Finite-Size Effects of Binary Mutual Diffusion Coefficients from Molecular Dynamics
2018-01-01
Molecular dynamics simulations were performed for the prediction of the finite-size effects of Maxwell-Stefan diffusion coefficients of molecular mixtures and a wide variety of binary Lennard–Jones systems. A strong dependency of computed diffusivities on the system size was observed. Computed diffusivities were found to increase with the number of molecules. We propose a correction for the extrapolation of Maxwell–Stefan diffusion coefficients to the thermodynamic limit, based on the study by Yeh and Hummer (J. Phys. Chem. B, 2004, 108, 15873−15879). The proposed correction is a function of the viscosity of the system, the size of the simulation box, and the thermodynamic factor, which is a measure for the nonideality of the mixture. Verification is carried out for more than 200 distinct binary Lennard–Jones systems, as well as 9 binary systems of methanol, water, ethanol, acetone, methylamine, and carbon tetrachloride. Significant deviations between finite-size Maxwell–Stefan diffusivities and the corresponding diffusivities at the thermodynamic limit were found for mixtures close to demixing. In these cases, the finite-size correction can be even larger than the simulated (finite-size) Maxwell–Stefan diffusivity. Our results show that considering these finite-size effects is crucial and that the suggested correction allows for reliable computations. PMID:29664633
Modeling gas displacement kinetics in coal with Maxwell-Stefan diffusion theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, X.R.; Wang, G.X.; Massarotto, P.
2007-12-15
The kinetics of binary gas counter-diffusion and Darcy flow in a large coal sample were modeled, and the results compared with data from experimental laboratory investigations. The study aimed for a better understanding of the CO{sub 2}-sequestration enhanced coalbed methane (ECBM) recovery process. The transport model used was based on the bidisperse diffusion mechanism and Maxwell-Stefan (MS) diffusion theory. This provides an alternative approach to simulate multicomponent gas diffusion and flow in bulk coals. A series of high-stress core flush tests were performed on a large coal sample sourced from a Bowen Basin coal mine in Queensland, Australia to investigatemore » the kinetics of one gas displacing another. These experimental results were used to derive gas diffusivities, and to examine the predictive capability of the diffusion model. The simulations show good agreements with the displacement experiments revealing that MS diffusion theory is superior for describing diffusion of mixed gases in coals compared with the constant Fick diffusivity model. The optimized effective micropore and macropore diffusivities are comparable with experimental measurements achieved by other researchers.« less
NASA Astrophysics Data System (ADS)
Fowler, Kathryn; Connolly, Paul J.; Topping, David O.; O'Meara, Simon
2018-02-01
The composition of atmospheric aerosol particles has been found to influence their micro-physical properties and their interaction with water vapour in the atmosphere. Core-shell models have been used to investigate the relationship between composition, viscosity and equilibration timescales. These models have traditionally relied on the Fickian laws of diffusion with no explicit account of non-ideal interactions. We introduce the Maxwell-Stefan diffusion framework as an alternative method, which explicitly accounts for non-ideal interactions through activity coefficients. e-folding time is the time it takes for the difference in surface and bulk concentration to change by an exponential factor and was used to investigate the interplay between viscosity and solubility and the effect this has on equilibration timescales within individual aerosol particles. The e-folding time was estimated after instantaneous increases in relative humidity to binary systems of water and an organic component. At low water mole fractions, viscous effects were found to dominate mixing. However, at high water mole fractions, equilibration times were more sensitive to a range in solubility, shown through the greater variation in e-folding times. This is the first time the Maxwell-Stefan framework has been applied to an atmospheric aerosol core-shell model and shows that there is a complex interplay between the viscous and solubility effects on aerosol composition that requires further investigation.
A comparison of Fick and Maxwell-Stefan diffusion formulations in PEMFC gas diffusion layers
NASA Astrophysics Data System (ADS)
Lindstrom, Michael; Wetton, Brian
2017-01-01
This paper explores the mathematical formulations of Fick and Maxwell-Stefan diffusion in the context of polymer electrolyte membrane fuel cell cathode gas diffusion layers. The simple Fick law with a diagonal diffusion matrix is an approximation of Maxwell-Stefan. Formulations of diffusion combined with mass-averaged Darcy flow are considered for three component gases. For this application, the formulations can be compared computationally in a simple, one dimensional setting. Despite the models' seemingly different structure, it is observed that the predictions of the formulations are very similar on the cathode when air is used as oxidant. The two formulations give quite different results when the Nitrogen in the air oxidant is replaced by helium (this is often done as a diagnostic for fuel cells designs). The two formulations also give quite different results for the anode with a dilute Hydrogen stream. These results give direction to when Maxwell-Stefan diffusion, which is more complicated to implement computationally in many codes, should be used in fuel cell simulations.
Asinari, Pietro
2009-11-01
A finite difference lattice Boltzmann scheme for homogeneous mixture modeling, which recovers Maxwell-Stefan diffusion model in the continuum limit, without the restriction of the mixture-averaged diffusion approximation, was recently proposed [P. Asinari, Phys. Rev. E 77, 056706 (2008)]. The theoretical basis is the Bhatnagar-Gross-Krook-type kinetic model for gas mixtures [P. Andries, K. Aoki, and B. Perthame, J. Stat. Phys. 106, 993 (2002)]. In the present paper, the recovered macroscopic equations in the continuum limit are systematically investigated by varying the ratio between the characteristic diffusion speed and the characteristic barycentric speed. It comes out that the diffusion speed must be at least one order of magnitude (in terms of Knudsen number) smaller than the barycentric speed, in order to recover the Navier-Stokes equations for mixtures in the incompressible limit. Some further numerical tests are also reported. In particular, (1) the solvent and dilute test cases are considered, because they are limiting cases in which the Maxwell-Stefan model reduces automatically to Fickian cases. Moreover, (2) some tests based on the Stefan diffusion tube are reported for proving the complete capabilities of the proposed scheme in solving Maxwell-Stefan diffusion problems. The proposed scheme agrees well with the expected theoretical results.
NASA Astrophysics Data System (ADS)
Kolesnichenko, A. V.; Marov, M. Ya.
2018-01-01
The defining relations for the thermodynamic diffusion and heat fluxes in a multicomponent, partially ionized gas mixture in an external electromagnetic field have been obtained by the methods of the kinetic theory. Generalized Stefan-Maxwell relations and algebraic equations for anisotropic transport coefficients (the multicomponent diffusion, thermal diffusion, electric and thermoelectric conductivity coefficients as well as the thermal diffusion ratios) associated with diffusion-thermal processes have been derived. The defining second-order equations are derived by the Chapman-Enskog procedure using Sonine polynomial expansions. The modified Stefan-Maxwell relations are used for the description of ambipolar diffusion in the Earth's ionospheric plasma (in the F region) composed of electrons, ions of many species, and neutral particles in a strong electromagnetic field.
Allie-Ebrahim, Tariq; Zhu, Qingyu; Bräuer, Pierre; Moggridge, Geoff D; D'Agostino, Carmine
2017-06-21
The Maxwell-Stefan model is a popular diffusion model originally developed to model diffusion of gases, which can be considered thermodynamically ideal mixtures, although its application has been extended to model diffusion in non-ideal liquid mixtures as well. A drawback of the model is that it requires the Maxwell-Stefan diffusion coefficients, which are not based on measurable quantities but they have to be estimated. As a result, numerous estimation methods, such as the Darken model, have been proposed to estimate these diffusion coefficients. However, the Darken model was derived, and is only well defined, for binary systems. This model has been extended to ternary systems according to two proposed forms, one by R. Krishna and J. M. van Baten, Ind. Eng. Chem. Res., 2005, 44, 6939-6947 and the other by X. Liu, T. J. H. Vlugt and A. Bardow, Ind. Eng. Chem. Res., 2011, 50, 10350-10358. In this paper, the two forms have been analysed against the ideal ternary system of methanol/butan-1-ol/propan-1-ol and using experimental values of self-diffusion coefficients. In particular, using pulsed gradient stimulated echo nuclear magnetic resonance (PGSTE-NMR) we have measured the self-diffusion coefficients in various methanol/butan-1-ol/propan-1-ol mixtures. The experimental values of self-diffusion coefficients were then used as the input data required for the Darken model. The predictions of the two proposed multicomponent forms of this model were then compared to experimental values of mutual diffusion coefficients for the ideal alcohol ternary system. This experimental-based approach showed that the Liu's model gives better predictions compared to that of Krishna and van Baten, although it was only accurate to within 26%. Nonetheless, the multicomponent Darken model in conjunction with self-diffusion measurements from PGSTE-NMR represents an attractive method for a rapid estimation of mutual diffusion in multicomponent systems, especially when compared to exhaustive MD simulations.
Hydrodynamic theory of diffusion in two-temperature multicomponent plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramshaw, J.D.; Chang, C.H.
Detailed numerical simulations of multicomponent plasmas require tractable expressions for species diffusion fluxes, which must be consistent with the given plasma current density J{sub q} to preserve local charge neutrality. The common situation in which J{sub q} = 0 is referred to as ambipolar diffusion. The use of formal kinetic theory in this context leads to results of formidable complexity. We derive simple tractable approximations for the diffusion fluxes in two-temperature multicomponent plasmas by means of a generalization of the hydrodynamical approach used by Maxwell, Stefan, Furry, and Williams. The resulting diffusion fluxes obey generalized Stefan-Maxwell equations that contain drivingmore » forces corresponding to ordinary, forced, pressure, and thermal diffusion. The ordinary diffusion fluxes are driven by gradients in pressure fractions rather than mole fractions. Simplifications due to the small electron mass are systematically exploited and lead to a general expression for the ambipolar electric field in the limit of infinite electrical conductivity. We present a self-consistent effective binary diffusion approximation for the diffusion fluxes. This approximation is well suited to numerical implementation and is currently in use in our LAVA computer code for simulating multicomponent thermal plasmas. Applications to date include a successful simulation of demixing effects in an argon-helium plasma jet, for which selected computational results are presented. Generalizations of the diffusion theory to finite electrical conductivity and nonzero magnetic field are currently in progress.« less
Predicting the Kinetics of Ice Recrystallization in Aqueous Sugar Solutions.
van Westen, Thijs; Groot, Robert D
2018-04-04
The quality of stored frozen products such as foods and biomaterials generally degrades in time due to the growth of large ice crystals by recrystallization. While there is ample experimental evidence that recrystallization within such products (or model systems thereof) is often dominated by diffusion-limited Ostwald ripening, the application of Ostwald-ripening theories to predict measured recrystallization rates has only met with limited success. For a model system of polycrystalline ice within an aqueous solution of sugars, we here show recrystallization rates can be predicted on the basis of Ostwald ripening theory, provided (1) the theory accounts for the fact the solution can be nonideal, nondilute and of different density than the crystals, (2) the effect of ice-phase volume fraction on the diffusional flux of water between crystals is accurately described, and (3) all relevant material properties (involving binary Fick diffusion coefficients, the thermodynamic factor of the solution, and the surface energy of ice) are carefully estimated. To enable calculation of material properties, we derive an alternative formulation of Ostwald ripening in terms of the Maxwell-Stefan instead of the Fick approach to diffusion. First, this leads to a cancellation of the thermodynamic factor (a measure for the nonideality of a solution), which is a notoriously difficult property to obtain. Second, we show that Maxwell-Stefan diffusion coefficients can to a reasonable approximation be related to self-diffusion coefficients, which are relatively easy to measure or predict in comparison to Fick diffusion coefficients. Our approach is validated for a binary system of water and sucrose, for which we show predicted recrystallization rates of ice compare well to experimental results, with relative deviations of at most a factor of 2.
Multi-Component Diffusion with Application To Computational Aerothermodynamics
NASA Technical Reports Server (NTRS)
Sutton, Kenneth; Gnoffo, Peter A.
1998-01-01
The accuracy and complexity of solving multicomponent gaseous diffusion using the detailed multicomponent equations, the Stefan-Maxwell equations, and two commonly used approximate equations have been examined in a two part study. Part I examined the equations in a basic study with specified inputs in which the results are applicable for many applications. Part II addressed the application of the equations in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) computational code for high-speed entries in Earth's atmosphere. The results showed that the presented iterative scheme for solving the Stefan-Maxwell equations is an accurate and effective method as compared with solutions of the detailed equations. In general, good accuracy with the approximate equations cannot be guaranteed for a species or all species in a multi-component mixture. 'Corrected' forms of the approximate equations that ensured the diffusion mass fluxes sum to zero, as required, were more accurate than the uncorrected forms. Good accuracy, as compared with the Stefan- Maxwell results, were obtained with the 'corrected' approximate equations in defining the heating rates for the three Earth entries considered in Part II.
NASA Astrophysics Data System (ADS)
Baig, Mohammad Saad; Chakraborty, Brahmananda; Ramaniah, Lavanya M.
2016-05-01
NaF-ZrF4 is used as a waste incinerator and as a coolant in Generation IV reactors.Structural and dynamical properties of molten NaF-ZrF4 system were studied along with Onsagercoefficients and Maxwell-Stefan (MS) Diffusivities applying Green-Kubo formalism and molecular dynamics (MD) simulations. The zirconium ions are found to be 8 fold coordinated with fluoride ions for all temperatures and concentrations. All the diffusive flux correlations show back-scattering. Even though the MS diffusivities are expected to depend very lightly on the composition because of decoupling of thermodynamic factor, the diffusivity ĐNa-F shows interesting behavior with the increase in concentration of ZrF4. This is because of network formation in NaF-ZrF4. Positive entropy constraints have been plotted to authenticate negative diffusivities observed.
Leonardi, Erminia; Angeli, Celestino
2010-01-14
The diffusion process in a multicomponent system can be formulated in a general form by the generalized Maxwell-Stefan equations. This formulation is able to describe the diffusion process in different systems, such as, for instance, bulk diffusion (in the gas, liquid, and solid phase) and diffusion in microporous materials (membranes, zeolites, nanotubes, etc.). The Maxwell-Stefan equations can be solved analytically (only in special cases) or by numerical approaches. Different numerical strategies have been previously presented, but the number of diffusing species is normally restricted, with only few exceptions, to three in bulk diffusion and to two in microporous systems, unless simplifications of the Maxwell-Stefan equations are considered. In the literature, a large effort has been devoted to the derivation of the analytic expression of the elements of the Fick-like diffusion matrix and therefore to the symbolic inversion of a square matrix with dimensions n x n (n being the number of independent components). This step, which can be easily performed for n = 2 and remains reasonable for n = 3, becomes rapidly very complex in problems with a large number of components. This paper addresses the problem of the numerical resolution of the Maxwell-Stefan equations in the transient regime for a one-dimensional system with a generic number of components, avoiding the definition of the analytic expression of the elements of the Fick-like diffusion matrix. To this aim, two approaches have been implemented in a computational code; the first is the simple finite difference second-order accurate in time Crank-Nicolson scheme for which the full mathematical derivation and the relevant final equations are reported. The second is based on the more accurate backward differentiation formulas, BDF, or Gear's method (Shampine, L. F. ; Gear, C. W. SIAM Rev. 1979, 21, 1.), as implemented in the Livermore solver for ordinary differential equations, LSODE (Hindmarsh, A. C. Serial Fortran Solvers for ODE Initial Value Problems, Technical Report; https://computation.llnl.gov/casc/odepack/odepack_ home.html (2006).). Both methods have been applied to a series of specific problems, such as bulk diffusion of acetone and methanol through stagnant air, uptake of two components on a microporous material in a model system, and permeation across a microporous membrane in model systems, both with the aim to validate the method and to add new information to the comprehension of the peculiar behavior of these systems. The approach is validated by comparison with different published results and with analytic expressions for the steady-state concentration profiles or fluxes in particular systems. The possibility to treat a generic number of components (the limitation being essentially the computational power) is also tested, and results are reported on the permeation of a five component mixture through a membrane in a model system. It is worth noticing that the algorithm here reported can be applied also to the Fick formulation of the diffusion problem with concentration-dependent diffusion coefficients.
Protein diffusiophoresis and salt osmotic diffusion in aqueous solutions.
Annunziata, Onofrio; Buzatu, Daniela; Albright, John G
2012-10-25
Diffusion of a solute can be induced by the concentration gradient of another solute in solution. This transport mechanism is known as cross-diffusion. We have investigated cross-diffusion in a ternary protein-salt-water system. Specifically, we measured the two cross-diffusion coefficients for the lysozyme-NaCl-water system at 25 °C and pH 4.5 as a function of protein and salt concentrations by Rayleigh interferometry. One cross-diffusion coefficient characterizes salt osmotic diffusion induced by a protein concentration gradient, and is related to protein-salt thermodynamic interactions as described by the theories of Donnan membrane equilibrium and protein preferential hydration. The other cross-diffusion coefficient characterizes protein diffusiophoresis induced by a salt concentration gradient, and is described as the difference between a preferential-interaction coefficient and a transport parameter. We first relate our experimental results to the protein net charge and the thermodynamic excess of water near the protein surface. We then extract the Stefan-Maxwell diffusion coefficient describing protein-salt interactions in water. We find that the value of this coefficient is negative, contrary to the friction interpretation of Stefan-Maxwell equations. This result is explained by considering protein hydration. Finally, protein diffusiophoresis is quantitatively examined by considering electrophoretic and hydration effects on protein migration and utilized to accurately estimate lysozyme electrophoretic mobility. To our knowledge, this is the first time that protein diffusiophoresis has been experimentally characterized and a protein-salt Stefan-Maxwell diffusion coefficient reported. This work represents a significant contribution for understanding and modeling the effect of concentration gradients in protein-salt aqueous systems relevant to diffusion-based mass-transfer technologies and transport in living systems.
NASA Astrophysics Data System (ADS)
Chakraborty, Brahmananda; Ramaniah, Lavanya M.
2015-06-01
Applying Green-Kubo formalism and equilibrium molecular dynamics (MD) simulations, we have studied the dynamic correlation, Onsager coeeficients and Maxwell-Stefan (MS) Diffusivities of molten salt LiF-BeF2, which is used as coolant in high temperature reactor. All the diffusive flux correlations show back-scattering or cage dynamics which becomes pronouced at higher temperature. Although the MS diffusivities are expected to depend very lightly on the composition due to decoupling of thermodynamic factor, the diffusivity ĐLi-F and ĐBe-F decreases sharply for higher concentration of LiF and BeF2 respectively. Interestingly, all three MS diffusivities have highest magnitude for eutectic mixture at 1000K (except ĐBe-F at lower LiF mole fraction) which is desirable from coolant point of view. Although the diffusivity for positive-positive ion pair is negative it is not in violation of the second law of thermodynamics as it satisfies the non-negative entropic constraints.
Diffusion Coefficients from Molecular Dynamics Simulations in Binary and Ternary Mixtures
NASA Astrophysics Data System (ADS)
Liu, Xin; Schnell, Sondre K.; Simon, Jean-Marc; Krüger, Peter; Bedeaux, Dick; Kjelstrup, Signe; Bardow, André; Vlugt, Thijs J. H.
2013-07-01
Multicomponent diffusion in liquids is ubiquitous in (bio)chemical processes. It has gained considerable and increasing interest as it is often the rate limiting step in a process. In this paper, we review methods for calculating diffusion coefficients from molecular simulation and predictive engineering models. The main achievements of our research during the past years can be summarized as follows: (1) we introduced a consistent method for computing Fick diffusion coefficients using equilibrium molecular dynamics simulations; (2) we developed a multicomponent Darken equation for the description of the concentration dependence of Maxwell-Stefan diffusivities. In the case of infinite dilution, the multicomponent Darken equation provides an expression for [InlineEquation not available: see fulltext.] which can be used to parametrize the generalized Vignes equation; and (3) a predictive model for self-diffusivities was proposed for the parametrization of the multicomponent Darken equation. This equation accurately describes the concentration dependence of self-diffusivities in weakly associating systems. With these methods, a sound framework for the prediction of mutual diffusion in liquids is achieved.
Rudd, Robert E; Cabot, William H; Caspersen, Kyle J; Greenough, Jeffrey A; Richards, David F; Streitz, Frederick H; Miller, Paul L
2012-03-01
We use molecular dynamics (MD) to simulate diffusion in molten aluminum-copper (AlCu) alloys. The self-diffusivities and Maxwell-Stefan diffusivities are calculated for AlCu mixtures using the Green-Kubo formulas at temperatures from 1000 to 4000 K and pressures from 0 to 25 GPa, along with additional points at higher temperatures and pressures. The diffusivities are corrected for finite-size effects. The Maxwell-Stefan diffusivity is compared to the diffusivity calculated from the self-diffusivities using a generalization of the Darken equation. We find that the effects of cross-correlation are small. Using the calculated self-diffusivities, we have assessed whether dilute hard-sphere and dilute Lennard-Jones models apply to the molten mixture. Neither of the two dilute gas diffusivities describes the diffusivity in molten Al and Cu. We report generalized analytic models for the self-diffusivities and interdiffusivity (mutual diffusivity) that fit the MD results well. The MD-derived transport coefficients are in good agreement with the available experimental data. We also report MD calculations of the viscosity and an analytic fit to those results. The ionic thermal conductivity is discussed briefly.
NASA Astrophysics Data System (ADS)
Rudd, Robert E.; Cabot, William H.; Caspersen, Kyle J.; Greenough, Jeffrey A.; Richards, David F.; Streitz, Frederick H.; Miller, Paul L.
2012-03-01
We use molecular dynamics (MD) to simulate diffusion in molten aluminum-copper (AlCu) alloys. The self-diffusivities and Maxwell-Stefan diffusivities are calculated for AlCu mixtures using the Green-Kubo formulas at temperatures from 1000 to 4000 K and pressures from 0 to 25 GPa, along with additional points at higher temperatures and pressures. The diffusivities are corrected for finite-size effects. The Maxwell-Stefan diffusivity is compared to the diffusivity calculated from the self-diffusivities using a generalization of the Darken equation. We find that the effects of cross-correlation are small. Using the calculated self-diffusivities, we have assessed whether dilute hard-sphere and dilute Lennard-Jones models apply to the molten mixture. Neither of the two dilute gas diffusivities describes the diffusivity in molten Al and Cu. We report generalized analytic models for the self-diffusivities and interdiffusivity (mutual diffusivity) that fit the MD results well. The MD-derived transport coefficients are in good agreement with the available experimental data. We also report MD calculations of the viscosity and an analytic fit to those results. The ionic thermal conductivity is discussed briefly.
Enhanced Recovery in Tight Gas Reservoirs using Maxwell-Stefan Equations
NASA Astrophysics Data System (ADS)
Santiago, C. J. S.; Kantzas, A.
2017-12-01
Due to the steep production decline in unconventional gas reservoirs, enhanced recovery (ER) methods are receiving great attention from the industry. Wet gas or liquid rich reservoirs are the preferred ER candidates due to higher added value from natural gas liquids (NGL) production. ER in these reservoirs has the potential to add reserves by improving desorption and displacement of hydrocarbons through the medium. Nevertheless, analysis of gas transport at length scales of tight reservoirs is complicated because concomitant mechanisms are in place as pressure declines. In addition to viscous and Knudsen diffusion, multicomponent gas modeling includes competitive adsorption and molecular diffusion effects. Most models developed to address these mechanisms involve single component or binary mixtures. In this study, ER by gas injection is investigated in multicomponent (C1, C2, C3 and C4+, CO2 and N2) wet gas reservoirs. The competing effects of Knudsen and molecular diffusion are incorporated by using Maxwell-Stefan equations and the Dusty-Gas approach. This model was selected due to its superior properties on representing the physics of multicomponent gas flow, as demonstrated during the presented model validation. Sensitivity studies to evaluate adsorption, reservoir permeability and gas type effects are performed. The importance of competitive adsorption on production and displacement times is demonstrated. In the absence of adsorption, chromatographic separation is negligible. Production is merely dictated by competing effects between molecular and Knudsen diffusion. Displacement fronts travel rapidly across the medium. When adsorption effects are included, molecules with lower affinity to the adsorption sites will be produced faster. If the injected gas is inert (N2), an increase in heavier fraction composition occurs in the medium. During injection of adsorbing gases (CH4 and CO2), competitive adsorption effects will contribute to improved recovery of heavier fractions. In this case, displacement fronts will be delayed due to molecular interaction with pore walls. Therefore, a balance between competitive adsorption versus faster displacement will ultimately define which gas is more efficient for hydrocarbon recovery.
Maxwell-Stefan diffusion and dynamical correlation in molten LiF-KF: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Jain, Richa Naja; Chakraborty, Brahmananda; Ramaniah, Lavanya M.
2016-05-01
In this work our main objective is to compute Dynamical correlations, Onsager coefficients and Maxwell-Stefan (MS) diffusivities for molten salt LiF-KF mixture at various thermodynamic states through Green-Kubo formalism for the first time. The equilibrium molecular dynamics (MD) simulations were performed using BHM potential for LiF-KF mixture. The velocity autocorrelations functions involving Li ions reflect the endurance of cage dynamics or backscattering with temperature. The magnitude of Onsager coefficients for all pairs increases with increase in temperature. Interestingly most of the Onsager coefficients has almost maximum magnitude at the eutectic composition indicating the most dynamic character of the eutectic mixture. MS diffusivity hence diffusion for all ion pairs increases in the system with increasing temperature. Smooth variation of the diffusivity values denies any network formation in the mixture. Also, the striking feature is the noticeable concentration dependence of MS diffusivity between cation-cation pair, ĐLi-K which remains negative for most of the concentration range but changes sign to become positive for higher LiF concentration. The negative MS diffusivity is acceptable as it satisfies the non-negative entropy constraint governed by 2nd law of thermodynamics. This high diffusivity also vouches the candidature of molten salt as a coolant.
Chatterjee, Abhijit; Vlachos, Dionisios G
2007-07-21
While recently derived continuum mesoscopic equations successfully bridge the gap between microscopic and macroscopic physics, so far they have been derived only for simple lattice models. In this paper, general deterministic continuum mesoscopic equations are derived rigorously via nonequilibrium statistical mechanics to account for multiple interacting surface species and multiple processes on multiple site types and/or different crystallographic planes. Adsorption, desorption, reaction, and surface diffusion are modeled. It is demonstrated that contrary to conventional phenomenological continuum models, microscopic physics, such as the interaction potential, determines the final form of the mesoscopic equation. Models of single component diffusion and binary diffusion of interacting particles on single-type site lattice and of single component diffusion on complex microporous materials' lattices consisting of two types of sites are derived, as illustrations of the mesoscopic framework. Simplification of the diffusion mesoscopic model illustrates the relation to phenomenological models, such as the Fickian and Maxwell-Stefan transport models. It is demonstrated that the mesoscopic equations are in good agreement with lattice kinetic Monte Carlo simulations for several prototype examples studied.
Multicomponent Diffusion of Penetrant Mixtures in Rubbery Polymers: A Molecular Dynamics Study
NASA Astrophysics Data System (ADS)
Bringuier, Stefan; Varady, Mark; Knox, Craig; Cabalo, Jerry; Pearl, Thomas; Mantooth, Brent
The importance of understanding transport of chemical species across liquid-solid boundaries is of particular interest in the decontamination of harmful chemicals absorbed within polymeric materials. To characterize processes associated with liquid-phase extraction of absorbed species from polymers, it is necessary to determine an appropriate physical description of species transport in multicomponent systems. The Maxwell-Stefan (M-S) formulation is a rigorous description of mass transport in multicomponent solutions, in which, mutual diffusivities determine the degree of relative motion between interacting molecules in response to a chemical potential gradient. The work presented focuses on the determination of M-S diffusivities from molecular dynamics (MD) simulations of nerve agent O-ethyl S-[2(diisopropylamino)ethyl] methylphosphonothioate (VX), water, and methanol mixtures within a poly(dimethylsiloxane) matrix. We investigate the composition dependence of M-S diffusivities and compare the results to values predicted using empirical relations for binary and ternary mixtures. Finally, we highlight the pertinent differences in molecular mechanisms associated with species transport and employ non-equilibrium MD to probe transport across the mixture-polymer interface.
Fluctuation-enhanced electric conductivity in electrolyte solutions.
Péraud, Jean-Philippe; Nonaka, Andrew J; Bell, John B; Donev, Aleksandar; Garcia, Alejandro L
2017-10-10
We analyze the effects of an externally applied electric field on thermal fluctuations for a binary electrolyte fluid. We show that the fluctuating Poisson-Nernst-Planck (PNP) equations for charged multispecies diffusion coupled with the fluctuating fluid momentum equation result in enhanced charge transport via a mechanism distinct from the well-known enhancement of mass transport that accompanies giant fluctuations. Although the mass and charge transport occurs by advection by thermal velocity fluctuations, it can macroscopically be represented as electrodiffusion with renormalized electric conductivity and a nonzero cation-anion diffusion coefficient. Specifically, we predict a nonzero cation-anion Maxwell-Stefan coefficient proportional to the square root of the salt concentration, a prediction that agrees quantitatively with experimental measurements. The renormalized or effective macroscopic equations are different from the starting PNP equations, which contain no cross-diffusion terms, even for rather dilute binary electrolytes. At the same time, for infinitely dilute solutions the renormalized electric conductivity and renormalized diffusion coefficients are consistent and the classical PNP equations with renormalized coefficients are recovered, demonstrating the self-consistency of the fluctuating hydrodynamics equations. Our calculations show that the fluctuating hydrodynamics approach recovers the electrophoretic and relaxation corrections obtained by Debye-Huckel-Onsager theory, while elucidating the physical origins of these corrections and generalizing straightforwardly to more complex multispecies electrolytes. Finally, we show that strong applied electric fields result in anisotropically enhanced "giant" velocity fluctuations and reduced fluctuations of salt concentration.
Klein, Tobias; Wu, Wenchang; Rausch, Michael Heinrich; Giraudet, Cédric; Koller, Thomas M; Fröba, Andreas Paul
2018-06-11
This study contributes to a fundamental understanding how the liquid structure in a model system consisting of weakly associative n-hexane ( n-C 6 H 14 ) and carbon dioxide (CO 2 ) influences the Fickian diffusion process. For this, the benefits of light scattering experiments and molecular dynamics (MD) simulations at macroscopic thermodynamic equilibrium were combined synergistically. Our reference Fickian diffusivities measured by dynamic light scattering (DLS) revealed an unusual trend with increasing CO 2 mole fractions up to a CO 2 concentration of about 70 mol%, which agrees with our simulation results. The molecular impacts on the Fickian diffusion were analyzed by MD simulations, where kinetic contributions related to the Maxwell-Stefan (MS) diffusivity and structural contributions quantified by the thermodynamic factor were studied separately. Both the MS diffusivity and the thermodynamic factor indicate the deceleration of Fickian diffusion compared to an ideal mixture behavior. Computed radial distribution functions as well as a significant blue-shift of the CH-stretching modes of n-C 6 H 14 identified by Raman spectroscopy show that the slowing-down of the diffusion is caused by a structural organization in the binary mixtures over a broad concentration range in the form of self-associated n-C 6 H 14 and CO 2 domains. These networks start to form close to the infinite dilution limits and seem to have their largest extent at a solute-solvent transition point at about 70 mol% of CO 2 . The current results not only improve the general understanding of mass diffusion in liquids, but also serve to develop sound prediction models for Fick diffusivities.
Salehi, Ali; Zhao, Jin; Cabelka, Tim D; Larson, Ronald G
2016-02-28
We propose a new transport model of drug release from hydrophilic polymeric matrices, based on Stefan-Maxwell flux laws for multicomponent transport. Polymer stress is incorporated in the total mixing free energy, which contributes directly to the diffusion driving force while leading to time-dependent boundary conditions at the tablet interface. Given that hydrated matrix tablets are dense multicomponent systems, extended Stefan-Maxwell (ESM) flux laws are adopted to ensure consistency with the Onsager reciprocity principle and the Gibbs-Duhem thermodynamic constraint. The ESM flux law for any given component takes into account the friction exerted by all other species and is invariant with respect to reference velocity, thus satisfying Galilean translational invariance. Our model demonstrates that penetrant-induced plasticization of polymer chains partially or even entirely offsets the steady decline of chemical potential gradients at the tablet-medium interface that drive drug release. Utilizing a Flory-Huggins thermodynamic model, a modified form of the upper convected Maxwell constitutive equation for polymer stress and a Fujita-type dependence of mutual diffusivities on composition, depending on parameters, Fickian, anomalous or case II drug transport arises naturally from the model, which are characterized by quasi-power-law release profiles with exponents ranging from 0.5 to 1, respectively. A necessary requirement for non-Fickian release in our model is that the matrix stress relaxation time is comparable to the time scale for water diffusion. Mutual diffusivities and their composition dependence are the most decisive factors in controlling drug release characteristics in our model. Regression of the experimental polymer dissolution and drug release profiles in a system of Theophylline/cellulose (K15M) demonstrate that API-water mutual diffusivity in the presence of excipient cannot generally be taken as a constant. Copyright © 2016 Elsevier B.V. All rights reserved.
Chakraborty, Brahmananda
2015-08-20
Applying Green-Kubo formalism and equilibrium molecular dynamics (MD) simulations, we have studied for the first time the dynamic correlation, Onsager coefficients, and Maxwell-Stefan (MS) diffusivities of molten salt LiF-BeF2, which is a potential candidate for a coolant in a high temperature reactor. We observe an unusual composition dependence and strikingly a crossover in sign for all the MS diffusivities at a composition of around 7% of LiF where the MS diffusivity between cation-anion pair (Đ(BeF) and Đ(LiF)) jumps from positive to negative value while the MS diffusivity between cation-cation pair (Đ(LiBe)) becomes positive from a negative value. Even though the negative MS diffusivities have been observed for electrolyte solutions between cation-cation pair, here we report negative MS diffusivity between cation-anion pair where Đ(BeF) shows a sharp rise around 66% of BeF2, reaches maximum value at 70% of BeF2, and then decreases almost exponentially with a sign change for BeF2 around 93%. For low mole fraction of LiF, Đ(BeF) follows the Debye-Huckel theory and rises with the square root of LiF mole fraction similar to the MS diffusivity between cation-anion pair in aqueous solution of electrolyte salt. Negative MS diffusivities while unusual are, however, shown to satisfy the non-negative entropy constraints at all thermodynamic states as required by the second law of thermodynamics. We have established a strong correlation between the structure and dynamics and predict that the formation of flouride polyanion network between Be and F ions and coulomb interaction is responsible for sharp variation of the MS diffusivities which controls the multicomponent diffusion phenomenon in LiF-BeF2 which has a strong impact on the performance of the reactor.
NASA Astrophysics Data System (ADS)
Varady, Mark; Bringuier, Stefan; Pearl, Thomas; Stevenson, Shawn; Mantooth, Brent
Decontamination of polymers exposed to chemical warfare agents (CWA) often proceeds by application of a liquid solution. Absorption of some decontaminant components proceed concurrently with extraction of the CWA, resulting in multicomponent diffusion in the polymer. In this work, the Maxwell-Stefan equations were used with the Flory-Huggins model of species activity to mathematically describe the transport of two species within a polymer. This model was used to predict the extraction of the nerve agent O-ethyl S-[2(diisopropylamino)ethyl] methylphosphonothioate (VX) from a silicone elastomer into both water and methanol. Comparisons with experimental results show good agreement with minimal fitting of model parameters from pure component uptake data. Reaction of the extracted VX with sodium hydroxide in the liquid-phase was also modeled and used to predict the overall rate of destruction of VX. Although the reaction proceeds more slowly in the methanol-based solution compared to the aqueous solution, the extraction rate is faster due to increasing VX mobility as methanol absorbs into the silicone, resulting in an overall faster rate of VX destruction.
Diffusion of Charged Species in Liquids
NASA Astrophysics Data System (ADS)
Del Río, J. A.; Whitaker, S.
2016-11-01
In this study the laws of mechanics for multi-component systems are used to develop a theory for the diffusion of ions in the presence of an electrostatic field. The analysis begins with the governing equation for the species velocity and it leads to the governing equation for the species diffusion velocity. Simplification of this latter result provides a momentum equation containing three dominant forces: (a) the gradient of the partial pressure, (b) the electrostatic force, and (c) the diffusive drag force that is a central feature of the Maxwell-Stefan equations. For ideal gas mixtures we derive the classic Nernst-Planck equation. For liquid-phase diffusion we encounter a situation in which the Nernst-Planck contribution to diffusion differs by several orders of magnitude from that obtained for ideal gases.
Diffusion of Charged Species in Liquids.
Del Río, J A; Whitaker, S
2016-11-04
In this study the laws of mechanics for multi-component systems are used to develop a theory for the diffusion of ions in the presence of an electrostatic field. The analysis begins with the governing equation for the species velocity and it leads to the governing equation for the species diffusion velocity. Simplification of this latter result provides a momentum equation containing three dominant forces: (a) the gradient of the partial pressure, (b) the electrostatic force, and (c) the diffusive drag force that is a central feature of the Maxwell-Stefan equations. For ideal gas mixtures we derive the classic Nernst-Planck equation. For liquid-phase diffusion we encounter a situation in which the Nernst-Planck contribution to diffusion differs by several orders of magnitude from that obtained for ideal gases.
Diffusion of Charged Species in Liquids
del Río, J. A.; Whitaker, S.
2016-01-01
In this study the laws of mechanics for multi-component systems are used to develop a theory for the diffusion of ions in the presence of an electrostatic field. The analysis begins with the governing equation for the species velocity and it leads to the governing equation for the species diffusion velocity. Simplification of this latter result provides a momentum equation containing three dominant forces: (a) the gradient of the partial pressure, (b) the electrostatic force, and (c) the diffusive drag force that is a central feature of the Maxwell-Stefan equations. For ideal gas mixtures we derive the classic Nernst-Planck equation. For liquid-phase diffusion we encounter a situation in which the Nernst-Planck contribution to diffusion differs by several orders of magnitude from that obtained for ideal gases. PMID:27811959
Steady-State Diffusion of Water through Soft-Contact LensMaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fornasiero, Francesco; Krull, Florian; Radke, Clayton J.
2005-01-31
Water transport through soft contact lenses (SCL) is important for acceptable performance on the human eye. Chemical-potential gradient-driven diffusion rates of water through soft-contact-lens materials are measured with an evaporation-cell technique. Water is evaporated from the bottom surface of a lens membrane by impinging air at controlled flow rate and humidity. The resulting weight loss of a water reservoir covering the top surface of the contact-lens material is recorded as a function of time. New results are reported for a conventional hydrogel material (SofLens{trademark} One Day, hilafilcon A, water content at saturation W{sub 10} = 70 weight %) and amore » silicone hydrogel material (PureVision{trademark}, balafilcon A, W{sub 10} = 36 %), with and without surface oxygen plasma treatment. Also, previously reported data for a conventional HEMA-SCL (W{sub 10} = 38 %) hydrogel are reexamined and compared with those for SofLens{trademark} One Day and PureVision{trademark} hydrogels. Measured steady-state water fluxes are largest for SofLens{trademark} One Day, followed by PureVision{trademark} and HEMA. In some cases, the measured steady-state water fluxes increase with rising relative air humidity. This increase, due to an apparent mass-transfer resistance at the surface (trapping skinning), is associated with formation of a glassy skin at the air/membrane interface when the relative humidity is below 55-75%. Steady-state water-fluxes are interpreted through an extended Maxwell-Stefan diffusion model for a mixture of species starkly different in size. Thermodynamic nonideality is considered through Flory-Rehner polymer-solution theory. Shrinking/swelling is self-consistently modeled by conservation of the total polymer mass. Fitted Maxwell-Stefan diffusivities increase significantly with water concentration in the contact lens.« less
NASA Astrophysics Data System (ADS)
Sari, Ataallah; Sabziani, Javad
2017-06-01
Modeling and CFD simulation of a three-dimensional microreactor includes thirteen structured parallel channels is performed to study the hydrogen production via methanol steam reforming reaction over a Cu/ZnO/Al2O3 catalyst. The well-known Langmuir-Hinshelwood macro kinetic rate expressions reported by Peppley and coworkers [49] are considered to model the methanol steam reforming reactions. The effects of inlet steam to methanol ratio, pre-heat temperature, channels geometry and size, and the level of external heat flux on the hydrogen quality and quantity (i.e., hydrogen flow rate and CO concentration) are investigated. Moreover, the possibility of reducing the CO concentration by passing the reactor effluent through a water gas shift channel placed in series with the methanol reformer is studied. Afterwards, the simulation results are compared with the experimental data reported in the literature considering two different approaches of mixture-averaged and Maxwell-Stefan formulations to evaluate the diffusive flux of mass. The results indicate that the predictions of the Maxwell-Stefan model is in better agreement with experimental data than mixture-averaged one, especially at the lower feed flow rates.
Molecular simulations of diffusion in electrolytes
NASA Astrophysics Data System (ADS)
Wheeler, Dean Richard
This work demonstrates new methodologies for simulating multicomponent diffusion in concentrated solutions using molecular dynamics (MD). Experimental diffusion data for concentrated multicomponent solutions are often lacking, as are accurate methods of predicting diffusion for nonideal solutions. MD can be a viable means of understanding and predicting multicomponent diffusion. While there have been several prior reports of MD simulations of mutual diffusion, no satisfactory expressions for simulating Stefan-Maxwell diffusivities for an arbitrary number of species exist. The approaches developed here allow for the computation of a full diffusion matrix for any number of species in both nonequilibrium and equilibrium MD ensembles. Our nonequilibrium approach is based on the application of constant external fields to drive species diffusion. Our equilibrium approach uses a newly developed Green-Kubo formula for Stefan-Maxwell diffusivities. In addition, as part of this work, we demonstrate a widely applicable means of increasing the computational efficiency of the Ewald sum, a technique for handling long-range Coulombic interactions in simulations. The theoretical development is applicable to any solution which can be simulated using MD; nevertheless, our primary interest is in electrochemical applications. To this end, the methods are tested by simulations of aqueous salt solutions and lithium-battery electrolytes. KCl and NaCl aqueous solutions were simulated over the concentration range 1 to 4 molal. Intermolecular-potential models were parameterized for these transport-based simulations. This work is the first to simulate all three independent diffusion coefficients for aqueous NaCl and KCl solutions. The results show that the nonequilibrium and equilibrium methods are consistent with each other, and in moderate agreement with experiment. We simulate lithium-battery electrolytes containing LiPF6 in propylene carbonate and mixed ethylene carbonate-dimethyl carbonate solvents. As with the aqueous-solution work, potential parameters were generated for these molecules. These nonaqueous electrolytes demonstrate rich transport behavior, which the simulations are able to reproduce qualitatively. In a mixed-solvent simulation we regress all six independent transport coefficients. The simulations show that strong ion pairing is responsible for the increase in viscosity and maximum in conductivity as ion concentrations are increased.
Multicomponent lattice Boltzmann model from continuum kinetic theory.
Shan, Xiaowen
2010-04-01
We derive from the continuum kinetic theory a multicomponent lattice Boltzmann model with intermolecular interaction. The resulting model is found to be consistent with the model previously derived from a lattice-gas cellular automaton [X. Shan and H. Chen, Phys. Rev. E 47, 1815 (1993)] but applies in a much broader domain. A number of important insights are gained from the kinetic theory perspective. First, it is shown that even in the isothermal case, the energy equipartition principle dictates the form of the equilibrium distribution function. Second, thermal diffusion is shown to exist and the corresponding diffusivities are given in terms of macroscopic parameters. Third, the ordinary diffusion is shown to satisfy the Maxwell-Stefan equation at the ideal-gas limit.
2010-04-01
factorization scheme (Lower-Upper Symmetric Gauss- Seidel ) can be used for time integration. Additional convergence acceleration is achieved by the...of the full Stefan -Maxwell equations. The diffusive mass flux of species S is computed according to: for 1 for jS S S Sm j jm S j eS jd S S S j j j...approximate factorization scheme (Lower-Upper Symmetric Gauss- Seidel ). For steady state problems, equation (69) reduces to R=0 because ddU t
Multicomponent transport in membranes for redox flow batteries
NASA Astrophysics Data System (ADS)
Monroe, Charles
2015-03-01
Redox flow batteries (RFBs) incorporate separator membranes, which ideally prevent mixing of electrochemically active species while permitting crossover of inactive supporting ions. Understanding crossover and membrane selectivity may require multicomponent transport models that account for solute/solute interactions within the membrane, as well as solute/membrane interactions. Application of the Onsager-Stefan-Maxwell formalism allows one to account for all the dissipative phenomena that may accompany component fluxes through RFB membranes. The magnitudes of dissipative interactions (diffusional drag forces) are quantified by matching experimentally established concentration transients with theory. Such transients can be measured non-invasively using DC conductometry, but the accuracy of this method requires precise characterization of the bulk RFB electrolytes. Aqueous solutions containing both vanadyl sulfate (VOSO4) and sulfuric acid (H2SO4) are relevant to RFB technology. One of the first precise characterizations of aqueous vanadyl sulfate has been implemented and will be reported. To assess the viability of a separator for vanadium RFB applications with cell-level simulations, it is critical to understand the tendencies of various classes of membranes to absorb (uptake) active species, and to know the relative rates of active-species and supporting-electrolyte diffusion. It is also of practical interest to investigate the simultaneous diffusion of active species and supports, because interactions between solutes may ultimately affect the charge efficiency and power efficiency of the RFB system as a whole. A novel implementation of Barnes's classical model of dialysis-cell diffusion [Physics 5:1 (1934) 4-8] is developed to measure the binary diffusion coefficients and sorption equilibria for single solutes (VOSO4 or H2SO4) in porous membranes and cation-exchange membranes. With the binary diffusion and uptake measurement in hand, a computer simulation that extends the approach of Heintz, Wiedemann and Ziegler [J. Membrane Science 137:1-2 (1997) 121-132] is used to establish Onsager resistances that describe the drag forces VOSO4 and H2SO4 exert on each other as they interdiffuse. The ramifications of these interactions for different classes of membranes - and for RFB applications - will be discussed. NSF CBET-1253544.
Predicting the Kinetics of Ice Recrystallization in Aqueous Sugar Solutions
2018-01-01
The quality of stored frozen products such as foods and biomaterials generally degrades in time due to the growth of large ice crystals by recrystallization. While there is ample experimental evidence that recrystallization within such products (or model systems thereof) is often dominated by diffusion-limited Ostwald ripening, the application of Ostwald-ripening theories to predict measured recrystallization rates has only met with limited success. For a model system of polycrystalline ice within an aqueous solution of sugars, we here show recrystallization rates can be predicted on the basis of Ostwald ripening theory, provided (1) the theory accounts for the fact the solution can be nonideal, nondilute and of different density than the crystals, (2) the effect of ice-phase volume fraction on the diffusional flux of water between crystals is accurately described, and (3) all relevant material properties (involving binary Fick diffusion coefficients, the thermodynamic factor of the solution, and the surface energy of ice) are carefully estimated. To enable calculation of material properties, we derive an alternative formulation of Ostwald ripening in terms of the Maxwell–Stefan instead of the Fick approach to diffusion. First, this leads to a cancellation of the thermodynamic factor (a measure for the nonideality of a solution), which is a notoriously difficult property to obtain. Second, we show that Maxwell–Stefan diffusion coefficients can to a reasonable approximation be related to self-diffusion coefficients, which are relatively easy to measure or predict in comparison to Fick diffusion coefficients. Our approach is validated for a binary system of water and sucrose, for which we show predicted recrystallization rates of ice compare well to experimental results, with relative deviations of at most a factor of 2. PMID:29651228
Krypton-xenon separation properties of SAPO-34 zeolite materials and membranes
Hye Kwon, Yeon; Kiang, Christine; Benjamin, Emily; ...
2016-07-27
Separation of the radioisotope 85Kr from 136Xe is an important target during used nuclear fuel recycling. In this paper, we report a detailed study on the Kr and Xe adsorption, diffusion, and membrane permeation properties of the silicoaluminophosphate zeolite SAPO-34. Adsorption and diffusion measurements on SAPO-34 crystals indicate their potential for use in Kr-Xe separation membranes, but also highlight competing effects of adsorption and diffusion selectivity. SAPO-34 membranes are synthesized on α$-$alumina disk and tubular substrates via steam assisted conversion seeding and hydrothermal growth, and are characterized in detail. Membrane transport measurements reveal that SAPO-34 membranes can separate Kr frommore » Xe by molecular sieving, with Kr permeabilities around 50 Barrer and mixture selectivity of 25–30 for Kr at ambient or slight sub-ambient conditions. Finally, the membrane transport characteristics are modeled by the Maxwell-Stefan equations, whose predictions are in very good agreement with experiment and confirm the minimal competing effects of adsorption and diffusion.« less
ms 2: A molecular simulation tool for thermodynamic properties, release 3.0
NASA Astrophysics Data System (ADS)
Rutkai, Gábor; Köster, Andreas; Guevara-Carrion, Gabriela; Janzen, Tatjana; Schappals, Michael; Glass, Colin W.; Bernreuther, Martin; Wafai, Amer; Stephan, Simon; Kohns, Maximilian; Reiser, Steffen; Deublein, Stephan; Horsch, Martin; Hasse, Hans; Vrabec, Jadran
2017-12-01
A new version release (3.0) of the molecular simulation tool ms 2 (Deublein et al., 2011; Glass et al. 2014) is presented. Version 3.0 of ms 2 features two additional ensembles, i.e. microcanonical (NVE) and isobaric-isoenthalpic (NpH), various Helmholtz energy derivatives in the NVE ensemble, thermodynamic integration as a method for calculating the chemical potential, the osmotic pressure for calculating the activity of solvents, the six Maxwell-Stefan diffusion coefficients of quaternary mixtures, statistics for sampling hydrogen bonds, smooth-particle mesh Ewald summation as well as the ability to carry out molecular dynamics runs for an arbitrary number of state points in a single program execution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Richa Naja, E-mail: ltprichanaja@gmail.com; Chakraborty, Brahmananda; Ramaniah, Lavanya M.
In this work our main objective is to compute Dynamical correlations, Onsager coefficients and Maxwell-Stefan (MS) diffusivities for molten salt LiF-KF mixture at various thermodynamic states through Green–Kubo formalism for the first time. The equilibrium molecular dynamics (MD) simulations were performed using BHM potential for LiF–KF mixture. The velocity autocorrelations functions involving Li ions reflect the endurance of cage dynamics or backscattering with temperature. The magnitude of Onsager coefficients for all pairs increases with increase in temperature. Interestingly most of the Onsager coefficients has almost maximum magnitude at the eutectic composition indicating the most dynamic character of the eutectic mixture.more » MS diffusivity hence diffusion for all ion pairs increases in the system with increasing temperature. Smooth variation of the diffusivity values denies any network formation in the mixture. Also, the striking feature is the noticeable concentration dependence of MS diffusivity between cation-cation pair, Đ{sub Li-K} which remains negative for most of the concentration range but changes sign to become positive for higher LiF concentration. The negative MS diffusivity is acceptable as it satisfies the non-negative entropy constraint governed by 2{sup nd} law of thermodynamics. This high diffusivity also vouches the candidature of molten salt as a coolant.« less
Chakraborty, Brahmananda; Kidwai, Sharif; Ramaniah, Lavanya M
2016-08-18
A molten salt mixture of lithium fluoride and thorium fluoride (LiF-ThF4) serves as a fuel as well as a coolant in the most sophisticated molten salt reactor (MSR). Here, we report for the first time dynamic correlations, Onsager coefficients, Maxwell-Stefan (MS) diffusivities, and the concentration dependence of density and enthalpy of the molten salt mixture LiF-ThF4 at 1200 K in the composition range of 2-45% ThF4 and also at eutectic composition in the temperature range of 1123-1600 K using Green-Kubo formalism and equilibrium molecular dynamics simulations. We have observed an interesting oscillating pattern for the MS diffusivity for the cation-cation pair, in which ĐLi-Th oscillates between positive and negative values with the amplitude of the oscillation reducing as the system becomes rich in ThF4. Through the velocity autocorrelation function, vibrational density of states, radial distribution function analysis, and structural snapshots, we establish an interplay between the local structure and multicomponent dynamics and predict that formation of negatively charged [ThFn](4-n) clusters at a higher ThF4 mole % makes positively charged Li(+) ions oscillate between different clusters, with their range of motion reducing as the number of [ThFn](4-n) clusters increases, and finally Li(+) ions almost get trapped at a higher ThF4% when the electrostatic force on Li(+) exerted by various surrounding clusters gets balanced. Although reports on variations of density and enthalpy with temperature exist in the literature, for the first time we report variations of the density and enthalpy of LiF-ThF4 with the concentration of ThF4 (mole %) and fit them with the square root function of ThF4 concentration, which will be very useful for experimentalists to obtain data over a range of concentrations from fitting the formula for design purposes. The formation of [ThFn](4-n) clusters and the reduction in the diffusivity of the ions at a higher ThF4% may limit the percentage of ThF4 that can be used in the MSR to optimize the neutron economy.
Mass transport in gas diffusion layers of proton exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Martinez, Michael J.
This dissertation describes fundamental properties of gas diffusion media (GDM) and their relationship to the mass transport in proton exchange membrane fuel cells (PEMFCs). First, the accuracy of solving the multi-component equations for PEMFC by using a computational fluid dynamics (CFD) technique is examined. This technique uses an approximated multi-component (AMC) model with a correction term that guarantees the overall mass balance. Accuracy is assessed by comparing the species concentrations computed with the Maxwell-Stefan and the AMC model. This comparison is important because the structure of some CFD programs does not permit the direct use of the Maxwell-Stefan equations. Here, it is shown that the maximum error between the two models is less than 5%. Second, the ratio of tortuosity to porosity, known as the MacMullin number, is reported for different carbon cloth and carbon paper GDM. This analysis show that only carbon cloths GDM follow the commonly accepted Bruggeman equation and that carbon paper GDM have a different relationship between the tortuosity and the porosity. These differences are discussed in terms of path length created by the orientation of fibers of each GDM. Third, data for the hydrophilic and hydrophobic pore size distributions (PSD) are presented for two types of GDM used in PEMFCs. The data were obtained by using two common measurement methods, intrusion porosimetry (IP) and the method of standard porosimetry (MSP). The use of multiple working fluids to access hydrophilic and hydrophobic pores is discussed as well as the limitations associated with structural changes of the GDM during the tests. The differences in interpretations of the data between the two methods for both GDM have significant implications relative to the distribution of hydrophilic and hydrophobic pores that control liquid water transport. Finally, a two-phase mass-transport-only model (MTOM) that incorporates the tortuosity and the PSD data described above is presented. The model provides an understanding of the effect of PSD in the water transport by decoupling it from other factors. The MTOM shows that differences in GDM structure produce significant differences in the liquid saturation.
Modeling Ignition of HMX with the Gibbs Formulation
NASA Astrophysics Data System (ADS)
Lee, Kibaek; Stewart, D. Scott
2017-06-01
We present a HMX model with the Gibbs formulation in which stress tensor and temperature are assumed to be in local equilibrium, but phase/chemical changes are not assumed to be in equilibrium. We assume multi-components for HMX including beta- and delta-phase, liquid, and gas phase of HMX and its gas products. Isotropic small strain solid model, modified Fried Howard liquid EOS, and ideal gas EOS are used for its relevant component. Phase/chemical changes are characterized as reactions and are in individual reaction rate. Maxwell-Stefan model is used for diffusion. Excited gas products in the local domain lead unreacted HMX solid to the ignition event. Density of the mixture, stress, strain, displacement, mass fractions, and temperature are considered in 1D domain with time histories. Office of Naval Research and Air Force Office of Scientific Research.
Diffusion of interacting particles in discrete geometries: Equilibrium and dynamical properties
NASA Astrophysics Data System (ADS)
Becker, T.; Nelissen, K.; Cleuren, B.; Partoens, B.; Van den Broeck, C.
2014-11-01
We expand on a recent study of a lattice model of interacting particles [Phys. Rev. Lett. 111, 110601 (2013), 10.1103/PhysRevLett.111.110601]. The adsorption isotherm and equilibrium fluctuations in particle number are discussed as a function of the interaction. Their behavior is similar to that of interacting particles in porous materials. Different expressions for the particle jump rates are derived from transition-state theory. Which expression should be used depends on the strength of the interparticle interactions. Analytical expressions for the self- and transport diffusion are derived when correlations, caused by memory effects in the environment, are neglected. The diffusive behavior is studied numerically with kinetic Monte Carlo (kMC) simulations, which reproduces the diffusion including correlations. The effect of correlations is studied by comparing the analytical expressions with the kMC simulations. It is found that the Maxwell-Stefan diffusion can exceed the self-diffusion. To our knowledge, this is the first time this is observed. The diffusive behavior in one-dimensional and higher-dimensional systems is qualitatively the same, with the effect of correlations decreasing for increasing dimension. The length dependence of both the self- and transport diffusion is studied for one-dimensional systems. For long lengths the self-diffusion shows a 1 /L dependence. Finally, we discuss when agreement with experiments and simulations can be expected. The assumption that particles in different cavities do not interact is expected to hold quantitatively at low and medium particle concentrations if the particles are not strongly interacting.
A multifluid model extended for strong temperature nonequilibrium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Chong
2016-08-08
We present a multifluid model in which the material temperature is strongly affected by the degree of segregation of each material. In order to track temperatures of segregated form and mixed form of the same material, they are defined as different materials with their own energy. This extension makes it necessary to extend multifluid models to the case in which each form is defined as a separate material. Statistical variations associated with the morphology of the mixture have to be simplified. Simplifications introduced include combining all molecularly mixed species into a single composite material, which is treated as another segregatedmore » material. Relative motion within the composite material, diffusion, is represented by material velocity of each component in the composite material. Compression work, momentum and energy exchange, virtual mass forces, and dissipation of the unresolved kinetic energy have been generalized to the heterogeneous mixture in temperature nonequilibrium. The present model can be further simplified by combining all mixed forms of materials into a composite material. Molecular diffusion in this case is modeled by the Stefan-Maxwell equations.« less
Effects of surface poisons on the oxidation of binary alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagan, P.S.; Polizzotti, R.S.; Luckman, G.
1985-10-01
A system of reaction-diffusion equations describing the oxidation of binary alloys in environments containing small amounts of surface poisons is analyzed. These poisons reduce the oxygen flux into the alloy, which causes the alloy to oxidize in two stages.During the initial stage, the oxidation reaction occurs in a stationary boundary layer at the alloy surface. Consequently, a thin zone containing a very high concentration of the metal oxide is created at the alloy surface. During the second stage, the oxidation reaction occurs in a moving boundary layer. This leads to a Stefan problem, which is analyzed by using asymptotic andmore » numerical techniques. By comparing the solutions to those of alloys in unpoisoned environments, it is concluded that surface poisons can lead to the formation of protective external oxide scales in alloys which would not normally form such scales. 11 references.« less
Fluctuation-enhanced electric conductivity in electrolyte solutions
Péraud, Jean-Philippe; Nonaka, Andrew J.; Bell, John B.; Donev, Aleksandar; Garcia, Alejandro L.
2017-01-01
We analyze the effects of an externally applied electric field on thermal fluctuations for a binary electrolyte fluid. We show that the fluctuating Poisson–Nernst–Planck (PNP) equations for charged multispecies diffusion coupled with the fluctuating fluid momentum equation result in enhanced charge transport via a mechanism distinct from the well-known enhancement of mass transport that accompanies giant fluctuations. Although the mass and charge transport occurs by advection by thermal velocity fluctuations, it can macroscopically be represented as electrodiffusion with renormalized electric conductivity and a nonzero cation–anion diffusion coefficient. Specifically, we predict a nonzero cation–anion Maxwell–Stefan coefficient proportional to the square root of the salt concentration, a prediction that agrees quantitatively with experimental measurements. The renormalized or effective macroscopic equations are different from the starting PNP equations, which contain no cross-diffusion terms, even for rather dilute binary electrolytes. At the same time, for infinitely dilute solutions the renormalized electric conductivity and renormalized diffusion coefficients are consistent and the classical PNP equations with renormalized coefficients are recovered, demonstrating the self-consistency of the fluctuating hydrodynamics equations. Our calculations show that the fluctuating hydrodynamics approach recovers the electrophoretic and relaxation corrections obtained by Debye–Huckel–Onsager theory, while elucidating the physical origins of these corrections and generalizing straightforwardly to more complex multispecies electrolytes. Finally, we show that strong applied electric fields result in anisotropically enhanced “giant” velocity fluctuations and reduced fluctuations of salt concentration. PMID:28973890
Religious Accommodation for Military Members in the Twenty-First Century
2012-02-01
order and discipline is speculative. He presented a scenario where a female Airman had permission to wear her hijab indoors. When she transferred to the...Lieutenant Colonel, USAF A Research Report Submitted to the Faculty In Partial Fulfillment of the Graduation Requirements Advisor: Dr. Stefan Eisen, Jr...Colonel, USAF (Retired) Maxwell Air Force Base, Alabama February 2012 DISTRIBUTION A . Approved for public release: distribution unlimited 2
Fluctuation-enhanced electric conductivity in electrolyte solutions
Péraud, Jean-Philippe; Nonaka, Andrew J.; Bell, John B.; ...
2017-09-26
In this work, we analyze the effects of an externally applied electric field on thermal fluctuations for a binary electrolyte fluid. We show that the fluctuating Poisson–Nernst–Planck (PNP) equations for charged multispecies diffusion coupled with the fluctuating fluid momentum equation result in enhanced charge transport via a mechanism distinct from the well-known enhancement of mass transport that accompanies giant fluctuations. Although the mass and charge transport occurs by advection by thermal velocity fluctuations, it can macroscopically be represented as electrodiffusion with renormalized electric conductivity and a nonzero cation–anion diffusion coefficient. Specifically, we predict a nonzero cation–anion Maxwell– Stefan coefficient proportionalmore » to the square root of the salt concentration, a prediction that agrees quantitatively with experimental measurements. The renormalized or effective macroscopic equations are different from the starting PNP equations, which contain no cross-diffusion terms, even for rather dilute binary electrolytes. At the same time, for infinitely dilute solutions the renormalized electric conductivity and renormalized diffusion coefficients are consistent and the classical PNP equations with renormalized coefficients are recovered, demonstrating the self-consistency of the fluctuating hydrodynamics equations. Our calculations show that the fluctuating hydrodynamics approach recovers the electrophoretic and relaxation corrections obtained by Debye–Huckel–Onsager theory, while elucidating the physical origins of these corrections and generalizing straightforwardly to more complex multispecies electrolytes. Lastly, we show that strong applied electric fields result in anisotropically enhanced “giant” velocity fluctuations and reduced fluctuations of salt concentration.« less
Fluctuation-enhanced electric conductivity in electrolyte solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Péraud, Jean-Philippe; Nonaka, Andrew J.; Bell, John B.
In this work, we analyze the effects of an externally applied electric field on thermal fluctuations for a binary electrolyte fluid. We show that the fluctuating Poisson–Nernst–Planck (PNP) equations for charged multispecies diffusion coupled with the fluctuating fluid momentum equation result in enhanced charge transport via a mechanism distinct from the well-known enhancement of mass transport that accompanies giant fluctuations. Although the mass and charge transport occurs by advection by thermal velocity fluctuations, it can macroscopically be represented as electrodiffusion with renormalized electric conductivity and a nonzero cation–anion diffusion coefficient. Specifically, we predict a nonzero cation–anion Maxwell– Stefan coefficient proportionalmore » to the square root of the salt concentration, a prediction that agrees quantitatively with experimental measurements. The renormalized or effective macroscopic equations are different from the starting PNP equations, which contain no cross-diffusion terms, even for rather dilute binary electrolytes. At the same time, for infinitely dilute solutions the renormalized electric conductivity and renormalized diffusion coefficients are consistent and the classical PNP equations with renormalized coefficients are recovered, demonstrating the self-consistency of the fluctuating hydrodynamics equations. Our calculations show that the fluctuating hydrodynamics approach recovers the electrophoretic and relaxation corrections obtained by Debye–Huckel–Onsager theory, while elucidating the physical origins of these corrections and generalizing straightforwardly to more complex multispecies electrolytes. Lastly, we show that strong applied electric fields result in anisotropically enhanced “giant” velocity fluctuations and reduced fluctuations of salt concentration.« less
Effect of breathing-hole size on the electrochemical species in a free-breathing cathode of a DMFC
NASA Astrophysics Data System (ADS)
Hwang, J. J.; Wu, S. D.; Lai, L. K.; Chen, C. K.; Lai, D. Y.
A three-dimensional numerical model is developed to study the electrochemical species characteristics in a free-breathing cathode of a direct methanol fuel cell (DMFC). A perforated current collector is attached to the porous cathode that breathes the fresh air through an array of orifices. The radius of the orifice is varied to examine its effect on the electrochemical performance. Gas flow in the porous cathode is governed by the Darcy equation with constant porosity and permeability. The multi-species diffusive transports in the porous cathode are described using the Stefan-Maxwell equation. Electrochemical reaction on the surfaces of the porous matrices is depicted via the Butler-Volmer equation. The charge transports in the porous matrices are dealt with by Ohm's law. The coupled equations are solved by a finite-element-based CFD technique. Detailed distributions of electrochemical species characteristics such as flow velocities, species mass fractions, species fluxes, and current densities are presented. The optimal breathing-hole radius is derived from the current drawn out of the porous cathode under a fixed overpotential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Brahmananda, E-mail: brahma@barc.gov.in; Ramaniah, Lavanya M.
2015-06-24
Applying Green–Kubo formalism and equilibrium molecular dynamics (MD) simulations, we have studied the dynamic correlation, Onsager coeeficients and Maxwell–Stefan (MS) Diffusivities of molten salt LiF-BeF{sub 2}, which is used as coolant in high temperature reactor. All the diffusive flux correlations show back-scattering or cage dynamics which becomes pronouced at higher temperature. Although the MS diffusivities are expected to depend very lightly on the composition due to decoupling of thermodynamic factor, the diffusivity Đ{sub Li-F} and Đ{sub Be-F} decreases sharply for higher concentration of LiF and BeF{sub 2} respectively. Interestingly, all three MS diffusivities have highest magnitude for eutectic mixture atmore » 1000K (except Đ{sub Be-F} at lower LiF mole fraction) which is desirable from coolant point of view. Although the diffusivity for positive-positive ion pair is negative it is not in violation of the second law of thermodynamics as it satisfies the non-negative entropic constraints.« less
Sakai, Hiromi; Okuda, Naoto; Sato, Atsushi; Yamaue, Tatsuya; Takeoka, Shinji; Tsuchida, Eishun
2010-03-01
Intravenous administration of cell-free Hb induces vasoconstriction and circulatory disorders, presumably because of the intrinsic affinities to endogenous nitric oxide (NO) and carbon monoxide (CO) as vasorelaxation factors and because of the facilitated O(2) release that might induce autoregulatory vasoconstriction. We examined these gas reactions when Hb-containing solutions of four kinds were perfused through artificial narrow tubes at a practical Hb concentration (10 g/dl). Purified Hb solution, polymerized bovine Hb (Poly(B)Hb), encapsulated Hb [Hb-vesicles (HbV), 279 nm], and red blood cells (RBCs) were perfused through a gas-permeable narrow tube (25 microm inner diameter) at 1 mm/s centerline velocity. The level of reactions was determined microscopically based on the visible-light absorption spectrum of Hb. When the tube was immersed in NO and CO atmospheres, both NO binding and CO binding of deoxygenated Hb (deoxy-Hb) and Poly(B)Hb in the tube was faster than those of HbV and RBCs, and HbV and RBCs showed almost identical binding rates. When the tube was immersed in a N(2) atmosphere, oxygenated Hb and Poly(B)Hb showed much faster O(2) release than did HbV and RBCs. Poly(B)Hb showed a faster reaction than Hb because of the lower O(2) affinity of Poly(B)Hb than Hb. The diffusion process of the particles was simulated using Navier-Stokes and Maxwell-Stefan equations. Results clarified that small Hb (6 nm) diffuses laterally and mixes rapidly. However, the large-dimension HbV shows no such rapid diffusion. The purely physicochemical differences in diffusivity of the particles and the resulting reactivity with gas molecules are one factor inducing biological vasoconstriction of Hb-based oxygen carriers.
Transport properties of partially ionized and unmagnetized plasmas.
Magin, Thierry E; Degrez, Gérard
2004-10-01
This work is a comprehensive and theoretical study of transport phenomena in partially ionized and unmagnetized plasmas by means of kinetic theory. The pros and cons of different models encountered in the literature are presented. A dimensional analysis of the Boltzmann equation deals with the disparity of mass between electrons and heavy particles and yields the epochal relaxation concept. First, electrons and heavy particles exhibit distinct kinetic time scales and may have different translational temperatures. The hydrodynamic velocity is assumed to be identical for both types of species. Second, at the hydrodynamic time scale the energy exchanged between electrons and heavy particles tends to equalize both temperatures. Global and species macroscopic fluid conservation equations are given. New constrained integral equations are derived from a modified Chapman-Enskog perturbative method. Adequate bracket integrals are introduced to treat thermal nonequilibrium. A symmetric mathematical formalism is preferred for physical and numerical standpoints. A Laguerre-Sonine polynomial expansion allows for systems of transport to be derived. Momentum, mass, and energy fluxes are associated to shear viscosity, diffusion coefficients, thermal diffusion coefficients, and thermal conductivities. A Goldstein expansion of the perturbation function provides explicit expressions of the thermal diffusion ratios and measurable thermal conductivities. Thermal diffusion terms already found in the Russian literature ensure the exact mass conservation. A generalized Stefan-Maxwell equation is derived following the method of Kolesnikov and Tirskiy. The bracket integral reduction in terms of transport collision integrals is presented in Appendix for the thermal nonequilibrium case. A simple Eucken correction is proposed to deal with the internal degrees of freedom of atoms and polyatomic molecules, neglecting inelastic collisions. The authors believe that the final expressions are readily usable for practical applications in fluid dynamics.
Dynamic Model and Experimental Validation of a PEM Fuel Cell System
NASA Astrophysics Data System (ADS)
Nassif, Younane; Godoy, Emmanuel; Bethoux, Olivier; Roche, Ivan
Fuel cells are expected to become a challenging technology in terms of efficiency, and fitting the emission reduction schedules [Lemons, J. Power Sources, 29:251,
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishna, Rajamani; van Baten, Jasper M.
2011-04-27
Molecular dynamics (MD) simulations were performed to determine the self-diffusivity (D i,self) and the Maxwell–Stefan diffusivity (Ð I) of hydrogen, argon, carbon dioxide, methane, ethane, propane, n-butane, n-pentane, and n-hexane in BTP-COF, which is a covalent organic framework (COF) that has one-dimensional 3.4-nm-sized channels. The MD simulations show that the zero-loading diffusivity (Ð I(0)) is consistently lower, by up to a factor of 10, than the Knudsen diffusivity (D i,Kn) values. The ratio Ð I(0)/D i,Kn is found to correlate with the isosteric heat of adsorption, which, in turn, is a reflection of the binding energy for adsorption on themore » pore walls: the stronger the binding energy, the lower the ratio Ð I(0)/D i,Kn. The diffusion selectivity, which is defined by the ratio D 1,self/D 2,self for binary mixtures, was determined to be significantly different from the Knudsen selectivity (M 2/M 1) 1/2, where M I is the molar mass of species i. For mixtures in which component 2 is more strongly adsorbed than component 1, the expression (D 1,self/D 2,self)/(M 2/M 1)1/2 has values in the range of 1–10; the departures from the Knudsen selectivity increased with increasing differences in adsorption strengths of the constituent species. The results of this study have implications in the modeling of diffusion within mesoporous structures, such as MCM-41 and SBA-15.« less
NASA Astrophysics Data System (ADS)
Collell, Julien; Galliero, Guillaume
2014-05-01
The multi-component diffusive mass transport is generally quantified by means of the Maxwell-Stefan diffusion coefficients when using molecular simulations. These coefficients can be related to the Fick diffusion coefficients using the thermodynamic correction factor matrix, which requires to run several simulations to estimate all the elements of the matrix. In a recent work, Schnell et al. ["Thermodynamics of small systems embedded in a reservoir: A detailed analysis of finite size effects," Mol. Phys. 110, 1069-1079 (2012)] developed an approach to determine the full matrix of thermodynamic factors from a single simulation in bulk. This approach relies on finite size effects of small systems on the density fluctuations. We present here an extension of their work for inhomogeneous Lennard Jones fluids confined in slit pores. We first verified this extension by cross validating the results obtained from this approach with the results obtained from the simulated adsorption isotherms, which allows to determine the thermodynamic factor in porous medium. We then studied the effects of the pore width (from 1 to 15 molecular sizes), of the solid-fluid interaction potential (Lennard Jones 9-3, hard wall potential) and of the reduced fluid density (from 0.1 to 0.7 at a reduced temperature T* = 2) on the thermodynamic factor. The deviation of the thermodynamic factor compared to its equivalent bulk value decreases when increasing the pore width and becomes insignificant for reduced pore width above 15. We also found that the thermodynamic factor is sensitive to the magnitude of the fluid-fluid and solid-fluid interactions, which softens or exacerbates the density fluctuations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collell, Julien; Galliero, Guillaume, E-mail: guillaume.galliero@univ-pau.fr
2014-05-21
The multi-component diffusive mass transport is generally quantified by means of the Maxwell-Stefan diffusion coefficients when using molecular simulations. These coefficients can be related to the Fick diffusion coefficients using the thermodynamic correction factor matrix, which requires to run several simulations to estimate all the elements of the matrix. In a recent work, Schnell et al. [“Thermodynamics of small systems embedded in a reservoir: A detailed analysis of finite size effects,” Mol. Phys. 110, 1069–1079 (2012)] developed an approach to determine the full matrix of thermodynamic factors from a single simulation in bulk. This approach relies on finite size effectsmore » of small systems on the density fluctuations. We present here an extension of their work for inhomogeneous Lennard Jones fluids confined in slit pores. We first verified this extension by cross validating the results obtained from this approach with the results obtained from the simulated adsorption isotherms, which allows to determine the thermodynamic factor in porous medium. We then studied the effects of the pore width (from 1 to 15 molecular sizes), of the solid-fluid interaction potential (Lennard Jones 9-3, hard wall potential) and of the reduced fluid density (from 0.1 to 0.7 at a reduced temperature T* = 2) on the thermodynamic factor. The deviation of the thermodynamic factor compared to its equivalent bulk value decreases when increasing the pore width and becomes insignificant for reduced pore width above 15. We also found that the thermodynamic factor is sensitive to the magnitude of the fluid-fluid and solid-fluid interactions, which softens or exacerbates the density fluctuations.« less
Pseudo spectral collocation with Maxwell polynomials for kinetic equations with energy diffusion
NASA Astrophysics Data System (ADS)
Sánchez-Vizuet, Tonatiuh; Cerfon, Antoine J.
2018-02-01
We study the approximation and stability properties of a recently popularized discretization strategy for the speed variable in kinetic equations, based on pseudo-spectral collocation on a grid defined by the zeros of a non-standard family of orthogonal polynomials called Maxwell polynomials. Taking a one-dimensional equation describing energy diffusion due to Fokker-Planck collisions with a Maxwell-Boltzmann background distribution as the test bench for the performance of the scheme, we find that Maxwell based discretizations outperform other commonly used schemes in most situations, often by orders of magnitude. This provides a strong motivation for their use in high-dimensional gyrokinetic simulations. However, we also show that Maxwell based schemes are subject to a non-modal time stepping instability in their most straightforward implementation, so that special care must be given to the discrete representation of the linear operators in order to benefit from the advantages provided by Maxwell polynomials.
Black hole dynamics in Einstein-Maxwell-dilaton theory
NASA Astrophysics Data System (ADS)
Hirschmann, Eric W.; Lehner, Luis; Liebling, Steven L.; Palenzuela, Carlos
2018-03-01
We consider the properties and dynamics of black holes within a family of alternative theories of gravity, namely Einstein-Maxwell-dilaton theory. We analyze the dynamical evolution of individual black holes as well as the merger of binary black hole systems. We do this for a wide range of parameter values for the family of Einstein-Maxwell-dilaton theories, investigating, in the process, the stability of these black holes. We examine radiative degrees of freedom, explore the impact of the scalar field on the dynamics of merger, and compare with other scalar-tensor theories. We argue that the dilaton can largely be discounted in understanding merging binary systems and that the end states essentially interpolate between charged and uncharged, rotating black holes. For the relatively small charge values considered here, we conclude that these black hole systems will be difficult to distinguish from their analogs within General Relativity.
Solidification of a binary mixture
NASA Technical Reports Server (NTRS)
Antar, B. N.
1982-01-01
The time dependent concentration and temperature profiles of a finite layer of a binary mixture are investigated during solidification. The coupled time dependent Stefan problem is solved numerically using an implicit finite differencing algorithm with the method of lines. Specifically, the temporal operator is approximated via an implicit finite difference operator resulting in a coupled set of ordinary differential equations for the spatial distribution of the temperature and concentration for each time. Since the resulting differential equations set form a boundary value problem with matching conditions at an unknown spatial point, the method of invariant imbedding is used for its solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casana, Rodolfo; Ferreira, Manoel M. Jr; Rodrigues, Josberg S.
2009-10-15
In this work, we examine the finite temperature properties of the CPT-even and Lorentz-invariance-violating (LIV) electrodynamics of the standard model extension, represented by the term W{sub {alpha}}{sub {nu}}{sub {rho}}{sub {phi}}F{sup {alpha}}{sup {nu}}F{sup {rho}}{sup {phi}}. We begin analyzing the Hamiltonian structure following the Dirac's procedure for constrained systems and construct a well-defined and gauge invariant partition function in the functional integral formalism. Next, we specialize for the nonbirefringent coefficients of the tensor W{sub {alpha}}{sub {nu}}{sub {rho}}{sub {phi}}. In the sequel, the partition function is explicitly carried out for the parity-even sector of the tensor W{sub {alpha}}{sub {nu}}{sub {rho}}{sub {phi}}. The modifiedmore » partition function is a power of the Maxwell's partition function. It is observed that the LIV coefficients induce an anisotropy in the black body angular energy density distribution. The Planck's radiation law, however, retains its frequency dependence and the Stefan-Boltzmann law keeps the usual form, except for a change in the Stefan-Boltzmann constant by a factor containing the LIV contributions.« less
NASA Astrophysics Data System (ADS)
Stefan, V. Alexander
2011-03-01
I propose a novel mechanism for the brain cancer tissue treatment: nonlinear interaction of ultrashort pulses of beat-photon, (ω1 -- ω2) , or double-photon, (ω1 +ω2) , beams with the cancer tissue. The multiphoton scattering is described via photon diffusion equation. The open-scull cerebral tissue can be irradiated with the beat-modulated photon pulses with the laser irradiances in the range of a few mW/cm2 , and repetition rate of a few 100s Hz generated in the beat-wave driven free electron laser. V. Stefan, B. I. Cohen, and C. Joshi, Nonlinear Mixing of Electromagnetic Waves in PlasmasScience 27 January 1989: V. Alexander Stefan, Genomic Medical Physics: A New Physics in the Making, (S-U-Press, 2008).} This highly accurate cancer tissue ablation removal may prove to be an efficient method for the treatment of brain cancer. Work supported in part by Nikola Tesla Laboratories (Stefan University), La Jolla, CA.
Maxwell iteration for the lattice Boltzmann method with diffusive scaling
NASA Astrophysics Data System (ADS)
Zhao, Weifeng; Yong, Wen-An
2017-03-01
In this work, we present an alternative derivation of the Navier-Stokes equations from Bhatnagar-Gross-Krook models of the lattice Boltzmann method with diffusive scaling. This derivation is based on the Maxwell iteration and can expose certain important features of the lattice Boltzmann solutions. Moreover, it will be seen to be much more straightforward and logically clearer than the existing approaches including the Chapman-Enskog expansion.
NASA Astrophysics Data System (ADS)
Helmers, Michael; Herrmann, Michael
2018-03-01
We consider a lattice regularization for an ill-posed diffusion equation with a trilinear constitutive law and study the dynamics of phase interfaces in the parabolic scaling limit. Our main result guarantees for a certain class of single-interface initial data that the lattice solutions satisfy asymptotically a free boundary problem with a hysteretic Stefan condition. The key challenge in the proof is to control the microscopic fluctuations that are inevitably produced by the backward diffusion when a particle passes the spinodal region.
Vapor Transport Within the Thermal Diffusion Cloud Chamber
NASA Technical Reports Server (NTRS)
Ferguson, Frank T.; Heist, Richard H.; Nuth, Joseph A., III
2000-01-01
A review of the equations used to determine the 1-D vapor transport in the thermal diffusion cloud chamber (TDCC) is presented. These equations closely follow those of the classical Stefan tube problem in which there is transport of a volatile species through a noncondensible, carrier gas. In both cases, the very plausible assumption is made that the background gas is stagnant. Unfortunately, this assumption results in a convective flux which is inconsistent with the momentum and continuity equations for both systems. The approximation permits derivation of an analytical solution for the concentration profile in the Stefan tube, but there is no computational advantage in the case of the TDCC. Furthermore, the degree of supersaturation is a sensitive function of the concentration profile in the TD CC and the stagnant background gas approximation can make a dramatic difference in the calculated supersaturation. In this work, the equations typically used with a TDCC are compared with very general transport equations describing the 1-D diffusion of the volatile species. Whereas no pressure dependence is predicted with the typical equations, a strong pressure dependence is present with the more general equations given in this work. The predicted behavior is consistent with observations in diffusion cloud experiments. It appears that the new equations may account for much of the pressure dependence noted in TDCC experiments, but a comparison between the new equations and previously obtained experimental data are needed for verification.
Evans, William C.; Sorey, M.L.; Kennedy, B.M.; Stonestrom, David A.; Rogie, J.D.; Shuster, D.L.
2001-01-01
Diffuse emissions of CO2 are known to be large around some volcanoes and hydrothermal areas. Accumulation-chamber measurements of CO2 flux are increasingly used to estimate the total magmatic or metamorphic CO2 released from such areas. To assess the performance of accumulation chamber systems at fluxes one to three orders of magnitude higher than normally encountered in soil respiration studies, a test system was constructed in the laboratory where known fluxes could be maintained through dry sand. Steady-state gas concentration profiles and fractionation effects observed in the 30-cm sand column nearly match those predicted by the Stefan-Maxwell equations, indicating that the test system was functioning successfully as a uniform porous medium. Eight groups of investigators tested their accumulation chamber equipment, all configured with continuous infrared gas analyzers (IRGA), in this system. Over a flux range of ~ 200-12,000 g m-2 day-1, 90% of their 203 flux measurements were 0-25% lower than the imposed flux with a mean difference of - 12.5%. Although this difference would seem to be within the range of acceptability for many geologic investigations, some potential sources for larger errors were discovered. A steady-state pressure gradient of -20 Pa/m was measured in the sand column at a flux of 11,200 g m-2 day-1. The derived permeability (50 darcies) was used in the dusty-gas model (DGM) of transport to quantify various diffusive and viscous flux components. These calculations were used to demonstrate that accumulation chambers, in addition to reducing the underlying diffusive gradient, severely disrupt the steady-state pressure gradient. The resultant diversion of the net gas flow is probably responsible for the systematically low flux measurements. It was also shown that the fractionating effects of a viscous CO2 efflux against a diffusive influx of air will have a major impact on some important geochemical indicators, such as N2/Ar, ??15N-N2, and 4He/22Ne. Published by Elsevier Science B.V.
NASA Astrophysics Data System (ADS)
Fukao, Takeshi; Kurima, Shunsuke; Yokota, Tomomi
2018-05-01
This paper develops an abstract theory for subdifferential operators to give existence and uniqueness of solutions to the initial-boundary problem (P) for the nonlinear diffusion equation in an unbounded domain $\\Omega\\subset\\mathbb{R}^N$ ($N\\in{\\mathbb N}$), written as \\[ \\frac{\\partial u}{\\partial t} + (-\\Delta+1)\\beta(u) = g \\quad \\mbox{in}\\ \\Omega\\times(0, T), \\] which represents the porous media, the fast diffusion equations, etc., where $\\beta$ is a single-valued maximal monotone function on $\\mathbb{R}$, and $T>0$. Existence and uniqueness for (P) were directly proved under a growth condition for $\\beta$ even though the Stefan problem was excluded from examples of (P). This paper completely removes the growth condition for $\\beta$ by confirming Cauchy's criterion for solutions of the following approximate problem (P)$_{\\varepsilon}$ with approximate parameter $\\varepsilon>0$: \\[ \\frac{\\partial u_{\\varepsilon}}{\\partial t} + (-\\Delta+1)(\\varepsilon(-\\Delta+1)u_{\\varepsilon} + \\beta(u_{\\varepsilon}) + \\pi_{\\varepsilon}(u_{\\varepsilon})) = g \\quad \\mbox{in}\\ \\Omega\\times(0, T), \\] which is called the Cahn--Hilliard system, even if $\\Omega \\subset \\mathbb{R}^N$ ($N \\in \\mathbb{N}$) is an unbounded domain. Moreover, it can be seen that the Stefan problem is covered in the framework of this paper.
NASA Astrophysics Data System (ADS)
Zhang, Yue; Zhu, Lianhua; Wang, Ruijie; Guo, Zhaoli
2018-05-01
Recently a discrete unified gas kinetic scheme (DUGKS) in a finite-volume formulation based on the Boltzmann model equation has been developed for gas flows in all flow regimes. The original DUGKS is designed for flows of single-species gases. In this work, we extend the DUGKS to flows of binary gas mixtures of Maxwell molecules based on the Andries-Aoki-Perthame kinetic model [P. Andries et al., J. Stat. Phys. 106, 993 (2002), 10.1023/A:1014033703134. A particular feature of the method is that the flux at each cell interface is evaluated based on the characteristic solution of the kinetic equation itself; thus the numerical dissipation is low in comparison with that using direct reconstruction. Furthermore, the implicit treatment of the collision term enables the time step to be free from the restriction of the relaxation time. Unlike the DUGKS for single-species flows, a nonlinear system must be solved to determine the interaction parameters appearing in the equilibrium distribution function, which can be obtained analytically for Maxwell molecules. Several tests are performed to validate the scheme, including the shock structure problem under different Mach numbers and molar concentrations, the channel flow driven by a small gradient of pressure, temperature, or concentration, the plane Couette flow, and the shear driven cavity flow under different mass ratios and molar concentrations. The results are compared with those from other reliable numerical methods. The results show that the proposed scheme is an effective and reliable method for binary gas mixtures in all flow regimes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baig, Mohammad Saad, E-mail: saad110baig@gmail.com; Chakraborty, Brahmananda; Ramaniah, Lavanya M.
NaF-ZrF{sub 4} is used as a waste incinerator and as a coolant in Generation IV reactors.Structural and dynamical properties of molten NaF-ZrF{sub 4} system were studied along with Onsagercoefficients and Maxwell–Stefan (MS) Diffusivities applying Green–Kubo formalism and molecular dynamics (MD) simulations. The zirconium ions are found to be 8 fold coordinated with fluoride ions for all temperatures and concentrations. All the diffusive flux correlations show back-scattering. Even though the MS diffusivities are expected to depend very lightly on the composition because of decoupling of thermodynamic factor, the diffusivity Đ{sub Na-F} shows interesting behavior with the increase in concentration of ZrF{submore » 4}. This is because of network formation in NaF-ZrF{sub 4}. Positive entropy constraints have been plotted to authenticate negative diffusivities observed.« less
Extreme Millimeter/Sub-millimeter and Radio Flares from V404 Cyg (GS 2023+338)
NASA Astrophysics Data System (ADS)
Tetarenko, A.; Sivakoff, G. R.; Young, Ken; Wouterloot, J. G. A.; Miller-Jones, J. C.
2015-06-01
We report follow up radio and mm/sub-mm observations (ATel #7671) of the current outburst of the black hole X-ray binary, V404 Cyg, with the VLA, Submillimeter Array (SMA), and James Clerk Maxwell Telescope SCUBA-2 (JCMT).
Dielectric properties of grain-grainboundary binary system
NASA Astrophysics Data System (ADS)
Cheng, Peng-Fei; Li, Sheng-Tao; Wang, Hui
2014-09-01
Dielectric properties of grain-grainboundary binary system are analyzed theoretically and compared with unary system and classical Maxwell-Wagner (MW) polarization in binary system. It is found that MW polarization appears at higher frequency compared with intrinsic polarization for grain-grainboundary binary system, which is abnormal compared with classical dielectric theory. This dielectric anomaly is premised on the existence of electronic relaxation at grainboundary. The origin of giant dielectric constant of CaCu3Ti4O12 (CCTO) ceramics is also investigated on the basis of the theoretical results. It is proposed that low frequency relaxation originates from electronic relaxation of oxygen vacancy at depletion layer, while high frequency relaxation comes from MW polarization. The results of this paper offer a quantitative identification of MW polarization from intrinsic polarization at grainboundary and a judgment of the mechanism and location of a certain polarization in grain-grainboundary binary system.
Modeling pinchoff and reconnection in a Hele-Shaw cell. I. The models and their calibration
NASA Astrophysics Data System (ADS)
Lee, Hyeong-Gi; Lowengrub, J. S.; Goodman, J.
2002-02-01
This is the first paper in a two-part series in which we analyze two model systems to study pinchoff and reconnection in binary fluid flow in a Hele-Shaw cell with arbitrary density and viscosity contrast between the components. The systems stem from a simplification of a general system of equations governing the motion of a binary fluid (NSCH model [Lowengrub and Truskinovsky, Proc. R. Soc. London, Ser. A 454, 2617 (1998)]) to flow in a Hele-Shaw cell. The system takes into account the chemical diffusivity between different components of a fluid mixture and the reactive stresses induced by inhomogeneity. In one of the systems we consider (HSCH), the binary fluid may be compressible due to diffusion. In the other system (BHSCH), a Boussinesq approximation is used and the fluid is incompressible. In this paper, we motivate, present and calibrate the HSCH/BHSCH equations so as to yield the classical sharp interface model as a limiting case. We then analyze their equilibria, one dimensional evolution and linear stability. In the second paper [paper II, Phys. Fluids 14, 514 (2002)], we analyze the behavior of the models in the fully nonlinear regime. In the BHSCH system, the equilibrium concentration profile is obtained using the classical Maxwell construction [Rowlinson and Widom, Molecular Theory of Capillarity (Clarendon, Oxford, 1979)] and does not depend on the orientation of the gravitational field. We find that the equilibria in the HSCH model are somewhat surprising as the gravitational field actually affects the internal structure of an isolated interface by driving additional stratification of light and heavy fluids over that predicted in the Boussinesq case. A comparison of the linear growth rates indicates that the HSCH system is slightly more diffusive than the BHSCH system. In both, linear convergence to the sharp interface growth rates is observed in a parameter controlling the interface thickness. In addition, we identify the effect that each of the parameters, in the HSCH/BHSCH models, has on the linear growth rates. We then show how this analysis may be used to suggest a set of modified parameters which, when used in the HSCH/BHSCH systems, yield improved agreement with the sharp interface model at a finite interface thickness. Evidence of this improved agreement may be found in paper II.
An open-source library for the numerical modeling of mass-transfer in solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Novaresio, Valerio; García-Camprubí, María; Izquierdo, Salvador; Asinari, Pietro; Fueyo, Norberto
2012-01-01
The generation of direct current electricity using solid oxide fuel cells (SOFCs) involves several interplaying transport phenomena. Their simulation is crucial for the design and optimization of reliable and competitive equipment, and for the eventual market deployment of this technology. An open-source library for the computational modeling of mass-transport phenomena in SOFCs is presented in this article. It includes several multicomponent mass-transport models ( i.e. Fickian, Stefan-Maxwell and Dusty Gas Model), which can be applied both within porous media and in porosity-free domains, and several diffusivity models for gases. The library has been developed for its use with OpenFOAM ®, a widespread open-source code for fluid and continuum mechanics. The library can be used to model any fluid flow configuration involving multicomponent transport phenomena and it is validated in this paper against the analytical solution of one-dimensional test cases. In addition, it is applied for the simulation of a real SOFC and further validated using experimental data. Program summaryProgram title: multiSpeciesTransportModels Catalogue identifier: AEKB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License No. of lines in distributed program, including test data, etc.: 18 140 No. of bytes in distributed program, including test data, etc.: 64 285 Distribution format: tar.gz Programming language:: C++ Computer: Any x86 (the instructions reported in the paper consider only the 64 bit case for the sake of simplicity) Operating system: Generic Linux (the instructions reported in the paper consider only the open-source Ubuntu distribution for the sake of simplicity) Classification: 12 External routines: OpenFOAM® (version 1.6-ext) ( http://www.extend-project.de) Nature of problem: This software provides a library of models for the simulation of the steady state mass and momentum transport in a multi-species gas mixture, possibly in a porous medium. The software is particularly designed to be used as the mass-transport library for the modeling of solid oxide fuel cells (SOFC). When supplemented with other sub-models, such as thermal and charge-transport ones, it allows the prediction of the cell polarization curve and hence the cell performance. Solution method: Standard finite volume method (FVM) is used for solving all the conservation equations. The pressure-velocity coupling is solved using the SIMPLE algorithm (possibly adding a porous drag term if required). The mass transport can be calculated using different alternative models, namely Fick, Maxwell-Stefan or dusty gas model. The code adopts a segregated method to solve the resulting linear system of equations. The different regions of the SOFC, namely gas channels, electrodes and electrolyte, are solved independently, and coupled through boundary conditions. Restrictions: When extremely large species fluxes are considered, current implementation of the Neumann and Robin boundary conditions do not avoid negative values of molar and/or mass fractions, which finally end up with numerical instability. However this never happened in the documented runs. Eventually these boundary conditions could be reformulated to become more robust. Running time: From seconds to hours depending on the mesh size and number of species. For example, on a 64 bit machine with Intel Core Duo T8300 and 3 GBytes of RAM, the provided test run requires less than 1 second.
ERIC Educational Resources Information Center
American Journal of Physics, 1978
1978-01-01
Describes experiments demonstrating the Josephson effect, single-file diffusion in biological membranes, refractive index of beer, lines of magnetic fields, indexing diffraction patterns, Maxwell's equations, and spherical aberration. (SL)
Analysis of non-equilibrium phenomena in inductively coupled plasma generators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, W.; Panesi, M., E-mail: mpanesi@illinois.edu; Lani, A.
This work addresses the modeling of non-equilibrium phenomena in inductively coupled plasma discharges. In the proposed computational model, the electromagnetic induction equation is solved together with the set of Navier-Stokes equations in order to compute the electromagnetic and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while transport properties are obtained from kinetic principles, with the method of Chapman and Enskog. Particle ambipolar diffusive fluxes are found by solving the Stefan-Maxwell equations with a simple iterative method. Two physico-mathematical formulations are used to model the chemical reaction processes: (1) Amore » Local Thermodynamics Equilibrium (LTE) formulation and (2) a thermo-chemical non-equilibrium (TCNEQ) formulation. In the TCNEQ model, thermal non-equilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules is accounted for. The electronic states of the chemical species are assumed in equilibrium with the vibrational temperature, whereas the rotational energy mode is assumed to be equilibrated with translation. Three different physical models are used to account for the coupling of chemistry and energy transfer processes. Numerical simulations obtained with the LTE and TCNEQ formulations are used to characterize the extent of non-equilibrium of the flow inside the Plasmatron facility at the von Karman Institute. Each model was tested using different kinetic mechanisms to assess the sensitivity of the results to variations in the reaction parameters. A comparison of temperatures and composition profiles at the outlet of the torch demonstrates that the flow is in non-equilibrium for operating conditions characterized by pressures below 30 000 Pa, frequency 0.37 MHz, input power 80 kW, and mass flow 8 g/s.« less
Analysis of non-equilibrium phenomena in inductively coupled plasma generators
NASA Astrophysics Data System (ADS)
Zhang, W.; Lani, A.; Panesi, M.
2016-07-01
This work addresses the modeling of non-equilibrium phenomena in inductively coupled plasma discharges. In the proposed computational model, the electromagnetic induction equation is solved together with the set of Navier-Stokes equations in order to compute the electromagnetic and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while transport properties are obtained from kinetic principles, with the method of Chapman and Enskog. Particle ambipolar diffusive fluxes are found by solving the Stefan-Maxwell equations with a simple iterative method. Two physico-mathematical formulations are used to model the chemical reaction processes: (1) A Local Thermodynamics Equilibrium (LTE) formulation and (2) a thermo-chemical non-equilibrium (TCNEQ) formulation. In the TCNEQ model, thermal non-equilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules is accounted for. The electronic states of the chemical species are assumed in equilibrium with the vibrational temperature, whereas the rotational energy mode is assumed to be equilibrated with translation. Three different physical models are used to account for the coupling of chemistry and energy transfer processes. Numerical simulations obtained with the LTE and TCNEQ formulations are used to characterize the extent of non-equilibrium of the flow inside the Plasmatron facility at the von Karman Institute. Each model was tested using different kinetic mechanisms to assess the sensitivity of the results to variations in the reaction parameters. A comparison of temperatures and composition profiles at the outlet of the torch demonstrates that the flow is in non-equilibrium for operating conditions characterized by pressures below 30 000 Pa, frequency 0.37 MHz, input power 80 kW, and mass flow 8 g/s.
Binary Mixtures of Particles with Different Diffusivities Demix.
Weber, Simon N; Weber, Christoph A; Frey, Erwin
2016-02-05
The influence of size differences, shape, mass, and persistent motion on phase separation in binary mixtures has been intensively studied. Here we focus on the exclusive role of diffusivity differences in binary mixtures of equal-sized particles. We find an effective attraction between the less diffusive particles, which are essentially caged in the surrounding species with the higher diffusion constant. This effect leads to phase separation for systems above a critical size: A single close-packed cluster made up of the less diffusive species emerges. Experiments for testing our predictions are outlined.
Calculating Mass Diffusion in High-Pressure Binary Fluids
NASA Technical Reports Server (NTRS)
Bellan, Josette; Harstad, Kenneth
2004-01-01
A comprehensive mathematical model of mass diffusion has been developed for binary fluids at high pressures, including critical and supercritical pressures. Heretofore, diverse expressions, valid for limited parameter ranges, have been used to correlate high-pressure binary mass-diffusion-coefficient data. This model will likely be especially useful in the computational simulation and analysis of combustion phenomena in diesel engines, gas turbines, and liquid rocket engines, wherein mass diffusion at high pressure plays a major role.
Approximation and Numerical Analysis of Nonlinear Equations of Evolution.
1980-01-31
dominant convective terms, or Stefan type problems such as the flow of fluids through porous media or the melting and freezing of ice. Such problems...means of formulating time-dependent Stefan problems was initiated. Classes of problems considered here include the one-phase and two-phase Stefan ...some new numerical methods were 2 developed for two dimensional, two-phase Stefan problems with time dependent boundary conditions. A variety of example
Thermodynamic cost of computation, algorithmic complexity and the information metric
NASA Technical Reports Server (NTRS)
Zurek, W. H.
1989-01-01
Algorithmic complexity is discussed as a computational counterpart to the second law of thermodynamics. It is shown that algorithmic complexity, which is a measure of randomness, sets limits on the thermodynamic cost of computations and casts a new light on the limitations of Maxwell's demon. Algorithmic complexity can also be used to define distance between binary strings.
NASA Astrophysics Data System (ADS)
Enders, P.; Galley, J.
1988-11-01
The dynamics of heat transfer in stripe GaAlAs laser diodes is investigated by solving the linear diffusion equation for a quasitwo-dimensional multilayer structure. The calculations are rationalized drastically by the transfer matrix method and also using for the first time the asymptotes of the decay constants. Special attention is given to the convergence of the Fourier series. A comparison with experimental results reveals however that this is essentially the Stefan problem (with moving boundary conditions).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Yeon Hye; Nair, Sankar; Bhave, Ramesh
The overall focus of this project is to develop and understand SAPO-34 zeolitic membranes that can separate mixtures of radioisotope krypton-85 and xenon released as off-gases during used nuclear fuel recycling. The primary advantage of separating 85Kr from Xe is to reduce the volume of radioactive waste for storage. The second advantage is the revenue generated from the sale of high-purity Xe. Zeolite membranes are attractive because of their much lower energy requirements relative to cryogenic distillation, and their high resistance to radiation degradation. We report the detailed study of silicoaluminophosphate zeolite SAPO-34 materials and membranes for this application, duemore » to hypothesized favorable molecular sieving properties. In the 3-year Mission Support project, we developed a novel, high-performance, low-energy intensity, lower-cost zeolite membrane process for Kr/Xe separation during SNF processing; and investigated the underlying molecular adsorption and transport processes in both ‘idealized’ and ‘realistic’ operating conditions to develop reliable synthesis-structure-property relationships for such membranes. Adsorption and diffusion measurements on SAPO-34 crystals indicate their potential for use in Kr-Xe separation membranes, but also highlight competing effects of adsorption and diffusion selectivity. SAPO-34 membranes synthesized on α-alumina substrates via steam-assisted conversion seeding and hydrothermal growth are characterized in detail, with Kr permeances 26 GPU and ideal Kr/Xe selectivities >20 at 298 K after thickness reduction. Post-synthesis cation exchange shows large (>50%) increases in selectivity at ambient or slight sub-ambient conditions. In addition, we confirm that SAPO-34 membrane is stable under radiation exposure and the impact of radiation exposure on membrane performance would not be substantial. We also successfully synthesized hollow-fiber SAPO-34 membranes with the same performance levels as the disk-type and tubular membranes. This important development will allow a very compact and low-cost Kr/Xe separation system. Finally, a detailed process calculation for techno-economic analysis was performed by integrating Maxwell-Stefan model into cross-flow membrane system, in order to estimate the required number of membrane stages and the total cost.« less
PEG 400-Based Phase Change Materials Nano-Enhanced with Functionalized Graphene Nanoplatelets.
Marcos, Marco A; Cabaleiro, David; Guimarey, María J G; Comuñas, María J P; Fedele, Laura; Fernández, Josefa; Lugo, Luis
2017-12-29
This study presents new Nano-enhanced Phase Change Materials, NePCMs, formulated as dispersions of functionalized graphene nanoplatelets in a poly(ethylene glycol) with a mass-average molecular mass of 400 g·mol -1 for possible use in Thermal Energy Storage. Morphology, functionalization, purity, molecular mass and thermal stability of the graphene nanomaterial and/or the poly(ethylene glycol) were characterized. Design parameters of NePCMs were defined on the basis of a temporal stability study of nanoplatelet dispersions using dynamic light scattering. Influence of graphene loading on solid-liquid phase change transition temperature, latent heat of fusion, isobaric heat capacity, thermal conductivity, density, isobaric thermal expansivity, thermal diffusivity and dynamic viscosity were also investigated for designed dispersions. Graphene nanoplatelet loading leads to thermal conductivity enhancements up to 23% while the crystallization temperature reduces up to in 4 K. Finally, the heat storage capacities of base fluid and new designed NePCMs were examined by means of the thermophysical properties through Stefan and Rayleigh numbers. Functionalized graphene nanoplatelets leads to a slight increase in the Stefan number.
PEG 400-Based Phase Change Materials Nano-Enhanced with Functionalized Graphene Nanoplatelets
Marcos, Marco A.; Guimarey, María J. G.; Comuñas, María J. P.
2017-01-01
This study presents new Nano-enhanced Phase Change Materials, NePCMs, formulated as dispersions of functionalized graphene nanoplatelets in a poly(ethylene glycol) with a mass-average molecular mass of 400 g·mol−1 for possible use in Thermal Energy Storage. Morphology, functionalization, purity, molecular mass and thermal stability of the graphene nanomaterial and/or the poly(ethylene glycol) were characterized. Design parameters of NePCMs were defined on the basis of a temporal stability study of nanoplatelet dispersions using dynamic light scattering. Influence of graphene loading on solid-liquid phase change transition temperature, latent heat of fusion, isobaric heat capacity, thermal conductivity, density, isobaric thermal expansivity, thermal diffusivity and dynamic viscosity were also investigated for designed dispersions. Graphene nanoplatelet loading leads to thermal conductivity enhancements up to 23% while the crystallization temperature reduces up to in 4 K. Finally, the heat storage capacities of base fluid and new designed NePCMs were examined by means of the thermophysical properties through Stefan and Rayleigh numbers. Functionalized graphene nanoplatelets leads to a slight increase in the Stefan number. PMID:29286324
NASA Astrophysics Data System (ADS)
Woo, Mino; Wörner, Martin; Tischer, Steffen; Deutschmann, Olaf
2018-03-01
The multicomponent model and the effective diffusivity model are well established diffusion models for numerical simulation of single-phase flows consisting of several components but are seldom used for two-phase flows so far. In this paper, a specific numerical model for interfacial mass transfer by means of a continuous single-field concentration formulation is combined with the multicomponent model and effective diffusivity model and is validated for multicomponent mass transfer. For this purpose, several test cases for one-dimensional physical or reactive mass transfer of ternary mixtures are considered. The numerical results are compared with analytical or numerical solutions of the Maxell-Stefan equations and/or experimental data. The composition-dependent elements of the diffusivity matrix of the multicomponent and effective diffusivity model are found to substantially differ for non-dilute conditions. The species mole fraction or concentration profiles computed with both diffusion models are, however, for all test cases very similar and in good agreement with the analytical/numerical solutions or measurements. For practical computations, the effective diffusivity model is recommended due to its simplicity and lower computational costs.
The two-dimensional Stefan problem with slightly varying heat flux
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gammon, J.; Howarth, J.A.
1995-09-01
The authors solve the two-dimensional stefan problem of solidification in a half-space, where the heat flux at the wall is a slightly varying function of positioning along the wall, by means of a large Stefan number approximation (which turns out to be equivalent to a small time solution), and then by means of the Heat Balance Integral Method, which is valid for all time, and which agrees with the large Stefan number solution for small times. A representative solution is given for a particular form of the heat flux perturbation.
NASA Astrophysics Data System (ADS)
Chen, Zhangqi; Liu, Zi-Kui; Zhao, Ji-Cheng
2018-05-01
Diffusion coefficients of seven binary systems (Ti-Mo, Ti-Nb, Ti-Ta, Ti-Zr, Zr-Mo, Zr-Nb, and Zr-Ta) at 1200 °C, 1000 °C, and 800 °C were experimentally determined using three Ti-Mo-Nb-Ta-Zr diffusion multiples. Electron probe microanalysis (EPMA) was performed to collect concentration profiles at the binary diffusion regions. Forward simulation analysis (FSA) was then applied to extract both impurity and interdiffusion coefficients in Ti-rich and Zr-rich part of the bcc phase. Excellent agreements between our results and most of the literature data validate the high-throughput approach combining FSA with diffusion multiples to obtain a large amount of systematic diffusion data, which will help establish the diffusion (mobility) databases for the design and development of biomedical and structural Ti alloys.
NASA Astrophysics Data System (ADS)
Chen, Zhangqi; Liu, Zi-Kui; Zhao, Ji-Cheng
2018-07-01
Diffusion coefficients of seven binary systems (Ti-Mo, Ti-Nb, Ti-Ta, Ti-Zr, Zr-Mo, Zr-Nb, and Zr-Ta) at 1200 °C, 1000 °C, and 800 °C were experimentally determined using three Ti-Mo-Nb-Ta-Zr diffusion multiples. Electron probe microanalysis (EPMA) was performed to collect concentration profiles at the binary diffusion regions. Forward simulation analysis (FSA) was then applied to extract both impurity and interdiffusion coefficients in Ti-rich and Zr-rich part of the bcc phase. Excellent agreements between our results and most of the literature data validate the high-throughput approach combining FSA with diffusion multiples to obtain a large amount of systematic diffusion data, which will help establish the diffusion (mobility) databases for the design and development of biomedical and structural Ti alloys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaino, Koji
1994-09-01
Similarity curves for different Biot numbers are known to become indistinguishable with decreasing Stefan number; in other words, the similarity rule becomes more applicable for smaller Stefan number. In such a finned-tube-type storage unit as treated in this study, it has been found that the effect of Stefan number on the similarity curve varies with the number of fins. Sensible heat liberated during the solidification process has been calculated individually in a phase-change material with a heat-transfer tube and fins, and represented as a function of the frozen fraction for two specified values of Biot number, 0.1 and 1000, undermore » specified conditions of Stefan number and the number on fins. The latent-heat contribution to heat flow out of the storage unit has been examined in comparison with the sensible-heat contribution. The latent- and sensible-heat contributions are almost inversely related. This inverse relationship reduces the effect of the Stefan number on the applicability of the similarity rule.« less
A Simple Educational Method for the Measurement of Liquid Binary Diffusivities
ERIC Educational Resources Information Center
Rice, Nicholas P.; de Beer, Martin P.; Williamson, Mark E.
2014-01-01
A simple low-cost experiment has been developed for the measurement of the binary diffusion coefficients of liquid substances. The experiment is suitable for demonstrating molecular diffusion to small or large undergraduate classes in chemistry or chemical engineering. Students use a cell phone camera in conjunction with open-source image…
Hammond, Andrew P; Corwin, Eric I
2017-10-01
A thermal colloid suspended in a liquid will transition from a short-time ballistic motion to a long-time diffusive motion. However, the transition between ballistic and diffusive motion is highly dependent on the properties and structure of the particular liquid. We directly observe a free floating tracer particle's ballistic motion and its transition to the long-time regime in both a Newtonian fluid and a viscoelastic Maxwell fluid. We examine the motion of the free particle in a Newtonian fluid and demonstrate a high degree of agreement with the accepted Clercx-Schram model for motion in a dense fluid. Measurements of the functional form of the ballistic-to-diffusive transition provide direct measurements of the temperature, viscosity, and tracer radius. We likewise measure the motion in a viscoelastic Maxwell fluid and find a significant disagreement between the theoretical asymptotic behavior and our measured values of the microscopic properties of the fluid. We observe a greatly increased effective mass for a freely moving particle and a decreased plateau modulus.
NASA Astrophysics Data System (ADS)
Gim, Yongwan; Kim, Wontae
2018-01-01
In this presentation, we are going to explain the thermodynamic origin of warm inflation scenarios by using the effetive Stefan-Boltzmann law. In the warm inflation scenarios, radiation always exists to avoid the graceful exit problem, for which the radiation energy density should be assumed to be finite at the starting point of the warm inflation. To find out the origin of the non-vanishing initial radiation energy density, we derive an effective Stefan-Boltzmann law by considering the non-vanishing trace of the total energy-momentum tensors. The effective Stefan-Boltzmann law successfully shows where the initial radiation energy density is thermodynamically originated from. And by using the above effective Stefan-Boltzmann law, we also study the cosmological scalar perturbation, and obtain the sufficient radiation energy density in order for GUT baryogenesis at the end of inflation. This proceeding is based on Ref. [1
Binary collision rates of relativistic thermal plasmas. I Theoretical framework
NASA Technical Reports Server (NTRS)
Dermer, C. D.
1985-01-01
Binary collision rates for arbitrary scattering cross sections are derived in the case of a beam of particles interacting with a Maxwell-Boltzmann (MB) plasma, or in the case of two MB plasmas interacting at generally different temperatures. The expressions are valid for all beam energies and plasma temperatures, from the nonrelativistic to the extreme relativistic limits. The calculated quantities include the reaction rate, the energy exchange rate, and the average rate of change of the squared transverse momentum component of a monoenergetic particle beam as a result of scatterings with particles of a MB plasma. Results are specialized to elastic scattering processes, two-temperature reaction rates, or the cold plasma limit, reproducing previous work.
Theory of Ion and Water Transport in Reverse-Osmosis Membranes
NASA Astrophysics Data System (ADS)
Oren, Y. S.; Biesheuvel, P. M.
2018-02-01
We present a theory for ion and water transport through reverse-osmosis (RO) membranes based on a Maxwell-Stefan framework combined with hydrodynamic theory for the reduced motion of particles in thin pores. We take into account all driving forces and frictions both on the fluid (water) and on the ions including ion-fluid friction and ion-wall friction. By including the acid-base characteristic of the carbonic acid system, the boric acid system, H3O+/OH- , and the membrane charge, we locally determine p H , the effective charge of the membrane, and the dissociation degree of carbonic acid and boric acid. We present calculation results for an experiment with fixed feed concentration, where effluent composition is a self-consistent function of fluxes through the membrane. A comparison with experimental results from literature for fluid flow vs pressure, and for salt and boron rejection, shows that our theory agrees very well with the available data. Our model is based on realistic assumptions for the effective size of the ions and makes use of a typical pore size of a commercial RO membrane.
Alonso de Mezquia, David; Wang, Zilin; Lapeira, Estela; Klein, Michael; Wiegand, Simone; Mounir Bou-Ali, M
2014-11-01
In this study, the thermodiffusion, molecular diffusion, and Soret coefficients of 12 binary mixtures composed of toluene, n-hexane and n-dodecane in the whole range of concentrations at atmospheric pressure and temperatures of 298.15 K and 308.15 K have been determined. The experimental measurements have been carried out using the Thermogravitational Column, the Sliding Symmetric Tubes and the Thermal Diffusion Forced Rayleigh Scattering techniques. The results obtained using the different techniques show a maximum deviation of 9% for the thermodiffusion coefficient, 8% for the molecular diffusion coefficient and 2% for the Soret coefficient. For the first time we report a decrease of the thermodiffusion coefficient with increasing ratio of the thermal expansion coefficient and viscosity for a binary mixture of an organic ring compound with a short n-alkane. This observation is discussed in terms of interactions between the different components. Additionally, the thermogravitational technique has been used to measure the thermodiffusion coefficients of four ternary mixtures consisting of toluene, n-hexane and n-dodecane at 298.15 K. In order to complete the study, the values obtained for the molecular diffusion coefficient in binary mixtures, and the thermodiffusion coefficient of binary and ternary mixtures have been compared with recently derived correlations.
Cu-Zn binary phase diagram and diffusion couples
NASA Technical Reports Server (NTRS)
Mccoy, Robert A.
1992-01-01
The objectives of this paper are to learn: (1) what information a binary phase diagram can yield; (2) how to construct and heat treat a simple diffusion couple; (3) how to prepare a metallographic sample; (4) how to operate a metallograph; (5) how to correlate phases found in the diffusion couple with phases predicted by the phase diagram; (6) how diffusion couples held at various temperatures could be used to construct a phase diagram; (7) the relation between the thickness of an intermetallic phase layer and the diffusion time; and (8) the effect of one species of atoms diffusing faster than another species in a diffusion couple.
NASA Astrophysics Data System (ADS)
Bringuier, E.
2009-11-01
The paper analyses particle diffusion from a thermodynamic standpoint. The main goal of the paper is to highlight the conceptual connection between particle diffusion, which belongs to non-equilibrium statistical physics, and mechanics, which deals with particle motion, at the level of third-year university courses. We start out from the fact that, near equilibrium, particle transport should occur down the gradient of the chemical potential. This yields Fick's law with two additional advantages. First, splitting the chemical potential into 'mechanical' and 'chemical' contributions shows how transport and mechanics are linked through the diffusivity-mobility relationship. Second, splitting the chemical potential into entropic and energetic contributions discloses the respective roles of entropy maximization and energy minimization in driving diffusion. The paper addresses first unary diffusion, where there is only one mobile species in an immobile medium, and next turns to binary diffusion, where two species are mobile with respect to each other in a fluid medium. The interrelationship between unary and binary diffusivities is brought out and it is shown how binary diffusion reduces to unary diffusion in the limit of high dilution of one species amidst the other one. Self- and mutual diffusion are considered and contrasted within the thermodynamic framework; self-diffusion is a time-dependent manifestation of the Gibbs paradox of mixing.
Viscosity and diffusivity in melts: from unary to multicomponent systems
NASA Astrophysics Data System (ADS)
Chen, Weimin; Zhang, Lijun; Du, Yong; Huang, Baiyun
2014-05-01
Viscosity and diffusivity, two important transport coefficients, are systematically investigated from unary melt to binary to multicomponent melts in the present work. By coupling with Kaptay's viscosity equation of pure liquid metals and effective radii of diffusion species, the Sutherland equation is modified by taking the size effect into account, and further derived into an Arrhenius formula for the convenient usage. Its reliability for predicting self-diffusivity and impurity diffusivity in unary liquids is then validated by comparing the calculated self-diffusivities and impurity diffusivities in liquid Al- and Fe-based alloys with the experimental and the assessed data. Moreover, the Kozlov model was chosen among various viscosity models as the most reliable one to reproduce the experimental viscosities in binary and multicomponent melts. Based on the reliable viscosities calculated from the Kozlov model, the modified Sutherland equation is utilized to predict the tracer diffusivities in binary and multicomponent melts, and validated in Al-Cu, Al-Ni and Al-Ce-Ni melts. Comprehensive comparisons between the calculated results and the literature data indicate that the experimental tracer diffusivities and the theoretical ones can be well reproduced by the present calculations. In addition, the vacancy-wind factor in binary liquid Al-Ni alloys with the increasing temperature is also discussed. What's more, the calculated inter-diffusivities in liquid Al-Cu, Al-Ni and Al-Ag-Cu alloys are also in excellent agreement with the measured and theoretical data. Comparisons between the simulated concentration profiles and the measured ones in Al-Cu, Al-Ce-Ni and Al-Ag-Cu melts are further used to validate the present calculation method.
Self-diffusion Coefficient and Structure of Binary n-Alkane Mixtures at the Liquid-Vapor Interfaces.
Chilukoti, Hari Krishna; Kikugawa, Gota; Ohara, Taku
2015-10-15
The self-diffusion coefficient and molecular-scale structure of several binary n-alkane liquid mixtures in the liquid-vapor interface regions have been examined using molecular dynamics simulations. It was observed that in hexane-tetracosane mixture hexane molecules are accumulated in the liquid-vapor interface region and the accumulation intensity decreases with increase in a molar fraction of hexane in the examined range. Molecular alignment and configuration in the interface region of the liquid mixture change with a molar fraction of hexane. The self-diffusion coefficient in the direction parallel to the interface of both tetracosane and hexane in their binary mixture increases in the interface region. It was found that the self-diffusion coefficient of both tetracosane and hexane in their binary mixture is considerably higher in the vapor side of the interface region as the molar fraction of hexane goes lower, which is mostly due to the increase in local free volume caused by the local structure of the liquid in the interface region.
De Mezquia, D Alonso; Bou-Ali, M Mounir; Larrañaga, M; Madariaga, J A; Santamaría, C
2012-03-08
In this work we have measured the molecular diffusion coefficient of the n-alkane binary series nC(i)-nC(6), nC(i)-nC(10), and nC(i)-nC(12) at 298 K and 1 atm and a mass fraction of 0.5 by using the so-called sliding symmetric tubes technique. The results show that the diffusion coefficient at this concentration is proportional to the inverse viscosity of the mixture. In addition, we have also measured the diffusion coefficient of the systems nC(12)-nC(6), nC(12)-nC(7), and nC(12)-nC(8) as a function of concentration. From the data obtained, it is shown that the diffusion coefficient of the n-alkane binary mixtures at any concentration can be calculated from the molecular weight of the components and the dynamic viscosity of the corresponding mixture at 50% mass fraction.
Dark matter influence on black objects thermodynamics
NASA Astrophysics Data System (ADS)
Rogatko, Marek; Wojnar, Aneta
2018-05-01
Physical process version of the first law of black hole thermodynamics in Einstein-Maxwell dark matter gravity was derived. The dark matter sector is mimicked by the additional U(1)-gauge field coupled to the ordinary Maxwell one. By considering any cross section of the black hole event horizon to the future of the bifurcation surface, the equilibrium state version of the first law of black hole mechanics was achieved. The considerations were generalized to the case of Einstein-Yang-Mills dark matter gravity theory. The main conclusion is that the influence of dark matter is crucial in the formation process of black objects. This fact may constitute the explanation of the recent observations of the enormous mass of the super luminous quasars formed in a relatively short time after Big Bang. We also pay attention to the compact binaries thermodynamics, when dark matter sector enters the game.
NASA Astrophysics Data System (ADS)
Savvinova, Nadezhda A.; Sleptsov, Semen D.; Rubtsov, Nikolai A.
2017-11-01
A mathematical phase change model is a formulation of the Stefan problem. Various formulations of the Stefan problem modeling of radiative-conductive heat transfer during melting or solidification of a semitransparent material are presented. Analysis of numerical results show that the radiative heat transfer has a significant effect on temperature distributions during melting (solidification) of the semitransparent material. In this paper conditions for application of various statements of the Stefan problem are analyzed.
de Souza, Vanessa K; Wales, David J
2006-02-10
On short time scales an underlying Arrhenius temperature dependence of the diffusion constant can be extracted from the fragile, super-Arrhenius diffusion of a binary Lennard-Jones mixture. This Arrhenius diffusion is related to the true super-Arrhenius behavior by a factor that depends on the average angle between steps in successive time windows. The correction factor accounts for the fact that on average, successive displacements are negatively correlated, and this effect can therefore be linked directly with the higher apparent activation energy for diffusion at low temperature.
NASA Astrophysics Data System (ADS)
Zhou, Peng
2013-06-01
As temperature increases, it is suggested that atoms on lattice sites serve as dynamic defects and cause a much more homogeneous distribution of the Maxwell stress throughout the crystal lattice compared with that caused by static defects. Though this stressing effect mostly leads to Joule heating, it also results in distortion of the crystal lattice, which leads to a decrease in the activation energy for atomic diffusion and causes enhancements in the phase growth rates at both interfaces of diffusion couples. Due to this stressing effect, the decrease in the activation energy is proportional to a square term of the current density J. A mean-time-to-failure analysis is performed for failure caused by excessive growth of intermediate phases, and a mean-time-to-failure (MTTF) equation is found. This equation appears similar to Black's equation but with an extra exponential term arising from the stressing effect of the crystal lattice.
NASA Astrophysics Data System (ADS)
Rusakov, V. S.; Sukhorukov, I. A.; Zhankadamova, A. M.; Kadyrzhanov, K. K.
2010-05-01
Results of the simulation of thermally induced processes of diffusion and phase formation in model and experimentally investigated layered binary metallic systems are presented. The physical model is based on the Darken phenomenological theory and on the mechanism of interdiffusion of components along the continuous diffusion channels of phases in the two-phase regions of the system. The simulation of processes in the model systems showed that the thermally stabilized concentration profiles in two-layer binary metallic systems are virtually independent of the partial diffusion coefficients; for the systems with the average concentration of components that is the same over the sample depth, the time of the thermal stabilization of the structural and phase state inhomogeneous over the depth grows according to a power law with increasing thickness of the system in such a manner that the thicknesses of the surface layers grow, while the thickness of the intermediate layer approaches a constant value. The results of the simulation of the processes of diffusion and phase formation in experimentally investigated layered binary systems Fe-Ti and Cu-Be upon sequential isothermal and isochronous annealings agree well with the experimental data.
1989-05-01
NUMERICAL ANALYSIS OF STEFAN PROBLEMS FOR GENERALIZED MULTI- DIMENSIONAL PHASE-CHANGE STRUCTURES USING THE ENTHALPY TRANSFORMING MODEL 4.1 Summary...equation St Stefan number, cs(Tm-Tw)/H or cs(Tm-Ti)/H s circumferential distance coordinate, m, Section III s dimensionless interface position along...fluid, kg/m 3 0 viscous dissipation term in the energy eqn. (1.4), Section I; dummy variable, Section IV r dimensionless time, ta/L 2 a Stefan -Boltzmann
NASA Technical Reports Server (NTRS)
Tenney, D. R.; Unnam, J.
1978-01-01
Diffusion calculations were performed to establish the conditions under which concentration dependence of the diffusion coefficient was important in single, two, and three phase binary alloy systems. Finite-difference solutions were obtained for each type of system using diffusion coefficient variations typical of those observed in real alloy systems. Solutions were also obtained using average diffusion coefficients determined by taking a logarithmic average of each diffusion coefficient variation considered. The constant diffusion coefficient solutions were used as reference in assessing diffusion coefficient variation effects. Calculations were performed for planar, cylindrical, and spherical geometries in order to compare the effect of diffusion coefficient variations with the effect of interface geometries. In most of the cases considered, the diffusion coefficient of the major-alloy phase was the key parameter that controlled the kinetics of interdiffusion.
Thermodynamics of viscoelastic rate-type fluids with stress diffusion
NASA Astrophysics Data System (ADS)
Málek, Josef; Průša, Vít; Skřivan, Tomáš; Süli, Endre
2018-02-01
We propose thermodynamically consistent models for viscoelastic fluids with a stress diffusion term. In particular, we derive variants of compressible/incompressible Maxwell/Oldroyd-B models with a stress diffusion term in the evolution equation for the extra stress tensor. It is shown that the stress diffusion term can be interpreted either as a consequence of a nonlocal energy storage mechanism or as a consequence of a nonlocal entropy production mechanism, while different interpretations of the stress diffusion mechanism lead to different evolution equations for the temperature. The benefits of the knowledge of the thermodynamical background of the derived models are documented in the study of nonlinear stability of equilibrium rest states. The derived models open up the possibility to study fully coupled thermomechanical problems involving viscoelastic rate-type fluids with stress diffusion.
Binary and ternary gas mixtures for use in glow discharge closing switches
Hunter, Scott R.; Christophorou, Loucas G.
1990-01-01
Highly efficient binary and ternary gas mixtures for use in diffuse glow discharge closing switches are disclosed. The binary mixtures are combinations of helium or neon and selected perfluorides. The ternary mixtures are combinations of helium, neon, or argon, a selected perfluoride, and a small amount of gas that exhibits enhanced ionization characteristics. These mixtures are shown to be the optimum choices for use in diffuse glow discharge closing switches by virtue of the combined physio-electric properties of the mixture components.
NASA Astrophysics Data System (ADS)
Fu, Yu-Hang; Bai, Lin; Luo, Kai-Hong; Jin, Yong; Cheng, Yi
2017-04-01
In this work, we propose a general approach for modeling mass transfer and reaction of dilute solute(s) in incompressible three-phase flows by introducing a collision operator in lattice Boltzmann (LB) method. An LB equation was used to simulate the solute dynamics among three different fluids, in which the newly expanded collision operator was used to depict the interface behavior of dilute solute(s). The multiscale analysis showed that the presented model can recover the macroscopic transport equations derived from the Maxwell-Stefan equation for dilute solutes in three-phase systems. Compared with the analytical equation of state of solute and dynamic behavior, these results are proven to constitute a generalized framework to simulate solute distributions in three-phase flows, including compound soluble in one phase, compound adsorbed on single-interface, compound in two phases, and solute soluble in three phases. Moreover, numerical simulations of benchmark cases, such as phase decomposition, multilayered planar interfaces, and liquid lens, were performed to test the stability and efficiency of the model. Finally, the multiphase mass transfer and reaction in Janus droplet transport in a straight microchannel were well reproduced.
Mathematical model for the growth of phases in binary multiphase systems upon isothermic annealing
NASA Astrophysics Data System (ADS)
Molokhina, L. A.; Rogalin, V. E.; Filin, S. A.; Kaplunov, I. A.
2017-09-01
A phenomenological mathematical model of the formation and growth of phases in a binary multiphase system with allowance for factors influencing the process of diffusion in a binary system is presented. It is shown that phases can grow for a certain time at different ratios between diffusion parameters according to a parabolic law that depends on the duration of isothermic annealing. They then slow their growth after successor phases appear at their interface with one component and can completely disappear from a diffusion layer or begin to grow again, but only at a rate slower than during their initial formation. The dependence of the thickness of each phase layer in a multiphase diffusion zone on the duration of isothermic annealing and the ratio between the diffusion parameters in neighboring phases is obtained. It is established that a certain ratio between the phase growth and rates of dissolution with allowance for the coefficients of diffusion in each phase and the periods of incubation can result in the complete disappearance of one phase as early as the onset of the growth of phase nuclei and be interpreted as a process of reaction diffusion.
Mesoscale Polymer Dissolution Probed by Raman Spectroscopy and Molecular Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Tsun-Mei; Xantheas, Sotiris S.; Vasdekis, Andreas E.
2016-10-13
The diffusion of various solvents into a polystyrene (PS) matrix was probed experimentally by monitoring the temporal profiles of the Raman spectra and theoretically from molecular dynamics (MD) simulations of the binary system. The simulation results assist in providing a fundamental, molecular level connection between the mixing/dissolution processes and the difference = solvent – PS in the values of the Hildebrand parameter () between the two components of the binary systems: solvents having similar values of with PS (small ) exhibit fast diffusion into the polymer matrix, whereas the diffusion slows down considerably when the ’s are different (large ).more » To this end, the Hildebrand parameter was identified as a useful descriptor that governs the process of mixing in polymer – solvent binary systems. The experiments also provide insight into further refinements of the models specific to non-Fickian diffusion phenomena that need to be used in the simulations.« less
Jin, Ke; Zhang, Chuan; Zhang, Fan; ...
2018-03-07
To investigate the compositional effects on thermal-diffusion kinetics in concentrated solid-solution alloys, interdiffusion in seven diffusion couples with alloys from binary to quinary is systematically studied. The alloys with higher compositional complexity exhibit in general lower diffusion coefficients against homologous temperature, however, an exception is found that diffusion in NiCoFeCrPd is faster than in NiCoFeCr and NiCoCr. While the derived diffusion parameters suggest that diffusion in medium and high entropy alloys is overall more retarded than in pure metals and binary alloys, they strongly depend on specific constituents. The comparative features are captured by computational thermodynamics approaches using a self-consistentmore » database.« less
Transport properties of gases and binary liquids near the critical point
NASA Technical Reports Server (NTRS)
Sengers, J. V.
1972-01-01
A status report is presented on the anomalies observed in the behavior of transport properties near the critical point of gases and binary liquids. The shear viscosity exhibits a weak singularity near the critical point. An analysis is made of the experimental data for those transport properties, thermal conductivity and thermal diffusivity near the gas-liquid critical point and binary diffusion coefficient near the critical mixing point, that determine the critical slowing down of the thermodynamic fluctuations in the order parameter. The asymptotic behavior of the thermal conductivity appears to be closely related to the asymptotic behavior of the correlation length. The experimental data for the thermal conductivity and diffusivity are shown to be in substantial agreement with current theoretical predictions.
Binary and ternary gas mixtures for use in glow discharge closing switches
Hunter, S.R.; Christophorou, L.G.
1988-04-27
Highly efficient binary and ternary gas mixtures for use in diffuse glow discharge closing switches are disclosed. The binary mixtures are combinations of helium or neon and selected perfluorides. The ternary mixtures are combinations of helium, neon, or argon, a selected perfluoride, and a small amount of gas that exhibits enhanced ionization characteristics. These mixtures are shown to be the optimum choices for use in diffuse glow discharge closing switches by virtue if the combines physio-electric properties of the mixture components. 9 figs.
Monetary and Fiscal Policy Interactions in the Euro Area
2004-03-01
Balassa - Samuelson -Effekt, Nr. 3/2002, erschienen in: Stefan Reitz (Hg.): Theoretische und wirtschaftspolitische Aspekte der internatio- nalen Integration...156, 2000, S. 646-660. Friihere Diskussionsbeitriige zur Finanzwissenschaft Josten, Stefan, Crime, Inequality, and Economic Growth. A Classical Argument
A simple level set method for solving Stefan problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, S.; Merriman, B.; Osher, S.
1997-07-15
Discussed in this paper is an implicit finite difference scheme for solving a heat equation and a simple level set method for capturing the interface between solid and liquid phases which are used to solve Stefan problems.
Evaporation enhancement in soils: a critical review
NASA Astrophysics Data System (ADS)
Rutten, Martine; van de Giesen, Nick
2015-04-01
Temperature gradients in the top layer of the soil are, especially during the daytime, steeper than would be expected if thermal conduction was the primary heat transfer mechanism. Evaporation seems to have significant influence on the soil heat budget. Only part of the surface soil heat flux is conducted downwards, increasing the soil temperatures, and part is used for evaporation, acting as a sink to the soil heat budget. For moist soils, the evaporation is limited by the transport of water molecules to the surface. The classical view is that water vapor is transported from the evaporation front to the surface by diffusion. Diffusion is mixing due to the random movement of molecules resulting in flattening concentration gradients. In soil, the diffusive vapor flux and the resulting latent heat flux are generally small. We found that transport enhancement is necessary in order to sustain vapor fluxes that are large enough to sustain latent heat fluxes, as well as being large enough to explain the observed temperature gradients. Enhancement of vapor diffusion is a known phenomenon, subject to debate on the explanations of underlying mechanism. In an extensive literature review on vapor enhancement in soils, the plausibility of various mechanisms was assessed. We reviewed mechanisms based on (combinations of) diffusive, viscous, buoyant, capillary and external pressure forces including: thermodiffusion, dispersion, Stefan's flow, Knudsen diffusion, liquid island effect, hydraulic lift, free convection, double diffusive convection and forced convection. The analysis of the order of magnitude of the mechanisms based on first principles clearly distinguished between plausible and implausible mechanisms. Thermodiffusion, Stefan's flow, Knudsen effects, liquid islands do not significantly contribute to enhanced evaporation. Double diffusive convection seemed unlikely due to lack of experimental evidence, but could not be completely excluded from the list of potential mechanisms. Hydraulic lift, the mechanism that small capillaries lift liquid water to the surface where it evaporates, does significantly contribute to enhanced evaporation from soils, also from dryer soils. The experimental evidence for and the theoretical underpinnings of this mechanism are convincing. However, we sought mechanisms that both explain enhanced evaporation and steep temperature gradients in the soil during the daytime. These often observed gradients consist of a sharp decrease of temperature with a depth up to the depth of the evaporation front. Hydraulic lift cannot explain this because the evaporation front is located at the surface. One remaining mechanism is forced convection due to atmospheric pressure fluctuations, also referred to as wind pumping. Wind pumping causes displacement and flow velocities too small for significant convective and too small for significant dispersive transport, when steady state dispersion formulations are used. However, experiments do indicate significant dispersive transport that can be explained by dispersion under unsteady flow conditions. Forced convection due to pressure fluctuations seems to be the only mechanism that can explain both enhanced evaporation and the steep temperature gradients.
Christophorou, Loucas G.; Hunter, Scott R.
1990-01-01
An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc.
Christophorou, L.G.; Hunter, S.R.
1990-06-26
An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc. 11 figs.
Christophorou, L.G.; Hunter, S.R.
1988-06-28
An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc. 11 figs.
A Transition in the Cumulative Reaction Rate of Two Species Diffusion with Bimolecular Reaction
NASA Astrophysics Data System (ADS)
Rajaram, Harihar; Arshadi, Masoud
2015-04-01
Diffusion and bimolecular reaction between two initially separated reacting species is a prototypical small-scale description of reaction induced by transverse mixing. It is also relevant to diffusion controlled transport regimes as encountered in low-permeability matrix blocks in fractured media. In previous work, the reaction-diffusion problem has been analyzed as a Stefan problem involving a distinct moving boundary (reaction front), which predicts that front motion scales as √t, and the cumulative reaction rate scales as 1/√t-. We present a general non-dimensionalization of the problem and a perturbation analysis to show that there is an early time regime where the cumulative reaction rate scales as √t- rather than 1/√t. The duration of this early time regime (where the cumulative rate is kinetically rather than diffusion controlled) depends on the rate parameter, in a manner that is consistently predicted by our non-dimensionalization. We also present results on the scaling of the reaction front width. We present numerical simulations in homogeneous and heterogeneous porous media to demonstrate the limited influence of heterogeneity on the behavior of the reaction-diffusion system. We illustrate applications to the practical problem of in-situ chemical oxidation of TCE and PCE by permanganate, which is employed to remediate contaminated sites where the DNAPLs are largely dissolved in the rock matrix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamers, Adrian S.; Perets, Hagai B., E-mail: hamers@ias.edu
Nuclear spiral arms are small-scale transient spiral structures found in the centers of galaxies. Similarly to their galactic-scale counterparts, nuclear spiral arms can perturb the orbits of stars. In the case of the Galactic center (GC), these perturbations can affect the orbits of stars and binaries in a region extending to several hundred parsecs around the supermassive black hole (SMBH), causing diffusion in orbital energy and angular momentum. This diffusion process can drive stars and binaries to close approaches with the SMBH, disrupting single stars in tidal disruption events (TDEs), or disrupting binaries, leaving a star tightly bound to themore » SMBH and an unbound star escaping the galaxy, i.e., a hypervelocity star (HVS). Here, we consider diffusion by nuclear spiral arms in galactic nuclei, specifically the Milky Way GC. We determine nuclear-spiral-arm-driven diffusion rates using test-particle integrations and compute disruption rates. Our TDE rates are up to 20% higher compared to relaxation by single stars. For binaries, the enhancement is up to a factor of ∼100, and our rates are comparable to the observed numbers of HVSs and S-stars. Our scenario is complementary to relaxation driven by massive perturbers. In addition, our rates depend on the inclination of the binary with respect to the Galactic plane. Therefore, our scenario provides a novel potential source for the observed anisotropic distribution of HVSs. Nuclear spiral arms may also be important for accelerating the coalescence of binary SMBHs and for supplying nuclear star clusters with stars and gas.« less
Podolsky electromagnetism at finite temperature: Implications on the Stefan-Boltzmann law
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonin, C. A.; Bufalo, R.; Pimentel, B. M.
2010-01-15
In this work we study Podolsky electromagnetism in thermodynamic equilibrium. We show that a Podolsky mass-dependent modification to the Stefan-Boltzmann law is induced and we use experimental data to limit the possible values for this free parameter.
Heating Parameter Estimation Using Coaxial Thermocouple Gages in Wind Tunnel Test Articles.
1984-12-01
Attack a Emissivity G Parameter Vector Pn Measurement Vector at nth Time Point p Density 0 Stefan-Boltzmann Constant 6 Transition Matrix APc Scaling...for. The radiation is modeled using the Stefan-Boltzmann Law, q = 60(U 4 - U, 4 ) (A-9) where 8 radiative emissivity a Stefan-Bol tzmann constant U...w00 I- 000 0 0111c :0 i zZ Z-4lwr I- E . - t J K - IL HHO "W 6i 0WZWZWO&000OW *0 . 0 - .- - -4 4 1"- 1 Lii w LiiU Li LI Li Lij Liw w ~ o 0 0wm ~wW6~w d
Determining Planetary Temperatures with the Stefan-Boltzmann Law
ERIC Educational Resources Information Center
LoPresto, Michael C.; Hagoort, Nichole
2011-01-01
What follows is a description of several activities involving the Stefan-Boltzmann radiation law that can provide laboratory experience beyond what is normally found in traditional introductory thermodynamics experiments on thermal expansion, specific heat, and heats of transformation. The activities also provide more extensive coverage of and…
Dr. Stefan Ambs: Increasing Diversity in Cancer Research: One Lab at a Time
As part of the series “Increasing Diversity in Cancer Research,” CRCHD interviewed Dr. Stefan Ambs, an investigator at NCI’s Center for Cancer Research, who is using novel approaches to discover gene differences in the tumors of African American patients.
On a phase transition for semitransparent materials in terms of the Stefan problem
NASA Astrophysics Data System (ADS)
Rubtsov, N. A.; Sleptsov, S. D.
2017-01-01
The paper deals with justification of the formula for the latent heat of phase transition of the first kind, taking into account superheating and subcooling of the formed two-phase system, in application to the solution of Stefan problem in semitransparent materials.
Development and Application of Compatible Discretizations of Maxwell's Equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, D; Koning, J; Rieben, R
We present the development and application of compatible finite element discretizations of electromagnetics problems derived from the time dependent, full wave Maxwell equations. We review the H(curl)-conforming finite element method, using the concepts and notations of differential forms as a theoretical framework. We chose this approach because it can handle complex geometries, it is free of spurious modes, it is numerically stable without the need for filtering or artificial diffusion, it correctly models the discontinuity of fields across material boundaries, and it can be very high order. Higher-order H(curl) and H(div) conforming basis functions are not unique and we havemore » designed an extensible C++ framework that supports a variety of specific instantiations of these such as standard interpolatory bases, spectral bases, hierarchical bases, and semi-orthogonal bases. Virtually any electromagnetics problem that can be cast in the language of differential forms can be solved using our framework. For time dependent problems a method-of-lines scheme is used where the Galerkin method reduces the PDE to a semi-discrete system of ODE's, which are then integrated in time using finite difference methods. For time integration of wave equations we employ the unconditionally stable implicit Newmark-Beta method, as well as the high order energy conserving explicit Maxwell Symplectic method; for diffusion equations, we employ a generalized Crank-Nicholson method. We conclude with computational examples from resonant cavity problems, time-dependent wave propagation problems, and transient eddy current problems, all obtained using the authors massively parallel computational electromagnetics code EMSolve.« less
Far-infrared study of the mechanochemically synthesized Cu2FeSnS4 (stannite) nanocrystals
NASA Astrophysics Data System (ADS)
Trajic, J.; Romcevic, M.; Paunovic, N.; Curcic, M.; Balaz, P.; Romcevic, N.
2018-05-01
The analysis of the optical properties of mechanochemically synthesized stannite Cu2FeSnS4 nanocrystals has been performed using far-infrared spectroscopy. The Cu2FeSnS4 stannite nanocrystals were synthesized mechanochemically from elemental precursors Cu, Fe, Sn, and S. Milling time was 45, 60, 90 and 120 min. Reflectivity spectra were analyzed using the classical form of the dielectric function, which includes the phonon and the free carrier contribution. The influence of milling time on synthesis of stannite Cu2FeSnS4 is observed. Among the modes that are characteristic for the stannite Cu2FeSnS4, we registered the modes of binary phases of FeS and SnS. The total disappearance of the binary phases of FeS and SnS and forming pure Cu2FeSnS4 is observed when the milling time is 120 min. Effective permittivity of Cu2FeSnS4 and binary phases of FeS and SnS were modeled by Maxwell - Garnet approximation.
Kinetic theory of binary particles with unequal mean velocities and non-equipartition energies
NASA Astrophysics Data System (ADS)
Chen, Yanpei; Mei, Yifeng; Wang, Wei
2017-03-01
The hydrodynamic conservation equations and constitutive relations for a binary granular mixture composed of smooth, nearly elastic spheres with non-equipartition energies and different mean velocities are derived. This research is aimed to build three-dimensional kinetic theory to characterize the behaviors of two species of particles suffering different forces. The standard Enskog method is employed assuming a Maxwell velocity distribution for each species of particles. The collision components of the stress tensor and the other parameters are calculated from the zeroth- and first-order approximation. Our results demonstrate that three factors, namely the differences between two granular masses, temperatures and mean velocities all play important roles in the stress-strain relation of the binary mixture, indicating that the assumption of energy equipartition and the same mean velocity may not be acceptable. The collision frequency and the solid viscosity increase monotonously with each granular temperature. The zeroth-order approximation to the energy dissipation varies greatly with the mean velocities of both species of spheres, reaching its peak value at the maximum of their relative velocity.
Of Big Hegemonies and Little Tigers: Ecocentrism and Environmental Justice
ERIC Educational Resources Information Center
Kopnina, Helen
2016-01-01
Stefan Bengtsson's commentary about policy hegemony discusses the alternative discourses of socialism, nationalism, and globalism. However, Stefan does not adequately demonstrate how these discourses can overcome the Dominant Western Worldview (DWW), which is imbued with anthropocentrism. It will be argued here that most policy choices promoting…
NASA Astrophysics Data System (ADS)
Ge, J.; Everett, M. E.; Weiss, C. J.
2012-12-01
A 2.5D finite difference (FD) frequency-domain modeling algorithm based on the theory of fractional diffusion of electromagnetic (EM) fields generated by a loop source lying above a fractured geological medium is addressed in this paper. The presence of fractures in the subsurface, usually containing highly conductive pore fluids, gives rise to spatially hierarchical flow paths of induced EM eddy currents. The diffusion of EM eddy currents in such formations is anomalous, generalizing the classical Gaussian process described by the conventional Maxwell equations. Based on the continuous time random walk (CTRW) theory, the diffusion of EM eddy currents in a rough medium is governed by the fractional Maxwell equations. Here, we model the EM response of a 2D subsurface containing fractured zones, with a 3D loop source, which results the so-called 2.5D model geometry. The governing equation in the frequency domain is converted using Fourier transform into k domain along the strike direction (along which the model conductivity doesn't vary). The resulting equation system is solved by the multifrontal massively parallel solver (MUMPS). The data obtained is then converted back to spatial domain and the time domain. We find excellent agreement between the FD and analytic solutions for a rough halfspace model. Then FD solutions are calculated for a 2D fault zone model with variable conductivity and roughness. We compare the results with responses from several classical models and explore the relationship between the roughness and the spatial density of the fracture distribution.
Dependence of growth of the phases of multiphase binary systems on the diffusion parameters
NASA Astrophysics Data System (ADS)
Molokhina, L. A.; Rogalin, V. E.; Filin, S. A.; Kaplunov, I. A.
2017-12-01
A mathematical model of the diffusion interaction of a binary system with several phases on the equilibrium phase diagram is presented. The theoretical and calculated dependences of the layer thickness of each phase in the multiphase diffusion zone on the isothermal annealing time and the ratio of the diffusion parameters in the neighboring phases with an unlimited supply of both components were constructed. The phase formation and growth in the diffusion zone during "reactive" diffusion corresponds to the equilibrium state diagram for two components, and the order of their appearance in the diffusion zone depends only on the ratio of the diffusion parameters in the phases themselves and on the duration of the incubation periods. The dependence of phase appearance on the incubation periods, annealing time, and difference in the movement rates of the components across the interface boundaries was obtained. An example of the application of the model for processing the experimental data on phase growth in a two-component three-phase system was given.
Modulus spectroscopy of grain-grain boundary binary system
NASA Astrophysics Data System (ADS)
Cheng, Peng-Fei; Song, Jiang; Li, Sheng-Tao; Wang, Hui
2015-02-01
Understanding various polarization mechanisms in complex dielectric systems and specifying their physical origins are key issues in dielectric physics. In this paper, four different methods for representing dielectric properties were analyzed and compared. Depending on the details of the system under study, i.e., uniform or non-uniform, it was suggested that different representing approaches should be used to obtain more valuable information. Especially, for the grain-grain boundary binary non-uniform system, its dielectric response was analyzed in detail in terms of modulus spectroscopy (MS). Furthermore, it was found that through MS, the dielectric responses between uniform and non-uniform systems, grain and grain boundary, Maxwell-Wagner polarization and intrinsic polarization can be distinguished. Finally, with the proposed model, the dielectric properties of CaCu3Ti4O12 (CCTO) ceramics were studied. The colossal dielectric constant of CCTO at low frequency was attributed to the pseudo relaxation process of grain.
Automatic Control via Thermostats of a Hyperbolic Stefan Problem with Memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colli, P.; Grasselli, M.; Sprekels, J.
1999-03-15
A hyperbolic Stefan problem based on the linearized Gurtin-Pipkin heat conduction law is considered. The temperature and free boundary are controlled by a thermostat acting on the boundary. This feedback control is based on temperature measurements performed by real thermal sensors located within the domain containing the two-phase system and/or at its boundary. Three different types of thermostats are analyzed: simple switch, relay switch, and a Preisach hysteresis operator. The resulting models lead to integrodifferential hyperbolic Stefan problems with nonlinear and nonlocal boundary conditions. Existence results are proved in all the cases. Uniqueness is also shown, except in the situationmore » corresponding to the ideal switch.« less
Guo, Canyong; Luo, Xuefang; Zhou, Xiaohua; Shi, Beijia; Wang, Juanjuan; Zhao, Jinqi; Zhang, Xiaoxia
2017-06-05
Vibrational spectroscopic techniques such as infrared, near-infrared and Raman spectroscopy have become popular in detecting and quantifying polymorphism of pharmaceutics since they are fast and non-destructive. This study assessed the ability of three vibrational spectroscopy combined with multivariate analysis to quantify a low-content undesired polymorph within a binary polymorphic mixture. Partial least squares (PLS) regression and support vector machine (SVM) regression were employed to build quantitative models. Fusidic acid, a steroidal antibiotic, was used as the model compound. It was found that PLS regression performed slightly better than SVM regression in all the three spectroscopic techniques. Root mean square errors of prediction (RMSEP) were ranging from 0.48% to 1.17% for diffuse reflectance FTIR spectroscopy and 1.60-1.93% for diffuse reflectance FT-NIR spectroscopy and 1.62-2.31% for Raman spectroscopy. The results indicate that diffuse reflectance FTIR spectroscopy offers significant advantages in providing accurate measurement of polymorphic content in the fusidic acid binary mixtures, while Raman spectroscopy is the least accurate technique for quantitative analysis of polymorphs. Copyright © 2017 Elsevier B.V. All rights reserved.
Tafen, De Nyago
2015-02-14
The diffusion of dilute hydrogen in fcc Ni–Al and Ni–Fe binary alloys was examined using kinetic Monte Carlo method with input kinetic parameters obtained from first-principles density functional theory. The simulation involves the implementation of computationally efficient energy barrier model that describes the configuration dependence of the hydrogen hopping. The predicted hydrogen diffusion coefficients in Ni and Ni 89.4Fe 10.6 are compared well with the available experimental data. In Ni–Al, the model predicts lower hydrogen diffusivity compared to that in Ni. Overall, diffusion prefactors and the effective activation energies of H in Ni–Fe and Ni–Al are concentration dependent of themore » alloying element. Furthermore, the changes in their values are the results of the short-range order (nearest-neighbor) effect on the interstitial diffusion of hydrogen in fcc Ni-based alloys.« less
NASA Astrophysics Data System (ADS)
Qian, H.
2015-07-01
Unbalanced probability circulation, which yields cyclic motions in phase space, is the defining characteristics of a stationary diffusion process without detailed balance. In over-damped soft matter systems, such behavior is a hallmark of the presence of a sustained external driving force accompanied with dissipations. In an under-damped and strongly correlated system, however, cyclic motions are often the consequences of a conservative dynamics. In the present paper, we give a novel interpretation of a class of diffusion processes with stationary circulation in terms of a Maxwell-Boltzmann equilibrium in which cyclic motions are on the level set of stationary probability density function thus non-dissipative, e.g., a supercurrent. This implies an orthogonality between stationary circulation J ss ( x) and the gradient of stationary probability density f ss ( x) > 0. A sufficient and necessary condition for the orthogonality is a decomposition of the drift b( x) = j( x) + D( x)∇φ( x) where ∇ṡ j( x) = 0 and j( x) ṡ∇φ( x) = 0. Stationary processes with such Maxwell-Boltzmann equilibrium has an underlying conservative dynamics , and a first integral ϕ( x) ≡ -ln f ss (x) = const, akin to a Hamiltonian system. At all time, an instantaneous free energy balance equation exists for a given diffusion system; and an extended energy conservation law among an entire family of diffusion processes with different parameter α can be established via a Helmholtz theorem. For the general diffusion process without the orthogonality, a nonequilibrium cycle emerges, which consists of external driven φ-ascending steps and spontaneous φ-descending movements, alternated with iso-φ motions. The theory presented here provides a rich mathematical narrative for complex mesoscopic dynamics, with contradistinction to an earlier one [H. Qian et al., J. Stat. Phys. 107, 1129 (2002)]. This article is supplemented with comments by H. Ouerdane and a final reply by the author.
An experimental study of laminar film condensation with Stefan number greater than unity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahajan, R.L.; Dickinson, D.A.; Chu, T.Y.
1991-05-01
Experimental laminar condensation heat transfer data are reported for fluids with Stefan number up to 3.5. The fluid is a member of a family of fluorinated fluids, which have been used extensively in the electronics industry for soldering, cooling, and testing applications. Experiments were performed by suddenly immersing cold copper spheres in the saturated vapor of this fluid, and heat transfer rates were calculated using the quasi-steady temperature response of the spheres. In these experiments, the difference between saturation and wall temperature varied from 0.5C to 190C. Over this range of temperature difference, the condensate properties vary significantly; viscosity ofmore » the condensate varies by a factor of nearly 50. Corrections for the temperature-dependent properties of the condensate therefore were incorporated in calculating the Nusselt number based on the average heat transfer coefficient. The results are discussed in light of past experimental data and theory for Stefan number less than unity. To the knowledge of the authors, this is the first reported study of condensation heat transfer examining the effects of Stefan number greater than unity.« less
Dynamical fate of wide binaries in the solar neighborhood
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weinberg, M.D.; Shapiro, S.L.; Wasserman, I.
1987-01-01
An analytical model is presented for the evolution of wide binaries in the Galaxy. The study is pertinent to the postulated solar companion, Nemesis, which may disturb the Oort cloud and cause catastrophic comet showers to strike the earth every 26 Myr. Distant gravitational encounters are modeled by Fokker-Planck coefficients for advection and diffusion of the orbital binding energy. It is shown that encounters with passing stars cause a diffusive evolution of the binding energy and semimajor axis. Encounters with subclumps in giant molecular clouds disrupt orbits to a degree dependent on the cumulative number of stellar encounters. The timemore » scales of the vents and the limitations of scaling laws used are discussed. Results are provided from calculations of galactic distribution of wide binaries and the evolution of wide binary orbits. 38 references.« less
NASA Technical Reports Server (NTRS)
Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.
1997-01-01
Melt convection, along with species diffusion and segregation on the solidification interface are the primary factors responsible for species redistribution during HgCdTe crystal growth from the melt. As no direct information about convection velocity is available, numerical modeling is a logical approach to estimate convection. Furthermore influence of microgravity level, double-diffusion and material properties should be taken into account. In the present study, HgCdTe is considered as a binary alloy with melting temperature available from a phase diagram. The numerical model of convection and solidification of binary alloy is based on the general equations of heat and mass transfer in two-dimensional region. Mathematical modeling of binary alloy solidification is still a challenging numericial problem. A Rigorous mathematical approach to this problem is available only when convection is not considered at all. The proposed numerical model was developed using the finite element code FIDAP. In the present study, the numerical model is used to consider thermal, solutal convection and a double diffusion source of mass transport.
Theory and Experiment of Binary Diffusion Coefficient of n-Alkanes in Dilute Gases.
Liu, Changran; McGivern, W Sean; Manion, Jeffrey A; Wang, Hai
2016-10-10
Binary diffusion coefficients were measured for n-pentane, n-hexane, and n-octane in helium and of n-pentane in nitrogen over the temperature range of 300 to 600 K, using reversed-flow gas chromatography. A generalized, analytical theory is proposed for the binary diffusion coefficients of long-chain molecules in simple diluent gases, taking advantage of a recently developed gas-kinetic theory of the transport properties of nanoslender bodies in dilute free-molecular flows. The theory addresses the long-standing question about the applicability of the Chapman-Enskog theory in describing the transport properties of nonspherical molecular structures, or equivalently, the use of isotropic potentials of interaction for a roughly cylindrical molecular structure such as large normal alkanes. An approximate potential energy function is proposed for the intermolecular interaction of long-chain n-alkane with typical bath gases. Using this potential and the analytical theory for nanoslender bodies, we show that the diffusion coefficients of n-alkanes in typical bath gases can be treated by the resulting analytical model accurately, especially for compounds larger than n-butane.
Liu, Zhao-Dong; Wang, Hai-Cui; Li, Jiu-Yu; Xu, Ren-Kou
2017-10-01
The interaction between rice roots and Fe/Al oxide-coated quartz was investigated through zeta potential measurements and column leaching experiments in present study. The zeta potentials of rice roots, Fe/Al oxide-coated quartz, and the binary systems containing rice roots and Fe/Al oxide-coated quartz were measured by a specially constructed streaming potential apparatus. The interactions between rice roots and Fe/Al oxide-coated quartz particles were evaluated/deduced based on the differences of zeta potentials between the binary systems and the single system of rice roots. The zeta potentials of the binary systems moved in positive directions compared with that of rice roots, suggesting that there were overlapping of diffuse layers of electric double layers on positively charged Fe/Al oxide-coated quartz and negatively charged rice roots and neutralization of positive charge on Fe/Al oxide-coated quartz with negative charge on rice roots. The greater amount of positive charges on Al oxide led to the stronger interaction of Al oxide-coated quartz with rice roots and the more shift of zeta potential compared with Fe oxide. The overlapping of diffuse layers on Fe/Al oxide-coated quartz and rice roots was confirmed by column leaching experiments. The greater overlapping of diffuse layers on Al oxide and rice roots led to more simultaneous adsorptions of K + and NO 3 - and greater reduction in leachate electric conductivity when the column containing Al oxide-coated quartz and rice roots was leached with KNO 3 solution, compared with the columns containing rice roots and Fe oxide-coated quartz or quartz. When the KNO 3 solution was replaced with deionized water to flush the columns, more K + and NO 3 - were desorbed from the binary system containing Al oxide-coated quartz and rice roots than from other two binary systems, suggesting that the stronger electrostatic interaction between Al oxide and rice roots promoted the desorption of K + and NO 3 - from the binary system and enhanced overlapping of diffuse layers on these oppositely charged surfaces compared with other two binary systems. In conclusion, the overlapping of diffuse layers occurred between positively charged Fe/Al oxides and rice roots, which led to neutralization of opposite charge and affected adsorption and desorption of ions onto and from the charged surfaces of Fe/Al oxides and rice roots.
The Navier-Stokes Stress Principle for Viscous Fluids
NASA Technical Reports Server (NTRS)
Mohr, Ernst
1942-01-01
The Navier-Stokes stress principle is checked in the light of Maxwell's mechanism of friction and in connection herewith the possibility of another theorem is indicated. The Navier-Stokes stress principle is in general predicated upon the conception of the plastic body. Hence the process is a purely phenomenological one, which Newton himself followed with his special theorem for one-dimensional flows. It remained for Maxwell to discover the physical mechanism by which the shear inflow direction is developed: According to it, this shear is only 'fictitious' as it merely represents the substitute for a certain transport on macroscopic motion quantity, as conditioned by Brown's moiecular motion and the diffusion, respectively. It is clear that this mechanism is not bound to the special case of the one-dimensioilal flows, but holds for any flow as expression of the diffusion, by which a fluid differs sharply from a plastic body. If it is remembered, on the other hand, that the cause of the stresses on the plastic body lies in a certain cohesion of the molecules, it appears by no means self evident that this difference in the mechanism of friction between fluid and plastic body should not prevail in the stress principle as well, although it certainly is desirable in any case, at least subsequently, to establish the general theorem in the sense of Maxwell. Actually, a different theorem is suggested which, in contrast to that by Navier-Stokes, has the form of an unsymmetrical matrix. Without anticipating a final decision several reasons are advanced by way of a special flow which seem to affirm this new theorem. To make it clear that the problem involved here still awaits its final solution, is the real purpose behind the present article.
Hibi, Yoshihiko; Kashihara, Ayumi
2018-03-01
A previous study has reported that Knudsen diffusion coefficients obtained by tracer experiments conducted with a binary gas system and a porous medium are consistently smaller than those obtained by permeability experiments conducted with a single-gas system and a porous medium. To date, however, that study is the only one in which tracer experiments have been conducted with a binary gas system. Therefore, to confirm this difference in Knudsen diffusion coefficients, we used a method we had developed previously to conduct tracer experiments with a binary carbon dioxide-nitrogen gas system and five porous media with permeability coefficients ranging from 10 -13 to 10 -11 m 2 . The results showed that the Knudsen diffusion coefficient of N 2 (D N2 ) (cm 2 /s) was related to the effective permeability coefficient k e (m 2 ) as D N2 = 7.39 × 10 7 k e 0.767 . Thus, the Knudsen diffusion coefficients of N 2 obtained by our tracer experiments were consistently 1/27 of those obtained by permeability experiments conducted with many porous media and air by other researchers. By using an inversion simulation to fit the advection-diffusion equation to the distribution of concentrations at observation points calculated by mathematically solving the equation, we confirmed that the method used to obtain the Knudsen diffusion coefficient in this study yielded accurate values. Moreover, because the Knudsen diffusion coefficient did not differ when columns with two different lengths, 900 and 1500 mm, were used, this column property did not influence the flow of gas in the column. The equation of the dusty gas model already includes obstruction factors for Knudsen diffusion and molecular diffusion, which relate to medium heterogeneity and tortuosity and depend only on the structure of the porous medium. Furthermore, there is no need to take account of any additional correction factor for molecular diffusion except the obstruction factor because molecular diffusion is only treated in a multicomponent gas system. Thus, molecular diffusion considers only the obstruction factor related to tortuosity. Therefore, we introduced a correction factor for a multicomponent gas system into the DGM equation, multiplying the Knudsen diffusion coefficient, which includes the obstruction factor related to tortuosity, by this correction factor. From the present experimental results, the value of this correction factor was 1/27, and it depended only on the structure of the gas system in the porous medium. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hibi, Yoshihiko; Kashihara, Ayumi
2018-03-01
A previous study has reported that Knudsen diffusion coefficients obtained by tracer experiments conducted with a binary gas system and a porous medium are consistently smaller than those obtained by permeability experiments conducted with a single-gas system and a porous medium. To date, however, that study is the only one in which tracer experiments have been conducted with a binary gas system. Therefore, to confirm this difference in Knudsen diffusion coefficients, we used a method we had developed previously to conduct tracer experiments with a binary carbon dioxide-nitrogen gas system and five porous media with permeability coefficients ranging from 10-13 to 10-11 m2. The results showed that the Knudsen diffusion coefficient of N2 (DN2) (cm2/s) was related to the effective permeability coefficient ke (m2) as DN2 = 7.39 × 107ke0.767. Thus, the Knudsen diffusion coefficients of N2 obtained by our tracer experiments were consistently 1/27 of those obtained by permeability experiments conducted with many porous media and air by other researchers. By using an inversion simulation to fit the advection-diffusion equation to the distribution of concentrations at observation points calculated by mathematically solving the equation, we confirmed that the method used to obtain the Knudsen diffusion coefficient in this study yielded accurate values. Moreover, because the Knudsen diffusion coefficient did not differ when columns with two different lengths, 900 and 1500 mm, were used, this column property did not influence the flow of gas in the column. The equation of the dusty gas model already includes obstruction factors for Knudsen diffusion and molecular diffusion, which relate to medium heterogeneity and tortuosity and depend only on the structure of the porous medium. Furthermore, there is no need to take account of any additional correction factor for molecular diffusion except the obstruction factor because molecular diffusion is only treated in a multicomponent gas system. Thus, molecular diffusion considers only the obstruction factor related to tortuosity. Therefore, we introduced a correction factor for a multicomponent gas system into the DGM equation, multiplying the Knudsen diffusion coefficient, which includes the obstruction factor related to tortuosity, by this correction factor. From the present experimental results, the value of this correction factor was 1/27, and it depended only on the structure of the gas system in the porous medium.
2011-01-10
NASA image release January 10, 2011 The Triangulum, located nearly 3 million light years from Earth, is another far galaxy where researchers have found diffuse interstellar bands (DIBs). The detailed observations needed to see DIBs along a straight line from Earth to an individual star in such a distant galaxy stretch the limits of even the largest telescopes. Credit: NASA/Swift Science Team/Stefan Immler To read more go to: www.nasa.gov/topics/universe/features/molecule-fingerprin... NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook
DIFFUSION MEASUREMENTS DURING PERVAPORATION THROUGH A ZEOLITE MEMBRANE
An isotopic-transient technique was used to directly measure diffusion times of H2O, methanol, ethanol, 2-propanol, and acetone in pure and binary mixture feeds transporting through a zeolite membrane under steady-state pervaporation conditions. Diffusivities can be determ...
Slip and barodiffusion phenomena in slow flows of a gas mixture
NASA Astrophysics Data System (ADS)
Zhdanov, V. M.
2017-03-01
The slip and barodiffusion problems for the slow flows of a gas mixture are investigated on the basis of the linearized moment equations following from the Boltzmann equation. We restrict ourselves to the set of the third-order moment equations and state two general relations (resembling conservation equations) for the moments of the distribution function similar to the conditions used by Loyalka [S. K. Loyalka, Phys. Fluids 14, 2291 (1971), 10.1063/1.1693331] in his approximation method (the modified Maxwell method). The expressions for the macroscopic velocities of the gas mixture species, the partial viscous stress tensors, and the reduced heat fluxes for the stationary slow flow of a gas mixture in the semi-infinite space over a plane wall are obtained as a result of the exact solution of the linearized moment equations in the 10- and 13-moment approximations. The general expression for the slip velocity and the simple and accurate expressions for the viscous, thermal, diffusion slip, and baroslip coefficients, which are given in terms of the basic transport coefficients, are derived by using the modified Maxwell method. The solutions of moment equations are also used for investigation of the flow and diffusion of a gas mixture in a channel formed by two infinite parallel plates. A fundamental result is that the barodiffusion factor in the cross-section-averaged expression for the diffusion flux contains contributions associated with the viscous transfer of momentum in the gas mixture and the effect of the Knudsen layer. Our study revealed that the barodiffusion factor is equal to the diffusion slip coefficient (correct to the opposite sign). This result is consistent with the Onsager's reciprocity relations for kinetic coefficients following from nonequilibrium thermodynamics of the discontinuous systems.
Krajbich, Ian; Rangel, Antonio
2011-08-16
How do we make decisions when confronted with several alternatives (e.g., on a supermarket shelf)? Previous work has shown that accumulator models, such as the drift-diffusion model, can provide accurate descriptions of the psychometric data for binary value-based choices, and that the choice process is guided by visual attention. However, the computational processes used to make choices in more complicated situations involving three or more options are unknown. We propose a model of trinary value-based choice that generalizes what is known about binary choice, and test it using an eye-tracking experiment. We find that the model provides a quantitatively accurate description of the relationship between choice, reaction time, and visual fixation data using the same parameters that were estimated in previous work on binary choice. Our findings suggest that the brain uses similar computational processes to make binary and trinary choices.
Automated Synthetic Scene Generation
2014-07-01
Using the Beard-Maxwell BRDF model , the BRDF from Equations (3.3) and (3.4) is composed of specular, diffuse, and volumetric terms such that x y zSun... models help organizations developing new remote sensing instruments anticipate sensor performance by enabling the ability to create synthetic imagery...for proposed sensor before a sensor is built. One of the largest challenges in modeling realistic synthetic imagery, however, is generating the
On ternary species mixing and combustion in isotropic turbulence at high pressure
NASA Astrophysics Data System (ADS)
Lou, Hong; Miller, Richard S.
2004-05-01
Effects of Soret and Dufour cross-diffusion, whereby both concentration and thermal diffusion occur in the presence of mass fraction, temperature, and pressure gradients, are investigated in the context of both binary and ternary species mixing and combustion in isotropic turbulence at large pressure. The compressible flow formulation is based on a cubic real-gas state equation, and includes generalized forms for heat and mass diffusion derived from nonequilibrium thermodynamics and fluctuation theory. A previously derived formulation of the generalized binary species heat and mass fluxes is first extended to the case of ternary species, and appropriate treatment of the thermal and mass diffusion factors is described. Direct numerical simulations (DNS) are then conducted for both binary and ternary species mixing and combustion in stationary isotropic turbulence. Mean flow temperatures and pressures of
An experimental study of laminar film condensation with Stefan number greater than unity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahajan, R.L.; Dickinson, D.A.; Chu, T.Y.
1990-01-01
Experimental laminar condensation heat transfer data is reported for fluids with Stefan number up to 3.5. The fluid is a member of a family of fluorinated fluids developed in the last decade which have been extensively used in the electronics industry for soldering, cooling, and testing applications. Experiments were performed by suddenly immersing cold copper spheres in the saturated vapor of this fluid, and heat transfer rates were calculated using the quasi-steady temperature response of the spheres. In these experiments, the difference between saturation and wall temperature varied from 0.5{degree}C to 190{degree}C. Over this range of temperature difference, the condensatemore » properties vary significantly. For example, viscosity of the condense varies by a factor of over 50. Corrections for the temperature dependent properties of the condensate therefore were incorporated in calculating the Nusselt number based on the average heat transfer coefficient. The results are discussed in light of past experimental data theory for Stefan number less than 1. To the knowledge of the authors, this is the first reported study of condensation heat transfer for Stefan number greater that unity. 24 refs., 7 figs., 2 tabs.« less
Lateral Diffusion in a DMPC:DMPE-EO Binary Monolayer at the Air/Water Interface
NASA Astrophysics Data System (ADS)
Adalsteinsson, Thorsteinn; Porter, Ryan; Yu, Hyuk
2002-03-01
Polyethylene glycol tethered phospholipids (lipo-polymers) have recently attracted attention for improving the stability of liposomes and other bilayer delivery systems. Here, we report a study of surface pressure measurement and diffusion measurements of a probe lipid (NBD-DMPC) in a binary monolayer of DMPC and DMPE-EO at the Air/Water interface. Our findings are that the DMPE-EO lipo-polymer desorbs from the interface at intermediate surface pressures if the EO tail is sufficiently large (i.e. EO_45) and does not interfere with the diffusion of the probe thereafter. In the case where the EO tail is short (i.e. EO_17) the lipo-polymer retards the diffusion of the probe, but as the surface pressure increases, the diffusion behavior approaches that of pure DMPC monolayer independent of lipo-polymer. Thus, we conclude that the surface pressure and EO molar mass dependent desorption of the lipo-polymer modulates the probe diffusion retardation.
An attentional drift diffusion model over binary-attribute choice.
Fisher, Geoffrey
2017-11-01
In order to make good decisions, individuals need to identify and properly integrate information about various attributes associated with a choice. Since choices are often complex and made rapidly, they are typically affected by contextual variables that are thought to influence how much attention is paid to different attributes. I propose a modification of the attentional drift-diffusion model, the binary-attribute attentional drift diffusion model (baDDM), which describes the choice process over simple binary-attribute choices and how it is affected by fluctuations in visual attention. Using an eye-tracking experiment, I find the baDDM makes accurate quantitative predictions about several key variables including choices, reaction times, and how these variables are correlated with attention to two attributes in an accept-reject decision. Furthermore, I estimate an attribute-based fixation bias that suggests attention to an attribute increases its subjective weight by 5%, while the unattended attribute's weight is decreased by 10%. Copyright © 2017 Elsevier B.V. All rights reserved.
Thermodynamic evaluation of mass diffusion in ionic mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kagan, Grigory; Tang, Xian-Zhu
2014-02-15
The thermodynamic technique of Landau and Lifshitz originally developed for inter-species diffusion in a binary neutral gas mixture is extended to a quasi-neutral plasma with two ion species. It is shown that, while baro- and electro-diffusion coefficients depend on the choice of the thermodynamic system, prediction for the total diffusive mass flux is invariant.
NASA Astrophysics Data System (ADS)
Dufty, J. W.
1984-09-01
Diffusion of a tagged particle in a fluid with uniform shear flow is described. The continuity equation for the probability density describing the position of the tagged particle is considered. The diffusion tensor is identified by expanding the irreversible part of the probability current to first order in the gradient of the probability density, but with no restriction on the shear rate. The tensor is expressed as the time integral of a nonequilibrium autocorrelation function for the velocity of the tagged particle in its local fluid rest frame, generalizing the Green-Kubo expression to the nonequilibrium state. The tensor is evaluated from results obtained previously for the velocity autocorrelation function that are exact for Maxwell molecules in the Boltzmann limit. The effects of viscous heating are included and the dependence on frequency and shear rate is displayed explicitly. The mode-coupling contributions to the frequency and shear-rate dependent diffusion tensor are calculated.
The Dissolution of an Interfween Miscible Liquids
NASA Technical Reports Server (NTRS)
Vlad, D.H.; Maher, J.V.
1999-01-01
The disappearance of the surface tension of the interface of a binary mixture, measured using the dynamic surface light scattering technique, is slower for a binary mixture of higher density contrast. A comparison with a naive diffusion model, expected to provide a lower limit for the speed of dissolution in the absence of gravity shows that the interfacial surface tension disappears much slower than even by diffusion with the effect becoming much more pronounced when density contrast between the liquid phases is increased. Thus, the factor most likely to be responsible for this anomalously slow dissolution is gravity. A mechanism could be based on the competition between diffusive relaxation and sedimentation at the dissolving interface.
Image Halftoning Using Optimized Dot Diffusion
1998-01-01
ppvnath@sys.caltech.edu ABSTRACT The dot diffusion method for digital halftoning has the advantage of parallelism unlike the error diffusion ...digital halftoning : ordered dither [1], error diffusion [2], neural-net based methods [8], and more recently direct binary search (DBS) [7]. Ordered...from periodic patterns. On the other hand error diffused halftones do not suffer from periodicity and offer blue noise characteristic [3] which is
NASA Astrophysics Data System (ADS)
Galenko, Peter K.; Alexandrov, Dmitri V.; Titova, Ekaterina A.
2018-01-01
The boundary integral method for propagating solid/liquid interfaces is detailed with allowance for the thermo-solutal Stefan-type models. Two types of mass transfer mechanisms corresponding to the local equilibrium (parabolic-type equation) and local non-equilibrium (hyperbolic-type equation) solidification conditions are considered. A unified integro-differential equation for the curved interface is derived. This equation contains the steady-state conditions of solidification as a special case. The boundary integral analysis demonstrates how to derive the quasi-stationary Ivantsov and Horvay-Cahn solutions that, respectively, define the paraboloidal and elliptical crystal shapes. In the limit of highest Péclet numbers, these quasi-stationary solutions describe the shape of the area around the dendritic tip in the form of a smooth sphere in the isotropic case and a deformed sphere along the directions of anisotropy strength in the anisotropic case. A thermo-solutal selection criterion of the quasi-stationary growth mode of dendrites which includes arbitrary Péclet numbers is obtained. To demonstrate the selection of patterns, computational modelling of the quasi-stationary growth of crystals in a binary mixture is carried out. The modelling makes it possible to obtain selected structures in the form of dendritic, fractal or planar crystals. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.
NUMERICAL ANALYSES FOR TREATING DIFFUSION IN SINGLE-, TWO-, AND THREE-PHASE BINARY ALLOY SYSTEMS
NASA Technical Reports Server (NTRS)
Tenney, D. R.
1994-01-01
This package consists of a series of three computer programs for treating one-dimensional transient diffusion problems in single and multiple phase binary alloy systems. An accurate understanding of the diffusion process is important in the development and production of binary alloys. Previous solutions of the diffusion equations were highly restricted in their scope and application. The finite-difference solutions developed for this package are applicable for planar, cylindrical, and spherical geometries with any diffusion-zone size and any continuous variation of the diffusion coefficient with concentration. Special techniques were included to account for differences in modal volumes, initiation and growth of an intermediate phase, disappearance of a phase, and the presence of an initial composition profile in the specimen. In each analysis, an effort was made to achieve good accuracy while minimizing computation time. The solutions to the diffusion equations for single-, two-, and threephase binary alloy systems are numerically calculated by the three programs NAD1, NAD2, and NAD3. NAD1 treats the diffusion between pure metals which belong to a single-phase system. Diffusion in this system is described by a one-dimensional Fick's second law and will result in a continuous composition variation. For computational purposes, Fick's second law is expressed as an explicit second-order finite difference equation. Finite difference calculations are made by choosing the grid spacing small enough to give convergent solutions of acceptable accuracy. NAD2 treats diffusion between pure metals which form a two-phase system. Diffusion in the twophase system is described by two partial differential equations (a Fick's second law for each phase) and an interface-flux-balance equation which describes the location of the interface. Actual interface motion is obtained by a mass conservation procedure. To account for changes in the thicknesses of the two phases as diffusion progresses, a variable grid technique developed by Murray and Landis is employed. These equations are expressed in finite difference form and solved numerically. Program NAD3 treats diffusion between pure metals which form a two-phase system with an intermediate third phase. Diffusion in the three-phase system is described by three partial differential expressions of Fick's second law and two interface-flux-balance equations. As with the two-phase case, a variable grid finite difference is used to numerically solve the diffusion equations. Computation time is minimized without sacrificing solution accuracy by treating the three-phase problem as a two-phase problem when the thickness of the intermediate phase is less than a preset value. Comparisons between these programs and other solutions have shown excellent agreement. The programs are written in FORTRAN IV for batch execution on the CDC 6600 with a central memory requirement of approximately 51K (octal) 60 bit words.
Pathways for diffusion in the potential energy landscape of the network glass former SiO2
NASA Astrophysics Data System (ADS)
Niblett, S. P.; Biedermann, M.; Wales, D. J.; de Souza, V. K.
2017-10-01
We study the dynamical behaviour of a computer model for viscous silica, the archetypal strong glass former, and compare its diffusion mechanism with earlier studies of a fragile binary Lennard-Jones liquid. Three different methods of analysis are employed. First, the temperature and time scale dependence of the diffusion constant is analysed. Negative correlation of particle displacements influences transport properties in silica as well as in fragile liquids. We suggest that the difference between Arrhenius and super-Arrhenius diffusive behaviour results from competition between the correlation time scale and the caging time scale. Second, we analyse the dynamics using a geometrical definition of cage-breaking transitions that was proposed previously for fragile glass formers. We find that this definition accurately captures the bond rearrangement mechanisms that control transport in open network liquids, and reproduces the diffusion constants accurately at low temperatures. As the same method is applicable to both strong and fragile glass formers, we can compare correlation time scales in these two types of systems. We compare the time spent in chains of correlated cage breaks with the characteristic caging time and find that correlations in the fragile binary Lennard-Jones system persist for an order of magnitude longer than those in the strong silica system. We investigate the origin of the correlation behaviour by sampling the potential energy landscape for silica and comparing it with the binary Lennard-Jones model. We find no qualitative difference between the landscapes, but several metrics suggest that the landscape of the fragile liquid is rougher and more frustrated. Metabasins in silica are smaller than those in binary Lennard-Jones and contain fewer high-barrier processes. This difference probably leads to the observed separation of correlation and caging time scales.
Diffusion of external magnetic fields into the cone-in-shell target in the fast ignition
NASA Astrophysics Data System (ADS)
Sunahara, Atsushi; Morita, Hiroki; Johzaki, Tomoyuki; Nagatomo, Hideo; Fujioka, Shinsuke; Hassanein, Ahmed; Firex Project Team
2017-10-01
We simulated the diffusion of externally applied magnetic fields into cone-in-shell target in the fast ignition. Recently, in the fast ignition scheme, the externally magnetic fields up to kilo-Tesla is used to guide fast electrons to the high-dense imploded core. In order to study the profile of the magnetic field, we have developed 2D cylindrical Maxwell equation solver with Ohm's law, and carried out simulations of diffusion of externally applied magnetic fields into a cone-in-shell target. We estimated the conductivity of the cone and shell target based on the assumption of Saha-ionization equilibrium. Also, we calculated the temporal evolution of the target temperature heated by the eddy current driven by temporal variation of magnetic fields, based on the accurate equation of state. Both, the diffusion of magnetic field and the increase of target temperature interact with each other. We present our results of temporal evolution of the magnetic field and its diffusion into the cone and shell target.
Diffusion constant of slowly rotating black three-brane
NASA Astrophysics Data System (ADS)
Amoozad, Z.; Sadeghi, J.
2018-01-01
In this paper, we take the slowly rotating black three-brane background and perturb it by introducing a vector gauge field. We find the components of the gauge field through Maxwell equations and Bianchi identities. Using currents and some ansatz we find Fick's first law at long wavelength regime. An interesting result for this non-trivial supergravity background is that the diffusion constant on the stretched horizon which emerges from Fick's first law is a complex constant. The pure imaginary part of the diffusion constant appears because the black three-brane has angular momentum. By taking the static limit of the corresponding black brane the well known diffusion constant will be recovered. On the other hand, from the point of view of the Fick's second law, we have the dispersion relation ω = - iDq2 and we found a damping of hydrodynamical flow in the holographically dual theory. Existence of imaginary term in the diffusion constant introduces an oscillating propagation of the gauge field in the dual field theory.
Diffusion of multi-isotopic chemical species in molten silicates
NASA Astrophysics Data System (ADS)
Watkins, James M.; Liang, Yan; Richter, Frank; Ryerson, Frederick J.; DePaolo, Donald J.
2014-08-01
Diffusion experiments in a simplified Na2O-CaO-SiO2 liquid system are used to develop a general formulation for the fractionation of Ca isotopes during liquid-phase diffusion. Although chemical diffusion is a well-studied process, the mathematical description of the effects of diffusion on the separate isotopes of a chemical element is surprisingly underdeveloped and uncertain. Kinetic theory predicts a mass dependence on isotopic mobility, but it is unknown how this translates into a mass dependence on effective binary diffusion coefficients, or more generally, the chemical diffusion coefficients that are housed in a multicomponent diffusion matrix. Our experiments are designed to measure Ca mobility, effective binary diffusion coefficients, the multicomponent diffusion matrix, and the effects of chemical diffusion on Ca isotopes in a liquid of single composition. We carried out two chemical diffusion experiments and one self-diffusion experiment, all at 1250 °C and 0.7 GPa and using a bulk composition for which other information is available from the literature. The self-diffusion experiment is used to determine the mobility of Ca in the absence of diffusive fluxes of other liquid components. The chemical diffusion experiments are designed to determine the effect on Ca isotope fractionation of changing the counter-diffusing component from fast-diffusing Na2O to slow-diffusing SiO2. When Na2O is the main counter-diffusing species, CaO diffusion is fast and larger Ca isotopic effects are generated. When SiO2 is the main counter-diffusing species, CaO diffusion is slow and smaller Ca isotopic effects are observed. In both experiments, the liquid is initially isotopically homogeneous, and during the experiment Ca isotopes become fractionated by diffusion. The results are used as a test of a new general expression for the diffusion of isotopes in a multicomponent liquid system that accounts for both self diffusion and the effects of counter-diffusing species. Our results show that (1) diffusive isotopic fractionations depend on the direction of diffusion in composition space, (2) diffusive isotopic fractionations scale with effective binary diffusion coefficient, as previously noted by Watkins et al. (2011), (3) self-diffusion is not decoupled from chemical diffusion, (4) self diffusion can be faster than or slower than chemical diffusion and (5) off-diagonal terms in the chemical diffusion matrix have isotopic mass-dependence. The results imply that relatively large isotopic fractionations can be generated by multicomponent diffusion even in the absence of large concentration gradients of the diffusing element. The new formulations for isotope diffusion can be tested with further experimentation and provide an improved framework for interpreting mass-dependent isotopic variations in natural liquids.
Hydrodynamic equations for electrons in graphene obtained from the maximum entropy principle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barletti, Luigi, E-mail: luigi.barletti@unifi.it
2014-08-15
The maximum entropy principle is applied to the formal derivation of isothermal, Euler-like equations for semiclassical fermions (electrons and holes) in graphene. After proving general mathematical properties of the equations so obtained, their asymptotic form corresponding to significant physical regimes is investigated. In particular, the diffusive regime, the Maxwell-Boltzmann regime (high temperature), the collimation regime and the degenerate gas limit (vanishing temperature) are considered.
The boundary condition for vertical velocity and its interdependence with surface gas exchange
NASA Astrophysics Data System (ADS)
Kowalski, Andrew S.
2017-07-01
The law of conservation of linear momentum is applied to surface gas exchanges, employing scale analysis to diagnose the vertical velocity (w) in the boundary layer. Net upward momentum in the surface layer is forced by evaporation (E) and defines non-zero vertical motion, with a magnitude defined by the ratio of E to the air density, as w =
Freeze-cast alumina pore networks: Effects of freezing conditions and dispersion medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, S. M.; Xiao, X.; Faber, K. T.
Alumina ceramics were freeze-cast from water- and camphene-based slurries under varying freezing conditions and examined using X-ray computed tomography (XCT). Pore network characteristics, i.e., porosity, pore size, geometric surface area, and tortuosity, were measured from XCT reconstructions and the data were used to develop a model to predict feature size from processing conditions. Classical solidification theory was used to examine relationships between pore size, temperature gradients, and freezing front velocity. Freezing front velocity was subsequently predicted from casting conditions via the two-phase Stefan problem. Resulting models for water-based samples agreed with solidification-based theories predicting lamellar spacing of binary eutectic alloys,more » and models for camphene-based samples concurred with those for dendritic growth. Relationships between freezing conditions and geometric surface area were also modeled by considering the inverse relationship between pore size and surface area. Tortuosity was determined to be dependent primarily on the type of dispersion medium. (C) 2015 Elsevier Ltd. All rights reserved.« less
Lattice animals in diffusion limited binary colloidal system
NASA Astrophysics Data System (ADS)
Shireen, Zakiya; Babu, Sujin B.
2017-08-01
In a soft matter system, controlling the structure of the amorphous materials has been a key challenge. In this work, we have modeled irreversible diffusion limited cluster aggregation of binary colloids, which serves as a model for chemical gels. Irreversible aggregation of binary colloidal particles leads to the formation of a percolating cluster of one species or both species which are also called bigels. Before the formation of the percolating cluster, the system forms a self-similar structure defined by a fractal dimension. For a one component system when the volume fraction is very small, the clusters are far apart from each other and the system has a fractal dimension of 1.8. Contrary to this, we will show that for the binary system, we observe the presence of lattice animals which has a fractal dimension of 2 irrespective of the volume fraction. When the clusters start inter-penetrating, we observe a fractal dimension of 2.5, which is the same as in the case of the one component system. We were also able to predict the formation of bigels using a simple inequality relation. We have also shown that the growth of clusters follows the kinetic equations introduced by Smoluchowski for diffusion limited cluster aggregation. We will also show that the chemical distance of a cluster in the flocculation regime will follow the same scaling law as predicted for the lattice animals. Further, we will also show that irreversible binary aggregation comes under the universality class of the percolation theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gim, Yongwan; Kim, Wontae, E-mail: yongwan89@sogang.ac.kr, E-mail: wtkim@sogang.ac.kr
In warm inflation scenarios, radiation always exists, so that the radiation energy density is also assumed to be finite when inflation starts. To find out the origin of the non-vanishing initial radiation energy density, we revisit thermodynamic analysis for a warm inflation model and then derive an effective Stefan-Boltzmann law which is commensurate with the temperature-dependent effective potential by taking into account the non-vanishing trace of the total energy-momentum tensors. The effective Stefan-Boltzmann law shows that the zero energy density for radiation at the Grand Unification epoch increases until the inflation starts and it becomes eventually finite at the initialmore » stage of warm inflation. By using the above effective Stefan-Boltzmann law, we also study the cosmological scalar perturbation, and obtain the sufficient radiation energy density in order for GUT baryogenesis at the end of inflation.« less
Global Phenomena from Local Rules: Peer-to-Peer Networks and Crystal Steps
2007-01-01
2005. http://www.cachelogic.com, August 2005. [43] Vern Paxson and Sally Floyd. Wide area traffic: The failure of poisson modeling. IEEE/ACM...International Workshop on Peer-to-Peer Systems (IPTPS), Cambridge, Massachusetts, USA, March 2002. [45] Stefan Saroiu, Krishna P. Gummadi, Richard J...Implementation (ODSI), Boston, Mas- sachusetts, USA, December 2002. [46] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. A measurement study of peer
RENDEZVOUS: Self-Organizing Services in an Active Network
2004-02-01
http://www.cs.washington.edu/research/networking/ants/, and http://www.cs.utah.edu/flux/janos/ants.html, 2001. [2] Krishna P. Gummadi, “King...Proceedings of the Tenth ACM SIGOPS European Workshop, September 2002. [9] Stefan Saroiu, P. Krishna Gummadi, Steven D. Gribble: A Measurement Study...Davis, Eric Lemar, and Brian Bershad. “Migration for Pervasive Applications.” Submitted to OSDI, June 2002. Gummadi, P. Krishna , Stefan Saroiu, and
Experimental Investigation of Irregular Wave Cancellation Using a Cycloidal Wave Energy Converter
2012-07-01
83388 EXPERIMENTAL INVESTIGATION OF IRREGULAR WAVE CANCELLATION USING A CYCLOIDAL WAVE ENERGY CONVERTER Stefan G. Siegel∗ Department of Aeronautics...United States Air Force Academy Air Force Academy, Colorado, 80840 USA Email: stefan @siegels.us Casey Fagley Department of Aeronautics United States Air...would like to acknowledge fruitful discussion with Dr. Jürgen Seidel and Dr. Tiger Jeans. This material is based upon activities supported by the
Stefan problem for a finite liquid phase and its application to laser or electron beam welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasuya, T.; Shimoda, N.
1997-10-01
An exact solution of a heat conduction problem with the effect of latent heat of solidification (Stefan problem) is derived. The solution of the one dimensional Stefan problem for a finite liquid phase initially existing in a semi-infinite body is applied to evaluate temperature fields produced by laser or electron beam welding. The solution of the model has not been available before, as Carslaw and Jaeger [{ital Conduction of Heat in Solids}, 2nd ed. (Oxford University Press, New York, 1959)] pointed out. The heat conduction calculations are performed using thermal properties of carbon steel, and the comparison of the Stefanmore » problem with a simplified linear heat conduction model reveals that the solidification rate and cooling curve over 1273 K significantly depend on which model (Stefan or linear heat conduction problem) is applied, and that the type of the thermal model applied has little meaning for cooling curve below 1273 K. Since the heat conduction problems with a phase change arise in many important industrial fields, the solution derived in this study is ready to be used not only for welding but also for other industrial applications. {copyright} {ital 1997 American Institute of Physics.}« less
Fluid Dynamics and Thermodynamics of Vapor Phase Crystal Growth
NASA Technical Reports Server (NTRS)
Wiedemeier, H.
1985-01-01
The ground-based research effort under this program is concerned with systematic studies of the effects of variations: (1) of the relative importance of buoyancy-driven convection, and (2) of diffusion and viscosity conditions on crystal properties. These experimental studies are supported by thermodynamic characterizations of the systems, based on which fluid dynamic parameters can be determined. The specific materials under investigation include: the GeSe-GeI4, Ge-GeI4, HgTe-HgI2, and Hg sub (1-x)Cd sub (x) Te-HgI2 systems. Mass transport rate studies of the GeSe-GeI system as a function of orientation of the density gradient relative to the gravity vector demonstrated the validity of flux anomalies observed in earlier space experiments. The investigation of the effects of inert gases on mass flux yielded the first experimental evidence for the existence of a boundary layer in closed ampoules. Combined with a thorough thermodynamic analysis, a transport model for diffusive flow including chemical vapor transport, sublimation, and Stefan flow was developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dursch, Thomas J.; Ciontea, Monica A.; Radke, Clayton J.
2011-12-01
Nucleation and growth of ice in the fibrous gas-diffusion layer (GDL) of a proton-exchange membrane fuel cell (PEMFC) are studied using isothermal differential scanning calorimetry (DSC). Isothermal crystallization rates and pseudo-steady-state nucleation rates are obtained as a function of subcooling from heat-flow and induction-time measurements. Kinetics of ice nucleation and growth are studied at two polytetrafluoroethylene (PTFE) loadings (0 and 10 wt %) in a commercial GDL for temperatures between 240 and 273 K. A nonlinear ice-crystallization rate expression is developed using Johnson–Mehl–Avrami–Kolmogorov (JMAK) theory, in which the heat-transfer-limited growth rate is determined from the moving-boundary Stefan problem. Induction timesmore » follow a Poisson distribution and increase upon addition of PTFE, indicating that nucleation occurs more slowly on a hydrophobic fiber than on a hydrophilic fiber. The determined nucleation rates and induction times follow expected trends from classical nucleation theory. Finally, a validated rate expression is now available for predicting ice-crystallization kinetics in GDLs.« less
Generalized Einstein relation for the mutual diffusion coefficient of a binary fluid mixture.
Felderhof, B U
2017-08-21
The method employed by Einstein to derive his famous relation between the diffusion coefficient and the friction coefficient of a Brownian particle is used to derive a generalized Einstein relation for the mutual diffusion coefficient of a binary fluid mixture. The expression is compared with the one derived by de Groot and Mazur from irreversible thermodynamics and later by Batchelor for a Brownian suspension. A different result was derived by several other workers in irreversible thermodynamics. For a nearly incompressible solution, the generalized Einstein relation agrees with the expression derived by de Groot and Mazur. The two expressions also agree to first order in solute density. For a Brownian suspension, the result derived from the generalized Smoluchowski equation agrees with both expressions.
Detailed Multi-dimensional Modeling of Direct Internal Reforming Solid Oxide Fuel Cells.
Tseronis, K; Fragkopoulos, I S; Bonis, I; Theodoropoulos, C
2016-06-01
Fuel flexibility is a significant advantage of solid oxide fuel cells (SOFCs) and can be attributed to their high operating temperature. Here we consider a direct internal reforming solid oxide fuel cell setup in which a separate fuel reformer is not required. We construct a multidimensional, detailed model of a planar solid oxide fuel cell, where mass transport in the fuel channel is modeled using the Stefan-Maxwell model, whereas the mass transport within the porous electrodes is simulated using the Dusty-Gas model. The resulting highly nonlinear model is built into COMSOL Multiphysics, a commercial computational fluid dynamics software, and is validated against experimental data from the literature. A number of parametric studies is performed to obtain insights on the direct internal reforming solid oxide fuel cell system behavior and efficiency, to aid the design procedure. It is shown that internal reforming results in temperature drop close to the inlet and that the direct internal reforming solid oxide fuel cell performance can be enhanced by increasing the operating temperature. It is also observed that decreases in the inlet temperature result in smoother temperature profiles and in the formation of reduced thermal gradients. Furthermore, the direct internal reforming solid oxide fuel cell performance was found to be affected by the thickness of the electrochemically-active anode catalyst layer, although not always substantially, due to the counter-balancing behavior of the activation and ohmic overpotentials.
NASA Astrophysics Data System (ADS)
Yesilyurt, Serhat; Rizwandi, Omid
2016-11-01
We developed a CFD model of the anode flow field of a large proton exchange membrane fuel cell that operates under the ultra-low stoichiometric (ULS) flow conditions which intend to improve the disadvantages of the dead-ended operation such as severe voltage transient and carbon corrosion. Very small exit velocity must be high enough to remove accumulated nitrogen, and must be low enough to retain hydrogen in the active area. Stokes equations are used to model the flow distribution in the flow field, Maxwell-Stefan equations are used to model the transport of the species, and a voltage model is developed to model the reactions kinetics. Uniformity of the distribution of hydrogen concentration is quantified as the normalized area of the region in which the hydrogen mole fraction remains above a certain level, such as 0.9. Geometry of the anode flow field is modified to obtain optimal configuration; the number of baffles at the inlet, width of the gaps between baffles, width of the side gaps, and length of the central baffle are used as design variables. In the final design, the hydrogen-depleted region is less than 0.2% and the hydrogen utilization is above 99%. This work was supported by The Scientific and Technolo-gical Research Council of Turkey, TUBITAK-213M023.
NASA Astrophysics Data System (ADS)
Miller, Nicholas A. T.; Daivis, Peter J.; Snook, Ian K.; Todd, B. D.
2013-10-01
Thermophoresis is the movement of molecules caused by a temperature gradient. Here we report the results of a study of thermophoresis using non-equilibrium molecular dynamics simulations of a confined argon-krypton fluid subject to two different temperatures at thermostated walls. The resulting temperature profile between the walls is used along with the Soret coefficient to predict the concentration profile that develops across the channel. We obtain the Soret coefficient by calculating the mutual diffusion and thermal diffusion coefficients. We report an appropriate method for calculating the transport coefficients for binary systems, using the Green-Kubo integrals and radial distribution functions obtained from equilibrium molecular dynamics simulations of the bulk fluid. Our method has the unique advantage of separating the mutual diffusion and thermal diffusion coefficients, and calculating the sign and magnitude of their individual contributions to thermophoresis in binary mixtures.
A nonlinear equation for ionic diffusion in a strong binary electrolyte
Ghosal, Sandip; Chen, Zhen
2010-01-01
The problem of the one-dimensional electro-diffusion of ions in a strong binary electrolyte is considered. The mathematical description, known as the Poisson–Nernst–Planck (PNP) system, consists of a diffusion equation for each species augmented by transport owing to a self-consistent electrostatic field determined by the Poisson equation. This description is also relevant to other important problems in physics, such as electron and hole diffusion across semiconductor junctions and the diffusion of ions in plasmas. If concentrations do not vary appreciably over distances of the order of the Debye length, the Poisson equation can be replaced by the condition of local charge neutrality first introduced by Planck. It can then be shown that both species diffuse at the same rate with a common diffusivity that is intermediate between that of the slow and fast species (ambipolar diffusion). Here, we derive a more general theory by exploiting the ratio of the Debye length to a characteristic length scale as a small asymptotic parameter. It is shown that the concentration of either species may be described by a nonlinear partial differential equation that provides a better approximation than the classical linear equation for ambipolar diffusion, but reduces to it in the appropriate limit. PMID:21818176
Sanford, R.F.
1982-01-01
Geological examples of binary diffusion are numerous. They are potential indicators of the duration and rates of geological processes. Analytical solutions to the diffusion equations generally do not allow for variable diffusion coefficients, changing boundary conditions, and impingement of diffusion fields. The three programs presented here are based on Crank-Nicholson finite-difference approximations, which can take into account these complicating factors. Program 1 describes the diffusion of a component into an initially homogeneous phase that has a constant surface composition. Specifically it is written for Fe-Mg exchange in olivine at oxygen fugacities appropriate for the lunar crust, but other components, phases, or fugacities may be substituted by changing the values of the diffusion coefficient. Program 2 simulates the growth of exsolution lamellae. Program 3 describes the growth of reaction rims. These two programs are written for pseudobinary Ca-(Mg, Fe) exchange in pyroxenes. In all three programs, the diffusion coefficients and boundary conditions can be varied systematically with time. To enable users to employ widely different numerical values for diffusion coefficients and diffusion distance, the grid spacing in the space dimension and the increment by which the grid spacing in the time dimension is increased at each time step are input constants that can be varied each time the programs are run to yield a solution of the desired accuracy. ?? 1982.
Computational Fluid Dynamic Solutions of Optimized Heat Shields Designed for Earth Entry
2010-01-01
domain ρ = Density (kg/m3) σ = Stefan Boltzmann constant τ = Shear stress tensor τT−V = T-V relaxation time τe−V = e-V relaxation time xi φ = Sweep angle...Vehicle DES = Differential evolutionary Scheme DOR = Design Optimization Tools DPLR = Data Parallel Line Relaxation GSLR = Gauss- Seidel Line... Stefan - Boltzmann constant. This model provides accurate heating predictions, especially for the non-ablating heat-shields explored in this work. Various
On the Stefan Problem with Volumetric Energy Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Crepeau; Ali Siahpush; Blaine Spotten
2009-11-01
This paper presents results of solid-liquid phase change, driven by volumetric energy generation, in a vertical cylinder. We show excellent agreement between a quasi-static, approximate analytical solution valid for Stefan numbers less than one, and a computational model solved using the CFD code FLUENT®. A computational study also shows the effect that the volumetric energy generation has on both the mushy zone thickness and convection in the melt during phase change.
A Conserving Discretization for the Free Boundary in a Two-Dimensional Stefan Problem
NASA Astrophysics Data System (ADS)
Segal, Guus; Vuik, Kees; Vermolen, Fred
1998-03-01
The dissolution of a disk-likeAl2Cuparticle is considered. A characteristic property is that initially the particle has a nonsmooth boundary. The mathematical model of this dissolution process contains a description of the particle interface, of which the position varies in time. Such a model is called a Stefan problem. It is impossible to obtain an analytical solution for a general two-dimensional Stefan problem, so we use the finite element method to solve this problem numerically. First, we apply a classical moving mesh method. Computations show that after some time steps the predicted particle interface becomes very unrealistic. Therefore, we derive a new method for the displacement of the free boundary based on the balance of atoms. This method leads to good results, also, for nonsmooth boundaries. Some numerical experiments are given for the dissolution of anAl2Cuparticle in anAl-Cualloy.
Effects of g-Jitter on Diffusion in Binary Liquids
NASA Technical Reports Server (NTRS)
Duval, Walter M. B.
1999-01-01
The microgravity environment offers the potential to measure the binary diffusion coefficients in liquids without the masking effects introduced by buoyancy-induced flows due to Earth s gravity. However, the background g-jitter (vibrations from the shuttle, onboard machinery, and crew) normally encountered in many shuttle experiments may alter the benefits of the microgravity environment and introduce vibrations that could offset its intrinsic advantages. An experiment during STS-85 (August 1997) used the Microgravity Vibration Isolation Mount (MIM) to isolate and introduce controlled vibrations to two miscible liquids inside a cavity to study the effects of g-jitter on liquid diffusion. Diffusion in a nonhomogeneous liquid system is caused by a nonequilibrium condition that results in the transport of mass (dispersion of the different kinds of liquid molecules) to approach equilibrium. The dynamic state of the system tends toward equilibrium such that the system becomes homogeneous. An everyday example is the mixing of cream and coffee (a nonhomogeneous system) via stirring. The cream diffuses into the coffee, thus forming a homogeneous system. At equilibrium the system is said to be mixed. However, during stirring, simple observations show complex flow field dynamics-stretching and folding of material interfaces, thinning of striation thickness, self-similar patterns, and so on. This example illustrates that, even though mixing occurs via mass diffusion, stirring to enhance transport plays a major role. Stirring can be induced either by mechanical means (spoon or plastic stirrer) or via buoyancy-induced forces caused by Earth s gravity. Accurate measurements of binary diffusion coefficients are often inhibited by buoyancy-induced flows. The microgravity environment minimizes the effect of buoyancy-induced flows and allows the true diffusion limit to be achieved. One goal of this experiment was to show that the microgravity environment suppresses buoyancy-induced convection, thereby mass diffusion becomes the dominant mechanism for transport. Since g-jitter transmitted by the shuttle to the experiment can potentially excite buoyancy-induced flows, we also studied the effects of controlled vibrations on the system.
Li, Li; Yang, Deshuai; Fisher, Trevor R; Qiao, Qi; Yang, Zhen; Hu, Na; Chen, Xiangshu; Huang, Liangliang
2017-10-24
The loading-dependent diffusion behavior of CH 4 , CO 2 , SO 2 , and their binary mixtures in ZIF-10 has been investigated in detail by using classical molecular dynamics simulations. Our simulation results demonstrate that the self-diffusion coefficient D i of CH 4 molecules decreases sharply and monotonically with the loading while those of both CO 2 and SO 2 molecules initially display a slight increase at low uptakes and follow a slow decrease at high uptakes. Accordingly, the interaction energies between CH 4 molecules and ZIF-10 remain nearly constant regardless of the loading due to the absence of hydrogen bonds (HBs), while the interaction energies between CO 2 (or SO 2 ) and ZIF-10 decease rapidly with the loading, especially at small amounts of gas molecules. Such different loading-dependent diffusion and interaction mechanisms can be attributed to the relevant HB behavior between gas molecules and ZIF-10. At low loadings, both the number and strength of HBs between CO 2 (or SO 2 ) molecules and ZIF-10 decrease obviously as the loading increases, which is responsible for the slight increase of their diffusion coefficients. However, at high loadings, their HB strength increases with the loading. Similar loading-dependent phenomena of diffusion, interaction, and HB behavior can be observed for CH 4, CO 2 , and SO 2 binary mixtures in ZIF-10, only associated with some HB competition between CO 2 and SO 2 molecules in the case of the CO 2 /SO 2 mixture.
Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamba, Irene M.; Tharkabhushanam, Sri Harsha
We propose a new spectral Lagrangian based deterministic solver for the non-linear Boltzmann transport equation (BTE) in d-dimensions for variable hard sphere (VHS) collision kernels with conservative or non-conservative binary interactions. The method is based on symmetries of the Fourier transform of the collision integral, where the complexity in its computation is reduced to a separate integral over the unit sphere S{sup d-1}. The conservation of moments is enforced by Lagrangian constraints. The resulting scheme, implemented in free space, is very versatile and adjusts in a very simple manner to several cases that involve energy dissipation due to local micro-reversibilitymore » (inelastic interactions) or elastic models of slowing down process. Our simulations are benchmarked with available exact self-similar solutions, exact moment equations and analytical estimates for the homogeneous Boltzmann equation, both for elastic and inelastic VHS interactions. Benchmarking of the simulations involves the selection of a time self-similar rescaling of the numerical distribution function which is performed using the continuous spectrum of the equation for Maxwell molecules as studied first in Bobylev et al. [A.V. Bobylev, C. Cercignani, G. Toscani, Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials, Journal of Statistical Physics 111 (2003) 403-417] and generalized to a wide range of related models in Bobylev et al. [A.V. Bobylev, C. Cercignani, I.M. Gamba, On the self-similar asymptotics for generalized non-linear kinetic Maxwell models, Communication in Mathematical Physics, in press. URL: (
Spin-diffusions and diffusive molecular dynamics
NASA Astrophysics Data System (ADS)
Farmer, Brittan; Luskin, Mitchell; Plecháč, Petr; Simpson, Gideon
2017-12-01
Metastable configurations in condensed matter typically fluctuate about local energy minima at the femtosecond time scale before transitioning between local minima after nanoseconds or microseconds. This vast scale separation limits the applicability of classical molecular dynamics (MD) methods and has spurned the development of a host of approximate algorithms. One recently proposed method is diffusive MD which aims at integrating a system of ordinary differential equations describing the likelihood of occupancy by one of two species, in the case of a binary alloy, while quasistatically evolving the locations of the atoms. While diffusive MD has shown itself to be efficient and provide agreement with observations, it is fundamentally a model, with unclear connections to classical MD. In this work, we formulate a spin-diffusion stochastic process and show how it can be connected to diffusive MD. The spin-diffusion model couples a classical overdamped Langevin equation to a kinetic Monte Carlo model for exchange amongst the species of a binary alloy. Under suitable assumptions and approximations, spin-diffusion can be shown to lead to diffusive MD type models. The key assumptions and approximations include a well-defined time scale separation, a choice of spin-exchange rates, a low temperature approximation, and a mean field type approximation. We derive several models from different assumptions and show their relationship to diffusive MD. Differences and similarities amongst the models are explored in a simple test problem.
Long-time tails of the green-kubo integrands for a binary mixture
NASA Astrophysics Data System (ADS)
Wood, W. W.
1989-11-01
The long-time tails for the mutual diffusion coefficient, the thermal diffusivity, the thermal conductivity, and the shear and longitudinal viscosities (from which the tail of the bulk viscosity can be calculated) of a nonreactive binary mixture are calculated from mode-coupling theory, and compared with a prior calculation by Pomeau. Three different choices of the thermal forces and currents are considered, with the results found to take their simplest form in the case of the de Groot "double-primed set". The decompositions into the kinetic, potential, and cross terms are given.
Solid–Liquid Phase Change Driven by Internal Heat Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Crepeau; Ali s. Siahpush
2012-07-01
This article presents results of solid-liquid phase change, the Stefan Problem, where melting is driven internal heat generation, in a cylindrical geometry. The comparison between a quasi-static analytical solution for Stefan numbers less than one and numerical solutions shows good agreement. The computational results of phase change with internal heat generation show how convection cells form in the liquid region. A scale analysis of the same problem shows four distinct regions of the melting process.
Program 6 Technical Interchange Meeting Proceedings
1992-10-01
Buteau PRC (703)556-1355 Gary R. Dolson PRC (703) 5561859 David J. Gray Sterling (315)336-0500 Noreen S. Heyda Harris (407)984-6384 Jay Jesse GTE (719)570...Reed Sterling John Sautter Sterling (315)336-0500 Kevin Sculley PRC (402)291-5533 Stefan Shrier MRJ (703)934-9249 Peter Soliz Orion (505)262-2260...4730 Howard A. Melching GTE (719)570-8898 Noreen S. Heyda Harris (407)984-6384 Jonathan H. Reed Harris (407)984-6008 Stefan Shrier MRJ (703) 934-9249
Kocon, T
2001-01-01
Presentation of the District Hospital in Garwolin and the Regional Council Hospital in Maciejowice. List of names of physicians working in hospitals, public health centers and sick-fund centers. Biographies of physicians proceeding from the district and related somehow with it during the period of the II Republic, namely: Feliks Malinowski, Czesłow Bogucki, Józef Kenig, Stefan Niziński, Stefan Soszka, Władysław Galasiński, Józef Mazurek.
3D Navier-Stokes Flow Analysis for Shared and Distributed Memory MIMD Computers
1992-09-15
arithmetical averaged density or Stefan -Boltzmann constant (= 5.67032 x 10-8 ) Oai+1/2 intermediate term for Harten-Yee fluxes - k, O’ constants for k...system of algebraic equations. These equations I are solved using point Gauss- Seidel relaxation. This relaxation scheme is modified to be a lower-upper...interaction of the radiation with the gas. The radiative heat flux per unit area is then I = -(T [EwT - awTdb] (19) Here a is the Stefan Boltzmann
The Boundary Element Method Applied to the Two Dimensional Stefan Moving Boundary Problem
1991-03-15
Unc), - ( UGt )t - (UG,,),,] - (UG), If we integrate this equation with respect to r from 0 to t - c and with respect to and ij on the region 11(r...and others. "Moving Boundary Problems in Phase Change Mod- els," SIGNUM Newsletter, 20: 8-12 (1985). 21. Stefan, J. "Ober einige Probleme der Theorie ...ier Wirmelcitung," S.-B. \\Vein. Akad. Mat. Natur., 98: 173-484 (1889). 22.-. "flber (lie Theorie der Eisbildung insbesondere fiber die lisbildung im
Image Halftoning and Inverse Halftoning for Optimized Dot Diffusion
1998-01-01
systems.caltech.edu, ppvnath@sys.caltech.edu ABSTRACT The dot diffusion method for digital halftoning has the advantage of parallelism unlike the error ... halftoning : ordered dither [3], error diffusion [4], neural-net based methods [2], and more recently direct binary search (DBS) [10]. Ordered dithering is a...patterns. On the other hand error diffused halftones do not suffer from periodicity and offer blue noise characteristic [11] which is found to be
Keskin, Seda; Liu, Jinchen; Johnson, J Karl; Sholl, David S
2008-08-05
Mass transport of chemical mixtures in nanoporous materials is important in applications such as membrane separations, but measuring diffusion of mixtures experimentally is challenging. Methods that can predict multicomponent diffusion coefficients from single-component data can be extremely useful if these methods are known to be accurate. We present the first test of a method of this kind for molecules adsorbed in a metal-organic framework (MOF). Specifically, we examine the method proposed by Skoulidas, Sholl, and Krishna (SSK) ( Langmuir, 2003, 19, 7977) by comparing predictions made with this method to molecular simulations of mixture transport of H 2/CH 4 mixtures in CuBTC. These calculations provide the first direct information on mixture transport of any species in a MOF. The predictions of the SSK approach are in good agreement with our direct simulations of binary diffusion, suggesting that this approach may be a powerful one for examining multicomponent diffusion in MOFs. We also use our molecular simulation data to test the ideal adsorbed solution theory method for predicting binary adsorption isotherms and a method for predicting mixture self-diffusion coefficients.
Weyl corrections to diffusion and chaos in holography
NASA Astrophysics Data System (ADS)
Li, Wei-Jia; Liu, Peng; Wu, Jian-Pin
2018-04-01
Using holographic methods in the Einstein-Maxwell-dilaton-axion (EMDA) theory, it was conjectured that the thermal diffusion in a strongly coupled metal without quasi-particles saturates an universal lower bound that is associated with the chaotic property of the system at infrared (IR) fixed points [1]. In this paper, we investigate the thermal transport and quantum chaos in the EMDA theory with a small Weyl coupling term. It is found that the Weyl coupling correct the thermal diffusion constant D Q and butterfly velocity v B in different ways, hence resulting in a modified relation between the two at IR fixed points. Unlike that in the EMDA case, our results show that the ratio D Q /( v B 2 τ L ) always contains a non-universal Weyl correction which depends also on the bulk fields as long as the U(1) current is marginally relevant in the IR.
Breakdown and Limit of Continuum Diffusion Velocity for Binary Gas Mixtures from Direct Simulation
NASA Astrophysics Data System (ADS)
Martin, Robert Scott; Najmabadi, Farrokh
2011-05-01
This work investigates the breakdown of the continuum relations for diffusion velocity in inert binary gas mixtures. Values of the relative diffusion velocities for components of a gas mixture may be calculated using of Chapman-Enskog theory and occur not only due to concentration gradients, but also pressure and temperature gradients in the flow as described by Hirschfelder. Because Chapman-Enskog theory employs a linear perturbation around equilibrium, it is expected to break down when the velocity distribution deviates significantly from equilibrium. This breakdown of the overall flow has long been an area of interest in rarefied gas dynamics. By comparing the continuum values to results from Bird's DS2V Monte Carlo code, we propose a new limit on the continuum approach specific to binary gases. To remove the confounding influence of an inconsistent molecular model, we also present the application of the variable hard sphere (VSS) model used in DS2V to the continuum diffusion velocity calculation. Fitting sample asymptotic curves to the breakdown, a limit, Vmax, that is a fraction of an analytically derived limit resulting from the kinetic temperature of the mixture is proposed. With an expected deviation of only 2% between the physical values and continuum calculations within ±Vmax/4, we suggest this as a conservative estimate on the range of applicability for the continuum theory.
NASA Astrophysics Data System (ADS)
Obeidat, Abdalla; Abu-Ghazleh, Hind
2018-06-01
Two intermolecular potential models of methanol (TraPPE-UA and OPLS-AA) have been used in order to examine their validity in reproducing the selected structural, dynamical, and thermodynamic properties in the unary and binary systems. These two models are combined with two water models (SPC/E and TIP4P). The temperature dependence of density, surface tension, diffusion and structural properties for the unary system has been computed over specific range of temperatures (200-300K). The very good performance of the TraPPE-UA potential model in predicting surface tension, diffusion, structure, and density of the unary system led us to examine its accuracy and performance in its aqueous solution. In the binary system the same properties were examined, using different mole fractions of methanol. The TraPPE-UA model combined with TIP4P-water shows a very good agreement with the experimental results for density and surface tension properties; whereas the OPLS-AA combined with SPCE-water shows a very agreement with experimental results regarding the diffusion coefficients. Two different approaches have been used in calculating the diffusion coefficient in the mixture, namely the Einstein equation (EE) and Green-Kubo (GK) method. Our results show the advantageous of applying GK over EE in reproducing the experimental results and in saving computer time.
Zhao, Yongliang; Feng, Yanhui; Zhang, Xinxin
2016-09-06
The adsorption and diffusion of the CO2-CH4 mixture in coal and the underlying mechanisms significantly affect the design and operation of any CO2-enhanced coal-bed methane recovery (CO2-ECBM) project. In this study, bituminous coal was fabricated based on the Wiser molecular model and its ultramicroporous parameters were evaluated; molecular simulations were established through Grand Canonical Monte Carlo (GCMC) and Molecular Dynamic (MD) methods to study the effects of temperature, pressure, and species bulk mole fraction on the adsorption isotherms, adsorption selectivity, three distinct diffusion coefficients, and diffusivity selectivity of the binary mixture in the coal ultramicropores. It turns out that the absolute adsorption amount of each species in the mixture decreases as temperature increases, but increases as its own bulk mole fraction increases. The self-, corrected, and transport diffusion coefficients of pure CO2 and pure CH4 all increase as temperature or/and their own bulk mole fractions increase. Compared to CH4, the adsorption and diffusion of CO2 are preferential in the coal ultramicropores. Adsorption selectivity and diffusivity selectivity were simultaneously employed to reveal that the optimal injection depth for CO2-ECBM is 800-1000 m at 308-323 K temperature and 8.0-10.0 MPa.
Pore-scale lattice Boltzmann simulation of micro-gaseous flow considering surface diffusion effect
Wang, Junjian; Kang, Qinjun; Chen, Li; ...
2016-11-21
Some recent studies have shown that adsorbed gas and its surface diffusion have profound influence on micro-gaseous flow through organic pores in shale gas reservoirs. Here, a multiple-relaxation-time (MRT) LB model is adopted to estimate the apparent permeability of organic shale and a new boundary condition, which combines Langmuir adsorption theory with Maxwellian diffusive reflection boundary condition, is proposed to capture gas slip and surface diffusion of adsorbed gas. The simulation results match well with previous studies carried out using Molecular Dynamics (MD) and show that Maxwell slip boundary condition fails to characterize gas transport in the near wall regionmore » under the influence of the adsorbed gas. The total molar flux can be either enhanced or reduced depending on variations in adsorbed gas coverage and surface diffusion velocity. The effects of pore width, pressure as well as Langmuir properties on apparent permeability of methane transport in organic pores are further studied. It is found that the surface transport plays a significant role in determining the apparent permeability, and the variation of apparent permeability with pore size and pressure is affected by the adsorption and surface diffusion.« less
NASA Astrophysics Data System (ADS)
Bollati, Julieta; Tarzia, Domingo A.
2018-04-01
Recently, in Tarzia (Thermal Sci 21A:1-11, 2017) for the classical two-phase Lamé-Clapeyron-Stefan problem an equivalence between the temperature and convective boundary conditions at the fixed face under a certain restriction was obtained. Motivated by this article we study the two-phase Stefan problem for a semi-infinite material with a latent heat defined as a power function of the position and a convective boundary condition at the fixed face. An exact solution is constructed using Kummer functions in case that an inequality for the convective transfer coefficient is satisfied generalizing recent works for the corresponding one-phase free boundary problem. We also consider the limit to our problem when that coefficient goes to infinity obtaining a new free boundary problem, which has been recently studied in Zhou et al. (J Eng Math 2017. https://doi.org/10.1007/s10665-017-9921-y).
Binarization of apodizers by adapted one-dimensional error diffusion method
NASA Astrophysics Data System (ADS)
Kowalczyk, Marek; Cichocki, Tomasz; Martinez-Corral, Manuel; Andres, Pedro
1994-10-01
Two novel algorithms for the binarization of continuous rotationally symmetric real positive pupil filters are presented. Both algorithms are based on 1-D error diffusion concept. The original gray-tone apodizer is substituted by a set of transparent and opaque concentric annular zones. Depending on the algorithm the resulting binary mask consists of either equal width or equal area zones. The diffractive behavior of binary filters is evaluated. It is shown that the pupils with equal width zones give Fraunhofer diffraction pattern more similar to that of the original continuous-tone pupil than those with equal area zones, assuming in both cases the same resolution limit of printing device.
Thermal Properties of Capparis Decidua (ker) Fiber Reinforced Phenol Formaldehyde Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, G. P.; Mangal, Ravindra; Bhojak, N.
2010-06-29
Simultaneous measurement of effective thermal conductivity ({lambda}), effective thermal diffusivity ({kappa}) and specific heat of Ker fiber reinforced phenol formaldehyde composites have been studied by transient plane source (TPS) technique. The samples of different weight percentage typically (5, 10, 15, 20 and 25%) have been taken. It is found that values of effective thermal conductivity and effective thermal diffusivity of the composites decrease, as compared to pure phenol formaldehyde, as the fraction of fiber loading increases. Experimental data is fitted on Y. Agari model. Values of thermal conductivity of composites are calculated with two models (Rayleigh, Maxwell and Meredith-Tobias model).more » Good agreement between theoretical and experimental result has been found.« less
NASA Astrophysics Data System (ADS)
Lu, Benzhuo; Cheng, Xiaolin; Hou, Tingjun; McCammon, J. Andrew
2005-08-01
The electrostatic interaction among molecules solvated in ionic solution is governed by the Poisson-Boltzmann equation (PBE). Here the hypersingular integral technique is used in a boundary element method (BEM) for the three-dimensional (3D) linear PBE to calculate the Maxwell stress tensor on the solvated molecular surface, and then the PB forces and torques can be obtained from the stress tensor. Compared with the variational method (also in a BEM frame) that we proposed recently, this method provides an even more efficient way to calculate the full intermolecular electrostatic interaction force, especially for macromolecular systems. Thus, it may be more suitable for the application of Brownian dynamics methods to study the dynamics of protein/protein docking as well as the assembly of large 3D architectures involving many diffusing subunits. The method has been tested on two simple cases to demonstrate its reliability and efficiency, and also compared with our previous variational method used in BEM.
Cohesion and coordination effects on transition metal surface energies
NASA Astrophysics Data System (ADS)
Ruvireta, Judit; Vega, Lorena; Viñes, Francesc
2017-10-01
Here we explore the accuracy of Stefan equation and broken-bond model semiempirical approaches to obtain surface energies on transition metals. Cohesive factors are accounted for either via the vaporization enthalpies, as proposed in Stefan equation, or via cohesive energies, as employed in the broken-bond model. Coordination effects are considered including the saturation degree, as suggested in Stefan equation, employing Coordination Numbers (CN), or as the ratio of broken bonds, according to the bond-cutting model, considering as well the square root dependency of the bond strength on CN. Further, generalized coordination numbers CN bar are contemplated as well, exploring a total number of 12 semiempirical formulations on the three most densely packed surfaces of 3d, 4d, and 5d Transition Metals (TMs) displaying face-centered cubic (fcc), body-centered cubic (bcc), or hexagonal close-packed (hcp) crystallographic structures. Estimates are compared to available experimental surface energies obtained extrapolated to zero temperature. Results reveal that Stefan formula cohesive and coordination dependencies are only qualitative suited, but unadvised for quantitative discussion, as surface energies are highly overestimated, favoring in addition the stability of under-coordinated surfaces. Broken-bond cohesion and coordination dependencies are a suited basis for quantitative comparison, where square-root dependencies on CN to account for bond weakening are sensibly worse. An analysis using Wulff shaped averaged surface energies suggests the employment of broken-bond model using CN to gain surface energies for TMs, likely applicable to other metals.
NASA Astrophysics Data System (ADS)
Nikiforov, V. G.; Lobkov, Vladimir S.
2006-10-01
The parameters of the femtosecond vibration—rotation molecular dynamics of liquid acetonitrile CH3CN, trimethylacetonitrile (CH3)3CCN, propionitrile CH3CH2CN, fluoroform CHF3, and chloroform CHCl3 are found by analysing the ultrafast optical Kerr effect. The influence of the molecular structure on the features of rotational (diffusion and libration) motions is studied. It is shown that the distribution of libration frequencies is described by the Maxwell distribution.
Evolution of Binary Supermassive Black Holes in Rotating Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasskazov, Alexander; Merritt, David
The interaction of a binary supermassive black hole with stars in a galactic nucleus can result in changes to all the elements of the binary’s orbit, including the angles that define its orientation. If the nucleus is rotating, the orientation changes can be large, causing large changes in the binary’s orbital eccentricity as well. We present a general treatment of this problem based on the Fokker–Planck equation for f , defined as the probability distribution for the binary’s orbital elements. First- and second-order diffusion coefficients are derived for the orbital elements of the binary using numerical scattering experiments, and analyticmore » approximations are presented for some of these coefficients. Solutions of the Fokker–Planck equation are then derived under various assumptions about the initial rotational state of the nucleus and the binary hardening rate. We find that the evolution of the orbital elements can become qualitatively different when we introduce nuclear rotation: (1) the orientation of the binary’s orbit evolves toward alignment with the plane of rotation of the nucleus and (2) binary orbital eccentricity decreases for aligned binaries and increases for counteraligned ones. We find that the diffusive (random-walk) component of a binary’s evolution is small in nuclei with non-negligible rotation, and we derive the time-evolution equations for the semimajor axis, eccentricity, and inclination in that approximation. The aforementioned effects could influence gravitational wave production as well as the relative orientation of host galaxies and radio jets.« less
Phase-field simulations of velocity selection in rapidly solidified binary alloys
NASA Astrophysics Data System (ADS)
Fan, Jun; Greenwood, Michael; Haataja, Mikko; Provatas, Nikolas
2006-09-01
Time-dependent simulations of two-dimensional isothermal Ni-Cu dendrites are simulated using a phase-field model solved with a finite-difference adaptive mesh refinement technique. Dendrite tip velocity selection is examined and found to exhibit a transition between two markedly different regimes as undercooling is increased. At low undercooling, the dendrite tip growth rate is consistent with the kinetics of the classical Stefan problem, where the interface is assume to be in local equilibrium. At high undercooling, the growth velocity selected approaches a linear dependence on melt undercooling, consistent with the continuous growth kinetics of Aziz and with a one-dimensional steady-state phase-field asymptotic analysis of Ahmad [Phys. Rev. E 58, 3436 (1998)]. Our simulations are also consistent with other previously observed behaviors of dendritic growth as undercooling is increased. These include the transition of dendritic morphology to absolute stability and nonequilibrium solute partitioning. Our results show that phase-field models of solidification, which inherently contain a nonzero interface width, can be used to study the dynamics of complex solidification phenomena involving both equilibrium and nonequilibrium interface growth kinetics.
VizieR Online Data Catalog: Low-mass helium white dwarfs evolutionary models (Istrate+, 2016)
NASA Astrophysics Data System (ADS)
Istrate, A.; Marchant, P.; Tauris, T. M.; Langer, N.; Stancliffe, R. J.; Grassitelli, L.
2016-07-01
Evolutionary models of low-mass helium white dwarfs including element diffusion and rotational mixing. The WDs are produced considering binary evolution through the LMXB channel, with final WDs masses between ~0.16-~0.44. The models are computed using MESA, for different metallicities: Z=0.02, 0.01, 0.001 and 0.0002. For each metallicity, the models are divided in three categories: (1) basic (no diffusion nor rotation are considered) (2) diffusion (element diffusion is considered) (3) rotation+diffusion (both element diffusion and rotational mixing are considered) (4 data files).
NASA Astrophysics Data System (ADS)
Rajaram, H.; Arshadi, M.
2016-12-01
In-situ chemical oxidation (ISCO) is an effective strategy for remediation of DNAPL contamination in fractured rock. During ISCO, an oxidant (e.g. permanganate) is typically injected through fractures and is consumed by bimolecular reactions with DNAPLs such as TCE and natural organic matter in the fracture and the adjacent rock matrix. Under these conditions, moving reaction fronts form and propagate along the fracture and into the rock matrix. The propagation of these reaction fronts is strongly influenced by the heterogeneity/discontinuity across the fracture-matrix interface (advective transport dominates in the fractures, while diffusive transport dominates in the rock matrix). We present analytical solutions for the concentrations of the oxidant, TCE and natural organic matter; and the propagation of the reaction fronts in a fracture-matrix system. Our approximate analytical solutions assume advection and reaction dominate over diffusion/dispersion in the fracture and neglect the latter. Diffusion and reaction with both TCE and immobile natural organic matter in the rock matrix are considered. The behavior of the reaction-diffusion equations in the rock matrix is posed as a Stefan problem where the diffusing oxidant reacts with both diffusing (TCE) and immobile (natural organic matter) reductants. Our analytical solutions establish that the reaction fronts propagate diffusively (i.e. as the square root of time) in both the matrix and the fracture. Our analytical solutions agree very well with numerical simulations for the case of uniform advection in the fracture. We also present extensions of our analytical solutions to non-uniform flows in the fracture by invoking a travel-time transformation. The non-uniform flow solutions are relevant to field applications of ISCO. The approximate analytical solutions are relevant to a broad class of reactive transport problems in fracture-matrix systems where moving reaction fronts occur.
GaSb and Ga1-xInxSb Thermophotovoltaic Cells using Diffused Junction Technology in Bulk Substrates
NASA Astrophysics Data System (ADS)
Dutta, P. S.; Borrego, J. M.; Ehsani, H.; Rajagopalan, G.; Bhat, I. B.; Gutmann, R. J.; Nichols, G.; Baldasaro, P. F.
2003-01-01
This paper presents results of experimental and theoretical research on antimonide- based thermophotovoltaic (TPV) materials and cells. The topics discussed include: growth of large diameter ternary GaInSb bulk crystals, substrate preparation, diffused junction processes, cell fabrication and characterization, and, cell modeling. Ternary GaInSb boules up to 2 inches in diameter have been grown using the vertical Bridgman technique with a novel self solute feeding technique. A single step diffusion process followed by precise etching of the diffused layer has been developed to obtain a diffusion profile appropriate for high efficiency, p-n junction GaSb and GaInSb thermophotovoltaic cells. The optimum junction depth to obtain the highest quantum efficiency and open circuit voltage has been identified based on diffusion lengths (or minority carrier lifetimes), carrier mobility and experimental diffused impurity profiles. Theoretical assessment of the performance of ternary (GaInSb) and binary (GaSb) cells fabricated by Zn diffusion in bulk substrates has been performed using PC-1D one-dimensional computer simulations. Several factors affecting the cell performances such as the effects of emitter doping profile, emitter thickness and recombination mechanisms (Auger, radiative and Shockley-Read-Hall), the advantages of surface passivation and the impact of dark current due to the metallic grid will be discussed. The conditions needed for diffused junction cells on ternary and binary substrates to achieve similar performance to the epitaxially grown lattice- matched quaternary cells are identified.
Electrical Maxwell Demon and Szilard Engine Utilizing Johnson Noise, Measurement, Logic and Control
Kish, Laszlo Bela; Granqvist, Claes-Göran
2012-01-01
We introduce a purely electrical version of Maxwell's demon which does not involve mechanically moving parts such as trapdoors, etc. It consists of a capacitor, resistors, amplifiers, logic circuitry and electronically controlled switches and uses thermal noise in resistors (Johnson noise) to pump heat. The only types of energy of importance in this demon are electrical energy and heat. We also demonstrate an entirely electrical version of Szilard's engine, i.e., an information-controlled device that can produce work by employing thermal fluctuations. The only moving part is a piston that executes work, and the engine has purely electronic controls and it is free of the major weakness of the original Szilard engine in not requiring removal and repositioning the piston at the end of the cycle. For both devices, the energy dissipation in the memory and other binary informatics components are insignificant compared to the exponentially large energy dissipation in the analog part responsible for creating new information by measurement and decision. This result contradicts the view that the energy dissipation in the memory during erasure is the most essential dissipation process in a demon. Nevertheless the dissipation in the memory and information processing parts is sufficient to secure the Second Law of Thermodynamics. PMID:23077525
Electrical Maxwell demon and Szilard engine utilizing Johnson noise, measurement, logic and control.
Kish, Laszlo Bela; Granqvist, Claes-Göran
2012-01-01
We introduce a purely electrical version of Maxwell's demon which does not involve mechanically moving parts such as trapdoors, etc. It consists of a capacitor, resistors, amplifiers, logic circuitry and electronically controlled switches and uses thermal noise in resistors (Johnson noise) to pump heat. The only types of energy of importance in this demon are electrical energy and heat. We also demonstrate an entirely electrical version of Szilard's engine, i.e., an information-controlled device that can produce work by employing thermal fluctuations. The only moving part is a piston that executes work, and the engine has purely electronic controls and it is free of the major weakness of the original Szilard engine in not requiring removal and repositioning the piston at the end of the cycle. For both devices, the energy dissipation in the memory and other binary informatics components are insignificant compared to the exponentially large energy dissipation in the analog part responsible for creating new information by measurement and decision. This result contradicts the view that the energy dissipation in the memory during erasure is the most essential dissipation process in a demon. Nevertheless the dissipation in the memory and information processing parts is sufficient to secure the Second Law of Thermodynamics.
Decomposing Task-Switching Costs with the Diffusion Model
ERIC Educational Resources Information Center
Schmitz, Florian; Voss, Andreas
2012-01-01
In four experiments, task-switching processes were investigated with variants of the alternating runs paradigm and the explicit cueing paradigm. The classical diffusion model for binary decisions (Ratcliff, 1978) was used to dissociate different components of task-switching costs. Findings can be reconciled with the view that task-switching…
Meso and Micro Scale Propulsion Concepts for Small Spacecraft
2006-07-28
flame length , QF is the volumetric flow rate of the fuel, D is the binary diffusion coefficient of the fuel in the oxidizer, and YFsoi, is the...R, can yield the same flame length . Most laminar diffusion flames are buoyancy-controlled since a small exit velocity is generally required to
The turning point for Einstein's Annus mirabilis
NASA Astrophysics Data System (ADS)
Rynasiewicz, Robert; Renn, Jürgen
The year 1905 has been called Einstein's Annus mirabilis because of three ground-breaking works completed over the span of a few months-the light-quantum paper, the Brownian motion paper, and the paper on the electrodynamics of moving bodies introducing the special theory of relativity. There are prima facie reasons for thinking that the origins of these papers cannot be understood in isolation from one another. Due to space limitations, we concentrate primarily on the light quantum paper, since, in key respects, it marks the turning point for the Annus mirabilis. The task is to probe, not just how the idea of the light quantum might have occurred to Einstein, but, more importantly, what convinced him that the idea was not just a quixotic hypothesis, but an unavoidable and demonstrable feature of radiation. The crucial development, we suggest, arose from comparing the energy fluctuations that follow rigorously from the Stefan-Boltzmann law, as well as from Wien's distribution formula for blackbody radiation, with what it is reasonable to expect from Maxwell's electromagnetic theory of light. A special case of this is addressed in Einstein's one paper from 1904, "Zur allgemeinen molekularen Theorie der Wärme". Annalen der Physik, 14, 355-362 (Also in CPAE, Vol. 2, Doc. 5)]. The outcome for the general case leads naturally to the central theoretical argument of the light quantum paper, the expectation of Brownian-like motion, and several of the key results for the electrodynamics of moving bodies.
Generalized Stefan-Boltzmann Law
NASA Astrophysics Data System (ADS)
Montambaux, Gilles
2018-03-01
We reconsider the thermodynamic derivation by L. Boltzmann of the Stefan law and we generalize it for various different physical systems whose chemical potential vanishes. Being only based on classical arguments, therefore independent of the quantum statistics, this derivation applies as well to the saturated Bose gas in various geometries as to "compensated" Fermi gas near a neutrality point, such as a gas of Weyl Fermions. It unifies in the same framework the thermodynamics of many different bosonic or fermionic non-interacting gases which were until now described in completely different contexts.
Application of Rapid Solidification Techniques to Aluminum Alloys
1980-10-01
relatkonship h e 4r eoTs/(T5 TG) (3.7) 32 where e is the surface emissivity, a is the Stefan Boltzmann constant, Ts and TG are the droplet and cooling...their fully implicit form and solved by a Gauss Seidel iteration routine. The results are I I 40I compared with the equivalent Newtonian case and...temperature respectively, Fo is the Fourier number or dimensionless time, Fo = aLt/r2 (5.2) and Ste is the Stefan number, Ste = CL (TM - TG)/AHM (5.3) which
James Clerk Maxwell: Life and science
NASA Astrophysics Data System (ADS)
Marston, Philip L.
2016-07-01
Maxwell's life and science are presented with an account of the progression of Maxwell's research on electromagnetic theory. This is appropriate for the International Year of Light and Light-based Technologies, 2015. Maxwell's own confidence in his 1865 electromagnetic theory of light is examined, along with some of the difficulties he faced and the difficulties faced by some of his followers. Maxwell's interest in radiation pressure and electromagnetic stress is addressed, as well as subsequent developments. Some of Maxwell's other contributions to physics are discussed with an emphasis on the kinetic and molecular theory of gases. Maxwell's theistic perspective on science is illustrated, accompanied by examples of perspectives on Maxwell and his science provided by his peers and accounts of his interactions with those peers. Appendices examine the peer review of Maxwell's 1865 electromagnetic theory paper and the naming of the Maxwell Garnett effective media approximation and provide various supplemental perspectives. From Maxwell's publications and correspondence there is evidence he had a high regard for Michael Faraday. Examples of Maxwell's contributions to electromagnetic terminology are noted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guevara-Carrion, Gabriela; Janzen, Tatjana; Muñoz-Muñoz, Y. Mauricio
Mutual diffusion coefficients of all 20 binary liquid mixtures that can be formed out of methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride without a miscibility gap are studied at ambient conditions of temperature and pressure in the entire composition range. The considered mixtures show a varying mixing behavior from almost ideal to strongly non-ideal. Predictive molecular dynamics simulations employing the Green-Kubo formalism are carried out. Radial distribution functions are analyzed to gain an understanding of the liquid structure influencing the diffusion processes. It is shown that cluster formation in mixtures containing one alcoholic component has a significant impactmore » on the diffusion process. The estimation of the thermodynamic factor from experimental vapor-liquid equilibrium data is investigated, considering three excess Gibbs energy models, i.e., Wilson, NRTL, and UNIQUAC. It is found that the Wilson model yields the thermodynamic factor that best suits the simulation results for the prediction of the Fick diffusion coefficient. Four semi-empirical methods for the prediction of the self-diffusion coefficients and nine predictive equations for the Fick diffusion coefficient are assessed and it is found that methods based on local composition models are more reliable. Finally, the shear viscosity and thermal conductivity are predicted and in most cases favorably compared with experimental literature values.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stefan, Vladislav Alexander
Contents: H. Berk: Frequency Sweeping Due to Phase Space Structure Formation in Plasmas M. Campbell : The Legacy of Marshall Rosenbluth in the Development of the Laser Fusion Program in the United States J. Candy: Gyrokinetic Simulations of Fusion Plasmas P. Diamond: The Legacy of Marshall Rosenbluth in Magnetic Confinement Theory G-Y. Fu: Nonlinear Hybrid Simulations of Multiple Energetic Particle Driven Alfven Modes in Toroidal Plasmas O. Gurcan: Theory of Intrinsic Rotation and Momentum Transport V. L. Jacobs: Kinetic and Spectral Descriptions for Atomic Processes in Astrophysical and Laboratory Plasmas C. F. Kennel: Marshall Rosenbluth and Roald Sagdeev in Trieste:Themore » Birth of Modern Space Plasma N. A. Krall: The Contribution of Marshall Rosenbluth in the Development of Plasma Drift Wave and Universal Instability Theories C. S. Liu: The Legacy of Marshall Rosenbluth in Laser-Plasma Interaction Research N. Rostoker: Plasma Physics Research With Marshall Rosenbluth - My Teacher R. Z. Sagdeev: The Legacy of Marshall Rosenbluth in Plasma Physics V. Alexander Stefan A Note on the Rosenbluth Paper: Phys. Rev. Letters, 29, 565 (1972), and the Research in Parametric Plasma Theory Thereupon J. W. Van Dam: The Role of Marshall Rosenbluth in the Development of the Thermonuclear Fusion Program in the U.S.A. E. P. Velikhov: Problems in Plasma Astrophysics R. White: The Role of Marshall Rosenbluth in the Development of the Particle and MHD Interaction in Plasmas X. Xu: Edge Gyrokinetic Theory and Continuum Simulations Marshall Nicholas ROSENBLUTH (A Brief Biography) b. February 5,1927 - Albany, New York. d. September 28, 2003 - San Diego, California. M. N. Rosenbluth, a world-acclaimed scientist, is one of the ultimate authorities in plasma and thermonuclear fusion research, often indicated by the sobriquet the "Pope of Plasma Physics." His theoretical contributions have been central to the development of controlled thermonuclear fusion. In the 1950s his pioneering work in plasma instabilities, together with pioneering works of A. Sakharov, I. Tamm, L. Spitzer, Jr., L. A. Artsimovich, and others, led to the design of the TOKAMAK, the principal configuration used for contemporary magnetic fusion experiments. In addition to his research achievements, he has made significant administrative contributions as a scientific advisor in the fields of energy policy and national defense. He is the founder and the first director of The Institute for Fusion Studies at Austin, Texas. M. N. Rosenbluth has been the recipient of the E. O. Lawrence Memorial Award (1964),the Albert Einstein Award (1967),the James Clerk Maxwell prize in Plasma Physics(1976),and the Enrico Fermi Award (1986). M. N. Rosenbluth had been Science Advisor for the INSTITUTE for ADVANCED PHYSICS STUDIES (presently a division of The Stefan University) since 1989. He is the editor-in-chief of the FSRC, (Frontier Science Research Conferences) Book: "NEW IDEAS in TOKAMAK CONFINEMENT" Published by the American Institute of Physics (August 1994) in the Research Trends in Physics Series founded and edited by V. Alexander Stefan in 1989. M. N. Rosenbluth was a member of the American Academy of Arts and Sciences and the National Academy of Sciences of the USA, a Professor Emeritus at the University of California, San Diego, and a Senior Scientist at General Atomics, San Diego.« less
The gabbro-eclogite phase transition and the elevation of mountain belts on Venus
NASA Astrophysics Data System (ADS)
Namiki, Noriyuki; Solomon, Sean C.
1992-12-01
Among the four mountain belts surrounding Lakshmi Planum, Maxwell Montes is the highest and stands up to 11 km above the mean planetary radius and 7 km above Lakshmi Planum. The bulk composition and radioactive heat production of the crust on Venus, where measured, are similar to those of terrestrial tholeiitic basalt. Because the thickness of the low-density crust may be limited by the gabbro-garnet granulite-eclogite phase transitions, the 7-11 km maximum elevation of Maxwell Montes is difficult to understand except in the unlikely situation that the crust contains a large volume of magma. A possible explanation is that the base of the crust is not in phase equilibrium. It has been suggested that under completely dry conditions, the gabbro-eclogite phase transition takes place by solid-state diffusion and may require a geologically significant time to run to completion. Solid-state diffusion is a strongly temperature-dependent process. In this paper we solve the thermal evolution of the mountain belt to attempt to constrain the depth of the gabbro-eclogite transition and thus to assess this hypothesis quantitatively. The one-dimensional heat equation is solved numerically by a finite difference approximation. The deformation of the horizontally shortening crustal and mantle portions of the thermal boundary layer is assumed to occur by pure shear, and therefore the vertical velocity is given by the product of the horizontal strain rate and depth.
The gabbro-eclogite phase transition and the elevation of mountain belts on Venus
NASA Technical Reports Server (NTRS)
Namiki, Noriyuki; Solomon, Sean C.
1992-01-01
Among the four mountain belts surrounding Lakshmi Planum, Maxwell Montes is the highest and stands up to 11 km above the mean planetary radius and 7 km above Lakshmi Planum. The bulk composition and radioactive heat production of the crust on Venus, where measured, are similar to those of terrestrial tholeiitic basalt. Because the thickness of the low-density crust may be limited by the gabbro-garnet granulite-eclogite phase transitions, the 7-11 km maximum elevation of Maxwell Montes is difficult to understand except in the unlikely situation that the crust contains a large volume of magma. A possible explanation is that the base of the crust is not in phase equilibrium. It has been suggested that under completely dry conditions, the gabbro-eclogite phase transition takes place by solid-state diffusion and may require a geologically significant time to run to completion. Solid-state diffusion is a strongly temperature-dependent process. In this paper we solve the thermal evolution of the mountain belt to attempt to constrain the depth of the gabbro-eclogite transition and thus to assess this hypothesis quantitatively. The one-dimensional heat equation is solved numerically by a finite difference approximation. The deformation of the horizontally shortening crustal and mantle portions of the thermal boundary layer is assumed to occur by pure shear, and therefore the vertical velocity is given by the product of the horizontal strain rate and depth.
Chemical and Temperature Effects on Diffusion in a Model Polymer/Nanoparticle Composite
NASA Astrophysics Data System (ADS)
Janes, Dustin; Durning, Christopher
Polymers and inks used in medical devices may be strengthened with nanoparticle fillers, so an understanding of how they may affect the release of residuals and additives via diffusion will help modernize biocompatibility testing. Transport of small molecules in polymers with increasing volume fraction of impermeable nanoparticles is often poorly predicted by the simple Maxwell model for heterogeneous media. In this presentation we will examine two diffusant classes, only one of which possesses hydrogen bonding interactions with the nanoparticle surface. Since similar reductions in mutual diffusion coefficients were observed in both cases we attribute the enhancement of the ''blocking effect'' in nanocomposites to a reduction in polymer mobility in the interfacial volume near the nanoparticle. The temperature and penetrant concentration dependence of the diffusion coefficients were examined in the context of a Vrentas-Duda free volume model that includes a thermally activated prefactor. While data obtained for rubbery poly(methyl acrylate) clearly obeys the expected Arrhenius scaling with EA = 11 kJ/mol, results for films containing d = 14 nm spherical silica nanoparticles do not, providing more evidence that polymer free volume is perturbed in unexpected ways even for conceptually simple systems. National Science Foundation IGERT Program, Pall Corporation.
Peng, H L; Schober, H R; Voigtmann, Th
2016-12-01
Molecular dynamic simulations are performed to reveal the long-time behavior of the velocity autocorrelation function (VAF) by utilizing the finite-size effect in a Lennard-Jones binary mixture. Whereas in normal liquids the classical positive t^{-3/2} long-time tail is observed, we find in supercooled liquids a negative tail. It is strongly influenced by the transfer of the transverse current wave across the period boundary. The t^{-5/2} decay of the negative long-time tail is confirmed in the spectrum of VAF. Modeling the long-time transverse current within a generalized Maxwell model, we reproduce the negative long-time tail of the VAF, but with a slower algebraic t^{-2} decay.
The attentional drift-diffusion model extends to simple purchasing decisions.
Krajbich, Ian; Lu, Dingchao; Camerer, Colin; Rangel, Antonio
2012-01-01
How do we make simple purchasing decisions (e.g., whether or not to buy a product at a given price)? Previous work has shown that the attentional drift-diffusion model (aDDM) can provide accurate quantitative descriptions of the psychometric data for binary and trinary value-based choices, and of how the choice process is guided by visual attention. Here we extend the aDDM to the case of purchasing decisions, and test it using an eye-tracking experiment. We find that the model also provides a reasonably accurate quantitative description of the relationship between choice, reaction time, and visual fixations using parameters that are very similar to those that best fit the previous data. The only critical difference is that the choice biases induced by the fixations are about half as big in purchasing decisions as in binary choices. This suggests that a similar computational process is used to make binary choices, trinary choices, and simple purchasing decisions.
Surface Inhomogeneities of the White Dwarf in the Binary EUVE J2013+400
NASA Astrophysics Data System (ADS)
Vennes, Stephane
We propose to study the white dwarf in the binary EUVE J2013+400. The object is paired with a dMe star and new extreme ultraviolet (EUV) observations will offer critical insights into the properties of the white dwarf. The binary behaves, in every other aspects, like its siblings EUVE J0720-317 and EUVE J1016-053 and new EUV observations will help establish their class properties; in particular, EUV photometric variations in 0720-317 and 1016-053 over a period of 11 hours and 57 minutes, respectively, are indicative of surface abundance inhomogeneities coupled with the white dwarfs rotation period. These variations and their large photospheric helium abundance are best explained by a diffusion-accretion model in which time-variable accretion and possible coupling to magnetic poles contribute to abundance variations across the surface and possibly as a function of depth. EUV spectroscopy will also enable a study of the helium abundance as a function of depth and a detailed comparison with theoretical diffusion profile.
Diffuse scattering measurements of static atomic displacements in crystalline binary solid solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ice, G.E.; Sparks, C.J.; Jiang, X.
1997-09-01
Diffuse x-ray scattering from crystalline solid solutions is sensitive to both local chemical order and local bond distances. In short-range ordered alloys, fluctuations of chemistry and bond distances break the long-range symmetry of the crystal within a local region and contribute to the total energy of the alloy. Recent use of tunable synchrotron radiation to change the x-ray scattering contrast between elements has greatly advanced the measurement of bond distances between the three kinds of atom pairs found in crystalline binary alloys. The estimated standard deviation on these recovered static displacements approaches {+-}0.001 {angstrom} (0.0001 nm) which is an ordermore » of magnitude more precise than obtained with EXAFS. In addition, both the radial and tangential displacements can be recovered to five near neighbors and beyond. These static displacement measurements provide new information which challenges the most advanced theoretical models of binary crystalline alloys. 29 refs., 8 figs., 2 tabs.« less
The Attentional Drift-Diffusion Model Extends to Simple Purchasing Decisions
Krajbich, Ian; Lu, Dingchao; Camerer, Colin; Rangel, Antonio
2012-01-01
How do we make simple purchasing decisions (e.g., whether or not to buy a product at a given price)? Previous work has shown that the attentional drift-diffusion model (aDDM) can provide accurate quantitative descriptions of the psychometric data for binary and trinary value-based choices, and of how the choice process is guided by visual attention. Here we extend the aDDM to the case of purchasing decisions, and test it using an eye-tracking experiment. We find that the model also provides a reasonably accurate quantitative description of the relationship between choice, reaction time, and visual fixations using parameters that are very similar to those that best fit the previous data. The only critical difference is that the choice biases induced by the fixations are about half as big in purchasing decisions as in binary choices. This suggests that a similar computational process is used to make binary choices, trinary choices, and simple purchasing decisions. PMID:22707945
Albadarin, Ahmad B; Mangwandi, Chirangano
2015-12-01
The biosorption process of anionic dye Alizarin Red S (ARS) and cationic dye methylene blue (MB) as a function of contact time, initial concentration and solution pH onto olive stone (OS) biomass has been investigated. Equilibrium biosorption isotherms in single and binary systems and kinetics in batch mode were also examined. The kinetic data of the two dyes were better described by the pseudo second-order model. At low concentration, ARS dye appeared to follow a two-step diffusion process, while MB dye followed a three-step diffusion process. The biosorption experimental data for ARS and MB dyes were well suited to the Redlich-Peterson isotherm. The maximum biosorption of ARS dye, qmax = 16.10 mg/g, was obtained at pH 3.28 and the maximum biosorption of MB dye, qmax = 13.20 mg/g, was observed at basic pH values. In the binary system, it was indicated that the MB dye diffuses firstly inside the biosorbent particle and occupies the biosorption sites forming a monodentate complex and then the ARS dye enters and can only bind to untaken sites; forms a tridentate complex with OS active sites. Copyright © 2015 Elsevier Ltd. All rights reserved.
Laser Stimulated Genomic Exchange in Stem Cells. Laser Non-cloning Techniques
NASA Astrophysics Data System (ADS)
Stefan, V. Alexander
2012-02-01
I propose a novel technique for a pluripotent stem cell generation. Genomic exchange is stimulated by the beat-wave free electron laser, (B-W FEL), frequency matching with the frequencies of the DNAootnotetextJ.D. Watson and F. H. C. Crick, Nature, 171, 737-738 (1953). eigen-oscillations. B-W FEL-1ootnotetextV. Stefan, B.I.Cohen, C. Joshi Science, 243,4890, (Jan 27,1989); Stefan, et al., Bull. APS. 32, No. 9, 1713 (1987); Stefan, APS March-2011, #S1.143; APS- March-2009, #K1.276. scans entire stem cell; B-W FEL-2 probes the chromosomes. The scanning and probing lasers: 300-500nm and 100-300nm, respectively; irradiances: the order-of-10s mW/cm^2 (above the threshold value for a particular gene structure); repetition rate of few-100s Hz. A variety of genetic-matching conditions can be arranged. Genomic glitches, (the cell nucleus transferootnotetextScott Noggle et al. Nature, 478, 70-75 (06 October 2011).), can be hedged by the use of lasers.
Dual-sensitivity profilometry with defocused projection of binary fringes.
Garnica, G; Padilla, M; Servin, M
2017-10-01
A dual-sensitivity profilometry technique based on defocused projection of binary fringes is presented. Here, two sets of fringe patterns with a sinusoidal profile are produced by applying the same analog low-pass filter (projector defocusing) to binary fringes with a high- and low-frequency spatial carrier. The high-frequency fringes have a binary square-wave profile, while the low-frequency binary fringes are produced with error-diffusion dithering. The binary nature of the binary fringes removes the need for calibration of the projector's nonlinear gamma. Working with high-frequency carrier fringes, we obtain a high-quality wrapped phase. On the other hand, working with low-frequency carrier fringes we found a lower-quality, nonwrapped phase map. The nonwrapped estimation is used as stepping stone for dual-sensitivity temporal phase unwrapping, extending the applicability of the technique to discontinuous (piecewise continuous) surfaces. We are proposing a single defocusing level for faster high- and low-frequency fringe data acquisition. The proposed technique is validated with experimental results.
Embedding intensity image into a binary hologram with strong noise resistant capability
NASA Astrophysics Data System (ADS)
Zhuang, Zhaoyong; Jiao, Shuming; Zou, Wenbin; Li, Xia
2017-11-01
A digital hologram can be employed as a host image for image watermarking applications to protect information security. Past research demonstrates that a gray level intensity image can be embedded into a binary Fresnel hologram by error diffusion method or bit truncation coding method. However, the fidelity of the retrieved watermark image from binary hologram is generally not satisfactory, especially when the binary hologram is contaminated with noise. To address this problem, we propose a JPEG-BCH encoding method in this paper. First, we employ the JPEG standard to compress the intensity image into a binary bit stream. Next, we encode the binary bit stream with BCH code to obtain error correction capability. Finally, the JPEG-BCH code is embedded into the binary hologram. By this way, the intensity image can be retrieved with high fidelity by a BCH-JPEG decoder even if the binary hologram suffers from serious noise contamination. Numerical simulation results show that the image quality of retrieved intensity image with our proposed method is superior to the state-of-the-art work reported.
NASA Astrophysics Data System (ADS)
Kowalczyk, Marek; Martínez-Corral, Manuel; Cichocki, Tomasz; Andrés, Pedro
1995-02-01
Two novel algorithms for the binarization of continuous rotationally symmetric real and positive pupil filters are presented. Both algorithms are based on the one-dimensional error diffusion concept. In our numerical experiment an original gray-tone apodizer is substituted by a set of transparent and opaque concentric annular zones. Depending on the algorithm the resulting binary mask consists of either equal width or equal area zones. The diffractive behavior of binary filters is evaluated. It is shown that the filter with equal width zones gives Fraunhofer diffraction pattern more similar to that of the original gray-tone apodizer than that with equal area zones, assuming in both cases the same resolution limit of device used to print both filters.
Correlation and prediction of gaseous diffusion coefficients.
NASA Technical Reports Server (NTRS)
Marrero, T. R.; Mason, E. A.
1973-01-01
A new correlation method for binary gaseous diffusion coefficients from very low temperatures to 10,000 K is proposed based on an extended principle of corresponding states, and having greater range and accuracy than previous correlations. There are two correlation parameters that are related to other physical quantities and that are predictable in the absence of diffusion measurements. Quantum effects and composition dependence are included, but high-pressure effects are not. The results are directly applicable to multicomponent mixtures.
NASA Technical Reports Server (NTRS)
Unnam, J.; Tenney, D. R.
1981-01-01
Exact solutions for diffusion in single phase binary alloy systems with constant diffusion coefficient and zero-flux boundary condition have been evaluated to establish the optimum zone size of applicability. Planar, cylindrical and spherical interface geometry, and finite, singly infinite, and doubly infinite systems are treated. Two solutions are presented for each geometry, one well suited to short diffusion times, and one to long times. The effect of zone-size on the convergence of these solutions is discussed. A generalized form of the diffusion solution for doubly infinite systems is proposed.
NASA Astrophysics Data System (ADS)
Scudder, J. D.; Karimabadi, H.; Daughton, W. S.
2013-12-01
Interpretations of 2D simulations of magnetic reconnection are greatly simplified by using the flux function, usually the out of plane component of the vector potential. This theoretical device is no longer available when simulations are analyzed in 3-D. We illustrate the results of determining the locale rates of flux slippage in simulations by a technique based on Maxwell's equations. The technique recovers the usual results obtained for the flux function in 2D simulations, but remains viable in 3D simulations where there is no flux function. The method has also been successfully tested for full PIC simulations where reconnection is geometrically forbiddden. While such layers possess measurable flux slippages (diffusion) their level is not as strong as recorded in known 2D PIC reconnection sites using the same methodology. This approach will be used to explore the spatial incidence and strength of flux slippages across a 3D, asymmetric, strong guide field run discussed previously in the literature. Regions of diffusive behavior are illustrated where LHDI has been previously identified out on the separatrices, while much stronger flux slippages, typical of the X-regions of 2D simulations, are shown to occur elsewhere throughout the simulation. These results suggest that reconnection requires sufficiently vigorous flux slippage to be self sustaining, while non-zero flux slippage can and does occur without being at the reconnection site. A cross check of this approach is provided by the mixing ratio of tagged simulation particles of known spatial origin discussed by Daughton et al., 2013 (this meeting); they provide an integral measure of flux slippage up to the present point in the simulation. We will discuss the correlations between our Maxwell based flux slippage rates and the inferred rates of change of this mixing ratio (as recorded in the local fluid frame).
Detailed in situ laser calibration of the infrared imaging video bolometer for the JT-60U tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parchamy, H.; Peterson, B. J.; Konoshima, S.
2006-10-15
The infrared imaging video bolometer (IRVB) in JT-60U includes a single graphite-coated gold foil with an effective area of 9x7 cm{sup 2} and a thickness of 2.5 {mu}m. The thermal images of the foil resulting from the plasma radiation are provided by an IR camera. The calibration technique of the IRVB gives confidence in the absolute levels of the measured values of the plasma radiation. The in situ calibration is carried out in order to obtain local foil properties such as the thermal diffusivity {kappa} and the product of the thermal conductivity k and the thickness t{sub f} of themore » foil. These quantities are necessary for solving the two-dimensional heat diffusion equation of the foil which is used in the experiments. These parameters are determined by comparing the measured temperature profiles (for kt{sub f}) and their decays (for {kappa}) with the corresponding results of a finite element model using the measured HeNe laser power profile as a known radiation power source. The infrared camera (Indigo/Omega) is calibrated by fitting the temperature rise of a heated plate to the resulting camera data using the Stefan-Boltzmann law.« less
[Jesuits Chemists of Hapsburg Monarchy].
Južnič, Stanislav
2016-01-01
The achievements of the Jesuits from the Austrian and Bohemian provinces, who have published books on chemistry are focused. Their links with the area of today's Slovenia are particularly exposed. The guidelines which have enabled prompt victories of the ideas about the structure of matter of Jesuit Ru|er Bokovi are indicated. Inconceivable fast spread of Bošković's adherents in the Hapsburg monarchy is compared with a similar rapid introduction of the kinetic theories of atoms of Slovene Jožef Stefan and Ludwig Boltzmann in the same geographical area. Boltzmann was not only Stefan's best student, but he also married a half Slovenian maid.
Global stability of steady states in the classical Stefan problem for general boundary shapes
Hadžić, Mahir; Shkoller, Steve
2015-01-01
The classical one-phase Stefan problem (without surface tension) allows for a continuum of steady-state solutions, given by an arbitrary (but sufficiently smooth) domain together with zero temperature. We prove global-in-time stability of such steady states, assuming a sufficient degree of smoothness on the initial domain, but without any a priori restriction on the convexity properties of the initial shape. This is an extension of our previous result (Hadžić & Shkoller 2014 Commun. Pure Appl. Math. 68, 689–757 (doi:10.1002/cpa.21522)) in which we studied nearly spherical shapes. PMID:26261359
Diffuse-Interface Methods in Fluid Mechanics
NASA Technical Reports Server (NTRS)
Anderson, D. M.; McFadden, G. B.; Wheeler, A. A.
1997-01-01
The authors review the development of diffuse-interface models of hydrodynamics and their application to a wide variety of interfacial phenomena. The authors discuss the issues involved in formulating diffuse-interface models for single-component and binary fluids. Recent applications and computations using these models are discussed in each case. Further, the authors address issues including sharp-interface analyses that relate these models to the classical free-boundary problem, related computational approaches to describe interfacial phenomena, and related approaches describing fully-miscible fluids.
Transport coefficients of gaseous ions in an electric field
NASA Technical Reports Server (NTRS)
Whealton, J. H.; Mason, E. A.
1974-01-01
A general theory of ion mobility formulated by Kihara (1953) is extended to ion diffusion and to mixtures of neutral gases. The theory assumes that only binary collisions between ions and neutral particles need to be taken into account and that the velocity distribution function of the neutral particles is Maxwellian. These assumptions make it possible to use a linearized Boltzmann equation. Questions of mobility are considered along with aspects of diffusion and deviations from Fick's law of diffusion.
Slavchov, Radomir I
2014-04-28
If the molecules of a given solvent possess significant quadrupolar moment, the macroscopic Maxwell equations must involve the contribution of the density of the quadrupolar moment to the electric displacement field. This modifies the Poisson-Boltzmann equation and all consequences from it. In this work, the structure of the diffuse atmosphere around an ion dissolved in quadrupolarizable medium is analyzed by solving the quadrupolar variant of the Coulomb-Ampere's law of electrostatics. The results are compared to the classical Debye-Hückel theory. The quadrupolar version of the Debye-Hückel potential of a point charge is finite even in r = 0. The ion-quadrupole interaction yields a significant expansion of the diffuse atmosphere of the ion and, thus, it decreases the Debye-Hückel energy. In addition, since the dielectric permittivity of the electrolyte solutions depends strongly on concentration, the Born energy of the dissolved ions alters with concentration, which has a considerable contribution to the activity coefficient γ± known as the self-salting-out effect. The quadrupolarizability of the medium damps strongly the self-salting-out of the electrolyte, and thus it affects additionally γ±. Comparison with experimental data for γ± for various electrolytes allows for the estimation of the quadrupolar length of water: LQ ≈ 2 Å, in good agreement with previous assessments. The effect of quadrupolarizability is especially important in non-aqueous solutions. Data for the activity of NaBr in methanol is used to determine the quadrupolarizability of methanol with good accuracy.
Diffuse emission and pathological Seyfert spectra
NASA Technical Reports Server (NTRS)
Halpern, Jules P.
1995-01-01
In this annual ROSAT status report, the diffuse emission and spectra from Seyfert galaxies are examined. Three papers are presented and their contents include the soft x-ray properties and spectra of a binary millisecond pulsar, the PSPC and HRI observations of a Starburst/Seyfert 2 Galaxy, and an analysis of the possibility of x-ray luminous starbursts in the Einstein Medium Sensitivity Survey.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stagg, Alan K; Yoon, Su-Jong
This report describes the Consortium for Advanced Simulation of Light Water Reactors (CASL) work conducted for completion of the Thermal Hydraulics Methods (THM) Level 3 Milestone THM.CFD.P11.02: Hydra-TH Extensions for Multispecies and Thermosolutal Convection. A critical requirement for modeling reactor thermal hydraulics is to account for species transport within the fluid. In particular, this capability is needed for modeling transport and diffusion of boric acid within water for emergency, reactivity-control scenarios. To support this need, a species transport capability has been implemented in Hydra-TH for binary systems (for example, solute within a solvent). A species transport equation is solved formore » the species (solute) mass fraction, and both thermal and solutal buoyancy effects are handled with specification of a Boussinesq body force. Species boundary conditions can be specified with a Dirichlet condition on mass fraction or a Neumann condition on diffusion flux. To enable enhanced species/fluid mixing in turbulent flow, the molecular diffusivity for the binary system is augmented with a turbulent diffusivity in the species transport calculation. The new capabilities are demonstrated by comparison of Hydra-TH calculations to the analytic solution for a thermosolutal convection problem, and excellent agreement is obtained.« less
Diffuse interface method for a compressible binary fluid.
Liu, Jiewei; Amberg, Gustav; Do-Quang, Minh
2016-01-01
Multicomponent, multiphase, compressible flows are very important in real life, as well as in scientific research, while their modeling is in an early stage. In this paper, we propose a diffuse interface model for compressible binary mixtures, based on the balance of mass, momentum, energy, and the second law of thermodynamics. We show both analytically and numerically that this model is able to describe the phase equilibrium for a real binary mixture (CO_{2} + ethanol is considered in this paper) very well by adjusting the parameter which measures the attraction force between molecules of the two components in the model. We also show that the calculated surface tension of the CO_{2} + ethanol mixture at different concentrations match measurements in the literature when the mixing capillary coefficient is taken to be the geometric mean of the capillary coefficient of each component. Three different cases of two droplets in a shear flow, with the same or different concentration, are simulated, showing that the higher concentration of CO_{2} the smaller the surface tension and the easier the drop deforms.
NASA Astrophysics Data System (ADS)
Saez, Núria; Ruiz, Xavier; Pallarés, Jordi; Shevtsova, Valentina
2013-04-01
An accelerometric record from the IVIDIL experiment (ESA Columbus module) has exhaustively been studied. The analysis involved the determination of basic statistical properties as, for instance, the auto-correlation and the power spectrum (second-order statistical analyses). Also, and taking into account the shape of the associated histograms, we address another important question, the non-Gaussian nature of the time series using the bispectrum and the bicoherence of the signals. Extrapolating the above-mentioned results, a computational model of a high-temperature shear cell has been performed. A scalar indicator has been used to quantify the accuracy of the diffusion coefficient measurements in the case of binary mixtures involving photovoltaic silicon or liquid Al-Cu binary alloys. Three different initial arrangements have been considered, the so-called interdiffusion, centred thick layer and the lateral thick layer. Results allow us to conclude that, under the conditions of the present work, the diffusion coefficient is insensitive to the environmental conditions, that is to say, accelerometric disturbances and initial shear cell arrangement.
Topological Maxwell Metal Bands in a Superconducting Qutrit
NASA Astrophysics Data System (ADS)
Tan, Xinsheng; Zhang, Dan-Wei; Liu, Qiang; Xue, Guangming; Yu, Hai-Feng; Zhu, Yan-Qing; Yan, Hui; Zhu, Shi-Liang; Yu, Yang
2018-03-01
We experimentally explore the topological Maxwell metal bands by mapping the momentum space of condensed-matter models to the tunable parameter space of superconducting quantum circuits. An exotic band structure that is effectively described by the spin-1 Maxwell equations is imaged. Threefold degenerate points dubbed Maxwell points are observed in the Maxwell metal bands. Moreover, we engineer and observe the topological phase transition from the topological Maxwell metal to a trivial insulator, and report the first experiment to measure the Chern numbers that are higher than one.
Multiple Scattering in Random Mechanical Systems and Diffusion Approximation
NASA Astrophysics Data System (ADS)
Feres, Renato; Ng, Jasmine; Zhang, Hong-Kun
2013-10-01
This paper is concerned with stochastic processes that model multiple (or iterated) scattering in classical mechanical systems of billiard type, defined below. From a given (deterministic) system of billiard type, a random process with transition probabilities operator P is introduced by assuming that some of the dynamical variables are random with prescribed probability distributions. Of particular interest are systems with weak scattering, which are associated to parametric families of operators P h , depending on a geometric or mechanical parameter h, that approaches the identity as h goes to 0. It is shown that ( P h - I)/ h converges for small h to a second order elliptic differential operator on compactly supported functions and that the Markov chain process associated to P h converges to a diffusion with infinitesimal generator . Both P h and are self-adjoint (densely) defined on the space of square-integrable functions over the (lower) half-space in , where η is a stationary measure. This measure's density is either (post-collision) Maxwell-Boltzmann distribution or Knudsen cosine law, and the random processes with infinitesimal generator respectively correspond to what we call MB diffusion and (generalized) Legendre diffusion. Concrete examples of simple mechanical systems are given and illustrated by numerically simulating the random processes.
Enhanced heat transport during phase separation of liquid binary mixtures
NASA Astrophysics Data System (ADS)
Molin, Dafne; Mauri, Roberto
2007-07-01
We show that heat transfer in regular binary fluids is enhanced by induced convection during phase separation. The motion of binary mixtures is simulated using the diffuse interface model, where convection and diffusion are coupled via a nonequilibrium, reversible Korteweg body force. Assuming that the mixture is regular, i.e., its components are van der Waals fluids, we show that the two parameters that describe the mixture, namely the Margules constant and the interfacial thickness, depend on temperature as T-1 and T-1/2, respectively. Two quantities are used to measure heat transfer, namely the heat flux at the walls and the characteristic cooling time. Comparing these quantities with those of very viscous mixtures, where diffusion prevails over convection, we saw that the ratio between heat fluxes, which defines the Nusselt number, NNu, equals that between cooling times and remains almost constant in time. The Nusselt number depends on the following: the Peclet number, NPe, expressing the ratio between convective and diffusive mass fluxes; the Lewis number, NLe, expressing the ratio between thermal and mass diffusivities; the specific heat of the mixture, as it determines how the heat generated by mixing can be stored within the system; and the quenching depth, defined as the distance of the temperature at the wall from its critical value. In particular, the following results were obtained: (a) The Nusselt number grows monotonically with the Peclet number until it reaches an asymptotic value at NNu≈2 when NPe≈106; (b) the Nusselt number increases with NLe when NLe<1, remains constant at 1
Recording and Analysis of Bowel Sounds.
Zaborski, Daniel; Halczak, Miroslaw; Grzesiak, Wilhelm; Modrzejewski, Andrzej
2015-01-01
The aim of this study was to construct an electronic bowel sound recording system and determine its usefulness for the diagnosis of appendicitis, mechanical ileus and diffuse peritonitis. A group of 67 subjects aged 17 to 88 years including 15 controls was examined. Bowel sounds were recorded using an electret microphone placed on the right side of the hypogastrium and connected to a laptop computer. The method of adjustable grids (converted into binary matrices) was used for bowel sounds analysis. Significantly, fewer (p ≤ 0.05) sounds were found in the mechanical ileus (1004.4) and diffuse peritonitis (466.3) groups than in the controls (2179.3). After superimposing adjustable binary matrices on combined sounds (interval between sounds <0.01 s), significant relationships (p ≤ 0.05) were found between particular positions in the matrices (row-column) and the patient groups. These included the A1_T1 and A1_T2 positions and mechanical ileus as well as the A1_T2 and A1_T4 positions and appendicitis. For diffuse peritonitis, significant positions were A5_T4 and A1_T4. Differences were noted in the number of sounds and binary matrices in the groups of patients with acute abdominal diseases. Certain features of bowel sounds characteristic of individual abdominal diseases were indicated. BS: bowel sound; APP: appendicitis; IL: mechanical ileus; PE: diffuse peritonitis; CG: control group; NSI: number of sound impulses; NCI: number of combined sound impulses; MBS: mean bit-similarity; TMIN: minimum time between impulses; TMAX: maximum time between impulses; TMEAN: mean time between impulses. Zaborski D, Halczak M, Grzesiak W, Modrzejewski A. Recording and Analysis of Bowel Sounds. Euroasian J Hepato-Gastroenterol 2015;5(2):67-73.
Maxwell and creation: Acceptance, criticism, and his anonymous publication
NASA Astrophysics Data System (ADS)
Marston, Philip L.
2007-08-01
Although James Clerk Maxwell's religious views and discussions on atoms having the properties of ``manufactured articles'' have been discussed, some aspects of the responses by his contemporaries to his remarks on creation have been neglected. Various responses quoted here include a book from 1878 by ``Physicus'' (George John Romanes) attributing ``arrogance'' to Maxwell for his inferences. Relevant aspects of the evolution of the perspective of Romanes are noted. A response by B. F. Westcott indicated that Maxwell was the author of a related anonymous publication concerned with what eventually became known as the heat death of the universe. In his teaching to theology students, Westcott, a friend of Maxwell, emphasized Maxwell's reasoning based on the dissipation of energy. There are similarities between Maxwell's perspective on creation and Biblical commentaries by fellow Eranus Club members Westcott and J. B. Lightfoot. Interest in Maxwell's remarks extended into the twentieth century. The principal Baptist chapel attended by Maxwell and his wife when in London in the 1860s is identified and some relevant attributes of the chapel and of its pastor are described.
NASA Astrophysics Data System (ADS)
Sigalotti, Leonardo Di G.; Klapp, Jaime
2000-03-01
Fragmentation has long been advocated as the primary mechanism for explaining the observed binary frequency among pre-main-sequence stars and, more recently, for explaining the emerging evidence for binary and multiple protostellar systems. The role of magnetic fields and ambipolar diffusion is essential to understand how dense cloud cores begin dynamic collapse and eventually fragment into protostars. Here we consider new numerical models of the gravitational collapse and fragmentation of slowly rotating molecular cloud cores, including the effects of magnetic support and ambipolar diffusion. The starting point of the evolution is provided by a magnetically stable (subcritical) condensation that results from adding a magnetic field pressure, B2/8π [with the field strength given by the scaling relation B=B0(ρ/ρ0)1/2], to a reference state consisting of a thermally supercritical (α~0.36), slowly rotating (β~0.037), Gaussian cloud core of prolate shape and central density ρ0. The effects of ambipolar diffusion are approximated by allowing the reference field strength B0 to gradually decrease over a timescale of 10 free-fall times. The models also include the effects of tidal interaction due to a gravitational encounter with another protostar, and so they may apply to low-mass star formation within a cluster-forming environment. The results indicate that the magnetic forces delay the onset of dynamic collapse, and hence of fragmentation, by an amount of time that depends on the initial central mass-to-flux ratio. Compared with previous magnetic collapse calculations of rapidly rotating (β=0.12) clouds, lower initial rotation (β~0.037) is seen to result in much shorter delay periods, thus anticipating binary fragmentation. In general, the results show that the models are still susceptible to fragment into binary systems. Intermediate magnetic support (η~0.285) and low tidal forces (τ<~0.201) may lead to final triple or quadruple protostellar systems, while increasing the size of η and τ always results in final binary protostellar cores. The formed binary systems have separations of ~200-350 AU, suggesting that the recently observed peaks around ~90 AU and 215 AU for T Tauri stars may be explained by the collapse and fragmentation of initially slowly rotating magnetic cloud cores with β<~0.04.
Kinetic Monte Carlo (kMC) simulation of carbon co-implant on pre-amorphization process.
Park, Soonyeol; Cho, Bumgoo; Yang, Seungsu; Won, Taeyoung
2010-05-01
We report our kinetic Monte Carlo (kMC) study of the effect of carbon co-implant on the pre-amorphization implant (PAL) process. We employed BCA (Binary Collision Approximation) approach for the acquisition of the initial as-implant dopant profile and kMC method for the simulation of diffusion process during the annealing process. The simulation results implied that carbon co-implant suppresses the boron diffusion due to the recombination with interstitials. Also, we could compare the boron diffusion with carbon diffusion by calculating carbon reaction with interstitial. And we can find that boron diffusion is affected from the carbon co-implant energy by enhancing the trapping of interstitial between boron and interstitial.
Chen, Ke; Wang, Wenfang; Chen, Jianming; Wen, Jinhui; Lai, Tianshu
2012-02-13
A transmission-grating-modulated time-resolved pump-probe absorption spectroscopy is developed and formularized. The spectroscopy combines normal time-resolved pump-probe absorption spectroscopy with a binary transmission grating, is sensitive to the spatiotemporal evolution of photoinjected carriers, and has extensive applicability in the study of diffusion transport dynamics of photoinjected carriers. This spectroscopy has many advantages over reported optical methods to measure diffusion dynamics, such as simple experimental setup and operation, and high detection sensitivity. The measurement of diffusion dynamics is demonstrated on bulk intrinsic GaAs films. A carrier density dependence of carrier diffusion coefficient is obtained and agrees well with reported results.
Classical and Quantum Thermal Physics
NASA Astrophysics Data System (ADS)
Prasad, R.
2016-11-01
List of figures; List of tables; Preface; Acknowledgement; Dedication; 1. The kinetic theory of gases; 2. Ideal to real gas, viscosity, conductivity and diffusion; 3. Thermodynamics: definitions and Zeroth law; 4. First Law of Thermodynamics and some of its applications; 5. Second Law of Thermodynamics and some of its applications; 6. TdS equations and their applications; 7. Thermodynamic functions, potentials, Maxwell equations, the Third Law and equilibrium; 8. Some applications of thermodynamics to problems of physics and engineering; 9. Application of thermodynamics to chemical reactions; 10. Quantum thermodynamics; 11. Some applications of quantum thermodynamics; 12. Introduction to the thermodynamics of irreversible processes; Index.
Simple views on critical binary liquid mixtures in porous glass
NASA Astrophysics Data System (ADS)
Tremblay, L.; Socol, S. M.; Lacelle, S.
2000-01-01
A simple scenario, different from previous attempts, is proposed to resolve the problem of the slow phase separation dynamics of binary liquid mixtures confined in porous Vycor glass. We demonstrate that simply mutual diffusion, renormalized by critical composition fluctuations and geometrical hindrance of the porous glass, accounts for the slow phase separation kinetics. Capillary invasion studies of porous Vycor glass by the critical isobutyric acid-water mixture, close to the consolute solution temperature, corroborate our analysis.
Scattering of Gaussian Beams by Disordered Particulate Media
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Dlugach, Janna M.
2016-01-01
A frequently observed characteristic of electromagnetic scattering by a disordered particulate medium is the absence of pronounced speckles in angular patterns of the scattered light. It is known that such diffuse speckle-free scattering patterns can be caused by averaging over randomly changing particle positions and/or over a finite spectral range. To get further insight into the possible physical causes of the absence of speckles, we use the numerically exact superposition T-matrix solver of the Maxwell equations and analyze the scattering of plane-wave and Gaussian beams by representative multi-sphere groups. We show that phase and amplitude variations across an incident Gaussian beam do not serve to extinguish the pronounced speckle pattern typical of plane-wave illumination of a fixed multi-particle group. Averaging over random particle positions and/or over a finite spectral range is still required to generate the classical diffuse speckle-free regime.
Representing the Electromagnetic Field: How Maxwell's Mathematics Empowered Faraday's Field Theory
ERIC Educational Resources Information Center
Tweney, Ryan D.
2011-01-01
James Clerk Maxwell "translated" Michael Faraday's experimentally-based field theory into the mathematical representation now known as "Maxwell's Equations." Working with a variety of mathematical representations and physical models Maxwell extended the reach of Faraday's theory and brought it into consistency with other…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-26
... Inventory Completion: Maxwell Museum of Anthropology, University of New Mexico, Albuquerque, NM; Correction... affiliated with the human remains may contact the Maxwell Museum of Anthropology. Repatriation of the human..., Maxwell Museum of Anthropology, MSC01 1050, University of New Mexico, Albuquerque, NM 87131-0001...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-26
... Inventory Completion: Maxwell Museum of Anthropology, University of New Mexico, Albuquerque, NM AGENCY... affiliated with the human remains may contact the Maxwell Museum of Anthropology. Repatriation of the human..., Maxwell Museum of Anthropology, MSC01 1050, University of New Mexico, Albuquerque, NM 87131-0001...
21 CFR 886.1435 - Maxwell spot.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Maxwell spot. 886.1435 Section 886.1435 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1435 Maxwell spot. (a) Identification. A Maxwell spot is an AC...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-13
...: Maxwell Museum of Anthropology, University of New Mexico, Albuquerque, NM AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Maxwell Museum of Anthropology, University of New Mexico has... contact the Maxwell Museum of Anthropology, University of New Mexico. Repatriation of the human remains to...
Nonergodicity in binary alloys
NASA Astrophysics Data System (ADS)
Son, Leonid; Sidorov, Valery; Popel, Pjotr; Shulgin, Dmitry
2015-09-01
For binary liquids with limited miscibility of the components, we provide the corrections to the equation of state which arise from the nonergogic diffusivity. It is shown that these corrections result in lowering of critical miscibility point. In some cases, it may result in a bifurcation of miscibility curve: the mixtures near 50% concentration which are homogeneous at the microscopic level, occur to be too stable to provide a quasi - eutectic triple point. These features provide a new look on the phase diagrams of some binary systems. In present work, we discuss Ga-Pb, Fe-Cu, and Cu-Zr alloys. Our investigation corresponds their complex behavior in liquid state to the shapes of their phase diagrams.
New approach to effective diffusion coefficient evaluation in the nanostructured two-phase media
NASA Astrophysics Data System (ADS)
Lyashenko, Yu. O.; Liashenko, O. Y.; Morozovich, V. V.
2018-03-01
Most widely used basic and combined models for evaluation of the effective diffusion parameters of inhomogeneous two-phase zone are reviewed. A new combined model of effective medium is analyzed for the description of diffusion processes in the two-phase zones. In this model the effective diffusivity depends on the growth kinetic coefficients of each phase, the volume fractions of phases and on the additional parameter that generally characterizes the structure type of the two-phase zone. Our combined model describes two-phase zone evolution in the binary systems based on consideration of the diffusion fluxes through both phases. The Lattice Monte Carlo method was used to test the validity of different phenomenological models for evaluation of the effective diffusivity in nanostructured two-phase zones with different structural morphology.
Left-right asymmetry of the Maxwell spot centroids in adults without and with dyslexia.
Le Floch, Albert; Ropars, Guy
2017-10-25
In human vision, the brain has to select one view of the world from our two eyes. However, the existence of a clear anatomical asymmetry providing an initial imbalance for normal neural development is still not understood. Using a so-called foveascope, we found that for a cohort of 30 normal adults, the two blue cone-free areas at the centre of the foveas are asymmetrical. The noise-stimulated afterimage dominant eye introduced here corresponds to the circular blue cone-free area, while the non-dominant eye corresponds to the diffuse and irregular elliptical outline. By contrast, we found that this asymmetry is absent or frustrated in a similar cohort of 30 adults with normal ocular status, but with dyslexia, i.e. with visual and phonological deficits. In this case, our results show that the two Maxwell centroid outlines are both circular but lead to an undetermined afterimage dominance with a coexistence of primary and mirror images. The interplay between the lack of asymmetry and the development in the neural maturation of the brain pathways suggests new implications in both fundamental and biomedical sciences. © 2017 The Author(s).
Comparison with CLPX II airborne data using DMRT model
Xu, X.; Liang, D.; Andreadis, K.M.; Tsang, L.; Josberger, E.G.
2009-01-01
In this paper, we considered a physical-based model which use numerical solution of Maxwell Equations in three-dimensional simulations and apply into Dense Media Radiative Theory (DMRT). The model is validated in two specific dataset from the second Cold Land Processes Experiment (CLPX II) at Alaska and Colorado. The data were all obtain by the Ku-band (13.95GHz) observations using airborne imaging polarimetric scatterometer (POLSCAT). Snow is a densely packed media. To take into account the collective scattering and incoherent scattering, analytical Quasi-Crystalline Approximation (QCA) and Numerical Maxwell Equation Method of 3-D simulation (NMM3D) are used to calculate the extinction coefficient and phase matrix. DMRT equations were solved by iterative solution up to 2nd order for the case of small optical thickness and full multiple scattering solution by decomposing the diffuse intensities into Fourier series was used when optical thickness exceed unity. It was shown that the model predictions agree with the field experiment not only co-polarization but also cross-polarization. For Alaska region, the input snow structure data was obtain by the in situ ground observations, while for Colorado region, we combined the VIC model to get the snow profile. ??2009 IEEE.
Simulation of atomic diffusion in the Fcc NiAl system: A kinetic Monte Carlo study
Alfonso, Dominic R.; Tafen, De Nyago
2015-04-28
The atomic diffusion in fcc NiAl binary alloys was studied by kinetic Monte Carlo simulation. The environment dependent hopping barriers were computed using a pair interaction model whose parameters were fitted to relevant data derived from electronic structure calculations. Long time diffusivities were calculated and the effect of composition change on the tracer diffusion coefficients was analyzed. These results indicate that this variation has noticeable impact on the atomic diffusivities. A reduction in the mobility of both Ni and Al is demonstrated with increasing Al content. As a result, examination of the pair interaction between atoms was carried out formore » the purpose of understanding the predicted trends.« less
Self-thermophoresis and thermal self-diffusion in liquids and gases.
Brenner, Howard
2010-09-01
This paper demonstrates the existence of self-thermophoresis, a phenomenon whereby a virtual thermophoretic force arising from a temperature gradient in a quiescent single-component liquid or gas acts upon an individual molecule of that fluid in much the same manner as a "real" thermophoretic force acts upon a macroscopic, non-Brownian body immersed in that same fluid. In turn, self-thermophoresis acting in concert with Brownian self-diffusion gives rise to the phenomenon of thermal self-diffusion in single-component fluids. The latter furnishes quantitative explanations of both thermophoresis in pure fluids and thermal diffusion in binary mixtures (the latter composed of a dilute solution of a physicochemically inert solute whose molecules are large compared with those of the solvent continuum). Explicitly, the self-thermophoretic theory furnishes a simple expression for both the thermophoretic velocity U of a macroscopic body in a single-component fluid subjected to a temperature gradient ∇T , and the intimately related binary thermal diffusion coefficient D{T} for a two-component colloidal or macromolecular mixture. The predicted expressions U=-D{T}∇T≡-βD{S}∇T and D{T}=βD{S} (with β and D{S} the pure solvent's respective thermal expansion and isothermal self-diffusion coefficients) are each noted to accord reasonably well with experimental data for both liquids and gases. The likely source of systematic deviations of the predicted values of D{T} from these data is discussed. This appears to be the first successful thermodiffusion theory applicable to both liquids and gases, a not insignificant achievement considering that the respective thermal diffusivities and thermophoretic velocities of these two classes of fluids differ by as much as six orders of magnitude.
X-ray astronomy from Uhuru to HEAO-1
NASA Technical Reports Server (NTRS)
Clark, G. W.
1981-01-01
The nature of galactic and extragalactic X-ray sources is investigated using observations made with nine satellites and several rockets. The question of X-ray pulsars being neutron stars or white dwarfs is considered, as is the nature of Population II and low-luminosity X-ray stars, the diffuse X-ray emission from clusters of galaxies, the unidentified high-galactic-latitude (UHGL) sources, and the unresolved soft X-ray background. The types of sources examined include binary pulsars, Population II X-ray stars (both nonbursters and bursters) inside and outside globular clusters, coronal X-ray emitters, and active galactic nuclei. It is concluded that: (1) X-ray pulsars are strongly magnetized neutron stars formed in the evolution of massive close binaries; (2) all Population II X-ray stars are weakly magnetized or nonmagnetic neutron stars accreting from low-mass companions in close binary systems; (3) the diffuse emission from clusters is thermal bremsstrahlung of hot matter processed in stars and swept out by ram pressure exerted by the intergalactic gas; (4) most or all of the UHGL sources are active galactic nuclei; and (5) the soft X-ray background is emission from a hot component of the interstellar medium.
Santana, Juan A.; Krogel, Jaron T.; Kent, Paul R. C.; ...
2016-05-03
We have applied the diffusion quantum Monte Carlo (DMC) method to calculate the cohesive energy and the structural parameters of the binary oxides CaO, SrO, BaO, Sc 2O 3, Y 2O 3 and La 2O 3. The aim of our calculations is to systematically quantify the accuracy of the DMC method to study this type of metal oxides. The DMC results were compared with local and semi-local Density Functional Theory (DFT) approximations as well as with experimental measurements. The DMC method yields cohesive energies for these oxides with a mean absolute deviation from experimental measurements of 0.18(2) eV, while withmore » local and semi-local DFT approximations the deviation is 3.06 and 0.94 eV, respectively. For lattice constants, the mean absolute deviation in DMC, local and semi-local DFT approximations, are 0.017(1), 0.07 and 0.05 , respectively. In conclusion, DMC is highly accurate method, outperforming the local and semi-local DFT approximations in describing the cohesive energies and structural parameters of these binary oxides.« less
[Intellectual exchange between Germany and Latin America: an interview with Stefan Rinke].
Rinke, Stefan; da Silva, André Felipe Cândido; Junghans, Miriam; Cavalcanti, Juliana Manzoni; de Muñoz, Pedro Felipe Neves
2014-01-01
Current and former students of the Casa de Oswaldo Cruz/Fiocruz interviewed German historian Stefan Rinke, of the Freie Universität Berlin, who specializes in examining the historical development of Latin America as it fits into the international context. Rinke's work uses dimensions such as economic and diplomatic relations, migratory flows, and ethnic conflict as tools in his analyses of the networks of interdependence that have tied Latin America to Europe and the USA. His lens goes beyond the Latin American continent to approach globalization as a historical process, with national and regional contexts placed within a general framework. In this interview, Rinke talks about his academic career, global and transnational history, and joint projects between Germany and Latin America.
Self-Organized Criticality Systems
NASA Astrophysics Data System (ADS)
Aschwanden, M. J.
2013-07-01
Contents: (1) Introduction - Norma B. Crosby --- (2) Theoretical Models of SOC Systems - Markus J. Aschwanden --- (3) SOC and Fractal Geometry - R. T. James McAteer --- (4) Percolation Models of Self-Organized Critical Phenomena - Alexander V. Milovanov --- (5) Criticality and Self-Organization in Branching Processes: Application to Natural Hazards - Álvaro Corral, Francesc Font-Clos --- (6) Power Laws of Recurrence Networks - Yong Zou, Jobst Heitzig, Jürgen Kurths --- (7) SOC computer simolations - Gunnar Pruessner --- (8) SOC Laboratory Experiments - Gunnar Pruessner --- (9) Self-Organizing Complex Earthquakes: Scaling in Data, Models, and Forecasting - Michael K. Sachs et al. --- (10) Wildfires and the Forest-Fire Model - Stefan Hergarten --- (11) SOC in Landslides - Stefan Hergarten --- (12) SOC and Solar Flares - Paul Charbonneau --- (13) SOC Systems in Astrophysics - Markus J. Aschwanden ---
Experimental study of the Ca-Mg-Zn system using diffusion couples and key alloys
NASA Astrophysics Data System (ADS)
Zhang, Yi-Nan; Kevorkov, Dmytro; Bridier, Florent; Medraj, Mamoun
2011-03-01
Nine diffusion couples and 32 key samples were prepared to map the phase diagram of the Ca-Mg-Zn system. Phase relations and solubility limits were determined for binary and ternary compounds using scanning electron microscopy, electron probe microanalysis and x-ray diffraction (XRD). The crystal structure of the ternary compounds was studied by XRD and electron backscatter diffraction. Four ternary intermetallic (IM) compounds were identified in this system: Ca3MgxZn15-x (4.6<=x<=12 at 335 °C, IM1), Ca14.5Mg15.8Zn69.7 (IM2), Ca2Mg5Zn13 (IM3) and Ca1.5Mg55.3Zn43.2 (IM4). Three binary compounds were found to have extended solid solubility into ternary systems: CaZn11, CaZn13 and Mg2Ca form substitutional solid solutions where Mg substitutes for Zn atoms in the first two compounds, and Zn substitutes for both Ca and Mg atoms in Mg2Ca. The isothermal section of the Ca-Mg-Zn phase diagram at 335 °C was constructed on the basis of the obtained experimental results. The morphologies of the diffusion couples in the Ca-Mg-Zn phase diagram at 335 °C were studied. Depending on the terminal compositions of the diffusion couples, the two-phase regions in the diffusion zone have either a tooth-like morphology or contain a matrix phase with isolated and/or dendritic precipitates.
Gettel, Douglas L; Sanborn, Jeremy; Patel, Mira A; de Hoog, Hans-Peter; Liedberg, Bo; Nallani, Madhavan; Parikh, Atul N
2014-07-23
Substrate-mediated fusion of small polymersomes, derived from mixtures of lipids and amphiphilic block copolymers, produces hybrid, supported planar bilayers at hydrophilic surfaces, monolayers at hydrophobic surfaces, and binary monolayer/bilayer patterns at amphiphilic surfaces, directly responding to local measures of (and variations in) surface free energy. Despite the large thickness mismatch in their hydrophobic cores, the hybrid membranes do not exhibit microscopic phase separation, reflecting irreversible adsorption and limited lateral reorganization of the polymer component. With increasing fluid-phase lipid fraction, these hybrid, supported membranes undergo a fluidity transition, producing a fully percolating fluid lipid phase beyond a critical area fraction, which matches the percolation threshold for the immobile point obstacles. This then suggests that polymer-lipid hybrid membranes might be useful models for studying obstructed diffusion, such as occurs in lipid membranes containing proteins.
NASA Astrophysics Data System (ADS)
Lalneihpuii, R.; Shrivastava, Ruchi; Mishra, Raj Kumar
2018-05-01
Using statistical mechanical model with square-well (SW) interatomic potential within the frame work of mean spherical approximation, we determine the composition dependent microscopic correlation functions, interdiffusion coefficients, surface tension and chemical ordering in Ag-Cu melts. Further Dzugutov universal scaling law of normalized diffusion is verified with SW potential in binary mixtures. We find that the excess entropy scaling law is valid for SW binary melts. The partial and total structure factors in the attractive and repulsive regions of the interacting potential are evaluated and then Fourier transformed to get partial and total radial distribution functions. A good agreement between theoretical and experimental values for total structure factor and the reduced radial distribution function are observed, which consolidates our model calculations. The well-known Bhatia-Thornton correlation functions are also computed for Ag-Cu melts. The concentration-concentration correlations in the long wavelength limit in liquid Ag-Cu alloys have been analytically derived through the long wavelength limit of partial correlation functions and apply it to demonstrate the chemical ordering and interdiffusion coefficients in binary liquid alloys. We also investigate the concentration dependent viscosity coefficients and surface tension using the computed diffusion data in these alloys. Our computed results for structure, transport and surface properties of liquid Ag-Cu alloys obtained with square-well interatomic interaction are fully consistent with their corresponding experimental values.
NASA Technical Reports Server (NTRS)
Castillo, J. L.; Garcia-Ybarra, P. L.; Rosner, D. E.
1991-01-01
The stability of solid planar growth from a binary vapor phase with a condensing species dilute in a carrier gas is examined when the ratio of depositing to carrier species molecular mass is large and the main diffusive transport mechanism is thermal diffusion. It is shown that a deformation of the solid-gas interface induces a deformation of the gas phase isotherms that increases the thermal gradients and thereby the local mass deposition rate at the crests and reduces them at the valleys. The initial surface deformation is enhanced by the modified deposition rates in the absence of appreciable Fick/Brownian diffusion and interfacial energy effects.
Emergent pseudospin-1 Maxwell fermions with a threefold degeneracy in optical lattices
NASA Astrophysics Data System (ADS)
Zhu, Yan-Qing; Zhang, Dan-Wei; Yan, Hui; Xing, Ding-Yu; Zhu, Shi-Liang
2017-09-01
The discovery of relativistic spin-1/2 fermions such as Dirac and Weyl fermions in condensed-matter or artificial systems opens a new era in modern physics. An interesting but rarely explored question is whether other relativistic spinal excitations could be realized with artificial systems. Here, we construct two- and three-dimensional tight-binding models realizable with cold fermionic atoms in optical lattices, where the low energy excitations are effectively described by the spin-1 Maxwell equations in the Hamiltonian form. These relativistic (linear dispersion) excitations with unconventional integer pseudospin, beyond the Dirac-Weyl-Majorana fermions, are an exotic kind of fermions named as Maxwell fermions. We demonstrate that the systems have rich topological features. For instance, the threefold degenerate points called Maxwell points may have quantized Berry phases and anomalous quantum Hall effects with spin-momentum locking may appear in topological Maxwell insulators in the two-dimensional lattices. In three dimensions, Maxwell points may have nontrivial monopole charges of ±2 with two Fermi arcs connecting them, and the merging of the Maxwell points leads to topological phase transitions. Finally, we propose realistic schemes for realizing the model Hamiltonians and detecting the topological properties of the emergent Maxwell quasiparticles in optical lattices.
Matsumoto, Yuji; Takaki, Yasuhiro
2014-06-15
Horizontally scanning holography can enlarge both screen size and viewing zone angle. A microelectromechanical-system spatial light modulator, which can generate only binary images, is used to generate hologram patterns. Thus, techniques to improve gray-scale representation in reconstructed images should be developed. In this study, the error diffusion technique was used for the binarization of holograms. When the Floyd-Steinberg error diffusion coefficients were used, gray-scale representation was improved. However, the linearity in the gray-scale representation was not satisfactory. We proposed the use of a correction table and showed that the linearity was greatly improved.
Representing the Electromagnetic Field: How Maxwell's Mathematics Empowered Faraday's Field Theory
NASA Astrophysics Data System (ADS)
Tweney, Ryan D.
2011-07-01
James Clerk Maxwell `translated' Michael Faraday's experimentally-based field theory into the mathematical representation now known as `Maxwell's Equations.' Working with a variety of mathematical representations and physical models Maxwell extended the reach of Faraday's theory and brought it into consistency with other results in the physics of electricity and magnetism. Examination of Maxwell's procedures opens many issues about the role of mathematical representation in physics and the learning background required for its success. Specifically, Maxwell's training in `Cambridge University' mathematical physics emphasized the use of analogous equations across fields of physics and the repeated solving of extremely difficult problems in physics. Such training develops an array of overlearned mathematical representations supported by highly sophisticated cognitive mechanisms for the retrieval of relevant information from long term memory. For Maxwell, mathematics constituted a new form of representation in physics, enhancing the formal derivational and calculational role of mathematics and opening a cognitive means for the conduct of `experiments in the mind' and for sophisticated representations of theory.
NASA Astrophysics Data System (ADS)
Wu, Yingchun; Crua, Cyril; Li, Haipeng; Saengkaew, Sawitree; Mädler, Lutz; Wu, Xuecheng; Gréhan, Gérard
2018-07-01
The accurate measurements of droplet temperature, size and evaporation rate are of great importance to characterize the heat and mass transfer during evaporation/condensation processes. The nanoscale size change of a micron-sized droplet exactly describes its transient mass transfer, but is difficult to measure because it is smaller than the resolutions of current size measurement techniques. The Phase Rainbow Refractometry (PRR) technique is developed and applied to measure droplet temperature, size and transient size changes and thereafter evaporation rate simultaneously. The measurement principle of PRR is theoretically derived, and it reveals that the phase shift of the time-resolved ripple structures linearly depends on, and can directly yield, nano-scale size changes of droplets. The PRR technique is first verified through the simulation of rainbows of droplets with changing size, and results show that PRR can precisely measure droplet refractive index, absolute size, as well as size change with absolute and relative errors within several nanometers and 0.6%, respectively, and thus PRR permits accurate measurements of transient droplet evaporation rates. The evaporations of flowing single n-nonane droplet and mono-dispersed n-heptane droplet stream are investigated by two PRR systems with a high speed linear CCD and a low speed array CCD, respectively. Their transient evaporation rates are experimentally determined and quantitatively agree well with the theoretical values predicted by classical Maxwell and Stefan-Fuchs models. With the demonstration of evaporation rate measurement of monocomponent droplet in this work, PRR is an ideal tool for measurements of transient droplet evaporation/condensation processes, and can be extended to multicomponent droplets in a wide range of industrially-relevant applications.
Effects of vehicles and enhancers on transdermal delivery of clebopride.
Rhee, Yun-Seok; Huh, Jai-Yong; Park, Chun-Woong; Nam, Tae-Young; Yoon, Koog-Ryul; Chi, Sang-Cheol; Park, Eun-Seok
2007-09-01
The effects of vehicles and penetration enhancers on the skin permeation of clebopride were evaluated using Franz type diffusion cells fitted with excised rat dorsal skins. The binary vehicle system, diethylene glycol monoethyl ether/isopropyl myristate (40/60, w/w), significantly enhanced the skin permeation rate of clebopride. The skin permeation enhancers, oleic acid and ethanol when used in the binary vehicle system, resulted in relatively high clebopride skin permeation rates. A gel formulation consisting of 1.5% (w/w) clebopride, 5% (w/w) oleic acid, and 7% (w/w) gelling agent with the binary vehicle system resulted in a permeation rate of 28.90 microg/cm2/h. Overall, these results highlight the potential of clebopride formulation for the transdermal route.
Continuous information flow fluctuations
NASA Astrophysics Data System (ADS)
Rosinberg, Martin Luc; Horowitz, Jordan M.
2016-10-01
Information plays a pivotal role in the thermodynamics of nonequilibrium processes with feedback. However, much remains to be learned about the nature of information fluctuations in small-scale devices and their relation with fluctuations in other thermodynamics quantities, like heat and work. Here we derive a series of fluctuation theorems for information flow and partial entropy production in a Brownian particle model of feedback cooling and extend them to arbitrary driven diffusion processes. We then analyze the long-time behavior of the feedback-cooling model in detail. Our results provide insights into the structure and origin of large deviations of information and thermodynamic quantities in autonomous Maxwell's demons.
Light radiation pressure upon an optically orthotropic surface
NASA Astrophysics Data System (ADS)
Nerovny, Nikolay A.; Lapina, Irina E.; Grigorjev, Anton S.
2017-11-01
In this paper, we discuss the problem of determination of light radiation pressure force upon an anisotropic surface. The optical parameters of such a surface are considered to have major and minor axes, so the model is called an orthotropic model. We derive the equations for force components from emission, absorption, and reflection, utilizing a modified Maxwell's specular-diffuse model. The proposed model can be used to model a flat solar sail with wrinkles. By performing Bayesian analysis for example of a wrinkled surface, we show that there are cases in which an orthotropic model of the optical parameters of a surface may be more accurate than an isotropic model.
Rotating and Binary Stars in General Relativit
NASA Astrophysics Data System (ADS)
Shapiro, Stuart
The inspiral and coalescence of compact binary stars is one of the most challenging problems in theoretical astrophysics. Only recently have advances in numerical relativity made it possible to explore this topic in full general relativity (GR). The mergers of compact binaries have important consequences for the detection of gravitational waves. In addition, the coalescence of binary neutron stars (NSNSs) and binary black-hole neutron stars (BHNSs) may hold the key for resolving other astrophysical puzzles, such as the origin of short-hard gamma-ray bursts (GRBs). While simulations of these systems in full GR are now possible, only the most idealized treatments have been performed to date. More detailed physics, including magnetic fields, black hole spin, a realistic hot, nuclear equation of state and neutrino transport must be incorporated. Only then will we be able to identify reliably future sources that may be detected simultaneously in gravitational waves and as GRBs. Likewise, the coalescence of binary black holes (BHBHs) is now a solved problem in GR, but only in vacuum. Simulating the coalescence of BHBHs in the gaseous environments likely to be found in nearby galaxy cores or in merging galaxies is crucial to identifying an electromagnetic signal that might accompany the gravitational waves produced during the merger. The coalescence of a binary white dwarf-neutron star (WDNS) has only recently been treated in GR, but GR is necessary to explore tidal disruption scenarios in which the capture of WD debris by the NS may lead to catastrophic collapse. Alternatively, the NS may survive and the merger might result in the formation of pulsar planets. The stability of rotating neutron stars in these and other systems has not been fully explored in GR, and the final fate of unstable stars has not been determined in many cases, especially in the presence of magnetic fields and differential rotation. These systems will be probed observationally by current NASA instruments, such as HST, CHANDRA, SWIFT and FERMI, and by future NASA detectors, such as NuStar, ASTRO-H, GEMS, JWST, and, possibly, GEN-X and SGO (a Space-Based Gravitational-Wave Observatory). Treating all of these phenomena theoretically requires the same computational machinery: a fully relativistic code that simultaneously solves Einstein s equations for the gravitational field, Maxwell s equations for the electromagnetic field and the equations of relativistic magnetohydrodynamics for the plasma, all in three spatial dimensions plus time. Recent advances we have made in constructing such a code now make it possible for us to solve these fundamental, closely related computational problems, some for the first time.
Au particle formation on the electron beam induced membrane
NASA Astrophysics Data System (ADS)
Choi, Seong Soo; Park, Myoung Jin; Han, Chul Hee; Oh, Sae-Joong; Kim, Sung-In; Park, Nam Kyou; Park, Doo-Jae; Choi, Soo Bong; Kim, Yong-Sang
2017-02-01
Recently the single molecules such as protein and deoxyribonucleic acid (DNA) have been successfully characterized by using a portable solidstate nanopore (MinION) with an electrical detection technique. However, there have been several reports about the high error rates of the fabricated nanopore device, possibly due to an electrical double layer formed inside the pore channel. The current DNA sequencing technology utilized is based on the optical detection method. In order to utilize the current optical detection technique, we will present the formation of the Au nano-pore with Au particle under the various electron beam irradiations. In order to provide the diffusion of Au atoms, a 2 keV electron beam irradiation has been performed During electron beam irradiations by using field emission scanning electron microscopy (FESEM), Au and C atoms would diffuse together and form the binary mixture membrane. Initially, the Au atoms diffused in the membrane are smaller than 1 nm, below the detection limit of the transmission electron microscopy (TEM), so that we are unable to observe the Au atoms in the formed membrane. However, after several months later, the Au atoms became larger and larger with expense of the smaller particles: Ostwald ripening. Furthermore, we also observe the Au crystalline lattice structure on the binary Au-C membrane. The formed Au crystalline lattice structures were constantly changing during electron beam imaging process due to Spinodal decomposition; the unstable thermodynamic system of Au-C binary membrane. The fabricated Au nanopore with an Au nanoparticle can be utilized as a single molecule nanobio sensor.
NASA Astrophysics Data System (ADS)
Torres, Juan F.; Komiya, Atsuki; Henry, Daniel; Maruyama, Shigenao
2013-08-01
We have developed a method to measure thermodiffusion and Fickian diffusion in transparent binary solutions. The measuring instrument consists of two orthogonally aligned phase-shifting interferometers coupled with a single rotating polarizer. This high-resolution interferometer, initially developed to measure isothermal diffusion coefficients in liquid systems [J. F. Torres, A. Komiya, E. Shoji, J. Okajima, and S. Maruyama, Opt. Lasers Eng. 50, 1287 (2012)], was modified to measure transient concentration profiles in binary solutions subject to a linear temperature gradient. A convectionless thermodiffusion field was created in a binary solution sample that is placed inside a Soret cell. This cell consists of a parallelepiped cavity with a horizontal cross-section area of 10 × 20 mm2, a variable height of 1-2 mm, and transparent lateral walls. The small height of the cell reduces the volume of the sample, shortens the measurement time, and increases the hydrodynamic stability of the system. An additional free diffusion experiment with the same optical apparatus provides the so-called contrast factors that relate the unwrapped phase and concentration gradients, i.e., the measurement technique is independent and robust. The Soret coefficient is determined from the concentration and temperature differences between the upper and lower boundaries measured by the interferometer and thermocouples, respectively. The Fickian diffusion coefficient is obtained by fitting a numerical solution to the experimental concentration profile. The method is validated through the measurement of thermodiffusion in the well-known liquid pairs of ethanol-water (ethanol 39.12 wt.%) and isobutylbenzene-dodecane (50.0 wt.%). The obtained coefficients agree with the literature values within 5.0%. Finally, the developed technique is applied to visualize biomolecular thermophoresis. Two protein aqueous solutions at 3 mg/ml were used as samples: aprotinin (6.5 kDa)-water and lysozyme (14.3 kDa)-water. It was found that the former protein molecules are thermophilic and the latter thermophobic. In contrast to previously reported methods, this technique is suitable for both short time and negative Soret coefficient measurements.
EVOLUTION OF A RING AROUND THE PLUTO–CHARON BINARY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bromley, Benjamin C.; Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu
We consider the formation of satellites around the Pluto–Charon binary. An early collision between the two partners likely produced the binary and a narrow ring of debris, out of which arose the moons Styx, Nix, Kerberos, and Hydra. How the satellites emerged from the compact ring is uncertain. Here we show that a particle ring spreads from physical collisions and collective gravitational scattering, similar to migration. Around a binary, these processes take place in the reference frames of “most circular” orbits, akin to circular ones in a Keplerian potential. Ring particles damp to these orbits and avoid destructive collisions. Dampingmore » and diffusion also help particles survive dynamical instabilities driven by resonances with the binary. In some situations, particles become trapped near resonances that sweep outward with the tidal evolution of the Pluto–Charon binary. With simple models and numerical experiments, we show how the Pluto–Charon impact ring may have expanded into a broad disk, out of which grew the circumbinary moons. In some scenarios, the ring can spread well beyond the orbit of Hydra, the most distant moon, to form a handful of smaller satellites. If these small moons exist, New Horizons will find them.« less
Maxwell Air Force Base Maxwell Air Force Base Join the Air Force Home News AF News Commentaries Services SAPR FOIA Retiree Activities Office Centennial Search Maxwell Air Force Base: Home > Units Site
Simulated single molecule microscopy with SMeagol.
Lindén, Martin; Ćurić, Vladimir; Boucharin, Alexis; Fange, David; Elf, Johan
2016-08-01
SMeagol is a software tool to simulate highly realistic microscopy data based on spatial systems biology models, in order to facilitate development, validation and optimization of advanced analysis methods for live cell single molecule microscopy data. SMeagol runs on Matlab R2014 and later, and uses compiled binaries in C for reaction-diffusion simulations. Documentation, source code and binaries for Mac OS, Windows and Ubuntu Linux can be downloaded from http://smeagol.sourceforge.net johan.elf@icm.uu.se Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Electrotransfer in Liquid Binary Aluminum Alloys
NASA Astrophysics Data System (ADS)
Tekuchev, V. V.; Kalinkin, D. P.; Ivanova, I. V.
2018-07-01
The mobility of ions in a liquid binary metal system based on aluminum is calculated for the first time in a wide range of concentrations, based on studies of its resistivity and self-diffusion coefficient. It is established that in an Al-Cu system, the ions of aluminum move to the anode, while Al-Mg, Al-Sn, and Al-Sb move to the cathode; i.e., there is inversion of the electrotransfer of aluminum ions. When the concentration of a component is reduced, the mobility of its ions is increased by the module.
NASA Astrophysics Data System (ADS)
Moghadasi, Jalil; Yousefi, Fakhri; Papari, Mohammad Mehdi; Faghihi, Mohammad Ali; Mohsenipour, Ali Asghar
2009-09-01
It is the purpose of this paper to extract unlike intermolecular potential energies of five carbon dioxide-based binary gas mixtures including CO2-He, CO2-Ne, CO2-Ar, CO2-Kr, and CO2-Xe from viscosity data and compare the calculated potentials with other models potential energy reported in literature. Then, dilute transport properties consisting of viscosity, diffusion coefficient, thermal diffusion factor, and thermal conductivity of aforementioned mixtures are calculated from the calculated potential energies and compared with literature data. Rather accurate correlations for the viscosity coefficient of afore-cited mixtures embracing the temperature range 200 K < T < 3273.15 K is reproduced from the present unlike intermolecular potentials energy. Our estimated accuracies for the viscosity are to within ±2%. In addition, the calculated potential energies are used to present smooth correlations for other transport properties. The accuracies of the binary diffusion coefficients are of the order of ±3%. Finally, the unlike interaction energy and the calculated low density viscosity have been employed to calculate high density viscosities using Vesovic-Wakeham method.
Environmental Assessment: Military Family Housing Privatization Maxwell Air Force Base
2005-06-01
Ray L. Raton Mildred J . Worthy February 9, 2005 Lt. Colonel David W. Maninez Deputy Commander, 42nd MSG 50 South LeMay Plaza (Bldg 804) Maxwell ...Environmental Assessment Military Family Housing Privatization Maxwell Air Force Base United States Air Force Air Education and Training Command... Maxwell Air Force Base, Alabama June 2005 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of
Diffusion Driven Combustion Waves in Porous Media
NASA Technical Reports Server (NTRS)
Aldushin, A. P.; Matkowsky, B. J.
2000-01-01
Filtration of gas containing oxidizer, to the reaction zone in a porous medium, due, e.g., to a buoyancy force or to an external pressure gradient, leads to the propagation of Filtration combustion (FC) waves. The exothermic reaction occurs between the fuel component of the solid matrix and the oxidizer. In this paper, we analyze the ability of a reaction wave to propagate in a porous medium without the aid of filtration. We find that one possible mechanism of propagation is that the wave is driven by diffusion of oxidizer from the environment. The solution of the combustion problem describing diffusion driven waves is similar to the solution of the Stefan problem describing the propagation of phase transition waves, in that the temperature on the interface between the burned and unburned regions is constant, the combustion wave is described by a similarity solution which is a function of the similarity variable x/square root of(t) and the wave velocity decays as 1/square root of(t). The difference between the two problems is that in the combustion problem the temperature is not prescribed, but rather, is determined as part of the solution. We will show that the length of samples in which such self-sustained combustion waves can occur, must exceed a critical value which strongly depends on the combustion temperature T(sub b). Smaller values of T(sub b) require longer sample lengths for diffusion driven combustion waves to exist. Because of their relatively small velocity, diffusion driven waves are considered to be relevant for the case of low heat losses, which occur for large diameter samples or in microgravity conditions, Another possible mechanism of porous medium combustion describes waves which propagate by consuming the oxidizer initially stored in the pores of the sample. This occurs for abnormally high pressure and gas density. In this case, uniformly propagating planar waves, which are kinetically controlled, can propagate, Diffusion of oxidizer decreases the wave velocity. In addition to the reaction and diffusion layers, the uniformly propagating wave structure includes a layer with a pressure gradient, where the gas motion is induced by the production or consumption of the gas in the reaction as well as by thermal expansion of the gas. The width of this zone determines the scale of the combustion wave in the porous medium.
Barreda, Ángela I.; Saleh, Hassan; Litman, Amelie; González, Francisco; Geffrin, Jean-Michel; Moreno, Fernando
2017-01-01
Sub-wavelength particles made from high-index dielectrics, either individual or as ensembles, are ideal candidates for multifunctional elements in optical devices. Their directionality effects are traditionally analysed through forward and backward measurements, even if these directions are not convenient for in-plane scattering practical purposes. Here we present unambiguous experimental evidence in the microwave range that for a dimer of HRI spherical particles, a perfect switching effect is observed out of those directions as a consequence of the mutual particle electric/magnetic interaction. The binary state depends on the excitation polarization. Its analysis is performed through the linear polarization degree of scattered radiation at a detection direction perpendicular to the incident direction: the beam-splitter configuration. The scaling property of Maxwell's equations allows the generalization of our results to other frequency ranges and dimension scales, for instance, the visible and the nanometric scale. PMID:28051061
By design: James Clerk Maxwell and the evangelical unification of science.
Stanley, Matthew
2012-03-01
James Clerk Maxwell's electromagnetic theory famously unified many of the Victorian laws of physics. This essay argues that Maxwell saw a deep theological significance in the unification of physical laws. He postulated a variation on the design argument that focused on the unity of phenomena rather than Paley's emphasis on complexity. This argument of Maxwell's is shown to be connected to his particular evangelical religious views. His evangelical perspective provided encouragement for him to pursue a unified physics that supplemented his other philosophical, technical and social influences. Maxwell's version of the argument from design is also contrasted with modern 'intelligent-design' theory.
NASA Astrophysics Data System (ADS)
De Vito, M. A.; Benvenuto, O. G.
In the last years, and thanks to advances in observational techniques, many astronomers have discovered in a great number of binary radio-pulsars the presence of a helium white dwarf resulting from a previous evolutionary state in which the progenitor of this star experienced one or more episodes of mass transfer to the compact component in the pair. That is the case for PSR B1855+09 (van Kerkwijk, M. H., Bell, J. F, Kaspi, V. M., & Kulkarni, S. R. 2000, ApJ 530, L37), where the mass for the white dwarf is known accurately from measurements of the Shapiro delay of the pulsar signal, MWD = 0.258+0.028-0.016 M⊙; for PSR J02018 + 4232 (Bassa, C. G., van Kerkwijk, M. H., & Kulkarni, S. R. 2003, A&A, 403, 1067), the spectra confirm that the companion is a helium-core white dwarf of ≈ 0.2 M⊙. On the other hand, there are several authors (Ferraro, F., Possenti, A., Sabbi, E., & D'Amico, N. 2003, ApJ, 596, L211; Bassa et al. 2003) that have identified the optical binary companion to the BMSP PSR J1911 - 5958A, located in the halo of the Galactic globular cluster NGC 6752, like a blue star whose position in the color-magnitude diagram is consistent with the cooling sequence of a low-mass, ≈ 0.17 - 0.20 M⊙, low metallicity helium white dwarf at the cluster distance. Finally, the color and magnitude of the stellar companion for B 1620-26 indicate that is a white dwarf of 0.34 ± 0.04 M⊙ (Sigurdson, S., Richer, H. B., Hansen, B. M., Stairs, I. H. & Thorset, S. E. 2003, Science, 301, 193S). This has motivated us to study the formation of low mass helium white dwarfs in the context of binary evolution. For that purpose, using the code of binary evolution, entirely developed in the Facultad de Ciencias Astronómicas y Geofísicas of the Universidad Nacional de La Plata, Argentina, we have investigated the effects of diffusive processes on the evolution of a star member of a close binary system. A similar study was performed for Althaus, L. G., Serenelli, A. M., & Benvenuto, O. G. (2001, MNRAS, 323, 471) but in that paper the mass transfer was mimicked by subtracting mass to a progenitor of 1 M⊙ to obtain the mass for the desired object. Actually, our binary code has a full nuclear reactions network for hydrogen and helium burning that allowed us to follow the abundances of fifteen isotopes throughout the entire evolution of the star. We have also included a detailed equation of state. The mass loss treatment is non conservative. We have modified the conditions for the beginning and end of mass transfer episodes. In our previous version, we assumed it to occur when the stellar radius was greater or smaller, respectively, that the Roche Lobe radius for the star. This introduced numerical problems, especially at the end of mass transfer phases. We adopted H. Ritter (1988, A&A, 202, 93) formulation that considers a finite scale height in the stellar atmosphere. The numerical behaviour in much more satisfactory, besides that it constitutes a more appropriate description for the physical problem. We perform the calculations for the evolution of the primary star in a close binary system of initial mass 2 M⊙, initial period of 1 day, initial mass ratio of 1.4142 and solar metallicity. We have done the calculations in four cases: A) with diffusion and all Roche Lobe overflows, B) with diffusion and only the first Roche Lobe overflow, C) without diffusion and all Roche Lobe overflows, D) without diffusion and only the first Roche Lobe overflow. Cases B) and D) where performed to compare with results obtained for Althaus et al. (2001). The main conclusion of this work is that the age of these objects is mainly determined by diffusive effects, and the late stages of mass transfer, not considered in Althaus et al. (2001), constituted a minor effect on the scales of cooling times.
MUTUAL DIFFUSION OF PAIRS OF RARE GASES AT DIFFERENT TEMPERATURES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, B.N.; Srivastava, K.P.
1959-04-01
The eoefficient of mutual diffusion of the binary gas mixtures Ne--Ar, Ar--Krs and Ne--Kr has been determined at 0, 15, 30s and 45 C. Diffusion is allowed to take place between two diffusion bulbs through a precision capillary tube and samples of gas are withdrawn from one bulb at different times and analyzed by a differential conductivity analyzer. From the experimentally determined values of the diffusion coefficient at different temperatures the unlike interaction parameters for the above gas pairs have been calculated by two different methods on the Lennard-Jones I2:6 model. These values of the force parameters are found tomore » be in good agreement with those obtained from the usual combination rules and also from the thermal diffusion data following the method of Srivastava and Madan. These values are found to reproduce the experimental data on mutual diffusion quite satisfactorily. With Kelvin's method, these data have also been utilized to calculate the self-diffusion coefficient of neon, argons and krypton. (auth)« less
Fixation, transient landscape, and diffusion dilemma in stochastic evolutionary game dynamics
NASA Astrophysics Data System (ADS)
Zhou, Da; Qian, Hong
2011-09-01
Agent-based stochastic models for finite populations have recently received much attention in the game theory of evolutionary dynamics. Both the ultimate fixation and the pre-fixation transient behavior are important to a full understanding of the dynamics. In this paper, we study the transient dynamics of the well-mixed Moran process through constructing a landscape function. It is shown that the landscape playing a central theoretical “device” that integrates several lines of inquiries: the stable behavior of the replicator dynamics, the long-time fixation, and continuous diffusion approximation associated with asymptotically large population. Several issues relating to the transient dynamics are discussed: (i) multiple time scales phenomenon associated with intra- and inter-attractoral dynamics; (ii) discontinuous transition in stochastically stationary process akin to Maxwell construction in equilibrium statistical physics; and (iii) the dilemma diffusion approximation facing as a continuous approximation of the discrete evolutionary dynamics. It is found that rare events with exponentially small probabilities, corresponding to the uphill movements and barrier crossing in the landscape with multiple wells that are made possible by strong nonlinear dynamics, plays an important role in understanding the origin of the complexity in evolutionary, nonlinear biological systems.
Diffusion of Magnetized Binary Ionic Mixtures at Ultracold Plasma Conditions
NASA Astrophysics Data System (ADS)
Vidal, Keith R.; Baalrud, Scott D.
2017-10-01
Ultracold plasma experiments offer an accessible means to test transport theories for strongly coupled systems. Application of an external magnetic field might further increase their utility by inhibiting heating mechanisms of ions and electrons and increasing the temperature at which strong coupling effects are observed. We present results focused on developing and validating a transport theory to describe binary ionic mixtures across a wide range of coupling and magnetization strengths relevant to ultracold plasma experiments. The transport theory is an extension of the Effective Potential Theory (EPT), which has been shown to accurately model correlation effects at these conditions, to include magnetization. We focus on diffusion as it can be measured in ultracold plasma experiments. Using EPT within the framework of the Chapman-Enskog expansion, the parallel and perpendicular self and interdiffusion coefficients for binary ionic mixtures with varying mass ratios are calculated and are compared to molecular dynamics simulations. The theory is found to accurately extend Braginskii-like transport to stronger coupling, but to break down when the magnetization strength becomes large enough that the typical gyroradius is smaller than the interaction scale length. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-16-1-0221.
Mathematical analysis of thermal diffusion shock waves
NASA Astrophysics Data System (ADS)
Gusev, Vitalyi; Craig, Walter; Livoti, Roberto; Danworaphong, Sorasak; Diebold, Gerald J.
2005-10-01
Thermal diffusion, also known as the Ludwig-Soret effect, refers to the separation of mixtures in a temperature gradient. For a binary mixture the time dependence of the change in concentration of each species is governed by a nonlinear partial differential equation in space and time. Here, an exact solution of the Ludwig-Soret equation without mass diffusion for a sinusoidal temperature field is given. The solution shows that counterpropagating shock waves are produced which slow and eventually come to a halt. Expressions are found for the shock time for two limiting values of the starting density fraction. The effects of diffusion on the development of the concentration profile in time and space are found by numerical integration of the nonlinear differential equation.
Mathematics of thermal diffusion in an exponential temperature field
NASA Astrophysics Data System (ADS)
Zhang, Yaqi; Bai, Wenyu; Diebold, Gerald J.
2018-04-01
The Ludwig-Soret effect, also known as thermal diffusion, refers to the separation of gas, liquid, or solid mixtures in a temperature gradient. The motion of the components of the mixture is governed by a nonlinear, partial differential equation for the density fractions. Here solutions to the nonlinear differential equation for a binary mixture are discussed for an externally imposed, exponential temperature field. The equation of motion for the separation without the effects of mass diffusion is reduced to a Hamiltonian pair from which spatial distributions of the components of the mixture are found. Analytical calculations with boundary effects included show shock formation. The results of numerical calculations of the equation of motion that include both thermal and mass diffusion are given.
Maxwell's contrived analogy: An early version of the methodology of modeling
NASA Astrophysics Data System (ADS)
Hon, Giora; Goldstein, Bernard R.
2012-11-01
The term "analogy" stands for a variety of methodological practices all related in one way or another to the idea of proportionality. We claim that in his first substantial contribution to electromagnetism James Clerk Maxwell developed a methodology of analogy which was completely new at the time or, to borrow John North's expression, Maxwell's methodology was a "newly contrived analogue". In his initial response to Michael Faraday's experimental researches in electromagnetism, Maxwell did not seek an analogy with some physical system in a domain different from electromagnetism as advocated by William Thomson; rather, he constructed an entirely artificial one to suit his needs. Following North, we claim that the modification which Maxwell introduced to the methodology of analogy has not been properly appreciated. In view of our examination of the evidence, we argue that Maxwell gave a new meaning to analogy; in fact, it comes close to modeling in current usage.
Confinement of the solar tachocline by a cyclic dynamo magnetic field
NASA Astrophysics Data System (ADS)
Barnabé, Roxane; Strugarek, Antoine; Charbonneau, Paul; Brun, Allan Sacha; Zahn, Jean-Paul
2017-05-01
Context. The surprising thinness of the solar tachocline is still not understood with certainty today. Among the numerous possible scenarios suggested to explain its radial confinement, one hypothesis is based on Maxwell stresses that are exerted by the cyclic dynamo magnetic field of the Sun penetrating over a skin depth below the turbulent convection zone. Aims: Our goal is to assess under which conditions (turbulence level in the tachocline, strength of the dynamo-generated field, spreading mechanism) this scenario can be realized in the solar tachocline. Methods: We develop a simplified 1D model of the upper tachocline under the influence of an oscillating magnetic field imposed from above. The turbulent transport is parametrized with enhanced turbulent diffusion (or anti-diffusion) coefficients. Two main processes that thicken the tachocline are considered; either turbulent viscous spreading or radiative spreading. An extensive parameter study is carried out to establish the physical parameter regimes under which magnetic confinement of the tachocline that is due to a surface dynamo field can be realized. Results: We have explored a large range of magnetic field amplitudes, viscosities, ohmic diffusivities and thermal diffusivities. We find that, for large but still realistic magnetic field strengths, the differential rotation can be suppressed in the upper radiative zone (and hence the tachocline confined) if weak turbulence is present (with an enhanced ohmic diffusivity of η> 107-8 cm2/ s), even in the presence of radiative spreading. Conclusions: Our results show that a dynamo magnetic field can, in the presence of weak turbulence, prevent the inward burrowing of a tachocline subject to viscous diffusion or radiative spreading.
Effect of component substitution on the atomic dynamics in glass-forming binary metallic melts
NASA Astrophysics Data System (ADS)
Nowak, B.; Holland-Moritz, D.; Yang, F.; Voigtmann, Th.; Evenson, Z.; Hansen, T. C.; Meyer, A.
2017-08-01
We investigate the substitution of early transition metals (Zr, Hf, and Nb) in Ni-based binary glass-forming metallic melts and the impact on structural and dynamical properties by using a combination of neutron scattering, electrostatic levitation (ESL), and isotopic substitution. The self-diffusion coefficients measured by quasielastic neutron scattering (QENS) identify a sluggish diffusion as well as an increased activation energy by almost a factor of 2 for Hf35Ni65 compared to Zr36Ni64 . This finding can be explained by the locally higher packing density of Hf atoms in Hf35Ni65 compared to Zr atoms in Zr36Ni64 , which has been derived from interatomic distances by analyzing the measured partial structure factors. Furthermore, QENS measurements of liquid Hf35Ni65 prepared with 60Ni , which has a vanishing incoherent scattering cross section, have demonstrated that self-diffusion of Hf is slowed down compared to the concentration weighted self-diffusion of Hf and Ni. This implies a dynamical decoupling between larger Hf and smaller Ni atoms, which can be related to a saturation effect of unequal atomic nearest-neighbor pairs, that was observed recently for Ni-rich compositions in Zr-Ni metallic melts. In order to establish a structure-dynamics relation, measured partial structure factors have been used as an input for mode-coupling theory (MCT) of the glass transition to calculate self-diffusion coefficients for the different atomic components. Remarkably, MCT can reproduce the increased activation energy for Hf35Ni65 as well as the dynamical decoupling between Hf and Ni atoms.
Zonal Flows and Long-lived Axisymmetric Pressure Bumps in Magnetorotational Turbulence
NASA Astrophysics Data System (ADS)
Johansen, A.; Youdin, A.; Klahr, H.
2009-06-01
We study the behavior of magnetorotational turbulence in shearing box simulations with a radial and azimuthal extent up to 10 scale heights. Maxwell and Reynolds stresses are found to increase by more than a factor of 2 when increasing the box size beyond two scale heights in the radial direction. Further increase of the box size has little or no effect on the statistical properties of the turbulence. An inverse cascade excites magnetic field structures at the largest scales of the box. The corresponding 10% variation in the Maxwell stress launches a zonal flow of alternating sub- and super-Keplerian velocity. This, in turn, generates a banded density structure in geostrophic balance between pressure and Coriolis forces. We present a simplified model for the appearance of zonal flows, in which stochastic forcing by the magnetic tension on short timescales creates zonal flow structures with lifetimes of several tens of orbits. We experiment with various improved shearing box algorithms to reduce the numerical diffusivity introduced by the supersonic shear flow. While a standard finite difference advection scheme shows signs of a suppression of turbulent activity near the edges of the box, this problem is eliminated by a new method where the Keplerian shear advection is advanced in time by interpolation in Fourier space.
Towards a bulk approach to local interactions of hydrometeors
NASA Astrophysics Data System (ADS)
Baumgartner, Manuel; Spichtinger, Peter
2018-02-01
The growth of small cloud droplets and ice crystals is dominated by the diffusion of water vapor. Usually, Maxwell's approach to growth for isolated particles is used in describing this process. However, recent investigations show that local interactions between particles can change diffusion properties of cloud particles. In this study we develop an approach for including these local interactions into a bulk model approach. For this purpose, a simplified framework of local interaction is proposed and governing equations are derived from this setup. The new model is tested against direct simulations and incorporated into a parcel model framework. Using the parcel model, possible implications of the new model approach for clouds are investigated. The results indicate that for specific scenarios the lifetime of cloud droplets in subsaturated air may be longer (e.g., for an initially water supersaturated air parcel within a downdraft). These effects might have an impact on mixed-phase clouds, for example in terms of riming efficiencies.
A Hydrodynamic Theory for Spatially Inhomogeneous Semiconductor Lasers: Microscopic Approach
NASA Technical Reports Server (NTRS)
Li, Jianzhong; Ning, C. Z.; Biegel, Bryan A. (Technical Monitor)
2001-01-01
Starting from the microscopic semiconductor Bloch equations (SBEs) including the Boltzmann transport terms in the distribution function equations for electrons and holes, we derived a closed set of diffusion equations for carrier densities and temperatures with self-consistent coupling to Maxwell's equation and to an effective optical polarization equation. The coherent many-body effects are included within the screened Hartree-Fock approximation, while scatterings are treated within the second Born approximation including both the in- and out-scatterings. Microscopic expressions for electron-hole (e-h) and carrier-LO (c-LO) phonon scatterings are directly used to derive the momentum and energy relaxation rates. These rates expressed as functions of temperatures and densities lead to microscopic expressions for self- and mutual-diffusion coefficients in the coupled density-temperature diffusion equations. Approximations for reducing the general two-component description of the electron-hole plasma (EHP) to a single-component one are discussed. In particular, we show that a special single-component reduction is possible when e-h scattering dominates over c-LO phonon scattering. The ambipolar diffusion approximation is also discussed and we show that the ambipolar diffusion coefficients are independent of e-h scattering, even though the diffusion coefficients of individual components depend sensitively on the e-h scattering rates. Our discussions lead to new perspectives into the roles played in the single-component reduction by the electron-hole correlation in momentum space induced by scatterings and the electron-hole correlation in real space via internal static electrical field. Finally, the theory is completed by coupling the diffusion equations to the lattice temperature equation and to the effective optical polarization which in turn couples to the laser field.
How to Obtain the Covariant Form of Maxwell's Equations from the Continuity Equation
ERIC Educational Resources Information Center
Heras, Jose A.
2009-01-01
The covariant Maxwell equations are derived from the continuity equation for the electric charge. This result provides an axiomatic approach to Maxwell's equations in which charge conservation is emphasized as the fundamental axiom underlying these equations.
Schremb, Markus; Campbell, James M; Christenson, Hugo K; Tropea, Cameron
2017-05-16
The thermal influence of a solid wall on the solidification of a sessile supercooled water drop is experimentally investigated. The velocity of the initial ice layer propagating along the solid substrate prior to dendritic solidification is determined from videos captured using a high-speed video system. Experiments are performed for varying substrate materials and liquid supercooling. In contrast to recent studies at moderate supercooling, in the case of metallic substrates only a weak influence of the substrate's thermal properties on the ice layer velocity is observed. Using the analytical solution of the two-phase Stefan problem, a semiempirical model for the ice layer velocity is developed. The experimental data are well described for all supercooling levels in the entire diffusion limited solidification regime. For higher supercooling, the model overestimates the freezing velocity due to kinetic effects during molecular attachment at the solid-liquid interface, which are not accounted for in the model. The experimental findings of the present work offer a new perspective on the design of anti-icing systems.
The influence of massive black hole binaries on the morphology of merger remnants
NASA Astrophysics Data System (ADS)
Bortolas, E.; Gualandris, A.; Dotti, M.; Read, J. I.
2018-06-01
Massive black hole (MBH) binaries, formed as a result of galaxy mergers, are expected to harden by dynamical friction and three-body stellar scatterings, until emission of gravitational waves (GWs) leads to their final coalescence. According to recent simulations, MBH binaries can efficiently harden via stellar encounters only when the host geometry is triaxial, even if only modestly, as angular momentum diffusion allows an efficient repopulation of the binary loss cone. In this paper, we carry out a suite of N-body simulations of equal-mass galaxy collisions, varying the initial orbits and density profiles for the merging galaxies and running simulations both with and without central MBHs. We find that the presence of an MBH binary in the remnant makes the system nearly oblate, aligned with the galaxy merger plane, within a radius enclosing 100 MBH masses. We never find binary hosts to be prolate on any scale. The decaying MBHs slightly enhance the tangential anisotropy in the centre of the remnant due to angular momentum injection and the slingshot ejection of stars on nearly radial orbits. This latter effect results in about 1 per cent of the remnant stars being expelled from the galactic nucleus. Finally, we do not find any strong connection between the remnant morphology and the binary hardening rate, which depends only on the inner density slope of the remnant galaxy. Our results suggest that MBH binaries are able to coalesce within a few Gyr, even if the binary is found to partially erase the merger-induced triaxiality from the remnant.
Módenes, Aparecido N; Espinoza-Quiñones, Fernando R; Colombo, Andréia; Geraldi, Claudinéia L; Trigueros, Daniela E G
2015-05-01
The uptake of Cd(2+) and Pb(2+) ions by a soybean hull (SH) biosorbent in single and binary systems has been investigated. Sorption tests regarding SH in natura and chemically treated were carried out testing a suitable value range of solution pH, sorption temperature and shaking velocity. Sorption capacity is improved at pH 4, 30 °C temperature and 100 rpm. When a strong base is applied, a related-to-untreated SH increasing of 20% in the sorption capacity of Pb(2+) ions was observed, but with poor results for Cd(2+) uptake. Additionally, a relatively strong decreasing in both sorption capacities of Pb(2+) and Cd(2+) ions was evidenced for all acidic treatments. Regarding untreated SH, kinetic sorption data of both metals were well-interpreted by a pseudo second-order model and a rate-limiting step on the basis of an intra-particle diffusion model was suggested to occur. An inhibitory effect of Pb(2+) diffusion over Cd(2+) one was observed, limiting to reach the obtained maximum sorption capacity in single system. Maximum adsorption capacities of 0.49 and 0.67mequivg(-1) for Cd(2+) and Pb(2+), respectively, were predicted by the Langmuir isotherm model that reproduced well the equilibrium sorption data for single systems. The inhibitory effect of one metal over the other one was verified in equilibrium sorption data for binary systems interpreted on the basis of a modified extended Langmuir isotherm model, predicting changes in metal affinity onto the SH surface. Finally, SH is an alternative biosorbent with a great potential for the wastewater treatment containing cadmium and lead ions. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lamorgese, A.; Mauri, R.
2017-04-01
We simulate the mixing (demixing) process of a quiescent binary liquid mixture with a composition-dependent viscosity which is instantaneously brought from the two-phase (one-phase) to the one-phase (two-phase) region of its phase diagram. Our theoretical approach follows a standard diffuse-interface model of partially miscible regular binary mixtures wherein convection and diffusion are coupled via a nonequilibrium capillary force, expressing the tendency of the phase-separating system to minimize its free energy. Based on 2D simulation results, we discuss the influence of viscosity ratio on basic statistics of the mixing (segregation) process triggered by a rapid heating (quench), assuming that the ratio of capillary to viscous forces (a.k.a. the fluidity coefficient) is large. We show that, for a phase-separating system, at a fixed value of the fluidity coefficient (with the continuous phase viscosity taken as a reference), the separation depth and the characteristic length of single-phase microdomains decrease monotonically for increasing values of the viscosity of the dispersed phase. This variation, however, is quite small, in agreement with experimental results. On the other hand, as one might expect, at a fixed viscosity of the dispersed phase both of the above statistics increase monotonically as the viscosity of the continuous phase decreases. Finally, we show that for a mixing system the attainment of a single-phase equilibrium state by coalescence and diffusion is retarded by an increase in the viscosity ratio at a fixed fluidity for the dispersed phase. In fact, for large enough values of the viscosity ratio, a thin film of the continuous phase becomes apparent when two drops of the minority phase approach each other, which further retards coalescence.
NASA Astrophysics Data System (ADS)
Mikołajewska, Joanna; Shara, Michael M.; Caldwell, Nelson; Iłkiewicz, Krystian; Zurek, David
2017-02-01
We present and discuss initial selection criteria and first results in M33 from a systematic search for extragalactic symbiotic stars. We show that the presence of diffuse ionized gas (DIG) emission can significantly contaminate the spectra of symbiotic star candidates. This important effect forces upon us a more stringent working definition of an extragalactic symbiotic star. We report the first detections and spectroscopic characterization of 12 symbiotic binaries in M33. We found that four of our systems contain carbon-rich giants. In another two of them, the giant seems to be a Zr-enhanced MS star, while the remaining six objects host M-type giants. The high number ratio of C to M giants in these binaries is consistent with the low metallicity of M33. The spatial and radial velocity distributions of these new symbiotic binaries are consistent with a wide range of progenitor star ages.
Diffuse-interface model for rapid phase transformations in nonequilibrium systems.
Galenko, Peter; Jou, David
2005-04-01
A thermodynamic approach to rapid phase transformations within a diffuse interface in a binary system is developed. Assuming an extended set of independent thermodynamic variables formed by the union of the classic set of slow variables and the space of fast variables, we introduce finiteness of the heat and solute diffusive propagation at the finite speed of the interface advancing. To describe transformations within the diffuse interface, we use the phase-field model which allows us to follow steep but smooth changes of phase within the width of the diffuse interface. Governing equations of the phase-field model are derived for the hyperbolic model, a model with memory, and a model of nonlinear evolution of transformation within the diffuse interface. The consistency of the model is proved by the verification of the validity of the condition of positive entropy production and by outcomes of the fluctuation-dissipation theorem. A comparison with existing sharp-interface and diffuse-interface versions of the model is given.
Non-moving Hadamard matrix diffusers for speckle reduction in laser pico-projectors
NASA Astrophysics Data System (ADS)
Thomas, Weston; Middlebrook, Christopher
2014-12-01
Personal electronic devices such as cell phones and tablets continue to decrease in size while the number of features and add-ons keep increasing. One particular feature of great interest is an integrated projector system. Laser pico-projectors have been considered, but the technology has not been developed enough to warrant integration. With new advancements in diode technology and MEMS devices, laser-based projection is currently being advanced for pico-projectors. A primary problem encountered when using a pico-projector is coherent interference known as speckle. Laser speckle can lead to eye irritation and headaches after prolonged viewing. Diffractive optical elements known as diffusers have been examined as a means to lower speckle contrast. This paper presents a binary diffuser known as a Hadamard matrix diffuser. Using two static in-line Hadamard diffusers eliminates the need for rotation or vibration of the diffuser for temporal averaging. Two Hadamard diffusers were fabricated and contrast values measured showing good agreement with theory and simulated values.
Geometrical optimization of sensors for eddy currents nondestructive testing and evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thollon, F.; Burais, N.
1995-05-01
Design of Non Destructive Testing (NDT) and Non Destructive Evaluation (NDE) sensors is possible by solving Maxwell`s relations with FEM or BIM. But the large number of geometrical and electrical parameters of sensor and tested material implies many results that don`t give necessarily a well adapted sensor. The authors have used a genetic algorithm for automatic optimization. After having tested this algorithm with analytical solution of Maxwell`s relations for cladding thickness measurement, the method has been implemented in finite element package.
NASA Astrophysics Data System (ADS)
Leys, Jan; Losada-Pérez, Patricia; Cordoyiannis, George; Cerdeiriña, Claudio A.; Glorieux, Christ; Thoen, Jan
2010-03-01
Detailed results are reported for the dielectric constant ɛ as a function of temperature, concentration, and frequency near the upper critical point of the binary liquid mixture nitrobenzene-tetradecane. The data have been analyzed in the context of the recently developed concept of complete scaling. It is shown that the amplitude of the low frequency critical Maxwell-Wagner relaxation (with a relaxation frequency around 10 kHz) along the critical isopleth is consistent with the predictions of a droplet model for the critical fluctuations. The temperature dependence of ɛ in the homogeneous phase can be well described with a combination of a (1-α) power law term (with α the heat capacity critical exponent) and a linear term in reduced temperature with the Ising value for α. For the proper description of the temperature dependence of the difference Δɛ between the two coexisting phases below the critical temperature, it turned out that good fits with the Ising value for the order parameter exponent β required the addition of a corrections-to-scaling contribution or a linear term in reduced temperature. Good fits to the dielectric diameter ɛd require a (1-α) power law term, a 2β power law term (in the past considered as spurious), and a linear term in reduced temperature, consistent with complete scaling.
ERIC Educational Resources Information Center
Physics Education, 1982
1982-01-01
Describes: (1) an apparatus which provides a simple method for measuring Stefan's constant; (2) a simple phase shifting circuit; (3) a radioactive decay computer program (for ZX81); and (4) phase difference between transformer voltages. (Author/JN)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suaste, Ernesto; Castillo, Victor; Gonzalez, Ruben
2004-07-15
A method for determination of the phase transition in piezoelectric ceramic based on the relationship expressed by the Stefan-Boltzmann law is reported, i.e., by means of the radiation that the piezoelectric ceramic emits when it is subjected to different temperatures. The experiment is performed in piezoelectric ceramic based on PbTiO{sub 3} modified by the partial substitution of rare earths for Pb in the Pb{sub 0.88}(Ln){sub 0.08}Ti{sub 0.98}Mn{sub 0.02}O{sub 3} system (Ln=La, Sm, Eu). From the measured emitted radiation, the value of the emissivity is calculated for each type of piezoelectric ceramic.
Characterization of thunderstorm induced Maxwell current densities in the middle atmosphere
NASA Technical Reports Server (NTRS)
Baginski, Michael Edward
1989-01-01
Middle atmospheric transient Maxwell current densities generated by lightning induced charge perturbations are investigated via a simulation of Maxwell's equations. A time domain finite element analysis is employed for the simulations. The atmosphere is modeled as a region contained within a right circular cylinder with a height of 110 km and radius of 80 km. A composite conductivity profile based on measured data is used when charge perturbations are centered about the vertical axis at altitudes of 6 and 10 km. The simulations indicate that the temporal structure of the Maxwell current density is relatively insensitive to altitude variation within the region considered. It is also shown that the electric field and Maxwell current density are not generally aligned.
Dynamics of glycerine and water transport across human skin from binary mixtures.
Ventura, S A; Kasting, G B
2017-04-01
Skin transport properties of glycerine and water from binary mixtures contacting human skin were determined to better understand the mechanism of skin moisturization by aqueous glycerine formulations. Steady-state permeation for 3 H 2 O and 14 C-glycerine across split-thickness human skin in vitro and desorption dynamics of the same permeants in isolated human stratum corneum (HSC) were experimentally determined under near equilibrium conditions. These data were compared to a priori values developed in the context of a thermodynamic model for binary mixtures of glycerine and water and a previously determined water sorption isotherm for HSC. This allowed the estimation of diffusion and partition coefficients for each permeant in the HSC, as well as HSC thickness, as a function of composition of the contacting solution. These data may be used to estimate water retention and associated HSC swelling related to the absorption and slow release of glycerine from the skin. It took 6+ days for glycerine to completely desorb from HSC immersed in glycerine/water binary solutions. Desorption of both 3 H 2 O and 14 C-glycerine from HSC was slower in pure water than from binary mixtures, a result that is largely explained by the greater swelling of HSC in water. Parametric relationships were developed for water and glycerine intradiffusivities in HSC as functions of HSC water content, and a mutual diffusion coefficient was estimated by analogy with glycerine/water binary solutions. The intradiffusivity of 14 C-glycerine in HSC as inferred from sorption/desorption experiments was shown to be approximately 10-fold less than that inferred from permeation experiments, whereas the corresponding values for 3 H 2 O were comparable. These studies confirm that glycerine enters HSC in substantial quantities and has a long residence time therein. The coupling between bulk water and glycerine transport projected from binary solution data suggests the net effect of glycerine is to slow water loss from the skin. The data support the concept of glycerine as a humectant with an excellent balance of skin penetration and retention characteristics; however, they do not rule out the possibility of an additional biological effect on skin barrier homoeostasis. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
2-Hydroxypropyltrimethylammonium xylan adsorption onto rod-like cellulose nanocrystal.
Sim, Jae Hyun; Dong, Shuping; Röemhild, Katrin; Kaya, Abdulaziz; Sohn, Daewon; Tanaka, Keiji; Roman, Maren; Heinze, Thomas; Esker, Alan R
2015-02-15
Chemical incompatibility and relatively weak interaction between lignocellulosic fibers and synthetic polymers have made studies of wood fiber-thermoplastic composite more challenging. In this study, adsorption of 2-hydroxypropyltrimethylammonium xylans onto rod-like cellulose nanocrystals are investigated by zeta-potential measurements, and polarized and depolarized dynamic light scattering as a factor for better understanding of lignocellulosic fibers and cellulose nanocrystals. Zeta-potential measurements show xylan derivative adsorption onto cellulose nanocrystals. Decay time distributions of the ternary system and binary system from dynamic light scattering show that aggregates exist in the binary system and they disappear in the ternary system. At low 2-hydroxypropyltrimethylammonium xylan concentrations relative to that of cellulose nanocrystal, xylan derivatives adsorbed onto some of the cellulose nanocrystal. Hence, more xylan derivatives adsorbed onto cellulose nanocrystal increased with increasing xylan derivative concentration. Also, the concentration dependence of the ratio of the rotational diffusion coefficient to the translational diffusion coefficient revealed a strong adsorptive interaction between xylan derivatives and the cellulose nanocrystals. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
López-López, J. M.; Moncho-Jordá, A.; Schmitt, A.; Hidalgo-Álvarez, R.
2005-09-01
Binary diffusion-limited cluster-cluster aggregation processes are studied as a function of the relative concentration of the two species. Both, short and long time behaviors are investigated by means of three-dimensional off-lattice Brownian Dynamics simulations. At short aggregation times, the validity of the Hogg-Healy-Fuerstenau approximation is shown. At long times, a single large cluster containing all initial particles is found to be formed when the relative concentration of the minority particles lies above a critical value. Below that value, stable aggregates remain in the system. These stable aggregates are composed by a few minority particles that are highly covered by majority ones. Our off-lattice simulations reveal a value of approximately 0.15 for the critical relative concentration. A qualitative explanation scheme for the formation and growth of the stable aggregates is developed. The simulations also explain the phenomenon of monomer discrimination that was observed recently in single cluster light scattering experiments.
Liu, Jin; Gan, Huihui; Wu, Hongzhang; Zhang, Xinlei; Zhang, Jun; Li, Lili; Wang, Zhenling
2018-01-01
Porous hollow Ga2O3 nanoparticles were successfully synthesized by a hydrolysis method followed by calcination. The prepared samples were characterized by field emission scanning electron microscope, transmission electron microscope, thermogravimetry and differential scanning calorimetry, UV-vis diffuse reflectance spectra and Raman spectrum. The porous structure of Ga2O3 nanoparticles can enhance the light harvesting efficiency, and provide lots of channels for the diffusion of Cr(VI) and Cr(III). Photocatalytic reduction of Cr(VI), with different initial pH and degradation of several organic substrates by porous hollow Ga2O3 nanoparticles in single system and binary system, were investigated in detail. The reduction rate of Cr(VI) in the binary pollutant system is markedly faster than that in the single Cr(VI) system, because Cr(VI) mainly acts as photogenerated electron acceptor. In addition, the type and concentration of organic substrates have an important role in the photocatalytic reduction of Cr(VI). PMID:29690548
Organosilica Membrane with Ionic Liquid Properties for Separation of Toluene/H₂ Mixture.
Hirota, Yuichiro; Maeda, Yohei; Yamamoto, Yusuke; Miyamoto, Manabu; Nishiyama, Norikazu
2017-08-03
In this study, we present a new concept in chemically stabilized ionic liquid membranes: an ionic liquid organosilica (ILOS) membrane, which is an organosilica membrane with ionic liquid-like properties. A silylated ionic liquid was used as a precursor for synthesis. The permselectivity, permeation mechanism, and stability of the membrane in the H₂/toluene binary system were then compared with a supported ionic liquid membrane. The membrane showed a superior separation factor of toluene/H₂ (>17,000) in a binary mixture system based on a solution-diffusion mechanism with improved durability over the supported ionic liquid membrane.
Nonergodicity of microfine binary systems
NASA Astrophysics Data System (ADS)
Son, L. D.; Sidorov, V. E.; Popel', P. S.; Shul'gin, D. B.
2016-02-01
The correction to the equation of state that is related to the nonergodicity of diffusion dynamics is discussed for a binary solid solution with a limited solubility. It is asserted that, apart from standard thermodynamic variables (temperature, volume, concentration), this correction should be taken into account in the form of the average local chemical potential fluctuations associated with microheterogeneity in order to plot a phase diagram. It is shown that a low value of this correction lowers the miscibility gap and that this gap splits when this correction increases. This situation is discussed for eutectic systems and Ga-Pb, Fe-Cu, and Cu-Zr alloys.
Sucrose diffusion in aqueous solution
Murray, Benjamin J.
2016-01-01
The diffusion of sugar in aqueous solution is important both in nature and in technological applications, yet measurements of diffusion coefficients at low water content are scarce. We report directly measured sucrose diffusion coefficients in aqueous solution. Our technique utilises a Raman isotope tracer method to monitor the diffusion of non-deuterated and deuterated sucrose across a boundary between the two aqueous solutions. At a water activity of 0.4 (equivalent to 90 wt% sucrose) at room temperature, the diffusion coefficient of sucrose was determined to be approximately four orders of magnitude smaller than that of water in the same material. Using literature viscosity data, we show that, although inappropriate for the prediction of water diffusion, the Stokes–Einstein equation works well for predicting sucrose diffusion under the conditions studied. As well as providing information of importance to the fundamental understanding of diffusion in binary solutions, these data have technological, pharmaceutical and medical implications, for example in cryopreservation. Moreover, in the atmosphere, slow organic diffusion may have important implications for aerosol growth, chemistry and evaporation, where processes may be limited by the inability of a molecule to diffuse between the bulk and the surface of a particle. PMID:27364512
Measurement of diffusion in fluid systems: Applications to the supercritical fluid region
NASA Astrophysics Data System (ADS)
Bruno, Thomas J.
1994-04-01
The experimental procedures that are applicable to the measurement of diffusion in supercritical fluid solutions are reviewed. This topic is of great importance to the proper design of advanced aircraft and turbine fuels, since the fuels on these aircraft may sometimes operate under supercritical fluid conditions. More specifically, we will consider measurements of the binary interaction diffusion coefficient D exp 12 of a solute (species 1) and the solvent (species 2). In this discussion, the supercritical fluid is species 2, and the solute, species 1, will be at a relatively low concentration, sometimes approaching infinite dilution. After a brief introduction to the concept of diffusion, we will discuss in detail the use of chromatographic methods, and then briefly treat light scattering, nuclear magnetic resonance spectra, and physical methods.
Thermodynamic properties and diffusion of water + methane binary mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shvab, I.; Sadus, Richard J., E-mail: rsadus@swin.edu.au
2014-03-14
Thermodynamic and diffusion properties of water + methane mixtures in a single liquid phase are studied using NVT molecular dynamics. An extensive comparison is reported for the thermal pressure coefficient, compressibilities, expansion coefficients, heat capacities, Joule-Thomson coefficient, zero frequency speed of sound, and diffusion coefficient at methane concentrations up to 15% in the temperature range of 298–650 K. The simulations reveal a complex concentration dependence of the thermodynamic properties of water + methane mixtures. The compressibilities, heat capacities, and diffusion coefficients decrease with increasing methane concentration, whereas values of the thermal expansion coefficients and speed of sound increase. Increasing methanemore » concentration considerably retards the self-diffusion of both water and methane in the mixture. These effects are caused by changes in hydrogen bond network, solvation shell structure, and dynamics of water molecules induced by the solvation of methane at constant volume conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Streza, M.; Dadarlat, D.; Strzałkowski, K.
An accurate determination of thermophysical properties such as thermal diffusivity, thermal effusivity and thermal conductivity is extremely important for characterization and quality assurance of semiconductors. Thermal diffusivity and effusivity of some binary semiconductors have been investigated. Two experimental techniques were used: a contact technique (PPE calorimetry) and a non contact technique (lock-in thermography). When working with PPE, in the back (BPPE) configuration and in the thermally thick regim of the pyroelectric sensor, we can get the thermal diffusivity of the sample by performing a scanning of the excitation frequency of radiation. Thermal effusivity is obtained in front configuration (sensor directlymore » irradiated and sample in back position) by performing a thickness scan of a coupling fluid. By using the lock-in thermography technique, the thermal diffusivity of the sample is obtained from the phase image. The results obtained by the two techniques are in good agreement. Nevertheless, for the determination of thermal diffusivity, lock-in thermography is preferred.« less
GSC 4232.2850, a new eclipsing binary with elliptical orbit
NASA Astrophysics Data System (ADS)
Goranskij, V.; Shugarov, S.; Kroll, P.; Golovin, A.
2005-04-01
GSC 4232.2830 (20h 01m 28s.407, +61? 10' 17".18, 2000.0, v=12m.1) was suspected to be an eclipsing binary by VPG in the routine overview of photographical plates taken with 40-cm astrograph of SAI Crimean station. To define orbital elements of the binary, we searched for observations in Sonneberg Observatory plate collection, NSVS database (Wozniak et al., 2004), and carried out visual monitoring with a small telescope equipped with an electronic image tube, an analogue of a night vision device. Later, when we had found a preliminary solution, we carried out accurate CCD photometry to improve the orbital elements. We should note, that the depths of eclipses in the NSVS database do not exceed 0m.2, what contradicts to other observations. We suppose that NSVS measurements concern to integral light of two stars, a variable star, and a nearby brighter star, GSC 4232.2395, due to low resolution of this survey, 72". Using all the available observations we found the single orbital solution with an elliptical orbit and the period of 11,6 day. The center of the secondary minimum occurs at the orbital phase 0.69835 or 8.1 day after the primary minimum. The improved ephemeris derived using accurate CCD observations is following: HJD Min I = 2453278,3185(2) + 11.628188 (5) x E. O-C analysis does not show orbital period variations during the time interval of observations, or any evidence of apsidal motion. The observations show that both eclipses have about equal depth 0m.60, but essentially different duration, 0p.028 (7 h.8) for Min I, and 0 p.0175 (4 h.9) for Min II. The eclipses are partial. CCD photometry gives mean colors U-B = -0 m.06, B-V = 0 m.57, and V-R = 0 m.50 without notable color variations in the eclipse phases. Old Sonneberg photographic observations indicate that the eclipses were shallower in the middle of the past century than in the present time! Such contradictions may suggest that the depth of eclipses varied, as in the well-known system SSLac (Mossakovskaja, 1993; Milone et al, 2000; Torres and Stefanic, 2001). The eclipse depth variations should be verified with more precise observations taken during the longer time interval.
Maxwell's inductions from Faraday's induction law
NASA Astrophysics Data System (ADS)
Redžić, D. V.
2018-03-01
In article 598 of his Treatise on Electricity and Magnetism (Maxwell 1891 A Treatise on Electricity and Magnetism (Oxford: Clarendon)), Maxwell gives a seminal analysis of Faraday's law of electromagnetic induction. We present a detailed account of the analysis, attempting to reconstruct the missing steps, and discuss some related matters.
Maxwell Equations and the Redundant Gauge Degree of Freedom
ERIC Educational Resources Information Center
Wong, Chun Wa
2009-01-01
On transformation to the Fourier space (k,[omega]), the partial differential Maxwell equations simplify to algebraic equations, and the Helmholtz theorem of vector calculus reduces to vector algebraic projections. Maxwell equations and their solutions can then be separated readily into longitudinal and transverse components relative to the…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-02
... Anthropology and San Diego Museum of Man professional staff in consultation with representatives of the Pueblo... Inventory Completion: Maxwell Museum of Anthropology, University of New Mexico, Albuquerque, NM AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Maxwell Museum of Anthropology has completed...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haber, Eldad
2014-03-17
The focus of research was: Developing adaptive mesh for the solution of Maxwell's equations; Developing a parallel framework for time dependent inverse Maxwell's equations; Developing multilevel methods for optimization problems with inequality constraints; A new inversion code for inverse Maxwell's equations in the 0th frequency (DC resistivity); A new inversion code for inverse Maxwell's equations in low frequency regime. Although the research concentrated on electromagnetic forward and in- verse problems the results of the research was applied to the problem of image registration.
James Clerk Maxwell, a precursor of system identification and control science
NASA Astrophysics Data System (ADS)
Bittanti, Sergio
2015-12-01
One hundred and fifty years ago James Clerk Maxwell published his celebrated paper 'Dynamical theory of electromagnetic field', where the interaction between electricity and magnetism eventually found an explanation. However, Maxwell was also a precursor of model identification and control ideas. Indeed, with the paper 'On Governors' of 1869, he introduced the concept of feedback control system; and moreover, with his essay on Saturn's rings of 1856 he set the basic principle of system identification. This paper is a tutorial exposition having the aim to enlighten these latter aspects of Maxwell's work.
Maxwell's color statistics: from reduction of visible errors to reduction to invisible molecules.
Cat, Jordi
2014-12-01
This paper presents a cross-disciplinary and multi-disciplinary account of Maxwell's introduction of statistical models of molecules for the composition of gases. The account focuses on Maxwell's deployment of statistical models of data in his contemporaneous color researches as established in Cambridge mathematical physics, especially by Maxwell's seniors and mentors. The paper also argues that the cross-disciplinary, or cross-domain, transfer of resources from the natural and social sciences took place in both directions and relied on the complex intra-disciplinary, or intra-domain, dynamics of Maxwell's researches in natural sciences, in color theory, physical astronomy, electromagnetism and dynamical theory of gases, as well as involving a variety of types of communicating and mediating media, from material objects to concepts, techniques and institutions.
Falconer, Isobel
In 1877 James Clerk Maxwell and his student Donald MacAlister refined Henry Cavendish's 1773 null experiment demonstrating the absence of electricity inside a charged conductor. This null result was a mathematical prediction of the inverse square law of electrostatics, and both Cavendish and Maxwell took the experiment as verifying the law. However, Maxwell had already expressed absolute conviction in the law, based on results of Michael Faraday's. So, what was the value to him of repeating Cavendish's experiment? After assessing whether the law was as secure as he claimed, this paper explores its central importance to the electrical programme that Maxwell was pursuing. It traces the historical and conceptual re-orderings through which Maxwell established the law by constructing a tradition of null tests and asserting the superior accuracy of the method. Maxwell drew on his developing 'doctrine of method' to identify Cavendish's experiment as a member of a wider class of null methods. By doing so, he appealed to the null practices of telegraph engineers, diverted attention from the flawed logic of the method, and sought to localise issues around the mapping of numbers onto instrumental indications, on the grounds that 'no actual measurement … was required'. Copyright © 2017 Elsevier Ltd. All rights reserved.
Modeling Thermal Transport and Surface Deformation on Europa using Realistic Rheologies
NASA Astrophysics Data System (ADS)
Linneman, D.; Lavier, L.; Becker, T. W.; Soderlund, K. M.
2017-12-01
Most existing studies of Europa's icy shell model the ice as a Maxwell visco-elastic solid or viscous fluid. However, these approaches do not allow for modeling of localized deformation of the brittle part of the ice shell, which is important for understanding the satellite's evolution and unique geology. Here, we model the shell as a visco-elasto-plastic material, with a brittle Mohr-Coulomb elasto-plastic layer on top of a convective Maxwell viscoelastic layer, to investigate how thermal transport processes relate to the observed deformation and topography on Europa's surface. We use Fast Lagrangian Analysis of Continua (FLAC) code, which employs an explicit time-stepping algorithm to simulate deformation processes in Europa's icy shell. Heat transfer drives surface deformation within the icy shell through convection and tidal dissipation due to its elliptical orbit around Jupiter. We first analyze the visco-elastic behavior of a convecting ice layer and the parameters that govern this behavior. The regime of deformation depends on the magnitude of the stress (diffusion creep at low stresses, grain-size-sensitive creep at intermediate stresses, dislocation creep at high stresses), so we calculate effective viscosity each time step using the constitutive stress-strain equation and a combined flow law that accounts for all types of deformation. Tidal dissipation rate is calculated as a function of the temperature-dependent Maxwell relaxation time and the square of the second invariant of the strain rate averaged over each orbital period. After we initiate convection in the viscoelastic layer by instituting an initial temperature perturbation, we then add an elastoplastic layer on top of the convecting layer and analyze how the brittle ice reacts to stresses from below and any resulting topography. We also take into account shear heating along fractures in the brittle layer. We vary factors such as total shell thickness and minimum viscosity, as these parameters are not well constrained, and determine how this affects the thickness and deformation of the brittle layer.
NASA Astrophysics Data System (ADS)
Nusca, Michael Joseph, Jr.
The effects of various gasdynamic phenomena on the attenuation of an electromagnetic wave propagating through the nonequilibrium chemically reacting air flow field generated by an aerodynamic body travelling at high velocity is investigated. The nonequilibrium flow field is assumed to consist of seven species including nitric oxide ions and free electrons. The ionization of oxygen and nitrogen atoms is ignored. The aerodynamic body considered is a blunt wedge. The nonequilibrium chemically reacting flow field around this body is numerically simulated using a computer code based on computational fluid dynamics. The computer code solves the Navier-Stokes equations including mass diffusion and heat transfer, using a time-marching, explicit Runge-Kutta scheme. A nonequilibrium air kinetics model consisting of seven species and twenty-eight reactions as well as an equilibrium air model consisting of the same seven species are used. The body surface boundaries are considered as adiabatic or isothermal walls, as well as fully-catalytic and non-catalytic surfaces. Both laminar and turbulent flows are considered; wall generated flow turbulence is simulated using an algebraic mixing length model. An electromagnetic wave is considered as originating from an antenna within the body and is effected by the free electrons in the chemically reacting flow. Analysis of the electromagnetics is performed separately from the fluid dynamic analysis using a series solution of Maxwell's equations valid for the propagation of a long-wavelength plane electromagnetic wave through a thin (i.e., in comparison to wavelength) inhomogeneous plasma layer. The plasma layer is the chemically reacting shock layer around the body. The Navier-Stokes equations are uncoupled from Maxwell's equations. The results of this computational study demonstrate for the first time and in a systematic fashion, the importance of several parameters including equilibrium chemistry, nonequilibrium chemical kinetics, the reaction mechanism, flow viscosity, mass diffusion, and wall boundary conditions on modeling wave attenuation resulting from the interaction of an electromagnetic wave with an aerodynamic plasma. Comparison is made with experimental data.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-02
... Intent to Repatriate Cultural Items: Maxwell Museum of Anthropology, University of New Mexico... Anthropology, in consultation with the Pueblo of Santa Ana, New Mexico, has determined that a collection of... cultural affiliation with the cultural items should contact the Maxwell Museum of Anthropology at the...
An inverse model for a free-boundary problem with a contact line: Steady case
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkov, Oleg; Protas, Bartosz
2009-07-20
This paper reformulates the two-phase solidification problem (i.e., the Stefan problem) as an inverse problem in which a cost functional is minimized with respect to the position of the interface and subject to PDE constraints. An advantage of this formulation is that it allows for a thermodynamically consistent treatment of the interface conditions in the presence of a contact point involving a third phase. It is argued that such an approach in fact represents a closure model for the original system and some of its key properties are investigated. We describe an efficient iterative solution method for the Stefan problemmore » formulated in this way which uses shape differentiation and adjoint equations to determine the gradient of the cost functional. Performance of the proposed approach is illustrated with sample computations concerning 2D steady solidification phenomena.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erpenbeck, J.J.
1993-07-01
The equation of state and the transport coefficients of shear viscosity, thermal conductivity, thermal diffusion, and mutal diffusion are estimated for a binary, equimolar mixture of hard spheres having a diameter ratio of 0.4 and a mass ratio of 0.03 at volumes in the range 1.7[ital V][sub 0] to 3[ital V][sub 0] ([ital V][sub 0]=1/2 [radical]2 N[ital tsum][sub [ital a]x[ital a
Low Mach number fluctuating hydrodynamics of multispecies liquid mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donev, Aleksandar, E-mail: donev@courant.nyu.edu; Bhattacharjee, Amit Kumar; Nonaka, Andy
We develop a low Mach number formulation of the hydrodynamic equations describing transport of mass and momentum in a multispecies mixture of incompressible miscible liquids at specified temperature and pressure, which generalizes our prior work on ideal mixtures of ideal gases [Balakrishnan et al., “Fluctuating hydrodynamics of multispecies nonreactive mixtures,” Phys. Rev. E 89 013017 (2014)] and binary liquid mixtures [Donev et al., “Low mach number fluctuating hydrodynamics of diffusively mixing fluids,” Commun. Appl. Math. Comput. Sci. 9(1), 47-105 (2014)]. In this formulation, we combine and extend a number of existing descriptions of multispecies transport available in the literature. Themore » formulation applies to non-ideal mixtures of arbitrary number of species, without the need to single out a “solvent” species, and includes contributions to the diffusive mass flux due to gradients of composition, temperature, and pressure. Momentum transport and advective mass transport are handled using a low Mach number approach that eliminates fast sound waves (pressure fluctuations) from the full compressible system of equations and leads to a quasi-incompressible formulation. Thermal fluctuations are included in our fluctuating hydrodynamics description following the principles of nonequilibrium thermodynamics. We extend the semi-implicit staggered-grid finite-volume numerical method developed in our prior work on binary liquid mixtures [Nonaka et al., “Low mach number fluctuating hydrodynamics of binary liquid mixtures,” http://arxiv.org/abs/1410.2300 (2015)] and use it to study the development of giant nonequilibrium concentration fluctuations in a ternary mixture subjected to a steady concentration gradient. We also numerically study the development of diffusion-driven gravitational instabilities in a ternary mixture and compare our numerical results to recent experimental measurements [Carballido-Landeira et al., “Mixed-mode instability of a miscible interface due to coupling between Rayleigh–Taylor and double-diffusive convective modes,” Phys. Fluids 25, 024107 (2013)] in a Hele-Shaw cell. We find that giant nonequilibrium fluctuations can trigger the instability but are eventually dominated by the deterministic growth of the unstable mode, in both quasi-two-dimensional (Hele-Shaw) and fully three-dimensional geometries used in typical shadowgraph experiments.« less
Dynamical studies of confined fluids and polymers
NASA Astrophysics Data System (ADS)
Grabowski, Christopher A.
Soft matter, a class of materials including polymers, colloids, and surfactant molecules, are ubiquitous in our everyday lives. Plastics, soaps, foods and living organisms are mostly comprised of soft materials. Research conducted to understand soft matter behavior at the molecular level is essential to create new materials with unique properties. Self-healing plastics, targeted drug delivery, and nanowire assemblies have all been further advanced by soft matter research. The author of this dissertation investigates fundamental soft matter systems, including polymer solutions and melts, colloid dispersions in polymer melts, and interfacial fluids. The dynamics of polymers and confined fluids were studied using the single-molecule sensitive technique of fluorescence correlation spectroscopy (FCS). Here, fluorescent dyes are attached to polymer coils or by introducing free dyes directly into the solution/film. Complementary experiments were also performed, utilizing atomic force microscopy (AFM) and ellipsometry. FCS and AFM experiments demonstrated the significant difference in properties of thin fluid films of the nearly spherical, nonpolar molecule TEHOS (tetrakis(2-ethylhexoxy)silane) when compared to its bulk counterpart. AFM experiments confirmed TEHOS orders in layers near a solid substrate. FCS experiments show that free dyes introduced in these thin films do not have a single diffusion coefficient, indicating that these films have heterogeneity at the molecular level. FCS experiments have been applied to study the diffusion of gold colloids. The diffusion of gold colloids in polymer melts was found to dramatically depart from the Stokes-Einstein prediction when colloid size was smaller than the surrounding polymer mesh size. This effect is explained by noting the viscosity experienced by the colloid is not equivalent to the overall bulk viscosity of the polymer melt. The conformational change of polymers immersed in a binary solvent was measured via FCS. This experiment was conducted to test a theory proposed by Brochard and de Gennes, who postulated a polymer chain undergoes a collapse and a dramatic re-swelling as the critical point of the binary mixture is approached. Measuring polymer chain diffusion as a function of temperature, this theory was confirmed. To my knowledge, this was the first experimental evidence of contraction/re-swelling for polymers in critical binary solvents.
Tidal Evolution of Asteroidal Binaries. Ruled by Viscosity. Ignorant of Rigidity.
NASA Astrophysics Data System (ADS)
Efroimsky, Michael
2015-10-01
This is a pilot paper serving as a launching pad for study of orbital and spin evolution of binary asteroids. The rate of tidal evolution of asteroidal binaries is defined by the dynamical Love numbers kl divided by quality factors Q. Common in the literature is the (oftentimes illegitimate) approximation of the dynamical Love numbers with their static counterparts. Since the static Love numbers are, approximately, proportional to the inverse rigidity, this renders a popular fallacy that the tidal evolution rate is determined by the product of the rigidity by the quality factor: {k}l/Q\\propto 1/(μ Q). In reality, the dynamical Love numbers depend on the tidal frequency and all rheological parameters of the tidally perturbed body (not just rigidity). We demonstrate that in asteroidal binaries the rigidity of their components plays virtually no role in tidal friction and tidal lagging, and thereby has almost no influence on the intensity of tidal interactions (tidal torques, tidal dissipation, tidally induced changes of the orbit). A key quantity that overwhelmingly determines the tidal evolution is a product of the effective viscosity η by the tidal frequency χ . The functional form of the torque’s dependence on this product depends on who wins in the competition between viscosity and self-gravitation. Hence a quantitative criterion, to distinguish between two regimes. For higher values of η χ , we get {k}l/Q\\propto 1/(η χ ), {while} for lower values we obtain {k}l/Q\\propto η χ . Our study rests on an assumption that asteroids can be treated as Maxwell bodies. Applicable to rigid rocks at low frequencies, this approximation is used here also for rubble piles, due to the lack of a better model. In the future, as we learn more about mechanics of granular mixtures in a weak gravity field, we may have to amend the tidal theory with other rheological parameters, ones that do not show up in the description of viscoelastic bodies. This line of study provides a tool to exploring the orbital history of asteroidal pairs, as well as of their final spin states.
Magnetic monopoles, Galilean invariance, and Maxwell's equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, F.S.
1992-02-01
Maxwell's equations have space reserved for magnetic monopoles. Whether or not they exist in our part of the universe, monopoles provide a useful didactic tool to help us recognize relations among Maxwell's equations less easily apparent in the approach followed by many introductory textbooks, wherein Coulomb's law, Biot and Savart's law, Ampere's law, Faraday's law, Maxwell's displacement current, etc., are introduced independently, as demanded by experiment.'' Instead a conceptual path that deduces all of Maxwell's equations from the near-minimal set of assumptions: (a) Inertial frames exist, in which Newton's laws hold, to a first approximation; (b) the laws of electrodynamicsmore » are Galilean invariant---i.e., they have the same form in every inertial frame, to a first approximation; (c) magnetic poles (as well as the usual electric charges) exist; (d) the complete Lorentz force on an electric charge is known; (e) the force on a monopole at rest is known; (f) the Coulomb-like field produced by a resting electric charge and by a resting monopole are known. Everything else is deduced. History is followed in the assumption that Newtonian mechanics have been discovered, but not special relativity. (Only particle velocities {ital v}{much lt}{ital c} are considered.) This ends up with Maxwell's equations (Maxwell did not need special relativity, so why should we,) but facing Einstein's paradox, the solution of which is encapsulated in the Einstein velocity-addition formula.« less
The Covariant Formulation of Maxwell's Equations Expressed in a Form Independent of Specific Units
ERIC Educational Resources Information Center
Heras, Jose A.; Baez, G.
2009-01-01
The covariant formulation of Maxwell's equations can be expressed in a form independent of the usual systems of units by introducing the constants alpha, beta and gamma into these equations. Maxwell's equations involving these constants are then specialized to the most commonly used systems of units: Gaussian, SI and Heaviside-Lorentz by giving…
Investigation of Reaction Mechanism on the Lime-Free Roasting of Chromium-Containing Slag
NASA Astrophysics Data System (ADS)
Yu, Kai-ping; Zhang, Hong-ling; Chen, Bo; Xu, Hong-bin; Zhang, Yi
2015-12-01
The lime-free roasting process of trivalent chromium-containing slag was investigated. The effect of Fe and liquid phase on the conversion reaction of chromium was discussed. The oxidation of trivalent chromium depends greatly on the diffusion of Na+ and O2. Both the raw material Na2CO3 and the intermediate product NaFeO2 serve as the carriers of Na+. The Na+ diffusion is improved by the binary liquid phase of Na2CrO4-Na2CO3, whereas excess liquid phase results in a low conversion rate of chromium by hindering the diffusion of oxygen towards the reaction interface. With the increasing of liquid volume, the controlled step of chromium oxidation changes from Na+ diffusion to oxygen diffusion. The mechanism study showed that the volume of liquid phase increased while raising the reaction temperature or prolonging the reaction time. Based on the role of both liquid phase and Fe, the oxidation process of chromium was summarized as a three-stage model: the Na+ diffusion-controlled stage, the O2 diffusion-controlled stage, and the oxidation reaction halted stage.
Formation of amorphous materials
Johnson, William L.; Schwarz, Ricardo B.
1986-01-01
Metastable amorphous or fine crystalline materials are formed by solid state reactions by diffusion of a metallic component into a solid compound or by diffusion of a gas into an intermetallic compound. The invention can be practiced on layers of metals deposited on an amorphous substrate or by intermixing powders with nucleating seed granules. All that is required is that the diffusion of the first component into the second component be much faster than the self-diffusion of the first component. The method is practiced at a temperature below the temperature at which the amorphous phase transforms into one or more crystalline phases and near or below the temperature at which the ratio of the rate of diffusion of the first component to the rate of self-diffusion is at least 10.sup.4. This anomalous diffusion criteria is found in many binary, tertiary and higher ordered systems of alloys and appears to be found in all alloy systems that form amorphous materials by rapid quenching. The method of the invention can totally convert much larger dimensional materials to amorphous materials in practical periods of several hours or less.
Measurements of exciton diffusion by degenerate four-wave mixing in CdS1-xSex
NASA Astrophysics Data System (ADS)
Schwab, H.; Pantke, K.-H.; Hvam, J. M.; Klingshirn, C.
1992-09-01
We performed transient-grating experiments to study the diffusion of excitons in CdS1-xSex mixed crystals. The decay of the initially created exciton density grating is well described for t<=1 ns by a stretched-exponential function. For later times this decay changes over to a behavior that is well fitted by a simple exponential function. During resonant excitation of the localized states, we find the diffusion coefficient (D) to be considerably smaller than in the binary compounds CdSe and CdS. At 4.2 K, D is below our experimental resolution which is about 0.025 cm2/s. With increasing lattice temperature (Tlattice) the diffusion coefficient increases. It was therefore possible to prove, in a diffusion experiment, that at Tlattice<=5 K the excitons are localized, while the exciton-phonon interaction leads to a delocalization and thus to the onset of diffusion. It was possible to deduce the diffusion coefficient of the extended excitons as well as the energetic position of the mobility edge.
Cross-scale transport processes in the three-dimensional Kelvin-Helmholtz instability
NASA Astrophysics Data System (ADS)
Delamere, P. A.; Burkholder, B. L.; Ma, X.; Nykyri, K.
2017-12-01
The Kelvin-Helmholtz (KH) instability is a crucial aspect of the solar wind interaction with the giant magnetospheres. Rapid internal rotation of the magnetodisc produces conditions favorable for the growth of KH vortices along much of the equatorial magnetopause boundary. Pronounced dawn/dusk asymmetries at Jupiter and Saturn indicate a robust interaction with the solar wind. Using three-dimensional hybrid simulations we investigate the transport processes associated with the flow shear-driven KH instability. Of particular importance is small-scale and intermittent reconnection generated by the twisting of the magnetic field into configurations with antiparallel components. In three-dimensions strong guide field reconnection can occur even for initially parallel magnetic field configurations. Often the twisting motion leads to pairs of reconnection sites that can operate asynchronously, generating intermittent open flux and Maxwell stresses at the magnetopause boundary. We quantify the generation of open flux using field line tracing methods, determine the Reynolds and Maxwell stresses, and evaluate the mass transport as functions of magnetic shear, velocity shear, electron pressure and plasma beta. These results are compared with magnetohydrodynamic simulations (Ma et al., 2017). In addition, we present preliminary results for the role of cross-scale coupling processes, from fluid to ion scales. In particular, we characterize small-scale waves and the their role in mixing, diffusing and heating plasma at the magnetopause boundary.
Senior Research Fellow Wins Major International Science Award | News | NREL
generation (MEG) in semiconductor nanocrystals, also called quantum dots, and recently found efficient MEG in silicon quantum dots. He shares the award with Stefan W. Glunz of the Fraunhofer Institute in Germany
Structural history of Maxwell Montes, Venus: Implications for Venusian mountain belt formation
NASA Astrophysics Data System (ADS)
Keep, Myra; Hansen, Vicki L.
1994-12-01
Models for Venusian mountain belt formation are important for understanding planetary geodynamic mechanisms. A range of data sets at various scales must be considered in geodynamic modelling. Long wavelength data, such as gravity and geoid to topography ratios, need constraints from smaller-scale observations of the surface. Pre-Magellan images of the Venusian surface were not of high enough resolution to observe details of surface deformation. High-resolution Magellan images of Maxwell Montes and the other deformation belts allow us to determine the nature of surfce deformation. With these images we can begin to understand the constraints that surface deformation places on planetary dynamic models. Maxwell Montes and three other deformation belts (Akna, Freyja, and Danu montes) surround the highland plateau Lakshmi Planum in Venus, northern hemisphere. Maxwell, the highest of these belts, stands 11 km above mean planetary radius. We present a detailed structural and kinematic study of Maxwell Montes. Key observations include (1) dominant structural fabrics are broadly distributed and show little change in spacing relative to elevation changes of several kilometers; (2) the spacing, wavelength, and inferred amplitude of mapped structures are small, (3) interpreted extensional structures occur only in areas of steep slope, with no extension at the highest topographic levels; and (4) deformation terminates abruptly at the base of steep slopes. One implication of these observations is that topography is independent of thin-skinned, broadly distributed, Maxwell deformation. Maxwell is apparently stable, with no observed extensional collapse. We propose a ``deformation-from-below'' model for Maxwell, in which the crust deforms passively over structurally imbricated and thickened lower crust. This model may have implications for the other deformation belts.
Structural history of Maxwell Montes, Venus: Implications for Venusian mountain belt formation
NASA Astrophysics Data System (ADS)
Keep, Myra; Hansen, Vicki L.
1994-12-01
Models for Venusian mountain belt formation are important for understanding planetary geodynamic mechanisms. A range of data sets at various scales must be considered in geodynamic modelling. Long wavelength data, such as gravity and geoid to topography ratios, need constraints from smaller-scale observations of the surface. Pre-Magellan images of the Venusian surface were not of high enough resolution to observe details of surface deformation. High-resolution Magellan images of Maxwell Montes and the other deformation belts allow us to determine the nature of surface deformation. With these images we can begin to understand the constraints that surface deformation places on planetary dynamic models. Maxwell Montes and three other deformation belts (Akna, Freyja, and Danu montes) surround the highland plateau Lakshmi Planum in Venus' northern hemisphere. Maxwell, the highest of these belts, stands 11 km above mean planetary radius. We present a detailed structural and kinematic study of Maxwell Montes. Key observations include (1) dominant structure fabrics are broadly distributed and show little change in spacing relative to elevation changes of several kilometers; (2) the spacing, wavelength and inferred amplitude of mapped structures are small; (3) interpreted extensional structures occur only in areas of steep slope, with no extension at the highest topographic levels; and (4) deformation terminates abruptly at the base of steep slopes. One implications of these observations is that topography is independent of thin-skinned, broadly distributed, Maxwell deformation. Maxwell is apparently stable, with no observed extensional collapse. We propose a 'deformation-from-below' model for Maxwell, in which the crust deforms passively over structurally imbricated and thickened lower crust. This model may have implications for the other deformation belts.
Crossover in growth laws for phase-separating binary fluids: molecular dynamics simulations.
Ahmad, Shaista; Das, Subir K; Puri, Sanjay
2012-03-01
Pattern and dynamics during phase separation in a symmetrical binary (A+B) Lennard-Jones fluid are studied via molecular dynamics simulations after quenching homogeneously mixed critical (50:50) systems to temperatures below the critical one. The morphology of the domains, rich in A or B particles, is observed to be bicontinuous. The early-time growth of the average domain size is found to be consistent with the Lifshitz-Slyozov law for diffusive domain coarsening. After a characteristic time, dependent on the temperature, we find a clear crossover to an extended viscous hydrodynamic regime where the domains grow linearly with time. Pattern formation in the present system is compared with that in solid binary mixtures, as a function of temperature. Important results for the finite-size and temperature effects on the small-wave-vector behavior of the scattering function are also presented.
On the structure of contact binaries. I - The contact discontinuity
NASA Technical Reports Server (NTRS)
Shu, F. H.; Lubow, S. H.; Anderson, L.
1976-01-01
The problem of the interior structure of contact binaries is reviewed, and a simple resolution of the difficulties which plague the theory is suggested. It is proposed that contact binaries contain a contact discontinuity between the lower surface of the common envelope and the Roche lobe of the cooler star. This discontinuity is maintained against thermal diffusion by fluid flow, and the transition layer is thin to the extent that the dynamical time scale is short in comparison with the thermal time scale. The idealization that the transition layer has infinitesimal thickness allows a simple formulation of the structure equations which are closed by appropriate jump conditions across the discontinuity. The further imposition of the standard boundary conditions suffices to define a unique model for the system once the chemical composition, the masses of the two stars, and the orbital separation are specified.
Maxwell's equal area law for black holes in power Maxwell invariant
NASA Astrophysics Data System (ADS)
Li, Huai-Fan; Guo, Xiong-ying; Zhao, Hui-Hua; Zhao, Ren
2017-08-01
In this paper, we consider the phase transition of black hole in power Maxwell invariant by means of Maxwell's equal area law. First, we review and study the analogy of nonlinear charged black hole solutions with the Van der Waals gas-liquid system in the extended phase space, and obtain isothermal P- v diagram. Then, using the Maxwell's equal area law we study the phase transition of AdS black hole with different temperatures. Finally, we extend the method to the black hole in the canonical (grand canonical) ensemble in which charge (potential) is fixed at infinity. Interestingly, we find the phase transition occurs in the both ensembles. We also study the effect of the parameters of the black hole on the two-phase coexistence. The results show that the black hole may go through a small-large phase transition similar to those of usual non-gravity thermodynamic systems.
Great moments in kinetic theory: 150 years of Maxwell’s (other) equations
NASA Astrophysics Data System (ADS)
Robson, Robert E.; Mehrling, Timon J.; Osterhoff, Jens
2017-11-01
In 1867, just two years after laying the foundations of electromagnetism, J. Clerk Maxwell presented a fundamental paper on kinetic gas theory, in which he described the evolution of the gas in terms of certain ‘moments’ of its velocity distribution function. This inspired Ludwig Boltzmann to formulate his famous kinetic equation, from which followed the H-theorem and the connection with entropy. On the occasion of the 150th anniversary of publication of Maxwell's paper, we review the Maxwell-Boltzmann formalism and discuss how its generality and adaptability enable it to play a key role in describing the behaviour of a variety of systems of current interest, in both gaseous and condensed matter, and in modern-day physics and technologies which Maxwell and Boltzmann could not possibly have foreseen. In particular, we illustrate the relevance and applicability of Maxwell's formalism to the dynamic field of plasma-wakefield acceleration.
Maxwellians and the Remaking of Maxwell's Equations
NASA Astrophysics Data System (ADS)
Hunt, Bruce
2012-02-01
Although James Clerk Maxwell first formulated his theory of the electromagnetic field in the early 1860s, it went through important changes before it gained general acceptance in the 1890s. Those changes were largely the work of a group of younger physicists, the Maxwellians, led by G. F. FitzGerald in Ireland, Oliver Lodge and Oliver Heaviside in England, and Heinrich Hertz in Germany. Together, they extended, refined, tested, and confirmed Maxwell's theory, and recast it into the set of four vector equations known ever since as ``Maxwell's equations.'' By tracing how the Maxwellians remade and disseminated Maxwell's theory between the late 1870s and the mid-1890s, we can gain a clearer understanding not just of how the electromagnetic field was understood at the end of the 19th century, but of the collaborative nature of work at the frontiers of physics.
Dynamic of charged planar geometry in tilted and non-tilted frames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharif, M., E-mail: msharif.math@pu.edu.pk; Zaeem Ul Haq Bhatti, M., E-mail: mzaeem.math@pu.edu.pk
2015-05-15
We investigate the dynamics of charged planar symmetry with an anisotropic matter field subject to a radially moving observer called a tilted observer. The Einstein-Maxwell field equations are used to obtain a relation between non-tilted and tilted frames and between kinematical and dynamical quantities. Using the Taub mass formalism and conservation laws, two evolution equations are developed to analyze the inhomogeneities in the tilted congruence. It is found that the radial velocity (due to the tilted observer) and the electric charge have a crucial effect on the inhomogeneity factor. Finally, we discuss the stability in the non-tilted frame in themore » pure diffusion case and examine the effects of the electromagnetic field.« less
Modelling of active layer thickness evolution on James Ross Island in 2006-2015
NASA Astrophysics Data System (ADS)
Hrbáček, Filip; Uxa, Tomáš
2017-04-01
Antarctic Peninsula region has been considered as one of the most rapidly warming areas on the Earth. However, the recent studies (Turner et al., 2016; Oliva et al., 2017) showed that significant air temperature cooling began around 2000 and has continued until present days. The climate cooling led to reduction of active layer thickness in several parts of Antarctic Peninsula region during decade 2006-2015, but the information about spatiotemporal variability of active layer thickness across the region remains largely incoherent due to lack of active layer temperature data from deeper profiles. Valuable insights into active layer thickness evolution in Antarctic Peninsula region can be, however, provided by thermal modelling techniques. These have been widely used to study the active layer dynamics in different regions of Arctic since 1990s. By contrast, they have been employed much less in Antarctica. In this study, we present our first results from two equilibrium models, the Stefan and Kudryavtsev equations, that were applied to calculate the annual active layer thickness based on ground temperature data from depth of 5 cm on one site on James Ross Island, Eastern Antarctic Peninsula, in period 2006/07 to 2014/15. Study site (Abernethy Flats) is located in the central part of the major ice-free area of James Ross Island called Ulu Peninsula. Monitoring of air temperature 2 m above ground surface and ground temperature in 50 cm profile began on January 2006. The profile was extended under the permafrost table down to 75 cm in February 2012, which allowed precise determination of active layer thickness, defined as a depth of 0°C isotherm, in period 2012 to 2015. The active layer thickness in the entire observation period was reconstructed using the Stefan and Kudryavtsev models, which were driven by ground temperature data from depth of 5 cm and physical parameters of the ground obtained by laboratory analyses (moisture content and bulk density) and calculations from ground heat flux measurement (thermal conductivity and thermal capacity). Model results were validated using the reference active layer thicknesses from the summer seasons of 2012/13 to 2014/15 with very good accuracy of 0 to 4 cm and -4 to 1 cm for the Stefan and the Kudryavtsev models, respectively. Average active layer thickness on Abernethy Flats varied between 62 cm (Stefan model) and 60 cm (Kudryavtsev model) in period 2006/07-2014/15. Both models showed average active layer thinning of -1.3 cm.year-1 (Stefan model) and -2.3 cm.year-1 (Kudryavtsev model). Maximum active layer thickness was predicted in summer season 2008/09, reaching 75 cm (Stefan model) and 83 cm (Kudryavtsev model), while the minimum active layer thickness was observed in summer season 2009/10 when both models predicted 36 cm. Our results show that both models are well suited for conditions of Antarctica because their accuracy is in the order of the first centimetres. The nine-year series confirmed thinning of active layer in this part of Antarctic Peninsula region, which was mainly related to variability of summer air temperature. References: Turner, J., Lu, H., White, I., King, J. C., Phillips, T., Scott Hosking, J. Bracegirdle, T. J.,Marshall, G. J., Mulvaney, R., Deb, P., 2016. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 535, doi: 10.1038/nature18645 Oliva, M., Navarro, F., Hrbáček, F., Hernandéz, A., Nývlt, D., Perreira, P., Ruiz-Fernandéz, J., Trigo, R., in press. Recent regional climate cooling on the Antarctic Peninsula and associated impacts on the cryosphere. Science of Total Environment. dx.doi.org/10.1016/j.scitotenv.2016.12.030
Defense.gov - Special Report - Travels With Gates
Force Base, Ala. Story» Warfighter Care at Center of 2010 Budget Considerations MAXWELL AIR FORCE BASE , Ala., April 15, 2009  Defense Secretary Robert M. Gates met at Maxwell Air Force Base, Ala., with the U.S. Air Force Air War College on Maxwell Air Force Base, Ala., listen to Defense Secretary Robert
James Clerk Maxwell and the Kinetic Theory of Gases: A Review Based on Recent Historical Studies
ERIC Educational Resources Information Center
Brush, Stephen G.
1971-01-01
Maxwell's four major papers and some shorter publications relating to kinetic theory and statistical mechanics are discussed in the light of subsequent research. Reviews Maxwell's ideas on such topics as velocity, distribution law, the theory of heat conduction, the mechanism of the radiometer effect, the ergodic hypothesis, and his views on the…
Handapangoda, Chintha C; Premaratne, Malin; Paganin, David M; Hendahewa, Priyantha R D S
2008-10-27
A novel algorithm for mapping the photon transport equation (PTE) to Maxwell's equations is presented. Owing to its accuracy, wave propagation through biological tissue is modeled using the PTE. The mapping of the PTE to Maxwell's equations is required to model wave propagation through foreign structures implanted in biological tissue for sensing and characterization of tissue properties. The PTE solves for only the magnitude of the intensity but Maxwell's equations require the phase information as well. However, it is possible to construct the phase information approximately by solving the transport of intensity equation (TIE) using the full multigrid algorithm.
NASA Technical Reports Server (NTRS)
Okojie, Robert S.; Lukco, Dorothy
2017-01-01
The degradation of ohmic contacts to 4H-SiC pressure sensors over time at high temperature is primarily due to two failure mechanisms: migrating bond pad Au and atmospheric O toward the ohmic contact SiC interface and the inter-metallic mixing between diffusion barrier systems (DBS) and the underlying ohmic contact metallization. We investigated the effectiveness of Pt/TaSi2/Pt/W (DBS-A) and Pt/Ti/W (DBS-B) in preventing Au and O diffusion through the underlying binary Ti/W or alloyed W50:Ni50 ohmic contacts to 4H-SiC and the DBS ohmic contact intermixing at temperature up to 700 C.
Kinetics of binary nucleation of vapors in size and composition space.
Fisenko, Sergey P; Wilemski, Gerald
2004-11-01
We reformulate the kinetic description of binary nucleation in the gas phase using two natural independent variables: the total number of molecules g and the molar composition x of the cluster. The resulting kinetic equation can be viewed as a two-dimensional Fokker-Planck equation describing the simultaneous Brownian motion of the clusters in size and composition space. Explicit expressions for the Brownian diffusion coefficients in cluster size and composition space are obtained. For characterization of binary nucleation in gases three criteria are established. These criteria establish the relative importance of the rate processes in cluster size and composition space for different gas phase conditions and types of liquid mixtures. The equilibrium distribution function of the clusters is determined in terms of the variables g and x. We obtain an approximate analytical solution for the steady-state binary nucleation rate that has the correct limit in the transition to unary nucleation. To further illustrate our description, the nonequilibrium steady-state cluster concentrations are found by numerically solving the reformulated kinetic equation. For the reformulated transient problem, the relaxation or induction time for binary nucleation was calculated using Galerkin's method. This relaxation time is affected by processes in both size and composition space, but the contributions from each process can be separated only approximately.
2015-01-01
Numerous kinetic, structural, and theoretical studies have established that DNA polymerases adjust their domain structures to enclose nucleotides in their active sites and then rearrange critical active site residues and substrates for catalysis, with the latter conformational change acting to kinetically limit the correct nucleotide incorporation rate. Additionally, structural studies have revealed a large conformational change between the apoprotein and the DNA–protein binary state for Y-family DNA polymerases. In previous studies [Xu, C., Maxwell, B. A., Brown, J. A., Zhang, L., and Suo, Z. (2009) PLoS Biol.7, e1000225], a real-time Förster resonance energy transfer (FRET) method was developed to monitor the global conformational transitions of DNA polymerase IV from Sulfolobus solfataricus (Dpo4), a prototype Y-family enzyme, during nucleotide binding and incorporation by measuring changes in distance between locations on the enzyme and the DNA substrate. To elucidate further details of the conformational transitions of Dpo4 during substrate binding and catalysis, in this study, the real-time FRET technique was used to monitor changes in distance between various pairs of locations in the protein itself. In addition to providing new insight into the conformational changes as revealed in previous studies, the results here show that the previously described conformational change between the apo and DNA-bound states of Dpo4 occurs in a mechanistic step distinct from initial formation or dissociation of the binary complex of Dpo4 and DNA. PMID:24568554
Preparing for the Unthinkable: DOD Support to Foreign Consequence Management
2010-05-03
Nuclear Disaster ” (research paper, Maxwell Air Force Base, AL: Air University, 2001), 23. 17 Department of Defense Consequence Management...States Government Response to an Overseas Chemical, Biological, Radiological, or Nuclear Disaster ” (research paper, Maxwell Air Force Base, AL: Air...Government Response to an Overseas Chemical, Biological, Radiological, or Nuclear Disaster .” Research paper, Maxwell Air Force Base, AL: Air University
NASA Astrophysics Data System (ADS)
Gulsoy, Gokce; Was, Gary S.
2015-04-01
Alloy 617 was exposed to He-CO-CO2 environments with of either 9 or 1320 at temperatures from 1023 K to 1123 K (750 °C to 850 °C) to determine the oxygen diffusion coefficients within the internal oxidation zone of the alloy. The oxygen diffusion coefficients determined based on both intergranular and transgranular oxidation rates were several orders of magnitude greater than those reported in pure nickel and in nickel-based binary alloys, indicating that the rapid internal aluminum oxidation of Alloy 617 was primarily due to enhanced oxygen diffusion along the incoherent Al2O3-alloy interfaces. The range of activation energy values determined for oxygen diffusion associated with the intergranular aluminum oxidation was from 149.6 to 154.7 kJ/mol, and that associated with the transgranular aluminum oxidation was from 244.7 to 283.5 kJ/mol.
NASA Astrophysics Data System (ADS)
Soba, A.; Denis, A.
2007-03-01
The codes PLACA and DPLACA, elaborated in this working group, simulate the behavior of a plate-type fuel containing in its core a foil of monolithic or dispersed fissile material, respectively, under normal operation conditions of a research reactor. Dispersion fuels usually consist of ceramic particles of a uranium compound in a high thermal conductivity matrix. The use of particles of a U-Mo alloy in a matrix of Al requires especially devoted subroutines able to simulate the growth of the interaction layer that develops between the particles and the matrix. A model is presented in this work that gives account of these particular phenomena. It is based on the assumption that diffusion of U and Al through the layer is the rate-determining step. Two moving interfaces separate the growing reaction layer from the original phases. The kinetics of these boundaries are solved as Stefan problems. In order to test the model and the associated code, some previous, simpler problems corresponding to similar systems for which analytical solutions or experimental data are known were simulated. Experiments performed with planar U-Mo/Al diffusion couples are reported in the literature, which purpose is to obtain information on the system parameters. These experiments were simulated with PLACA. Results of experiments performed with U-Mo particles disperse in Al either without or with irradiation, published in the open literature were simulated with DPLACA. A satisfactory prediction of the whole reaction layer thickness and of the individual fractions corresponding to alloy and matrix consumption was obtained.
A Chemical Alphabet for Macromolecular Communications.
Giannoukos, Stamatios; McGuiness, Daniel Tunç; Marshall, Alan; Smith, Jeremy; Taylor, Stephen
2018-06-08
Molecular communications in macroscale environments is an emerging field of study driven by the intriguing prospect of sending coded information over olfactory networks. For the first time, this article reports two signal modulation techniques (on-off keying-OOK, and concentration shift keying-CSK) which have been used to encode and transmit digital information using odors over distances of 1-4 m. Molecular transmission of digital data was experimentally investigated for the letter "r" with a binary value of 01110010 (ASCII) for a gas stream network channel (up to 4 m) using mass spectrometry (MS) as the main detection-decoding system. The generation and modulation of the chemical signals was achieved using an automated odor emitter (OE) which is based on the controlled evaporation of a chemical analyte and its diffusion into a carrier gas stream. The chemical signals produced propagate within a confined channel to reach the demodulator-MS. Experiments were undertaken for a range of volatile organic compounds (VOCs) with different diffusion coefficient values in air at ambient conditions. Representative compounds investigated include acetone, cyclopentane, and n-hexane. For the first time, the binary code ASCII (American Standard Code for Information Interchange) is combined with chemical signaling to generate a molecular representation of the English alphabet. Transmission experiments of fixed-width molecular signals corresponding to letters of the alphabet over varying distances are shown. A binary message corresponding to the word "ion" was synthesized using chemical signals and transmitted within a physical channel over a distance of 2 m.
NASA Technical Reports Server (NTRS)
Bellan, Josette; Harstad, Kenneth; Ohsaka, Kenichi
2003-01-01
Although the high pressure multicomponent fluid conservation equations have already been derived and approximately validated for binary mixtures by this PI, the validation of the multicomponent theory is hampered by the lack of existing mixing rules for property calculations. Classical gas dynamics theory can provide property mixing-rules at low pressures exclusively. While thermal conductivity and viscosity high-pressure mixing rules have been documented in the literature, there is no such equivalent for the diffusion coefficients and the thermal diffusion factors. The primary goal of this investigation is to extend the low pressure mixing rule theory to high pressures and validate the new theory with experimental data from levitated single drops. The two properties that will be addressed are the diffusion coefficients and the thermal diffusion factors. To validate/determine the property calculations, ground-based experiments from levitated drops are being conducted.
Novak, E; Jalarvo, N; Gupta, S; Hong, K; Förster, S; Egami, T; Ohl, M
2018-06-01
Plastic crystals are a promising candidate for solid state ionic conductors. In this work, quasielastic neutron scattering is employed to investigate the center of mass diffusive motions in two types of plastic crystalline cyclic alcohols: cyclohexanol and cyclooctanol. Two separate motions are observed which are attributed to long-range translational diffusion (α-process) and cage rattling (fast β-process). Residence times and diffusion coefficients are calculated for both processes, along with the confinement distances for the cage rattling. In addition, a binary mixture of these two materials is measured to understand how the dynamics change when a second type of molecule is added to the matrix. It is observed that, upon the addition of the larger cyclooctanol molecules into the cyclohexanol solution, the cage size decreases, which causes a decrease in the observed diffusion rates for both the α- and fast β-processes.
Transient Postseismic Relaxation With Burger's Body Viscoelasticity
NASA Astrophysics Data System (ADS)
Hetland, E. A.; Hager, B. H.; O'Connell, R. J.
2002-12-01
Typical models used to investigate postseismic deformation are composed of an elastic layer over a Maxwell viscoelastic region. Geodetic observations made after a number of large earthquakes show a rapid exponential decay in postseismic velocity immediately after the rupture, followed by a more slowly decaying (or constant) velocity at a later time. Models of a Maxwell viscoelastic interior predict a single exponential postseismic velocity relaxation. To account for observed rapid, short-term relaxation decay, surprisingly low viscosities in the lower-crust or upper-mantle have been proposed. To model the difference in short and long time decay rates, the Maxwell element is sometimes modified to have a non-linear rheology, which results in a lower effective viscosity immediately after the rupture, evolving to a higher effective viscosity as the co-seismic stresses relax. Incorporation of models of after-slip in the lower crust on a down-dip extension of the fault have also had some success at modeling the above observations. When real rocks are subjected to a sudden change in stress or strain, e.g., that caused by an earthquake, they exhibit a transient response. The transient deformation is typically accommodated by grain boundary sliding and the longer-time deformation is accommodated by motion of dislocations. Both a short-term transient response and long-term steady creep are exhibited by a Burger's body, a Maxwell element (a spring in series with a viscous dash-pot) in series with a Voigt element (a spring in parallel with a viscous dash-pot). Typically the (transient) viscosity of the Voigt element is 10 - 100 times less than the (steady) viscosity of the Maxwell element. Thus, with a Burger's body, stress relaxation is a superposition of two exponential decays. For a model composed of an elastic layer over a viscoelastic region, the coseismic changes in stress (and strain) depend only on the elastic moduli, and are independent of the description of the viscous component of the rheology. In a Burger's body model of viscoelasticity, if the viscosity of the Voigt element is much less than that of the Maxwell element, the initial relaxation time is given by the decay time τ = η {Voigt}}/G{ {Maxwell}. Whereas, for a Maxwell rheology, the initial relaxation time is given by τ = η {Maxwell}}/G{ {Maxwell}. For both models, the initial spatial distribution of stresses is the same, which results in identical initial spatial distribution of velocities. Thus it is easy to mistake the transient response of a Burger's body for that of a Maxwell rheology with unrealistically low viscosity. Only later in the seismic cycle do the spatial patterns of velocity differ for the two rheologies.
NASA Technical Reports Server (NTRS)
Barth, Timothy
2005-01-01
The role of involutions in energy stability of the discontinuous Galerkin (DG) discretization of Maxwell and magnetohydrodynamic (MHD) systems is examined. Important differences are identified in the symmetrization of the Maxwell and MHD systems that impact the construction of energy stable discretizations using the DG method. Specifically, general sufficient conditions to be imposed on the DG numerical flux and approximation space are given so that energy stability is retained These sufficient conditions reveal the favorable energy consequence of imposing continuity in the normal component of the magnetic induction field at interelement boundaries for MHD discretizations. Counterintuitively, this condition is not required for stability of Maxwell discretizations using the discontinuous Galerkin method.
Self-Diffusion and Heteroassociation in an Acetone-Chloroform Mixture at 298 K
NASA Astrophysics Data System (ADS)
Golubev, V. A.; Gurina, D. L.; Kumeev, R. S.
2018-01-01
The self-diffusion coefficients of acetone and chloroform in a binary acetone-chloroform mixture at 298 K are determined via pulsed field gradient NMR spectroscopy. It is estimated that the hydrodynamic radii of the mixture's components, calculated using the Stokes-Einstein equation, grow as the concentrations of the components fall. It is shown that such behavior of hydrodynamic radii is due to acetone-chloroform heteroassociation. The hydrodynamic radii of monomers and heteroassociates in a 1: 1 ratio are determined along with the constant of heteroassociation, using the proposed model of an associated solution.
Comparison of numerical simulation and experimental data for steam-in-place sterilization
NASA Technical Reports Server (NTRS)
Young, Jack H.; Lasher, William C.
1993-01-01
A complex problem involving convective flow of a binary mixture containing a condensable vapor and noncondensable gas in a partially enclosed chamber was modelled and results compared to transient experimental values. The finite element model successfully predicted transport processes in dead-ended tubes with inside diameters of 0.4 to 1.0 cm. When buoyancy driven convective flow was dominant, temperature and mixture compositions agreed with experimental data. Data from 0.4 cm tubes indicate diffusion to be the primary air removal method in small diameter tubes and the diffusivity value in the model to be too large.
Separdar, L; Davatolhagh, S
2013-02-01
We investigate the static structure and diffusive dynamics of binary Lennard-Jones mixture upon supercooling in the presence of gold nanoparticle within the framework of the mode-coupling theory of the dynamic glass transition in the direct space by means of constant-NVT molecular dynamics simulations. It is found that the presence of gold nanoparticle causes the energy per particle and the pressure of this system to decrease with respect to the bulk binary Lennard-Jones mixture. Furthermore, the presence of nanoparticle has a direct effect on the liquid structure and causes the peaks of the radial distribution functions to become shorter with respect to the bulk binary Lennard-Jones liquid. The dynamics of the liquid at a given density is found to be consistent with the mode-coupling theory (MCT) predictions in a certain range at low temperatures. In accordance with the idealized MCT, the diffusion constants D(T) show a power-law behavior at low temperatures for both types of binary Lennard-Jones (BLJ) particles as well as the gold atoms comprising the nanoparticle. The mode-coupling crossover temperature T(c) is the same for all particle types; however, T(c)=0.4 is reduced with respect to that of the bulk BLJ liquid, and the γ exponent is found to depend on the particle type. The existence of the nanoparticle causes the short-time β-relaxation regime to shorten and the range of validity of the MCT shrinks with respect to the bulk BLJ. It is also found that at intermediate and low temperatures the curves of the mean-squared displacements (MSDs) versus tD(T) fall onto a master curve. The MSDs follow the master curve in an identical time range with the long-time α-relaxation regime of the mode-coupling theory. By obtaining the viscosity, it is observed that the Stokes-Einstein relation remains valid at high and intermediate temperatures but breaks down as the temperatures approach T(c) as a result of the cooperative motion or activated processes.
The Cybersecurity Challenge in Acquisition
2016-04-30
problems. Scarier yet, another group took control of a car’s computers through a cellular telephone and Bluetooth connections and could access...did more extensive work, hacking their way into a 2009 midsize car through its cellular, Bluetooth , and other wireless connections. Stefan Savage, a
Aporias, Politics of Ontology, Ethics, and "We"?
ERIC Educational Resources Information Center
Bengtsson, Stefan Lars
2016-01-01
The different responses, interpretations, and consequent critiques of Stefan Lars Bengtsson's "Hegemony and the Politics of Policy Making for Education for Sustainable Development" highlight how the various critical outlooks are framed by, seemingly, incommensurable positions, or figures of reasoning, that inform their thinking.…
Ice-Ocean Thermodynamic Interface and Small-Scale Issues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, Adrian K.
2012-07-02
This presentation discusses: (1) Stefan condition, (2) lower boundary condition of mushy layers, (3) salt flux to ocean from gravity drainage, (4) distribution of salt flux in the ocean, (5) under ice melt ponds and false bottoms, and (6) basal ablation.
Studies of Coherent Synchrotron Radiation with the Discontinuous Galerkin Method
NASA Astrophysics Data System (ADS)
Bizzozero, David A.
In this thesis, we present methods for integrating Maxwell's equations in Frenet-Serret coordinates in several settings using discontinuous Galerkin (DG) finite element method codes in 1D, 2D, and 3D. We apply these routines to the study of coherent synchrotron radiation, an important topic in accelerator physics. We build upon the published computational work of T. Agoh and D. Zhou in solving Maxwell's equations in the frequency-domain using a paraxial approximation which reduces Maxwell's equations to a Schrodinger-like system. We also evolve Maxwell's equations in the time-domain using a Fourier series decomposition with 2D DG motivated by an experiment performed at the Canadian Light Source. A comparison between theory and experiment has been published (Phys. Rev. Lett. 114, 204801 (2015)). Lastly, we devise a novel approach to integrating Maxwell's equations with 3D DG using a Galilean transformation and demonstrate proof-of-concept. In the above studies, we examine the accuracy, efficiency, and convergence of DG.
Shock waves: The Maxwell-Cattaneo case.
Uribe, F J
2016-03-01
Several continuum theories for shock waves give rise to a set of differential equations in which the analysis of the underlying vector field can be done using the tools of the theory of dynamical systems. We illustrate the importance of the divergences associated with the vector field by considering the ideas by Maxwell and Cattaneo and apply them to study shock waves in dilute gases. By comparing the predictions of the Maxwell-Cattaneo equations with shock wave experiments we are lead to the following conclusions: (a) For low compressions (low Mach numbers: M) the results from the Maxwell-Cattaneo equations provide profiles that are in fair agreement with the experiments, (b) as the Mach number is increased we find a range of Mach numbers (1.27 ≈ M(1) < M < M(2) ≈ 1.90) such that numerical shock wave solutions to the Maxwell-Cattaneo equations cannot be found, and (c) for greater Mach numbers (M>M_{2}) shock wave solutions can be found though they differ significantly from experiments.
NASA Astrophysics Data System (ADS)
Shenker, Orly R.
2004-09-01
In 1867, James Clerk Maxwell proposed a perpetuum mobile of the second kind, that is, a counter example for the Second Law of thermodynamics, which came to be known as "Maxwell's Demon." Unlike any other perpetual motion machine, this one escaped attempts by the best scientists and philosophers to show that the Second Law or its statistical mechanical counterparts are universal after all. "Maxwell's demon lives on. After more than 130 years of uncertain life and at least two pronouncements of death, this fanciful character seems more vibrant than ever." These words of Harvey Leff and Andrew Rex (1990), which open their introduction to Maxwell's Demon 2: Entropy, Classical and Quantum Information, Computing (hereafter MD2) are very true: the Demon is as challenging and as intriguing as ever, and forces us to think and rethink about the foundations of thermodynamics and of statistical mechanics.
Drying in porous media with gravity-stabilized fronts: experimental results.
Yiotis, A G; Salin, D; Tajer, E S; Yortsos, Y C
2012-08-01
In a recent paper [Yiotis et al., Phys. Rev. E 85, 046308 (2012)] we developed a model for the drying of porous media in the presence of gravity. It incorporated effects of corner film flow, internal and external mass transfer, and the effect of gravity. Analytical results were derived when gravity opposes drying and hence leads to a stable percolation drying front. In this paper, we test the theory using laboratory experiments. A series of isothermal drying experiments in glass bead packings saturated with volatile hydrocarbons is conducted. The transparent glass cells containing the packing allow for the visual monitoring of the phase distribution patterns below the surface, including the formation of liquid films, as the gaseous phase invades the pore space, and for the control of the thickness of the diffusive mass boundary layer over the packing. The experimental results agree very well with theory, provided that the latter is generalized to account for the effects of corner roundness in the film region (which was neglected in the theoretical part). We demonstrate the existence of an early constant rate period (CRP), which lasts as long as the films saturate the surface of the packing, and of a subsequent falling rate period (FRP), which begins practically after the detachment of the film tips from the external surface. During the CRP, the process is controlled by diffusion within the stagnant gaseous phase in the upper part of the cells, yielding a Stefan tube problem solution. During the FRP, the process is controlled by diffusion within the packing, with a drying rate inversely proportional to the observed position of the film tips in the cell. Theoretical and experimental results compare favorably for a specific value of the roundness of the films, which is found to be constant and equal to 0.2 for various conditions, and verify the theoretical dependence on the capillary Ca(f), Bond Bo, and Sherwood Sh numbers.
Enhanced Management Consulting.
1983-07-01
HD-AI33 278 ENHANCED MANAGEMENT CONSULTING(U) LEADERSHIP AND 1/i MANAGEMENT DEVELOPMENT CENTER MAXWELL AFB RL V L KRPINOS JUL 83 LMDC-TR-83-2...83 12 035 Maxwell Air Force Base, Alabama 36112 LMDC-TR-83-2 Technical Reports prepared by the Leadership and Management Development Center (LMDC...Directorate of Research and Analysis AREA 6 WORK UNIT NUMBERS Leadership and Management Development Center (AU) Maxwell Air Force Base, Alabama 36112 II
No static bubbling spacetimes in higher dimensional Einstein–Maxwell theory
NASA Astrophysics Data System (ADS)
Kunduri, Hari K.; Lucietti, James
2018-03-01
We prove that any asymptotically flat static spacetime in higher dimensional Einstein–Maxwell theory must have no magnetic field. This implies that there are no static soliton spacetimes and completes the classification of static non-extremal black holes in this theory. In particular, these results establish that there are no asymptotically flat static spacetimes with non-trivial topology, with or without a black hole, in Einstein–Maxwell theory.
A computational study of diffusion in a glass-forming metallic liquid
Wang, T.; Zhang, F.; Yang, L.; ...
2015-06-09
In this study, liquid phase diffusion plays a critical role in phase transformations (e.g. glass transformation and devitrification) observed in marginal glass forming systems such as Al-Sm. Controlling transformation pathways in such cases requires a comprehensive description of diffusivity, including the associated composition and temperature dependencies. In our computational study, we examine atomic diffusion in Al-Sm liquids using ab initio molecular dynamics (AIMD) and determine the diffusivities of Al and Sm for selected alloy compositions. Non-Arrhenius diffusion behavior is observed in the undercooled liquids with an enhanced local structural ordering. Through assessment of our AIMD result, we construct a generalmore » formulation for Al-Sm liquid, involving a diffusion mobility database that includes composition and temperature dependence. A Volmer-Fulcher-Tammann (VFT) equation is adopted for describing the non-Arrhenius behavior observed in the undercooled liquid. Furthermore, the composition dependence of diffusivity is found quite strong, even for the Al-rich region contrary to the sole previous report on this binary system. The model is used in combination with the available thermodynamic database to predict specific diffusivities and compares well with reported experimental data for 0.6 at.% and 5.6 at.% Sm in Al-Sm alloys.« less
Phase-field-crystal study of solute trapping
NASA Astrophysics Data System (ADS)
Humadi, Harith; Hoyt, Jeffrey J.; Provatas, Nikolas
2013-02-01
In this study we have incorporated two time scales into the phase-field-crystal model of a binary alloy to explore different solute trapping properties as a function of crystal-melt interface velocity. With only diffusive dynamics, we demonstrate that the segregation coefficient, K as a function of velocity for a binary alloy is consistent with the model of Kaplan and Aziz where K approaches unity in the limit of infinite velocity. However, with the introduction of wavelike dynamics in both the density and concentration fields, the trapping follows the kinetics proposed by Sobolev [Phys. Lett. A10.1016/0375-9601(95)00084-G 199, 383 (1995)], where complete trapping occurs at a finite velocity.
Influence of thermal convection on density segregation in a vibrated binary granular system.
Windows-Yule, C R K; Weinhart, T; Parker, D J; Thornton, A R
2014-02-01
Using a combination of experimental results and discrete particle method simulations, the role of buoyancy-driven convection in the segregative behavior of a three-dimensional, binary granular system is investigated. A relationship between convective motion and segregation intensity is presented, and a qualitative explanation for this behavior is proposed. This study also provides an insight into the role of diffusive behavior in the segregation of a granular bed in the convective regime. The results of this work strongly imply the possibility that, for an adequately fluidized granular bed, the degree of segregation may be indirectly controlled through the adjustment of the system's driving parameters, or the dissipative properties of the system's side-boundaries.
A World Where All Worlds Cohabit
ERIC Educational Resources Information Center
Teamey, Kelly; Mandel, Udi
2016-01-01
In response to Stefan Bengtsson's search for alternatives to Education for Sustainable Development practices outside the mainstream of the state and its policy formulations, this response outlines how our journey, experiences, and approaches reflect a de-professionalizing encounter with autonomous places of learning emerging from indigenous…
Heavy Fermion Materials and Quantum Phase Transitions Workshop on Frontiers of the Kondo Effect
2016-02-12
Stefan Kirchner (Max Planck) discussed the role of quantum criticality on the superconducting condensation in heavy-fermion superconductors , and...Collin Broholm (Johns Hopkins) discussed magnetic excitations of heavy fermion superconductors . The workshop concluded with a wide-ranging talk by
Kinetics Modeling of Hypergolic Propellants
2013-07-01
comprehensive preconditioning and employs the line Gauss Seidel algorithm for the solution of the linear system. A multi-block unstructured mesh is...Explosives, Pyrotechnics, 33(3):209–212, 2008. 24Wei-Guang Liu, Shiqing Wang, Siddharth Dasgupta, Stefan T Thynell, William A Goddard III, Sergey Zybin
NASA Astrophysics Data System (ADS)
Giri, Shib Sankar; Das, Kalidas; Kundu, Prabir Kumar
2017-02-01
The present paper investigates the effect of Stefan blowing on the hydro-magnetic bioconvection of a water-based nanofluid flow containing gyrotactic microorganisms through a permeable surface. Also we studied both actively and passively the controlled flux of nanoparticles and the effect of a surface slip at the wall. We adopt a similarity approach to reduce the leading partial differential equations into ordinary differential equations along with two separate boundary conditions (active and passive) and solve the resulting equations numerically by employing the RK-4 method through the shooting technique to perform the flow analysis. Discussions on the effect of emerging flow parameter on the flow characteristic are made properly through graphs and charts. We observed that the effects of the traditional Lewis number and suction/blowing parameter on temperature distribution and microorganism concentration are converse to each other. A fair result comparison of the present paper with formerly obtained results is given.
Optimal Control of Thermo--Fluid Phenomena in Variable Domains
NASA Astrophysics Data System (ADS)
Volkov, Oleg; Protas, Bartosz
2008-11-01
This presentation concerns our continued research on adjoint--based optimization of viscous incompressible flows (the Navier--Stokes problem) coupled with heat conduction involving change of phase (the Stefan problem), and occurring in domains with variable boundaries. This problem is motivated by optimization of advanced welding techniques used in automotive manufacturing, where the goal is to determine an optimal heat input, so as to obtain a desired shape of the weld pool surface upon solidification. We argue that computation of sensitivities (gradients) in such free--boundary problems requires the use of the shape--differential calculus as a key ingredient. We also show that, with such tools available, the computational solution of the direct and inverse (optimization) problems can in fact be achieved in a similar manner and in a comparable computational time. Our presentation will address certain mathematical and computational aspects of the method. As an illustration we will consider the two--phase Stefan problem with contact point singularities where our approach allows us to obtain a thermodynamically consistent solution.
DOT National Transportation Integrated Search
2013-12-01
This investigation compiles the results describing the performance of: a) reinforced concrete specimens cast with : 0.37 water to cementitious (w/cm) and binary blends of high performance concrete; the specimens have been : exposed to seawater wet/dr...
Axially Symmetric Brans-Dicke-Maxwell Solutions
NASA Astrophysics Data System (ADS)
Chatterjee, S.
1981-05-01
Following a method of John and Goswami new solutions of coupled Brans-Dicke-Maxwell theory are generated from Zipoy's solutions in oblate and prolate spheroidal coordinates for source-free gravitational field. All these solutions become Euclidean at infinity. The asymptotic behavior and the singularity of the solutions are discussed and a comparative study made with the corresponding Einstein-Maxwell solutions. The possibility of a very large red shift from the boundary of the spheroids is also discussed.
Unity of Command and Interdiction
1994-07-01
8217RobWt F. Fuftff Idea, Cancept, Doctrine: Basic Thinking i The United States Air Force. vol. 1 1O7-IMO W( Maxwell AFB, Ala.: Air University Press, 1989...Futrell, Ideas, Concepts, Doctrine: Basic Thinking in the United States Air Force, vol. 2, 1961-1984 ( Maxwell AFB, Ala.: Air University Press, 1989...in Vietnam and Why. Maxwell AFB, Ala: Air University Press, 1991. Warden, Col John A. HI. The Air Campaign - Planning For Combat. Washington, D.C
Symplectic partitioned Runge-Kutta scheme for Maxwell's equations
NASA Astrophysics Data System (ADS)
Huang, Zhi-Xiang; Wu, Xian-Liang
Using the symplectic partitioned Runge-Kutta (PRK) method, we construct a new scheme for approximating the solution to infinite dimensional nonseparable Hamiltonian systems of Maxwell's equations for the first time. The scheme is obtained by discretizing the Maxwell's equations in the time direction based on symplectic PRK method, and then evaluating the equation in the spatial direction with a suitable finite difference approximation. Several numerical examples are presented to verify the efficiency of the scheme.
The Software Crisis and a Senior Leaders Awareness Course.
1987-04-01
Interlibrary Loan Service (AUL/LDEX, Maxwell AFB, Alabama, 36112) or the Defense Technical Information Center. Request must include the author’s name...X E A’ ~ ~o’S Submitted to the faculty in partial mlinmnt of requirements for graduation. AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY MAXWELL AFB...currently assigned to Air Command and Staff College, Maxwell AFB, Alabama and attends the graduate program at Troy State University. Montgomery. Major Taylor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hainan; Thiele, Alexander; Pilon, Laurent
2013-11-15
This paper presents a generalized modified Poisson–Nernst–Planck (MPNP) model derived from first principles based on excess chemical potential and Langmuir activity coefficient to simulate electric double-layer dynamics in asymmetric electrolytes. The model accounts simultaneously for (1) asymmetric electrolytes with (2) multiple ion species, (3) finite ion sizes, and (4) Stern and diffuse layers along with Ohmic potential drop in the electrode. It was used to simulate cyclic voltammetry (CV) measurements for binary asymmetric electrolytes. The results demonstrated that the current density increased significantly with decreasing ion diameter and/or increasing valency |z i| of either ion species. By contrast, the ionmore » diffusion coefficients affected the CV curves and capacitance only at large scan rates. Dimensional analysis was also performed, and 11 dimensionless numbers were identified to govern the CV measurements of the electric double layer in binary asymmetric electrolytes between two identical planar electrodes of finite thickness. A self-similar behavior was identified for the electric double-layer integral capacitance estimated from CV measurement simulations. Two regimes were identified by comparing the half cycle period τ CV and the “RC time scale” τ RC corresponding to the characteristic time of ions’ electrodiffusion. For τ RC ← τ CV, quasi-equilibrium conditions prevailed and the capacitance was diffusion-independent while for τ RC → τ CV, the capacitance was diffusion-limited. The effect of the electrode was captured by the dimensionless electrode electrical conductivity representing the ratio of characteristic times associated with charge transport in the electrolyte and that in the electrode. The model developed here will be useful for simulating and designing various practical electrochemical, colloidal, and biological systems for a wide range of applications.« less
Theories of binary fluid mixtures: from phase-separation kinetics to active emulsions
NASA Astrophysics Data System (ADS)
Cates, Michael E.; Tjhung, Elsen
2018-02-01
Binary fluid mixtures are examples of complex fluids whose microstructure and flow are strongly coupled. For pairs of simple fluids, the microstructure consists of droplets or bicontinuous demixed domains and the physics is controlled by the interfaces between these domains. At continuum level, the structure is defined by a composition field whose gradients which are steep near interfaces drive its diffusive current. These gradients also cause thermodynamic stresses which can drive fluid flow. Fluid flow in turn advects the composition field, while thermal noise creates additional random fluxes that allow the system to explore its configuration space and move towards the Boltzmann distribution. This article introduces continuum models of binary fluids, first covering some well-studied areas such as the thermodynamics and kinetics of phase separation, and emulsion stability. We then address cases where one of the fluid components has anisotropic structure at mesoscopic scales creating nematic (or polar) liquid-crystalline order; this can be described through an additional tensor (or vector) order parameter field. We conclude by outlining a thriving area of current research, namely active emulsions, in which one of the binary components consists of living or synthetic material that is continuously converting chemical energy into mechanical work.
Orbital Decay in Binaries with Evolved Stars
NASA Astrophysics Data System (ADS)
Sun, Meng; Arras, Phil; Weinberg, Nevin N.; Troup, Nicholas; Majewski, Steven R.
2018-01-01
Two mechanisms are often invoked to explain tidal friction in binary systems. The ``dynamical tide” is the resonant excitation of internal gravity waves by the tide, and their subsequent damping by nonlinear fluid processes or thermal diffusion. The ``equilibrium tide” refers to non-resonant excitation of fluid motion in the star’s convection zone, with damping by interaction with the turbulent eddies. There have been numerous studies of these processes in main sequence stars, but less so on the subgiant and red giant branches. Motivated by the newly discovered close binary systems in the Apache Point Observatory Galactic Evolution Experiment (APOGEE-1), we have performed calculations of both the dynamical and equilibrium tide processes for stars over a range of mass as the star’s cease core hydrogen burning and evolve to shell burning. Even for stars which had a radiative core on the main sequence, the dynamical tide may have very large amplitude in the newly radiative core in post-main sequence, giving rise to wave breaking. The resulting large dynamical tide dissipation rate is compared to the equilibrium tide, and the range of secondary masses and orbital periods over which rapid orbital decay may occur will be discussed, as well as applications to close APOGEE binaries.
Two-stream Maxwellian kinetic theory of cloud droplet growth by condensation
NASA Technical Reports Server (NTRS)
Robinson, N. F.; Scott, W. T.
1981-01-01
A new growth rate formula (NGRF) is developed for the rate of growth of cloud droplets by condensation. The theory used is a modification of the Lees-Shankar theory in which the two-stream Maxwellian distribution function of Lees is used in Maxwell's method of moments to determine the transport of water vapor to and heat away from the droplet. Boundary conditions at the droplet are the usual conditions set in terms of accommodation coefficients, and the solution passes smoothly into diffusion flow in the far region. Comparisons are given between NGRF and the conventional formula showing close agreement (approximately 0.1%) for large radii with significant difference (approximately 5%) for small radii (not greater than 1 micron). Growth times for haze droplets in a Laktionov chamber are computed.
Halder, Ritaban; Jana, Biman
2018-06-05
Aqueous binary mixtures have received immense attention in recent years because of their extensive application in several biological and industrial processes. Water-ethanol binary mixture serves as a unique system because it exhibits composition dependent alteration of dynamic and thermodynamic properties. Our present work demonstrates how different compositions of water-ethanol binary mixtures affect the pair hydrophobicity of different hydrophobes. Pair hydrophobicity is measured by the depth of the first minimum (contact minima) of potential of mean force (PMF) profile between two hydrophobes. The pair hydrophobicity is found to be increased with addition of ethanol to water up to mole fraction of 0.10 and decreased with further addition of ethanol. This observation is shown to be true for three different pairs of hydrophobes. Decomposition of PMF into enthalpic and entropic contribution indicates a switch from entropic to enthalpic stabilization of the contact minimum upon addition of ethanol to water. The gain in mixing enthalpy of the binary solvent system upon association of two hydrophobes is found to be the determining factor for the stabilization of contact minimum. Several static/dynamics quantities (average composition fluctuations, diffusion coefficients, fluctuations in total dipole moment, propensity of ethyl-ethyl association, etc) of the ethanol-water binary mixture also show irregularities around xEtOH =0.10-0.15. We have also discovered that the hydrogen bonding pattern of ethanol rather than water reveals a change in trend near the similar composition range. As the anomalous behaviour of the physical/dynamical properties along with the pair hydrophobicity in aqueous binary mixture of amphiphilic solutes is common phenomena, our results may provide a general viewpoint on these aspects.
Koley, Somnath; Ghosh, Subhadip
2016-11-30
An insight study reveals the strong synergistic solvation behaviours from reporter dye molecules within the acetonitrile (ACN)-water (WT) binary mixture. Synergism of a binary mixture refers to some unique changes of the physical and thermodynamic properties of the solvent mixture, originating from the interactions among its cosolvents, which are absent within the pure cosolvents. Synergistic solvation of a binary mixture is likely to be fundamental for greater stabilization of an excited state solute dipole; at least to some extent greater as compared to one stabilized by any of its cosolvents alone. A dynamic Stokes shift due to the solvation of an excited dipole in the ACN-WT binary mixture is found to be highly relevant to the ground state physical properties of the solute molecule (polarity, hydrophilicity, acidity, etc.). Largely different solvation times in the ACN-WT mixture are observed from different dye molecules with widely varying polarities. However, earlier study shows that dye molecules, irrespective of their varying polarities, exhibit very similar solvation times within a pure solvent (J. Phys. Chem. B, 2014, 118, 7577-7785). On further study with fluorescence correlation spectroscopy (FCS) we observed that, unlike the translational diffusion coefficient (D t ) of a dye molecule within a pure solvent, which remains the same irrespective of the location of the dye molecule inside the solvent, a broad distribution among the D t values of a dye molecule is obtained from different locations within the ACN-WT binary mixture. Lastly our 1 H NMR study in the ACN-WT binary mixture shows the existence of strong hydrogen bond interactions among the cosolvents in the ACN-WT mixture.
Magnetic Fields and Multiple Protostar Formation
NASA Astrophysics Data System (ADS)
Boss, A. P.
2001-12-01
Recent observations of star-forming regions suggest that binary and multiple young stars are the rule rather than the exception, and implicate fragmentation as the likely mechanism for their formation. Most numerical hydrodynamical calculations of fragmentation have neglected the possibly deleterious effects of magnetic fields, in spite of ample evidence for the importance of magnetic support of pre-collapse clouds. We present here the first numerical hydrodynamical survey of the full effects of magnetic fields on the collapse and fragmentation of dense cloud cores. The models are calculated with a three dimensional, finite differences code which solves the equations of hydrodynamics, gravitation, and radiative transfer in the Eddington and diffusion approximations. Magnetic field effects are included through two simple approximations: magnetic pressure is added to the gas pressure, and magnetic tension is approximated by gravity dilution once collapse is well underway. Ambipolar diffusion of the magnetic field leading to cloud collapse is treated approximately as well. Models are calculated for a variety of initial cloud density profiles, shapes, and rotation rates. We find that in spite of the inclusion of magnetic field effects, dense cloud cores are capable of fragmenting into binary and multiple protostar systems. Initially prolate clouds tend to fragment into binary protostars, while initially oblate clouds tend to fragment into multiple protostar systems containing a small number (of order four) of fragments. The latter are likely to be subject to rapid orbital evolution, with close encounters possibly leading to the ejection of fragments. Contrary to expectation, magnetic tension effects appear to enhance fragmentation, allowing lower mass fragments to form than would otherwise be possible, because magnetic tension helps to prevent a central density singularity from forming and producing a dominant single object. Magnetically-supported dense cloud cores thus seem to be capable of collapsing and fragmenting into sufficient numbers of binary and multiple protostar systems to be compatible with observations of the relative rarity of single protostars. This work was partially supported by NSF grants AST-9983530 and MRI-9976645.
NASA Astrophysics Data System (ADS)
Boss, Alan P.
2002-04-01
Recent observations of star-forming regions suggest that binary and multiple young stars are the rule rather than the exception and implicate fragmentation as the likely mechanism for their formation. Most numerical hydrodynamic calculations of fragmentation have neglected the possibly deleterious effects of magnetic fields, despite ample evidence for the importance of magnetic support of precollapse clouds. We present here the first numerical hydrodynamic survey of the collapse and fragmentation of initially magnetically supported clouds that takes into account several magnetic field effects in an approximate manner. The models are calculated with a three-dimensional, finite differences code that solves the equations of hydrodynamics, gravitation, and radiative transfer in the Eddington and diffusion approximations. Magnetic field effects are included through two simple approximations: magnetic pressure is added to the gas pressure, and magnetic tension is approximated by gravity dilution once collapse is well underway. Ambipolar diffusion of the magnetic field leading to cloud collapse is treated approximately as well. Models are calculated for a variety of initial cloud density profiles, shapes, and rotation rates. We find that in spite of the inclusion of magnetic field effects, dense cloud cores are capable of fragmenting into binary and multiple protostar systems. Initially prolate clouds tend to fragment into binary protostars, while initially oblate clouds tend to fragment into multiple protostar systems containing a small number (of the order of 4) of fragments. The latter are likely to be subject to rapid orbital evolution, with close encounters possibly leading to the ejection of fragments. Contrary to expectation, magnetic tension effects appear to enhance fragmentation, allowing lower mass fragments to form than would otherwise be possible, because magnetic tension helps to prevent a central density singularity from forming and producing a dominant single object. Magnetically supported dense cloud cores thus seem to be capable of collapsing and fragmenting into sufficient numbers of binary and multiple protostar systems to be compatible with observations of the relative rarity of single protostars.
Pulsed electric field processing for fruit and vegetables
USDA-ARS?s Scientific Manuscript database
This month’s column reviews the theory and current applications of pulsed electric field (PEF) processing for fruits and vegetables to improve their safety and quality. This month’s column coauthor, Stefan Toepfl, is advanced research manager at the German Institute of Food Technologies and professo...
Combatant Commands Informational Series: USCENTCOM, USSOUTHCOM, USSPACECOM
1995-05-01
Command and Staff College at Maxwell AFB in Montgomery, AL. Following ACSC she is assigned to 24 J -5 (Plans and Policy directorate), USTRANSCOM at...Command and Staff College Air University Maxwell AFB, Al. 36112 jflXGQ"®^1^’ Disclaimer The views expressed in this academic research paper are...Space Directory 1989-90. Alexandria, VA: Jane’s Information Group, 1990. London, John R, Ill, LEO On The Cheap. 1992-1993. Maxwell AFB AL: Air
Synthesis and characterization of binary titania-silica mixed oxides
NASA Astrophysics Data System (ADS)
Budhi, Sridhar
A series of binary titania-silica mixed oxides were synthesized by the sol-gel method at room temperature. The mixed oxides were prepared that involved the hydrolysis of titanium isopropoxide and tetraethylorthosilicate (TEOS) by co-solvent induced gelation usually in acidic media. The resulting gels were dried, calcined and then characterized by powder X-ray diffractometric studies, nitrogen sorption studies (at 77K), diffuse reflectance spectroscopy, Raman microscopy and transmission electron microscopic studies. The nitrogen sorption studies indicate that the specific surface areas, pore volume, pore diameter and pore size distribution of the mixed oxides were substantially enhanced when non-polar solvents such as toluene, p-xylene or mesitylene were added as co-solvents to the synthesis gel. Transmission electron microscopic (TEM) studies confirm the results obtained from the nitrogen sorption studies. Our results indicate that we can obtain binary metal oxides possessing high surface area and large pore volumes with tunable pore size distribution at room temperature. Photocatalytic evaluation of the mixed oxides is currently in progress.
NASA Astrophysics Data System (ADS)
De Becker, Michaël; Blomme, Ronny; Micela, Giusi; Pittard, Julian M.; Rauw, Gregor; Romero, Gustavo E.; Sana, Hugues; Stevens, Ian R.
2009-05-01
Several colliding-wind massive binaries are known to be non-thermal emitters in the radio domain. This constitutes strong evidence for the fact that an efficient particle acceleration process is at work in these objects. The acceleration mechanism is most probably the Diffusive Shock Acceleration (DSA) process in the presence of strong hydrodynamic shocks due to the colliding-winds. In order to investigate the physics of this particle acceleration, we initiated a multiwavelength campaign covering a large part of the electromagnetic spectrum. In this context, the detailed study of the hard X-ray emission from these sources in the SIMBOL-X bandpass constitutes a crucial element in order to probe this still poorly known topic of astrophysics. It should be noted that colliding-wind massive binaries should be considered as very valuable targets for the investigation of particle acceleration in a similar way as supernova remnants, but in a different region of the parameter space.
NASA Astrophysics Data System (ADS)
Carnio, Brett N.; Elliott, Janet A. W.
2014-08-01
The number of Maxwell-Boltzmann particles that hit a flat wall in infinite space per unit area per unit time is a well-known result. As new applications are arising in micro and nanotechnologies there are a number of situations in which a rarefied gas interacts with either a flat or curved surface in a small confined geometry. Thus, it is necessary to prove that the Maxwell-Boltzmann collision frequency result holds even if a container's dimensions are on the order of nanometers and also that this result is valid for both a finite container with flat walls (a rectangular container) and a finite container with a curved wall (a cylindrical container). An analytical proof confirms that the Maxwell-Boltzmann collision frequencies for either a finite rectangular container or a finite cylindrical container are both equal to the well-known result obtained for a flat wall in infinite space. A major aspect of this paper is the introduction of a mathematical technique to solve the arising infinite sum of integrals whose integrands depend on the Maxwell-Boltzmann velocity distribution.
The Riemannian geometry is not sufficient for the geometrization of the Maxwell's equations
NASA Astrophysics Data System (ADS)
Kulyabov, Dmitry S.; Korolkova, Anna V.; Velieva, Tatyana R.
2018-04-01
The transformation optics uses geometrized Maxwell's constitutive equations to solve the inverse problem of optics, namely to solve the problem of finding the parameters of the medium along the paths of propagation of the electromagnetic field. For the geometrization of Maxwell's constitutive equations, the quadratic Riemannian geometry is usually used. This is due to the use of the approaches of the general relativity. However, there arises the question of the insufficiency of the Riemannian structure for describing the constitutive tensor of the Maxwell's equations. The authors analyze the structure of the constitutive tensor and correlate it with the structure of the metric tensor of Riemannian geometry. It is concluded that the use of the quadratic metric for the geometrization of Maxwell's equations is insufficient, since the number of components of the metric tensor is less than the number of components of the constitutive tensor. A possible solution to this problem may be a transition to Finslerian geometry, in particular, the use of the Berwald-Moor metric to establish the structural correspondence between the field tensors of the electromagnetic field.
Famous optician: James Clerk Maxwell
NASA Astrophysics Data System (ADS)
Haidar, Riad
2018-04-01
Mainly known for his unifying theory of electricity, magnetism and induction, James Clerk Maxwell also concluded that light was an electromagnetic wave, and was responsible for the first true colour photograph.
Multi-wavelength Observations of the Dissociative Merger in the Galaxy Cluster CIZA J0107.7+5408
NASA Astrophysics Data System (ADS)
Randall, S. W.; Clarke, T. E.; van Weeren, R. J.; Intema, H. T.; Dawson, W. A.; Mroczkowski, T.; Blanton, E. L.; Bulbul, E.; Giacintucci, S.
2016-06-01
We present results based on X-ray, optical, and radio observations of the massive galaxy cluster CIZA J0107.7+5408. We find that this system is a post-core-passage, dissociative, binary merger, with the optical galaxy density peaks of each subcluster leading their associated X-ray emission peaks. This separation occurs because the diffuse gas experiences ram pressure forces, while the effectively collisionless galaxies (and presumably their associated dark matter (DM) halos) do not. This system contains double-peaked diffuse radio emission, possibly a double radio relic with the relics lying along the merger axis and also leading the X-ray cores. We find evidence for a temperature peak associated with the SW relic, likely created by the same merger shock that is powering the relic radio emission in this region. Thus, this system is a relatively rare, clean example of a dissociative binary merger, which can in principle be used to place constraints on the self-interaction cross-section of DM. Low-frequency radio observations reveal ultra-steep spectrum diffuse radio emission that is not correlated with the X-ray, optical, or high-frequency radio emission. We suggest that these sources are radio phoenixes, which are preexisting non-thermal particle populations that have been re-energized through adiabatic compression by the same merger shocks that power the radio relics. Finally, we place upper limits on inverse Compton emission from the SW radio relic.
MULTI-WAVELENGTH OBSERVATIONS OF THE DISSOCIATIVE MERGER IN THE GALAXY CLUSTER CIZA J0107.7+5408
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randall, S. W.; Weeren, R. J. van; Clarke, T. E.
We present results based on X-ray, optical, and radio observations of the massive galaxy cluster CIZA J0107.7+5408. We find that this system is a post-core-passage, dissociative, binary merger, with the optical galaxy density peaks of each subcluster leading their associated X-ray emission peaks. This separation occurs because the diffuse gas experiences ram pressure forces, while the effectively collisionless galaxies (and presumably their associated dark matter (DM) halos) do not. This system contains double-peaked diffuse radio emission, possibly a double radio relic with the relics lying along the merger axis and also leading the X-ray cores. We find evidence for amore » temperature peak associated with the SW relic, likely created by the same merger shock that is powering the relic radio emission in this region. Thus, this system is a relatively rare, clean example of a dissociative binary merger, which can in principle be used to place constraints on the self-interaction cross-section of DM. Low-frequency radio observations reveal ultra-steep spectrum diffuse radio emission that is not correlated with the X-ray, optical, or high-frequency radio emission. We suggest that these sources are radio phoenixes, which are preexisting non-thermal particle populations that have been re-energized through adiabatic compression by the same merger shocks that power the radio relics. Finally, we place upper limits on inverse Compton emission from the SW radio relic.« less
Multi-wavelength Observations of the Dissociative Merger in the Galaxy Cluster CIZA J0107.7+5408
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randall, S. W.; Clarke, T. E.; Weeren, R. J. van
We present results based on X-ray, optical, and radio observations of the massive galaxy cluster CIZA J0107.7+5408. We find that this system is a post-core-passage, dissociative, binary merger, with the optical galaxy density peaks of each subcluster leading their associated X-ray emission peaks. This separation occurs because the diffuse gas experiences ram pressure forces, while the effectively collisionless galaxies (and presumably their associated dark matter (DM) halos) do not. This system contains double-peaked diffuse radio emission, possibly a double radio relic with the relics lying along the merger axis and also leading the X-ray cores. We find evidence for amore » temperature peak associated with the SW relic, likely created by the same merger shock that is powering the relic radio emission in this region. Thus, this system is a relatively rare, clean example of a dissociative binary merger, which can in principle be used to place constraints on the self-interaction cross-section of DM. Low-frequency radio observations reveal ultra-steep spectrum diffuse radio emission that is not correlated with the X-ray, optical, or high-frequency radio emission. Here, we suggest that these sources are radio phoenixes, which are preexisting non-thermal particle populations that have been re-energized through adiabatic compression by the same merger shocks that power the radio relics. Finally, we place upper limits on inverse Compton emission from the SW radio relic.« less
Multi-wavelength Observations of the Dissociative Merger in the Galaxy Cluster CIZA J0107.7+5408
Randall, S. W.; Clarke, T. E.; Weeren, R. J. van; ...
2016-05-25
We present results based on X-ray, optical, and radio observations of the massive galaxy cluster CIZA J0107.7+5408. We find that this system is a post-core-passage, dissociative, binary merger, with the optical galaxy density peaks of each subcluster leading their associated X-ray emission peaks. This separation occurs because the diffuse gas experiences ram pressure forces, while the effectively collisionless galaxies (and presumably their associated dark matter (DM) halos) do not. This system contains double-peaked diffuse radio emission, possibly a double radio relic with the relics lying along the merger axis and also leading the X-ray cores. We find evidence for amore » temperature peak associated with the SW relic, likely created by the same merger shock that is powering the relic radio emission in this region. Thus, this system is a relatively rare, clean example of a dissociative binary merger, which can in principle be used to place constraints on the self-interaction cross-section of DM. Low-frequency radio observations reveal ultra-steep spectrum diffuse radio emission that is not correlated with the X-ray, optical, or high-frequency radio emission. Here, we suggest that these sources are radio phoenixes, which are preexisting non-thermal particle populations that have been re-energized through adiabatic compression by the same merger shocks that power the radio relics. Finally, we place upper limits on inverse Compton emission from the SW radio relic.« less
Inception of supraglacial channelization under turbulent flow conditions
NASA Astrophysics Data System (ADS)
Mantelli, E.; Camporeale, C.; Ridolfi, L.
2013-12-01
Glacier surfaces exhibit an amazing variety of meltwater-induced morphologies, ranging from small scale ripples and dunes on the bed of supraglacial channels to meandering patterns, till to large scale drainage networks. Even though the structure and geometry of these morphologies play a key role in the glacier melting processes, the physical-based modeling of such spatial patterns have attracted less attention than englacial and subglacial channels. In order to partially fill this gap, our work concerns the large scale channelization occurring on the ice slopes and focuses on the role of turbulence on the wavelength selection processes during the channelization inception. In a recent study[1], two of us showed that the morphological instability induced by a laminar film flowing over an ice bed is characterized by transversal length scales of order of centimeters. Being these scales much smaller than the spacing observed in the channelization of supraglacial drainage networks (that are of order of meters) and considering that the water films flowing on glaciers can exhibit Reynolds numbers larger than 104, we investigated the role of turbulence in the inception of channelization. The flow-field is modeled by means of two-dimensional shallow water equations, where Reynolds stresses are also considered. In the depth-averaged heat balance equation an incoming heat flux from air is assumed and forced convection heat exchange with the wall is taken into account, in addition to convection and diffusion in the liquid. The temperature profile in the ice is finally coupled to the liquid through Stefan equation. We then perform a linear stability analysis and, under the assumption of small Stefan number, we solve the differential eigenvalue problem analytically. As main outcome of such an analysis, the morphological instability of the ice-water interface is detected and investigated in a wide range of the independent parameters: longitudinal and transversal wavenumbers, glacier surface slope, and Froude number and temperature of the water stream. The most remarkable result is that critical transversal wavelengths of order of meters are obtained, which are in general agreement with the patterns observed on glaciers during the melting season. Moreover, the key role played by the free surface of the water film, turbulent heat transfer and Reynolds stresses on the inception of channelization is highlighted and discussed. [1] Camporeale, C. & Ridolfi, L. (2012) Ice ripple formation at large Reynolds number. J. Fluid Mech. 694, 225-251.
Euclideanization of Maxwell-Chern-Simons theory
NASA Astrophysics Data System (ADS)
Bowman, Daniel Alan
We quantize the theory of electromagnetism in 2 + 1-spacetime dimensions with the addition of the topological Chern-Simons term using an indefinite metric formalism. In the process, we also quantize the Proca and pure Maxwell theories, which are shown to be related to the Maxwell-Chern-Simons theory. Next, we Euclideanize these three theories, obtaining path space formulae and investigating Osterwalder-Schrader positivity in each case. Finally, we obtain a characterization of those Euclidean states that correspond to physical states in the relativistic theories.
Maxwell's demons realized in electronic circuits
NASA Astrophysics Data System (ADS)
Koski, Jonne V.; Pekola, Jukka P.
2016-12-01
We review recent progress in making the former gedanken experiments of Maxwell's demon [1] into real experiments in a lab. In particular, we focus on realizations based on single-electron tunneling in electronic circuits. We first present how stochastic thermodynamics can be investigated in these circuits. Next we review recent experiments on an electron-based Szilard engine. Finally, we report on experiments on single-electron tunneling-based cooling, overviewing the recent realization of a Coulomb gap refrigerator, as well as an autonomous Maxwell's demon.
North to Alaska: The Geostrategic Importance of the Last Frontier
2012-06-01
Alaskan and Round- the -World Flights-December 1919,” Mitchell L / C Box 7, AFHRA, Maxwell AFB AL. 7 Mitchell, The Strategic Key to the World, 3. 8 Cloe...Army Air Corps Record in Flying the Mail,” MICFILM 43796, IRIS #01102971, Foulois L / C Box 14, in the Murray Green Papers, AFHRA, Maxwell AFB AL...Coverage,” MICFILM 43796, IRIS #01102971, L / C Box 262, in the Murray Green Papers, AFHRA, Maxwell AFB AL. 72 “Alaskan Flight: Arnold’s Report
Maxwell-Higgs vortices with internal structure
NASA Astrophysics Data System (ADS)
Bazeia, D.; Marques, M. A.; Menezes, R.
2018-05-01
Vortices are considered in relativistic Maxwell-Higgs systems in interaction with a neutral scalar field. The gauge field interacts with the neutral field via the presence of generalized permeability, and the charged and neutral scalar fields interact in a way dictated by the presence of first order differential equations that solve the equations of motion. The neutral field may be seen as the source field of the vortex, and we study some possibilities, which modify the standard Maxwell-Higgs solution and include internal structure to the vortex.
Theory of Dielectric Elastomers
2010-10-25
partly in the air and partly in a dielectric liquid . The applied voltage causes the liquid to rise to a height h. The height results from the...balance of the Maxwell stress and the weight of the liquid . The Maxwell stress parallel to the electrodes in the air is 2/2Eaa , where a is the...permittivity of the air. The Maxwell stress parallel to the electrodes in the liquid is 2/2Ell , where l is the permittivity of the liquid
Small Worldness in Dense and Weighted Connectomes
NASA Astrophysics Data System (ADS)
Colon-Perez, Luis; Couret, Michelle; Triplett, William; Price, Catherine; Mareci, Thomas
2016-05-01
The human brain is a heterogeneous network of connected functional regions; however, most brain network studies assume that all brain connections can be described in a framework of binary connections. The brain is a complex structure of white matter tracts connected by a wide range of tract sizes, which suggests a broad range of connection strengths. Therefore, the assumption that the connections are binary yields an incomplete picture of the brain. Various thresholding methods have been used to remove spurious connections and reduce the graph density in binary networks. But these thresholds are arbitrary and make problematic the comparison of networks created at different thresholds. The heterogeneity of connection strengths can be represented in graph theory by applying weights to the network edges. Using our recently introduced edge weight parameter, we estimated the topological brain network organization using a complimentary weighted connectivity framework to the traditional framework of a binary network. To examine the reproducibility of brain networks in a controlled condition, we studied the topological network organization of a single healthy individual by acquiring 10 repeated diffusion-weighted magnetic resonance image datasets, over a one-month period on the same scanner, and analyzing these networks with deterministic tractography. We applied a threshold to both the binary and weighted networks and determined that the extra degree of freedom that comes with the framework of weighting network connectivity provides a robust result as any threshold level. The proposed weighted connectivity framework provides a stable result and is able to demonstrate the small world property of brain networks in situations where the binary framework is inadequate and unable to demonstrate this network property.
High-Performing Primary Care Teams: Creating The Air Force Medical Home Advantage
2015-02-17
Geneau, Claudio Del Grande, Jean-Louis Denis, Eveline Hudon, Jeannie Haggerty, Lucie Bonin, Rejean Duplain, Johanne Goudrea and William Hogg . "Providing...Eisen, Stefan. Practical Guide to Negotiating in the Military. 2nd. Montgomery, AL: USAF Negotiation Center of Excellence, 2013. Green, Charles B. "The
Ruling Relationships in Sustainable Development and Education for Sustainable Development
ERIC Educational Resources Information Center
Berryman, Tom; Sauvé, Lucie
2016-01-01
It is from historical perspectives on more than 40 years of environment related education theories, practices, and policies that we revisit what might otherwise become a tired conversation about environmental education and sustainable development. Our contemporary critical analysis of Stefan Bengtsson's research about policy making leads us to…
ERIC Educational Resources Information Center
Jain, Pushpendra K.
1991-01-01
The interrelationship between the various forms of the Planck radiation equation is discussed. A differential equation that gives intensity or energy density of radiation per unit wavelength or per unit frequency is emphasized. The Stefan-Boltzmann Law and the change in the glow of a hot body with temperature are also discussed. (KR)
ERIC Educational Resources Information Center
LoPresto, Michael C.
2013-01-01
In a previous article in this journal, we reported on a laboratory activity in which students used a derivation from the Stefan-Boltzmann law to calculate planetary temperatures and compare them to measured values from various (mostly online) sources. The calculated temperatures matched observed values very well with the exceptions of Venus and…
Bayesian Authentication: Quantifying Security of the Hancke-Kuhn Protocol
2010-01-01
Conference on Advances in Cryptology, pages 169–177, London, UK, 1991. Springer-Verlag. [6] Stefan Brands and David Chaum . Distance-bounding protocols. In...Lecture Notes in Computer Science, pages 371–388. Springer, 2004. [30] Patrick Schaller, Benedikt Schmidt, David Basin, and Srdjan Capkun. Modeling and
Graphic Novels in the Classroom
ERIC Educational Resources Information Center
Martin, Adam
2009-01-01
Today many authors and artists adapt works of classic literature into a medium more "user friendly" to the increasingly visual student population. Stefan Petrucha and Kody Chamberlain's version of "Beowulf" is one example. The graphic novel captures the entire epic in arresting images and contrasts the darkness of the setting and characters with…
ERIC Educational Resources Information Center
Bonnet, I.; Gabelli, J.
2010-01-01
We report on the physics around an incandescent lamp. Using a consumer-grade digital camera, we combine electrical and optical measurements to explore Planck's law of black-body radiation. This simple teaching experiment is successfully used to measure both Stefan's and Planck's constants. Our measurements lead to a strikingly accurate value for…
Language Crossings: Negotiating the Self in a Multicultural World. Language and Literacy Series.
ERIC Educational Resources Information Center
Ogulnick, Karen, Ed.
This book includes 25 papers in 5 parts. Part 1, "Dislocations," includes (1) "Puzzle" (Myrna Nieves); (2) "No Language To Die In" (Greta Hofmann Nemiroff); (3) "Here's Your Change 'N Enjoy the Show" (Verena Stefan); (4) "The Vagabond Years" (Elizabeth Dykman); (5) "From Bayamon to…
Strengthening US DoD Cyber Security with the Vulnerability Market
2013-06-01
is with their constant assurance that I find strength. I would also like to acknowledge my cyber- colleagues, Maj Ronald “Rusty” Clark, Maj Vanessa ...Michel J.G. van Eeten, Delft University of Technology; Michael Levi, Cardiff University; Tyler Moore, Southern Methodist University; and Stefan Savage
Properties of Fluorinated Graphene Films
2010-04-01
Properties of Fluorinated Graphene Films Jeremy T. Robinson,* James S. Burgess, Chad E. Junkermeier, Stefan C. Badescu, Thomas L. Reinecke, F. Keith...G. S.; Graham, A. P.; Kreupl, F.; Seidel , R.; Hoenlein, W. Chem. Phys. Lett. 2004, 399 (1-3), 280– 283. (19) Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J
Translations on Eastern Europe Political, Sociological, and Military Affairs No. 1572.
1978-08-01
they are subordinated. Stefan Leskovjansky, a member of management of the construction group at the Unified Agricultural Cooperative Klatov, gained...German relations. The first step was not easy for Honecker. Only a short time ago the SED chief had asked Karl Seidel , department head in the GDR
Local Thermonuclear Runaways in Dwarf Novae?
NASA Astrophysics Data System (ADS)
Shara, Michael
2012-10-01
We have no hope of understanding the structure and evolution of a class of astrophysical objects if we cannot identify the dominant energy source of those objects.The Disk Instability Model {DIM} postulates that Dwarf Nova {DN} outbursts are powered by runaway accretion from an accretion disk onto a White Dwarf {WD} in a red dwarf-WD mass transferring binary. Ominously, HST observations {e.g. Sion et al. 2001} of WD surface abundances hint at a significant shortcoming of the DIM. The data from the present proposal will be able to unequivocally demonstrate if the observed highly Carbon-depleted and Nitrogen-enhanced abundances on WD surfaces {NOT predicted by DIM} vary with binary orbital phase, or throughout a DN quiescence cycle, or from cycle to cycle. These same data will test if predicted {but never observed} Local Thermonuclear Runaways {"Nuclear-powered mini-novas"} occur on the WDs of DN. Such events could trigger or even power DN, providing the long-sought physical mechanism of DN eruptions that DIM lacks. As a "free" bonus, the same data may also directly detect the diffusion of accreted metals in a WD atmosphere for the first time, or provide significant limits on the diffusion rate.
NASA Technical Reports Server (NTRS)
Tewari, Surendra N.; Trivedi, Rohit
1991-01-01
Development of steady-state periodic cellular array is one of the critical problems in the study of nonlinear pattern formation during directional solidification of binary alloys. The criterion which establishes the values of cell tip radius and spacing under given growth condition is not known. Theoretical models, such as marginal stability and microscopic solvability, have been developed for purely diffusive regime. However, the experimental conditions where cellular structures are stable are precisely the ones where the convection effects are predominant. Thus, the critical data for meaningful evaluation of cellular array growth models can only be obtained by partial directional solidification and quenching experiments carried out in the low gravity environment of space.
NASA Astrophysics Data System (ADS)
Pejcha, Ondřej; Metzger, Brian D.; Tomida, Kengo
2016-09-01
We study mass-loss from the outer Lagrange point (L2) in binary stellar mergers and their luminous transients by means of radiative hydrodynamical simulations. Previously, we showed that for binary mass ratios 0.06 ≲ q ≲ 0.8, synchronous L2 mass-loss results in a radiatively inefficient, dust-forming unbound equatorial outflow. A similar outflow exists irrespective of q if the ratio of the sound speed to the orbital speed at the injection point is sufficiently large, ε ≡ cT/vorb ≳ 0.15. By contrast, for cold L2 mass-loss (ε ≲ 0.15) from binaries with q ≲ 0.06 or q ≳ 0.8, the equatorial outflow instead remains marginally bound and falls back to the binary over tens to hundreds of binary orbits, where it experiences additional tidal torquing and shocking. As the bound gas becomes virialized with the binary, the luminosity of the system increases slowly at approximately constant photosphere radius, causing the temperature to rise. Subsequent evolution depends on the efficiency of radiative cooling. If the bound atmosphere is able to cool efficiently, as quantified by radiative diffusion time being shorter than the advection time (tdiff/tadv ≪ 1), then the virialized gas collapses to an excretion disc, while for tdiff/tadv ≳ 1 an isotropic wind is formed. Between these two extremes, an inflated envelope transports the heat generated near the binary to the surface by meridional flows. In all cases, the radiated luminosity reaches a fraction ˜10-2 to 10-1 of dot{M}v_orb^2/2, where dot{M} is the mass outflow rate. We discuss the implications of our results for transients in the luminosity gap between classical novae and supernovae, such as V1309 Sco and V838 Mon.
Diffuse X-ray Emission from M101
NASA Technical Reports Server (NTRS)
Kuntz, K. D.; Snowden, S. L.; Pence, W. D.; Mukai, K.; White, Nicholas E. (Technical Monitor)
2002-01-01
The total 0.45-2.0 keV luminosity of M101 is 3.1 x 10(exp 39) ergs/s, of which 2.2 x 10(exp 39) ergs/s is due to diffuse emission. Of the diffuse emission, no more than 6% can be due to unresolved point sources such as X-ray binaries, and approx. 11% is due to dwarf stars. The diffuse emission traces the spiral arms and is roughly correlated with the H alpha and FUV (far ultraviolet) emission. The radial distribution closely follows the optical profile. The bulk of the diffuse emission is characterized by a two thermal component spectrum with kT = 0.20,0.75 keV, and the ratios of the emission measures of the two components is roughly constant as a function of both radius and surface brightness. The softer component has a sufficiently large covering factor that the bulk of the emission is likely extra-planar. We find no evidence of an extended axisymmetric X-ray halo, suggesting that any such halo has a strength much smaller than current predictions.
Anisotropic Brownian motion in ordered phases of DNA fragments.
Dobrindt, J; Rodrigo Teixeira da Silva, E; Alves, C; Oliveira, C L P; Nallet, F; Andreoli de Oliveira, E; Navailles, L
2012-01-01
Using Fluorescence Recovery After Photobleaching, we investigate the Brownian motion of DNA rod-like fragments in two distinct anisotropic phases with a local nematic symmetry. The height of the measurement volume ensures the averaging of the anisotropy of the in-plane diffusive motion parallel or perpendicular to the local nematic director in aligned domains. Still, as shown in using a model specifically designed to handle such a situation and predicting a non-Gaussian shape for the bleached spot as fluorescence recovery proceeds, the two distinct diffusion coefficients of the DNA particles can be retrieved from data analysis. In the first system investigated (a ternary DNA-lipid lamellar complex), the magnitude and anisotropy of the diffusion coefficient of the DNA fragments confined by the lipid bilayers are obtained for the first time. In the second, binary DNA-solvent system, the magnitude of the diffusion coefficient is found to decrease markedly as DNA concentration is increased from isotropic to cholesteric phase. In addition, the diffusion coefficient anisotropy measured within cholesteric domains in the phase coexistence region increases with concentration, and eventually reaches a high value in the cholesteric phase.
Venus - Lakshmi Planum and Maxwell Montes
1996-03-07
This full resolution radar image from NASA Magellan spacecraft is centered along the eastern edge of Lakshmi Planum and the western edge of Maxwell Montes. http://photojournal.jpl.nasa.gov/catalog/PIA00241
Extreme jet ejections from the black hole X-ray binary V404 Cygni
NASA Astrophysics Data System (ADS)
Tetarenko, A. J.; Sivakoff, G. R.; Miller-Jones, J. C. A.; Rosolowsky, E. W.; Petitpas, G.; Gurwell, M.; Wouterloot, J.; Fender, R.; Heinz, S.; Maitra, D.; Markoff, S. B.; Migliari, S.; Rupen, M. P.; Rushton, A. P.; Russell, D. M.; Russell, T. D.; Sarazin, C. L.
2017-08-01
We present simultaneous radio through sub-mm observations of the black hole X-ray binary (BHXB) V404 Cygni during the most active phase of its June 2015 outburst. Our 4 h long set of overlapping observations with the Very Large Array, the Sub-millimeter Array and the James Clerk Maxwell Telescope (SCUBA-2) covers eight different frequency bands (including the first detection of a BHXB jet at 666 GHz/450 μm), providing an unprecedented multifrequency view of the extraordinary flaring activity seen during this period of the outburst. In particular, we detect multiple rapidly evolving flares, which reach Jy-level fluxes across all of our frequency bands. With this rich data set, we performed detailed MCMC modelling of the repeated flaring events. Our custom model adapts the van der Laan synchrotron bubble model to include twin bi-polar ejections, propagating away from the black hole at bulk relativistic velocities, along a jet axis that is inclined to the line of sight. The emission predicted by our model accounts for projection effects, relativistic beaming and the geometric time delay between the approaching and receding ejecta in each ejection event. We find that a total of eight bi-polar, discrete jet ejection events can reproduce the emission that we observe in all of our frequency bands remarkably well. With our best-fitting model, we provide detailed probes of jet speed, structure, energetics and geometry. Our analysis demonstrates the paramount importance of the mm/sub-mm bands, which offer a unique, more detailed view of the jet than can be provided by radio frequencies alone.
Improving receiver performance of diffusive molecular communication with enzymes.
Noel, Adam; Cheung, Karen C; Schober, Robert
2014-03-01
This paper studies the mitigation of intersymbol interference in a diffusive molecular communication system using enzymes that freely diffuse in the propagation environment. The enzymes form reaction intermediates with information molecules and then degrade them so that they cannot interfere with future transmissions. A lower bound expression on the expected number of molecules measured at the receiver is derived. A simple binary receiver detection scheme is proposed where the number of observed molecules is sampled at the time when the maximum number of molecules is expected. Insight is also provided into the selection of an appropriate bit interval. The expected bit error probability is derived as a function of the current and all previously transmitted bits. Simulation results show the accuracy of the bit error probability expression and the improvement in communication performance by having active enzymes present.
Fluctuating hydrodynamics of multispecies nonreactive mixtures
Balakrishnan, Kaushik; Garcia, Alejandro L.; Donev, Aleksandar; ...
2014-01-22
In this study we discuss the formulation of the fluctuating Navier-Stokes equations for multispecies, nonreactive fluids. In particular, we establish a form suitable for numerical solution of the resulting stochastic partial differential equations. An accurate and efficient numerical scheme, based on our previous methods for single species and binary mixtures, is presented and tested at equilibrium as well as for a variety of nonequilibrium problems. These include the study of giant nonequilibrium concentration fluctuations in a ternary mixture in the presence of a diffusion barrier, the triggering of a Rayleigh-Taylor instability by diffusion in a four-species mixture, as well asmore » reverse diffusion in a ternary mixture. Finally, good agreement with theory and experiment demonstrates that the formulation is robust and can serve as a useful tool in the study of thermal fluctuations for multispecies fluids.« less
Rayhan, Rakib U; Stevens, Benson W; Timbol, Christian R; Adewuyi, Oluwatoyin; Walitt, Brian; VanMeter, John W; Baraniuk, James N
2013-01-01
Gulf War exposures in 1990 and 1991 have caused 25% to 30% of deployed personnel to develop a syndrome of chronic fatigue, pain, hyperalgesia, cognitive and affective dysfunction. Gulf War veterans (n = 31) and sedentary veteran and civilian controls (n = 20) completed fMRI scans for diffusion tensor imaging. A combination of dolorimetry, subjective reports of pain and fatigue were correlated to white matter diffusivity properties to identify tracts associated with symptom constructs. Gulf War Illness subjects had significantly correlated fatigue, pain, hyperalgesia, and increased axial diffusivity in the right inferior fronto-occipital fasciculus. ROC generated thresholds and subsequent binary regression analysis predicted CMI classification based upon axial diffusivity in the right inferior fronto-occipital fasciculus. These correlates were absent for controls in dichotomous regression analysis. The right inferior fronto-occipital fasciculus may be a potential biomarker for Gulf War Illness. This tract links cortical regions involved in fatigue, pain, emotional and reward processing, and the right ventral attention network in cognition. The axonal neuropathological mechanism(s) explaining increased axial diffusivity may account for the most prominent symptoms of Gulf War Illness.
The origin of spurious solutions in computational electromagnetics
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Wu, Jie; Povinelli, L. A.
1995-01-01
The origin of spurious solutions in computational electromagnetics, which violate the divergence equations, is deeply rooted in a misconception about the first-order Maxwell's equations and in an incorrect derivation and use of the curl-curl equations. The divergence equations must be always included in the first-order Maxwell's equations to maintain the ellipticity of the system in the space domain and to guarantee the uniqueness of the solution and/or the accuracy of the numerical solutions. The div-curl method and the least-squares method provide rigorous derivation of the equivalent second-order Maxwell's equations and their boundary conditions. The node-based least-squares finite element method (LSFEM) is recommended for solving the first-order full Maxwell equations directly. Examples of the numerical solutions by LSFEM for time-harmonic problems are given to demonstrate that the LSFEM is free of spurious solutions.
Revisiting the phase transition of AdS-Maxwell-power-Yang-Mills black holes via AdS/CFT tools
NASA Astrophysics Data System (ADS)
El Moumni, H.
2018-01-01
In the present work we investigate the Van der Waals-like phase transition of AdS black hole solution in the Einstein-Maxwell-power-Yang-Mills gravity (EMPYM) via different approaches. After reconsidering this phase structure in the entropy-thermal plane, we recall the nonlocal observables such as holographic entanglement entropy and two point correlation function to show that the both observables exhibit a Van der Waals-like behavior as the case of the thermal entropy. By checking the Maxwell's equal area law and calculating the critical exponent for different values of charge C and nonlinearity parameter q we confirm that the first and the second order phases persist in the holographic framework. Also the validity of the Maxwell law is governed by the proximity to the critical point.
General eigenstates of Maxwell's equations in a two-constituent composite medium
NASA Astrophysics Data System (ADS)
Bergman, David J.; Farhi, Asaf
2016-11-01
Eigenstates of Maxwell's equations in the quasistatic regime were used recently to calculate the response of a Veselago Lens1 to the field produced by a time dependent point electric charge.2, 3 More recently, this approach was extended to calculate the non-quasistatic response of such a lens. This necessitated a calculation of the eigenstates of the full Maxwell equations in a flat slab structure where the electric permittivity ɛ1 of the slab differs from the electric permittivity ɛ2 of its surroundings while the magnetic permeability is equal to 1 everywhere.4 These eigenstates were used to calculate the response of a Veselago Lens to an oscillating point electric dipole source of electromagnetic (EM) waves. A result of these calculations was that, although images with subwavelength resolution are achievable, as first predicted by John Pendry,5 those images appear not at the points predicted by geometric optics. They appear, instead, at points which lie upon the slab surfaces. This is strongly connected to the fact that when ɛ1/ɛ2 = -1 a strong singularity occurs in Maxwell's equations: This value of ɛ1/ɛ2 is a mathemetical accumulation point for the EM eigenvalues.6 Unfortunately, many physicists are unaware of this crucial mathematical property of Maxwell's equations. In this article we describe how the non-quasistatic eigenstates of Maxwell's equations in a composite microstructure can be calculated for general two-constituent microstructures, where both ɛ and μ have different values in the two constituents.
Vincenti, H.; Vay, J. -L.
2015-11-22
Due to discretization effects and truncation to finite domains, many electromagnetic simulations present non-physical modifications of Maxwell's equations in space that may generate spurious signals affecting the overall accuracy of the result. Such modifications for instance occur when Perfectly Matched Layers (PMLs) are used at simulation domain boundaries to simulate open media. Another example is the use of arbitrary order Maxwell solver with domain decomposition technique that may under some condition involve stencil truncations at subdomain boundaries, resulting in small spurious errors that do eventually build up. In each case, a careful evaluation of the characteristics and magnitude of themore » errors resulting from these approximations, and their impact at any frequency and angle, requires detailed analytical and numerical studies. To this end, we present a general analytical approach that enables the evaluation of numerical discretization errors of fully three-dimensional arbitrary order finite-difference Maxwell solver, with arbitrary modification of the local stencil in the simulation domain. The analytical model is validated against simulations of domain decomposition technique and PMLs, when these are used with very high-order Maxwell solver, as well as in the infinite order limit of pseudo-spectral solvers. Results confirm that the new analytical approach enables exact predictions in each case. It also confirms that the domain decomposition technique can be used with very high-order Maxwell solver and a reasonably low number of guard cells with negligible effects on the whole accuracy of the simulation.« less
Interface structure and contact melting in AgCu eutectic. A molecular dynamics study
NASA Astrophysics Data System (ADS)
Bystrenko, O.; Kartuzov, V.
2017-12-01
Molecular dynamics simulations of the interface structure in binary AgCu eutectic were performed by using the realistic EAM potential. In simulations, we examined the time dependence of the total energy in the process of equilibration, the probability distributions, the composition profiles for the components, and the component diffusivities within the interface zone. It is shown that the relaxation to the equilibrium in the solid state is accompanied by the formation of the steady disordered diffusion zone at the boundary between the crystalline components. At higher temperatures, closer to the eutectic point, the increase in the width of the steady diffusion zone is observed. The particle diffusivities grow therewith to the numbers typical for the liquid metals. Above the eutectic point, the steady zone does not form, instead, the complete contact melting in the system occurs. The results of simulations indicate that during the temperature increase the phenomenon of contact melting is preceded by the similar process spatially localized in the vicinity of the interface.
Simulation studies of chemical erosion on carbon based materials at elevated temperatures
NASA Astrophysics Data System (ADS)
Kenmotsu, T.; Kawamura, T.; Li, Zhijie; Ono, T.; Yamamura, Y.
1999-06-01
We simulated the fluence dependence of methane reaction yield in carbon with hydrogen bombardment using the ACAT-DIFFUSE code. The ACAT-DIFFUSE code is a simulation code based on a Monte Carlo method with a binary collision approximation and on solving diffusion equations. The chemical reaction model in carbon was studied by Roth or other researchers. Roth's model is suitable for the steady state methane reaction. But this model cannot estimate the fluence dependence of the methane reaction. Then, we derived an empirical formula based on Roth's model for methane reaction. In this empirical formula, we assumed the reaction region where chemical sputtering due to methane formation takes place. The reaction region corresponds to the peak range of incident hydrogen distribution in the target material. We adopted this empirical formula to the ACAT-DIFFUSE code. The simulation results indicate the similar fluence dependence compared with the experiment result. But, the fluence to achieve the steady state are different between experiment and simulation results.
BCA-kMC Hybrid Simulation for Hydrogen and Helium Implantation in Material under Plasma Irradiation
NASA Astrophysics Data System (ADS)
Kato, Shuichi; Ito, Atsushi; Sasao, Mamiko; Nakamura, Hiroaki; Wada, Motoi
2015-09-01
Ion implantation by plasma irradiation into materials achieves the very high concentration of impurity. The high concentration of impurity causes the deformation and the destruction of the material. This is the peculiar phenomena in the plasma-material interaction (PMI). The injection process of plasma particles are generally simulated by using the binary collision approximation (BCA) and the molecular dynamics (MD), while the diffusion of implanted atoms have been traditionally solved by the diffusion equation, in which the implanted atoms is replaced by the continuous concentration field. However, the diffusion equation has insufficient accuracy in the case of low concentration, and in the case of local high concentration such as the hydrogen blistering and the helium bubble. The above problem is overcome by kinetic Monte Carlo (kMC) which represents the diffusion of the implanted atoms as jumps on interstitial sites in a material. In this paper, we propose the new approach ``BCA-kMC hybrid simulation'' for the hydrogen and helium implantation under the plasma irradiation.
Smith, Reginald W; Zhu, Xiaohe; Tunnicliffe, Mark C; Smith, Timothy J N; Misener, Lowell; Adamson, Josee
2002-10-01
It is now well known that the diffusion coefficient (D) measured in a laboratory in low earth orbit (LEO) is less than the corresponding value measured in a terrestrial laboratory. However, all LEO laboratories are subject to transient accelerations (g-jitter) superimposed on the steady reduced gravity environment of the space platform. In measurements of the diffusion coefficients for dilute binary alloys of Pb-(Ag, Au,Sb), Sb-(Ga,In), Bi-(Ag,Au,Sb), Sn-(Au,Sb), Al-(Fe, Ni,Si), and In-Sb in which g-jitter was suppressed, it was found that D proportional to T (temperature) if g-jitter was suppressed, rather than D proportional to T(2) as observed by earlier workers with g-jitter present. Furthermore, when a forced g-jitter was applied to a diffusion couple, the value measured for D increased. The significance of these results is reviewed in the light of recent work in which ab initio molecular dynamics simulations predicted a D proportional to T relationship.
NASA Technical Reports Server (NTRS)
Dietrich, D. L.; Ross, H. D.; Tien, J. S.
1995-01-01
The candle flame in both normal and microgravity is non-propagating. In microgravity, however, the candle flame is also non-convective where (excepting Stefan flow) pure diffusion is the only transport mode. It also shares many characteristics with another classical problem, that of isolated droplet combustion. Given their qualitatively similar flame shapes and the required heat feedback to condensed-phase fuels, the gas-phase flow and temperature fields should be relatively similar for a droplet and a candle in reduced gravity. Unless the droplet diameter is maintained somehow through non-intrusive replenishment of fuel, the quasi-steady burning characteristics of a droplet can be maintained for only a few seconds. In contrast, the candle flame in microgravity may achieve a nearly steady state over a much longer time and is therefore ideal for examining a number of combustion-related phenomena. In this paper, we examine candle flame behavior in both short-duration and long-duration, quiescent, microgravity environments. Interest in this type of flame, especially 'candle flames in weightlessness', is demonstrated by very frequent public inquiries. The question is usually posed as 'will a candle flame burn in zero gravity', or, 'will a candle burn indefinitely (or steadily) in zero gravity in a large volume of quiescent air'. Intuitive speculation suggests to some that, in the absence of buoyancy, the accumulation of products in the vicinity of the flame will cause flame extinction. The classical theory for droplet combustion with its spherically-shaped diffusion flame, however, shows that steady combustion is possible in the absence of buoyancy if the chemical kinetics are fast enough. Previous experimental studies of candle flames in reduced and microgravity environments showed the flame could survive for at least 5 seconds, but did not reach a steady state in the available test time.
Combining phase-field crystal methods with a Cahn-Hilliard model for binary alloys
NASA Astrophysics Data System (ADS)
Balakrishna, Ananya Renuka; Carter, W. Craig
2018-04-01
Diffusion-induced phase transitions typically change the lattice symmetry of the host material. In battery electrodes, for example, Li ions (diffusing species) are inserted between layers in a crystalline electrode material (host). This diffusion induces lattice distortions and defect formations in the electrode. The structural changes to the lattice symmetry affect the host material's properties. Here, we propose a 2D theoretical framework that couples a Cahn-Hilliard (CH) model, which describes the composition field of a diffusing species, with a phase-field crystal (PFC) model, which describes the host-material lattice symmetry. We couple the two continuum models via coordinate transformation coefficients. We introduce the transformation coefficients in the PFC method to describe affine lattice deformations. These transformation coefficients are modeled as functions of the composition field. Using this coupled approach, we explore the effects of coarse-grained lattice symmetry and distortions on a diffusion-induced phase transition process. In this paper, we demonstrate the working of the CH-PFC model through three representative examples: First, we describe base cases with hexagonal and square symmetries for two composition fields. Next, we illustrate how the CH-PFC method interpolates lattice symmetry across a diffuse phase boundary. Finally, we compute a Cahn-Hilliard type of diffusion and model the accompanying changes to lattice symmetry during a phase transition process.
The rotation of discs around neutron stars: dependence on the Hall diffusion
NASA Astrophysics Data System (ADS)
Faghei, Kazem; Salehi, Fatemeh
2018-01-01
In this paper, we study the dynamics of a geometrically thin, steady and axisymmetric accretion disc surrounding a rotating and magnetized star. The magnetic field lines of star penetrate inside the accretion disc and are twisted due to the differential rotation between the magnetized star and the disc. We apply the Hall diffusion effect in the accreting plasma, because of the Hall diffusion plays an important role in both fully ionized plasma and weakly ionized medium. In the current research, we show that the Hall diffusion is also an important mechanism in accreting plasma around neutron stars. For the typical system parameter values associated with the accreting X-ray binary pulsar, the angular velocity of the inner regions of disc departs outstandingly from Keplerian angular velocity, due to coupling between the magnetic field of neutron star and the rotating plasma of disc. We found that the Hall diffusion is very important in inner disc and increases the coupling between the magnetic field of neutron star and accreting plasma. On the other word, the rotational velocity of inner disc significantly decreases in the presence of the Hall diffusion. Moreover, the solutions imply that the fastness parameter decreases and the angular velocity transition zone becomes broad for the accreting plasma including the Hall diffusion.
Hydrodynamics with conserved current via AdS/CFT correspondence in the Maxwell-Gauss-Bonnet gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu Yapeng; Sun Peng; Zhang Jianhui
2011-06-15
Using the AdS/CFT correspondence, we study the hydrodynamics with conserved current from the dual Maxwell-Gauss-Bonnet gravity. After constructing the perturbative solution to the first order based on the boosted black brane solution in the bulk Maxwell-Gauss-Bonnet gravity, we extract the stress tensor and conserved current of the dual conformal fluid on its boundary, and also find the effect of the Gauss-Bonnet term on the dual conformal fluid. Our results show that the Gauss-Bonnet term can affect the parameters such as the shear viscosity {eta}, entropy density s, thermal conductivity {kappa} and electrical conductivity {sigma}. However, it does not affect themore » so-called Wiedemann-Franz law which relates {kappa} to {sigma}, while it affects the ratio {eta}/s. In addition, another interesting result is that {eta}/s can also be affected by the bulk Maxwell field in our case, which is consistent with some previous results predicted through the Kubo formula. Moreover, the anomalous magnetic and vortical effects by adding the Chern-Simons term are also considered in our case in the Maxwell-Gauss-Bonnet gravity.« less
77 FR 74492 - Federal Property Suitable as Facilities To Assist the Homeless
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-14
... 20405, (202) 501-0084; HHS: Ms. Theresa M. Rita, Chief, Real Property Branch, Department of Health and... Maxwell AFB Maxwell AL Landholding Agency: Air Force Property Number: 18201240021 Status: Underutilized...
Construction of Three Dimensional Solutions for the Maxwell Equations
NASA Technical Reports Server (NTRS)
Yefet, A.; Turkel, E.
1998-01-01
We consider numerical solutions for the three dimensional time dependent Maxwell equations. We construct a fourth order accurate compact implicit scheme and compare it to the Yee scheme for free space in a box.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, Neil; Jibben, Zechariah; Brady, Peter
2017-06-28
Pececillo is a proxy-app for the open source Truchas metal processing code (LA-CC-15-097). It implements many of the physics models used in Truchas: free-surface, incompressible Navier-Stokes fluid dynamics (e.g., water waves); heat transport, material phase change, view factor thermal radiation; species advection-diffusion; quasi-static, elastic/plastic solid mechanics with contact; electomagnetics (Maxwell's equations). The models are simplified versions that retain the fundamental computational complexity of the Truchas models while omitting many non-essential features and modeling capabilities. The purpose is to expose Truchas algorithms in a greatly simplified context where computer science problems related to parallel performance on advanced architectures can be moremore » easily investigated. While Pececillo is capable of performing simulations representative of typical Truchas metal casting, welding, and additive manufacturing simulations, it lacks many of the modeling capabilites needed for real applications.« less
New technique for excitation of bulk and surface spin waves in ferromagnets
NASA Astrophysics Data System (ADS)
Bogacz, S. A.; Ketterson, J. B.
1985-09-01
A meander-line magnetic transducer is discussed in the context of bulk and surface spin-wave generation in ferromagnets. The magnetic field created by the transducer was calculated in closed analytic form for this model. The linear response of the ferromagnet to the inhomogenous surface disturbance of arbitrary ω and k was obtained as a self-consistent solution to the Bloch equation of motion and the Maxwell equations, subject to appropriate boundary condition. In particular, the energy flux through the boundary displays a sharp resonantlike absorption maximum concentrated at the frequency of the magnetostatic Damon-Eshbach (DE) surface mode; furthermore, the energy transfer spectrum is cut off abruptly below the threshold frequency of the bulk spin waves. The application of the meander line to the spin diffusion problem in NMR is also discussed.
Habibi, Mohammad Hossein; Mardani, Maryam
2015-02-25
Binary zinc tin oxide nano-composite was synthesized by a facile sol-gel method using simple precursors from the solutions consisting of zinc acetate, tin(IV) chloride and ethanol. Effect of annealing temperature on optical and structural properties was investigated using X-ray diffraction (XRD), diffuse reflectance spectra (DRS), field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR). XRD results revealed the existence of the ZnO and SnO2 phases. FESEM results showed that binary zinc tin oxide nano-composites ranges from 56 to 60 nm in diameter at 400°C and 500°C annealing temperatures respectively. The optical band gap was increased from 2.72 eV to 3.11 eV with the increasing of the annealing temperature. FTIR results confirmed the presence of zinc oxide and tin oxide and the broad absorption peaks at 3426 and 1602 cm(-1) can be ascribed to the vibration of absorptive water, and the absorption peaks at 546, 1038 and 1410 cm(-1) are due to the vibration of Zn-O or Sn-O groups in binary zinc tin oxide. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esclapez, Julia; Britton, K. Linda; Baker, Patrick J.
2005-08-01
Single crystals of binary and ternary complexes of wild-type and D38C mutant H. mediterranei glucose dehydrogenase have been obtained by the hanging-drop vapour-diffusion method. Haloferax mediterranei glucose dehydrogenase (EC 1.1.1.47) belongs to the medium-chain alcohol dehydrogenase superfamily and requires zinc for catalysis. In the majority of these family members, the catalytic zinc is tetrahedrally coordinated by the side chains of a cysteine, a histidine, a cysteine or glutamate and a water molecule. In H. mediterranei glucose dehydrogenase, sequence analysis indicates that the zinc coordination is different, with the invariant cysteine replaced by an aspartate residue. In order to analyse themore » significance of this replacement and to contribute to an understanding of the role of the metal ion in catalysis, a range of binary and ternary complexes of the wild-type and a D38C mutant protein have been crystallized. For most of the complexes, crystals belonging to space group I222 were obtained using sodium/potassium citrate as a precipitant. However, for the binary and non-productive ternary complexes with NADPH/Zn, it was necessary to replace the citrate with 2-methyl-2,4-pentanediol. Despite the radical change in conditions, the crystals thus formed were isomorphous.« less
Supernova remnant S 147 and its associated neutron star(s)
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.
2006-07-01
The supernova remnant S 147 harbors the pulsar PSR J 0538+2817 whose characteristic age is more than an order of magnitude greater than the kinematic age of the system (inferred from the angular offset of the pulsar from the geometric center of the supernova remnant and the pulsar proper motion). To reconcile this discrepancy we propose that PSR J 0538+2817 could be the stellar remnant of the first supernova explosion in a massive binary system and therefore could be as old as its characteristic age. Our proposal implies that S 147 is the diffuse remnant of the second supernova explosion (that disrupted the binary system) and that a much younger second neutron star (not necessarily manifesting itself as a radio pulsar) should be associated with S 147. We use the existing observational data on the system to suggest that the progenitor of the supernova that formed S 147 was a Wolf-Rayet star (so that the supernova explosion occurred within a wind bubble surrounded by a massive shell) and to constrain the parameters of the binary system. We also restrict the magnitude and direction of the kick velocity received by the young neutron star at birth and find that the kick vector should not strongly deviate from the orbital plane of the binary system.
Davies, James F; Wilson, Kevin R
2016-02-16
The formation of ultraviscous, glassy, and amorphous gel states in aqueous aerosol following the loss of water results in nonequilibrium dynamics due to the extended time scales for diffusive mixing. Existing techniques for measuring water diffusion by isotopic exchange are limited by contact of samples with the substrate, and methods applied to infer diffusion coefficients from mass transport in levitated droplets requires analysis by complex coupled differential equations to derive diffusion coefficients. We present a new technique that combines contactless levitation with aerosol optical tweezers with isotopic exchange (D2O/H2O) to measure the water diffusion coefficient over a broad range (Dw ≈ 10(-12)-10(-17) m(2)·s(-1)) in viscous organic liquids (citric acid, sucrose, and shikimic acid) and inorganic gels (magnesium sulfate, MgSO4). For the organic liquids in binary and ternary mixtures, Dw depends on relative humidity and follows a simple compositional Vignes relationship. In MgSO4 droplets, water diffusivity decreases sharply with water activity and is consistent with predictions from percolation theory. These measurements show that, by combining micrometer-sized particle levitation (a contactless measurement with rapid mixing times) with an established probe of water diffusion, Dw can be simply and directly quantified for amorphous and glassy states that are inaccessible to existing methods.
Davies, James F.; Wilson, Kevin R.
2016-01-11
The formation of ultraviscous, glassy, and amorphous gel states in aqueous aerosol following the loss of water results in nonequilibrium dynamics due to the extended time scales for diffusive mixing. Existing techniques for measuring water diffusion by isotopic exchange are limited by contact of samples with the substrate, and methods applied to infer diffusion coefficients from mass transport in levitated droplets requires analysis by complex coupled differential equations to derive diffusion coefficients. Here, we present a new technique that combines contactless levitation with aerosol optical tweezers with isotopic exchange (D 2O/H 2O) to measure the water diffusion coefficient over amore » broad range (D w ≈ 10 -12-10 -17 m 2s -1) in viscous organic liquids (citric acid, sucrose, and shikimic acid) and inorganic gels (magnesium sulfate, MgSO 4). For the organic liquids in binary and ternary mixtures, D w depends on relative humidity and follows a simple compositional Vignes relationship. In MgSO 4 droplets, water diffusivity decreases sharply with water activity and is consistent with predictions from percolation theory. These measurements show that, by combining micrometer-sized particle levitation (a contactless measurement with rapid mixing times) with an established probe of water diffusion, D w can be simply and directly quantified for amorphous and glassy states that are inaccessible to existing methods.« less
NASA Technical Reports Server (NTRS)
Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)
1994-01-01
This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that are currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Kerr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations.
Quasi-local conserved charges in the Einstein-Maxwell theory
NASA Astrophysics Data System (ADS)
Setare, M. R.; Adami, H.
2017-05-01
In this paper we consider the Einstein-Maxwell theory and define a combined transformation composed of diffeomorphism and U(1) gauge transformation. For generality, we assume that the generator χ of such transformation is field-dependent. We define the extended off-shell ADT current and then off-shell ADT charge such that they are conserved off-shell for the asymptotically field-dependent symmetry generator χ. Then, we define the conserved charge corresponding to the asymptotically field-dependent symmetry generator χ. We apply the presented method to find the conserved charges of the asymptotically AdS3 spacetimes in the context of the Einstein-Maxwell theory in three dimensions. Although the usual proposal for the quasi local charges provides divergent global charges for the Einstein-Maxwell theory with negative cosmological constant in three dimensions, here we avoid this problem by introducing proposed combined transformation χ
Wind-tunnel tests of a Clark Y wing with 'Maxwell' leading-edge slots
NASA Technical Reports Server (NTRS)
Gauvain, William E
1937-01-01
Aerodynamic force tests of a Clark Y wing equipped with "Maxwell" type leading-edge slots were conducted in the N.A.C.A. 7- by 10-foot tunnel to ascertain the aerodynamic characteristics, which involved the determination of the best slot-gap opening, the effects of slat width, and the effect of a trailing-edge flap. The Maxwell wing with a wide-chord slat (0.30 c(sub w)) and with a 0.211 c(sub w) split flap deflected 60 degrees had a C(sub L sub max) of 2.53 or about twice that of the plain wing. The wing with the wide slat also had, in general, improved aerodynamic characteristics over those of the Maxwell wing with slat, and had about the same aerodynamic characteristics as a Handley Page slotted wing with approximately the same size of slat.
Realization of Quantum Maxwell’s Demon with Solid-State Spins*
NASA Astrophysics Data System (ADS)
Wang, W.-B.; Chang, X.-Y.; Wang, F.; Hou, P.-Y.; Huang, Y.-Y.; Zhang, W.-G.; Ouyang, X.-L.; Huang, X.-Z.; Zhang, Z.-Y.; Wang, H.-Y.; He, L.; Duan, L.-M.
2018-04-01
Resolution of the century-long paradox on Maxwell's demon reveals a deep connection between information theory and thermodynamics. Although initially introduced as a thought experiment, Maxwell's demon can now be implemented in several physical systems, leading to intriguing test of information-thermodynamic relations. Here, we report experimental realization of a quantum version of Maxwell's demon using solid state spins where the information acquiring and feedback operations by the demon are achieved through conditional quantum gates. A unique feature of this implementation is that the demon can start in a quantum superposition state or in an entangled state with an ancilla observer. Through quantum state tomography, we measure the entropy in the system, demon, and the ancilla, showing the influence of coherence and entanglement on the result. A quantum implementation of Maxwell's demon adds more controllability to this paradoxical thermal machine and may find applications in quantum thermodynamics involving microscopic systems.
Power generator driven by Maxwell's demon
NASA Astrophysics Data System (ADS)
Chida, Kensaku; Desai, Samarth; Nishiguchi, Katsuhiko; Fujiwara, Akira
2017-05-01
Maxwell's demon is an imaginary entity that reduces the entropy of a system and generates free energy in the system. About 150 years after its proposal, theoretical studies explained the physical validity of Maxwell's demon in the context of information thermodynamics, and there have been successful experimental demonstrations of energy generation by the demon. The demon's next task is to convert the generated free energy to work that acts on the surroundings. Here, we demonstrate that Maxwell's demon can generate and output electric current and power with individual randomly moving electrons in small transistors. Real-time monitoring of electron motion shows that two transistors functioning as gates that control an electron's trajectory so that an electron moves directionally. A numerical calculation reveals that power generation is increased by miniaturizing the room in which the electrons are partitioned. These results suggest that evolving transistor-miniaturization technology can increase the demon's power output.
Unification of force and substance.
Wilczek, Frank
2016-08-28
Maxwell's mature presentation of his equations emphasized the unity of electromagnetism and mechanics, subsuming both as 'dynamical systems'. That intuition of unity has proved both fruitful, as a source of pregnant concepts, and broadly inspiring. A deep aspect of Maxwell's work is its use of redundant potentials, and the associated requirement of gauge symmetry. Those concepts have become central to our present understanding of fundamental physics, but they can appear to be rather formal and esoteric. Here I discuss two things: the physical significance of gauge invariance, in broad terms; and some tantalizing prospects for further unification, building on that concept, that are visible on the horizon today. If those prospects are realized, Maxwell's vision of the unity of field and substance will be brought to a new level.This article is part of the themed issue 'Unifying physics and technology in light of Maxwell's equations'. © 2016 The Author(s).
NASA Astrophysics Data System (ADS)
Chun, Sehun
2017-07-01
Applying the method of moving frames to Maxwell's equations yields two important advancements for scientific computing. The first is the use of upwind flux for anisotropic materials in Maxwell's equations, especially in the context of discontinuous Galerkin (DG) methods. Upwind flux has been available only to isotropic material, because of the difficulty of satisfying the Rankine-Hugoniot conditions in anisotropic media. The second is to solve numerically Maxwell's equations on curved surfaces without the metric tensor and composite meshes. For numerical validation, spectral convergences are displayed for both two-dimensional anisotropic media and isotropic spheres. In the first application, invisible two-dimensional metamaterial cloaks are simulated with a relatively coarse mesh by both the lossless Drude model and the piecewisely-parametered layered model. In the second application, extremely low frequency propagation on various surfaces such as spheres, irregular surfaces, and non-convex surfaces is demonstrated.
NASA Technical Reports Server (NTRS)
Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)
1995-01-01
This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that we currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Karr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations.
Assessment: Monitoring & Evaluation in a Stabilisation Context
2010-09-15
http://www.oecd.org/dataoecd/23/27/35281194.pdf b. SIDA (2004), The Logical Framework Approach. A summary of the theory behind the LFA method...en_21571361_34047972_39774574 _1_1_1_1,00.pdf 3. SIDA (2004), Stefan Molund and Göran Schill, Looking Back, Moving Forward, Sida Evaluation Manual. Available at
ERIC Educational Resources Information Center
Westbury, Ian, Ed.; Hopmann, Stefan, Ed.; Riquarts, Kurt, Ed.
This collection of papers presents essays by German scholars and practitioners writing from within the German Didaktik tradition and interpretive essays by U.S. scholars. After an introduction, "Starting a Dialogue: A Beginning Conversation between Didaktik and the Curriculum Traditions" (Stefan Hopmann and Kurt Riquarts), there are 18…
Reconstructing Deweyan Pragmatism: A Review Essay
ERIC Educational Resources Information Center
Neubert, Stefan
2009-01-01
In this essay Stefan Neubert argues that John Dewey was a philosopher of reconstruction and that the best use we can make of him today is to reconstruct his work in and for our own contexts. Neubert distinguishes three necessary and equally important components of the overall project of reconstructing Deweyan pragmatism: first, to make strong and…
The drop heard round the world
NASA Astrophysics Data System (ADS)
Bergin, Shane D.; Hutzler, Stefan; Weaire
2014-05-01
When physicists at Trinity College Dublin began looking after an antique funnel full of pitch, they had no idea their humble experiment would spawn one of 2013's most “viral” news stories. Shane D Bergin, Stefan Hutzler and Denis Weaire reflect on the value of “slow science” to a hyper-connected, social-media world.
ERIC Educational Resources Information Center
Jickling, Bob
2016-01-01
This response problematizes Stefan Bengtsson's (2016) defense of education for sustainable development. He argues that sustainable development and education for sustainable development are not globalizing and hegemonic discourses, as some have claimed, and uses case-study analysis of Vietnamese policy documents to support his claims. He observes…
Finding Truth in "Lies": Nietzsche's Perspectivism and Its Relation to Education
ERIC Educational Resources Information Center
Jonas, Mark E.; Nakazawa, Yoshiaki M.
2008-01-01
In his 2001 article "Teaching to Lie and Obey: Nietzsche on Education", Stefan Ramaekers defends Nietzsche's concept of perspectivism against the charge that it is relativistic. He argues that perspectivism is not relativistic because it denies the dichotomy between the "true" world and the "seeming" world, a dichotomy central to claims to…
Directory of Czechoslovak Officials; a Reference Aid
1988-07-14
Jaroslav; KSS Barilla , Jan KSS Horvath, Stefan: A’SS Bartak, Stel’an KSS Horvathova, Marta: KSC Barton, Jaroslav Hricko, Peter: KSS Benyo, Matus: KSS...61 Bilek. Jin 78 Banarova. Eva is Bilek, /denck 4’) Barak, Ladislav 71 Biro~s, Branislav 10.40.41, Barilla , Jan .11 Bisko. fir,, Harlot’s, Paulina 6
USDA-ARS?s Scientific Manuscript database
Researchers from the University of Queensland of New South Wales provided guidance to designers regarding the hydraulic performance of embankment dam stepped spillways. Their research compares a number of high-quality physical model data sets from multiple laboratories, emphasizing the variability ...
Blackbody Radiation from an Incandescent Lamp
ERIC Educational Resources Information Center
Ribeiro, C. I.
2014-01-01
In this article we propose an activity aimed at introductory students to help them understand the Stefan-Boltzmann and Wien's displacement laws. It only requires simple materials that are available at any school: an incandescent lamp, a variable dc energy supply, and a computer to run an interactive simulation of the blackbody spectrum.…
Homosexuality, Manliness and the United States
2010-03-25
LIMITATION OF ABSTRACT 18 . NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON Stefan A. Banach, U.S. Army a. REPORT b. ABSTRACT c. THIS PAGE... 18 Australia...cause is masculine in its origin and subjugates women for fear that their “ erotic power threatens to infect him with feminine softness.” It is
Homosexuality, Manliness, and the United States Army
2010-05-01
LIMITATION OF ABSTRACT 18 . NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON Stefan A. Banach, U.S. Army a. REPORT b. ABSTRACT c. THIS PAGE... 18 Australia...cause is masculine in its origin and subjugates women for fear that their “ erotic power threatens to infect him with feminine softness.” It is
Time to Reframe Politics and Practices in Correctional Education
ERIC Educational Resources Information Center
LoBuglio, Stefan
2001-01-01
In this chapter, Stefan LoBuglio discusses the politics and practices of educational programs for adults in correctional facilities. To begin, LoBuglio provides an overview of the field of corrections, including various types of facilities and correctional programs, as well as demographic and educational data on the U.S. incarcerated population…
Entropy density of an adiabatic relativistic Bose-Einstein condensate star
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khaidir, Ahmad Firdaus; Kassim, Hasan Abu; Yusof, Norhasliza
Inspired by recent works, we investigate how the thermodynamics parameters (entropy, temperature, number density, energy density, etc) of Bose-Einstein Condensate star scale with the structure of the star. Below the critical temperature in which the condensation starts to occur, we study how the entropy behaves with varying temperature till it reaches its own stability against gravitational collapse and singularity. Compared to photon gases (pressure is described by radiation) where the chemical potential, μ is zero, entropy of photon gases obeys the Stefan-Boltzmann Law for a small values of T while forming a spiral structure for a large values of Tmore » due to general relativity. The entropy density of Bose-Einstein Condensate is obtained following the similar sequence but limited under critical temperature condition. We adopt the scalar field equation of state in Thomas-Fermi limit to study the characteristics of relativistic Bose-Einstein condensate under varying temperature and entropy. Finally, we obtain the entropy density proportional to (σT{sup 3}-3T) which obeys the Stefan-Boltzmann Law in ultra-relativistic condition.« less
Featured Image: Experimental Simulation of Melting Meteoroids
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-03-01
Ever wonder what experimental astronomy looks like? Some days, it looks like this piece of rock in a wind tunnel (click for a betterlook!). In this photo, a piece of agrillite (a terrestrial rock) is exposed to conditions in a plasma wind tunnel as a team of scientists led by Stefan Loehle (Stuttgart University) simulate what happens to a meteoroid as it hurtles through Earths atmosphere. With these experiments, the scientists hope to better understand meteoroid ablation the process by which meteoroids are heated, melt, and evaporateas they pass through our atmosphere so that we can learn more from the meteorite fragments that make it to the ground. In the scientists experiment, the rock samples were exposed to plasma flow until they disintegrated, and this process was simultaneously studied via photography, video, high-speed imaging, thermography, and Echelle emission spectroscopy. To find out what the team learned from these experiments, you can check out the original article below.CitationStefan Loehle et al 2017 ApJ 837 112. doi:10.3847/1538-4357/aa5cb5
Droplet size effects on film drainage between droplet and substrate.
Steinhaus, Benjamin; Spicer, Patrick T; Shen, Amy Q
2006-06-06
When a droplet approaches a solid surface, the thin liquid film between the droplet and the surface drains until an instability forms and then ruptures. In this study, we utilize microfluidics to investigate the effects of film thickness on the time to film rupture for water droplets in a flowing continuous phase of silicone oil deposited on solid poly(dimethylsiloxane) (PDMS) surfaces. The water droplets ranged in size from millimeters to micrometers, resulting in estimated values of the film thickness at rupture ranging from 600 nm down to 6 nm. The Stefan-Reynolds equation is used to model film drainage beneath both millimeter- and micrometer-scale droplets. For millimeter-scale droplets, the experimental and analytical film rupture times agree well, whereas large differences are observed for micrometer-scale droplets. We speculate that the differences in the micrometer-scale data result from the increases in the local thin film viscosity due to confinement-induced molecular structure changes in the silicone oil. A modified Stefan-Reynolds equation is used to account for the increased thin film viscosity of the micrometer-scale droplet drainage case.
Multimodal pediatric pain management (part 2).
Friedrichsdorf, Stefan J
2017-05-01
Dr Stefan Friedrichsdorf speaks to Commissioning Editor Jade Parker: Stefan Friedrichsdorf, MD, is medical director of the Department of Pain Medicine, Palliative Care and Integrative Medicine at Children's Hospitals and Clinics of Minnesota in Minneapolis/St Paul, MN, USA, home to one of the largest and most comprehensive programs of its kind in the country. The pain and palliative care program is devoted to control acute, chronic/complex and procedural pain for inpatients and outpatients in close collaboration with all pediatric subspecialties at Children's Minnesota. The team also provides holistic, interdisciplinary care for children and teens with life limiting or terminal diseases and their families. Integrative medicine provides and teaches integrative, nonpharmacological therapies (such as massage, acupuncture/acupressure, biofeedback, aromatherapy and self-hypnosis) to provide care that promotes optimal health and supports the highest level of functioning in all individual children's activities. In this second part of the interview they discuss multimodal (opioid-sparing) analgesia for hospitalized children in pain and how analgesics and adjuvant medications, interventions, rehabilitation, psychological and integrative therapies act synergistically for more effective pediatric pain control with fewer side effects than a single analgesic or modality.
NASA Astrophysics Data System (ADS)
Zhong, Xin; Vrijmoed, Johannes; Moulas, Evangelos; Tajcmanová, Lucie
2016-04-01
Compositional zoning in metamorphic minerals have been generally recognized as an important geological feature to decipher the metamorphic history of rocks. The observed chemical zoning of, e.g. garnet, is commonly interpreted as disequilibrium between the fractionated inner core and the surrounding matrix. However, chemically zoned minerals were also observed in high grade rocks (T>800 degree C) where the duration of metamorphic processes was independently dated to take several Ma. This implies that temperature may not be the only factor that controls diffusion timescales, and grain scale pressure variation was proposed to be a complementary factor that may significantly contribute to the formation and preservation of chemical zoning in high temperature metamorphic minerals [Tajcmanová 2013, 2015]. Here, a coupled model is developed to simulate viscous deformation and chemical diffusion. The numerical approach considers the conservation of mass, momentum, and a constitutive relation developed from equilibrium thermodynamics. A compressible viscoelastic rheology is applied, which associates the volumetric change triggered by deformation and diffusion to a change of pressure. The numerical model is applied to the chemically zoned plagioclase rim described by [Tajcmanová 2014]. The diffusion process operating during the plagioclase rim formation can lead to a development of a pressure gradient. Such a pressure gradient, if maintained during ongoing viscous relaxation, can lead to the preservation of the observed chemical zonation in minerals. An important dimensionless number, the Deborah number, is defined as the ratio between the Maxwell viscoelastic relaxation time and the characteristic diffusion time. It characterizes the relative influence between the maintenance of grain scale pressure variation and chemical diffusion. Two extreme regimes are shown: the mechanically-controlled regime (high Deborah number) and diffusion-controlled regime (low Deborah number). In the mechanically-controlled regime, the grain scale pressure variation and thus the chemical zonation can be maintained due to slow viscous relaxation. Furthermore, by utilizing experimental flow laws and diffusion coefficients, the Deborah number is estimated in a variety of physical conditions. References Tajcmanová, L., Y. Podladchikov, R. Powell, E. Moulas, J.C. Vrijmoed, and J.A.D. Connolly, 2014. Journal of Metamorphic Geology, 32(2):195-207. Tajcmanová, L., J.C. Vrijmoed, and E. Moulas, 2015. Lithos, 216-217:338-351.
Li diffusion and the effect of local structure on Li mobility in Li2O-SiO2 glasses.
Bauer, Ute; Welsch, Anna-Maria; Behrens, Harald; Rahn, Johanna; Schmidt, Harald; Horn, Ingo
2013-12-05
Aimed to improve the understanding of lithium migration mechanisms in ion conductors, this study focuses on Li dynamics in binary Li silicate glasses. Isotope exchange experiments and conductivity measurements were carried out to determine self-diffusion coefficients and activation energies for Li migration in Li2Si3O7 and Li2Si6O13 glasses. Samples of identical composition but different isotope content were combined for diffusion experiments in couples or triples. Diffusion profiles developed between 511 and 664 K were analyzed by femtosecond laser ablation combined with multiple collector inductively coupled plasma mass spectrometry (fs LA-MC-ICP-MS) and secondary ion mass spectrometry (SIMS). Analyses of diffusion profiles and comparison of diffusion data reveal that the isotope effect of lithium diffusion in silicate glasses is rather small, consistent with classical diffusion behavior. Ionic conductivity of glasses was measured between 312 and 675 K. The experimentally obtained self-diffusion coefficient, D(IE), and ionic diffusion coefficient, D(σ), derived from specific DC conductivity provided information about correlation effects during Li diffusion. The D(IE)/D(σ) is higher for the trisilicate (0.27 ± 0.05) than that for the hexasilicate (0.17 ± 0.02), implying that increasing silica content reduces the efficiency of Li jumps in terms of long-range movement. This trend can be rationalized by structural concepts based on nuclear magnetic resonance (NMR) and Raman spectroscopy as well as molecular dynamic simulations, that is, lithium is percolating in low-dimensional, alkali-rich regions separated by a silica-rich matrix.
Phase-transition oscillations induced by a strongly focused laser beam
NASA Astrophysics Data System (ADS)
Devailly, Clémence; Crauste-Thibierge, Caroline; Petrosyan, Artyom; Ciliberto, Sergio
2015-11-01
We report the observation of a surprising phenomenon consisting in a oscillating phase transition which appears in a binary mixture when this is enlightened by a strongly focused infrared laser beam. The mixture is poly-methyl-meth-acrylate (PMMA)-3-octanone, which has an upper critical solution temperature at Tc=306.6 K and volume fraction ϕc=12.8 % [Crauste et al., arXiv:1310.6720, 2013]. We describe the dynamical properties of the oscillations, which are produced by a competition between various effects: the local accumulation of PMMA produced by the laser beam, thermophoresis, and nonlinear diffusion. We show that the main properties of this kind of oscillations can be reproduced in the Landau theory for a binary mixture in which a local driving mechanism, simulating the laser beam, is introduced.