Soft X-ray Absorption Edges in LMXBs
NASA Technical Reports Server (NTRS)
2004-01-01
The XMM observation of LMC X-2 is part of our program to study X-ray absorption in the interstellar medium (ISM). This program includes a variety of bright X-ray binaries in the Galaxy as well as the Magellanic Clouds (LMC and SMC). LMC X-2 is located near the heart of the LMC. Its very soft X-ray spectrum is used to determine abundance and ionization fractions of neutral and lowly ionized oxygen of the ISM in the LMC. The RGS spectrum so far allowed us to determine the O-edge value to be for atomic O, the EW of O-I in the ls-2p resonance absorption line, and the same for O-II. The current study is still ongoing in conjunction with other low absorption sources like Sco X-1 and the recently observed X-ray binary 4U 1957+11.
Observation of X-ray eclipses from LMC X-4
NASA Technical Reports Server (NTRS)
Li, F.; Rappaport, S.; Epstein, A.
1978-01-01
Observations made with the Rotation Modulation Collimator system (RMC) have revealed that X-ray source X-4 in the Large Magellanic Cloud (LMC X-4) is most likely part of a binary system. An analysis of the star's coordinates is presented, with attention given to orbital period and flux intensity variations. Stellar mass and orbital inclination angle are estimated for both X-4 and its companion star.
Identification of high-mass X-ray binaries selected from XMM-Newton observations of the LMC★
NASA Astrophysics Data System (ADS)
van Jaarsveld, N.; Buckley, D. A. H.; McBride, V. A.; Haberl, F.; Vasilopoulos, G.; Maitra, C.; Udalski, A.; Miszalski, B.
2018-04-01
The Large Magellanic Cloud (LMC) currently hosts around 23 high-mass X-ray binaries (HMXBs) of which most are Be/X-ray binaries. The LMC XMM-Newton survey provided follow-up observations of previously known X-ray sources that were likely HMXBs, as well as identifying new HMXB candidates. In total, 19 candidate HMXBs were selected based on their X-ray hardness ratios. In this paper we present red and blue optical spectroscopy, obtained with Southern African Large Telescope and the South African Astronomical Observatory 1.9-m telescope, plus a timing analysis of the long-term optical light curves from OGLE to confirm the nature of these candidates. We find that nine of the candidates are new Be/X-ray binaries, substantially increasing the LMC Be/X-ray binary population. Furthermore, we present the optical properties of these new systems, both individually and as a group of all the BeXBs identified by the XMM-Newton survey of the LMC.
X-Ray and UV Orbital Phase Dependence in LMC X-3
NASA Technical Reports Server (NTRS)
Dolan, Joseph F.; Boyd, P. T.; Smale, A. P.
2001-01-01
The black-hole binary LMC X-3 is known to be variable on time scales of days to years. We investigated X-ray and ultraviolet variability in the system as a function of the 1.7 d binary orbit using a 6.4 day observation with the Rossi X-ray Timing Explorer (RXTE) in 1998 December. An abrupt 14 % flux decrease lasting nearly an entire orbit was followed by a return to previous flux levels. This behavior occurred twice at nearly the same binary phase, but is not present in consecutive orbits. When the X-ray flux is at lower intensity, a periodic amplitude modulation of 7 % is evident in data folded modulo the orbital period. The higher intensity data show weaker correlation with phase. This is the first report of X-ray variability at the orbital period of LMC X-3. Archival RXTE observations of LMC X-3 during a high flux state in 1996 December show similar phase dependence. An ultraviolet light curve obtained with the High Speed Photometer (HSP) on the Hubble Space Telescope (HST) shows a phase dependent variability consistent with that observed in the visible, ascribed to the ellipsoidal variation of the visible star. The X-ray spectrum of LMC X-3 is acceptably represented by a phenomenological disk black-body plus a power law. Changes in the spectrum of LMX X-3 during our observations are compatible with earlier observations during which variations in the 2-10 keV flux are closely correlated with the disk geometry spectral model parameter.
Unusual Black Hole Binary LMC X-3: A Transient High-Mass X-Ray Binary That Is Almost Always On?
NASA Technical Reports Server (NTRS)
Torpin, Trevor J.; Boyd, Patricia T.; Smale, Alan P.; Valencic, Lynne A.
2017-01-01
We have analyzed a rich, multimission, multiwavelength data set from the black hole X-ray binary (BHXB) LMC X-3, covering a new anomalous low state (ALS), during which the source flux falls to an unprecedentedly low and barely detectable level, and a more normal low state. Simultaneous X-ray and UV/optical monitoring data from Swift are combined with pointed observations from the Rossi X-ray Timing Explorer (RXTE) and X-ray Multi- Mirror Mission (XMM-Newton) and light curves from the Monitor of All-Sky X-ray Image (MAXI) instrument to compare the source characteristics during the ALS with those seen during the normal low state. An XMM-Newton spectrum obtained during the ALS can be modeled using an absorbed power law with Gamma = 1.41‚+/- 0.65 and a luminosity of 7.97 x 10(exp 33) erg/s (0.6-5 keV). The Swift X-ray and UV light curves indicate an X-ray lag of approx. 8 days as LMC X-3 abruptly exits the ALS, suggesting that changes in the mass accretion rate from the donor drive the X-ray lag. The normal low state displays an asymmetric profile in which the exit occurs more quickly than the entry, with minimum X-ray flux a factor of approx. 4300 brighter than during the ALS. The UV brightness of LMC X-3 in the ALS is also fainter and less variable than during normal low states. The existence of repeated ALSs in LMC X-3, as well as a comparison with other BHXBs, implies that it is very close to the transient/persistent X-ray source dividing line. We conclude that LMC X-3 is a transient source that is almost always "on."
Unusual Black Hole Binary LMC X-3: A Transient High-mass X-Ray Binary That Is Almost Always On?
NASA Astrophysics Data System (ADS)
Torpin, Trevor J.; Boyd, Patricia T.; Smale, Alan P.; Valencic, Lynne A.
2017-11-01
We have analyzed a rich, multimission, multiwavelength data set from the black hole X-ray binary (BHXB) LMC X-3, covering a new anomalous low state (ALS), during which the source flux falls to an unprecedentedly low and barely detectable level, and a more normal low state. Simultaneous X-ray and UV/optical monitoring data from Swift are combined with pointed observations from the Rossi X-ray Timing Explorer (RXTE) and X-ray Multi-Mirror Mission (XMM-Newton) and light curves from the Monitor of All-Sky X-ray Image (MAXI) instrument to compare the source characteristics during the ALS with those seen during the normal low state. An XMM-Newton spectrum obtained during the ALS can be modeled using an absorbed power law with {{Γ }}=1.41+/- 0.65 and a luminosity of 7.97× {10}33 erg s-1 (0.6-5 keV). The Swift X-ray and UV light curves indicate an X-ray lag of ˜8 days as LMC X-3 abruptly exits the ALS, suggesting that changes in the mass accretion rate from the donor drive the X-ray lag. The normal low state displays an asymmetric profile in which the exit occurs more quickly than the entry, with minimum X-ray flux a factor of ˜4300 brighter than during the ALS. The UV brightness of LMC X-3 in the ALS is also fainter and less variable than during normal low states. The existence of repeated ALSs in LMC X-3, as well as a comparison with other BHXBs, implies that it is very close to the transient/persistent X-ray source dividing line. We conclude that LMC X-3 is a transient source that is almost always “on.”
The X-ray eclipse of the LMC binary CAL 87
NASA Technical Reports Server (NTRS)
Schmidtke, P. C.; Mcgrath, T. K.; Cowley, A. P.; Frattare, L. M.
1993-01-01
ROSAT-PSPC observations of the LMC eclipsing binary CAL 87 show a short-duration, shallow X-ray eclipse which coincides in phase with the primary optical minimum. Characteristics of the eclipse suggest the X-ray emitting region is only partially occulted. Similarities with the eclipse of the accretion-disk corona in X 1822-37 are discussed. However, no temperature variation through eclipse is found for CAL 87. A revised orbital period, combining published data and recent optical photometry, is given.
X-Ray Pulsar Studies With RXTE
NASA Technical Reports Server (NTRS)
Rappaport, Saul
2004-01-01
Our activities here at MIT have largely concentrated on four different binary X-ray pulsars: LMC X-4; 4UO352+3O/XPer; 4U0115+63; and X1908+075. We have also recently initiated a search for millisecond X-ray pulsations in RXTE archival data for several bright LMXBs using a new technique. Since this study is just getting under way, we will not report any results here. Using RXTE timing observations of LMC X-4 we have definitively measured, for the first time, the orbital decay of this high-mass X-ray binary. The e-folding decay time scale is very close to lo6 years, comparable to, but somewhat longer than, the corresponding orbital decay times for SMC X-1 and Cen X-3. We find that the orbital decay in LMC X-4 is likely driven by tidal interactions, where the asynchronism between the orbital motion and the rotation of the companion star is maintained by the evolutionary expansion of the companion. Under NASA grant NAGS7479 we carried out RXTE observations of X Per/4U0352+30 in order to track the pulse phase over a one year interval. This effort was successful in tentatively identifying a N 250-day orbital period. However, due to the fact that the observing interval was only somewhat longer than the orbital period, we asked for the observations of X Per to continue as public, or non-proprietary observations. Dr. Jean Swank kindly agreed to the continuation of the observations and they were carried out on a less frequent basis over the next year and a half. After 72 separate observations of X Per, we have the orbital period and semimajor axis firmly determined. In addition, we were able to measure the orbital eccentricity-which turns out to be remarkably small (e = 0.10) for such a wide binary orbit. This has led us establish the birth of a neutron star with a very small (or zero) natal kick.
The mass of the black hole in the X-ray binary LMC X-1
NASA Astrophysics Data System (ADS)
Abubekerov, M. K.; Antokhina, E. A.; Gostev, N. Yu.; Cherepashchuk, A. M.; Shimansky, V. V.
2016-12-01
A dynamical estimate of the mass of the black hole in the LMC X-1 binary system is obtained in the framework of a Roche model for the optical star, based on fitting of the He I 4471 Å and He II 4200 Å absorption lines assuming LTE. The mass of the black hole derived from the radial-velocity curve for the He II 4200 Å line is m x = 10.55 M ⊙, close to the value found earlier based on a model with two point bodies [1].
The Anomalous Low State of LMC X-3
NASA Technical Reports Server (NTRS)
Smale, A. P.; Boyd, P. T.; Markwardt, C. B.
2009-01-01
Archival RXTE ASM and PCA observations of the black hole binary LMC X-3 reveal a dramatic and extended low state lasting from December 8, 2003 until March 18, 2004, unprecedented both in its Low luminosity (Lx(2-10keV)=4.2x 1035 ergs s-1, approximately 4 times fainter than ever before seen from LMC X-3 in its low/hard state, and representing 0.15% of its X-ray luminosity during the high/soft state); and Long duration (approximately equal to 100 days, as compared with 5-20 days for 'normal' low/hard state excursions). During this anomalous low state no significant variability is observed on timescales of days-weeks, and the spectrum is well described by a simple power law with index 1.7 plus or minus 0.2. We examine the variability characteristics of LMC X-3 before and after this event using conventional and topological methods, and show that with the exception of the anomalous low state itself the long-term behavior of the source in topological phase space can be completely described in terms of a well-understood nonlinear dynamics system known as the Duffing oscillator, implying that the accretion disk in LMC X-3 is a driven, dissipative system with two solutions competing for control of its time evolution. This work shows that dynamical information and constraints revealed by topological analysis methods can provide a valuable addition to traditional studies of accretion disk behavior.
Anomalous Low States and Long Term Variability in the Black Hole Binary LMC X-3
NASA Technical Reports Server (NTRS)
Smale, Alan P.; Boyd, Patricia T.
2012-01-01
Rossi X-my Timing Explorer observations of the black hole binary LMC X-3 reveal an extended very low X-ray state lasting from 2003 December 13 until 2004 March 18, unprecedented both in terms of its low luminosity (>15 times fainter than ever before seen in this source) and long duration (approx 3 times longer than a typical low/hard state excursion). During this event little to no source variability is observed on timescales of approx hours-weeks, and the X-ray spectrum implies an upper limit of 1.2 x 10(exp 35) erg/s, Five years later another extended low state occurs, lasting from 2008 December 11 until 2009 June 17. This event lasts nearly twice as long as the first, and while significant variability is observed, the source remains reliably in the low/hard spectral state for the approx 188 day duration. These episodes share some characteristics with the "anomalous low states" in the neutron star binary Her X-I. The average period and amplitude of the Variability of LMC X-3 have different values between these episodes. We characterize the long-term variability of LMC X-3 before and after the two events using conventional and nonlinear time series analysis methods, and show that, as is the case in Her X-I, the characteristic amplitude of the variability is related to its characteristic timescale. Furthermore, the relation is in the same direction in both systems. This suggests that a similar mechanism gives rise to the long-term variability, which in the case of Her X-I is reliably modeled with a tilted, warped precessing accretion disk.
Changes in the Long-Term Intensity Variations in Cygnus X-2 and LMC X-3
NASA Astrophysics Data System (ADS)
Paul, B.; Kitamoto, S.; Makino, F.
2000-01-01
We report the detection of changes in the long-term intensity variations in two X-ray binaries, Cyg X-2 and LMC X-3. In this work, we have used the long-term light curves obtained with the All-Sky Monitors (ASMs) of the Rossi X-Ray Timing Explorer (RXTE), Ginga, Ariel 5, and Vela 5B and the scanning modulation collimator of HEAO 1. It is found that in the light curves of both the sources, obtained with these instruments at various times over the last 30 years, more than one periodic or quasi-periodic component is always present. The multiple prominent peaks in the periodograms have frequencies unrelated to each other. In Cyg X-2, RXTE-ASM data show strong peaks at 40.4 and 68.8 days, and Ginga-ASM data show strong peaks at 53.7 and 61.3 days. Multiple peaks are also observed in LMC X-3. The various strong peaks in the periodograms of LMC X-3 appear at 104, 169, and 216 days (observed with RXTE-ASM) and 105, 214, and 328 days (observed with Ginga-ASM). The present results, when compared with the earlier observations of periodicities in these two systems, demonstrate the absence of any stable long period. The 78 day periodicity detected earlier in Cyg X-2 was probably due to the short time base in the RXTE data that were used, and the periodicity of 198 days in LMC X-3 was due to a relatively short duration of observation with HEAO 1.
Formation of Thorne-Żytkow objects in close binaries
NASA Astrophysics Data System (ADS)
Hutilukejiang, Bumareyamu; Zhu, Chunhua; Wang, Zhaojun; Lü, Guoliang
2018-04-01
Thorne-Żytkow objects (TŻOs), originally proposed by Thorne and Żytkow, may form as a result of unstable mass transfer in a massive X-ray binary after a neutron star (NS) is engulfed in the envelope of its companion star. Using a rapid binary evolution program and the Monte Carlo method, we simulated the formation of TŻOs in close binary stars. The Galactic birth rate of TŻOs is about 1.5× 10^{-4} yr^{-1}. Their progenitors may be composed of a NS and a main-sequence star, a star in the Hertzsprung gap or a core-helium burning, or a naked helium star. The birth rates of TŻOs via the above different progenitors are 1.7× 10^{-5}, 1.2× 10^{-4}, 0.7× 10^{-5}, 0.6× 10^{-5} yr^{-1}, respectively. These progenitors may be massive X-ray binaries. We found that the observational properties of three massive X-ray binaries (SMC X-1, Cen X-3 and LMC X-4) in which the companions of NSs may fill their Roche robes were consistent with those of their progenitors.
The Complete Z-diagram of LMC X-2
NASA Technical Reports Server (NTRS)
White, Nicholas E. (Technical Monitor); Smale, A. P.; Homan, J.; Kuulkers, E.
2003-01-01
We present results from four Rossi X-ray Timing Explorer (RXTE) observations of the bright low mass X-ray binary LMC X-2. During these observations, which span a year and include over 160 hrs of data, the source exhibits clear evolution through three branches on its hardness-intensity and color-color diagrams, consistent with the flaring, normal, and horizontal branches (FB, NB, HB) of a Z-source, and remarkably similar to Z-tracks derived for GX 17+2, Sco X-1 and GX 349+2. LMC X-2 was observed in the FB, NB, and HB for roughly 30%, 40%, and 30% respectively of the total time covered. The source traces out the full extent of the Z in approximately 1 day, and the Z-track shows evidence for secular shifts on a timescale in excess of a few days. Although the count rate of LMC X-2 is low compared with the other known 2-sources due to its greater distance, the power density spectra selected by branch show very-low-frequency noise characteristics at least consistent with those from other Z-sources. We thus confirm the identification of LMC X-2 as a Z-source, the first identified outside our Galaxy.
A Search for Periodicity in the X-Ray Spectrum of Black Hole Candidate A0620-00
1991-06-01
They are observed as radio pulsars and as the X-ray emitting components of binary X-ray sources. The limits of stability of neutron stars are not...4 Lo ). The three candidates are CYG X-1, LMC X-3, and A0620. In this section all data such as mass functions, luminosities, distances, periods, etc...1.4. Finally, we discard data for which a/ lo > 1. Such a point is of little statistical significance since its error bars are so large. Figure 2.2d
NASA Astrophysics Data System (ADS)
Leon, Stéphane; Bergond, Gilles; Vallenari, Antonella
1999-04-01
We present the tidal tail distributions of a sample of candidate binary clusters located in the bar of the Large Magellanic Cloud (LMC). One isolated cluster, SL 268, is presented in order to study the effect of the LMC tidal field. All the candidate binary clusters show tidal tails, confirming that the pairs are formed by physically linked objects. The stellar mass in the tails covers a large range, from 1.8x 10(3) to 3x 10(4) \\msun. We derive a total mass estimate for SL 268 and SL 356. At large radii, the projected density profiles of SL 268 and SL 356 fall off as r(-gamma ) , with gamma = 2.27 and gamma =3.44, respectively. Out of 4 pairs or multiple systems, 2 are older than the theoretical survival time of binary clusters (going from a few 10(6) years to 10(8) years). A pair shows too large age difference between the components to be consistent with classical theoretical models of binary cluster formation (Fujimoto & Kumai \\cite{fujimoto97}). We refer to this as the ``overmerging'' problem. A different scenario is proposed: the formation proceeds in large molecular complexes giving birth to groups of clusters over a few 10(7) years. In these groups the expected cluster encounter rate is larger, and tidal capture has higher probability. Cluster pairs are not born together through the splitting of the parent cloud, but formed later by tidal capture. For 3 pairs, we tentatively identify the star cluster group (SCG) memberships. The SCG formation, through the recent cluster starburst triggered by the LMC-SMC encounter, in contrast with the quiescent open cluster formation in the Milky Way can be an explanation to the paucity of binary clusters observed in our Galaxy. Based on observations collected at the European Southern Observatory, La Silla, Chile}
Did LMC X-3 Undergo a 'Her X-1-like' Anomalous Low State?
NASA Technical Reports Server (NTRS)
Boyd, Patricia t.
2008-01-01
The black hole X-ray binary LMC X-3 has been monitored by the Rossi X-ray Timing Explorer (RXTE) from its launch to the present by the All-Sky Monitor (ASM). This well-sampled light curve is supplemented by frequent pointed observations with the PCA and HEXTE instruments which provide improved sensitivity, time resolution and spectral information. The long-term X-ray luminosity of the system is strongly modulated on timescales of hundreds of days. The mean 2-10 kev X-ray flux varies by a factor of more than 100 during this long-term cycle. This variability has been attributed to the precession of a bright, tilted, and warped accretion disk---the mechanism also invoked to explain the 35-day super-orbital period in the X-ray binary pulsar system Her X-1. The ASM light curve displays a unique episode, starting in December 2003, during which LMC X-3 displayed a very low, nearly constant flux, for about 80 days. This is markedly different from the typical low-flux excursions in LMC X-3, which smoothly evolve toward and then away from a minimum flux on about a 10-day time scale. The character of the long-term variability, as measured by amplitude and characteristic time scale, is not the same after this long low state as it was before. Similar shifts in long-term period and amplitude are seen after the so-called "anomalous low states" in Her X-1, when the 35-day X-ray modulation ceases for an unpredictable length of time. These similar shifts in the long-term amplitude and timescale in the two systems suggests they share a similar mechanism which gives rise to the anomalous low states
Soft X-ray maps of the Large Magellanic Cloud (LMC)
NASA Technical Reports Server (NTRS)
Singh, K. P.; Nousek, J. A.; Burrows, D. N.; Garmire, G. P.
1985-01-01
Soft X-ray maps of the Large Magellanic Cloud (LMC) were obtained from scanning-observations with the HEAO-1 low energy detectors. Comparison of the 1/4 keV X-ray observations with the neutral hydrogen column densities in the LMC obtained from a 21 cm line survey, shows no evidence for absorption effects in the 1/4 keV X-ray flux from the LMC due to the neutral matter in the LMC. Instead, faint X-ray emission is detected from the LMC. The extent of this emission is smaller than the size of the halo or the disk of the LMC. Assuming this 1/4 keV emission to be diffuse, it is identified with a supergiant shell of optical nebulosity known as Shapley III, and the bar of the LMC. The X-ray luminosities of the regions are estimated to be 9 times 10 to the 38th power ergs/sec and 1.8 times 10 to the 39th power ergs/sec for the Shapley III region and the bar of the LMC respectively. Shapley III could be an X-ray superbubble.
Power Spectrum Density of Long-Term MAXI Data
NASA Astrophysics Data System (ADS)
Sugimoto, Juri; Mihara, Tatehiro; Sugizaki, Mutsumi; Serino, Motoko; Kitamoto, Shunji; Sato, Ryousuke; Ueda, Yoshihiro; Ueno, Shiro
Monitor of All-sky X-ray Image (MAXI) on the International Space Station has been observing the X-ray sky since 2009 August 15. It has accumulated the X-ray data for about four years, so far. X-ray objects are usually variable and their variability can be studied by the power spectrum density (PSD) of the X-ray light curves. We applied our method to calculate PSDs of several kinds of objects observed with MAXI. We obtained significant PSDs from 16 Seyfert galaxies. For blackhole binary Cygnus X-1 there was a difference in the shape of PSD between the hard state and the soft state. For high mass X-ray binaries, Cen X-3, SMC X-1, and LMC X-4, there were several peaks in the PSD corresponding to the orbital period and the superorbital period.
Optical and UV spectroscopy of the black hole binary candidate LMC X-1
NASA Technical Reports Server (NTRS)
Hutchings, J. B.; Crampton, D.; Cowley, A. P.; Bianchi, L.; Thompson, I. B.
1987-01-01
Both further optical spectroscopy of the binary star identified with LMC X-1, obtained between 1983 and 1985, and a series of IUE UV spectra taken during a 5 day interval in 1984 are presented. The optical data are used to refine the orbital period to 4.2288 days, and improved orbital parameters are derived. The velocity of the optical emission lines is antiphased with the absorption lines and has twice the velocity amplitude. These new results support the estimates of the masses in the system given earlier. The most probable component masses are approximately 20 solar masses for the primary and near 6 solar masses (for the x-ray star), suggesting the the latter may be a black hole. The UV spectra show very weak, low-velocity stellar-wind lines. It is suggested that much of the surrounding medium is highly ionized by the X-ray flux. The 'nonwind' UV spectral lines and the UV continuum temperature are consistent with the optical data, indicating a late O type star of M(bol) = -8.5. There is a weak modulation of absorption-line strengths with orbital phase, suggestive of a lack of axisymmetry in the X-irradiation of the primary star and indicative of a fairly low orbital inclination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yaji, Kentaro; Yamada, Shinya; Masai, Kuniaki
We propose a mechanism of state transition in wind-fed black hole (BH) binaries (high-mass X-ray binaries) such as Cyg X-1 and LMC X-1. Modeling a line-driven stellar wind from the companion by two-dimensional hydrodynamical calculations, we investigate the processes of wind capture by, and accretion onto, the BH. We assume that the wind acceleration is terminated at the He ii ionization front because ions responsible for line-driven acceleration are ionized within the front, i.e., the He iii region. It is found that the mass accretion rate inferred from the luminosity is remarkably smaller than the capture rate. Considering the difference,more » we construct a model for the state transition based on the accretion flow being controlled by magnetorotational instability. The outer flow is torus-like, and plays an important role to trigger the transition. The model can explain why state transition does occur in Cyg X-1, while not in LMC X-1. Cyg X-1 exhibits a relatively low luminosity, and then the He ii ionization front is located and can move between the companion and BH, depending on its ionizing photon flux. On the other hand, LMC X-1 exhibits too high luminosity for the front to move considerably; the front is too close to the companion atmosphere. The model also predicts that each state of high-soft or low-hard would last fairly long because the luminosity depends weakly on the wind velocity. In the context of the model, the state transition is triggered by a fluctuation of the magnetic field when its amplitude becomes comparable to the field strength in the torus-like outer flow.« less
A spectroscopic study of LMC X-4
NASA Technical Reports Server (NTRS)
Petro, L. D.; Hiltner, W. A.
1982-01-01
The orbital radial velocity semi-amplitude of the binary star system LMC X-4 primary was determined to be 37.9 + or - 2.4 km/s from measurements of the hydrogen absorption lines. The semi-amplitude of the He I and He II absorption lines are consistent with this, namely 44.9 + or - 5.0 and 37.3 + or - 5.3 km/s. The phase and shape of the radial velocity curves of the three ions are consistent with a circular orbit and an ephemeris based upon X-ray measurements of the neutron star, with the exception that the He II absorption line radial velocity curve has detectable shape distortion. Measurements of the He II LAMBOA 4686 emission line velocity are consistent with a phase shifted sine wave of semi-amplitude 535 km/s, a square wave of semi-amplitude 407 km/s, or high order harmonic fits. The spectral type was found to be 08.5 IV-V during X-ray eclipse. Variations to types as early as 07 occur, but not as a function or orbital phase. Absorption line peculiarities were noted on 6 of 58 spectra.
Identification of two new HMXBs in the LMC: an ˜2013 s pulsar and a probable SFXT
NASA Astrophysics Data System (ADS)
Vasilopoulos, G.; Maitra, C.; Haberl, F.; Hatzidimitriou, D.; Petropoulou, M.
2018-03-01
We report on the X-ray and optical properties of two high-mass X-ray binary systems located in the Large Magellanic Cloud (LMC). Based on the obtained optical spectra, we classify the massive companion as a supergiant star in both systems. Timing analysis of the X-ray events collected by XMM-Newton revealed the presence of coherent pulsations (spin period ˜2013 s) for XMMU J053108.3-690923 and fast flaring behaviour for XMMU J053320.8-684122. The X-ray spectra of both systems can be modelled sufficiently well by an absorbed power law, yielding hard spectra and high intrinsic absorption from the environment of the systems. Due to their combined X-ray and optical properties, we classify both systems as SgXRBs: the 19th confirmed X-ray pulsar and a probable supergiant fast X-ray transient in the LMC, the second such candidate outside our Galaxy.
Detection of variable VHE γ-ray emission from the extra-galactic γ-ray binary LMC P3
NASA Astrophysics Data System (ADS)
HESS Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Angüner, E. O.; Arakawa, M.; Armand, C.; Arrieta, M.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Caroff, S.; Carosi, A.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Colafrancesco, S.; Condon, B.; Conrad, J.; Davids, I. D.; Decock, J.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Donath, A.; Drury, L. O.'C.; Dyks, J.; Edwards, T.; Egberts, K.; Emery, G.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Garrigoux, T.; Gaté, F.; Giavitto, G.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Malyshev, D.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Prokhorov, D. A.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Shiningayamwe, K.; Simoni, R.; Sol, H.; Spanier, F.; Spir-Jacob, M.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Zorn, J.; Żywucka, N.
2018-03-01
Context. Recently, the high-energy (HE, 0.1-100 GeV) γ-ray emission from the object LMC P3 in the Large Magellanic Cloud (LMC) has been discovered to be modulated with a 10.3-day period, making it the first extra-galactic γ-ray binary. Aim. This work aims at the detection of very-high-energy (VHE, >100 GeV) γ-ray emission and the search for modulation of the VHE signal with the orbital period of the binary system. Methods: LMC P3 has been observed with the High Energy Stereoscopic System (H.E.S.S.); the acceptance-corrected exposure time is 100 h. The data set has been folded with the known orbital period of the system in order to test for variability of the emission. Results: VHE γ-ray emission is detected with a statistical significance of 6.4 σ. The data clearly show variability which is phase-locked to the orbital period of the system. Periodicity cannot be deduced from the H.E.S.S. data set alone. The orbit-averaged luminosity in the 1-10 TeV energy range is (1.4 ± 0.2) × 1035 erg s-1. A luminosity of (5 ± 1) × 1035 erg s-1 is reached during 20% of the orbit. HE and VHE γ-ray emissions are anti-correlated. LMC P3 is the most luminous γ-ray binary known so far.
Detection of variable VHE γ -ray emission from the extra-galactic γ -ray binary LMC P3
Abdalla, H.; Abramowski, A.; Aharonian, F.; ...
2018-02-01
Context. Recently, the high-energy (HE, 0.1–100 GeV) γ-ray emission from the object LMC P3 in the Large Magellanic Cloud (LMC) has been discovered to be modulated with a 10.3-day period, making it the first extra-galactic γ-ray binary. Aim. This work aims at the detection of very-high-energy (VHE, >100 GeV) γ-ray emission and the search for modulation of the VHE signal with the orbital period of the binary system. Methods. LMC P3 has been observed with the High Energy Stereoscopic System (H.E.S.S.); the acceptance-corrected exposure time is 100 h. The data set has been folded with the known orbital period ofmore » the system in order to test for variability of the emission. Results. VHE γ-ray emission is detected with a statistical significance of 6.4 σ. The data clearly show variability which is phase-locked to the orbital period of the system. Periodicity cannot be deduced from the H.E.S.S. data set alone. The orbit-averaged luminosity in the 1–10 TeV energy range is (1.4 ± 0.2) × 1035 erg s -1. A luminosity of (5 ± 1) × 1035 erg s -1 is reached during 20% of the orbit. HE and VHE γ-ray emissions are anti-correlated. In conclucion, LMC P3 is the most luminous γ-ray binary known so far.« less
Detection of variable VHE γ -ray emission from the extra-galactic γ -ray binary LMC P3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdalla, H.; Abramowski, A.; Aharonian, F.
Context. Recently, the high-energy (HE, 0.1–100 GeV) γ-ray emission from the object LMC P3 in the Large Magellanic Cloud (LMC) has been discovered to be modulated with a 10.3-day period, making it the first extra-galactic γ-ray binary. Aim. This work aims at the detection of very-high-energy (VHE, >100 GeV) γ-ray emission and the search for modulation of the VHE signal with the orbital period of the binary system. Methods. LMC P3 has been observed with the High Energy Stereoscopic System (H.E.S.S.); the acceptance-corrected exposure time is 100 h. The data set has been folded with the known orbital period ofmore » the system in order to test for variability of the emission. Results. VHE γ-ray emission is detected with a statistical significance of 6.4 σ. The data clearly show variability which is phase-locked to the orbital period of the system. Periodicity cannot be deduced from the H.E.S.S. data set alone. The orbit-averaged luminosity in the 1–10 TeV energy range is (1.4 ± 0.2) × 1035 erg s -1. A luminosity of (5 ± 1) × 1035 erg s -1 is reached during 20% of the orbit. HE and VHE γ-ray emissions are anti-correlated. In conclucion, LMC P3 is the most luminous γ-ray binary known so far.« less
LMC stellar X-ray sources observed with ROSAT. 1: X-ray data and search for optical counterparts
NASA Technical Reports Server (NTRS)
Schmidtke, P. C.; Cowley, A. P.; Frattare, L. M.; Mcgrath, T. K.
1994-01-01
Observations of Einstein Large Magellanic Cloud (LMC) X-ray point sources have been made with ROSAT's High-Resolution Imager to obtain accurate positions from which to search for optical counterparts. This paper is the first in a series reporting results of the ROSAT observations and subsequent optical observations. It includes the X-ray positions and fluxes, information about variability, optical finding charts for each source, a list of identified counterparts, and information about candidates which have been observed spectroscopically in each of the fields. Sixteen point sources were measured at a greater than 3 sigma level, while 15 other sources were either extended or less significant detections. About 50% of the sources are serendipitous detections (not found in previous surveys). More than half of the X-ray sources are variable. Sixteen of the sources have been optically identified or confirmed: six with foreground cool stars, four with Seyfert galaxies, two with signal-to-noise ratio (SNR) in the LMC, and four with peculiar hot LMC stars. Presumably the latter are all binaries, although only one (CAL 83) has been previously studied in detail.
NASA Astrophysics Data System (ADS)
Hong, Kyeongsoo; Koo, Jae-Rim; Lee, Jae Woo; Kim, Seung-Lee; Lee, Chung-Uk; Park, Jang-Ho; Kim, Hyoun-Woo; Lee, Dong-Joo; Kim, Dong-Jin; Han, Cheongho
2018-05-01
We report the results of photometric observations for doubly eclipsing binaries OGLE-LMC-ECL-15674 and OGLE-LMC-ECL-22159, both of which are composed of two pairs (designated A&B) of a detached eclipsing binary located in the Large Magellanic Cloud. The light curves were obtained by high-cadence time-series photometry using the Korea Microlensing Telescope Network 1.6 m telescopes located at three southern sites (CTIO, SAAO, and SSO) between 2016 September and 2017 January. The orbital periods were determined to be 1.433 and 1.387 days for components A and B of OGLE-LMC-ECL-15674, respectively, and 2.988 and 3.408 days for OGLE-LMC-ECL-22159A and B, respectively. Our light curve solutions indicate that the significant changes in the eclipse depths of OGLE-LMC-ECL-15674A and B were caused by variations in their inclination angles. The eclipse timing diagrams of the A and B components of OGLE-LMC-ECL-15674 and OGLE-LMC-ECL-22159 were analyzed using 28, 44, 28, and 26 new times of minimum light, respectively. The apsidal motion period of OGLE-LMC-ECL-15674B was estimated by detailed analysis of eclipse timings for the first time. The detached eclipsing binary OGLE-LMC-ECL-15674B shows a fast apsidal period of 21.5 ± 0.1 years.
Spectral and Timing States in Black Hole Binaries
NASA Astrophysics Data System (ADS)
Wilms, J.
Results on the long term variability of galactic black hole candidates are reviewed. I mainly present the results of a > 2 year long campaign with RXTE to monitor the canonical soft state black hole candidates LMC X-1 and LMC X-3 using monthly observations. These observations are presented within the context of the RXTE-ASM long term quasi-periodic variability on timescales of about 150d. For LMC X-3, times of low ASM count rate are correlated with a significant hardening of the X-ray spectrum. The observation with the lowest flux during the whole monitoring campaign can be modeled with a simple γ=1.7 power law -- a hard state spectrum. Since these spectral hardenings occur on the 150 d timescale it is probable that they are associated with periodic changes in the accretion rate. Possible causes for this behavior are discussed, e.g. a wind driven limit-cycle or long-term variability of the donor star.
X-ray Binaries in the Galaxy and the Magellanic Clouds
NASA Astrophysics Data System (ADS)
Cowley, Anne P.
1993-05-01
For more than two decades astronomers have been aware that the most X-ray luminous stellar sources (L_x > 10(35) erg s(-1) ) are interacting binaries where one component is a neutron star or black hole. While other types of single and multiple stars are known X-ray sources, none compare in X-ray luminosity with the ``classical" X-ray binaries. In these systems X-ray emission results from accretion of material from a non-degenerate companion onto the compact star through several alternate mechanisms including Roche lobe overflow, stellar winds, or periastron effects in non-circular orbits. It has been recognized for many years that X-ray binaries divide into two broad groups, characterized primarily by the mass of the non-degenerate star: 1) massive X-ray binaries (MXRB), in which the optical primary is a bright, early-type star, and 2) low-mass X-ray binaries (LMXB), where a lower main-sequence or subgiant star is the mass donor. A broad variety of observational characteristics further subdivide these classes. In the Galaxy these two groups appear to be spatially and kinematically associated with the disk and the halo populations, respectively. A few dozen MXRB are known in the Galaxy. A great deal of information about their physical properties has been learned from observational study. Their optical primaries can be investigated by conventional techniques. Furthermore, most MXRB contain X-ray pulsars, allowing accurate determination of their orbital parameters. From these data masses have been determined for the neutron stars, all of which are ~ 1.4 Msun, within measurement errors. By contrast, the LMXB have been much more difficult to study. Although there are ~ 150 LMXB in the Galaxy, most are distant and faint, requiring use of large telescopes for their study. Their optical light is almost always dominated by an accretion disk, rather than the mass-losing star, making interpretation of their spectral and photometric properties difficult. Their often uncertain distances further complicate our understanding. Thus, although the galactic LMXB greatly outnumber the MXRB, they are much less well understood. The X-ray binaries in the Magellanic Clouds in many ways make an ideal laboratory because they are all at the same, known distance. However, at the present time only a handful of X-ray binaries are known with certainty in these galaxies -- 7 in the LMC and 1 in the SMC. Only 3 of the LMC sources are low-mass X-ray binaries, and their properties are quite different from ``typical" galactic LMXB. In this review we will outline the general properties of X-ray binaries and summarize what types of information we have learned from their study over a wide range of wavelengths. An overall comparison of the global properties of X-ray binaries in the Galaxy and the Magellanic Clouds will be given.
Understanding The Time Evolution Of Luminosity And Associated Accretion Structures In X-Ray Pulsars
NASA Astrophysics Data System (ADS)
Laycock, Silas
We propose to analyze the large archive of RXTE, XMM-Newton and Chandra observations of X-ray Binary Pulsars in the Magellanic Clouds and Milky Way. There are some 2000 individual RXTE PCA pointings on the SMC spanning 15 years, and a smaller number on the LMC. Each PCA observation covers a large fraction of the whole SMC (or LMC) population, and we are able to deconvolve the sometimes simultaneous signals to create an unrivaled record of pulsar temporal behavior. More than 200 XMM- Newton and Chandra observations of the SMC/LMC and individual Galactic pulsars provide information at lower luminosity levels. Together, these datasets cover the entire range of variability timescales and accretion regimes in High Mass X-ray Binaries. We will produce a comprehensive library of energy- resolved pulse profiles covering the entire luminosity and spin-period parameter space, and make this available to the community. We will then model these pulse profiles using state of the art techniques to parameterize the morphology, and publish the resulting data-cube. This result will include for example the distribution of offsets between magnetic and spin axes. These products are needed for the next generation of advances in neutron star theory and modeling. The unique dataset will also enable us to determine the upper and lower limits of accretion powered luminosity in a large statistically complete sample of neutron stars, and hence make several direct tests of fundamental NS parameters and accretion physics. In addition the long-duration of the dataset and "whole-galaxy" nature of the SMC sample make possible a new statistical approach to uncover the duty-cycle distribution and hence population demographics of transient High Mass X-ray Binary (HMXB) populations.
VizieR Online Data Catalog: OGLE eclipsing binaries in LMC (Wyrzykowski+, 2003)
NASA Astrophysics Data System (ADS)
Wyrzykowski, L.; Udalski, A.; Kubiak, M.; Szymanski, M.; Zebrun, K.; Soszynski, I.; Wozniak, P. R.; Pietrzynski, G.; Szewczyk, O.
2003-09-01
We present the catalog of 2580 eclipsing binary stars detected in 4.6 square degree area of the central parts of the Large Magellanic Cloud. The photometric data were collected during the second phase of the OGLE microlensing search from 1997 to 2000. The eclipsing objects were selected with the automatic search algorithm based on an artificial neural network. Basic statistics of eclipsing stars are presented. Also, the list of 36 candidates of detached eclipsing binaries for spectroscopic study and for precise LMC distance determination is provided. The full catalog is accessible from the OGLE Internet archive. (2 data files).
VizieR Online Data Catalog: Three O-type binaries photometry in LMC (Morrell+, 2014)
NASA Astrophysics Data System (ADS)
Morrell, N. I.; Massey, P.; Neugent, K. F.; Penny, L. R.; Gies, D. R.
2017-03-01
We will concentrate on the presentation and discussion of our photometric and spectroscopic observations of 3 binary systems containing the earliest type components among the observed sample of 17 binaries in the LMC, namely, LMC 169782, LMC 171520, and [P93] 921. All three systems belong to the 30 Dor region, which harbors some of the most massive stars known to date (Crowther et al. 2010MNRAS.408..731C; Schnurr et al. 2009MNRAS.395..823S).Time-resolved photometry was carried out for all three systems in order to provide the light curves needed to establish periods and calculate orbital inclinations. As described in Paper I (Massey et al. 2012ApJ...748...96M), this was carried out using simple aperture photometry as opposed to point-spread-function fitting; tests showed that we obtained equally accurate results with aperture photometry, which was expected given that our targets are not overly crowded. In order to compute the observed absolute magnitudes for our targets, we have assumed a distance modulus of 18.50 (50 kpc) for the LMC following van den Bergh (2000, The Galaxies of the Local Group (Cambridge: Cambridge Univ. Press)), and we have used the intrinsic colors given by FitzGerald (1970A&A.....4..234F) and a normal reddening law with Rv = 3.1. (3 data files).
A study of X-ray variation in LMC X-1 with Suzaku
NASA Astrophysics Data System (ADS)
Koyama, Shu; Kubota, Aya; Yamada, Shinya; Makishima, Kazuo; Tashiro, Makoto; Terada, Yukikatsu
LMC X-1 is one of persistently luminous X-ray black hole binaries accompanying an O type star. It has been observed repeatedly since its discovery by a rocket mission (Mark et al. 1969). LMC X-1 was observed with Suzaku in July 2009 for 120 ksec, and was detected over a wide X-ray band of 0.5-50 keV. As Steiner et al. (2012) reported, the source was in the soft state with 10% of Eddington luminosity, and the spectrum showed a clear iron line emission. We analyzed the Suzaku light curve and found intensity-correlated variations in the spectral hardness ratio on a timescale of 10 ksec. The variation is explained by 10% changes in the Comptonised emission, possibly accompanied by those in the narrow iron line. Assuming that the variation timescale corresponds to the viscous time scale of a standard accretion disk, these components are considered to have been emitted from a region at a distance of 150 Rg from the black hole. We also found 3 mHz QPO in lower energy band. We discuss geometry of accretion flow and interpretation of the low freqency QPO.
NASA Astrophysics Data System (ADS)
Graczyk, Dariusz; Pietrzyński, Grzegorz; Thompson, Ian B.; Gieren, Wolfgang; Pilecki, Bogumił; Konorski, Piotr; Villanova, Sandro; Górski, Marek; Suchomska, Ksenia; Karczmarek, Paulina; Stepień, Kazimierz; Storm, Jesper; Taormina, Mónica; Kołaczkowski, Zbigniew; Wielgórski, Piotr; Narloch, Weronika; Zgirski, Bartłomiej; Gallenne, Alexandre; Ostrowski, Jakub; Smolec, Radosław; Udalski, Andrzej; Soszyński, Igor; Kervella, Pierre; Nardetto, Nicolas; Szymański, Michał K.; Wyrzykowski, Łukasz; Ulaczyk, Krzysztof; Poleski, Radosław; Pietrukowicz, Paweł; Kozłowski, Szymon; Skowron, Jan; Mróz, Przemysław
2018-06-01
We present a determination of the precise fundamental physical parameters of 20 detached, double-lined, eclipsing binary stars in the Large Magellanic Cloud (LMC) containing G- or early K-type giant stars. Eleven are new systems; the remaining nine are systems already analyzed by our team for which we present updated parameters. The catalog results from our long-term survey of eclipsing binaries in the Magellanic Clouds suitable for high-precision determination of distances (the Araucaria Project). The V-band brightnesses of the systems range from 15.4 to 17.7 mag, and their orbital periods range from 49 to 773 days. Six systems have favorable geometry showing total eclipses. The absolute dimensions of all eclipsing binary components are calculated with a precision of better than 3%, and all systems are suitable for a precise distance determination. The measured stellar masses are in the range 1.4 to 4.6 M ⊙, and comparison with the MESA isochrones gives ages between 0.1 and 2.1 Gyr. The systems show an age–metallicity relation with no evolution of metallicity for systems older than 0.6 Gyr, followed by a rise to a metallicity maximum at age 0.5 Gyr and then a slow metallicity decrease until 0.1 Gyr. Two systems have components with very different masses: OGLE LMC-ECL-05430 and OGLE LMC-ECL-18365. Neither system can be fitted by a single stellar evolution isochrone, explained by a past mass transfer scenario in the case of ECL-18365 and a gravitational capture or hierarchical binary merger scenario in the case of ECL-05430. The longest-period system, OGLE LMC SC9_230659, shows a surprising apsidal motion that shifts the apparent position of the eclipses. This is a clear sign of a physical companion to the system; however, neither investigation of the spectra nor light-curve analysis indicates a third-light contribution larger than 2%–3%. In one spectrum of OGLE LMC-ECL-12669, we noted a peculiar dimming of one of the components by 65% well outside of the eclipses. We interpret this observation as arising from an extremely rare occultation event, as a foreground Galactic object covers only one component of an extragalactic eclipsing binary.
The Nature and Cause of Spectral Variability in LMC X-1
NASA Technical Reports Server (NTRS)
Ruhlen, L.; Smith, D. M.; Scank, J. H.
2011-01-01
We present the results of a long-term observation campaign of the extragalactic wind-accreting black-hole X-ray binary LMC X-1, using the Proportional Counter Array on the Rossi X-Ray Timing Explorer (RXTE). The observations show that LMC X-1's accretion disk exhibits an anomalous temperature-luminosity relation. We use deep archival RXTE observations to show that large movements across the temperature-luminosity space occupied by the system can take place on time scales as short as half an hour. These changes cannot be adequately explained by perturbations that propagate from the outer disk on a viscous timescale. We propose instead that the apparent disk variations reflect rapid fluctuations within the Compton up-scattering coronal material, which occults the inner parts of the disk. The expected relationship between the observed disk luminosity and apparent disk temperature derived from the variable occultation model is quantitatively shown to be in good agreement with the observations. Two other observations support this picture: an inverse correlation between the flux in the power-law spectral component and the fitted inner disk temperature, and a near-constant total photon flux, suggesting that the inner disk is not ejected when a lower temperature is observed.
Application of a relativistic accretion disc model to X-ray spectra of LMC X-1 and GRO J1655-40
NASA Astrophysics Data System (ADS)
Gierliński, Marek; Maciołek-Niedźwiecki, Andrzej; Ebisawa, Ken
2001-08-01
We present a general relativistic accretion disc model and its application to the soft-state X-ray spectra of black hole binaries. The model assumes a flat, optically thick disc around a rotating Kerr black hole. The disc locally radiates away the dissipated energy as a blackbody. Special and general relativistic effects influencing photons emitted by the disc are taken into account. The emerging spectrum, as seen by a distant observer, is parametrized by the black hole mass and spin, the accretion rate, the disc inclination angle and the inner disc radius. We fit the ASCA soft-state X-ray spectra of LMC X-1 and GRO J1655-40 by this model. We find that, having additional limits on the black hole mass and inclination angle from optical/UV observations, we can constrain the black hole spin from X-ray data. In LMC X-1 the constraint is weak, and we can only rule out the maximally rotating black hole. In GRO J1655-40 we can limit the spin much better, and we find 0.68<=a<=0.88. Accretion discs in both sources are radiation-pressure dominated. We do not find Compton reflection features in the spectra of any of these objects.
NASA Astrophysics Data System (ADS)
Torpin, Trevor; Boyd, Patricia T.; Smale, Alan P.
2015-01-01
The bright, unusual black-hole X-ray binary LMC X-3 has been monitored virtually continuously by the Japanese MAXI X-ray All-Sky Monitor aboard the International Space Station (Matsuoka, et al., PASJ, 2009) from August 2009 to the present. Comparison with RXTE PCA and ASM light curves during the ~2.33-year period of overlap demonstrate that despite slight differences in energy-band boundaries both the ASM and MAXI faithfully reproduce characteristics of the high-amplitude, nonperiodic long-term variability, on the order of 100-300 days, clearly seen in the more sensitive PCA monitoring. The mechanism for this variability at a timescale many times longer than the 1.7-day orbital period is still unknown. Models to explain the long-term variability invoke mechanisms such as changes in mass transfer rate, and/or a precessing warped accretion disk. Observations of LMC X-3 have not definitely determined whether wind accretion or Roche-love overflow is the driver of the long-term variability. Recent MAXI monitoring of LMC X-3 includes excellent coverage of a rare anomalous low state (ALS) where the X-ray source cannot be distinguished from the background, as well as several normal low states, in which the source count rate passes smoothly through a low, yet detectable value. Pointed Swift XRT and UVOT observations also sample this ALS and one normal low state well. We combine these data sets to study the correlations between the wavelength regimes observed during the ALS versus the normal low. We also examine the behavior of the X-ray hardness ratios using XRT and MAXI monitoring data during the ALS versus the normal low state.
The Long-term Light Curves of X-ray Binaries Contain Simultaneous Periodic and Random Components
NASA Technical Reports Server (NTRS)
White, Nicholas E. (Technical Monitor); Boyd, Patricia T.; Smale, Alan P.
2002-01-01
LMC X-3 and Cyg X-2 show large amplitude X-ray fluctuations that have been attributed to a warped accretion disk. Cyg X-3 displays high amplitude, apparently non-periodic oscillations. We reanalyze these systems using RXTE ASM data and time-frequency decomposition techniques. We find that the long-term variations in Cyg X-2 can be completely characterized by excursions whose durations are integer multiples of the orbital period, including one essentially identical to the reported "period" of 78 days. Cyg X-3 can be characterized in terms of integer multiples of a 71-day fundamental period unrelated to the 4.8 day orbital period, but suggestively close to the approximately equal to greater than 60 day reported precession period of the relativistic jet inferred from recent radio observations. The long-term excursions of LMC X-3 are related to each other by rational fractions, suggesting the characteristic time scale is 10.594 days, shorter than any observed excursion to date. We explore the phase space evolution of the light curves using a natural embedding and find that all three systems possess two rotation centers that organize the phase space trajectories, one of low luminosity and the other of high luminosity. The implications of this repeatable behavior on generic models of accretion disk dynamics and mass transfer variability are explored.
NASA Astrophysics Data System (ADS)
Elgueta, S. S.; Graczyk, D.; Gieren, W.; Pietrzyński, G.; Thompson, I. B.; Konorski, P.; Pilecki, B.; Villanova, S.; Udalski, A.; Soszyński, I.; Suchomska, K.; Karczmarek, P.; Górski, M.; Wielgórski, P.
2016-08-01
We present an analysis of a new detached eclipsing binary, OGLE-LMC-ECL-25658, in the Large Magellanic Cloud (LMC). The system consists of two late G-type giant stars on an eccentric orbit with an orbital period of ˜200 days. The system shows total eclipses and the components have similar temperatures, making it ideal for a precise distance determination. Using multi-color photometric and high resolution spectroscopic data, we have performed an analysis of light and radial velocity curves simultaneously using the Wilson-Devinney code. We derived orbital and physical parameters of the binary with a high precision of \\lt 1%. The masses and surface metallicities of the components are virtually the same and equal to 2.23+/- 0.02 {M}⊙ and [{Fe}/{{H}}]\\=\\-0.63+/- 0.10 dex. However, their radii and rates of rotation show a distinct trace of differential stellar evolution. The distance to the system was calculated using an infrared calibration between V-band surface brightness and (V-K) color, leading to a distance modulus of (m-M)\\=\\18.452+/- 0.023 (statistical) ± 0.046 (systematic). Because OGLE-LMC-ECL-25658 is located relatively far from the LMC barycenter, we applied a geometrical correction for its position in the LMC disk using the van der Marel et al. model of the LMC. The resulting barycenter distance to the galaxy is {d}{{LMC}}\\=\\50.30+/- 0.53 (stat.) kpc, and is in perfect agreement with the earlier result of Pietrzyński et al.
LMC X-1: A New Spectral Analysis of the O-star in the Binary and Surrounding Nebula
NASA Astrophysics Data System (ADS)
Hyde, E. A.; Russell, D. M.; Ritter, A.; Filipović, M. D.; Kaper, L.; Grieve, K.; O'Brien, A. N.
2017-09-01
We provide new observations of the LMC X-1 O star and its extended nebula structure using spectroscopic data from VLT/UVES as well as Hα imaging from the Wide Field Imager on the Max Planck Gesellschaft/European Southern Observatory 2.2 m telescope and ATCA imaging of the 2.1 GHz radio continuum. This nebula is one of the few known to be energized by an X-ray binary. We use a new spectrum extraction technique that is superior to other methods used to obtain both radial velocities and fluxes. This provides an updated spatial velocity of ≃ 21.0 +/- 4.8 km s-1 for the O star. The slit encompasses both the photo-ionized and shock-ionized regions of the nebula. The imaging shows a clear arc-like structure reminiscent of a wind bow shock in between the ionization cone and shock-ionized nebula. The observed structure can be fit well by the parabolic shape of a wind bow shock. If an interpretation of a wind bow shock system is valid, we investigate the N159-O1 star cluster as a potential parent of the system, suggesting a progenitor mass of ˜60 M ⊙ for the black hole. We further note that the radio emission could be non-thermal emission from the wind bow shock, or synchrotron emission associated with the jet-inflated nebula. For both wind- and jet-powered origins, this would represent one of the first radio detections of such a structure.
Disk Disruptions and X-ray Intensity Excursions in Cyg X-2, LMC X-3 and Cyg X-3
NASA Astrophysics Data System (ADS)
Boyd, P. T.; Smale, A. P.
2001-05-01
The RXTE All Sky Monitor soft X-ray light curves of many X-ray binaries show long-term intensity variations (a.k.a "superorbital periodicities") that have been ascribed to precession of a warped, tilted accretion disk around the X-ray source. We have found that the excursion times between X-ray minima in Cyg X-2 can be characterized as a series of integer multiples of the 9.8 binary orbital period, (as opposed to the previously reported stable 77.7 day single periodicity, or a single modulation whose period changes slowly with time). While the data set is too short for a proper statistical analysis, it is clear that the length of any given intensity excursion cannot be used to predict the next (integer) excursion length in the series. In the black hole candidate system LMC X-3, the excursion times are shown to be related to each other by rational fractions. We find that the long term light curve of the unusual galactic X-ray jet source Cyg X-3 can also be described as a series of intensity excursions related to each other by integer multiples of a fundamental underlying clock. In the latter cases, the clock is apparently not related to the known binary periods. A unified physical model, involving both an inclined accretion disk and a fixed-probability disk disruption mechanism is presented, and compared with three-body scattering results. Each time the disk passes through the orbital plane it experiences a fixed probability P that it will disrupt. This model has testable predictions---the distribution of integers should resemble that of an atomic process with a characteristic half life. Further analysis can support or refute the model, and shed light on what system parameters effectively set the value of P.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levine, Alan M.; Bradt, Hale V.; Chakrabarty, Deepto
2011-09-01
We present the results of a systematic search in {approx}14 years of Rossi X-ray Timing Explorer All-Sky Monitor (ASM) data for evidence of periodicities. Two variations of the commonly used Fourier analysis search method have been employed to significantly improve upon the sensitivity achieved by Wen et al. in 2006, who also searched for periodicities in ASM data. In addition, the present search is comprehensive in terms of sources studied and frequency range covered, and has yielded the detection of the signatures of the orbital periods of eight low-mass X-ray binary systems and of ten high-mass X-ray binaries not listedmore » in the tables of Wen et al. Orbital periods, epochs, signal amplitudes, modulation fractions, and folded light curves are given for each of these systems. Seven of the orbital periods are the most precise reported to date. In the course of this work, the 18.545 day orbital period of IGR J18483-0311 was co-discovered, and the first detections in X-rays were made of the {approx}3.9 day orbital period of LMC X-1 and the {approx}3.79 hr orbital period of 4U 1636-536. The results inform future searches for orbital and other periodicities in X-ray binaries.« less
APSIDAL MOTION AND A LIGHT CURVE SOLUTION FOR 13 LMC ECCENTRIC ECLIPSING BINARIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zasche, P.; Wolf, M.; Vraštil, J.
2015-12-15
New CCD observations for 13 eccentric eclipsing binaries from the Large Magellanic Cloud were carried out using the Danish 1.54 m telescope located at the La Silla Observatory in Chile. These systems were observed for their times of minimum and 56 new minima were obtained. These are needed for accurate determination of the apsidal motion. Besides that, in total 436 times of minimum were derived from the photometric databases OGLE and MACHO. The O – C diagrams of minimum timings for these B-type binaries were analyzed and the parameters of the apsidal motion were computed. The light curves of thesemore » systems were fitted using the program PHOEBE, giving the light curve parameters. We derived for the first time relatively short periods of the apsidal motion ranging from 21 to 107 years. The system OGLE-LMC-ECL-07902 was also analyzed using the spectra and radial velocities, resulting in masses of 6.8 and 4.4 M{sub ⊙} for the eclipsing components. For one system (OGLE-LMC-ECL-20112), the third-body hypothesis was also used to describe the residuals after subtraction of the apsidal motion, resulting in a period of about 22 years. For several systems an additional third light was also detected, which makes these systems suspect for triplicity.« less
RXTE Observations of LMC X-1 and LMC X-3
NASA Technical Reports Server (NTRS)
Wilms, J.; Nowak, M. A.; Dove, J. B.; Pottschmidt, K.; Heindl, W. A.; Begelman, M. C.; Staubert, R.
1999-01-01
Of all known persistent stellar-mass black hole candidates, only LMC X-1 and LMC X-3 consistently show spectra that are dominated by a soft, thermal component. We present results from long (170 ksec) Rossi X-ray Timing Explorer (RXTE) observations of LMC X-1 and LMC X-3 made in 1996 December. The spectra can be described by a multicolor disk blackbody plus an additional high-energy power-law. Even though the spectra are very soft (Gamma approximately 2.5), RXTE detected a significant signal from LMC X-3 up to energies of 50 keV, the hardest energy at which the object was ever detected. Focusing on LMC X-3 , we present results from the first year of an ongoing monitoring campaign with RXTE which started in 1997 January. We show that the appearance of the object changes considerably over its approximately 200 d long cycle. This variability can either be explained by periodic changes in the mass transfer rate or by a precessing accretion disk analogous to Her X-1.
RXTE Observations of LMC X-1 and LMC X-3
NASA Technical Reports Server (NTRS)
Wilms, J.; Nowak, M. A.; Dove, J. B.; Pottschmidt, K.; Heindl, W. A.; Begelman, M. C.; Staubert, R.
1998-01-01
Of all known persistent stellar-mass black hole candidates, only LMC X-1 and LMC X-3 consistently show spectra that are dominated by a soft, thermal component. We present results from long (170 ksec) Rossi X-ray Timing Explorer (RXTE) observations of LMC X-1 and LMC X-3 made in 1996 December. The spectra can be described by a multicolor disk blackbody plus an additional high-energy power-law. Even though the spectra are very soft (Gamma approximately 2.5), RXTE detected a significant signal from LMC X-3 up to energies of 50 keV, the hardest energy at which the object was ever detected. Focusing on LMC X-3, we present results from the first year of an ongoing monitoring campaign with RXTE which started in 1997 January. We show that the appearance of the object changes considerably over its approximately 200d long cycle. This variability can either be explained by periodic changes in the mass transfer rate or by a precessing accretion disk analogous to Her X-1.
NASA Technical Reports Server (NTRS)
Weisskopf, M. C.; Darbro, W. A.; Elsner, R. F.; Williams, A. C.; Kahn, S. M.; Grindlay, J. E.; Naranan, S.; Sutherland, P. G.
1983-01-01
A comparison is presented of the black hole candidates LMC X-3 and Cygnus X-1 based on Einstein observations of LMC X-3 with the monitor proportional counter. A spectral analysis shows LMC X-3 to be more like the typical bright galactic X-ray source than Cygnus X-1. A search for periodic pulsations over a period range from 0.2 ms to over 1000 s set upper limits at the 90 percent confidence level of the order of 10 percent. An analysis of the aperiodic variability of LMC X-3 shows none of the shot noise behavior characteristic of Cygnus X-1. The absence of distinctive X-ray properties common to both sources suggests that the identification of black hole candidates on the basis of X-ray properties similar to Cygnus X-1 (or LMC X-3) is not reliable.
Observational evidence for black holes
NASA Astrophysics Data System (ADS)
Hutchings, J. B.
1985-02-01
Observational data supporting the existence of black holes are presented graphically and characterized in a general review. Object classes discussed include quasars as galaxy cores, X-ray-emitting binaries (Cyg X-1, LMC X-3, and the apparent miniature quasar SS 433), radio galaxies and quasars with twin jets, and interacting galaxies. This evidence is found to strongly suggest that quasars are accreting black holes of mass about 10 to the 8th solar mass, that they formed more easily in earlier stages of the universe (corresponding to redshifts around 2), and that they are analogous in many ways to the stellar-mass object SS 433.
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-07-01
How are the hypervelocity stars weve observed in our galaxy produced? A recent study suggests that these escapees could be accelerated by a massive black hole in the center of the Large Magellanic Cloud.A Black Hole SlingshotSince their discovery in 2005, weve observed dozens of candidate hypervelocity stars stars whose velocity in the rest frame of our galaxy exceeds the local escape velocity of the Milky Way. These stars present a huge puzzle: how did they attain these enormous velocities?One potential explanation is known as the Hills mechanism. In this process, a stellar binary is disrupted by a close encounter with a massive black hole (like those thought to reside at the center of every galaxy). One member of the binary is flung out of the system as a result of the close encounter, potentially reaching very large velocities.A star-forming region known as LHA 120-N 11, located within the LMC. Some binary star systems within the LMC might experience close encounters with a possible massive black hole at the LMCs center. [ESA/NASA/Hubble]Blame the LMC?Usually, discussions of the Hills mechanism assume that Sagittarius A*, the supermassive black hole at the center of the Milky Way, is the object guilty of accelerating the hypervelocity stars weve observed. But what if the culprit isnt Sgr A*, but a massive black hole at the center of the Large Magellanic Cloud (LMC), one of the Milky Ways satellite galaxies?Though we dont yet have evidence of a massive black hole at the center of the LMC, the dwarf galaxy is large enough to potentially host one as large as 100,000 solar masses. Assuming that it does, two scientists at the University of Cambridge, Douglas Boubert and Wyn Evans, have now modeled how this black hole might tear apart binary star systems and fling hypervelocity stars around the Milky Way.Models for AccelerationBoubert and Evans determined that the LMCs hypothetical black hole could easily eject stars at ~100 km/s, which is the escape velocity of the LMC. When this speed is combined with the orbital velocity of the LMC itself (another ~380 km/s relative to the Milky Way), this could result in hypervelocity stars moving faster than the escape speed of the Milky Way, as observed.Predicted distribution of hypervelocity stars ejected from the LMC, in galactic coordinates. The red crosses show locations of detected hypervelocity stars, and the green arrow marks the path of the LMC over the last 350 million years. [Boubert Evans 2016]If the LMC is indeed ejecting hypervelocity stars along its orbit, this could explain an observed anisotropy in the hypervelocity stars weve detected, with many of these stars clustering in the constellations of Leo and Sextans. This clustering is consistent with stars ejected ahead of the LMCs orbit.How can we test this model for the production of hypervelocity stars? The authors model predicts the presence of a significant number of hypervelocity stars near the LMC in the southern hemisphere, a region which has been poorly surveyed before now. Surveys such as SkyMapper and Gaia, however, will observe this region and their discoveries (or lack thereof) should provide a useful test of whether hypervelocity stars are accelerated by the LMC.CitationDouglas Boubert and N. Wyn Evans 2016 ApJ 825 L6. doi:10.3847/2041-8205/825/1/L6
VLT/SINFONI time-resolved spectroscopy of the central, luminous, H-rich WN stars of R136
NASA Astrophysics Data System (ADS)
Schnurr, O.; Chené, A.-N.; Casoli, J.; Moffat, A. F. J.; St-Louis, N.
2009-08-01
Using the Very Large Telescope's Spectrograph for INtegral Field Observation in the Near-Infrared, we have obtained repeated adaptive-optics-assisted, near-infrared spectroscopy of the six central luminous, Wolf-Rayet (WR) stars in the core of the very young (~1 Myr), massive and dense cluster R136, in the Large Magellanic Cloud (LMC). We also de-archived available images that were obtained with the Hubble Space Telescope's Space Telescope Imaging Spectrograph, and extracted high-quality, differential photometry of our target stars to check for any variability related to binary motion. Previous studies, relying on spatially unresolved, integrated, optical spectroscopy, had reported that one of these stars was likely to be a 4.377-d binary. Our study set out to identify the culprit and any other short-period system among our targets. However, none displays significant photometric variability, and only one star, BAT99-112 (R136c), located on the outer fringe of R136, displays a marginal variability in its radial velocities; we tentatively report an 8.2-d period. The binary status of BAT99-112 is supported by the fact that it is one of the brightest X-ray sources among all known WR stars in the LMC, consistent with it being a colliding wind system. Followup observations have been proposed to confirm the orbital period of this potentially very massive system. Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile, under programme ID 076.D-0563, and on observations made with the Hubble Space Telescope (HST) obtained from the European Southern Observatory (ESO)/Space Telescope-European Coordinating Facility (ST-ECF) Science Archive. E-mail: o.schnurr@sheffield.ac.uk
Three candidate double clusters in the LMC: truth or dare?
NASA Astrophysics Data System (ADS)
Dalessandro, Emanuele; Zocchi, Alice; Varri, Anna Lisa; Mucciarelli, Alessio; Bellazzini, Michele; Ferraro, Francesco R.; Lanzoni, Barbara; Lapenna, Emilio; Origlia, Livia
2018-02-01
The Large Magellanic Cloud (LMC) hosts a large number of candidate stellar cluster pairs. Binary stellar clusters provide important clues about cluster formation processes and the evolutionary history of the host galaxy. However, to properly extract and interpret this information, it is crucial to fully constrain the fraction of real binary systems and their physical properties. Here we present a detailed photometric analysis based on ESO-FORS2 images of three candidate cluster multiplets in the LMC, namely SL349-SL353, SL385-SL387-NGC 1922 and NGC 1836-BRHT4b-NGC 1839. For each cluster, we derived ages, structural parameters and morphological properties. We have also estimated the degree of filling of their Roche lobe, as an approximate tool to measure the strength of the tidal perturbations induced by the LMC. We find that the members of the possible pairs SL349-SL353 and BRHT4b-NGC 1839 have a similar age (t = 1.00 ± 0.12 Gyr and t = 140 ± 15 Myr, respectively), thus possibly hinting at a common origin of their member systems. We also find that all candidate pairs in our sample show evidence of intracluster overdensities that can be a possible indication of real binarity. Particularly interesting is the case of SL349-SL353. In fact, SL353 is relatively close to the condition of critical filling, thus suggesting that these systems might actually constitute an energetically bound pair. It is therefore key to pursue a detailed kinematic screening of such clusters, without which, at present, we do not dare making a conclusive statement about the true nature of this putative pair.
Cúmulos jóvenes inmersos en campos de edad intermedia en la barra de la Nube Mayor de Magallanes
NASA Astrophysics Data System (ADS)
Piatti, A. E.; Geisler, D.; Bica, E.; Clariá, J. J.
We present Washington system photometry for 11 star clusters immersed in the northwest part of the Large Magellanic Cloud (LMC) bar. The fields are heavily populated by the intermediate-age component of the LMC bar. We succeeded in disentangling cluster colour-magnitude diagrams from those of the fields and in deriving reddening and ages for five clusters - SL 218, BRHT4b, NGC 1839, NGC 1838 and NGC 1863 - with the aid of recent Washington System theoretical isochrones. The resulting cluster ages range between 50 and 125 Myr. Despite their proximity, NGC 1836 and BRHT4b have very different ages. Thus the possibility for these two objects being a binary cluster is very unlikely, although a capture cannot be ruled out a priori. Our results suggest that for each intermediate-age cluster remaining in the LMC bar region, a number of robust young blue star clusters occurs in the same region (Piatti et al. 2003, MNRAS, 343, 851).
The atmospheric structures of the companion stars of eclipsing binary x ray sources
NASA Technical Reports Server (NTRS)
Clark, George W.
1992-01-01
This investigation was aimed at determining structural features of the atmospheres of the massive early-type companion stars of eclipse x-ray pulsars by measurement of the attenuation of the x-ray spectrum during eclipse transitions and in deep eclipse. Several extended visits were made to ISAS in Japan by G. Clark and his graduate student, Jonathan Woo to coordinate the Ginga observations and preliminary data reduction, and to work with the Japanese host scientist, Fumiaki Nagase, in the interpretation of the data. At MIT extensive developments were made in software systems for data interpretation. In particular, a Monte Carlo code was developed for a 3-D simulation of the propagation of x-rays from the neutron star through the ionized atmosphere of the companion. With this code it was possible to determine the spectrum of Compton-scattered x-rays in deep eclipse and to subtract that component from the observed spectra, thereby isolating the software component that is attributable in large measure to x-rays that have been scattered by interstellar grains. This research has culminated in the submission of paper to the Astrophysical Journal on the determination of properties of the atmosphere of QV Nor, the BOI companion of 4U 1538-52, and the properties of interstellar dust grains along the line of sight from the source. The latter results were an unanticipated byproduct of the investigation. Data from Ginga observations of the Magellanic binaries SMC X-1 and LMC X-4 are currently under investigation as the PhD thesis project of Jonathan Woo who anticipated completion in the spring of 1993.
An eclipsing-binary distance to the Large Magellanic Cloud accurate to two per cent.
Pietrzyński, G; Graczyk, D; Gieren, W; Thompson, I B; Pilecki, B; Udalski, A; Soszyński, I; Kozłowski, S; Konorski, P; Suchomska, K; Bono, G; Moroni, P G Prada; Villanova, S; Nardetto, N; Bresolin, F; Kudritzki, R P; Storm, J; Gallenne, A; Smolec, R; Minniti, D; Kubiak, M; Szymański, M K; Poleski, R; Wyrzykowski, L; Ulaczyk, K; Pietrukowicz, P; Górski, M; Karczmarek, P
2013-03-07
In the era of precision cosmology, it is essential to determine the Hubble constant to an accuracy of three per cent or better. At present, its uncertainty is dominated by the uncertainty in the distance to the Large Magellanic Cloud (LMC), which, being our second-closest galaxy, serves as the best anchor point for the cosmic distance scale. Observations of eclipsing binaries offer a unique opportunity to measure stellar parameters and distances precisely and accurately. The eclipsing-binary method was previously applied to the LMC, but the accuracy of the distance results was lessened by the need to model the bright, early-type systems used in those studies. Here we report determinations of the distances to eight long-period, late-type eclipsing systems in the LMC, composed of cool, giant stars. For these systems, we can accurately measure both the linear and the angular sizes of their components and avoid the most important problems related to the hot, early-type systems. The LMC distance that we derive from these systems (49.97 ± 0.19 (statistical) ± 1.11 (systematic) kiloparsecs) is accurate to 2.2 per cent and provides a firm base for a 3-per-cent determination of the Hubble constant, with prospects for improvement to 2 per cent in the future.
The Optical Gravitational Lensing Experiment. Eclipsing Binary Stars in the Large Magellanic Cloud
NASA Astrophysics Data System (ADS)
Wyrzykowski, L.; Udalski, A.; Kubiak, M.; Szymanski, M.; Zebrun, K.; Soszynski, I.; Wozniak, P. R.; Pietrzynski, G.; Szewczyk, O.
2003-03-01
We present the catalog of 2580 eclipsing binary stars detected in 4.6 square degree area of the central parts of the Large Magellanic Cloud. The photometric data were collected during the second phase of the OGLE microlensing search from 1997 to 2000. The eclipsing objects were selected with the automatic search algorithm based on an artificial neural network. Basic statistics of eclipsing stars are presented. Also, the list of 36 candidates of detached eclipsing binaries for spectroscopic study and for precise LMC distance determination is provided. The full catalog is accessible from the OGLE Internet archive.
Longterm lightcurves of X-ray binaries
NASA Astrophysics Data System (ADS)
Clarkson, William
The X-ray Binaries (XRB) consist of a compact object and a stellar companion, which undergoes large-scale mass-loss to the compact object by virtue of the tight ( P orb usually hours-days) orbit, producing an accretion disk surrounding the compact object. The liberation of gravitational potential energy powers exotic high-energy phenomena, indeed the resulting accretion/ outflow process is among the most efficient energy-conversion machines in the universe. The Burst And Transient Source Experiment (BATSE) and RXTE All Sky Monitor (ASM) have provided remarkable X-ray lightcurves above 1.3keV for the entire sky, at near-continuous coverage, for intervals of 9 and 7 years respectively (with ~3 years' overlap). With an order of magnitude increase in sensitivity compared to previous survey instruments, these instruments have provided new insight into the high-energy behaviour of XRBs on timescales of tens to thousands of binary orbits. This thesis describes detailed examination of the long-term X-ray lightcurves of the neutron star XRB X2127+119, SMC X-1, Her X- 1, LMC X-4, Cyg X-2 and the as yet unclassified Circinus X-1, and for Cir X-1, complementary observations in the IR band. Chapters 1 & 2 introduce X-ray Binaries in general and longterm periodicities in particular. Chapter 3 introduces the longterm datasets around which this work is based, and the chosen methods of analysis of these datasets. Chapter 4 examines the burst history of the XRB X2127+119, suggesting three possible interpretations of the apparently contradictory X-ray emission from this system, including a possible confusion of two spatially distinct sources (which was later vindicated by high-resolution imaging). Chapters 5 and 6 describe the characterisation of accretion disk warping, providing observational verification of the prevailing theoretical framework for such disk-warps. Chapters 7 & 8 examine the enigmatic XRB Circinus X-1 with high-resolution IR spectroscopy (chapter 7) and the RXTE/ASM (chapter 8), establishing an improved orbital ephemeris and suggesting the system may be in a state of rapid post- supernova evolution. In chapter 8 we follow this up with a direct search for the X-ray supernova remnant expected from such a system, concluding that with present observations the diffuse emission from Cir X-1 is indistinguishable from scattering by dust-grains in the interstellar medium.
OGLE II Eclipsing Binaries In The LMC: Analysis With Class
NASA Astrophysics Data System (ADS)
Devinney, Edward J.; Prsa, A.; Guinan, E. F.; DeGeorge, M.
2011-01-01
The Eclipsing Binaries (EBs) via Artificial Intelligence (EBAI) Project is applying machine learning techniques to elucidate the nature of EBs. Previously, Prsa, et al. applied artificial neural networks (ANNs) trained on physically-realistic Wilson-Devinney models to solve the light curves of the 1882 detached EBs in the LMC discovered by the OGLE II Project (Wyrzykowski, et al.) fully automatically, bypassing the need for manually-derived starting solutions. A curious result is the non-monotonic distribution of the temperature ratio parameter T2/T1, featuring a subsidiary peak noted previously by Mazeh, et al. in an independent analysis using the EBOP EB solution code (Tamuz, et al.). To explore this and to gain a fuller understanding of the multivariate EBAI LMC observational plus solutions data, we have employed automatic clustering and advanced visualization (CAV) techniques. Clustering the OGLE II data aggregates objects that are similar with respect to many parameter dimensions. Measures of similarity for example, could include the multidimensional Euclidean Distance between data objects, although other measures may be appropriate. Applying clustering, we find good evidence that the T2/T1 subsidiary peak is due to evolved binaries, in support of Mazeh et al.'s speculation. Further, clustering suggests that the LMC detached EBs occupying the main sequence region belong to two distinct classes. Also identified as a separate cluster in the multivariate data are stars having a Period-I band relation. Derekas et al. had previously found a Period-K band relation for LMC EBs discovered by the MACHO Project (Alcock, et al.). We suggest such CAV techniques will prove increasingly useful for understanding the large, multivariate datasets increasingly being produced in astronomy. We are grateful for the support of this research from NSF/RUI Grant AST-05-75042 f.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Górski, Marek; Gieren, Wolfgang; Catelan, Márcio
2016-06-01
We present a precise optical and near-infrared determination of the tip of the red giant branch (TRGB) brightness in the Large and Small Magellanic Clouds (respectively, LMC and SMC). The commonly used calibrations of the absolute magnitude of the TRGB lead to an overestimation of the distance to the LMC and SMC in the K band, and an underestimation of the distance in the optical I band for both galaxies. Reported discrepancies are at the level of 0.2 mag, with respect to the very accurate distance determinations to both MCs based on late-type eclipsing binaries. The differential distances between themore » LMC and SMC obtained in the J and K bands, and for the bolometric brightness are consistent with each other, and with the results obtained from eclipsing binaries and other distance indicators.« less
A Modern Search for Wolf-Rayet Stars in the Magellanic Clouds. III. A Third Year of Discoveries
NASA Astrophysics Data System (ADS)
Massey, Philip; Neugent, Kathryn F.; Morrell, Nidia
2017-03-01
For the past three years we have been conducting a survey for Wolf-Rayet (WR) stars in the Large and Small Magellanic Clouds (LMC, SMC). Our previous work resulted in the discovery of a new type of WR star in the LMC, which we are calling WN3/O3. These stars have the emission-line properties of a WN3 star (strong N v, but no N IV), plus the absorption-line properties of an O3 star (Balmer hydrogen plus Pickering He II, but no He I). Yet, these stars are 15 times fainter than an O3 V star, ruling out the possibility that WN3/O3s are WN3+O3 binaries. Here we report the discovery of two more members of this class, bringing the total number of these objects to 10, 6.5% of the LMC’s total WR population. The optical spectra of nine of these WN3/O3s are virtually indistinguishable from each other, but one of the newly found stars is significantly different, showing a lower excitation emission and absorption spectrum (WN4/O4-ish). In addition, we have newly classified three unusual Of-type stars, including one with a strong C III λ 4650 line, and two rapidly rotating “Oef” stars. We also “rediscovered” a low mass X-ray binary, RX J0513.9-6951, and demonstrate its spectral variability. Finally, we discuss the spectra of 10 low priority WR candidates that turned out to not have He II emission. These include both a Be star and a B[e] star. This paper includes data gathered with the 1 m Swope and 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.
Bright X-ray transient in the LMC
NASA Astrophysics Data System (ADS)
Saxton, R.; Read, A. M.; Li, D. Y.
2018-01-01
We report a bright X-ray transient in the LMC from an XMM-Newton slew made on 5th January 2018. The source, XMMSL2 J053629.4-675940, had a soft X-ray (0.2-2 keV) count rate in the EPIC-pn detector, medium filter of 1.82+/-0.56 c/s, equivalent to a flux Fx=2.3+/-0.7E-12 ergs/s/cm2 for a nominal spectrum of a power-law of slope 2 absorbed by a column NH=3E20 cm^-2.
Swift J045106.8-694803: A Highly Magnetised Neutron Star in the Large Magellanic Cloud
NASA Technical Reports Server (NTRS)
Klus, H.; Bartlett, E. S.; Bird, A. J.; Coe, M.; Corbet, R. H. D.; Udalski, A.
2013-01-01
We report the analysis of a highly magnetised neutron star in the Large Magellanic Cloud (LMC). The high mass X-ray binary pulsar Swift J045106.8-694803 has been observed with Swift X-ray telescope (XRT) in 2008, The Rossi X-ray Timing Explorer (RXTE) in 2011 and the X-ray Multi-Mirror Mission - Newton (XMM-Newton) in 2012. The change in spin period over these four years indicates a spin-up rate of 5.010.06 s/yr, amongst the highest observed for an accreting pulsar. This spin-up rate can be accounted for using Ghosh and Lambs (1979) accretion theory assuming it has a magnetic field of (1.2 +/= 0.20/0.7) x 10(exp 14) Gauss. This is over the quantum critical field value. There are very few accreting pulsars with such high surface magnetic fields and this is the first of which to be discovered in the LMC. The large spin-up rate is consistent with Swift Burst Alert Telescope (BAT) observations which show that Swift J045106.8-694803 has had a consistently high X-ray luminosity for at least five years. Optical spectra have been used to classify the optical counterpart of Swift J045106.8-694803 as a B0-1 III-V star and a possible orbital period of 21.631 +/- 0.005 days has been found from MACHO optical photometry.
VizieR Online Data Catalog: BVI photometry of LMC bar variables (Di Fabrizio+, 2005)
NASA Astrophysics Data System (ADS)
di Fabrizio, L.; Clementini, G.; Maio, M.; Bragaglia, A.; Carretta, E.; Gratton, R.; Montegriffo, P.; Zoccali, M.
2005-01-01
We present the Johnson-Cousins B,V and I time series data obtained for 162 variable stars (135 RR Lyrae, 4 candidate Anomalous Cepheids, 11 Classical Cepheids, 11 eclipsing binaries and 1 delta Scuti star) in two 13x13 square arcmin areas close to the bar of the Large Magellanic Cloud. The photometric observations presented in this paper were carried out at the 1.54m Danish telescope located in La Silla, Chile, on the nights 4-7 January 1999, UT, and 23-24 January 2001, UT, respectively. In the paper we give coordinates, finding charts, periods, epochs, amplitudes, and mean quantities (intensity- and magnitude-averaged luminosities) of the variables with full coverage of the light variations, along with a discussion of the pulsation properties of the RR Lyrae stars in the sample. (8 data files).
Mock X-ray Observations of Localized LMC Outflows
NASA Astrophysics Data System (ADS)
Tomesh, Teague; Bustard, Chad; Zweibel, Ellen
2018-01-01
The Milky Way’s nearest neighbor, the Large Magellanic Cloud (LMC), is a perfect testing ground for modeling a variety of astrophysical phenomena. Specifically, the LMC provides a unique opportunity for the study of possible localized outflows driven by star formation and their x-ray signatures. We have developed FLASH simulations of theoretical outflows originating in the LMC that we have used to generate predicted observations of X-ray luminosity. This X-ray emission can be a useful probe of the hot gas in these winds which may couple to the cool gas and drive it from the disk. Future observations of the LMC may provide us with valuable checks on our model. This work is partially supported by the National Science Foundation (NSF) Graduate Research Fellowship Program under grant No. DGE-125625 and NSF grant No. AST-1616037.
2015-01-01
al. (2014), and of the Large Magellanic Cloud (LMC) Tarantula Nebula region by Sana et al. (2013b), demonstrate that the binary frequency may be »70...Monte-Carlo method to fit spectroscopic results for a large sample of O-type stars in the Tarantula Nebula region of the LMC, and they find a best fit
On fast X-ray rotators with long-term periodicities
NASA Technical Reports Server (NTRS)
Naranan, S.; Elsner, R. F.; Darbro, W.; Ramsey, B. D.; Leahy, D. A.; Weisskopf, M. C.; Williams, A. C.; Hardee, P. E.; Sutherland, P. G.; Grindlay, J. E.
1985-01-01
The support of previous SAS 3 spacecraft observations by new data gathered by the Monitor Proportional Counter aboard the HEAO 2 spacecraft indicates that the pulse period history of the 13.5 sec-pulsing X-ray source LMC X-4 is consistent with standard accretion and torque models only if LMC X-4 is a fast rotator for which the accretion torques nearly cancel. This result leads to a neutron star magnetic field strength estimate of about 1.2 x 10 to the 13th G. Strong evidence is noted for Her X-1's status as a fast rotator, while SMC X-1 is probably an intermediate-to-fast rotator. In the context of slaved disk models for these objects, it is noted that the precession periods expected for the companion stars are significantly longer than the observed 1-2 month time scales; slaved disk models are thereby undermined.
A D'-type symbiotic binary in the planetary nebula SMP LMC 88
NASA Astrophysics Data System (ADS)
Iłkiewicz, Krystian; Mikołajewska, Joanna; Miszalski, Brent; Kozłowski, Szymon; Udalski, Andrzej
2018-05-01
SMP LMC 88 is one of the planetary nebulae (PNe) in the Large Magellanic Cloud. We identify in its spectrum Raman scattered O VI lines at 6825 and 7083 Å. This unambiguously classifies the central object of the nebula as a symbiotic star (SySt). We identified the cold component to be a K-type giant, making this the first D'-type (yellow) SySt discovered outside the Galaxy. The photometric variability in SMP LMC 88 resembles the orbital variability of Galactic D'-type SySt with its low amplitude and sinusoidal light-curve shape. The SySt classification is also supported by the He I diagnostic diagram.
Polyaniline nanofiber/large mesoporous carbon composites as electrode materials for supercapacitors
NASA Astrophysics Data System (ADS)
Liu, Huan; Xu, Bin; Jia, Mengqiu; Zhang, Mei; Cao, Bin; Zhao, Xiaonan; Wang, Yu
2015-03-01
A composite of polyaniline nanofiber/large mesoporous carbon (PANI-F/LMC) hybrid was prepared by an in situ chemical oxidative polymerization of aniline monomer with nano-CaCO3 templated LMC as host matrix for supercapacitors. The morphology, composition and electronic structure of the composites (PANI-F/LMC) together with pure PANI nanofibers and the LMC were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), FT-IR, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It is found that the PANI nanofibers were incorporated into the large mesochannels of LMC with interpenetrating framework formed. Such unique structure endows the PANI-F/LMC composite with a high capacitance of 473 F g-1 at a current load of 0.1 A g-1 with good rate performance and cycling stability, suggesting its potential application in the electrode material for supercapacitors.
VizieR Online Data Catalog: LMC PNe multiwavelength photometry (Reid, 2014)
NASA Astrophysics Data System (ADS)
Reid, W. A.
2017-07-01
Using the 2MASS 6x catalogue for the LMC (Cutri et al. 2003, Cat. II/246; 2012, Cat. VII/233), magnitudes were obtained for 274 PNe in J, 269 in H and 263 in Ks. To increase the number of detections available for comparison, magnitudes were also obtained from the InfraRed Survey Facility (IRSF) Magellanic Clouds Point Source Catalogue (Kato et al., 2007, Cat. II/288). The 3.6, 4.5, 5.8 and 8um bands were obtained with the IRAC on board Spitzer. This study used the archival data from the Spitzer legacy programme SAGE (Meixner et al., 2006, Cat. J/AJ/132/2268) which mapped the central 7x7deg2 area of the LMC. The MIPS data were also obtained from both the Hora et al. (2008, Cat. J/AJ/135/726) and Gruendl & Chu (2009, Cat. J/ApJS/184/172) studies. (3 data files).
ASTRONOMY: The Distance to the Large Magellanic Cloud.
Cole, A A
2000-08-18
The Large Magellanic Cloud (LMC), a satellite of the Milky Way, is an important yardstick by which most intergalactic distances are measured. But as Cole explains in this Perspective, how far away the LMC is remains a matter of dispute, with far reaching implications in cosmology. But observations of Cepheids and of eclipsing binaries, two types of stars that allow absolute luminosity and thus absolute distances to be determined, are promising to resolve this important issue in the not too distant future.
The ROSAT All-Sky Survey view of the Large Magellanic Cloud (LMC)
NASA Technical Reports Server (NTRS)
Pietsch, W.; Denner, K.; Kahabka, P.; Pakull, M.; Schaeidt, S.
1996-01-01
During the Rosat all sky survey, centered on the Large Magellanic Cloud (LMC), 516 X-ray sources were detected. The field was covered from July 1990 to January 1991. The X-ray parameters of the sources, involving position, count rates, hardness ratios, extent, and time variability during the observations, are discussed. Identifications with objects from optical, radio and infrared wavelength allow the LMC candidates to be separated from the foreground stars and the background objects.
NASA Technical Reports Server (NTRS)
Annis, J.; Soares-Santos, M.; Berger, E.; Brout, D.; Chen, H.; Chornock, R.; Cowperthwaite, P. S.; Diehl, H. T.; Doctor, Z.; Cenko, S. B.
2016-01-01
The collapse of a stellar core is expected to produce gravitational waves (GWs), neutrinos, and in most cases a luminous supernova. Sometimes, however, the optical event could be significantly less luminous than a supernova and a direct collapse to a black hole, where the star just disappears, is possible. The GW event GW150914 was detected by the LIGO Virgo Collaboration via a burst analysis that gave localization contours enclosing the Large Magellanic Cloud (LMC). Shortly thereafter, we used DECam to observe 102 deg(exp.2) of the localization area,including 38 deg(exp. 2) on the LMC for a missing supergiant search. We construct a complete catalog of LMC luminous red supergiants, the best candidates to undergo invisible core collapse, and collected catalogs of other candidates:less luminous red supergiants, yellow supergiants, blue supergiants, luminous blue variable stars, and Wolf-Rayet stars. Of the objects in the imaging region, all are recovered in the images. The timescale for stellar disappearance is set by the free-fall time, which is a function of the stellar radius. Our observations at 4 and 13 days after the event result in a search sensitive to objects of up to about 200 solar radii. We conclude that it is unlikely that GW150914 was caused by the core collapse of a relatively compact supergiant in the LMC, consistent with the LIGO Collaboration analyses of the gravitational waveform as best interpreted as a high mass binary black hole merger. We discuss how to generalize this search for future very nearby core-collapse candidates.
Annis, J.
2016-05-27
The collapse of a stellar core is expected to produce gravitational waves (GWs), neutrinos, and in most cases a luminous supernova. Sometimes, however, the optical event could be significantly less luminous than a supernova and a direct collapse to a black hole, where the star just disappears, is possible. The GW event GW150914 was detected by the LIGO Virgo Collaboration via a burst analysis that gave localization contours enclosing the Large Magellanic Cloud (LMC). Shortly thereafter, we used DECam to observe 102 deg 2 of the localization area, including 38 deg 2 on the LMC for a missing supergiant search.more » We construct a complete catalog of LMC luminous red supergiants, the best candidates to undergo invisible core collapse, and collected catalogs of other candidates: less luminous red supergiants, yellow supergiants, blue supergiants, luminous blue variable stars, and Wolf–Rayet stars. Of the objects in the imaging region, all are recovered in the images. The timescale for stellar disappearance is set by the free-fall time, which is a function of the stellar radius. Our observations at 4 and 13 days after the event result in a search sensitive to objects of up to about 200 solar radii. We conclude that it is unlikely that GW150914 was caused by the core collapse of a relatively compact supergiant in the LMC, consistent with the LIGO Collaboration analyses of the gravitational waveform as best interpreted as a high mass binary black hole merger. Lastly, we discuss how to generalize this search for future very nearby core-collapse candidates.« less
Physical Properties of the LMC Eclipsing Binary Stars
NASA Astrophysics Data System (ADS)
Prsa, Andrej; Devinney, E. J.; Guinan, E. F.; Engle, S. G.; DeGeorge, M.
2009-01-01
To date, three independent studies have devised an automatic procedure to analyse and extract the principal parameters of 2581 detached eclipsing binary stars from the OGLE photometric survey of the Large Magellanic Cloud (LMC): Devor (2005), Tamuz et al. (2006), and Prsa et al. (2008). For time efficiency, Devor used a simple model of two spherical, limb-darkened stars without tidal or reflection physics. Tamuz et al.'s approach employs a more realistic EBOP model, which is still limited in handling proximity physics. Our study used a back-propagating neural network that was trained on the light curves computed by a modern Wilson-Devinney code. The three approaches are confronted and correlations in the results are sought that indicate the degree of reliability of the obtained results. A database of solutions consistent across all three studies is presented. We assess the suitability of each method for other morphology types (i.e. semi-detached and overcontact binaries) and we overview the practical limitations of these methods for the upcoming survey data. This research is supported by NFS/RUI Grant No. AST-05-07542, which we gratefully acknowledge.
WNL Stars - the Most Massive Stars in the Universe?
NASA Astrophysics Data System (ADS)
Schnurr, Olivier; Moffat, Anthony F. J.; St-Louis, Nicole; Skalkowski, Gwenael; Niemela, Virpi; Shara, Michael M.
2001-08-01
We propose to carry out an intensive and complete time-dependent spectroscopic study of all 47 known WNL stars in the LMC, an ideal laboratory to study the effect of lower ambient metallicity, Z, on stellar evolution. WNL stars are luminous, cooler WR stars of the nitrogen sequence. This will allow us to: 1) determine the binary frequency. The Roche-lobe overflow (RLOF) mechanism in close binaries is predicted to be responsible for the formation of a significant fraction of WR stars in low Z environments such as the LMC. 2) determine the masses. Since some of these stars (denoted WNL(h) or WNLh) are supposed to be hydrogen-burning and thus main-sequence stellar objects of the highest luminosity, they may be the most massive stars known. 3) study wind-wind collision (WWC) effects in WR+O binaries involving very luminous WNL stars with strong winds. Interesting in itself as a high-energy phenomenon, WWC is in competition with conservative RLOF (i.e. mass transfer to the secondary star), and therefore has to be taken into account in this context.
WNLh Stars - The Most Massive Stars in the Universe?
NASA Astrophysics Data System (ADS)
Schnurr, Olivier; St-Louis, Nicole; Moffat, Anthony F. J.; Foellmi, Cedric
2002-08-01
We propose to conclude our intensive and complete time-dependent spectroscopic study of all 47 known WNL stars in the LMC, an ideal laboratory to study the effect of lower ambient metallicity, Z, on stellar evolution. WNL stars are luminous, cooler WR stars of the nitrogen sequence. This will allow us to: 1) determine the binary frequency. The Roche-lobe overflow (RLOF) mechanism in close binaries is predicted to be responsible for the formation of a significant fraction of WR stars in low Z environments such as the LMC. 2) determine the masses. Since some of these stars (denoted WNL(h) or WNLh) are supposed to be hydrogen-burning and thus main-sequence stellar objects of the highest luminosity, they may be the most massive stars known. 3) study wind-wind collision (WWC) effects in WR+O binaries involving very luminous WNL stars with strong winds. Interesting in itself as a high-energy phenomenon, WWC is in competition with conservative RLOF (i.e. mass transfer to the secondary star), and therefore has to be taken into account in this context.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annis, J.
The collapse of a stellar core is expected to produce gravitational waves (GWs), neutrinos, and in most cases a luminous supernova. Sometimes, however, the optical event could be significantly less luminous than a supernova and a direct collapse to a black hole, where the star just disappears, is possible. The GW event GW150914 was detected by the LIGO Virgo Collaboration via a burst analysis that gave localization contours enclosing the Large Magellanic Cloud (LMC). Shortly thereafter, we used DECam to observe 102 deg 2 of the localization area, including 38 deg 2 on the LMC for a missing supergiant search.more » We construct a complete catalog of LMC luminous red supergiants, the best candidates to undergo invisible core collapse, and collected catalogs of other candidates: less luminous red supergiants, yellow supergiants, blue supergiants, luminous blue variable stars, and Wolf–Rayet stars. Of the objects in the imaging region, all are recovered in the images. The timescale for stellar disappearance is set by the free-fall time, which is a function of the stellar radius. Our observations at 4 and 13 days after the event result in a search sensitive to objects of up to about 200 solar radii. We conclude that it is unlikely that GW150914 was caused by the core collapse of a relatively compact supergiant in the LMC, consistent with the LIGO Collaboration analyses of the gravitational waveform as best interpreted as a high mass binary black hole merger. Lastly, we discuss how to generalize this search for future very nearby core-collapse candidates.« less
Discovery of a Possible Symbiotic Binary in the Large Magellanic Cloud
NASA Astrophysics Data System (ADS)
Mathew, Blesson; Reid, Warren A.; Mennickent, R. E.; Banerjee, D. P. K.
2017-12-01
We report the discovery of a possible symbiotic star, in the Large Magellanic Cloud (LMC). The object under consideration here, designated as RP 870, was detected during the course of a comprehensive H$\\alpha$ survey of the LMC by Reid & Parker (2012). The spectrum of RP 870 showed high ionization emission lines of He I, He II and [O III] and molecular absorption bands of TiO $\\lambda$$\\lambda$6180, 7100. The collective signatures of a hot component (high excitation/ionization lines) and of a cool component (TiO molecular bands) are seen in RP 870, from which we propose it as a symbiotic star. Since known symbiotic systems are rare in the LMC, possibly less than a dozen are known, we thought the present detection to be interesting enough to be reported.
VizieR Online Data Catalog: X-ray supernova remnants in LMC (Maggi+, 2016)
NASA Astrophysics Data System (ADS)
Maggi, P.; Haberl, F.; Kavanagh, P. J.; Sasaki, M.; Bozzetto, L. M.; Filipovic, M. D.; Vasilopoulos, G.; Pietsch, W.; Points, S. D.; Chu, Y.-H.; Dickel, J.; Ehle, M.; Williams, R.; Greiner, J.
2016-03-01
The processing of all available XMM-Newton data in the LMC region, and those of the VLP survey in particular, was done with the data reduction pipeline developed in our research group over several years. Various non-X-ray data were used to supplement the XMM-Newton observations. They allow us to assess e.g. the relation between the population of SNRs and large scale structure of the LMC, or to evaluate doubtful candidates in the sample compilation. We compiled a sample of 59 definite SNRs, cleaned of misclassified objects and doubtful candidates. (2 data files).
50-500 MeV observations of LMC supernova 1987A
NASA Astrophysics Data System (ADS)
Summer, T. J.; Rochester, G. K.; Sood, R. K.; Thomas, J.; Waldron, L.; Manchanda, R. K.; Frye, G.; Jenkins, T.; Koga, R.; Staubert, R.; Kendziorra, E.; Ubertini, P.; Bazzano, A.; La Padula, C.
Since the discovery of the supernova outburst in the LMC in 1987, two attempts (on day 55 and day 407) have been made to measure the high energy gamma-ray flux in the range 50-500 MeV, by using a balloon-borne spark chamber telescope. On day 55, no positive signal was seen from the source. A 3 sigma upper limit of 2.9 x 10 to the -5th ph/sq cm s was obtained after the analysis of the spark chamber data. Preliminary analysis of the quick look data obtained in the second flight shows that the gamma-ray flux even on day 407 was less than 9 x 10 to the -4th ph/sq cm s (3 sigma).
Candidate Binary Microlensing Events from the MACHO Project
NASA Astrophysics Data System (ADS)
Becker, A. C.; Alcock, C.; Allsman, R. A.; Alves, D. R.; Axelrod, T. S.; Bennett, D. P.; Cook, K. H.; Drake, A. J.; Freeman, K. C.; Griest, K.; King, L. J.; Lehner, M. J.; Marshall, S. L.; Minniti, D.; Peterson, B. A.; Popowski, P.; Pratt, M. R.; Quinn, P. J.; Rodgers, A. W.; Stubbs, C. W.; Sutherland, W.; Tomaney, A.; Vandehei, T.; Welch, D. L.; Baines, D.; Brakel, A.; Crook, B.; Howard, J.; Leach, T.; McDowell, D.; McKeown, S.; Mitchell, J.; Moreland, J.; Pozza, E.; Purcell, P.; Ring, S.; Salmon, A.; Ward, K.; Wyper, G.; Heller, A.; Kaspi, S.; Kovo, O.; Maoz, D.; Retter, A.; Rhie, S. H.; Stetson, P.; Walker, A.; MACHO Collaboration
1998-12-01
We present the lightcurves of 22 gravitational microlensing events from the first six years of the MACHO Project gravitational microlensing survey which are likely examples of lensing by binary systems. These events were selected from a total sample of ~ 300 events which were either detected by the MACHO Alert System or discovered through retrospective analyses of the MACHO database. Many of these events appear to have undergone a caustic or cusp crossing, and 2 of the events are well fit with lensing by binary systems with large mass ratios, indicating secondary companions of approximately planetary mass. The event rate is roughly consistent with predictions based upon our knowledge of the properties of binary stars. The utility of binary lensing in helping to solve the Galactic dark matter problem is demonstrated with analyses of 3 binary microlensing events seen towards the Magellanic Clouds. Source star resolution during caustic crossings in 2 of these events allows us to estimate the location of the lensing systems, assuming each source is a single star and not a short period binary. * MACHO LMC-9 appears to be a binary lensing event with a caustic crossing partially resolved in 2 observations. The resulting lens proper motion appears too small for a single source and LMC disk lens. However, it is considerably less likely to be a single source star and Galactic halo lens. We estimate the a priori probability of a short period binary source with a detectable binary character to be ~ 10 %. If the source is also a binary, then we currently have no constraints on the lens location. * The most recent of these events, MACHO 98-SMC-1, was detected in real-time. Follow-up observations by the MACHO/GMAN, PLANET, MPS, EROS and OGLE microlensing collaborations lead to the robust conclusion that the lens likely resides in the SMC.
Two serendipitous low-mass LMC clusters discovered with HST1
NASA Astrophysics Data System (ADS)
Santiago, Basilio X.; Elson, Rebecca A. W.; Sigurdsson, Steinn; Gilmore, Gerard F.
1998-04-01
We present V and I photometry of two open clusters in the LMC down to V~26. The clusters were imaged with the Wide Field and Planetary Camera 2 (WFPC2) on board the Hubble Space Telescope (HST), as part of the Medium Deep Survey Key Project. Both are low-luminosity (M_V~-3.5), low-mass (M~10^3 Msolar) systems. The chance discovery of these two clusters in two parallel WFPC2 fields suggests a significant incompleteness in the LMC cluster census near the bar. One of the clusters is roughly elliptical and compact, with a steep light profile, a central surface brightness mu_V(0)~20.2 mag arcsec^-2, a half-light radius r_hl~0.9 pc (total visual major diameter D~3 pc) and an estimated mass M~1500 Msolar. From the colour-magnitude diagram and isochrone fits we estimate its age as tau~(2-5)x10^8 yr. Its mass function has a fitted slope of Gamma=Deltalogphi(M)/DeltalogM=-1.8+/-0.7 in the range probed (0.9<~M/Msolar<~4.5). The other cluster is more irregular and sparse, having shallower density and surface brightness profiles. We obtain Gamma=-1.2+/-0.4, and estimate its mass as M~400 Msolar. A derived upper limit for its age is tau<~5x10^8 yr. Both clusters have mass functions with slopes similar to that of R136, a massive LMC cluster, for which HST results indicate Gamma~-1.2. They also seem to be relaxed in their cores and well contained in their tidal radii.
Monitoring the Galaxy - Highlights from the MAXI mission
NASA Astrophysics Data System (ADS)
Mihara, Tatehiro
Monitor of All-sky X-ray Image (MAXI) is an X-ray all-sky monitor on the International Space Station. It is equipped with Gas Slit Camera (GSC) and Solid-state Slit Camera (SSC). Since it was mounted to the Japanese experimental module in 2009, it has been scanning the whole sky in every 92 minutes with ISS rotation. The data are processed automatically and distributed through http://maxi.riken.jp homepage. MAXI issued 136 to Astronomers Telegram and 47 to Gamma-ray burst Coordinated Network so far. There are many transient X-ray sources in our galaxy. The most remarkable one is a new source. MAXI discovered 12 MAXI sources, 6 of which are blackhole binaries. MAXI J0158-744 was a source in a new category (Morii et al. 2013). It was a very bright (10(40) erg s(-1) ) and very rapid (< 1 hour) nova consisting of a unusual pair of binary, which was a Ne-white dwarf and a Be star. The monitoring results are published as the 37-month catalog (Hiroi et al. 2012) which contains 500 sources above 0.6 mCrab in 4-10 keV in high Galactic-latitude (|b| > 10 deg). SSC with X-ray CCD has detected diffuse soft X-rays in the all-sky, such as Cygnus super bubble (Kimura et al. 2013) and north polar spur, as well as it found Ne line from the rapid soft X-ray nova MAXI J0158-744. Be X-ray binary pulsars (BeXBP) are also transients. They have outbursts at the periastron passage. However, the outburst does not occur in every orbit. Some sources stay in quiescence for tens of years, then suddenly start outbursts repeating for several years. All-sky monitor is then essential to study such kinds of sources. For example, cyclotron feature is often seen in the high energy X-ray band of BeXBP, from which magnetic fields of the poles are measured. MAXI detection of outburst and following SUZAKU pointing observation are very effective. We observed two BeXBP, GX 304-1 in 2010 and GRO J1008-57 in 2012 in MAXI-Suzaku collaboration and succeeded to catch them at the outburst peaks (600mCrab and 450mCrab) to detect cyclotron feature at 54 keV (Yamamoto et al. 2011) and 76 keV (Yamamoto et al. 2014), respectively. Those are top 1 and 3 of the highest magnetic fields among XBP. Transient low-mass X-ray binaries (LMXB), containing a neutron star or a black hole are also transients. The instability of the acretion disks are proposed to explain the random appearance. The long-term monitoring is also essential to study super orbital modulations of such as supergiant XBP (SMC X-1, LMC X-4 etc.) and LMXB (4U 1820-30 etc.). Monitoring is also useful to detect a rare state, such as a quenched-radio state of Cyg X-3 and rapid end of outburst of Cir X-1.
Innovator. A Financial Expert System
1990-01-01
M )M 3lz 4 Ot.-l di- : C 4) -n M Vi’~ M d)Vi - 3 c 0 Z"nc - 10. Z CO. Of(L C 0. cxCL4 - (1 a~. 4- C a ra. C at 0. ff Cr. COx4L z -> n" C C L 0 E L o Lm...C -x/UI L %. . Ix/U a. 4- w 0 1 . %- U L . 4 - a . 4 x- w a. . % x- u a0 D 0.~x w a2 C - . n C- a. (L 0 CXCL4 - C L C 0 I Q. M . %-CMI L4 C.- O
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annis, J.; Soares-Santos, M.; Diehl, H. T.
The collapse of a stellar core is expected to produce gravitational waves (GWs), neutrinos, and in most cases a luminous supernova. Sometimes, however, the optical event could be significantly less luminous than a supernova and a direct collapse to a black hole, where the star just disappears, is possible. The GW event GW150914 was detected by the LIGO Virgo Collaboration via a burst analysis that gave localization contours enclosing the Large Magellanic Cloud (LMC). Shortly thereafter, we used DECam to observe 102 deg{sup 2} of the localization area, including 38 deg{sup 2} on the LMC for a missing supergiant search.more » We construct a complete catalog of LMC luminous red supergiants, the best candidates to undergo invisible core collapse, and collected catalogs of other candidates: less luminous red supergiants, yellow supergiants, blue supergiants, luminous blue variable stars, and Wolf–Rayet stars. Of the objects in the imaging region, all are recovered in the images. The timescale for stellar disappearance is set by the free-fall time, which is a function of the stellar radius. Our observations at 4 and 13 days after the event result in a search sensitive to objects of up to about 200 solar radii. We conclude that it is unlikely that GW150914 was caused by the core collapse of a relatively compact supergiant in the LMC, consistent with the LIGO Collaboration analyses of the gravitational waveform as best interpreted as a high mass binary black hole merger. We discuss how to generalize this search for future very nearby core-collapse candidates.« less
Photoionisation modelling of Nova LMC 1990 #1
NASA Technical Reports Server (NTRS)
Dopita, M. A.; Meatheringham, S. J.; Sutherland, R.; Williams, R. E.; Starrfield, S.; Sonneborn, G.; Shore, S.
1992-01-01
Nova LMC 1990A was a very fast Ne-O-Mg nova, for which a particularly dense coverage of spectral observation in both the UV and optical was obtained. The data for the nebular phase were subjected to an analysis by the photoionization modeling code MAPPINGS 2. The following parameters were obtained: L(sub max) = 8 x 10(exp 4) solar luminosity, T(sub eff) = 2 x 10(exp 5) K and the mass of ejecta = 5/5 x 10(exp -5) solar mass. The abundnace ratios in the ejecta were similar to those obtained by Williams et al. (1985) in the case of V693 CrA 1981. The N/O ratio and the overabundance of Al is consistent with ourburst on a ONeMg white dwarf of mass approximately equal to 1.2 solar mass, but the super-Eddington luminosity, and amount of mass ejected presents some problems to theory.
Spectral variations of LMC X-3 observed with Ginga
NASA Technical Reports Server (NTRS)
Ebisawa, Ken; Makino, Fumiyoshi; Mitsuda, Kazuhisa; Belloni, Tomaso; Cowley, Anne P.; Schmidtke, Paul C.; Treves, Aldo
1993-01-01
The prime black hole candidate LMC X-3 was observed over three years with the Ginga satellite, and a characteristic spectral variation was found accompanying the periodic intensity variation of about 198 (or possibly about 99) days (Cowley et al., 1991). The energy spectrum of LMC X-3 consists of the soft, thermal component and the hard, power-law component, which are respectively dominant below and above about 9 keV. The soft component, which carries most of the X-ray intensity, shows a clear correlation between the intensity and the hardness, while the hard component varies independently of the soft component. It was found that the spectral variation of the soft component is well described by an optically thick accretion disk model with a remarkably constant innermost radius and variable mass accretion rate. The constancy of the innermost radius suggests it is related to the mass of the central object.
NASA Technical Reports Server (NTRS)
Hill, Jesse K.; Isensee, Joan E.; Cornett, Robert H.; Bohlin, Ralph C.; O'Connell, Robert W.; Roberts, Morton S.; Smith, Andrew M.; Stecher, Theodore P.
1994-01-01
UV stellar photometry is presented for 1563 stars within a 40 minutes circular field in the Large Magellanic Cloud (LMC), excluding the 10 min x 10 min field centered on R136 investigated earlier by Hill et al. (1993). Magnitudes are computed from images obtained by the Ultraviolet Imaging Telescope (UIT) in bands centered at 1615 A and 2558 A. Stellar masses and extinctions are estimated for the stars in associations using the evolutionary models of Schaerer et al. (1993), assuming the age is 4 Myr and that the local LMC extinction follows the Fitzpatrick (1985) 30 Dor extinction curve. The estimated slope of the initial mass function (IMF) for massive stars (greater than 15 solar mass) within the Lucke and Hodge (LH) associations is Gamma = -1.08 +/- 0.2. Initial masses and extinctions for stars not within LH associations are estimated assuming that the stellar age is either 4 Myr or half the stellar lifetime, whichever is larger. The estimated slope of the IMF for massive stars not within LH associations is Gamma = -1.74 +/- 0.3 (assuming continuous star formation), compared with Gamma = -1.35, and Gamma = -1.7 +/- 0.5, obtained for the Galaxy by Salpeter (1955) and Scalo (1986), respectively, and Gamma = -1.6 obtained for massive stars in the Galaxy by Garmany, Conti, & Chiosi (1982). The shallower slope of the association IMF suggests that not only is the star formation rate higher in associations, but that the local conditions favor the formation of higher mass stars there. We make no corrections for binaries or incompleteness.
2016-10-10
This composite image contains data from Chandra (purple) that provides evidence for the survival of a companion star from the blast of a supernova explosion. Chandra's X-rays reveal a point-like source in the supernova remnant at the location of a massive star. The data suggest that mass is being pulled away from the massive star towards a neutron star or a black hole companion. If confirmed, this would be only the third binary system containing both a massive star and a neutron star or black hole ever found in the aftermath of a supernova. This supernova remnant is found embedded in clouds of ionized hydrogen, which are shown in optical light (yellow and cyan) from the MCELS survey, along with additional optical data from the DSS (white).
An all sky study of fast X-ray transients. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Connors, Alanna
1988-01-01
In the HEAO 1 A-2 survey of fast X-ray transients, a search of 2 to 20 keV scanning data was made for brief increases in flux, greater than 4 millicrabs, on timescales approximately 1 to 10 to the 4th s above a 12-hour average. The search was divided into two regions, and all-sky survey of the Galaxy, and a survey of the Magellanic Clouds. In the latter, 37 events were found and identified with 4 of the 5 brighest sources in the LMC, plus 2 as flares from a foreground star. Np X-ray bursts, no gamma-ray bursts, and no events from the SMC were found. In the all-sky survey, after excluding well-known variable sources, out of the equivalent of approximately 104 days of data, 15 events were found which falling into 2 broad categories: flares from coronal sources, roughly isotropically distributed, with optically thin thermal spectra; and harder fast transients apparently distributed near the Galactic plane. The first were identified as flares from ubiquitous active cool dwarf stars. It was hypothesized that the second may have been from distant Be-neutron star binaries. However, at least two of the harder, more luminous events remained unidentified. Future research should examine the nature of these rare events, and how they may fit into a hierarchy of hard fast transients from gamma-ray bursts to outbursts from pulsar systems.
NASA Astrophysics Data System (ADS)
Schnurr, Olivier
2008-09-01
This thesis presents the results of an intense, spectroscopic survey of 41 of the 47 known, late-type, nitrogen-rich Wolf-Rayet (WR) stars in the Large Magellanic Cloud (LMC) which could be observed with ground-based, optical telescopes. For the study of the remaining 6 WNL located in the extremely dense central object of 30 Dor, R136, adaptive-optics assisted, near-infrared spectroscopy was required. The results of this study will be published elsewhere. Our survey concludes the decade-long effort of the Montreal Massive-Star Group to monitor all known WR stars in the Magellanic Clouds for radial-velocity (RV) variations due to binarity, a point which has been debated since the true, evolved nature of WR stars has been recognized in the late 1960s. From model calculations, it was expected that with decreasing metallicity, the binary frequency among WR stars increases, or otherwise the progenitor stars could not have turned into a WR star. Our survey set out to observationally test this assumption. After summarizing the general importance of massive stars, we describe the spectroscopic observations of our program stars. We then detail the data analysis process, which encompasses careful calibration and proper choice of RV standards. We also include publicly available, visible and X-ray photometric data in our analysis. We are able to identify four previously unknown binaries in our sample, bringing the total number of known WNL binaries in the LMC to only nine. As a direct result, we question the assumption that binarity is required to form WR stars at lower metallicity. At least some of the hydrogen-containing WNL stars in our sample seem not to be genuine, evolved, helium-burning WR stars, but rather unevolved, hydrogen- burning objects. There is ample evidence that some of these stars are the most massive stars known. As a second and most remarkable result, all but one of our nine binaries harbor such extreme objects; this greatly enlarges the sample of such known binaries, and paves the way for an independent mass determination via Keplerian orbits in further studies, some of which we have already initiated. The results of those studies will be crucial for calibrating stellar models. One of these binaries, R145, is then studied in greater detail, combining previously published and unpublished data with ours, to present, for the first time, a full set of orbital parameters for both components of the binary system. Since we also determine the orbital inclination angle, we are able to derive the absolute masses of this extreme object. It is found that R145 very likely harbors the most massive star known and properly "weighed" so far.
Can the 62 Day X-ray Period of ULX M82 X-1 Be Due to a Precessing Accretion Disk?
NASA Technical Reports Server (NTRS)
Pasham, Dheeraj R.; Strohmayer, Tod E.
2013-01-01
We have analyzed all the archival RXTE/PCA monitoring observations of the ultraluminous X-ray source (ULX) M82 X-1 in order to study the properties of its previously discovered 62 day X-ray period (Kaaret & Feng 2007). Based on the high coherence of the modulation it has been argued that the observed period is the orbital period of the binary. Utilizing a much longer data set than in previous studies we find: (1) The phase-resolved X-ray (3-15 keV) energy spectra - modeled with a thermal accretion disk and a power-law corona - suggest that the accretion disk's contribution to the total flux is responsible for the overall periodic modulation while the power-law flux remains approximately constant with phase. (2) Suggestive evidence for a sudden phase shift-of approximately 0.3 in phase (20 days)-between the first and the second halves of the light curve separated by roughly 1000 days. If confirmed, the implied timescale to change the period is approx. = 10 yrs, which is exceptionally fast for an orbital phenomenon. These independent pieces of evidence are consistent with the 62 day period being due to a precessing accretion disk, similar to the so-called super-orbital periods observed in systems like Her X-1, LMC X-4, and SS433. However, the timing evidence for a change in the period needs to be confirmed with additional observations. This should be possible with further monitoring of M82 with instruments such as the X-ray telescope (XRT) on board Swift.
NASA Astrophysics Data System (ADS)
Hoyt, Taylor J.; Freedman, Wendy L.; Madore, Barry F.; Seibert, Mark; Beaton, Rachael L.; Hatt, Dylan; Jang, In Sung; Lee, Myung Gyoon; Monson, Andrew J.; Rich, Jeffrey A.
2018-05-01
We present a new empirical JHK absolute calibration of the tip of the red giant branch (TRGB) in the Large Magellanic Cloud (LMC). We use published data from the extensive Near-Infrared Synoptic Survey containing 3.5 million stars, 65,000 of which are red giants that fall within one magnitude of the TRGB. Adopting the TRGB slopes from a companion study of the isolated dwarf galaxy IC 1613, as well as an LMC distance modulus of μ 0 = 18.49 mag from (geometric) detached eclipsing binaries, we derive absolute JHK zero points for the near-infrared TRGB. For a comparison with measurements in the bar alone, we apply the calibrated JHK TRGB to a 500 deg2 area of the 2MASS survey. The TRGB reveals the 3D structure of the LMC with a tilt in the direction perpendicular to the major axis of the bar, which is in agreement with previous studies.
The EPOCH Project. I. Periodic variable stars in the EROS-2 LMC database
NASA Astrophysics Data System (ADS)
Kim, Dae-Won; Protopapas, Pavlos; Bailer-Jones, Coryn A. L.; Byun, Yong-Ik; Chang, Seo-Won; Marquette, Jean-Baptiste; Shin, Min-Su
2014-06-01
The EPOCH (EROS-2 periodic variable star classification using machine learning) project aims to detect periodic variable stars in the EROS-2 light curve database. In this paper, we present the first result of the classification of periodic variable stars in the EROS-2 LMC database. To classify these variables, we first built a training set by compiling known variables in the Large Magellanic Cloud area from the OGLE and MACHO surveys. We crossmatched these variables with the EROS-2 sources and extracted 22 variability features from 28 392 light curves of the corresponding EROS-2 sources. We then used the random forest method to classify the EROS-2 sources in the training set. We designed the model to separate not only δ Scuti stars, RR Lyraes, Cepheids, eclipsing binaries, and long-period variables, the superclasses, but also their subclasses, such as RRab, RRc, RRd, and RRe for RR Lyraes, and similarly for the other variable types. The model trained using only the superclasses shows 99% recall and precision, while the model trained on all subclasses shows 87% recall and precision. We applied the trained model to the entire EROS-2 LMC database, which contains about 29 million sources, and found 117 234 periodic variable candidates. Out of these 117 234 periodic variables, 55 285 have not been discovered by either OGLE or MACHO variability studies. This set comprises 1906 δ Scuti stars, 6607 RR Lyraes, 638 Cepheids, 178 Type II Cepheids, 34 562 eclipsing binaries, and 11 394 long-period variables. catalog of these EROS-2 LMC periodic variable stars is available at http://stardb.yonsei.ac.kr and at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/566/A43
Discovery of a 50 millisecond pulsar in the Large Magellanic Cloud
NASA Technical Reports Server (NTRS)
Seward, F. D.; Harnden, F. R., Jr.; Helfand, D. J.
1984-01-01
The present investigation is concerned with the discovery of a new pulsed X-ray source in the Large Magellanic Cloud (LMC) supernova remnant 0540 - 693. The SNR 0540 - 693 is one of three suspected Crab-like remnants in the LMC. The existing X-ray, optical, and radio observations of the remnant itself are discussed, and an analysis is conducted of the implications of the period, period derivative, and X-ray pulse shape of the new source. It is concluded that the pulsed X-ray source is almost certainly a young, isolated pulsar. Many of its properties are very similar to those of the Crab pulsar.
Spatially Resolved X-ray Spectroscopy of the Large Magellanic Cloud Supernova Remnant N132D
NASA Astrophysics Data System (ADS)
Plucinsky, Paul; Sharda, Piyush; Gaetz, Terrance; Kashyap, Vinay
2018-01-01
We perform detailed X-ray spectroscopy of the brightest Supernova Remnant (SNR), N132D, in the Large Magellanic Cloud (LMC) using observations taken by the Advanced CCD Imaging Spectrometer (ACIS) on the Chandra X-ray Observatory (Chandra). By studying the spectra of regions on the well-defined rim running from NW to NE, we determine an average abundance set for O, Ne, Mg, Si, S and Fe for the local LMC environment. We note that the elements other than Fe and Ne show significant trends across this region, implying they cannot be approximated by a single, constant value. We characterize the blast wave properties and find a simple plane parallel shock model is sufficient to explain the X-ray spectrum of the forward shock moving into ambient LMC material, with a shock velocity near 800 km/s and a shock age of 600-1100 years. We find evidence of enhanced Si near the western blast wave which would imply an asymmetric explosion. We fit a region near the central, optical O-rich knots which exhibits enhanced abundances of O, Ne, Mg, Si, and Fe. Comparison to nucleosynthesis models of the ratios of these elements indicates a progenitor mass of 28-35 solar masses, consistent with most previous estimates. Lastly, we find an intriguing presence of a very hot plasma with a temperature of ~4.5 keV (assuming a non-equilibrium ionization model) to explain the Fe-K emission which is centrally concentrated in the lower half of the remnant.
X-raying supernova remnants in the Magellanic Clouds
NASA Astrophysics Data System (ADS)
Maggi, P.; Hirschi, R.; Haberl, F.; Vasilopoulos, G.; Pietsch, W.; Greiner, J.; Kavanagh, J. P.; Sasaki, M.; Bozzetto, M. L.; Filipovic, M. D.; Points, S. D.; Chu, Y.-H.; Dickel, J.; Ehle, M.; Williams, R.
2016-06-01
The Magellanic Clouds (MCs) offer an ideal laboratory for the study of the SNR population in star-forming galaxies, since they are relatively nearby and free of large absorption. Both the LMC and SMC have been targeted by large XMM-Newton surveys, which, combined with archival observations, provide the best dataset to systematically study the X-ray emission of their numerous SNRs (˜ 60 in the LMC, ˜ 20 in the SMC). In this talk, I will highlight the results from this homogeneous analysis, which allows for the first time meaningful comparisons of temperature, chemical composition, and luminosity of SNRs in the MCs. The SNRs can be used as probes of their host galaxies: We measured chemical abundances in the hot phase of the LMC, and constrained the ratio of core-collapse to type Ia SN rates. The X-ray luminosity function of SNRs in the MCs are compared to those in other Local Group galaxies with different metallicities and star formation properties. Finally, we present a new population of evolved type Ia SNRs that was discovered recently in the MCs via their iron-rich X-ray emission.
Massive binaries in R136 using Hubble
NASA Astrophysics Data System (ADS)
Caballero-Nieves, Saida; Crowther, Paul; Bostroem, K. Azalee; Maíz Apellániz, Jesus
2014-09-01
We have undertaken a complete HST/STIS spectroscopic survey of R136, the young, central dense starburst cluster of the LMC 30 Doradus nebula, which hosts the most massive stars currently known. Our CCD datasets, comprising 17 adjacent 0.2"×52" long slits, were split across Cycles 19 and 20 to allow us to search for spectroscopic binaries. We will present the results of our survey, including a comparison with the massive-star population in the wider 30 Doradus region from the VLT Flames Tarantula survey. We will also describe upcoming HST/FGS observations, which will probe intermediate-separation binaries in R136, and discuss this cluster in the context of unresolved young extragalactic star clusters.
The MACHO Project: Microlensing Results from 5.7 Years of LMC Observations
NASA Astrophysics Data System (ADS)
Becker, A. C.; Alcock, C.; Allsman, R. A.; Alves, D.; Axelrod, T. S.; Bennett, D. P.; Cook, K. H.; Drake, A. J.; Freeman, K. C.; Geha, M.; Griest, K.; Lehner, M. J.; Marshall, S. L.; Minniti, D.; Nelson, C. A.; Peterson, B. A.; Popowski, P.; Pratt, M. R.; Quinn, P. J.; Rodgers, A. W.; Stubbs, C. W.; Sutherland, W.; Tomaney, A. B.; Vandehei, T.; Welch, D. L.; MACHO Collaboration
1999-12-01
We report on our search for microlensing towards the Large Magellanic Cloud (LMC). Analysis of 5.7 years of photometry on 11.9 million stars in the LMC reveals 17 candidate microlensing events. A careful treatment of our detection efficiency shows that this is significantly more than the 2 to 4 events expected from lensing by known stellar populations. The timescales (t) of the events range from 34 to 230 days. The spatial distribution of events is probably inconsistent with LMC/LMC disk self-lensing, but consistent with an extended lens distribution such as a Milky Way or LMC halo. The optical depth results appear consistent with, but are lower than, our previous 2.1 year results. Besides a factor of 3.4 increase in exposure, this new work also includes an improved efficiency determination, improved likelihood analysis, and more thorough testing of robustness and systematic errors, especially in regards to the treatment of potential backgrounds to microlensing, such as supernovae in galaxies behind the LMC.
The Evolution and Physical Parameters of WN3/O3s: A New Type of Wolf–Rayet Star
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neugent, Kathryn F.; Massey, Philip; Hillier, D. John
As part of a search for Wolf–Rayet (WR) stars in the Magellanic Clouds, we have discovered a new type of WR star in the Large Magellanic Cloud (LMC). These stars have both strong emission lines, as well as He ii and Balmer absorption lines and spectroscopically resemble a WN3 and O3V binary pair. However, they are visually too faint to be WN3+O3V binary systems. We have found nine of these WN3/O3s, making up ∼6% of the population of LMC WRs. Using cmfgen, we have successfully modeled their spectra as single stars and have compared the physical parameters with those ofmore » more typical LMC WNs. Their temperatures are around 100,000 K, a bit hotter than the majority of WN stars (by around 10,000 K), though a few hotter WNs are known. The abundances are what you would expect for CNO equilibrium. However, most anomalous are their mass-loss rates, which are more like that of an O-type star than a WN star. While their evolutionary status is uncertain, their low mass-loss rates and wind velocities suggest that they are not products of homogeneous evolution. It is possible instead that these stars represent an intermediate stage between O stars and WNs. Since WN3/O3 stars are unknown in the Milky Way, we suspect that their formation depends upon metallicity, and we are investigating this further by a deep survey in M33, which possesses a metallicity gradient.« less
The LMC geometry and outer stellar populations from early DES data
Balbinot, Eduardo; Plazas, A.; Santiago, B. X.; ...
2015-03-20
The Dark Energy Camera has captured a large set of images as part of Science Verification (SV) for the Dark Energy Survey. The SV footprint covers a large portion of the outer Large Magellanic Cloud (LMC), providing photometry 1.5 magnitudes fainter than the main sequence turn-off of the oldest LMC stellar population. We derive geometrical and structural parameters for various stellar populations in the LMC disc. For the distribution of all LMC stars, we find an inclination of i = –38.14°±0.08° (near side in the North) and a position angle for the line of nodes of θ₀ = 129.51°±0.17°. Wemore » find that stars younger than ~4 Gyr are more centrally concentrated than older stars. Fitting a projected exponential disc shows that the scale radius of the old populations is R >4Gyr = 1.41 ± 0.01 kpc, while the younger population has R <4Gyr = 0.72 ± 0.01 kpc. However, the spatial distribution of the younger population deviates significantly from the projected exponential disc model. The distribution of old stars suggests a large truncation radius of R t = 13.5 ± 0.8 kpc. If this truncation is dominated by the tidal field of the Galaxy, we find that the LMC is ≃24 +9 –6 times less massive than the encircled Galactic mass. By measuring the Red Clump peak magnitude and comparing with the best-fit LMC disc model, we find that the LMC disc is warped and thicker in the outer regions north of the LMC centre. As a result, our findings may either be interpreted as a warped and flared disc in the LMC outskirts, or as evidence of a spheroidal halo component.« less
Hitomi Observations of the LMC SNR N132D: Fast and Asymmetric Iron-rich Ejecta
NASA Astrophysics Data System (ADS)
Miller, Eric D.; Hitomi Collaboration
2018-01-01
We present Hitomi Soft X-ray Spectrometer (SXS) observations of N132D, a young, ~2500 year-old, X-ray bright, O-rich core-collapse supernova remnant in the LMC. Despite a very short observation of only 3.7 ksec, the SXS easily detects the line complexes of He-like S K and Fe K with 16-17 counts in each. The Fe K feature is measured for the first time at high spectral resolution, and we find that the Fe K-emitting material is highly redshifted at ~1000 km/s compared to the local LMC ISM, indicating (1) that it arises from the SN ejecta, and (2) that this ejecta is highly asymmetric, since no corresponding blue-shifted component is found. The S K-emitting material has a velocity consistent with the local LMC ISM, and is likely swept-up ISM material. These results are consistent with spatial mapping of these emission lines with XMM-Newton and Chandra, which show the Fe K concentrated in the interior of the remnant and the S K tracing the outer shell. Most importantly, they highlight the power of high-spectral-resolution imaging observations, and demonstrate the new window that has been opened with Hitomi and will be greatly widened with future missions such as the X-ray Astronomy Recovery Mission (XARM) and Athena.
AN X-RAY INVESTIGATION OF THREE SUPERNOVA REMNANTS IN THE LARGE MAGELLANIC CLOUD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klimek, Matthew D.; Points, S. D.; Smith, R. C.
2010-12-20
We have investigated three supernova remnants (SNRs) in the LMC using multi-wavelength data. These SNRs are generally fainter than the known sample (see Section 4) and may represent a previously missed population. One of our SNRs is the second LMC remnant analyzed which is larger than any Galactic remnant for which a definite size has been established. The analysis of such a large remnant contributes to the understanding of the population of highly evolved SNRs. We have obtained X-ray images and spectra of three of these recently identified SNRs using the XMM-Newton observatory. These data, in conjunction with pre-existing opticalmore » emission-line images and spectra, were used to determine the physical conditions of the optical- and X-ray-emitting gas in the SNRs. We have compared the morphologies of the SNRs in the different wavebands. The physical properties of the warm ionized shell were determined from the H{alpha} surface brightness and the SNR expansion velocity. The X-ray spectra were fit with a thermal plasma model and the physical conditions of the hot gas were derived from the model fits. Finally, we have compared our observations with simulations of SNR evolution.« less
Large Magellanic Cloud Near-infrared Synoptic Survey. IV. Leavitt Laws for Type II Cepheid Variables
NASA Astrophysics Data System (ADS)
Bhardwaj, Anupam; Macri, Lucas M.; Rejkuba, Marina; Kanbur, Shashi M.; Ngeow, Chow-Choong; Singh, Harinder P.
2017-04-01
We present time-series observations of Population II Cepheids in the Large Magellanic Cloud at near-infrared (JHK s ) wavelengths. Our sample consists of 81 variables with accurate periods and optical (VI) magnitudes from the OGLE survey, covering various subtypes of pulsators (BL Herculis, W Virginis, and RV Tauri). We generate light-curve templates using high-quality I-band data in the LMC from OGLE and K s -band data in the Galactic bulge from VISTA Variables in Via Láctea survey and use them to obtain robust mean magnitudes. We derive period-luminosity (P-L) relations in the near-infrared and Period-Wesenheit (P-W) relations by combining optical and near-infrared data. Our P-L and P-W relations are consistent with published work when excluding long-period RV Tauris. We find that Pop II Cepheids and RR Lyraes follow the same P-L relations in the LMC. Therefore, we use trigonometric parallax from the Gaia DR1 for VY Pyx and the Hubble Space Telescope parallaxes for k Pav and 5 RR Lyrae variables to obtain an absolute calibration of the Galactic K s -band P-L relation, resulting in a distance modulus to the LMC of {μ }{LMC}=18.54+/- 0.08 mag. We update the mean magnitudes of Pop II Cepheids in Galactic globular clusters using our light-curve templates and obtain distance estimates to those systems, anchored to a precise late-type eclipsing binary distance to the LMC. We find that the distances to these globular clusters based on Pop II Cepheids are consistent (within 2σ ) with estimates based on the {M}V-[{Fe}/{{H}}] relation for horizontal branch stars.
VizieR Online Data Catalog: New planetary nebulae in LMC (Reid+, 2006)
NASA Astrophysics Data System (ADS)
Reid, W. A.; Parker, Q. A.
2006-05-01
Over the last few years, we have specially constructed additional deep, homogeneous, narrow-band H and matching broad-band 'SR' (Short Red) maps of the entire central 25deg2 of the LMC. These unique maps were obtained from co-adding 12 well-matched UKST 2-h Hα exposures and six 15-min equivalent SR-band exposures on the same field using high-resolution Tech-Pan film. The 'SuperCOSMOS' plate-measuring machine at the Royal Observatory Edinburgh (Hambly et al., 2001MNRAS.326.1279) has scanned, co-added and pixel-matched these exposures, creating 10-m (0.67-arcsec) pixel data which goes 1.35 and 1mag deeper than individual exposures, achieving the full canonical Poissonian depth gain, e.g. Bland-Hawthorn, Shopbell & Malin (1993AJ....106.2154B). This gives a depth ~21.5 for the SR images and Requiv~22 for Hα (4.5x10-17erg/cm2/s/{AA}) which is at least 1-mag deeper than the best wide-field narrow-band LMC images currently available. (2 data files).
Wolf-Rayet spin at low metallicity and its implication for black hole formation channels
NASA Astrophysics Data System (ADS)
Vink, Jorick S.; Harries, Tim J.
2017-07-01
Context. The spin of Wolf-Rayet (WR) stars at low metallicity (Z) is most relevant for our understanding of gravitational wave sources, such as GW 150914, and of the incidence of long-duration gamma-ray bursts (GRBs). Two scenarios have been suggested for both phenomena: one of them involves rapid rotation and quasi-chemical homogeneous evolution (CHE) and the other invokes classical evolution through mass loss in single and binary systems. Aims: The stellar spin of WR stars might enable us to test these two scenarios. In order to obtain empirical constraints on black hole progenitor spin we infer wind asymmetries in all 12 known WR stars in the Small Magellanic Cloud (SMC) at Z = 1 / 5 Z⊙ and within a significantly enlarged sample of single and binary WR stars in the Large Magellanic Cloud (LMC at Z = 1 / 2 Z⊙), thereby tripling the sample of Vink from 2007. This brings the total LMC sample to 39, making it appropriate for comparison to the Galactic sample. Methods: We measured WR wind asymmetries with VLT-FORS linear spectropolarimetry, a tool that is uniquely poised to perform such tasks in extragalactic environments. Results: We report the detection of new line effects in the LMC WN star BAT99-43 and the WC star BAT99-70, along with the well-known WR LBV HD 5980 in the SMC, which might be undergoing a chemically homogeneous evolution. With the previous reported line effects in the late-type WNL (Ofpe/WN9) objects BAT99-22 and BAT99-33, this brings the total LMC WR sample to four, I.e. a frequency of 10%. Perhaps surprisingly, the incidence of line effects amongst low Z WR stars is not found to be any higher than amongst the Galactic WR sample, challenging the rotationally induced CHE model. Conclusions: As WR mass loss is likely Z-dependent, our Magellanic Cloud line-effect WR stars may maintain their surface rotation and fulfill the basic conditions for producing long GRBs, both via the classical post-red supergiant or luminous blue variable channel, or resulting from CHE due to physics specific to very massive stars.
A MODERN SEARCH FOR WOLF–RAYET STARS IN THE MAGELLANIC CLOUDS. II. A SECOND YEAR OF DISCOVERIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massey, Philip; Neugent, Kathryn F.; Morrell, Nidia, E-mail: phil.massey@lowell.edu, E-mail: kneugent@lowell.edu, E-mail: nmorrell@lco.cl
The numbers and types of evolved massive stars found in nearby galaxies provide an exacting test of stellar evolution models. Because of their proximity and rich massive star populations, the Magellanic Clouds have long served as the linchpins for such studies. Yet the continued accidental discoveries of Wolf–Rayet (WR) stars in these systems demonstrate that our knowledge is not as complete as usually assumed. Therefore, we undertook a multi-year survey for WRs in the Magellanic Clouds. Our results from our first year (reported previously) confirmed nine new LMC WRs. Of these, six were of a type never before recognized, withmore » WN3-type emission combined with O3-type absorption features. Yet these stars are 2–3 mag too faint to be WN3+O3 V binaries. Here we report on the second year of our survey, including the discovery of four more WRs, two of which are also WN3/O3s, plus two “slash” WRs. This brings the total of known LMC WRs to 152, 13 (8.2%) of which were found by our survey, which is now ∼60% complete. We find that the spatial distribution of the WN3/O3s is similar to that of other WRs in the LMC, suggesting that they are descended from the same progenitors. We call attention to the fact that 5 of the 12 known SMC WRs may in fact be similar WN3/O3s rather than the binaries they have often assumed to be. We also discuss our other discoveries: a newly discovered Onfp-type star, and a peculiar emission-line object. Finally, we consider the completeness limits of our survey.« less
NASA Astrophysics Data System (ADS)
Marx-Zimmer, M.; Herbstmeier, U.; Dickey, J. M.; Zimmer, F.; Staveley-Smith, L.; Mebold, U.
2000-02-01
The cool atomic interstellar medium of the Large Magellanic Cloud (LMC) seems to be quite different from that in the Milky Way. In a series of three papers we study the properties of the cool atomic hydrogen in the LMC (Paper I), its relation to molecular clouds using SEST-CO-observations (Paper II) and the cooling mechanism of the atomic gas based on ISO-[\\CII]-investigations (Paper III). In this paper we present the results of a third 21 cm absorption line survey toward the LMC carried out with the Australia Telescope Compact Array (ATCA). 20 compact continuum sources, which are mainly in the direction of the supergiant shell LMC 4, toward the surroundings of 30 Doradus and toward the eastern steep \\HI\\ boundary, have been chosen from the 1.4 GHz snapshot continuum survey of Marx et al. We have identified 20 absorption features toward nine of the 20 sources. The properties of the cool \\HI\\ clouds are investigated and are compared for the different regions of the LMC taking the results of Dickey et al. (survey 2) into account. We find that the cool \\HI\\ gas in the LMC is either unusually abundant compared to the cool atomic phase of the Milky Way or the gas is clearly colder (\\Tc\\ ~ 30 K) than that in our Galaxy (\\Tc\\ ~ 60 K). The properties of atomic clouds toward 30 Doradus and LMC 4 suggest a higher cooling rate in these regions compared to other parts of the LMC, probably due to an enhanced pressure near the shock fronts of LMC 4 and 30 Doradus. The detected cool atomic gas toward the eastern steep \\HI\\ boundary might be the result of a high compression of gas at the leading edge. The Australia Telescope is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO.
Haga, Monika
2009-10-01
Physical therapists often treat children with low motor competence. Earlier studies have demonstrated poor physical fitness outcomes and a reduced level of physical activity for these children compared with their peers with normal motor skills. The aim of this study was to examine how physical fitness developed over time in 2 groups of children: those with a low level of competence in motor skills (low motor competence [LMC]), and those with a high level of competence in motor skills (high motor competence [HMC]). From an initial sample of 67 children, a group of 18 was identified as having HMC or LMC on the Movement Assessment Battery for Children and was selected for the present study. Eight children (3 girls and 5 boys) comprised the LMC group, and 10 children (4 girls and 6 boys) made up the HMC group. A longitudinal design was implemented, and physical fitness in the 2 groups was evaluated by measuring different fitness components over a period of 32 months. A mixed-effects analysis of variance revealed significant main effects for group and for time but no group x time interaction effect. The LMC group performed less well on all physical fitness measures than the HMC group, and both groups scored significantly higher on the physical fitness test after a period of 32 months. The lack of a significant interaction effect indicated that the relative differences in physical fitness outcomes between the groups were relatively constant over time. This study was limited by the small sample size and lack of assessment of anthropometric variables and children's perceived self-efficacy. Children with LMC are likely to have poor physical fitness compared with children with HMC. The differences in physical fitness outcomes between the groups were relatively constant over time. Given that various physical fitness components are linked to different health outcomes, these consequences are matters of concern for both current health status and later health status in children with LMC.
Structure of the Large Magellanic Cloud from near infrared magnitudes of red clump stars
NASA Astrophysics Data System (ADS)
Subramanian, S.; Subramaniam, A.
2013-04-01
Context. The structural parameters of the disk of the Large Magellanic Cloud (LMC) are estimated. Aims: We used the JH photometric data of red clump (RC) stars from the Magellanic Cloud Point Source Catalog (MCPSC) obtained from the InfraRed Survey Facility (IRSF) to estimate the structural parameters of the LMC disk, such as the inclination, i, and the position angle of the line of nodes (PAlon), φ. Methods: The observed LMC region is divided into several sub-regions, and stars in each region are cross-identified with the optically identified RC stars to obtain the near infrared magnitudes. The peak values of H magnitude and (J - H) colour of the observed RC distribution are obtained by fitting a profile to the distributions and by taking the average value of magnitude and colour of the RC stars in the bin with largest number. Then the dereddened peak H0 magnitude of the RC stars in each sub-region is obtained from the peak values of H magnitude and (J - H) colour of the observed RC distribution. The right ascension (RA), declination (Dec), and relative distance from the centre of each sub-region are converted into x,y, and z Cartesian coordinates. A weighted least square plane fitting method is applied to this x,y,z data to estimate the structural parameters of the LMC disk. Results: An intrinsic (J - H)0 colour of 0.40 ± 0.03 mag in the Simultaneous three-colour InfraRed Imager for Unbiased Survey (SIRIUS) IRSF filter system is estimated for the RC stars in the LMC and a reddening map based on (J - H) colour of the RC stars is presented. When the peaks of the RC distribution were identified by averaging, an inclination of 25°.7 ± 1°.6 and a PAlon = 141°.5 ± 4°.5 were obtained. We estimate a distance modulus, μ = 18.47 ± 0.1 mag to the LMC. Extra-planar features which are both in front and behind the fitted plane are identified. They match with the optically identified extra-planar features. The bar of the LMC is found to be part of the disk within 500 pc. Conclusions: The estimates of the structural parameters are found to be independent of the photometric bands used for the analysis. The radial variation of the structural parameters are also studied. We find that the inner disk, within ~3°.0, is less inclined and has a larger value of PAlon when compared to the outer disk. Our estimates are compared with the literature values, and the possible reasons for the small discrepancies found are discussed.
TESTING WIND AS AN EXPLANATION FOR THE SPIN PROBLEM IN THE CONTINUUM-FITTING METHOD
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, Bei; Czerny, Bożena; Sobolewska, Małgosia
2016-04-20
The continuum-fitting method is one of the two most advanced methods of determining the black hole spin in accreting X-ray binary systems. There are, however, still some unresolved issues with the underlying disk models. One of these issues manifests as an apparent decrease in spin for increasing source luminosity. Here, we perform a few simple tests to establish whether outflows from the disk close to the inner radius can address this problem. We employ four different parametric models to describe the wind and compare these to the apparent decrease in spin with luminosity measured in the sources LMC X-3 andmore » GRS 1915+105. Wind models in which parameters do not explicitly depend on the accretion rate cannot reproduce the spin measurements. Models with mass accretion rate dependent outflows, however, have spectra that emulate the observed ones. The assumption of a wind thus effectively removes the artifact of spin decrease. This solution is not unique; the same conclusion can be obtained using a truncated inner disk model. To distinguish among the valid models, we will need high-resolution X-ray data and a realistic description of the Comptonization in the wind.« less
Stellar density distribution along the minor axis of the Large Magellanic Cloud
NASA Astrophysics Data System (ADS)
Piatti, Andrés E.
2018-02-01
We studied the spatial distribution of young and old stellar populations along the western half part of the minor axis of the Large Magellanic Cloud (LMC) using Washington MT1 photometry of selected fields, which span a deprojected distance range from the LMC bar centre out to ∼31.6 kpc. We found that both stellar populations share a mean LMC limiting radius of 8.9 ± 0.4 kpc; old populations are three times more dense than young populations at that LMC limit. When comparing this result with recent values for the LMC extension due to north, the old populations resulted significantly more elongated than the young ones. Bearing in mind previous claims that the elongation of the outermost LMC regions may be due to the tidal effects of the Milky Way (MW), our findings suggest that such a tidal interaction should not have taken place recently. The existence of young populations in the outermost western regions also supports previous results about ram pressure stripping effects of the LMC gaseous disc due to the motion of the LMC in the MW halo.
A search for ejecta nebulae around Wolf-Rayet stars using the SHS Hα survey
NASA Astrophysics Data System (ADS)
Stock, D. J.; Barlow, M. J.
2010-12-01
Recent large-scale Galactic plane Hα surveys allow a re-examination of the environs of Wolf-Rayet (WR) stars for the presence of a circumstellar nebula. Using the morphologies of WR nebulae known to be composed of stellar ejecta as a guide, we constructed ejecta nebula criteria similar to those of Chu and searched for likely WR ejecta nebulae in the Southern Hα Survey (SHS). A new WR ejecta nebula around WR 8 is found and its morphology is discussed. The fraction of WR stars with ejecta-type nebulae is roughly consistent between the Milky Way (MW) and Large Magellanic Cloud (LMC) at around 5-6 per cent, with the MW sample dominated by nitrogen-rich WR central stars (WN type) and the LMC stars having a higher proportion of carbon-rich WR central stars (WC type). We compare our results with those of previous surveys, including those of Marston and Miller & Chu, and find broad consistency. We investigate several trends in the sample: most of the clear examples of ejecta nebulae have WNh central stars, and very few ejecta nebulae have binary central stars. Finally, the possibly unique evolutionary status of the nebula around the binary star WR 71 is explored.
Mass and p-factor of the Type II Cepheid OGLE-LMC-T2CEP-098 in a Binary System
NASA Astrophysics Data System (ADS)
Pilecki, Bogumił; Gieren, Wolfgang; Smolec, Radosław; Pietrzyński, Grzegorz; Thompson, Ian B.; Anderson, Richard I.; Bono, Giuseppe; Soszyński, Igor; Kervella, Pierre; Nardetto, Nicolas; Taormina, Mónica; Stȩpień, Kazimierz; Wielgórski, Piotr
2017-06-01
We present the results of a study of the type II Cepheid (P puls = 4.974 days) in the eclipsing binary system OGLE-LMC-T2CEP-098 (P orb = 397.2 days). The Cepheid belongs to the peculiar W Vir group, for which the evolutionary status is virtually unknown. It is the first single-lined system with a pulsating component analyzed using the method developed by Pilecki et al. We show that the presence of a pulsator makes it possible to derive accurate physical parameters of the stars even if radial velocities can be measured for only one of the components. We have used four different methods to limit and estimate the physical parameters, eventually obtaining precise results by combining pulsation theory with the spectroscopic and photometric solutions. The Cepheid radius, mass, and temperature are 25.3+/- 0.2 {R}⊙ , 1.51+/- 0.09 {M}⊙ , and 5300+/- 100 {{K}}, respectively, while its companion has a similar size (26.3 {R}⊙ ), but is more massive (6.8 {M}⊙ ) and hotter (9500 K). Our best estimate for the p-factor of the Cepheid is 1.30+/- 0.03. The mass, position on the period-luminosity diagram, and pulsation amplitude indicate that the pulsating component is very similar to the Anomalous Cepheids, although it has a much longer period and is redder in color. The very unusual combination of the components suggest that the system has passed through a mass-transfer phase in its evolution. More complicated internal structure would then explain its peculiarity. This paper includes data gathered with the 6.5 m Magellan Clay Telescope at Las Campanas Observatory, Chile.
NASA Technical Reports Server (NTRS)
Blades, J. C.; Barlow, M. J.; Albrecht, R.; Barbieri, C.; Boksenberg, A.; Crane, P.; Deharveng, J. M.; Disney, M. J.; Jakobsen, P.; Kamperman, T. M.
1992-01-01
Using the Faint Object Camera on-board the Hubble Space Telescope, we have obtained images of four planetary nebulae (PNe) in the Magellanic Clouds, namely N2 and N5 in the SMC and N66 and N201 in the LMC. Each nebula was imaged through two narrow-band filters isolating forbidden O III 5007 and H-beta, for a nominal exposure time of 1000 s in each filter. In forbidden O III, SMC N5 shows a circular ring structure, with a peak-to-peak diameter of 0.26 arcsec and a FWHM of 0.35 arcsec while SMC N2 shows an elliptical ring structure with a peak-to-peak diameter of 0.26 x 0.21. The expansion ages corresponding to the observed structures in SMC N2 and N5 are of the order of 3000 yr. LMC N201 is very compact, with a FWHM of 0.2 arcsec in H-beta. The Type I PN LMC N66 is a multipolar nebula, with the brightest part having an extent of about 2 arcsec and with fainter structures extending over 4 arcsec.
A History of Collisions Between the Magellanic Clouds
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-07-01
Recent deep observations of the Large Magellanic Cloud (LMC), a satellite galaxy of the Milky Way, have revealed a faint arc of stars extending from its northern outskirts. Was this stream created by the gravitational pull of the Milky Way? Or could it have a more violent source?The area surrounding the LMC. The stellar arc discovered with the Dark Energy Survey is shown in the region labeled A. The current study discovered additional asymmetric substructure in the region labeled C. [Besla et al. 2016]Searching for Spiral StructureWhen deep optical imaging by the Dark Energy Survey discovered this faint stream of stars extending eastward from the northern periphery of the LMC, scientists assumption was that this arm was created by the tidal pull of the Milky Way.But a team of authors led by Gurtina Besla (University of Arizona) argue for an alternate theory: what if this stellar stream was instead caused by repeated interactions between the LMC and the Small Magellanic Cloud (SMC)?One way to test these models is to look for a symmetrically corresponding arm in the south of the LMC extending west; such an arm would be expected if tidal forces from the Milky Way were acting globally on the LMC to create the northeast arm.The Dark Energy Surveys footprint doesnt cover the southern regions of the LMCs disk, but Besla and collaborators have an alternative: they performed their own wide-field survey using small robotic telescopes, which provide long exposures at low cost.Modeling Past and FutureInteractionsThe simulated interaction history of the LMC and SMC in isolation (i.e., without the Milky Way). The top left panel shows the SMCLMC separation as a function of time; the remaining panels show the system at different stages of the simulation. Only particles associated with the LMC are shown here; the SMCs position is indicated by a blue star. [Besla et al. 2016]The teams deep optical observations of the LMC and SMC fields confirmed the presence of asymmetric stellar arc structures in the northern outskirts of the LMC and they didnt find any corresponding structures in the southern region. This strongly supports the idea that the structures were caused by interactions between the LMC and the SMC, rather than by galactic tides.To further test this model, Besla and collaborators ran a series of simulations of interactions between LMC and SMC, first in isolation and then with the added tidal forces from the Milky Way.The simulations supported the conclusions drawn from the observations: while Milky Way tides may influence the final distribution of structures in the LMCs outskirts, close interactions between the LMC and the SMC appear to be the primary cause responsible for the asymmetric spiral structure found.As is shown in the authors simulations, the complete model of LMC/SMC interactions predicts that the two dwarfs will continue to interact until they eventually merge. Comparison of detailed simulations with future high-resolution observations of the LMC should help us further understand the interaction history of the LMC and SMC, thereby allowing us to better predict their eventual fate.BonusCheck out the gif below, cut from a video of the authors simulations. In these simulations, the SMC interacts with the LMC over the span of ~9 Gyr, passing through it several times before the LMC completely cannibalizes the SMC. You can visit the authors article to view the original video.CitationGurtina Besla et al 2016 ApJ 825 20. doi:10.3847/0004-637X/825/1/20
Constraining Accreting Binary Populations in Normal Galaxies
NASA Astrophysics Data System (ADS)
Lehmer, Bret; Hornschemeier, A.; Basu-Zych, A.; Fragos, T.; Jenkins, L.; Kalogera, V.; Ptak, A.; Tzanavaris, P.; Zezas, A.
2011-01-01
X-ray emission from accreting binary systems (X-ray binaries) uniquely probe the binary phase of stellar evolution and the formation of compact objects such as neutron stars and black holes. A detailed understanding of X-ray binary systems is needed to provide physical insight into the formation and evolution of the stars involved, as well as the demographics of interesting binary remnants, such as millisecond pulsars and gravitational wave sources. Our program makes wide use of Chandra observations and complementary multiwavelength data sets (through, e.g., the Spitzer Infrared Nearby Galaxies Survey [SINGS] and the Great Observatories Origins Deep Survey [GOODS]), as well as super-computing facilities, to provide: (1) improved calibrations for correlations between X-ray binary emission and physical properties (e.g., star-formation rate and stellar mass) for galaxies in the local Universe; (2) new physical constraints on accreting binary processes (e.g., common-envelope phase and mass transfer) through the fitting of X-ray binary synthesis models to observed local galaxy X-ray binary luminosity functions; (3) observational and model constraints on the X-ray evolution of normal galaxies over the last 90% of cosmic history (since z 4) from the Chandra Deep Field surveys and accreting binary synthesis models; and (4) predictions for deeper observations from forthcoming generations of X-ray telesopes (e.g., IXO, WFXT, and Gen-X) to provide a science driver for these missions. In this talk, we highlight the details of our program and discuss recent results.
The Optical Gravitational Lensing Experiment. Catalog of RR Lyr Stars in the Large Magellanic Cloud
NASA Astrophysics Data System (ADS)
Soszynski, I.; Udalski, A.; Szymanski, M.; Kubiak, M.; Pietrzynski, G.; Wozniak, P.; Zebrun, K.; Szewczyk, O.; Wyrzykowski, L.
2003-06-01
We present the catalog of RR Lyr stars discovered in a 4.5 square degrees area in the central parts of the Large Magellanic Cloud (LMC). Presented sample contains 7612 objects, including 5455 fundamental mode pulsators (RRab), 1655 first-overtone (RRc), 272 second-overtone (RRe) and 230 double-mode RR Lyr stars (RRd). Additionally we attach alist of several dozen other short-period pulsating variables. The catalog data include astrometry, periods, BVI photometry, amplitudes, and parameters of the Fourier decomposition of the I-band light curve of each object. We present density map of RR Lyr stars in the observed fields which shows that the variables are strongly concentrated toward the LMC center. The modal values of the period distribution for RRab, RRc and RRe stars are 0.573, 0.339 and 0.276 days, respectively. The period-luminosity diagrams for BVI magnitudes and for extinction insensitive index W_I are constructed. We provide the log P-I, log P-V and log P-W_I relations for RRab, RRc and RRe stars. The mean observed V-band magnitudes of RR Lyr stars in the LMC are 19.36 mag and 19.31 mag for ab and c types, respectively, while the extinction free values are 18.91 mag and 18.89 mag. We found a large number of RR Lyr stars pulsating in two modes closely spaced in the power spectrum. These stars are believed to exhibit non-radial pulsating modes. We discovered three stars which simultaneously reveal RR Lyr-type and eclipsing-type variability. If any of these objects were an eclipsing binary system containing RR Lyr star, then for the first time the direct determination of the mass of RR Lyr variable would be possible. We provide a list of six LMC star clusters which contain RR Lyr stars. The richest cluster, NGC 1835, hosts 84 RR Lyr variables. The period distribution of these stars suggests that NGC1835 shares features of Oosterhoff type I and type II groups. All presented data, including individual BVI observations and finding charts are available from the OGLE Internet archive.
FUSE Observations of Galactic and LMC Novae in Outburst
NASA Technical Reports Server (NTRS)
Huschildt, P. H.
2001-01-01
This document is a collection of five abstracts from papers written on the 'FUSE Observations of Galactic and LMC Novae in Outburst'. The titles are the following: (1) Analyzing FUSE Observations of Galactic and LMC Novae; (2) Detailed NLTE Model Atmospheres for Novae during Outburst: Modeling Optical and Ultraviolet Observations for Nova LMC 1988; (3) Numerical Solution of the Expanding Stellar Atmosphere Problem; (4) A Non-LTE Line-Blanketed Expanding Atmosphere Model for A-supergiant Alpha Cygni; and (5) Non-LTE Model Atmosphere Analysis of the Early Ultraviolet Spectra of Nova Andromedae 1986. A list of journal publications is also included.
VizieR Online Data Catalog: Star clusters automatically detected in the LMC (Bitsakis+, 2017)
NASA Astrophysics Data System (ADS)
Bitsakis, T.; Bonfini, P.; Gonzalez-Lopezlira, R. A.; Ramirez-Siordia, V. H.; Bruzual, G.; Charlot, S.; Maravelias, G.; Zaritsky, D.
2018-03-01
The archival data used in this work were acquired from several diverse large surveys, which mapped the Magellanic Clouds at various bands. Simons+ (2014AdSpR..53..939S) composed a mosaic using archival data from the Galaxy Evolution Explorer (GALEX) at the near-ultraviolet (NUV) band (λeff=2275Å). The mosaic covers an area of 15deg2 on the LMC. the central ~3x1deg2 of the LMC (the bar-region) was later observed by the Swift Ultraviolet-Optical Telescope (UVOT) Magellanic Clouds Survey (SUMAC; Siegel+ 2014AJ....148..131S). The optical data used here are from the Magellanic Cloud Photometric Survey (MCPS; Zaritsky+ 2004, J/AJ/128/1606). These authors observed the central 64deg2 of the LMC with 3.8-5.2 minute exposures at the Johnson U, B, V, and Gunn i filters of the Las Campanas Swope Telescope. Meixner+ (2006, J/AJ/132/2268) performed a uniform and unbiased imaging survey of the LMC (called Surveying the Agents of a Galaxy's Evolution, or SAGE), covering the central 7deg2 with both the Infrared Array Camera (IRAC) and the Multiband Imaging Photometer (MIPS) on-board the Spitzer Space Telescope. (1 data file).
The Evolution and Physical Parameters of WN3/O3s: A New Type of Wolf-Rayet Star
NASA Astrophysics Data System (ADS)
Neugent, Kathryn F.; Massey, Philip; Hillier, D. John; Morrell, Nidia
2017-05-01
As part of a search for Wolf-Rayet (WR) stars in the Magellanic Clouds, we have discovered a new type of WR star in the Large Magellanic Cloud (LMC). These stars have both strong emission lines, as well as He II and Balmer absorption lines and spectroscopically resemble a WN3 and O3V binary pair. However, they are visually too faint to be WN3+O3V binary systems. We have found nine of these WN3/O3s, making up ˜6% of the population of LMC WRs. Using cmfgen, we have successfully modeled their spectra as single stars and have compared the physical parameters with those of more typical LMC WNs. Their temperatures are around 100,000 K, a bit hotter than the majority of WN stars (by around 10,000 K), though a few hotter WNs are known. The abundances are what you would expect for CNO equilibrium. However, most anomalous are their mass-loss rates, which are more like that of an O-type star than a WN star. While their evolutionary status is uncertain, their low mass-loss rates and wind velocities suggest that they are not products of homogeneous evolution. It is possible instead that these stars represent an intermediate stage between O stars and WNs. Since WN3/O3 stars are unknown in the Milky Way, we suspect that their formation depends upon metallicity, and we are investigating this further by a deep survey in M33, which possesses a metallicity gradient. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. It is additionally based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations were associated with program GO-13780.
Validation of the Leap Motion Controller using markered motion capture technology.
Smeragliuolo, Anna H; Hill, N Jeremy; Disla, Luis; Putrino, David
2016-06-14
The Leap Motion Controller (LMC) is a low-cost, markerless motion capture device that tracks hand, wrist and forearm position. Integration of this technology into healthcare applications has begun to occur rapidly, making validation of the LMC׳s data output an important research goal. Here, we perform a detailed evaluation of the kinematic data output from the LMC, and validate this output against gold-standard, markered motion capture technology. We instructed subjects to perform three clinically-relevant wrist (flexion/extension, radial/ulnar deviation) and forearm (pronation/supination) movements. The movements were simultaneously tracked using both the LMC and a marker-based motion capture system from Motion Analysis Corporation (MAC). Adjusting for known inconsistencies in the LMC sampling frequency, we compared simultaneously acquired LMC and MAC data by performing Pearson׳s correlation (r) and root mean square error (RMSE). Wrist flexion/extension and radial/ulnar deviation showed good overall agreement (r=0.95; RMSE=11.6°, and r=0.92; RMSE=12.4°, respectively) with the MAC system. However, when tracking forearm pronation/supination, there were serious inconsistencies in reported joint angles (r=0.79; RMSE=38.4°). Hand posture significantly influenced the quality of wrist deviation (P<0.005) and forearm supination/pronation (P<0.001), but not wrist flexion/extension (P=0.29). We conclude that the LMC is capable of providing data that are clinically meaningful for wrist flexion/extension, and perhaps wrist deviation. It cannot yet return clinically meaningful data for measuring forearm pronation/supination. Future studies should continue to validate the LMC as updated versions of their software are developed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hitomi observations of the LMC SNR N 132 D: Highly redshifted X-ray emission from iron ejecta
NASA Astrophysics Data System (ADS)
Hitomi Collaboration; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Angelini, Lorella; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; Bautz, Marshall W.; Blandford, Roger; Brenneman, Laura W.; Brown, Gregory V.; Bulbul, Esra; Cackett, Edward M.; Chernyakova, Maria; Chiao, Meng P.; Coppi, Paolo S.; Costantini, Elisa; de Plaa, Jelle; de Vries, Cor P.; den Herder, Jan-Willem; Done, Chris; Dotani, Tadayasu; Ebisawa, Ken; Eckart, Megan E.; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew C.; Ferrigno, Carlo; Foster, Adam R.; Fujimoto, Ryuichi; Fukazawa, Yasushi; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi C.; Gandhi, Poshak; Giustini, Margherita; Goldwurm, Andrea; Gu, Liyi; Guainazzi, Matteo; Haba, Yoshito; Hagino, Kouichi; Hamaguchi, Kenji; Harrus, Ilana M.; Hatsukade, Isamu; Hayashi, Katsuhiro; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko S.; Hornschemeier, Ann; Hoshino, Akio; Hughes, John P.; Ichinohe, Yuto; Iizuka, Ryo; Inoue, Hajime; Inoue, Yoshiyuki; Ishida, Manabu; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iwai, Masachika; Kaastra, Jelle; Kallman, Tim; Kamae, Tsuneyoshi; Kataoka, Jun; Katsuda, Satoru; Kawai, Nobuyuki; Kelley, Richard L.; Kilbourne, Caroline A.; Kitaguchi, Takao; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Koyama, Katsuji; Koyama, Shu; Kretschmar, Peter; Krimm, Hans A.; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lee, Shiu-Hang; Leutenegger, Maurice A.; Limousin, Olivier; Loewenstein, Michael; Long, Knox S.; Lumb, David; Madejski, Greg; Maeda, Yoshitomo; Maier, Daniel; Makishima, Kazuo; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian R.; Mehdipour, Missagh; Miller, Eric D.; Miller, Jon M.; Mineshige, Shin; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Hiroshi; Mushotzky, Richard F.; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakashima, Shinya; Nakazawa, Kazuhiro; Nobukawa, Kumiko K.; Nobukawa, Masayoshi; Noda, Hirofumi; Odaka, Hirokazu; Ohashi, Takaya; Ohno, Masanori; Okajima, Takashi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stéphane; Petre, Robert; Pinto, Ciro; Porter, Frederick S.; Pottschmidt, Katja; Reynolds, Christopher S.; Safi-Harb, Samar; Saito, Shinya; Sakai, Kazuhiro; Sasaki, Toru; Sato, Goro; Sato, Kosuke; Sato, Rie; Sato, Toshiki; Sawada, Makoto; Schartel, Norbert; Serlemtsos, Peter J.; Seta, Hiromi; Shidatsu, Megumi; Simionescu, Aurora; Smith, Randall K.; Soong, Yang; Stawarz, Łukasz; Sugawara, Yasuharu; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin'ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki T.; Tashiro, Makoto S.; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi Go; Uchida, Hiroyuki; Uchiyama, Hideki; Uchiyama, Yasunobu; Ueda, Shutaro; Ueda, Yoshihiro; Uno, Shin'ichiro; Urry, C. Megan; Ursino, Eugenio; Watanabe, Shin; Werner, Norbert; Wilkins, Dan R.; Williams, Brian J.; Yamada, Shinya; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko Y.; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Zhuravleva, Irina; Zoghbi, Abderahmen
2018-03-01
We present Hitomi observations of N 132 D, a young, X-ray bright, O-rich core-collapse supernova remnant in the Large Magellanic Cloud (LMC). Despite a very short observation of only 3.7 ks, the Soft X-ray Spectrometer (SXS) easily detects the line complexes of highly ionized S K and Fe K with 16-17 counts in each. The Fe feature is measured for the first time at high spectral resolution. Based on the plausible assumption that the Fe K emission is dominated by He-like ions, we find that the material responsible for this Fe emission is highly redshifted at ˜ 800 km s-1 compared to the local LMC interstellar medium (ISM), with a 90% credible interval of 50-1500 km s-1 if a weakly informative prior is placed on possible line broadening. This indicates (1) that the Fe emission arises from the supernova ejecta, and (2) that these ejecta are highly asymmetric, since no blueshifted component is found. The S K velocity is consistent with the local LMC ISM, and is likely from swept-up ISM material. These results are consistent with spatial mapping that shows the He-like Fe concentrated in the interior of the remnant and the S tracing the outer shell. The results also show that even with a very small number of counts, direct velocity measurements from Doppler-shifted lines detected in extended objects like supernova remnants are now possible. Thanks to the very low SXS background of ˜ 1 event per spectral resolution element per 100 ks, such results are obtainable during short pointed or slew observations with similar instruments. This highlights the power of high-spectral-resolution imaging observations, and demonstrates the new window that has been opened with Hitomi and will be greatly widened with future missions such as the X-ray Astronomy Recovery Mission (XARM) and Athena.
Sizing the star cluster population of the Large Magellanic Cloud
NASA Astrophysics Data System (ADS)
Piatti, Andrés E.
2018-04-01
The number of star clusters that populate the Large Magellanic Cloud (LMC) at deprojected distances <4 deg has been recently found to be nearly double the known size of the system. Because of the unprecedented consequences of this outcome in our knowledge of the LMC cluster formation and dissolution histories, we closely revisited such a compilation of objects and found that only ˜35 per cent of the previously known catalogued clusters have been included. The remaining entries are likely related to stellar overdensities of the LMC composite star field, because there is a remarkable enhancement of objects with assigned ages older than log(t yr-1) ˜ 9.4, which contrasts with the existence of the LMC cluster age gap; the assumption of a cluster formation rate similar to that of the LMC star field does not help to conciliate so large amount of clusters either; and nearly 50 per cent of them come from cluster search procedures known to produce more than 90 per cent of false detections. The lack of further analyses to confirm the physical reality as genuine star clusters of the identified overdensities also glooms those results. We support that the actual size of the LMC main body cluster population is close to that previously known.
The 4U 0115+63: Another energetic gamma ray binary pulsar
NASA Technical Reports Server (NTRS)
Chadwick, P. M.; Dipper, N. A.; Dowthwaite, J. C.; Kirkman, I. W.; Mccomb, T. J. L.; Orford, K. J.; Turver, K. E.
1985-01-01
Following the discovery of Her X-1 as a source of pulsed 1000 Gev X-rays, a search for emission from an X-ray binary containing a pulsar with similar values of period, period derivative and luminosity was successful. The sporadic X-ray binary 4U 0115-63 has been observed, with probability 2.5 x 10 to the minus 6 power ergs/s to emit 1000 GeV gamma-rays with a time averaged energy flux of 6 to 10 to the 35th power.
NASA Technical Reports Server (NTRS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.;
2012-01-01
We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009, and October 20. 2010. We searched for signals from binaries with total mass between 2 and 25 Stellar Mass; this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass. including the results from previous LIGO and Virgo observations. The cumulative 90% confidence rate upper limits of the binary coalescence of binary neutron star, neutron star-black hole, and binary black hole systems are 1.3 x 10(exp -4), 3.1 x 10(exp -5), and 6.4 x 10(exp -6)/cu Mpc/yr, respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prada Moroni, P. G.; Gennaro, M.; Bono, G.
2012-04-20
We present a new Bayesian approach to constrain the intrinsic parameters (stellar mass and age) of the eclipsing binary system-CEP0227-in the Large Magellanic Cloud (LMC). We computed several sets of evolutionary models covering a broad range in chemical compositions and in stellar mass. Independent sets of models were also constructed either by neglecting or by including a moderate convective core overshooting ({beta}{sub ov} = 0.2) during central hydrogen-burning phases. Sets of models were also constructed either by neglecting or by assuming a canonical ({eta} = 0.4, 0.8) or an enhanced ({eta} = 4) mass-loss rate. The most probable solutions weremore » computed in three different planes: luminosity-temperature, mass-radius, and gravity-temperature. By using the Bayes factor, we found that the most probable solutions were obtained in the gravity-temperature plane with a Gaussian mass prior distribution. The evolutionary models constructed by assuming a moderate convective core overshooting ({beta}{sub ov} = 0.2) and a canonical mass-loss rate ({eta} = 0.4) give stellar masses for the primary (Cepheid)-M = 4.14{sup +0.04}{sub -0.05} M{sub Sun }-and for the secondary-M = 4.15{sup +0.04}{sub -0.05} M{sub Sun }-that agree at the 1% level with dynamical measurements. Moreover, we found ages for the two components and for the combined system-t = 151{sup +4}{sub -3} Myr-that agree at the 5% level. The solutions based on evolutionary models that neglect the mass loss attain similar parameters, while those ones based on models that either account for an enhanced mass loss or neglect convective core overshooting have lower Bayes factors and larger confidence intervals. The dependence on the mass-loss rate might be the consequence of the crude approximation we use to mimic this phenomenon. By using the isochrone of the most probable solution and a Gaussian prior on the LMC distance, we found a true distance modulus-18.53{sup +0.02}{sub -0.02} mag-and a reddening value-E(B - V) = 0.142{sup +0.005}{sub -0.010} mag-that agree quite well with similar estimates in the literature.« less
Multiwavelength Modeling of Nove Atmospheres
NASA Technical Reports Server (NTRS)
Huschildt, P. H.
2001-01-01
LMC 1988 #1 was a slow, CO type, dust forming classical nova. It was the first extragalactic nova to be observed with the IUE satellite. We have successfully fitted observed ultraviolet and optical spectra of LMC 1988 #1 taken within the first two months of its outburst (when the atmosphere was still optically thick) with synthetic spectra computed using PHOENIX nova model atmospheres. The synthetic spectra reproduce most of the features seen in the spectra and provide V band magnitudes consistent with the observed light curve. The fits are improved by increasing the CNO abundances to 10 times the solar values. The bolometric luminosity of LMC 1988 #1 was approximately constant at 2 x 10(exp 38) ergs per second at a distance of 47.3 kpc for the first 2 months of the outburst until the formation of the dust shell.
A CHANDRA OBSERVATION OF SNR 0540 - 697
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seward, F. D.; Williams, R. M.; Chu, Y.-H.
2010-07-15
This paper describes a Chandra observation of SNR 0540 - 697 within the H II complex N159 in the Large Magellanic Cloud (LMC). Scattering from the nearby bright source LMC X-1, which obscures the western edge of the remnant, has been removed. Larger than previously believed, the 2.'0 x 2.'8 remnant is defined by optical filaments and two lobes of X-ray emission. A band of intervening material absorbs X-rays from the central part of the remnant. The N Lobe of the remnant is relatively bright and well defined, while emission from the S Lobe is much weaker. There is structuremore » within the N Lobe but no clear X-ray emission from an outer shell indicating a shock in the interstellar medium. The X-ray spectrum is thermal with emission lines from Fe, Mg, and Si. The observed temperature and luminosity of the hot gas are 0.6 keV and 6 x 10{sup 35} erg s{sup -1}, respectively. These are consistent with characteristics expected for older remnants. There is also diffuse thermal X-ray emission north of N159 extending into N160, evidence for a larger remnant or bubble.« less
Low Mass X-ray Binary 4U1705-44 Exiting an Extended High X-ray State
NASA Astrophysics Data System (ADS)
Phillipson, Rebecca; Boyd, Patricia T.; Smale, Alan P.
2017-09-01
The neutron-star low-mass X-ray binary 4U1705-44, which exhibited high amplitude long-term X-ray variability on the order of hundreds of days during the 16-year continuous monitoring by the RXTE ASM (1995-2012), entered an anomalously long high state in July 2012 as observed by MAXI (2009-present).
Variability of the symbiotic X-ray binary GX 1+4. Enhanced activity near periastron passage
NASA Astrophysics Data System (ADS)
Iłkiewicz, Krystian; Mikołajewska, Joanna; Monard, Berto
2017-05-01
Context. GX 1+4 belongs to a rare class of X-ray binaries with red giant donors, symbiotic X-ray binaries. It has a history of complicated variability on multiple timescales in the optical light and X-rays. The nature of this variability remains poorly understood. Aims: We aim to study variability of GX 1+4 on long timescale in X-ray and optical bands. Methods: We took X-ray observations from the INTEGRAL Soft Gamma-Ray Imager and RXTE All Sky Monitor. Optical observations were made with the INTEGRAL Optical Monitoring Camera. Results: The variability of GX 1+4 both in optical light and hard X-ray emission (>17 keV) is dominated by 50-70 d quasi-periodic changes. The amplitude of this variability is highest during the periastron passage, while during the potential neutron star eclipse the system is always at minimum. This confirms the 1161 d orbital period that has had been proposed for the system based on radial velocity curve. Neither the quasi-periodic variability or the orbital period are detected in soft X-ray emission (1.3-12.2 keV), where the binary shows no apparent periodicity.
A survey for red varibles INT he LMC - II
NASA Astrophysics Data System (ADS)
Reid, Neill; Glass, I. S.; Catchpole, R. M.
1988-05-01
Infrared photometry of a sample of 126 variables drawn from a 16 sq deg area of the northern LMC is presented. Most of these stars were previously unknown and the majority prove the be long period red-giant variables. Most of the latter stars fall within two groups in the /K(0), log(P)/ diagram, the lower luminosity ones being Miras which obey a definite period-luminosity relation. Using the latter stars as distance estimators is discussed. The /M(bol), P/ diagram is compared with the theoretical tracks calculated by Wood, Bessell & Fox (1983), and it is found that the distribution of stars is probably consistent with a lull in star formation in the LMC from about 10 to the 9th - 2 x 10 to the 8th yr ago, although this conclusion depends strongly on the luminosity at which stars of different initial mass enter the thermally pulsing AGB.
Physical nature of the [S II]-bright shell nebulae N70 and N185
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ning-Xiao; Jiang, Bing; Chen, Yang
2014-09-01
N70 and N185 are two large (≥100 pc in diameter) shell nebulae in the Large Magellanic Cloud (LMC). Their high [S II]/Hα ratios rival those of supernova remnants (SNRs), but they are not confirmed as SNRs. To study their physical nature, we have obtained XMM-Newton X-ray observations and high-dispersion long-slit echelle spectroscopic observations of these two nebulae. The X-ray spectra of both nebulae can be well interpreted with an optically thin thermal (∼0.2 keV) plasma with the average LMC abundance in a collisional ionization equilibrium. N70 encompasses the OB association LH114. Although N70 has a modest expansion velocity and essentiallymore » thermal radio emission, its diffuse X-ray luminosity (∼6.1 × 10{sup 35} erg s{sup –1}) is higher than that from a quiescent superbubble with N70's density, size, and expansion velocity; thus, N70 is most likely a superbubble that is recently energized by an interior SNR. N185 does not contain any known OB association, and its X-ray luminosity is an order of magnitude lower than expected if it is a quiescent superbubble. N185 has nonthermal radio emission and has high-velocity material expanding at nearly 200 km s{sup –1}, similar to many known SNRs in the LMC. Its X-ray luminosity (∼1.9 × 10{sup 35} erg s{sup –1}) is also consistent with that of an evolved SNR. We therefore suggest that N185 is energized by a recent supernova.« less
NASA Technical Reports Server (NTRS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.;
2010-01-01
We report the results of the first search for gravitational waves from compact binary coalescence using data from the Laser Interferometer Gravitational-wave Observatory (LIGO) and Virgo detectors. Five months of data were collected during the concurrent S5 (UGO) and VSRI (Virgo) science runs. The search focused on signals from binary mergers with a total mass between 2 and 35 Solar Mass. No gravitational waves are identified. The cumulative 90%-confidence upper limits on the rate of compact binary coalescence are calculated for non-spinning binary neutron stars, black hole-neutron star systems, and binary black holes to be 8.7 x 10(exp -3) / yr-1/L(sub 10) 2.2 x 10-3 yr-1L101, and 4.4 x 10(exp -4)3) / yr-1/L(sub 10) respectively, where L (sub 10) is 10(exp 10) times the blue solar luminosity. These upper limits are compared with astrophysical expectations.
NASA Astrophysics Data System (ADS)
Chu, You-Hua
2017-02-01
Supernovae (SNe) explode in environments that have been significantly modified by the SN progenitors. For core-collapse SNe, the massive progenitors ionize the ambient interstellar medium (ISM) via UV radiation and sweep the ambient ISM via fast stellar winds during the main sequence phase, replenish the surroundings with stellar material via slow winds during the luminous blue variable (LBV) or red supergiant (RSG) phase, and sweep up the circumstellar medium (CSM) via fast winds during the Wolf-Rayet (WR) phase. If a massive progenitor was in a close binary system, the binary interaction could have caused mass ejection in certain preferred directions, such as the orbital plane, and even bipolar outflow/jet. As a massive star finally explodes, the SN ejecta interacts first with the CSM that was ejected and shaped by the star itself. As the newly formed supernova remnant (SNR) expands further, it encounters interstellar structures that were shaped by the progenitor from earlier times. Therefore, the structure and evolution of a SNR is largely dependent on the initial mass and close binarity of the SN progenitor. The Large Magellanic Cloud (LMC) has an excellent sample of over 50 confirmed SNRs that are well resolved by Hubble Space Telescope, Chandra X-ray Observatory, and Spitzer Space Telescope. These multi-wavelength observations allow us to conduct stellar forensics in SNRs and understand the wide variety of morphologies and physical properties of SNRs observed.
A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riess, Adam G.; Scolnic, Dan; Jones, David O.
We use the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) to reduce the uncertainty in the local value of the Hubble constant from 3.3% to 2.4%. The bulk of this improvement comes from new near-infrared (NIR) observations of Cepheid variables in 11 host galaxies of recent type Ia supernovae (SNe Ia), more than doubling the sample of reliable SNe Ia having a Cepheid-calibrated distance to a total of 19; these in turn leverage the magnitude-redshift relation based on ∼300 SNe Ia at z < 0.15. All 19 hosts as well as the megamaser system NGC 4258more » have been observed with WFC3 in the optical and NIR, thus nullifying cross-instrument zeropoint errors in the relative distance estimates from Cepheids. Other noteworthy improvements include a 33% reduction in the systematic uncertainty in the maser distance to NGC 4258, a larger sample of Cepheids in the Large Magellanic Cloud (LMC), a more robust distance to the LMC based on late-type detached eclipsing binaries (DEBs), HST observations of Cepheids in M31, and new HST -based trigonometric parallaxes for Milky Way (MW) Cepheids. We consider four geometric distance calibrations of Cepheids: (i) megamasers in NGC 4258, (ii) 8 DEBs in the LMC, (iii) 15 MW Cepheids with parallaxes measured with HST /FGS, HST /WFC3 spatial scanning and/or Hipparcos , and (iv) 2 DEBs in M31. The Hubble constant from each is 72.25 ± 2.51, 72.04 ± 2.67, 76.18 ± 2.37, and 74.50 ± 3.27 km s{sup 1} Mpc{sup 1}, respectively. Our best estimate of H {sub 0} = 73.24 ± 1.74 km s{sup 1} Mpc{sup 1} combines the anchors NGC 4258, MW, and LMC, yielding a 2.4% determination (all quoted uncertainties include fully propagated statistical and systematic components). This value is 3.4 σ higher than 66.93 ± 0.62 km s{sup 1} Mpc{sup 1} predicted by ΛCDM with 3 neutrino flavors having a mass of 0.06 eV and the new Planck data, but the discrepancy reduces to 2.1 σ relative to the prediction of 69.3 ± 0.7 km s{sup 1} Mpc{sup 1} based on the comparably precise combination of WMAP +ACT+SPT+BAO observations, suggesting that systematic uncertainties in CMB radiation measurements may play a role in the tension. If we take the conflict between Planck high-redshift measurements and our local determination of H {sub 0} at face value, one plausible explanation could involve an additional source of dark radiation in the early universe in the range of Δ N {sub eff} ≈ 0.4–1. We anticipate further significant improvements in H {sub 0} from upcoming parallax measurements of long-period MW Cepheids.« less
A 2.4% Determination of the Local Value of the Hubble Constant
NASA Astrophysics Data System (ADS)
Riess, Adam G.; Macri, Lucas M.; Hoffmann, Samantha L.; Scolnic, Dan; Casertano, Stefano; Filippenko, Alexei V.; Tucker, Brad E.; Reid, Mark J.; Jones, David O.; Silverman, Jeffrey M.; Chornock, Ryan; Challis, Peter; Yuan, Wenlong; Brown, Peter J.; Foley, Ryan J.
2016-07-01
We use the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) to reduce the uncertainty in the local value of the Hubble constant from 3.3% to 2.4%. The bulk of this improvement comes from new near-infrared (NIR) observations of Cepheid variables in 11 host galaxies of recent type Ia supernovae (SNe Ia), more than doubling the sample of reliable SNe Ia having a Cepheid-calibrated distance to a total of 19; these in turn leverage the magnitude-redshift relation based on ˜300 SNe Ia at z < 0.15. All 19 hosts as well as the megamaser system NGC 4258 have been observed with WFC3 in the optical and NIR, thus nullifying cross-instrument zeropoint errors in the relative distance estimates from Cepheids. Other noteworthy improvements include a 33% reduction in the systematic uncertainty in the maser distance to NGC 4258, a larger sample of Cepheids in the Large Magellanic Cloud (LMC), a more robust distance to the LMC based on late-type detached eclipsing binaries (DEBs), HST observations of Cepheids in M31, and new HST-based trigonometric parallaxes for Milky Way (MW) Cepheids. We consider four geometric distance calibrations of Cepheids: (I) megamasers in NGC 4258, (II) 8 DEBs in the LMC, (III) 15 MW Cepheids with parallaxes measured with HST/FGS, HST/WFC3 spatial scanning and/or Hipparcos, and (IV) 2 DEBs in M31. The Hubble constant from each is 72.25 ± 2.51, 72.04 ± 2.67, 76.18 ± 2.37, and 74.50 ± 3.27 km s-1 Mpc-1, respectively. Our best estimate of H 0 = 73.24 ± 1.74 km s-1 Mpc-1 combines the anchors NGC 4258, MW, and LMC, yielding a 2.4% determination (all quoted uncertainties include fully propagated statistical and systematic components). This value is 3.4σ higher than 66.93 ± 0.62 km s-1 Mpc-1 predicted by ΛCDM with 3 neutrino flavors having a mass of 0.06 eV and the new Planck data, but the discrepancy reduces to 2.1σ relative to the prediction of 69.3 ± 0.7 km s-1 Mpc-1 based on the comparably precise combination of WMAP+ACT+SPT+BAO observations, suggesting that systematic uncertainties in CMB radiation measurements may play a role in the tension. If we take the conflict between Planck high-redshift measurements and our local determination of H 0 at face value, one plausible explanation could involve an additional source of dark radiation in the early universe in the range of ΔN eff ≈ 0.4-1. We anticipate further significant improvements in H 0 from upcoming parallax measurements of long-period MW Cepheids. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.
NASA Astrophysics Data System (ADS)
Piatti, A. E.; Mackey, A. D.
2018-04-01
We present for the first time extended stellar density and/or surface brightness radial profiles for almost all the known Large Magellanic Cloud (LMC) old globular clusters (GCs). These were built from DECam images and reach out to ˜ 4 times the GCs' tidal radii. The background subtracted radial profiles reveal that the GCs located closer than ˜ 5 kpc from the LMC centre contain an excess of stars in their outermost regions with respect to the stellar density expected from a King profile. Such a residual amount of stars - not seen in GCs located farther than ˜ 5 kpc from the LMC centre-, as well as the GCs' dimensions, show a clear dependence with the GCs' positions in the galaxy, in the sense that, the farther the GC from the centre of the LMC, the larger both the excess of stars in its outskirts and size. Although the masses of GCs located inside and outside ˜ 5 kpc are commensurate, the outermost regions of GCs located closer than ˜ 5 kpc from the LMC centre appear to have dynamically evolved more quickly. These outcomes can be fully interpreted in the light of the known GC radial velocity disc-like kinematics, from which GCs have been somehow mostly experiencing the influence of the LMC gravitational field at their respective mean distances from the LMC centre.
X-Ray Binary Populations in a Cosmological Context, Including NuSTAR Predictions
NASA Technical Reports Server (NTRS)
Cardiff, Ann Hornschemeier
2011-01-01
The new ultradeep 4 Ms Chandra Deep Field South has afforded the deepest view ever of X-ray binary populations. We report on the latest results on both LMXB and HMXB evolution out to redshifts of approximately four, including comparison with the latest theoretical models, using this deepest-ever view of the X-ray universe with Chandra. The upcoming NuSTAR mission will open up X-ray binary populations in the hard X-ray band, similar to the pioneering work of Fabbiano et al. in the Einstein era. We report on plans to study both Local Group and starburst galaxies as well as the implications those observations may have for X-ray binary populations in galaxies contributing to the Cosmic X-ray Background.
Accreting Binary Populations in the Earlier Universe
NASA Technical Reports Server (NTRS)
Hornschemeier, Ann
2010-01-01
It is now understood that X-ray binaries dominate the hard X-ray emission from normal star-forming galaxies. Thanks to the deepest (2-4 Ms) Chandra surveys, such galaxies are now being studied in X-rays out to z approximates 4. Interesting X-ray stacking results (based on 30+ galaxies per redshift bin) suggest that the mean rest-frame 2-10 keV luminosity from z=3-4 Lyman break galaxies (LBGs), is comparable to the most powerful starburst galaxies in the local Universe. This result possibly indicates a similar production mechanism for accreting binaries over large cosmological timescales. To understand and constrain better the production of X-ray binaries in high-redshift LBGs, we have utilized XMM-Newton observations of a small sample of z approximates 0.1 GALEX-selected Ultraviolet-Luminous Galaxies (UVLGs); local analogs to high-redshift LBGs. Our observations enable us to study the X-ray emission from LBG-like galaxies on an individual basis, thus allowing us to constrain object-to-object variances in this population. We supplement these results with X-ray stacking constraints using the new 3.2 Ms Chandra Deep Field-South (completed spring 2010) and LBG candidates selected from HST, Swift UVOT, and ground-based data. These measurements provide new X-ray constraints that sample well the entire z=0-4 baseline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roman-Duval, Julia; Gordon, Karl D.; Meixner, Margaret
2014-12-20
The spatial variations of the gas-to-dust ratio (GDR) provide constraints on the chemical evolution and lifecycle of dust in galaxies. We examine the relation between dust and gas at 10-50 pc resolution in the Large and Small Magellanic Clouds (LMC and SMC) based on Herschel far-infrared (FIR), H I 21 cm, CO, and Hα observations. In the diffuse atomic interstellar medium (ISM), we derive the GDR as the slope of the dust-gas relation and find GDRs of 380{sub −130}{sup +250} ± 3 in the LMC, and 1200{sub −420}{sup +1600} ± 120 in the SMC, not including helium. The atomic-to-molecular transition is locatedmore » at dust surface densities of 0.05 M {sub ☉} pc{sup –2} in the LMC and 0.03 M {sub ☉} pc{sup –2} in the SMC, corresponding to A {sub V} ∼ 0.4 and 0.2, respectively. We investigate the range of CO-to-H{sub 2} conversion factor to best account for all the molecular gas in the beam of the observations, and find upper limits on X {sub CO} to be 6 × 10{sup 20} cm{sup –2} K{sup –1} km{sup –1} s in the LMC (Z = 0.5 Z {sub ☉}) at 15 pc resolution, and 4 × 10{sup 21} cm{sup –2} K{sup –1} km{sup –1} s in the SMC (Z = 0.2 Z {sub ☉}) at 45 pc resolution. In the LMC, the slope of the dust-gas relation in the dense ISM is lower than in the diffuse ISM by a factor ∼2, even after accounting for the effects of CO-dark H{sub 2} in the translucent envelopes of molecular clouds. Coagulation of dust grains and the subsequent dust emissivity increase in molecular clouds, and/or accretion of gas-phase metals onto dust grains, and the subsequent dust abundance (dust-to-gas ratio) increase in molecular clouds could explain the observations. In the SMC, variations in the dust-gas slope caused by coagulation or accretion are degenerate with the effects of CO-dark H{sub 2}. Within the expected 5-20 times Galactic X {sub CO} range, the dust-gas slope can be either constant or decrease by a factor of several across ISM phases. Further modeling and observations are required to break the degeneracy between dust grain coagulation, accretion, and CO-dark H{sub 2}. Our analysis demonstrates that obtaining robust ISM masses remains a non-trivial endeavor even in the local Universe using state-of-the-art maps of thermal dust emission.« less
NASA Astrophysics Data System (ADS)
Wagner-Kaiser, R.; Mackey, Dougal; Sarajedini, Ata; Chaboyer, Brian; Cohen, Roger E.; Yang, Soung-Chul; Cummings, Jeffrey D.; Geisler, Doug; Grocholski, Aaron J.
2017-11-01
We analyse Hubble Space Telescope observations of six globular clusters in the Large Magellanic Cloud (LMC) from programme GO-14164 in Cycle 23. These are the deepest available observations of the LMC globular cluster population; their uniformity facilitates a precise comparison with globular clusters in the Milky Way. Measuring the magnitude of the main-sequence turn-off point relative to template Galactic globular clusters allows the relative ages of the clusters to be determined with a mean precision of 8.4 per cent, and down to 6 per cent for individual objects. We find that the mean age of our LMC cluster ensemble is identical to the mean age of the oldest metal-poor clusters in the Milky Way halo to 0.2 ± 0.4 Gyr. This provides the most sensitive test to date of the synchronicity of the earliest epoch of globular cluster formation in two independent galaxies. Horizontal branch magnitudes and subdwarf fitting to the main sequence allow us to determine distance estimates for each cluster and examine their geometric distribution in the LMC. Using two different methods, we find an average distance to the LMC of 18.52 ± 0.05.
Proper motion separation of Be stars in the Milky Way and the Magellanic Clouds
NASA Astrophysics Data System (ADS)
Vieira, K.; García, A.; Sabogal, B.
2018-01-01
We present a proper motion investigation of a sample of Be stars candidates towards the Large Magellanic Cloud (LMC), which has resulted in the identification of two separate populations, in the Galactic foreground and in the Magellanic background. OGLE BVI and 2MASS JHK photometry were used with the SPM4 proper motions to discriminate the different populations located towards the LMC. Two populations with distinctive infrared colours and noticeable different kinematics were found, the bluer sample is consistent with being in the LMC and the redder one with belonging to the Milky Way (MW) disk. This settles the nature of the redder sample which had been described in previous publications as a possible unknown subclass of stars among the Be candidates in the LMC.
A field investigation of concrete overlays containing latex, silica fume, or Pyrament cement.
DOT National Transportation Integrated Search
1996-01-01
This study evaluated latex-modified concretes (LMC) and concretes containing silica fume (SFC) or Pyrament-blended cement (PBCC) in bridge deck overlays in the field. The condition of the overlays was monitored for 4 years. LMC and SFC were placed in...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geller, Aaron M.; Grijs, Richard de; Li, Chengyuan
2015-05-20
The two Large Magellanic Cloud star clusters, NGC 1805 and NGC 1818, are approximately the same chronological age (∼30 Myr), but show different radial trends in binary frequency. The F-type stars (1.3–2.2 M{sub ⊙}) in NGC 1818 have a binary frequency that decreases toward the core, while the binary frequency for stars of similar mass in NGC 1805 is flat with radius, or perhaps bimodal (with a peak in the core). We show here, through detailed N-body modeling, that both clusters could have formed with the same primordial binary frequency and with binary orbital elements and masses drawn from themore » same distributions (defined from observations of open clusters and the field of our Galaxy). The observed radial trends in binary frequency for both clusters are best matched with models that have initial substructure. Furthermore, both clusters may be evolving along a very similar dynamical sequence, with the key difference that NGC 1805 is dynamically older than NGC 1818. The F-type binaries in NGC 1818 still show evidence of an initial period of rapid dynamical disruptions (which occur preferentially in the core), while NGC 1805 has already begun to recover a higher core binary frequency, owing to mass segregation (which will eventually produce a distribution in binary frequency that rises only toward the core, as is observed in old Milky Way star clusters). This recovery rate increases for higher-mass binaries, and therefore even at one age in one cluster, we predict a similar dynamical sequence in the radial distribution of the binary frequency as a function of binary primary mass.« less
NASA Technical Reports Server (NTRS)
Remillard, R. A.; Rosenthal, E.; Tuohy, I. R.; Schwartz, D. A.; Buckley, D. A. H.; Brissenden, R. J. V.
1992-01-01
The evolution of the emission-line Star S-154, between February and December 1988, from a low-excitation 'Fe II star' into a high-excitation state that resembles symbiotic stars, is traced. It is inferred that the spectral type of central stars do not always dominate the physical conditions in the circumstellar material and thereby determine the nebular classification. The membership of S-154 in the LMC was confirmed with a radial velocity measurement of +274 km/s. The historical light curve (1880-1990) obtained from 346 photograph plates of the Harvard Plate Library exhibits about 4 mag of variations, with an MB range of -6 to -2. No evidence was found for coherent modulations that would represent the orbital period of a symbiotic binary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abadie, J.; Abbott, B. P.; Abbott, R.
We report the results of the first search for gravitational waves from compact binary coalescence using data from the Laser Interferometer Gravitational-Wave Observatory and Virgo detectors. Five months of data were collected during the Laser Interferometer Gravitational-Wave Observatory's S5 and Virgo's VSR1 science runs. The search focused on signals from binary mergers with a total mass between 2 and 35M{sub {center_dot}}. No gravitational waves are identified. The cumulative 90%-confidence upper limits on the rate of compact binary coalescence are calculated for nonspinning binary neutron stars, black hole-neutron star systems, and binary black holes to be 8.7x10{sup -3} yr{sup -1} L{submore » 10}{sup -1}, 2.2x10{sup -3} yr{sup -1} L{sub 10}{sup -1}, and 4.4x10{sup -4} yr{sup -1} L{sub 10}{sup -1}, respectively, where L{sub 10} is 10{sup 10} times the blue solar luminosity. These upper limits are compared with astrophysical expectations.« less
Paczyński; Pindor
2000-04-20
We selected Cepheids from the Optical Gravitational Lensing Experiment database for the Magellanic Clouds in the period range of 101.1=P=101.4 days. There were 33 objects in the LMC and 35 in the SMC. We find that the median amplitude of Cepheids in the LMC is 18% larger than in the SMC, a 4 sigma effect. For a sample of 42 galactic Cepheids in the same period range, the median amplitude is 7% larger than in the LMC, suggesting that the higher the metal content the larger the amplitude. This implies that the period-flux amplitude relation is not universal and cannot be used to measure distances accurately, unless properly calibrated.
Evolution of LMC/M33-mass dwarf galaxies in the EAGLE simulation
NASA Astrophysics Data System (ADS)
Shao, Shi; Cautun, Marius; Deason, Alis J.; Frenk, Carlos S.; Theuns, Tom
2018-06-01
We investigate the population of dwarf galaxies with stellar masses similar to the Large Magellanic Cloud (LMC) and M33 in the EAGLE galaxy formation simulation. In the field, galaxies reside in haloes with stellar-to-halo mass ratios of 1.03^{+0.50}_{-0.31}× 10^{-2} (68% confidence level); systems like the LMC, which have an SMC-mass satellite, reside in haloes about 1.3 times more massive, which suggests an LMC halo mass at infall, M_{200}=3.4^{+1.8}_{-1.2}× 10^{11}{ M_⊙ } (68% confidence level). The colour distribution of dwarfs is bimodal, with the red galaxies (g - r > 0.6) being mostly satellites. The fraction of red LMC-mass dwarfs is 15% for centrals, and for satellites this fraction increases rapidly with host mass: from 10% for satellites of Milky Way (MW)-mass haloes to nearly 90% for satellites of groups and clusters. The quenching timescale, defined as the time after infall when half of the satellites have acquired red colours, decreases with host mass from >5 Gyrs for MW-mass hosts to 2.5 Gyrs for cluster mass hosts. The satellites of MW-mass haloes have higher star formation rates and bluer colours than field galaxies. This is due to enhanced star formation triggered by gas compression shortly after accretion. Both the LMC and M33 have enhanced recent star formation that could be a manifestation of this process. After infall into their MW-mass hosts, the g - r colours of LMC-mass dwarfs become bluer for the first 2 Gyrs, after which they rapidly redden. LMC-mass dwarfs fell into their MW-mass hosts only relatively recently, with more than half having an infall time of less than 3.5 Gyrs.
Measuring the Outflows from Massive Young Stellar Objects in the Large Magellanic Cloud (LMC)
NASA Astrophysics Data System (ADS)
Meixner, Margaret
2015-10-01
The formation of massive stars has been difficult to study because they evolve quickly and evolutionary phases are short-lived. Using the GREAT instrument, we propose to measure the molecular gas outflows in 4 massive young stellar objects (YSOs) that we discovered in the Large Magellanic Cloud (LMC) with our Herschel and Spitzer surveys. We have in hand ALMA observations of the CO J=2-1 for all 4 targets. Three of these YSOs mark active young star formation sites in N159W that is the most intense and concentrated molecular cloud in the LMC. The fourth YSO, located in N79, is the most massive/luminous YSO in the LMC. One of the N159W YSOs has been detected with an outflow in the CO J=2-1 line. We will observe the CO J=11-10 line in these 4 YSOs because the shock excited outflows are very bright in this line and it can be used to quantify the mass loss rate. We will also map the most massive YSO in the [CII] 158 micron line to probe the physical conditions of the region.
NASA Technical Reports Server (NTRS)
Hughes, John P.
1999-01-01
We present our first results from a study of the supernova remnants (SNRs) in the Large Magellanic Cloud (LMC) using data from ASCA. The three remnants we have analyzed to date, 0509-67.5, 0519-69.0, and N103B, are among the smallest, and presumably also the youngest, in the Cloud. The X-ray spectra of these SNRs show strong K(alpha) emission lines of silicon, sulfur, argon, and calcium with no evidence for corresponding lines of oxygen, neon, or magnesium. The dominant feature in the spectra is a broad blend of emission lines around 1 keV which we attribute to L-shell emission lines of iron. Model calculations (Nomoto, Thielemann, & Yokoi 1984) show that the major products of nucleosynthesis in Type Ia supernovae (SNs) are the elements from silicon to iron, as observed here. The calculated nucleosynthetic yields from Type Ib and II SNs are shown to be qualitatively inconsistent with the data. We conclude that the SNs which produced these remnants were of Type Ia. This finding also confirms earlier suggestions that the class of Balmer-dominated remnants arise from Type Ia SN explosions. Based an these early results from the LMC SNR sample, we find that roughly one-half of the SNRs produced in the LMC within the last approximately 1500 yr came from Type Ia SNs.
Near-Field Cosmology with Resolved Stellar Populations Around Local Volume LMC Stellar-Mass Galaxies
NASA Astrophysics Data System (ADS)
Carlin, Jeffrey L.; Sand, David J.; Willman, Beth; Brodie, Jean P.; Crnojevic, Denija; Forbes, Duncan; Hargis, Jonathan R.; Peter, Annika; Pucha, Ragadeepika; Romanowsky, Aaron J.; Spekkens, Kristine; Strader, Jay
2018-06-01
We discuss our ongoing observational program to comprehensively map the entire virial volumes of roughly LMC stellar mass galaxies at distances of ~2-4 Mpc. The MADCASH (Magellanic Analog Dwarf Companions And Stellar Halos) survey will deliver the first census of the dwarf satellite populations and stellar halo properties within LMC-like environments in the Local Volume. Our results will inform our understanding of the recent DES discoveries of dwarf satellites tentatively affiliated with the LMC/SMC system. This program has already yielded the discovery of the faintest known dwarf galaxy satellite of an LMC stellar-mass host beyond the Local Group, based on deep Subaru+HyperSuprimeCam imaging reaching ~2 magnitudes below its TRGB, and at least two additional candidate satellites. We will summarize the survey results and status to date, highlighting some challenges encountered and lessons learned as we process the data for this program through a prototype LSST pipeline. Our program will examine whether LMC stellar mass dwarfs have extended stellar halos, allowing us to assess the relative contributions of in-situ stars vs. merger debris to their stellar populations and halo density profiles. We outline the constraints on galaxy formation models that will be provided by our observations of low-mass galaxy halos and their satellites.
Modeling and Observations of Massive Binaries with the B[e] Phenomenon
NASA Astrophysics Data System (ADS)
Lobel, A.; Martayan, C.; Mehner, A.; Groh, J. H.
2017-02-01
We report a long-term high-resolution spectroscopic monitoring program of LBVs and candidate LBVs with Mercator-HERMES. Based on 7 years of data, we recently showed that supergiant MWC 314 is a (Galactic) semi-detached eccentric binary with stationary permitted and forbidden emission lines in the optical and near-IR region. MWC 314 is a luminous and massive probable LBV star showing a strongly orbitally-modulated wind variability. We observe discrete absorption components in P Cyg He I lines signaling large-scale wind structures. In 2014 XMM observed X-rays indicating strong wind-wind collision in the close binary system (a ≃1 AU). A VLT-NACO imaging survey recently revealed that MWC 314 is a triple hierarchical system. We present a 3-D non-LTE radiative transfer model of the extended asymmetric wind structure around the primary B0 supergiant for modeling the orbital variability of P Cyg absorption (v∞˜1200 km s-1) in He I lines. An analysis of the HERMES monitoring spectra of the Galactic LBV star MWC 930 however does not show clear indications of a spectroscopic binary. The detailed long-term spectroscopic variability of this massive B[e] star is very similar to the spectroscopic variability of the prototypical blue hypergiant S Dor in the LMC. We observe prominent P Cyg line shapes in MWC 930 that temporarily transform into split absorption line cores during variability phases of its S Dor cycle over the past decade with a brightening in V of ˜ 1.2 mag. The line splitting phenomenon is very similar to the split metal line cores observed in pulsating Yellow Hypergiants ρ Cas (F-K Ia+) and HR 8752 (A-K Ia+) with [Ca II] and [N II] emission lines. We propose the line core splitting in MWC 930 is due to optically thick central line emission produced in the inner ionized wind region becoming mechanically shock-excited with the increase of R* and decrease of Teff of the LBV.
NASA Astrophysics Data System (ADS)
Zinnecker, Hans
We review the multiplicity of massive stars by compiling the abstracts of the most relevant papers in the field. We start by discussing the massive stars in the Orion Trapezium Cluster and in other Galactic young clusters and OB associations, and end with the R136 cluster in the LMC. The multiplicity of field O-stars and runaway OB stars is also reviewed. The results of both visual and spectroscopic surveys are presented, as well as data for eclipsing systems. Among the latter, we find the most massive known binary system WR20a, with two ~,80M_⊙ components in a 3 day orbit. Some 80% of the wide visual binaries in stellar associations are in fact hierarchical triple systems, where typically the more massive of the binary components is itself a spectroscopic or even eclipsing binary pair. The multiplicity (number of companions) of massive star primaries is significantly higher than for low-mass solar-type primaries or for young low-mass T Tauri stars. There is also a striking preponderance of very close nearly equal mass binary systems (the origin of which has recently been explained in an accretion scenario). Finally, we offer a new idea as to the origin of massive Trapezium systems, frequently found in the centers of dense young clusters.
An Ultra-faint Galaxy Candidate Discovered in Early Data from the Magellanic Satellites Survey
NASA Astrophysics Data System (ADS)
Drlica-Wagner, A.; Bechtol, K.; Allam, S.; Tucker, D. L.; Gruendl, R. A.; Johnson, M. D.; Walker, A. R.; James, D. J.; Nidever, D. L.; Olsen, K. A. G.; Wechsler, R. H.; Cioni, M. R. L.; Conn, B. C.; Kuehn, K.; Li, T. S.; Mao, Y.-Y.; Martin, N. F.; Neilsen, E.; Noel, N. E. D.; Pieres, A.; Simon, J. D.; Stringfellow, G. S.; van der Marel, R. P.; Yanny, B.
2016-12-01
We report a new ultra-faint stellar system found in Dark Energy Camera data from the first observing run of the Magellanic Satellites Survey (MagLiteS). MagLiteS J0644-5953 (Pictor II or Pic II) is a low surface brightness (μ ={28.5}-1+1 {mag} {arcsec}{}-2 within its half-light radius) resolved overdensity of old and metal-poor stars located at a heliocentric distance of {45}-4+5 {kpc}. The physical size ({r}1/2={46}-11+15 {pc} ) and low luminosity ({M}V=-{3.2}-0.5+0.4 {mag} ) of this satellite are consistent with the locus of spectroscopically confirmed ultra-faint galaxies. MagLiteS J0644-5953 (Pic II) is located {11.3}-0.9+3.1 {kpc} from the Large Magellanic Cloud (LMC), and comparisons with simulation results in the literature suggest that this satellite was likely accreted with the LMC. The close proximity of MagLiteS J0644-5953 (Pic II) to the LMC also makes it the most likely ultra-faint galaxy candidate to still be gravitationally bound to the LMC.
NASA Technical Reports Server (NTRS)
Enoto, Teruaki; Sasano, Makoto; Yamada, Shin'Ya; Tamagawa, Toru; Makishima, Kazuo; Pottschmidt, Katja; Marcu, Diana; Corbet, Robin H. D.; Fuerst, Felix; Wilms, Jorn
2014-01-01
The symbiotic X-ray binary (SyXB) 4U 1954+319 is a rare system hosting a peculiar neutron star (NS) and an M-type optical companion. Its approx. 5.4 hr NS spin period is the longest among all known accretion-powered pulsars and exhibited large (is approx. 7%) fluctuations over 8 yr. A spin trend transition was detected with Swift/BAT around an X-ray brightening in 2012. The source was in quiescent and bright states before and after this outburst based on 60 ks Suzaku observations in 2011 and 2012. The observed continuum is well described by a Comptonized model with the addition of a narrow 6.4 keV Fe-K alpha line during the outburst. Spectral similarities to slowly rotating pulsars in high-mass X-ray binaries, its high pulsed fraction (approx. 60%-80%), and the location in the Corbet diagram favor high B-field (approx. greater than 10(exp12) G) over a weak field as in low-mass X-ray binaries. The observed low X-ray luminosity (10(exp33)-10(exp35) erg s(exp-1)), probable wide orbit, and a slow stellar wind of this SyXB make quasi-spherical accretion in the subsonic settling regime a plausible model. Assuming a approx. 10(exp13) G NS, this scheme can explain the approx. 5.4 hr equilibrium rotation without employing the magnetar-like field (approx. 10(exp16) G) required in the disk accretion case. The timescales of multiple irregular flares (approx. 50 s) can also be attributed to the free-fall time from the Alfv´en shell for a approx. 10(exp13) G field. A physical interpretation of SyXBs beyond the canonical binary classifications is discussed.
Shen, Jian-Bing; Shutt, Robin; Agosto, Mariela; Pappano, Achilles; Liang, Bruce T
2009-04-01
Binary cardiac transgenic (Tg) overexpression of P2X(4) receptors (P2X(4)R) improved the survival of the cardiomyopathic calsequestrin (CSQ) mice. Here we studied the mechanism of rescue using binary P2X(4)R/CSQ Tg and CSQ Tg mice as models. Cellular and intact heart properties were determined by simultaneous sarcomere shortening (SS) and Ca(2+) transients in vitro and echocardiography in vivo. Similar to a delay in death, binary mice exhibited a slowed heart failure progression with a greater left ventricular (LV) fractional shortening (FS) and thickness and a concomitant lesser degree of LV dilatation in both systole and diastole at 8 or 12 wk. By 16 wk, binary hearts showed similarly depressed FS and thinned out LV and equal enlargement of LV as did 12-wk-old CSQ hearts. Binary cardiac myocytes showed higher peak basal cell shortening (CS) and SS as well as greater basal rates of shortening and relaxation than did the CSQ myocytes at either 8 or 12 wk. Similar data were obtained in comparing the Ca(2+) transient. At 16 wk, binary myocytes were like the 12-wk-old CSQ myocytes with equally depressed CS, SS, and Ca(2+) transient. CSQ myocytes were longer than myocytes from wild-type and binary mice at 12 wk of age. At 16 wk, the binary myocyte length increased to that of the 12-wk-old CSQ myocyte, parallel to LV dilatation. The data suggest a unique mechanism, which involves a reversal of cardiac myocyte dysfunction and a delay in heart failure progression. It represents an example of targeting the abnormal failing myocyte in treating heart failure.
VizieR Online Data Catalog: Spitzer/IRS obs. of Magellanic carbon stars (Sloan+, 2016)
NASA Astrophysics Data System (ADS)
Sloan, G. C.; Kraemer, K. E.; McDonald, I.; Groenewegen, M. A. T.; Wood, P. R.; Zijlstra, A. A.; Lagadec, E.; Boyer, M. L.; Kemper, F.; Matsuura, M.; Sahai, R.; Sargent, B. A.; Srinivasan, S.; van Loon, J. T.; Volk, K.
2016-09-01
Table 1 lists the 144 objects in the LMC and 40 in the SMC observed with the IRS (spectral coverage at 5-14um and 14-37um, respectively, with a resolution R~80-120) and identified as carbon stars. A variety of Spitzer observing programs contributed to the present sample of carbon stars (see Note 2 in table 1). We adopt distance moduli for the LMC and SMC of 18.5 and 18.9, respectively. For all of our targets, we have constructed SEDs based on multi-epoch photometry in the optical, near-IR, and mid-IR from several surveys. The mid-IR data come from the SAGE survey of the LMC (Meixner et al. 2006, J/AJ/132/2268) and the SAGE-SMC survey for the SMC (Gordon et al. 2011AJ....142..102G)). The SAGE-VAR survey adds four epochs from the Warm Spitzer Mission at 3.6 and 4.5um for portions of the LMC and SMC (Riebel et al. 2015ApJ...807....1R). We also used additional epochs at 3.4 and 4.6um from the Wide-field Infrared Survey Experiment (WISE; Wright et al. 2010AJ....140.1868W) and the NEOWISE reactivation mission (Mainzer et al. 2014ApJ...792...30M). Near-IR photometry comes from the 2MASS survey, and the deeper 2MASS-6X survey provides a second epoch at J, H, and Ks (Cutri et al. 2012, II/281; Skrutskie et al. 2006, VII/233). Additional epochs come from the Deep Near-IR Survey of the Southern Sky (DENIS) at J and Ks (Cioni et al. 2000, II/228) and the IR Survey Facility (IRSF) at J, H, and Ks (Kato et al. 2007, II/288). In the optical, we relied on the Magellanic Clouds Photometric Survey (MCPS) at U, B, V, and I (Zaritsky et al. 2002, J/AJ/123/855; 2004, J/AJ/128/1606). DENIS adds data at I. Additional mean magnitudes at V and I in the LMC come from the OGLE-III Shallow Survey (Ulaczyk et al. 2013, J/AcA/63/1). Where possible, we replaced the V and I data with mean magnitudes from the OGLE-III surveys of the Magellanic Clouds, which also give pulsation periods and amplitudes (Soszynski et al. 2009, J/AcA/59/335; 2011, J/AcA/61/217). We also consider a Galactic control sample using spectra from the Short-Wavelength Spectrometer (SWS) on the Infrared Space Observatory (ISO); see section 2.5. (7 data files).
Star cluster formation history along the minor axis of the Large Magellanic Cloud
NASA Astrophysics Data System (ADS)
Piatti, Andrés E.; Cole, Andrew A.; Emptage, Bryn
2018-01-01
We analysed Washington CMT1 photometry of star clusters located along the minor axis of the Large Magellanic Cloud (LMC), from the LMC optical centre up to ∼39° outwards to the North-West. The data base was exploited in order to search for new star cluster candidates, to produce cluster CMDs cleaned from field star contamination and to derive age estimates for a statistically complete cluster sample. We confirmed that 146 star cluster candidates are genuine physical systems, and concluded that an overall ∼30 per cent of catalogued clusters in the surveyed regions are unlikely to be true physical systems. We did not find any new cluster candidates in the outskirts of the LMC (deprojected distance ≳ 8°). The derived ages of the studied clusters are in the range 7.2 < log(t yr-1) ≤ 9.4, with the sole exception of the globular cluster NGC 1786 (log(t yr-1) = 10.10). We also calculated the cluster frequency for each region, from which we confirmed previously proposed outside-in formation scenarios. In addition, we found that the outer LMC fields show a sudden episode of cluster formation (log(t yr-1) ∼7.8-7.9) which continued until log(t yr-1) ∼7.3 only in the outermost LMC region. We link these features to the first pericentre passage of the LMC to the Milky Way (MW), which could have triggered cluster formation due to ram pressure interaction between the LMC and MW halo.
Iosa, Marco; Morone, Giovanni; Fusco, Augusto; Castagnoli, Marcello; Fusco, Francesca Romana; Pratesi, Luca; Paolucci, Stefano
2015-08-01
The leap motion controller (LMC) is a new optoelectronic system for capturing motion of both hands and controlling a virtual environment. Differently from previous devices, it optoelectronically tracks the fine movements of fingers neither using glows nor markers. This pilot study explored the feasibility of adapting the LMC, developed for videogames, to neurorehabilitation of elderly with subacute stroke. Four elderly patients (71.50 ± 4.51 years old) affected by stroke in subacute phase were enrolled and tested in a cross-over pilot trial in which six sessions of 30 minutes of LMC videogame-based therapy were added on conventional therapy. Measurements involved participation to the sessions, evaluated by means of the Pittsburgh Rehabilitation Participation Scale, hand ability and grasp force evaluated respectively by means of the Abilhand Scale and by means of the dynamometer. Neither adverse effects nor spasticity increments were observed during LMC training. Participation to the sessions was excellent in three patients and very good in one patient during the LMC trial. In this period, patients showed a significantly higher improvement in hand abilities (P = 0.028) and grasp force (P = 0.006). This feasibility pilot study was the first one using leap motion controller for conducting a videogame-based therapy. This study provided a proof of concept that LMC can be a suitable tool even for elderly patients with subacute stroke. LMC training was in fact performed with a high level of active participation, without adverse effects, and contributed to increase the recovery of hand abilities.
X1908+075: An X-Ray Binary with a 4.4 Day Period
NASA Astrophysics Data System (ADS)
Wen, Linqing; Remillard, Ronald A.; Bradt, Hale V.
2000-04-01
X1908+075 is an optically unidentified and highly absorbed X-ray source that appeared in early surveys such as Uhuru, OSO 7, Ariel 5, HEAO-1, and the EXOSAT Galactic Plane Survey. These surveys measured a source intensity in the range 2-12 mcrab at 2-10 keV, and the position was localized to ~0.5d. We use the Rossi X-Ray Timing Explorer (RXTE) All-Sky Monitor (ASM) to confirm our expectation that a particular Einstein/IPC detection (1E 1908.4+0730) provides the correct position for X1908+075. The analysis of the coded mask shadows from the ASM for the position of 1E 1908.4+0730 yields a persistent intensity ~8 mcrab (1.5-12 keV) over a 3 yr interval beginning in 1996 February. Furthermore, we detect a period of 4.400+/-0.001 days with a false-alarm probability less than 10-7. The folded light curve is roughly sinusoidal, with an amplitude that is 26% of the mean flux. The X-ray period may be attributed to the scattering and absorption of X-rays through a stellar wind combined with the orbital motion in a binary system. We suggest that X1908+075 is an X-ray binary with a high-mass companion star.
Geometry of the Large Magellanic Cloud Using Multi- wavelength Photometry of Classical Cepheids
NASA Astrophysics Data System (ADS)
Deb, Sukanta; Ngeow, Chow-Choong; Kanbur, Shashi M.; Singh, Harinder P.; Wysocki, Daniel; Kumar, Subhash
2018-05-01
We determine the geometrical and viewing angle parameters of the Large Magellanic Cloud (LMC) using the Leavitt law based on a sample of more than 3500 common classical Cepheids (FU and FO) in optical (V, I), near-infrared (JHKs) and mid-infrared ([3.6] μm and [4.5] μm) photometric bands. Statistical reddening and distance modulus free from the effect of reddening to each of the individual Cepheids are obtained using the simultaneous multi-band fit to the apparent distance moduli from the analysis of the resulting Leavitt laws in these seven photometric bands. A reddening map of the LMC obtained from the analysis shows good agreement with the other maps available in the literature. Extinction free distance measurements along with the information of the equatorial coordinates (α, δ) for individual stars are used to obtain the corresponding Cartesian coordinates with respect to the plane of the sky. By fitting a plane solution of the form z = f(x, y) to the observed three dimensional distribution, the following viewing angle parameters of the LMC are obtained: inclination angle i = 25°.110 ± 0°.365, position angle of line of nodes θlon = 154°.702 ± 1°.378. On the other hand, modelling the observed three dimensional distribution of the Cepheids as a triaxial ellipsoid, the following values of the geometrical axes ratios of the LMC are obtained: 1.000 ± 0.003: 1.151 ± 0.003: 1.890 ± 0.014 with the viewing angle parameters: inclination angle of i = 11°.920 ± 0°.315 with respect to the longest axis from the line of sight and position angle of line of nodes θlon = 128°.871 ± 0°.569. The position angles are measured eastwards from north.
A neural net based architecture for the segmentation of mixed gray-level and binary pictures
NASA Technical Reports Server (NTRS)
Tabatabai, Ali; Troudet, Terry P.
1991-01-01
A neural-net-based architecture is proposed to perform segmentation in real time for mixed gray-level and binary pictures. In this approach, the composite picture is divided into 16 x 16 pixel blocks, which are identified as character blocks or image blocks on the basis of a dichotomy measure computed by an adaptive 16 x 16 neural net. For compression purposes, each image block is further divided into 4 x 4 subblocks; a one-bit nonparametric quantizer is used to encode 16 x 16 character and 4 x 4 image blocks; and the binary map and quantizer levels are obtained through a neural net segmentor over each block. The efficiency of the neural segmentation in terms of computational speed, data compression, and quality of the compressed picture is demonstrated. The effect of weight quantization is also discussed. VLSI implementations of such adaptive neural nets in CMOS technology are described and simulated in real time for a maximum block size of 256 pixels.
The superslow pulsation X-ray pulsars in high mass X-ray binaries
NASA Astrophysics Data System (ADS)
Wang, Wei
2013-03-01
There exists a special class of X-ray pulsars that exhibit very slow pulsation of P spin > 1000 s in the high mass X-ray binaries (HMXBs). We have studied the temporal and spectral properties of these superslow pulsation neutron star binaries in hard X-ray bands with INTEGRAL observations. Long-term monitoring observations find spin period evolution of two sources: spin-down trend for 4U 2206+54 (P spin ~ 5560 s with Ṗ spin ~ 4.9 × 10-7 s s-1) and long-term spin-up trend for 2S 0114+65 (P spin ~ 9600 s with Ṗ spin ~ -1 × 10-6 s s-1) in the last 20 years. A Be X-ray transient, SXP 1062 (P spin ~ 1062 s), also showed a fast spin-down rate of Ṗ spin ~ 3 × 10-6 s s-1 during an outburst. These superslow pulsation neutron stars cannot be produced in the standard X-ray binary evolution model unless the neutron star has a much stronger surface magnetic field (B > 1014 G). The physical origin of the superslow spin period is still unclear. The possible origin and evolution channels of the superslow pulsation X-ray pulsars are discussed. Superslow pulsation X-ray pulsars could be younger X-ray binary systems, still in the fast evolution phase preceding the final equilibrium state. Alternatively, they could be a new class of neutron star system - accreting magnetars.
Infrared analysis of LMC superbubbles
NASA Technical Reports Server (NTRS)
Verter, Fran; Dwek, Eli
1990-01-01
Researchers are analyzing three superbubbles in the Large Magellanic Cloud (LMC), cataloged by Meaburn (1980) as LMC-1, LMC-4 (a.k.a. Shapley Constellation III), and LMC-5. Superbubbles are the largest infrared sources in the disks of external galaxies. Their expansion requires multiple supernovae from successive generations of star formation. In LMC superbubbles, the grains swept up by shocks and winds represent an interstellar medium (ISM) whose abundances are quite different from the Galaxy. By applying the Dwek (1986) grain model, we can derive the composition and size spectrum of the grains. The inputs to this model are the dust emission in the four Infrared Astronomy Satellite (IRAS) bands and the interstellar radiation field (ISRF) that provides the heating. The first step in the project is to derive the ISRF for star-forming regions on the periphery of superbubbles. Researchers are doing this by combining observations at several wavelengths to determine the energy budget of the region. They will use a UV image to trace the ionizing stellar radiation that escapes, an H alpha image to trace the ionizing stellar radiation that is absorbed by gas, and the four IRAS images to trace the stellar radiation, both ionizing and non-ionizing, that is absorbed by dust. This multi-wavelength approach has the advantages that we do not have to assume the shape of the IMF or the extinction of the source.
Burst Oscillation Periods from 4U 1636-53: A Constraint on the Binary Doppler Modulation
NASA Technical Reports Server (NTRS)
Giles, A. B.; Hill, K. M.; Strohmayer, T. E.; Cummings, N.; White, Nicholas E. (Technical Monitor)
2002-01-01
The burst oscillations seen during Type 1 X-ray bursts from low mass X-ray binaries (LMXB) typically evolve in period towards an asymptotic limit that likely reflects the spin of the underlying neutron star. If the underlying period is stable enough, measurement of it at different orbital phases may allow a detection of the Doppler modulation caused by the motion of the neutron star with respect to the center of mass of the binary system. Testing this hypothesis requires enough X-ray bursts and an accurate optical ephemeris to determine the binary phases at which they occurred. We present here a study of the distribution of asymptotic burst oscillation periods for a sample of 26 bursts from 4U 1636-53 observed with the Rossi X-ray Timing Explorer (RXTE). The burst sample includes both archival and proprietary data and spans more than 4.5 years. We also present new optical light curves of V801 Arae, the optical counterpart of 4U 1636-53, obtained during 1998-2001. We use these optical data to refine the binary period measured by Augusteijn et al. to 3.7931206(152) hours. We show that a subset of approx. 70% of the bursts form a tightly clustered distribution of asymptotic periods consistent with a period stability of approx. 1 x 10(exp -4). The tightness of this distribution, made up of bursts spanning more than 4 years in time, suggests that the underlying period is highly stable, with a time to change the period of approx. 3 x 10(exp 4) yr. This is comparable to similar numbers derived for X-ray pulsars. We investigate the period and orbital phase data for our burst sample and show that it is consistent with binary motion of the neutron star with v(sub ns) sin i < 38 and 50 km/s at 90 and 99% confidence, respectively. We use this limit as well as previous radial velocity data to constrain the binary geometry and component masses in 4U 1636-53. Our results suggest that unless the neutron star is significantly more massive than 1.4 solar masses the secondary is unlikely to have a mass as large as 0.36 solar masses, the mass estimated assuming it is a main sequence star which fills its Roche lobe. We show that a factor of 3 increase in the number of bursts with asymptotic period measurements should allow a detection of the neutron star velocity.
The Catalina Surveys Southern periodic variable star catalogue
NASA Astrophysics Data System (ADS)
Drake, A. J.; Djorgovski, S. G.; Catelan, M.; Graham, M. J.; Mahabal, A. A.; Larson, S.; Christensen, E.; Torrealba, G.; Beshore, E.; McNaught, R. H.; Garradd, G.; Belokurov, V.; Koposov, S. E.
2017-08-01
Here, we present the results from our analysis of 6 yr of optical photometry taken by the Siding Spring Survey (SSS). This completes a search for periodic variable stars within the 30 000 deg2 of the sky covered by the Catalina Surveys. The current analysis covers 81 million sources with declinations between -20° and -75° with median magnitudes in the range 11 < V < 19.5. We find approximately 34 000 new periodic variable stars in addition to the ˜9000 RR Lyrae that we previously discovered in SSS data. This brings the total number of periodic variables identified in Catalina data to ˜110 000. The new SSS periodic variable stars mainly consist of eclipsing binaries, RR Lyrae, LPVs, RS CVn stars, δ Scutis, and Anomalous Cepheids. By cross-matching these variable stars with those from prior surveys, we find that ˜90 per cent of the sources are new discoveries and recover ˜95 per cent of the known periodic variables in the survey region. For the known sources, we find excellent agreement between our catalogue and prior values of luminosity, period, and amplitude. However, we find many variable stars that had previously been misclassified. Examining the distribution of RR Lyrae, we find a population associated with the Large Magellanic Cloud (LMC) that extends more than 20° from its centre confirming recent evidence for the existence of a very extended stellar halo in the LMC. By combining SSS photometry with Dark Energy Survey data, we identify additional LMC halo RR Lyrae, thus confirming the significance of the population.
VizieR Online Data Catalog: LMC NIR survey. IV. Type II Cepheid variables (Bhardwaj+, 2017)
NASA Astrophysics Data System (ADS)
Bhardwaj, A.; Macri, L. M.; Rejkuba, M.; Kanbur, S. M.; Ngeow, C.-C.; Singh, H. P.
2018-05-01
This paper is the fourth in a series of articles based on observations obtained by the Large Magellanic Cloud Near-infrared Synoptic Survey (LMCNISS; Macri et al. 2015, J/AJ/149/117, hereafter Paper I). In Paper I we carried out a time-series survey of 18 deg2 in the central region of the LMC at JHKs wavelengths using the 1.5 m telescope at the Cerro Tololo Inter-American Observatory and the CPAPIR camera. Observations were carried out in queue mode by the SMARTS consortium during 32 nights from 2006 November to 2007 November. The survey products include measurements for more than 3.5x106 sources, including ~1500 Classical Cepheids. We cross-matched the LMCNISS catalog (Paper I) against OGLE-III (Soszynski et al. 2008, J/AcA/58/293) and identified 81 T2Cs with periods ranging from 1 to 68 days; 70 of these have JHKs measurements, while the remaining 11 only have data in J and/or H band. The sample consists of 16 BLH, 31 WVI, 12 PWV, and 22 RVT stars. (4 data files).
High-velocity gas toward the LMC resides in the Milky Way halo
NASA Astrophysics Data System (ADS)
Richter, P.; de Boer, K. S.; Werner, K.; Rauch, T.
2015-12-01
Aims: To explore the origin of high-velocity gas in the direction of the Large Magellanic Cloud, (LMC) we analyze absorption lines in the ultraviolet spectrum of a Galactic halo star that is located in front of the LMC at d = 9.2+4.1-7.2 kpc distance. Methods: We study the velocity-component structure of low and intermediate metal ions (C ii, Si ii, Si iii) in the spectrum of RX J0439.8-6809, as obtained with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope (HST), and measure equivalent widths and column densities for these ions. We supplement our COS data with a Far-Ultraviolet Spectroscopic Explorer (FUSE) spectrum of the nearby LMC star Sk -69 59 and with H i 21 cm data from the Leiden-Argentina-Bonn (LAB) survey. Results: Metal absorption toward RX J0439.8-6809 is unambiguously detected in three different velocity components near vLSR = 0, + 60, and + 150 km s-1. The presence of absorption proves that all three gas components are situated in front of the star, thus located in the disk and inner halo of the Milky Way. For the high-velocity cloud (HVC) at vLSR = + 150 km s-1, we derive an oxygen abundance of [O/H] =-0.63 (~0.2 solar) from the neighboring Sk -69 59 sight line, in accordance with previous abundance measurements for this HVC. From the observed kinematics we infer that the HVC hardly participates in the Galactic rotation. Conclusions: Our study shows that the HVC toward the LMC represents a Milky Way halo cloud that traces low column density gas with relatively low metallicity. We rule out scenarios in which the HVC represents material close to the LMC that stems from a LMC outflow.
NASA Astrophysics Data System (ADS)
Ribó, M.; Negueruela, I.; Blay, P.; Torrejón, J. M.; Reig, P.
2006-04-01
Massive X-ray binaries are usually classified by the properties of the donor star in classical, supergiant and Be X-ray binaries, the main difference being the mass transfer mechanism between the two components. The massive X-ray binary 4U 2206+54 does not fit in any of these groups, and deserves a detailed study to understand how the transfer of matter and the accretion on to the compact object take place. To this end we study an IUE spectrum of the donor and obtain a wind terminal velocity (v_∞) of ~350 km s-1, which is abnormally slow for its spectral type. We also analyse here more than 9 years of available RXTE/ASM data. We study the long-term X-ray variability of the source and find it to be similar to that observed in the wind-fed supergiant system Vela X-1, reinforcing the idea that 4U 2206+54 is also a wind-fed system. We find a quasi-period decreasing from ~270 to ~130 d, noticed in previous works but never studied in detail. We discuss possible scenarios for its origin and conclude that long-term quasi-periodic variations in the mass-loss rate of the primary are probably driving such variability in the measured X-ray flux. We obtain an improved orbital period of P_orb=9.5591±0.0007 d with maximum X-ray flux at MJD 51856.6±0.1. Our study of the orbital X-ray variability in the context of wind accretion suggests a moderate eccentricity around 0.15 for this binary system. Moreover, the low value of v_∞ solves the long-standing problem of the relatively high X-ray luminosity for the unevolved nature of the donor, BD +53°2790, which is probably an O9.5 V star. We note that changes in v_∞ and/or the mass-loss rate of the primary alone cannot explain the different patterns displayed by the orbital X-ray variability. We finally emphasize that 4U 2206+54, together with LS 5039, could be part of a new population of wind-fed HMXBs with main sequence donors, the natural progenitors of supergiant X-ray binaries.
An ultra-faint galaxy candidate discovered in early data from the Magellanic Satellites Survey
Drlica-Wagner, A.; Bechtol, Keith; Allam, S.; ...
2016-11-30
Here, we report a new ultra-faint stellar system found in Dark Energy Camera data from the first observing run of the Magellanic Satellites Survey (MagLiteS). MagLiteS J0644–5953 (Pictor II or Pic II) is a low surface brightness (more » $$\\mu ={28.5}_{-1}^{+1}\\,\\mathrm{mag}\\,\\,\\mathrm{arcsec}{}^{-2}$$ within its half-light radius) resolved overdensity of old and metal-poor stars located at a heliocentric distance of $${45}_{-4}^{+5}\\,\\mathrm{kpc}$$. The physical size ($${r}_{1/2}={46}_{-11}^{+15}\\,\\mathrm{pc}\\,$$) and low luminosity ($${M}_{V}=-{3.2}_{-0.5}^{+0.4}\\,\\mathrm{mag}\\,$$) of this satellite are consistent with the locus of spectroscopically confirmed ultra-faint galaxies. MagLiteS J0644–5953 (Pic II) is located $${11.3}_{-0.9}^{+3.1}\\,\\mathrm{kpc}\\,$$ from the Large Magellanic Cloud (LMC), and comparisons with simulation results in the literature suggest that this satellite was likely accreted with the LMC. The close proximity of MagLiteS J0644–5953 (Pic II) to the LMC also makes it the most likely ultra-faint galaxy candidate to still be gravitationally bound to the LMC.« less
An ultra-faint galaxy candidate discovered in early data from the Magellanic Satellites Survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drlica-Wagner, A.; Bechtol, Keith; Allam, S.
Here, we report a new ultra-faint stellar system found in Dark Energy Camera data from the first observing run of the Magellanic Satellites Survey (MagLiteS). MagLiteS J0644–5953 (Pictor II or Pic II) is a low surface brightness (more » $$\\mu ={28.5}_{-1}^{+1}\\,\\mathrm{mag}\\,\\,\\mathrm{arcsec}{}^{-2}$$ within its half-light radius) resolved overdensity of old and metal-poor stars located at a heliocentric distance of $${45}_{-4}^{+5}\\,\\mathrm{kpc}$$. The physical size ($${r}_{1/2}={46}_{-11}^{+15}\\,\\mathrm{pc}\\,$$) and low luminosity ($${M}_{V}=-{3.2}_{-0.5}^{+0.4}\\,\\mathrm{mag}\\,$$) of this satellite are consistent with the locus of spectroscopically confirmed ultra-faint galaxies. MagLiteS J0644–5953 (Pic II) is located $${11.3}_{-0.9}^{+3.1}\\,\\mathrm{kpc}\\,$$ from the Large Magellanic Cloud (LMC), and comparisons with simulation results in the literature suggest that this satellite was likely accreted with the LMC. The close proximity of MagLiteS J0644–5953 (Pic II) to the LMC also makes it the most likely ultra-faint galaxy candidate to still be gravitationally bound to the LMC.« less
A1540-53, an eclipsing X-ray binary pulsator
NASA Technical Reports Server (NTRS)
Becker, R. H.; Swank, J. H.; Boldt, E. A.; Holt, S. S.; Serlemitsos, P. J.; Pravdo, S. H.; Saba, J. R.
1977-01-01
An eclipsing X-ray binary pulsator consistent with the location of A1540-53 has been observed. The source pulse period was 528.93 + or - 0.10 s. The binary nature is confirmed by a Doppler curve for the pulsation period. The eclipse angle of 30.5 + or - 3 deg and the 4-hour transition to and from eclipse suggest an early-type giant or supergiant primary star.
NASA Astrophysics Data System (ADS)
Alcock, C.; Allsman, R. A.; Alves, D. R.; Axelrod, T. S.; Becker, A. C.; Bennett, D. P.; Bersier, D. F.; Cook, K. H.; Freeman, K. C.; Griest, K.; Guern, J. A.; Lehner, M.; Marshall, S. L.; Minniti, D.; Peterson, B. A.; Pratt, M. R.; Quinn, P. J.; Rodgers, A. W.; Stubbs, C. W.; Sutherland, W.; Tomaney, A.; Vandehei, T.; Welch, D. L.
1999-02-01
We present an analysis of the period distribution of about 1800 Cepheids in the LMC, based on data obtained by the MACHO microlensing experiment and on a previous catalog by C. H. Payne Gaposchkin. Using stellar evolution and pulsation models, we construct theoretical period-frequency distributions that are compared with the observations. These models reveal that a significant burst of star formation has occurred recently in the LMC (~1.15x10^8 yr). We also show that during the last ~10^8 yr, the main center of star formation has been propagating from southeast to northwest along the bar. We find that the evolutionary masses of Cepheids are still smaller than pulsation masses by ~7% and that the red edge of the Cepheid instability strip could be slightly bluer than indicated by theory. There are approximately 600 Cepheids with periods below ~2.5 days that cannot be explained by evolution theory. We suggest that they are anomalous Cepheids and that a number of these stars are double-mode Cepheids.
Substructures and Tidal Distortions in the Magellanic Stellar Periphery
NASA Astrophysics Data System (ADS)
Mackey, Dougal; Koposov, Sergey; Da Costa, Gary; Belokurov, Vasily; Erkal, Denis; Kuzma, Pete
2018-05-01
We use a new panoramic imaging survey conducted with the Dark Energy Camera to map the stellar fringes of the Large and Small Magellanic Clouds (LMC/SMC) to extremely low surface brightness V ≈ 32 mag arcsec‑2. Our results starkly illustrate the closely interacting nature of the LMC–SMC pair. We show that the outer LMC disk is strongly distorted, exhibiting an irregular shape, evidence for warping, and significant truncation on the side facing the SMC. Large diffuse stellar substructures are present both to the north and south of the LMC, and in the inter-Cloud region. At least one of these features appears as co-spatial with the bridge of RR Lyrae stars that connects the Clouds. The SMC is highly disturbed; we confirm the presence of tidal tails, as well as a large line-of-sight depth on the side closest to the LMC. Young, intermediate-age, and ancient stellar populations in the SMC exhibit strikingly different spatial distributions. In particular, those with ages ∼1.5–4 Gyr exhibit a spheroidal distribution with a centroid offset from that of the oldest stars by several degrees toward the LMC. We speculate that the gravitational influence of the LMC may already have been perturbing the gaseous component of the SMC several Gyr ago. With careful modeling, the variety of substructures and tidal distortions evident in the Magellanic periphery should tightly constrain the interaction history of the Clouds.
Gong, Lei; Xiong, Ming; Huang, Zhiyu; Miao, Lulu; Fan, Yun
2015-09-01
The incidence of leptomeningeal carcinomatosis (LMC) has increased in patients with metastatic non-small cell lung cancer (NSCLC). This study aimed to evaluate the effect of icotinib in the treatment of LMC. Twenty-one NSCLC patients diagnosed with LMC and treated with icotinib were retrospectively reviewed. An exon 21 point mutation and an exon 19 deletion of EGFR were found in 10 and 11 patients, respectively. A standard dose of icotinib (125 mg/day, three times a day) was prescribed to 16 patients without previous icotinib therapy. A double dose of icotinib was prescribed to five patients who developed LMC during icotinib therapy with a standard dose. Eighteen of 20 patients showed improvement of dizziness and headache. Seventeen of 21 patients had an improved Eastern Cooperative Oncology Group performance status (ECOG PS) score after icotinib treatment. The median overall survival of the patients after the diagnosis of LMC was 10.1 months (95% confidence interval (CI): 8.4-12.0 months). Univariate analysis showed that the ECOG PS score, parenchymal brain metastasis, and previous icotinib administration were significantly associated with patient survival. Multivariate analysis also demonstrated that the ECOG PS score was an independent predictor for survival. Our results suggest that icotinib is effective for the treatment of LMC from NSCLC with an EGFR mutation, especially for patients with a good ECOG PS score. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Discovery of a 3.6-hr Eclipsing Luminous X-Ray Binary in the Galaxy NGC 4214
NASA Technical Reports Server (NTRS)
Ghosh, Kajal K.; Rappaport, Saul; Tennant, Allyn F.; Swartz, Douglas A.; Pooley, David; Madhusudhan, N.
2006-01-01
We report the discovery of an eclipsing X-ray binary with a 3.62-hr period within 24 arcsec of the center of the dwarf starburst galaxy NGC 4214. The orbital period places interesting constraints on the nature of the binary, and allows for a few very different interpretations. The most likely possibility is that the source lies within NGC 4214 and has an X-ray luminosity of up to 7e38. In this case the binary may well be comprised of a naked He-burning donor star with a neutron-star accretor, though a stellar-mass black-hole accretor cannot be completely excluded. There is no obvious evidence for a strong stellar wind in the X-ray orbital light curve that would be expected from a massive He star; thus, the mass of the He star should be <3-4 solar masses. If correct, this would represent a new class of very luminous X-ray binary----perhaps related to Cyg X-3. Other less likely possibilities include a conventional low-mass X-ray binary that somehow manages to produce such a high X-ray luminosity and is apparently persistent over an interval of years; or a foreground AM Her binary of much lower luminosity that fortuitously lies in the direction of NGC 4214. Any model for this system must accommodate the lack of an optical counterpart down to a limiting magnitude of 22.6 in the visible.
VizieR Online Data Catalog: OGLE RR Lyrae in LMC (Soszynski+, 2003)
NASA Astrophysics Data System (ADS)
Soszynski, I.; Udalski, A.; Szymanski, M.; Kubiak, M.; Pietrzynski, G.; Wozniak, P.; Zebrun, K.; Szewczyk, O.; Wyrzykowski, L.
2003-11-01
We present the catalog of RR Lyr stars discovered in a 4.5 square degrees area in the central parts of the Large Magellanic Cloud (LMC). Presented sample contains 7612 objects, including 5455 fundamental mode pulsators (RRab), 1655 first-overtone (RRc), 272 second-overtone (RRe) and 230 double-mode RR Lyr stars (RRd). Additionally we attach alist of several dozen other short-period pulsating variables. The catalog data include astrometry, periods, BVI photometry, amplitudes, and parameters of the Fourier decomposition of the I-band light curve of each object. We provide a list of six LMC star clusters which contain RR Lyr stars. The richest cluster, NGC 1835, hosts 84 RR Lyr variables. The period distribution of these stars suggests that NGC1835 shares features of Oosterhoff type I and type II groups. All presented data, including individual BVI observations and finding charts are available from the OGLE Internet archive at ftp://sirius.astrouw.edu.pl/ogle/ogle2/var_stars/lmc/rrlyr (6 data files).
A1540-53, an eclipsing X-ray binary pulsator
NASA Technical Reports Server (NTRS)
Becker, R. H.; Swank, J. H.; Boldt, E. A.; Holt, S. S.; Pravdo, S. H.; Saba, J. R.; Serlemitsos, P. J.
1977-01-01
An eclipsing X-ray binary pulsator consistent with the location of A1540-53 was observed. The source pulse period was 528.93 plus or minus 0.10 seconds. The binary nature is confirmed by a Doppler curve for the pulsation period. The eclipse angle of 30.5 deg plus or minus 3 deg and the 4 h transition to and from eclipse suggest an early type, giant or supergiant, primary star.
Luminous Binary Supersoft X-Ray Sources
NASA Technical Reports Server (NTRS)
DiStefano, Rosanne; Oliversen, Ronald J. (Technical Monitor)
2002-01-01
This grant was for the study of Luminous Supersoft X-Ray Sources (SSSs). During the first year a number of projects were completed and new projects were started. The projects include: 1) Time variability of SSSs 2) SSSs in M31; 3) Binary evolution scenarios; and 4) Acquiring new data.
NASA Astrophysics Data System (ADS)
Goldman, Steven R.; van Loon, Jacco Th.; Zijlstra, Albert A.; Green, James A.; Wood, Peter R.; Nanni, Ambra; Imai, Hiroshi; Whitelock, Patricia A.; Matsuura, Mikako; Groenewegen, Martin A. T.; Gómez, José F.
2017-02-01
We present the results of our survey of 1612-MHz circumstellar OH maser emission from asymptotic giant branch (AGB) stars and red supergiants (RSGs) in the Large Magellanic Cloud (LMC). We have discovered four new circumstellar maser sources in the LMC, and increased the number of reliable wind speeds from infrared (IR) stars in the LMC from 5 to 13. Using our new wind speeds, as well as those from Galactic sources, we have derived an updated relation for dust-driven winds: vexp ∝ ZL0.4. We compare the subsolar metallicity LMC OH/IR stars with carefully selected samples of more metal-rich OH/IR stars, also at known distances, in the Galactic Centre and Galactic bulge. We derive pulsation periods for eight of the bulge stars for the first time by using near-IR photometry from the Vista Variables in the Via Lactea survey. We have modelled our LMC OH/IR stars and developed an empirical method of deriving gas-to-dust ratios and mass-loss rates by scaling the models to the results from maser profiles. We have done this also for samples in the Galactic Centre and bulge and derived a new mass-loss prescription which includes luminosity, pulsation period, and gas-to-dust ratio dot{M} = 1.06^{+3.5}_{-0.8} × }10^{-5 (L/10^4 L_{⊙})^{0.9± 0.1}(P/500 {d})^{0.75± 0.3} (r_gd/200)^{-0.03± 0.07} M⊙ yr-1. The tightest correlation is found between mass-loss rate and luminosity. We find that the gas-to-dust ratio has little effect on the mass-loss of oxygen-rich AGB stars and RSGs within the Galaxy and the LMC. This suggests that the mass-loss of oxygen-rich AGB stars and RSGs is (nearly) independent of metallicity between a half and twice solar.
Calleja, A I; Cortijo, E; García-Bermejo, P; Gómez, R D; Pérez-Fernández, S; Del Monte, J M; Muñoz, M F; Fernández-Herranz, R; Arenillas, J F
2013-05-01
Perfusion-computed tomography-source images (PCT-SI) may allow a dynamic assessment of leptomeningeal collateral arteries (LMC) filling and emptying in middle cerebral artery (MCA) ischaemic stroke. We described a regional LMC scale on PCT-SI and hypothesized that a higher collateral score would predict a better response to intravenous (iv) thrombolysis. We studied consecutive ischaemic stroke patients with an acute MCA occlusion documented by transcranial Doppler/transcranial color-coded duplex, treated with iv thrombolysis who underwent PCT prior to treatment. Readers evaluated PCT-SI in a blinded fashion to assess LMC within the hypoperfused MCA territory. LMC scored as follows: 0, absence of vessels; 1, collateral supply filling ≤ 50%; 2, between> 50% and < 100%; 3, equal or more prominent when compared with the unaffected hemisphere. The scale was divided into good (scores 2-3) vs. poor (scores 0-1) collaterals. The predetermined primary end-point was a good 3-month functional outcome, while early neurological recovery, transcranial duplex-assessed 24-h MCA recanalization, 24-h hypodensity volume and hemorrhagic transformation were considered secondary end-points. Fifty-four patients were included (55.5% women, median NIHSS 10), and 4-13-23-14 patients had LMC score (LMCs) of 0-1-2-3, respectively. The probability of a good long-term outcome augmented gradually with increasing LMCs: (0) 0%; (1) 15.4%; (2) 65.2%; (3) 64.3%, P = 0.004. Good-LMCs was independently associated with a good outcome [OR 21.02 (95% CI 2.23-197.75), P = 0.008]. Patients with good LMCs had better early neurological recovery (P = 0.001), smaller hypodensity volumes (P < 0.001) and a clear trend towards a higher recanalization rate. A higher degree of LMC assessed by PCT-SI predicts good response to iv thrombolysis in MCA ischaemic stroke patients. © 2012 The Author(s) European Journal of Neurology © 2012 EFNS.
NASA Astrophysics Data System (ADS)
Alves, D. R.; Alcock, C.; Allsman, R. A.; Axelrod, T. S.; Basu, A.; Becker, A. C.; Bennett, D. P.; Cook, K. H.; Drake, A. J.; Freeman, K. C.; Geha, M.; Griest, K.; King, L. J.; Lehner, M. J.; Marshall, S. L.; Minniti, D.; Peterson, B. A.; Popowski, P.; Pratt, M. R.; Quinn, P. J.; Rodgers, A. W.; Stubbs, C. W.; Sutherland, W.; Tomaney, A.; Vandehei, T.; Welch, D. L.; MACHO Collaboration
1998-12-01
We present a 9 million star color-magnitude diagram (9M CMD) of the Large Magellanic Cloud (LMC) bar. The 9M CMD reveals a complex superposition of different age and metallicity stellar populations. Young LMC stellar populations are prominent in the 9M CMD. Of these, the red and blue supergiants are potentially useful probes of the late stages of evolution in intermediate mass stars. Old LMC stellar populations are also evident in the 9M CMD. These are used to reconstruct the evolution of the LMC during cosmologically interesting epochs. We first build a plausible model for the old LMC populations consistent with features observed in the 9M CMD. We choose the 1.5 Gyr old cluster NGC 411 and the ancient globular cluster M3, with metal abundances of [Fe/H] = -0.7 and -1.5 dex respectively, as good representations of the giant branch and horizontal branch (HB) stars. The evolved asymptotic giant branch appears bimodal, which supports a model of two discrete older populations in the LMC field. We conclude the old populations in the LMC bar are likely a mix similar to NGC 411 and M3. Next, we infer the old and low metallicity LMC field population has a red HB morphology, which implies this population formed ~ 2 Gyr after the truly ancient LMC clusters formed. We find the surface density profile of this old LMC field population (traced by RRab variable stars) is exponential, favoring a disk-like rather than spheroidal distribution. We conclude the LMC disk formed ~ 10 Gyr ago, at the same time the Milky Way disk formed.
Mukaigasa, Katsuki; Sakuma, Chie; Okada, Tomoaki; Homma, Shunsaku; Shimada, Takako; Nishiyama, Keiji; Sato, Noboru; Yaginuma, Hiroyuki
2017-12-15
In the developing chick embryo, a certain population of motor neurons (MNs) in the non-limb-innervating cervical spinal cord undergoes apoptosis between embryonic days 4 and 5. However, the characteristics of these apoptotic MNs remain undefined. Here, by examining the spatiotemporal profiles of apoptosis and MN subtype marker expression in normal or apoptosis-inhibited chick embryos, we found that this apoptotic population is distinguishable by Foxp1 expression. When apoptosis was inhibited, the Foxp1 + MNs survived and showed characteristics of lateral motor column (LMC) neurons, which are of a limb-innervating subtype, suggesting that cervical Foxp1 + MNs are the rostral continuation of the LMC. Knockdown and misexpression of Foxp1 did not affect apoptosis progression, but revealed the role of Foxp1 in conferring LMC identity on the cervical MNs. Furthermore, ectopic expression of Hox genes that are normally expressed in the brachial region prevented apoptosis, and directed Foxp1 + MNs to LMC neurons at the cervical level. These results indicate that apoptosis in the cervical spinal cord plays a role in sculpting Foxp1 + MNs committed to LMC neurons, depending on the Hox expression pattern. © 2017. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
van den Berg, Maureen C.
2015-08-01
The binaries in the core of a star cluster are the energy source that prevents the cluster from experiencing core collapse. To model the dynamical evolution of a cluster, it is important to have constraints on the primordial binary content. X-ray observations of old star clusters are very efficient in detecting the close interacting binaries among the cluster members. The X-ray sources in star clusters are a mix of binaries that were dynamically formed and primordial binaries. In massive, dense star clusters, dynamical encounters play an important role in shaping the properties and numbers of the binaries. In contrast, in the low-density clusters the impact of dynamical encounters is presumed to be very small, and the close binaries detected in X-rays represent a primordial population. The lowest density globular clusters have current masses and central densities similar to those of the oldest open clusters in our Milky Way. I will discuss the results of studies with the Chandra X-ray Observatory that have nevertheless revealed a clear dichotomy: far fewer (if any at all) X-ray sources are detected in the central regions of the low-density globular clusters compared to the number of secure cluster members that have been detected in old open clusters (above a limiting X-ray luminosity of typically 4e30 erg/s). The low stellar encounter rates imply that dynamical destruction of binaries can be ignored at present, therefore an explanation must be sought elsewhere. I will discuss several factors that can shed light on the implied differences between the primordial close binary populations in the two types of star clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wielgórski, Piotr; Pietrzyński, Grzegorz; Zgirski, Bartłomiej
Using high-quality observed period–luminosity ( P – L ) relations in both Magellanic Clouds in the VIJHK s bands and optical and near-infrared Wesenheit indices, we determine the effect of metallicity on Cepheid P – L relations by comparing the relative distance between the LMC and SMC as determined from the Cepheids to the difference in distance between the Clouds that has been derived with very high accuracy from late-type eclipsing binary systems. Within an uncertainty of 3%, which is dominated by the uncertainty on the mean difference in metallicity between the Cepheid populations in the LMC and SMC, wemore » find metallicity effects smaller than 2% in all bands and in the Wesenheit indices, consistent with a zero metallicity effect. This result is valid for the metallicity range from −0.35 dex to −0.75 dex corresponding to the mean [Fe/H] values for classical Cepheids in the LMC and SMC, respectively. Yet most Cepheids in galaxies beyond the Local Group and located in the less crowded outer regions of these galaxies do fall into this metallicity regime, making our result important for applications to determine the distances to spiral galaxies well beyond the Local Group. Our result supports previous findings that indicated a very small metallicity effect on the near-infrared absolute magnitudes of classical Cepheids, and resolves the dispute about the size and sign of the metallicity effect in the optical spectral range. It also resolves one of the most pressing problems in the quest toward a measurement of the Hubble constant with an accuracy of 1% from the Cepheid–supernova Ia method.« less
Fragility and glass transition for binary mixtures of 1,2-propanediol and LiBF4
NASA Astrophysics Data System (ADS)
Terashima, Y.; Mori, M.; Sugimoto, N.; Takeda, K.
2014-04-01
The fragility and glass transition for binary mixtures of 1,2-propanediol and LiBF4 were investigated by measuring the heating rate dependence of glass transition temperature (Tg) using differential scanning calorimetry. With increasing LiBF4 mole fraction, x, up to 0.25, fragility, m, increased rapidly from 53 to 85, and then remained approximately unchanged for x > 0.25. The concentration dependences of Tg and heat capacity jump at Tg also showed anomalies around x = 0.25. We suggest this mixture transformed from a moderate to quite fragile liquid at x = 0.25 because of a structural change from a hydrogen-bonding- to ionic-interaction-dominant system.
Formation and Evolution of X-ray Binaries
NASA Astrophysics Data System (ADS)
Shao, Y.
2017-07-01
X-ray binaries are a class of binary systems, in which the accretor is a compact star (i.e., black hole, neutron star, or white dwarf). They are one of the most important objects in the universe, which can be used to study not only binary evolution but also accretion disks and compact stars. Statistical investigations of these binaries help to understand the formation and evolution of galaxies, and sometimes provide useful constraints on the cosmological models. The goal of this thesis is to investigate the formation and evolution processes of X-ray binaries including Be/X-ray binaries, low-mass X-ray binaries (LMXBs), ultraluminous X-ray sources (ULXs), and cataclysmic variables. In Chapter 1 we give a brief review on the basic knowledge of the binary evolution. In Chapter 2 we discuss the formation of Be stars through binary interaction. In this chapter we investigate the formation of Be stars resulting from mass transfer in binaries in the Galaxy. Using binary evolution and population synthesis calculations, we find that in Be/neutron star binaries the Be stars have a lower limit of mass ˜ 8 M⊙ if they are formed by a stable (i.e., without the occurrence of common envelope evolution) and nonconservative mass transfer. We demonstrate that the isolated Be stars may originate from both mergers of two main-sequence stars and disrupted Be binaries during the supernova explosions of the primary stars, but mergers seem to play a much more important role. Finally the fraction of Be stars produced by binary interactions in all B type stars can be as high as ˜ 13%-30% , implying that most of Be stars may result from binary interaction. In Chapter 3 we show the evolution of intermediate- and low-mass X-ray binaries (I/LMXBs) and the formation of millisecond pulsars. Comparing the calculated results with the observations of binary radio pulsars, we report the following results: (1) The allowed parameter space for forming binary pulsars in the initial orbital period-donor mass plane increases with the increasing neutron star mass. This may help to explain why some millisecond pulsars with orbital periods longer than ˜ 60 d seem to have less massive white dwarfs than expected. Alternatively, some of these wide binary pulsars may be formed through mass transfer driven by planet/brown dwarf-involved common envelope evolution; (2) Some of the pulsars in compact binaries might have evolved from intermediate-mass X-ray binaries with an anomalous magnetic braking; (3) The equilibrium spin periods of neutron stars in low-mass X-ray binaries are in general shorter than the observed spin periods of binary pulsars by more than one order of magnitude, suggesting that either the simple equilibrium spin model does not apply, or there are other mechanisms/processes spinning down the neutron stars. In Chapter 4, angular momentum loss mechanisms in the cataclysmic variables below the period gap are presented. By considering several kinds of consequential angular momentum loss mechanisms, we find that neither isotropic wind from the white dwarf nor outflow from the L1 point can explain the extra angular momentum loss rate, while an ouflow from the L2 point or a circumbinary disk can effectively extract the angular momentum provided that ˜ 15%-45% of the transferred mass is lost from the binary. A more promising mechanism is a circumbinary disk exerting a gravitational torque on the binary. In this case the mass loss fraction can be as low as ≲ 10-3. In Chapter 5 we present a study on the population of ultraluminous X-ray sources with an accreting neutron star. Most ULXs are believed to be X-ray binary systems, but previous observational and theoretical studies tend to prefer a black hole rather than a neutron star accretor. The recent discovery of 1.37 s pulsations from the ULX M82 X-2 has established its nature as a magnetized neutron star. In this chapter we model the formation history of neutron star ULXs in an M82- or Milky Way-like galaxy, by use of both binary population synthesis and detailed binary evolution calculations. We find that the birthrate is around 10-4 yr-1 for the incipient X-ray binaries in both cases. We demonstrate the distribution of the ULX population in the donor mass - orbital period plane. Our results suggest that, compared with black hole X-ray binaries, neutron star X-ray binaries may significantly contribute to the ULX population, and high/intermediate-mass X-ray binaries dominate the neutron star ULX population in M82/Milky Way-like galaxies, respectively. In Chapter 6, the population of intermediate- and low-mass X-ray binaries in the Galaxy is explored. We investigate the formation and evolutionary sequences of Galactic intermediate- and low-mass X-ray binaries by combining binary population synthesis (BPS) and detailed stellar evolutionary calculations. Using an updated BPS code we compute the evolution of massive binaries that leads to the formation of incipient I/LMXBs, and present their distribution in the initial donor mass vs. initial orbital period diagram. We then follow the evolution of I/LMXBs until the formation of binary millisecond pulsars (BMSPs). We show that during the evolution of I/LMXBs they are likely to be observed as relatively compact binaries. The resultant BMSPs have orbital periods ranging from about 1 day to a few hundred days. These features are consistent with observations of LMXBs and BMSPs. We also confirm the discrepancies between theoretical predictions and observations mentioned in the literature, that is, the theoretical average mass transfer rates of LMXBs are considerably lower than observed, and the number of BMSPs with orbital periods ˜ 0.1-1 \\unit{d} is severely underestimated. Both imply that something is missing in the modeling of LMXBs, which is likely to be related to the mechanisms of the orbital angular momentum loss. Finally in Chapter 7 we summarize our results and give the prospects for the future work.
Finding a 24 Day Orbital Period for the X-Ray Binary 1A 1118-616
NASA Technical Reports Server (NTRS)
Staubert, R.; Pottschmidt, K.; Doroshenko, V.; Wilms, J.; Suchy, S.; Rothschild, R.; Santangelo, A.
2010-01-01
We report the first determination of the binary period and the orbital ephemeris of the Be X-ray binary containing the pulsar IA 1118-616 (35 years after the discovery of the source). The orbital period is found to be P(sub orb) = 24.0+/-0.4 days. The source was observed by RXTE during its last big X-ray outburst in January 2009, peaking at MJD 54845.4. This outburst was sampled by taking short observations every few days, covering an elapsed time comparable to the orbital period. Using the phase connection technique, pulse arrival time delays could be measured and an orbital solution determined. The data are consistent with a circular orbit, the time of 90 degrees longitude was found to be T,/2 = MJD 54845.37(10), coincident with the peak X-ray flux.
NASA Technical Reports Server (NTRS)
Ford, E.; Kaaret, P.; Tavani, M.; Barret, D.; Bloser, P.; Grindlay, J.; Harmon, B. A.; Paciesas, W. S.; Zhang, S. N.
1997-01-01
We have detected quasi-periodic oscillations (QPOs) near 1 kHz from the low mass X-ray binary 4U 0614+091 in observations with RXTE. The observations span several months and sample the source over a large range of X-ray luminosity. In every interval QPOs are present above 400 Hz with fractional RMS amplitudes from 3 to 12% over the full PCA band. At high count rates, two high frequency QPOs are detected simultaneously. The difference of their frequency centroids is consistent with a constant value of 323 Hz in all observations. During one interval a third signal is detected at 328 +/- 2 Hz. This suggests the system has a stable 'clock' which is most likely the neutron star with spin period 3.1 msec. Thus, our observations of 4U 0614+091 and those of 4U 1728-34 provide the first evidence for millisecond pulsars within low-mass X-ray binary systems and reveal the 'missing-link' between millisecond radiopulsars and the late stages of binary evolution in low mass X-ray binaries. The constant difference of the high frequency QPOs sug,,ests a beat-frequency interpretation. In this model, the high frequency QPO is associated with the Keplerian frequency of the inner accretion disk and the lower frequency QPO is a 'beat' between the differential rotation frequency of the inner disk and the spinning neutron star. Assuming the high frequency QPO is a Keplerian orbital frequency for the accretion disk, we find a maximum mass of 1.9 solar mass and a maximum radius of 17 km for the neutron star.
NASA Astrophysics Data System (ADS)
Jacyszyn-Dobrzeniecka, A. M.; Skowron, D. M.; Mróz, P.; Skowron, J.; Soszyński, I.; Udalski, A.; Pietrukowicz, P.; Kozłowski, S.; Wyrzykowski, Ł.; Poleski, R.; Pawlak, M.; Szymański, M. K.; Ulaczyk, K.
2016-06-01
We analyzed a sample of 9418 fundamental-mode and first-overtone classical Cepheids from the OGLE-IV Collection of Classical Cepheids. The distance to each Cepheid was calculated using the period-luminosity relation for the Wesenheit magnitude, fitted to our data. The classical Cepheids in the LMC are situated mainly in the bar and in the northern arm. The eastern part of the LMC is closer to us and the plane fit to the whole LMC sample yields the inclination i=24.°2 ±0.°7 and position angle P.A.=151.°4±1.°7. We redefined the LMC bar by extending it in the western direction and found no offset from the plane of the LMC contrary to previous studies. On the other hand, we found that the northern arm is offset from a plane by about -0.5 kpc, which was not observed before. The age distribution of the LMC Cepheids shows one maximum at about 100 Myr. We demonstrate that the SMC has a non-planar structure and can be described as an extended ellipsoid. We identified two large ellipsoidal off-axis structures in the SMC. The northern one is located closer to us and is younger, while the south-western is farther and older. The age distribution of the SMC Cepheids is bimodal with one maximum at 110 Myr, and another one at 220 Myr. Younger stars are located in the closer part of this galaxy while older ones are more distant. We classified nine Cepheids from our sample as Magellanic Bridge objects. These Cepheids show a large spread in three-dimensions although five of them form a connection between the Clouds. The closest one is closer than any of the LMC Cepheids, while the farthest one - farther than any SMC Cepheid. All but one Cepheids in the Magellanic Bridge are younger than 300 Myr. The oldest one can be associated with the SMC Wing.
NASA Astrophysics Data System (ADS)
Shishkovsky, Laura; Strader, Jay; Chomiuk, Laura; Bahramian, Arash; Tremou, Evangelia; Li, Kwan-Lok; Salinas, Ricardo; Tudor, Vlad; Miller-Jones, James C. A.; Maccarone, Thomas J.; Heinke, Craig O.; Sivakoff, Gregory R.
2018-03-01
We present the discovery and characterization of a radio-bright binary in the Galactic globular cluster M10. First identified in deep radio continuum data from the Karl G. Jansky Very Large Array, M10-VLA1 has a flux density of 27 ± 4 μJy at 7.4 GHz and a flat-to-inverted radio spectrum. Chandra imaging shows an X-ray source with L X ≈ 1031 erg s‑1 matching the location of the radio source. This places M10-VLA1 within the scatter of the radio-X-ray luminosity correlation for quiescent stellar-mass black holes, and a black hole X-ray binary is a viable explanation for this system. The radio and X-ray properties of the source disfavor, but do not rule out, identification as an accreting neutron star or white dwarf system. Optical imaging from the Hubble Space Telescope and spectroscopy from the SOAR telescope show that the system has an orbital period of 3.339 days and an unusual “red straggler” component: an evolved star found redward of the M10 red giant branch. These data also show UV/optical variability and double-peaked Hα emission characteristic of an accretion disk. However, SOAR spectroscopic monitoring reveals that the velocity semi-amplitude of the red straggler is low. We conclude that M10-VLA1 is most likely either a quiescent black hole X-ray binary with a rather face-on (i < 4°) orientation or an unusual flaring RS Canum Venaticorum variable-type active binary, and discuss future observations that could distinguish between these possibilities.
Evidence of the presence of a Be circumstelar disk in the Be/X-ray binaries KS 1947+ 300 and Cep X-4
NASA Astrophysics Data System (ADS)
Ozbey-Arabaci, M.; Camero-Arranz, A.; Fabregat, J.; Ozcan, H. Bilal; Peris, V.
2014-06-01
We report on photometric and spectroscopic optical observations of the Be/X-ray binaries KS 1947+300 and Cep X-4, obtained with the TUG Faint Object Spectrograph and Camera (TFOSC) mounted on the focal plane of the 1.5-m Russian-Turkish Telescope (RTT150) at T & Uuml;B & #304TAK National Observatory (Antalya, Turkey) between 2014 June 18-20 (MJD 56826.933-56828.067), and with the spectrograph located at the 51-cm telescope of the Observatorio de Aras de los Olmos of the University of Valencia on 2014 June 3 (MJD 56811.097). ...
Detection of a Very Bright Source Close to the LMC Supernova SN 1987A: Erratum
NASA Astrophysics Data System (ADS)
Nisenson, P.; Papaliolios, C.; Karovska, M.; Noyes, R.
1988-01-01
In the Letter "Detection of a Very Bright Source Close to the LMC Supernova SN 1987A" by P. Nisenson, C. Papaliolios, M. Karovska, and R. Noyes (1987 Ap. J. [Letters], 320, L15), two of the figure labels for Figure 1 were inadvertently transposed in the production process. A corrected version of the figure appears as Plate L4. The Journal regrets the error.
LM1-64: a Newly Reported Lmc-Pn with WR Nucleus
NASA Astrophysics Data System (ADS)
Pena, M.; Olguin, L.; Ruiz, M. T.; Torres-Peimbert, S.
1993-05-01
The object LM1-64 was reported by Lindsay & Mullan (1963, Irish Astron. J., 5, 51) as a probable PN in the LMC. Optical and UV spectra taken by us confirm that suggestion. LM1-64 is a high excitation planetary nebulae which shows evidence of having a WC central star. Broad stellar emission at lambda 4650 is detected in the optical spectrum obtained with the CTIO 4m telescope, in 1989. A UV spectrum in the range from 1200 Angstroms to 2000 Angstroms was obtained with IUE in 1990. We have measured all the emission line fluxes available and determined values for the physical conditions and chemical abundances of the nebular ionized gas. The derived values are T(OIII) = 14000K, log He/H = 11.05, log C/H = 9.48, log O/H = 8.55 and log Ne/H = 7.94. LM1-64 shows a large C enhancement in the envelope as result of the central star activity, while He, O and Ne are comparable to the average values reported for the LMC-PNe (Monk, Barlow & Clegg, 1988, MNRAS, 234, 583). We have estimated the He II Zanstra temperature of the central star to be ~ 80,000 K. This temperature is much higher than the values reported for the known LMC-PNe with WR nucleus that Monk et al. have classified as W4 to W8. The only other high temperature WR nucleus in a LMC-PN is N66 which recently showed evidence of undergoing a WR episode (Torres-Peimbert, Ruiz, Peimbert & Pe\\ na, 1993, IAU Symp. 155, eds. A. Acker & R. Weinberger, in press).
NASA Technical Reports Server (NTRS)
Shore, S. N.; Sanduleak, N.; Brown, D. N.; Sonneborn, G.; Bopp, B. W.; Robinson, C. R.
1988-01-01
The Henize-Carlson sample of galactic massive supergiants, and a comparison between the Galactic and LMC samples are discussed. Several of the stars, notably He3-395 and S 127/LMC, have very similar shell characteristics. There appears to be little difference, other than luminosity, between the LMC and Galactic samples. One star, He3-1482, was detected with the Very Large Array at 6 cm. The UV data is combined with IRAS and optical information.
Sigma observations of the low mass X-ray binaries of the galactic bulge
NASA Technical Reports Server (NTRS)
Goldwurm, A.; Denis, M.; Paul, J.; Faisse, S.; Roques, J. P.; Bouchet, L.; Vedrenne, G.; Mandrou, P.; Sunyaev, R.; Churazov, E.
1995-01-01
The soft gamma-ray telescope (35-1300 keV) SIGMA aboard the high energy GRANAT space observatory has been monitoring the Galactic Bulge region for more than 2000 h of effective time since March 1990. In the resulting average 35-75 keV image we detected ten sources at a level of greater than 5 standard deviations, 6 of which can be identified with low mass X-ray binaries (LMXB). Among them, one is the 1993 X-ray nova in Ophiuchus (GRS 1726-249), one is an X-ray pulsar (GX 1+4), two are associated with X-ray bursters (GX 354-0 and A 1742-294) and two with bursting X-ray binaries in the globular clusters Terzan 2 and Terzan 1. Their spectral and long term variability behavior as measured by SIGMMA are presented and discussed.
β Cephei and SPB stars in the Large Magellanic Cloud
NASA Astrophysics Data System (ADS)
Kołaczkowski, Z.; Pigulski, A.; Soszyński, I.; Udalski, A.; Szymański, M.; Kubiak, M.; Żebruń, K.; Pietrzyński, G.; Woźniak, P. R.; Szewczyk, O.; Wyrzykowski, L.; Ogle Team
2004-05-01
This is a progress report of the study of pulsating main-sequence stars in the LMC. Using the OGLE-II photometry supplemented by the MACHO photometry, we find 64 β Cephei stars in the LMC. Their periods are generally much longer than observed in the stars of this type in the Galaxy (the median value is 0.27 d compared with the 0.17 d in the Galaxy). In 20 stars with short periods attributable to the β Cephei-type instability, we also find modes with periods longer than ~0.4d. They are likely low-order g modes, which means that in these stars both kinds of variability, β Cephei and SPB, are observed. We also show examples of the multiperiodic SPB stars in the LMC, the first beyond our Galaxy.
Research in astrophysical processes
NASA Technical Reports Server (NTRS)
Ruderman, Malvin A.
1994-01-01
Work completed under this grant is summarized in the following areas:(1) radio pulsar turn on and evaporation of companions in very low mass x-ray binaries and in binary radio pulsar systems; (2) effects of magnetospheric pair production on the radiation from gamma-ray pulsars; (3) radiation transfer in the atmosphere of an illuminated companion star; (4) evaporation of millisecond pulsar companions;(5) formation of planets around pulsars; (6) gamma-ray bursts; (7) quasi-periodic oscillations in low mass x-ray binaries; (8) origin of high mass x-ray binaries, runaway OB stars, and the lower mass cutoff for core collapse supernovae; (9) dynamics of planetary atmospheres; (10) two point closure modeling of stationary, forced turbulence; (11) models for the general circulation of Saturn; and (12) compressible convection in stellar interiors.
Navas, Ana; Ortega, Juan; Palomar, José; Díaz, Carlos; Vreekamp, Remko
2011-05-07
A theoretical-experimental study for a set of 18 binary systems comprised of [bXmpy][BF(4)] (X=2-4) + 1,ω-Br(CH(2))(v)Br (v =ω=1-6) at a temperature of 298.15 K is presented. The solubility curves are determined for each binary system, establishing the intervals of measurement for the excess properties, H(E)(m) and V(E)(m). These properties are then determined for those systems that present a miscibility zone. Binary systems containing 1,ω-dibromoalkanes with ω=5,6 present reduced solubility intervals at the temperature of 298.15 K. However, the mixtures with 1,1-dibromomethane were totally miscible with the three isomers of 1-butyl-X-methylpyridinium tetrafluoroborate. Mixtures with dibromomethane present H(E)(m) <0, whereas H(E)(m) >0 for the other binary systems. Sigmoidal curves were observed for the V(E)(m) describing expansion and contraction processes for all the systems, except for the mixtures of [b2mpy][BF(4)] with the smaller dibromoalkanes, which present contraction effects. The COSMO-RS methodology was used to estimate the solubilities and the intermolecular interaction energies, giving an acceptable explanation of the behavioral structure of pure compounds and solutions. This journal is © the Owner Societies 2011
VizieR Online Data Catalog: Orbital nature of 81 ellipsoidal red giant binaries (Nie+, 2017)
NASA Astrophysics Data System (ADS)
Nie, J. D.; Wood, P. R.; Nicholls, C. P.
2017-08-01
The I-band light curve data we use are mainly from OGLE II (Udalski+ 1997AcA....47..319U; Soszynski+ 2004, J/AcA/54/347; Szymanski 2005AcA....55...43S), sometimes supplemented by OGLE III data if it is published. The radial velocities are provided by Nie & Wood (2014, J/AJ/148/118) for 79 ellipsoidal variables, by Nicholls+ (2010, J/MNRAS/405/1770) for their 11 ellipsoidal variables, and by Nicholls & Wood (2012, J/MNRAS/421/2616) for their 7 eccentric binaries. The light curve photometry, supplemented by K-band photometry from the Two Micron All Sky Survey (2MASS) catalog (Cutri+ 2003, II/246), provides the K magnitude and the I-K color. We adopted LMC distance modulus (DM) of 18.49 (de Grijs+ 2014AJ....147..122D) and reddening E(B-V)=0.08 (Keller & Wood 2006ApJ...642..834K). (1 data file).
Balbach, Edith D.; Barbeau, Elizabeth M.; Manteufel, Viola; Pan, Jocelyn
2005-01-01
In 1984, the tobacco workers’ union and the Tobacco Institute, which represents US tobacco companies, formed a labor management committee (LMC). The institute relied on LMC unions to resist smoke-free worksite rules. In a review of the internal tobacco industry documents now publicly available, we found that the LMC succeeded for 2 primary reasons. First, the LMC furthered members’ interests, allowing them to overcome institutional barriers to policy success. Second, the LMC used an “institutions, ideas, and interests” strategy to encourage non-LMC unions to oppose smoke-free worksite rules. While public health advocates missed an opportunity to partner with unions on the issue of smoke-free worksites during the era studied, they can use a similar strategy to form coalitions with unions. PMID:15914820
Odening, Katja E; Jung, Bernd A; Lang, Corinna N; Cabrera Lozoya, Rocio; Ziupa, David; Menza, Marius; Relan, Jatin; Franke, Gerlind; Perez Feliz, Stefanie; Koren, Gideon; Zehender, Manfred; Bode, Christoph; Brunner, Michael; Sermesant, Maxime; Föll, Daniela
2013-10-01
Enhanced dispersion of action potential duration (APD) is a major contributor to long QT syndrome (LQTS)-related arrhythmias. To investigate spatial correlations of regional heterogeneities in cardiac repolarization and mechanical function in LQTS. Female transgenic LQTS type 2 (LQT2; n = 11) and wild-type littermate control (LMC) rabbits (n = 9 without E4031 and n = 10 with E4031) were subjected to phase contrast magnetic resonance imaging to assess regional myocardial velocities. In the same rabbits' hearts, monophasic APDs were assessed in corresponding segments. In LQT2 and E4031-treated rabbits, APD was longer in all left ventricular segments (P < .01) and APD dispersion was greater than that in LMC rabbits (P < .01). In diastole, peak radial velocities (Vr) were reduced in LQT2 and E4031-treated compared to LMC rabbits in LV base and mid (LQT2: -3.36 ± 0.4 cm/s, P < .01; E4031-treated: -3.24 ± 0.6 cm/s, P < .0001; LMC: -4.42 ± 0.5 cm/s), indicating an impaired diastolic function. Regionally heterogeneous diastolic Vr correlated with APD (LQT2: correlation coefficient [CC] 0.38, P = .01; E4031-treated: CC 0.42, P < .05). Time-to-diastolic peak Vr were prolonged in LQT2 rabbits (LQT2: 196.8 ± 2.9 ms, P < .001; E4031-treated: 199.5 ± 2.2 ms, P < .0001, LMC 183.1 ± 1.5), indicating a prolonged contraction duration. Moreover, in transgenic LQT2 rabbits, diastolic time-to-diastolic peak Vr correlated with APD (CC 0.47, P = .001). In systole, peak Vr were reduced in LQT2 and E4031-treated rabbits (P < .01) but longitudinal velocities or ejection fraction did not differ. Finally, random forest machine learning algorithms enabled a differentiation between LQT2, E4031-treated, and LMC rabbits solely based on "mechanical" magnetic resonance imaging data. The prolongation of APD led to impaired diastolic and systolic function in transgenic and drug-induced LQT2 rabbits. APD correlated with regional diastolic dysfunction, indicating that LQTS is not purely an electrical but an electromechanical disorder. © 2013 Heart Rhythm Society. All rights reserved.
NASA Technical Reports Server (NTRS)
Pasham, Dheeraj R.; Strohmayer, Tod E.
2012-01-01
We report results from long-term X-ray (0.3-8.0 keY) monitoring of the ultraluminous X-ray source NGC 5408 X-1 with the Swift/X-Ray Telescope. Our primary results are: (1) the discovery of quasi-periodic dips in the X-ray intensity that recur on average every 243 days, (2) the detection of an energy-dependent (variability amplitude decreases with increasing energy), quasi-sinusoidal X-ray modulation with a period of 112.6 +/- 4 days the amplitude of which decreases during the second half of the light curve and (3) energy spectral evidence for an increase in photoelectric absorption during the last continuous segment of the data, possibly due to a change in the ionization state of the circumbinary material. We interpret the X-ray modulations in the context of binary motion in analogy to that seen in high-inclination low-mass X-ray binaries. If correct, this implies that NGC 5408 X-1 is in a binary with an orbital period of 243 +/- 23 days in contrast to the 115.5 day quasi-sinusoidal period previously reported. In addition, if the X-ray modulation is caused by vertically structured obscuring material in the accretion disk (similar to the phenomenon of dipping LMXBs), this would imply a high value for the inclination of the orbit. A comparison with estimates from accreting X-ray binaries suggests an inclination approx > 60 deg. We note that, in principle, a precessing accretion disk could also produce the observed X-ray modulations.
Thermoelectric properties of Co(x)Ni(4-x)Sb(12-y)Sn(y) ternary skutterudites
NASA Technical Reports Server (NTRS)
Mackey, Jon A.; Dynys, Frederick W.; Sehirlioglu, Alp
2014-01-01
Thermoelectric materials based on the skutterudite crystal structure have demonstrated enhanced performance (ZT greater than 1), along with good thermal stability and favorable mechanical properties. Binary skutterudites, with single and multiple fillers, have been intensively studied in recent years. Compared to binary skutterudites, the ternary systems have received less attention, e.g. Ni4Sb8Sn4. Ternary skutterudites are isoelectronic variants of binary skutterudites; cation substitutions appear to be isostructural to their binary analogues. In general, ternary skutterudites exhibit lower thermal conductivity. Ternary systems of Ni4Bi8Ge4, Ni4Sb8Ge4, and Ni4Sb8Sn4 were investigated using combined solidification and sintering steps. Skutterudite formation was not achieved in the Ni4Bi8Ge4 and Ni4Sb8Ge4 systems; skutterudite formation occurred in Ni4Sb8Sn4 system. P-type material was achieved by Co substitution for Ni. Thermoelectric properties were measured from 298 K to 673 K for Ni4Sb8Sn4, Ni4 Sb7Sn5 and Co2Ni2Sb7Sn5. N-type Ni4Sb8Sn4 exhibit the highest figure of merit of 0.1 at 523 K.
Very high energy gamma-ray binary stars.
Lamb, R C; Weekes, T C
1987-12-11
One of the major astronomical discoveries of the last two decades was the detection of luminous x-ray binary star systems in which gravitational energy from accretion is released by the emission of x-ray photons, which have energies in the range of 0.1 to 10 kiloelectron volts. Recent observations have shown that some of these binary sources also emit photons in the energy range of 10(12) electron volts and above. Such sources contain a rotating neutron star that is accreting matter from a companion. Techniques to detect such radiation are ground-based, simple, and inexpensive. Four binary sources (Hercules X-1, 4U0115+63, Vela X-1, and Cygnus X-3) have been observed by at least two independent groups. Although the discovery of such very high energy "gamma-ray binaries" was not theoretically anticipated, models have now been proposed that attempt to explain the behavior of one or more of the sources. The implications of these observations is that a significant portion of the more energetic cosmic rays observed on Earth may arise from the action of similar sources within the galaxy during the past few million years.
IGR J17329-2731: The birth of a symbiotic X-ray binary
NASA Astrophysics Data System (ADS)
Bozzo, E.; Bahramian, A.; Ferrigno, C.; Sanna, A.; Strader, J.; Lewis, F.; Russell, D. M.; di Salvo, T.; Burderi, L.; Riggio, A.; Papitto, A.; Gandhi, P.; Romano, P.
2018-05-01
We report on the results of the multiwavelength campaign carried out after the discovery of the INTEGRAL transient IGR J17329-2731. The optical data collected with the SOAR telescope allowed us to identify the donor star in this system as a late M giant at a distance of 2.7-1.2+3.4 kpc. The data collected quasi-simultaneously with XMM-Newton and NuSTAR showed the presence of a modulation with a period of 6680 ± 3 s in the X-ray light curves of the source. This unveils that the compact object hosted in this system is a slowly rotating neutron star. The broadband X-ray spectrum showed the presence of a strong absorption (≫1023 cm-2) and prominent emission lines at 6.4 keV, and 7.1 keV. These features are usually found in wind-fed systems, in which the emission lines result from the fluorescence of the X-rays from the accreting compact object on the surrounding stellar wind. The presence of a strong absorption line around 21 keV in the spectrum suggests a cyclotron origin, thus allowing us to estimate the neutron star magnetic field as 2.4 × 1012 G. All evidencethus suggests IGR J17329-2731 is a symbiotic X-ray binary. As no X-ray emission was ever observed from the location of IGR J17329-2731 by INTEGRAL (or other X-ray facilities) during the past 15 yr in orbit and considering that symbiotic X-ray binaries are known to be variable but persistent X-ray sources, we concluded that INTEGRAL caught the first detectable X-ray emission from IGR J17329-2731 when the source shined as a symbiotic X-ray binary. The Swift XRT monitoring performed up to 3 months after the discovery of the source, showed that it maintained a relatively stable X-ray flux and spectral properties.
Large Magellanic Cloud Planetary Nebula Morphology: Probing Stellar Populations and Evolution.
Stanghellini; Shaw; Balick; Blades
2000-05-10
Planetary nebulae (PNe) in the Large Magellanic Cloud (LMC) offer the unique opportunity to study both the population and evolution of low- and intermediate-mass stars, by means of the morphological type of the nebula. Using observations from our LMC PN morphological survey, and including images available in the Hubble Space Telescope Data Archive and published chemical abundances, we find that asymmetry in PNe is strongly correlated with a younger stellar population, as indicated by the abundance of elements that are unaltered by stellar evolution (Ne, Ar, and S). While similar results have been obtained for Galactic PNe, this is the first demonstration of the relationship for extragalactic PNe. We also examine the relation between morphology and abundance of the products of stellar evolution. We found that asymmetric PNe have higher nitrogen and lower carbon abundances than symmetric PNe. Our two main results are broadly consistent with the predictions of stellar evolution if the progenitors of asymmetric PNe have on average larger masses than the progenitors of symmetric PNe. The results bear on the question of formation mechanisms for asymmetric PNe-specifically, that the genesis of PNe structure should relate strongly to the population type, and by inference the mass, of the progenitor star and less strongly on whether the central star is a member of a close binary system.
A Chandra X-ray census of the interacting binaries in old open clusters - NGC 188
NASA Astrophysics Data System (ADS)
Vats, Smriti; Van Den Berg, Maureen
2017-01-01
We present a new X-ray study of NGC 188, one of the oldest open clusters known in the Milky Way (7 Gyr). Our X-ray observation using the Chandra X-ray Observatory is aimed at uncovering the population of close interacting binaries in the cluster. We detect 84 X-ray sources with a limiting X-ray luminosity, LX ~ 4×1029 erg s-1 (0.3-7 keV), of which 28 are within the half-mass radius. Of these, 13 are proper-motion or radial-velocity cluster members, wherein we identify a mix of active binaries (ABs) and blue straggler stars (BSSs). We also identify one tentative cataclysmic variable (CV) candidate which is a known short-period photometric variable, but whose membership to NGC 188 is unknown. We have compared the X-ray luminosity per unit of cluster mass (i.e. the X-ray emissivity) of NGC 188 with those of other old Galactic open clusters and dense globular clusters (47 Tuc, NGC 6397). Our findings confirm the earlier result that old open clusters have higher X-ray emissivities than the globular clusters (LX ≥1×1030 erg s-1). This may be explained by dynamical encounters in globulars, which could have a net effect of destroying binaries, or the typically higher metallicities of open clusters. We find one intriguing X-ray source in NGC 188 that is a BSS and cluster member, whose X-ray luminosity cannot be explained by its currently understood binary configuration. Its X-ray detection invokes the need for a third companion in the system.
MS 1603.6 + 2600, an unusual X-ray selected binary system at high Galactic latitude
NASA Technical Reports Server (NTRS)
Morris, Simon L.; Liebert, James; Stocke, John T.; Gioia, Isabella M.; Schild, Rudy E.
1990-01-01
The discovery of an eclipsing binary system at Galactic latitude 47 deg, found as a serendipitous X-ray source in the Einstein Extended Medium Sensitivity Survey, is described. The object has X-ray flux 1.1 x 10 to the -12th ergs/sq cm s (0.3-3.5 keV) and mean magnitude R = 19.4. An orbital period of 111 minutes is found. The problem discussed is whether the system has a white dwarf or neutron star primary, in the end preferring the neutron star primary model. If the system has either optical or X-ray luminosities typical of low mass X-ray binaries (LMXB), it must be at a very large distance (30-80 kpc). Blueshifted He I absorption is seen, indicating cool outflowing material, similar to that seen in the LMXB AC 211 in the globular cluster M15.
NASA Technical Reports Server (NTRS)
Melbourne, J.; Boyer, Martha L.
2013-01-01
We present the near-through mid-infrared flux contribution of thermally-pulsing asymptotic giant branch (TP-AGB) and massive red supergiant (RSG) stars to the luminosities of the Large and Small Magellanic Clouds (LMC and SMC, respectively). Combined, the peak contribution from these cool evolved stars occurs at approx 3 - 4 micron, where they produce 32% of the SMC light, and 25% of the LMC flux. The TP-AGB star contribution also peaks at approx 3 - 4 micron and amounts to 21% in both galaxies. The contribution from RSG stars peaks at shorter wavelengths, 2.2 micron, where they provide 11% of the SMC flux, and 7% for the LMC. Both TP-AGB and RSG stars are short lived, and thus potentially impose a large stochastic scatter on the near-IR derived mass-to-light (M/L) ratios of galaxies at rest-frame 1 - 4 micron. To minimize their impact on stellar mass estimates, one can use the M/L ratio at shorter wavelengths (e.g., at 0.8 - 1 micron). At longer wavelengths (much > 8 micron), emission from dust in the interstellar medium dominates the flux. In the LMC, which shows strong polycyclic aromatic hydrocarbon (PAH) emission at 8 micron, TP-AGB and RSG contribute less than 4% of the 8 micron flux. However, 19% of the SMC 8 micron flux is from evolved stars, nearly half of which is produced by the rarest, dustiest, carbon-rich TP-AGB stars. Thus, star formation rates of galaxies, based on an 8 micron flux (e.g., observed-frame 24 micron at z = 2), may be biased modestly high, especially for galaxies with little PAH emission.
NASA Technical Reports Server (NTRS)
Pasham, Dheeraj R.; Strohmayer, Tod E.
2013-01-01
We report results from long-term (approx.1240 days) X-ray (0.3-8.0 keV) monitoring of the ultraluminous X-ray source NGC 5408 X-1 with the Swift/X-Ray Telescope. Here we expand on earlier work by Strohmayer (2009) who used only a part of the present data set. Our primary results are: (1) the discovery of sharp, quasi-periodic, energy-independent dips in the X-ray intensity that recur on average every 243 days, (2) the detection of an energy dependent (variability amplitude decreases with increasing energy), quasi-sinusoidal X-ray modulation with a period of 112.6 +/- 4 days, the amplitude of which weakens during the second half of the light curve, and (3) spectral evidence for an increase in photoelectric absorption during the last continuous segment of the data. We interpret the X-ray modulations within the context of binary motion in analogy to that seen in high-inclination accreting X-ray binaries. If correct, this implies that NGC 5408 X-1 is in a binary with an orbital period of 243 +/- 23 days, in contrast to the 115.5 day quasi-sinusoidal period previously reported by Strohmayer (2009). We discuss the overall X-ray modulation within the framework of accretion via Roche-lobe overflow of the donor star. In addition, if the X-ray modulation is caused by vertically structured obscuring material in the accretion disk, this would imply a high value for the inclination of the orbit. A comparison with estimates from accreting X-ray binaries suggests an inclination > or approx.70deg. We note that, in principle, a precessing accretion disk could also produce the observed X-ray modulations.
Discovery of a Probable BH-HMXB and Cyg X-1 Progenitor System
NASA Astrophysics Data System (ADS)
Grindlay, Jonathan E.; Gomez, Sebastian; Hong, Jaesub; Zhang, Shuo; Hailey, Charles; Mori, Kaya; Tomsick, John
2017-08-01
We report the discovery of a probable black hole High Mass X-ray Binary (BH-HMXB), a 5.3d single line spectroscopic binary (SB1) HD96670 in the Carina OB association. We initiated a search for such systems for which the O star primary was still on the main sequence, in stark contrast to Cyg X-1 with its evolved supergiant O star companion, since such systems must be ~10-30 times more numerous given their longer lifetimes. HD96670 had been found to be a SB1 with binary period ~5.5d and mass function ~0.125Msun. With a ~150ksec NuSTAR observation of HD96670 over 3 segments, we found a significant detection of a variable source best fit with a PL spectrum with photon index between 2.4 and 2.6 for the brightest vs. faintest observations. Weak 6.4 - 6.7 keV emission was also detected. We conducted extensive optical photometry and spectroscopy to better measure the binary system parameters and have fit the the combined data with an ellipsoidal modulation code (Wilson and Devinney) to find that the binary companion is best fit by a ~4.5 Msun BH accreting from the weak wind primary O star with luminosity Lx ~3 x 10^32 erg/s, which cannot be due to a colliding wind or intrinsic Ostar emission. . A B4V or B5V main sequence star companion can be ruled out by the very low accretion luminosity and lack of colliding wind expected. Full details, including the direct measurement of a triple companion B1V star previously reported (Sanna et al 2014) for HD96670, will appear in two forthcoming papers to be summarized in this talk.
The coupling of a disk corona and a jet for the radio/X-ray correlation in black hole X-ray binaries
NASA Astrophysics Data System (ADS)
Qiao, Erlin
2015-08-01
We interpret the radio/X-ray correlation of LR ∝ LX1.4 for LX/LEdd >10-3 in black hole X-ray binaries with a detailed disk corona-jet model, in which the accretion flow and the jet are connected by a parameter, ‘η’, describing the fraction of the matter in the accretion flow ejected outward to form the jet. We calculate LR and LX at different mass accretion rates, adjusting η to fit the observed radio/X-ray correlation of the black hole X-ray transient H1743-322 for LX/LEdd > 10-3. It is found that the value of η for this radio/X-ray correlation for LX/LEdd > 10-3, is systematically less than that of the case for LX/LEdd < 10-3, which is consistent with the general idea that the jet is often relatively suppressed at the high luminosity phase in black hole X-ray binaries.
Alagha, M Abdulhadi; Alagha, Mahmoud A; Dunstan, Eleanor; Sperwer, Olaf; Timmins, Kate A; Boszczyk, Bronek M
2017-04-01
To set a baseline measurement of the number of hand flexion-extension cycles and analyse the degree of motion in young healthy individuals, measured by leap motion controller (LMC), besides describing gender and dominant hand differences. Fifty healthy participants were asked to fully grip-and-release their dominant hand as rapidly as possible for a maximum of 3 min or until subjects fatigued, while wearing a non-metal wrist splint. Participants also performed a 15-s grip-and-release test. An assessor blindly counted the frequency of grip-and-release cycles and magnitude of motion from the LMC data. The mean number of the 15-s G-R cycles recorded by LMC was: 47.7 ± 6.5 (test 1, LMC); and 50.2 ± 6.5 (test 2, LMC). In the 3-min test, the total number of hand flexion-extension cycles and the degree of motion decreased as the person fatigued. However, the decline in frequency preceded that of motion's magnitude. The mean frequency of cycles per 10-s interval decreased from 35.4 to 26.6 over the 3 min. Participants reached fatigue from 59.38 s; 43 participants were able to complete the 3-min test. Normative values of the frequency of cycles and extent of motion for young healthy individuals, aged 18-35 years, are provided. Future work is needed to establish values in a wider age range and in a clinical setting.
Magnitude Bias of Microlensed Sources toward the Large Magellanic Cloud.
Zhao; Graff; Guhathakurta
2000-03-20
There are lines of evidence suggesting that some of the observed microlensing events in the direction of the Large Magellanic Cloud (LMC) are caused by ordinary star lenses as opposed to dark MACHOs in the Galactic halo. Efficient lensing by ordinary stars generally requires the presence of one or more additional concentrations of stars along the line of sight to the LMC disk. If such a population behind the LMC disk exists, then the source stars (for lensing by LMC disk objects) will be drawn preferentially from the background population and will show systematic differences from LMC field stars. One such difference is that the (lensed) source stars will be farther away than the average LMC field stars, and this should be reflected in their apparent baseline magnitudes. We focus on red clump stars; these should appear in the color-magnitude diagram at a few tenths of a magnitude fainter than the field red clump. Suggestively, one of the two near-clump confirmed events, MACHO-LMC-1, is a few tenths of magnitude fainter than the clump.
Dark jets in the soft X-ray state of black hole binaries?
NASA Astrophysics Data System (ADS)
Drappeau, S.; Malzac, J.; Coriat, M.; Rodriguez, J.; Belloni, T. M.; Belmont, R.; Clavel, M.; Chakravorty, S.; Corbel, S.; Ferreira, J.; Gandhi, P.; Henri, G.; Petrucci, P.-O.
2017-04-01
X-ray binary observations led to the interpretation that powerful compact jets, produced in the hard state, are quenched when the source transitions to its soft state. The aim of this paper is to discuss the possibility that a powerful dark jet is still present in the soft state. Using the black hole X-ray binaries GX339-4 and H1743-322 as test cases, we feed observed X-ray power density spectra in the soft state of these two sources to an internal shock jet model. Remarkably, the predicted radio emission is consistent with current upper limits. Our results show that for these two sources, a compact dark jet could persist in the soft state with no major modification of its kinetic power compared to the hard state.
X-ray observations of the colliding wind binary WR 25
NASA Astrophysics Data System (ADS)
Arora, Bharti; Pandey, Jeewan Chandra
2018-04-01
Using the archival data obtained from Chandra and Suzaku spanning over '8 years, we present an analysis of a WN6h+O4f Wolf-Rayet binary, WR 25. The X-ray light curves folded over a period of '208 d in the 0.3 - 10.0 keV energy band showed phase-locked variability where the count rates were found to be maximum near the periastron passage. The X-ray spectra of WR 25 were well explained by a two-temperature plasma model with temperatures of 0.64 ± 0.01 and 2.96 ± 0.05 keV and are consistent with previous results. The orbital phase dependent local hydrogen column density was found to be maximum just after the periastron passage, when the WN type star is in front of the O star. The hard (2.0 - 10.0 keV) X-ray luminosity was linearly dependent on the inverse of binary separation which confirms that WR 25 is a colliding wind binary.
The First Simultaneous X-Ray/Radio Detection of the First Be/BH System MWC 656
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ribó, M.; Paredes, J. M.; Marcote, B.
2017-02-01
MWC 656 is the first known Be/black hole (BH) binary system. Be/BH binaries are important in the context of binary system evolution and sources of detectable gravitational waves because they are possible precursors of coalescing neutron star/BH binaries. X-ray observations conducted in 2013 revealed that MWC 656 is a quiescent high-mass X-ray binary (HMXB), opening the possibility to explore X-ray/radio correlations and the accretion/ejection coupling down to low luminosities for BH HMXBs. Here we report on a deep joint Chandra /VLA observation of MWC 656 (and contemporaneous optical data) conducted in 2015 July that has allowed us to unambiguously identifymore » the X-ray counterpart of the source. The X-ray spectrum can be fitted with a power law with Γ ∼ 2, providing a flux of ≃4 × 10{sup −15} erg cm{sup −2} s{sup −1} in the 0.5–8 keV energy range and a luminosity of L {sub X} ≃ 3 × 10{sup 30} erg s{sup −1} at a 2.6 kpc distance. For a 5 M{sub ⊙} BH this translates into ≃5 × 10{sup −9} L {sub Edd}. These results imply that MWC 656 is about 7 times fainter in X-rays than it was two years before and reaches the faintest X-ray luminosities ever detected in stellar-mass BHs. The radio data provide a detection with a peak flux density of 3.5 ± 1.1 μ Jy beam{sup −1}. The obtained X-ray/radio luminosities for this quiescent BH HMXB are fully compatible with those of the X-ray/radio correlations derived from quiescent BH low-mass X-ray binaries. These results show that the accretion/ejection coupling in stellar-mass BHs is independent of the nature of the donor star.« less
Swift/BAT Detects Increase in Hard X-ray Emission from the Ultra-compact X-ray Binary 4U 1543-624
NASA Astrophysics Data System (ADS)
Ludlam, Renee; Miller, Jon M.; Miller-Jones, James; Reynolds, Mark
2017-08-01
The Swift/BAT detected an increase in hard X-ray emission (15-50 keV) coming from the ultra-compact X-ray binary 4U 1543-624 around 2017 August 9. The MAXI daily monitoring also shows a gradual increase in 2.0-20.0 keV X-ray intensity as of 2017 August 19. Swift/XRT ToO monitoring of the source was triggered and shows an increase in unabsorbed flux to 1.06E-9 ergs/cm2/s in the 0.3-10.0 keV energy band as of 2017 August 26. ATCA performed ToO observations for approximately 4 hours in the 5.5 GHz and 9.0 GHz bands while the antennas were in the 1.5A array configuration from 11:25-16:09 UTC on 2017 August 23. The source was not detected in either band.
Rowe, J.J.; Morey, G.W.; Hansen, I.D.
1965-01-01
The binary system K2SO4CaSO4 was studied by means of heating-cooling curves, differential thermal analysis, high-temperature quenching technique and by means of a heating stage mounted on an X-ray diffractometer. Compositions and quench products were identified optically and by X-ray. Limited solid solution of CaSO4 in K2SO4 was found. There is a eutectic at 875??C and 34 wt. per cent CaSO4. Calcium langbeinite melts incongruently at 1011??C. The melting-point of CaSO4 (1462??C) was determined by the quenching technique using sealed platinum tubes. The only intermediate crystalline phase found in the system is K2SO4??2CaSO4 (calcium langbeinite). ?? 1965.
Probing the Environment of Accreting Compact Objects
NASA Astrophysics Data System (ADS)
Hanke, Manfred
2011-04-01
X-ray binaries are the topic of this thesis. They consist of a compact object -- a black hole or a neutron star -- and an ordinary star, which loses matter to the compact object. The gravitational energy released through this process of mass accretion is largely converted into X-rays. The latter are used in the present work to screen the environment of the compact object. The main focus in the case of a massive star is on its wind, which is not homogeneous, but may display structures in form of temperature and density variations. Since great importance is, in multiple respects, attached to stellar winds in astrophysics, there is large interest in general to understand these structures more thoroughly. In particular for X-ray binaries, whose compact object obtains matter from the wind of its companion star, the state of the wind can decisively influence mass accretion and its related radiation processes. A detailed introduction to the fundamentals of stellar winds, compact objects, accretion and radiation processes in X-ray binaries, as well as to the employed instruments and analysis methods, is given in chapter 1. The focus of this investigation is on Cygnus X-1, a binary system with a black hole and a blue supergiant, which form a persistently very bright X-ray source because of accretion from the stellar wind. It had been known for a long time that this source -- when the black hole is seen through the dense stellar wind -- often displays abrupt absorption events whose origin is suspected to be in clumps in the wind. More detailed physical properties of these clumps and of the wind in general are explored in this work. Observations that were specifically acquired for this study, as well as archival data from different satellite observatories, are analyzed in view of signatures of the wind and its fine structures. These results are presented in chapter 2. In a first part of the analysis, the statistical distribution of the brightness of Cyg X-1, as measured since 1996 with the RXTE satellite's all-sky monitor, is investigated in the context of the binary system's orbital phase. The stellar wind is here noticed via absorption of the soft X-radiation. This analysis has not only shown that the mean column density in the wind is -- as already known -- larger along lines of sight passing close by the star, but also that the wind is more clumpy there. The evaluation of more than 2 000 spectra from RXTE's proportional counter, taken within 14.5 years and mostly in the framework of a monitoring campaign, has lead to the same result. Compared to previous studies, the accuracy of the measurements could be improved by a careful investigation of the quality of the low-energy spectrum, which was required to register the scatter due to the clumpiness. In the next part, several high-resolution X-ray sepectra were analyzed, which were recorded with the gratings spectrometer of the highly requested Chandra satellite. The modulation of the absorption could, for the first time, be ascribed to the highly ionized wind, which has consequences for its quantitative interpretation due to the reduced cross sections compared to neutral absorption. Moreover, the acceleration of the wind with increasing distance from the star could be demonstrated, which constitutes an important observational evidence in terms of the wind structure. A conjecture published in 2008, according to which no wind might develop in the ionized environment of the X-ray source, is therewith disproved. By means of spectroscopy of strong absorption events, it was for the first time unequivocally demonstrated that these can be ascribed to a shift of the ionization balance to less strongly ionized gas, due to the enhanced density of the clumps. The increase of the column density of lower ionization stages is also confirmed by the spectroscopic analysis of the contemporaneous observation with the XMM-Newton satellite. Since these simultaneous observations were, in the framework of the largest observational campaign to date, accompanied by all available X-ray satellites, the effect of the absorption events on hard X-rays could be investigated as well. A flux reduction was detected in light curves at high energies, not affected by absorption, which coincides with the time of the strongest absorption event. This effect could be confirmed by time resolved spectroscopy of the XMM data, and be interpreted as due to scattering on a fully ionized cloud. The evolution of the light curve constitutes therefore a tomography of this cloud, and reveals further structure in the stellar wind. The strong absorption event is caused by the cloud's core, which is sufficiently dense that its ionization balance is shifted. Results from the analysis of another source are briefly presented in chapter 3. For the X-ray binary system LMC X-1 in the Large Magellanic Cloud, six spectra have been analyzed in view of their absorption. A connection with the orbital phase was suggested, which indicates absorption by material within the system itself. Concluding this thesis, the detailed results are summarized and discussed in chapter 4, and an outlook on future research possibilities is given.
A Study of Cen X-3 as Seen by INTEGRAL
NASA Astrophysics Data System (ADS)
La Barbera, A.; Baushev, A.; Ferrigno, C.; Piraino, S.; Santangelo, A.; Segreto, A.; Orlandini, M.; Kretschmar, P.; Kreykenbohm, I.; Wilms, J.; Staubert, R.; Coburn, W.; Heindl, W. A.
2004-10-01
We present a preliminary analysis of 14 observa- tions (Science Windows SCW) of the eclipsing High Mass X ray Binary Pulsar Cen X 3 taken during the Galactic Plane Scan (GPS) with INTEGRAL. The source was detected in 4 SCWs by JEM-X for a total exposure time of 8.7 ksec and in 11 SCWs by ISGRI for a total exposure time of 23.8 ksec. The study of the pulse profile is reported. The 10 70 keV spec- trum is also described. The results are compared with those from previous X ray missions. Key words: pulsars, individual: Cen X 3; stars: neu- tron stars; X rays: binaries.
NASA Astrophysics Data System (ADS)
van den Eijnden, J.; Degenaar, N.; Russell, T. D.; Miller-Jones, J. C. A.; Wijnands, R.; Miller, J. M.; King, A. L.; Rupen, M. P.
2018-01-01
Her X-1 is an accreting neutron star (NS) in an intermediate-mass X-ray binary. Like low-mass X-ray binaries (LMXBs), it accretes via Roche lobe overflow, but similar to many high-mass X-ray binaries containing a NS; Her X-1 has a strong magnetic field and slow spin. Here, we present the discovery of radio emission from Her X-1 with the Very Large Array. During the radio observation, the central X-ray source was partially obscured by a warped disc. We measure a radio flux density of 38.7 ± 4.8 μJy at 9 GHz but cannot constrain the spectral shape. We discuss possible origins of the radio emission, and conclude that coherent emission, a stellar wind, shocks and a propeller outflow are all unlikely explanations. A jet, as seen in LMXBs, is consistent with the observed radio properties. We consider the implications of the presence of a jet in Her X-1 on jet formation mechanisms and on the launching of jets by NSs with strong magnetic fields.
Diffuse gamma-ray emission from pulsars in the Large Magellanic Cloud
NASA Technical Reports Server (NTRS)
Hartmann, Dieter H.; Brown, Lawrence E.; Schnepf, Neil
1993-01-01
We investigate the contribution of pulsars to the diffuse gamma-ray emission from the LMC. The pulsar birth rate in the LMC is a factor of about 10 lower than that of the Galaxy and the distance to pulsars in the LMC is about 5-10 times larger than to Galactic pulsars. The resulting total integrated photon flux from LMC pulsars is thus reduced by a factor of about 100 to 1000. However, the surface brightness is not reduced by the same amount because of the much smaller angular extent of the LMC in comparison to the diffuse glow from the Galactic plane. We show that gamma-ray emission due to pulsars born in the LMC could produce gamma-ray fluxes that are larger than the inverse Compton component from relativistic cosmic-ray electrons and a significant fraction of the extragalactic isotropic background or the diffuse Galactic background in that direction. The diffuse pulsar glow above 100 MeV should therefore be included in models of high-energy emission from the LMC. For a gamma-ray beaming fraction of order unity the detected emissions from the LMC constrain the pulsar birth rate to less than one per 50 yr. This limit is about one order of magnitude above the supernova rate inferred from the historic record or from the star-formation rate.
VizieR Online Data Catalog: LMC NIR Synoptic Survey. II. Wesenheit relations (Bhardwaj+, 2016)
NASA Astrophysics Data System (ADS)
Bhardwaj, A.; Kanbur, S. M.; Macri, L. M.; Singh, H. P.; Ngeow, C.-C.; Wagner-Kaiser, R.; Sarajedini, A.
2018-03-01
We make use of NIR mean magnitudes for 775 fundamental-mode and 474 first-overtone Cepheids in the LMC from Macri et al. 2015, J/AJ/149/117 (Paper I). These magnitudes are based on observations from a synoptic survey (average of 16 epochs) of the central region of the LMC using the CPAPIR camera at the Cerro Tololo Interamerican Observatory 1.5-m telescope between 2006 and 2007. Most of these Cepheid variables were previously studied in the optical V and I bands by the third phase of the Optical Gravitational Lensing Experiment (OGLE-III) survey (Soszynski et al. 2008, J/AcA/58/163; Ulaczyk et al. 2013, J/AcA/63/159). The V and I band mean magnitudes are also compiled in Paper I. The calibration into the 2MASS photometric system, extinction corrections, and the adopted reddening law are discussed in detail in Paper I. (4 data files).
NASA Astrophysics Data System (ADS)
Alcock, C.; Allsman, R. A.; Alves, D.; Axelrod, T. S.; Becker, A. C.; Bennett, D. P.; Cook, K. H.; Freeman, K. C.; Griest, K.; Lehner, M. J.; Marshall, S. L.; Minniti, D.; Peterson, B. A.; Pratt, M. R.; Quinn, P. J.; Rodgers, A. W.; Rorabeck, A.; Sutherland, W.; Tomaney, A.; Vandehei, T.; Welch, D. L.; MACHO Collaboration
1999-01-01
MACHO Project photometry of 45 LMC first and second overtone (FO and SO, respectively) beat Cepheids that pulsate in the FO and SO has been analyzed to determine the light-curve characteristics for the SO mode of Cepheid pulsation. We predict that singly periodic SO Cepheids will have nearly sinusoidal light curves; that we will only be able to discern SO Cepheids from fundamental (F) and FO Cepheids for P<~1.4 days; and that the SO distribution will overlap the short-period edge of the LMC FO Cepheid period-luminosity relation (when both are plotted as a function of photometric period). We also report the discovery of one SO Cepheid candidate, MACHO*05:03:39.6-70:04:32, with a photometric period of 0.775961+/-0.000019 days and an instrumental amplitude of 0.047+/-0.009 mag in V.
The optical counterpart to the Be/X-ray binary SAX J2239.3+6116
NASA Astrophysics Data System (ADS)
Reig, P.; Blay, P.; Blinov, D.
2017-02-01
Context. Be/X-ray binaries represent the main group of high-mass X-ray binaries. The determination of the astrophysical parameters of the counterparts of these high-energy sources is important for the study of X-ray binary populations in our Galaxy. X-ray observations suggest that SAX J2239.3+6116 is a Be/X-ray binary. However, little is known about the astrophysical parameters of its massive companion. Aims: The main goal of this work is to perform a detailed study of the optical variability of the Be/X-ray binary SAX J2239.3+6116. Methods: We obtained multi-colour BVRI photometry and polarimetry and 4000-7000 Å spectroscopy. The 4000-5000 Å spectra allowed us to determine the spectral type and projected rotational velocity of the optical companion; the 6000-7000 Å spectra, together with the photometric magnitudes, were used to derive the colour excess E(B-V), estimate the distance, and to study the variability of the Hα line. Results: The optical counterpart to SAX J2239.3+6116 is a V = 14.8 B0Ve star located at a distance of 4.9 kpc. The interstellar reddening in the direction of the source is E(B-V) = 1.70 ± 0.03 mag. The monitoring of the Hα line reveals a slow long-term decline of its equivalent width since 2001. The line profile is characterized by a stable double-peak profile with no indication of large-scale distortions. We measured intrinsic optical polarization for the first time. Although somewhat higher than predicted by the models, the optical polarization is consistent with electron scattering in the circumstellar disk. Conclusions: We attribute the long-term decrease in the intensity of the Hα line to the dissipation of the circumstellar disk of the Be star. The longer variability timescales observed in SAX J2239.3+6116 compared to other Be/X-ray binaries may be explained by the wide orbit of the system.
Composition and Temperature Dependence of Shear Viscosity of Hydrocarbon Mixtures
1980-07-01
HNN- XTHDCPD Binary System IX. VTF Eq. Parameters for Shear Viscosities Using Constant B Parameter X. Results of Fits to Master Viscosity Eqs. (43...T(K) for 5 C10 Hydrocarbons I Fig. 2a. log n versus 103/T(K) for HNNi I Fig. 2b. log n versus 103/T(K) for XTHDCPD Fig. 3. Isothem of log n versus X...CD for CO-MO Binary System Fig. 4. Isotherm of log n versus XNBC for NBC-DMO Binary System ( ~Fig. 5. Isotherm of log n versus XfINN for HNN- XTHDCPD
Broad-Band Measurements of Cen X-3 With XTE and CGRO
NASA Technical Reports Server (NTRS)
Vestrand, W. Thomas
1999-01-01
Centaurus X-3 has played a key role in the development of our understanding of galactic x-ray binary sources. Timing analysis of the UHURU x-ray observations for the luminous Cen X-3 source (L approximately 10(exp 38) erg/s) revealed the first evidence for coherent x-ray pulsations from an object in a binary system (Giaconni 1971; Schreier 1972). It was quickly understood that the luminous pulsed x-ray emission could be generated by the accretion of matter from a companion star onto a rotating neutron star and led to the adoption of binary star models as the fundamental model for galactic x-ray sources (e.g. Pringle and Rees 1972; Lamb 1973). Based on modeling and refined observations since the original measurements, we now believe that Cen X-3 is a high mass x-ray binary system that contains a disk-fed pulsar with a period of 4.84 seconds that is in a 2.087 day orbit around an O-star companion. Since the pulsar discovery, its period has been intermittently monitored and those studies show a long term spin-up of the pulsar punctuated by short intervals of spin-down (e.g. Finger 1994). The implied torques are thought to originate from the interaction of an accretion disk with the magnetic field of a neutron star (Ghosh and Lamb 1979).
NASA Astrophysics Data System (ADS)
Matar, Samir F.; Kfoury, Charbel N.
2018-02-01
Common features and peculiar differentiations characterize binary and ternary thorium nitride Th3N4, thorium nitride chloride ThNCl and the family of thorium nitride chalcogenides Th2N2X (X = O, S, Se, Te) investigated in the framework of the quantum density functional theory DFT. Particularly the dominant effect of the Th-N covalent bond stronger than ionic Th-Cl/Th-X ones as identified from analyses of bonding from overlap integral, electron localization function mapping, electronic density of states and charge transfer, is found at the origin of the layered-like structural arrangements in Th-N monolayers within ThNCl (Cl / [ThN]/ Cl) and Th-N double layers in Th2N2X (X / [Th2N2] / X) with the result of pseudo binary compounds: [ThN]+Cl- and [Th2N2] 2+X2-. All compounds are found semi-conducting with ∼2 eV band gap. It is claimed that such insights into Solid State Chemistry can help rationalizing complex compounds more comprehensively (two examples given).
A ROSAT Survey of Contact Binary Stars
NASA Astrophysics Data System (ADS)
Geske, M. T.; Gettel, S. J.; McKay, T. A.
2006-01-01
Contact binary stars are common variable stars that are all believed to emit relatively large fluxes of X-rays. In this work we combine a large new sample of contact binary stars derived from the ROTSE-I telescope with X-ray data from the ROSAT All Sky Survey (RASS) to estimate the X-ray volume emissivity of contact binary stars in the Galaxy. We obtained X-ray fluxes for 140 contact binaries from the RASS, as well as two additional stars observed by the XMM-Newton observatory. From these data we confirm the emission of X-rays from all contact binary systems, with typical luminosities of approximately 1.0×1030 ergs s-1. Combining calculated luminosities with an estimated contact binary space density, we find that contact binaries do not have strong enough X-ray emission to account for a significant portion of the Galactic X-ray background.
Tidal tearing of circumstellar disks in Be/X-ray and gamma-ray binaries
NASA Astrophysics Data System (ADS)
Okazaki, Atsuo T.
2017-11-01
About one half of high-mass X-ray binaries host a Be star [an OB star with a viscous decretion (slowly outflowing) disk]. These Be/X-ray binaries exhibit two types of X-ray outbursts (Stella et al. 1986), normal X-ray outbursts (L X~1036-37 erg s-1) and occasional giant X-ray outbursts (L X > 1037 erg s-1). The origin of giant X-ray outbursts is unknown. On the other hand, a half of gamma-ray binaries have a Be star as the optical counterpart. One of these systems [LS I +61 303 (P orb = 26.5 d)] shows the superorbital (1,667 d) modulation in radio through X-ray bands. No consensus has been obtained for its origin. In this paper, we study a possibility that both phenomena are caused by a long-term, cyclic evolution of a highly misaligned Be disk under the influence of a compact object, by performing 3D hydrodynamic simulations. We find that the Be disk cyclically evolves in mildly eccentric, short-period systems. Each cycle consists of the following stages: 1) As the Be disk grows with time, the initially circular disk becomes eccentric by the Kozai-Lidov mechanism. 2) At some point, the disk is tidally torn off near the base and starts precession. 3) Due to precession, a gap opens between the disk base and mass ejection region, which allows the formation of a new disk in the stellar equatorial plane (see Figure 1). 4) The newly formed disk finally replaces the precessing old disk. Such a cyclic disk evolution has interesting implications for the long-term behavior of high energy emission in Be/X-ray and gamma-ray binaries.
Detecting Molecular Signatures of Life on Mars: the Life Marker Chip (lmc) Instrument
NASA Astrophysics Data System (ADS)
Derveni, Mariliza
In recent years, the rise of interest in planetary exploration and the emergence of Astrobiology as a promising field of research have lead to a number of programmes aiming to develop sensitive instruments for the detection of the molecular signatures of life in extreme environments. An antibody assay-based life detection instrument, the Life Marker Chip (LMC), is currently under development by a UK-lead international consortium for the European Space Agency's (ESA) ExoMars rover. This forms part of the joint ESA/NASA Mars exploration programme with the ExoMars Rover currently scheduled for launch in 2018. The organic molecules targeted for Life detection by the LMC are based on an assumption of "Earth-like" Life on Mars -extinct and/or extant. The molecular targets for the LMC have been chosen to represent markers of extinct Life, extant Life, abiotic chemistry (e.g. of meteoritic origin) and mission-borne Earth contamination. The LMC incorporates integrated liquid sample extraction and processing for dry Martian samples, which will be collected from up to 2m below the surface of Mars, where organic molecules, if present, are expected to be better preserved. The core technology of the LMC is a combination of optical evanescent waveguides, micro-fluidics, immuno-microarrays with fluorescent labels and CCD detector readout. Phage display recombinant antibody technology has been employed in order to acquire antibodies against a number of the LMC target molecules. The LMC hardware is currently in a breadboard phase of development. The recombinant antibody development for LMC targets is an on-going project, and testing of Earth-analogue Martian samples has been initiated
NASA Astrophysics Data System (ADS)
Bogdanov, Slavko; Halpern, Jules P.
2015-04-01
We present X-ray, ultraviolet, and optical observations of 1RXS J154439.4-112820, the most probable counterpart of the unassociated Fermi-LAT source 3FGL J1544.6-1125. The optical data reveal rapid variability, which is a feature of accreting systems. The X-rays exhibit large-amplitude variations in the form of fast switching (within ˜10 s) between two distinct flux levels that differ by a factor of ≈10. The detailed optical and X-ray behavior is virtually identical to that seen in the accretion-disk-dominated states of the transitional millisecond pulsar (MSP) binaries PSR J1023+0038 and XSS J12270-4859, which are also associated with γ-ray sources. Based on the available observational evidence, we conclude that 1RXS J154439.4-112820 and 3FGL J1544.6-1125 are the same object, with the X-rays arising from intermittent low-luminosity accretion onto an MSP and the γ-rays originating from an accretion-driven outflow. 1RXS J154439.4-112820 is only the fourth γ-ray-emitting low-mass X-ray binary system to be identified and is likely to sporadically undergo transformations to a non-accreting rotation-powered pulsar system.
Oxidation and reduction in irradiated binary crystals of resorcinol and progesterone
NASA Astrophysics Data System (ADS)
Box, Harold C.; Budzinski, Edwin E.
1985-12-01
The binary single crystals of resorcinol and progesterone were x-irradiated at 4.2 K. The semiquinone of resorcinol was generated by radiation induced oxidation. The oxidation and reduction products were identified from ESR and ENDOR measurements. (AIP)
NASA Technical Reports Server (NTRS)
Boehm-Vitense, E.; Hodge, P.
1984-01-01
High-resolution and low-resolution IUE spectra of O and B stars in the LMC cluster NGC 2100, the SMC cluster NGC 330, and the young Galactic cluster NGC 6530 are investigated. Temperatures and luminosities are determined. In the LMC and SMC clusters, the most luminous stars are evolved stars on the horizontal supergiant branch, while in NGC 6530 the stars are all still on the main sequence. Extinction laws were determined. They confirm the known differences between LMC and Galactic extinctions. No mass loss was detected for the evolved B stars in the LMC and SMC clusters, while the high-luminosity stars in NGC 6530 show P Cygni profiles.
A Chandra X-Ray Census of the Interacting Binaries in Old Open Clusters—Collinder 261
NASA Astrophysics Data System (ADS)
Vats, Smriti; van den Berg, Maureen
2017-03-01
We present the first X-ray study of Collinder 261 (Cr 261), which at an age of 7 Gyr is one of the oldest open clusters known in the Galaxy. Our observation with the Chandra X-Ray Observatory is aimed at uncovering the close interacting binaries in Cr 261, and reaches a limiting X-ray luminosity of {L}X≈ 4× {10}29 {erg} {{{s}}}-1 (0.3-7 keV) for stars in the cluster. We detect 107 sources within the cluster half-mass radius r h , and we estimate that among the sources with {L}X≳ {10}30 {erg} {{{s}}}-1, ˜26 are associated with the cluster. We identify a mix of active binaries and candidate active binaries, candidate cataclysmic variables, and stars that have “straggled” from the main locus of Cr 261 in the color-magnitude diagram. Based on a deep optical source catalog of the field, we estimate that Cr 261 has an approximate mass of 6500 M ⊙, roughly the same as the old open cluster NGC 6791. The X-ray emissivity of Cr 261 is similar to that of other old open clusters, supporting the trend that they are more luminous in X-rays per unit mass than old populations of higher (globular clusters) and lower (the local neighborhood) stellar density. This implies that the dynamical destruction of binaries in the densest environments is not solely responsible for the observed differences in X-ray emissivity.
Customized binary and multi-level HfO2-x-based memristors tuned by oxidation conditions.
He, Weifan; Sun, Huajun; Zhou, Yaxiong; Lu, Ke; Xue, Kanhao; Miao, Xiangshui
2017-08-30
The memristor is a promising candidate for the next generation non-volatile memory, especially based on HfO 2-x , given its compatibility with advanced CMOS technologies. Although various resistive transitions were reported independently, customized binary and multi-level memristors in unified HfO 2-x material have not been studied. Here we report Pt/HfO 2-x /Ti memristors with double memristive modes, forming-free and low operation voltage, which were tuned by oxidation conditions of HfO 2-x films. As O/Hf ratios of HfO 2-x films increase, the forming voltages, SET voltages, and R off /R on windows increase regularly while their resistive transitions undergo from gradually to sharply in I/V sweep. Two memristors with typical resistive transitions were studied to customize binary and multi-level memristive modes, respectively. For binary mode, high-speed switching with 10 3 pulses (10 ns) and retention test at 85 °C (>10 4 s) were achieved. For multi-level mode, the 12-levels stable resistance states were confirmed by ongoing multi-window switching (ranging from 10 ns to 1 μs and completing 10 cycles of each pulse). Our customized binary and multi-level HfO 2-x -based memristors show high-speed switching, multi-level storage and excellent stability, which can be separately applied to logic computing and neuromorphic computing, further suitable for in-memory computing chip when deposition atmosphere may be fine-tuned.
Constraining the inclination of the Low-Mass X-ray Binary Cen X-4
NASA Astrophysics Data System (ADS)
Hammerstein, Erica K.; Cackett, Edward M.; Reynolds, Mark T.; Miller, Jon M.
2018-05-01
We present the results of ellipsoidal light curve modeling of the low mass X-ray binary Cen X-4 in order to constrain the inclination of the system and mass of the neutron star. Near-IR photometric monitoring was performed in May 2008 over a period of three nights at Magellan using PANIC. We obtain J, H and K lightcurves of Cen X-4 using differential photometry. An ellipsoidal modeling code was used to fit the phase folded light curves. The lightcurve fit which makes the least assumptions about the properties of the binary system yields an inclination of 34.9^{+4.9}_{-3.6} degrees (1σ), which is consistent with previous determinations of the system's inclination but with improved statistical uncertainties. When combined with the mass function and mass ratio, this inclination yields a neutron star mass of 1.51^{+0.40}_{-0.55} M⊙. This model allows accretion disk parameters to be free in the fitting process. Fits that do not allow for an accretion disk component in the near-IR flux gives a systematically lower inclination between approximately 33 and 34 degrees, leading to a higher mass neutron star between approximately 1.7 M⊙ and 1.8 M⊙. We discuss the implications of other assumptions made during the modeling process as well as numerous free parameters and their effects on the resulting inclination.
A new ejecta shell surrounding a Wolf-Rayet star in the LMC
NASA Technical Reports Server (NTRS)
Garnett, Donald R.; Chu, You-Hua
1994-01-01
We have obtained CCD spectra of newly discovered shell-like nebulae around the WN4 star Breysacher 13 and the WN1 star Breysacher 2 in the Large Magellanic Cloud (LMC). The shell around Br 13 shows definite signs of enrichment in both nitrogen and helium, having much stronger (N II) and He I emission lines than are seen in typical LMC H II regions. From the measured electron temperature of about 17,000 K in the shell, we derive He/H and N/O abundance ratios which are factors of 2 and more than 10 higher, respectively, than the average LMC interstellar values. The derived oxygen abundance in the Br 13 shell is down by a factor of 8 compared to the local LMC interstellar medium (ISM); however, the derived electron temperature is affected by the presence of an incomplete shock arising from the interaction of the stellar wind with photoionized material. This uncertainty does not affect the basic conclusion that the Br 13 shell is enriched by processed material from the Wolf-Rayet star. In contrast, the shell around Br 2 shows no clear evidence of enrichment. The nebular spectrum is characterized by extremely strong (O III) and He II emission and very weak (N II). We derive normal He, O, and N abundances from our spectrum. This object therefore appears to be simply a wind-blown structure associated with a relatively dense cloud near the Wolf-Rayet star, although the very high-ionization state of the gas is unusual for a nebula associated with a Wolf-Rayet star.
Newly Discovered Be Stars in the Large Magellanic Cloud
NASA Astrophysics Data System (ADS)
Reid, W. A.
2016-11-01
The Large Magellanic Cloud (LMC) is a excellent laboratory in which to analyse and compare the distinctive characteristics of massive and luminous emission-line stars. In particular, the known and almost co-equal distance to all objects greatly assists the study of comparative luminosities. The original UKST Hα survey covering the central 25deg2 of the LMC revealed 518 Be stars, 413 of which were new discoveries. By extending the survey to cover the entire LMC area of 64 deg2, an additional 415 emission-line stars were identified. Most of the additions have now been spectroscopically observed, with the majority being confirmed as Be stars. The flux, equivalent width, and width at half maximum of the main emission-lines for each of the ˜800 spectroscopically observed LMC Be stars were measured in order to understand their elemental composition and the interaction of the extended circumstellar disk. After subtracting foreground or ambient dust and gas emission, 130 or 22% of B stars were classified as type B[e], characterized by the presence of forbidden emission lines such as [SII], [NII], [OIII] and [OII]. With de-reddened data, the first V-band and Hα luminosity functions were constructed for these stars in the LMC. The magnitudes were then compared using U, B, V, I, R, near-IR J, H, K and mid-IR photometry from the Magellanic Cloud Emission-Line Survey, SuperCOSMOS, 2MASS, and WISE where available. Correlations of varying strength between the optical, IR and Hα magnitudes are shown and discussed.
Accreting Neutron Star and Black Hole Binaries with NICER
NASA Astrophysics Data System (ADS)
Chakrabarty, Deepto
2018-01-01
The NICER mission on the International Space Station has significant new capabilities for the study of accreting neutron stars and blackholes, including large effective area, low background, and excellent low-energy X-ray response. Both the NICER Burst and Accretion Working Group and the Observatory Science Working Group have designed observing programs that probe various aspects of accretion physics. I will present some early results from the first six months of the NICER mission, including observations of the black hole transients MAXI J1535-571 and GX 339-4, the high-mass X-ray binary pulsars GRO J1008-57 and Swift J02436+6124, and the X-ray burster 4U 1820-30.
Energetics and Birth Rates of Supernova Remnants in the Large Magellanic Cloud
NASA Astrophysics Data System (ADS)
Leahy, D. A.
2017-03-01
Published X-ray emission properties for a sample of 50 supernova remnants (SNRs) in the Large Magellanic Cloud (LMC) are used as input for SNR evolution modeling calculations. The forward shock emission is modeled to obtain the initial explosion energy, age, and circumstellar medium density for each SNR in the sample. The resulting age distribution yields a SNR birthrate of 1/(500 yr) for the LMC. The explosion energy distribution is well fit by a log-normal distribution, with a most-probable explosion energy of 0.5× {10}51 erg, with a 1σ dispersion by a factor of 3 in energy. The circumstellar medium density distribution is broader than the explosion energy distribution, with a most-probable density of ˜0.1 cm-3. The shape of the density distribution can be fit with a log-normal distribution, with incompleteness at high density caused by the shorter evolution times of SNRs.
NuSTAR Hard X-Ray Observation of the Gamma-Ray Binary Candidate HESS J1832-093
NASA Astrophysics Data System (ADS)
Mori, Kaya; Gotthelf, E. V.; Hailey, Charles J.; Hord, Ben J.; de Oña Wilhelmi, Emma; Rahoui, Farid; Tomsick, John A.; Zhang, Shuo; Hong, Jaesub; Garvin, Amani M.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Harrison, Fiona A.; Stern, Daniel; Zhang, William W.
2017-10-01
We present a hard X-ray observation of the TeV gamma-ray binary candidate HESS J1832-093, which is coincident with the supernova remnant G22.7-0.2, using the Nuclear Spectroscopic Telescope Array. Non-thermal X-ray emission from XMMU J183245-0921539, the X-ray source associated with HESS J1832-093, is detected up to ˜30 keV and is well-described by an absorbed power-law model with a best-fit photon index {{Γ }}=1.5+/- 0.1. A re-analysis of archival Chandra and XMM-Newton data finds that the long-term X-ray flux increase of XMMU J183245-0921539 is {50}-20+40 % (90% C.L.), much less than previously reported. A search for a pulsar spin period or binary orbit modulation yields no significant signal to a pulse fraction limit of {f}p< 19 % in the range 4 ms < P< 40 ks. No red noise is detected in the FFT power spectrum to suggest active accretion from a binary system. While further evidence is required, we argue that the X-ray and gamma-ray properties of XMMU J183245-0921539 are most consistent with a non-accreting binary generating synchrotron X-rays from particle acceleration in the shock formed as a result of the pulsar and stellar wind collision. We also report on three nearby hard X-ray sources, one of which may be associated with diffuse emission from a fast-moving supernova fragment interacting with a dense molecular cloud.
NASA Technical Reports Server (NTRS)
Strohmayer, Tod E.; White, Nicholas E. (Technical Monitor)
2002-01-01
RX J1914.4+2456 is a candidate double-degenerate binary (AM CVn) with a putative 569 s orbital period. If this identification is correct, then it has one of the shortest binary orbital periods known, and gravitational radiation should drive the orbital evolution and mass transfer if the binary is semi-detached. Here we report the results of a coherent timing study of the archival ROSAT data for RX J1914.4+2456. We performed a phase coherent timing analysis using all five ROSAT observations spanning a four-year period. We demonstrate that all the data can be phase connected, and we show that the 1.756 mHz orbital frequency is increasing at a rate of 1.5 +/- 0.4 x 10(exp -17) Hz/s consistent with the expected loss of angular momentum from the binary system via gravitational radiation. In addition to providing evidence for the emission of gravitational waves, our measurement of the orbital v(dot) constrains models for the X-ray emission and the nature of the secondary. If stable mass accretion drives the X-ray flux, then a positive v(dot) is inconsistent with a degenerate donor. A helium burning dwarf is compatible if indeed such systems can have periods as short as that of RX J1914.4+2456, an open theoretical question. Our measurement of a positive v(dot) is consistent with the unipolar induction model of Wu et al. which does not require accretion to drive the X-ray flux. We discuss how future timing measurements of RX J1914.4+2456 (and systems like it) with for example, Chandra and XMM-Newton, can provide a unique probe of the interaction between mass loss and gravitational radiation. We also discuss the importance of such measurements in the context of gravitational wave detection from space, such as is expected in the future with the LISA mission.
NASA Astrophysics Data System (ADS)
de Avellar, Marcio G. B.
2017-06-01
The majority of attempts to explain the origin and phenomenology of the quasi-periodic oscillations (QPOs) detected in low-mass X-ray binaries invoke dynamical models, and it was just in recent years that renewed attention has been given on how radiative processes occurring in these extreme environments gives rise to the variability features observed in the X-ray light curves of these systems. The study of the dependence of the phase lags upon the energy and frequency of the QPOs is a step towards this end. The methodology we developed here allowed us to study for the first time these dependencies for all QPOs detected in the range of 1 to 1300 Hz in the low-mass X-ray binary 4U 1636-53 as the source changes its state during its cycle in the colour-colour diagram. Our results suggest that within the context of models of up-scattering Comptonization, the phase lags dependencies upon frequency and energy can be used to extract size scales and physical conditions of the medium that produces the lags.
Discovery of 105 Hz coherent pulsations in the ultracompact binary IGR J16597-3704
NASA Astrophysics Data System (ADS)
Sanna, A.; Bahramian, A.; Bozzo, E.; Heinke, C.; Altamirano, D.; Wijnands, R.; Degenaar, N.; Maccarone, T.; Riggio, A.; Di Salvo, T.; Iaria, R.; Burgay, M.; Possenti, A.; Ferrigno, C.; Papitto, A.; Sivakoff, G. R.; D'Amico, N.; Burderi, L.
2018-02-01
We report the discovery of X-ray pulsations at 105.2 Hz (9.5 ms) from the transient X-ray binary IGR J16597-3704 using NuSTAR and Swift. The source was discovered by INTEGRAL in the globular cluster NGC 6256 at a distance of 9.1 kpc. The X-ray pulsations show a clear Doppler modulation that implies an orbital period of 46 min and a projected semi-major axis of 5 lt-ms, which makes IGR J16597-3704 an ultracompact X-ray binary system. We estimated a minimum companion mass of 6.5 × 10-10 M⊙, assuming a neutron star mass of 1.4 M⊙, and an inclination angle of <75° (suggested by the absence of eclipses or dips in its light curve). The broad-band energy spectrum of the source is well described by a disk blackbody component (kT 1.4 keV) plus a comptonised power-law with photon index 2.3 and an electron temperature of 30 keV. Radio pulsations from the source were unsuccessfully searched for with the Parkes Observatory.
X-ray astronomy from Uhuru to HEAO-1
NASA Technical Reports Server (NTRS)
Clark, G. W.
1981-01-01
The nature of galactic and extragalactic X-ray sources is investigated using observations made with nine satellites and several rockets. The question of X-ray pulsars being neutron stars or white dwarfs is considered, as is the nature of Population II and low-luminosity X-ray stars, the diffuse X-ray emission from clusters of galaxies, the unidentified high-galactic-latitude (UHGL) sources, and the unresolved soft X-ray background. The types of sources examined include binary pulsars, Population II X-ray stars (both nonbursters and bursters) inside and outside globular clusters, coronal X-ray emitters, and active galactic nuclei. It is concluded that: (1) X-ray pulsars are strongly magnetized neutron stars formed in the evolution of massive close binaries; (2) all Population II X-ray stars are weakly magnetized or nonmagnetic neutron stars accreting from low-mass companions in close binary systems; (3) the diffuse emission from clusters is thermal bremsstrahlung of hot matter processed in stars and swept out by ram pressure exerted by the intergalactic gas; (4) most or all of the UHGL sources are active galactic nuclei; and (5) the soft X-ray background is emission from a hot component of the interstellar medium.
NASA Astrophysics Data System (ADS)
Li, T. S.; Simon, J. D.; Pace, A. B.; Torrealba, G.; Kuehn, K.; Drlica-Wagner, A.; Bechtol, K.; Vivas, A. K.; van der Marel, R. P.; Wood, M.; Yanny, B.; Belokurov, V.; Jethwa, P.; Zucker, D. B.; Lewis, G.; Kron, R.; Nidever, D. L.; Sánchez-Conde, M. A.; Ji, A. P.; Conn, B. C.; James, D. J.; Martin, N. F.; Martinez-Delgado, D.; Noël, N. E. D.; MagLiteS Collaboration
2018-04-01
We present Magellan/IMACS, Anglo-Australian Telescope/AAOmega+2dF, and Very Large Telescope/GIRAFFE+FLAMES spectroscopy of the Carina II (Car II) and Carina III (Car III) dwarf galaxy candidates, recently discovered in the Magellanic Satellites Survey (MagLiteS). We identify 18 member stars in Car II, including two binaries with variable radial velocities and two RR Lyrae stars. The other 14 members have a mean heliocentric velocity {v}hel}=477.2+/- 1.2 {km} {{{s}}}-1 and a velocity dispersion of {σ }v={3.4}-0.8+1.2 {km} {{{s}}}-1. Assuming Car II is in dynamical equilibrium, we derive a total mass within the half-light radius of {1.0}-0.4+0.8× {10}6 {M}ȯ , indicating a mass-to-light ratio of {369}-161+309 {M}ȯ /{L}ȯ . From equivalent width measurements of the calcium triplet lines of nine red giant branch (RGB) stars, we derive a mean metallicity of {{[Fe/H]}}=-2.44+/- 0.09 with dispersion {σ }{{[Fe/H]}}={0.22}-0.07+0.10. Considering both the kinematic and chemical properties, we conclude that Car II is a dark-matter-dominated dwarf galaxy. For Car III, we identify four member stars, from which we calculate a systemic velocity of {v}hel}={284.6}-3.1+3.4 {km} {{{s}}}-1. The brightest RGB member of Car III has a metallicity of {{[Fe/H]}} =-1.97+/- 0.12. Due to the small size of the Car III spectroscopic sample, we cannot conclusively determine its nature. Although these two systems have the smallest known physical separation ({{Δ }}d∼ 10 {kpc}) among Local Group satellites, the large difference in their systemic velocities, ∼ 200 {km} {{{s}}}-1, indicates that they are unlikely to be a bound pair. One or both systems are likely associated with the Large Magellanic Cloud (LMC), and may remain LMC satellites today. No statistically significant excess of γ-ray emission is found at the locations of Car II and Car III in eight years of Fermi-LAT data.
Labor-Management Cooperation in Schools: An Idea Whose Time Has Come.
ERIC Educational Resources Information Center
Woods-Houston, Michelle; Miller, Rima
This paper presents information useful to educational leaders considering a labor-management cooperation (LMC) process. LMC is a mechanism for changing attitudes and building an atmosphere of trust between two traditionally adversarial groups. The first section outlines categories and provides examples of LMC cooperative efforts, highlighting the…
Ji, Sheng-Jian; Zhuang, BinQuan; Falco, Crystal; Schneider, André; Schuster-Gossler, Karin; Gossler, Achim; Sockanathan, Shanthini
2006-09-01
During embryonic development, the generation, diversification and maintenance of spinal motor neurons depend upon extrinsic signals that are tightly regulated. Retinoic acid (RA) is necessary for specifying the fates of forelimb-innervating motor neurons of the Lateral Motor Column (LMC), and the specification of LMC neurons into medial and lateral subtypes. Previous studies implicate motor neurons as the relevant source of RA for specifying lateral LMC fates at forelimb levels. However, at the time of LMC diversification, a significant amount of retinoids in the spinal cord originates from the adjacent paraxial mesoderm. Here we employ mouse genetics to show that RA derived from the paraxial mesoderm is required for lateral LMC induction at forelimb and hindlimb levels, demonstrating that mesodermally synthesized RA functions as a second source of signals to specify lateral LMC identity. Furthermore, reduced RA levels in postmitotic motor neurons result in a decrease of medial and lateral LMC neurons, and abnormal axonal projections in the limb; invoking additional roles for neuronally synthesized RA in motor neuron maintenance and survival. These findings suggest that during embryogenesis, mesodermal and neuronal retinoids act coordinately to establish and maintain appropriate cohorts of spinal motor neurons that innervate target muscles in the limb.
X Persei - correlation between H-alpha and X-ray variability
NASA Astrophysics Data System (ADS)
Zamanov, R.; Stoyanov, K. A.; Petrov, N.; Nikolov, Y.; Marchev, D.; Wolter, U.
2018-03-01
We performed H-alpha spectroscopic observations of the Be/X-ray binary X Per, optical counterpart of the slow X-ray pulsar 4U 0352+30, using the 2.0m telescope of the Rozhen National Astronomical Observatory, Bulgaria and the 1.2m TIGRE telescope located in Mexico.
A deep survey of the X-ray binary populations in the SMC
NASA Astrophysics Data System (ADS)
Zezas, A.; Antoniou, V.
2017-10-01
The Small Magellanic Cloud (SMC) has been the subject of systematic X-ray surveys over the past two decades, which have yielded a rich population of high-mass X-ray binaries consisting predominantly of Be/X-ray binaries. We present results from our deep Chandra survey of the SMC which targeted regions with stellar populations ranging between ˜10-100 Myr. X-ray luminosities down to ˜3×10^{32} erg/s were reached, probing all active accreting binaries and extending well into the regime of quiescent accreting binaries and X-ray emitting normal stars. We measure the dependence of the formation efficiency of X-ray binaries on age. We also detect pulsations from 19 known and one new candidate pulsar. We construct the X-ray luminosity function in different regions of the SMC, which shows clear evidence for the propeller effect the centrifugal inhibition of accretion due to the interaction of the accretion flow with the pulsar's magnetic field. Finally we compare these results with predictions for the formation efficiency of X-ray binaries as a function of age from X-ray binary population synthesis models.
Two component X-ray emission from RS CVn binaries
NASA Technical Reports Server (NTRS)
Swank, J. H.; White, N. E.; Holt, S. S.; Becker, R. H.
1980-01-01
A summary of results from the solid state spectrometer on the Einstein Observatory for 7 RS CVn binaries is presented. The spectra of all require two emission components, evidenced by line emission characteristic of plasma at 4 to 8 x 10 to the 6th power and bremsstrahlung characteristic of 20 to 100 x 10 to the 6th power K. The data are interpreted in terms of magnetic coronal loops similar to those seen on the Sun, although with different characteristic parameters. The emission regions could be defined by separate magnetic structures. For pressure less than approximately 10 dynes/sq cm the low temperature plasma would be confined within the stellar radii, while the high temperature plasma would, for the synchronous close binaries, fill the binary orbits. However, for loop pressures exceeding 100 dynes/sq cm, the high temperature components would also be confined to within the stellar radii, in loops covering only small fractions of the stellar surfaces. While the radio properties and the occurrence of X-ray flares suggest the larger emission regions, the observations of time variations leave the ambiguity unresolved.
A XMM-Newton Observation of Nova LMC 1995, a Bright Supersoft X-ray Source
NASA Technical Reports Server (NTRS)
Orio, Marina; Hartmann, Wouter; Still, Martin; Greiner, Jochen
2003-01-01
Nova LMC 1995, previously detected during 1995-1998 with ROSAT, was observed again as a luminous supersoft X-ray source with XMM-Newton in December of 2000. This nova offers the possibility to observe the spectrum of a hot white dwarf, burning hydrogen in a shell and not obscured by a wind or by nebular emission like in other supersoft X-ray sources. Notwithstanding uncertainties in the calibration of the EPIC instruments at energy E<0.5 keV, using atmospheric models in Non Local Thermonuclear Equilibrium we derived an effective temperature in the range 400,000-450,000 K, a bolometric luminosity Lbolabout equal to 2.3 times 10 sup37 erg s sup-l, and we verified that the abundance of carbon is not significantly enhanced in the X-rays emitting shell. The RGS grating spectra do not show emission lines (originated in a nebula or a wind) observed for some other supersoft X-ray sources. The crowded atmospheric absorption lines of the white dwarf cannot be not resolved. There is no hard component (expected from a wind, a surrounding nebula or an accretion disk), with no counts above the background at E>0.6 keV, and an upper limit Fx,hard = 10 sup-14 erg s sup-l cm sup-2 to the X-ray flux above this energy. The background corrected count rate measured by the EPIC instruments was variable on time scales of minutes and hours, but without the flares or sudden obscuration observed for other novae. The power spectrum shows a peak at 5.25 hours, possibly due to a modulation with the orbital period. We also briefly discuss the scenarios in which this nova may become a type Ia supernova progenitor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laycock, Silas; Cappallo, Rigel; Williams, Benjamin F.
We have monitored the Cassiopeia dwarf galaxy (IC 10) in a series of 10 Chandra ACIS-S observations to capture its variable and transient X-ray source population, which is expected to be dominated by High Mass X-ray Binaries (HMXBs). We present a sample of 21 X-ray sources that are variable between observations at the 3 σ level, from a catalog of 110 unique point sources. We find four transients (flux variability ratio greater than 10) and a further eight objects with ratios >5. The observations span the years 2003–2010 and reach a limiting luminosity of >10{sup 35} erg s{sup −1}, providingmore » sensitivity to X-ray binaries in IC 10 as well as flare stars in the foreground Milky Way. The nature of the variable sources is investigated from light curves, X-ray spectra, energy quantiles, and optical counterparts. The purpose of this study is to discover the composition of the X-ray binary population in a young starburst environment. IC 10 provides a sharp contrast in stellar population age (<10 My) when compared to the Magellanic Clouds (40–200 My) where most of the known HMXBs reside. We find 10 strong HMXB candidates, 2 probable background Active Galactic Nuclei, 4 foreground flare-stars or active binaries, and 5 not yet classifiable sources. Complete classification of the sample requires optical spectroscopy for radial velocity analysis and deeper X-ray observations to obtain higher S/N spectra and search for pulsations. A catalog and supporting data set are provided.« less
NASA Technical Reports Server (NTRS)
Corbet, Robin H. D.; Krimm, Hans A.
2013-01-01
We report the discovery using data from the Swift-Burst Alert Telescope (BAT) of superorbital modulation in the wind-accretion supergiant high-mass X-ray binaries 4U 1909+07 (= X 1908+075), IGR J16418-4532, and IGR J16479-4514. Together with already known superorbital periodicities in 2S 0114+650 and IGR J16493-4348, the systems exhibit a monotonic relationship between superorbital and orbital periods. These systems include both supergiant fast X-ray transients and classical supergiant systems, and have a range of inclination angles. This suggests an underlying physical mechanism which is connected to the orbital period. In addition to these sources with clear detections of superorbital periods, IGR J16393-4643 (= AX J16390.4-4642) is identified as a system that may have superorbital modulation due to the coincidence of low-amplitude peaks in power spectra derived from BAT, Rossi X-Ray Timing Explorer Proportional Counter Array, and International Gamma-Ray Astrophysics Laboratory light curves. 1E 1145.1-6141 may also be worthy of further attention due to the amount of low-frequency modulation of its light curve. However, we find that the presence of superorbital modulation is not a universal feature of wind-accretion supergiant X-ray binaries.
NASA Technical Reports Server (NTRS)
Nichols, J.; Huenemoerder, D. P.; Corcoran, M. F.; Waldron, W.; Naze, Y; Pollock, A. M. T.; Moffat, A. F. J.; Lauer, J.; Shenar, T.; Russell, C. M. P.;
2015-01-01
We present time-resolved and phase-resolved variability studies of an extensive X-ray high-resolution gratings spectral dataset of the Sigma Ori Aa binary system. The four observations, obtained with Chandra ACIS HETGS, have a total exposure time of approximately 479 kiloseconds and provide nearly complete binary phase coverage. Variability of the total X-ray flux in the range 5-25 angstroms is confirmed, with maximum amplitude of about plus or minus 15 percent within a single approximately 125 kiloseconds observation. Periods of 4.76 days and 2.04 days are found in the total X-ray flux, as well as an apparent overall increase in flux level throughout the 9-day observational campaign. Using 40 kiloseconds contiguous spectra derived from the original observations, we investigate variability of emission line parameters and ratios. Several emission lines are shown to be variable, including S XV, Si XIII, and Ne IX. For the first time, variations of the X-ray emission line widths as a function of the binary phase are found in a binary system, with the smallest widths at phi equals 0.0 when the secondary Aa2 is at inferior conjunction. We use the results of an SPH radiative transfer code model, customized for this project, to relate the presence of a low density cavity in the primary stellar wind embedded shock that is associated with the secondary star to the emission line width variability.
The signature of a black hole transit
NASA Technical Reports Server (NTRS)
Dolan, Joseph F.
1989-01-01
This paper considers the possibility of identifying a black hole on the basis of the detection of some unique effect occurring during the transit of a black hole across the stellar disk of a companion star in a binary system. The results of Monte-Carlo calculations show that the amplitude of the photometric and polarimetric light curves in a typical X-ray binary is too small to be observed with present instrumentation, but that a black hole transit might be detectable in a binary having a large separation of the components. No binary system suggested as containing a stellar-mass-sized black hole is a like candidate to exhibit an observable transit signature, with the possible exception of X Persei/4U0352+30 described by White et al. (1976).
Formation and Evolution of X-ray Binaries
NASA Astrophysics Data System (ADS)
Fragkos, Anastasios
X-ray binaries - mass-transferring binary stellar systems with compact object accretors - are unique astrophysical laboratories. They carry information about many complex physical processes such as star formation, compact object formation, and evolution of interacting binaries. My thesis work involves the study of the formation and evolution of Galactic and extra-galacticX-ray binaries using both detailed and realistic simulation tools, and population synthesis techniques. I applied an innovative analysis method that allows the reconstruction of the full evolutionary history of known black hole X-ray binaries back to the time of compact object formation. This analysis takes into account all the available observationally determined properties of a system, and models in detail four of its evolutionary evolutionary phases: mass transfer through the ongoing X-ray phase, tidal evolution before the onset of Roche-lobe overflow, motion through the Galactic potential after the formation of the black hole, and binary orbital dynamics at the time of core collapse. Motivated by deep extra-galactic Chandra survey observations, I worked on population synthesis models of low-mass X-ray binaries in the two elliptical galaxies NGC3379 and NGC4278. These simulations were targeted at understanding the origin of the shape and normalization of the observed X-ray luminosity functions. In a follow up study, I proposed a physically motivated prescription for the modeling of transient neutron star low-mass X-ray binary properties, such as duty cycle, outburst duration and recurrence time. This prescription enabled the direct comparison of transient low-mass X-ray binary population synthesis models to the Chandra X-ray survey of the two ellipticals NGC3379 and NGC4278. Finally, I worked on population synthesismodels of black holeX-ray binaries in the MilkyWay. This work was motivated by recent developments in observational techniques for the measurement of black hole spin magnitudes in black hole X-ray binaries. The accuracy of these techniques depend on misalignment of the black hole spin with respect to the orbital angular momentum. In black hole X-ray binaries, this misalignment can occur during the supernova explosion that forms the compact object. In this study, I presented population synthesis models of Galactic black hole X-ray binaries, and examined the distribution of misalignment angles, and its dependence on the model parameters.
NASA Astrophysics Data System (ADS)
Sasirekha, V.; Vanelle, P.; Terme, T.; Ramakrishnan, V.
2008-12-01
Solvation characteristics of 1,4-dihydroxy-2,3-dimethyl-9,10-anthraquinone ( 1) in pure and binary solvent mixtures have been studied by UV-vis absorption spectroscopy and laser-induced fluorescence techniques. The binary solvent mixtures used as CCl 4 (tetrachloromethane)-DMF ( N, N-dimethylformamide), AN (acetonitrile)-DMSO (dimethylsulfoxide), CHCl 3 (chloroform)-DMSO, CHCl 3-MeOH (methanol), and MeOH-DMSO. The longest wavelength band of 1 has been studied in pure solvents as well as in binary solvent mixtures as a function of the bulk mole fraction. The Vis absorption band maxima show an unusual blue shift with increasing solvent polarity. The emission maxima of 1 show changes with varying the pure solvents and the composition in the case of binary solvent mixtures. Non-ideal solvation characteristics are observed in all binary solvent mixtures. It has been observed that the quantity [ ν-(Xν+Xν)] serves as a measure of the extent of preferential solvation, where ν˜ and X are the position of band maximum in wavenumbers (cm -1) and the bulk mole fraction values, respectively. The preferential solvation parameters local mole fraction ( X2L), solvation index ( δs2), and exchange constant ( k12) are evaluated.
NASA Technical Reports Server (NTRS)
Markowitz, A.; Uttley, P.
2005-01-01
We present a broadband power spectral density function (PSD) measured from extensive RXTE monitoring data of the low-luminosity AGN NGC 4258, which has an accurate, maser-determined black hole mass of (3.9 plus or minus 0.1) x 10(exp 7) solar mass. We constrain the PSD break time scale to be greater than 4.5 d at greater than 90% confidence, which appears to rule out the possibility that NGC 4258 is an analogue of black hole X-ray binaries (BHXRBs) in the high/soft state. In this sense, the PSD of NGC 4258 is different to that of some more-luminous Seyferts, which appear similar to the PSDs of high/soft state X-ray binaries. This result supports previous analogies between LLAGN and X-ray binaries in the low/hard state based on spectral energy distributions, indicating that the AGN/BHXRB analogy is valid across a broad range of accretion rates.
NASA Technical Reports Server (NTRS)
Hughes, John P.; Hayashi, Ichizo; Helfand, David; Hwang, Una; Itoh, Masayuki; Kirshner, Robert; Koyama, Katsuji; Markert, Thomas; Tsunemi, Hiroshi; Woo, Jonathan
1995-01-01
We present our first results from a study of the supernova remnants (SNRs) in the Large Magellanic Cloud (LMC) using data from ASCA. The three remnants we have analyzed to date, 0509-67.5, 0519-69.0, and N103B, are among the smallest, and presumably also the youngest, in the Cloud. The X-ray spectra of these SNRs show strong K alpha emission lines of silicon, sulfur, argon, and calcium with no evidence for corresponding lines of oxygen, neon, or magnesium. The dominant feature in the spectra is a broad blend of emission lines around 1 keV which we attribute to L-shell emission lines of iron. Model calculations (Nomoto, Thielemann, & Yokoi 1984) show that the major products of nucleosynthesis in Type Ia supernovae (SNs) are the elements from silicon to iron, as observed here. The calculated nucleosynthetic yields from Type Ib and II SNs are shown to be qualitatively inconsistent with the data. We conclude that the SNs which produced these remnants were of Type Ia. This finding also confirms earlier suggestions that the class of Balmer-dominated remnants arise from Type Ia SN explosions. Based on these early results from the LMC SNR sample, we find that roughly one-half of the SNRs produced in the LMC within the last approximately 1500 yr came from Type Ia SNs.
NASA Technical Reports Server (NTRS)
Corbet, R. H. D.; Sokoloski, J. L.; Mukai, K.; Markwardt, C. B.; Tueller, J.
2007-01-01
We present an analysis of the X-ray variability of three symbiotic X-ray binaries, GX 1+4, 4U 1700+24, and 4U 1954+31, using observations made with the Swift Burst Alert Telescope (BAT) and the Rossi X-ray Timing Explorer (RXTE) All-Sky Monitor (ASM). Observations of 4U 1954+31 with the Swift BAT show modulation at a period near 5 hours. Models to explain this modulation are discussed including the presence of an exceptionally slow X-ray pulsar in the system and accretion instabilities. We conclude that the most likely interpretation is that 4U 1954+31 contains one of the slowest known X-ray pulsars. Unlike 4U 1954+31, neither GX 1+4 nor 4U 1700+24 show any evidence for modulation on a timescale of hours. An analysis of the RXTE ASM light curves of GX l+4, 4U 1700+24, and 4U 1954+31 does not show the presence of periodic modulation in any source, although there is considerable variability on long timescales for all three sources. There is no modulation in GX 1+4 on either the optical 1161 day orbital period or a previously reported 304 day X-ray period. For 4U 1700+24 we do not confirm the 404 day period previously proposed for this source from a shorter duration ASM light curve.
Proper motion separation of Be star candidates in the Magellanic Clouds and the Milky Way
NASA Astrophysics Data System (ADS)
Vieira, Katherine; García-Varela, Alejandro; Sabogal, Beatriz
2017-08-01
We present a proper motion investigation of a sample of Be star candidates towards the Magellanic Clouds, which has resulted in the identification of separate populations, in the Galactic foreground and in the Magellanic background. Be stars are broadly speaking B-type stars that have shown emission lines in their spectra. In this work, we studied a sample of 2446 and 1019 Be star candidates towards the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC), respectively, taken from the literature and proposed as possible Be stars due to their variability behaviour in the OGLE-II I band. JHKs magnitudes from the InfraRed Survey Facility catalogue and proper motions from the Southern Proper Motion 4 catalogue were obtained for 1188 and 619 LMC and SMC Be stars candidates, respectively. Colour-colour and vector-point diagrams were used to identify different populations amongst the Be star candidates. In the LMC sample, two populations with distinctive infrared colours and kinematics were found, the bluer sample is consistent with being in the LMC and the redder one with belonging to the Milky Way disc. This settles the nature of the redder sample that had been described in previous publications as a possible unknown subclass of stars amongst the Be candidates in the LMC. In the SMC sample, a similar but less evident result was obtained, since this apparent unknown subclass was not seen in this galaxy. We confirm that in the selection of Be stars by their variability, although generally successful, there is a higher risk of contamination by Milky Way objects towards redder B - V and V - I colours.
Alagha, M Abdulhadi; Alagha, Mahmoud A; Dunstan, Eleanor; Sperwer, Olaf; Timmins, Kate A; Boszczyk, Bronek M
2017-04-01
To assess the reliability and validity of a hand motion sensor, Leap Motion Controller (LMC), in the 15-s hand grip-and-release test, as compared against human inspection of an external digital camera recording. Fifty healthy participants were asked to fully grip-and-release their dominant hand as rapidly as possible for two trials with a 10-min rest in-between, while wearing a non-metal wrist splint. Each test lasted for 15 s, and a digital camera was used to film the anterolateral side of the hand on the first test. Three assessors counted the frequency of grip-and-release (G-R) cycles independently and in a blinded fashion. The average mean of the three was compared with that measured by LMC using the Bland-Altman method. Test-retest reliability was examined by comparing the two 15-s tests. The mean number of G-R cycles recorded was: 47.8 ± 6.4 (test 1, video observer); 47.7 ± 6.5 (test 1, LMC); and 50.2 ± 6.5 (test 2, LMC). Bland-Altman indicated good agreement, with a low bias (0.15 cycles) and narrow limits of agreement. The ICC showed high inter-rater agreement and the coefficient of repeatability for the number of cycles was ±5.393, with a mean bias of 3.63. LMC appears to be valid and reliable in the 15-s grip-and-release test. This serves as a first step towards the development of an objective myelopathy assessment device and platform for the assessment of neuromotor hand function in general. Further assessment in a clinical setting and to gauge healthy benchmark values is warranted.
Revealing Companions to Nearby Stars with Astrometric Acceleration
2012-07-01
objects, such as stellar -mass black holes or failed supernova (Gould & Salim 2002). Table 4 includes a sample of some of the most interesting dis...knowledge of binary and multiple star statistics is needed for the study of star formation, for stellar population synthesis, for predicting the...frequency of supernovae, blue stragglers, X-ray binaries, etc. The statistical properties of binaries strongly depend on stellar mass. Only for nearby solar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogdanov, Slavko; Halpern, Jules P.
We present X-ray, ultraviolet, and optical observations of 1RXS J154439.4–112820, the most probable counterpart of the unassociated Fermi-LAT source 3FGL J1544.6–1125. The optical data reveal rapid variability, which is a feature of accreting systems. The X-rays exhibit large-amplitude variations in the form of fast switching (within ∼10 s) between two distinct flux levels that differ by a factor of ≈10. The detailed optical and X-ray behavior is virtually identical to that seen in the accretion-disk-dominated states of the transitional millisecond pulsar (MSP) binaries PSR J1023+0038 and XSS J12270–4859, which are also associated with γ-ray sources. Based on the available observationalmore » evidence, we conclude that 1RXS J154439.4–112820 and 3FGL J1544.6–1125 are the same object, with the X-rays arising from intermittent low-luminosity accretion onto an MSP and the γ-rays originating from an accretion-driven outflow. 1RXS J154439.4–112820 is only the fourth γ-ray-emitting low-mass X-ray binary system to be identified and is likely to sporadically undergo transformations to a non-accreting rotation-powered pulsar system.« less
Enthalpy of mixing of liquid systems for lead free soldering: Ni-Sb-Sn system.
Elmahfoudi, A; Fürtauer, S; Sabbar, A; Flandorfer, H
2012-04-20
The partial and integral enthalpies of mixing of liquid ternary Ni-Sb-Sn alloys were determined along five sections x Sb / x Sn = 3:1, x Sb / x Sn = 1:1, x Sb / x Sn = 1:3, x Ni / x Sn = 1:4, and x Ni / x Sb = 1:4 at 1000 °C in a large compositional range using drop calorimetry techniques. The mixing enthalpy of Ni-Sb alloys was determined at the same temperature and described by a Redlich-Kister polynomial. The other binary data were carefully evaluated from literature values. Our measured ternary data were fitted on the basis of an extended Redlich-Kister-Muggianu model for substitutional solutions. Additionally, a comparison of these results to the extrapolation model of Toop is given. The entire ternary system shows exothermic values of Δ mix H ranging from approx. -1300 J/mol, the minimum in the Sb-Sn binary system down to approx. -24,500 J/mol towards Ni-Sb. No significant ternary interaction could be deduced from our data.
Multi-component hydrogen storage material
Faheem, Syed A.; Lewis, Gregory J.; Sachtler, J.W. Adriaan; Low, John J.; Lesch, David A.; Dosek, Paul M.; Wolverton, Christopher M.; Siegel, Donald J.; Sudik, Andrea C.; Yang, Jun
2010-09-07
A reversible hydrogen storage composition having an empirical formula of: Li.sub.(x+z)N.sub.xMg.sub.yB.sub.zH.sub.w where 0.4.ltoreq.x.ltoreq.0.8; 0.2.ltoreq.y.ltoreq.0.6; 0
NASA Technical Reports Server (NTRS)
Townsend, L. J.; Drave, S. P.; Hill, A. B.; Coe, M. J.; Corbet, R. H. D.; Bird, A. J.
2013-01-01
In this paper we present the identification of two periodic X-ray signals coming from the direction of the Small Magellanic Cloud (SMC). On detection with the Rossi X-ray Timing Explorer (RXTE), the 175.4 s and 85.4 s pulsations were considered to originate from new Be/X-ray binary (BeXRB) pulsars with unknown locations. Using rapid follow-up INTEGRAL and XMM-Newton observations, we show the first pulsar (designated SXP175) to be coincident with a candidate high-mass X-ray binary (HMXB) in the northern bar region of the SMC undergoing a small Type II outburst. The orbital period (87d) and spectral class (B0-B0.5IIIe) of this system are determined and presented here for the first time. The second pulsar is shown not to be new at all, but is consistent with being SXP91.1 - a pulsar discovered at the very beginning of the 13 year long RXTE key monitoring programme of the SMC. Whilst it is theoretically possible for accreting neutron stars to change spin period so dramatically over such a short time, the X-ray and optical data available for this source suggest this spin-up is continuous during long phases of X-ray quiescence, where accretion driven spin-up of the neutron star should be minimal.
The Tarantula Nebula as a template for extragalactic star forming regions from VLT/MUSE and HST/STIS
NASA Astrophysics Data System (ADS)
Crowther, Paul A.; Caballero-Nieves, Saida M.; Castro, Norberto; Evans, Christopher J.
2017-11-01
We present VLT/MUSE observations of NGC 2070, the dominant ionizing nebula of 30 Doradus in the LMC, plus HST/STIS spectroscopy of its central star cluster R136. Integral Field Spectroscopy (MUSE) and pseudo IFS (STIS) together provides a complete census of all massive stars within the central 30×30 parsec2 of the Tarantula. We discuss the integrated far-UV spectrum of R136, of particular interest for UV studies of young extragalactic star clusters. Strong He iiλ1640 emission at very early ages (1-2 Myr) from very massive stars cannot be reproduced by current population synthesis models, even those incorporating binary evolution and very massive stars. A nebular analysis of the integrated MUSE dataset implies an age of ~4.5 Myr for NGC 2070. Wolf-Rayet features provide alternative age diagnostics, with the primary contribution to the integrated Wolf-Rayet bumps arising from R140 rather than the more numerous H-rich WN stars in R136. Caution should be used when interpreting spatially extended observations of extragalactic star-forming regions.
NASA Technical Reports Server (NTRS)
Nichols, J.; Huenemoerder, D. P.; Corcoran, M. F.; Waldron, W.; Naze, Y.; Pollock, A. M. T.; Moffat, A. F. J.; Lauer, J.; Shenar, T.; Russell, C. M. P.;
2015-01-01
We present time-resolved and phase-resolved variability studies of an extensive X-ray high-resolution spectral data set of the delta Ori Aa binary system. The four observations, obtained with Chandra ACIS (Advanced CCD Imaging Spectrometer) HETGS (High Energy Transmission Grating), have a total exposure time approximately equal to 479 kiloseconds and provide nearly complete binary phase coverage. Variability of the total X-ray flux in the range of 5-25 angstroms is confirmed, with a maximum amplitude of about plus or minus15 percent within a single approximately equal to125 kiloseconds observation. Periods of 4.76 and 2.04 days are found in the total X-ray flux, as well as an apparent overall increase in the flux level throughout the nine-day observational campaign. Using 40 kiloseconds contiguous spectra derived from the original observations, we investigate the variability of emission line parameters and ratios. Several emission lines are shown to be variable, including S (sub XV), Si (sub XIII), and Ne (sub IX). For the first time, variations of the X-ray emission line widths as a function of the binary phase are found in a binary system, with the smallest widths at phi = 0.0 when the secondary delta Ori Aa2 is at the inferior conjunction. Using 3D hydrodynamic modeling of the interacting winds, we relate the emission line width variability to the presence of a wind cavity created by a wind-wind collision, which is effectively void of embedded wind shocks and is carved out of the X-ray-producing primary wind, thus producing phase-locked X-ray variability.
Mira variables in the Galactic Bulge .
NASA Astrophysics Data System (ADS)
Groenewegen, M. A. T.; Blommaert, J. A. D. L.
The 222 000 I-band light curves of variable stars detected by the OGLE-II survey in the direction of the Galactic Bulge have been fitted and have been correlated with the DENIS and 2MASS databases. Results are presented for 2691 objects with I-band semi-amplitude larger than 0.45 magnitude, corresponding to classical Mira variables. The Mira period distribution of 5 fields at similar longitude but spanning latitudes from -1.2 to -5.8 are statistically indistinguisable indicating similar populations with initial masses of 1.5-2 M⊙ (corresponding to ages of 1-3 Gyr). A field at similar longitude at b = -0.05 from Glass et al. (2001) does show a significantly different period distribution, indicating the presence of a younger population of 2.5-3 M⊙ and ages below 1 Gyr. The K-band period-luminosity relation is presented for the whole sample, and for sub-fields. Simulations are carried out to show that the observations are naturally explained using the model of disk and bulge stars of Binney et al. (1997), for a viewing angle (major-axis Bar - axis perpendicular to the line-of-sight to the Galactic Centre) of 43 ± 17 degrees. A comparison is made with similar objects in the Magellanic Clouds, studied in a previous paper. The slope of the PL-relation in the Bulge and the MCs agree within the errorbars. Assuming the zero point does not depend on metallicity, a distance modulus difference of 3.72 between Bulge and LMC is derived. This implies a LMC DM of 18.21 for an assumed distance to the Galactic Centre (GC) of 7.9 kpc, or, assuming a LMC DM of 18.50, a distance to the GC of 9.0 kpc. From the results in Groenewegen (2004) it is found for carbon-rich Miras that the PL-relation implies a relative SMC-LMC DM of 0.38, assuming no metallicity dependence. This is somewhat smaller than the often quoted value near 0.50. Following theoretical work by Wood (1990) a metallicity term of the form M_K ˜ beta log Z is introduced. If a relative SMC-LMC DM of 0.50 is imposed, beta = 0.4 is required, and for that value the distance to the GC becomes 8.6 ± 0.7 kpc (for a LMC DM of 18.50), within the errorbar of the geometric determination of 7.9 ± 0.4 kpc (Eisenhauer et al. 2003). An independent estimate using the absolute calibration of Feast (2004) leads to a distance estimate to the GC of 8.8 ± 0.4 kpc.
Relating Line Width and Optical Depth for CO Emission in the Large Mgellanic Cloud
NASA Astrophysics Data System (ADS)
Wojciechowski, Evan; Wong, Tony; Bandurski, Jeffrey; MC3 (Mapping CO in Molecular Clouds in the Magellanic Clouds) Team
2018-01-01
We investigate data produced from ALMA observations of giant molecular clouds (GMCs) located in the Large Magellanic Cloud (LMC), using 12CO(2–1) and 13CO(2–1) emission. The spectral line width is generally interpreted as tracing turbulent rather than thermal motions in the cloud, but could also be affected by optical depth, especially for the 12CO line (Hacar et al. 2016). We compare the spectral line widths of both lines with their optical depths, estimated from an LTE analysis, to evaluate the importance of optical depth effects. Our cloud sample includes two regions recently published by Wong et al. (2017, submitted): the Tarantula Nebula or 30 Dor, an HII region rife with turbulence, and the Planck cold cloud (PCC), located in a much calmer environment near the fringes of the LMC. We also include four additional LMC clouds, which span intermediate levels of star formation relative to these two clouds, and for which we have recently obtained ALMA data in Cycle 4.
NASA Astrophysics Data System (ADS)
Dooley, Gregory A.; Peter, Annika H. G.; Carlin, Jeffrey L.; Frebel, Anna; Bechtol, Keith; Willman, Beth
2017-11-01
Recent discovery of many dwarf satellite galaxies in the direction of the Small and Large Magellanic Clouds (SMC and LMC) provokes questions of their origins, and what they can reveal about galaxy evolution theory. Here, we predict the satellite stellar mass function of Magellanic Cloud-mass host galaxies using abundance matching and reionization models applied to the Caterpillar simulations. Specifically focusing on the volume within 50 kpc of the LMC, we predict a mean of four to eight satellites with stellar mass M* > 104 M⊙, and three to four satellites with 80 < M* ≤ 3000 M⊙. Surprisingly, all 12 currently known satellite candidates have stellar masses of 80 < M* ≤ 3000 M⊙. Reconciling the dearth of large satellites and profusion of small satellites is challenging and may require a combination of a major modification of the M*-Mhalo relationship (steep, but with an abrupt flattening at 103 M⊙), late reionization for the Local Group (zreion ≲ 9 preferred) and/or strong tidal stripping. We can more robustly predict that ∼53 per cent of satellites within this volume were accreted together with the LMC and SMC and ∼47 per cent were only ever Milky Way satellites. Observing satellites of isolated LMC-sized field galaxies is essential to place the LMC in context, and to better constrain the M*-Mhalo relationship. Modelling known LMC-sized galaxies within 8 Mpc, we predict 1-6 (2-12) satellites with M* > 105 M⊙ (M* > 104 M⊙) within the virial volume of each, and 1-3 (1-7) within a single 1.5° diameter field of view, making their discovery likely.
A comparison of LMC and SDL complexity measures on binomial distributions
NASA Astrophysics Data System (ADS)
Piqueira, José Roberto C.
2016-02-01
The concept of complexity has been widely discussed in the last forty years, with a lot of thinking contributions coming from all areas of the human knowledge, including Philosophy, Linguistics, History, Biology, Physics, Chemistry and many others, with mathematicians trying to give a rigorous view of it. In this sense, thermodynamics meets information theory and, by using the entropy definition, López-Ruiz, Mancini and Calbet proposed a definition for complexity that is referred as LMC measure. Shiner, Davison and Landsberg, by slightly changing the LMC definition, proposed the SDL measure and the both, LMC and SDL, are satisfactory to measure complexity for a lot of problems. Here, SDL and LMC measures are applied to the case of a binomial probability distribution, trying to clarify how the length of the data set implies complexity and how the success probability of the repeated trials determines how complex the whole set is.
Durability of styrene-butadiene latex modified concrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaker, F.A.; El-Dieb, A.S.; Reda, M.M.
1997-05-01
The durability of reinforced concrete structures represents a major concern to many investigators. The use of latex modified concrete (LMC) in construction has urged researchers to review and investigate its different properties. This study is part of a comprehensive investigation carried on the use of polymers in concrete. The main objective of this study to investigate and evaluate the main durability aspects of Styrene-Butadiene latex modified concrete (LMC) compared to those of conventional concrete. Also, the main microstructural characteristics of LMC were studied using a Scanning Electron Microscope (SEM). The SEM investigation of the LMC showed major differences in itsmore » microstructure compared to that of the conventional concrete. The LMC proved to be superior in its durability compared to the durability of conventional concrete especially its water tightness (measured by water penetration, absorption, and sorptivity tests), abrasion, corrosion, and sulphate resistance.« less
NASA Technical Reports Server (NTRS)
Michalitsianos, A. G.; Kafatos, M.; Shore, S. N.
1989-01-01
Low-resolution IUE SWP spectra of the peculiar object LMC Anonymous (Sanduleak's Star) indicates strong evidence for CNO-processed nebula in the vicinity of the star. The far-UV spectrum of LMC Anonymous closely resembles that of the S Condensation of Eta Carinae. The similarity between LMC Anonymous and the S Condensation is apparent from the absolute intensity of the N V, semiforbidden N IV, and semiforbidden N III emission lines compared with the reduced strength of C IV or semiforbidden C III emission. IUE spectra of the S Condensation and SN 1987A may provide important clues concerning the nature of LMC Anonymous, which indicates departures from normal cosmic abundances of nitrogen relative to carbon that are extreme. This may suggest that carbon envelope burning and dredge-up occurred simultaneously during the helium-burning stage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michalitsianos, A.G.; Kafatos, M.; Shore, S.N.
1989-06-01
Low-resolution IUE SWP spectra of the peculiar object LMC Anonymous (Sanduleak's Star) indicates strong evidence for CNO-processed nebula in the vicinity of the star. The far-UV spectrum of LMC Anonymous closely resembles that of the S Condensation of Eta Carinae. The similarity between LMC Anonymous and the S Condensation is apparent from the absolute intensity of the N V, semiforbidden N IV, and semiforbidden N III emission lines compared with the reduced strength of C IV or semiforbidden C III emission. IUE spectra of the S Condensation and SN 1987A may provide important clues concerning the nature of LMC Anonymous,more » which indicates departures from normal cosmic abundances of nitrogen relative to carbon that are extreme. This may suggest that carbon envelope burning and dredge-up occurred simultaneously during the helium-burning stage. 25 refs.« less
Hunting for brown dwarf binaries with X-Shooter
NASA Astrophysics Data System (ADS)
Manjavacas, E.; Goldman, B.; Alcalá, J. M.; Zapatero-Osorio, M. R.; Béjar, B. J. S.; Homeier, D.; Bonnefoy, M.; Smart, R. L.; Henning, T.; Allard, F.
2015-05-01
The refinement of the brown dwarf binary fraction may contribute to the understanding of the substellar formation mechanisms. Peculiar brown dwarf spectra or discrepancy between optical and near-infrared spectral type classification of brown dwarfs may indicate unresolved brown dwarf binary systems. We obtained medium-resolution spectra of 22 brown dwarfs of potential binary candidates using X-Shooter at the VLT. We aimed to select brown dwarf binary candidates. We also tested whether BT-Settl 2014 atmospheric models reproduce the physics in the atmospheres of these objects. To find different spectral type spectral binaries, we used spectral indices and we compared the selected candidates to single spectra and composition of two single spectra from libraries, to try to reproduce our X-Shooter spectra. We also created artificial binaries within the same spectral class, and we tried to find them using the same method as for brown dwarf binaries with different spectral types. We compared our spectra to the BT-Settl models 2014. We selected six possible candidates to be combination of L plus T brown dwarfs. All candidates, except one, are better reproduced by a combination of two single brown dwarf spectra than by a single spectrum. The one-sided F-test discarded this object as a binary candidate. We found that we are not able to find the artificial binaries with components of the same spectral type using the same method used for L plus T brown dwarfs. Best matches to models gave a range of effective temperatures between 950 K and 1900 K, a range of gravities between 4.0 and 5.5. Some best matches corresponded to supersolar metallicity.
NASA Technical Reports Server (NTRS)
1976-01-01
Satellite X-ray experiments and ground-based programs aimed at observation of X-ray binaries are discussed. Experiments aboard OAO-3, OSO-8, Ariel 5, Uhuru, and Skylab are included along with rocket and ground-based observations. Major topics covered are: Her X-1, Cyg X-3, Cen X-3, Cyg X-1, the transient source A0620-00, other possible X-ray binaries, and plans and prospects for future observational programs.
Correction factors for on-line microprobe analysis of multielement alloy systems
NASA Technical Reports Server (NTRS)
Unnam, J.; Tenney, D. R.; Brewer, W. D.
1977-01-01
An on-line correction technique was developed for the conversion of electron probe X-ray intensities into concentrations of emitting elements. This technique consisted of off-line calculation and representation of binary interaction data which were read into an on-line minicomputer to calculate variable correction coefficients. These coefficients were used to correct the X-ray data without significantly increasing computer core requirements. The binary interaction data were obtained by running Colby's MAGIC 4 program in the reverse mode. The data for each binary interaction were represented by polynomial coefficients obtained by least-squares fitting a third-order polynomial. Polynomial coefficients were generated for most of the common binary interactions at different accelerating potentials and are included. Results are presented for the analyses of several alloy standards to demonstrate the applicability of this correction procedure.
Proper-motion Study of the Magellanic Clouds Using SPM Material
NASA Astrophysics Data System (ADS)
Vieira, Katherine; Girard, Terrence M.; van Altena, William F.; Zacharias, Norbert; Casetti-Dinescu, Dana I.; Korchagin, Vladimir I.; Platais, Imants; Monet, David G.; López, Carlos E.; Herrera, David; Castillo, Danilo J.
2010-12-01
Absolute proper motions are determined for stars and galaxies to V = 17.5 over a 450 deg2 area that encloses both Magellanic Clouds. The proper motions are based on photographic and CCD observations of the Yale/San Juan Southern Proper Motion program, which span a baseline of 40 years. Multiple, local relative proper-motion measures are combined in an overlap solution using photometrically selected Galactic disk stars to define a global relative system that is then transformed to absolute using external galaxies and Hipparcos stars to tie into the ICRS. The resulting catalog of 1.4 million objects is used to derive the mean absolute proper motions of the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC); (μαcos δ, μδ)LMC = (1.89, + 0.39) ± (0.27, 0.27) masyr-1 and (μαcos δ, μδ)SMC = (0.98, - 1.01) ± (0.30, 0.29) masyr-1. These mean motions are based on best-measured samples of 3822 LMC stars and 964 SMC stars. A dominant portion (0.25 mas yr-1) of the formal errors is due to the estimated uncertainty in the inertial system of the Hipparcos Catalog stars used to anchor the bright end of our proper motion measures. A more precise determination can be made for the proper motion of the SMC relative to the LMC; (μαcos δ, μδ)SMC-LMC = (-0.91, - 1.49) ± (0.16, 0.15) masyr-1. This differential value is combined with measurements of the proper motion of the LMC taken from the literature to produce new absolute proper-motion determinations for the SMC, as well as an estimate of the total velocity difference of the two clouds to within ±54 km s-1. The absolute proper-motion results are consistent with the Clouds' orbits being marginally bound to the Milky Way, albeit on an elongated orbit. The inferred relative velocity between the Clouds places them near their binding energy limit and, thus, no definitive conclusion can be made as to whether or not the Clouds are bound to one another.
NASA Technical Reports Server (NTRS)
Maurer, G. S.; Dennis, B. R.; Coe, M. J.; Crannell, C. J.; Cutler, E. P.; Dolan, J. F.; Frost, K. J.; Orwig, L. E.
1978-01-01
Her X-1 was observed from 1977 August 30 to September 10 using the High-Energy X-Ray Scintillation Spectrometer on board the OSO-8 satellite. The observation, during which the source was monitored continually for nearly an entire ON-state, covered the energy range from 16 to 280 keV. Pulsed flux measurements as a function of binary orbit and binary phase are presented for energies between 16 and 98 keV. The pulsed flux between 16 and 33 keV exhibited a sharp decrease following the fourth binary orbit and was consistent with zero pulsed flux thereafter. The pulsed spectrum was fitted with a power law, a thermal spectrum without features, and a thermal spectrum with a superposed gaussian centered at 55 keV. The latter fit has the smallest value of chi - squared per degree of freedom, and the resulting integrated line intensity is 1.5 superscript + 4.1 subscript - 1.4 x .001 photons s superscript-1 cm superscript-2 for a width of 3.1 superscript + 9.1 subscript -2.6 keV. This result, while of low statistical significance, agrees with the value observed by Trumper (1978) during the same On-state.
Models of Tidally Induced Gas Filaments in the Magellanic Stream
NASA Astrophysics Data System (ADS)
Pardy, Stephen A.; D’Onghia, Elena; Fox, Andrew J.
2018-04-01
The Magellanic Stream and Leading Arm of H I that stretches from the Large and Small Magellanic Clouds (LMC and SMC) and over 200° of the Southern sky is thought to be formed from multiple encounters between the LMC and SMC. In this scenario, most of the gas in the Stream and Leading Arm is stripped from the SMC, yet recent observations have shown a bifurcation of the Trailing Arm that reveals LMC origins for some of the gas. Absorption measurements in the Stream also reveal an order of magnitude more gas than in current tidal models. We present hydrodynamical simulations of the multiple encounters between the LMC and SMC at their first pass around the Milky Way, assuming that the Clouds were more extended and gas-rich in the past. Our models create filamentary structures of gas in the Trailing Stream from both the LMC and SMC. While the SMC trailing filament matches the observed Stream location, the LMC filament is offset. In addition, the total observed mass of the Stream in these models is underestimated by a factor of four when the ionized component is accounted for. Our results suggest that there should also be gas stripped from both the LMC and SMC in the Leading Arm, mirroring the bifurcation in the Trailing Stream. This prediction is consistent with recent measurements of spatial variation in chemical abundances in the Leading Arm, which show that gas from multiple sources is present, although its nature is still uncertain.
An X-ray look at the first head-trail nebula in an X-ray binary
NASA Astrophysics Data System (ADS)
Soleri, Paolo
2011-09-01
Head-tail trails are a common feature in active galactic nuclei and pulsar bow-shocks. Heinz et al. (2008) suggested that also X-ray binaries, being jet sources moving with high velocities in dense media, can leave trails of highly ionized plasma that should be detectable at radio frequencies. During bservations of faint-persistent X-ray binaries, we discovered an optical nebula around the X-ray binary SAX J1712.6-3739, consisting of a bow-shock ring-like nebula in front of the binary and two trails originating close to it. This is the first detection of such structure in a X-ray binary and it opens a new sub-field in the study of these objects. Observations with XMM-Newton and Chandra are now needed to investigate the properties of the surrounding nebula.
An X-ray look at the first head-trail nebula in an X-ray binary
NASA Astrophysics Data System (ADS)
Soleri, Paolo
2010-10-01
Head-tail trails are a common feature in active galactic nuclei and pulsar bow-shocks. Heinz et al. (2008) suggested that also X-ray binaries, being jet sources moving with high velocities in dense media, can leave trails of highly ionized plasma that should be detectable at radio frequencies. During observations of faint-persistent X-ray binaries, we discovered an optical nebula around the X-ray binary SAX J1712.6-3739, consisting of a bow-shock ring-like nebula ``in front'' of the binary and two trails originating close to it. This is the first detection of such structure in a X-ray binary and it opens a new sub-field in the study of these objects. Observations with XMM-Newton and Chandra are now needed to investigate the properties of the surrounding nebula.
New Observations of Candidate Herbig Ae/Be Stars in the LMC and SMC
NASA Astrophysics Data System (ADS)
Bjorkman, K. S.; Wisniewski, J. P.; Bjorkman, J. E.; Hesselbach, E. N.
2005-12-01
Based on analysis of the EROS microlensing data set, Lamers, Beaulieu, & de Wit (1999) and de Wit, Beaulieu, & Lamers (2002) identified 21 candidate Herbig Ae/Be (HAeBe) stars in the Large Magellanic Cloud (LMC). They based the selection of candidates on the irregular photometric variability exhibited by these stars, which bore some resemblance to the variability exhibited by known Galactic HAeBe stars. The candidate stars identified were designated as EROS LMC HAeBe Candidates, or ELHCs. A smaller number (7) of candidate stars identified in the SMC (Beaulieu et al. 2001; de Wit et al. 2003) were similarly designated ESHCs. Using the CTIO 0.9m telescope and imaging camera, we obtained B, V, R, and Hα photometry of 2 fields in the LMC encompassing 12 of the ELHCs. We used the CTIO 4m Blanco telescope with the Hydra multi-object spectrograph to obtain optical spectroscopy of all the ELHC stars as well as the ESHC stars. Further observations included JHK photometry of both the ELHC and ESHC fields using the CTIO 4m plus the ISPI infrared imager. We will discuss the results from our observations, and comment on the implications for the tentative identification of these stars as candidate HAeBe stars. We will also compare our results with the recent findings of de Wit et al. (2005). This work has been supported in part by NASA LTSA grant (KSB) NAG5-8054 and NASA GSRP Fellowship (JPW) NGT5-5069 to the University of Toledo. We thank the NOAO TAC for providing observing time for this project, and for providing travel support for JPW.
Ca4As3 – a new binary calcium arsenide
Hoffmann, Andrea V.; Hlukhyy, Viktor; Fässler, Thomas F.
2015-01-01
The crystal structure of the binary compound tetracalcium triarsenide, Ca4As3, was investigated by single-crystal X-ray diffraction. Ca4As3 crystallizes in the Ba4P3 structure type and is thus a homologue of isotypic Sr4As3. The unit cell contains 32 Ca2+ cations, 16 As3− isolated anions and four centrosymmetric [As2]4– dumbbells. The As atoms in each of the dumbbells are connected by a single bond, thus this calcium arsenide is a Zintl phase. PMID:26870427
Salvatierra, Rodrigo Villegas; Zakhidov, Dante; Sha, Junwei; Kim, Nam Dong; Lee, Seoung-Ki; Raji, Abdul-Rahman O; Zhao, Naiqin; Tour, James M
2017-03-28
Here we show that a versatile binary catalyst solution of Fe 3 O 4 /AlO x nanoparticles enables homogeneous growth of single to few-walled carbon nanotube (CNT) carpets from three-dimensional carbon-based substrates, moving past existing two-dimensional limited growth methods. The binary catalyst is composed of amorphous AlO x nanoclusters over Fe 3 O 4 crystalline nanoparticles, facilitating the creation of seamless junctions between the CNTs and the underlying carbon platform. The resulting graphene-CNT (GCNT) structure is a high-density CNT carpet ohmically connected to the carbon substrate, an important feature for advanced carbon electronics. As a demonstration of the utility of this approach, we use GCNTs as anodes and cathodes in binder-free lithium-ion capacitors, producing stable devices with high-energy densities (∼120 Wh kg -1 ), high-power density capabilities (∼20,500 W kg -1 at 29 Wh kg -1 ), and a large operating voltage window (4.3 to 0.01 V).
The iron complex in high mass X-ray binaries
NASA Astrophysics Data System (ADS)
Giménez-García, A.; Torrejón, J. M.; Martínez-Núñez, S.; Rodes-Rocas, J. J.; Bernabéu, G.
2013-05-01
An X-ray binary system consists of a compact object (a white dwarf, a neutron star or a black hole) accreting material from an optical companion star. The spectral type of the optical component strongly affects the mass transfer to the compact object. This is the reason why X-ray binary systems are usually divided in High Mass X-ray Binaries (companion O or B type, denoted HMXB) and Low Mass X-ray Binaries (companion type A or later). The HMXB are divided depending on the partner's luminosity class in two main groups: the Supergiant X-ray Binaries (SGXB) and Be X-ray Binaries (BeXB). We introduce the spectral characterization of a sample of 9 High Mass X-ray Binaries in the iron complex (˜ 6-7 keV). This spectral range is a fundamental tool in the study of the surrounding material of these systems. The sources have been divided into three main groups according to their current standard classification: SGXB, BeXB and γ Cassiopeae-like. The purpose of this work is to look for qualitative patterns in the iron complex, around 6-7 keV, in order to discern between current different classes that make up the group of HMXB. We find significant spectral patterns for each of the sets, reflecting differences in accretion physics thereof.
NASA Astrophysics Data System (ADS)
Ludlam, R. M.; Miller, J. M.; Degenaar, N.; Sanna, A.; Cackett, E. M.; Altamirano, D.; King, A. L.
2017-10-01
We perform a reflection study on a new observation of the neutron star (NS) low-mass X-ray binary Aquila X-1 taken with NuSTAR during the 2016 August outburst and compare with the 2014 July outburst. The source was captured at ˜32% L Edd, which is over four times more luminous than the previous observation during the 2014 outburst. Both observations exhibit a broadened Fe line profile. Through reflection modeling, we determine that the inner disk is truncated {R}{in,2016}={11}-1+2 {R}g (where R g = GM/c 2) and {R}{in,2014}=14+/- 2 {R}g (errors quoted at the 90% confidence level). Fiducial NS parameters (M NS = 1.4 M ⊙, R NS = 10 km) give a stellar radius of R NS = 4.85 R g ; our measurements rule out a disk extending to that radius at more than the 6σ level of confidence. We are able to place an upper limit on the magnetic field strength of B ≤ 3.0-4.5 × 109 G at the magnetic poles, assuming that the disk is truncated at the magnetospheric radius in each case. This is consistent with previous estimates of the magnetic field strength for Aquila X-1. However, if the magnetosphere is not responsible for truncating the disk prior to the NS surface, we estimate a boundary layer with a maximum extent of {R}{BL,2016}˜ 10 {R}g and {R}{BL,2014}˜ 6 {R}g. Additionally, we compare the magnetic field strength inferred from the Fe line profile of Aquila X-1 and other NS low-mass X-ray binaries to known accreting millisecond X-ray pulsars.
A NuSTAR Observation of the Reflection Spectrum of the Low-Mass X-Ray Binary 4U 1728-34
NASA Technical Reports Server (NTRS)
Sleator, Clio C.; Tomsick, John A.; King, Ashley L.; Miller, Jon M.; Boggs, Steven E.; Bachetti, Matteo; Barret, Didier; Chenevez, Jerome; Christensen, Finn E.; Craig, William W.;
2016-01-01
We report on a simultaneous NuSTAR and Swift observation of the neutron star low-mass X-ray binary 4U 1728-34. We identified and removed four Type I X-ray bursts during the observation in order to study the persistent emission. The continuum spectrum is hard and described well by a blackbody with kT=1.5 keV and a cutoff power law with Lambda = 1.5, and a cutoff temperature of 25 keV. Residuals between 6 and 8 keV provide strong evidence of a broad Fe K(alpha) line. By modeling the spectrum with a relativistically blurred reflection model, we find an upper limit for the inner disk radius of R(sub in) < or = 2R(sub ISCO). Consequently, we find that R(sub NS) < or = 23 km, assuming M = 1.4 Stellar Mass and a = 0.15. We also find an upper limit on the magnetic field of B < or =2 x 10(exp 8) G.
Discovery of 3.6-s X-ray pulsations from 4U0115+63
NASA Technical Reports Server (NTRS)
Cominsky, L.; Clark, G. W.; Li, F.; Mayer, W.; Rappaport, S.
1978-01-01
SAS 3 observations reveal a pulsation period of 3.61 sec for the transient X-ray source 4U0115+63. Positional measurement is accurate to approximately 30 arc s, and has led to the likely identification of an optical counterpart. The intensity of the pulses, as reported on 5.9 January 1978, is given as approximately 1.7 times that of the Crab Nebula (1-27 keV). Spectral information was also obtained from the ratios of counting rates in the first three energy channels of the center slat collimator detector (1-27 keV). Two classes of models are proposed to explain the transient nature of the X-ray sources: (1) episodic mass transfer in a binary system, and (2) eccentric binary orbits.
Chandra Observations of the Eclipsing Wolf-Rayet Binary CQ CepOver a Full Orbital Cycle
NASA Astrophysics Data System (ADS)
Skinner, Steve L.; Guedel, Manuel; Schmutz, Werner; Zhekov, Svetozar
2018-06-01
We present results of Chandra X-ray observations and simultaneous optical light curves of the short-period (1.64 d) eclipsing WN6+O9 binary system CQ Cep obtained in 2013 and 2017 covering a full binary orbit. Our primary objective was to compare the observed X-ray properties with colliding wind shock theory, which predicts that the hottest shock plasma (T > 20 MK) will form on or near the line-of-centers between the stars. Thus, X-ray variability is expected during eclipses when the hottest plasma is occulted. The X-ray spectrum is strikingly similar to apparently single WN6 stars such as WR 134 and spectral lines reveal plasma over a broad range of temperatures T ~ 4 - 40 MK. Both primary and secondary optical eclipses were clearly detected and provide an accurate orbital period determination (P = 1.6412 d). The X-ray emission remained remarkably steady throughout the orbit and statistical tests give a low probability of variability. The lack of significant X-ray variabililty during eclipses indicates that the X-ray emission is not confined along the line-of-centers but is extended on larger spatial scales, contrary to colliding wind predictions.
The coupling of a disk corona and a jet for the radio/X-ray correlation in black hole X-ray binaries
NASA Astrophysics Data System (ADS)
Qiao, Erlin
2016-02-01
We interpret the radio/X-ray correlation of L R ~ L X ~1.4 for L X/L Edd >~ 10-3 with a detailed disk corona-jet model, in which the accretion flow and the jet are connected by a parameter, η, describing the fraction of the matter in the accretion flow ejected outward to form the jet. We calculate L R and L X at different Ṁ, adjusting η to fit the observed radio/X-ray correlation of the black hole X-ray transient H1743-322 for L X/L Edd > 10-3. It is found that the value of η for this radio/X-ray correlation for L X/L Edd > 10-3, is systematically less than that of the case for L X/L Edd < 10-3, which is consistent with the general idea that the jet is often relatively suppressed at the high luminosity phase in black hole X-ray binaries.
New Evidence for a Black Hole in the Compact Binary Cygnus X-3
NASA Technical Reports Server (NTRS)
Shrader, Chris R.; Titarchuk, Lev; Shaposhnikov, Nikolai
2010-01-01
The bright and highly variable X-ray and radio source known as Cygnus X-3 was among the first X-ray sources discovered, yet it remains in many ways an enigma. Its known to consist of a massive. Wolf-Rayet primary in an extremely tight orbit with a compact object. Yet one of the most basic of pa.ranietern the mass of the compact object - is not known. Nor is it even clear whether its is a neutron star or a black hole. In this Paper we present our analysis of the broad-band high-energy continua covering a substantial range in luminosity and spectral morphology. We apply these results to a recently identified scaling relationship which has been demonstrated to provide reliable estimates of the compact object mass in a number of accretion powered binaries. This analysis leads us to conclude that the compact object in Cygnus X-3 has a mass greater than 4.2 solar mass thus clearly indicative of a black hole and as such resolving a longstanding issue. The full range of uncertainty in our analysis and from using a. range of recently published distance estimates constrains the compact object mass to lie between 4.2 solar mass and 14.4 solar mass. Our favored estimate, based on a 9.0 kpc distance estimate is approx. l0 solar mass, with the. error margin of 3.2 solar masses. This result may thus pose challenges to shared-envelope evolutionary models of compact binaries. as well as establishing Cygnus X-3 as the first confirmed accretion-powered galactic gamma: ray source.
Distribution of hot stars and hydrogen in the Large Magellanic Cloud
NASA Technical Reports Server (NTRS)
Page, T.; Carruthers, G. R.
1981-01-01
Imagery of the Large Magellanic Cloud (LMC), in the wavelength ranges 1050 to 1600 A and 1250 to 1600 A, was obtained by the S201 far ultraviolet camera during the Apollo 16 mission. These images were reduced to absolute far-UV intensity distributions over the area of the LMC, with 3 to 5 arc min angular resolution. Comparison of these far-UV measurements in the LMC with H sub alpha and 21 cm surveys reveals that interstellar hydrogen in the LMC is often concentrated in 100 pc clouds within 500 pc clouds. Furthermore, at least 25 associations of O-B stars in the LMC are outside the interstellar hydrogen clouds; four of them appear to be on the far side. Far-UV and mid-UV spectra were obtained of stars in 12 of these associations, using the International Ultraviolet Explorer. Equivalent widths of L alpha and six other lines, and relative intensities of the continuum at seven wavelength from 1300 A to 2900 A, were measured. These spectra are also discussed.
Old Stellar Populations as Structural Tracer of the Magellanic Cloud Complex
NASA Astrophysics Data System (ADS)
Saha, A.; Olszewski, E. W.
2015-05-01
We present results from the the NOAO Outer Limits Survey (OLS) in the context of the new paradigm that the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) are approaching the Galaxy for the first time, and are not, as previously thought, orbiting quasi-periodically. The OLS identifies old and intermediate stellar populations associated with the LMC and SMC to unprecedented distances outside these galaxies. The distribution of these older stars are a fossil record of the interaction history of both Magellanic Clouds, both between themselves and with the Milky Way. A stable extended disk to beyond 12 scale lengths has been identified in the LMC, which is unlikely to have survived multiple approaches to the Galaxy. An extra-tidal distribution of stars around the SMC, however, are consistent with tidal disruption due to interactions with the LMC. We show that the Magellanic Bridge contains old stars, consistent with it being a tidal feature due to LMC-SMC interaction.
The Mysterious Bar of the Large Magellanic Cloud: What Is It?
NASA Astrophysics Data System (ADS)
Subramaniam, Annapurni; Subramanian, Smitha
2009-09-01
The bar of the Large Magellanic Cloud (LMC) is one of the prominent, but controversial, features regarding its location with respect to the disk of the LMC. In order to study the relative location of the bar with respect to the disk, we present the high-resolution map of the structure across the LMC. We used the reddening corrected mean magnitudes (I 0) of red clump (RC) stars from the OGLE III catalog to map the relative variation in distance (vertical structure) or variation in RC population across the LMC. The bar does not appear as an identifiable vertical feature in the map, as there is no difference in I 0 values between the bar and the disk regions. We conclude that the LMC bar is very much part of the disk (within 0.02 mag), located in the plane of the disk and not a separate component. We identify warps or variation in RC population with increase in radial distance.
NASA Astrophysics Data System (ADS)
Nichols, J.; Huenemoerder, D. P.; Corcoran, M. F.; Waldron, W.; Nazé, Y.; Pollock, A. M. T.; Moffat, A. F. J.; Lauer, J.; Shenar, T.; Russell, C. M. P.; Richardson, N. D.; Pablo, H.; Evans, N. R.; Hamaguchi, K.; Gull, T.; Hamann, W.-R.; Oskinova, L.; Ignace, R.; Hoffman, Jennifer L.; Hole, K. T.; Lomax, J. R.
2015-08-01
We present time-resolved and phase-resolved variability studies of an extensive X-ray high-resolution spectral data set of the δ Ori Aa binary system. The four observations, obtained with Chandra ACIS HETGS, have a total exposure time of ≈ 479 ks and provide nearly complete binary phase coverage. Variability of the total X-ray flux in the range of 5-25 Å is confirmed, with a maximum amplitude of about ±15% within a single ≈ 125 ks observation. Periods of 4.76 and 2.04 days are found in the total X-ray flux, as well as an apparent overall increase in the flux level throughout the nine-day observational campaign. Using 40 ks contiguous spectra derived from the original observations, we investigate the variability of emission line parameters and ratios. Several emission lines are shown to be variable, including S xv, Si xiii, and Ne ix. For the first time, variations of the X-ray emission line widths as a function of the binary phase are found in a binary system, with the smallest widths at ϕ = 0.0 when the secondary δ Ori Aa2 is at the inferior conjunction. Using 3D hydrodynamic modeling of the interacting winds, we relate the emission line width variability to the presence of a wind cavity created by a wind-wind collision, which is effectively void of embedded wind shocks and is carved out of the X-ray-producing primary wind, thus producing phase-locked X-ray variability. Based on data from the Chandra X-ray Observatory and the MOST satellite, a Canadian Space Agency mission, jointly operated by Dynacon Inc., the University of Toronto Institute of Aerospace Studies, and the University of British Columbia, with the assistance of the University of Vienna.
Dust in emission nebulae of the LMC derived from photometric reddening of stars
NASA Astrophysics Data System (ADS)
Greve, A.; van Genderen, A. M.; Laval, A.
1990-10-01
VBLUW photometric observations of stars in emission nebulae of the LMC are reported. The luminosities and extinctions of the stars are derived. Agreement is found between the average photometric extinctions of the nebulae and the extinctions derived from the Balmer line decrement measured by Caplan and Deharveng (1985 and 1986). The photometric extinctions are shown in the CO map of the LMC (Cohen et al., 1988).
The Optical Gravitational Lensing Experiment: Red Clump Stars as a Distance Indicator.
Udalski
2000-03-01
We present relation of the mean I-band brightness of red clump stars on metallicity. Red clump stars were proposed to be a very attractive standard candle for distance determination. The calibration is based on 284 nearby red giant stars whose high-quality spectra made it possible to determine accurate individual metal abundances. High-quality parallaxes (sigmapi&solm0;pi<10%) and photometry of these very bright stars come from Hipparcos measurements. Metallicity of the sample covers a large range: -0.6 dex<&sqbl0;Fe&solm0;H&sqbr0;<+0.2 dex. We find a weak dependence of the mean I-band brightness on metallicity ( approximately 0.13 mag dex-1). What is more important, the range of metallicity of the Hipparcos sample partially overlaps with metallicity of field giants in the LMC, thus making it possible to determine the distance to the LMC by almost direct comparison of brightness of the local Hipparcos red clump giants with that of LMC stars. Photometry of field red clump giants in nine low-extinction fields of the LMC halo collected during the OGLE II microlensing survey compared with the Hipparcos red clump stars data yields the distance modulus to the LMC: &parl0;m-M&parr0;LMC=18.24+/-0.08 mag.
Numerical Simulation of the Global Star Formation Pattern in the LMC
NASA Astrophysics Data System (ADS)
Gardiner, L. T.; Turfus, C.
Dottori et al. (1996, ApJ 461, 742) have recently presented evidence for the idea that the observed distribution of young star clusters in the Large Magellanic Cloud (LMC) has resulted from the gravitational perturbation induced by a bar potential offset from the LMC disk center. We have constructed a dynamical model of the LMC to examine the effects of such an off-center perturbation on the global distribution of the gas and star formation activity. We have used a newly developed hybrid N-body/cellular automaton scheme for modeling star formation in galaxies which incorporates the dual mechanisms of gravitational instability and self-propagating star formation, combined with feedback of kinetic energy from star-forming regions into the interstellar medium. We find that a weak rotating bar perturbation, whose center is displaced by 0.6 kpc from the disk center, gives rise to an asymmetric spiral structure which mimics the chains of recent star formation observed in the LMC as well as delineating activity in the bar region. Large gas concentrations are produced where the spiral arms merge in the northern part of the galaxy, and such structures may have observed counterparts in giant star-forming complexes such as Constellation III in the NE part of the LMC.
Synthesis and molecular structure of a spheroidal binary nanoscale copper sulfide cluster.
Bestgen, Sebastian; Fuhr, Olaf; Roesky, Peter W; Fenske, Dieter
2016-09-27
The reaction of copper(4-(tert-butyl)phenyl)methanethiolate [CuSCH 2 C 6 H 4 t Bu] with bis(trimethylsilyl)sulfide S(SiMe 3 ) 2 in the presence of triphenylphosphine PPh 3 afforded the binary 52 nuclear copper cluster [Cu 52 S 12 (SCH 2 C 6 H 4 t Bu) 28 (PPh 3 ) 8 ]. The molecular structure of this intensely red coloured nanoscale Cu 2 S mimic was established by single crystal X-ray diffraction.
Stellar Variability in the Intermediate Age Cluster NGC 1846
NASA Astrophysics Data System (ADS)
Pajkos, Michael A.; Salinas, Ricardo; Vivas, Anna Katherina; Strader, Jay; Contreras, Rodrigo
2017-01-01
The existence of multiple stellar populations in Galactic globular clusters is considered a widespread phenomenon, with only a few possible exceptions. In the LMC intermediate-age globular clusters, the presence of extended main sequence turn off points (MSTOs), initially interpreted as evidence for multiple stellar populations, is now under scrutiny and stellar rotation has emerged as an alternative explanation. Here we propose yet another ingredient to this puzzle: the fact that the MSTO of these clusters passes through the instability strip making stellar variability a new alternative to explain this phenomenon. We report the first in-depth characterization of the variability, at the MSTO level, in any LMC cluster, and assess the role of variability masquerading as multiple stellar populations. We used the Gemini-S/GMOS to obtain time series photometry of NGC 1846. Using differencing image analysis, we identified 90 variables in the r-band, 68 of which were also found in the g-band. Of these 68, 57 were δ-scuti—with 35 having full phase coverage and 22 without. The average full period (Pfull) was 1.93 ± 0.79 hours. Furthermore, two eclipsing binaries and two RR Lyrae identified by OGLE were recovered. We conclude that not enough variables were found to provide a statistically significant impact on the extended MSTO, nor to explain the bifurcation of MSTO in NGC 1846. But the effect of variable stars could still be a viable explanation on clusters where only a hint of a MS extension is seen.
GP obstetricians' views of the model of maternity care in New Zealand.
Miller, Dawn L; Mason, Zara; Jaye, Chrystal
2013-02-01
The Lead Maternity Carer (LMC) model of maternity care, and independent midwifery practice, was introduced to New Zealand in the 1990s. The LMC midwife or general practitioner obstetrician (GPO) has clinical and budgetary responsibility for women's primary maternity care. To determine views of practising GPOs and former GPOs about the LMC model of care, its impact on maternity care in general practice, and future of maternity care in general practice. 10 GPOs and 13 former GPOs were interviewed: one focus group (n = 3), 20 semi-structured interviews. The qualitative data analysis program ATLAS.ti assisted thematic analysis. Participants thought the LMC model isolates the LMC - particularly concerning during intrapartum care, in rural practice, and covering 24-hour call; Is not compatible with or adequately funded for GP participation; Excludes the GP from caring for their pregnant patients. Participants would like a flexible, locally adaptable, adequately funded maternity model, supporting shared care. Some thought work-life balance and low GPO numbers could deter future GPs from maternity practice. Others felt with political will, support of universities, and Royal New Zealand College of General Practice and Royal Australian and New Zealand College of Obstetrics and Gynaecology, GPs could become more involved in maternity care again. Participants thought the LMC model isolates maternity practitioners, is incompatible with general practice and causes loss of continuity of general practice care. They support provision of maternity care in general practice; however, for more GPs to become involved, the LMC model needs review. © 2013 The Authors ANZJOG © 2012 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists.
Testing LMC Microlensing Scenarios: The Discrimination Power of the SuperMACHO Microlensing Survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rest, A; Stubbs, C; Becker, A C
Characterizing the nature and spatial distribution of the lensing objects that produce the observed microlensing optical depth toward the Large Magellanic Cloud (LMC) remains an open problem. They present an appraisal of the ability of the SuperMACHO Project, a next-generation microlensing survey pointed toward the LMC, to discriminate between various proposed lensing populations. they consider two scenarios: lensing by a uniform foreground screen of objects and self-lensing of LMC stars. The optical depth for ''screen-lensing'' is essentially constant across the face of the LMC; whereas, the optical depth for self-lensing shows a strong spatial dependence. they have carried out extensivemore » simulations, based upon actual data obtained during the first year of the project, to assess the SuperMACHO survey's ability to discriminate between these two scenarios. In the simulations they predict the expected number of observed microlensing events for each of their fields by adding artificial stars to the images and estimating the spatial and temporal efficiency of detecting microlensing events using Monte-Carlo methods. They find that the event rate itself shows significant sensitivity to the choice of the LMC luminosity function shape and other parameters, limiting the conclusions which can be drawn from the absolute rate. By instead determining the differential event rate across the LMC, they can decrease the impact of these systematic uncertainties rendering the conclusions more robust. With this approach the SuperMACHO Project should be able to distinguish between the two categories of lens populations and provide important constraints on the nature of the lensing objects.« less
NASA Astrophysics Data System (ADS)
Margutti, R.; Berger, E.; Fong, W.; Guidorzi, C.; Alexander, K. D.; Metzger, B. D.; Blanchard, P. K.; Cowperthwaite, P. S.; Chornock, R.; Eftekhari, T.; Nicholl, M.; Villar, V. A.; Williams, P. K. G.; Annis, J.; Brown, D. A.; Chen, H.; Doctor, Z.; Frieman, J. A.; Holz, D. E.; Sako, M.; Soares-Santos, M.
2017-10-01
We report the discovery of rising X-ray emission from the binary neutron star merger event GW170817. This is the first detection of X-ray emission from a gravitational-wave (GW) source. Observations acquired with the Chandra X-ray Observatory (CXO) at t≈ 2.3 days post-merger reveal no significant emission, with {L}x≲ 3.2× {10}38 {erg} {{{s}}}-1 (isotropic-equivalent). Continued monitoring revealed the presence of an X-ray source that brightened with time, reaching {L}x≈ 9× {10}38 {erg} {{{s}}}-1 at ≈ 15.1 days post-merger. We interpret these findings in the context of isotropic and collimated relativistic outflows (both on- and off-axis). We find that the broadband X-ray to radio observations are consistent with emission from a relativistic jet with kinetic energy {E}k˜ {10}49-50 {erg}, viewed off-axis with {θ }{obs}˜ 20^\\circ {--}40^\\circ . Our models favor a circumbinary density n˜ {10}-4{--}{10}-2 {{cm}}-3, depending on the value of the microphysical parameter {ɛ }B={10}-4{--}{10}-2. A central-engine origin of the X-ray emission is unlikely. Future X-ray observations at t≳ 100 days, when the target will be observable again with the CXO, will provide additional constraints to solve the model degeneracies and test our predictions. Our inferences on {θ }{obs} are testable with GW information on GW170817 from advanced LIGO/Virgo on the binary inclination.
The optical counterpart of GX 339-4, a possible black hole X-ray source
NASA Technical Reports Server (NTRS)
Grindlay, J. E.
1979-01-01
Optical studies of the galactic X-ray source GX 339-4 (4U 1658-48), which led to its recent identification as reported by Doxsey et al. (1979), are presented. Reddening and distance estimates are given, as well as evidence for optical variability on differing time scales. The emission-line spectra and UBV photometry suggest that GX 339-4 may be at about 8 kpc and have a main-sequence B star binary companion. Both the optical spectrum and optical/X-ray luminosity ratio for GX 339-4 may be similar to Cir X-1.
Margutti, Raffaella; Berger, E.; Fong, W.; ...
2017-10-16
Here, we report the discovery of rising X-ray emission from the binary neutron star merger event GW170817. This is the first detection of X-ray emission from a gravitational-wave (GW) source. Observations acquired with the Chandra X-ray Observatory ( CXO) atmore » $$t\\approx 2.3$$ days post-merger reveal no significant emission, with $${L}_{x}\\lesssim 3.2\\times {10}^{38}\\,\\mathrm{erg}\\,{{\\rm{s}}}^{-1}$$ (isotropic-equivalent). Continued monitoring revealed the presence of an X-ray source that brightened with time, reaching $${L}_{x}\\approx 9\\times {10}^{38}\\,\\mathrm{erg}\\,{{\\rm{s}}}^{-1}$$ at $$\\approx 15.1$$ days post-merger. We interpret these findings in the context of isotropic and collimated relativistic outflows (both on- and off-axis). We find that the broadband X-ray to radio observations are consistent with emission from a relativistic jet with kinetic energy $${E}_{k}\\sim {10}^{49-50}\\,\\mathrm{erg}$$, viewed off-axis with $${\\theta }_{\\mathrm{obs}}\\sim 20^\\circ \\mbox{--}40^\\circ $$. Our models favor a circumbinary density $$n\\sim {10}^{-4}\\mbox{--}{10}^{-2}\\,{\\mathrm{cm}}^{-3}$$, depending on the value of the microphysical parameter $${\\epsilon }_{B}={10}^{-4}\\mbox{--}{10}^{-2}$$. A central-engine origin of the X-ray emission is unlikely. Future X-ray observations at $$t\\gtrsim 100$$ days, when the target will be observable again with the CXO, will provide additional constraints to solve the model degeneracies and test our predictions. Our inferences on $${\\theta }_{\\mathrm{obs}}$$ are testable with GW information on GW170817 from advanced LIGO/Virgo on the binary inclination.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margutti, Raffaella; Berger, E.; Fong, W.
Here, we report the discovery of rising X-ray emission from the binary neutron star merger event GW170817. This is the first detection of X-ray emission from a gravitational-wave (GW) source. Observations acquired with the Chandra X-ray Observatory ( CXO) atmore » $$t\\approx 2.3$$ days post-merger reveal no significant emission, with $${L}_{x}\\lesssim 3.2\\times {10}^{38}\\,\\mathrm{erg}\\,{{\\rm{s}}}^{-1}$$ (isotropic-equivalent). Continued monitoring revealed the presence of an X-ray source that brightened with time, reaching $${L}_{x}\\approx 9\\times {10}^{38}\\,\\mathrm{erg}\\,{{\\rm{s}}}^{-1}$$ at $$\\approx 15.1$$ days post-merger. We interpret these findings in the context of isotropic and collimated relativistic outflows (both on- and off-axis). We find that the broadband X-ray to radio observations are consistent with emission from a relativistic jet with kinetic energy $${E}_{k}\\sim {10}^{49-50}\\,\\mathrm{erg}$$, viewed off-axis with $${\\theta }_{\\mathrm{obs}}\\sim 20^\\circ \\mbox{--}40^\\circ $$. Our models favor a circumbinary density $$n\\sim {10}^{-4}\\mbox{--}{10}^{-2}\\,{\\mathrm{cm}}^{-3}$$, depending on the value of the microphysical parameter $${\\epsilon }_{B}={10}^{-4}\\mbox{--}{10}^{-2}$$. A central-engine origin of the X-ray emission is unlikely. Future X-ray observations at $$t\\gtrsim 100$$ days, when the target will be observable again with the CXO, will provide additional constraints to solve the model degeneracies and test our predictions. Our inferences on $${\\theta }_{\\mathrm{obs}}$$ are testable with GW information on GW170817 from advanced LIGO/Virgo on the binary inclination.« less
New HST/STIS Spectroscopy of Massive Members of R136 in 30 Doradus
NASA Astrophysics Data System (ADS)
Bostroem, Kyra; Walborn, Nolan; Crowther, Paul; Caballero-Nieves, Saida; Lennon, Daniel; Maíz Apellániz, Jesús
2013-06-01
We display new (in some cases, the first ever) spatially resolved optical and UV spectroscopy of a number of early O-type stars in R136, the massive core cluster of 30 Doradus in the LMC. Some of them are of the earliest spectral types, O2-O3, which accompany the more luminous WN members that are the most massive stars known, near or exceeding 300~M_⊙ initially. These results are relevant to the very top of the IMF and to the structure and formation of starburst clusters. The data are from HST/STIS programs GO 12465/13052 (PI Crowther), in which the long slit was stepped across the inner 4 arcsec (1 parsec) of R136, yielding both optical photospheric and FUV stellar-wind spectra of at least 100 resolved members, many of them for the first time. The optical data were obtained at 4 epochs to support eventual radial-velocity detection of spectroscopic binaries. This program vitally complements the VLT-FLAMES Tarantula Survey of the wider stellar content of 30 Doradus, by adding that of the massive core cluster, which is inaccessible to such observations from the ground. These combined datasets will provide unprecedented information about massive stellar evolution and starbursts.
INTERFERENCE AS AN ORIGIN OF THE PEAKED NOISE IN ACCRETING X-RAY BINARIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veledina, Alexandra, E-mail: alexandra.veledina@gmail.com
2016-12-01
We propose a physical model for the peaked noise in the X-ray power density spectra of accreting X-ray binaries. We interpret its appearance as an interference of two Comptonization continua: one coming from the upscattering of seed photons from the cold thin disk and the other fed by the synchrotron emission of the hot flow. Variations of both X-ray components are caused by fluctuations in mass accretion rate, but there is a delay between them corresponding to the propagation timescale from the disk Comptonization radius to the region of synchrotron Comptonization. If the disk and synchrotron Comptonization are correlated, themore » humps in the power spectra are harmonically related and the dips between them appear at frequencies related as odd numbers 1:3:5. If they are anti-correlated, the humps are related as 1:3:5, but the dips are harmonically related. Similar structures are expected to be observed in accreting neutron star binaries and supermassive black holes. The delay can be easily recovered from the frequency of peaked noise and further used to constrain the combination of the viscosity parameter and disk height-to-radius ratio α ( H / R ){sup 2} of the accretion flow. We model multi-peak power spectra of black hole X-ray binaries GX 339–4 and XTE J1748–288 to constrain these parameters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pahari, Mayukh; Misra, Ranjeev; Antia, H M
We present here results from the X-ray timing and spectral analysis of the X-ray binary Cyg X-3 using observations from the Large Area X-ray proportional Counter on board AstroSat . Consecutive light curves observed over a period of one year show the binary orbital period of 17253.56 ± 0.19 s. Another low-amplitude, slow periodicity of the order of 35.8 ± 1.4 days is observed, which may be due to the orbital precession as suggested earlier by Molteni et al. During the rising binary phase, power density spectra from different observations during the flaring hard X-ray state show quasi-periodic oscillations (QPOs)more » at ∼5–8 mHz, ∼12–14 mHz, and ∼18–24 mHz frequencies at the minimum confidence of 99%. However, during the consecutive binary decay phase, no QPO is detected up to 2 σ significance. Energy-dependent time-lag spectra show soft lag (soft photons lag hard photons) at the mHz QPO frequency and the fractional rms of the QPO increases with the photon energy. During the binary motion, the observation of mHz QPOs during the rising phase of the flaring hard state may be linked to the increase in the supply of the accreting material in the disk and corona via stellar wind from the companion star. During the decay phase, the compact source moves in the outer wind region causing the decrease in supply of material for accretion. This may cause weakening of the mHz QPOs below the detection limit. This is also consistent with the preliminary analysis of the orbital phase-resolved energy spectra presented in this paper.« less
Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries
NASA Astrophysics Data System (ADS)
Madau, Piero; Fragos, Tassos
2017-05-01
We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior to and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z ≲ 4. Together with an updated empirical determination of the cosmic history of star formation, recent modeling of the stellar mass-metallicity relation, and a scheme for absorption by the IGM that accounts for the presence of ionized H II bubbles during the epoch of reionization, our detailed calculations provide refined predictions of the X-ray volume emissivity and filtered radiation background from “normal” galaxies at z ≳ 6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. Because of the energy dependence of photoabsorption, soft X-ray photons are produced by local sources, while more energetic radiation arrives unattenuated from larger cosmological volumes. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct He I photoionizations are the main source of IGM heating, and the temperature of the largely neutral medium in between H II cavities increases above the temperature of the cosmic microwave background (CMB) only at z ≲ 10, when the volume filling factor of H II bubbles is already ≳0.1. Therefore, in this scenario, it is only at relatively late epochs that neutral intergalactic hydrogen may be observable in 21 cm emission against the CMB.
Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madau, Piero; Fragos, Tassos
We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior to and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z ≲ 4. Together with an updated empirical determination of the cosmic history of star formation, recent modeling of the stellar mass–metallicity relation, and a scheme for absorption by the IGM that accounts for the presencemore » of ionized H ii bubbles during the epoch of reionization, our detailed calculations provide refined predictions of the X-ray volume emissivity and filtered radiation background from “normal” galaxies at z ≳ 6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. Because of the energy dependence of photoabsorption, soft X-ray photons are produced by local sources, while more energetic radiation arrives unattenuated from larger cosmological volumes. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct He i photoionizations are the main source of IGM heating, and the temperature of the largely neutral medium in between H ii cavities increases above the temperature of the cosmic microwave background (CMB) only at z ≲ 10, when the volume filling factor of H ii bubbles is already ≳0.1. Therefore, in this scenario, it is only at relatively late epochs that neutral intergalactic hydrogen may be observable in 21 cm emission against the CMB.« less
The Peculiar Galactic Center Neutron Star X-Ray Binary XMM J174457-2850.3
NASA Technical Reports Server (NTRS)
Degenaar, N.; Wijnands, R.; Reynolds, M. T.; Miller, J. M.; Altamirano, D.; Kennea, J.; Gehrels, N.; Haggard, D.; Ponti, G.
2014-01-01
The recent discovery of a milli-second radio pulsar experiencing an accretion outburst similar to those seen in low mass X-ray binaries, has opened up a new opportunity to investigate the evolutionary link between these two different neutron star manifestations. The remarkable X-ray variability and hard X-ray spectrum of this object can potentially serve as a template to search for other X-ray binary radio pulsar transitional objects. Here we demonstrate that the transient X-ray source XMM J174457-2850.3 near the Galactic center displays similar X-ray properties. We report on the detection of an energetic thermonuclear burst with an estimated duration of 2 hr and a radiated energy output of 5E40 erg, which unambiguously demonstrates that the source harbors an accreting neutron star. It has a quiescent X-ray luminosity of Lx5E32 ergs and exhibits occasional accretion outbursts during which it brightens to Lx1E35-1E36 ergs for a few weeks (2-10 keV). However, the source often lingers in between outburst and quiescence at Lx1E33-1E34 ergs. This unusual X-ray flux behavior and its relatively hard X-ray spectrum, a power law with an index of 1.4, could possibly be explained in terms of the interaction between the accretion flow and the magnetic field of the neutron star.
Enthalpies of mixing of liquid systems for lead free soldering: Co–Sb–Sn
Elmahfoudi, A.; Sabbar, A.; Flandorfer, H.
2012-01-01
The partial and integral enthalpy of mixing of molten ternary Co–Sb–Sn alloys was determined performing high temperature drop calorimetry in a large compositional range at 1273 K. Measurements have been done along five sections, xSb/xSn ≈ 1:1, xSb/xSn ≈ 1:3, xSb/xSn ≈ 3:1, xCo/xSn ≈ 1:4, and xCo/xSb ≈ 1:5. Additionally, binary alloys of the constituent systems Co–Sb and Co–Sn were investigated at the same temperature. All the binary data were evaluated by means of a standard Redlich–Kister polynomial fit whereas ternary data were fitted on the basis of an extended Redlich–Kister–Muggianu model for substitutional solutions. An iso-enthalpy plot of the ternary system was constructed. In addition, the extrapolation Model of Toop was applied and compared to our data. PMID:27087752
Enthalpies of mixing of liquid systems for lead free soldering: Co-Sb-Sn.
Elmahfoudi, A; Sabbar, A; Flandorfer, H
2012-04-01
The partial and integral enthalpy of mixing of molten ternary Co-Sb-Sn alloys was determined performing high temperature drop calorimetry in a large compositional range at 1273 K. Measurements have been done along five sections, x Sb / x Sn ≈ 1:1, x Sb / x Sn ≈ 1:3, x Sb / x Sn ≈ 3:1, x Co / x Sn ≈ 1:4, and x Co / x Sb ≈ 1:5. Additionally, binary alloys of the constituent systems Co-Sb and Co-Sn were investigated at the same temperature. All the binary data were evaluated by means of a standard Redlich-Kister polynomial fit whereas ternary data were fitted on the basis of an extended Redlich-Kister-Muggianu model for substitutional solutions. An iso-enthalpy plot of the ternary system was constructed. In addition, the extrapolation Model of Toop was applied and compared to our data.
Cleland, Joshua A; Whitman, Julie M; Fritz, Julie M
2004-11-01
Retrospective ex-post facto design. To retrospectively review the management of patients with lateral epicondylalgia, and to compare self-reported outcomes to assess the potential benefit of manual physical therapy to the cervical spine. It has been postulated that dysfunction of the cervical spine may contribute to the symptoms associated with lateral epicondylalgia; however, the literature assessing the effectiveness of manual physical therapy to the cervicothoracic region in this patient population has been inconclusive. Documentation and analysis of outcomes of management strategies focusing on the cervical spine may lead to determining the most effective and efficient clinical practices. Of the 213 charts reviewed, 112 satisfied inclusion-exclusion criteria and were divided into 2 groups: those who received treatment solely directed at the elbow (local management [LM]), or those who received treatment directed at the elbow and cervical manual therapy (LM+C). Telephone follow-up interviews were used to determine the number of successful outcomes. Percentages of successful outcomes in each group were compared using chi-square analysis. An independent samples t test was used to compare the total number of visits per group. Sixty-one of the 112 patients were in the LM group, while 51 received LM+C. Seventy five percent of the patients available for follow-up in the LM group and 80% in the LM+C group reported a successful outcome. Patients in the LM group received a greater number of visits (mean, 9.7; SD, 2.4) than patients in the LM+C group (mean, 5.6; SD, 1.7; P<.01). The results of this retrospective review suggest that most patients had successful outcomes regardless of the inclusion of manual therapy interventions to the cervical spine. The LM+C group achieved the successful long-term outcome in significantly fewer visits.
Supergiant X-Ray Binaries Observed by Suzaku
NASA Technical Reports Server (NTRS)
Bodaghee, A.; Tomsick, J. A.; Rodriquez, J.; Chaty, S.; Pottschmidt, K.; Walter, R.; Romano, P.
2011-01-01
Suzaku observations are presented for the high-mass X-ray binaries IGR 116207-5129 and IGR 117391-3021. For IGR 116207-5129, we provide the first X-ray broadband (0.5-60 keV) spectrum from which we confirm a large intrinsic column density (N(sub H) = 1.6 x 10(exp 23)/sq cm), and we constrain the cutoff energy for the first time (E(sub cut) = 19 keV). A prolonged (> 30 ks) attenuation of the X-ray flux was observed which we tentatively attribute to an eclipse of the probable neutron star by its massive companion, in a binary system with an orbital period between 4 and 9 days, and inclination angles> 50 degrees. For IGRJ17391-3021, we witnessed a transition from quiescence to a low-activity phase punctuated by weak flares whose peak luminosities in the 0.5-10keV band are only a factor of 5 times that of the pre-flare emission. These micro flares are accompanied by an increase in NH which suggests the accretion of obscuring clumps of wind. We now recognize that these low-activity epochs constitute the most common emission phase for this system, and perhaps in other supergiant fast X-ray transients (SFXTs) as well. We close with an overview of our upcoming program in which Suzaku will provide the first ever observation of an SFXT (IGRJ16479-4514) during a binary orbit enabling us to probe the accretion wind at every phase.
X-ray binary formation in low-metallicity blue compact dwarf galaxies
NASA Astrophysics Data System (ADS)
Brorby, M.; Kaaret, P.; Prestwich, A.
2014-07-01
X-rays from binaries in small, metal-deficient galaxies may have contributed significantly to the heating and reionization of the early Universe. We investigate this claim by studying blue compact dwarfs (BCDs) as local analogues to these early galaxies. We constrain the relation of the X-ray luminosity function (XLF) to the star formation rate (SFR) using a Bayesian approach applied to a sample of 25 BCDs. The functional form of the XLF is fixed to that found for near-solar metallicity galaxies and is used to find the probability distribution of the normalization that relates X-ray luminosity to SFR. Our results suggest that the XLF normalization for low-metallicity BCDs (12+log(O/H) < 7.7) is not consistent with the XLF normalization for galaxies with near-solar metallicities, at a confidence level 1-5 × 10- 6. The XLF normalization for the BCDs is found to be 14.5± 4.8 ({M}_{⊙}^{-1} yr), a factor of 9.7 ± 3.2 higher than for near-solar metallicity galaxies. Simultaneous determination of the XLF normalization and power-law index result in estimates of q = 21.2^{+12.2}_{-8.8} ({M}_{⊙}^{-1} yr) and α = 1.89^{+0.41}_{-0.30}, respectively. Our results suggest a significant enhancement in the population of high-mass X-ray binaries in BCDs compared to the near-solar metallicity galaxies. This suggests that X-ray binaries could have been a significant source of heating in the early Universe.
Polling-Based High-Bit-Rate Packet Transfer in a Microcellular Network to Allow Fast Terminals
NASA Astrophysics Data System (ADS)
Hoa, Phan Thanh; Lambertsen, Gaute; Yamada, Takahiko
A microcellular network will be a good candidate for the future broadband mobile network. It is expected to support high-bit-rate connection for many fast mobile users if the handover is processed fast enough to lessen its impact on QoS requirements. One of the promising techniques is believed to use for the wireless interface in such a microcellular network is the WLAN (Wireless LAN) technique due to its very high wireless channel rate. However, the less capability of mobility support of this technique must be improved to be able to expand its utilization for the microcellular environment. The reason of its less support mobility is large handover latency delay caused by contention-based handover to the new BS (base station) and delay of re-forwarding data from the old to new BS. This paper presents a proposal of multi-polling and dynamic LMC (Logical Macro Cell) to reduce mentioned above delays. Polling frame for an MT (Mobile Terminal) is sent from every BS belonging to the same LMC — a virtual single macro cell that is a multicast group of several adjacent micro-cells in which an MT is communicating. Instead of contending for the medium of a new BS during handover, the MT responds to the polling sent from that new BS to enable the transition. Because only one BS of the LMC receives the polling ACK (acknowledgement) directly from the MT, this ACK frame has to be multicast to all BSs of the same LMC through the terrestrial network to continue sending the next polling cycle at each BS. Moreover, when an MT hands over to a new cell, its current LMC is switched over to a newly corresponding LMC to prevent the future contending for a new LMC. By this way, an MT can do handover between micro-cells of an LMC smoothly because the redundant resource is reserved for it at neighboring cells, no need to contend with others. Our simulation results using the OMNeT++ simulator illustrate the performance achievements of the multi-polling and dynamic LMC scheme in eliminating handover latency, packet loss and keeping mobile users' throughput stable in the high traffic load condition though it causes somewhat overhead on the neighboring cells.
NASA Astrophysics Data System (ADS)
Barman, Barnali; Sarkar, Sudipta Kumar; Das, Malay Kumar
2018-01-01
Phase diagram, critical behavior and order of the nematic (N)-smectic A (SmA) phase transition of two polar-polar binary systems (i) 4-n-heptyloxy-4‧-cyanobiphenyl (7OCB) and 4-n-octyloxy-4‧-cyanobiphenyl (8OCB); (ii) 4-n-octyloxy-4‧-cyanobiphenyl (8OCB) and 4-n-nonyloxy-4‧-cyanobiphenyl (9OCB) by means of a high-resolution temperature scanning measurement of birefringence have been reported in this work. A simple power law analysis has been adopted to extract the specific heat critical exponent (α‧) at N-SmA transition from birefringence data. The α‧ for N-SmA transition indicates a uniform crossover behavior and has appeared to be non-universal in nature. With increasing concentration of the higher homologues for both the binary systems, the N-SmA transition reveals a strong tendency to be driven towards the tricritical nature. The 3D-XY limit (i.e. α‧ = -0.007) for N-SmA transition reaches at the concentration x8OCB = 0.28 corresponding to the McMillan ratio 0.914, whereas the tricritical point has been found to appear near x9OCB = 1.0 corresponding to McMillan ratio 0.992.
The Formation and Evolution of the Large Magellanic Cloud from Selected Clusters and Star Fields
NASA Astrophysics Data System (ADS)
Olsen, Knut Anders Grova
We have obtained deep Hubble Space Telescope color-magnitude diagrams of fields centered on the six old LMC globular clusters NGC 1754, NGC 1835, WGC 1898, NGC 1916, NGC 2005, and NGC 2019. The data have been carefully calibrated and the effects of crowding on the photometric accuracy have been thoroughly investigated. The observations have been used to produce V-I,V color-magnitude diagrams of the clusters and of the background field stars, which we have separated from each other through a statistical cleaning technique. The cluster color-magnitude diagrams show that the clusters are old, with main sequence turnoffs at V~ 22.5 and well-developed horizontal branches. We used the slopes of the red giant branches to measure the abundances, which we find to be 0.3 dex higher, on average, than previously measured spectroscopic abundances. In two cases there is significant variable reddening across at least part of the image, but only for NGC 1916 does differential reddening preclude accurate measurements of the CMD characteristics. The mean reddenings of the clusters, measured both from the color of the red giant branch and through comparison with Milky Way clusters, are <=0.10 magnitudes in E(B-V) in all cases. By matching tbe color-magnitude diagrams of the clusters to fiducial sequences of the Milky Way globular clusters M3, M5, and M55, we find that the mean difference of the LMC and Milky Way cluster ages is 1.0 ± 1.2 Gyr, calculated such that a positive difference indicates that the LMC clusters are older. Through Monte Carlo simulations, errors in the individual measurements of the ages relative to Milky Way clusters are found to be ~<1.0 Gyr. We find a similar chronology by comparing the horizontal branch morphologies and abundances with HB evolutionary tracks, assuming that age is the 'second parameter'. These results imply that the LMC formed at the same time as the Milky Way Galaxy. The evolution of the LMC following its formation has been studied through an analysis of the field star CMDs. We used an automated technique to disentangle the evolutionary tracks of varying age and composition that are represented in the CMDs. We computed star formation rates as a function of age for a number of models having different initial mass function slopes, distances, and uniform reddenings, assuming that the chemical evolution follows that implied by LMC clusters. Our results show that the LMC has been actively forming stars over the last 4 Gyr, with evidence for a decline in the last 0.5-1 Gyr. While the NGC 1754 field, which lies in the disk, has had only a low level of star formation after the globular cluster formation epoch until 4 Gyr ago, we find that the bar has been actively forming stars for the past 6-8 Gyr. We find that these qualitative results are robust against errors in the model parameters. (Abstract shortened by UMI.)* ftn*Originally published in DAI Vol. 59, No. 6. Reprinted here with corrected author name.
NASA Astrophysics Data System (ADS)
Juett, Adrienne M.; Chakrabarty, Deepto
2003-12-01
We present high-resolution spectroscopy of the neutron star/low-mass X-ray binaries 2S 0918-549 and 4U 1543-624 with the High Energy Transmission Grating Spectrometer on board the Chandra X-Ray Observatory and the Reflection Grating Spectrometer on board XMM-Newton. Previous low-resolution spectra of both sources showed a broad, linelike feature at 0.7 keV that was originally attributed to unresolved line emission. We recently showed that this feature could also be due to excess neutral Ne absorption, and this is confirmed by the new high-resolution Chandra and XMM spectra. The Chandra spectra are each well fitted by an absorbed-power-law+blackbody model with a modified Ne/O number ratio of 0.52+/-0.12 for 2S 0918-549 and 1.5+/-0.3 for 4U 1543-624, compared to the interstellar medium value of 0.18. The XMM spectrum of 2S 0918-549 is best fitted by an absorbed-power-law model with a Ne/O number ratio of 0.46+/-0.03, consistent with the Chandra result. On the other hand, the XMM spectrum of 4U 1543-624 is softer and less luminous than the Chandra spectrum and has a best-fit Ne/O number ratio of 0.54+/-0.03. The difference between the measured abundances and the expected interstellar ratio, as well as the variation of the column densities of O and Ne in 4U 1543-624, supports the suggestion that there is absorption local to these binaries. We propose that the variations in the O and Ne column densities of 4U 1543-624 are caused by changes in the ionization structure of the local absorbing material. It is important to understand the effect of ionization on the measured absorption columns before the abundance of the local material can be determined. This work supports our earlier suggestion that 2S 0918-549 and 4U 1543-624 are ultracompact binaries with Ne-rich companions.
NASA Technical Reports Server (NTRS)
Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred
2016-01-01
Skutterudites have proven to be a useful thermoelectric system as a result of their enhanced figure of merit (ZT1), cheap material cost, favorable mechanical properties, and good thermal stability. The majority of skutterudite interest in recent years has been focused on binary skutterudites like CoSb3. Binary skutterudites are often double and triple filled, with a range of elements from the lanthanide series, in order to reduce the lattice component of thermal conductivity. Ternary and quaternary skutterudites, such as Co4Ge6Se6 or Ni4Sb8Sn4, provide additional paths to tune the electronic structure. The thermal conductivity can further be improved in these complex skutterudites by the introduction of fillers. The Nd (sub z) Fe (sub x) Co (sub 4-x) Sb (sub 12-y)Ge (sub y) system has been investigated as a p-type thermoelectric material, and is stable up to 600 degrees Centigrade. The influence of Fe and Ge content, along with filler Nd, was investigated on thermoelectric transport properties. In addition to the chemical influence on properties, some processing details of the system will also be addressed.
Filled Nd(z)Fe(x)Co(4-x)Sb(12-y)Ge(y) Skutterudites: Processing and Thermoelectric Properties
NASA Technical Reports Server (NTRS)
Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred
2016-01-01
Skutterudites have proven to be a useful thermoelectric system as a result of their enhanced figure of merit (ZT1), cheap material cost, favorable mechanical properties, and good thermal stability. The majority of skutterudite interest in recent years has been focused on binary skutterudites like CoSb3. Binary skutterudites are often double and triple filled, with a range of elements from the lanthanide series, in order to reduce the lattice component of thermal conductivity. Ternary and quaternary skutterudites, such as Co4Ge6Se6 or Ni4Sb8Sn4, provide additional paths to tune the electronic structure. The thermal conductivity can further be improved in these complex skutterudites by the introduction of fillers. The Nd(z)Fe(x)Co(4-x)Sb(12-y)Ge(y) system has been investigated as a p-type thermoelectric material, and is stable up to 600 C. The influence of Fe and Ge content, along with filler Nd, was investigated on thermoelectric transport properties. In addition to the chemical influence on properties, some processing details of the system will also be addressed.
Baryons in the relativistic jets of the stellar-mass black-hole candidate 4U 1630-47.
Trigo, María Díaz; Miller-Jones, James C A; Migliari, Simone; Broderick, Jess W; Tzioumis, Tasso
2013-12-12
Accreting black holes are known to power relativistic jets, both in stellar-mass binary systems and at the centres of galaxies. The power carried away by the jets, and, hence, the feedback they provide to their surroundings, depends strongly on their composition. Jets containing a baryonic component should carry significantly more energy than electron-positron jets. Energetic considerations and circular-polarization measurements have provided conflicting circumstantial evidence for the presence or absence of baryons in jets, and the only system in which they have been unequivocally detected is the peculiar X-ray binary SS 433 (refs 4, 5). Here we report the detection of Doppler-shifted X-ray emission lines from a more typical black-hole candidate X-ray binary, 4U 1630-47, coincident with the reappearance of radio emission from the jets of the source. We argue that these lines arise from baryonic matter in a jet travelling at approximately two-thirds the speed of light, thereby establishing the presence of baryons in the jet. Such baryonic jets are more likely to be powered by the accretion disk than by the spin of the black hole, and if the baryons can be accelerated to relativistic speeds, the jets should be strong sources of γ-rays and neutrino emission.
Physical properties of star clusters in the outer LMC as observed by the DES
Pieres, A.; Santiago, B.; Balbinot, E.; ...
2016-05-26
The Large Magellanic Cloud (LMC) harbors a rich and diverse system of star clusters, whose ages, chemical abundances, and positions provide information about the LMC history of star formation. We use Science Verification imaging data from the Dark Energy Survey to increase the census of known star clusters in the outer LMC and to derive physical parameters for a large sample of such objects using a spatially and photometrically homogeneous data set. Our sample contains 255 visually identified cluster candidates, of which 109 were not listed in any previous catalog. We quantify the crowding effect for the stellar sample producedmore » by the DES Data Management pipeline and conclude that the stellar completeness is < 10% inside typical LMC cluster cores. We therefore develop a pipeline to sample and measure stellar magnitudes and positions around the cluster candidates using DAOPHOT. We also implement a maximum-likelihood method to fit individual density profiles and colour-magnitude diagrams. For 117 (from a total of 255) of the cluster candidates (28 uncatalogued clusters), we obtain reliable ages, metallicities, distance moduli and structural parameters, confirming their nature as physical systems. The distribution of cluster metallicities shows a radial dependence, with no clusters more metal-rich than [Fe/H] ~ -0.7 beyond 8 kpc from the LMC center. Furthermore, the age distribution has two peaks at ≃ 1.2 Gyr and ≃ 2.7 Gyr.« less
Physical properties of star clusters in the outer LMC as observed by the DES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pieres, A.; Santiago, B.; Balbinot, E.
The Large Magellanic Cloud (LMC) harbors a rich and diverse system of star clusters, whose ages, chemical abundances, and positions provide information about the LMC history of star formation. We use Science Verification imaging data from the Dark Energy Survey to increase the census of known star clusters in the outer LMC and to derive physical parameters for a large sample of such objects using a spatially and photometrically homogeneous data set. Our sample contains 255 visually identified cluster candidates, of which 109 were not listed in any previous catalog. We quantify the crowding effect for the stellar sample producedmore » by the DES Data Management pipeline and conclude that the stellar completeness is < 10% inside typical LMC cluster cores. We therefore develop a pipeline to sample and measure stellar magnitudes and positions around the cluster candidates using DAOPHOT. We also implement a maximum-likelihood method to fit individual density profiles and colour-magnitude diagrams. For 117 (from a total of 255) of the cluster candidates (28 uncatalogued clusters), we obtain reliable ages, metallicities, distance moduli and structural parameters, confirming their nature as physical systems. The distribution of cluster metallicities shows a radial dependence, with no clusters more metal-rich than [Fe/H] ~ -0.7 beyond 8 kpc from the LMC center. Furthermore, the age distribution has two peaks at ≃ 1.2 Gyr and ≃ 2.7 Gyr.« less
NASA Technical Reports Server (NTRS)
Robinson-Saba, J. L.
1983-01-01
Observations of the binary X-ray source Circinus X-1 provide samples of a range of spectral and temporal behavior whose variety is thought to reflect a broad continuum of accretion conditions in an eccentric binary system. The data support an identification of three or more X-ray spectral components, probably associated with distinct emission regions.
Algorithm XXX : functions to support the IEEE standard for binary floating-point arithmetic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cody, W. J.; Mathematics and Computer Science
1993-12-01
This paper describes C programs for the support functions copysign(x,y), logb(x), scalb(x,n), nextafter(x,y), finite(x), and isnan(x) recommended in the Appendix to the IEEE Standard for Binary Floating-Point Arithmetic. In the case of logb, the modified definition given in the later IEEE Standard for Radix-Independent Floating-Point Arithmetic is followed. These programs should run without modification on most systems conforming to the binary standard.
NASA Technical Reports Server (NTRS)
Vacca, William D.; Torres-Dodgen, Ana V.
1990-01-01
A new method of determining the color excesses of WR stars in the Galaxy and the LMC has been developed and is used to determine the excesses for 44 Galactic and 32 LMC WR stars. The excesses are combined with line-free, narrow-band spectrophotometry to derive intrinsic colors of the WR stars of nearly all spectral subtypes. No correlation of UV spectral index or intrinsic colors with spectral subtype is found for the samples of single WN or WC stars. There is evidence that early WN stars in the LMC have flatter UV continua and redder intrinsic colors than early WN stars in the Galaxy. No separation is found between the values derived for Galactic WC stars and those obtained for LMC WC stars. The intrinsic colors are compared with those calculated from model atmospheres of WR stars and generally good agreement is found. Absolute magnitudes are derived for WR stars in the LMC and for those Galactic WR stars located in clusters and associations for which there are reliable distance estimates.
Buckley, Matthew R.; Charles, Eric; Gaskins, Jennifer M.; ...
2015-05-05
At a distance of 50 kpc and with a dark matter mass of ~10 10 M ⊙, the large magellanic cloud (LMC) is a natural target for indirect dark matter searches. We use five years of data from the Fermi Large Area Telescope (LAT) and updated models of the gamma-ray emission from standard astrophysical components to search for a dark matter annihilation signal from the LMC. We perform a rotation curve analysis to determine the dark matter distribution, setting a robust minimum on the amount of dark matter in the LMC, which we use to set conservative bounds on the annihilationmore » cross section. The LMC emission is generally very well described by the standard astrophysical sources, with at most a 1–2σ excess identified near the kinematic center of the LMC once systematic uncertainties are taken into account. As a result, we place competitive bounds on the dark matter annihilation cross section as a function of dark matter particle mass and annihilation channel.« less
Directed searches for continuous gravitational waves from spinning neutron stars in binary systems
NASA Astrophysics Data System (ADS)
Meadors, Grant David
2014-09-01
Gravitational wave detectors such as the Laser Interferometer Gravitational-wave Observatory (LIGO) seek to observe ripples in space predicted by General Relativity. Black holes, neutron stars, supernovae, the Big Bang and other sources can radiate gravitational waves. Original contributions to the LIGO effort are presented in this thesis: feedforward filtering, directed binary neutron star searches for continuous waves, and scientific outreach and education, as well as advances in quantum optical squeezing. Feedforward filtering removes extraneous noise from servo-controlled instruments. Filtering of the last science run, S6, improves LIGO's astrophysical range (+4.14% H1, +3.60% L1: +12% volume) after subtracting noise from auxiliary length control channels. This thesis shows how filtering enhances the scientific sensitivity of LIGO's data set during and after S6. Techniques for non-stationarity and verifying calibration and integrity may apply to Advanced LIGO. Squeezing is planned for future interferometers to exceed the standard quantum limit on noise from electromagnetic vacuum fluctuations; this thesis discusses the integration of a prototype squeezer at LIGO Hanford Observatory and impact on astrophysical sensitivity. Continuous gravitational waves may be emitted by neutron stars in low-mass X-ray binary systems such as Scorpius X-1. The TwoSpect directed binary search is designed to detect these waves. TwoSpect is the most sensitive of 4 methods in simulated data, projecting an upper limit of 4.23e-25 in strain, given a year-long data set at an Advanced LIGO design sensitivity of 4e-24 Hz. (-1/2). TwoSpect is also used on real S6 data to set 95% confidence upper limits (40 Hz to 2040 Hz) on strain from Scorpius X-1. A millisecond pulsar, X-ray transient J1751-305, is similarly considered. Search enhancements for Advanced LIGO are proposed. Advanced LIGO and fellow interferometers should detect gravitational waves in the coming decade. Methods in these thesis will benefit both the instrumental and analytical sides of observation.
Optical/Infrared properties of Be stars in X-ray Binary systems
NASA Astrophysics Data System (ADS)
Naik, Sachindra
2018-04-01
Be/X-ray binaries, consisting of a Be star and a compact object (neutron star), form the largest subclass of High Mass X-ray Binaries. The orbit of the compact object around the Be star is wide and highly eccentric. Neutron stars in the Be/X-ray binaries are generally quiescent in X-ray emission. Transient X-ray outbursts seen in these objects are thought to be due to the interaction between the compact object and the circumstellar disk of the Be star at the periastron passage. Optical/infrared observations of the companion Be star during these outbursts show that the increase in the X-ray intensity of the neutron star is coupled with the decrease in the optical/infrared flux of the companion star. Apart from the change in optical/infrared flux, dramatic changes in the Be star emission line profiles are also seen during X-ray outbursts. Observational evidences of changes in the emission line profiles and optical/infrared continuum flux along with associated X-ray outbursts from the neutron stars in several Be/X-ray binaries are presented in this paper.
Probing the Mysteries of the X-Ray Binary 4U 1210-64 with ASM, MAXI and Suzaku
NASA Astrophysics Data System (ADS)
Coley, Joel B.; Corbet, R.; Mukai, K.; Pottschmidt, K.
2013-01-01
Optical and X-ray observations of 4U 1210-64 (1ES 1210-646) suggest that the source is a High Mass X-ray Binary (HMXB) probably powered by the Be mechanism. Data acquired by the RXTE All Sky Monitor (ASM), the ISS Monitor of All-sky X-ray Image (MAXI) and Suzaku provide a detailed temporal and spectral description of this poorly understood source. Long-term data produced by ASM and MAXI indicate that the source shows two distinct high and low states. A 6.7-day orbital period of the system was found in folded light curves produced by both ASM and MAXI. A two day Suzaku observation in Dec. 2010 took place during a transition from the minimum to the maximum of the folded light curve. The two day Suzaku observation reveals large variations in flux indicative of strong orbit to orbit variability. Flares in the Suzaku light curve can reach nearly 1.4 times the mean count rate. From a spectral analysis of the Suzaku data, emission lines in the Fe K alpha region were detected at 6.4 keV, 6.7 keV and 6.97 keV interpreted as FeI, FeXXV and FeXXVI. In addition, emission lines were observed at approximately 1.0 and 2.6 keV, corresponding to NeX and SXVI respectively. Thermal bremsstrahlung or power law models both modified by interstellar and partially covering absorption provide a good fit to the continuum data. This source is intriguing for these reasons: i) No pulse period was observed; ii) 6.7 day orbital period is much less than typical orbital periods seen in Be/X-ray Binaries; iii) The optical companion is a B5V--an unusual spectral class for an HMXB; iv) There are extended high and low X-ray states.
NASA Space Observatories Glimpse Faint Afterglow of Nearby Stellar Explosion
NASA Astrophysics Data System (ADS)
2005-10-01
Intricate wisps of glowing gas float amid a myriad of stars in this image created by combining data from NASA's Hubble Space Telescope and Chandra X-ray Observatory. The gas is a supernova remnant, cataloged as N132D, ejected from the explosion of a massive star that occurred some 3,000 years ago. This titanic explosion took place in the Large Magellanic Cloud, a nearby neighbor galaxy of our own Milky Way. The complex structure of N132D is due to the expanding supersonic shock wave from the explosion impacting the interstellar gas of the LMC. Deep within the remnant, the Hubble visible light image reveals a crescent-shaped cloud of pink emission from hydrogen gas, and soft purple wisps that correspond to regions of glowing oxygen emission. A dense background of colorful stars in the LMC is also shown in the Hubble image. The large horseshoe-shaped gas cloud on the left-hand side of the remnant is glowing in X-rays, as imaged by Chandra. In order to emit X-rays, the gas must have been heated to a temperature of about 18 million degrees Fahrenheit (10 million degrees Celsius). A supernova-generated shock wave traveling at a velocity of more than four million miles per hour (2,000 kilometers per second) is continuing to propagate through the low-density medium today. The shock front where the material from the supernova collides with ambient interstellar material in the LMC is responsible for these high temperatures. Chandra image of N132D Chandra image of N132D, 2002 It is estimated that the star that exploded as a supernova to produce the N132D remnant was 10 to 15 times more massive than our own Sun. As fast-moving ejecta from the explosion slam into the cool, dense interstellar clouds in the LMC, complex shock fronts are created. A supernova remnant like N132D provides a rare opportunity for direct observation of stellar material, because it is made of gas that was recently hidden deep inside a star. Thus it provides information on stellar evolution and the creation of chemical elements such as oxygen through nuclear reactions in their cores. Such observations also help reveal how the interstellar medium (the gas that occupies the vast spaces between the stars) is enriched with chemical elements because of supernova explosions. Later on, these elements are incorporated into new generations of stars and their accompanying planets. Visible only from Earth's southern hemisphere, the LMC is an irregular galaxy lying about 160,000 light-years from the Milky Way. The supernova remnant appears to be about 3,000 years old, but since its light took 160,000 years to reach us, the explosion actually occurred some 163,000 years ago. This composite image of N132D was created by the Hubble Heritage team from visible-light data taken in January 2004 with Hubble's Advanced Camera for Surveys, and X-ray images obtained in July 2000 by Chandra's Advanced CCD Imaging Spectrometer. This marks the first Hubble Heritage image that combines pictures taken by two separate space observatories. The Hubble data include color filters that sample starlight in the blue, green, and red portions of the spectrum, as well as the pink emission from glowing hydrogen gas. The Chandra data are assigned blue in the color composite, in accordance with the much higher energy of the X-rays, emitted from extremely hot gas. This gas does not emit a significant amount of optical light, and was only detected by Chandra. Image Credit: NASA, ESA, and The Hubble Heritage Team (STScI/AURA) Acknowledgment: J.C. Green (Univ. of Colorado) and the Cosmic Origins Spectrograph (COS) GTO team; NASA/CXO/SAO Electronic image files, video, illustrations and additional information are available at: http://hubblesite.org/news/2005/30 http://heritage.stsci.edu/2005/30 The Space Telescope Science Institute (STScI) is operated by the Association of Universities for Research in Astronomy, Inc. (AURA), for NASA, under contract with the Goddard Space Flight Center, Greenbelt, Md. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency (ESA).
A survey of the Large Magellanic Cloud in the (C II) 158 micron line
NASA Technical Reports Server (NTRS)
Mochizuki, Kenji; Nakagawa, Takao; Doi, Yasuo; Yui, Yukari Y.; Okuda, Haruyuki; Shibai, Hiroshi; Yui, Masao; Nishimura, Tetsuo; Low, Frank J.
1994-01-01
We have mapped the Large Magellanic Cloud (the LMC) in the (C II) 158 microns fine-structure line with the Balloon-borne Infrared Carbon Explorer (BICE) system. The (C II) line emission was detected over most of the LMC. The mean (C II)/CO (J = 1-0) line intensity ratio was 23,000 18 times larger than the typical value observed in the Galactic plane (1300). This result implies that each clump of the molecular clouds in the LMC has a larger C(+) envelope relative to its CO core than those in our Galaxy. Lower dust abundance due to its lower metallicity allows UV photons, which convert CO molecules into C(+) ions, to penetrate deeper into the clumps in the LMC than in our Galaxy.
Apollo 16 far-ultraviolet imagery and spectra of the Large Magellanic Cloud
NASA Technical Reports Server (NTRS)
Page, T.; Carruthers, G. R.
1976-01-01
The Large Magellanic Cloud was observed by the far ultraviolet camera spectrograph from the lunar surface during the Apollo 16 mission 22 April 1972. Images were obtained with about 3 arc min resolution, in the 1,050 to 1,600 and 1,250 to 1,600 A wavelength ranges, of nearly the entire LMC. Spectra were also obtained in the 1,050 to 1,600 and 900 to 1,600 A ranges along a strip 1/4 deg wide (determined by the instrument's grid collimator) passing across the LMC. The images and spectra have been scanned with a PDS microdensitometer, and isodensity contour plots have been prepared using the Univac 1108 computer.
Li, T. S.; Simon, J. D.; Pace, A. B.; ...
2018-04-25
Here, we present Magellan/IMACS, Anglo-Australian Telescope/AAOmega+2dF, and Very Large Telescope/GIRAFFE+FLAMES spectroscopy of the Carina II (Car II) and Carina III (Car III) dwarf galaxy candidates, recently discovered in the Magellanic Satellites Survey (MagLiteS). We identify 18 member stars in Car II, including two binaries with variable radial velocities and two RR Lyrae stars. The other 14 members have a mean heliocentric velocitymore » $${v}_{\\mathrm{hel}}=477.2\\pm 1.2$$ $$\\mathrm{km}\\,{{\\rm{s}}}^{-1}$$ and a velocity dispersion of $${\\sigma }_{v}={3.4}_{-0.8}^{+1.2}$$ $$\\mathrm{km}\\,{{\\rm{s}}}^{-1}$$. Assuming Car II is in dynamical equilibrium, we derive a total mass within the half-light radius of $${1.0}_{-0.4}^{+0.8}\\times {10}^{6}$$ $${M}_{\\odot }$$, indicating a mass-to-light ratio of $${369}_{-161}^{+309}$$ $${M}_{\\odot }$$/$${L}_{\\odot }$$. From equivalent width measurements of the calcium triplet lines of nine red giant branch (RGB) stars, we derive a mean metallicity of $${\\rm{[Fe/H]}}=-2.44\\pm 0.09$$ with dispersion $${\\sigma }_{{\\rm{[Fe/H]}}}={0.22}_{-0.07}^{+0.10}$$. Considering both the kinematic and chemical properties, we conclude that Car II is a dark-matter-dominated dwarf galaxy. For Car III, we identify four member stars, from which we calculate a systemic velocity of $${v}_{\\mathrm{hel}}={284.6}_{-3.1}^{+3.4}$$ $$\\mathrm{km}\\,{{\\rm{s}}}^{-1}$$. The brightest RGB member of Car III has a metallicity of $${\\rm{[Fe/H]}}\\,=-1.97\\pm 0.12$$. Due to the small size of the Car III spectroscopic sample, we cannot conclusively determine its nature. Although these two systems have the smallest known physical separation ($${\\rm{\\Delta }}d\\sim 10\\,\\mathrm{kpc}$$) among Local Group satellites, the large difference in their systemic velocities, $$\\sim 200\\,\\mathrm{km}\\,{{\\rm{s}}}^{-1}$$, indicates that they are unlikely to be a bound pair. One or both systems are likely associated with the Large Magellanic Cloud (LMC), and may remain LMC satellites today. No statistically significant excess of γ-ray emission is found at the locations of Car II and Car III in eight years of Fermi-LAT data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, T. S.; Simon, J. D.; Pace, A. B.
Here, we present Magellan/IMACS, Anglo-Australian Telescope/AAOmega+2dF, and Very Large Telescope/GIRAFFE+FLAMES spectroscopy of the Carina II (Car II) and Carina III (Car III) dwarf galaxy candidates, recently discovered in the Magellanic Satellites Survey (MagLiteS). We identify 18 member stars in Car II, including two binaries with variable radial velocities and two RR Lyrae stars. The other 14 members have a mean heliocentric velocitymore » $${v}_{\\mathrm{hel}}=477.2\\pm 1.2$$ $$\\mathrm{km}\\,{{\\rm{s}}}^{-1}$$ and a velocity dispersion of $${\\sigma }_{v}={3.4}_{-0.8}^{+1.2}$$ $$\\mathrm{km}\\,{{\\rm{s}}}^{-1}$$. Assuming Car II is in dynamical equilibrium, we derive a total mass within the half-light radius of $${1.0}_{-0.4}^{+0.8}\\times {10}^{6}$$ $${M}_{\\odot }$$, indicating a mass-to-light ratio of $${369}_{-161}^{+309}$$ $${M}_{\\odot }$$/$${L}_{\\odot }$$. From equivalent width measurements of the calcium triplet lines of nine red giant branch (RGB) stars, we derive a mean metallicity of $${\\rm{[Fe/H]}}=-2.44\\pm 0.09$$ with dispersion $${\\sigma }_{{\\rm{[Fe/H]}}}={0.22}_{-0.07}^{+0.10}$$. Considering both the kinematic and chemical properties, we conclude that Car II is a dark-matter-dominated dwarf galaxy. For Car III, we identify four member stars, from which we calculate a systemic velocity of $${v}_{\\mathrm{hel}}={284.6}_{-3.1}^{+3.4}$$ $$\\mathrm{km}\\,{{\\rm{s}}}^{-1}$$. The brightest RGB member of Car III has a metallicity of $${\\rm{[Fe/H]}}\\,=-1.97\\pm 0.12$$. Due to the small size of the Car III spectroscopic sample, we cannot conclusively determine its nature. Although these two systems have the smallest known physical separation ($${\\rm{\\Delta }}d\\sim 10\\,\\mathrm{kpc}$$) among Local Group satellites, the large difference in their systemic velocities, $$\\sim 200\\,\\mathrm{km}\\,{{\\rm{s}}}^{-1}$$, indicates that they are unlikely to be a bound pair. One or both systems are likely associated with the Large Magellanic Cloud (LMC), and may remain LMC satellites today. No statistically significant excess of γ-ray emission is found at the locations of Car II and Car III in eight years of Fermi-LAT data.« less
Estimating dust distances to Type Ia supernovae from colour excess time evolution
NASA Astrophysics Data System (ADS)
Bulla, M.; Goobar, A.; Amanullah, R.; Feindt, U.; Ferretti, R.
2018-01-01
We present a new technique to infer dust locations towards reddened Type Ia supernovae and to help discriminate between an interstellar and a circumstellar origin for the observed extinction. Using Monte Carlo simulations, we show that the time evolution of the light-curve shape and especially of the colour excess E(B - V) places strong constraints on the distance between dust and the supernova. We apply our approach to two highly reddened Type Ia supernovae for which dust distance estimates are available in the literature: SN 2006X and SN 2014J. For the former, we obtain a time-variable E(B - V) and from this derive a distance of 27.5^{+9.0}_{-4.9} or 22.1^{+6.0}_{-3.8} pc depending on whether dust properties typical of the Large Magellanic Cloud (LMC) or the Milky Way (MW) are used. For the latter, instead, we obtain a constant E(B - V) consistent with dust at distances larger than ∼50 and 38 pc for LMC- and MW-type dust, respectively. Values thus extracted are in excellent agreement with previous estimates for the two supernovae. Our findings suggest that dust responsible for the extinction towards these supernovae is likely to be located within interstellar clouds. We also discuss how other properties of reddened Type Ia supernovae - such as their peculiar extinction and polarization behaviour and the detection of variable, blue-shifted sodium features in some of these events - might be compatible with dust and gas at interstellar-scale distances.
Co(x)Ni(4-x)Sb(12-y)Sn(y) Ternary Skutterudites: Processing and Thermoelectric Properties
NASA Technical Reports Server (NTRS)
Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred
2014-01-01
Skutterudites have proven to be a useful thermoelectric system as a result of their high figure of merit, favorable mechanical properties, and good thermal stability. Binary skutterudites have received the majority of interest in recent years, as a result of successful double and triple filling schemes. Ternary skutterudites, such as Ni4Sb7Sn5, also demonstrate good thermoelectric performance, with high power factor and low thermal conductivity. Ternary skutterudites, as contrasted to binary systems, provide more possibility for tuning electronic structure as substitutions can be studied on three elements. The Co(x)Ni(4-x)Sb(12-y)Sn(y) system has been investigated as both a p- and n-type thermoelectric material, stable up to 200 C. The system is processed through a combination of solidification, mechanical alloying, and hot pressing steps. Rietveld structure refinement has revealed an interesting occupancy of Sn on both the 24g Wyckoff position with Sb as well as the 2a position as a rattler. In addition to thermoelectric properties, detailed processing routes have been investigated on the system.
Timing and Spectral Study of 4U 1538-52
NASA Technical Reports Server (NTRS)
Clark, George W.
2000-01-01
Improved orbital parameters of the high-mass binary X-ray pulsar 4U 1538-52 have been derived from high count rate data obtained from the Rossi X-Ray Timing Explorer. Pulse-timing analysis yields an eccentricity of 0.174 +/- 0.015, a periastron at 64 deg +/- 9 deg, and evidence of orbital decay with prime-P(sub orb)/P(sub orb) = (-2.9 +/- 2.1) x 10(exp -6)/yr.
ASM-Triggered Too Observations of Kilohertz Oscillations in Three Atoll Sources
NASA Technical Reports Server (NTRS)
Kaaret, P.; Swank, Jean (Technical Monitor)
2000-01-01
Three Rossi Timing Explorer (RXTE) observations were carried out for this proposal based on target of opportunity triggers derived from the All-Sky Monitor (ASM) on RXTE. We obtained short observations of 4U1636-536 (15ks) and 4U1735-44 (23ks) and a longer observation of 4U0614+091 (117ks). Our analysis of our observations of the atoll neutron star x-ray binary 4U1735-44 lead to the discovery of a second high frequency quasiperiodic oscillation (QPO) in this source. These results were published in the Astrophysical Journal Letters. The data obtained on the source 4U0614+091 were used in a comprehensive study of this source, which will be published in the Astrophysical Journal. The data from this proposal were particularly critical for that study as they lead to the detection of the highest QPO frequency every found in the x-ray emission from an x-ray binary which will be important in placing limits on the equation of state of nuclear matter.
The Discovery of a Second Luminous Low Mass X-ray Binary in the Globular Cluster M15
NASA Technical Reports Server (NTRS)
White, Nicholas E.; Angelini, Lorella
2001-01-01
We report an observation by the Chandra X-ray Observatory of 4U2127+119, the X-ray source identified with the globular cluster M15. The Chandra observation reveals that 4U2127+119 is in fact two bright sources, separated by 2.7". One source is associated with AC21 1, the previously identified optical counterpart to 4U2127+119, a low mass X-ray binary (LMXB). The second source, M15-X2, is coincident with a 19th U magnitude blue star that is 3.3" from the cluster core. The Chandra count rate of M15-X2 is 2.5 times higher than that of AC211. Prior to the 0.5" imaging capability of Chandra the presence of two so closely separated bright sources would not have been resolved, The optical counterpart, X-ray luminosity and spectrum of M15-X2 are consistent with it also being an LMXB system. This is the first time that two LMXBS have been seen to be simultaneously active in a globular cluster. The discovery of a second active LMXB in M15 solves a long standing puzzle where the properties of AC211 appear consistent with it being dominated by an extended accretion disk corona, and yet 4U2127+119 also shows luminous X-ray bursts requiring that the neutron star be directly visible. The resolution of 4U2127+119 into two sources suggests that the X-ray bursts did not come from AC211, but rather from M15X2. We discuss the implications of this discovery for understanding the origin and evolution of LMXBs in GCs as well as X-ray observations of globular clusters in nearby galaxies.
The Discovery of a Second Luminous Low-Mass X-Ray Binary in the Globular Cluster M15
NASA Technical Reports Server (NTRS)
White, Nicholas E.; Angelini, Lorella
2001-01-01
We report an observation by the Chandra X-Ray Observatory of 4U 2127+119, the X-ray source identified with the globular cluster M15. The Chandra observation reveals that 4U 2127+119 is in fact two bright sources, separated by 2.7 arcsec. One source is associated with AC 211, the previously identified optical counterpart to 4U 2127+119, a low-mass X-ray binary (LMXB). The second source, M15 X-2, is coincident with a 19th U magnitude blue star that is 3.3 arcsec from the cluster core. The Chandra count rate of M15 X-2 is 2.5 times higher than that of AC 211. Prior to the 0.5 arcsec imaging capability of Chandra, the presence of two so closely separated bright sources would not have been resolved. The optical counterpart, X-ray luminosity, and spectrum of M15 X-2 are consistent with it also being an LMXB system. This is the first time that two LMXBs have been seen to be simultaneously active in a globular cluster. The discovery of a second active LMXB in M15 solves a long-standing puzzle where the properties of AC 211 appear consistent with it being dominated by an extended accretion disk corona, and yet 4U 2127+119 also shows luminous X-ray bursts requiring that the neutron star be directly visible. The resolution of 4U 2127+119 into two sources suggests that the X-ray bursts did not come from AC 211 but rather from M15 X-2. We discuss the implications of this discovery for understanding the origin and evolution of LMXBs in globular clusters as well as X-ray observations of globular clusters in nearby galaxies.
THE NuSTAR Hard X-Ray Survey of the Norma Arm Region
NASA Technical Reports Server (NTRS)
Fornasini, Francesca M.; Tomsick, John A.; Hong, Jaesub; Gotthelf, Eric V.; Bauer, Franz; Rahoui, Farid; Stern, Daniel K.; Bodaghee, Arash; Chiu, Jeng-Lun; Clavel, Maïca;
2017-01-01
We present a catalog of hard X-ray sources in a square-degree region surveyed by the Nuclear Spectroscopic Telescope Array (NuSTAR) in the direction of the Norma spiral arm. This survey has a total exposure time of 1.7 Ms, and the typical and maximum exposure depths are 50 ks and 1 Ms, respectively. In the area of deepest coverage, sensitivity limits of 5 x 10(exp -14) and 4 x 10(exp -14) ergs/s/sq cm in the 3-10 and 10-20 keV bands, respectively, are reached. Twenty-eight sources are firmly detected, and 10 are detected with low significance; 8 of the 38 sources are expected to be active galactic nuclei. The three brightest sources were previously identified as a low-mass X-ray binary, high-mass X-ray binary, and pulsar wind nebula. Based on their X-ray properties and multiwavelength counterparts, we identify the likely nature of the other sources as two colliding wind binaries, three pulsar wind nebulae, a black hole binary, and a plurality of cataclysmic variables (CVs). The CV candidates in the Norma region have plasma temperatures of approx. 10-20 keV, consistent with the Galactic ridge X-ray emission spectrum but lower than the temperatures of CVs near the Galactic center. This temperature difference may indicate that the Norma region has a lower fraction of intermediate polars relative to other types of CVs compared to the Galactic center. The NuSTAR logN-logS distribution in the 10-20keV band is consistent with the distribution measured by Chandra at 2-10 keV if the average source spectrum is assumed to be a thermal model with kT approx. =15 keV, as observed for the CV candidates.
The NuSTAR Hard X-Ray Survey of the Norma Arm Region
Fornasini, Francesca M.; Tomsick, John A.; Hong, JaeSub; ...
2017-04-06
We present a catalog of hard X-ray sources in a square-degree region surveyed by NuSTAR in the direction of the Norma spiral arm. This survey has a total exposure time of 1.7 Ms, and typical and maximum exposure depths of 50 ks and 1 Ms, respectively. In the area of deepest coverage, sensitivity limits of 5 x 10 -14 and 4 x 10-14 erg s -1 cm -2 in the 3–10 and 10–20 keV bands, respectively, are reached. Twenty-eight sources are firmly detected and ten are detected with low significance; eight of the 38 sources are expected to be activemore » galactic nuclei. The three brightest sources were previously identified as a low-mass X-ray binary, high-mass X-ray binary, and pulsar wind nebula. Based on their X-ray properties and multi-wavelength counterparts, we identify the likely nature of the other sources as two colliding wind binaries, three pulsar wind nebulae, a black hole binary, and a plurality of cataclysmic variables (CVs). The CV candidates in the Norma region have plasma temperatures of ≈10–20 keV, consistent with the Galactic Ridge X-ray emission spectrum but lower than temperatures of CVs near the Galactic Center. This temperature difference may indicate that the Norma region has a lower fraction of intermediate polars relative to other types of CVs compared to the Galactic Center. The NuSTAR logN-logS distribution in the 10–20 keV band is consistent with the distribution measured by Chandra at 2–10 keV if the average source spectrum is assumed to be a thermal model with kT ≈ 15 keV, as observed for the CV candidates.« less
A SEARCH FOR X-RAY EMISSION FROM COLLIDING MAGNETOSPHERES IN YOUNG ECCENTRIC STELLAR BINARIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Getman, Konstantin V.; Broos, Patrick S.; Kóspál, Ágnes
Among young binary stars whose magnetospheres are expected to collide, only two systems have been observed near periastron in the X-ray band: the low-mass DQ Tau and the older and more massive HD 152404. Both exhibit elevated levels of X-ray emission at periastron. Our goal is to determine whether colliding magnetospheres in young high-eccentricity binaries commonly produce elevated average levels of X-ray activity. This work is based on Chandra snapshots of multiple periastron and non-periastron passages in four nearby young eccentric binaries (Parenago 523, RX J1622.7-2325 Nw, UZ Tau E, and HD 152404). We find that for the merged samplemore » of all four binaries the current X-ray data show an increasing average X-ray flux near periastron (at a ∼2.5-sigma level). Further comparison of these data with the X-ray properties of hundreds of young stars in the Orion Nebula Cluster, produced by the Chandra Orion Ultradeep Project (COUP), indicates that the X-ray emission from the merged sample of our binaries cannot be explained within the framework of the COUP-like X-ray activity. However, due to the inhomogeneities of the merged binary sample and the relatively low statistical significance of the detected flux increase, these findings are regarded as tentative only. More data are needed to prove that the flux increase is real and is related to the processes of colliding magnetospheres.« less
A Search For X-Ray Emission From Colliding Magnetospheres In Young Eccentric Stellar Binaries
NASA Astrophysics Data System (ADS)
Getman, Konstantin V.; Broos, Patrick S.; Kóspál, Ágnes; Salter, Demerese M.; Garmire, Gordon P.
2016-12-01
Among young binary stars whose magnetospheres are expected to collide, only two systems have been observed near periastron in the X-ray band: the low-mass DQ Tau and the older and more massive HD 152404. Both exhibit elevated levels of X-ray emission at periastron. Our goal is to determine whether colliding magnetospheres in young high-eccentricity binaries commonly produce elevated average levels of X-ray activity. This work is based on Chandra snapshots of multiple periastron and non-periastron passages in four nearby young eccentric binaries (Parenago 523, RX J1622.7-2325 Nw, UZ Tau E, and HD 152404). We find that for the merged sample of all four binaries the current X-ray data show an increasing average X-ray flux near periastron (at a ˜2.5-sigma level). Further comparison of these data with the X-ray properties of hundreds of young stars in the Orion Nebula Cluster, produced by the Chandra Orion Ultradeep Project (COUP), indicates that the X-ray emission from the merged sample of our binaries cannot be explained within the framework of the COUP-like X-ray activity. However, due to the inhomogeneities of the merged binary sample and the relatively low statistical significance of the detected flux increase, these findings are regarded as tentative only. More data are needed to prove that the flux increase is real and is related to the processes of colliding magnetospheres.
Quasi-spherical accretion in High Mass X-ray Binaries
NASA Astrophysics Data System (ADS)
Postnov, Konstantin
2016-07-01
Quasi-spherical accreion onto magnetized neutron stars from stellar winds in high-mass X-ray binaries is discussed. Depending on the X-ray luminosity of the neutron star, the accretion can proceed in two regimes (modes): at L_x ≳ 4× 10^{36} erg/s, Compton cooling of accreting matter near magnetosphere leads to a supersonic (Bondi) accretion, while at smaller X-ray luminosity the Compton cooling is ineffective, and subsonic settling accretion regime sets in. In this regime, a hot convective shell is formed around the magnetosphere, and the plasma entry rate into magnetosphere is controlled by less effective radiative plasma cooling. The shell mediates the angular momentum transfer from/to the neutron star magnetosphere. Observational evidences for the different accretion regimes in slowly rotating X-ray pulsars with moderate and low X-ray luminosity, as well as possible manifestations of non-stationary quasi-spherical settling accretion due to the magnetospheric shell instability in Supergiant Fast X-ray Transients will be presented.
The Chaotic Long-term X-ray Variability of 4U 1705-44
NASA Astrophysics Data System (ADS)
Phillipson, R. A.; Boyd, P. T.; Smale, A. P.
2018-04-01
The low-mass X-ray binary 4U1705-44 exhibits dramatic long-term X-ray time variability with a timescale of several hundred days. The All-Sky Monitor (ASM) aboard the Rossi X-ray Timing Explorer (RXTE) and the Japanese Monitor of All-sky X-ray Image (MAXI) aboard the International Space Station together have continuously observed the source from December 1995 through May 2014. The combined ASM-MAXI data provide a continuous time series over fifty times the length of the timescale of interest. Topological analysis can help us identify 'fingerprints' in the phase-space of a system unique to its equations of motion. The Birman-Williams theorem postulates that if such fingerprints are the same between two systems, then their equations of motion must be closely related. The phase-space embedding of the source light curve shows a strong resemblance to the double-welled nonlinear Duffing oscillator. We explore a range of parameters for which the Duffing oscillator closely mirrors the time evolution of 4U1705-44. We extract low period, unstable periodic orbits from the 4U1705-44 and Duffing time series and compare their topological information. The Duffing and 4U1705-44 topological properties are identical, providing strong evidence that they share the same underlying template. This suggests that we can look to the Duffing equation to help guide the development of a physical model to describe the long-term X-ray variability of this and other similarly behaved X-ray binary systems.
NASA Technical Reports Server (NTRS)
Clark, George W.; Woo, Jonathan W.; Nagase, Fumiaki; Makishima, Kazuo; Sakao, Taro
1990-01-01
A cyclotron absorption line near 20 keV has been found in the spectrum of the massive eclipsing binary X-ray pulsar 4U 1538 - 52 in observations with the Ginga observatory. The line is detected throughout the 529 s pulse cycle with a variable equivalent width that has its maximum value during the smaller peak of the two-peak pulse profile. It is found that the profile of the pulse and the phase-dependence of the cyclotron line can be explained qualitatively by a pulsar model based on recent theoretical results on the properties of pencil beams emitted by accretion-heated slabs of magnetized plasma at the magnetic poles of a neutron star. The indicated field at the surface of the neutron star is 1.7 (1 + z) x 10 to the 12th G, where z is the gravitational redshift.
NASA Technical Reports Server (NTRS)
Mukai, Koji; Smale, Alan P.
1999-01-01
The Low Mass X-ray Binary (LMXB) X1832-330 in NGC 6652 is one of about 10 bright X-ray sources to have been discovered in Globular Clusters. We report on a serendipitous ASCA observation of this Globular Cluster LMXB, during which a Type I burst was detected and the persistent, non-burst emission of the source was at its brightest level recorded to date. No orbital modulation was detected, which argues against a high inclination for the X1832-330 system. The spectrum of the persistent emission can be fit with a power law plus a partial covering absorber, although other models are not ruled out. Our time-resolved spectral analysis through the burst shows, for the first time, clear evidence for spectral cooling from kT = 2.4 +/- 0.6 keV to kT = 1.0 +/- 0.1 keV during the decay. The measured peak flux during the burst is approximately 10% of the Eddington luminosity for a 1.4 Solar Mass neutron star. These are characteristic of a Type I burst, in the context of the relatively low quiescent luminosity of X1832-330.
First Detection of the Hatchett-McCray Effect in the High-Mass X-ray Binary
NASA Technical Reports Server (NTRS)
Sonneborn, G.; Iping, R. C.; Kaper, L.; Hammerschiag-Hensberge, G.; Hutchings, J. B.
2004-01-01
The orbital modulation of stellar wind UV resonance line profiles as a result of ionization of the wind by the X-ray source has been observed in the high-mass X-ray binary 4U1700-37/HD 153919 for the first time. Far-UV observations (905-1180 Angstrom, resolution 0.05 Angstroms) were made at the four quadrature points of the binary orbit with the Far Ultraviolet Spectroscopic Explorer (FUSE) in 2003 April and August. The O6.5 laf primary eclipses the X-ray source (neutron star or black hole) with a 3.41-day period. Orbital modulation of the UV resonance lines, resulting from X-ray photoionization of the dense stellar wind, the so-called Hatchett-McCray (HM) effect, was predicted for 4U1700-37/HD153919 (Hatchett 8 McCray 1977, ApJ, 211, 522) but was not seen in N V 1240, Si IV 1400, or C IV 1550 in IUE and HST spectra. The FUSE spectra show that the P V 1118-1128 and S IV 1063-1073 P-Cygni lines appear to vary as expected for the HM effect, weakest at phase 0.5 (X-ray source conjunction) and strongest at phase 0.0 (X-ray source eclipse). The phase modulation of the O VI 1032-1037 lines, however, is opposite to P V and S IV, implying that O VI may be a byproduct of the wind's ionization by the X-ray source. Such variations were not observed in N V, Si IV, and C IV because of their high optical depth. Due to their lower cosmic abundance, the P V and S IV wind lines are unsaturated, making them excellent tracers of the ionization conditions in the O star's wind.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Pei; Fang, Z. Zak; Koopman, Mark
Hydrogen has been investigated for decades as a temporary alloying element to refine the microstructure of Ti-6Al-4V, and is now being used in a novel powder metallurgy method known as "hydrogen sintering and phase transformation". Pseudo-binary phase diagrams of (Ti-6Al-4V)-xH have been studied and developed, but are not well established due to methodological limitations. In this paper, in situ studies of phase transformations during hydrogenation and dehydrogenation of (Ti-6Al-4V)-xH alloys were conducted using high-energy synchrotron X-ray diffraction (XRD), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The eutectoid phase transformation of β ↔ α + δ was observed in themore » (Ti-6Al-4V)-xH alloy via in situ synchrotron XRD at 211 °C with a hydrogen concentration of 37.5 at.% (measured using TGA-DSC). The relationships of hydrogen composition to partial pressure and temperature were investigated in the temperature range 450-900°C. Based on these results, a partial pseudo-binary phase diagram of (Ti-6Al-4V)-xH is proposed for hydrogen compositions up to 60 at.% in the temperature range 100-900°C. Using the data collected in real time under controlled parameters of temperature, composition and hydrogen partial pressure, this work characterizes relevant phase transformations and microstructural evolution for practical titanium-hydrogen technologies of Ti-6Al-4V.« less
[Study on high temperature oxidation of Ni-Cr ceramic alloys. Effects of Cr and Mo].
Mizutani, M
1990-03-01
The effects of Cr and Mo addition to Ni-Cr alloys on high temperature oxidation were investigated. The alloys were prepared with the composition of Cr ranging from 5 to 40 wt%. Also 2, 4 and 9 wt% of Mo was added to both Ni-5% Cr and Ni-20% Cr binary alloys. The alloys were heated at 800 degrees C, 900 degrees C and 1000 degrees C for 15 minutes in air, and the weight change after heat treatment was measured by electric automatic balance. The weight change during heating was measured by thermogravimetric measurement (TG). The products after heat treatment were characterized by X-ray diffraction and scanning electron microscopy (SEM). The results are summarized as follows: The Ni-Cr binary alloys were classified into three types of Cr ranging from 5 to 20 wt%, Cr 25% and Cr from 30 wt% to 40 wt% according to the weight gains with oxidation. In the case of the more than 25 wt% Cr content of the Ni-Cr binary alloys, the weight gain was extremely low and the heating temperature effects on the weight change were also small. X-ray diffraction study showed that NiO, NiCr2O4 and Cr2O3 formed on the surface of the Ni-Cr binary alloys whose composition of Cr ranged from 5 to 25 wt%, whereas NiO and NiCr2O4 rarely formed on the Ni-Cr binary alloys whose composition of Cr ranged from 30 to 40 wt%. This suggests that the formation of Cr2O3 prevents the formation of NiO on the alloy with a high Cr content. The weight gain of the Ni-Cr-Mo ternary alloys was smaller than that of the Ni-Cr binary alloys without Mo, and the temperature effects on the weight gain of the Ni-Cr-Mo ternary alloys were different for each Cr content. However, the effect of the amounts of Mo was small. NiO, NiCr2O4, Cr2O3 and MoO2 were identified by X-ray diffraction on the surface of the Ni-Cr-Mo ternary alloys. According to the SEM observation, it seems that NiO was formed at the outermost layer, both NiCr2O4 and Cr2O3 at the inside layer, and MoO2 at the innermost layer. The formation of both NiO and Cr2O3 on the Ni-Cr-Mo ternary alloys was restrained compared with that of the Ni-Cr binary alloys. However, the adhesion of oxides to the Ni-Cr-Mo ternary alloys was lower than that of the Ni-Cr binary alloys.
Radio Pulse Search and X-Ray Monitoring of SAX J1808.4−3658: What Causes Its Orbital Evolution?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patruno, Alessandro; King, Andrew R.; Jaodand, Amruta
The accreting millisecond X-ray pulsar SAX J1808.4−3658 shows a peculiar orbital evolution that proceeds at a very fast pace. It is important to identify the underlying mechanism responsible for this behavior because it can help to understand how this system evolves and which physical processes (such as mass loss or spin–orbit coupling) are occurring in the binary. It has also been suggested that, when in quiescence, SAX J1808.4−3658 turns on as a radio pulsar, a circumstance that might provide a link between accreting millisecond pulsars and black-widow (BW) radio pulsars. In this work, we report the results of a deepmore » radio pulsation search at 2 GHz using the Green Bank Telescope in 2014 August and an X-ray study of the 2015 outburst with Chandra , Swift XRT, and INTEGRAL . In quiescence, we detect no radio pulsations and place the strongest limit to date on the pulsed radio flux density of any accreting millisecond pulsar. We also find that the orbit of SAX J1808.4−3658 continues evolving at a fast pace. We compare the orbital evolution of SAX J1808.4−3658 to that of several other accreting and nonaccreting binaries, including BWs, redbacks, cataclysmic variables, black holes, and neutron stars in low-mass X-ray binaries. We discuss two possible scenarios: either the neutron star has a large moment of inertia and is ablating the donor, generating mass loss with an efficiency of 40%, or the donor star has a strong magnetic field of at least 1 kG and is undergoing quasi-cyclic variations due to spin–orbit coupling.« less
NASA Astrophysics Data System (ADS)
Nayak, P. K.; Subramaniam, A.; Choudhury, S.; Indu, G.; Sagar, Ram
2016-12-01
We have introduced a semi-automated quantitative method to estimate the age and reddening of 1072 star clusters in the Large Magellanic Cloud (LMC) using the Optical Gravitational Lensing Experiment III survey data. This study brings out 308 newly parametrized clusters. In a first of its kind, the LMC clusters are classified into groups based on richness/mass as very poor, poor, moderate and rich clusters, similar to the classification scheme of open clusters in the Galaxy. A major cluster formation episode is found to happen at 125 ± 25 Myr in the inner LMC. The bar region of the LMC appears prominently in the age range 60-250 Myr and is found to have a relatively higher concentration of poor and moderate clusters. The eastern and the western ends of the bar are found to form clusters initially, which later propagates to the central part. We demonstrate that there is a significant difference in the distribution of clusters as a function of mass, using a movie based on the propagation (in space and time) of cluster formation in various groups. The importance of including the low-mass clusters in the cluster formation history is demonstrated. The catalogue with parameters, classification, and cleaned and isochrone fitted colour-magnitude diagrams of 1072 clusters, which are available as online material, can be further used to understand the hierarchical formation of clusters in selected regions of the LMC.
Mass-loss From Evolved Stellar Populations In The Large Magellanic Cloud
NASA Astrophysics Data System (ADS)
Riebel, David
2012-01-01
I have conducted a study of a sample of 30,000 evolved stars in the Large Magellanic Cloud (LMC) and 6,000 in the Small Magellanic Cloud (SMC), covering their variability, mass-loss properties, and chemistry. The initial stages of of my thesis work focused on the infrared variability of Asymptotic Giant Branch (AGB) stars in the LMC. I determined the period-luminosity (P-L) relations for 6 separate sequences of 30,000 evolved star candidates at 8 wavelengths, as a function of photometrically assigned chemistry, and showed that the P-L relations are different for different chemical populations (O-rich or C-rich). I also present results from the Grid of Red supergiant and Asymptotic giant branch star ModelS (GRAMS) radiative transfer (RT) model grid applied to the evolved stellar population of the LMC. GRAMS is a pre-computed grid of RT models of RSG and AGB stars and surrounding circumstellar dust. Best-fit models are determined based on 12 bands of photometry from the optical to the mid-infrared. Using a pre-computed grid, I can present the first reasonably detailed radiative transfer modeling for tens of thousands of stars, allowing me to make statistically accurate estimations of the carbon-star luminosity function and the global dust mass return to the interstellar medium from AGB stars, both key parameters for stellar population synthesis models to reproduce. In the SAGE-Var program, I used the warm Spitzer mission to take 4 additional epochs of observations of 7500 AGB stars in the LMC and SMC. These epochs, combined with existing data, enable me to derive mean fluxes at 3.6 and 4.5 microns, that will be used for tighter constraints for GRAMS, which is currently limited by the variability induced error on the photometry. This work is support by NASA NAG5-12595 and Spitzer contract 1415784.
The 5 Hour Pulse Period and Broadband Spectrum of the Symbiotic X-Ray Binary 3A 1954+319
NASA Technical Reports Server (NTRS)
Marcu, Diana M.; Fuerst, Felix; Pottschmidt, Katja; Grinberg, Victoria; Miller, Sebstian; Wilms, Joern; Postnov, Konstantin A.; Corbet, Robin H. D.; Markwardt, Craig B.; Cadolle Bel, Marion
2011-01-01
We present an analysis of the highly variable accreting X-ray pulsar 3A 1954+319 using 2005-2009 monitoring data obtained with INTEGRAL and Swift. This considerably extends the pulse period history and covers flaring episodes in 2005 and 2008. In 2006 the source was identified as one of only a few known symbiotic X-ray binaries, Le" systems composed of a neutron star accreting from the inhomogeneous medium around an M-giant star. The extremely long pulse period of approximately 5.3 h is directly visible in the 2008 INTEGRAL-ISGRI outburst light curve. The pulse profile is double peaked and not significantly energy dependent. During the outburst a strong spin-up of -1.8 x 10(exp -4) h h(exp -1) occurred. Between 2005 and 2008 a long term spin-down trend of 2.1 x 10(exp -5) h h(exp -1) was observed for the first time for this source. The 3-80 keV pulse peak spectrum of 3A 1954+319 during the 2008 flare could be well described by a thermal Comptonization model. We interpret the results within the framework of a recently developed quasi-spherical accretion model for symbiotic X-ray binaries.
Chandra Observation of Luminous and Ultraluminous X-ray Binaries in M101
NASA Technical Reports Server (NTRS)
Mukai, K.; Pence, W. D.; Snowden, S. L.; Kuntz, K. D.; White, Nicholas E. (Technical Monitor)
2002-01-01
X-ray binaries in the Milky Way are among the brightest objects on the X-ray sky. With the increasing sensitivity of recent missions, it is now possible to study X-ray binaries in nearby galaxies. We present data on six ultraluminous binaries in the nearby spiral galaxy, M101, obtained with Chandra ACIS-S. Of these, five appear to be similar to ultraluminous sources in other galaxies, while the brightest source, P098, shows some unique characteristics. We present our interpretation of the data in terms of an optically thick outflow, and discuss implications.
Accretion states in X-ray binaries and their connection to GeV emission
NASA Astrophysics Data System (ADS)
Koerding, Elmar
Accretion onto compact objects is intrinsically a multi-wavelength phenomenon: it shows emis-sion components visible from the radio to GeV bands. In X-ray binaries one can well observe the evolution of a single source under changes of the accretion rate and thus study the interplay between the different emission components.I will introduce the phenomenology of X-ray bina-ries and their accretion states and present our current understanding of the interplay between the optically thin and optically thick part of the accretion flow and the jet.The recent detection of the Fermi Large Area Telescope of a variable high-energy source coinciding with the position of the x-ray binary Cygnus X-3 will be presented. Its identification with Cygnus X-3 has been secured by the detection of its orbital period in gamma rays, as well as the correlation of the LAT flux with radio emission from the relativistic jets of Cygnus X-3. This will be interpreted in the context of the accretion states of the X-ray binary.
Effects of radiation pressure on the equipotential surfaces in X-ray binaries
NASA Technical Reports Server (NTRS)
Kondo, Y.; Mccluskey, G. E., Jr.; Gulden, S. L.
1976-01-01
Equipotential surfaces incorporating the effect of radiation pressure were computed for the X-ray binaries Cen X-3, Cyg X-1 = HDE 226868, Vela XR-1 = 3U 0900-40 = HD 77581, and 3U 1700-37 = HD 153919. The topology of the equipotential surfaces is significantly affected by radiation pressure. In particular, the so-called critical Roche (Jacobian) lobes, the traditional figure 8's, do not exist. The effects of these results on modeling X-ray binaries are discussed.
HESS J1844-030: A New Gamma-Ray Binary?
NASA Astrophysics Data System (ADS)
McCall, Hannah; Errando, Manel
2018-01-01
Gamma-ray binaries are comprised of a massive, main-sequence star orbiting a neutron star or black hole that generates bright gamma-ray emission. Only six of these systems have been discovered. Here we report on a candidate stellar-binary system associated with the unidentified gamma-ray source HESS J1844-030, whose detection was revealed in the H.E.S.S. galactic plane survey. Analysis of 60 ks of archival Chandra data and over 100 ks of XMM-Newton data reveal a spatially associated X-ray counterpart to this TeV-emitting source (E>1012 eV), CXO J1845-031. The X-ray spectra derived from these exposures yields column density absorption in the range nH = (0.4 - 0.7) x 1022 cm-2, which is below the total galactic value for that part of the sky, indicating that the source is galactic. The flux from CXO J1845-031 increases with a factor of up to 2.5 in a 60 day timescale, providing solid evidence for flux variability at a confidence level exceeding 7 standard deviations. The point-like nature of the source, the flux variability of the nearby X-ray counterpart, and the low column density absorption are all indicative of a binary system. Once confirmed, HESS J1844-030 would represent only the seventh known gamma-ray binary, providing valuable data to advance our understanding of the physics of pulsars and stellar winds and testing high-energy astrophysical processes at timescales not present in other classes of objects.
X-RAY SPECTROSCOPY OF THE HIGH-MASS X-RAY BINARY PULSAR CENTAURUS X-3 OVER ITS BINARY ORBIT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naik, Sachindra; Ali, Zulfikar; Paul, Biswajit, E-mail: snaik@prl.res.in
2011-08-20
We present a comprehensive spectral analysis of the high-mass X-ray binary (HMXB) pulsar Centaurus X-3 with the Suzaku observatory covering nearly one orbital period. The light curve shows the presence of extended dips which are rarely seen in HMXBs. These dips are seen up to as high as {approx}40 keV. The pulsar spectra during the eclipse, out-of-eclipse, and dips are found to be well described by a partial covering power-law model with high-energy cutoff and three Gaussian functions for 6.4 keV, 6.7 keV, and 6.97 keV iron emission lines. The dips in the light curve can be explained by themore » presence of an additional absorption component with high column density and covering fraction, the values of which are not significant during the rest of the orbital phases. The iron line parameters during the dips and eclipse are significantly different compared to those during the rest of the observation. During the dips, the iron line intensities are found to be lesser by a factor of 2-3 with a significant increase in the line equivalent widths. However, the continuum flux at the corresponding orbital phase is estimated to be lesser by more than an order of magnitude. Similarities in the changes in the iron line flux and equivalent widths during the dips and eclipse segments suggest that the dipping activity in Cen X-3 is caused by an obscuration of the neutron star by dense matter, probably structures in the outer region of the accretion disk, as in the case of dipping low-mass X-ray binaries.« less
Close Encounters of the Stellar Kind
NASA Astrophysics Data System (ADS)
2003-07-01
NASA's Chandra X-ray Observatory has confirmed that close encounters between stars form X-ray emitting, double-star systems in dense globular star clusters. These X-ray binaries have a different birth process than their cousins outside globular clusters, and should have a profound influence on the cluster's evolution. A team of scientists led by David Pooley of the Massachusetts Institute of Technology in Cambridge took advantage of Chandra's unique ability to precisely locate and resolve individual sources to determine the number of X-ray sources in 12 globular clusters in our Galaxy. Most of the sources are binary systems containing a collapsed star such as a neutron star or a white dwarf star that is pulling matter off a normal, Sun-like companion star. "We found that the number of X-ray binaries is closely correlated with the rate of encounters between stars in the clusters," said Pooley. "Our conclusion is that the binaries are formed as a consequence of these encounters. It is a case of nurture not nature." A similar study led by Craig Heinke of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. confirmed this conclusion, and showed that roughly 10 percent of these X-ray binary systems contain neutron stars. Most of these neutron stars are usually quiet, spending less than 10% of their time actively feeding from their companion. NGC 7099 NGC 7099 A globular cluster is a spherical collection of hundreds of thousands or even millions of stars buzzing around each other in a gravitationally-bound stellar beehive that is about a hundred light years in diameter. The stars in a globular cluster are often only about a tenth of a light year apart. For comparison, the nearest star to the Sun, Proxima Centauri, is 4.2 light years away. With so many stars moving so close together, interactions between stars occur frequently in globular clusters. The stars, while rarely colliding, do get close enough to form binary star systems or cause binary stars to exchange partners in intricate dances. The data suggest that X-ray binary systems are formed in dense clusters known as globular clusters about once a day somewhere in the universe. Observations by NASA's Uhuru X-ray satellite in the 1970's showed that globular clusters seemed to contain a disproportionately large number of X-ray binary sources compared to the Galaxy as a whole. Normally only one in a billion stars is a member of an X-ray binary system containing a neutron star, whereas in globular clusters, the fraction is more like one in a million. The present research confirms earlier suggestions that the chance of forming an X-ray binary system is dramatically increased by the congestion in a globular cluster. Under these conditions two processes, known as three-star exchange collisions, and tidal captures, can lead to a thousandfold increase in the number of X-ray sources in globular clusters. 47 Tucanae 47 Tucanae In an exchange collision, a lone neutron star encounters a pair of ordinary stars. The intense gravity of the neutron star can induce the most massive ordinary star to "change partners," and pair up with the neutron star while ejecting the lighter star. A neutron star could also make a grazing collision with a single normal star, and the intense gravity of the neutron star could distort the gravity of the normal star in the process. The energy lost in the distortion, could prevent the normal star from escaping from the neutron star, leading to what is called tidal capture. "In addition to solving a long-standing mystery, Chandra data offer an opportunity for a deeper understanding of globular cluster evolution," said Heinke. "For example, the energy released in the formation of close binary systems could keep the central parts of the cluster from collapsing to form a massive black hole." NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the Office of Space Science, NASA Headquarters, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. The image and additional information are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
Shannon information, LMC complexity and Rényi entropies: a straightforward approach.
López-Ruiz, Ricardo
2005-04-01
The LMC complexity, an indicator of complexity based on a probabilistic description, is revisited. A straightforward approach allows us to establish the time evolution of this indicator in a near-equilibrium situation and gives us a new insight for interpreting the LMC complexity for a general non equilibrium system. Its relationship with the Rényi entropies is also explained. One of the advantages of this indicator is that its calculation does not require a considerable computational effort in many cases of physical and biological interest.
THE DISCOVERY OF A RARE WO-TYPE WOLF-RAYET STAR IN THE LARGE MAGELLANIC CLOUD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neugent, Kathryn F.; Massey, Philip; Morrell, Nidia, E-mail: kneugent@lowell.edu, E-mail: phil.massey@lowell.edu, E-mail: nmorrell@lco.cl
While observing OB stars within the most crowded regions of the Large Magellanic Cloud, we happened upon a new Wolf-Rayet (WR) star in Lucke-Hodge 41, the rich OB association that contains S Doradus and numerous other massive stars. At first glance the spectrum resembled that of a WC4 star, but closer examination showed strong O VI {lambda}{lambda}3811, 34 lines, leading us to classify it as a WO4. This is only the second known WO in the LMC, and the first known WO4 (the other being a WO3). This rarity is to be expected due to these stars' short lifespans asmore » they represent the most advanced evolutionary stage in a massive star's lifetime before exploding as supernovae. This discovery shows that while the majority of WRs within the LMC have been discovered, there may be a few WRs left to be found.« less
Probing the X-ray Emission from the Massive Star Cluster Westerlund 2
NASA Astrophysics Data System (ADS)
Lopez, Laura
2017-09-01
We propose a 300 ks Chandra ACIS-I observation of the massive star cluster Westerlund 2 (Wd2). This region is teeming with high-energy emission from a variety of sources: colliding wind binaries, OB and Wolf-Rayet stars, two young pulsars, and an unidentified source of very high-energy (VHE) gamma-rays. Our Chandra program is designed to achieve several goals: 1) to take a complete census of Wd2 X-ray point sources and monitor variability; 2) to probe the conditions of the colliding winds in the binary WR 20a; 3) to search for an X-ray counterpart of the VHE gamma-rays; 4) to identify diffuse X-ray emission; 5) to compare results to other massive star clusters observed by Chandra. Only Chandra has the spatial resolution and sensitivity necessary for our proposed analyses.
X-ray Source Populations in Old Open Clusters - Collinder 261
NASA Astrophysics Data System (ADS)
Vats, Smriti
2014-11-01
We are carrying out an X-ray survey of old open clusters (OCs) with the Chandra X-ray Observatory. Single old stars emit very faint X-rays, making X-rays produced by mass transfer in CVs, or by rapid rotation of the stars in tidally-locked, detached binaries detectable, without contamination from single stars. By comparing properties of interacting binaries in different environments, we aim to study binary evolution, and how dynamical encounters with other cluster members affect it. Collinder (Cr) 261 is an old OC(~7Gyr), with one of the richest populations inferred, of close binary populations and blue stragglers of all OCs. We will present the first results, detailing the X-ray population of Cr 261, in conjugation with other OCs, and in comparison with populations in globular clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gómez, Facundo A.; O’Shea, Brian W.; Besla, Gurtina
2015-04-01
Motivated by recent studies suggesting that the Large Magellanic Cloud (LMC) could be significantly more massive than previously thought, we explore whether the approximation of an inertial Galactocentric reference frame is still valid in the presence of such a massive LMC. We find that previous estimates of the LMC’s orbital period and apocentric distance derived assuming a fixed Milky Way (MW) are significantly shortened for models where the MW is allowed to move freely in response to the gravitational pull of the LMC. Holding other parameters fixed, the fraction of models favoring first infall is reduced. Due to this interaction,more » the MW center of mass within the inner 50 kpc can be significantly displaced in phase-space in a very short period of time that ranges from 0.3 to 0.5 Gyr by as much as 30 kpc and 75 km s{sup −1}. Furthermore, we show that the gravitational pull of the LMC and response of the MW are likely to significantly affect the orbit and phase space distribution of tidal debris from the Sagittarius dwarf galaxy (Sgr). Such effects are larger than previous estimates based on the torque of the LMC alone. As a result, Sgr deposits debris in regions of the sky that are not aligned with the present-day Sgr orbital plane. In addition, we find that properly accounting for the movement of the MW around its common center of mass with the LMC significantly modifies the angular distance between apocenters and tilts its orbital pole, alleviating tensions between previous models and observations. While these models are preliminary in nature, they highlight the central importance of accounting for the mutual gravitational interaction between the MW and LMC when modeling the kinematics of objects in the MW and Local Group.« less
Observations of the Large Magellanic Cloud with Fermi
Abdo, A. A.; Ackermann, M.; Ajello, M.; ...
2010-03-18
Context. The Large Magellanic Cloud (LMC) is to date the only normal external galaxy that has been detected in high-energy gamma rays. High-energy gamma rays trace particle acceleration processes and gamma-ray observations allow the nature and sites of acceleration to be studied. Aims. We characterise the distribution and sources of cosmic rays in the LMC from analysis of gamma-ray observations. Methods. We analyse 11 months of continuous sky-survey observations obtained with the Large Area Telescope aboard the Fermi Gamma-Ray Space Telescope and compare it to tracers of the interstellar medium and models of the gamma-ray sources in the LMC. Results.more » The LMC is detected at 33σ significance. The integrated >100 MeV photon flux of the LMC amounts to (2.6 ± 0.2) × 10 -7 ph cm -2 s -1 which corresponds to an energy flux of (1.6 ± 0.1) × 10 -10 erg cm -2 s -1, with additional systematic uncertainties of 16%. The analysis reveals the massive star forming region 30 Doradus as a bright source of gamma-ray emission in the LMC in addition to fainter emission regions found in the northern part of the galaxy. The gamma-ray emission from the LMC shows very little correlation with gas density and is rather correlated to tracers of massive star forming regions. The close confinement of gamma-ray emission to star forming regions suggests a relatively short GeV cosmic-ray proton diffusion length. In conclusion, the close correlation between cosmic-ray density and massive star tracers supports the idea that cosmic rays are accelerated in massive star forming regions as a result of the large amounts of kinetic energy that are input by the stellar winds and supernova explosions of massive stars into the interstellar medium.« less
Identification of NpO2+x in the binary Np-O system
NASA Astrophysics Data System (ADS)
Tayal, Akhil; Conradson, Steven D.; Baldinozzi, Gianguido; Namdeo, Sonu; Roberts, Kevin E.; Allen, Patrick G.; Shuh, David K.
2017-07-01
In contrast to UO2 and PuO2, there is no consensus on the existence of mixed valence NpO2+x, resulting in a gap between NpO2 and Np2O5 (the highest binary oxide of Np) in the Np-O phase diagram. We now show NpO2+x via Np LIII Extended X-ray Absorption Fine Structure (EXAFS) spectra of three samples of NpO2 that, analogous to U and Pu, exhibit multisite Np-O distributions with varying numbers of oxygen atoms at 1.87-1.91 Å. This is supported by the diffraction pattern of the sample with the largest amount of this oxo-type species that can be refined with both the simple fluorite structure and a trigonal one related to α-U4O9. The implied Np(V)-bridging oxo moieties as well as possible indications of OHbar found by detailed EXAFS analysis suggest that NpO2+x more closely resembles PuO2+x than UO2+x. An additional common characteristic suggested by the EXAFS and X-Ray Diffraction (XRD) is the phase separation into NpO2 and what would be previously unreported Np4O9(-δ), indicative of O clustering.
Modern Geometric Methods of Distance Determination
NASA Astrophysics Data System (ADS)
Thévenin, Frédéric; Falanga, Maurizio; Kuo, Cheng Yu; Pietrzyński, Grzegorz; Yamaguchi, Masaki
2017-11-01
Building a 3D picture of the Universe at any distance is one of the major challenges in astronomy, from the nearby Solar System to distant Quasars and galaxies. This goal has forced astronomers to develop techniques to estimate or to measure the distance of point sources on the sky. While most distance estimates used since the beginning of the 20th century are based on our understanding of the physics of objects of the Universe: stars, galaxies, QSOs, the direct measures of distances are based on the geometric methods as developed in ancient Greece: the parallax, which has been applied to stars for the first time in the mid-19th century. In this review, different techniques of geometrical astrometry applied to various stellar and cosmological (Megamaser) objects are presented. They consist in parallax measurements from ground based equipment or from space missions, but also in the study of binary stars or, as we shall see, of binary systems in distant extragalactic sources using radio telescopes. The Gaia mission will be presented in the context of stellar physics and galactic structure, because this key space mission in astronomy will bring a breakthrough in our understanding of stars, galaxies and the Universe in their nature and evolution with time. Measuring the distance to a star is the starting point for an unbiased description of its physics and the estimate of its fundamental parameters like its age. Applying these studies to candles such as the Cepheids will impact our large distance studies and calibration of other candles. The text is constructed as follows: introducing the parallax concept and measurement, we shall present briefly the Gaia satellite which will be the future base catalogue of stellar astronomy in the near future. Cepheids will be discussed just after to demonstrate the state of the art in distance measurements in the Universe with these variable stars, with the objective of 1% of error in distances that could be applied to our closest galaxy the LMC, and better constrain the distances of large sub-structures around the Milky Way. Then exciting objects like X-Ray binaries will be presented in two parts corresponding to "low" or "high" mass stars with compact objects observed with X-ray satellites. We shall demonstrate the capability of these objects to have their distances measured with high accuracy with not only helps in the study of these objects but could also help to measure the distance of the structure they belong. For cosmological objects and large distances of megaparsecs, we shall present what has been developed for more than 20 years in the geometric distance measurements of MegaMasers, the ultimate goal being the estimation of the H0 parameter.
A generalized complexity measure based on Rényi entropy
NASA Astrophysics Data System (ADS)
Sánchez-Moreno, Pablo; Angulo, Juan Carlos; Dehesa, Jesus S.
2014-08-01
The intrinsic statistical complexities of finite many-particle systems (i.e., those defined in terms of the single-particle density) quantify the degree of structure or patterns, far beyond the entropy measures. They are intuitively constructed to be minima at the opposite extremes of perfect order and maximal randomness. Starting from the pioneering LMC measure, which satisfies these requirements, some extensions of LMC-Rényi type have been published in the literature. The latter measures were shown to describe a variety of physical aspects of the internal disorder in atomic and molecular systems (e.g., quantum phase transitions, atomic shell filling) which are not grasped by their mother LMC quantity. However, they are not minimal for maximal randomness in general. In this communication, we propose a generalized LMC-Rényi complexity which overcomes this problem. Some applications which illustrate this fact are given.
A DIPOLE ON THE SKY: PREDICTIONS FOR HYPERVELOCITY STARS FROM THE LARGE MAGELLANIC CLOUD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boubert, Douglas; Evans, N. Wyn, E-mail: d.boubert@ast.cam.ac.uk, E-mail: nwe@ast.cam.ac.uk
2016-07-01
We predict the distribution of hypervelocity stars (HVSs) ejected from the Large Magellanic Cloud (LMC), under the assumption that the dwarf galaxy hosts a central massive black hole (MBH). For the majority of stars ejected from the LMC, the orbital velocity of the LMC has contributed a significant fraction of their galactic rest-frame velocity, leading to a dipole density distribution on the sky. We quantify the dipole using spherical harmonic analysis and contrast with the monopole expected for HVSs ejected from the Galactic center (GC). There is a tendril in the density distribution that leads the LMC, which is coincidentmore » with the well-known and unexplained clustering of HVSs in the constellations of Leo and Sextans. Our model is falsifiable since it predicts that Gaia will reveal a large density of HVSs in the southern hemisphere.« less
Classification of X-ray sources in the direction of M31
NASA Astrophysics Data System (ADS)
Vasilopoulos, G.; Hatzidimitriou, D.; Pietsch, W.
2012-01-01
M31 is our nearest spiral galaxy, at a distance of 780 kpc. Identification of X-ray sources in nearby galaxies is important for interpreting the properties of more distant ones, mainly because we can classify nearby sources using both X-ray and optical data, while more distant ones via X-rays alone. The XMM-Newton Large Project for M31 has produced an abundant sample of about 1900 X-ray sources in the direction of M31. Most of them remain elusive, giving us little signs of their origin. Our goal is to classify these sources using criteria based on properties of already identified ones. In particular we construct candidate lists of high mass X-ray binaries, low mass X-ray binaries, X-ray binaries correlated with globular clusters and AGN based on their X-ray emission and the properties of their optical counterparts, if any. Our main methodology consists of identifying particular loci of X-ray sources on X-ray hardness ratio diagrams and the color magnitude diagrams of their optical counterparts. Finally, we examined the X-ray luminosity function of the X-ray binaries populations.
X-Ray source populations in old open clusters: Collinder 261
NASA Astrophysics Data System (ADS)
Vats, Smriti; van den Berg, Maureen; Wijnands, Rudy
2014-09-01
We are carrying out an X-ray survey of old open clusters with the Chandra X-ray Observatory. Single old stars, being slow rotators, are very faint in X-rays (L_X < 1×10^27 erg/s). Hence, X-rays produced by mass transfer in cataclysmic variables (CVs) or by rapid rotation of the stars in tidally locked, detached binaries (active binaries; ABs) can be detected, without contamination from single stars. By comparing the properties of various types of interacting binaries in different environments (the Galactic field, old open clusters, globular clusters), we aim to study binary evolution and how it may be affected by dynamical encounters with other cluster stars. Stellar clusters are good targets to study binaries, as age, distance, chemical composition, are well constrained. Collinder (Cr) 261 is an old open cluster (age ~ 7 Gyr), with one of the richest populations inferred of close binaries and blue stragglers of all open clusters and is therefore an obvious target to study the products of close encounters in open clusters. We will present the first results of this study, detailing the low-luminosity X-ray population of Cr 261, in conjunction with other open clusters in our survey (NGC 188, Berkeley 17, NGC 6253, M67, NGC 6791) and in comparison with populations in globular clusters.
Discovery of the optical counterpart of the transient X-ray burster Centaurus X-4
NASA Technical Reports Server (NTRS)
Canizares, C. R.; Mcclintock, J. E.; Grindlay, J. E.
1980-01-01
The paper deals with the discovery and subsequent study of the optical counterpart to an X-ray nova which is almost certainly the historical transient Centaurus X-4, first discovered in 1969 and then dormant for the past decade. It is shown that Cen X-4 is a clear example of a soft, transient X-ray burster. The most important consequence of the connection between bursters and soft transients is the support it gives to the hypothesis that bursters are accreting neutron stars in binary systems. The observations support the hypothesis that at least some of the light comes from an accretion disk, and that X-ray heating plays an important role in the optical emission.
Up and Down the Black Hole Radio/X-Ray Correlation: The 2017 Mini-outbursts from Swift J1753.5-0127
NASA Astrophysics Data System (ADS)
Plotkin, R. M.; Bright, J.; Miller-Jones, J. C. A.; Shaw, A. W.; Tomsick, J. A.; Russell, T. D.; Zhang, G.-B.; Russell, D. M.; Fender, R. P.; Homan, J.; Atri, P.; Bernardini, F.; Gelfand, J. D.; Lewis, F.; Cantwell, T. M.; Carey, S. H.; Grainge, K. J. B.; Hickish, J.; Perrott, Y. C.; Razavi-Ghods, N.; Scaife, A. M. M.; Scott, P. F.; Titterington, D. J.
2017-10-01
The candidate black hole X-ray binary Swift J1753.5-0127 faded to quiescence in 2016 November after a prolonged outburst that was discovered in 2005. Nearly three months later, the system displayed renewed activity that lasted through 2017 July. Here, we present radio and X-ray monitoring over ≈ 3 months of the renewed activity to study the coupling between the jet and the inner regions of the disk/jet system. Our observations cover low X-ray luminosities that have not historically been well-sampled ({L}{{X}}≈ 2× {10}33{--}{10}36 {erg} {{{s}}}-1; 1-10 keV), including time periods when the system was both brightening and fading. At these low luminosities, Swift J1753.5-0127 occupies a parameter space in the radio/X-ray luminosity plane that is comparable to “canonical” systems (e.g., GX 339-4), regardless of whether the system was brightening or fading, even though during its ≳11 year outburst, Swift J1753.5-0127 emitted less radio emission from its jet than expected. We discuss implications for the existence of a single radio/X-ray luminosity correlation for black hole X-ray binaries at the lowest luminosities ({L}{{X}}≲ {10}35 {erg} {{{s}}}-1), and we compare to supermassive black holes. Our campaign includes the lowest luminosity quasi-simultaneous radio/X-ray detection to date for a black hole X-ray binary during its rise out of quiescence, thanks to early notification from optical monitoring combined with fast responses from sensitive multiwavelength facilities.
Structural transformations of sVI tert-butylamine hydrates to sII binary hydrates with methane.
Prasad, Pinnelli S R; Sugahara, Takeshi; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A
2009-10-22
Binary clathrate hydrates with methane (CH(4), 4.36 A) and tert-butylamine (t-BuNH(2), 6.72 A) as guest molecules were synthesized at different molar concentrations of t-BuNH(2) (1.00-9.31 mol %) with methane at 7.0 MPa and 250 K, and were characterized by powder X-ray diffraction (PXRD) and Raman microscopy. A structural transformation from sVI to sII of t-BuNH(2) hydrate was clearly observed on pressurizing with methane. The PXRD showed sII signatures and the remnant sVI signatures were insignificant, implying the metastable nature of sVI binary hydrates. Raman spectroscopic data on these binary hydrates suggest that the methane molecules occupy the small cages and vacant large cages. The methane storage capacity in this system was nearly doubled to approximately 6.86 wt % for 5.56 mol % > t-BuNH(2) > 1.0 mol %.
Effects of variability of X-ray binaries on the X-ray luminosity functions of Milky Way
NASA Astrophysics Data System (ADS)
Islam, Nazma; Paul, Biswajit
2016-08-01
The X-ray luminosity functions of galaxies have become a useful tool for population studies of X-ray binaries in them. The availability of long term light-curves of X-ray binaries with the All Sky X-ray Monitors opens up the possibility of constructing X-ray luminosity functions, by also including the intensity variation effects of the galactic X-ray binaries. We have constructed multiple realizations of the X-ray luminosity functions (XLFs) of Milky Way, using the long term light-curves of sources obtained in the 2-10 keV energy band with the RXTE-ASM. The observed spread seen in the value of slope of both HMXB and LMXB XLFs are due to inclusion of variable luminosities of X-ray binaries in construction of these XLFs as well as finite sample effects. XLFs constructed for galactic HMXBs in the luminosity range 1036-1039 erg/sec is described by a power-law model with a mean power-law index of -0.48 and a spread due to variability of HMXBs as 0.19. XLFs constructed for galactic LMXBs in the luminosity range 1036-1039 erg/sec has a shape of cut-off power-law with mean power-law index of -0.31 and a spread due to variability of LMXBs as 0.07.
A ROTSE-I/ROSAT Survey of X-ray Emission from Contact Binary Stars
NASA Astrophysics Data System (ADS)
Geske, M.; McKay, T.
2005-05-01
Using public data from the ROSAT All Sky Survey (RASS) and the ROTSE-I Sky Patrols, the incidence of strong x-ray emissions from contact binary systems was examined. The RASS data was matched to an expanded catalog of contact binary systems from the ROTSE-I data, using a 35 arc second radius. X-ray luminosities for matching objects were then determined. This information was then used to evaluate the total x-ray emissions from all such objects, in order to determine their contribution to the galactic x-ray background.
The chaotic long-term X-ray variability of 4U 1705-44
NASA Astrophysics Data System (ADS)
Phillipson, R. A.; Boyd, P. T.; Smale, A. P.
2018-07-01
The low-mass X-ray binary 4U1705-44 exhibits dramatic long-term X-ray time variability with a time-scale of several hundred days. The All-Sky Monitor (ASM) aboard the Rossi X-ray Timing Explorer (RXTE) and the Japanese Monitor of All-sky X-ray Image (MAXI) aboard the International Space Station together have continuously observed the source from 1995 December through 2014 May. The combined ASM-MAXI data provide a continuous time series over 50 times the length of the time-scale of interest. Topological analysis can help us identify `fingerprints' in the phase space of a system unique to its equations of motion. The Birman-Williams theorem postulates that if such fingerprints are the same between two systems, then their equations of motion must be closely related. The phase-space embedding of the source light curve shows a strong resemblance to the double-welled non-linear Duffing oscillator. We explore a range of parameters for which the Duffing oscillator closely mirrors the time evolution of 4U1705-44. We extract low period, unstable periodic orbits from the 4U1705-44 and Duffing time series and compare their topological information. The Duffing and 4U1705-44 topological properties are identical, providing strong evidence that they share the same underlying template. This suggests that we can look to the Duffing equation to help guide the development of a physical model to describe the long-term X-ray variability of this and other similarly behaved X-ray binary systems.
Identification and properties of the M giant/X-ray system HD 154791 = 2A 1704+241
NASA Technical Reports Server (NTRS)
Garcia, M.; Baliunas, S. L.; Elvis, M.; Fabbiano, G.; Patterson, J.; Schwartz, D.; Doxsey, R.; Koenigsberger, G.; Swank, J.; Watson, M. G.
1983-01-01
The Aerial V X-ray source 2A 1704+241 (= 4U 1700+24 = 3A 1703+241) is identified with the M3 II star HD 154791. The identification is based on a precise X-ray position determined by the HEAO 1 scanning modulation collimator and the Einstein Observatory imaging proportional counter, together with a spectrum measured by the International Ultraviolet Explorer. The ultraviolet spectrum shows strong emission of C IV 1550 A, N v 1238 A, and Mg II 2800 A, which is very unusual among M giants. This is the first X-ray detection of an M giant which has a completely normal optical spectrum. The X-ray luminosity reaches three orders of magnitude above the mean upper limit for the coronal X-ray flux from M giants. Although there is no direct evidence for a binary system, since radial velocity variations have not been observed, it is shown that a plausible neutron star binary model can be constructed.
Optical and X-ray studies of Compact X-ray Binaries in NGC 5904
NASA Astrophysics Data System (ADS)
Bhalotia, Vanshree; Beck-Winchatz, Bernhard
2018-06-01
Due to their high stellar densities, globular cluster systems trigger various dynamical interactions, such as the formation of compact X-ray binaries. Stellar collisional frequencies have been correlated to the number of X-ray sources detected in various clusters and we hope to measure this correlation for NGC 5904. Optical fluxes of sources from archival HST images of NGC 5904 have been measured using a DOLPHOT PSF photometry in the UV, optical and near-infrared. We developed a data analysis pipeline to process the fluxes of tens of thousands of objects using awk, python and DOLPHOT. We plot color magnitude diagrams in different photometric bands in order to identify outliers that could be X-ray binaries, since they do not evolve the same way as singular stars. Aligning previously measured astrometric data for X-ray sources in NGC 5904 from Chandra with archival astrometric data from HST will filter out the outlier objects that are not X-ray producing, and provide a sample of compact binary systems that are responsible for X-ray emission in NGC 5904. Furthermore, previously measured X-ray fluxes of NGC 5904 from Chandra have also been used to measure the X-ray to optical flux ratio and identify the types of compact X-ray binaries responsible for the X-ray emissions in NGC 5904. We gratefully acknowledge the support from the Illinois Space Grant Consortium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yu-Peng; Zhang, Shu; Zhang, Shuang-Nan
We report the discovery of an anti-correlation between the soft and hard X-ray light curves of the X-ray binary Aql X-1 when bursting. This behavior may indicate that the corona is cooled by the soft X-ray shower fed by the type-I X-ray bursts, and that this process happens within a few seconds. Stacking the Aql X-1 light curves of type-I bursts, we find a shortage in the 40-50 keV band, delayed by 4.5 ± 1.4 s with respect to the soft X-rays. The photospheric radius expansion bursts are different in that neither a shortage nor an excess shows up inmore » the hard X-ray light curve.« less
EXTraS discovery of a 1.2-s X-ray pulsar in M31
NASA Astrophysics Data System (ADS)
Esposito, P.; Israel, G.; Belfiore, A.; Novara, G.; Sidoli, L.; Rodriguez Castillo, G.; De Luca, A.; Tiengo, A.; Haberl, F.; Salvaterra, R.
2017-10-01
A systematic search for periodic signals in the XMM-Newton's EPIC archive carried out within the EXTraS project resulted in the discovery of a 1.2-s flux modulation in 3XMM J004301.4+413017. It is the first accreting neutron star in M31 for which the spin period has been detected. Besides this distinction, 3XMM J0043 proved to be an interesting system. Doppler shifts of the spin modulation revealed an orbital motion with period of 1.27 d and the analysis of optical data shows that, while the source is likely associated to a globular cluster, a counterpart with V ˜ 22 outside the cluster cannot be excluded. The emission of the pulsar appears rather hard (most data are described by a power law with photon index <1) and, assuming the distance to M31, the 0.3-10 keV luminosity was variable, from ˜3×10^{37} to 2×10^{38} erg/s. Based on this, we discuss two main possible scenarios for 3X J0043: a peculiar low-mass X-ray binary, perhaps similar to 4U 1822-37 or 4U 1626-67, or an intermediate-mass X-ray binary akin Her X-1.
Detection of Reflection Features in the Neutron Star Low-mass X-Ray Binary Serpens X-1 with NICER
NASA Astrophysics Data System (ADS)
Ludlam, R. M.; Miller, J. M.; Arzoumanian, Z.; Bult, P. M.; Cackett, E. M.; Chakrabarty, D.; Dauser, T.; Enoto, T.; Fabian, A. C.; García, J. A.; Gendreau, K. C.; Guillot, S.; Homan, J.; Jaisawal, G. K.; Keek, L.; La Marr, B.; Malacaria, C.; Markwardt, C. B.; Steiner, J. F.; Strohmayer, T. E.
2018-05-01
We present Neutron Star Interior Composition Explorer (NICER) observations of the neutron star (NS) low-mass X-ray binary Serpens X-1 during the early mission phase in 2017. With the high spectral sensitivity and low-energy X-ray passband of NICER, we are able to detect the Fe L line complex in addition to the signature broad, asymmetric Fe K line. We confirm the presence of these lines by comparing the NICER data to archival observations with XMM-Newton/Reflection Grating Spectrometer (RGS) and NuSTAR. Both features originate close to the innermost stable circular orbit (ISCO). When modeling the lines with the relativistic line model RELLINE, we find that the Fe L blend requires an inner disk radius of {1.4}-0.1+0.2 R ISCO and Fe K is at {1.03}-0.03+0.13 R ISCO (errors quoted at 90%). This corresponds to a position of {17.3}-1.2+2.5 km and {12.7}-0.4+1.6 km for a canonical NS mass ({M}NS}=1.4 {M}ȯ ) and dimensionless spin value of a = 0. Additionally, we employ a new version of the RELXILL model tailored for NSs and determine that these features arise from a dense disk and supersolar Fe abundance.
Bandwidth enhancement in microwave absorption of binary nanocomposite ferrites hollow microfibers.
Song, Fuzhan; Shen, Xiangqian; Yang, Xinchun; Meng, Xianfeng; Xiang, Jun; Liu, Ruijiang; Dong, Mingdong
2013-04-01
The binary Ba0.5Sr0.5Fe12O19 (BSFO)/Ni0.5Zn0.5Fe2O4 (NZFO) nanocomposite ferrites hollow microfibers with high aspect ratios have been prepared by the gel precursor transformation process. These microfibers possess a high specific surface area about 45.2 m2 g(-1), and a ratio of the hollow diameter to the fiber diameter estimated about 5/7. The binary nanocomposite ferrites are formed after the precursor calcined at 750 degrees C for 3 h. Their minimum reflection loss (RL) is -38.1 dB at 10.4 GHz. The microwave absorption bandwidth with RL value exceeding -20 dB covers the whole X-band (8.2-12.4 GHz) and Ku-band (12.4-18 GHz). This enhancement in microwave absorption can be attributed to the exchange-coupling interaction, interfacial polarization and small size effect in nanocomposite hollow microfibers.
Be/X-ray Binary Science for Future X-ray Timing Missions
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.
2011-01-01
For future missions, the Be/X-ray binary community needs to clearly define our science priorities for the future to advocate for their inclusion in future missions. In this talk, I will describe current designs for two potential future missions and Be X-ray binary science enabled by these designs. The Large Observatory For X-ray Timing (LOFT) is an X-ray timing mission selected in February 2011 for the assessment phase from the 2010 ESA M3 call for proposals. The Advanced X-ray Timing ARray (AXTAR) is a NASA explorer concept X-ray timing mission. This talk is intended to initiate discussions of our science priorities for the future.
Latex-modified fiber-reinforced concrete bridge deck overlay : construction/interim report.
DOT National Transportation Integrated Search
1993-06-01
Latex-modified concrete (LMC) is Portland cement concrete (PCC) with an admixture of latex. LMC is considered to be nearly impermeable to chlorides and is extensively used to construct bridge deck overlays. Unfortunately, some of these overlays have ...
Ultraviolet observation of nova LMC 2012 with STIS/HST
NASA Astrophysics Data System (ADS)
Shore, S. N.; Schwarz, G.; Page, K.; Osborne, J. P.; Starrfield, S.; Walter, F.; Woodward, C. E.; Bode, M.; Ness, J.-U.
2012-05-01
Nova LMC 2012 (ATel #4002, #4043) was observed with STIS on the Hubble Space Telescope on 2012 May 7 (MJD 56055) at three settings with medium resolution (E140M, E230M, with exposure times of 724 sec per setting) covering 1150 - 3000 A. There is only one strong emission line in the entire spectral range: N V 1240 (S/N ~ 15, 0.5 A binning, integrated (not dereddened) flux of 1.2E-13 erg/s/cm^2, FWZI ~ 7500 km/s); the blue wing is blended with Ly-alpha absorption (MW+LMC).
CONSTRAINING RELATIVISTIC BOW SHOCK PROPERTIES IN ROTATION-POWERED MILLISECOND PULSAR BINARIES.
Wadiasingh, Zorawar; Harding, Alice K; Venter, Christo; Böttcher, Markus; Baring, Matthew G
2017-04-20
Multiwavelength followup of unidentified Fermi sources has vastly expanded the number of known galactic-field "black widow" and "redback" millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock stand-off R 0 . We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the stand-off is R 0 ~ 0.15-0.3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R 0 ≲ 0.4 while X-ray light curves suggest 0.1 ≲ R 0 ≲ 0.3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy-dependence in the shape of light curves motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein.
CONSTRAINING RELATIVISTIC BOW SHOCK PROPERTIES IN ROTATION-POWERED MILLISECOND PULSAR BINARIES
Wadiasingh, Zorawar; Harding, Alice K.; Venter, Christo; Böttcher, Markus; Baring, Matthew G.
2018-01-01
Multiwavelength followup of unidentified Fermi sources has vastly expanded the number of known galactic-field “black widow” and “redback” millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock stand-off R0. We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the stand-off is R0 ~ 0.15–0.3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R0 ≲ 0.4 while X-ray light curves suggest 0.1 ≲ R0 ≲ 0.3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy-dependence in the shape of light curves motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein. PMID:29651167
Constraining Relativistic Bow Shock Properties in Rotation-Powered Millisecond Pulsar Binaries
NASA Technical Reports Server (NTRS)
Wadiasingh, Zorawar; Harding, Alice K.; Venter, Christo; Bottcher, Markus; Baring, Matthew G.
2017-01-01
Multiwavelength follow-up of unidentified Fermi sources has vastly expanded the number of known galactic-field "black widow" and "redback" millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock stand-off R(sub 0). We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the stand-off is R(sub 0) approximately 0:15 - 0:3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R(sub 0) is approximately less than 0:4 while X-ray light curves suggest 0:1 is approximately less than R(sub 0) is approximately less than 0:3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy-dependence in the shape of light curves motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein.
Constraining Relativistic Bow Shock Properties in Rotation-powered Millisecond Pulsar Binaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wadiasingh, Zorawar; Venter, Christo; Böttcher, Markus
2017-04-20
Multiwavelength follow-up of unidentified Fermi sources has vastly expanded the number of known galactic-field “black widow” and “redback” millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase centering of the double-peaked X-ray orbital modulation originating from mildly relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock standoff R {sub 0}. We develop synthetic X-ray synchrotron orbital light curvesmore » and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the standoff is R {sub 0} ∼ 0.15–0.3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R {sub 0} ≲ 0.4, while X-ray light curves suggest 0.1 ≲ R {sub 0} ≲ 0.3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy dependence in the shape of light curves, motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein.« less
SPECTROSCOPIC EVIDENCE FOR A 5.4 MINUTE ORBITAL PERIOD IN HM CANCRI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roelofs, Gijs H. A.; Rau, Arne; Marsh, Tom R.
2010-03-10
HM Cancri is a candidate ultracompact binary white dwarf with an apparent orbital period of only 5.4 minutes, as suggested by X-ray and optical light-curve modulations on that period, and by the absence of longer-period variability. In this Letter, we present Keck-I spectroscopy which shows clear modulation of the helium emission lines in both radial velocity and amplitude on the 5.4 minute period and no other. The data strongly suggest that the binary is emitting He I 4471 from the irradiated face of the cooler, less massive star, and He II 4686 from a ring around the more massive star.more » From their relative radial velocities, we measure a mass ratio q = 0.50 {+-} 0.13. We conclude that the observed 5.4 minute period almost certainly represents the orbital period of an interacting binary white dwarf. We thus confirm that HM Cnc is the shortest period binary star known: a unique test for stellar evolution theory, and one of the strongest known sources of gravitational waves for LISA.« less
A disc corona-jet model for the radio/X-ray correlation in black hole X-ray binaries
NASA Astrophysics Data System (ADS)
Qiao, Erlin; Liu, B. F.
2015-04-01
The observed tight radio/X-ray correlation in the low spectral state of some black hole X-ray binaries implies the strong coupling of the accretion and jet. The correlation of L_R ∝ L_X^{˜ 0.5-0.7} was well explained by the coupling of a radiatively inefficient accretion flow and a jet. Recently, however, a growing number of sources show more complicated radio/X-ray correlations, e.g. L_R ∝ L_X^{˜ 1.4} for LX/LEdd ≳ 10-3, which is suggested to be explained by the coupling of a radiatively efficient accretion flow and a jet. In this work, we interpret the deviation from the initial radio/X-ray correlation for LX/LEdd ≳ 10-3 with a detailed disc corona-jet model. In this model, the disc and corona are radiatively and dynamically coupled. Assuming a fraction of the matter in the accretion flow, η ≡ dot{M}_jet/dot{M}, is ejected to form the jet, we can calculate the emergent spectrum of the disc corona-jet system. We calculate LR and LX at different dot{M}, adjusting η to fit the observed radio/X-ray correlation of the black hole X-ray transient H1743-322 for LX/LEdd > 10-3. It is found that always the X-ray emission is dominated by the disc corona and the radio emission is dominated by the jet. We noted that the value of η for the deviated radio/X-ray correlation for LX/LEdd > 10-3 is systematically less than that of the case for LX/LEdd < 10-3, which is consistent with the general idea that the jet is often relatively suppressed at the high-luminosity phase in black hole X-ray binaries.
Neutron Star Spin Measurements and Dense Matter with LOFT
NASA Technical Reports Server (NTRS)
Strohmayer, Tod
2011-01-01
Observations over the last decade with RXTE have begun to reveal the X-ray binary progenitors of the fastest spinning neutron stars presently known. Detection and study of the spin rates of binary neutron stars has important implications for constraining the nature of dense matter present in neutron star interiors, as both the maximum spin rate and mass for neutron stars is set by the equation of state. Precision pulse timing of accreting neutron star binaries can enable mass constraints. Particularly promIsing is the combination of the pulse and eclipse timing, as for example, in systems like Swift 11749.4-2807. With its greater sensitivity, LOFT will enable deeper searches for the spin periods of the neutron stars, both during persistent outburst intervals and thermonuclear X-ray bursts, and enable more precise modeling of detected pulsations. I will explore the anticipated impact of LOFT on spin measurements and its potential for constraining dense matter in neutron stars
Dynamical and Radiative Properties of X-Ray Pulsar Accretion Columns: Phase-averaged Spectra
NASA Astrophysics Data System (ADS)
West, Brent F.; Wolfram, Kenneth D.; Becker, Peter A.
2017-02-01
The availability of the unprecedented spectral resolution provided by modern X-ray observatories is opening up new areas for study involving the coupled formation of the continuum emission and the cyclotron absorption features in accretion-powered X-ray pulsar spectra. Previous research focusing on the dynamics and the associated formation of the observed spectra has largely been confined to the single-fluid model, in which the super-Eddington luminosity inside the column decelerates the flow to rest at the stellar surface, while the dynamical effect of gas pressure is ignored. In a companion paper, we have presented a detailed analysis of the hydrodynamic and thermodynamic structure of the accretion column obtained using a new self-consistent model that includes the effects of both gas and radiation pressures. In this paper, we explore the formation of the associated X-ray spectra using a rigorous photon transport equation that is consistent with the hydrodynamic and thermodynamic structure of the column. We use the new model to obtain phase-averaged spectra and partially occulted spectra for Her X-1, Cen X-3, and LMC X-4. We also use the new model to constrain the emission geometry, and compare the resulting parameters with those obtained using previously published models. Our model sheds new light on the structure of the column, the relationship between the ionized gas and the photons, the competition between diffusive and advective transport, and the magnitude of the energy-averaged cyclotron scattering cross-section.
Dynamical and Radiative Properties of X-Ray Pulsar Accretion Columns: Phase-averaged Spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, Brent F.; Wolfram, Kenneth D.; Becker, Peter A., E-mail: bwest@usna.edu, E-mail: kswolfram@gmail.com, E-mail: pbecker@gmu.edu
The availability of the unprecedented spectral resolution provided by modern X-ray observatories is opening up new areas for study involving the coupled formation of the continuum emission and the cyclotron absorption features in accretion-powered X-ray pulsar spectra. Previous research focusing on the dynamics and the associated formation of the observed spectra has largely been confined to the single-fluid model, in which the super-Eddington luminosity inside the column decelerates the flow to rest at the stellar surface, while the dynamical effect of gas pressure is ignored. In a companion paper, we have presented a detailed analysis of the hydrodynamic and thermodynamicmore » structure of the accretion column obtained using a new self-consistent model that includes the effects of both gas and radiation pressures. In this paper, we explore the formation of the associated X-ray spectra using a rigorous photon transport equation that is consistent with the hydrodynamic and thermodynamic structure of the column. We use the new model to obtain phase-averaged spectra and partially occulted spectra for Her X-1, Cen X-3, and LMC X-4. We also use the new model to constrain the emission geometry, and compare the resulting parameters with those obtained using previously published models. Our model sheds new light on the structure of the column, the relationship between the ionized gas and the photons, the competition between diffusive and advective transport, and the magnitude of the energy-averaged cyclotron scattering cross-section.« less
Chandra reveals a black hole X-ray binary within the ultraluminous supernova remnant MF 16
NASA Astrophysics Data System (ADS)
Roberts, T. P.; Colbert, E. J. M.
2003-06-01
We present evidence, based on Chandra ACIS-S observations of the nearby spiral galaxy NGC 6946, that the extraordinary X-ray luminosity of the MF 16 supernova remnant actually arises in a black hole X-ray binary. This conclusion is drawn from the point-like nature of the X-ray source, its X-ray spectrum closely resembling the spectrum of other ultraluminous X-ray sources thought to be black hole X-ray binary systems, and the detection of rapid hard X-ray variability from the source. We briefly discuss the nature of the hard X-ray variability, and the origin of the extreme radio and optical luminosity of MF 16 in light of this identification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogdanov, Slavko
I present a 40 ks Nuclear Spectroscopic Telescope Array observation of the recently identified low-luminosity X-ray binary and transitional millisecond pulsar (tMSP) candidate 1RXS J154439.4 112820, which is associated with the high-energy γ -ray source 3FGL J1544.6 1125. The system is detected up to ∼30 keV with an extension of the same power-law spectrum and rapid large-amplitude variability between two flux levels observed in soft X-rays. These findings provide further evidence that 1RXS J154439.4 112820 belongs to the same class of objects as the nearby bona fide tMSPs PSR J1023+0038 and XSS J12270 4859 and therefore almost certainly hosts amore » millisecond pulsar accreting at low luminosity. I also examine the long-term accretion history of 1RXS J154439.4 112820 based on archival optical, ultraviolet, X-ray, and γ -ray light curves covering approximately the past decade. Throughout this period, the source has maintained similar flux levels at all wavelengths, which is an indication that it has not experienced prolonged episodes of a non-accreting radio pulsar state but may spontaneously undergo such events in the future.« less
RXTE All-Sky Slew Survey. Catalog of X-Ray Sources at B Greater Than 10 deg
NASA Technical Reports Server (NTRS)
Revnivtsev, M.; Sazonov, S.; Jahoda, K.; Gilfanov, M.
2004-01-01
We report results of a serendipitous hard X-ray (3-20 keV), nearly all-sky (absolute value of b greater than l0 deg.) survey based on RXTE/PCA observations performed during satellite reorientations in 1996-2002. The survey is 80% (90%) complete to a 4(sigma) limiting flux of approx. = 1.8 (2.5) x 10(exp -l1) erg/s sq cm in the 3-20 keV band. The achieved sensitivity in the 3-8 keV and 8-20 keV subbands is similar to and an order of magnitude higher than that of the previously record HEAO-1 A1 and HEAO-1 A4 all-sky surveys, respectively. A combined 7 x 10(exp 3) sq. deg area of the sky is sampled to flux levels below l0(exp -11) erg/ s sq cm (3-20 keV). In total 294 sources are detected and localized to better than 1 deg. 236 (80%) of these can be confidently associated with a known astrophysical object; another 22 likely result from the superposition of 2 or 3 closely located known sources. 35 detected sources remain unidentified, although for 12 of these we report a likely soft X-ray counterpart from the ROSAT all-sky survey bright source catalog. Of the reliably identified sources, 63 have local origin (Milky Way, LMC or SMC), 64 are clusters of galaxies and 100 are active galactic nuclei (AGN). The fact that the unidentified X-ray sources have hard spectra suggests that the majority of them are AGN, including highly obscured ones (N(sub H) greater than l0(exp 23)/sq cm). For the first time we present a log N-log S diagram for extragalactic sources above 4 x l0(exp -12) erg/ s sq cm at 8-20 keV. Key words. cosmo1ogy:observations - diffuse radiation - X-rays general
Storli, Sigbjørn H; Menzies, Robert A; Reiter, Alexander M
2018-06-01
A search of the medical and dental records at Evidensia Lørenskog Dyreklinikk, in Lørenskog, Norway, was conducted to identify dogs that received temporary crown extensions (TCEs) to correct linguoverted mandibular canine (LMC) teeth over a 54-month investigation period (2012-2016). Criteria for inclusion into the study were the presence of complete medical and dental records, pre- and postoperative clinical photographs and intraoral radiographs of the affected canine teeth, adequate information pertaining to the procedures performed, and at least 1 follow-up >3 months after appliance removal. Seventy-two dogs with LMC teeth were treated with TCE. Thirty-nine breeds were represented in this study. Mean age at the time of appliance installation was 6.4 (range, 4.7-13.4 months [median, 5.9 months] months). Fifty-three (73.6%) dogs presented with class I malocclusion, 14 (19.5%) dogs with class II malocclusion, and 5 (6.9%) dogs with class III malocclusion. Twenty-five (34.7%) dogs were considered to have mild, 32 (44.4%) dogs to have moderate, and 15 (20.8%) dogs to have severe mandibular canine malocclusion. The TCE was combined with other treatment modalities (active orthodontics, extraction of nonstrategic teeth, gingivectomy, and inclined bite plane and ball therapy) to correct mandibular canine tooth malocclusions in 19 (26.4%) dogs. Fractured or detached crown extensions were seen in 9 (12.5%) dogs. Soft tissue ulceration or inflammation was seen in 7 (9.7%) dogs. The mandibular canine teeth occlusion resolved completely with self-retaining, functional, nontraumatic occlusion in 56 (77.8%) dogs. Fifteen dogs (20.8%) resolved with functional, nontraumatic occlusion, but the mandibular canine teeth were too short to be perfectly self-retained, thus left with 1- to 2-mm crown extensions for permanent retention. In 1 (1.4%) dog, both mandibular canine teeth relapsed almost back to original position. The results show that TCE is a viable treatment option to correct LMC teeth in young dogs.
Correlated Radial Velocity and X-Ray Variations in HD 154791/4U 1700+24
NASA Astrophysics Data System (ADS)
Galloway, Duncan K.; Sokoloski, J. L.; Kenyon, Scott J.
2002-12-01
We present evidence for approximately 400 day variations in the radial velocity of HD 154791 (V934 Her), the suggested optical counterpart of 4U 1700+24. The variations are correlated with the previously reported ~400 day variations in the X-ray flux of 4U 1700+24, which supports the association of these two objects, as well as the identification of this system as the second known X-ray binary in which a neutron star accretes from the wind of a red giant. The HD 154791 radial velocity variations can be fitted with an eccentric orbit with period 404+/-3 days, amplitude K=0.75+/-0.12kms-1, and eccentricity e=0.26+/-0.15. There are also indications of variations on longer timescales >~2000 days. We have reexamined all available All-Sky Monitor (ASM) data following an unusually large X-ray outburst in 1997-1998 and confirm that the 1 day averaged 2-10 keV X-ray flux from 4U 1700+24 is modulated with a period of 400+/-20 days. The mean profile of the persistent X-ray variations was approximately sinusoidal, with an amplitude of 0.108+/-0.012 ASM counts s-1 (corresponding to 31% rms). The epoch of X-ray maximum was approximately 40 days after the time of periastron, according to the eccentric orbital fit. If the 400 day oscillations from HD 154791/4U 1700+24 are due to orbital motion, then the system parameters are probably close to those of the only other neutron star symbiotic-like binary, GX 1+4. We discuss the similarities and differences between these two systems.
NASA Astrophysics Data System (ADS)
Yurtseven, Hamit; Yılmaz, Aygül
2016-06-01
We study the temperature dependence of the heat capacity Cp for the pure CH4 and the coadsorbed CH4/CCl4 on graphite near the melting point. The heat capacity peaks are analyzed using the experimental data from the literature by means of the power-law formula. The critical exponents for the heat capacity are deduced below and above the melting point for CH4 (Tm = 104.8 K) and CH4/CCl4 (Tm = 99.2 K). Our exponent values are larger as compared with the predicted values of some theoretical models exhibiting second order transition. Our analyses indicate that the pure methane shows a nearly second order (weak discontinuity in the heat capacity peak), whereas the transition in coadsorbed CH4/CCl4 is of first order (apparent discontinuity in Cp). We also study the T - X phase diagram of a two-component system of CH3CCl3+CCl4 using the Landau phenomenological model. Phase lines of the R+L (rhombohedral+liquid) and FCC+L (face-centred cubic + liquid) are calculated using the observed T - X phase diagram of this binary mixture. Our results show that the Landau mean field theory describes the observed behavior of CH3CCl3+CCl4 adequately. From the calculated T - X phase diagram, critical behavior of some thermodynamic quantities can be predicted at various temperatures and concentrations (CCl4) for a binary mixture of CH3CCl3+CCl4.
NASA Technical Reports Server (NTRS)
Corbet, R. H. D.; Markwardt, C.; Tueller, J.
2007-01-01
Observations of the high-mass X-ray binary 4U 2206+54 with the Swift Burst Alert Telescope (BAT) do not show modulation at the previously reported period of 9.6 days found from observations made with the Rossi X-ray Timing Explorer (RXTE) All-Sky Monitor (ASM). Instead, the strongest peak in the power spectrum of the BAT light curve occurs at a period of 19.25+/-0.08 days, twice the period found with the RXTE ASM. The maximum of the folded BAT light curve is also delayed compared to the maximum of the folded ASM light curve. The most recent ASM data folded on twice the 9.6 day period show 'similar morphology to the folded BAT light curve. This suggests that the apparent period doubling is a recent secular change rather than an energy-dependent effect. The 9.6 day period is thus not a permanent strong feature of the light curve. We suggest that the orbital period of 4U 2206+54 may be twice the previously proposed value.
Thimmaiah, Srinivasa; Miller, Gordon J.
2015-06-03
A series of pseudo-binary compounds MgZn 2-xPd x (0.15 ≤ x ≤ 1.0) were synthesized and structurally characterized to understand the role of valence electron concentration (vec) on the prototype Laves phase MgZn 2 with Pd-substitution. Three distinctive phase regions were observed with respect to Pd content, all exhibiting fundamental Laves phase structures: 0.1 ≤ x ≤ 0.3 (MgNi 2-type, hP24; MgZn 1.80Pd 0.20(2)), 0.4 ≤ x ≤ 0.6 (MgCu 2-type, cF24; MgZn 1.59Pd 0.41(2)), and 0.62 ≤ x ≤ 0.8 (MgZn 2-type, hP12: MgZn 1.37Pd 0.63(2)). Refinements from single-crystal X-ray diffraction indicated nearly statistical distributions of Pd and Znmore » atoms among the majority atom sites in these structures. Interestingly, the MgZn 2-type structure re-emerges in MgZn 2–xPd x at x ≈ 0.7 with the refined composition MgZn 1.37(2)Pd 0.63 and a c/a ratio of 1.59 compared to 1.64 for binary MgZn 2. Electronic structure calculations on a model “MgZn 1.25Pd 0.75” yielded a density of states (DOS) curve showing enhancement of a pseudogap at the Fermi level as a result of electronic stabilization due to the Pd addition. Moreover, integrated crystal orbital Hamilton population values show significant increases of orbital interactions for (Zn,Pd)–(Zn,Pd) atom pairs within the majority atom substructure, i.e., within the Kagomé nets as well as between a Kagomé net and an apical site, from binary MgZn 2 to the ternary “MgZn 1.25Pd 0.75”. Multi-centered bonding is evident from electron localization function plots for “MgZn 1.25Pd 0.75”, an outcome which is in accordance with analysis of other Laves phases.« less
NASA Astrophysics Data System (ADS)
Antoniou, Vallia; Zezas, Andreas; Drake, Jeremy J.; Badenes, Carles; Hong, Jaesub; SMC XVP Collaboration
2018-01-01
Nearby star-forming galaxies offer a unique environment to study the populations of young (<100 Myr) X-ray binaries, which consist of a compact object - typically a neutron star or a black hole - powered by accretion from a companion star. These systems are tracers of past populations of massive stars that heavily affect their immediate environment and parent galaxies. The Small Magellanic Cloud (SMC) is the ideal environment for population studies of young X-ray binaries by providing us with what the Milky Way cannot: A complete sample of X-ray sources within a galaxy. Using a Chandra X-ray Visionary program, we investigate the young neutron-star binary population in this low-metallicity, nearby, star-forming galaxy by reaching quiescent X-ray luminosity levels (~few times 1032 erg/s). In this talk, I will present the first measurement of the formation efficiency of high-mass X-ray binaries (HMXBs) as a function of the age of their parent stellar populations. We use three indicators of the formation efficiency of young accreting binaries in the low SMC metallicity: the number ratio of the HMXBs, N(HMXBs), to the number of OB stars, to the star-formation rate (SFR), and to the stellar mass produced during the specific star-formation burst they are associated with, all as a function of the age of their parent stellar populations. In all cases, we find that the HMXB formation efficiency increases as a function of time up to ~40—60 Myr, and then gradually decreases. The peak formation efficiency N(HMXB)/SFR is in good agreement with previous estimates of the average formation efficiency in the broad ~20—60 Myr age range, and a factor of at least ~8 and ~4 higher than the formation efficiency in earlier (~10 Myr) and later (~260 Myr) epochs. I will also present the deepest luminosity function ever recorded for a galaxy, and discuss the X-ray properties of the largest sample of extragalactic accreting pulsars as well.
New organic binary solids with phenolic coformers for NLO applications
NASA Astrophysics Data System (ADS)
Draguta, Sergiu; Fonari, Marina S.; Leonova, Evgenia; Timofeeva, Tatiana V.
2015-10-01
Five binary adducts between N,N-dimethyl-4-[(E)-2-(pyridin-4-yl)ethenyl]aniline) 1, N,N-diethyl-4-[(E)-2-(pyridin-4-yl)ethenyl]aniline) 2, N,N-dimethyl-4-[(E)-pyridin-3-yldiazenyl]aniline 3, and coformers that include 4-nitrophenol I, 4-nitrobenzoic acid II, benzene-1,3-diol III, and 2,4-dinitrophenol IV were synthesized to follow the factors influencing the formation of polar crystals. New solids were characterized by melting points and absorption spectra, while their structures were proven by single crystal X-ray diffraction. Adducts differ by the components' ratio and position of the acidic hydrogen atom, thus giving examples of four new cocrystals and one salt. The single crystal X-ray analysis revealed the acentric packing for two compounds, 1 (I) and 3(3) (III) that crystallize in the Pca21 and P1 space groups. The melting point data and the cut-off wavelength from absorption spectra show that these materials are stable till relatively high temperatures and transparent in a wide range of spectrum.
Self-Consistent Models of Accretion Disks
NASA Technical Reports Server (NTRS)
Narayan, Ramesh
1997-01-01
The investigations of advection-dominated accretion flows (ADAFs), with emphasis on applications to X-ray binaries containing black holes and neutron stars is presented. This work is now being recognized as the standard paradigm for understanding the various spectral states of black hole X-ray Binaries (BHXBs). Topics discussed include: (1) Problem in BHXBS, namely that several of these binaries have unusually large concentrations of lithium in their companion stars; (2) A novel test to show that black holes have event horizons; (3) Application of the ADAF model to the puzzling X-ray delay in the recent outburst of the BHXB, GRO J1655-40; (4) Description of the various spectral states in BHXBS; (5) Application of the ADAF model to the famous supermassive black hole at the center of our Galaxy, Sgr A(*); (6) Writing down and solving equations describing steady-state, optically thin, advection-dominated accretion onto a Kerr black hole; (7) The effect of "photon bubble" instability on radiation dominated accretion disks; and (8) Dwarf nova disks in quiescence that have rather low magnetic Reynolds number, of order 10(exp 3).
AKARI Infrared Camera Survey of the Large Magellanic Cloud
NASA Astrophysics Data System (ADS)
Shimonishi, Takashi; Kato, Daisuke; Ita, Yoshifusa; Onaka, Takashi
2015-08-01
The Large Magellanic Cloud (LMC) is one of the closest external galaxies to the Milky Way and has been playing a central role in various fields of modern astronomy and astrophysics. We conducted an unbiased near- to mid-infrared imaging and spectroscopic survey of the LMC with the infrared satellite AKARI. An area of about 10 square degrees of the LMC was observed by five imaging bands (each centered at 3.2, 7, 11, 15, and 24 micron) and the low-resolution slitless prism spectroscopy mode (2--5 micron, R~20) equipped with the Infrared Camera on board AKARI. Based on the data obtained in the survey, we constructed the photometric and spectroscopic catalogues of point sources in the LMC. The photometric catalogue includes about 650,000, 90,000, 49,000, 17,000, 7,000 sources at 3.2, 7, 11, 15, and 24 micron, respectively (Ita et al. 2008, PASJ, 60, 435; Kato et al. 2012, AJ, 144, 179), while the spectroscopic catalogue includes 1,757 sources (Shimonishi et al. 2013, AJ, 145, 32). Both catalogs are publicly released and available through a website (AKARI Observers Page, http://www.ir.isas.ac.jp/AKARI/Observation/). The catalog includes various infrared sources such as young stellar objects, asymptotic giant branch stars, giants/supergiants, and many other cool or dust-enshrouded stars. A large number of near-infrared spectral data, coupled with complementary broadband photometric data, allow us to investigate infrared spectral features of sources by comparison with their spectral energy distributions. Combined use of the present AKARI LMC catalogues with other infrared catalogues such as SAGE and HERITAGE possesses scientific potential that can be applied to various astronomical studies. In this presentation, we report the details of the AKARI photometric and spectroscopic catalogues of the LMC.
The reflection spectrum of the low-mass X-ray binary 4U 1636-53
NASA Astrophysics Data System (ADS)
Wang, Yanan; Méndez, Mariano; Sanna, Andrea; Altamirano, Diego; Belloni, T. M.
2017-06-01
We present 3-79 keV NuSTAR observations of the neutron star low-mass X-ray binary 4U 1636-53 in the soft, transitional and hard state. The spectra display a broad emission line at 5-10 keV. We applied several models to fit this line: A Gaussian line, a relativistically broadened emission line model, kyrline, and two models including relativistically smeared and ionized reflection off the accretion disc with different coronal heights, relxill and relxilllp. All models fit the spectra well; however, the kyrline and relxill models yield an inclination of the accretion disc of ˜88° with respect to the line of sight, which is at odds with the fact that this source shows no dips or eclipses. The relxilllp model, on the other hand, gives a reasonable inclination of ˜56°. We discuss our results for these models in this source and the possible primary source of the hard X-rays.
New inclination changing eclipsing binaries in the Magellanic Clouds
NASA Astrophysics Data System (ADS)
Juryšek, J.; Zasche, P.; Wolf, M.; Vraštil, J.; Vokrouhlický, D.; Skarka, M.; Liška, J.; Janík, J.; Zejda, M.; Kurfürst, P.; Paunzen, E.
2018-01-01
Context. Multiple stellar systems are unique laboratories for astrophysics. Analysis of their orbital dynamics, if well characterized from their observations, may reveal invaluable information about the physical properties of the participating stars. Unfortunately, there are only a few known and well described multiple systems, this is even more so for systems located outside the Milky Way galaxy. A particularly interesting situation occurs when the inner binary in a compact triple system is eclipsing. This is because the stellar interaction, typically resulting in precession of orbital planes, may be observable as a variation of depth of the eclipses on a long timescale. Aims: We aim to present a novel method to determine compact triples using publicly available photometric data from large surveys. Here we apply it to eclipsing binaries (EBs) in Magellanic Clouds from OGLE III database. Our tool consists of identifying the cases where the orbital plane of EB evolves in accord with expectations from the interaction with a third star. Methods: We analyzed light curves (LCs) of 26121 LMC and 6138 SMC EBs with the goal to identify those for which the orbital inclination varies in time. Archival LCs of the selected systems, when complemented by our own observations with Danish 1.54-m telescope, were thoroughly analyzed using the PHOEBE program. This provided physical parameters of components of each system. Time dependence of the EB's inclination was described using the theory of orbital-plane precession. By observing the parameter-dependence of the precession rate, we were able to constrain the third companion mass and its orbital period around EB. Results: We identified 58 candidates of new compact triples in Magellanic Clouds. This is the largest published sample of such systems so far. Eight of them were analyzed thoroughly and physical parameters of inner binary were determined together with an estimation of basic characteristics of the third star. Prior to our work, only one such system was well characterized outside the Milky Way galaxy. Therefore, we increased this sample in a significant way. These data may provide important clues about stellar formation mechanisms for objects with different metalicity than found in our galactic neighborhood. Full Table 4 and the light curves are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A46
NASA Astrophysics Data System (ADS)
Thakur, Anil; Sharma, Nalini; Chandel, Surjeet; Ahluwalia, P. K.
2013-02-01
The electrical resistivity (ρL) of Rb1-XCsX binary alloys has been made calculated using Troullier Martins ab-initio pseudopotentials. The present results of the electrical resistivity (ρL) of Rb1-XCsX binary alloys have been found in good agreement with the experimental results. These results suggest that ab-initio approach for calculating electrical resistivity is quite successful in explaining the electronic transport properties of binary Liquid alloys. Hence ab-initio pseudopotentials can be used instead of model pseudopotentials having problem of transferability.
NASA Astrophysics Data System (ADS)
Lennon, Daniel J.; van der Marel, Roeland P.; Ramos Lerate, Mercedes; O'Mullane, William; Sahlmann, Johannes
2017-07-01
Aims: Our research aims to search for runaway stars in the Large Magellanic Cloud (LMC) among the bright Hipparcos supergiant stars included in the Gaia DR1 Tycho-Gaia astrometric solution (TGAS) catalogue. Methods: We compute the space velocities of the visually brightest stars in the Large Magellanic Cloud that are included in the TGAS proper motion catalogue. This sample of 31 stars contains a luminous blue variable (LBV), emission line stars, blue and yellow supergiants, and an SgB[e] star. We combine these results with published radial velocities to derive their space velocities, and by comparing with predictions from stellar dynamical models we obtain each star's (peculiar) velocity relative to its local stellar environment. Results: Two of the 31 stars have unusually high proper motions. Of the remaining 29 stars we find that most objects in this sample have velocities that are inconsistent with a runaway nature, being in very good agreement with model predictions of a circularly rotating disk model. Indeed the excellent fit to the model implies that the TGAS uncertainty estimates are likely overestimated. The fastest outliers in this subsample contain the LBV R 71 and a few other well known emission line objects though in no case do we derive velocities consistent with fast ( 100 km s-1) runaways. On the contrary our results imply that R 71 in particular has a moderate deviation from the local stellar velocity field (40 km s-1) lending support to the proposition that this object cannot have evolved as a normal single star since it lies too far from massive star forming complexes to have arrived at its current position during its lifetime. Our findings therefore strengthen the case for this LBV being the result of binary evolution. Of the two stars with unusually high proper motions we find that one, the isolated B1.5 Ia+ supergiant Sk-67 2 (HIP 22237), is a candidate hypervelocity star, the TGAS proper motion implying a very large peculiar transverse velocity ( 360 km s-1) directed radially away from the LMC centre. If confirmed, for example by Gaia Data Release 2, it would imply that this massive supergiant, on the periphery of the LMC, is leaving the galaxy where it will explode as a supernova.
UNDERSTANDING X-RAY STARS:. The Discovery of Binary X-ray Sources
NASA Astrophysics Data System (ADS)
Schreier, E. J.; Tananbaum, H.
2000-09-01
The discovery of binary X-ray sources with UHURU introduced many new concepts to astronomy. It provided the canonical model which explained X-ray emission from a large class of galactic X-ray sources: it confirmed the existence of collapsed objects as the source of intense X-ray emission; showed that such collapsed objects existed in binary systems, with mass accretion as the energy source for the X-ray emission; and provided compelling evidence for the existence of black holes. This model also provided the basis for explaining the power source of AGNs and QSOs. The process of discovery and interpretation also established X-ray astronomy as an essential sub-discipline of astronomy, beginning its incorporation into the mainstream of astronomy.
Zhang, Ruihong; Cho, Seonghyuk; Lim, Daw Gen; ...
2016-03-15
We found that bulk metals and metal chalcogenides dissolve in primary amine–dithiol solvent mixtures at ambient conditions. Thin-films of CuS, SnS, ZnS, Cu 2Sn(Sx,Se 1-x) 3, and Cu 2ZnSn(SxSe 1-x) 4 (0 ≤ x ≤ 1) were deposited using the as-dissolved solutions. Furthermore, Cu 2ZnSn(SxSe 1-x) 4 solar cells with efficiencies of 6.84% and 7.02% under AM1.5 illumination were fabricated from two example solution precursors, respectively.
NASA Astrophysics Data System (ADS)
Clark, D. M.; Eikenberry, S. S.; Brandl, B. R.; Wilson, J. C.; Carson, J. C.; Henderson, C. P.; Hayward, T. L.; Barry, D. J.; Ptak, A. F.; Colbert, E. J. M.
2008-05-01
We use the previously identified 15 infrared star cluster counterparts to X-ray point sources in the interacting galaxies NGC 4038/4039 (the Antennae) to study the relationship between total cluster mass and X-ray binary number. This significant population of X-Ray/IR associations allows us to perform, for the first time, a statistical study of X-ray point sources and their environments. We define a quantity, η, relating the fraction of X-ray sources per unit mass as a function of cluster mass in the Antennae. We compute cluster mass by fitting spectral evolutionary models to Ks luminosity. Considering that this method depends on cluster age, we use four different age distributions to explore the effects of cluster age on the value of η and find it varies by less than a factor of 4. We find a mean value of η for these different distributions of η = 1.7 × 10-8 M-1⊙ with ση = 1.2 × 10-8 M-1⊙. Performing a χ2 test, we demonstrate η could exhibit a positive slope, but that it depends on the assumed distribution in cluster ages. While the estimated uncertainties in η are factors of a few, we believe this is the first estimate made of this quantity to "order of magnitude" accuracy. We also compare our findings to theoretical models of open and globular cluster evolution, incorporating the X-ray binary fraction per cluster.
Accretion disk dynamics in X-ray binaries
NASA Astrophysics Data System (ADS)
Peris, Charith Srian
Accreting X-ray binaries consist of a normal star which orbits a compact object with the former transferring matter onto the later via an accretion disk. These accretion disks emit radiation across the entire electromagnetic spectrum. This thesis exploits two regions of the spectrum, exploring the (1) inner disk regions of an accreting black hole binary, GRS1915+105, using X-ray spectral analysis and (2) the outer accretion disks of a set of neutron star and black hole binaries using Doppler Tomography applied on optical observations. X-ray spectral analysis of black hole binary GRS1915+105: GRS1915+105 stands out as an exceptional black hole primarily due to the wild variability exhibited by about half of its X-ray observations. This study focused on the steady X-ray observations of the source, which were found to exhibit significant curvature in the harder coronal component within the RXTE/PCA band-pass. The roughly constant inner-disk radius seen in a majority of the steady-soft observations is strongly reminiscent of canonical soft state black-hole binaries. Remarkably, the steady-hard observations show the presence of growing truncation in the inner-disk. A majority of the steady observations of GRS1915+105 map to the states observed in canonical black hole binaries which suggests that within the complexity of this source is a simpler underlying basis of states. Optical tomography of X-ray binary systems: Doppler tomography was applied to the strong line features present in the optical spectra of X-ray binaries in order to determine the geometric structure of the systems' emitting regions. The point where the accretion stream hits the disk, also referred to as the "hotspot'', is clearly identified in the neutron star system V691 CrA and the black hole system Nova Muscae 1991. Evidence for stream-disk overflows exist in both systems, consistent with relatively high accretion rates. In contrast, V926 Sco does not show evidence for the presence of a hotspot which is consistent with its lower accretion state. The donor stars in V691 CrA and Nova Muscae 1991 were also detected.
Los Medanos College Fact Book.
ERIC Educational Resources Information Center
MacDonald, Ross; And Others
Prepared to support the self-study and strategic planning processes at Los Medanos College (LMC), in Pittsburgh, California, this fact book offers information about LMC's students, staff, programs, services, facilities, and expenditures. The first section focuses on the student population, including a trend analysis and longitudinal data on…
Latex modified fiber reinforced concrete bridge deck overlay : final report.
DOT National Transportation Integrated Search
1995-11-01
In an attempt to increase the tensile strength of LMC and reduce cracking, steel fibers were added to a LMC mix. The results are what is termed as "latex-modified, fiber-reinforced concrete" (LMFRC). LMFRC was placed on Hayden Bridge as an experiment...
Zharov, Alexander A; Zharov, Alexander A; Zharova, Nina A
2014-08-01
We show that transverse electromagnetic waves propagating along an external static electric field in liquid metacrystal (LMC) can provoke spontaneous rearrangement of elongated meta-atoms that changes the direction of the anisotropy axis of the LMC. This kind of instability may reorient the meta-atoms from the equilibrium state parallel to a static field to the state along a high-frequency field and back at the different threshold intensities of electromagnetic waves in such a way that bistability in the system takes place. Reorientation of meta-atoms causes a change in the effective refraction index of LMC that creates, in turn, the conditions for the formation of bright spatial solitons. Such spatial solitons are the self-consistent domains of redirected meta-atoms with trapped photons. We find that the instability thresholds as well as energy flux captured by the spatial soliton can be easily managed by variation of the static electric field applied to the LMC. We study the effects of soliton excitation and collisions via numerical simulations.
Leap motion evaluation for assessment of upper limb motor skills in Parkinson's disease.
Butt, A H; Rovini, E; Dolciotti, C; Bongioanni, P; De Petris, G; Cavallo, F
2017-07-01
The main goal of this study is to investigate the potential of the Leap Motion Controller (LMC) for the objective assessment of motor dysfunctioning in patients with Parkinson's disease (PwPD). The most relevant clinical signs in Parkinson's Disease (PD), such as slowness of movements, frequency variation, amplitude variation, and speed, were extracted from the recorded LMC data. Data were clinically quantified using the LMC software development kit (SDK). In this study, 16 PwPD subjects and 12 control healthy subjects were involved. A neurologist assessed the subjects during the task execution, assigning them a score according to the MDS/UPDRS-Section III items. Features of motor performance from both subject groups (patients and healthy controls) were extracted with dedicated algorithms. Furthermore, to find out the significance of such features from the clinical point of view, machine learning based methods were used. Overall, our findings showed the moderate potential of LMC to extract the motor performance of PwPD.
New outburst of GX 339-4 detected by Faulkes Telescope South
NASA Astrophysics Data System (ADS)
Russell, David M.; Lewis, Fraser; Gandhi, Poshak
2017-09-01
We have been monitoring the black hole X-ray binary GX 339-4 with the 2-m Faulkes Telescope South (at Siding Spring, Australia) since September 2007 (e.g. ATel #1586; #1962, #2459, #2547, #3191, #4162, Cadolle Bel et al. 2011).
Dust composition and mass-loss return from the luminous blue variable R71 in the LMC
NASA Astrophysics Data System (ADS)
Guha Niyogi, S.; Min, M.; Meixner, M.; Waters, L. B. F. M.; Seale, J.; Tielens, A. G. G. M.
2014-09-01
Context. We present an analysis of mid- and far-infrared (IR) spectrum and spectral energy distribution (SED) of the luminous blue variable (LBV) R71 in the Large Magellanic Cloud (LMC). Aims: This work aims to understand the overall contribution of high-mass LBVs to the total dust-mass budget of the interstellar medium (ISM) of the LMC and compare this with the contribution from low-mass asymptotic giant branch (AGB) stars. As a case study, we analyze the SED of R71. Methods: We compiled all the available photometric and spectroscopic observational fluxes from various telescopes for a wide wavelength range (0.36-250 μm). We determined the dust composition from the spectroscopic data, and derived the ejected dust mass, dust mass-loss rate, and other dust shell properties by modeling the SED of R71. We noted nine spectral features in the dust shell of R71 by analyzing Spitzer Space Telescope spectroscopic data. Among these, we identified three new crystalline silicate features. We computed our model spectrum by using 3D radiative transfer code MCMax. Results: Our model calculation shows that dust is dominated by amorphous silicates, with some crystalline silicates, metallic iron, and a very tiny amount of polycyclic aromatic hydrocarbon (PAH) molecules. The presence of both silicates and PAHs indicates that the dust has a mixed chemistry. We derived a dust mass of 0.01 M⊙, from which we arrive at a total ejected mass of ≈5 M⊙. This implies a time-averaged dust mass-loss rate of 2.5 × 10-6 M⊙ yr-1 with an explosion about 4000 years ago. We assume that the other five confirmed dusty LBVs in the LMC loose mass at a similar rate, and estimate the total contribution to the mass budget of the LMC to be ≈10-5 M⊙ yr-1, which is comparable to the contribution by all the AGB stars in the LMC. Conclusions: Based on our analysis on R71, we speculate that LBVs as a class may be an important dust source in the ISM of the LMC.
Radio non-detection of Aql X-1
NASA Astrophysics Data System (ADS)
Tudose, V.; Paragi, Z.; Altamirano, D.; Miller-Jones, J. C. A.; Garrett, M.; Fender, R.; Rushton, A.; Spencer, R.; Maitra, D.
2010-10-01
The neutron star X-ray binary Aql X-1 is on the decaying phase of a major outburst that peaked at optical and X-ray bands in mid-September (ATEL #2850, #2871, #2891, #2902). We observed the object at 5 GHz with the European VLBI Network (EVN) in the e-VLBI mode on 2010 October 4th between 18:20-22:09 UT. The participating stations were Cambridge, Effelsberg, Jodrell Bank (MkII), Hartebeesthoek, Medicina, Onsala, Torun, Westerbork and Yebes.
Low-mass X-ray binary evolution and the origin of millisecond pulsars
NASA Technical Reports Server (NTRS)
Frank, Juhan; King, Andrew R.; Lasota, Jean-Pierre
1992-01-01
The evolution of low-mass X-ray binaries (LMXBs) is considered. It is shown that X-ray irradiation of the companion stars causes these systems to undergo episodes of rapid mass transfer followed by detached phases. The systems are visible as bright X-ray binaries only for a short part of each cycle, so that their space density must be considerably larger than previously estimated. This removes the difficulty in regarding LMXBs as the progenitors of low-mass binary pulsars. The low-accretion-rate phase of the cycle with the soft X-ray transients is identified. It is shown that 3 hr is likely to be the minimum orbital period for LMXBs with main-sequence companions and it is suggested that the evolutionary endpoint for many LMXBs may be systems which are the sites of gamma-ray bursts.
Mid-infrared Integrated-light Photometry Of LMC Star Clusters
NASA Astrophysics Data System (ADS)
Pessev, Peter; Goudfrooij, P.; Puzia, T.; Chandar, R.
2008-03-01
Massive star clusters (Galactic Globular Clusters and Populous Clusters in the Magellanic Clouds) are the best available approximation of Simple Stellar Populations (SSPs). Since the stellar populations in these nearby objects are studied in details, they provide fundamental age/metallicity templates for interpretation of the galaxy properties, testing and calibration of the SSP Models. Magellanic Cloud clusters are particularly important since they populate a region of the age/metallicity parameter space that is not easily accessible in our Galaxy. We present the first Mid-IR integrated-light measurements for six LMC clusters based on our Spitzer IRAC imaging program. Since we are targeting a specific group of intermediate-age clusters, our imaging goes deeper compared to SAGE-LMC survey data. We present a literature compilation of clusters' properties along with multi-wavelength integrated light photometry database spanning from the optical (Johnson U band) to the Mid-IR (IRAC Channel 4). This data provides an important empirical baseline for the interpretation of galaxy colors in the Mid-IR (especially high-z objects whose integrated-light is dominated by TP-AGB stars emission). It is also a valuable tool to check the SSP model predictions in the intermediate-age regime and provides calibration data for the next generation of SSP models.
Effects of hydrogen on acceptor activation in ternary nitride semiconductors
Fioretti, Angela N.; Stokes, Adam; Young, Matthew R.; ...
2017-02-09
Doping control is necessary to unlock the scientific and technological potential of many materials, including ternary II-IV-nitride semiconductors, which are closely related to binary GaN. In particular, ZnSnN 2 has been reported to have degenerate doping density, despite bandgap energies that are well suited for solar energy conversion. Here, we show that annealing Zn-rich Zn 1+xSn 1-xN 2 grown with added hydrogen reduces its free electron density by orders of magnitude, down to 4 x 10 16 cm -3. This experimental observation can be explained by hydrogen passivation of acceptors in Zn 1+xSn 1-xN 2 during growth, lowering the drivingmore » force for unintentional donor formation. Lastly, these results indicate that the doping control principles used in GaN can be translated to ZnSnN 2, suggesting that other strategies used in binary III-Vs can be applied to accelerate the technological development of ternary II-IV-N 2 materials.« less
NASA Technical Reports Server (NTRS)
Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred
2015-01-01
Skutterudites have proven to be a useful thermoelectric system as a result of their enhanced figure of merit (ZT1), cheap material cost, favorable mechanical properties, and good thermal stability. The majority of skutterudite interest in recent years has been focused on binary skutterudites like CoSb3 or CoAs3. Binary skutterudites are often double and triple filled, with a range of elements from the lanthanide series, in order to reduce the lattice component of thermal conductivity. Ternary and quaternary skutterudites, such as Co4Ge6Se6 or Ni4Sb8Sn4, provide additional paths to tune the electronic structure. The thermal conductivity can further be improved in these complex skutterudites by the introduction of fillers. The Co (sub X) Ni (sub 4-x) Sb (sub 12-y) Sn (sub Y) system has been investigated as both a p- and n-type thermoelectric material, and is stable up to 200 degrees Centigrade. Yb, Ce, and Dy fillers have been introduced into the skutterudite to study the influence of both the type and the quantity of fillers on processing conditions and thermoelectric properties. The system was processed through a multi-step technique that includes solidification, mechano-chemical alloying, and hot pressing which will be discussed along with thermoelectric transport properties.
ARE THE kHz QPO LAGS IN NEUTRON STAR 4U 1608–52 DUE TO REVERBERATION?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cackett, Edward M., E-mail: ecackett@wayne.edu
2016-08-01
X-ray reverberation lags have recently been discovered in both active galactic nuclei (AGNs) and black hole X-ray binaries. A recent study of the neutron star low-mass X-ray binary (LMXB) 4U 1608 52 has also shown significant lags, whose properties hint at a reverberation origin. Here, we adapt general relativistic ray tracing impulse response functions used to model X-ray reverberation in AGNs for neutron star LMXBs. Assuming that relativistic reflection forms the broad iron line and associated reflection continuum, we use reflection fits to the energy spectrum along with the impulse response functions to calculate the expected lags as a functionmore » of energy over the range of observed kHz quasi-periodic oscillation (QPO) frequencies in 4U 1608 52. We find that the lag energy spectrum is expected to increase with increasing energy above 8 keV, while the observed lags in 4U 1608 52 show the opposite behavior. This demonstrates that the lags in the lower kHz QPO of 4U 1608 52 are not solely due to reverberation. We do note, however, that the models appear to be more consistent with the much flatter lag energy spectrum observed in the upper kHz QPO of several neutron star LMXBs, suggesting that lower and upper kHz QPOs may have different origins.« less
The stellar mass, star formation rate and dark matter halo properties of LAEs at z ˜ 2
NASA Astrophysics Data System (ADS)
Kusakabe, Haruka; Shimasaku, Kazuhiro; Ouchi, Masami; Nakajima, Kimihiko; Goto, Ryosuke; Hashimoto, Takuya; Konno, Akira; Harikane, Yuichi; Silverman, John D.; Capak, Peter L.
2018-01-01
We present average stellar population properties and dark matter halo masses of z ˜ 2 Lyα emitters (LAEs) from spectral energy distribution fitting and clustering analysis, respectively, using ≃ 1250 objects (NB387≤25.5) in four separate fields of ≃ 1 deg2 in total. With an average stellar mass of 10.2 ± 1.8 × 108 M⊙ and star formation rate of 3.4 ± 0.4 M⊙ yr-1, the LAEs lie on an extrapolation of the star-formation main sequence (MS) to low stellar mass. Their effective dark matter halo mass is estimated to be 4.0_{-2.9}^{+5.1} × 10^{10}{ }M_{⊙} with an effective bias of 1.22^{+0.16}_{-0.18}, which is lower than that of z ˜ 2 LAEs (1.8 ± 0.3) obtained by a previous study based on a three times smaller survey area, with a probability of 96%. However, the difference in the bias values can be explained if cosmic variance is taken into account. If such a low halo mass implies a low H I gas mass, this result appears to be consistent with the observations of a high Lyα escape fraction. With the low halo masses and ongoing star formation, our LAEs have a relatively high stellar-to-halo mass ratio (SHMR) and a high efficiency of converting baryons into stars. The extended Press-Schechter formalism predicts that at z = 0 our LAEs are typically embedded in halos with masses similar to that of the Large Magellanic Cloud (LMC); they will also have similar SHMRs to the LMC, if their star formation rates are largely suppressed after z ˜ 2 as some previous studies have reported for the LMC itself.
What Can Simbol-X Do for Gamma-ray Binaries?
NASA Astrophysics Data System (ADS)
Cerutti, B.; Dubus, G.; Henri, G.; Hill, A. B.; Szostek, A.
2009-05-01
Gamma-ray binaries have been uncovered as a new class of Galactic objects in the very high energy sky (>100 GeV). The three systems known today have hard X-ray spectra (photon index ~1.5), extended radio emission and a high luminosity in gamma-rays. Recent monitoring campaigns of LSI +61°303 in X-rays have confirmed variability in these systems and revealed a spectral hardening with increasing flux. In a generic one-zone leptonic model, the cooling of relativistic electrons accounts for the main spectral and temporal features observed at high energy. Persistent hard X-ray emission is expected to extend well beyond 10 keV. We explain how Simbol-X will constrain the existing models in connection with Fermi Space Telescope measurements. Because of its unprecedented sensitivity in hard X-rays, Simbol-X will also play a role in the discovery of new gamma-ray binaries, giving new insights into the evolution of compact binaries.
Low-mass X-ray Binaries with RXTE
NASA Technical Reports Server (NTRS)
2004-01-01
Below are the publications which directly and indirectly evolved from this very successful program: 1) 'Search for millisecond periodicities in type I X-ray bursts of the Rapid Burster'; 2) 'High-Frequency QPOs in the 2000 Outburst of the Galactic Microquasar XTE J1550-564'; 3) 'Chandra and RXTE Spectroscopy of Galactic Microquasar XTE 51550-564 in Outburst'; 4) 'GX 339-4: back to life'; 5) 'Evidence for black hole spin in GX 339-4: XMM-Newton EPIC-PN and RXTE spectroscopy of the very high state'.
Vacuum ultraviolet images of the Large Magellanic Cloud
NASA Astrophysics Data System (ADS)
Smith, Andrew M.; Cornett, Robert H.; Hill, Robert S.
1987-09-01
Images with 50arcsec resolution of the Large Magellanic Cloud (LMC), obtained with sounding-rocket instrumentation in two vacuum ultraviolet (VUV) bandpasses, are presented. The bandpasses are each ≡200 Å wide and are centered, for hot stars, near 1500 Å and 1900 Å. Photometry was done on the digitized images for all associations in the list of Lucke and Hodge. The authors discuss the results and their relationship to the overall characteristics of star formation in the LMC. They present a simple model for propagating star formation in the LMC whose results closely resemble the distribution of associations as revealed by VUV images.
Identification of a Likely Radio Counterpart to the Rapid Burster
NASA Astrophysics Data System (ADS)
Moore, Christopher B.; Rutledge, Robert E.; Fox, Derek W.; Guerriero, Robert A.; Lewin, Walter H. G.; Fender, Robert; van Paradijs, Jan
2000-04-01
We have identified a likely radio counterpart to the low-mass X-ray binary MXB 1730-335 (the Rapid Burster). The counterpart has shown 8.4 GHz radio on/off behavior correlated with the X-ray on/off behavior as observed by the RXTE/ASM during six VLA observations. The probability of an unrelated, randomly varying background source duplicating this behavior is 1%-3% depending on the correlation timescale. The location of the radio source is R.A. 17h33m24.61s, decl. -33 deg23'19.8" (J2000), +/-0.1". We do not detect 8.4 GHz radio emission coincident with type II (accretion-driven) X-ray bursts. The ratio of radio to X-ray emission during such bursts is constrained to be below the ratio observed during X-ray-persistent emission at the 2.9 σ level. Synchrotron bubble models of the radio emission can provide a reasonable fit to the full data set, collected over several outbursts, assuming that the radio evolution is the same from outburst to outburst but given the physical constraints the emission is more likely to be due to ~1 hr radio flares such as have been observed from the X-ray binary GRS 1915+105.
NASA Astrophysics Data System (ADS)
Oskinova, L. M.; Huenemoerder, D. P.; Hamann, W.-R.; Shenar, T.; Sander, A. A. C.; Ignace, R.; Todt, H.; Hainich, R.
2017-08-01
The blue hypergiant Cyg OB2 12 (B3Ia+) is a representative member of the class of very massive stars in a poorly understood evolutionary stage. We obtained its high-resolution X-ray spectrum using the Chandra observatory. PoWR model atmospheres were calculated to provide realistic wind opacities and to establish the wind density structure. We find that collisional de-excitation is the dominant mechanism depopulating the metastable upper levels of the forbidden lines of the He-like ions Si xiv and Mg xii. Comparison between the model and observations reveals that X-ray emission is produced in a dense plasma, which could reside only at the photosphere or in a colliding wind zone between binary components. The observed X-ray spectra are well-fitted by thermal plasma models, with average temperatures in excess of 10 MK. The wind speed in Cyg OB2 12 is not high enough to power such high temperatures, but the collision of two winds in a binary system can be sufficient. We used archival data to investigate the X-ray properties of other blue hypergiants. In general, stars of this class are not detected as X-ray sources. We suggest that our new Chandra observations of Cyg OB2 12 can be best explained if Cyg OB2 12 is a colliding wind binary possessing a late O-type companion. This makes Cyg OB2 12 only the second binary system among the 16 known Galactic hypergiants. This low binary fraction indicates that the blue hypergiants are likely products of massive binary evolution during which they either accreted a significant amount of mass or already merged with their companions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oskinova, L. M.; Hamann, W.-R.; Shenar, T.
The blue hypergiant Cyg OB2 12 (B3Ia{sup +}) is a representative member of the class of very massive stars in a poorly understood evolutionary stage. We obtained its high-resolution X-ray spectrum using the Chandra observatory. PoWR model atmospheres were calculated to provide realistic wind opacities and to establish the wind density structure. We find that collisional de-excitation is the dominant mechanism depopulating the metastable upper levels of the forbidden lines of the He-like ions Si xiv and Mg xii. Comparison between the model and observations reveals that X-ray emission is produced in a dense plasma, which could reside only atmore » the photosphere or in a colliding wind zone between binary components. The observed X-ray spectra are well-fitted by thermal plasma models, with average temperatures in excess of 10 MK. The wind speed in Cyg OB2 12 is not high enough to power such high temperatures, but the collision of two winds in a binary system can be sufficient. We used archival data to investigate the X-ray properties of other blue hypergiants. In general, stars of this class are not detected as X-ray sources. We suggest that our new Chandra observations of Cyg OB2 12 can be best explained if Cyg OB2 12 is a colliding wind binary possessing a late O-type companion. This makes Cyg OB2 12 only the second binary system among the 16 known Galactic hypergiants. This low binary fraction indicates that the blue hypergiants are likely products of massive binary evolution during which they either accreted a significant amount of mass or already merged with their companions.« less
Fast transient X-rays from flare stars and RS CVn binaries
NASA Astrophysics Data System (ADS)
Rao, A. R.; Vahia, M. N.
1987-12-01
The authors have studied the fast transient X-ray (FTX) observations of the Ariel V satellite. They find that the FTX have characteristics very similar to the stellar flares detected in flare stars and RS CVn binaries by other satellites. It is found that, of the possible candidate objects, only the flare stars and RS CVn binaries can be associated with the Ariel V observations. 11 new flare stars and RS CVn binaries are associated with the FTX. This brings the total number of identifications with the flare stars and RS CVn binaries to 17. The authors further study the flare properties and correlate the peak X-ray luminosity of these Ariel V sources with the bolometric luminosity of the candidate stars. They discuss a solar flare model and show that the observed correlation can be explained under the assumption of constant temperature loops of binary sizes.
Magnitude of Treatment Abandonment in Childhood Cancer.
Friedrich, Paola; Lam, Catherine G; Itriago, Elena; Perez, Rafael; Ribeiro, Raul C; Arora, Ramandeep S
2015-01-01
Treatment abandonment (TxA) is recognized as a leading cause of treatment failure for children with cancer in low-and-middle-income countries (LMC). However, its global frequency and burden have remained elusive due to lack of global data. This study aimed to obtain an estimate using survey and population data. Childhood cancer clinicians (medical oncologists, surgeons, and radiation therapists), nurses, social workers, and psychologists involved in care of children with cancer were approached through an online survey February-May 2012. Incidence and population data were obtained from public sources. Descriptive, univariable, and multivariable analyses were conducted. 602 responses from 101 countries were obtained from physicians (84%), practicing pediatric hematology/oncology (83%) in general or children's hospitals (79%). Results suggested, 23,854 (15%) of 155,088 children <15 years old newly diagnosed with cancer annually in the countries analyzed, abandon therapy. Importantly, 83% of new childhood cancer cases and 99% of TxA were attributable to LMC. The annual number of cases of TxA expected in LMC worldwide (26,166) was nearly equivalent to the annual number of cancer cases in children <15 years expected in HIC (26,368). Approximately two thirds of LMC had median TxA ≥ 6%, but TxA ≥ 6% was reported in high- (9%), upper-middle- (41%), lower-middle- (80%), and low-income countries (90%, p<0.001). Most LMC centers reporting TxA > 6% were outside the capital. Lower national income category, higher reliance on out-of-pocket payments, and high prevalence of economic hardship at the center were independent contextual predictors for TxA ≥ 6% (p<0.001). Global survival data available for more developed and less developed regions suggests TxA may account for at least a third of the survival gap between HIC and LMC. Results show TxA is prevalent (compromising cancer survival for 1 in 7 children globally), confirm the suspected high burden of TxA in LMC, and illustrate the negative impact of poverty on its occurrence. The present estimates may appear small compared to the global burden of child death from malnutrition and infection (measured in millions). However, absolute numbers suggest the burden of TxA in LMC is nearly equivalent to annually losing all kids diagnosed with cancer in HIC just to TxA, without even considering deaths from disease progression, relapse or toxicity-the main causes of childhood cancer mortality in HIC. Results document the importance of monitoring and addressing TxA as part of childhood cancer outcomes in at-risk settings.
MAXI/GSC detection of a new outburst from SAX J1810.8-2609
NASA Astrophysics Data System (ADS)
Negoro, H.; Mihara, T.; Nakahira, S.; Yatabe, F.; Takao, Y.; Matsuoka, M.; Kawai, N.; Sugizaki, M.; Tachibana, Y.; Morita, K.; Sakamoto, T.; Serino, M.; Sugita, S.; Kawakubo, Y.; Hashimoto, T.; Yoshida, A.; Nakajima, M.; Sakamaki, A.; Maruyama, W.; Ueno, S.; Tomida, H.; Ishikawa, M.; Sugawara, Y.; Isobe, N.; Shimomukai, R.; Ueda, Y.; Tanimoto, A.; Morita, T.; Yamada, S.; Tsuboi, Y.; Iwakiri, W.; Sasaki, R.; Kawai, H.; Sato, T.; Tsunemi, H.; Yoneyama, T.; Yamauchi, M.; Hidaka, K.; Iwahori, S.; Kawamuro, T.; Yamaoka, K.; Shidatsu, M.
2018-05-01
We report a new X-ray outburst from the low-mass X-ray binary SAX J1810.8-2609 (aka V4722 Sgr; Ubertini et al. 1998, IAUC 6838) observed with MAXI/GSC. The enhancement was recognized from 2018 April 23 (MJD 58231), and X-ray count rates in the 2-4 keV and 4-10 keV bands peaked on April 26 at 0.085 +/- 0.008 c/s/cm2 ( 80 mCrab) and 0.096+/-0.008 c/s/cm2 ( 82 mCrab), respectively.
Superorbital Period in the high mass X-ray binary 2S 0114+650
NASA Astrophysics Data System (ADS)
Farrell, S.; Sood, R.; O'Neill, P.
2004-05-01
We report the identification of a superorbital period in the high mass X-ray binary 2S 0114+650. RXTE ASM observations of this object from 1996 Jan 5 to 2003 May 26 show the presence of a modulation at a period of 30.7 +/- 0.2 days. This period is detected using a Lomb-Scargle periodogram, and has a false-alarm probability of 5E-12. Epoch folding of the data gives an ephemeris of JD 2450079.4 (+/- 0.7) +30.7 (+/- 0.2)N, where N is the cycle number, with phase zero defined as the modulation minimum, and a full amplitude of 60 +/- 20%.
The VMC Survey. XIX. Classical Cepheids in the Small Magellanic Cloud
NASA Astrophysics Data System (ADS)
Ripepi, V.; Marconi, M.; Moretti, M. I.; Clementini, G.; Cioni, M.-R. L.; de Grijs, R.; Emerson, J. P.; Groenewegen, M. A. T.; Ivanov, V. D.; Piatti, A. E.
2016-06-01
The “VISTA near-infrared YJK s survey of the Magellanic Clouds System” (VMC) is collecting deep K s-band time-series photometry of pulsating variable stars hosted by the two Magellanic Clouds and their connecting Bridge. In this paper, we present Y, J, K s light curves for a sample of 4172 Small Magellanic Cloud (SMC) Classical Cepheids (CCs). These data, complemented with literature V values, allowed us to construct a variety of period-luminosity (PL), period-luminosity-color (PLC), and period-Wesenheit (PW) relationships, which are valid for Fundamental (F), First Overtone (FO), and Second Overtone (SO) pulsators. The relations involving the V, J, K s bands are in agreement with their counterparts in the literature. As for the Y band, to our knowledge, we present the first CC PL, PW, and PLC relations ever derived using this filter. We also present the first near-infrared PL, PW, and PLC relations for SO pulsators to date. We used PW(V, K s) to estimate the relative SMC-LMC distance and, in turn, the absolute distance to the SMC. For the former quantity, we find a value of Δμ = 0.55 ± 0.04 mag, which is in rather good agreement with other evaluations based on CCs, but significantly larger than the results obtained from older population II distance indicators. This discrepancy might be due to the different geometric distributions of young and old tracers in both Clouds. As for the absolute distance to the SMC, our best estimates are μ SMC = 19.01 ± 0.05 mag and μ SMC = 19.04 ± 0.06 mag, based on two distance measurements to the LMC which rely on accurate CC and eclipsing Cepheid binary data, respectively.
Mapping Calcium Rich Ejecta in Two Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Fesen, Robert
2016-10-01
Type Ia supernovae (SNe Ia) are thermonuclear explosions of white dwarfs (WDs) in close binary systems with either a non-degenerate or WD companion. SN Ia explosion computations are quite challenging, involving a complex interplay of turbulent hydrodynamics, nuclear burning, conduction, radiative transfer in iron-group rich material and possibly magnetic fields leading to significant uncertainties. Several key questions about expansion asymmetries and the overall characteristics of SNe Ia could be resolved if one could obtain direct observations of the internal kinematics and elemental distributions of young SN Ia remnants.We propose to use WFC3/UVIS to obtain images of the normal Type Ia supernova remnant 0519-69.0 and the overluminous Type Ia supernova remnant 0509-67.5 in the LMC. The Ca II on-band F390M filter and off-band F336W and FQ422M filters will be used to determine the spatial extent and density distributions of the Ca-rich ejecta via resonance line absorption. Differences in the observed on and off band Ca II fluxes for LMC stars located behind these young 400 - 600 yr old remnants will yield calcium column density estimates for multiple lines-of-sight within these remnants. These results will be compared to the calcium distribution seen in SN 1885, a subluminous SN Ia in M31, already imaged by HST.The resulting calcium density distribution maps for both a normal and overluminous SN Ia events will provide powerful insights regarding the structure and kinematics of calcium-rich ejecta in three different type Ia subclass events, and unique empirical data with which to test current SN Ia explosion models.
High-mass X-ray binary populations. 1: Galactic modeling
NASA Technical Reports Server (NTRS)
Dalton, William W.; Sarazin, Craig L.
1995-01-01
Modern stellar evolutionary tracks are used to calculate the evolution of a very large number of massive binary star systems (M(sub tot) greater than or = 15 solar mass) which cover a wide range of total masses, mass ratios, and starting separations. Each binary is evolved accounting for mass and angular momentum loss through the supernova of the primary to the X-ray binary phase. Using the observed rate of star formation in our Galaxy and the properties of massive binaries, we calculate the expected high-mass X-ray binary (HMXRB) population in the Galaxy. We test various massive binary evolutionary scenarios by comparing the resulting HMXRB predictions with the X-ray observations. A major goal of this study is the determination of the fraction of matter lost from the system during the Roche lobe overflow phase. Curiously, we find that the total numbers of observable HMXRBs are nearly independent of this assumed mass-loss fraction, with any of the values tested here giving acceptable agreement between predicted and observed numbers. However, comparison of the period distribution of our HMXRB models with the observed period distribution does reveal a distinction among the various models. As a result of this comparison, we conclude that approximately 70% of the overflow matter is lost from a massive binary system during mass transfer in the Roche lobe overflow phase. We compare models constructed assuming that all X-ray emission is due to accretion onto the compact object from the donor star's wind with models that incorporate a simplified disk accretion scheme. By comparing the results of these models with observations, we conclude that the formation of disks in HMXRBs must be relatively common. We also calculate the rate of formation of double degenerate binaries, high velocity detached compact objects, and Thorne-Zytkow objects.
NASA Astrophysics Data System (ADS)
Barnard, R.; Garcia, M. R.; Murray, S. S.
2011-12-01
The M31 X-ray source RX J0042.3+4115 was originally identified as a black hole (BH) binary because it displayed characteristic low-state variability at conspicuously high luminosities; unfortunately, this variability was later found to be artificial. However, analysis of 84 Chandra ACIS observations, a Hubble Space Telescope Advanced Camera for Surveys (ACS)/WFC observation, and a 60 ks XMM-Newton observation has supplied new evidence that RX J0042.3+4115 is indeed a BH binary. The brightest optical star within 3σ of the position of RXJ0042.3+4115 had a F435W (~B) magnitude of 25.4 ± 0.2; M B > -0.4, hence we find a low-mass donor likely. RX J0042.3+4115 was persistently bright over ~12 years. Spectral fits revealed characteristic BH binary states: a low/hard state at 2.08 ± 0.08 × 1038 erg s-1 and a steep power-law state at 2.41 ± 0.05 × 1038 erg s-1 (0.3-10 keV). The high-luminosity low state suggests a ~20 M ⊙ primary; this is high, but within the range of known stellar BH masses. The inner disk temperature during the steep power-law state is 2.24 ± 0.15 keV, high but strikingly similar to that of GRS 1915+105, the only known Galactic BH binary with a low-mass donor to be persistently bright. Therefore, RX J0042.3+4115 may be an analog for GRS 1915+105; however, other mechanisms may account for its behavior. We find compelling evidence for an extended corona during the steep power-law state, because compact corona models where the seed photons for Comptonization are tied to the inner disk temperature are rejected.
NASA Astrophysics Data System (ADS)
Imara, Nia; Di Stefano, Rosanne
2018-05-01
We recommend that the search for exoplanets around binary stars be extended to include X-ray binaries (XRBs) in which the accretor is a white dwarf, neutron star, or black hole. We present a novel idea for detecting planets bound to such mass transfer binaries, proposing that the X-ray light curves of these binaries be inspected for signatures of transiting planets. X-ray transits may be the only way to detect planets around some systems, while providing a complementary approach to optical and/or radio observations in others. Any planets associated with XRBs must be in stable orbits. We consider the range of allowable separations and find that orbital periods can be hours or longer, while transit durations extend upward from about a minute for Earth-radius planets, to hours for Jupiter-radius planets. The search for planets around XRBs could begin at once with existing X-ray observations of these systems. If and when a planet is detected around an X-ray binary, the size and mass of the planet may be readily measured, and it may also be possible to study the transmission and absorption of X-rays through its atmosphere. Finally, a noteworthy application of our proposal is that the same technique could be used to search for signals from extraterrestrial intelligence. If an advanced exocivilization placed a Dyson sphere or similar structure in orbit around the accretor of an XRB in order to capture energy, such an artificial structure might cause detectable transits in the X-ray light curve.
NASA Astrophysics Data System (ADS)
Borissova, J.; Rejkuba, M.; Minniti, D.; Catelan, M.; Ivanov, V. D.
2009-08-01
Context: RR Lyrae variable stars are the primary Population II distance indicator. Likewise, the Large Magellanic Cloud (LMC) constitutes a key step in the extragalactic distance scale. Aims: By combining near-IR photometry and spectroscopically measured metallicities for a homogeneous sample of 50 RR Lyr stars in the LMC, we investigate the metallicity dependence of the period-luminosity relation in the near-infrared (IR), use the newly derived relations to re-derive the distance to the LMC, and compare the distance moduli obtained from RR Lyr and red clump stars. Methods: This paper presents new (single-epoch) J-band and (multi-epoch) K_s-band photometry of RR Lyr stars in 7 different LMC fields, observed with the near-IR camera SOFI at ESO's New Technology Telescope. Additional K_s-band data for another two LMC fields were taken with the ISPI infrared array at CTIO's Blanco 4m telescope. The near-IR photometry was cross-correlated with the MACHO and OGLE databases, resulting in a catalog of 62 RR Lyr stars with BVRIJKs photometry. A subsample of 50 stars also has spectroscopically measured metallicities. Results: In the deep JK color-magnitude diagrams of 7 fields, red giant branch, red clump and RR Lyr stars are detected. The majority of RR Lyr stars are located within the instability strip with near-IR colors between 0.14 ≤ (J-K_s)_0<0.32. The period-luminosity relation only has a very mild dependence on metallicity in the K band, consistent with no dependence: MKs =2.11(± 0.17) log{P} + 0.05(± 0.07) [Fe/H] - 1.05. In the J band the currently available data do not allow firm conclusions regarding the metallicity dependence of the period-luminosity relation. Conclusions: The distance modulus of the LMC, derived using our near-IR period-luminosity-metallicity relation for RR Lyr stars, is (m-M)_0=18.53 ± 0.13, in very good agreement with the distance modulus from the red clump stars, 18.46 ± 0.07. However, LMC modulus derived from the RR Lyrae stars depends on the parallax of the star RR Lyrae. Based on observations collected with European Southern Observatory's Very Large Telescope and New Technology Telescope, under programs 64.N-0176(B), 70.B-0547(A), and 072.D-0106(B) with the Blanco telescope at CTIO, under ISPI Prop. No. 0101; and at Gemini Observatory (observing program GS-2004A-Q-27), which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil), and SECYT (Argentina). Table of the individual KS measurements with dates is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/502/505
CHANDRA CHARACTERIZATION OF X-RAY EMISSION IN THE YOUNG F-STAR BINARY SYSTEM HD 113766
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lisse, C. M.; Christian, D. J.; Wolk, S. J.
Using Chandra , we have obtained imaging X-ray spectroscopy of the 10–16 Myr old F-star binary HD 113766. We individually resolve the 1.″4 separation binary components for the first time in the X-ray and find a total 0.3–2.0 keV luminosity of 2.2 × 10{sup 29} erg s{sup −1}, consistent with previous RASS estimates. We find emission from the easternmost, infrared-bright, dusty member HD 113766A to be only ∼10% that of the western, infrared-faint member HD 113766B. There is no evidence for a 3rd late-type stellar or substellar member of HD 113766 with L {sub x} > 6 × 10{sup 25} erg s{sup −1} within 2′ ofmore » the binary pair. The ratio of the two stars’ X-ray luminosity is consistent with their assignments as F2V and F6V by Pecaut et al. The emission is soft for both stars, kT {sub Apec} = 0.30–0.50 keV, suggesting X-rays produced by stellar rotation and/or convection in young dynamos, but not accretion or outflow shocks, which we rule out. A possible 2.8 ± 0.15 (2 σ ) hr modulation in the HD 113766B X-ray emission is seen, but at very low confidence and of unknown provenance. Stellar wind drag models corresponding to L {sub x} ∼ 2 × 10{sup 29} erg s{sup −1} argue for a 1 mm dust particle lifetime around HD 113766B of only ∼90,0000 years, suggesting that dust around HD 113766B is quickly removed, whereas 1 mm sized dust around HD 113766A can survive for >1.5 × 10{sup 6} years. At 10{sup 28}–10{sup 29} erg s{sup −1} X-ray luminosity, astrobiologically important effects, like dust warming and X-ray photolytic organic synthesis, are likely for any circumstellar material in the HD 113766 systems.« less
Testing the Merger Paradigm: X-ray Observations of Radio-Selected Sub-Galactic-Scale Binary AGNs
NASA Astrophysics Data System (ADS)
Fu, Hai
2016-09-01
Interactions play an important role in galaxy evolution. Strong gas inflows are expected in the process of gas-rich mergers, which may fuel intense black hole accretion and star formation. Sub-galactic-scale binary/dual AGNs thus offer elegant laboratories to study the merger-driven co-evolution phase. However, previous samples of kpc-scale binaries are small and heterogeneous. We have identified a flux-limited sample of kpc-scale binary AGNs uniformly from a wide-area high-resolution radio survey conducted by the VLA. Here we propose Chandra X-ray characterization of a subset of four radio-confirmed binary AGNs at z 0.1. Our goal is to compare their X-ray properties with those of matched control samples to test the merger-driven co-evolution paradigm.
Accretion and Outflows in X-ray Binaries: What's Really Going on During X-ray Quiescence
NASA Astrophysics Data System (ADS)
MacDonald, Rachel K. D.; Bailyn, Charles D.; Buxton, Michelle
2015-01-01
X-ray binaries, consisting of a star and a stellar-mass black hole, are wonderful laboratories for studying accretion and outflows. They evolve on timescales quite accessible to us, unlike their supermassive cousins, and allow the possibility of gaining a deeper understanding of these two common astrophysical processes. Different wavelength regimes reveal different aspects of the systems: radio emission is largely generated by outflows and jets, X-ray emission by inner accretion flows, and optical/infrared (OIR) emission by the outer disk and companion star. The search for relationships between these different wavelengths is thus an area of active research, aiming to reveal deeper connections between accretion and outflows.Initial evidence for a strong, tight correlation between radio and X-ray emission has weakened as further observations and newly-discovered sources have been obtained. This has led to discussions of multiple tracks or clusters, or the possibility that no overall relation exists for the currently-known population of X-ray binaries. Our ability to distinguish among these options is hampered by a relative lack of observations at lower luminosities, and especially of truly X-ray quiescent (non-outbursting) systems. Although X-ray binaries spend the bulk of their existence in quiescence, few quiescent sources have been observed and multiple observations of individual sources are largely nonexistent. Here we discuss new observations of the lowest-luminosity quiescent X-ray binary, A0620-00, and the place this object occupies in investigations of the radio/X-ray plane. For the first time, we also incorporate simultaneous OIR data with the radio and X-ray data.In December 2013 we took simultaneous observations of A0620-00 in the X-ray (Chandra), the radio (EVLA), and the OIR (SMARTS 1.3m). These X-ray and radio data allowed us to investigate similarities among quiescent X-ray binaries, and changes over time for this individual object, in the radio/X-ray plane. In addition, our OIR observations allowed us to examine the radio and X-ray information in relation to the different OIR states of behavior (passive and active) known to exist during X-ray quiescence.
SWIFT REVEALS A ∼5.7 DAY SUPER-ORBITAL PERIOD IN THE M31 GLOBULAR CLUSTER X-RAY BINARY XB158
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnard, R.; Garcia, M. R.; Murray, S. S.
2015-03-01
The M31 globular cluster X-ray binary XB158 (a.k.a. Bo 158) exhibits intensity dips on a 2.78 hr period in some observations, but not others. The short period suggests a low mass ratio, and an asymmetric, precessing disk due to additional tidal torques from the donor star since the disk crosses the 3:1 resonance. Previous theoretical three-dimensional smoothed particle hydrodynamical modeling suggested a super-orbital disk precession period 29 ± 1 times the orbital period, i.e., ∼81 ± 3 hr. We conducted a Swift monitoring campaign of 30 observations over ∼1 month in order to search for evidence of such a super-orbital period. Fitting the 0.3-10 keV Swift X-Ray Telescopemore » luminosity light curve with a sinusoid yielded a period of 5.65 ± 0.05 days, and a >5σ improvement in χ{sup 2} over the best fit constant intensity model. A Lomb-Scargle periodogram revealed that periods of 5.4-5.8 days were detected at a >3σ level, with a peak at 5.6 days. We consider this strong evidence for a 5.65 day super-orbital period, ∼70% longer than the predicted period. The 0.3-10 keV luminosity varied by a factor of ∼5, consistent with variations seen in long-term monitoring from Chandra. We conclude that other X-ray binaries exhibiting similar long-term behavior are likely to also be X-ray binaries with low mass ratios and super-orbital periods.« less
Exploring X-ray Emission from Winds in Two Early B-type Binary Systems
NASA Astrophysics Data System (ADS)
Rotter, John P.; Hole, Tabetha; Ignace, Richard; Oskinova, Lida
2017-01-01
The winds of the most massive (O-type) stars have been well studied, but less is known about the winds of early-type B stars, especially in binaries. Extending O-star wind theory to these smaller stars, we would expect them to emit X-rays, and when in a B-star binary system, the wind collision should emit additional X-rays. This combined X-ray flux from nearby B-star binary systems should be detectable with current telescopes. Yet X-ray observations of two such systems with the Chandra Observatory not only show far less emission than predicted, but also vary significantly from each other despite having very similar observed characteristics. We will present these observations, and our work applying the classic Castor, Abbott, and Klein (CAK) wind theory, combined with more recent analytical wind-shock models, attempting to reproduce this unexpected range of observations.
NASA Astrophysics Data System (ADS)
Nazé, Y.; Antokhin, I. I.; Sana, H.; Gosset, E.; Rauw, G.
2005-05-01
We present the analysis of an extensive set of high-resolution spectroscopic observations of HD 93161, a visual binary with a separation of 2 arcsec. HD 93161 A is a spectroscopic binary, with both components clearly detected throughout the orbit. The primary star is most probably of spectral type O8V, while the secondary is likely an O9V. We obtain the first orbital solution for this system, characterized by a period of 8.566 +/- 0.004 d. The minimum masses of the primary and secondary stars are 22.2 +/- 0.6 and 17.0 +/- 0.4 Msolar, respectively. These values are quite large, suggesting a high inclination of the orbit. The second object, HD 93161 B, displays an O6.5V(f) spectral type and is thus slightly hotter than its neighbour. This star is at first sight single but presents radial velocity variations. Finally, we study HD 93161 in the X-ray domain. No significant variability is detected. The X-ray spectrum is well described by a 2T model with kT1~ 0.3 keV and kT2~ 0.7 keV. The X-ray luminosity is rather moderate, without any large emission excess imputable to a wind interaction.
Helium: lifting high-performance stencil kernels from stripped x86 binaries to halide DSL code
Mendis, Charith; Bosboom, Jeffrey; Wu, Kevin; ...
2015-06-03
Highly optimized programs are prone to bit rot, where performance quickly becomes suboptimal in the face of new hardware and compiler techniques. In this paper we show how to automatically lift performance-critical stencil kernels from a stripped x86 binary and generate the corresponding code in the high-level domain-specific language Halide. Using Halide's state-of-the-art optimizations targeting current hardware, we show that new optimized versions of these kernels can replace the originals to rejuvenate the application for newer hardware. The original optimized code for kernels in stripped binaries is nearly impossible to analyze statically. Instead, we rely on dynamic traces to regeneratemore » the kernels. We perform buffer structure reconstruction to identify input, intermediate and output buffer shapes. Here, we abstract from a forest of concrete dependency trees which contain absolute memory addresses to symbolic trees suitable for high-level code generation. This is done by canonicalizing trees, clustering them based on structure, inferring higher-dimensional buffer accesses and finally by solving a set of linear equations based on buffer accesses to lift them up to simple, high-level expressions. Helium can handle highly optimized, complex stencil kernels with input-dependent conditionals. We lift seven kernels from Adobe Photoshop giving a 75 % performance improvement, four kernels from Irfan View, leading to 4.97 x performance, and one stencil from the mini GMG multigrid benchmark netting a 4.25 x improvement in performance. We manually rejuvenated Photoshop by replacing eleven of Photoshop's filters with our lifted implementations, giving 1.12 x speedup without affecting the user experience.« less
SPECTRAL-TIMING ANALYSIS OF THE LOWER kHz QPO IN THE LOW-MASS X-RAY BINARY AQUILA X-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troyer, Jon S.; Cackett, Edward M., E-mail: jon.troyer@wayne.edu
2017-01-10
Spectral-timing products of kilohertz quasi-periodic oscillations (kHz QPOs) in low-mass X-ray binary (LMXB) systems, including energy- and frequency-dependent lags, have been analyzed previously in 4U 1608-52, 4U 1636-53, and 4U 1728-34. Here, we study the spectral-timing properties of the lower kHz QPO of the neutron star LMXB Aquila X-1 for the first time. We compute broadband energy lags as well as energy-dependent lags and the covariance spectrum using data from the Rossi X-ray Timing Explorer . We find characteristics similar to those of previously studied systems, including soft lags of ∼30 μ s between the 3.0–8.0 keV and 8.0–20.0 keVmore » energy bands at the average QPO frequency. We also find lags that show a nearly monotonic trend with energy, with the highest-energy photons arriving first. The covariance spectrum of the lower kHz QPO is well fit by a thermal Comptonization model, though we find a seed photon temperature higher than that of the mean spectrum, which was also seen in Peille et al. and indicates the possibility of a composite boundary layer emitting region. Lastly, we see in one set of observations an Fe K component in the covariance spectrum at 2.4- σ confidence, which may raise questions about the role of reverberation in the production of lags.« less
Orbital evolution and search for eccentricity and apsidal motion in the eclipsing HMXB 4U 1700-37
NASA Astrophysics Data System (ADS)
Islam, Nazma; Paul, Biswajit
2016-09-01
In the absence of detectable pulsations in the eclipsing high-mass X-ray binary 4U 1700-37, the orbital period decay is necessarily determined from the eclipse timing measurements. We have used the earlier reported mid-eclipse time measurements of 4U 1700-37 together with the new measurements from long-term light curves obtained with the all sky monitors RXTE-ASM, Swift-BAT and MAXI-GSC, as well as observations with RXTE-PCA, to measure the long-term orbital evolution of the binary. The orbital period decay rate of the system is estimated to be {dot{P}}/P = -(4.7 ± 1.9) × 10^{-7} yr-1, smaller compared to its previous estimates. We have also used the mid-eclipse times and the eclipse duration measurements obtained from 10-years-long X-ray light curve with Swift-BAT to separately put constraints on the eccentricity of the binary system and attempted to measure any apsidal motion. For an apsidal motion rate greater than 5 deg yr-1, the eccentricity is found to be less than 0.008, which limits our ability to determine the apsidal motion rate from the current data. We discuss the discrepancy of the current limit of eccentricity with the earlier reported values from radial velocity measurements of the companion star.
Large Magellanic Cloud Distance and Structure from Near-Infrared Red Clump Observations
NASA Astrophysics Data System (ADS)
Koerwer, Joel F.
2009-07-01
We have applied the Infrared Survey Facility Magellanic Clouds Point-Source Catalog to the mapping of the red clump (RC) distance modulus across the Large Magellanic Cloud (LMC). Using the J- (1.25 μm) and H- (1.63 μm) band data to derive a reddening free luminosity function and a theoretical RC absolute magnitude from stellar evolution libraries, we estimate a distance modulus to the LMC of μ = 18.54 ± 0.06. The best fitting plane inclination, i, and the position angle of the line of nodes, phi, have little dependence on the assumed RC absolute magnitude; we find i = 23fdg5 ± 0fdg4 and phi = 154fdg6 ± 1fdg2. It was also noted that many fields included a significant asymptotic giant branch bump population that must be accounted for.
Sub-second optical flaring in GX 339-4 during the 2017 outburst early rise
NASA Astrophysics Data System (ADS)
Gandhi, P.; Kotze, M. M.; Buckley, D. A. H.; Paice, J. A.; Altamirano, D.; Charles, P. A.; Russell, D. M.; Fabian, A. C.
2017-10-01
The black hole X-ray binary GX 339-4 has been caught at the early stage of a new outburst. According to optical monitoring, the outburst began between 2017-08-24 and 2017-09-14, presumably in the outer disc (ATel #10797).
VizieR Online Data Catalog: Ages and masses of LMC clusters (de Grijs+, 2013)
NASA Astrophysics Data System (ADS)
de Grijs, R.; Goodwin, S. P.; Anders, P.
2014-10-01
We specifically focused on the catalogue of Glatt, Grebel & Koch (2010, Cat. J/A+A/571/A50), who compiled data of 1193 populous LMC clusters with ages of up to 1 Gyr based on the most up-to-date and comprehensive LMC object catalogue of Bica et al. (2008, Cat. J/MNRAS/389/678). Glatt et al. (2010, Cat. J/A+A/571/A50) used the optical broad-band photometry from the Magellanic Clouds Photometric Survey (MCPS; Zaritsky et al., 2004, Cat. J/AJ/128/1606) to construct colour-magnitude diagrams (CMDs) and subsequently determined ages for their entire sample based on isochrone fits. (1 data file).
NASA Astrophysics Data System (ADS)
Yukita, Mihoko; Tzanavaris, Panayiotis; Corbet, Robin; Ptak, Andrew; Hornschemeier, Ann; Pottschmidt, Katja; Ballhausen, Ralf; Enoto, Teruaki; Antoniou, Vallia; Lehmer, Bret; Maccarone, Thomas J.; Wik, Daniel; Williams, Ben; Zezas, Andreas
2018-01-01
Recent NuSTAR-Swift observations revealed that a single resolved X-ray source, Swift J0042.6+4112, with Lx of a few times 1038 erg/s dominates the hard X-ray emission from the Andromeda galaxy. HST-based stellar population synthesis modeling combined with the 0.5-50 keV spectral shape suggests that this might be an X-ray pulsar with an intermediate- (or low-) mass donor. Here we further explore the alternative scenario of a symbiotic or ultracompact X-ray binary, based on long-term variability from Swift observations between 2005 and 2016. We find that the soft (0.3-8.0 keV) X-ray flux varies within a factor of 4 but does not exhibit transient behavior. Its power spectrum suggests a 6.1-day period. Additionally, we find a strong 3s-period candidate from both NuSTAR and XMM observations taken in 2017. If interpreted as an orbital and spin period respectively, the source's temporal behavior would not support either the symbiotic or the ultracompact X-ray binary scenario. Rather, it is more consistent with an accreting pulsar with a higher mass donor.
NASA Astrophysics Data System (ADS)
Messenger, C.; Bulten, H. J.; Crowder, S. G.; Dergachev, V.; Galloway, D. K.; Goetz, E.; Jonker, R. J. G.; Lasky, P. D.; Meadors, G. D.; Melatos, A.; Premachandra, S.; Riles, K.; Sammut, L.; Thrane, E. H.; Whelan, J. T.; Zhang, Y.
2015-07-01
The low-mass X-ray binary Scorpius X-1 (Sco X-1) is potentially the most luminous source of continuous gravitational-wave radiation for interferometers such as LIGO and Virgo. For low-mass X-ray binaries this radiation would be sustained by active accretion of matter from its binary companion. With the Advanced Detector Era fast approaching, work is underway to develop an array of robust tools for maximizing the science and detection potential of Sco X-1. We describe the plans and progress of a project designed to compare the numerous independent search algorithms currently available. We employ a mock-data challenge in which the search pipelines are tested for their relative proficiencies in parameter estimation, computational efficiency, robustness, and most importantly, search sensitivity. The mock-data challenge data contains an ensemble of 50 Scorpius X-1 (Sco X-1) type signals, simulated within a frequency band of 50-1500 Hz. Simulated detector noise was generated assuming the expected best strain sensitivity of Advanced LIGO [1] and Advanced VIRGO [2] (4 ×10-24 Hz-1 /2 ). A distribution of signal amplitudes was then chosen so as to allow a useful comparison of search methodologies. A factor of 2 in strain separates the quietest detected signal, at 6.8 ×10-26 strain, from the torque-balance limit at a spin frequency of 300 Hz, although this limit could range from 1.2 ×10-25 (25 Hz) to 2.2 ×10-26 (750 Hz) depending on the unknown frequency of Sco X-1. With future improvements to the search algorithms and using advanced detector data, our expectations for probing below the theoretical torque-balance strain limit are optimistic.
A low-luminosity soft state in the short-period black hole X-ray binary Swift J1753.5-0127
NASA Astrophysics Data System (ADS)
Shaw, A. W.; Gandhi, P.; Altamirano, D.; Uttley, P.; Tomsick, J. A.; Charles, P. A.; Fürst, F.; Rahoui, F.; Walton, D. J.
2016-05-01
We present results from the spectral fitting of the candidate black hole X-ray binary Swift J1753.5-0127 in an accretion state previously unseen in this source. We fit the 0.7-78 keV spectrum with a number of models, however the preferred model is one of a multitemperature disc with an inner disc temperature kTin = 0.252 ± 0.003 keV scattered into a steep power-law with photon index Γ =6.39^{+0.08}_{-0.02} and an additional hard power-law tail (Γ = 1.79 ± 0.02). We report on the emergence of a strong disc-dominated component in the X-ray spectrum and we conclude that the source has entered the soft state for the first time in its ˜10 yr prolonged outburst. Using reasonable estimates for the distance to the source (3 kpc) and black hole mass (5 M⊙), we find the unabsorbed luminosity (0.1-100 keV) to be ≈0.60 per cent of the Eddington luminosity, making this one of the lowest luminosity soft states recorded in X-ray binaries. We also find that the accretion disc extended towards the compact object during its transition from hard to soft, with the inner radius estimated to be R_{in}=28.0^{+0.7}_{-0.4} R_g or ˜12Rg, dependent on the boundary condition chosen, assuming the above distance and mass, a spectral hardening factor f = 1.7 and a binary inclination I = 55°.
The Connection Between X-ray Binaries and Star Clusters in the Antennae
NASA Astrophysics Data System (ADS)
Rangelov, Blagoy; Chandar, R.; Prestwich, A.
2011-05-01
High Mass X-ray Binaries (HMXBs) are believed to form in massive, compact star clusters. However the correlation between these young binary star systems and properties of their parent clusters are still poorly known. We compare the locations of 82 X-ray binaries detected in the merging Antennae galaxies by Zezas et al. (2006) based on observations taken with the Chandra Space Telescope, with a catalog of optically selected star clusters presented recently by Whitmore et al. (2010) based on observations taken with the Hubble Space Telescope. We find 22 X-ray binaries coincident or nearly coincident with star clusters. The ages of the clusters were estimated by comparing their UBVIHα colors with predictions from stellar evolutionary models. We find that 14 of the 22 coincident sources (64%) are hosted by star clusters with ages of 6 Myr or less. At these very young ages, only stars initially more massive than M ≥ 30 Msun have evolved into compact remnants, almost certainly black holes. Therefore, these 14 sources are likely to be black hole binaries. Five of the XRBs are hosted by young clusters with ages τ 30-50 Myr, while three are hosted by intermediate age clusters with τ 100-300 Myr. We suggest that these older X-ray binaries likely have neutron stars as the compact object. We conclude that precision age-dating of star clusters, which are spatially coincident with XRBs in nearby star forming galaxies, is a powerful method of constraining the nature of the XRBs.
A magnetic model for low/hard state of black hole binaries
NASA Astrophysics Data System (ADS)
Ye, Yong-Chun; Wang, Ding-Xiong; Huang, Chang-Yin; Cao, Xiao-Feng
2016-03-01
A magnetic model for the low/hard state (LHS) of two black hole X-ray binaries (BHXBs), H1743-322 and GX 339-4, is proposed based on transport of the magnetic field from a companion into an accretion disk around a black hole (BH). This model consists of a truncated thin disk with an inner advection-dominated accretion flow (ADAF). The spectral profiles of the sources are fitted in agreement with the data observed at four different dates corresponding to the rising phase of the LHS. In addition, the association of the LHS with a quasi-steady jet is modeled based on transport of magnetic field, where the Blandford-Znajek (BZ) and Blandford-Payne (BP) processes are invoked to drive the jets from BH and inner ADAF. It turns out that the steep radio/X-ray correlations observed in H1743-322 and GX 339-4 can be interpreted based on our model.
A Chandra Survey of Milky Way Globular Clusters. I. Emissivity and Abundance of Weak X-Ray Sources
NASA Astrophysics Data System (ADS)
Cheng, Zhongqun; Li, Zhiyuan; Xu, Xiaojie; Li, Xiangdong
2018-05-01
Based on archival Chandra data, we have carried out an X-ray survey of 69, or nearly half the known population of, Milky Way globular clusters (GCs), focusing on weak X-ray sources, mainly cataclysmic variables (CVs) and coronally active binaries (ABs). Using the cumulative X-ray luminosity per unit stellar mass (i.e., X-ray emissivity) as a proxy of the source abundance, we demonstrate a paucity (lower by 41% ± 27% on average) of weak X-ray sources in most GCs relative to the field, which is represented by the Solar Neighborhood and Local Group dwarf elliptical galaxies. We also revisit the mutual correlations among the cumulative X-ray luminosity (L X), cluster mass (M), and stellar encounter rate (Γ), finding {L}{{X}}\\propto {M}0.74+/- 0.13, {L}{{X}}\\propto {{{Γ }}}0.67+/- 0.07 and {{Γ }}\\propto {M}1.28+/- 0.17. The three quantities can further be expressed as {L}{{X}}\\propto {M}0.64+/- 0.12 {{{Γ }}}0.19+/- 0.07, which indicates that the dynamical formation of CVs and ABs through stellar encounters in GCs is less dominant than previously suggested, and that the primordial formation channel has a substantial contribution. Taking these aspects together, we suggest that a large fraction of primordial, soft binaries have been disrupted in binary–single or binary–binary stellar interactions before they could otherwise evolve into X-ray-emitting close binaries, whereas the same interactions also have led to the formation of new close binaries. No significant correlations between {L}{{X}}/{L}K and cluster properties, including dynamical age, metallicity, and structural parameters, are found.
Accreting binary population synthesis and feedback prescriptions
NASA Astrophysics Data System (ADS)
Fragos, Tassos
2016-04-01
Studies of extagalactic X-ray binary populations have shown that the characteristics of these populations depend strongly on the characteristics of the host galaxy's parent stellar population (e.g. star-formation history and metallicity). These dependencies not only make X-ray binaries promising for aiding in the measurement of galaxy properties themselves, but they also have important astrophysical and cosmological implications. For example, due to the relatively young stellar ages and primordial metallicities in the early Universe (z > 3), it is predicted that X-ray binaries were more luminous than today. The more energetic X-ray photons, because of their long mean-free paths, can escape the galaxies where they are produced, and interact at long distances with the intergalactic medium. This could result in a smoother spatial distribution of ionized regions, and more importantly in an overall warmer intergalactic medium. The energetic X-ray photons emitted from X-ray binaries dominate the X-ray radiation field over active galactic nuclei at z > 6 - 8, and hence Χ-ray binary feedback can be a non-negligible contributor to the heating and reionization of the inter-galactic medium in the early universe. The spectral energy distribution shape of the XRB emission does not change significantly with redshift, suggesting that the same XRB subpopulation, namely black-hole XRBs in the high-soft state, dominates the cumulative emission at all times. On the contrary, the normalization of the spectral energy distribution does evolve with redshift. To zeroth order, this evolution is driven by the cosmic star-formation rate evolution. However, the metallicity evolution of the universe and the mean stellar population age are two important factors that affect the X-ray emission from high-mass and low-mass XRBs, respectively. In this talk, I will review recent studies on the potential feedback from accreting binary populations in galactic and cosmological scales. Furthermore, I will discuss which are the next steps towards a more physically realisitc modelling of accreting compact object populations in the early Universe.
ERIC Educational Resources Information Center
Fromme, Kim; Corbin, William
2004-01-01
The Lifestyle Management Class (LMC) was evaluated as a universal and targeted alcohol prevention program among voluntary and mandated college students. The relative efficacy of peer- and professional-led group interventions was also tested in this randomized, controlled design. LMC participants showed decreases in driving after drinking relative…
The Orbital Parameters and Nature of the X-ray Pulsar IGR J16393-4643 Using Pulse Timing Analysis
NASA Astrophysics Data System (ADS)
Pearlman, Aaron B.; Corbet, R. H. D.; Pottschmidt, K.; Skinner, G. K.
2011-09-01
A 3.7 day orbital period was previously suggested for the 910 s X-ray pulsar IGR J16393-4643 from a pulse timing study of widely separated X-ray observations (Thompson et al., 2006), placing the system in the supergiant wind-fed region of the Ppulse-Porb diagram. However, orbital periods of 50.2 and 8.1 days could not be excluded. Nespoli et al. (2010) refute this wind-accreting high-mass X-ray binary classification and suggest a symbiotic X-ray binary (SyXB) designation based on infrared spectroscopy of the proposed counterpart and the potential 50.2 day orbital solution. SyXBs are low-mass X-ray binaries in which a neutron star accretes from the inhomogeneous medium around an M-type giant companion. We find that two statistically independent light curves of IGR J16393-4643, from the Swift Burst Alert Telescope (15-50 keV) and the Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) Galactic bulge scans (2-10 keV), show highly significant orbital modulation near 4.24 days. Making use of this precise orbital period, we present the results from pulse arrival time analysis on IGR J16393-4643 using RXTE PCA observations. We provide significantly improved phase-connected pulse timing results using archival observations presented in Thompson et al. (2006) and additional pulse timing data not included in their study to determine the orbital parameters of the system. The derived 7.5 M⊙ mass function is inconsistent with a SyXB identification.
The origin of the LMC stellar bar: clues from the SFH of the bar and inner disc
NASA Astrophysics Data System (ADS)
Monteagudo, L.; Gallart, C.; Monelli, M.; Bernard, E. J.; Stetson, P. B.
2018-01-01
We discuss the origin of the Large Magellanic Cloud (LMC) stellar bar by comparing the star formation histories (SFHs) obtained from deep colour-magnitude diagrams (CMDs) in the bar and in a number of fields in different directions within the inner disc. The CMDs, reaching the oldest main-sequence turn-offs in these very crowded fields, have been obtained with VIMOS on the Very Large Telescope in the service mode, under very good seeing conditions. We show that the SFHs of all fields share the same patterns, with consistent variations of the star formation rate as a function of time in all of them. We therefore conclude that no specific event of star formation can be identified with the formation of the LMC bar, which instead likely formed from a redistribution of disc material which occurred when the LMC disc became bar unstable, and shared a common SFH with the inner disc thereafter. The strong similarity between the SFH of the centre and edge of the bar rules out the expected significant spatial variations of the SFH across the bar.
1E 1048.5 + 5421 - A new 114 minute AM Herculis binary
NASA Technical Reports Server (NTRS)
Morris, Simon L.; Schmidt, Gary D.; Liebert, James; Gioia, Isabella M.; Maccacaro, Tommaso
1987-01-01
The discovery of a new AM Herculis binary system, found as a serendipitous Einstein X-ray source, is described. Like the previously discovered mass-transfer binaries involving synchronously rotating magnetic white-dwarf primaries, the system exhibits strong circular polarization, X-ray and optical continuum variations, and optical emission lines, all of which seem to be modulated with these binary periods of 114.5 + or - 0.2 minutes. Although all data are not concurrent, the new system appears to possess the highest ratio of F(x)/F(opt) yet found for an AM Her system. The surprising accumulation of AM Her variables with periods near 114 minute is commented on.
EMBEDDED CLUSTERS IN THE LARGE MAGELLANIC CLOUD USING THE VISTA MAGELLANIC CLOUDS SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romita, Krista; Lada, Elizabeth; Cioni, Maria-Rosa, E-mail: k.a.romita@ufl.edu, E-mail: elada@ufl.edu, E-mail: mcioni@aip.de
We present initial results of the first large-scale survey of embedded star clusters in molecular clouds in the Large Magellanic Cloud (LMC) using near-infrared imaging from the Visible and Infrared Survey Telescope for Astronomy Magellanic Clouds Survey. We explored a ∼1.65 deg{sup 2} area of the LMC, which contains the well-known star-forming region 30 Doradus as well as ∼14% of the galaxy’s CO clouds, and identified 67 embedded cluster candidates, 45 of which are newly discovered as clusters. We have determined the sizes, luminosities, and masses for these embedded clusters, examined the star formation rates (SFRs) of their corresponding molecularmore » clouds, and made a comparison between the LMC and the Milky Way. Our preliminary results indicate that embedded clusters in the LMC are generally larger, more luminous, and more massive than those in the local Milky Way. We also find that the surface densities of both embedded clusters and molecular clouds is ∼3 times higher than in our local environment, the embedded cluster mass surface density is ∼40 times higher, the SFR is ∼20 times higher, and the star formation efficiency is ∼10 times higher. Despite these differences, the SFRs of the LMC molecular clouds are consistent with the SFR scaling law presented in Lada et al. This consistency indicates that while the conditions of embedded cluster formation may vary between environments, the overall process within molecular clouds may be universal.« less
Derveni, Mariliza; Hands, Alex; Allen, Marjorie; Sims, Mark R; Cullen, David C
2012-08-01
The Life Marker Chip (LMC) instrument is part of the proposed payload on the ESA ExoMars rover that is scheduled for launch in 2018. The LMC will use antibody-based assays to detect molecular signatures of life in samples obtained from the shallow subsurface of Mars. For the LMC antibodies, the ability to resist inactivation due to space particle radiation (both in transit and on the surface of Mars) will therefore be a prerequisite. The proton and neutron components of the mission radiation environment are those that are expected to have the dominant effect on the operation of the LMC. Modeling of the radiation environment for a mission to Mars led to the calculation of nominal mission fluences for proton and neutron radiation. Various combinations and multiples of these values were used to demonstrate the effects of radiation on antibody activity, primarily at the radiation levels envisaged for the ExoMars mission as well as at much higher levels. Five antibodies were freeze-dried in a variety of protective molecular matrices and were exposed to various radiation conditions generated at a cyclotron facility. After exposure, the antibodies' ability to bind to their respective antigens was assessed and found to be unaffected by ExoMars mission level radiation doses. These experiments indicated that the expected radiation environment of a Mars mission does not pose a significant risk to antibodies packaged in the form anticipated for the LMC instrument.
Park, Hui Gyu; Cho, Hyung Taek; Song, Myoung-Chong; Kim, Sang Bum; Kwon, Eung Gi; Choi, Nag Jin; Kim, Young Jun
2012-03-28
This study was performed to characterize natural CLnA isomer production by Bifidobacterium breve LMC520 of human origin in comparison to conjugated linoleic acid (CLA) production. B. breve LMC520 was found to be highly active in terms of CLnA production, of which the major portion was identified as cis-9,trans-11,cis-15 CLnA isomer by GC-MS and NMR analysis. B. breve LMC520 was incubated for 48 h using MRS medium (containing 0.05% L-cysteine · HCl) under different environmental conditions such as atmosphere, pH, and substrate concentration. The high conversion rate of α-linolenic acid (α-LNA) to CLnA (99%) was retained up to 2 mM α-LNA, and the production was proportionally increased nearly 7-fold with 8 mM by the 6 h of incubation under anaerobic conditions at a wide range of pH values (between 5 and 9). When α-LNA was compared with linoleic acid (LA) as a substrate for isomerization by B. breve LMC520, the conversion of α-LNA was higher than that of LA. These results demonstrated that specific CLnA isomer could be produced through active bacterial conversion at an optimized condition. Because many conjugated octadecatrienoic acids in nature are shown to play many positive roles, the noble isomer found in this study has potential as a functional source.
A New Two-fluid Radiation-hydrodynamical Model for X-Ray Pulsar Accretion Columns
NASA Astrophysics Data System (ADS)
West, Brent F.; Wolfram, Kenneth D.; Becker, Peter A.
2017-02-01
Previous research centered on the hydrodynamics in X-ray pulsar accretion columns has largely focused on the single-fluid model, in which the super-Eddington luminosity inside the column decelerates the flow to rest at the stellar surface. This type of model has been relatively successful in describing the overall properties of the accretion flows, but it does not account for the possible dynamical effect of the gas pressure. On the other hand, the most successful radiative transport models for pulsars generally do not include a rigorous treatment of the dynamical structure of the column, instead assuming an ad hoc velocity profile. In this paper, we explore the structure of X-ray pulsar accretion columns using a new, self-consistent, “two-fluid” model, which incorporates the dynamical effect of the gas and radiation pressures, the dipole variation of the magnetic field, the thermodynamic effect of all of the relevant coupling and cooling processes, and a rigorous set of physical boundary conditions. The model has six free parameters, which we vary in order to approximately fit the phase-averaged spectra in Her X-1, Cen X-3, and LMC X-4. In this paper, we focus on the dynamical results, which shed new light on the surface magnetic field strength, the inclination of the magnetic field axis relative to the rotation axis, the relative importance of gas and radiation pressures, and the radial variation of the ion, electron, and inverse-Compton temperatures. The results obtained for the X-ray spectra are presented in a separate paper.
Energetics of a uranothorite (Th 1–xU xSiO 4) solid solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Xiaofeng; Szenknect, Stephanie; Mesbah, Adel
High-temperature oxide melt solution calorimetric measurements were completed to determine the enthalpies of formation of the uranothorite, (USiO 4) x–(ThSiO 4) 1–x, solid solution. Phase-pure samples with x values of 0, 0.11, 0.21, 0.35, 0.71, and 0.84 were prepared, purified, and characterized by powder X-ray diffraction, electron probe microanalysis, thermogravimetric analysis and differential scanning calorimetry coupled with in situ mass spectrometry, and high-temperature oxide melt solution calorimetry. This work confirms the energetic metastability of coffinite, USiO 4, and U-rich intermediate silicate phases with respect to a mixture of binary oxides. Furthermore, variations in unit cell parameters and negative excess volumesmore » of mixing, coupled with strongly exothermic enthalpies of mixing in the solid solution, suggest short-range cation ordering that can stabilize intermediate compositions, especially near x = 0.5.« less
Energetics of a uranothorite (Th 1–xU xSiO 4) solid solution
Guo, Xiaofeng; Szenknect, Stephanie; Mesbah, Adel; ...
2016-10-11
High-temperature oxide melt solution calorimetric measurements were completed to determine the enthalpies of formation of the uranothorite, (USiO 4) x–(ThSiO 4) 1–x, solid solution. Phase-pure samples with x values of 0, 0.11, 0.21, 0.35, 0.71, and 0.84 were prepared, purified, and characterized by powder X-ray diffraction, electron probe microanalysis, thermogravimetric analysis and differential scanning calorimetry coupled with in situ mass spectrometry, and high-temperature oxide melt solution calorimetry. This work confirms the energetic metastability of coffinite, USiO 4, and U-rich intermediate silicate phases with respect to a mixture of binary oxides. Furthermore, variations in unit cell parameters and negative excess volumesmore » of mixing, coupled with strongly exothermic enthalpies of mixing in the solid solution, suggest short-range cation ordering that can stabilize intermediate compositions, especially near x = 0.5.« less
Rix, Catherine S; Sims, Mark R; Cullen, David C
2011-11-01
The proposed ExoMars mission, due to launch in 2018, aims to look for evidence of extant and extinct life in martian rocks and regolith. Previous attempts to detect organic molecules of biological or abiotic origin on Mars have been unsuccessful, which may be attributable to destruction of these molecules by perchlorate salts during pyrolysis sample extraction techniques. Organic molecules can also be extracted and measured with solvent-based systems. The ExoMars payload includes the Life Marker Chip (LMC) instrument, capable of detecting biomarker molecules of extant and extinct Earth-like life in liquid extracts of martian samples with an antibody microarray assay. The aim of the work reported here was to investigate whether the presence of perchlorate salts, at levels similar to those at the NASA Phoenix landing site, would compromise the LMC extraction and detection method. To test this, we implemented an LMC-representative sample extraction process with an LMC-representative antibody assay and used these to extract and analyze a model sample that consisted of a Mars analog sample matrix (JSC Mars-1) spiked with a representative organic molecular target (pyrene, an example of abiotic meteoritic infall targets) in the presence of perchlorate salts. We found no significant change in immunoassay function when using pyrene standards with added perchlorate salts. When model samples spiked with perchlorate salts were subjected to an LMC-representative liquid extraction, immunoassays functioned in a liquid extract and detected extracted pyrene. For the same model sample matrix without perchlorate salts, we observed anomalous assay signals that coincided with yellow coloration of the extracts. This unexpected observation is being studied further. This initial study indicates that the presence of perchlorate salts, at levels similar to those detected at the NASA Phoenix landing site, is unlikely to prevent the LMC from extracting and detecting organic molecules from martian samples.
Kumar, Veena; Croxson, Paula L; Simonyan, Kristina
2016-04-13
The laryngeal motor cortex (LMC) is essential for the production of learned vocal behaviors because bilateral damage to this area renders humans unable to speak but has no apparent effect on innate vocalizations such as human laughing and crying or monkey calls. Several hypotheses have been put forward attempting to explain the evolutionary changes from monkeys to humans that potentially led to enhanced LMC functionality for finer motor control of speech production. These views, however, remain limited to the position of the larynx area within the motor cortex, as well as its connections with the phonatory brainstem regions responsible for the direct control of laryngeal muscles. Using probabilistic diffusion tractography in healthy humans and rhesus monkeys, we show that, whereas the LMC structural network is largely comparable in both species, the LMC establishes nearly 7-fold stronger connectivity with the somatosensory and inferior parietal cortices in humans than in macaques. These findings suggest that important "hard-wired" components of the human LMC network controlling the laryngeal component of speech motor output evolved from an already existing, similar network in nonhuman primates. However, the evolution of enhanced LMC-parietal connections likely allowed for more complex synchrony of higher-order sensorimotor coordination, proprioceptive and tactile feedback, and modulation of learned voice for speech production. The role of the primary motor cortex in the formation of a comprehensive network controlling speech and language has been long underestimated and poorly studied. Here, we provide comparative and quantitative evidence for the significance of this region in the control of a highly learned and uniquely human behavior: speech production. From the viewpoint of structural network organization, we discuss potential evolutionary advances of enhanced temporoparietal cortical connections with the laryngeal motor cortex in humans compared with nonhuman primates that may have contributed to the development of finer vocal motor control necessary for speech production. Copyright © 2016 the authors 0270-6474/16/364170-12$15.00/0.
Hubble Supernova Bubble Resembles Holiday Ornament
2017-12-08
NASA image release December 14, 2010 A delicate sphere of gas, photographed by NASA's Hubble Space Telescope, floats serenely in the depths of space. The pristine shell, or bubble, is the result of gas that is being shocked by the expanding blast wave from a supernova. Called SNR 0509-67.5 (or SNR 0509 for short), the bubble is the visible remnant of a powerful stellar explosion in the Large Magellanic Cloud (LMC), a small galaxy about 160,000 light-years from Earth. Ripples in the shell's surface may be caused by either subtle variations in the density of the ambient interstellar gas, or possibly driven from the interior by pieces of the ejecta. The bubble-shaped shroud of gas is 23 light-years across and is expanding at more than 11 million miles per hour (5,000 kilometers per second). Astronomers have concluded that the explosion was one of an especially energetic and bright variety of supernovae. Known as Type Ia, such supernova events are thought to result from a white dwarf star in a binary system that robs its partner of material, takes on much more mass than it is able to handle, and eventually explodes. Hubble's Advanced Camera for Surveys observed the supernova remnant on Oct. 28, 2006 with a filter that isolates light from glowing hydrogen seen in the expanding shell. These observations were then combined with visible-light images of the surrounding star field that were imaged with Hubble's Wide Field Camera 3 on Nov. 4, 2010. With an age of about 400 years as seen from Earth, the supernova might have been visible to southern hemisphere observers around the year 1600, however, there are no known records of a "new star" in the direction of the LMC near that time. A more recent supernova in the LMC, SN 1987A, did catch the eye of Earth viewers and continues to be studied with ground- and space-based telescopes, including Hubble. For images and more information about SNR 0509, visit: hubblesite.org/news/2010/27 heritage.stsci.edu/2010/27 www.nasa.gov/hubble The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI) conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) Acknowledgment: J. Hughes (Rutgers University) NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook
HST spectrum and timing of the ultracompact X-ray binary candidate 47 Tuc X9
NASA Astrophysics Data System (ADS)
Tudor, V.; Miller-Jones, J. C. A.; Knigge, C.; Maccarone, T. J.; Tauris, T. M.; Bahramian, A.; Chomiuk, L.; Heinke, C. O.; Sivakoff, G. R.; Strader, J.; Plotkin, R. M.; Soria, R.; Albrow, M. D.; Anderson, G. E.; van den Berg, M.; Bernardini, F.; Bogdanov, S.; Britt, C. T.; Russell, D. M.; Zurek, D. R.
2018-05-01
To confirm the nature of the donor star in the ultracompact X-ray binary candidate 47 Tuc X9, we obtained optical spectra (3000-10 000 Å) with the Hubble Space Telescope / Space Telescope Imaging Spectrograph. We find no strong emission or absorption features in the spectrum of X9. In particular, we place 3σ upper limits on the H α and He II λ4686 emission line equivalent widths - EWH α ≲ 14 Å and -EW_{He {II}} ≲ 9 Å, respectively. This is much lower than seen for typical X-ray binaries at a similar X-ray luminosity (which, for L_2-10 keV ≈ 10^{33}-10^{34} erg s-1 is typically - EWH α ˜ 50 Å). This supports our previous suggestion, by Bahramian et al., of an H-poor donor in X9. We perform timing analysis on archival far-ultraviolet, V- and I-band data to search for periodicities. In the optical bands, we recover the 7-d superorbital period initially discovered in X-rays, but we do not recover the orbital period. In the far-ultraviolet, we find evidence for a 27.2 min period (shorter than the 28.2 min period seen in X-rays). We find that either a neutron star or black hole could explain the observed properties of X9. We also perform binary evolution calculations, showing that the formation of an initial black hole/ He-star binary early in the life of a globular cluster could evolve into a present-day system such as X9 (should the compact object in this system indeed be a black hole) via mass-transfer driven by gravitational wave radiation.
NASA Astrophysics Data System (ADS)
Mondal, Aditya S.; Pahari, Mayukh; Dewangan, G. C.; Misra, R.; Raychaudhuri, B.
2017-04-01
We analyse two simultaneous NuSTAR and Swift data of the Atoll-type neutron star (NS) X-ray binary 4U 1728-34 observed on 2013 October 1 and 3. We infer that the first and the second observations belong to the island state and the lower banana state, respectively. During island state, four type-I X-ray bursts are observed within 60 ks exposure. From the time-resolved spectral analysis of each burst with NuSTAR, the blackbody temperature kTbb are found to vary between 1.3 and 3.0 keV, while the blackbody normalizations (km/10 kpc)2 vary in the range 20-200, which translates to blackbody radii of 3.5-7.4 km for an assumed distance of 5 kpc. The persistent, joint energy spectra from Swift and NuSTAR for both observations in the energy band 1-79 keV are well described with thermal emission from the NS surface (kTbb ≃ 1-2.5 keV), Comptonized emission of thermal seed photons from the hot boundary layer/corona and the strong reflection component from the accretion disc. We detect a broad iron line in the 5-8 keV band and reflection hump in the 15-30 keV band modelled by the relxill reflection model. Joint spectral fitting constrains the inclination angle of the binary system and inner disc radius to be 22°-40° and (2.0-4.3) × RISCO, respectively. We estimate the magnetic field to be (1.8-6.5) × 108 G. The X-ray luminosity of the source during the island and lower banana states are found to be LX = 1.1 and 1.6 × 1037 erg s-1, respectively, which correspond to ˜6 per cent and ˜9 per cent of the Eddington luminosity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mapelli, Michela; Zampieri, Luca, E-mail: michela.mapelli@oapd.inaf.it
2014-10-10
We have run 600 N-body simulations of intermediate-mass (∼3500 M {sub ☉}) young star clusters (SCs; with three different metallicities (Z = 0.01, 0.1, and 1 Z {sub ☉}). The simulations include the dependence of stellar properties and stellar winds on metallicity. Massive stellar black holes (MSBHs) with mass >25 M {sub ☉} are allowed to form through direct collapse of very massive metal-poor stars (Z < 0.3 Z {sub ☉}). We focus on the demographics of black hole (BH) binaries that undergo mass transfer via Roche lobe overflow (RLO). We find that 44% of all binaries that undergo anmore » RLO phase (RLO binaries) formed through dynamical exchange. RLO binaries that formed via exchange (RLO-EBs) are powered by more massive BHs than RLO primordial binaries (RLO-PBs). Furthermore, the RLO-EBs tend to start the RLO phase later than the RLO-PBs. In metal-poor SCs (0.01-0.1 Z {sub ☉}), >20% of all RLO binaries are powered by MSBHs. The vast majority of RLO binaries powered by MSBHs are RLO-EBs. We have produced optical color-magnitude diagrams of the simulated RLO binaries, accounting for the emission of both the donor star and the irradiated accretion disk. We find that RLO-PBs are generally associated with bluer counterparts than RLO-EBs. We compare the simulated counterparts with the observed counterparts of nine ultraluminous X-ray sources. We discuss the possibility that IC 342 X-1, Ho IX X-1, NGC 1313 X-2, and NGC 5204 X-1 are powered by an MSBH.« less
A density cusp of quiescent X-ray binaries in the central parsec of the Galaxy
NASA Astrophysics Data System (ADS)
Hailey, Charles J.; Mori, Kaya; Bauer, Franz E.; Berkowitz, Michael E.; Hong, Jaesub; Hord, Benjamin J.
2018-04-01
The existence of a ‘density cusp’—a localized increase in number—of stellar-mass black holes near a supermassive black hole is a fundamental prediction of galactic stellar dynamics. The best place to detect such a cusp is in the Galactic Centre, where the nearest supermassive black hole, Sagittarius A*, resides. As many as 20,000 black holes are predicted to settle into the central parsec of the Galaxy as a result of dynamical friction; however, so far no density cusp of black holes has been detected. Low-mass X-ray binary systems that contain a stellar-mass black hole are natural tracers of isolated black holes. Here we report observations of a dozen quiescent X-ray binaries in a density cusp within one parsec of Sagittarius A*. The lower-energy emission spectra that we observed in these binaries is distinct from the higher-energy spectra associated with the population of accreting white dwarfs that dominates the central eight parsecs of the Galaxy. The properties of these X-ray binaries, in particular their spatial distribution and luminosity function, suggest the existence of hundreds of binary systems in the central parsec of the Galaxy and many more isolated black holes. We cannot rule out a contribution to the observed emission from a population (of up to about one-half the number of X-ray binaries) of rotationally powered, millisecond pulsars. The spatial distribution of the binary systems is a relic of their formation history, either in the stellar disk around Sagittarius A* (ref. 7) or through in-fall from globular clusters, and constrains the number density of sources in the modelling of gravitational waves from massive stellar remnants, such as neutron stars and black holes.
A density cusp of quiescent X-ray binaries in the central parsec of the Galaxy.
Hailey, Charles J; Mori, Kaya; Bauer, Franz E; Berkowitz, Michael E; Hong, Jaesub; Hord, Benjamin J
2018-04-04
The existence of a 'density cusp'-a localized increase in number-of stellar-mass black holes near a supermassive black hole is a fundamental prediction of galactic stellar dynamics. The best place to detect such a cusp is in the Galactic Centre, where the nearest supermassive black hole, Sagittarius A*, resides. As many as 20,000 black holes are predicted to settle into the central parsec of the Galaxy as a result of dynamical friction; however, so far no density cusp of black holes has been detected. Low-mass X-ray binary systems that contain a stellar-mass black hole are natural tracers of isolated black holes. Here we report observations of a dozen quiescent X-ray binaries in a density cusp within one parsec of Sagittarius A*. The lower-energy emission spectra that we observed in these binaries is distinct from the higher-energy spectra associated with the population of accreting white dwarfs that dominates the central eight parsecs of the Galaxy. The properties of these X-ray binaries, in particular their spatial distribution and luminosity function, suggest the existence of hundreds of binary systems in the central parsec of the Galaxy and many more isolated black holes. We cannot rule out a contribution to the observed emission from a population (of up to about one-half the number of X-ray binaries) of rotationally powered, millisecond pulsars. The spatial distribution of the binary systems is a relic of their formation history, either in the stellar disk around Sagittarius A* (ref. 7) or through in-fall from globular clusters, and constrains the number density of sources in the modelling of gravitational waves from massive stellar remnants, such as neutron stars and black holes.
Liquid phase heteroepitaxial growth on convex substrate using binary phase field crystal model
NASA Astrophysics Data System (ADS)
Lu, Yanli; Zhang, Tinghui; Chen, Zheng
2018-06-01
The liquid phase heteroepitaxial growth on convex substrate is investigated with the binary phase field crystal (PFC) model. The paper aims to focus on the transformation of the morphology of epitaxial films on convex substrate with two different radiuses of curvature (Ω) as well as influences of substrate vicinal angles on films growth. It is found that films growth experience different stages on convex substrate with different radiuses of curvature (Ω). For Ω = 512 Δx , the process of epitaxial film growth includes four stages: island coupled with layer-by-layer growth, layer-by-layer growth, island coupled with layer-by-layer growth, layer-by-layer growth. For Ω = 1024 Δx , film growth only experience islands growth and layer-by-layer growth. Also, substrate vicinal angle (π) is an important parameter for epitaxial film growth. We find the film can grow well when π = 2° for Ω = 512 Δx , while the optimized film can be obtained when π = 4° for Ω = 512 Δx .
Understanding Black Hole X-ray Binaries: The Case of Cygnus X-1
NASA Technical Reports Server (NTRS)
Pottschmidt, Katja
2008-01-01
Black Hole X-ray Binaries are known to display distinct emission states that differ in their X-ray spectra, their X-ray timing properties (on times scales less than 1 s) and their radio emission. In recent years monitoring observations, specially with NASA's Rossi X-ray Timing Explorer (RXTE), have provided us with detailed empirical modeling of the phenomenology of the different states as well as a unification scheme of the long term evolution of black holes, transient and persistent, in terms of these states. Observations of the persistent High Mass X-ray Binary (HMXB) Cygnus X-l have been at the forefront of learning about black hole states since its optical identification through a state transition in 1973. In this talk I will present in depth studies of several different aspects of the accretion process in this system. The main data base for these studies is an ongoing RXTE and Ryle radio telescope bi-weekly monitoring campaign that started in 1997. I will discuss high-resolution timing results, especially power spectra, which first gave rise to the Lorentzian description now widely used for black hole and neutron star binaries, and time lags, which we found to be especially well suited to identify state transitions. The evolution of spectral, timing, and radio parameters over years will be shown, including the rms-flux relation and the observation of a clearly correlated radio/x-ray flare. We also observed Cygnus X-1 with INTEGRAL, which allowed us to extend timing and spectral studies to higher energies, with XMM, which provided strong constraints on the parameters of the 6.4 keV iron fluorescence line, and with Chandra, which provided the most in depth study to date of the stellar wind in this system. Models based on the physical conditions in the accretion region are still mainly concentrated on the one or other of the observational areas but they are expanding: as an example I will review results from a jet model for the quantitative description of the radio through X-ray spectra. I will conclude with an outlook on a truly multi-instrument observing campaign of Cygnus X-1 that was performed in 2008 April in order to better constrain the jet models mentioned above (and provide a unique data set for cross-calibration).
Jet quenching in the neutron star low-mass X-ray binary 1RXS J180408.9-342058
NASA Astrophysics Data System (ADS)
Gusinskaia, N. V.; Deller, A. T.; Hessels, J. W. T.; Degenaar, N.; Miller-Jones, J. C. A.; Wijnands, R.; Parikh, A. S.; Russell, T. D.; Altamirano, D.
2017-09-01
We present quasi-simultaneous radio (VLA) and X-ray (Swift) observations of the neutron star low-mass X-ray binary (NS-LMXB) 1RXS J180408.9-342058 (J1804) during its 2015 outburst. We found that the radio jet of J1804 was bright (232 ± 4 μJy at 10 GHz) during the initial hard X-ray state, before being quenched by more than an order of magnitude during the soft X-ray state (19 ± 4 μJy). The source then was undetected in radio (<13 μJy) as it faded to quiescence. In NS-LMXBs, possible jet quenching has been observed in only three sources and the J1804 jet quenching we show here is the deepest and clearest example to date. Radio observations when the source was fading towards quiescence (LX = 1034-35 erg s-1) show that J1804 must follow a steep track in the radio/X-ray luminosity plane with β > 0.7 (where L_R ∝ L_X^{β }). Few other sources have been studied in this faint regime, but a steep track is inconsistent with the suggested behaviour for the recently identified class of transitional millisecond pulsars. J1804 also shows fainter radio emission at LX < 1035 erg s-1 than what is typically observed for accreting millisecond pulsars. This suggests that J1804 is likely not an accreting X-ray or transitional millisecond pulsar.
Einstein observations of selected close binaries and shell stars
NASA Technical Reports Server (NTRS)
Guinan, E. F.; Koch, R. H.; Plavec, M. J.
1984-01-01
Several evolved close binaries and shell stars were observed with the IPC aboard the HEAO 2 Einstein Observatory. No eclipsing target was detected, and only two of the shell binaries were detected. It is argued that there is no substantial difference in L(X) for eclipsing and non-eclipsing binaries. The close binary and shell star CX Dra was detected as a moderately strong source, and the best interpretation is that the X-ray flux arises primarily from the corona of the cool member of the binary at about the level of Algol-like or RS CVn-type sources. The residual visible-band light curve of this binary has been modeled so as to conform as well as possible with this interpretation. HD 51480 was detected as a weak source. Substantial background information from IUE and ground scanner measurements are given for this binary. The positions and flux values of several accidentally detected sources are given.
NuSTAR Observations of Two New Black Hole X-ray Binary Candidates within 1 pc of Sgr A*
NASA Astrophysics Data System (ADS)
Hord, Benjamin; Hailey, Charles; Mori, Kaya; Mandel, Shifra
2018-01-01
Remarkably, two new X-ray transients were discovered in outburst within ~1 pc of the Galactic Center by the Swift X-ray Telescope in the first half of 2016. A few weeks after each outburst began, NuSTAR ToO observations were triggered for both of the objects. These sources have no known counterparts at other energies. Both objects exhibit relativistically broadened Fe lines in their spectra and possible quasi-periodic oscillations (QPO) in their power spectra, which are features seen in many black hole X-ray binaries. Combined with the fact that there have been no previously observed large outbursts at these positions over the decade of the Swift X-ray Telescope galactic center monitoring campaign, these sources make for prime black hole binary candidates (BHC) rather than neutron star low-mass X-ray binaries (NS-LMXB), which have a known short (<~5 year) recurrence time. We will present 3-79 keV NuSTAR spectra and timing analysis of these sources that supports a black hole binary interpretation over a neutron star scenario. These new BHC, combined with at least one other previously discovered BHC near the Galactic Center, hint at a potentially substantive black hole population in the vicinity of the supermassive black hole at Sgr A*.
Very High Energy Emission from the Binary System Cyg X-3
NASA Astrophysics Data System (ADS)
Sinitsyna, V. G.; Sinitsyna, V. Yu.
2018-03-01
Cyg X-3 is actively studied in the entire range of the electromagnetic spectrum from the radio band to ultrahigh energies. Based on the detection of ultrahigh-energy gamma-ray emission, it has been suggested that Cyg X-3 could be one of the most powerful sources of charged cosmic-ray particles in the Galaxy. We present the results of long-term observations of the Cygnus X-3 region at energies 800 GeV-100 TeV by the SHALON mirror Cherenkov telescope. In 1995 the SHALON observations revealed a new Galactic source of very high energy gamma-ray emission coincident in its coordinates with the microquasar Cyg X-3. To reliably identify the detected source with Cyg X-3, an analysis has been performed and an orbital period of 4.8 h has been found, which is a signature of Cyg X-3. A series of flares in Cyg X-3 at energies >800 GeV and their correlation with the activity in the X-ray and radio bands have been observed. The results obtained in a wide energy range for Cyg X-3, including those during the periods of relativistic jet events, are needed to find the connection and to understand the different components of an accreting binary system.