by use of the rigorous coupled-wave analysis around the 785 nm wavelength. The physical explanation of the grating is illustrated by the modal method. Simple analytical expressions of the diffraction efficiencies and modal guidelines for the three-port beam splitter grating design are given. Holographic recording technology and inductively coupled plasma etching are used to manufacture the fused-silica grating. Experimental results are in good agreement with the theoretical values.

  10. Bibliography on Cold Regions Science and Technology. Volume 43. Part 2

    DTIC Science & Technology

    1989-12-01

    Norem, H., ci a ). ’(1987, p.363-379. engl Influence of ship hull forms on propulsion performance in 1985-1988. Kujals, P.. (1989. p.1 118-1 129... performance of& a ship in ipi Radiative energy budget in the cloudy and hazy Arctic as.Msrkhisskiy interfluve (1988, p.3.1 1, rusl 43Z51 red rfies...2820 els and a ship model between two ice model baims (1988. M.V. Arctic manocuvriog performance is ice. Final report Oxygen isotopic cemposition and

  11. Bibliography on Cold Regions Science and Technology Volume 53, Part 2

    DTIC Science & Technology

    1999-12-01

    A.T. Claud, C. 53-1504 Interaction of ice floes with ships on offshore structures Case study of antarctic mesolow [1995, eng] 53-329 Coffey, M.T. [1992...in a dry-snow Dethloff, K Biogeochemistry of antarctic sea ice: a case study on avalanche [1998, eng] 53-2018 Climate variability in a nonlinear...concrete with respect to Effect of the Endicott Causeway on the population of Ferguson, M.E. frost resistance: a case study [1998, eng] 53-952 broad

  12. Bibliography on Cold Regions Science and Technology. Volume 35, Part 1

    DTIC Science & Technology

    1981-12-01

    Spaceborne methods of studying naleds In relation to troleum Industry In Wecst Siberia. CO d,,nelshcin raz- activities. Abstracts of the papers, Pt. 1...tSamolctnaia kamcra Daoo, \\.J.. et a1, Archi fbr Aleteorologic. Gcoph)sA McCaskell. P C. Studies in snow and ice, edited b) TsAO dha izmercnua...Lake, Labrador. ments, Airborne equipment. Cle -d chambers. winter 1920-1921. Eine neue Analyse von Hildmg Sagrift. L. Studies in snov and ice, edited

  13. Assessment of Superstructure Ice Protection as Applied to Offshore Oil Operations Safety: Problems, Hazards, Needs, and Potential Transfer Technologies

    DTIC Science & Technology

    2008-09-01

    thermostats, or materials such as carbon layers, which vary in thickness with location and are self - healing and self - regulating. Ships commonly use heating...aircraft today. Pneumatic deicing systems consist of rubber or other elastomeric boots placed on the leading edge of an aircraft wing or on any surface...by Kenney, two as- semblies consisting of neoprene rubber and urethane-coated Dacron fabric were hung from bulkheads where icing would occur. A timer

  14. An Analytical Study of Icing Similitude for Aircraft Engine Testing. Revision

    DTIC Science & Technology

    1987-02-01

    MODELING GEOMETRIES Component Cowl Spinner Fan Blade Fan Stator Exit Vane Probe Approximating Geometry NACA 0012 Airfoil Sphere NACA 0012...DOT/FAA/CT·86/35 AEDC·TR·86·26 An Analytical Study of Icing Similitude for Aircraft Engine Testing c. Scott Bartlett Sverdrup Technology, Inc...8217~,feCa.ORI A n AnalYtical Study )f Icin~ Similitude for Aircraft Engine Tes t tu~ 12. PERSONAL AUTHOR/S) B a r t l e t t , C. Scot t , Sverdrup

  15. Bibliography on Cold Regions Science and Technology. Volume 47, Part 1, 1993

    DTIC Science & Technology

    1993-09-01

    54 refs. • DLC TP884.A3 D87 1989 Tundra. Plant ecology. Plant physiology. Plant tissues.tions. Biomass. ice cover effect. Ice optics. Algae. Concrete...1992. 89(1). p.24-31. 15 refs. ty. Chemical properties. Nuclear power. Freeze 91i92. This included providing the fundamental life Plante . P.. Pleau. R...Arora. R., etal, Plant physiology. Aug. 1992.99(4). photography. North Sea. Wetlands sewage treatment tested in the north. p. 1 56 2 .1568. 30 refs

  16. Ice-On-Coil Diurnal Ice Storage Cooling System for a Barracks/Office/ Dining Hall Facility at Yuma Proving Ground, AZ

    DTIC Science & Technology

    1990-09-01

    Kedl is associated with the Oak Ridge National Laboratory ( ORNL ). The technical editor was Gloria J. Wienke, Information Management Office, USACERL. COL...of a DIS cooling system for Building 506, a barracks/ office/dining facility. Oak Ridge National Laboratory ( ORNL ) designed the system in cooperation... ORNL with assistance from YPG and analyzed by USACERL. R.J. Kedl and C.W. Sohn, As.vsment of Energy Storage Technologies for Army Facilities, Technical

  17. Study and simulation results for video landmark acquisition and tracking technology (Vilat-2)

    NASA Technical Reports Server (NTRS)

    Lowrie, J. W.; Tietz, J. C.; Thomas, H. M.; Gremban, K. D.; Hughes, C.; Chang, C. Y.

    1983-01-01

    The results of several investigations and hardware developments which supported new technology for Earth feature recognition and classification are described. Data analysis techniques and procedures were developed for processing the Feature Identification and Location Experiment (FILE) data. This experiment was flown in November 1981, on the second Shuttle flight and a second instrument, designed for aircraft flights, was flown over the United States in 1981. Ground tests were performed to provide the basis for designing a more advanced version (four spectral bands) of the FILE which would be capable of classifying clouds and snow (and possibly ice) as distinct features, in addition to the features classified in the Shuttle experiment (two spectral bands). The Shuttle instrument classifies water, bare land, vegetation, and clouds/snow/ice (grouped).

  18. Hunting liquid micro-pockets in snow and ice: Phase transition in salt solutions at the bulk and interface with X-ray photoelectron spectroscopy.

    NASA Astrophysics Data System (ADS)

    Bartels-Rausch, Thorsten; Orlando, Fabrizio; Kong, Xiangrui; Waldner, Astrid; Artiglia, Luca; Ammann, Markus; Huthwelker, Thomas

    2016-04-01

    Sea salt, and in particular chloride, is an important reactant in the atmosphere. Chloride in air-borne sea salt aerosol is - once chemically converted to a molecular halogen (Cl2, BrCl) and released to the atmosphere - well known as important atmospheric reactant, driving large-scale changes to the atmospheric composition and in particular to ozone levels in remote areas, but also in coastal mega cities. Similar chemistry has been proposed for sea salt deposits in polar snow covers. A crucial factor determining the overall reactivity is the local physical environment of the chloride ion. For example, the reactivity of liquid aerosols decreases significantly upon crystallization. Surprisingly, the phases of NaCl-containing systems are still under debate, partially due to the limited availability of in situ measurements directly probing the local environment at the surface of frozen NaCl-water binary systems. Using core electron spectroscopy of the oxygen atoms in water, we previously showed that these systems follow the phase rules at the air-ice interface. This finding contrasts some earlier observations, where the presence of liquid below the eutectic point of bulk solutions was postulated. In the present study, we present new electron yield near-edge X-ray absorption fine structure spectroscopy (NEXAFS) data obtained at near-ambient pressures up to 20 mbar of NaCl frozen solutions. The method is sensitive to small changes in the local environment of the chlorine atom. The measurements were performed at the PHOENIX beamline at SLS. The study indicates frapant differences in the phases of NaCl - water mixtures at temperatures blow the freezing point for the surface of the ice vs. the bulk. This has significant impact on modelling chemical reactions in snow or ice and it's environmental consequences.

  19. Demonstration of Super Cooled Ice as a Phase Change Material Heat Sink for Portable Life Support Systems

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Bue, Grant C.

    2009-01-01

    A phase change material (PCM) heat sink using super cooled ice as a nontoxic, nonflammable PCM is being developed. The latent heat of fusion for water is approximately 70% larger than most paraffin waxes, which can provide significant mass savings. Further mass reduction is accomplished by super cooling the ice significantly below its freezing temperature for additional sensible heat storage. Expansion and contraction of the water as it freezes and melts is accommodated with the use of flexible bag and foam materials. A demonstrator unit has been designed, built, and tested to demonstrate proof of concept. Both testing and modeling results are presented along with recommendations for further development of this technology.

  20. Deicing System Protects General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Kelly Aerospace Thermal Systems LLC worked with researchers at Glenn Research Center on deicing technology with assistance from the Small Business Innovation Research (SBIR) program. Kelly Aerospace acquired Northcoast Technologies Ltd., a firm that had conducted work on a graphite foil heating element under a NASA SBIR contract and developed a lightweight, easy-to-install, reliable wing and tail deicing system. Kelly Aerospace engineers combined their experiences with those of the Northcoast engineers, leading to the certification and integration of a thermoelectric deicing system called Thermawing, a DC-powered air conditioner for single-engine aircraft called Thermacool, and high-output alternators to run them both. Thermawing, a reliable anti-icing and deicing system, allows pilots to safely fly through ice encounters and provides pilots of single-engine aircraft the heated wing technology usually reserved for larger, jet-powered craft. Thermacool, an innovative electric air conditioning system, uses a new compressor whose rotary pump design runs off an energy-efficient, brushless DC motor and allows pilots to use the air conditioner before the engine even starts

  1. Intermittent Solar Ammonia Absorption Cycle (ISAAC) refrigeration for lesser developed countries

    NASA Astrophysics Data System (ADS)

    Erickson, Donald C.

    1990-02-01

    The Intermittent Solar Ammonia Absorption Cycle (ISAAC) refrigerator is a solar thermal technology which provides low cost, efficient, reliable ice-making to areas without ready access to electricity. An ISAAC refrigeration system consists of a compound parabolic solar collector, two pressure vessels, a condenser, a cold box or refrigerated space, and simple connective piping -- no moving parts or electrical components. Most parts are simple construction or plumbing grade materials, locally available in many remote areas. This technology has numerous potential benefits in lesser developed countries both by providing a cheap, reliable source of ice, and, since manufacture requires only semi-skilled labor, a source of employment to the local economy. Applications include vaccine storage for health care clinics; fish, meat, and dairy product storage; and personal consumption. Importantly, this technology increases the quality of life for people in lesser developed countries without depleting fossil fuel resources or increasing the release of greenhouse gases such as CO2 and chlorofluorocarbons.

  2. WATSON: Detecting organic material in subsurface ice using deep-UV fluorescence and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Eshelman, E.; Wanger, G.; Manatt, K.; Malaska, M.; Willis, M.; Abbey, W.; Doloboff, I.; Beegle, L. W.; DeFlores, L. P.; Priscu, J. C.; Lane, A. L.; Carrier, B. L.; Mellerowicz, B.; Kim, D.; Paulsen, G.; Zacny, K.; Bhartia, R.

    2017-12-01

    Future astrobiological missions to Europa and other ocean worlds may benefit from next-generation instrumentation capable of in situ organic and life detection in subsurface ice environments. WATSON (Wireline Analysis Tool for in Situ Observation of Northern ice sheets) is an instrument under development at NASA's Jet Propulsion Laboratory. WATSON contains high-TRL instrumentation developed for SHERLOC, the Mars 2020 deep-UV fluorescence and Raman spectrometer, including a 248.6 nm NeCu hollow cathode laser as an excitation source. In WATSON, these technologies provide spectroscopic capabilities highly sensitive to many organic compounds, including microbes, in an instrument package approximately 1.2 m long with a 101.6 mm diameter, designed to accommodate a 108 mm ice borehole. Interrogation into the ice wall with a laser allows for a non-destructive in situ measurement that preserves the spatial distribution of material within the ice. We report on a successful deployment of WATSON to Kangerlussuaq, Greenland, where the instrument was lowered to a 4.5 m depth in a hand-cored hole on the Kangerlussuaq sector of the Greenland ice sheet. Motorized stages within the instrument were used to raster a laser across cm-scale regions of the interior surface of the borehole, obtaining fluorescence spectral maps with a 200 µm spatial resolution and a spectral range from 265 nm to 440 nm. This region includes the UV emission bands of many aromatic compounds and microbes, and includes the water and ice Raman O-H stretching modes. We additionally report on experiments designed to inform an early-2018 deployment to Kangerlussuaq where WATSON will be incorporated into a Honeybee Robotics planetary deep drill, with a goal of drilling to a depth of 100 m and investigating the distribution of organic material within the ice sheet. These experiments include laboratory calibrations to determine the sensitivity to organic compounds embedded in ice at various depths, as well as analysis of ice cores obtained during the deployment and returned for subsequent study.

  3. Sea Ice Mass Balance Buoys (IMBs): First Results from a Data Processing Intercomparison Study

    NASA Astrophysics Data System (ADS)

    Hoppmann, Mario; Tiemann, Louisa; Itkin, Polona

    2017-04-01

    IMBs are autonomous instruments able to continuously monitor the growth and melt of sea ice and its snow cover at a single point on an ice floe. Complementing field expeditions, remote sensing observations and modelling studies, these in-situ data are crucial to assess the mass balance and seasonal evolution of sea ice and snow in the polar oceans. Established subtypes of IMBs combine coarse-resolution temperature profiles through air, snow, ice and ocean with ultrasonic pingers to detect snow accumulation and ice thermodynamic growth. Recent technological advancements enable the use of high-resolution temperature chains, which are also able to identify the surrounding medium through a „heating cycle". The temperature change during this heating cycle provides additional information on the internal properties and processes of the ice. However, a unified data processing technique to reliably and accurately determine sea ice thickness and snow depth from this kind of data is still missing, and an unambiguous interpretation remains a challenge. Following the need to improve techniques for remotely measuring sea ice mass balance, an international IMB working group has recently been established. The main goals are 1) to coordinate IMB deployments, 2) to enhance current IMB data processing and -interpretation techniques, and 3) to provide standardized IMB data products to a broader community. Here we present first results from two different data processing algorithms, applied to selected IMB datasets from the Arctic and Antarctic. Their performance with regard to sea ice thickness and snow depth retrieval is evaluated, and an uncertainty is determined. Although several challenges and caveats in IMB data processing and -interpretation are found, such datasets bear great potential and yield plenty of useful information about sea ice properties and processes. It is planned to include many more algorithms from contributors within the working group, and we explicitly invite other interested scientists to join this promising effort.

  4. Ice Island Calves off Petermann Glacier

    NASA Image and Video Library

    2017-12-08

    NASA image acquired August 11, 2010. After breaking off the Petermann Glacier on August 5, 2010, a massive ice island floated slowly down the fjord toward the Nares Strait. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA’s Terra satellite captured this false-color image of the ice island on August 11, 2010. In this image, ice is light blue, water is nearly black, and clouds are nearly white. Although a bank of thin clouds hovers over the fjord, the southernmost margin of the ice island is still visible. Toward the north, the leading edge of the ice island retains the same shape it had days earlier, at the time of the initial calving. NASA Earth Observatory image created by Jesse Allen, using data provided courtesy of NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team. Caption by Michon Scott. Instrument: Terra - ASTER To see more images from of the glacier go to: earthobservatory.nasa.gov/NaturalHazards/event.php?id=45116 NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  5. Sea-Ice Thickness Monitoring from Sensor Equipped Inuit Sleds

    NASA Astrophysics Data System (ADS)

    Rodwell, Shane; Jones, Bryn; Wilkinson, Jeremy

    2013-04-01

    A novel instrumentation package capable of measuring sea-ice thickness autonomously has been designed for long-term deployment upon the dog drawn sleds of the indigenous peoples of the Arctic. The device features a range of sensors that have been integrated with an electromagnetic induction device. These include a global positioning system, temperature sensor, tilt meter and accelerometer. Taken together, this system is able to provide accurate (+/-5cm) measurements of ice thickness with spatio-temporal resolution ranging from 1m to 5m every second. Autonomous data transmission capability is provided via GSM, inspired by the fact that many of the coastal communities in Greenland possess modern cell-phone infrastructure, enabling an inexpensive means of data-retrieval. Such data is essential in quantifying the sea-ice mass balance; given that existing satellite based systems are unable to measure ice-thickness directly. Field-campaign results from a prototype device, deployed in the North West of Greenland during three consecutive seasons, have demonstrated successful proof-of-concept when compared to data provided by ice mass balance (IMB) stations provided at fixed positions along the route of the sled. This project highlights not only the use of novel polar technology, but how opportunistic deployment using an existing roving platform (Inuit sledges) can provide economical, yet highly valuable, data for instrumentation development.

  6. Recent advances in the application of microbial transglutaminase crosslinking in cheese and ice cream products: A review.

    PubMed

    Taghi Gharibzahedi, Seyed Mohammad; Koubaa, Mohamed; Barba, Francisco J; Greiner, Ralf; George, Saji; Roohinejad, Shahin

    2018-02-01

    Microbial transglutaminase (MTGase) has been currently utilized to form new food structures and matrices with high physicochemical stability. Incorporation of this multi-functional enzyme into structural composition of milk protein-based products, such as cheese and ice cream, can not only be a successful strategy to improve their nutritional and technological characteristics through intramolecular cross-linking, but also to reduce the production cost by decreasing fat and stabilizer contents. The recent research developments and promising results of MTGase application in producing functional formulations of cheese and ice cream with higher quality characteristics are reviewed. New interesting insights and future perspectives are also presented. The addition of MTGase to cheese led to significant improvements in moisture, yield, texture, rheology and sensory properties, without changes in the chemical composition. Furthermore, pH value of ice cream is not affected by the MTGase treatment. Compared to untreated ice creams, application of MTGase significantly promotes consistency, fat destabilization, overrun and organoleptic acceptance, while a substantial reduction in firmness and melting rate of samples was observed. The addition of MTGase to cheese and ice cream-milk provides reinforcement to the protein matrix and can be considered as a novel additive for improving the physicochemical and organoleptic properties of final products. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Proposal of an intelligent wayside monitoring system for detection of critical ice accumulations on railway vehicles

    NASA Astrophysics Data System (ADS)

    Michelberger, Frank; Wagner, Adrian; Ostermann, Michael; Maly, Thomas

    2017-09-01

    At railway lines with ballasted tracks, under unfavourable conditions, the so-called flying ballast can occur predominantly for trains driving at high speeds. Especially in wintertime, it is highly likely that the causes are adhered snow or ice deposits, which are falling off the vehicle. Due to the high kinetic energy, the impact can lead to the removal of ballast stones from the structure of the ballasted track. If the stones reach the height of vehicles underside, they may be accelerated significantly due to the collision with the vehicle or may detach further ice blocks. In the worst case, a reinforcing effect occurs, which can lead to considerable damage to railway vehicles (under-floor-area, vehicle exteriors, etc.) and infrastructure (signal masts, noise barriers, etc.). Additionally the flying gravel is a significant danger to people in the nearby area of the tracks. With this feasibility study the applicability and meaningfulness of an intelligent monitoring system for identification of the critical ice accumulation to prevent the ballast fly induced by ice dropping was examined. The key findings of the research are that the detection of ice on railway vehicles and the development of an intelligent monitoring seem to be possible with existing technologies, but a proof of concept in terms of field tests is necessary.

  8. Progress in the Development of Practical Remote Detection of Icing Conditions

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew; Politovich, Marcia K.; Zednik, Stephan; Isaac, George A.; Cober, Stewart

    2006-01-01

    The NASA Icing Remote Sensing System (NIRSS) has been under definition and development at NASA Glenn Research Center since 1997. The goal of this development activity is to produce and demonstrate the required sensing and data processing technologies required to accurately remotely detect and measure icing conditions aloft. As part of that effort NASA has teamed with NCAR to develop software to fuse data from multiple instruments into a single detected icing condition product. The multiple instrument approach utilizes a X-band vertical staring radar, a multifrequency microwave, and a lidar ceilometer. The radar data determine cloud boundaries, the radiometer determines the sub-freezing temperature heights and total liquid water content, and the ceilometer refines the lower cloud boundary. Data is post-processed with a LabVIEW program with a resultant supercooled liquid water profile and aircraft hazard depiction. Ground-based, remotely-sensed measurements and in-situ measurements from research aircraft were gathered during the international 2003-2004 Alliance Icing Research Study (AIRS II). Comparisons between the remote sensing system s fused icing product and the aircraft measurements are reviewed here. While there are areas where improvement can be made, the cases examined suggest that the fused sensor remote sensing technique appears to be a valid approach.

  9. Retrieving Ice Basal Motion Using the Hydrologically Coupled JPL/UCI Ice Sheet System Model (ISSM)

    NASA Astrophysics Data System (ADS)

    Khakbaz, B.; Morlighem, M.; Seroussi, H. L.; Larour, E. Y.

    2011-12-01

    The study of basal sliding in ice sheets requires coupling ice-flow models with subglacial water flow. In fact, subglacial hydrology models can be used to model basal water-pressure explicitly and to generate basal sliding velocities. This study addresses the addition of a thin-film-based subglacial hydrologic module to the Ice Sheet System Model (ISSM) developed by JPL in collaboration with the University of California Irvine (UCI). The subglacial hydrology model follows the study of J. Johnson (2002) who assumed a non-arborscent distributed drainage system in the form of a thin film beneath ice sheets. The differential equation that arises from conservation of mass in the water system is solved numerically with the finite element method in order to obtain the spatial distribution of basal water over the study domain. The resulting sheet water thickness is then used to model the basal water-pressure and subsequently the basal sliding velocity. In this study, an introduction and preliminary results of the subglacial water flow and basal sliding velocity will be presented for the Pine Island Glacier west Antarctica.This work was performed at the California Institute of Technology's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration's Modeling, Analysis and Prediction (MAP) Program.

  10. Emergent geometric frustration of artificial magnetic skyrmion crystals

    DOE PAGES

    Ma, Fusheng; Reichhardt, Charles; Gan, Weiliang; ...

    2016-10-05

    Magnetic skyrmions have been receiving growing attention as potential information storage and magnetic logic devices since an increasing number of materials have been identified that support skyrmion phases. Explorations of artificial frustrated systems have led to new insights into controlling and engineering new emergent frustration phenomena in frustrated and disordered systems. Here, we propose a skyrmion spin ice, giving a unifying framework for the study of geometric frustration of skyrmion crystals (SCs) in a nonfrustrated artificial geometrical lattice as a consequence of the structural confinement of skyrmions in magnetic potential wells. The emergent ice rules from the geometrically frustrated SCsmore » highlight a novel phenomenon in this skyrmion system: emergent geometrical frustration. We demonstrate how SC topology transitions between a nonfrustrated periodic configuration and a frustrated icelike ordering can also be realized reversibly. The proposed artificial frustrated skyrmion systems can be annealed into different ice phases with an applied current-induced spin-transfer torque, including a long-range ordered ice rule obeying ground state, as-relaxed random state, biased state, and monopole state. In conclusion, the spin-torque reconfigurability of the artificial skyrmion ice states, difficult to achieve in other artificial spin ice systems, is compatible with standard spintronic device fabrication technology, which makes the semiconductor industrial integration straightforward.« less

  11. Manufacture of ice cream with improved microbiological safety by using gamma irradiation

    NASA Astrophysics Data System (ADS)

    Lee, Ju-Woon; Kim, Hyun-Joo; Yoon, Yohan; Kim, Jae-Hun; Ham, Jun-Sang; Byun, Myung-Woo; Baek, Min; Jo, Cheorun; Shin, Myung-Gon

    2009-07-01

    Children suffered from leukemia want to eat delicious dishes, such as cake and ice cream. However, it is very difficult to serve these foods to immune-compromised patients without application of any adequate sanitary measures. This study was conducted to evaluate application of irradiation to frozen ready-to-eat food, ice cream. Three ice creams with flavors of vanilla, chocolate and strawberry were manufactured and gamma irradiated at the absorbed doses of 1, 3, and 5 kGy at -70 °C. Total microflora and coliform bacteria were determined, and Listeria spp., Escherichia coli and Salmonella spp. were also tested by the use of API 20E Kit. Aerobic bacteria, yeast/mold and coliforms were contaminated in the levels of 2.3 to 3.3, 2.3 to 2.7 and 1.7 to 2.4 log CFU/g, respectively. In samples irradiated at 5 kGy, the growth of any microorganisms could not be observed. Listeria spp. and E. coli were detected at non-irradiated samples, but S. spp. was not existed. D10 values of L. ivanovii and E. coli were 0.75 and 0.31 kGy, respectively, in ice cream. From these results, irradiation technology can reduce the risk by the food-borne pathogens of ice cream.

  12. Emergent geometric frustration of artificial magnetic skyrmion crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Fusheng; Reichhardt, Charles; Gan, Weiliang

    Magnetic skyrmions have been receiving growing attention as potential information storage and magnetic logic devices since an increasing number of materials have been identified that support skyrmion phases. Explorations of artificial frustrated systems have led to new insights into controlling and engineering new emergent frustration phenomena in frustrated and disordered systems. Here, we propose a skyrmion spin ice, giving a unifying framework for the study of geometric frustration of skyrmion crystals (SCs) in a nonfrustrated artificial geometrical lattice as a consequence of the structural confinement of skyrmions in magnetic potential wells. The emergent ice rules from the geometrically frustrated SCsmore » highlight a novel phenomenon in this skyrmion system: emergent geometrical frustration. We demonstrate how SC topology transitions between a nonfrustrated periodic configuration and a frustrated icelike ordering can also be realized reversibly. The proposed artificial frustrated skyrmion systems can be annealed into different ice phases with an applied current-induced spin-transfer torque, including a long-range ordered ice rule obeying ground state, as-relaxed random state, biased state, and monopole state. In conclusion, the spin-torque reconfigurability of the artificial skyrmion ice states, difficult to achieve in other artificial spin ice systems, is compatible with standard spintronic device fabrication technology, which makes the semiconductor industrial integration straightforward.« less

  13. Sea Ice Characteristics and the Open-Linked Data World

    NASA Astrophysics Data System (ADS)

    Khalsa, S. J. S.; McGuinness, D. L.; Duerr, R.; Pulsifer, P. L.; Fox, P. A.; Thompson, C.; Yan, R.

    2014-12-01

    The audience for sea ice data sets has broadened dramatically over the past several decades. Initially the National Snow and Ice Data Center (NSIDC) sea ice products were used primarily by sea ice specialists. However, now they are in demand by researchers in many different domains and some are used by the public. This growth in the number and type of users has presented challenges to content providers aimed particularly at supporting interdisciplinary and multidisciplinary data use. In our experience, it is generally insufficient to simply make the data available as originally formatted. New audiences typically need data in different forms; forms that meet their needs, that work with their specific tools. Moreover, simple data reformatting is rarely enough. The data needs to be aggregated, transformed or otherwise converted into forms that better serve the needs of the new audience. The Semantic Sea Ice Interoperability Initiative (SSIII) is an NSF-funded research project aimed at making sea ice data more useful to more people using semantic technologies. The team includes domain and science data experts as well as knowledge representation and linked data experts. Beginning with a series of workshops involving members of the operations, sea ice research and modeling communities, as well as members of local communities in Alaska, a suite of ontologies describing the physical characteristics of sea ice have been developed and used to provide one of NSIDC's data sets, the operational Arctic sea ice charts obtained from the Canadian Ice Center, as open-linked data. These data extend nearly a decade into the past and can now be queried either directly through a publicly available SPARQL end point (for those who are familiar with open-linked data) or through a simple Open Geospatial Consortium (OGC) standards map-based query tool. Questions like "What were the characteristics (i.e., sea ice concentration, form and stage of development) of the sea ice in the region surrounding my ship/polar bear on date X?" can now be answered. This service may be of interest within the broad polar community - especially those who already are familiar with either open-linked data or OGC services. We seek feedback, collaborators, and users.

  14. Subaqueous melting in Zachariae Isstrom, Northeast Greenland combining observations and an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Cai, C.; Rignot, E. J.; Menemenlis, D.; Nakayama, Y.

    2016-12-01

    Zachariae Isstrom, a major ice stream in northeast Greenland, has lost its entire ice shelf in the past decade. Here, we study the evolution of subaqueous melting of its floating section during the transition. Observations show that the rate of ice shelf melting has doubled during 1999-2010 and is twice higher than that maintaining the ice shelf in a steady state. The ice shelf melt rate depends on the thermal forcing from warm, saline, subsurface ocean water of Atlantic origin (AW), and on the mixing of AW with fresh buoyant subglacial discharge. Subglacial discharge has increased as result of enhanced ice sheet runoff driven by warmer air temperature; ocean thermal forcing has increased due to enhanced advection of AW. Here, we employ the Massachusetts Institute of Technology general circulation model (MITgcm) at a high spatial resolution to simulate the melting process in 3-D. The model is constrained by ice thickness from mass conservation, oceanic bathymetry inverted from gravity data by NASA Operation IceBridge and NASA Ocean Melting Greenland missions, in-situ ocean temperature/salinity data, ocean tide height and current from the Arctic Ocean Tidal Inverse Model (AOTIM-5) and reconstructed seasonal subglacial discharge from the Regional Atmospheric Climate Model (RACMO2). We compare the results in winter (small runoff but not negligible) with summer (maximum runoff) at two different stages with (prior to 2012) and without the ice shelf (after 2012) to subaqueous melt rates deduced from remote sensing observations. We show that ice melting by the ocean has increased by one order of magnitude as a result of the transition from ice shelf terminating to near-vertical calving front terminating. We also find that subglacial discharge has a significant impact on ice shelf melt rates in Greenland. We conclude on the impact of ocean warming and air temperature warming on the melting regime of the ice margin of Zachariae Isstrom, Greenland. This work was performed under a contract with NASA Cryosphere Program at UC Irvine and Caltech's Jet Propulsion Laboratory.

  15. Socially Relevant Knowledge Based Telemedicine

    DTIC Science & Technology

    2011-10-01

    or attitude at different situations and different circumstances. Fogg mentions that there are many reasons that computers can be better persuaders...finding appropriate way to persuade users to perform various activities. Fogg [8] defines persuasive technologies as “interactive computing systems...Education, IEEE Consumer Electronics Society Conference Games Innovation, ICE-GIC, 2009, pp 54-63. [8] Fogg , B. J., Persuasive Technology: Using

  16. Putting the Pressure On

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Langley Research Center's interest in hypersonic flight led to a SBIR contract with IAP Research, Inc. to develop an electromagnetic launcher. The launcher technology was the basis for IAP's Magnepress process which manufactures high-density parts at rapid rates. The powder compaction technology can be used in the automotive industry and has also been sold to ice cream dispenser manufacturers.

  17. Demodulation of acoustic telemetry binary phase shift keying signal based on high-order Duffing system

    NASA Astrophysics Data System (ADS)

    Yan, Bing-Nan; Liu, Chong-Xin; Ni, Jun-Kang; Zhao, Liang

    2016-10-01

    In order to grasp the downhole situation immediately, logging while drilling (LWD) technology is adopted. One of the LWD technologies, called acoustic telemetry, can be successfully applied to modern drilling. It is critical for acoustic telemetry technology that the signal is successfully transmitted to the ground. In this paper, binary phase shift keying (BPSK) is used to modulate carrier waves for the transmission and a new BPSK demodulation scheme based on Duffing chaos is investigated. Firstly, a high-order system is given in order to enhance the signal detection capability and it is realized through building a virtual circuit using an electronic workbench (EWB). Secondly, a new BPSK demodulation scheme is proposed based on the intermittent chaos phenomena of the new Duffing system. Finally, a system variable crossing zero-point equidistance method is proposed to obtain the phase difference between the system and the BPSK signal. Then it is determined that the digital signal transmitted from the bottom of the well is ‘0’ or ‘1’. The simulation results show that the demodulation method is feasible. Project supported by the National Natural Science Foundation of China (Grant No. 51177117) and the National Key Science & Technology Special Projects, China (Grant No. 2011ZX05021-005).

  18. The Early Development of Programmable Machinery.

    ERIC Educational Resources Information Center

    Collins, Martin D.

    1985-01-01

    Programmable equipment innovations, precursors of today's technology, are examined, including the development of the binary code and feedback control systems, such as temperature sensing devices, interchangeable parts, punched cards carrying instructions, continuous flow oil refining process, assembly lines for mass production, and the…

  19. Movements and habitat use by PIT-tagged Atlantic salmon parr in early winter: The influence of anchor ice

    USGS Publications Warehouse

    Roussel, J.-M.; Cunjak, R.A.; Newbury, R.; Caissie, D.; Haro, A.

    2004-01-01

    1. Movements and habitat use by Atlantic salmon parr in Catamaran Brook, New Brunswick, were studied using Passive Integrated Transponder technology. The fish were tagged in the summer of 1999, and a portable reading system was used to collect data on individual positions within a riffle-pool sequence in the early winter of 1999. Two major freezing events occurred on November 11-12 (Ice 1) and November 18-19 (Ice 2) that generated significant accumulations of anchor ice in the riffle. 2. Individually tagged parr (fork length 8.4-12.6 cm, n = 15) were tracked from 8 to 24 November 1999. Over this period, emigration (40%) was higher from the pool than from the riffle. Of the nine parr that were consistently located, seven parr moved <5 m up- or downstream, and two parr moved more than 10 m (maximum 23 m). Parr moved significantly more by night than by day, and diel habitat shifts were more pronounced in the pool with some of the fish moving closer to the bank at night. 3. During Ice 2, there was relatively little movement by most of the parr in the riffle beneath anchor ice up to 10 cm in thickness. Water temperature was 0.16??C above the freezing point beneath anchor ice, suggesting the existence of suitable habitats where salmon parr can avoid supercooling conditions and where they can have access to low velocity shelters. To our knowledge, these are the first data on habitat use by Atlantic salmon parr under anchor ice.

  20. Microbiological and Biogeochemical Investigations of the Accreted Ice Above Subglacial Lake Vostok, Antarctica

    NASA Astrophysics Data System (ADS)

    Christner, B. C.; Foreman, C. F.; Arnold, B. R.; Welch, K. A.; Lyons, W. B.; Priscu, J. C.

    2004-12-01

    Subglacial Lake Vostok is located ~4 km beneath the surface of the East Antarctic ice sheet and has been isolated from the atmosphere for at least 15 million years. The lake has a surface area near 14,000 km2 and a depth exceeding 1000 m. While the nature of the environment within Subglacial Lake Vostok remains uncertain, if a sustained microbial ecosystem is present, life in this subsurface environment operates under arguably the most extreme conditions in the biosphere (i.e., high pressure, constant cold, high oxygen concentrations, and no light). The lake represents an analogue for ecosystems that may exist in Europa's ice-covered ocean and also provides an Earthly-based model for the evaluation of technology to search for life in icy extraterrestrial subsurface environments. Concerns for environmental protection have prevented direct sampling of the lake water thus far, as a prudent sampling plan that will not contaminate this pristine environment has yet to be developed and tested. However, an ice core has been retrieved at Vostok Station in which the bottom ~85 meters consists of lake water that has accreted to the bottom of the ice sheet, providing frozen samples of water from the lakes' surface. The ice from 3539 to 3609 mbs (accretion ice I) contains visible inclusions due to accretion in the shallow embayment or western grounding line, whereas ice from 3610-3623 mbs (accretion ice II) is very clean, forming above the deep eastern basin of the main lake. Using a multifaceted protocol to monitor cellular and molecular decontamination of ice cores, we show that the microbiology and geochemistry (i.e., dissolve organic carbon, nutrients, and ions) of accretion ice is very different from the overlying glacial ice. The numbers of cells are 2- to 7-fold higher in accretion ice I than in the overlying glacial ice, and decrease with increasing depth in accretion ice II. Cell viability in accretion ice samples has been confirmed by the measurable respiration of 14C-glucose at 10oC and recovery of bacterial isolates by enrichment culturing. Direct amplification and phylogenetic analysis of 16S rDNA sequences related to β -, γ -, and δ -proteobacterial species from samples originating from the open lake basin (i.e., accretion ice II) suggest dissimilatory metal oxidation/reduction and methylotrophic metabolic lifestyles may exist. Together, these data imply a priori that Subglacial Lake Vostok is a viable ecosystem.

  1. An Ultraviolet Spectrograph Concept for Exploring Ocean Worlds

    NASA Astrophysics Data System (ADS)

    Schindhelm, E. R.; Hendrix, A. R.; Fleming, B. T.

    2018-05-01

    UV spectroscopy can probe dust/ice composition of the surface or plumes via uniquely identifying features. We present a technology concept for a future planetary science UV multi-object imaging spectrograph.

  2. Life Detection and Characterization of Subsurface Ice and Brine in the McMurdo Dry Valleys Using an Ultrasonic Gopher: A NASA ASTEP Project

    NASA Technical Reports Server (NTRS)

    Doran, P. T.; Bar-Cohen, Y.; Fritsen, C.; Kenig, F.; McKay, C. P.; Murray, A.; Sherrit, S.

    2003-01-01

    Evidence for the presence of ice and fluids near the surface of Mars in both the distant and recent past is growing with each new mission to the Planet. One explanation for fluids forming springlike features on Mars is the discharge of subsurface brines. Brines offer potential refugia for extant Martian life, and near surface ice could preserve a record of past life on the planet. Proven techniques to get underground to sample these environments, and get below the disruptive influence of the surface oxidant and radiation regime, will be critical for future astrobiology missions to Mars. Our Astrobiology for Science and Technology for Exploring Planets (ASTEP) project has the goal to develop and test a novel ultrasonic corer in a Mars analog environment, the McMurdo Dry valleys, Antarctica, and to detect and describe life in a previously unstudied extreme ecosystem; Lake Vida (Fig. 1), an ice-sealed lake.

  3. Techniques for integrating the animations, multimedia, and interactive features of NASA’s climate change website, Climate Change: NASA’s Eyes on the Earth, into the classroom to advance climate literacy and encourage interest in STEM disciplines

    NASA Astrophysics Data System (ADS)

    Tenenbaum, L. F.; Jackson, R.; Greene, M.

    2009-12-01

    I developed a variety of educational content for the "Climate Change: NASA’s Eyes on the Earth" website, notably an interactive feature for the "Key Indicators: Ice Mass Loss" link that includes photo pair images of glaciers around the world, changes in Arctic sea ice extent videos, Greenland glacial calving time lapse videos, and Antarctic ice shelf break up animations, plus news pieces and a Sea Level Quiz. I integrated these resources and other recent NASA and JPL climate and oceanography data and information into climate change components of Oceanography Lab exercises, Oceanography lectures and Introduction to Environmental Technology courses. I observed that using these Internet interactive features in the classroom greatly improved student participation, topic comprehension, scientific curiosity and interest in Earth and climate science across diverse student populations. Arctic Sea Ice Extent Summer 2007 Credit: NASA

  4. Complex Coacervate Core Micelles Containing Poly(vinyl alcohol) Inhibit Ice Recrystallization.

    PubMed

    Sproncken, Christian C M; Surís-Valls, Romà; Cingil, Hande E; Detrembleur, Christophe; Voets, Ilja K

    2018-04-10

    Complex coacervate core micelles (C3Ms) form upon complexation of oppositely charged copolymers. These co-assembled structures are widely investigated as promising building blocks for encapsulation, nanoparticle synthesis, multimodal imaging, and coating technology. Here, the impact on ice growth is investigated of C3Ms containing poly(vinyl alcohol), PVA, which is well known for its high ice recrystallization inhibition (IRI) activity. The PVA-based C3Ms are prepared upon co-assembly of poly(4-vinyl-N-methyl-pyridinium iodide) and poly(vinyl alcohol)-block-poly(acrylic acid). Their formation conditions, size, and performance as ice recrystallization inhibitors are studied. It is found that the C3Ms exhibit IRI activity at PVA monomer concentrations as low as 1 × 10 -3 m. The IRI efficacy of PVA-C3Ms is similar to that of linear PVA and PVA graft polymers, underlining the influence of vinyl alcohol monomer concentration rather than polymer architecture. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A machine-learning approach for damage detection in aircraft structures using self-powered sensor data

    NASA Astrophysics Data System (ADS)

    Salehi, Hadi; Das, Saptarshi; Chakrabartty, Shantanu; Biswas, Subir; Burgueño, Rigoberto

    2017-04-01

    This study proposes a novel strategy for damage identification in aircraft structures. The strategy was evaluated based on the simulation of the binary data generated from self-powered wireless sensors employing a pulse switching architecture. The energy-aware pulse switching communication protocol uses single pulses instead of multi-bit packets for information delivery resulting in discrete binary data. A system employing this energy-efficient technology requires dealing with time-delayed binary data due to the management of power budgets for sensing and communication. This paper presents an intelligent machine-learning framework based on combination of the low-rank matrix decomposition and pattern recognition (PR) methods. Further, data fusion is employed as part of the machine-learning framework to take into account the effect of data time delay on its interpretation. Simulated time-delayed binary data from self-powered sensors was used to determine damage indicator variables. Performance and accuracy of the damage detection strategy was examined and tested for the case of an aircraft horizontal stabilizer. Damage states were simulated on a finite element model by reducing stiffness in a region of the stabilizer's skin. The proposed strategy shows satisfactory performance to identify the presence and location of the damage, even with noisy and incomplete data. It is concluded that PR is a promising machine-learning algorithm for damage detection for time-delayed binary data from novel self-powered wireless sensors.

  6. Advances in the in-field detection of microorganisms in ice.

    PubMed

    Barnett, Megan J; Pearce, David A; Cullen, David C

    2012-01-01

    The historic view of ice-bound ecosystems has been one of a predominantly lifeless environment, where microorganisms certainly exist but are assumed to be either completely inactive or in a state of long-term dormancy. However, this standpoint has been progressively overturned in the past 20years as studies have started to reveal the importance of microbial life in the functioning of these environments. Our present knowledge of the distribution, taxonomy, and metabolic activity of such microbial life has been derived primarily from laboratory-based analyses of collected field samples. To date, only a restricted range of life detection and characterization techniques have been applied in the field. Specific examples include direct observation and DNA-based techniques (microscopy, specific stains, and community profiling based on PCR amplification), the detection of biomarkers (such as adenosine triphosphate), and measurements of metabolism [through the uptake and incorporation of radiolabeled isotopes or chemical alteration of fluorescent substrates (umbelliferones are also useful here)]. On-going improvements in technology mean that smaller and more robust life detection and characterization systems are continually being designed, manufactured, and adapted for in-field use. Adapting technology designed for other applications is the main source of new methodology, and the range of techniques is currently increasing rapidly. Here we review the current use of technology and techniques to detect and characterize microbial life within icy environments and specifically its deployment to in-field situations. We discuss the necessary considerations, limitations, and adaptations, review emerging technologies, and highlight the future potential. Successful application of these new techniques to in-field studies will certainly generate new insights into the way ice bound ecosystems function. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. EOS Aqua AMSR-E Sea Ice Validation Program: Meltpond2000 Flight Report

    NASA Technical Reports Server (NTRS)

    Cavalieri, Donald J.

    2000-01-01

    This flight report describes the field component of Meltpond2000, the first in a series of Arctic and Antarctic aircraft campaigns planned as part of NASA's Earth Observing System Aqua sea ice validation program for the Advanced Microwave Scanning Radiometer (AMSR-E). This prelaunch Arctic field campaign was carried out between June 25 and July 6, 2000 from Thule, Greenland, with the objective of quantifying the errors incurred by the AMSR-E sea ice algorithms resulting from the presence of melt ponds. A secondary objective of the mission was to develop a microwave capability to discriminate between melt ponds and seawater using low-frequency microwave radiometers. Meltpond2000 was a multiagency effort involving personnel from the Navy, NOAA, and NASA. The field component of the mission consisted of making five 8-hour flights from Thule Air Base with a Naval Air Warfare Center P-3 aircraft over portions of Baffin Bay and the Canadian Arctic. The aircraft sensors were provided and operated by the Microwave Radiometry Group of NOAA's Environmental TechnologyLaboratory. A Navy ice observer from the National Ice Center provided visual documentation of surface ice conditions during each of the flights. Two of the five flights were coordinated with Canadian scientists making surface measurements of melt ponds at an ice camp located near Resolute Bay, Canada. Coordination with the Canadians will provide additional information on surface characteristics and will be of great value in the interpretation of the aircraft and high-resolution satellite data sets.

  8. Advanced Avionics Architecture and Technology Review. Executive Summary and Volume 1, Avionics Technology. Volume 2. Avionics Systems Engineering

    DTIC Science & Technology

    1993-08-06

    JIAWG core avionics are described in the section below. The JIAWO architecture standard (187-01) describes an open. system architeture which provides...0.35 microns (pRm). Present technology is in the 0.8 npm to 0.5 pm range for aggressive producers. Since the area of a die is approximately proportional ...analog (D/A) converters. The I A/D converter is a device or circuit that examines an analog voltage or current and converts it to a proportional binary

  9. Ice sheet systems and sea level change.

    NASA Astrophysics Data System (ADS)

    Rignot, E. J.

    2015-12-01

    Modern views of ice sheets provided by satellites, airborne surveys, in situ data and paleoclimate records while transformative of glaciology have not fundamentally changed concerns about ice sheet stability and collapse that emerged in the 1970's. Motivated by the desire to learn more about ice sheets using new technologies, we stumbled on an unexplored field of science and witnessed surprising changes before realizing that most were coming too fast, soon and large. Ice sheets are integrant part of the Earth system; they interact vigorously with the atmosphere and the oceans, yet most of this interaction is not part of current global climate models. Since we have never witnessed the collapse of a marine ice sheet, observations and exploration remain critical sentinels. At present, these observations suggest that Antarctica and Greenland have been launched into a path of multi-meter sea level rise caused by rapid climate warming. While the current loss of ice sheet mass to the ocean remains a trickle, every mm of sea level change will take centuries of climate reversal to get back, several major marine-terminating sectors have been pushed out of equilibrium, and ice shelves are irremediably being lost. As glaciers retreat from their salty, warm, oceanic margins, they will melt away and retreat slower, but concerns remain about sea level change from vastly marine-based sectors: 2-m sea level equivalent in Greenland and 23-m in Antarctica. Significant changes affect 2/4 marine-based sectors in Greenland - Jakobshavn Isb. and the northeast stream - with Petermann Gl. not far behind. Major changes have affected the Amundsen Sea sector of West Antarctica since the 1980s. Smaller yet significant changes affect the marine-based Wilkes Land sector of East Antarctica, a reminder that not all marine-based ice is in West Antarctica. Major advances in reducing uncertainties in sea level projections will require massive, interdisciplinary efforts that are not currently in place but are getting there. Projection scenarios are overwhelmingly conservative, pushed up by observations, awaiting more detailed knowledge of ocean circulation, winds, ice-ocean interaction, and mechanics of rapid ice fracture, not to mention the mere definition of static boundaries (ice thickness and sea floor bathymetry).

  10. Insights Into Ice-Ocean Interactions on Earth and Europa

    NASA Astrophysics Data System (ADS)

    Lawrence, J.; Schmidt, B. E.; Winslow, L.; Doran, P. T.; Kim, S.; Walker, C. C.; Buffo, J.; Skidmore, M. L.; Soderlund, K. M.; Blankenship, D. D.; Bramall, N. E.; Johnson, A.; Rack, F. R.; Stone, W.; Kimball, P.; Clark, E.

    2016-12-01

    Europa and Earth appear to be drastically different worlds, yet below their icy crusts the two likely share similar oceanic conditions including temperatures, pressures (relatively), and salinity. Earth's ice shelves provide an important analog for the physiochemical, and potentially microbial, characteristics of icy worlds. NASA's ASTEP program funded Sub-Ice Marine and PLanetary-analog Ecosystems (SIMPLE) to help address the fundamental processes occurring at ice ocean interfaces, the extent and limitations of life in sub-ice environments, and how environmental properties and biological communities interact. The relationships between currents, temperature, and salinity with physical processes such as melt, freeze, and marine ice accretion at the basal surfaces of ice shelves influence habitability yet are poorly understood even on Earth. Resultant processes such as the inclusion of ocean-derived material in ice shelves and the transport of biotics from the interface towards the surface via ablation, convection, and diapirism also have important astrobiological implications for Europa.Here, we present results from CTD and imaging data gathered at multiple locations beneath the McMurdo Ice Shelf (MIS) to highlight how the ice and ocean interact in a Europan analog environment. Over the course of three years, the SIMPLE team observed heterogeneity in the water column and basal ice beneath the MIS. During the recent 2015 field season we deployed ARTEMIS, an AUV capable of characterizing the interface over multiple kilometer missions, and conducted daily CTD casts to 480 m (bottom depth 529 m) in November adjacent to the terminus of the MIS to capture temporal variation in the water column. These casts show the presence of transient water masses related to the tidal period, each containing a single or double temperature minimum (down to -1.97 °C from -1.93 °C) between 60 to 150 m depth. Further comparisons between years and sampling locations demonstrate the homogeneity of the subshelf environment even on the scale of tens of kilometers. The technologies supported by SIMPLE are also supporting the ice penetrating radar on the upcoming Europa Flagship mission, and will hopefully inform future ocean world exploration.

  11. Managing the ice in the waters ahead: lessons from the Titanic.

    PubMed

    Waymack, Pamela M

    2006-07-01

    To navigate carefully through today's rough healthcare waters, healthcare financial managers need to: Plan for the unexpected. Realize that technology alone is not a solution. Refrain from being overconfident

  12. Passive anti-frosting surfaces using microscopic ice arrays

    NASA Astrophysics Data System (ADS)

    Ahmadi, Farzad; Nath, Saurabh; Iliff, Grady; Boreyko, Jonathan

    2017-11-01

    Despite exceptional advances in surface chemistry and micro/nanofabrication, no engineered surface has been able to passively suppress the in-plane growth of frost occurring in humid, subfreezing environments. Motivated by this, and inspired by the fact that ice itself can evaporate nearby liquid water droplets, we present a passive anti-frosting surface in which the majority of the surface remains dry indefinitely. We fabricated an aluminum surface exhibiting an array of small metallic fins, where a wicking micro-groove was laser-cut along the top of each fin to produce elevated water ``stripes'' that freeze into ice. As the saturation vapor pressure of ice is less than that of supercooled liquid water, the ice stripes serve as overlapping humidity sinks that siphon all nearby moisture from the air and prevent condensation and frost from forming anywhere else on the surface. Our experimental results show that regions between stripes remain dry even after 24 hours of operation under humid and supercooled conditions. We believe that the presented anti-frosting technology has the potential to help solve the world's multi-billion dollar frosting problem that adversely affects transportation, power generation, and HVAC systems.

  13. What's Cooler Than Being Cool? Icefin: Robotic Exploration Beneath Antarctic Ice Shelves

    NASA Astrophysics Data System (ADS)

    Lawrence, J.; Schmidt, B. E.; Meister, M. R.; Glass, J. B.; Bowman, J. S.; Stockton, A. M.; Dichek, D.; Hurwitz, B.; Ramey, C.; Spears, A.; Walker, C. C.

    2017-12-01

    The 2017-18 Antarctic field season marks the first of three under the RISEUP project (Ross Ice Shelf & Europa Underwater Probe, NASA PSTAR program grant NNX16AL07G, PI B. E. Schmidt). RISEUP expands our efforts to understand the physical processes governing ice-ocean interactions from beneath the McMurdo Ice Shelf (MIS) to the Ross Ice Shelf (RIS), utilizing the modular autonomous or remotely operable submersible vehicle (AUV/ROV) Icefin. The remote, aphotic regions below Antarctic shelves present a unique opportunity- they are both poorly understood terrestrial environments and analogs for similar systems hypothesized to be present on other bodies in our solar system, such as Europa and Enceladus. By developing new robotic technologies to access and explore ice shelf cavities we are advancing our understanding of how temperature, pressure, and salinity influence the ice-ocean interface, the limits of habitable environments on Earth, and what biological processes and adaptations enable the life discovered by the RISP and WISSARD programs during initial exploration beneath the RIS. These investigations further our understanding of ocean world habitability and support planned and proposed planetary missions (e.g. Europa Clipper, Europa Lander) via improved constraint of marine ice accretion processes, organic entrainment, and interface habitability. Custom built at Georgia Tech and first deployed during the 2014/15 Antarctic season, Icefin is 3.5 m, 125 kg modular vehicle that now carries a full suite of oceanographic sensors (including conductivity, temperature, depth, dissolved O2, dissolved organic matter, turbidity, pH, eH, and sonar) that can be deployed through boreholes as small as 25 cm in diameter. Here we present continued analysis of basal ice and oceanographic observations in the McMurdo Sound region from 2012-2015 with, pending anticipated field work, comparisons to preliminary data from the 2017/18 field season beneath both the McMurdo and Ross Ice Shelves.

  14. Sea-ice cover in the Nordic Seas and the sensitivity to Atlantic water temperatures

    NASA Astrophysics Data System (ADS)

    Jensen, Mari F.; Nisancioglu, Kerim H.; Spall, Michael A.

    2017-04-01

    Changes in the sea-ice cover of the Nordic Seas have been proposed to play a key role for the dramatic temperature excursions associated with the Dansgaard-Oeschger events during the last glacial. However, with its proximity to the warm Atlantic water, how a sea-ice cover can persist in the Nordic Seas is not well understood. In this study, we apply an eddy-resolving configuration of the Massachusetts Institute of Technology general circulation model with an idealized topography to study the presence of sea ice in a Nordic Seas-like domain. We assume an infinite amount of warm Atlantic water present in the south by restoring the southern area to constant temperatures. The sea-surface temperatures are restored toward cold, atmospheric temperatures, and as a result, sea ice is present in the interior of the domain. However, the sea-ice cover in the margins of the Nordic Seas, an area with a warm, cyclonic boundary current, is sensitive to the amount of heat entering the domain, i.e., the restoring temperature in the south. When the temperature of the warm, cyclonic boundary current is high, the margins are free of sea ice and heat is released to the atmosphere. We show that with a small reduction in the temperature of the incoming Atlantic water, the Nordic Seas-like domain is fully covered in sea ice. Warm water is still entering the Nordic Seas, however, this happens at depths below a cold, fresh surface layer produced by melted sea ice. Consequently, the heat release to the atmosphere is reduced along with the eddy heat fluxes. Results suggest a threshold value in the amount of heat entering the Nordic Seas before the sea-ice cover disappears in the margins. We study the sensitivity of this threshold to changes in atmospheric temperatures and vertical diffusivity.

  15. Climate Proxies: An Inquiry-Based Approach to Discovering Climate Change on Antarctica

    NASA Astrophysics Data System (ADS)

    Wishart, D. N.

    2016-12-01

    An attractive way to advance climate literacy in higher education is to emphasize its relevance while teaching climate change across the curriculum to science majors and non-science majors. An inquiry-based pedagogical approach was used to engage five groups of students on a "Polar Discovery Project" aimed at interpreting the paleoclimate history of ice cores from Antarctica. Learning objectives and student learning outcomes were clearly defined. Students were assigned several exercises ranging from examination of Antarctic topography to the application of physical and chemical measurements as proxies for climate change. Required materials included base and topographic maps of Antarctica; graph sheets for construction of topographic cross-sectional profiles from profile lines of the Western Antarctica Ice Sheet (WAIS) Divide and East Antarctica; high-resolution photographs of Antarctic ice cores; stratigraphic columns of ice cores; borehole and glaciochemical data (i.e. anions, actions, δ18O, δD etc.); and isotope data on greenhouse gases (CH4, O2, N2) extracted from gas bubbles in ice cores. The methodology was to engage students in (2) construction of topographic profiles; (2) suggest directions for ice flow based on simple physics; (3) formulate decisions on suitable locations for drilling ice cores; (4) visual ice stratigraphy including ice layer counting; (5) observation of any insoluble particles (i.e. meteoritic and volcanic material); (6) analysis of borehole temperature profiles; and (7) the interpretation of several datasets to derive a paleoclimate history of these areas of the continent. The overall goal of the project was to improve the students analytical and quantitative skills; their ability to evaluate relationships between physical and chemical properties in ice cores, and to advance the understanding the impending consequences of climate change while engaging science, technology, engineering and mathematics (STEM). Student learning outcomes were assessed at the completion of the `Polar Discovery Project' for their curiosity, analytical strength, creativity, group collaboration, problem-solving, innovation, and interest in level climate change and the implications of the its effects on polar regions.

  16. Radar attenuation in Europa's ice shell: obstacles and opportunities for constraining shell thickness and thermal structure

    NASA Astrophysics Data System (ADS)

    Kalousova, Klara; Schroeder, Dustin M.; Soderlund, Krista M.; Sotin, Christophe

    2016-10-01

    With its strikingly young surface and possibly recent endogenic activity, Europa is one of the most exciting bodies within our Solar System and a primary target for spacecraft exploration. Future missions to Europa are expected to carry ice penetrating radar instruments which are powerful tools to investigate the subsurface thermophysical structure of its ice shell.Several authors have addressed the 'penetration depth' of radar sounders at icy moons, however, the concept and calculation of a single value penetration depth is a potentially misleading simplification since it ignores the thermal and attenuation structure complexity of a realistic ice shell. Here we move beyond the concept of a single penetration depth by exploring the variation in two-way radar attenuation for a variety of potential thermal structures of Europa's ice shell as well as for a low loss and high loss temperature-dependent attenuation model. The possibility to detect brines is also investigated.Our results indicate that: (i) for all ice shell thicknesses investigated (5-30 km), a nominal satellite-borne radar sounder will penetrate between 15% and 100% of the total thickness, (ii) the maximum penetration depth strongly varies laterally with the deepest penetration possible through the cold downwellings, (iii) the direct detection of the ice/ocean interface might be possible for shells of up to 15 km if the radar signal travels through the cold downwelling, (iv) even if the ice/ocean interface is not detected, the penetration through most of the shell could constrain the deep shell structure through the loss of signal, and (v) for all plausible ice shells the two-way attenuation to the eutectic point is ≤30 dB which shows a robust potential for longitudinal investigation of the ice shell's shallow structure.Part of this work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. K.K. acknowledges support by the Grant Agency of the Czech Republic through project 15-14263Y.

  17. Technological challenges for hydrocarbon production in the Barents Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gudmestad, O.T.; Strass, P.

    1995-02-01

    Technological challenges for hydrocarbon production in the Barents Sea relate mainly to the climatic conditions (ice and icebergs), to the relatively deep water of the area, and to the distance to the market for transportation of gas. It is suggested that environmental conditions must be carefully mapped over a sufficiently long period to get reliable statistics for the area.

  18. Biomimetic superhydrophobic surface of high adhesion fabricated with micronano binary structure on aluminum alloy.

    PubMed

    Liu, Yan; Liu, Jindan; Li, Shuyi; Liu, Jiaan; Han, Zhiwu; Ren, Luquan

    2013-09-25

    Triggered by the microstructure characteristics of the surfaces of typical plant leaves such as the petals of red roses, a biomimetic superhydrophobic surface with high adhesion is successfully fabricated on aluminum alloy. The essential procedure is that samples were processed by a laser, then immersed and etched in nitric acid and copper nitrate, and finally modified by DTS (CH3(CH2)11Si(OCH3)3). The obtained surfaces exhibit a binary structure consisting of microscale crater-like pits and nanoscale reticula. The superhydrophobicity can be simultaneously affected by the micronano binary structure and chemical composition of the surface. The contact angle of the superhydrophobic surface reaches up to 158.8 ± 2°. Especially, the surface with micronano binary structure is revealed to be an excellent adhesive property with petal-effect. Moreover, the superhydrophobic surfaces show excellent stability in aqueous solution with a large pH range and after being exposed long-term in air. In this way, the multifunctional biomimetic structural surface of the aluminum alloy is fabricated. Furthermore, the preparation technology in this article provides a new route for other metal materials.

  19. Parameter estimation accuracies of Galactic binaries with eLISA

    NASA Astrophysics Data System (ADS)

    Błaut, Arkadiusz

    2018-09-01

    We study parameter estimation accuracy of nearly monochromatic sources of gravitational waves with the future eLISA-like detectors. eLISA will be capable of observing millions of such signals generated by orbiting pairs of compact binaries consisting of white dwarf, neutron star or black hole and to resolve and estimate parameters of several thousands of them providing crucial information regarding their orbital dynamics, formation rates and evolutionary paths. Using the Fisher matrix analysis we compare accuracies of the estimated parameters for different mission designs defined by the GOAT advisory team established to asses the scientific capabilities and the technological issues of the eLISA-like missions.

  20. [Tail Plane Icing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Aviation Safety Program initiated by NASA in 1997 has put greater emphasis in safety related research activities. Ice-contaminated-tailplane stall (ICTS) has been identified by the NASA Lewis Icing Technology Branch as an important activity for aircraft safety related research. The ICTS phenomenon is characterized as a sudden, often uncontrollable aircraft nose- down pitching moment, which occurs due to increased angle-of-attack of the horizontal tailplane resulting in tailplane stall. Typically, this phenomenon occurs when lowering the flaps during final approach while operating in or recently departing from icing conditions. Ice formation on the tailplane leading edge can reduce tailplane angle-of-attack range and cause flow separation resulting in a significant reduction or complete loss of aircraft pitch control. In 1993, the Federal Aviation Authority (FAA) and NASA embarked upon a four-year research program to address the problem of tailplane stall and to quantify the effect of tailplane ice accretion on aircraft performance and handling characteristics. The goals of this program, which was completed in March 1998, were to collect aerodynamic data for an aircraft tail with and without ice contamination and to develop analytical methods for predicting the effects of tailplane ice contamination. Extensive dry air and icing tunnel tests which resulted in a database of the aerodynamic effects associated with tailplane ice contamination. Although the FAA/NASA tailplane icing program generated some answers regarding ice-contaminated-tailplane stall (ICTS) phenomena, NASA researchers have found many open questions that warrant further investigation into ICTS. In addition, several aircraft manufacturers have expressed interest in a second research program to expand the database to other tail configurations and to develop experimental and computational methodologies for evaluating the ICTS phenomenon. In 1998, the icing branch at NASA Lewis initiated a second multi-phase research program for tailplane icing (TIP II) to develop test methodologies and tailplane performance and handling qualities evaluation tools. The main objectives of this new NASA/Industry/Academia collaborative research programs were: (1) define and evaluate a sub-scale wind tunnel test methodology for determining tailplane performance degradation due to icing. (2) develop an experimental database of tailplane aerodynamic performance with and without ice contamination for a range of tailplane configurations. Wind tunnel tests were planned with representative general aviation aircraft, i.e., the Learjet 45, and a twin engine low speed aircraft. This report summarizes the research performed during the first year of the study, and outlines the work tasks for the second year.

  1. Simulation of the dusty plasma environment of 65803 Didymos for the Asteroid Impact Mission (AIM)

    NASA Astrophysics Data System (ADS)

    Cipriani, Fabrice; Rodgers, David; Hilgers, Alain; Hess, Sebastien; Carnelli, Ian

    2016-10-01

    The Asteroid Impact and Deflection Assessment mission (AIDA) is a joint European-US technology demonstrator mission including the DART asteroid impactor (NASA/JHU/APL) and the AIM asteroid rendezvous platform (ESA/DLR/OCA) set to reach Near Earth binary Object 65803 Didymos in October 2022. Besides technology demonstration in the deep space communications domain and the realization of a kinetic impact on the moonlet to study deflection parameters, this asteroid rendezvous mission is an opportunity to carry out in-situ observations of the close environment of a binary system, addressing some fundamental science questions. The MASCOT-2 lander will be released from the AIM platform and operate at the surface of the moonlet of 65803 Didymos, complemented by the ability of the Cubesat Opportunity Payloads (COPINS) to sample the close environment of the binary.In this context, we have developed an model describing the plasma and charged dust components of the near surface environment of the moonlet (170m in diameter), targeted by the MASCOT-2 lander and of the DART impactor. We performed numerical simulations in order to estimate the electrostatic surface potentials at various locations of the surface, resulting from its interaction with the solar wind plasma and solar photons. In addition, we describe charging levels, density profiles, and velocity distribution of regolith grains lifted out from the surface up to about 70m above the surface.

  2. Quartz 9-inch size mask blanks for ArF PSM (Phase Shift Mask)

    NASA Astrophysics Data System (ADS)

    Harashima, Noriyuki; Isozaki, Tatsuya; Kawanishi, Arata; Kanai, Shuichiro; Kageyama, Kagehiro; Iso, Hiroyuki; Chishima, Tatsuya

    2017-07-01

    Semiconductor technology nodes are steadily miniaturizing. On the other hand, various efforts have been made to reduce costs, mass production lines have shifted from 200 mmφ of Si wafer to 300 mmφ, and technology development of Si wafer 450 mmφ is also in progress. As a photomask, 6-inch size binary Cr mask has been used for many years, but in recent years, the use of 9-inch binary Cr masks for Proximity Lithography Process in automotive applications, MEMS, packages, etc. has increased, and cost reduction has been taken. Since the miniaturization will progress in the above applications in the future, products corresponding to miniaturization are also desired in 9-inch photomasks. The high grade Cr - binary mask blanks used in proximity exposure process, there is a prospect of being able to use it by ULVAC COATING CORPORATION's tireless research. As further demands for miniaturization, KrF and ArF Lithography Process, which are used for steppers and scanners , there are also a demand for 9-inch size Mask Blanks. In ULVAC COATING CORPORATION, we developed a 9 - inch size KrF PSM mask Blanks prototype in 2016 and proposed a new high grade 9 - inch photomask. This time, we have further investigated and developed 9-inch size ArF PSM Mask Blanks corresponding to ArF Lithography Process, so we report it.

  3. A New Approach to Modeling Densities and Equilibria of Ice and Gas Hydrate Phases

    NASA Astrophysics Data System (ADS)

    Zyvoloski, G.; Lucia, A.; Lewis, K. C.

    2011-12-01

    The Gibbs-Helmholtz Constrained (GHC) equation is a new cubic equation of state that was recently derived by Lucia (2010) and Lucia et al. (2011) by constraining the energy parameter in the Soave form of the Redlich-Kwong equation to satisfy the Gibbs-Helmholtz equation. The key attributes of the GHC equation are: 1) It is a multi-scale equation because it uses the internal energy of departure, UD, as a natural bridge between the molecular and bulk phase length scales. 2) It does not require acentric factors, volume translation, regression of parameters to experimental data, binary (kij) interaction parameters, or other forms of empirical correlations. 3) It is a predictive equation of state because it uses a database of values of UD determined from NTP Monte Carlo simulations. 4) It can readily account for differences in molecular size and shape. 5) It has been successfully applied to non-electrolyte mixtures as well as weak and strong aqueous electrolyte mixtures over wide ranges of temperature, pressure and composition to predict liquid density and phase equilibrium with up to four phases. 6) It has been extensively validated with experimental data. 7) The AAD% error between predicted and experimental liquid density is 1% while the AAD% error in phase equilibrium predictions is 2.5%. 8) It has been used successfully within the subsurface flow simulation program FEHM. In this work we describe recent extensions of the multi-scale predictive GHC equation to modeling the phase densities and equilibrium behavior of hexagonal ice and gas hydrates. In particular, we show that radial distribution functions, which can be determined by NTP Monte Carlo simulations, can be used to establish correct standard state fugacities of 1h ice and gas hydrates. From this, it is straightforward to determine both the phase density of ice or gas hydrates as well as any equilibrium involving ice and/or hydrate phases. A number of numerical results for mixtures of N2, O2, CH4, CO2, water, and NaCl in permafrost conditions are presented to illustrate the predictive capabilities of the multi-scale GHC equation. In particular, we show that the GHC equation correctly predicts 1) The density of 1h ice and methane hydrate to within 1%. 2) The melting curve for hexagonal ice. 3) The hydrate-gas phase co-existence curve. 4) Various phase equilibrium involving ice and hydrate phases. We also show that the GHC equation approach can be readily incorporated into subsurface flow simulation programs like FEHM to predict the behavior of permafrost and other reservoirs where ice and/or hydrates are present. Many geometric illustrations are used to elucidate key concepts. References A. Lucia, A Multi-Scale Gibbs Helmholtz Constrained Cubic Equation of State. J. Thermodynamics: Special Issue on Advances in Gas Hydrate Thermodynamics and Transport Properties. Available on-line [doi:10.1155/2010/238365]. A. Lucia, B.M. Bonk, A. Roy and R.R. Waterman, A Multi-Scale Framework for Multi-Phase Equilibrium Flash. Comput. Chem. Engng. In press.

  4. Downwell pump reliability: Geothermal experience update: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, P.F.

    1988-01-01

    Geothermal resources with temperatures between 250/sup 0/ and 360/sup 0/F (121/sup 0/C and 182/sup 0/C) are prime candidates for binary-cycle power generation, and constitute about 80% of the power-capable resources in the United States. The successful exploitation of these resources requires reliable high-capacity downwell brine production pumps, but earlier experience showed that high-capacity, high-temperature geothermal production pumps had many problems which resulted in a mean time-to-failure (MTTF) of less than 1000 h. However, steady progress has been made since 1981, and a large body of experience has been acquired by three geothermal binary plants. This survey of high-temperature geothermal downwellmore » pump users and manufacturers updates a prior survey (AP-3572) completed in early 1983. This survey traces the development of lineshaft pump technology from the late 1970s to the present (mid-1987), detailing the advances in design, materials selection, and operating practices. Case histories of 72 lineshaft pumps installed at three geothermal binary plants since late 1981 are documented, including some detailed cause of failure reports. In the recent past, pump lives in excess of 7000 h have become common, but a high continuing rate of premature failures resulted in a mean time-to-failure (MTTF) of about 5000 h. Based on recent advances which appear likely to eliminate most premature failures, the estimated near-term MTTF will be on the order of 8000 h. The survey found almost no development of high-temperature geothermal electric submersible pumps (ESP's) or close-coupled downwell hydraulic turbopumps, and concluded that considerable development and demonstration will be needed before these technologies are able to compete with existing high-temperature geothermal lineshaft pump technology. 36 refs., 10 figs., 25 tabs.« less

  5. Bibliography on Cold Regions Science and Technology. Cumulative Author Index. Volumes 28-32, Cumulative Subject Index. Volumes 28-32, Parts 1 and 2

    DTIC Science & Technology

    1978-12-01

    Jr. 52-58, rusl 29.1345 Arctic ice model basin - design , construction, and operating experience Mathematical modelling of long-term non -stationary...crane KS-6362KhL designed for the North [1974, p.3-4, F11ppov, A.M. rusl 29-266 Experimental study of the dynamics of ice-jam formation in talwaters of... experimental data on glass fiber insulating materials and their France. filrej 32-4349de ~preenseltritie use for a reliable design of insulations at

  6. The Development of an Advanced Anti-Icing/Deicing Capability for U.S. Army Helicopters. Volume 1. Design Criteria and Technology Considerations

    DTIC Science & Technology

    1975-11-01

    EFFECT OF ICING CONDITIONS ON THE ZPG-2 AIRSHIP , NACA Technical Note 4220, Washington, D. C., April 1958. 28A * jb 7 -- ALBANYI I I,- 99 { T: FLINT...replicator (Figure 45) which featurek 35-mm slide frames coated with gelatine . Momentary exposure past an open slot leaves permanent footprints (cavi- ties...in the gelatine substance (Figure 46). In order to capture a true sample, the collection efficienuj of the collector (i.e., the fraction of 139 II r

  7. Extreme Access & Lunar Ice Mining in Permanently Shadowed Craters Project

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.

    2014-01-01

    Results from the recent LCROSS mission in 2010, indicate that H2O ice and other useful volatiles such as CO, He, and N are present in the permanently shadowed craters at the poles of the moon. However, the extreme topography and steep slopes of the crater walls make access a significant challenge. In addition temperatures have been measured at 40K (-233 C) so quick access and exit is desirable before the mining robot cold soaks. The Global Exploration Roadmap lists extreme access as a necessary technology for Lunar Exploration.

  8. Scientific Assessment of the Effects of Global Change on the United States: A Report of the Committee on Environment and Natural Resources, National Science and Technology Council

    DTIC Science & Technology

    2008-05-01

    Combined heating and cooling 186 V.7.b Energy production and distribution 187 Fossil and nuclear energy 190 Renewable energy 191 Extreme events 193...Period’) and a relatively cold period (or ‘Little Ice Age ’) centered around 1700 are evident. (Figure IV.6 shows the aggregate results from several...warming leading out of ice ages (NRC, 2002). IV. Trends and Projections of Global Environmental Change 95 • Greenhouse warming and other human

  9. The Small Satellites of Pluto as Observed by New Horizons

    NASA Technical Reports Server (NTRS)

    Weaver, H. A.; Buie, M. W; Buratti, B. J.; Grundy, W. M.; Lauer, T. R.; Olkin, C. B.; Parker, A .H.; Porter, S. B.; Showalter, M. R.; Spencer, J. R.; hide

    2016-01-01

    The New Horizons mission has provided resolved measurements of Pluto's moons Styx, Nix, Kerberos, and Hydra. All four are small, with equivalent spherical diameters of approx.40 kilometers for Nix and Hydra and approx. 10 kilometers for Styx and Kerberos. They are also highly elongated, with maximum to minimum axis ratios of approx. 2. All four moons have high albedos (approx.50 to 90%) suggestive of a water-ice surface composition. Crater densities on Nix and Hydra imply surface ages of at least 4 billion years. The small moons rotate much faster than synchronous, with rotational poles clustered nearly orthogonal to the common pole directions of Pluto and Charon. These results reinforce the hypothesis that the small moons formed in the aftermath of a collision that produced the Pluto-Charon binary.

  10. FTIR studies of low temperature sulfuric acid aerosols

    NASA Technical Reports Server (NTRS)

    Anthony, S. E.; Tisdale, R. T.; Disselkamp, R. S.; Tolbert, M. A.; Wilson, J. C.

    1995-01-01

    Sub-micrometer sized sulfuric acid H2SO4 particles were generated using a constant output atomizer source. The particles were then exposed to water vapor before being injected into a low temperature cell. Multipass transmission Fourier Transformation Infrared (FTIR) spectroscopy was used to determine the phase and composition of the aerosols as a function of time for periods of up to five hours. Binary H2SO4H2O aerosols with compositions from 35 to 95 wt % H2SO4 remained liquid for over 3 hours at room temperatures ranging from 189-240 K. These results suggest that it is very difficut to freeze SSAs via homogeneous nucleation. Attempts to form aerosols more dilute than 35 wt % H2SO4 resulted in ice formation.

  11. New approaches to subglacial bedrock drilling technology

    NASA Astrophysics Data System (ADS)

    Talalay, Pavel; Sun, Youhong; Zhao, Yue; Xue, Jun; Chen, Chen; Markov, Alexey; Xu, Huiwen; Gong, Wenbin; Han, Wei; Zheng, Zhichuan; Cao, Pinlu; Wang, Rusheng; Zhang, Nan; Yu, Dahui; Fan, Xiaopeng; Hu, Zhengyi; Yang, Cheng; Han, Lili; Sysoev, Mikhail

    2013-04-01

    Drilling to bedrock of ice sheets and glaciers offers unique opportunities to research processes acting at the bed for paleo-climatic and paleo-environmental recording, basal sliding studies, subglacial geology and tectonics investigations, prospecting and exploration for minerals covered by ice. Retrieving bedrock samples under ice sheets and glaciers is a very difficult task. Drilling operations are complicated by extremely low temperature at the surface of, and within glaciers, and by glacier flow, the absence of roads and infrastructures, storms, winds, snowfalls, etc. In order to penetrate through the ice sheet or glacier up to the depth of at least 1000 m and to pierce the bedrock to the depth of several meters from ice - bedrock boundary the development activity already has been started in Polar Research Center at Jilin University, China. All drilling equipment (two 50-kW diesel generators, winch, control desk, fluid dumping station, etc.) is installed inside a movable sledge-mounted warm-keeping and wind-protecting drilling shelter that has dimensions of 8.8 ×2.8 × 3.0 m. Mast has two positions: horizontal for transportation and vertical working position (mast height is 12 m). Drilling shelter can be transported to the chosen site with crawler-tractor, aircraft or helicopter. In case of carriage by air the whole drilling shelter was designed to be disassembled into pieces "small" enough to ship by aircraft. Weight and sizes of each component has been minimized to lower the cost of transportation and to meet weight restrictions for transportation. Total weight of drilling equipment (without drilling fluid) is near 15 tons. Expected time of assembling and preparing for drilling is 2 weeks. If drilling shelter is transported with crawler-tractor (for example, in Antarctic traverses) all equipment is ready to start drilling immediately upon arrival to the site. To drill through ice and bedrock a new, modified version of the cable-suspended electromechanical ice core drill is designed and tested. The expected average daily production of ice drilling would be not less than 25 m/day. The lower part of the drill is adapted for coring bed-rock using special tooth diamond bit. Deep ice coring requires a drilling fluid in the borehole during operation in order to keep the hole open and to compensate the hydrostatic pressures acting to close it. At present there are no ideal low-temperature drilling fluids as all of them are environmental and health hazardous substances. The new approaches of subglacial bedrock drilling technology are connected with utilization of environmental friendly, low-toxic materials, e.g. low-molecular dimethyl siloxane oils or aliphatic synthetic ester of ESTISOL™ 140 type. They have suitable density-viscosity properties, and can be consider as a viable alternative for drilling in glaciers and subglacial bedrock.

  12. An Autonomous Cryobot Synthetic Aperture Radar for Subsurface Exploration of Europa

    NASA Astrophysics Data System (ADS)

    Pradhan, O.; Gasiewski, A. J.

    2015-12-01

    We present the design and field testing of a forward-looking end-fire synthetic aperture radar (SAR) for the 'Very deep Autonomous Laser-powered Kilowatt-class Yo-yoing Robotic Ice Explorer' (VALKYRIE) ice-penetrating cryobot. This design demonstrates critical technologies that will support an eventual landing and ice penetrating mission to Jupiter's icy moon, Europa. Results proving the feasibility of an end-fire SAR system for vehicle guidance and obstacle avoidance in a sub-surface ice environment will be presented. Data collected by the SAR will also be used for constructing sub-surface images of the glacier which can be used for: (i) mapping of englacial features such as crevasses, moulins, and embedded liquid water and (ii) ice-depth and glacier bed analysis to construct digital elevation models (DEM) that can help in the selection of crybot trajectories and future drill sites for extracting long-term climate records. The project consists of three parts, (i) design of an array of four conformal cavity-backed log-periodic folded slot dipole array (LPFSA) antennas that form agile radiating elements, (ii) design of a radar system that includes RF signal generation, 4x4 transmit-receive antenna switching and isolation and digital SAR data processing and (iii) field testing of the SAR in melt holes. The antennas have been designed, fabricated, and lab tested at the Center for Environmental Technology (CET) at CU-Boulder. The radar system was also designed and integrated at CET utilizing rugged RF components and FPGA based digital processing. Field testing was performed in conjunction with VALKYRIE tests by Stone Aerospace in June, 2015 on Matanuska Glacier, Alaska. The antennas are designed to operate inside ice while being immersed in a thin layer of surrounding low-conductivity melt water. Small holes in the corners of the cavities allow flooding of these cavities with the same melt-water thus allowing for quarter-wavelength cavity-backed reflection. Testing of the antenna array was first carried out by characterizing their operation inside a large ice block at the Stone Aerospace facility in Austin, TX. The complete radar system was then tested on the Matanuska glacier in Alaska, which is an effective Earth analog to Europan sub-surface exploration.

  13. A Thermal Melt Probe System for Extensive, Low-Cost Instrument Deployment Within and Beneath Ice Sheets

    NASA Astrophysics Data System (ADS)

    Winebrenner, D. P.; Elam, W. T.; Carpenter, M.; Kintner, P., III

    2014-12-01

    More numerous observations within and beneath ice sheets are needed to address a broad variety of important questions concerning ice sheets and climate. However, emplacement of instruments continues to be constrained by logistical burdens, especially in cold ice a kilometer or more thick. Electrically powered thermal melt probes are inherently logistically light and efficient, especially for reaching greater depths in colder ice. They therefore offer a means of addressing current measurement problems, but have been limited historically by a lack of technology for reliable operation at the necessary voltages and powers. Here we report field tests in Greenland of two new melt probes. We operated one probe at 2.2 kilowatts (kW) and 1050 volts (V), achieving a depth of 400 m in the ice in ~ 120 hours, without electrical failure. That depth is the second greatest achieved thus far with a thermal melt probe, exceeded only by one deployment to 1005 m in Greenland in 1968, which ended in an electrical failure. Our test run took place in two intervals separated by a year, with the probe frozen at 65 m depth during the interim, after which we re-established communication, unfroze the probe, and proceeded to the greater depth. During the second field test we operated a higher-power probe, initially at 2.5 kW and 1500 V and progressing to 4.5 kW and 2000 V. Initial data indicate that this probe achieved a descent rate of 8 m/hr, which if correct would be the fastest rate yet achieved for such probes. Moreover, we observed maintenance of vertical probe travel using pendulum steering throughout both tests, as well as autonomous descent without operator-intervention after launch. The latter suggests potential for crews of 1-2 to operate several melt probes concurrently. However, the higher power probe did suffer electrical failure of a heating element after 7 hours of operation at 2000 V (24 hours after the start of the test), contrary to expectations based on laboratory component and system testing. We are therefore revising the probe heaters using a newer but more development-intensive technology. With probe systems now validated in our tests, this will result in a reliable means to emplace instruments for studies of subglacial hydrology, ice dynamics, and possible subglacial ecologies.

  14. A High Speed, Long-Range Mobile Communications Link for use in Polar Regions

    NASA Astrophysics Data System (ADS)

    Chalishazar, N.; Prescott, G.; Braaten, D.

    2003-12-01

    The Polar Radar for Ice Sheet Measurements (PRISM) project has developed a high bandwidth, wireless communications link between an autonomous rover and a manned vehicle deployed on a polar ice sheet to exchange real-time video, timing signals for a bistatic radar, and rover sensory data. The PRISM project is developing advanced intelligent remote sensing technology that involves radar systems, an autonomous rover, and communications systems to measure detailed ice sheet characteristics, and to determine bed conditions (frozen or wet) below active ice sheets in both Greenland and Antarctica. While this wireless communications link is being developed to fill a need within the PRISM Project, the same technology will allow polar researchers separated by moderate distances ( ˜10 km) to exchange data. The communications link is based on a high data rate 802.11b wireless technology, and a prototype system has been tested and evaluated during field experiments conducted at the NorthGRIP ice core drilling camp in Greenland (75° 06\\'\\ N, 42° 20\\'\\ W) from June 23-July 17, 2003. The IEEE 802.11b standard works in the 2.4-2.483 GHz band and has been widely used for high-speed data transfer in a WLAN (Wireless Local Area Network). It typically has a range of a few hundred meters and theoretical data rates on the order of 11 Mbps. It has been used for a number of applications in home and office environments. We modified a 802.11b system to operate up to a maximum distance of about 8 km and investigated the radio propagation environment over the flat terrain of the Greenland ice sheet. We evaluated its performance along three different tracks of 8 km in length, and made throughput measurements at intervals of 0.5 km. We measured the received signal strength and noise level in 2-s intervals along these 8 km tracks. Also we conducted experiments for four different antenna heights (1, 2, 3 and 5 m) for developing a radio propagation model for WLAN communication over the ice sheet. We found that peer-to-peer communication between nodes on the ice had data rates varying from 4.5 Mbps at close range to 2.5 Mbps at a distance of 8 km from the base station. The design, propagation model, throughput and coverage of this peer-to-peer communications system in Greenland are presented in this paper. This WLAN system has numerous applications in polar field camps. We tested the transfer of real-time video segments across this link for our educational outreach efforts in the field. These video segments were subsequently uploaded using an Iridium-based Internet link, and sent back to the University of Kansas. The wireless Internet connectivity was also made available to members of the North Grip camp, who were able to access e-mail and the Internet from their tents and common areas. However, throughput for wireless access to the Internet was limited by the Iridium-based Internet connection that had a maximum bandwidth of 9.6 Kbps.

  15. ARC-1993-AC93-0608-41

    NASA Image and Video Library

    1993-12-12

    Life from other Worlds' with McNair Middle School TROV robot explores under Antarctic ice - image of Eric James, Ron Schutz, and Wade Sisler of the Photographic Technology Branch co-ordinating remote shots from Antarctic to Ames

  16. Leveraging Cloud Technology to Provide a Responsive, Reliable and Scalable Backend for the Virtual Ice Sheet Laboratory Using the Ice Sheet System Model and Amazon's Elastic Compute Cloud

    NASA Astrophysics Data System (ADS)

    Perez, G. L.; Larour, E. Y.; Halkides, D. J.; Cheng, D. L. C.

    2015-12-01

    The Virtual Ice Sheet Laboratory(VISL) is a Cryosphere outreach effort byscientists at the Jet Propulsion Laboratory(JPL) in Pasadena, CA, Earth and SpaceResearch(ESR) in Seattle, WA, and the University of California at Irvine (UCI), with the goal of providing interactive lessons for K-12 and college level students,while conforming to STEM guidelines. At the core of VISL is the Ice Sheet System Model(ISSM), an open-source project developed jointlyat JPL and UCI whose main purpose is to model the evolution of the polar ice caps in Greenland and Antarctica. By using ISSM, VISL students have access tostate-of-the-art modeling software that is being used to conduct scientificresearch by users all over the world. However, providing this functionality isby no means simple. The modeling of ice sheets in response to sea and atmospheric temperatures, among many other possible parameters, requiressignificant computational resources. Furthermore, this service needs to beresponsive and capable of handling burst requests produced by classrooms ofstudents. Cloud computing providers represent a burgeoning industry. With majorinvestments by tech giants like Amazon, Google and Microsoft, it has never beeneasier or more affordable to deploy computational elements on-demand. This isexactly what VISL needs and ISSM is capable of. Moreover, this is a promisingalternative to investing in expensive and rapidly devaluing hardware.

  17. Long-Endurance, Ice-capable Autonomous Seagliders

    NASA Astrophysics Data System (ADS)

    Lee, C. M.; Gobat, J. I.; Shilling, G.; Curry, B.

    2012-12-01

    Autonomous Seagliders capable of extended (many months) operation in ice-covered waters have been developed and successfully employed as part of the US Arctic Observing Network. Seagliders operate routinely in lower-latitude oceans for periods of up to 9 months to provide persistent sampling in difficult, remote conditions, including strong boundary currents and harsh wintertime subpolar seas. The Arctic Observing Network calls for sustained occupation of key sections within the Arctic Ocean and across the critical gateways that link the Arctic to lower-latitude oceans, motivating the extension of glider technologies to permit operation in ice-covered waters. When operating in open water, gliders rely on GPS for navigation and Iridium satellite phones for data and command telemetry. Ice cover blocks access to the sea surface and thus prevents gliders from using these critical services. When operating under ice, ice-capable Seagliders instead navigate by trilateration from an array of RAFOS acoustic sound sources and employ advanced autonomy to make mission-critical decisions (previously the realm of the human pilot) and identify and exploit leads in the ice to allow intermittent communication through Iridium. Davis Strait, one of the two primary pathways through which Arctic waters exit into the subpolar North Atlantic, provided a convenient site for development of ice-capable Seagliders at a location where the resulting measurements could greatly augment the existing observing system. Initial testing of 780 Hz RAFOS sources in Davis Strait, substantiated by the performance of the operational array, indicates effective ranges of 100-150 km in ice-covered waters. Surface ducting and reflection off the ice bottom significantly degrade the range from the 500+ km expected in ice-free conditions. Comparisons between GPS and acoustically-derived positions collected during operations in ice-free conditions suggest 1-2 km uncertainty in the acoustically-derived positions. The first successful section across the ice-covered Davis Strait occurred in 2006, while the first full mission took place September - February 2008. Mission duration was 25 weeks, with over 800 km of under-ice transit over 51 days. The glider was able to identify and surface through leads 10 times during under-ice operations. Most recently, a pair of successful missions collected continuous sections across Davis Strait from October 2010 through June 2011, including operations between January and June, when the strait was nearly entirely ice-covered and the glider rarely gained access to the surface. These missions provide the first year-round time series of high-resolution sections across Davis Strait. In the Antarctic, ice-capable Seagliders successfully transited beneath a 40-km ice bridge and self-extracted after being carried beneath the Ross ice shelf during missions conducted without the support of an acoustic navigation array. Ice-capable Seagliders can provide sustainable, continuous occupation of critical sections in ice-covered regions, including the marginal ice zone, with typical horizontal resolution of 3 km and routine sampling of the important, but hazardous, region near the ice-ocean interface. Future directions include development of basin-scale acoustic navigation ('underwater GPS' for the Arctic) and use of existing high-frequency acoustic communications for short-range data transfer.

  18. Long-Endurance, Ice-capable Autonomous Seagliders

    NASA Astrophysics Data System (ADS)

    Lee, Craig; Gobat, Jason; Shilling, Geoff; Curry, Beth

    2013-04-01

    Autonomous Seagliders capable of extended (many months) operation in ice-covered waters have been developed and successfully employed as part of the US Arctic Observing Network. Seagliders operate routinely in lower-latitude oceans for periods of up to 9 months to provide persistent sampling in difficult, remote conditions, including strong boundary currents and harsh wintertime subpolar seas. The Arctic Observing Network calls for sustained occupation of key sections within the Arctic Ocean and across the critical gateways that link the Arctic to lower-latitude oceans, motivating the extension of glider technologies to permit operation in ice-covered waters. When operating in open water, gliders rely on GPS for navigation and Iridium satellite phones for data and command telemetry. Ice cover blocks access to the sea surface and thus prevents gliders from using these critical services. When operating under ice, ice-capable Seagliders instead navigate by trilateration from an array of RAFOS acoustic sound sources and employ advanced autonomy to make mission-critical decisions (previously the realm of the human pilot) and identify and exploit leads in the ice to allow intermittent communication through Iridium. Davis Strait, one of the two primary pathways through which Arctic waters exit into the subpolar North Atlantic, provided a convenient site for development of ice-capable Seagliders at a location where the resulting measurements could greatly augment the existing observing system. Initial testing of 780 Hz RAFOS sources in Davis Strait, substantiated by the performance of the operational array, indicates effective ranges of 100-150 km in ice-covered waters. Surface ducting and reflection off the ice bottom significantly degrade the range from the 500+ km expected in ice-free conditions. Comparisons between GPS and acoustically-derived positions collected during operations in ice-free conditions suggest 1-2 km uncertainty in the acoustically-derived positions. The first successful section across the ice-covered Davis Strait occurred in 2006, while the first full mission took place September - February 2008. Mission duration was 25 weeks, with over 800 km of under-ice transit over 51 days. The glider was able to identify and surface through leads 10 times during under-ice operations. Most recently, a pair of successful missions collected continuous sections across Davis Strait from October 2010 through June 2011, including operations between January and June, when the strait was nearly entirely ice-covered and the glider rarely gained access to the surface. These missions provide the first year-round time series of high-resolution sections across Davis Strait. In the Antarctic, ice-capable Seagliders successfully transited beneath a 40-km ice bridge and self-extracted after being carried beneath the Ross ice shelf during missions conducted without the support of an acoustic navigation array. Ice-capable Seagliders can provide sustainable, continuous occupation of critical sections in ice-covered regions, including the marginal ice zone, with typical horizontal resolution of 3 km and routine sampling of the important, but hazardous, region near the ice-ocean interface. Future directions include development of basin-scale acoustic navigation ('underwater GPS' for the Arctic) and use of existing high-frequency acoustic communications for short-range data transfer.

  19. Effects of hydrogen on acceptor activation in ternary nitride semiconductors

    DOE PAGES

    Fioretti, Angela N.; Stokes, Adam; Young, Matthew R.; ...

    2017-02-09

    Doping control is necessary to unlock the scientific and technological potential of many materials, including ternary II-IV-nitride semiconductors, which are closely related to binary GaN. In particular, ZnSnN 2 has been reported to have degenerate doping density, despite bandgap energies that are well suited for solar energy conversion. Here, we show that annealing Zn-rich Zn 1+xSn 1-xN 2 grown with added hydrogen reduces its free electron density by orders of magnitude, down to 4 x 10 16 cm -3. This experimental observation can be explained by hydrogen passivation of acceptors in Zn 1+xSn 1-xN 2 during growth, lowering the drivingmore » force for unintentional donor formation. Lastly, these results indicate that the doping control principles used in GaN can be translated to ZnSnN 2, suggesting that other strategies used in binary III-Vs can be applied to accelerate the technological development of ternary II-IV-N 2 materials.« less

  20. Modeling of subaqueous melting in Petermann Fjord, Northwestern Greenland using an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Cai, C.; Rignot, E. J.; Xu, Y.; An, L.; Tinto, K. J.; van den Broeke, M. R.

    2014-12-01

    Basal melting of the floating tongue of Petermann Glacier, in northwestern Greenland is by far the largest process of mass ablation. Melting of the floating tongue is controlled by the buoyancy of the melt water plume, the pressure-dependence of the melting point of sea ice, and the mixing of warm subsurface water with fresh buoyant subglacial discharge. In prior simulations of this melting process, the role of subglacial discharge has been neglected because in similar configurations (floating ice shelves) in the Antarctic, surface runoff is negligible; this is however not true in Greenland. Here, we use the Mass Institute of Technology general circulation model (MITgcm) at a high spatial resolution (10 m x 10 m) to simulate the melting process of the ice shelf in 2-D. The model is constrained by ice shelf bathymetry and ice thickness (refined model in the immediate vicinity of the grounding line) from NASA Operation IceBridge (2011), ocean temperature/salinity data from Johnson et al. (2011), ocean tide height and current from the Arctic Ocean Tidal Inverse Model (AOTIM-5) by Padman and Erofeeva (2004) and subglacial discharge at the grounding line calculated by the hydrostatic potential of the ice from estimated products of the Regional Atmospheric Climate Model (RACMO) of Royal Netherlands Meteorological Institute (KNMI). We compare the results obtained in winter (no runoff) with summer, and the sensitivity of the results to thermal forcing from the ocean, and to the variation of tide height and current, and to the magnitude of subglacial runoff. We conclude on the impact of the ocean and surface melting on the melting regime of the floating ice tongue of Petermann. The basal melt rate increases ~20% with summer surface runoff. This work is performed under a contract with NASA Cryosphere Program.

  1. The Effects of Changing Sea Ice on Marine Mammals and Their Hunters in Northern Alaska

    NASA Astrophysics Data System (ADS)

    Huntington, H.; Quakenbush, L.; Nelson, M.

    2015-12-01

    Marine mammals are important sources of food for indigenous residents of northern Alaska. Changing sea ice patterns affect the animals themselves as well as access by hunters. Documenting the traditional knowledge of Iñupiaq and Yupik hunters concerning marine mammals and sea ice makes accessible a wide range of information and insight relevant to ecological understanding, conservation action, and the regulation of human activity. We interviewed hunters in villages from northern Bering Sea to the Beaufort Sea, focusing on bowhead whales, walrus, and ice seals. Hunters reported extensive changes in sea ice, with resulting effects on the timing of marine mammal migrations, the distribution and behavior of the animals, and the efficacy of certain hunting methods, for example the difficulty of finding ice thick enough to support a bowhead whale for butchering. At the same time, hunters acknowledged impacts and potential impacts from changing technology such as more powerful outboard engines and from industrial activity such as shipping and oil and gas development. Hunters have been able to adapt to some changes, for example by hunting bowhead whales in fall as well as spring on St. Lawrence Island, or by focusing their hunt in a shorter period in Nuiqsut to accommodate work schedules and worse weather. Other changes, such as reduced availability of ice seals due to rapid retreat of pack ice after spring break-up, continue to defy easy responses. Continued environmental changes, increased disturbance from human activity, and the introduction of new regulations for hunting may further challenge the ability of hunters to provide food as they have done to date, though innovation and flexibility may also provide new sources of adaptation.

  2. The Evolution of the Multiplicity of Embedded Protostars. II. Binary Separation Distribution and Analysis

    NASA Astrophysics Data System (ADS)

    Connelley, Michael S.; Reipurth, Bo; Tokunaga, Alan T.

    2008-06-01

    We present the Class I protostellar binary separation distribution based on the data tabulated in a companion paper. We verify the excess of Class I binary stars over solar-type main-sequence stars in the separation range from 500 AU to 4500 AU. Although our sources are in nearby star-forming regions distributed across the entire sky (including Orion), none of our objects are in a high stellar density environment. A log-normal function, used by previous authors to fit the main-sequence and T Tauri binary separation distributions, poorly fits our data, and we determine that a log-uniform function is a better fit. Our observations show that the binary separation distribution changes significantly during the Class I phase, and that the binary frequency at separations greater than 1000 AU declines steadily with respect to spectral index. Despite these changes, the binary frequency remains constant until the end of the Class I phase, when it drops sharply. We propose a scenario to account for the changes in the Class I binary separation distribution. This scenario postulates that a large number of companions with a separation greater than ~1000 AU were ejected during the Class 0 phase, but remain gravitationally bound due to the significant mass of the Class I envelope. As the envelope dissipates, these companions become unbound and the binary frequency at wide separations declines. Circumstellar and circumbinary disks are expected to play an important role in the orbital evolution at closer separations. This scenario predicts that a large number of Class 0 objects should be non-hierarchical multiple systems, and that many Class I young stellar objects (YSOs) with a widely separated companion should also have a very close companion. We also find that Class I protostars are not dynamically pristine, but have experienced dynamical evolution before they are visible as Class I objects. Our analysis shows that the Class I binary frequency and the binary separation distribution strongly depend on the star-forming environment. The Infrared Telescope Facility is operated by the University of Hawaii under Cooperative Agreement no. NCC 5-538 with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program. The United Kingdom Infrared Telescope is operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the U.K. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  3. Inactivation of Nonpathogenic Escherichia coli, Escherichia coli O157:H7, Salmonella enterica Typhimurium, and Listeria monocytogenes in Ice Using a UVC Light-Emitting Diode.

    PubMed

    Murashita, Suguru; Kawamura, Shuso; Koseki, Shigenobu

    2017-07-01

    Ice, widely used in the food industry, is a potential cause of food poisoning resulting from microbial contamination. Direct microbial inactivation of ice is necessary because microorganisms may have been present in the source water used to make it and/or may have been introduced due to poor hygiene during production or handling of the ice. Nonthermal and nondestructive microbial inactivation technologies are needed to control microorganisms in ice. We evaluated the applicability of a UVC light-emitting diode (UVC-LED) for microbial inactivation in ice. The effects of UV intensity and UV dose of the UVC-LED on Escherichia coli ATCC 25922 and a comparison of UVC-LED with a conventional UV lamp for effective bacterial inactivation in distilled water and ice cubes were investigated to evaluate the performance of the UVC-LED. Finally, we assessed the effects of the UVC-LED on pathogens such as E. coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in ice cubes. The results indicated that UVC-LED effectiveness depended on the UV dose at all UV intensity conditions (0.084, 0.025, 0.013, 0.007, and 0.005 mW/cm 2 ) in ice and that UVC-LED could more efficiently inactivate E. coli ATCC 25922 in distilled water and ice than the UV lamp. At a UV dose of 2.64 mJ/cm 2 , E. coli in distilled water was decreased by 0.90 log CFU/mL (UV lamp) and by more than 7.0 log CFU/mL (UVC-LED). At 15.2 mJ/cm 2 , E. coli in ice was decreased by 3.18 log CFU/mL (UV lamp) and by 4.45 CFU/mL (UVC-LED). Furthermore, UVC-LED irradiation reduced the viable number of pathogens by 6 to 7 log cycles at 160 mJ/cm 2 , although the bactericidal effect was somewhat dependent on the type of bacteria. L. monocytogenes in ice was relatively more sensitive to UVC irradiation than were E. coli O157:H7 and Salmonella Typhimurium. These results demonstrate that UVC-LED irradiation could contribute to the safety of ice in the food industry.

  4. Paleo ice-cap surfaces and extents

    NASA Astrophysics Data System (ADS)

    Gillespie, A.; Pieri, D.

    2008-12-01

    The distribution, equilibrium-line altitude (ELA) and timing of Pleistocene alpine glaciers are used to constrain paleoclimatic reconstructions. Attention has largely focused on the geomorphic evidence for the former presence of simple valley glaciers; paleo alpine ice caps and their outlet glaciers have proven to be more problematical. This is especially so in the remote continental interior of Asia, where the research invested in the Alps or Rocky Mountains has yet to be duplicated. Even the putative existence and size of paleo ice caps in Tibet and the Kyrgyz Tien Shan is controversial. Remote sensing offers the opportunity to assess vast tracts of land quickly, with images and co-registered digital elevation models (DEMs) offering the most information for studies of paleoglaciers. We pose several questions: (1) With what confidence can nunataks be identified remotely? (2) What insights do their physiographic characteristics offer? (3) What characteristics of the bed of a paleo ice cap can be used to identify its former presence remotely? and (4) Can the geomorphic signatures of the edges of paleo ice caps be recognized and mapped? Reconstruction of the top surface of a paleo ice cap depends on the recognition of nunataks, typically rougher at 1 m to 100 m scales than their surroundings. Nunataks in southern Siberia are commonly notched by multiple sub- horizontal bedrock terraces. These step terraces appear to originate from freeze-thaw action on the rock-ice interface during periods of stability, and presence of multiple terraces suggests stepwise lowering of ice surfaces during deglaciation. An older generation of step-terraced nunataks, distinguished by degraded and eroded terraces, delineates a larger paleo ice cap in the Sayan Range (Siberian - Mongolian border) that significantly pre-dates the last glacial maximum (LGM). Large ice caps can experience pressure melting at their base and can manifest ice streams within the ice cap. Valleys left behind differ from fluvial valleys in their width/depth profiles: the channels maintain width but get shallower near their sources. Link junction angle distributions within superimposed drainage networks are broader and distinct from those of evolved fluvial networks, and their character and statistics can be used to identify the perimeters of large paleo ice caps. (This work was carried out in part at the Jet Propulsion Laboratory of the California Institute of Technology under contract to NASA.)

  5. Reducing the Impact of Sampling Bias in NASA MODIS and VIIRS Level 3 Satellite Derived IR SST Observations over the Arctic

    NASA Astrophysics Data System (ADS)

    Minnett, P. J.; Liu, Y.; Kilpatrick, K. A.

    2016-12-01

    Sea-surface temperature (SST) measurements by satellites in the northern hemisphere high latitudes confront several difficulties. Year-round prevalent clouds, effects near ice edges, and the relative small difference between SST and low-level cloud temperatures lead to a significant loss of infrared observations regardless of the more frequent polar satellite overpasses. Recent research (Liu and Minnett, 2016) identified sampling issues in the Level 3 NASA MODIS SST products when 4km observations are aggregated into global grids at different time and space scales, particularly in the Arctic, where a binary decision cloud mask designed for global data is often overly conservative at high latitudes and results in many gaps and missing data. This under sampling of some Arctic regions results in a warm bias in Level 3 products, likely a result of warmer surface temperature, more distant from the ice edge, being identified more frequently as cloud free. Here we present an improved method for cloud detection in the Arctic using a majority vote from an ensemble of four classifiers trained based on an Alternative Decision Tree (ADT) algorithm (Freund and Mason 1999, Pfahringer et. al. 2001). This new cloud classifier increases sampling of clear pixel by 50% in several regions and generally produces cooler monthly average SST fields in the ice-free Arctic, while still retaining the same error characteristics at 1km resolution relative to in situ observations. SST time series of 12 years of MODIS (Aqua and Terra) and more recently VIIRS sensors are compared and the improvements in errors and uncertainties resulting from better cloud screening for Level 3 gridded products are assessed and summarized.

  6. Pathways to Oxygen-Bearing Molecules in the Interstellar Medium and in Planetary Atmospheres: Cyclopropenone (c-C3H2O) and Propynal (HCCCHO)

    NASA Astrophysics Data System (ADS)

    Zhou, Li; Kaiser, Ralf I.; Gao, Li Gyun; Chang, Agnes H. H.; Liang, Mao-Chang; Yung, Yuk L.

    2008-10-01

    We investigated the formation of two C3H2O isomers, i.e., cyclopropenone (c-C3H2O) and propynal (HCCCHO), in binary ice mixtures of carbon monoxide (CO) and acetylene (C2H2) at 10 K in an ultrahigh vacuum machine on high-energy electron irradiation. The chemical evolution of the ice samples was followed online and in situ via a Fourier transform infrared spectrometer and a quadrupole mass spectrometer. The temporal profiles of the cyclopropenone and propynal isomers suggest (pseudo-) first-order kinetics. The cyclic structure (c-C3H2O) is formed via an addition of triplet carbon monoxide to ground-state acetylene (or vice versa); propynal (HCCCHO) can be synthesized from a carbon monoxide-acetylene complex via a [HCO...CCH] radical pair inside the matrix cage. These laboratory studies showed for the first time that both C3H2O isomers can be formed in low-temperature ices via nonequilibrium chemistry initiated by energetic electrons as formed in the track of Galactic cosmic ray particles penetrating interstellar icy grains in cold molecular clouds. Our results can explain the hitherto unresolved gas phase abundances of cyclopropenone in star-forming regions via sublimation of c-C3H2O as formed on icy grains in the cold molecular cloud stage. Implications for the heterogeneous oxygen chemistry of Titan and icy terrestrial planets and satellites suggest that the production of oxygen-bearing molecules such as C3H2O may dominate on aerosol particles compared to pure gas phase chemistry.

  7. The mid-IR Absorption Cross Sections of α- and β-NAT (HNO3 · 3H2O) in the range 170 to 185 K and of metastable NAD (HNO3 · 2H2O) in the range 172 to 182 K

    NASA Astrophysics Data System (ADS)

    Iannarelli, R.; Rossi, M. J.

    2015-11-01

    Growth and Fourier transform infrared (FTIR) absorption in transmission of the title nitric acid hydrates have been performed in a stirred flow reactor (SFR) under tight control of the H2O and HNO3 deposition conditions affording a closed mass balance of the binary mixture. The gas and condensed phases have been simultaneously monitored using residual gas mass spectrometry and FTIR absorption spectroscopy, respectively. Barrierless nucleation of the metastable phases of both α-NAT (nitric acid trihydrate) and NAD (nitric acid dihydrate) has been observed when HNO3 was admitted to the SFR in the presence of a macroscopic thin film of pure H2O ice of typically 1 µm thickness. The stable β-NAT phase was spontaneously formed from the precursor α-NAT phase through irreversible thermal rearrangement beginning at 185 K. This facile growth scheme of nitric acid hydrates requires the presence of H2O ice at thicknesses in excess of approximately hundred nanometers. Absolute absorption cross sections in the mid-IR spectral range (700-4000 cm-1) of all three title compounds have been obtained after spectral subtraction of excess pure ice at temperatures characteristic of the upper troposphere/lower stratosphere. Prominent IR absorption frequencies correspond to the antisymmetric nitrate stretch vibration (ν3(NO3-)) in the range 1300 to 1420 cm-1 and the bands of hydrated protons in the range 1670 to 1850 cm-1 in addition to the antisymmetric O-H stretch vibration of bound H2O in the range 3380 to 3430 cm-1 for NAT.

  8. Evolution of Titan's High-Pressure Ice layer

    NASA Astrophysics Data System (ADS)

    Sotin, C.; Kalousova, K.

    2016-12-01

    Constraints on the present interior structure of Titan come from the gravity science experiment onboard the Cassini spacecraft and from the interpretation of the Extremely Low Frequency (ELF) wave observed by the Huygens probe [1, 2]. From the surface to the center, Titan would be composed of 4 layers: an icy crust, a global salty ocean, a layer of high-pressure ice (HP ice) and a core made of hydrated silicates [2, 3, 4]. The presence of a large amount of 40Ar in Titan's atmosphere argues for a geologically recent exchange process between the silicate core, where 40Ar is produced by the decay of 40K, and the atmosphere. Argon must then be able to be transported from the silicate core to the surface. This study investigates how volatiles can be transported through the HP ice layer.Recent numerical simulations [5] have demonstrated that the dynamics of the HP ice layer is controlled by convection processes in a two-phase material (water and high-pressure ice). The silicate / HP ice interface is maintained at the melting temperature, which might allow for the incorporation of volatiles such as 40Ar into the convecting HP ice. Above the hot thermal boundary layer, the temperature of the convecting HP ice is below the melting temperature, except for the upwelling plumes when they approach the cold thermal boundary layer. The upper part of the HP ice layer is at the melting point and permeable for water transport, providing a path for the transfer of volatiles trapped in the ice towards the ocean.Scaling laws are inferred from the numerical simulations [5]. They are then used to model the evolution of the HP ice layer. Specifically, we look at the effect of (i) ice viscosity, (ii) heat flux at the silicate/HP ice interface, and (iii) presence of anti-freeze compounds in the ocean, on the thickness of the HP ice layer. In addition, our results provide insights on possible resurfacing processes that could explain the geologically young age of Titan's surface. This work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. [1] Iess et al. (2012) Science, 337, 457-461. [2] Beghin et al. (2012) Icarus, 1028-1042. [3] Mitri et al. (2014) Icarus, 236, 169-177. [4] Castillo and Lunine (2010) Geophys. Res. Lett., 37, L20205. [5] Kalousova et al. (2015) Fall AGU, P31C-2078.

  9. Exploration of the Climate Change Frontier in Polar Regions at the Land Ice-Ocean Boundary.

    NASA Astrophysics Data System (ADS)

    Rignot, E. J.

    2014-12-01

    Ice sheets are the largest contributors to sea level rise at present, and responsible for the largest uncertainty in sea level projections. Ice sheets raised sea level 5 m per century 13.5 kyr ago during one period of rapid change. Leading regions for future rapid changes include the marine-based, retrograde bed parts of Greenland (north center and east), West Antarctica (Amundsen Sea), and East Antarctica (Filchner basin and Wilkes Land). Fast changes require an increase in ice melt from a warmer ocean and an increase in iceberg calving. Our understanding of both processes remains limited due to a lack of basic observations. Understanding ocean forcing requires observations on the continental shelf, along bays and glacial fjords and at ice-ocean boundaries, beneath kilometers of ice (Antarctica) or at near-vertical calving cliffs (Greenland), of ocean temperature and sea floor bathymetry. Where such observations exist, the sea floor is much deeper than anticipated because of the carving of deep channels by multiple glacier advances. Warm subsurface waters penetrate throughout the Amundsen Sea Embayment of West Antarctica, the southeast and probably the entire west coasts of Greenland. In Greenland, discharge of subglacial water from surface runoff at the glacier grounding line increases ice melting by the ocean even if the ocean temperature remains the same. Near ice-ocean boundaries, satellite observations are challenged, airborne observations and field surveys are limited, so advanced robotic techniques for cold, deep, remote environments are ultimately required in combination with advanced numerical modeling techniques. Until such technological advances take place and advanced networks are put in place, it is critical to conduct boat surveys, install moorings, and conduct extensive airborne campaigns (for instance, gravity-derived bathymetry and air-dropped CTDs), some of which is already taking place. In the meantime, projections of ice sheet evolution in a warmer climate will remain highly conservative and perhaps misleading. Furthermore, as glaciers destabilize, iceberg calving will take over. Calving depends on the height of the calving cliff, the fracturing of ice near the ice front by strain rates or water; but the jury is also out about defining a universal calving law.

  10. Oil in Ice Project Final Report

    DTIC Science & Technology

    2018-03-01

    describes the various field technology demonstrations and provides an appendix with a description of 11 tactics using the most promising response...This report describes the various field technology demonstrations and provides an appendix with a description of 11 tactics using the most promising...water. RDC developed and evaluated two prototype temporary storage containers that could be mounted on the deck of a WLB. The tie-down method still

  11. Maritime Geo-Fence Letter Report

    DTIC Science & Technology

    2016-07-01

    Identification System ( AIS ). For the Arctic Technology Evaluation 2015 (ATE-15), the RDC utilized the CG Cutter HEALY (polar ice breaker) to...conduct testing of various AIS Transmit features to determine their utility for improving CG marine safety and security capabilities in the Arctic. During...ATE-15 three different operations were tested using AIS Technology. 1) Shore-to-Ship. The MXAK network of shore transmitters (three of which covered

  12. Investment appraisal of technology innovations on dairy farm electricity consumption.

    PubMed

    Upton, J; Murphy, M; De Boer, I J M; Groot Koerkamp, P W G; Berentsen, P B M; Shalloo, L

    2015-02-01

    The aim of this study was to conduct an investment appraisal for milk-cooling, water-heating, and milk-harvesting technologies on a range of farm sizes in 2 different electricity-pricing environments. This was achieved by using a model for electricity consumption on dairy farms. The model simulated the effect of 6 technology investment scenarios on the electricity consumption and electricity costs of the 3 largest electricity-consuming systems within the dairy farm (i.e., milk-cooling, water-heating, and milking machine systems). The technology investment scenarios were direct expansion milk-cooling, ice bank milk-cooling, milk precooling, solar water-heating, and variable speed drive vacuum pump-milking systems. A dairy farm profitability calculator was combined with the electricity consumption model to assess the effect of each investment scenario on the total discounted net income over a 10-yr period subsequent to the investment taking place. Included in the calculation were the initial investments, which were depreciated to zero over the 10-yr period. The return on additional investment for 5 investment scenarios compared with a base scenario was computed as the investment appraisal metric. The results of this study showed that the highest return on investment figures were realized by using a direct expansion milk-cooling system with precooling of milk to 15°C with water before milk entry to the storage tank, heating water with an electrical water-heating system, and using standard vacuum pump control on the milking system. Return on investment figures did not exceed the suggested hurdle rate of 10% for any of the ice bank scenarios, making the ice bank system reliant on a grant aid framework to reduce the initial capital investment and improve the return on investment. The solar water-heating and variable speed drive vacuum pump scenarios failed to produce positive return on investment figures on any of the 3 farm sizes considered on either the day and night tariff or the flat tariff, even when the technology costs were reduced by 40% in a sensitivity analysis of technology costs. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Remotely Operated Vehicles under sea ice - Experiences and results from five years of polar operations

    NASA Astrophysics Data System (ADS)

    Katlein, Christian; Arndt, Stefanie; Lange, Benjamin; Belter, Hans Jakob; Schiller, Martin; Nicolaus, Marcel

    2016-04-01

    The availability of advanced robotic technologies to the Earth Science community has largely increased in the last decade. Remotely operated vehicles (ROV) enable spatially extensive scientific investigations underneath the sea ice of the polar oceans, covering a larger range and longer diving times than divers with significantly lower risks. Here we present our experiences and scientific results acquired from ROV operations during the last five years in the Arctic and Antarctic sea ice region. Working under the sea ice means to have all obstacles and investigated objects above the vehicle, and thus changes several paradigms of ROV operations as compared to blue water applications. Observations of downwelling spectral irradiance and radiance allow a characterization of the optical properties of sea ice and the spatial variability of the energy partitioning across the atmosphere-ice-ocean boundary. Our results show that the decreasing thickness and age of the sea ice have led to a significant increase in light transmission during summer over the last three decades. Spatially extensive measurements from ROV surveys generally provide more information on the light field variability than single spot measurements. The large number of sampled ice conditions during five cruises with the German research icebreaker RV Polarstern allows for the investigations of the seasonal evolution of light transmittance. Both, measurements of hyperspectral light transmittance through sea ice, as well as classification of upward-looking camera images were used to investigate the spatial distribution of ice-algal biomass. Buoyant ice-algal aggregates were found to be positioned in the stretches of level ice, rather than pressure ridges due to a physical interaction of aggregate-buoyancy and under-ice currents. Synchronous measurements of sea ice thickness by upward looking sonar provides crucial additional information to put light-transmittance and biological observations into context. Observations of under-ice topography by upward-looking multibeam sonar combined with aerial images provide a unique three dimensional picture of the complexity of the non-uniform sea ice layer. ROV surveys cover the scale of an entire ice floe and are an excellent tool to bridge the scale gap between isolated point measurements and larger scale surveys, such as specifically designed under-ice nets with sensor arrays or surveys by autonomous underwater vehicles (AUV). In the framework of the infrastructure project FRAM (Frontiers in Arctic Marine Monitoring), the Alfred Wegener Institute is in the process of commissioning a new lightweight mobile ROV system for interdisciplinary research underneath sea ice. This new system profits from the acquired experiences and will receive a significantly upgraded suite of scientific sensors, maintaining the rugged and reliable characteristics of the past systems. The interdisciplinary sensor suite will be extended towards the measurement of more oceanographic and biological parameters with a CTD, different fluorometers, and biogeochemical sensors. While basic intervention capabilities are already available, the system can be extended with advanced manipulation and sampling capabilities in the future.

  14. EMERGING TECHNOLOGY BULLETIN - METHANOTROPHIC BIOREACTOR SYSTEM - BIOTROL, INC.

    EPA Science Inventory

    BioTrol's Methanotrophic Bioreactor is an above-ground remedial system for water contaminated with halogenated volatile organic compounds, including trichloroethylene (ICE) and related chemicals. Its design features circumvent problems peculiar to treatment of this unique class o...

  15. Objectives and Capabilities of the Deep Space 2 (DS2) Evolved Water Experiment

    NASA Astrophysics Data System (ADS)

    Yen, A. S.; Murray, B.; Zent, A. P.

    1999-09-01

    The New Millennium Deep Space 2 (DS2) Mars Microprobes will impact the surface of Mars at a latitude of approximately 75 degrees South on December 3, 1999. The primary objective of this mission is to demonstrate penetrator technologies for future scientific applications. Nonetheless, measurements will be obtained with the goal of characterizing the atmospheric structure during entry as well as the penetrability, thermal conductivity, and water ice content of the polar layered terrains. In addition to demonstrating the ability to collect a subsurface sample, the evolved water experiment will test models of the south polar regions which indicate that water ice is stable at depths of 4 to 20 cm and greater [Paige and Keegan, 1994]. This prediction for the presence of ice is in contrast to atmospheric circulation models which suggest that water is irreversibly lost from southern latitudes and that the only extensive, permanent ice deposits are located in the northern hemisphere [Houben et al., 1997]. Furthermore, MOC images from the 1998 aerobraking phase suggest a rougher and perhaps more devolatilized surface than inferred from Viking and Mariner 9 data. Thus, the direct determination of the presence or absence of near-surface ice by the DS2 probes is important in the resolution of the fundamental questions about Mars regarding the global inventory of water and the climate history. In pursuit of these objectives, a 160 milliliter soil sample will be actively collected by a miniature drill and analyzed for water ice both thermally and spectroscopically. Specific capabilities and detection limits for the abundance of water ice will be presented at the meeting.

  16. EOS Aqua AMSR-E Sea Ice Validation Program: Meltpond 2000 Flight Report

    NASA Technical Reports Server (NTRS)

    Cavalieri, Donald J.

    2000-01-01

    This flight report describes the field component of Meltpond2000, the first in a series of Arctic and Antarctic aircraft campaigns planned as part of NASA's Earth Observing System Aqua sea ice validation program for the Advanced Microwave Scanning Radiometer (AMSR-E). This prelaunch Arctic field campaign was carried out between June 25 and July 6, 2000 from Thule, Greenland, with the objective of quantifying the errors incurred by the AMSR-E sea ice algorithms resulting from the presence of melt ponds. A secondary objective of the mission was to develop a microwave capability to discriminate between melt ponds and seawater using low-frequency microwave radiometers. Meltpond2000 was a multiagency effort involving personnel from the Navy, National Oceanic and Atmospheric Administration (NOAA), and NASA. The field component of the mission consisted of making five eight-hour flights from Thule Air Base with a Naval Air Warfare Center P-3 aircraft over portions of Baffin Bay and the Canadian Arctic. The aircraft sensors were provided and operated by the Microwave Radiometry Group of NOAA's Environmental Technology Laboratory. A Navy ice observer from the National Ice Center provided visual documentation of surface ice conditions during each of the flights. Two of the five flights were coordinated with Canadian scientists making surface measurements of melt ponds at an ice camp located near Resolute Bay, Canada. Coordination with the Canadians will provide additional information on surface characteristics and will be of great value in the interpretation of the aircraft and high-resolution satellite data sets.

  17. On the Application of Science Systems Engineering and Uncertainty Quantification for Ice Sheet Science and Sea Level Projections

    NASA Astrophysics Data System (ADS)

    Schlegel, Nicole-Jeanne; Boening, Carmen; Larour, Eric; Limonadi, Daniel; Schodlok, Michael; Seroussi, Helene; Watkins, Michael

    2017-04-01

    Research and development activities at the Jet Propulsion Laboratory (JPL) currently support the creation of a framework to formally evaluate the observational needs within earth system science. One of the pilot projects of this effort aims to quantify uncertainties in global mean sea level rise projections, due to contributions from the continental ice sheets. Here, we take advantage of established uncertainty quantification tools embedded within the JPL-University of California at Irvine Ice Sheet System Model (ISSM). We conduct sensitivity and Monte-Carlo style sampling experiments on forward simulations of the Greenland and Antarctic ice sheets. By varying internal parameters and boundary conditions of the system over both extreme and credible worst-case ranges, we assess the impact of the different parameter ranges on century-scale sea level rise projections. The results inform efforts to a) isolate the processes and inputs that are most responsible for determining ice sheet contribution to sea level; b) redefine uncertainty brackets for century-scale projections; and c) provide a prioritized list of measurements, along with quantitative information on spatial and temporal resolution, required for reducing uncertainty in future sea level rise projections. Results indicate that ice sheet mass loss is dependent on the spatial resolution of key boundary conditions - such as bedrock topography and melt rates at the ice-ocean interface. This work is performed at and supported by the California Institute of Technology's Jet Propulsion Laboratory. Supercomputing time is also supported through a contract with the National Aeronautics and Space Administration's Cryosphere program.

  18. Airborne Laser/GPS Mapping of Assateague National Seashore Beach

    NASA Technical Reports Server (NTRS)

    Kradill, W. B.; Wright, C. W.; Brock, John C.; Swift, R. N.; Frederick, E. B.; Manizade, S. S.; Yungel, J. K.; Martin, C. F.; Sonntag, J. G.; Duffy, Mark; hide

    1997-01-01

    Results are presented from topographic surveys of the Assateague Island National Seashore using recently developed Airborne Topographic Mapper (ATM) and kinematic Global Positioning System (GPS) technology. In November, 1995, and again in May, 1996, the NASA Arctic Ice Mapping (AIM) group from the Goddard Space Flight Center's Wallops Flight Facility conducted the topographic surveys as a part of technology enhancement activities prior to conducting missions to measure the elevation of extensive sections of the Greenland Ice Sheet as part of NASA's Global Climate Change program. Differences between overlapping portions of both surveys are compared for quality control. An independent assessment of the accuracy of the ATM survey is provided by comparison to surface surveys which were conducted using standard techniques. The goal of these projects is to mdke these measurements to an accuracy of +/- 10 cm. Differences between the fall 1995 and 1996 surveys provides an assessment of net changes in the beach morphology over an annual cycle.

  19. The principles of ultrasound and its application in freezing related processes of food materials: A review.

    PubMed

    Cheng, Xinfeng; Zhang, Min; Xu, Baoguo; Adhikari, Benu; Sun, Jincai

    2015-11-01

    Ultrasonic processing is a novel and promising technology in food industry. The propagation of ultrasound in a medium generates various physical and chemical effects and these effects have been harnessed to improve the efficiency of various food processing operations. Ultrasound has also been used in food quality control as diagnostic technology. This article provides an overview of recent developments related to the application of ultrasound in low temperature and closely related processes such as freezing, thawing, freeze concentration and freeze drying. The applications of high intensity ultrasound to improve the efficiency of freezing process, to control the size and size distribution of ice crystals and to improve the quality of frozen foods have been discussed in considerable detail. The use of low intensity ultrasound in monitoring the ice content and to monitor the progress of freezing process has also been highlighted. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Visualization of host-polerovirus interaction topologies using Protein Interaction Reporter technology

    USDA-ARS?s Scientific Manuscript database

    Demonstrating direct interactions between host and virus proteins during infection is a major goal and challenge for the field of virology. The majority of interactions are not binary or easily amenable to structural determination. Using infectious preparations of a polerovirus (Potato leafroll viru...

  1. Manufacturing Methods and Technology Project Summary Reports

    DTIC Science & Technology

    1983-06-01

    Proposal will be prepared by Solar Turbines, Inc. for introduction of cast titanium impellers into T62T-40 production. Detroit Diesel Allison will...microprocessor con- trol, RS 232 serial zommunications ports, binary I/O ports, floppy disk mass storage and cor.-rol panal . A component pickup

  2. NREL Showcases Hydrogen Internal Combustion Engine Bus, Helps DOE Set Standards for Outreach (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2010-11-01

    This fact sheet describes the National Renewable Energy Laboratory's (NREL's) accomplishments in showcasing a Ford hydrogen-powered internal combustion engine (H2ICE) bus at The Taste of Colorado festival in Denver. NREL started using its U.S. Department of Energy-funded H2ICE bus in May 2010 as the primary shuttle vehicle for VIP visitors, members of the media, and new employees. In September 2010, NREL featured the bus at The Taste of Colorado. This was the first major outreach event for the bus. NREL's educational brochure, vehicle wrap designs, and outreach efforts serve as a model for other organizations with DOE-funded H2ICE buses. Workmore » was performed by the Hydrogen Education Group and Market Transformation Group in the Hydrogen Technologies and Systems Center.« less

  3. Gradual crossover in molecular organization of stable liquid H2O at moderately high pressure and temperature

    NASA Astrophysics Data System (ADS)

    Koga, Yoshikata; Westh, Peter; Yoshida, Koh; Inaba, Akira; Nakazawa, Yasuhiro

    2014-09-01

    Using the literature raw data of the speed of sound and the specific volume, the isothermal compressibility, κT, a second derivative thermodynamic quantity of G, was evaluated for liquid H2O in the pressure range up to 350 MPa and the temperature to 50 °C. We then obtained its pressure derivative, dκT/dp, a third derivative numerically without using a fitting function to the κT data. On taking yet another p-derivative at a fixed T graphically without resorting to any fitting function, the resulting d2κT/dp2, a fourth derivative, showed a weak but clear step anomaly, with the onset of the step named point X and its end point Y. In analogy with another third and fourth derivative pair in binary aqueous solutions of glycerol, dαp/dxGly and d2αp/dxGly2, at 0.1 MPa (αp is the thermal expansivity and xGly the mole fraction of solute glycerol) in our recent publication [J. Solution Chem. 43, 663-674 (2014); DOI:10.1007/s10953-013-0122-7], we argue that there is a gradual crossover in the molecular organization of pure H2O from a low to a high p-regions starting at point X and ending at Y at a fixed T. The crossover takes place gradually spanning for about 100 MPa at a fixed temperature. The extrapolated temperature to zero p seems to be about 70 - 80 °C for points X and 90 - 110 °C for Y. Furthermore, the mid-points of X and Y seem to extrapolate to the triple point of liquid, ice Ih and ice III. Recalling that the zero xGly extrapolation of point X and Y for binary aqueous glycerol at 0.1 MPa gives about the same T values respectively, we suggest that at zero pressure the region below about 70 °C the hydrogen bond network is bond-percolated, while above about 90 °C there is no hydrogen bond network. Implication of these findings is discussed.

  4. Geodetic mass balance measurements on debris and clean-ice tropical glaciers in Ecuador

    NASA Astrophysics Data System (ADS)

    La Frenierre, J.; Decker, C. R.; Jordan, E.; Wigmore, O.; Hodge, B. E.; Niederriter, C.; Michels, A.

    2017-12-01

    Glaciers are recognized as highly sensitive indicators of climate change in high altitude, low latitude environments. In the tropical Andes, various analyses of glacier surface area change have helped illuminate the manifestation of climate change in this region, however, information about actual glacier mass balance behavior is much more limited given the relatively small glaciers, difficult access, poor weather, and/or limited local resources common here. Several new technologies, including aerial and terrestrial LIDAR and structure-from-motion photogrammetry using small unmanned aerial vehicles (UAVs), make mass balance measurements using geodetic approaches increasingly feasible in remote mountain locations, which can both further our understanding of changing climatic conditions, and improve our ability to evaluate the downstream hydrologic impacts of ice loss. At Volcán Chimborazo, Ecuador, these new technologies, combined with a unique, 5-meter resolution digital elevation model derived from 1997 aerial imagery, make possible an analysis of the magnitude and spatial patterns of mass balance behavior over the past two decades. Here, we evaluate ice loss between 1997 and 2017 at the tongues of two adjacent glaciers, one debris-covered and detached from its accumulation area (Reschreiter Glacier), and one debris-free and intact (Hans Meyer Glacier). Additionally, we incorporate data from 2012 and 2013 terrestrial LIDAR surveys to evaluate the behavior of the Reschreiter at a finer temporal resolution. We find that on the Hans Meyer, the mean surface deflation rate since 1997 at the present-day tongue has been nearly 3 m yr-1, while on the lower-elevation Reschreiter, the mean deflation rate has been approximately 1 m yr-1. However, the processes by which debris-covered ice becomes exposed results in highly heterogeneous patterns of ice loss, with some areas experiencing surface deflation rates approaching 15 m yr-1 when energy absorption is unimpeded.

  5. Electrical properties and transport mechanisms in phase change memory thin films of quasi-binary-line GeTe–Sb{sub 2}Te{sub 3} chalcogenide semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherchenkov, A. A.; Kozyukhin, S. A., E-mail: sergkoz@igic.ras.ru; Lazarenko, P. I.

    The temperature dependences of the resistivity and current–voltage (I–V) characteristics of phase change memory thin films based on quasi-binary-line GeTe–Sb{sub 2}Te{sub 3} chalcogenide semiconductors Ge{sub 2}Sb{sub 2}Te{sub 5}, GeSb{sub 2}Te{sub 5}, and GeSb{sub 4}Te{sub 7} are investigated. The effect of composition variation along the quasibinary line on the electrical properties and transport mechanisms of the thin films is studied. The existence of three ranges with different I–V characteristics is established. The position and concentration of energy levels controlling carrier transport are estimated. The results obtained show that the electrical properties of the thin films can significantly change during a shiftmore » along the quasi-binary line GeTe–Sb{sub 2}Te{sub 3}, which is important for targeted optimization of the phase change memory technology.« less

  6. High-speed architecture for the decoding of trellis-coded modulation

    NASA Technical Reports Server (NTRS)

    Osborne, William P.

    1992-01-01

    Since 1971, when the Viterbi Algorithm was introduced as the optimal method of decoding convolutional codes, improvements in circuit technology, especially VLSI, have steadily increased its speed and practicality. Trellis-Coded Modulation (TCM) combines convolutional coding with higher level modulation (non-binary source alphabet) to provide forward error correction and spectral efficiency. For binary codes, the current stare-of-the-art is a 64-state Viterbi decoder on a single CMOS chip, operating at a data rate of 25 Mbps. Recently, there has been an interest in increasing the speed of the Viterbi Algorithm by improving the decoder architecture, or by reducing the algorithm itself. Designs employing new architectural techniques are now in existence, however these techniques are currently applied to simpler binary codes, not to TCM. The purpose of this report is to discuss TCM architectural considerations in general, and to present the design, at the logic gate level, or a specific TCM decoder which applies these considerations to achieve high-speed decoding.

  7. A neural net based architecture for the segmentation of mixed gray-level and binary pictures

    NASA Technical Reports Server (NTRS)

    Tabatabai, Ali; Troudet, Terry P.

    1991-01-01

    A neural-net-based architecture is proposed to perform segmentation in real time for mixed gray-level and binary pictures. In this approach, the composite picture is divided into 16 x 16 pixel blocks, which are identified as character blocks or image blocks on the basis of a dichotomy measure computed by an adaptive 16 x 16 neural net. For compression purposes, each image block is further divided into 4 x 4 subblocks; a one-bit nonparametric quantizer is used to encode 16 x 16 character and 4 x 4 image blocks; and the binary map and quantizer levels are obtained through a neural net segmentor over each block. The efficiency of the neural segmentation in terms of computational speed, data compression, and quality of the compressed picture is demonstrated. The effect of weight quantization is also discussed. VLSI implementations of such adaptive neural nets in CMOS technology are described and simulated in real time for a maximum block size of 256 pixels.

  8. GPU accelerated manifold correction method for spinning compact binaries

    NASA Astrophysics Data System (ADS)

    Ran, Chong-xi; Liu, Song; Zhong, Shuang-ying

    2018-04-01

    The graphics processing unit (GPU) acceleration of the manifold correction algorithm based on the compute unified device architecture (CUDA) technology is designed to simulate the dynamic evolution of the Post-Newtonian (PN) Hamiltonian formulation of spinning compact binaries. The feasibility and the efficiency of parallel computation on GPU have been confirmed by various numerical experiments. The numerical comparisons show that the accuracy on GPU execution of manifold corrections method has a good agreement with the execution of codes on merely central processing unit (CPU-based) method. The acceleration ability when the codes are implemented on GPU can increase enormously through the use of shared memory and register optimization techniques without additional hardware costs, implying that the speedup is nearly 13 times as compared with the codes executed on CPU for phase space scan (including 314 × 314 orbits). In addition, GPU-accelerated manifold correction method is used to numerically study how dynamics are affected by the spin-induced quadrupole-monopole interaction for black hole binary system.

  9. Customized binary and multi-level HfO2-x-based memristors tuned by oxidation conditions.

    PubMed

    He, Weifan; Sun, Huajun; Zhou, Yaxiong; Lu, Ke; Xue, Kanhao; Miao, Xiangshui

    2017-08-30

    The memristor is a promising candidate for the next generation non-volatile memory, especially based on HfO 2-x , given its compatibility with advanced CMOS technologies. Although various resistive transitions were reported independently, customized binary and multi-level memristors in unified HfO 2-x material have not been studied. Here we report Pt/HfO 2-x /Ti memristors with double memristive modes, forming-free and low operation voltage, which were tuned by oxidation conditions of HfO 2-x films. As O/Hf ratios of HfO 2-x films increase, the forming voltages, SET voltages, and R off /R on windows increase regularly while their resistive transitions undergo from gradually to sharply in I/V sweep. Two memristors with typical resistive transitions were studied to customize binary and multi-level memristive modes, respectively. For binary mode, high-speed switching with 10 3 pulses (10 ns) and retention test at 85 °C (>10 4 s) were achieved. For multi-level mode, the 12-levels stable resistance states were confirmed by ongoing multi-window switching (ranging from 10 ns to 1 μs and completing 10 cycles of each pulse). Our customized binary and multi-level HfO 2-x -based memristors show high-speed switching, multi-level storage and excellent stability, which can be separately applied to logic computing and neuromorphic computing, further suitable for in-memory computing chip when deposition atmosphere may be fine-tuned.

  10. No nitrate spikes detectable in several polar ice cores following the largest known solar events

    NASA Astrophysics Data System (ADS)

    Mekhaldi, Florian; McConnell, Joseph R.; Adolphi, Florian; Arienzo, Monica; Chellman, Nathan J.; Maselli, Olivia; Sigl, Michael; Muscheler, Raimund

    2017-04-01

    Solar energetic particle (SEP) events are a genuine and recognized threat to our modern society which is increasingly relying on satellites and technological infrastructures. However, knowledge on the frequency and on the upper limit of the intensity of major solar storms is largely limited by the relatively short direct observation period. In an effort to extend the observation period and because atmospheric ionization induced by solar particles can lead to the production of odd nitrogen, spikes in the nitrate content of ice cores have been tentatively used to reconstruct both the occurrence and intensity of past SEP events. Yet the reliability of its use as such a proxy has been long debated. This is partly due to differing chemistry-climate model outputs, equivocal detection of nitrate spikes in single ice cores for single events, and possible alternative sources to explain nitrate spikes in ice cores. Here we present nitrate measurements from several Antarctic and Greenland ice cores for time periods covering the largest known solar events. More specifically, we use new highly-resolved nitrate and biomass burning proxy species data (e.g. black carbon) from continuous flow analysis following the largest known solar events from the paleo record - the SEP events of 775 and 994 AD. We also consider the historical Carrington event of 1859 as well as contemporary events from the past 60 years which were observed by satellites. Doing so we show that i) there are no reproducible nitrate spikes in Greenland and Antarctic ice cores following any of these major events and that ii) most nitrate spikes found in ice cores are related to biomass burning plumes. Our analysis thus suggests that ice-core nitrate data is not a reliable proxy for atmospheric ionization by SEP events. In light of our results, we advocate that nitrate spikes so far identified from single ice cores should not be used to assess the intensity and occurrence rate of extreme solar events.

  11. Fire and Ice: Thermoluminescent Temperature Sensing in High-Explosive Detonations and Optical Characterization Methods for Glacier Ice Boreholes

    NASA Astrophysics Data System (ADS)

    Mah, Merlin Lyn

    The environment around a detonating high explosive is incredibly energetic and dynamic, generating shock waves, turbulent mixing, chemical reactions, and temperature excursions of thousands of Kelvin. Probing this violent but short-lived phenomena requires durable sensors with fast response times. By contrast, the glacier ice sheets of Antarctica and Greenland change on geologic time scales; the accumulation and compression of snow into ice preserves samples of atmospheric gas, dust, and volcanic ash, while the crystal orientations of the ice reflect its conditions and movement over hundreds of thousands of years. Here, difficulty of characterization stems primarily from the location, scale, and depth of the ice sheet. This work describes new sensing technologies for both of these environments. Microparticles of thermoluminescent materials are proposed as high-survivability, bulk-deployable temperature sensors for applications such as assessing bioagent inactivation. A technique to reconstruct thermal history from subsequent thermoluminescence observations is described. MEMS devices were designed and fabricated to assist in non-detonation testing: large-area electrostatic membrane actuators were used to apply mechanical stress to thermoluminescent Y2O3 :Tb thin film, and microheaters impose rapid temperature excursions upon particles of Mg2SiO4:Tb,Co to demonstrate predictable thermoluminescent response. Closed- and open-chamber explosive detonation tests using dosimetric LiF:Mg,Ti and two experimental thermometry materials were performed to test survivability and attempt thermal event reconstruction. Two borehole logging devices are described for optical characterization of glacier ice. For detecting and recording layers of volcanic ash in glacier ice, we developed a lightweight, compact probe which uses optical fibers and purely passive downhole components to detect single-scattered long-wavelength light. To characterize ice fabric orientation, we propose a technique which uses reflection measurements from a small, fixed set of geometries. The design and construction of a borehole logger implementing these techniques is described, and its testing discussed.

  12. Observational Simulation of Icing in Extreme Weather Conditions

    NASA Astrophysics Data System (ADS)

    Gultepe, Ismail; Heymsfield, Andrew; Agelin-Chaab, Martin; Komar, John; Elfstrom, Garry; Baumgardner, Darrel

    2017-04-01

    Observations and prediction of icing in extreme weather conditions are important for aviation, transportation, and shipping applications, and icing adversely affects the economy. Icing environments can be studied either in the outdoor atmosphere or in the laboratory. There have been several aircraft based in-situ studies related to weather conditions affecting aviation operations, transportation, and marine shipping that includes icing, wind, and turbulence. However, studying severe weather conditions from aircraft observations are limited due to safety and sampling issues, instrumental uncertainties, and even the possibility of aircraft producing its own physical and dynamical effects. Remote sensing based techniques (e.g. retrieval techniques) for studying severe weather conditions represent usually a volume that cannot characterize the important scales and also represents indirect observations. Therefore, laboratory simulations of atmospheric processes can help us better understand the interactions among microphysical and dynamical processes. The Climatic Wind Tunnel (CWT) in ACE at the University of Ontario Institute of Technology (UOIT) has a large semi-open jet test chamber with flow area 7-13 m2 that can precisely control temperatures down to -40°C, and up to 250 km hr-1 wind speeds, for heavy or dry snow conditions with low visibility, similar to ones observed in the Arctic and cold climate regions, or at high altitude aeronautical conditions. In this study, the ACE CWT employed a spray nozzle array suspended in its settling chamber and fed by pressurized water, creating various particle sizes from a few microns up to mm size range. This array, together with cold temperature and high wind speed, enabled simulation of severe weather conditions, including icing, visibility, strong wind and turbulence, ice fog and frost, freezing fog, heavy snow and blizzard conditions. In this study, the test results will be summarized, and their application to aircraft icing will be provided in detail. Overall, based on these results, scientific challenges related to icing environments will be emphasized for Arctic and cold environments in future projects in the ACE CWT.

  13. Validation of Remote Sensing Retrieval Products using Data from a Wireless Sensor-Based Online Monitoring in Antarctica

    PubMed Central

    Li, Xiuhong; Cheng, Xiao; Yang, Rongjin; Liu, Qiang; Qiu, Yubao; Zhang, Jialin; Cai, Erli; Zhao, Long

    2016-01-01

    Of the modern technologies in polar-region monitoring, the remote sensing technology that can instantaneously form large-scale images has become much more important in helping acquire parameters such as the freezing and melting of ice as well as the surface temperature, which can be used in the research of global climate change, Antarctic ice sheet responses, and cap formation and evolution. However, the acquirement of those parameters is impacted remarkably by the climate and satellite transit time which makes it almost impossible to have timely and continuous observation data. In this research, a wireless sensor-based online monitoring platform (WSOOP) for the extreme polar environment is applied to obtain a long-term series of data which is site-specific and continuous in time. Those data are compared and validated with the data from a weather station at Zhongshan Station Antarctica and the result shows an obvious correlation. Then those data are used to validate the remote sensing products of the freezing and melting of ice and the surface temperature and the result also indicated a similar correlation. The experiment in Antarctica has proven that WSOOP is an effective system to validate remotely sensed data in the polar region. PMID:27869668

  14. Validation of Remote Sensing Retrieval Products using Data from a Wireless Sensor-Based Online Monitoring in Antarctica.

    PubMed

    Li, Xiuhong; Cheng, Xiao; Yang, Rongjin; Liu, Qiang; Qiu, Yubao; Zhang, Jialin; Cai, Erli; Zhao, Long

    2016-11-17

    Of the modern technologies in polar-region monitoring, the remote sensing technology that can instantaneously form large-scale images has become much more important in helping acquire parameters such as the freezing and melting of ice as well as the surface temperature, which can be used in the research of global climate change, Antarctic ice sheet responses, and cap formation and evolution. However, the acquirement of those parameters is impacted remarkably by the climate and satellite transit time which makes it almost impossible to have timely and continuous observation data. In this research, a wireless sensor-based online monitoring platform (WSOOP) for the extreme polar environment is applied to obtain a long-term series of data which is site-specific and continuous in time. Those data are compared and validated with the data from a weather station at Zhongshan Station Antarctica and the result shows an obvious correlation. Then those data are used to validate the remote sensing products of the freezing and melting of ice and the surface temperature and the result also indicated a similar correlation. The experiment in Antarctica has proven that WSOOP is an effective system to validate remotely sensed data in the polar region.

  15. Design of an Autonomous Underwater Vehicle to Calibrate the Europa Clipper Ice-Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Stone, W.; Siegel, V.; Kimball, P.; Richmond, K.; Flesher, C.; Hogan, B.; Lelievre, S.

    2013-12-01

    Jupiter's moon Europa has been prioritized as the target for the Europa Clipper flyby mission. A key science objective for the mission is to remotely characterize the ice shell and any subsurface water, including their heterogeneity, and the nature of surface-ice-ocean exchange. This objective is a critical component of the mission's overarching goal of assessing the habitability of Europa. The instrument targeted for addressing key aspects of this goal is an ice-penetrating radar (IPR). As a primary goal of our work, we will tightly couple airborne IPR studies of the Ross Ice Shelf by the Europa Clipper radar team with ground-truth data to be obtained from sub-glacial sonar and bio-geochemical mapping of the corresponding ice-water and water-rock interfaces using an advanced autonomous underwater vehicle (AUV). The ARTEMIS vehicle - a heavily morphed long-range, low drag variant of the highly successful 4-degree-of-freedom hovering sub-ice ENDURANCE bot -- will be deployed from a sea-ice drill hole adjacent the McMurdo Ice Shelf (MIS) and will perform three classes of missions. The first includes original exploration and high definition mapping of both the ice-water interface and the benthic interface on a length scale (approximately 10 kilometers under-ice penetration radius) that will definitively tie it to the synchronous airborne IPR over-flights. These exploration and mapping missions will be conducted at up to 10 different locations along the MIS in order to capture varying ice thickness and seawater intrusion into the ice shelf. Following initial mapping characterization, the vehicle will conduct astrobiology-relevant proximity operations using bio-assay sensors (custom-designed UV fluorescence and machine-vision-processed optical imagery) followed by point-targeted studies at regions of interest. Sample returns from the ice-water interface will be triggered autonomously using real-time-processed instrument data and onboard decision-to-collect algorithms. ARTEMIS will be capable of conducting precision hovering proximity science in an unexplored environment, followed by high speed (1.5 m/s) return to the melt hole. The navigation system will significantly advance upon the successes of the prior DEPTHX and ENDURANCE systems and several novel pose-drift correction technologies will be developed and tested under ice during the project. The method of down-hole deployment and auto-docking return will be extended to a vertically-deployed, horizontally-recovered concept that is depth independent and highly relevant to an ice-water deployment on an icy moon. The presentation will discuss the mission down-select architecture for the ARTEMIS vehicle and its implications for the design of a Europa 'fast mover' carrier AUV, the onboard instrument suite, and the Antarctic mission CONOPS. The vehicle and crew will deploy to Antarctica in the 2015/2016 season.

  16. Water Purification

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Silver ionization water purification technology was originally developed for Apollo spacecraft. It was later used to cleanse swimming pools and has now been applied to industrial cooling towers and process coolers. Sensible Technologies, Inc. has added two other technologies to the system, which occupies only six square feet. It is manufactured in three capacities, and larger models are custom built on request. The system eliminates scale, corrosion, algae, bacteria and debris, and because of the NASA technology, viruses and waterborne bacteria are also destroyed. Applications include a General Motors cooling tower, amusement parks, ice manufacture and a closed-loop process cooling system.

  17. The Slope Imaging Multi-polarization Photon-counting Lidar: an Advanced Technology Airborne Laser Altimeter

    NASA Astrophysics Data System (ADS)

    Dabney, P.; Harding, D. J.; Huss, T.; Valett, S.; Yu, A. W.; Zheng, Y.

    2009-12-01

    The Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) is an airborne laser altimeter developed through the NASA Earth Science Technology Office Instrument Incubator Program with a focus on cryopshere remote sensing. The SIMPL instrument incorporates a variety of advanced technologies in order to demonstrate measurement approaches of potential benefit for improved airborne laser swath mapping and spaceflight laser altimeter missions. SIMPL incorporates beam splitting, single-photon ranging and polarimetry technologies at green and near-infrared wavelengths in order to achieve simultaneous sampling of surface elevation, slope, roughness and scattering properties, the latter used to differentiate surface types. The transmitter is a 1 nsec pulse width, 11 kHz, 1064 nm microchip laser, frequency doubled to 532 nm and split into four plane-polarized beams using birefringent calcite crystal in order to maintain co-alignment of the two colors. The 16 channel receiver splits the received energy for each beam into the two colors and each color is split into energy parallel and perpendicular to the transmit polarization plane thereby proving a measure of backscatter depolarization. The depolarization ratio is sensitive to the proportions of specular reflection and surface and volume scattering, and is a function of wavelength. The ratio can differentiate, for example, water, young translucent ice, older granular ice and snow. The solar background count rate is controlled by spatial filtering using a pinhole array and by spectral filtering using temperature-controlled narrow bandwidth filters. The receiver is fiber coupled to 16 Single Photon Counting Modules (SPCMs). To avoid range biases due to the long dead time of these detectors the probability of detection per laser fire on each channel is controlled to be below 30%, using mechanical irises and flight altitude. Event timers with 0.1 nsec resolution in combination the narrow transmit pulse yields single photon ranging precision of 8 cm. The high speed, high throughput data system is capable of recording 22 million time-tagged photon detection events per second. At typical aircraft flight speeds, each of the 16 channels acquires a single photon range every 5 to 15 cm along the four profiles providing a highly sampled measure of surface roughness. The nominal flight altitude is 5 km yielding 10 m spacing between the four beam profiles, providing a measure of surface slope at 10 m length scales. The altitude is currently constrained by the low signal level of the NIR cross-polarized channels. SIMPL’s measurement capabilities provide information about surface elevation, roughness, slope and type of value in characterizing ice sheet surfaces and sea ice, including their melt state. Capabilities will be illustrated using data acquired over Lake Erie ice cover in February, 2009.

  18. On the Utilization of Ice Flow Models and Uncertainty Quantification to Interpret the Impact of Surface Radiation Budget Errors on Estimates of Greenland Ice Sheet Surface Mass Balance and Regional Estimates of Mass Balance

    NASA Astrophysics Data System (ADS)

    Schlegel, N.; Larour, E. Y.; Gardner, A. S.; Lang, C.; Miller, C. E.; van den Broeke, M. R.

    2016-12-01

    How Greenland ice flow may respond to future increases in surface runoff and to increases in the frequency of extreme melt events is unclear, as it requires detailed comprehension of Greenland surface climate and the ice sheet's sensitivity to associated uncertainties. With established uncertainty quantification tools run within the framework of Ice Sheet System Model (ISSM), we conduct decadal-scale forward modeling experiments to 1) quantify the spatial resolution needed to effectively force distinct components of the surface radiation budget, and subsequently surface mass balance (SMB), in various regions of the ice sheet and 2) determine the dynamic response of Greenland ice flow to variations in components of the net radiation budget. The Glacier Energy and Mass Balance (GEMB) software is a column surface model (1-D) that has recently been embedded as a module within ISSM. Using the ISSM-GEMB framework, we perform sensitivity analyses to determine how perturbations in various components of the surface radiation budget affect model output; these model experiments allow us predict where and on what spatial scale the ice sheet is likely to dynamically respond to changes in these parameters. Preliminary results suggest that SMB should be forced at at least a resolution of 23 km to properly capture dynamic ice response. In addition, Monte-Carlo style sampling analyses reveals that the areas with the largest uncertainty in mass flux are located near the equilibrium line altitude (ELA), upstream of major outlet glaciers in the North and West of the ice sheet. Sensitivity analysis indicates that these areas are also the most vulnerable on the ice sheet to persistent, far-field shifts in SMB, suggesting that continued warming, and upstream shift in the ELA, are likely to result in increased velocities, and consequentially SMB-induced thinning upstream of major outlet glaciers. Here, we extend our investigation to consider various components of the surface radiation budget separately, in order to determine how and where errors in these fields may independently impact ice flow. This work was performed at the California Institute of Technology's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration's Cryosphere and Interdisciplinary Research in Earth Science Programs.

  19. High variability of the heterogeneous ice nucleation potential of oxalic acid dihydrate and sodium oxalate

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Leisner, T.

    2010-04-01

    The heterogeneous ice nucleation potential of airborne oxalic acid dihydrate and sodium oxalate particles in the deposition and condensation mode has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 244 and 228 K. Previous laboratory studies have highlighted the particular role of oxalic acid dihydrate as the only species amongst a variety of other investigated dicarboxylic acids to be capable of acting as a heterogeneous ice nucleus in both the deposition and immersion mode. We could confirm a high deposition mode ice activity for 0.03 to 0.8 μm sized oxalic acid dihydrate particles that were either formed by nucleation from a gaseous oxalic acid/air mixture or by rapid crystallisation of highly supersaturated aqueous oxalic acid solution droplets. The critical saturation ratio with respect to ice required for deposition nucleation was found to be less than 1.1 and the size-dependent ice-active fraction of the aerosol population was in the range from 0.1 to 22%. In contrast, oxalic acid dihydrate particles that had crystallised from less supersaturated solution droplets and had been allowed to slowly grow in a supersaturated environment from still unfrozen oxalic acid solution droplets over a time period of several hours were found to be much poorer heterogeneous ice nuclei. We speculate that under these conditions a crystal surface structure with less-active sites for the initiation of ice nucleation was generated. Such particles partially proved to be almost ice-inactive in both the deposition and condensation mode. At times, the heterogeneous ice nucleation ability of oxalic acid dihydrate significantly changed when the particles had been processed in preceding cloud droplet activation steps. Such behaviour was also observed for the second investigated species, namely sodium oxalate. Our experiments address the atmospheric scenario that coating layers of oxalic acid or its salts may be formed by physical and chemical processing on pre-existing particulates such as mineral dust and soot. Given the broad diversity of the observed heterogeneous ice nucleability of the oxalate species, it is not straightforward to predict whether an oxalate coating layer will improve or reduce the ice nucleation ability of the seed aerosol particles.

  20. High variability of the heterogeneous ice nucleation potential of oxalic acid dihydrate and sodium oxalate

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Leisner, T.

    2010-08-01

    The heterogeneous ice nucleation potential of airborne oxalic acid dihydrate and sodium oxalate particles in the deposition and condensation mode has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 244 and 228 K. Previous laboratory studies have highlighted the particular role of oxalic acid dihydrate as the only species amongst a variety of other investigated dicarboxylic acids to be capable of acting as a heterogeneous ice nucleus in both the deposition and immersion mode. We could confirm a high deposition mode ice activity for 0.03 to 0.8 μm sized oxalic acid dihydrate particles that were either formed by nucleation from a gaseous oxalic acid/air mixture or by rapid crystallisation of highly supersaturated aqueous oxalic acid solution droplets. The critical saturation ratio with respect to ice required for deposition nucleation was found to be less than 1.1 and the size-dependent ice-active fraction of the aerosol population was in the range from 0.1 to 22%. In contrast, oxalic acid dihydrate particles that had crystallised from less supersaturated solution droplets and had been allowed to slowly grow in a supersaturated environment from still unfrozen oxalic acid solution droplets over a time period of several hours were found to be much poorer heterogeneous ice nuclei. We speculate that under these conditions a crystal surface structure with less-active sites for the initiation of ice nucleation was generated. Such particles partially proved to be almost ice-inactive in both the deposition and condensation mode. At times, the heterogeneous ice nucleation ability of oxalic acid dihydrate significantly changed when the particles had been processed in preceding cloud droplet activation steps. Such behaviour was also observed for the second investigated species, namely sodium oxalate. Our experiments address the atmospheric scenario that coating layers of oxalic acid or its salts may be formed by physical and chemical processing on pre-existing particulates such as mineral dust and soot. Given the broad diversity of the observed heterogeneous ice nucleability of the oxalate species, it is not straightforward to predict whether an oxalate coating layer will improve or reduce the ice nucleation ability of the seed aerosol particles.

Top