NASA Astrophysics Data System (ADS)
Liu, Yang; Jeon, Ho Seok; Lee, Man Seung
2015-09-01
The possibility of separation of Pr and Nd from La in a chloride leaching solution of monazite sand has been investigated by using a binary mixture of Cyanex 272 (bis(2,4,4-trimethylpentyl) phosphinic acid) and Alamine 336 (tri-octyl/decyl amine). The binary mixture showed synergism on the extraction of the three metals and led to an increase in the separation factor between Pr/Nd and La compared to Cyanex 272 alone. Although the addition of chloride ion into aqueous increased the extraction of the metals, this addition had negative effect on the separation of Nd/Pr and La. McCabe-Thiele diagrams for the extraction of Pr and Nd with the binary mixture were constructed. Stripping of metals from the loaded organic phase was achieved with 0.7 M HCl. The difference in the solvent extraction of the rare earth elements from chloride solution between the binary mixture and saponified extractants was also discussed.
Gao, Yongfei; Feng, Jianfeng; Kang, Lili; Xu, Xin; Zhu, Lin
2018-01-01
The joint toxicity of chemical mixtures has emerged as a popular topic, particularly on the additive and potential synergistic actions of environmental mixtures. We investigated the 24h toxicity of Cu-Zn, Cu-Cd, and Cu-Pb and 96h toxicity of Cd-Pb binary mixtures on the survival of zebrafish larvae. Joint toxicity was predicted and compared using the concentration addition (CA) and independent action (IA) models with different assumptions in the toxic action mode in toxicodynamic processes through single and binary metal mixture tests. Results showed that the CA and IA models presented varying predictive abilities for different metal combinations. For the Cu-Cd and Cd-Pb mixtures, the CA model simulated the observed survival rates better than the IA model. By contrast, the IA model simulated the observed survival rates better than the CA model for the Cu-Zn and Cu-Pb mixtures. These findings revealed that the toxic action mode may depend on the combinations and concentrations of tested metal mixtures. Statistical analysis of the antagonistic or synergistic interactions indicated that synergistic interactions were observed for the Cu-Cd and Cu-Pb mixtures, non-interactions were observed for the Cd-Pb mixtures, and slight antagonistic interactions for the Cu-Zn mixtures. These results illustrated that the CA and IA models are consistent in specifying the interaction patterns of binary metal mixtures. Copyright © 2017 Elsevier B.V. All rights reserved.
Nagai, Takashi; De Schamphelaere, Karel A C
2016-11-01
The authors investigated the effect of binary mixtures of zinc (Zn), copper (Cu), cadmium (Cd), and nickel (Ni) on the growth of a freshwater diatom, Navicula pelliculosa. A 7 × 7 full factorial experimental design (49 combinations in total) was used to test each binary metal mixture. A 3-d fluorescence microplate toxicity assay was used to test each combination. Mixture effects were predicted by concentration addition and independent action models based on a single-metal concentration-response relationship between the relative growth rate and the calculated free metal ion activity. Although the concentration addition model predicted the observed mixture toxicity significantly better than the independent action model for the Zn-Cu mixture, the independent action model predicted the observed mixture toxicity significantly better than the concentration addition model for the Cd-Zn, Cd-Ni, and Cd-Cu mixtures. For the Zn-Ni and Cu-Ni mixtures, it was unclear which of the 2 models was better. Statistical analysis concerning antagonistic/synergistic interactions showed that the concentration addition model is generally conservative (with the Zn-Ni mixture being the sole exception), indicating that the concentration addition model would be useful as a method for a conservative first-tier screening-level risk analysis of metal mixtures. Environ Toxicol Chem 2016;35:2765-2773. © 2016 SETAC. © 2016 SETAC.
Mendes, Luiz Fernando; Stevani, Cassius Vinicius; Zambotti-Villela, Leonardo; Yokoya, Nair Sumie; Colepicolo, Pio
2014-01-01
The macroalga Gracilaria domingensis is an important resource for the food, pharmaceutical, cosmetic, and biotechnology industries. G. domingensis is at a part of the food web foundation, providing nutrients and microelements to upper levels. As seaweed storage metals in the vacuoles, they are considered the main vectors to magnify these toxic elements. This work describes the evaluation of the toxicity of binary mixtures of available metal cations based on the growth rates of G. domingensis over a 48-h exposure. The interactive effects of each binary mixture were determined using a toxic unit (TU) concept that was the sum of the relative contribution of each toxicant and calculated using the ratio between the toxicant concentration and its endpoint. Mixtures of Cd(II)/Cu(II) and Zn(II)/Ca(II) demonstrated to be additive; Cu(II)/Zn(II), Cu(II)/Mg(II), Cu(II)/Ca(II), Zn(II)/Mg(II), and Ca(II)/Mg(II) mixtures were synergistic, and all interactions studied with Cd(II) were antagonistic. Hypotheses that explain the toxicity of binary mixtures at the molecular level are also suggested. These results represent the first effort to characterize the combined effect of available metal cations, based on the TU concept on seaweed in a total controlled medium. The results presented here are invaluable to the understanding of seaweed metal cation toxicity in the marine environment, the mechanism of toxicity action and how the tolerance of the organism.
Solidification phenomena of binary organic mixtures
NASA Technical Reports Server (NTRS)
Chang, K.
1982-01-01
The coalescence rates and motion of liquid bubbles in binary organic mixtures were studied. Several factors such as temperature gradient, composition gradient, interfacial tension, and densities of the two phases play important roles in separation of phases of immiscible liquids. An attempt was made to study the effect of initial compositions on separation rates of well-dispersed organic mixtures at different temperatures and, ultimately, on the homogeneity of solidification of the immiscible binary organic liquids. These organic mixtures serve as models for metallic pseudo binary systems under study. Two specific systems were investigated: ethyl salicylate - diethyl glycol and succinonitrile - water.
Metal/ceramic composites with high hydrogen permeability
Dorris, Stephen E.; Lee, Tae H.; Balachandran, Uthamalingam
2003-05-27
A membrane for separating hydrogen from fluids is provided comprising a sintered homogenous mixture of a ceramic composition and a metal. The metal may be palladium, niobium, tantalum, vanadium, or zirconium or a binary mixture of palladium with another metal such as niobium, silver, tantalum, vanadium, or zirconium.
NASA Astrophysics Data System (ADS)
Inb-Elhaj, M.; Guillon, D.; Skoulios, A.; Maldivi, P.; Giroud-Godquin, A. M.; Marchon, J.-C.
1992-12-01
EXAFS was used to investigate the local structure of the polar spines of rhodium (II) soaps in the columnar liquid crystalline state. It was also used to ascertain the degree of blending of the cores in binary mixtures of rhodium (II) and copper (II) soaps. For the pure rhodium soaps, the columns are shown to result from the stacking of binuclear metal-metal bonded dirhodium tetracarboxylate units bonded to one another by apical ligation of the metal atom of each complex with one of the oxygen atoms of the adjacent molecule. Mixtures of rhodium (II) and copper (II) soaps give a hexagonal columnar mesophase in which pure rhodium and pure copper columns are randomly distributed.
Dunne, Lawrence J; Manos, George
2018-03-13
Although crucial for designing separation processes little is known experimentally about multi-component adsorption isotherms in comparison with pure single components. Very few binary mixture adsorption isotherms are to be found in the literature and information about isotherms over a wide range of gas-phase composition and mechanical pressures and temperature is lacking. Here, we present a quasi-one-dimensional statistical mechanical model of binary mixture adsorption in metal-organic frameworks (MOFs) treated exactly by a transfer matrix method in the osmotic ensemble. The experimental parameter space may be very complex and investigations into multi-component mixture adsorption may be guided by theoretical insights. The approach successfully models breathing structural transitions induced by adsorption giving a good account of the shape of adsorption isotherms of CO 2 and CH 4 adsorption in MIL-53(Al). Binary mixture isotherms and co-adsorption-phase diagrams are also calculated and found to give a good description of the experimental trends in these properties and because of the wide model parameter range which reproduces this behaviour suggests that this is generic to MOFs. Finally, a study is made of the influence of mechanical pressure on the shape of CO 2 and CH 4 adsorption isotherms in MIL-53(Al). Quite modest mechanical pressures can induce significant changes to isotherm shapes in MOFs with implications for binary mixture separation processes.This article is part of the theme issue 'Modern theoretical chemistry'. © 2018 The Author(s).
NASA Astrophysics Data System (ADS)
Dunne, Lawrence J.; Manos, George
2018-03-01
Although crucial for designing separation processes little is known experimentally about multi-component adsorption isotherms in comparison with pure single components. Very few binary mixture adsorption isotherms are to be found in the literature and information about isotherms over a wide range of gas-phase composition and mechanical pressures and temperature is lacking. Here, we present a quasi-one-dimensional statistical mechanical model of binary mixture adsorption in metal-organic frameworks (MOFs) treated exactly by a transfer matrix method in the osmotic ensemble. The experimental parameter space may be very complex and investigations into multi-component mixture adsorption may be guided by theoretical insights. The approach successfully models breathing structural transitions induced by adsorption giving a good account of the shape of adsorption isotherms of CO2 and CH4 adsorption in MIL-53(Al). Binary mixture isotherms and co-adsorption-phase diagrams are also calculated and found to give a good description of the experimental trends in these properties and because of the wide model parameter range which reproduces this behaviour suggests that this is generic to MOFs. Finally, a study is made of the influence of mechanical pressure on the shape of CO2 and CH4 adsorption isotherms in MIL-53(Al). Quite modest mechanical pressures can induce significant changes to isotherm shapes in MOFs with implications for binary mixture separation processes. This article is part of the theme issue `Modern theoretical chemistry'.
Dimensionally stable metallic hydride composition
Heung, Leung K.
1994-01-01
A stable, metallic hydride composition and a process for making such a composition. The composition comprises a uniformly blended mixture of a metal hydride, kieselguhr, and a ballast metal, all in the form of particles. The composition is made by subjecting a metal hydride to one or more hydrogen absorption/desorption cycles to disintegrate the hydride particles to less than approximately 100 microns in size. The particles are partly oxidized, then blended with the ballast metal and the kieselguhr to form a uniform mixture. The mixture is compressed into pellets and calcined. Preferably, the mixture includes approximately 10 vol. % or more kieselguhr and approximately 50 vol. % or more ballast. Metal hydrides that can be used in the composition include Zr, Ti, V, Nb, Pd, as well as binary, tertiary, and more complex alloys of La, Al, Cu, Ti, Co, Ni, Fe, Zr, Mg, Ca, Mn, and mixtures and other combinations thereof. Ballast metals include Al, Cu and Ni.
Metal biosorption equilibria in a ternary system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chong, K.H.; Volesky, B.
Equilibrium metal uptake performance of a biosorbent prepared from Ascophyllum nodosum seaweed biomass was studied using aqueous solutions containing copper, cadmium, and zinc ions in binary and ternary mixtures. Triangular equilibrium diagrams can graphically represent all the ternary equilibrium sorption data. Application of the multicomponent Langmuir model to describe the three-metal system revealed its nonideal characteristics, whereby the value of apparent dissociation constants for the respective metals differed for each system. This restricted the prediction of the ternary equilibria from the binary systems. However, some predictions of the ternary system behavior from the model were consistent with experimental data andmore » with conclusions postulated from the three possible binary subsystems.« less
Karra, Jagadeswara R; Walton, Krista S
2008-08-19
Atomistic grand canonical Monte Carlo simulations were performed in this work to investigate the role of open copper sites of Cu-BTC in affecting the separation of carbon monoxide from binary mixtures containing methane, nitrogen, or hydrogen. Mixtures containing 5%, 50%, or 95% CO were examined. The simulations show that electrostatic interactions between the CO dipole and the partial charges on the metal-organic framework (MOF) atoms dominate the adsorption mechanism. The binary simulations show that Cu-BTC is quite selective for CO over hydrogen and nitrogen for all three mixture compositions at 298 K. The removal of CO from a 5% mixture with methane is slightly enhanced by the electrostatic interactions of CO with the copper sites. However, the pore space of Cu-BTC is large enough to accommodate both molecules at their pure-component loadings, and in general, Cu-BTC exhibits no significant selectivity for CO over methane for the equimolar and 95% mixtures. On the basis of the pure-component and low-concentration behavior of CO, the results indicate that MOFs with open metal sites have the potential for enhancing adsorption separations of molecules of differing polarities, but the pore size relative to the sorbate size will also play a significant role.
Gauthier, Patrick T; Norwood, Warren P; Prepas, Ellie E; Pyle, Greg G
2015-10-06
Mixtures of metals and polycyclic aromatic hydrocarbons (PAHs) are commonly found in aquatic environments. Emerging reports have identified that more-than-additive mortality is common in metal-PAH mixtures. Individual aspects of PAH toxicity suggest they may alter the accumulation of metals and enhance metal-derived reactive oxygen species (ROS). Redox-active metals (e.g., Cu and Ni) are also capable of enhancing the redox cycling of PAHs. Accordingly, we explored the mutual effects redox-active metals and PAHs have on oxidative stress, and the potential for PAHs to alter the accumulation and/or homeostasis of metals in juvenile Hyalella azteca. Amphipods were exposed to binary mixtures of Cu, Cd, Ni, or V, with either phenanthrene (PHE) or phenanthrenequinone (PHQ). Mixture of Cu with either PAH produced striking more-than-additive mortality, whereas all other mixtures amounted to strictly additive mortality following 18-h exposures. We found no evidence to suggest that interactive effects on ROS production were involved in the more-than-additive mortality of Cu-PHE and Cu-PHQ mixtures. However, PHQ increased the tissue concentration of Cu in juvenile H. azteca, providing a potential mechanism for the observed more-than-additive mortality.
Systematic Proteomic Approach to Characterize the Impacts of ...
Chemical interactions have posed a big challenge in toxicity characterization and human health risk assessment of environmental mixtures. To characterize the impacts of chemical interactions on protein and cytotoxicity responses to environmental mixtures, we established a systems biology approach integrating proteomics, bioinformatics, statistics, and computational toxicology to measure expression or phosphorylation levels of 21 critical toxicity pathway regulators and 445 downstream proteins in human BEAS-28 cells treated with 4 concentrations of nickel, 2 concentrations each of cadmium and chromium, as well as 12 defined binary and 8 defined ternary mixtures of these metals in vitro. Multivariate statistical analysis and mathematical modeling of the metal-mediated proteomic response patterns showed a high correlation between changes in protein expression or phosphorylation and cellular toxic responses to both individual metals and metal mixtures. Of the identified correlated proteins, only a small set of proteins including HIF-1a is likely to be responsible for selective cytotoxic responses to different metals and metals mixtures. Furthermore, support vector machine learning was utilized to computationally predict protein responses to uncharacterized metal mixtures using experimentally generated protein response profiles corresponding to known metal mixtures. This study provides a novel proteomic approach for characterization and prediction of toxicities of
Keskin, Seda; Liu, Jinchen; Johnson, J Karl; Sholl, David S
2008-08-05
Mass transport of chemical mixtures in nanoporous materials is important in applications such as membrane separations, but measuring diffusion of mixtures experimentally is challenging. Methods that can predict multicomponent diffusion coefficients from single-component data can be extremely useful if these methods are known to be accurate. We present the first test of a method of this kind for molecules adsorbed in a metal-organic framework (MOF). Specifically, we examine the method proposed by Skoulidas, Sholl, and Krishna (SSK) ( Langmuir, 2003, 19, 7977) by comparing predictions made with this method to molecular simulations of mixture transport of H 2/CH 4 mixtures in CuBTC. These calculations provide the first direct information on mixture transport of any species in a MOF. The predictions of the SSK approach are in good agreement with our direct simulations of binary diffusion, suggesting that this approach may be a powerful one for examining multicomponent diffusion in MOFs. We also use our molecular simulation data to test the ideal adsorbed solution theory method for predicting binary adsorption isotherms and a method for predicting mixture self-diffusion coefficients.
Jung, Hee Joon; Huh, June; Park, Cheolmin
2012-10-21
This feature article describes a new and facile process to fabricate a variety of thin films of non-volatile binary solute mixtures suitable for high performance organic electronic devices via electro-hydrodynamic flow of conventional corona discharge. Both Corona Discharge Coating (CDC) and a modified version of CDC, Scanning Corona Discharge Coating (SCDC), are based on utilizing directional electric flow, known as corona wind, of the charged uni-polar particles generated by corona discharge between a metallic needle and a bottom plate under a high electric field (5-10 kV cm(-1)). The electric flow rapidly spreads out the binary mixture solution on the bottom plate and subsequently forms a smooth and flat thin film in a large area within a few seconds. In the case of SCDC, the static movement of the bottom electrode on which a binary mixture solution is placed provides further control of thin film formation, giving rise to a film highly uniform over a large area. Interesting phase separation behaviors were observed including nanometer scale phase separation of a polymer-polymer binary mixture and vertical phase separation of a polymer-organic semiconductor mixture. Core-shell type phase separation of either polymer-polymer or polymer-colloidal nanoparticle binary mixtures was also developed with a periodically patterned microstructure when the relative location of the corona wind was controlled to a binary solution droplet on a substrate. We also demonstrate potential applications of thin functional films with controlled microstructures by corona coating to various organic electronic devices such as electroluminescent diodes, field effect transistors and non-volatile polymer memories.
NASA Astrophysics Data System (ADS)
Jung, Hee Joon; Huh, June; Park, Cheolmin
2012-09-01
This feature article describes a new and facile process to fabricate a variety of thin films of non-volatile binary solute mixtures suitable for high performance organic electronic devices via electro-hydrodynamic flow of conventional corona discharge. Both Corona Discharge Coating (CDC) and a modified version of CDC, Scanning Corona Discharge Coating (SCDC), are based on utilizing directional electric flow, known as corona wind, of the charged uni-polar particles generated by corona discharge between a metallic needle and a bottom plate under a high electric field (5-10 kV cm-1). The electric flow rapidly spreads out the binary mixture solution on the bottom plate and subsequently forms a smooth and flat thin film in a large area within a few seconds. In the case of SCDC, the static movement of the bottom electrode on which a binary mixture solution is placed provides further control of thin film formation, giving rise to a film highly uniform over a large area. Interesting phase separation behaviors were observed including nanometer scale phase separation of a polymer-polymer binary mixture and vertical phase separation of a polymer-organic semiconductor mixture. Core-shell type phase separation of either polymer-polymer or polymer-colloidal nanoparticle binary mixtures was also developed with a periodically patterned microstructure when the relative location of the corona wind was controlled to a binary solution droplet on a substrate. We also demonstrate potential applications of thin functional films with controlled microstructures by corona coating to various organic electronic devices such as electroluminescent diodes, field effect transistors and non-volatile polymer memories.
Karri, Venkatanaidu; Kumar, Vikas; Ramos, David; Oliveira, Eliandre; Schuhmacher, Marta
2018-01-05
Humans are exposed to a cocktail of heavy metal toxicants in the environment. Though heavy metals are deleterious, there is a paucity of information on the toxicity of mixtures. In this study, four common neurotoxicity heavy metals lead (Pb) cadmium (Cd), arsenic (As), and methylmercury (MeHg) were exposed individually and as mixtures to HT-22 cell line for 8days. The study established that low dose exposures induced toxicity to the HT-22 cell line during 8days. The results indicates potency dependent response, the toxicity of single metals on the HT-22 cells; MeHg > As > Cd > Pb. The cytotoxicity data of single metals were used to determine the mixtures interaction profile by using the dose additivity and effect additivity method. Metal mixtures showed higher toxicities compared to individual metals. Synergistic, antagonistic or additive effects of the toxicity were observed in different mixtures in low dose exposure. The interactive responses of mixtures depend on the co-exposure metal and their respective concentration. We concluded that the combined effects should be considered in the risk assessment of heavy metal co-exposure and potency. In future, comprehensive mechanistic based investigations needed for understanding the real interactive mixtures effects at molecular level. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Huihui; Qu, ChenChen; Liu, Jing
Bacteria and phyllosilicate commonly coexist in the natural environment, producing various bacteria–clay complexes that are capable of immobilizing heavy metals, such as cadmium, via adsorption. However, the molecular binding mechanisms of heavy metals on these complex aggregates still remain poorly understood. This study investigated Cd adsorption on Gram-positive B. subtilis, Gram-negative P. putida and their binary mixtures with montmorillonite (Mont) using the Cd K-edge x-ray absorption spectroscopy (XAS) and isothermal titration calorimetry (ITC). We observed a lower adsorptive capacity for P. putida than B. subtilis, whereas P. putida–Mont and B. subtilis–Mont mixtures showed nearly identical Cd adsorption behaviors. EXAFS fitsmore » and ITC measurements demonstrated more phosphoryl binding of Cd in P. putida. The decreased coordination of C atoms around Cd and the reduced adsorption enthalpies and entropies for the binary mixtures compared to that for individual bacteria suggested that the bidentate Cd-carboxyl complexes in pure bacteria systems were probably transformed into monodentate complexes that acted as ionic bridging structure between bacteria and motmorillonite. This study clarified the binding mechanism of Cd at the bacteria–phyllosilicate interfaces from a molecular and thermodynamic view, which has an environmental significance for predicting the chemical behavior of trace elements in complex mineral–organic systems.« less
The use of nutshell carbons in drinking water filters for removal of trace metals.
Ahmedna, Mohamed; Marshall, Wayne E; Husseiny, Abdo A; Rao, Ramu M; Goktepe, Ipek
2004-02-01
Filtration of drinking water by point-of-use (POU) or point-of-entry (POE) systems is becoming increasingly popular in the United States. Drinking water is filtered to remove both organic and inorganic contaminants. The objective of this study was to evaluate the use of granular activated carbon from nutshells (almond, English walnut, pecan) in a POU water filtration system to determine its effectiveness in removing select, potentially toxic metal ions, namely, copper (Cu2+), lead (Pb2+) or zinc (Zn2+) found in drinking water. The nutshell-based carbon system was designated "Envirofilter" and was compared to four commercial POU systems with brand names of BRITA, Omni Filter, PUR and Teledyne Water Pik. Eight prototype "Envirofilters", consisting of individual or binary mixtures of carbons made from acid-activated almond or pecan shells and steam-activated pecan or walnut shells were constructed and evaluated for adsorption of the three metal ions. The results indicated that a binary mixture of carbons from acid-activated almond and either steam-activated pecan or walnut shells were the most effective in removing these metals from drinking water of all the POU systems evaluated. Binary mixtures of acid-activated almond shell-based carbon with either steam-activated pecan shell- or walnut shell-based carbon removed nearly 100% of lead ion, 90-95% of copper ion and 80-90% of zinc ion. Overall the performance data on the "Envirofilters" suggest that these prototypes require less carbon than commercial filters to achieve the same metal adsorption efficiency and may also be a less expensive product.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudzok, S., E-mail: susanne.rudzok@ufz.d; Schlink, U., E-mail: uwe.schlink@ufz.d; Herbarth, O., E-mail: olf.herbarth@medizin.uni-leipzig.d
2010-05-01
The interaction of drugs and non-therapeutic xenobiotics constitutes a central role in human health risk assessment. Still, available data are rare. Two different models have been established to predict mixture toxicity from single dose data, namely, the concentration addition (CA) and independent action (IA) model. However, chemicals can also act synergistic or antagonistic or in dose level deviation, or in a dose ratio dependent deviation. In the present study we used the MIXTOX model (EU project ENV4-CT97-0507), which incorporates these algorithms, to assess effects of the binary mixtures in the human hepatoma cell line HepG2. These cells possess a liver-likemore » enzyme pattern and a variety of xenobiotic-metabolizing enzymes (phases I and II). We tested binary mixtures of the metal nickel, the anti-inflammatory drug diclofenac, and the antibiotic agent irgasan and compared the experimental data to the mathematical models. Cell viability was determined by three different methods the MTT-, AlamarBlue (registered) and NRU assay. The compounds were tested separately and in combinations. We could show that the metal nickel is the dominant component in the mixture, affecting an antagonism at low-dose levels and a synergism at high-dose levels in combination with diclofenac or irgasan, when using the NRU and the AlamarBlue assay. The dose-response surface of irgasan and diclofenac indicated a concentration addition. The experimental data could be described by the algorithms with a regression of up to 90%, revealing the HepG2 cell line and the MIXTOX model as valuable tool for risk assessment of binary mixtures for cytotoxic endpoints. However the model failed to predict a specific mode of action, the CYP1A1 enzyme activity.« less
Abboud, Pauline; Wilkinson, Kevin J
2013-08-01
The goal of the study was to determine whether metal uptake and biological effects could be predicted by free ion concentrations when organisms were exposed to Cd and a second metal. Bioaccumulation and algal phytochelatin (PC) concentrations were determined for Chlamydomonas reinhardtii following a 6-h exposure. Bioaccumulation results, after six hours of exposure, showed that Cd uptake decreased in the presence of relatively high concentrations of Ca, Cu and Pb, however, Cd bioaccumulation increased in the presence of ca. equimolar concentrations of Cu. A good correlation was observed between the production of PCs and the amount of metals bioaccumulated for the binary mixtures of Cd-Pb and Cd-Cu, but not the Cd-Ca mixture. Overall, the results suggested that, in the case of mixtures, bioaccumulated metal rather than free ion concentrations would be a better predictor of biological effect. Copyright © 2013 Elsevier Ltd. All rights reserved.
Toxicity of binary mixtures of metal oxide nanoparticles to Nitrosomonas europaea.
Yu, Ran; Wu, Junkang; Liu, Meiting; Zhu, Guangcan; Chen, Lianghui; Chang, Yan; Lu, Huijie
2016-06-01
Although the widely used metal oxide nanoparticles (NPs) titanium dioxide NPs (n-TiO2), cerium dioxide NPs (n-CeO2), and zinc oxide NPs (n-ZnO) have been well known for their potential cytotoxicities to environmental organisms, their combined effects have seldom been investigated. In this study, the short-term binary effect of n-CeO2 and n-TiO2 or n-ZnO on a model ammonia oxidizing bacterium, Nitrosomonas europaea were evaluated based on the examinations of cells' physiological, metabolic, and transcriptional responses. The addition of n-TiO2 mitigated the negative effect of more toxic n-CeO2 and the binary toxicity (antagonistic toxicity) of n-TiO2 and n-CeO2 was generally lower than the single NPs induced one. While the n-CeO2/n-ZnO mixture exerted higher cytotoxicity (synergistic cytotoxicity) than that from single NPs. The increased addition of the less toxic n-CeO2 exaggerated the binary toxicity of n-CeO2/n-ZnO mixture although the solubility of n-ZnO was not significantly affected, which excluded the contribution of the dissolved Zn ions to the enhancement of the combined cytotoxicity. The cell membrane disturbances and NP internalizations were detected for all the NP impacted cultures and the electrostatic interactions among the two distinct NPs and the cells were expected to play a key role in mediating their direct contacts and the eventual binary nanotoxicity to the cells. Copyright © 2016 Elsevier Ltd. All rights reserved.
Computational studies of the glass-forming ability of model bulk metallic glasses
NASA Astrophysics Data System (ADS)
Zhang, Kai; Wang, Minglei; Papanikolaou, Stefanos; Liu, Yanhui; Schroers, Jan; Shattuck, Mark D.; O'Hern, Corey S.
2013-09-01
Bulk metallic glasses (BMGs) are produced by rapidly thermally quenching supercooled liquid metal alloys below the glass transition temperature at rates much faster than the critical cooling rate Rc below which crystallization occurs. The glass-forming ability of BMGs increases with decreasing Rc, and thus good glass-formers possess small values of Rc. We perform molecular dynamics simulations of binary Lennard-Jones (LJ) mixtures to quantify how key parameters, such as the stoichiometry, particle size difference, attraction strength, and heat of mixing, influence the glass-formability of model BMGs. For binary LJ mixtures, we find that the best glass-forming mixtures possess atomic size ratios (small to large) less than 0.92 and stoichiometries near 50:50 by number. In addition, weaker attractive interactions between the smaller atoms facilitate glass formation, whereas negative heats of mixing (in the experimentally relevant regime) do not change Rc significantly. These results are tempered by the fact that the slowest cooling rates achieved in our simulations correspond to ˜1011 K/s, which is several orders of magnitude higher than Rc for typical BMGs. Despite this, our studies represent a first step in the development of computational methods for quantitatively predicting glass-formability.
Traudt, Elizabeth M; Ranville, James F; Meyer, Joseph S
2017-04-18
Multiple metals are usually present in surface waters, sometimes leading to toxicity that currently is difficult to predict due to potentially non-additive mixture toxicity. Previous toxicity tests with Daphnia magna exposed to binary mixtures of Ni combined with Cd, Cu, or Zn demonstrated that Ni and Zn strongly protect against Cd toxicity, but Cu-Ni toxicity is more than additive, and Ni-Zn toxicity is slightly less than additive. To consider multiple metal-metal interactions, we exposed D. magna neonates to Cd, Cu, Ni, or Zn alone and in ternary Cd-Cu-Ni and Cd-Ni-Zn combinations in standard 48 h lethality tests. In these ternary mixtures, two metals were held constant, while the third metal was varied through a series that ranged from nonlethal to lethal concentrations. In Cd-Cu-Ni mixtures, the toxicity was less than additive, additive, or more than additive, depending on the concentration (or ion activity) of the varied metal and the additivity model (concentration-addition or independent-action) used to predict toxicity. In Cd-Ni-Zn mixtures, the toxicity was less than additive or approximately additive, depending on the concentration (or ion activity) of the varied metal but independent of the additivity model. These results demonstrate that complex interactions of potentially competing toxicity-controlling mechanisms can occur in ternary-metal mixtures but might be predicted by mechanistic bioavailability-based toxicity models.
Redox States of Initial Atmospheres Outgassed on Rocky Planets and Planetesimals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer, Laura; Fegley, Bruce Jr., E-mail: lschaefer@asu.edu
2017-07-10
The Earth and other rocky planets and planetesimals in the solar system formed through the mixing of materials from various radial locations in the solar nebula. This primordial material likely had a range of oxidation states as well as bulk compositions and volatile abundances. We investigate the oxygen fugacity produced by the outgassing of mixtures of solid meteoritic material, which approximate the primitive nebular materials. We find that the gas composition and oxygen fugacity of binary and ternary mixtures of meteoritic materials vary depending on the proportion of reduced versus oxidized material, and also find that mixtures using differentiated materialsmore » do not show the same oxygen fugacity trends as those using similarly reduced but undifferentiated materials. We also find that simply mixing the gases produced by individual meteoritic materials together does not correctly reproduce the gas composition or oxygen fugacity of the binary and ternary mixtures. We provide tabulated fits for the oxygen fugacities of all of the individual materials and binary mixtures that we investigate. These values may be useful in planetary formation models, models of volatile transport on planetesimals or meteorite parent bodies, or models of trace element partitioning during metal-silicate fractionation.« less
NASA Technical Reports Server (NTRS)
Degroh, H.
1994-01-01
The Metallurgical Programs include three simple programs which calculate solutions to problems common to metallurgical engineers and persons making metal castings. The first program calculates the mass of a binary ideal (alloy) given the weight fractions and densities of the pure components and the total volume. The second program calculates the densities of a binary ideal mixture. The third program converts the atomic percentages of a binary mixture to weight percentages. The programs use simple equations to assist the materials staff with routine calculations. The Metallurgical Programs are written in Microsoft QuickBASIC for interactive execution and have been implemented on an IBM PC-XT/AT operating MS-DOS 2.1 or higher with 256K bytes of memory. All instructions needed by the user appear as prompts as the software is used. Data is input using the keyboard only and output is via the monitor. The Metallurgical programs were written in 1987.
Gauthier, Patrick T; Norwood, Warren P; Prepas, Ellie E; Pyle, Greg G
2015-10-06
Mixtures of metals and polycyclic aromatic hydrocarbons (PAHs) occur ubiquitously in aquatic environments, yet relatively little is known regarding their potential to produce non-additive toxicity (i.e., antagonism or potentiation). A review of the lethality of metal-PAH mixtures in aquatic biota revealed that more-than-additive lethality is as common as strictly additive effects. Approaches to ecological risk assessment do not consider non-additive toxicity of metal-PAH mixtures. Forty-eight-hour water-only binary mixture toxicity experiments were conducted to determine the additive toxic nature of mixtures of Cu, Cd, V, or Ni with phenanthrene (PHE) or phenanthrenequinone (PHQ) using the aquatic amphipod Hyalella azteca. In cases where more-than-additive toxicity was observed, we calculated the possible mortality rates at Canada's environmental water quality guideline concentrations. We used a three-dimensional response surface isobole model-based approach to compare the observed co-toxicity in juvenile amphipods to predicted outcomes based on concentration addition or effects addition mixtures models. More-than-additive lethality was observed for all Cu-PHE, Cu-PHQ, and several Cd-PHE, Cd-PHQ, and Ni-PHE mixtures. Our analysis predicts Cu-PHE, Cu-PHQ, Cd-PHE, and Cd-PHQ mixtures at the Canadian Water Quality Guideline concentrations would produce 7.5%, 3.7%, 4.4% and 1.4% mortality, respectively.
Vellinger, Céline; Felten, Vincent; Sornom, Pascal; Rousselle, Philippe; Beisel, Jean-Nicolas; Usseglio-Polatera, Philippe
2012-01-01
This study aimed at investigating both the individual and combined effects of cadmium (Cd) and arsenate (AsV) on the physiology and behaviour of the Crustacean Gammarus pulex at three temperatures (5, 10 and15°C). G. pulex was exposed during 96 h to (i) two [Cd] alone, (ii) two [AsV] alone, and (iii) four combinations of [Cd] and [AsV] to obtain a complete factorial plane. After exposure, survival, [AsV] or [Cd] in body tissues, behavioural (ventilatory and locomotor activities) and physiological responses (iono-regulation of [Na+] and [Cl−] in haemolymph) were examined. The interactive effects (antagonistic, additive or synergistic) of binary mixtures were evaluated for each tested temperature using a predictive model for the theoretically expected interactive effect of chemicals. In single metal exposure, both the internal metal concentration in body tissues and the mortality rate increased along metallic gradient concentration. Cd alone significantly impaired both [Na+] and [Cl−] while AsV alone had a weak impact only on [Cl−]. The behavioural responses of G. pulex declined with increasing metal concentration suggesting a reallocation of energy from behavioural responses to maintenance functions. The interaction between AsV and Cd was considered as ‘additive’ for all the tested binary mixtures and temperatures (except for the lowest combination at 10°C considered as “antagonistic”). In binary mixtures, the decrease in both ventilatory and locomotor activities and the decline in haemolymphatic [Cl−] were amplified when respectively compared to those observed with the same concentrations of AsV or Cd alone. However, the presence of AsV decreased the haemolymphatic [Na+] loss when G. pulex was exposed to the lowest Cd concentration. Finally, the observed physiological and behavioural effects (except ventilation) in G. pulex exposed to AsV and/or Cd were exacerbated under the highest temperature. The discussion encompasses both the toxicity mechanisms of these metals and their interaction with rising temperature. PMID:22761731
Van Assche, Tom R C; Duerinck, Tim; Van der Perre, Stijn; Baron, Gino V; Denayer, Joeri F M
2014-07-08
Due to the combination of metal ions and organic linkers and the presence of different types of cages and channels, metal-organic frameworks often possess a large structural and chemical heterogeneity, complicating their adsorption behavior, especially for polar-apolar adsorbate mixtures. By allocating isotherms to individual subunits in the structure, the ideal adsorbed solution theory (IAST) can be adjusted to cope with this heterogeneity. The binary adsorption of methanol and n-hexane on HKUST-1 is analyzed using this segregated IAST (SIAST) approach and offers a significant improvement over the standard IAST model predictions. It identifies the various HKUST-1 cages to have a pronounced polar or apolar adsorptive behavior.
Hot gas, regenerative, supported H.sub.2 S sorbents
NASA Technical Reports Server (NTRS)
Voecks, Gerald E. (Inventor); Sharma, Pramod K. (Inventor)
1993-01-01
Efficient, regenerable sorbents for removal of H.sub.2 S from moderately high temperature (usually 200.degree. C.-550.degree.C.) gas streams comprise a porous, high surface area aluminosilicate support, suitably a zeolite, and most preferably a sodium deficient zeolite containing 1 to 20 weight percent of binary metal oxides. The binary oxides are a mixture of a Group VB or VIB metal oxide with a Group IB, IIB or VIII metal oxide such as V-Zn-O, V-Cu-O, Cu-Mo-O, Zn-Mo-O or Fe-Mo-O contained in the support. The sorbent effectively removes H.sub.2 S from the host gas stream in high efficiency and can be repetitively regenerated at least 10 times without loss of activity.
NASA Astrophysics Data System (ADS)
Maxwell, J. L.; Black, M. R.; Chavez, C. A.; Maskaly, K. R.; Espinoza, M.; Boman, M.; Landstrom, L.
2008-06-01
This work demonstrates that two or more elements of negligible solubility (and no known phase diagram) can be co-deposited in fiber form by hyperbaric-pressure laser chemical vapor deposition (HP-LCVD). For the first time, Hg-W alloys were grown as fibers from mixtures of tungsten hexafluoride, mercury vapor, and hydrogen. This new class of materials is termed normally-immiscible materials (NIMs), and includes not only immiscible materials, but also those elemental combinations that have liquid states at exclusive temperatures. This work also demonstrates that a wide variety of other binary and ternary alloys, intermetallics, and mixtures can be grown as fibers, e.g. silicon-tungsten, aluminum-silicon, boron-carbon-silicon, and titanium-carbon-nitride. In addition, pure metallic fibers of aluminum, titanium, and tungsten were deposited, demonstrating that materials of high thermal conductivity can indeed be grown in three-dimensions, provided sufficient vapor pressures are employed. A wide variety of fiber properties and microstructures resulted depending on process conditions; for example, single crystals, fine-grained alloys, and glassy metals could be deposited.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aksu, Z.; Acikel, U.; Kutsal, T.
1999-02-01
Although the biosorption of single metal ions to various kinds of microorganisms has been extensively studied and the adsorption isotherms have been developed for only the single metal ion situation, very little attention has been given to the bioremoval and expression of adsorption isotherms of multimetal ions systems. In this study the simultaneous biosorption of copper(II) and chromium(VI) to Chlorella vulgaris from a binary metal mixture was studied and compared with the single metal ion situation in a batch stirred system. The effects of pH and single- and dual-metal ion concentrations on the equilibrium uptakes were investigated. In previous studiesmore » the optimum biosorption pH had been determined as 4.0 for copper(II) and as 2.0 for chromium(VI). Multimetal ion biosorption studies were performed at these two pH values. It was observed that the equilibrium uptakes of copper(II) or chromium(VI) ions were changed due to the biosorption pH and the presence of other metal ions. Adsorption isotherms were developed for both single- and dual-metal ions systems at these two pH values, and expressed by the mono- and multicomponent Langmuir and Freundlich adsorption models. Model parameters were estimated by nonlinear regression. It was seen that the adsorption equilibrium data fitted very well to the competitive Freundlich model in the concentration ranges studied.« less
ERIC Educational Resources Information Center
D'Amelia, Ronald P.; Clark, Daniel; Nirode, William
2012-01-01
An alloy is an intimate association of two or more metals, with or without a definite composition, which has metallic properties. Heterogeneous alloys, such as tin-lead (Sn/Pb) solders, consist of a mixture of crystalline phases with different compositions. A homogeneous alloy with a unique composition having the lowest possible melting point is…
Alizadeh, Nina
2011-01-01
Lithium-7 NMR measurements were used to investigate the stoichiometry and stability of Li+ complexes with 15-crown-5 (15C5), benzo-15-crown-5 (B15C5), dibenzo-15-crown-5 (DB15C5) and 12-crown-4 (12C4) in a number of nitromethane (NM)-acetonitrile (AN) binary mixtures. In all cases, the exchange between the free and complexed lithium ion was fast on the NMR time scale and a single population average resonance was observed. While all crown ethers form 1:1 complexes with Li+ ion in the binary mixtures used, both 1:1 and 2:1 (sandwich) complexes were observed between lithium ion and 12C4 in pure nitromethane solution. Stepwise formation constants of the 1:1 and 2:1 (ligand/metal) complexes were evaluated from computer fitting of the NMR-mole ratio data to equations which relate the observed metal ion chemical shifts to formation constants. There is an inverse linear relationship between the logarithms of the stability constants and the mole fraction of acetonitrile in the solvent mixtures. The stability order of the 1:1 complexes was found to be 15C5·Li+>B15C5·Li+>DB15C5·Li+>12C4·Li+. The optimized structures of the free ligands and their 1:1 and 2:1 complexes with Li+ ion were predicted by ab initio theoretical calculations using the Gaussian 98 software, and the results are discussed. Copyright © 2010 Elsevier B.V. All rights reserved.
Dielectric Studies on Binary Mixtures of Diethyl Ether (DEE) in Polar Solvents
NASA Astrophysics Data System (ADS)
Pradhan, S. K.; Dash, S. K.; Swain, M. D.; Swain, B. B.
2011-11-01
Dielectric constant (ɛ) of diethylether (DEE) in binary mixtures with four polar solvents such as n-butanl, i-butanol, t-butanol and tolune has been measured at 455 kHz and at a temperature 303.15 K. The refractive indices were measured at a regulated temperature by Pulfrich refractometer at sodium D-line. The data is used to evaluate mutual correlation factor gab, excess molar polarization and excess free energy of mixing ΔGab by using Winkelmann-Quitzsch equation for binary mixtures to asses the suitability of the polar solvents as modifiers. The trend of variation for these parameters exhibit marked dependence on the nature of alcohols. Diethylether is one of the solvent extractant used for the extraction and separation of zirconium and hafnium in reactor technology. The extractant is blended with appropriate polar modifiers for greater dispersal and more rapid phase disengagement. This facilitates in the elimination of the third organo-aqueous phase containing some of the metal ions. As such the study of molecular interaction among the component molecules has been undertaken in these binary mixtures using the dielectric route. The interaction parameters such as mutual correlation factor gab is found to be less than one in all alcohols, while it is negative in toluene upto 0.7 DEE molefraction and thereafter becoming positive. The nature of variation of the excess miolar polarization ΔP and excess free energy of mixing Gab tends to support the assessment of gab to choose a suitable polar modifier.
Predicting the toxicity of metal mixtures
Balistrieri, Laurie S.; Mebane, Christopher A.
2013-01-01
The toxicity of single and multiple metal (Cd, Cu, Pb, and Zn) solutions to trout is predicted using an approach that combines calculations of: (1) solution speciation; (2) competition and accumulation of cations (H, Ca, Mg, Na, Cd, Cu, Pb, and Zn) on low abundance, high affinity and high abundance, low affinity biotic ligand sites; (3) a toxicity function that accounts for accumulation and potency of individual toxicants; and (4) biological response. The approach is evaluated by examining water composition from single metal toxicity tests of trout at 50% mortality, results of theoretical calculations of metal accumulation on fish gills and associated mortality for single, binary, ternary, and quaternary metal solutions, and predictions for a field site impacted by acid rock drainage. These evaluations indicate that toxicity of metal mixtures depends on the relative affinity and potency of toxicants for a given aquatic organism, suites of metals in the mixture, dissolved metal concentrations and ratios, and background solution composition (temperature, pH, and concentrations of major ions and dissolved organic carbon). A composite function that incorporates solution composition, affinity and competition of cations for two types of biotic ligand sites, and potencies of hydrogen and individual metals is proposed as a tool to evaluate potential toxicity of environmental solutions to trout.
Nuclear fuel alloys or mixtures and method of making thereof
Mariani, Robert Dominick; Porter, Douglas Lloyd
2016-04-05
Nuclear fuel alloys or mixtures and methods of making nuclear fuel mixtures are provided. Pseudo-binary actinide-M fuel mixtures form alloys and exhibit: body-centered cubic solid phases at low temperatures; high solidus temperatures; and/or minimal or no reaction or inter-diffusion with steel and other cladding materials. Methods described herein through metallurgical and thermodynamics advancements guide the selection of amounts of fuel mixture components by use of phase diagrams. Weight percentages for components of a metallic additive to an actinide fuel are selected in a solid phase region of an isothermal phase diagram taken at a temperature below an upper temperature limit for the resulting fuel mixture in reactor use. Fuel mixtures include uranium-molybdenum-tungsten, uranium-molybdenum-tantalum, molybdenum-titanium-zirconium, and uranium-molybdenum-titanium systems.
Zhang, Ruihong; Cho, Seonghyuk; Lim, Daw Gen; ...
2016-03-15
We found that bulk metals and metal chalcogenides dissolve in primary amine–dithiol solvent mixtures at ambient conditions. Thin-films of CuS, SnS, ZnS, Cu 2Sn(Sx,Se 1-x) 3, and Cu 2ZnSn(SxSe 1-x) 4 (0 ≤ x ≤ 1) were deposited using the as-dissolved solutions. Furthermore, Cu 2ZnSn(SxSe 1-x) 4 solar cells with efficiencies of 6.84% and 7.02% under AM1.5 illumination were fabricated from two example solution precursors, respectively.
Liu, Yinghan; Ye, Nan; Fang, Hao; Wang, Degao
2018-01-01
Metal-based nanoparticles (NPs) are the most widely used engineered nanomaterials. The individual toxicities of metal-based NPs have been plentifully studied. However, the mixture toxicity of multiple NP systems (n ≥ 3) remains much less understood. Herein, the toxicity of titanium dioxide (TiO2) nanoparticles (NPs), silicon dioxide (SiO2) NPs and zirconium dioxide (ZrO2) NPs to unicellular freshwater algae Scenedesmus obliquus was investigated individually and in binary and ternary combination. Results show that the ternary combination systems of TiO2, SiO2 and ZrO2 NPs at a mixture concentration of 1 mg/L significantly enhanced mitochondrial membrane potential and intracellular reactive oxygen species level in the algae. Moreover, the ternary NP systems remarkably increased the activity of the antioxidant defense enzymes superoxide dismutase and catalase, together with an increase in lipid peroxidation products and small molecule metabolites. Furthermore, the observation of superficial structures of S. obliquus revealed obvious oxidative damage induced by the ternary mixtures. Taken together, the ternary NP systems exerted more severe oxidative stress in the algae than the individual and the binary NP systems. Thus, our findings highlight the importance of the assessment of the synergistic toxicity of multi-nanomaterial systems. PMID:29419775
Kuchlyan, Jagannath; Banik, Debasis; Roy, Arpita; Kundu, Niloy; Sarkar, Nilmoni
2014-12-04
In this article we have investigated intermolecular excited-state proton transfer (ESPT) of firefly's chromophore D-luciferin in DMSO-water binary mixtures using steady-state and time-resolved fluorescence spectroscopy. The unusual behavior of DMSO-water binary mixture as reported by Bagchi et al. (J. Phys. Chem. B 2010, 114, 12875-12882) was also found using D-luciferin as intermolecular ESPT probe. The binary mixture has given evidence of its anomalous nature at low mole fractions of DMSO (below XD = 0.4) in our systematic investigation. Upon excitation of neutral D-luciferin molecule, dual fluorescence emissions (protonated and deprotonated form) are observed in DMSO-water binary mixture. A clear isoemissive point in the time-resolved area normalized emission spectra further indicates two emissive species in the excited state of D-luciferin in DMSO-water binary mixture. DMSO-water binary mixtures of different compositions are fascinating hydrogen bonding systems. Therefore, we have observed unusual changes in the fluorescence emission intensity, fluorescence quantum yield, and fluorescence lifetime of more hydrogen bonding sensitive anionic form of D-luciferin in low DMSO content of DMSO-water binary mixture.
Viscosities of nonelectrolyte liquid mixtures. III. Selected binary and quaternary mixtures
NASA Astrophysics Data System (ADS)
Wakefield, D. L.
1988-05-01
This paper is the final in a series of three viscosity and density studies of pure n-alkanes and selected binary and quaternary mixtures. A standard U-tube viscometer was used for viscosity measurements, and a Pyrex flask-type pycnometer was used for density determinations. Results are given here for pure alkane and selected binary mixtures of n-tetradecane + n-octane, for selected quaternary mixtures of n-hexadecane + n-dodecane + n-decane + n-hexane, and for pure and selected quaternary mixtures of n-hexadecane + n-dodecane + n-nonane + n-heptane at 303.16 and 308.16 K. The principle of congruence was tested, as was the Grunberg and Nissan equation, as they have been shown to be useful as prediction techniques for other n-alkane binary mixtures. Comparisons were made between the two groups of quaternary alkane mixtures and the binary n-tetradecane + n-octane mixtures of the same “pseudo” composition to understand better the dependence of mixture viscosities on the composition parameter.
Avci, Ertug; Culha, Mustafa
2014-01-01
The size-dependent interactions of eight blood proteins with silver nanoparticles (AgNPs) in their binary mixtures were investigated using surface-enhanced Raman scattering (SERS). Principal component analysis (PCA) was performed on the SERS spectra of each binary mixture, and the differentiation ability of the mixtures was tested. It was found that the effect of relative concentration change on the SERS spectra of the binary mixtures of small proteins could be detected using PCA. However, this change was not observed with the binary mixtures of large proteins. This study demonstrated that the relative interactions of the smaller proteins with an average size of 50 nm AgNPs smaller than the large proteins could be monitored, and this information can be used for the detection of proteins in protein mixtures.
NASA Astrophysics Data System (ADS)
Kushkhov, Hasbi; Adamokova, Marina; Kvashin, Vitalij; Kardanov, Anzor; Gramoteeva, Svetlana
2007-12-01
Iron, cobalt and nickel powders are used as binding components for the production of articles of tungsten carbide by the hot pressing method. This fact and the unique properties of binary carbides of tungsten-iron triad metals encouraged the search for new ways of their synthesis. In the present work, the attempt to synthezise binary tungsten-nickel (cobalt, iron) carbides in molten KCl-NaCl-CsCl at 823 K was made. As a result of voltammetry research, it was established that in eutectic KCl-NaCl-CsCl melts the deposition potentials ofWand Ni (Co, Fe) differ by 150 - 350 mV from each other, which makes their co-deposition difficult. It is possible to shift the deposition potentials of tungsten and metals of the iron triad metals towards each other by changing the acid-base properties of the melt. The products of electrolysis in these molten system were identified by X-ray analysis. They are mixtures of tungsten and nickel (cobalt, iron) carbides: Ni2W4C, W6C2.54; Co3W3C, Co6W6C, W2C, Co3C; FeW3C.
ThermoData Engine Database - Pure Compounds and Binary Mixtures
National Institute of Standards and Technology Data Gateway
SRD 103b NIST ThermoData Engine Version 6.0 - Pure CompoThermoData Engine Database - Pure Compounds and Binary Mixtures (PC database for purchase) This database contains property data for more than 21,000 pure compounds, 37,500 binary mixtures, 10,000 ternary mixtures, and 6,000 chemical reactions.
Assessment and prediction of joint algal toxicity of binary mixtures of graphene and ionic liquids.
Wang, Zhuang; Zhang, Fan; Wang, Se; Peijnenburg, Willie J G M
2017-10-01
Graphene and ionic liquids (ILs) released into the environment will interact with each other. So far however, the risks associated with the concurrent exposure of biota to graphene and ILs in the environment have received little attention. The research reported here focused on observing and predicting the joint toxicity effects in the green alga Scenedesmus obliquus exposed to binary mixtures of intrinsic graphene (iG)/graphene oxide (GO) and five ILs of varying anionic and cationic types. The isolated ILs in the binary mixtures were the main contributors to toxicity. The binary GO-IL mixtures resulted in more severe joint toxicity than the binary iG-IL mixtures, irrespective of mixture ratios. The mechanism of the joint toxicity may be associated with the adsorption capability of the graphenes for the ILs, the dispersion stability of the graphenes in aquatic media, and modulation of the binary mixtures-induced oxidative stress. A toxic unit assessment showed that the graphene and IL toxicities were additive at low concentration of the mixtures but antagonistic at high concentration of the mixtures. Predictions made using the concentration addition and independent action models were close to the observed joint toxicities regardless of mixture types and mixture ratios. These findings provide new insights that are of use in the risk assessment of mixtures of engineered nanoparticles and other environmentally relevant contaminants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bisphenol A (BPA) is a ubiquitous monomer used to manufacture polycarbonate plastics. BPA is used in composites and sealants in dentistry, for epoxy resins used as protective liners in metallic cans, and as additives in various plastics. Approximately 1.7 billion pounds of BPA ...
Dielectric and spectroscopic study of binary mixture of Acrylonitrile with Chlorobenzene
NASA Astrophysics Data System (ADS)
Deshmukh, Snehal D.; Pattebahadur, K. L.; Mohod, A. G.; Undre, P. B.; Patil, S. S.; Khirade, P. W.
2018-05-01
In this paper, study of binary mixture of Acrylonitrile (ACN) with Chlorobenzene (CBZ) has been carried out at eleven concentrations at room temperature. The determined Dielectric Constant (ɛ0) Density (ρ) and Refractive index (nD) values of binary mixture are used to calculate the excess properties of mixture over the entire composition range and fitted to the Redlich-Kister equation. From the above parameters, intermolecular interaction and dynamics of molecules of binary mixture at molecular level are discussed. The Conformational analysis of the intermolecular interaction between Acrylonitrile and Chlorobenzene is supported by the FTIR spectra.
Binary and ternary gas mixtures for use in glow discharge closing switches
Hunter, Scott R.; Christophorou, Loucas G.
1990-01-01
Highly efficient binary and ternary gas mixtures for use in diffuse glow discharge closing switches are disclosed. The binary mixtures are combinations of helium or neon and selected perfluorides. The ternary mixtures are combinations of helium, neon, or argon, a selected perfluoride, and a small amount of gas that exhibits enhanced ionization characteristics. These mixtures are shown to be the optimum choices for use in diffuse glow discharge closing switches by virtue of the combined physio-electric properties of the mixture components.
Investigation of intermolecular interaction of binary mixture of acrylonitrile with bromobenzene
NASA Astrophysics Data System (ADS)
Deshmukh, S. D.; Pattebahadur, K. L.; Mohod, A. G.; Patil, S. S.; Khirade, P. W.
2018-04-01
In this paper, study of binary mixture of Acrylonitrile (ACN)with Bromobenzene(BB) has been carried out at eleven concentrations at room temperature. The determined density(ρ) and refractive index (nD) values of binary mixture are used to calculate the excess properties of mixture over the entire composition range. The aforesaid parameters are used to calculate excess parameters and fitted to the Redlich-Kister equation to determine the bj coefficients. From the above parameters, intermolecular interaction and dynamics of molecules of binary mixture at molecular level are discussed. The Conformational analysis of the intermolecular interaction between Acrylonitrile and Bromobenzene is supported by the FTIR spectra.
Binary and ternary gas mixtures for use in glow discharge closing switches
Hunter, S.R.; Christophorou, L.G.
1988-04-27
Highly efficient binary and ternary gas mixtures for use in diffuse glow discharge closing switches are disclosed. The binary mixtures are combinations of helium or neon and selected perfluorides. The ternary mixtures are combinations of helium, neon, or argon, a selected perfluoride, and a small amount of gas that exhibits enhanced ionization characteristics. These mixtures are shown to be the optimum choices for use in diffuse glow discharge closing switches by virtue if the combines physio-electric properties of the mixture components. 9 figs.
Bisphenol A (BPA) is a ubiquitous monomer used to manufacture polycarbonate plastics. BPA is used in composites and sealants in dentistry, for epoxy resins used as protective liners in metallic cans, and as additives in various plastics. Approximately 1.7 billion pounds of BPA ar...
Deruytter, David; Baert, Jan M; Nevejan, Nancy; De Schamphelaere, Karel A C; Janssen, Colin R
2017-12-01
Little is known about the effect of metal mixtures on marine organisms, especially after exposure to environmentally realistic concentrations. This information is, however, required to evaluate the need to include mixtures in future environmental risk assessment procedures. We assessed the effect of copper (Cu)-Nickel (Ni) binary mixtures on Mytilus edulis larval development using a full factorial design that included environmentally relevant metal concentrations and ratios. The reproducibility of the results was assessed by repeating this experiment 5 times. The observed mixture effects were compared with the effects predicted with the concentration addition model. Deviations from the concentration addition model were estimated using a Markov chain Monte-Carlo algorithm. This enabled the accurate estimation of the deviations and their uncertainty. The results demonstrated reproducibly that the type of interaction-synergism or antagonism-mainly depended on the Ni concentration. Antagonism was observed at high Ni concentrations, whereas synergism occurred at Ni concentrations as low as 4.9 μg Ni/L. This low (and realistic) Ni concentration was 1% of the median effective concentration (EC50) of Ni or 57% of the Ni predicted-no-effect concentration (PNEC) in the European Union environmental risk assessment. It is concluded that results from mixture studies should not be extrapolated to concentrations or ratios other than those investigated and that significant mixture interactions can occur at environmentally realistic concentrations. This should be accounted for in (marine) environmental risk assessment of metals. Environ Toxicol Chem 2017;36:3471-3479. © 2017 SETAC. © 2017 SETAC.
Recognition by Rats of Binary Taste Solutions and Their Components.
Katagawa, Yoshihisa; Yasuo, Toshiaki; Suwabe, Takeshi; Yamamura, Tomoki; Gen, Keika; Sako, Noritaka
2016-09-13
This behavioral study investigated how rats conditioned to binary mixtures of preferred and aversive taste stimuli, respectively, responded to the individual components in a conditioned taste aversion (CTA) paradigm. The preference of stimuli was determined based on the initial results of 2 bottle preference test. The preferred stimuli included 5mM sodium saccharin (Sacc), 0.03M NaCl (Na), 0.1M Na, 5mM Sacc + 0.03M Na, and 5mM Sacc + 0.2mM quinine hydrochloride (Q), whereas the aversive stimuli tested were 1.0M Na, 0.2mM Q, 0.3mM Q, 5mM Sacc + 1.0M Na, and 5mM Sacc + 0.3mM Q. In CTA tests where LiCl was the unconditioned stimulus, the number of licks to the preferred binary mixtures and to all tested preferred components were significantly less than in control rats. No significant difference resulted between the number of licks to the aversive binary mixtures or to all tested aversive components. However, when rats pre-exposed to the aversive components contained of the aversive binary mixtures were conditioned to these mixtures, the number of licks to all the tested stimuli was significantly less than in controls. Rats conditioned to components of the aversive binary mixtures generalized to the binary mixtures containing those components. These results suggest that rats recognize and remember preferred and aversive taste mixtures as well as the preferred and aversive components of the binary mixtures, and that pre-exposure before CTA is an available method to study the recognition of aversive taste stimuli. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Solubility enhancement of miconazole nitrate: binary and ternary mixture approach.
Rai, Vineet Kumar; Dwivedi, Harinath; Yadav, Narayan Prasad; Chanotiya, Chandan Singh; Saraf, Shubhini A
2014-08-01
Enhancement of aqueous solubility of very slightly soluble Miconazole Nitrate (MN) is required to widen its application from topical formulation to oral/mucoadhesive formulations. Aim of the present investigation was to enhance the aqueous solubility of MN using binary and ternary mixture approach. Binary mixtures such as solvent deposition, inclusion complexation and solid dispersion were adopted to enhance solubility using different polymers like lactose, beta-cyclodextrin (β-CD) and polyethylene-glycol 6000 (PEG 6000), respectively. Batches of binary mixtures with highest solubility enhancement potentials were further mixed to form ternary mixture by a simple kneading method. Drug polymer interaction and mixture morphology was studied using the Fourier transform infrared spectroscopy and the scanning electron microscopy, respectively along with their saturation solubility studies and drug release. An excellent solubility enhancement, i.e. up to 72 folds and 316 folds of MN was seen by binary and ternary mixture, respectively. Up to 99.5% drug was released in 2 h from the mixtures of MN and polymers. RESULTS revealed that solubility enhancement by binary mixtures is achieved due to surface modification and by increasing wettability of MN. Tremendous increase in solubility of MN by ternary mixture could possibly be due to blending of water soluble polymers, i.e. lactose and PEG 6000 with β-CD which was found to enhance the solubilizing nature of β-CD. Owing to the excellent solubility enhancement potential of ternary mixtures in enhancing MN solubility from 110.4 μg/ml to 57640.0 μg/ml, ternary mixture approach could prove to be promising in the development of oral/mucoadhesive formulations.
Widom Lines in Binary Mixtures of Supercritical Fluids.
Raju, Muralikrishna; Banuti, Daniel T; Ma, Peter C; Ihme, Matthias
2017-06-08
Recent experiments on pure fluids have identified distinct liquid-like and gas-like regimes even under supercritical conditions. The supercritical liquid-gas transition is marked by maxima in response functions that define a line emanating from the critical point, referred to as Widom line. However, the structure of analogous state transitions in mixtures of supercritical fluids has not been determined, and it is not clear whether a Widom line can be identified for binary mixtures. Here, we present first evidence for the existence of multiple Widom lines in binary mixtures from molecular dynamics simulations. By considering mixtures of noble gases, we show that, depending on the phase behavior, mixtures transition from a liquid-like to a gas-like regime via distinctly different pathways, leading to phase relationships of surprising complexity and variety. Specifically, we show that miscible binary mixtures have behavior analogous to a pure fluid and the supercritical state space is characterized by a single liquid-gas transition. In contrast, immiscible binary mixture undergo a phase separation in which the clusters transition separately at different temperatures, resulting in multiple distinct Widom lines. The presence of this unique transition behavior emphasizes the complexity of the supercritical state to be expected in high-order mixtures of practical relevance.
Theoretical Thermodynamics of Mixtures at High Pressures
NASA Technical Reports Server (NTRS)
Hubbard, W. B.
1985-01-01
The development of an understanding of the chemistry of mixtures of metallic hydrogen and abundant, higher-z material such as oxygen, carbon, etc., is important for understanding of fundamental processes of energy release, differentiation, and development of atmospheric abundances in the Jovian planets. It provides a significant theoretical base for the interpretation of atmospheric elemental abundances to be provided by atmospheric entry probes in coming years. Significant differences are found when non-perturbative approaches such as Thomas-Fermi-Dirac (TFD) theory are used. Mapping of the phase diagrams of such binary mixtures in the pressure range from approx. 10 Mbar to approx. 1000 Mbar, using results from three-dimensional TFD calculations is undertaken. Derivation of a general and flexible thermodynamic model for such binary mixtures in the relevant pressure range was facilitated by the following breakthrough: there exists an accurate nd fairly simple thermodynamic representation of a liquid two-component plasma (TCP) in which the Helmholtz free energy is represented as a suitable linear combination of terms dependent only on density and terms which depend only on the ion coupling parameter. It is found that the crystal energies of mixtures of H-He, H-C, and H-O can be satisfactorily reproduced by the same type of model, except that an effective, density-dependent ionic charge must be used in place of the actual total ionic charge.
Phase behaviour of the symmetric binary mixture from thermodynamic perturbation theory.
Dorsaz, N; Foffi, G
2010-03-17
We study the phase behaviour of symmetric binary mixtures of hard core Yukawa (HCY) particles via thermodynamic perturbation theory (TPT). We show that all the topologies of phase diagram reported for the symmetric binary mixtures are correctly reproduced within the TPT approach. In a second step we use the capability of TPT to be straightforwardly extended to mixtures that are nonsymmetric in size. Starting from mixtures that belong to the different topologies of symmetric binary mixtures we investigate the effect on the phase behaviour when an asymmetry in the diameters of the two components is introduced. Interestingly, when the energy of interaction between unlike particles is weaker than the interaction between like particles, the propensity for the solution to demix is found to increase strongly with size asymmetry.
Koley, Somnath; Ghosh, Subhadip
2016-11-30
An insight study reveals the strong synergistic solvation behaviours from reporter dye molecules within the acetonitrile (ACN)-water (WT) binary mixture. Synergism of a binary mixture refers to some unique changes of the physical and thermodynamic properties of the solvent mixture, originating from the interactions among its cosolvents, which are absent within the pure cosolvents. Synergistic solvation of a binary mixture is likely to be fundamental for greater stabilization of an excited state solute dipole; at least to some extent greater as compared to one stabilized by any of its cosolvents alone. A dynamic Stokes shift due to the solvation of an excited dipole in the ACN-WT binary mixture is found to be highly relevant to the ground state physical properties of the solute molecule (polarity, hydrophilicity, acidity, etc.). Largely different solvation times in the ACN-WT mixture are observed from different dye molecules with widely varying polarities. However, earlier study shows that dye molecules, irrespective of their varying polarities, exhibit very similar solvation times within a pure solvent (J. Phys. Chem. B, 2014, 118, 7577-7785). On further study with fluorescence correlation spectroscopy (FCS) we observed that, unlike the translational diffusion coefficient (D t ) of a dye molecule within a pure solvent, which remains the same irrespective of the location of the dye molecule inside the solvent, a broad distribution among the D t values of a dye molecule is obtained from different locations within the ACN-WT binary mixture. Lastly our 1 H NMR study in the ACN-WT binary mixture shows the existence of strong hydrogen bond interactions among the cosolvents in the ACN-WT mixture.
García-García, Rebeca; López-Malo, Aurelio; Palou, Enrique
2011-03-01
The bactericidal effect of 3 natural agents (carvacrol, thymol, and eugenol) was evaluated as well as their binary and ternary mixtures on Listeria innocua inactivation in liquid model systems. Minimal bactericidal concentrations (MBC) of these agents were determined, and then binary and ternary mixtures were evaluated. Culture media were inoculated with L. innocua and incubated for 72 h at 35 °C. Turbidity of studied systems were determined every 24 h. The most effective individual antimicrobial agent was carvacrol, followed by thymol and then eugenol with MBCs of 150, 250, and 450 mg kg(-1), respectively. It was observed that the most effective binary mixture was 75 mg kg(-1) carvacrol and 62.5 mg kg(-1) thymol. Furthermore, the ternary mixture carvacrol-thymol-eugenol in concentrations of 75, 31.25, and 56.25 mg kg(-1), correspondingly, was the most effective for L. innocua inactivation. Several binary and ternary mixtures of these 3 natural antimicrobial agents worked adequately to inactivate L. innocua.
Experimental study on thermal storage performance of binary mixtures of fatty acids
NASA Astrophysics Data System (ADS)
Yan, Quanying; Zhang, Jing; Liu, Chao; Liu, Sha; Sun, Xiangyu
2018-02-01
We selected five kinds of fatty acids including the capric acid, stearic acid, lauric acid, palmitic acid and myristic acid and mixed them to prepare10 kinds of binary mixtures of fatty acids according to the predetermined proportion,tested the phase change temperature and latent heat of mixtures by differential scanning calorimetry(DSC). In order to find the fatty acid mixture which has suitable phase change temperature, the larger phase change latent heat and can be used for phase change wall. The results showed that the phase change temperature and latent heats of the binary mixtures of fatty acids decreased compared with the single component;The phase change temperature of the binary mixtures of fatty acids containing capric acid were lower, the range was roughly 20∼30°C,and latent heat is large,which are ideal phase change materials for phase change wall energy storage;The phase change temperature of the binary mixtures consisting of other fatty acids were still high,didn’t meet the temperature requirements of the wall energy storage.
Bittar, Dayana B; Ribeiro, David S M; Páscoa, Ricardo N M J; Soares, José X; Rodrigues, S Sofia M; Castro, Rafael C; Pezza, Leonardo; Pezza, Helena R; Santos, João L M
2017-11-01
Semiconductor quantum dots (QDs) have demonstrated a great potential as fluorescent probes for heavy metals monitoring. However, their great reactivity, whose tunability could be difficult to attain, could impair selectivity yielding analytical results with poor accuracy. In this work, the combination in the same analysis of multiple QDs, each with a particular ability to interact with the analyte, assured a multi-point detection that was not only exploited for a more precise analyte discrimination but also for the simultaneous discrimination of multiple mutually interfering species, in the same sample. Three different MPA-CdTe QDs (2.5, 3.0 and 3.8nm) with a good size distribution, confirmed by the FWHM values of 48.6, 55.4 and 80.8nm, respectively, were used. Principal component analysis (PCA) and partial least squares regression (PLS) were used for fluorescence data analysis. Mixtures of two MPA-CdTe QDs, emitting at different wavelength namely 549/566, 549/634 and 566/634nm were assayed. The 549/634nm emitting QDs mixture provided the best results for the discrimination of distinct ions on binary and ternary mixtures. The obtained RMSECV and R 2 CV values for the binary mixture were good, namely, from 0.01 to 0.08mgL -1 and from 0.74 to 0.89, respectively. Regarding the ternary mixture the RMSECV and R 2 CV values were good for Hg(II) (0.06 and 0.73mgL -1 , respectively) and Pb(II) (0.08 and 0.87mg L -1 , respectively) and acceptable for Cu(II) (0.02 and 0.51mgL -1 , respectively). In conclusion, the obtained results showed that the developed approach is capable of resolve binary and ternary mixtures of Pb (II), Hg (II) and Cu (II), providing accurate information about lead (II) and mercury (II) concentration and signaling the occurrence of Cu (II). Copyright © 2017 Elsevier B.V. All rights reserved.
Dielectric and physiochemical study of binary mixture of nitrobenzene with toluene
NASA Astrophysics Data System (ADS)
Mohod, Ajay G.; Deshmukh, S. D.; Pattebahadur, K. L.; Undre, P. B.; Patil, S. S.; Khirade, P. W.
2018-05-01
This paper presents the study of binary mixture of Nitrobenzene (NB) with Toluene (TOL) for eleven different concentrations at room temperature. The determined Dielectric Constant (ɛ0) Density (ρ) and Refractive index (nD) values of binary mixture are used to calculate the excess properties i.e. Excess Dielectric Constant (ɛ0E), Excess Molar Volume (VmE), Excess Refractive Index (nDE) and Excess Molar Refraction (RmE) of mixture over the entire composition range and fitted to the Redlich-Kister equation. The Kirkwood Correlation Factor (geff) and other parameters were used to discuss the information about the orientation of dipoles and the solute-solvent interaction of binary mixture at molecular level over the entire range of concentration.
Dielectric and Excess Properties of Glycols with Formamide Binary Mixtures at Different Temperatures
NASA Astrophysics Data System (ADS)
Navarkhele, V. V.
2018-07-01
Dielectric constant measurements of glycol-formamide binary solutions with various concentrations have been carried out at different temperatures. The dielectric measurement has been achieved at 100 MHz frequency using a sensor which is based on frequency domain reflectomery technique. The excess dielectric constant, Kirkwood correlation factor and Bruggeman factor has also been reported for the binary mixtures. The results show that the dielectric constant of the mixtures increases with increase in the volume fraction of formamide and decreases with increase in temperature. The study also confirms the presence of intermolecular interaction, hydrogen bonding and orientation of the dipoles in the binary mixtures.
Dielectric properties of binary mixtures of ethylene glycol monophenyl ether and methanol
NASA Astrophysics Data System (ADS)
Vaghela, K. C.; Vankar, H. P.; Trivedi, C. M.; Rana, V. A.
2017-05-01
Static permittivity (ɛ0) and permittivity at optical frequency (ɛ∞) of ethylene glycol monophenyl ether (EGMPE), methanol (MeOH) and their binary mixtures of varying concentrations have been measured at room temperature (T=299.15 K). The investigation showed a systematic change in permittivity with change in concentration of MeOH in binary mixture system. Measured data have been used to calculate the various dielectric parameters such as E E excess static permittivity (ɛ0E), excess permittivity at optical frequency (ɛ∞E) and Bruggeman factor (fB). Determined parameters provided some information about the molecular interaction among the molecular species of the binary mixtures.
NASA Technical Reports Server (NTRS)
Perkins, G. S.; Pawlik, E. V.; Phillips, W. M. (Inventor)
1981-01-01
A nozzle for use with abrasive and/or corrosive materials is formed of sintered ceramic compositions having high temperature oxidation resistance, high hardness and high abrasion and corrosion resistance. The ceramic may be a binary solid solution of a ceramic oxide and silicon nitride, and preferably a ternary solid solution of a ceramic oxide, silicon nitride and aluminum nitride. The ceramic oxide is selected from a group consisting of Al2O3, Y2O3 and Cr2O3, or mixtures of those compounds. Titanium carbide particles are dispersed in the ceramic mixture before sintering. The nozzles are encased for protection from external forces while in use by a metal or plastic casing.
Bak, J H; Yoo, B
2018-04-12
The effect of CMC on the steady and dynamic shear rheological properties of binary mixtures of XG and GG was examined at different mixing ratios. All XG-GG-CMC ternary mixtures had high shear-thinning behavior and the n value of the sample with 5% CMC was the smallest compared with those of other samples. A marked increase in K and η a,50 values was observed for ternary mixtures at a lower content (5%) of CMC, indicating that the synergistic interactions of the XG-GG binary mixture were affected by the content of CMC. The effect of temperature on the η a,50 was well described by the Arrhenius equation for all samples. The activation energy values of all ternary gum mixtures are higher than that of binary gum mixture, and these values also decreased with an increase in CMC content from 5 to 15%. The dynamic moduli of ternary gum mixtures decreased with an increase in CMC content. The tan δ value of the ternary gum mixture with 5% CMC was much lower than those of other ternary mixtures. In general, these results suggest that the flow and dynamic shear rheological properties of XG-GG binary mixtures are strongly influenced by a small addition of CMC. Copyright © 2018. Published by Elsevier B.V.
Study of intermolecular interactions in binary mixtures of ethanol in methanol
NASA Astrophysics Data System (ADS)
Maharolkar, Aruna P.; Khirade, P. W.; Murugkar, A. G.
2016-05-01
Present paper deals with study of physicochemical properties like viscosity, density and refractive index for the binary mixtures of ethanol and methanol over the entire concentration range were measured at 298.15 K. The experimental data further used to determine the excess properties viz. excess molar volume, excess viscosity, excess molar refraction. The values of excess properties further fitted with Redlich-Kister (R-K Fit) equation to calculate the binary coefficients and standard deviation. The resulting excess parameters are used to indicate the presence of intermolecular interactions and strength of intermolecular interactions between the molecules in the binary mixtures. Excess parameters indicate structure making factor in the mixture predominates in the system.
NASA Astrophysics Data System (ADS)
Iloukhani, H.; Khanlarzadeh, K.; Rakhshi, M.
2011-03-01
Densities, viscosities, and refractive indices of binary mixtures of n-butyl acetate (1) +1-chlorobutane (2), +1-chloropentane (2), +1-chlorohexane (2), +1-chloroheptane (2), and +1-chlorooctane (2) were measured at 298.15 K for the liquid region and at ambient pressure for the whole composition range. The excess molar volumes V E were calculated from experimental densities. McAllister's three-body interaction, and Hind and Grunberg-Nissan models are used for correlating the viscosity of binary mixtures. The experimental data of binaries are analyzed to discuss the nature and strength of intermolecular interactions in these mixtures.
Individual and binary toxicity of anatase and rutile nanoparticles towards Ceriodaphnia dubia.
Iswarya, V; Bhuvaneshwari, M; Chandrasekaran, N; Mukherjee, Amitava
2016-09-01
Increasing usage of engineered nanoparticles, especially Titanium dioxide (TiO2) in various commercial products has necessitated their toxicity evaluation and risk assessment, especially in the aquatic ecosystem. In the present study, a comprehensive toxicity assessment of anatase and rutile NPs (individual as well as a binary mixture) has been carried out in a freshwater matrix on Ceriodaphnia dubia under different irradiation conditions viz., visible and UV-A. Anatase and rutile NPs produced an LC50 of about 37.04 and 48mg/L, respectively, under visible irradiation. However, lesser LC50 values of about 22.56 (anatase) and 23.76 (rutile) mg/L were noted under UV-A irradiation. A toxic unit (TU) approach was followed to determine the concentrations of binary mixtures of anatase and rutile. The binary mixture resulted in an antagonistic and additive effect under visible and UV-A irradiation, respectively. Among the two different modeling approaches used in the study, Marking-Dawson model was noted to be a more appropriate model than Abbott model for the toxicity evaluation of binary mixtures. The agglomeration of NPs played a significant role in the induction of antagonistic and additive effects by the mixture based on the irradiation applied. TEM and zeta potential analysis confirmed the surface interactions between anatase and rutile NPs in the mixture. Maximum uptake was noticed at 0.25 total TU of the binary mixture under visible irradiation and 1 TU of anatase NPs for UV-A irradiation. Individual NPs showed highest uptake under UV-A than visible irradiation. In contrast, binary mixture showed a difference in the uptake pattern based on the type of irradiation exposed. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Chengxian; Huang, Zhe; Huang, Bicheng; Liu, Changfeng; Li, Chengming; Huang, Yaqin
2014-01-01
Cr(VI) adsorption in a binary mixture Cr(VI)-Ni(II) using the hierarchical porous carbon prepared from pig bone (HPC) was investigated. The various factors affecting adsorption of Cr(VI) ions from aqueous solutions such as initial concentration, pH, temperature and contact time were analyzed. The results showed excellent efficiency of Cr(VI) adsorption by HPC. The kinetics and isotherms for Cr(VI) adsorption from a binary mixture Cr(VI)-Ni(II) by HPC were studied. The adsorption equilibrium described by the Langmuir isotherm model is better than that described by the Freundlich isotherm model for the binary mixture in this study. The maximum adsorption capacity was reliably found to be as high as 192.68 mg/g in the binary mixture at pH 2. On fitting the experimental data to both pseudo-first- and second-order equations, the regression analysis of the second-order equation gave a better R² value.
Effects of Nickel, Chlorpyrifos and Their Mixture on the Dictyostelium discoideum Proteome
Boatti, Lara; Robotti, Elisa; Marengo, Emilio; Viarengo, Aldo; Marsano, Francesco
2012-01-01
Mixtures of chemicals can have additive, synergistic or antagonistic interactions. We investigated the effects of the exposure to nickel, the organophosphate insecticide chlorpyrifos at effect concentrations (EC) of 25% and 50% and their binary mixture (Ec25 + EC25) on Dictyostelium discoideum amoebae based on lysosomal membrane stability (LMS). We treated D. discoideum with these compounds under controlled laboratory conditions and evaluated the changes in protein levels using a two-dimensional gel electrophoresis (2DE) proteomic approach. Nickel treatment at EC25 induced changes in 14 protein spots, 12 of which were down-regulated. Treatment with nickel at EC50 resulted in changes in 15 spots, 10 of which were down-regulated. Treatment with chlorpyrifos at EC25 induced changes in six spots, all of which were down-regulated; treatment with chlorpyrifos at EC50 induced changes in 13 spots, five of which were down-regulated. The mixture corresponding to EC25 of each compound induced changes in 19 spots, 13 of which were down-regulated. The data together reveal that a different protein expression signature exists for each treatment, and that only a few proteins are modulated in multiple different treatments. For a simple binary mixture, the proteomic response does not allow for the identification of each toxicant. The protein spots that showed significant differences were identified by mass spectrometry, which revealed modulations of proteins involved in metal detoxification, stress adaptation, the oxidative stress response and other cellular processes. PMID:23443088
NASA Astrophysics Data System (ADS)
Liu, Yangzhen; Xing, Jiandong; Fu, Hanguang; Li, Yefei; Sun, Liang; Lv, Zheng
2017-08-01
The properties of sulfides are important in the design of new iron-steel materials. In this study, first-principles calculations were used to estimate the structural stability, mechanical properties, electronic structures and thermal properties of XS (X = Ti, V, Cr, Mn, Fe, Co, Ni) binary compounds. The results reveal that these XS binary compounds are thermodynamically stable, because their formation enthalpy is negative. The elastic constants, Cij, and moduli (B, G, E) were investigated using stress-strain and Voigt-Reuss-Hill approximation, respectively. The sulfide anisotropy was discussed from an anisotropic index and three-dimensional surface contours. The electronic structures reveal that the bonding characteristics of the XS compounds are a mixture of metallic and covalent bonds. Using a quasi-harmonic Debye approximation, the heat capacity at constant pressure and constant volume was estimated. NiS possesses the largest CP and CV of the sulfides.
Maurya, Sandeep Kumar; Das, Dhiman; Goswami, Debabrata
2016-06-13
Photo-thermal behavior of binary liquid mixtures has been studied by high repetition rate (HRR) Z-scan technique with femtosecond laser pulses. Changes in the peak-valley difference in transmittance (ΔT P-V ) for closed aperture Z-scan experiments are indicative of thermal effects induced by HRR femtosecond laser pulses. We show such indicative results can have a far-reaching impact on molecular properties and intermolecular interactions in binary liquid mixtures. Spectroscopic parameters derived from this experimental technique show that the combined effect of physical and molecular properties of the constituent binary liquids can be related to the components of the binary liquid. © The Author(s) 2016.
Kumar, Dhananjay; Singh, Alpana; Gaur, J P
2008-11-01
The sorption of Cu(II) and Pb(II) by Pithophora markedly decreased as the concentration of the secondary metal ion, Cu(II) or Pb(II), increased in the binary metal solution. However, the test alga showed a greater affinity to sorb Cu(II) than Pb(II) from the binary metal solution. Mono-component Freundlich, Langmuir, Redlich-Peterson and Sips isotherms successfully predicted the sorption of Cu(II) and Pb(II) from both single and binary metal solutions. None of the tested binary sorption isotherms could realistically predict Cu(II) and Pb(II) sorption capacity and affinity of the test alga for the binary metal solutions of varying composition, which mono-component isotherms could very well accomplish. Hence, mono-component isotherm modeling at different concentrations of the secondary metal ion seems to be a better option than binary isotherms for metal sorption from binary metal solution.
Self-diffusion Coefficient and Structure of Binary n-Alkane Mixtures at the Liquid-Vapor Interfaces.
Chilukoti, Hari Krishna; Kikugawa, Gota; Ohara, Taku
2015-10-15
The self-diffusion coefficient and molecular-scale structure of several binary n-alkane liquid mixtures in the liquid-vapor interface regions have been examined using molecular dynamics simulations. It was observed that in hexane-tetracosane mixture hexane molecules are accumulated in the liquid-vapor interface region and the accumulation intensity decreases with increase in a molar fraction of hexane in the examined range. Molecular alignment and configuration in the interface region of the liquid mixture change with a molar fraction of hexane. The self-diffusion coefficient in the direction parallel to the interface of both tetracosane and hexane in their binary mixture increases in the interface region. It was found that the self-diffusion coefficient of both tetracosane and hexane in their binary mixture is considerably higher in the vapor side of the interface region as the molar fraction of hexane goes lower, which is mostly due to the increase in local free volume caused by the local structure of the liquid in the interface region.
NASA Astrophysics Data System (ADS)
Keshavarz, Mohammad Hossein; Ramadan, Alireza; Mousaviazar, Ali; Zali, Abbas; Shokrollahi, Arash
2011-07-01
This work continues the study of suitable binary liquid mixtures of unsymmetrical dimethylhydrazine (UDMH) and hydroxyethylhydrazine (HEH) to reduce the harmful effects of pure UDMH. The synthesized HEH was mixed with UDMH up to 40 wt% of HEH to study the performance and properties of binary liquid mixtures of UDMH/HEH. The existence of strong hydrogen bonding between HEH and UDMH provides low-volatile mixtures of these hydrazine derivatives. The addition of HEH significantly reduces the vapor pressure of UDMH, thus reducing the known UDMH health risk to inhalation exposure. Specific impulse was used to study performance of binary mixture UDMH/HEH with respect to pure UDMH. A binary mixture of UDMH/HEH reacts spontaneously in contact with nitrogen tetroxide, red fuming nitric acid (RFNA), and inhibited red fuming nitric acid (IRFNA).
The ‘ideal selectivity’ vs ‘true selectivity’ for permeation of gas mixture in nanoporous membranes
NASA Astrophysics Data System (ADS)
He, Zhou; Wang, Kean
2018-03-01
In this study, we proposed and validated a novel and non-destructive experimental technology for measuring the permeation of binary gas mixture in nanoporous membranes. The traditional time lag rig was modified to examine the permeation characteristics of each gas component as well as that of the binary gas mixtures. The difference in boiling points of each species were explored. Binary gas mixtures of CO2/He were permeated through the nanoporous carbon molecular sieve membrane (CMSM). The results showed that, due to the strong interaction among different molecules and with the porous network of the membrane, the measured perm-selectivity or ‘true selectivity’ of a binary mixture can significantly deviate from the ‘ideal selectivity’ calculated form the permeation flux of each pure species, and this deviation is a complicated function of the molecular properties and operation conditions.
NASA Astrophysics Data System (ADS)
Qu, Rui; Liu, Shu-Shen; Zheng, Qiao-Feng; Li, Tong
2017-03-01
Concentration addition (CA) was proposed as a reasonable default approach for the ecological risk assessment of chemical mixtures. However, CA cannot predict the toxicity of mixture at some effect zones if not all components have definite effective concentrations at the given effect, such as some compounds induce hormesis. In this paper, we developed a new method for the toxicity prediction of various types of binary mixtures, an interpolation method based on the Delaunay triangulation (DT) and Voronoi tessellation (VT) as well as the training set of direct equipartition ray design (EquRay) mixtures, simply IDVequ. At first, the EquRay was employed to design the basic concentration compositions of five binary mixture rays. The toxic effects of single components and mixture rays at different times and various concentrations were determined by the time-dependent microplate toxicity analysis. Secondly, the concentration-toxicity data of the pure components and various mixture rays were acted as a training set. The DT triangles and VT polygons were constructed by various vertices of concentrations in the training set. The toxicities of unknown mixtures were predicted by the linear interpolation and natural neighbor interpolation of vertices. The IDVequ successfully predicted the toxicities of various types of binary mixtures.
NASA Astrophysics Data System (ADS)
Kim, Tom; Chien, Chih-Chun
2018-03-01
Experimental realizations of a variety of atomic binary Bose-Fermi mixtures have brought opportunities for studying composite quantum systems with different spin statistics. The binary atomic mixtures can exhibit a structural transition from a mixture into phase separation as the boson-fermion interaction increases. By using a path-integral formalism to evaluate the grand partition function and the thermodynamic grand potential, we obtain the effective potential of binary Bose-Fermi mixtures. Thermodynamic quantities in a broad range of temperatures and interactions are also derived. The structural transition can be identified as a loop of the effective potential curve, and the volume fraction of phase separation can be determined by the lever rule. For 6Li-7Li and 6Li-41K mixtures, we present the phase diagrams of the mixtures in a box potential at zero and finite temperatures. Due to the flexible densities of atomic gases, the construction of phase separation is more complicated when compared to conventional liquid or solid mixtures where the individual densities are fixed. For harmonically trapped mixtures, we use the local density approximation to map out the finite-temperature density profiles and present typical trap structures, including the mixture, partially separated phases, and fully separated phases.
Qu, Rui; Liu, Shu-Shen; Zheng, Qiao-Feng; Li, Tong
2017-01-01
Concentration addition (CA) was proposed as a reasonable default approach for the ecological risk assessment of chemical mixtures. However, CA cannot predict the toxicity of mixture at some effect zones if not all components have definite effective concentrations at the given effect, such as some compounds induce hormesis. In this paper, we developed a new method for the toxicity prediction of various types of binary mixtures, an interpolation method based on the Delaunay triangulation (DT) and Voronoi tessellation (VT) as well as the training set of direct equipartition ray design (EquRay) mixtures, simply IDVequ. At first, the EquRay was employed to design the basic concentration compositions of five binary mixture rays. The toxic effects of single components and mixture rays at different times and various concentrations were determined by the time-dependent microplate toxicity analysis. Secondly, the concentration-toxicity data of the pure components and various mixture rays were acted as a training set. The DT triangles and VT polygons were constructed by various vertices of concentrations in the training set. The toxicities of unknown mixtures were predicted by the linear interpolation and natural neighbor interpolation of vertices. The IDVequ successfully predicted the toxicities of various types of binary mixtures. PMID:28287626
Process for forming shaped group III-V semiconductor nanocrystals, and product formed using process
Alivisatos, A. Paul; Peng, Xiaogang; Manna, Liberato
2001-01-01
A process for the formation of shaped Group III-V semiconductor nanocrystals comprises contacting the semiconductor nanocrystal precursors with a liquid media comprising a binary mixture of phosphorus-containing organic surfactants capable of promoting the growth of either spherical semiconductor nanocrystals or rod-like semiconductor nanocrystals, whereby the shape of the semiconductor nanocrystals formed in said binary mixture of surfactants is controlled by adjusting the ratio of the surfactants in the binary mixture.
Process for forming shaped group II-VI semiconductor nanocrystals, and product formed using process
Alivisatos, A. Paul; Peng, Xiaogang; Manna, Liberato
2001-01-01
A process for the formation of shaped Group II-VI semiconductor nanocrystals comprises contacting the semiconductor nanocrystal precursors with a liquid media comprising a binary mixture of phosphorus-containing organic surfactants capable of promoting the growth of either spherical semiconductor nanocrystals or rod-like semiconductor nanocrystals, whereby the shape of the semiconductor nanocrystals formed in said binary mixture of surfactants is controlled by adjusting the ratio of the surfactants in the binary mixture.
Generation of two-dimensional binary mixtures in complex plasmas
NASA Astrophysics Data System (ADS)
Wieben, Frank; Block, Dietmar
2016-10-01
Complex plasmas are an excellent model system for strong coupling phenomena. Under certain conditions the dust particles immersed into the plasma form crystals which can be analyzed in terms of structure and dynamics. Previous experiments focussed mostly on monodisperse particle systems whereas dusty plasmas in nature and technology are polydisperse. Thus, a first and important step towards experiments in polydisperse systems are binary mixtures. Recent experiments on binary mixtures under microgravity conditions observed a phase separation of particle species with different radii even for small size disparities. This contradicts several numerical studies of 2D binary mixtures. Therefore, dedicated experiments are required to gain more insight into the physics of polydisperse systems. In this contribution first ground based experiments on two-dimensional binary mixtures are presented. Particular attention is paid to the requirements for the generation of such systems which involve the consideration of the temporal evolution of the particle properties. Furthermore, the structure of these two-component crystals is analyzed and compared to simulations. This work was supported by the Deutsche Forschungsgemeinschaft DFG in the framework of the SFB TR24 Greifswald Kiel, Project A3b.
Ma, Dehua; Chen, Lujun; Zhu, Xiaobiao; Li, Feifei; Liu, Cong; Liu, Rui
2014-05-01
To date, toxicological studies of endocrine disrupting chemicals (EDCs) have typically focused on single chemical exposures and associated effects. However, exposure to EDCs mixtures in the environment is common. Antiandrogens represent a group of EDCs, which draw increasing attention due to their resultant demasculinization and sexual disruption of aquatic organisms. Although there are a number of in vivo and in vitro studies investigating the combined effects of antiandrogen mixtures, these studies are mainly on selected model compounds such as flutamide, procymidone, and vinclozolin. The aim of the present study is to investigate the combined antiandrogenic effects of parabens, which are widely used antiandrogens in industrial and domestic commodities. A yeast-based human androgen receptor (hAR) assay (YAS) was applied to assess the antiandrogenic activities of n-propylparaben (nPrP), iso-propylparaben (iPrP), methylparaben (MeP), and 4-n-pentylphenol (PeP), as well as the binary mixtures of nPrP with each of the other three antiandrogens. All of the four compounds could exhibit antiandrogenic activity via the hAR. A linear interaction model was applied to quantitatively analyze the interaction between nPrP and each of the other three antiandrogens. The isoboles method was modified to show the variation of combined effects as the concentrations of mixed antiandrogens were changed. Graphs were constructed to show isoeffective curves of three binary mixtures based on the fitted linear interaction model and to evaluate the interaction of the mixed antiandrogens (synergism or antagonism). The combined effect of equimolar combinations of the three mixtures was also considered with the nonlinear isoboles method. The main effect parameters and interaction effect parameters in the linear interaction models of the three mixtures were different from zero. The results showed that any two antiandrogens in their binary mixtures tended to exert equal antiandrogenic activity in the linear concentration ranges. The antiandrogenicity of the binary mixture and the concentration of nPrP were fitted to a sigmoidal model if the concentrations of the other antiandrogens (iPrP, MeP, and PeP) in the mixture were lower than the AR saturation concentrations. Some concave isoboles above the additivity line appeared in all the three mixtures. There were some synergistic effects of the binary mixture of nPrP and MeP at low concentrations in the linear concentration ranges. Interesting, when the antiandrogens concentrations approached the saturation, the interaction between chemicals were antagonistic for all the three mixtures tested. When the toxicity of the three mixtures was assessed using nonlinear isoboles, only antagonism was observed for equimolar combinations of nPrP and iPrP as the concentrations were increased from the no-observed-effect-concentration (NOEC) to effective concentration of 80%. In addition, the interactions were changed from synergistic to antagonistic as effective concentrations were increased in the equimolar combinations of nPrP and MeP, as well as nPrP and PeP. The combined effects of three binary antiandrogens mixtures in the linear ranges were successfully evaluated by curve fitting and isoboles. The combined effects of specific binary mixtures varied depending on the concentrations of the chemicals in the mixtures. At low concentrations in the linear concentration ranges, there was synergistic interaction existing in the binary mixture of nPrP and MeP. The interaction tended to be antagonistic as the antiandrogens approached saturation concentrations in mixtures of nPrP with each of the other three antiandrogens. The synergistic interaction was also found in the equimolar combinations of nPrP and MeP, as well as nPrP and PeP, at low concentrations with another method of nonlinear isoboles. The mixture activities of binary antiandrogens had a tendency towards antagonism at high concentrations and synergism at low concentrations.
Forage production of grass-legume binary mixtures on Intermountain Western USA irrigated pastures
USDA-ARS?s Scientific Manuscript database
A well-managed irrigated pasture is optimized for forage production with the use of N fertilizer which incurs extra expense. The objective was to determine which binary grass-legume mixture and mixture planting ratio of tall fescue (Festuca arundinacea Schreb.) (TF), meadow brome (Bromus bieberstei...
Relaxation dynamics in a binary hard-ellipse liquid.
Xu, Wen-Sheng; Sun, Zhao-Yan; An, Li-Jia
2015-01-21
Structural relaxation in binary hard spherical particles has been shown recently to exhibit a wealth of remarkable features when size disparity or mixture composition is varied. In this paper, we test whether or not similar dynamical phenomena occur in glassy systems composed of binary hard ellipses. We demonstrate via event-driven molecular dynamics simulation that a binary hard-ellipse mixture with an aspect ratio of two and moderate size disparity displays characteristic glassy dynamics upon increasing density in both the translational and the rotational degrees of freedom. The rotational glass transition density is found to be close to the translational one for the binary mixtures investigated. More importantly, we assess the influence of size disparity and mixture composition on the relaxation dynamics. We find that an increase of size disparity leads, both translationally and rotationally, to a speed up of the long-time dynamics in the supercooled regime so that both the translational and the rotational glass transition shift to higher densities. By increasing the number concentration of the small particles, the time evolution of both translational and rotational relaxation dynamics at high densities displays two qualitatively different scenarios, i.e., both the initial and the final part of the structural relaxation slow down for small size disparity, while the short-time dynamics still slows down but the final decay speeds up in the binary mixture with large size disparity. These findings are reminiscent of those observed in binary hard spherical particles. Therefore, our results suggest a universal mechanism for the influence of size disparity and mixture composition on the structural relaxation in both isotropic and anisotropic particle systems.
Yan, Luchun; Liu, Jiemin; Qu, Chen; Gu, Xingye; Zhao, Xia
2015-01-28
In order to explore the odor interaction of binary odor mixtures, a series of odor intensity evaluation tests were performed using both individual components and binary mixtures of aldehydes. Based on the linear relation between the logarithm of odor activity value and odor intensity of individual substances, the relationship between concentrations of individual constituents and their joint odor intensity was investigated by employing a partial differential equation (PDE) model. The obtained results showed that the binary odor interaction was mainly influenced by the mixing ratio of two constituents, but not the concentration level of an odor sample. Besides, an extended PDE model was also proposed on the basis of the above experiments. Through a series of odor intensity matching tests for several different binary odor mixtures, the extended PDE model was proved effective at odor intensity prediction. Furthermore, odorants of the same chemical group and similar odor type exhibited similar characteristics in the binary odor interaction. The overall results suggested that the PDE model is a more interpretable way of demonstrating the odor interactions of binary odor mixtures.
High temperature regenerative H.sub.2 S sorbents
NASA Technical Reports Server (NTRS)
Flytani-Stephanopoulos, Maria (Inventor); Gavalas, George R. (Inventor); Tamhankar, Satish S. (Inventor)
1988-01-01
Efficient, regenerable sorbents for removal of H.sub.2 S from high temperature gas streams comprise porous, high surface area particles. A first class of sorbents comprise a thin film of binary oxides that form a eutectic at the temperature of the gas stream coated onto a porous, high surface area refractory support. The binary oxides are a mixture of a Group VB or VIB metal oxide with a Group IB, IIB or VIII metal oxide such as a film of V-Zn-O, V-Cu-O, Cu-Mo-O, Zn-Mo-O or Fe-Mo-O coated on an alumina support. A second class of sorbents consist of particles of unsupported mixed oxides in the form of highly dispersed solid solutions of solid compounds characterized by small crystallite size, high porosity and relatively high surface area. The mixed oxide sorbents contain one Group IB, IIB or VIIB metal oxide such as copper, zinc or manganese and one or more oxides of Groups IIIA, VIB or VII such as aluminum, iron or molybdenum. The presence of iron or aluminum maintains the Group IB, IIB or VIIB metal in its oxidized state. Presence of molybdenum results in eutectic formation at sulfidation temperature and improves the efficiency of the sorbent.
Intermolecular forces in acetonitrile + ethanol binary liquid mixtures
NASA Astrophysics Data System (ADS)
Elangovan, A.; Shanmugam, R.; Arivazhagan, G.; Mahendraprabu, A.; Karthick, N. K.
2015-10-01
FTIR spectral measurements have been carried out on the binary mixtures of acetonitrile with ethanol at 1:0 (acetonitrile:ethanol), 1:1, 1:2, 1:3 and 0:1 at room temperature. DFT and isosurface calculations have been performed. The acetonitrile + ethanol binary mixtures consist of 1:1, 1:2, 1:3 and 1:4 complexes formed through both the red and blue shifting H-bonds. Inter as well as intra molecular forces are found to exist in 1:3 and 1:4 complexes.
Martín-Calvo, Ana; García-Pérez, Elena; García-Sánchez, Almudena; Bueno-Pérez, Rocío; Hamad, Said; Calero, Sofia
2011-06-21
We have used interatomic potential-based simulations to study the removal of carbon tetrachloride from air at 298 K, using Cu-BTC metal organic framework. We have developed new sets of Lennard-Jones parameters that accurately describe the vapour-liquid equilibrium curves of carbon tetrachloride and the main components from air (oxygen, nitrogen, and argon). Using these parameters we performed Monte Carlo simulations for the following systems: (a) single component adsorption of carbon tetrachloride, oxygen, nitrogen, and argon molecules, (b) binary Ar/CCl(4), O(2)/CCl(4), and N(2)/CCl(4) mixtures with bulk gas compositions 99 : 1 and 99.9 : 0.1, (c) ternary O(2)/N(2)/Ar mixtures with both, equimolar and 21 : 78 : 1 bulk gas composition, (d) quaternary mixture formed by 0.1% of CCl(4) pollutant, 20.979% O(2), 77.922% N(2), and 0.999% Ar, and (e) five-component mixtures corresponding to 0.1% of CCl(4) pollutant in air with relative humidity ranging from 0 to 100%. The carbon tetrachloride adsorption selectivity and the self-diffusivity and preferential sitting of the different molecules in the structure are studied for all the systems.
NASA Astrophysics Data System (ADS)
Almandoz, M. C.; Sancho, M. I.; Blanco, S. E.
2014-01-01
The solvatochromic behavior of sulfamethoxazole (SMX) was investigated using UV-vis spectroscopy and DFT methods in neat and binary solvent mixtures. The spectral shifts of this solute were correlated with the Kamlet and Taft parameters (α, β and π*). Multiple lineal regression analysis indicates that both specific hydrogen-bond interaction and non specific dipolar interaction play an important role in the position of the absorption maxima in neat solvents. The simulated absorption spectra using TD-DFT methods were in good agreement with the experimental ones. Binary mixtures consist of cyclohexane (Cy)-ethanol (EtOH), acetonitrile (ACN)-dimethylsulfoxide (DMSO), ACN-dimethylformamide (DMF), and aqueous mixtures containing as co-solvents DMSO, ACN, EtOH and MeOH. Index of preferential solvation was calculated as a function of solvent composition and non-ideal characteristics are observed in all binary mixtures. In ACN-DMSO and ACN-DMF mixtures, the results show that the solvents with higher polarity and hydrogen bond donor ability interact preferentially with the solute. In binary mixtures containing water, the SMX molecules are solvated by the organic co-solvent (DMSO or EtOH) over the whole composition range. Synergistic effect is observed in the case of ACN-H2O and MeOH-H2O, indicating that at certain concentrations solvents interact to form association complexes, which should be more polar than the individual solvents of the mixture.
Alonso de Mezquia, David; Wang, Zilin; Lapeira, Estela; Klein, Michael; Wiegand, Simone; Mounir Bou-Ali, M
2014-11-01
In this study, the thermodiffusion, molecular diffusion, and Soret coefficients of 12 binary mixtures composed of toluene, n-hexane and n-dodecane in the whole range of concentrations at atmospheric pressure and temperatures of 298.15 K and 308.15 K have been determined. The experimental measurements have been carried out using the Thermogravitational Column, the Sliding Symmetric Tubes and the Thermal Diffusion Forced Rayleigh Scattering techniques. The results obtained using the different techniques show a maximum deviation of 9% for the thermodiffusion coefficient, 8% for the molecular diffusion coefficient and 2% for the Soret coefficient. For the first time we report a decrease of the thermodiffusion coefficient with increasing ratio of the thermal expansion coefficient and viscosity for a binary mixture of an organic ring compound with a short n-alkane. This observation is discussed in terms of interactions between the different components. Additionally, the thermogravitational technique has been used to measure the thermodiffusion coefficients of four ternary mixtures consisting of toluene, n-hexane and n-dodecane at 298.15 K. In order to complete the study, the values obtained for the molecular diffusion coefficient in binary mixtures, and the thermodiffusion coefficient of binary and ternary mixtures have been compared with recently derived correlations.
Gumel, A M; Annuar, M S M; Heidelberg, T
2013-04-01
The effects of organic solvents and their binary mixture in the glucose functionalization of bacterial poly-3-hydroxyalkanoates catalyzed by Lecitase™ Ultra were studied. Equal volume binary mixture of DMSO and chloroform with moderate polarity was more effective for the enzyme catalyzed synthesis of the carbohydrate polymer at ≈38.2 (±0.8)% reactant conversion as compared to the mono-phasic and other binary solvents studied. The apparent reaction rate constant as a function of medium water activity (aw) was observed to increase with increasing solvent polarity, with optimum aw of 0.2, 0.4 and 0.7 (±0.1) observed in hydrophilic DMSO, binary mixture DMSO:isooctane and hydrophobic isooctane, respectively. Molecular sieve loading between 13 to 15gL(-1) (±0.2) and reaction temperature between 40 to 50°C were found optimal. Functionalized PHA polymer showed potential characteristics and biodegradability. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Oswal, S. L.; Patel, B. M.; Shah, H. R.; Oswal, P.
1994-07-01
Measurements of the viscosity η and the density ϱ are reported for 14 binary mixtures of methyl methacrylate (MMA) with hydrocarbons, haloalkanes, and alkylamines at 303.15 K. The viscosity data have been correlated with equations of Grunberg and Nissan, of McAllister, and of Auslaender. Furthermore, excess viscosity Δ In η and excess Gibbs energy of activation ΔG* E of viscous flow have been calculated and have been used to predict molecular interactions occurring in present binary mixtures. The results show the existence of specific interactions in MMA + aromatic hydrocarbons, MMA + haloalkanes, and MMA + primary amines.
Castada, Hardy Z; Wick, Cheryl; Harper, W James; Barringer, Sheryl
2015-01-15
Twelve volatile organic compounds (VOCs) have recently been identified as key compounds in Swiss cheese with split defects. It is important to know how these VOCs interact in binary mixtures and if their behavior changes with concentration in binary mixtures. Selected ion flow tube mass spectrometry (SIFT-MS) was used for the headspace analysis of VOCs commonly found in Swiss cheeses. Headspace (H/S) sampling and quantification checks using SIFT-MS and further linear regression analyses were carried out on twelve selected aqueous solutions of VOCs. Five binary mixtures of standard solutions of VOCs were also prepared and the H/S profile of each mixture was analyzed. A very good fit of linearity for the twelve VOCs (95% confidence level) confirms direct proportionality between the H/S and the aqueous concentration of the standard solutions. Henry's Law coefficients were calculated with a high degree of confidence. SIFT-MS analysis of five binary mixtures showed that the more polar compounds reduced the H/S concentration of the less polar compounds, while the addition of a less polar compound increased the H/S concentration of the more polar compound. In the binary experiment, it was shown that the behavior of a compound in the headspace can be significantly affected by the presence of another compound. Thus, the matrix effect plays a significant role in the behavior of molecules in a mixed solution. Copyright © 2014 John Wiley & Sons, Ltd.
Halder, Ritaban; Jana, Biman
2018-06-05
Aqueous binary mixtures have received immense attention in recent years because of their extensive application in several biological and industrial processes. Water-ethanol binary mixture serves as a unique system because it exhibits composition dependent alteration of dynamic and thermodynamic properties. Our present work demonstrates how different compositions of water-ethanol binary mixtures affect the pair hydrophobicity of different hydrophobes. Pair hydrophobicity is measured by the depth of the first minimum (contact minima) of potential of mean force (PMF) profile between two hydrophobes. The pair hydrophobicity is found to be increased with addition of ethanol to water up to mole fraction of 0.10 and decreased with further addition of ethanol. This observation is shown to be true for three different pairs of hydrophobes. Decomposition of PMF into enthalpic and entropic contribution indicates a switch from entropic to enthalpic stabilization of the contact minimum upon addition of ethanol to water. The gain in mixing enthalpy of the binary solvent system upon association of two hydrophobes is found to be the determining factor for the stabilization of contact minimum. Several static/dynamics quantities (average composition fluctuations, diffusion coefficients, fluctuations in total dipole moment, propensity of ethyl-ethyl association, etc) of the ethanol-water binary mixture also show irregularities around xEtOH =0.10-0.15. We have also discovered that the hydrogen bonding pattern of ethanol rather than water reveals a change in trend near the similar composition range. As the anomalous behaviour of the physical/dynamical properties along with the pair hydrophobicity in aqueous binary mixture of amphiphilic solutes is common phenomena, our results may provide a general viewpoint on these aspects.
Biodegradation kinetics were studied for binary and complex mixtures of nine polycyclic aromatic hydrocarbons (PAHs): naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 2-ethylnaphthalene, phenanthrene, anthracene, pyrene, fluorene and fluoranthene. Discrepancies between the ...
Binary Mixtures of Particles with Different Diffusivities Demix.
Weber, Simon N; Weber, Christoph A; Frey, Erwin
2016-02-05
The influence of size differences, shape, mass, and persistent motion on phase separation in binary mixtures has been intensively studied. Here we focus on the exclusive role of diffusivity differences in binary mixtures of equal-sized particles. We find an effective attraction between the less diffusive particles, which are essentially caged in the surrounding species with the higher diffusion constant. This effect leads to phase separation for systems above a critical size: A single close-packed cluster made up of the less diffusive species emerges. Experiments for testing our predictions are outlined.
Viscosities of nonelectrolyte liquid mixtures. II. Binary and quaternary systems of some n-alkanes
NASA Astrophysics Data System (ADS)
Wakefield, D. L.; Marsh, K. N.; Zwolinski, B. J.
1988-01-01
This paper is the second in a series of viscosity and density studies on multicomponent mixtures of n-alkanes from 303 to 338 K. Reported here are the results of binary mixtures of n-tetracosane + n-octane as well as quaternary mixtures of n-tetracosane + n-octane + n-decane + n-hexane at 318.16, 328.16, and 338.16 K. Viscosities were determined using a standard U-tube Ostwald viscometer, and densities were determined using a flask-type pycnometer. Empirical relations tested include the Grunberg and Nissan equation and the method of corresponding states. In addition, comparisons were made regarding the behavior of this quaternary system and homologous binary mixtures of n-hexadecane + n-octane and n-tetracosane + n-octane at the same temperatures.
ANALYSES OF THE INTERACTIONS WITHIN BINARY MIXTURES OF CARCINOGENIC PAHS USING MORPHOLOGICAL CELL TRANSFORMATION OF C3HIOT1/2 CL8 CELLS.
Studies of defined mixtures of carcinogenic polycyclic aromatic hydrocarbons (PAH) have identified three major categories of interacti...
USDA-ARS?s Scientific Manuscript database
Imidacloprid is the most widely used insecticide in the world. In this study, we used spraying methods to simulate field exposures of bees to formulated imidacloprid (Advise® 2FL) alone and binary mixtures with seven pesticides from different classes. Synergistic toxicity was detected from mixtures ...
Chemical composition and binary mixture of human urinary stones using FT-Raman spectroscopy method.
Selvaraju, R; Raja, A; Thiruppathi, G
2013-10-01
In the present study the human urinary stones were observed in their different chemical compositions of calcium oxalate monohydrate, calcium oxalate dihydrate, calcium phosphate, struvite (magnesium ammonium phosphate), uric acid, cystine, oxammite (ammonium oxalate monohydrate), natroxalate (sodium oxalate), glushinkite (magnesium oxalate dihydrate) and moolooite (copper oxalate) were analyzed using Fourier Transform-Raman (FT-Raman) spectroscopy. For the quantitative analysis, various human urinary stone samples are used for ratios calculation of binary mixtures compositions such as COM/COD, HAP/COD, HAP/COD, Uric acid/COM, uric acid/COD and uric acid/HAP. The calibration curve is used for further analysis of binary mixture of human urinary stones. For the binary mixture calculation the various intensities bands at 1462 cm(-1) (I(COM)), 1473 cm(-1) (I(COD)), 961 cm(-1) (I(HAP)) and 1282 cm(-1) (I(UA)) were used. Copyright © 2013 Elsevier B.V. All rights reserved.
Monte Carlo study of four dimensional binary hard hypersphere mixtures
NASA Astrophysics Data System (ADS)
Bishop, Marvin; Whitlock, Paula A.
2012-01-01
A multithreaded Monte Carlo code was used to study the properties of binary mixtures of hard hyperspheres in four dimensions. The ratios of the diameters of the hyperspheres examined were 0.4, 0.5, 0.6, and 0.8. Many total densities of the binary mixtures were investigated. The pair correlation functions and the equations of state were determined and compared with other simulation results and theoretical predictions. At lower diameter ratios the pair correlation functions of the mixture agree with the pair correlation function of a one component fluid at an appropriately scaled density. The theoretical results for the equation of state compare well to the Monte Carlo calculations for all but the highest densities studied.
The scent of mixtures: rules of odour processing in ants
Perez, Margot; Giurfa, Martin; d'Ettorre, Patrizia
2015-01-01
Natural odours are complex blends of numerous components. Understanding how animals perceive odour mixtures is central to multiple disciplines. Here we focused on carpenter ants, which rely on odours in various behavioural contexts. We studied overshadowing, a phenomenon that occurs when animals having learnt a binary mixture respond less to one component than to the other, and less than when this component was learnt alone. Ants were trained individually with alcohols and aldehydes varying in carbon-chain length, either as single odours or binary mixtures. They were then tested with the mixture and the components. Overshadowing resulted from the interaction between chain length and functional group: alcohols overshadowed aldehydes, and longer chain lengths overshadowed shorter ones; yet, combinations of these factors could cancel each other and suppress overshadowing. Our results show how ants treat binary olfactory mixtures and set the basis for predictive analyses of odour perception in insects. PMID:25726692
Amin, Mohd C I; Fell, John T
2004-01-01
Percolation theory has been used with great interest in understanding the design and characterization of dosage forms. In this study, work has been carried out to investigate the behavior of binary mixture tablets containing excipients of similar and different deformation properties. The binary mixture tablets were prepared by direct compression using lactose, polyvinyl chloride (PVC), Eudragit RS 100, and microcrystalline cellulose (MCC). The application of percolation theory on the relationships between compactibility, Pmax, or compression susceptibility (compressibility), gamma, and mixture compositions reveals the presence of percolation thresholds even for mixtures of similar deformation properties. The results showed that all mixture compositions exhibited at least one discreet change in the slope, which was referred to as the percolation threshold. The PVC/Eudragit RS100 mixture compositions showed significant percolation threshold at 80% (w/w) PVC loading. Two percolation thresholds were observed from a series of binary mixtures containing similar plastic deformation materials (PVC/MCC). The percolation thresholds were determined at 20% (w/w) and 80% (w/w) PVC loading. These are areas where one of the components percolates throughout the system and the properties of the tablets are expected to experience a sudden change. Experimental results, however, showed that total disruption of the tablet physical properties at the specified percolation thresholds can be observed for PVC/lactose mixtures at 20-30% (w/w) loading while only minor changes in the tablets' strength for PVC/MCC or PVC/Eudragit RS 100 mixtures were observed.
Bak, J H; Yoo, B
2018-05-01
The intrinsic viscosity ([η]) values of binary gum mixtures with xanthan gum (XG) and guar gum (GG) mixed with NaCl and sucrose at different concentrations as well as in the presence of different pH levels were examined in dilute solution as a function of XG/GG mixing ratio (100/0, 75/25, 50/50, and 0/100). Experimental values of concentration (C) and relative viscosity (η rel ) or specific viscosity (η sp ) of gums in dilute solution were fitted to five models to determine [η] values of binary gum mixtures including individual gums. A [η] model (η rel =1+[η]C) of Tanglertpaibul and Rao is recommended as the best model to estimate [η] values for the binary gum mixtures with XG and GG as affected by NaCl, sucrose, and pH. Overall, the synergistic interaction of XG-GG mixtures in the presence of NaCl and sucrose showed a greatly positive variation between measured and calculated values of [η]. In contrast, the binary gum mixtures showed synergy only under an acidic condition (pH3). These results suggest that the NaCl and sucrose addition or acidic condition appears to affect the intermolecular interaction occurred between XG and GG at different gum mixing ratios. Copyright © 2018 Elsevier B.V. All rights reserved.
Pharmacokinetic Modeling of JP-8 Jet Fuel Components: II. A Conceptual Framework
2003-12-01
example, a single type of (simple) binary interaction between 300 components would require the specification of some 105 interaction coefficients . One...individual substances, via binary mechanisms, is enough to predict the interactions present in the mixture. Secondly, complex mixtures can often be...approximated as pseudo- binary systems, consisting of the compound of interest plus a single interacting complex vehicle with well-defined, composite
Christophorou, Loucas G.; Hunter, Scott R.
1990-01-01
An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc.
Christophorou, L.G.; Hunter, S.R.
1990-06-26
An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc. 11 figs.
Christophorou, L.G.; Hunter, S.R.
1988-06-28
An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc. 11 figs.
Cluster kinetics model for mixtures of glassformers
NASA Astrophysics Data System (ADS)
Brenskelle, Lisa A.; McCoy, Benjamin J.
2007-10-01
For glassformers we propose a binary mixture relation for parameters in a cluster kinetics model previously shown to represent pure compound data for viscosity and dielectric relaxation as functions of either temperature or pressure. The model parameters are based on activation energies and activation volumes for cluster association-dissociation processes. With the mixture parameters, we calculated dielectric relaxation times and compared the results to experimental values for binary mixtures. Mixtures of sorbitol and glycerol (seven compositions), sorbitol and xylitol (three compositions), and polychloroepihydrin and polyvinylmethylether (three compositions) were studied.
Chiban, Mohamed; Soudani, Amina; Sinan, Fouad; Persin, Michel
2011-02-01
A low-cost adsorbent and environmentally friendly adsorbent from Carpobrotus edulis plant was used for the removal of NO(3)(-), H(2)PO(4)(-), Pb(2+) and Cd(2+) ions from single, binary and multi-component systems. The efficiency of the adsorbent was studied using batch adsorption technique under different experimental conditions by varying parameters such as pH, initial concentration and contact time. In single component systems, the dried C. edulis has the highest affinity for Pb(2+), followed by NO(3)(-), Cd(2+) and H(2)PO(4)(-), with adsorption capacities of 175mg/g, 125mg/g, 28mg/g and 26mg/g, respectively. These results showed that the adsorption of NO(3)(-) and H(2)PO(4)(-) ions from single and binary component systems can be successfully described by Langmuir and Freundlich isotherms. Freundlich adsorption model, showed the best fit to the single and binary experimental adsorption data. These results also indicated that the adsorption yield of Pb(2+) ion was reduced by the presence of Cd(2+) ion in binary metal mixture. The competitive adsorption of NO(3)(-), H(2)PO(4)(-), Pb(2+) and Cd(2+) ions on dried C. edulis plant shows that NO(3)(-) and H(2)PO(4)(-) anions are able to adsorb on different free binding sites and Pb(2+) and Cd(2+) cations are able to adsorb on the same active sites of C. edulis particles. The dried C. edulis was found to be efficient in removing nitrate, phosphate, cadmium and lead from aqueous solution as compared to other adsorbents already used for the removal of these ions. Copyright © 2010 Elsevier B.V. All rights reserved.
Wang, Mengyi; Sun, Xueni; Li, Yan; Deng, Chunhui
2016-03-01
In this work, for the first time, magnetic binary metal oxides nanocomposites which integrated Zr and Ti into one entity on an atomic scale on polydopamine coated magnetic graphene (magG/PD/(Zr-Ti)O4 ) was designed and synthesized, and applied to the enrichment of phosphopeptides. The newly prepared magG/PD/(Zr-Ti)O4 composites gathered the advantages of large surface area, superparamagnetism, biocompatibility and the enhanced affinity properties to phosphopeptides. MagG/PD/ZrO2 , magG/PD/TiO2 , as well as the simple physical mixture of them were introduced to compare with magG/PD/(Zr-Ti)O4 composites. High sensitivity (1 pg/μL or 4.0 × 10(-11) M) and selectivity (weight ratio of β-casein and BSA reached up to 1:8000) toward phosphopeptides were also presented for magG/PD/(Zr-Ti)O4 composites. Additionally, mouse brain tissue was chose as the real samples to further investigate the phosphopeptides enrichment ability of this new material. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sasirekha, V.; Vanelle, P.; Terme, T.; Ramakrishnan, V.
2008-12-01
Solvation characteristics of 1,4-dihydroxy-2,3-dimethyl-9,10-anthraquinone ( 1) in pure and binary solvent mixtures have been studied by UV-vis absorption spectroscopy and laser-induced fluorescence techniques. The binary solvent mixtures used as CCl 4 (tetrachloromethane)-DMF ( N, N-dimethylformamide), AN (acetonitrile)-DMSO (dimethylsulfoxide), CHCl 3 (chloroform)-DMSO, CHCl 3-MeOH (methanol), and MeOH-DMSO. The longest wavelength band of 1 has been studied in pure solvents as well as in binary solvent mixtures as a function of the bulk mole fraction. The Vis absorption band maxima show an unusual blue shift with increasing solvent polarity. The emission maxima of 1 show changes with varying the pure solvents and the composition in the case of binary solvent mixtures. Non-ideal solvation characteristics are observed in all binary solvent mixtures. It has been observed that the quantity [ ν-(Xν+Xν)] serves as a measure of the extent of preferential solvation, where ν˜ and X are the position of band maximum in wavenumbers (cm -1) and the bulk mole fraction values, respectively. The preferential solvation parameters local mole fraction ( X2L), solvation index ( δs2), and exchange constant ( k12) are evaluated.
Wu, Tzi-Yi; Chen, Bor-Kuan; Hao, Lin; Lin, Yuan-Chung; Wang, H. Paul; Kuo, Chung-Wen; Sun, I-Wen
2011-01-01
This work includes specific basic characterization of synthesized glycine-based Ionic Liquid (IL) [QuatGly-OEt][EtOSO3] by NMR, elementary analysis and water content. Thermophysical properties such as density, ρ, viscosity, η, refractive index, n, and conductivity, κ, for the binary mixture of [QuatGly-OEt][EtOSO3] with poly(ethylene glycol) (PEG) [Mw = 200] are measured over the whole composition range. The temperature dependence of density and dynamic viscosity for neat [QuatGly-OEt][EtOSO3] and its binary mixture can be described by an empirical polynomial equation and by the Vogel-Tammann-Fucher (VTF) equation, respectively. The thermal expansion coefficient of the ILs is ascertained using the experimental density results, and the excess volume expansivity is evaluated. The negative values of excess molar volume for the mixture indicate the ion-dipole interactions and packing between IL and PEG oligomer. The results of binary excess property (VmE ) and deviations (Δη, Δxn, ΔΨn, ΔxR, and ΔΨR) are discussed in terms of molecular interactions and molecular structures in the binary mixture. PMID:22272102
NASA Astrophysics Data System (ADS)
An, Lingling; Jing, Min; Xiao, Bo; Bai, Xiao-Yan; Zeng, Qing-Dao; Zhao, Ke-Qing
2016-09-01
Disk-like liquid crystals (DLCs) can self-assemble to ordered columnar mesophases and are intriguing one-dimensional organic semiconductors with high charge carrier mobility. To improve their applicable property of mesomorphic temperature ranges, we exploit the binary mixtures of electronic donor-acceptor DLC materials. The electron-rich 2,3,6,7,10,11-hexakis(alkoxy)triphenylenes (C4, C6, C8, C10, C12) and an electron-deficient tetrapentyl triphenylene-2,3,6,10-tetracarboxylate have been prepared and their binary mixtures have been investigated. The mesomorphism of the 1:1 (molar ratio) mixtures has been characterized by polarizing optical microscopy (POM), differential scanning calorimetry (DSC), and small angel x-ray scattering (SAXS). The self-assembled monolayer structure of a discogen on a solid-liquid interface has been imaged by the high resolution scanning tunneling microscopy (STM). The match of peripheral chain length has important influence on the mesomorphism of the binary mixtures. Project supported by the National Natural Science Foundation of China (Grant Nos. 51273133 and 51443004).
NASA Astrophysics Data System (ADS)
Khashaba, Pakinaz Y.; Ali, Hassan Refat H.; El-Wekil, Mohamed M.
2018-02-01
A simple and non-destructive FTIR method was used to determine certain proton pump inhibitors (PPIs) in binary and ternary mixtures. Proton pump inhibitors (PPIs); omeprazole (OMZ), esomeprazole (EZM), lansoprazole (LAN), pantoprazole sodium (PAN sodium) and rabeprazole sodium (RAB sodium) in binary mixture with domperidone (DOM) and ternary mixture of OMZ, clarithromycin (CLM) and tinidazole (TNZ) were determined in the solid-state by FTIR spectroscopy for the first time. The method was validated according to ICH-guidelines where linearity was ranged from 20 to 850 μg/g and 20-360 μg/g for PPIs and DOM, respectively in binary mixtures and 10-400, 100-8000 and 150-14,000 μg/g for OMZ, CLM and TNZ, respectively. Limits of detection were found to be 6-100 and 9-100 μg/g for PPIs and DOM, respectively and 4, 40 and 50 μg/g for OMZ, CLM and TNZ, respectively. The method was applied successfully for determination of the cited drugs in their respective pharmaceutical dosage forms.
The Kirkwood-Buff theory of solutions and the local composition of liquid mixtures.
Shulgin, Ivan L; Ruckenstein, Eli
2006-06-29
The present paper is devoted to the local composition of liquid mixtures calculated in the framework of the Kirkwood-Buff theory of solutions. A new method is suggested to calculate the excess (or deficit) number of various molecules around a selected (central) molecule in binary and multicomponent liquid mixtures in terms of measurable macroscopic thermodynamic quantities, such as the derivatives of the chemical potentials with respect to concentrations, the isothermal compressibility, and the partial molar volumes. This method accounts for an inaccessible volume due to the presence of a central molecule and is applied to binary and ternary mixtures. For the ideal binary mixture it is shown that because of the difference in the volumes of the pure components there is an excess (or deficit) number of different molecules around a central molecule. The excess (or deficit) becomes zero when the components of the ideal binary mixture have the same volume. The new method is also applied to methanol + water and 2-propanol + water mixtures. In the case of the 2-propanol + water mixture, the new method, in contrast to the other ones, indicates that clusters dominated by 2-propanol disappear at high alcohol mole fractions, in agreement with experimental observations. Finally, it is shown that the application of the new procedure to the ternary mixture water/protein/cosolvent at infinite dilution of the protein led to almost the same results as the methods involving a reference state.
Attia, Khalid A M; Nassar, Mohammed W I; El-Zeiny, Mohamed B; Serag, Ahmed
2016-05-15
Three different spectrophotometric methods were applied for the quantitative analysis of flucloxacillin and amoxicillin in their binary mixture, namely, ratio subtraction, absorbance subtraction and amplitude modulation. A comparative study was done listing the advantages and the disadvantages of each method. All the methods were validated according to the ICH guidelines and the obtained accuracy, precision and repeatability were found to be within the acceptable limits. The selectivity of the proposed methods was tested using laboratory prepared mixtures and assessed by applying the standard addition technique. So, they can be used for the routine analysis of flucloxacillin and amoxicillin in their binary mixtures. Copyright © 2016 Elsevier B.V. All rights reserved.
Effects of three veterinary antibiotics and their binary mixtures on two green alga species.
Carusso, S; Juárez, A B; Moretton, J; Magdaleno, A
2018-03-01
The individual and combined toxicities of chlortetracycline (CTC), oxytetracycline (OTC) and enrofloxacin (ENF) have been examined in two green algae representative of the freshwater environment, the international standard strain Pseudokichneriella subcapitata and the native strain Ankistrodesmus fusiformis. The toxicities of the three antibiotics and their mixtures were similar in both strains, although low concentrations of ENF and CTC + ENF were more toxic in A. fusiformis than in the standard strain. The toxicological interactions of binary mixtures were predicted using the two classical models of additivity: Concentration Addition (CA) and Independent Action (IA), and compared to the experimentally determined toxicities over a range of concentrations between 0.1 and 10 mg L -1 . The CA model predicted the inhibition of algal growth in the three mixtures in P. subcapitata, and in the CTC + OTC and CTC + ENF mixtures in A. fusiformis. However, this model underestimated the experimental results obtained in the OTC + ENF mixture in A. fusiformis. The IA model did not predict the experimental toxicological effects of the three mixtures in either strain. The sum of the toxic units (TU) for the mixtures was calculated. According to these values, the binary mixtures CTC + ENF and OTC + ENF showed an additive effect, and the CTC + OTC mixture showed antagonism in P. subcapitata, whereas the three mixtures showed synergistic effects in A. fusiformis. Although A. fusiformis was isolated from a polluted river, it showed a similar sensitivity with respect to P. subcapitata when it was exposed to binary mixtures of antibiotics. Copyright © 2017 Elsevier Ltd. All rights reserved.
Quantifying Synergy: A Systematic Review of Mixture Toxicity Studies within Environmental Toxicology
Cedergreen, Nina
2014-01-01
Cocktail effects and synergistic interactions of chemicals in mixtures are an area of great concern to both the public and regulatory authorities. The main concern is whether some chemicals can enhance the effect of other chemicals, so that they jointly exert a larger effect than predicted. This phenomenon is called synergy. Here we present a review of the scientific literature on three main groups of environmentally relevant chemical toxicants: pesticides, metal ions and antifouling compounds. The aim of the review is to determine 1) the frequency of synergy, 2) the extent of synergy, 3) whether any particular groups or classes of chemicals tend to induce synergy, and 4) which physiological mechanisms might be responsible for this synergy. Synergy is here defined as mixtures with minimum two-fold difference between observed and predicted effect concentrations using Concentration Addition (CA) as a reference model and including both lethal and sub-lethal endpoints. The results showed that synergy occurred in 7%, 3% and 26% of the 194, 21 and 136 binary pesticide, metal and antifoulants mixtures included in the data compilation on frequency. The difference between observed and predicted effect concentrations was rarely more than 10-fold. For pesticides, synergistic mixtures included cholinesterase inhibitors or azole fungicides in 95% of 69 described cases. Both groups of pesticides are known to interfere with metabolic degradation of other xenobiotics. For the four synergistic metal and 47 synergistic antifoulant mixtures the pattern in terms of chemical groups inducing synergy was less clear. Hypotheses in terms of mechanisms governing these interactions are discussed. It was concluded that true synergistic interactions between chemicals are rare and often occur at high concentrations. Addressing the cumulative rather than synergistic effect of co-occurring chemicals, using standard models as CA, is therefore regarded as the most important step in the risk assessment of chemical cocktails. PMID:24794244
ERIC Educational Resources Information Center
Hunnicutt, Sally S.; Grushow, Alexander; Whitnell, Rob
2017-01-01
The principles of process-oriented guided inquiry learning (POGIL) are applied to a binary solid-liquid mixtures experiment. Over the course of two learning cycles, students predict, measure, and model the phase diagram of a mixture of fatty acids. The enthalpy of fusion of each fatty acid is determined from the results. This guided inquiry…
NASA Astrophysics Data System (ADS)
Paul, M. Danish John; Shruthi, N.; Anantharaj, R.
2018-04-01
The derived thermodynamic properties like excess molar volume, partial molar volume, excess partial molar volume and apparent volume of binary mixture of acetic acid + n-butanolandacetic acid + water has been investigated using measured density of mixtures at temperatures from 293.15 K to 343.15.
Knežević, Varja; Tunić, Tanja; Gajić, Pero; Marjan, Patricija; Savić, Danko; Tenji, Dina; Teodorović, Ivana
2016-11-01
Recovery after exposure to herbicides-atrazine, isoproturon, and trifluralin-their binary and ternary mixtures, was studied under laboratory conditions using a slightly adapted standard protocol for Lemna minor. The objectives of the present study were (1) to compare empirical to predicted toxicity of selected herbicide mixtures; (2) to assess L. minor recovery potential after exposure to selected individual herbicides and their mixtures; and (3) to suggest an appropriate recovery potential assessment approach and endpoint in a modified laboratory growth inhibition test. The deviation of empirical from predicted toxicity was highest in binary mixtures of dissimilarly acting herbicides. The concentration addition model slightly underestimated mixture effects, indicating potential synergistic interactions between photosynthetic inhibitors (atrazine and isoproturon) and a cell mitosis inhibitor (trifluralin). Recovery after exposure to the binary mixture of atrazine and isoproturon was fast and concentration-independent: no significant differences between relative growth rates (RGRs) in any of the mixtures (IC10 Mix , 25 Mix , and 50 Mix ) versus control level were recorded in the last interval of the recovery phase. The recovery of the plants exposed to binary and ternary mixtures of dissimilarly acting herbicides was strictly concentration-dependent. Only plants exposed to IC10 Mix , regardless of the herbicides, recovered RGRs close to control level in the last interval of the recovery phase. The inhibition of the RGRs in the last interval of the recovery phase compared with the control level is a proposed endpoint that could inform on reversibility of the effects and indicate possible mixture effects on plant population recovery potential.
Viscosity of nonelectrolyte liquid mixtures. IV. Binary mixtures containing p-Dioxane
NASA Astrophysics Data System (ADS)
Oswal, S. L.; Oswal, P.; Phalak, R. P.
1996-11-01
Measurements of the viscosity η and density p are reported for eight binary mixtures of p-dioxane with methylcyclohexane, l-chlorohexane, l-bromohexane, p-xylene, propylbenzene, methyl acetate, butyl acetate. anyl acetate at 303.15 K. The viscosity data haw been correlated with the equations of Grunbeng Nissan. of McAllister, and of Auslaendcr. The relation among the excess viscosity Δ In η, excess Gibbs energy of activation ΔG* E of viscous flow. and intermolecular interaction in these mixtures is discussed.
Pop, Anca; Drugan, Tudor; Gutleb, Arno C; Lupu, Diana; Cherfan, Julien; Loghin, Felicia; Kiss, Béla
2016-04-01
The individual and combined (binary mixtures) (anti)androgenic effect of butylparaben (BuPB), butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and propyl gallate (PG) was evaluated using the MDA-kb2 cell line. Exposing these cells to AR agonists results in the expression of the reporter gene (encoding for luciferase) and luminescence can be measured in order to monitor the activity of the reporter protein. In case of the evaluation of the anti-androgenic effect, the individual test compounds or binary mixtures were tested in the presence of a fixed concentration of a strong AR agonist (1000 pM 5-alpha-dihydrotestosterone; DHT). Cell viability was assessed using a resazurin based assay. For PG, this is the first report in the literature concerning its (anti)androgenic activity. In case of both individual and mixture testing none of the compounds or binary combinations showed androgenic activity. When tested in the presence of DHT, BuPB, BHA and BHT proved to be weak anti-androgens and this was confirmed during the evaluation of binary mixtures (BuPB+BHA, BuPB+BHT and BHA+BHT). Besides performing the in vitro testing of the binary combinations, two mathematical models (dose addition and response addition) were evaluated in terms of accuracy of prediction of the anti-androgenic effect of the selected binary mixtures. The dose addition model guaranteed a good correlation between the experimental and predicted data. However, no estimation was possible in case of mixtures containing PG, due to the lack of effect of the compound in case of the individual testing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zaki, M T; Rizkalla, E N
1980-05-01
N,N*,N',N'-Ethylenediaminetetra(methylenephosphonic) acid is used as a titrant for the direct determination of Cu, Co and Ni, with murexide as indicator. Indirect titrimetric procedures are suggested for the determination of silver, mercury, zinc and cyanide and both direct and indirect methods are applied for the analysis of binary mixtures of silver (or mercury) and copper (cobalt or nickel). The stoichiometry of the reaction, interferences of some metal ions and the pH effects on the complexation reactions are discussed. The values of the equilibrium constants of the protonated CuH(n)L (n = 1, 2, 3 and 4) as well as the unprotonated CuL chelates have been measured.
NASA Astrophysics Data System (ADS)
Hassan, Said A.; Abdel-Gawad, Sherif A.
2018-02-01
Two signal processing methods, namely, Continuous Wavelet Transform (CWT) and the second was Discrete Fourier Transform (DFT) were introduced as alternatives to the classical Derivative Spectrophotometry (DS) in analysis of binary mixtures. To show the advantages of these methods, a comparative study was performed on a binary mixture of Naltrexone (NTX) and Bupropion (BUP). The methods were compared by analyzing laboratory prepared mixtures of the two drugs. By comparing performance of the three methods, it was proved that CWT and DFT methods are more efficient and advantageous in analysis of mixtures with overlapped spectra than DS. The three signal processing methods were adopted for the quantification of NTX and BUP in pure and tablet forms. The adopted methods were validated according to the ICH guideline where accuracy, precision and specificity were found to be within appropriate limits.
NASA Astrophysics Data System (ADS)
Smiljanić, Jelena D.; Kijevčanin, Mirjana Lj.; Djordjević, Bojan D.; Grozdanić, Dušan K.; Šerbanović, Slobodan P.
2008-04-01
Densities ρ of the 1-butanol + chloroform + benzene ternary mixture and the 1-butanol + chloroform and 1-butanol + benzene binaries have been measured at six temperatures (288.15, 293.15, 298.15, 303.15, 308.15, and 313.15) K and atmospheric pressure, using an oscillating U-tube densimeter. From these densities, excess molar volumes ( V E) were calculated and fitted to the Redlich Kister equation for all binary mixtures and to the Nagata and Tamura equation for the ternary system. The Radojković et al. equation has been used to predict excess molar volumes of the ternary mixtures. Also, V E data of the binary systems were correlated by the van der Waals (vdW1) and Twu Coon Bluck Tilton (TCBT) mixing rules coupled with the Peng Robinson Stryjek Vera (PRSV) equation of state. The prediction and correlation of V E data for the ternary system were performed by the same models.
NASA Astrophysics Data System (ADS)
Nikolić, G. M.; Živković, J. V.; Atanasković, D. S.; Nikolić, M. G.
2013-12-01
Liquid-liquid extraction of paracetamol from aqueous NaCl solutions was performed with diethyl ether, 1-propanol, 1-butanol, isobutanol, 1-pentanol, and binary mixtures diethyl ether/1-propanol, diethyl ether/1-butanol, and diethyl ether/isobutanol. Among the pure solvents investigated in this study best extraction efficacy was obtained with 1-butanol. Synergic effects in the extraction with binary mixtures was investigated and compared with some other systems used for the extraction of poorly extractable compounds. Results obtained in this study may be of both fundamental and practical importance.
NASA Astrophysics Data System (ADS)
Sharma, Ravi; Thakur, R. C.
2017-07-01
In the present study, the thermodynamic properties such as partial molar volumes, partial molar expansibilities, partial molar compressibilities, partial molar heat capacities and isobaric thermal expansion coefficient of different solutions of nicotinic acid in binary aqueous mixtures of D-lactose have been determined at different temperatures (298.15, 303.15, 308.15, 313.15) K. Masson's equation is used to interpret the data in terms of solute-solute and solute-solvent interactions. In the present study it has been found that nicotinic acid behaves as structure maker in aqueous and binary aqueous mixtures of D-lactose.
Phase behaviour, interactions, and structural studies of (amines+ionic liquids) binary mixtures.
Jacquemin, Johan; Bendová, Magdalena; Sedláková, Zuzana; Blesic, Marijana; Holbrey, John D; Mullan, Claire L; Youngs, Tristan G A; Pison, Laure; Wagner, Zdeněk; Aim, Karel; Costa Gomes, Margarida F; Hardacre, Christopher
2012-05-14
We present a study on the phase equilibrium behaviour of binary mixtures containing two 1-alkyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide-based ionic liquids, [C(n)mim] [NTf(2)] (n=2 and 4), mixed with diethylamine or triethylamine as a function of temperature and composition using different experimental techniques. Based on this work, two systems showing an LCST and one system with a possible hourglass shape are measured. Their phase behaviours are then correlated and predicted by using Flory-Huggins equations and the UNIQUAC method implemented in Aspen. The potential of the COSMO-RS methodology to predict the phase equilibria was also tested for the binary systems studied. However, this methodology is unable to predict the trends obtained experimentally, limiting its use for systems involving amines in ionic liquids. The liquid-state structure of the binary mixture ([C(2)mim] [NTf(2)]+diethylamine) is also investigated by molecular dynamics simulation and neutron diffraction. Finally, the absorption of gaseous ethane by the ([C(2)mim][NTf(2)]+diethylamine) binary mixture is determined and compared with that observed in the pure solvents. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Wenjuan; Peng, Xuan; Cao, Dapeng
2011-06-01
Adsorption of H(2)S and SO(2) pure gases and their selective capture from the H(2)S-CH(4), H(2)S-CO(2), SO(2)-N(2), and SO(2)-CO(2) binary mixtures by the single-walled carbon nanotubes (SWNT) are investigated via using the grand canonical Monte Carlo (GCMC) method. It is found that the (20, 20) SWNT with larger diameter shows larger capacity for H(2)S and SO(2) pure gases at T = 303 K, in which the uptakes reach 16.31 and 16.03 mmol/g, respectively. However, the (6,6) SWNT with small diameter exhibits the largest selectivity for binary mixtures containing trace sulfur gases at T = 303 K and P = 100 kPa. By investigating the effect of pore size on the separation of gas mixtures, we found that the optimized pore size is 0.81 nm for separation of H(2)S-CH(4), H(2)S-CO(2), and SO(2)-N(2) binary mixtures, while it is 1.09 nm for the SO(2)-CO(2) mixture. The effects of concentration and temperature on the selectivity of sulfide are also studied at the optimal pore size. It is found that the concentration (ppm) of sulfur components has little effect on selectivity of SWNTs for these binary mixtures. However, the selectivity decreases obviously with the increase of temperature. To improve the adsorption capacities, we further modify the surface of SWNTs with the functional groups. The selectivities of H(2)S-CO(2) and SO(2)-CO(2) mixtures are basically uninfluenced by the site density, while the increase of site density can improve the selectivity of H(2)S-CH(4) mixture doubly. It is expected that this work could provide useful information for sulfur gas capture.
NASA Astrophysics Data System (ADS)
Zhang, Hui-Yong; Li, Jun-Ming; Sun, Ji-Liang; Wang, Bu-Xuan
2016-01-01
A theoretical model is developed for condensation heat transfer of binary refrigerant mixtures in mini-tubes with diameter about 1.0 mm. Condensation heat transfer of R410A and R32/R134a mixtures at different mass fluxes and saturated temperatures are analyzed, assuming that the phase flow pattern is annular flow. The results indicate that there exists a maximum interface temperature at the beginning of condensation process for azeotropic and zeotropic mixtures and the corresponding vapor quality to the maximum value increases with mass flux. The effects of mass flux, heat flux, surface tension and tube diameter are analyzed. As expected, the condensation heat transfer coefficients increase with mass flux and vapor quality, and increase faster in high vapor quality region. It is found that the effects of heat flux and surface tension are not so obvious as that of tube diameter. The characteristics of condensation heat transfer of zeotropic mixtures are consistent to those of azeotropic refrigerant mixtures. The condensation heat transfer coefficients increase with the concentration of the less volatile component in binary mixtures.
NEUROBEHAVIORAL EVALUATIONS OF BINARY AND TERTIARY MIXTURES OF CHEMICALS: LESSIONS LEARNING.
The classical approach to the statistical analysis of binary chemical mixtures is to construct full dose-response curves for one compound in the presence of a range of doses of the second compound (isobolographic analyses). For interaction studies using more than two chemicals, ...
The close binary frequency of Wolf-Rayet stars as a function of metallicity in M31 and M33
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neugent, Kathryn F.; Massey, Philip, E-mail: kneugent@lowell.edu, E-mail: phil.massey@lowell.edu
Massive star evolutionary models generally predict the correct ratio of WC-type and WN-type Wolf-Rayet stars at low metallicities, but underestimate the ratio at higher (solar and above) metallicities. One possible explanation for this failure is perhaps single-star models are not sufficient and Roche-lobe overflow in close binaries is necessary to produce the 'extra' WC stars at higher metallicities. However, this would require the frequency of close massive binaries to be metallicity dependent. Here we test this hypothesis by searching for close Wolf-Rayet binaries in the high metallicity environments of M31 and the center of M33 as well as in themore » lower metallicity environments of the middle and outer regions of M33. After identifying ∼100 Wolf-Rayet binaries based on radial velocity variations, we conclude that the close binary frequency of Wolf-Rayets is not metallicity dependent and thus other factors must be responsible for the overabundance of WC stars at high metallicities. However, our initial identifications and observations of these close binaries have already been put to good use as we are currently observing additional epochs for eventual orbit and mass determinations.« less
Newman, M C; McCloskey, J T; Tatara, C P
1998-01-01
Ecological risk assessment can be enhanced with predictive models for metal toxicity. Modelings of published data were done under the simplifying assumption that intermetal trends in toxicity reflect relative metal-ligand complex stabilities. This idea has been invoked successfully since 1904 but has yet to be applied widely in quantitative ecotoxicology. Intermetal trends in toxicity were successfully modeled with ion characteristics reflecting metal binding to ligands for a wide range of effects. Most models were useful for predictive purposes based on an F-ratio criterion and cross-validation, but anomalous predictions did occur if speciation was ignored. In general, models for metals with the same valence (i.e., divalent metals) were better than those combining mono-, di-, and trivalent metals. The softness parameter (sigma p) and the absolute value of the log of the first hydrolysis constant ([symbol: see text] log KOH [symbol: see text]) were especially useful in model construction. Also, delta E0 contributed substantially to several of the two-variable models. In contrast, quantitative attempts to predict metal interactions in binary mixtures based on metal-ligand complex stabilities were not successful. PMID:9860900
Ajmani, Subhash; Rogers, Stephen C; Barley, Mark H; Burgess, Andrew N; Livingstone, David J
2010-09-17
In our earlier work, we have demonstrated that it is possible to characterize binary mixtures using single component descriptors by applying various mixing rules. We also showed that these methods were successful in building predictive QSPR models to study various mixture properties of interest. Here in, we developed a QSPR model of an excess thermodynamic property of binary mixtures i.e. excess molar volume (V(E) ). In the present study, we use a set of mixture descriptors which we earlier designed to specifically account for intermolecular interactions between the components of a mixture and applied successfully to the prediction of infinite-dilution activity coefficients using neural networks (part 1 of this series). We obtain a significant QSPR model for the prediction of excess molar volume (V(E) ) using consensus neural networks and five mixture descriptors. We find that hydrogen bond and thermodynamic descriptors are the most important in determining excess molar volume (V(E) ), which is in line with the theory of intermolecular forces governing excess mixture properties. The results also suggest that the mixture descriptors utilized herein may be sufficient to model a wide variety of properties of binary and possibly even more complex mixtures. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Martín-Calvo, Ana; García-Pérez, Elena; Manuel Castillo, Juan; Calero, Sofia
2008-12-21
We use Monte Carlo simulations to study the adsorption and separation of the natural gas components in IRMOF-1 and Cu-BTC metal-organic frameworks. We computed the adsorption isotherms of pure components, binary, and five-component mixtures analyzing the siting of the molecules in the structure for the different loadings. The bulk compositions studied for the mixtures were 50 : 50 and 90 : 10 for CH4-CO2, 90 : 10 for N2-CO2, and 95 : 2.0 : 1.5 : 1.0 : 0.5 for the CH4-C2H6-N2-CO2-C3H8 mixture. We choose this composition because it is similar to an average sample of natural gas. Our simulations show that CO2 is preferentially adsorbed over propane, ethane, methane and N2 in the complete pressure range under study. Longer alkanes are favored over shorter alkanes and the lowest adsorption corresponds to N2. Though IRMOF-1 has a significantly higher adsorption capacity than Cu-BTC, the adsorption selectivity of CO2 over CH4 and N2 is found to be higher in the latter, proving that the separation efficiency is largely affected by the shape, the atomic composition and the type of linkers of the structure.
NASA Astrophysics Data System (ADS)
Suthar, Shyam Sunder; Purohit, Suresh
2018-05-01
Properties of diesel and biodiesel (produced from corn oil) are used. Densities and viscosities of binary mixture of diesel with biodiesel (produced from corn oil) have been computed by using liquid binary mixture law over the entire range of compositions at T=298.15K and atmospheric pressure. From the computed values of density and viscosities, viscosity deviation (Δη), the excess molar volume (VE) and excess Gibbs energy of activation of viscous flow (ΔG#E) have been calculated. The results of excess volume, excess Gibbs energy of activation of viscous flow and viscosity deviation have been fitted to Redlich -Kister models to estimate the binary coefficients. The results are communicated in terms of the molecular interactions and the best suited composition has been found.
Ground water samples collected at sites where in-situ chemical oxidation (ISCO) has been deployed may contain binary mixtures of ground water contaminants and permanganate (MnO4-), an oxidant injected into the subsurface to destroy the contaminant. Commingling of the oxidant and ...
Seasonal nitrogen effects on nutritive value in binary mixtures of tall fescue and bermudagrass
USDA-ARS?s Scientific Manuscript database
Year-round forage production is feasible in much of the southeastern USA through utilization of cool- and warm-season forages. This study determined changes in herbage nutritive value in binary mixtures of cool-season, tall fescue [Schedonorus arundinaceus (Schreb.) Dumort], and warm-season, bermuda...
Thermal characteristics of oleochemical carbonate binary mixtures for potential latent heat storage
USDA-ARS?s Scientific Manuscript database
The present study examines the thermal properties of melting and solidification for binary mixtures between dodecyl carbonate (1a), tetradecyl carbonate (1b), hexadecyl carbonate (1c), and octadecyl carbonate (1d) by differential scanning calorimetry (DSC) in order to gain further understanding of t...
USDA-ARS?s Scientific Manuscript database
To develop appropriate bioenergy production systems to match site-specific situations, establishment and yield were evaluated for switchgrass, intermediate wheatgrass, tall wheatgrass, and three binary mixtures at four sites in North Dakota from 2006 to 2011. Canopy cover at harvest for intermediat...
Cultivar x binary mixture interaction effect on agronomic traits in orchardgrass
USDA-ARS?s Scientific Manuscript database
A study was conducted to evaluate and characterize the agronomic value, including dry matter yield and forage quality of 25 orchardgrass cultivars grown in monoculture and binary mixtures with alfalfa under supplemental irrigation from 2009 to 2012 at a Millville, UT, field site. Orchardgrass monoc...
The contribution of molecular relaxation in nitrogen to the absorption of sound in the atmosphere
NASA Technical Reports Server (NTRS)
Zuckerwar, A. J.; Meredith, R. W.
1980-01-01
Results and statistical analysis are presented for sound absorption in N2-H2O binary mixtures at room temperature. Experimental procedure, temperature effects, and preliminary results are presented for sound absorption in N2-H2O binary mixtures at elevated temperatures.
Abdelrahman, Ahmed I.; Dai, Sheng; Thickett, Stuart C.; Ornatsky, Olga; Bandura, Dmitry; Baranov, Vladimir; Winnik, Mitchell A.
2009-01-01
We describe the synthesis and characterization of metal-encoded polystyrene microspheres by multiple-stage dispersion polymerization with diameters on the order of 2 µm and a very narrow size distribution. Different lanthanides were loaded into these microspheres through the addition of a mixture of LnCl3 salts and excess acrylic acid or acetoacetylethyl methacrylate (AAEM) dissolved in ethanol to the reaction after about 10% conversion of styrene, i.e., well after the particle nucleation stage was complete. Individual microspheres contain ca. 106 – 108 chelated lanthanide ions, of either a single element or a mixture of elements. These microspheres were characterized one-by-one utilizing a novel mass cytometer with an inductively coupled plasma (ICP) ionization source and time-of-flight (TOF) mass spectrometry detection. Microspheres containing a range of different metals at different levels of concentration were synthesized to meet the requirements of binary encoding and enumeration encoding protocols. With four different metals at five levels of concentration, we could achieve a variability of 624, and the strategy we report should allow one to obtain much larger variability. To demonstrate the usefulness of element-encoded beads for highly multiplexed immunoassays, we carried out a proof-of-principle model bioassay involving conjugation of mouse IgG to the surface of La and Tm containing particles, and its detection by an anti-mouse IgG bearing a metal-chelating polymer with Pr. PMID:19807075
Abdelrahman, Ahmed I; Dai, Sheng; Thickett, Stuart C; Ornatsky, Olga; Bandura, Dmitry; Baranov, Vladimir; Winnik, Mitchell A
2009-10-28
We describe the synthesis and characterization of metal-encoded polystyrene microspheres by multiple-stage dispersion polymerization with diameters on the order of 2 mum and a very narrow size distribution. Different lanthanides were loaded into these microspheres through the addition of a mixture of lanthanide salts (LnCl(3)) and excess acrylic acid (AA) or acetoacetylethyl methacrylate (AAEM) dissolved in ethanol to the reaction after about 10% conversion of styrene, that is, well after the particle nucleation stage was complete. Individual microspheres contain ca. 10(6)-10(8) chelated lanthanide ions, of either a single element or a mixture of elements. These microspheres were characterized one-by-one utilizing a novel mass cytometer with an inductively coupled plasma (ICP) ionization source and time-of-flight (TOF) mass spectrometry detection. Microspheres containing a range of different metals at different levels of concentration were synthesized to meet the requirements of binary encoding and enumeration encoding protocols. With four different metals at five levels of concentration, we could achieve a variability of 624, and the strategy we report should allow one to obtain much larger variability. To demonstrate the usefulness of element-encoded beads for highly multiplexed immunoassays, we carried out a proof-of-principle model bioassay involving conjugation of mouse IgG to the surface of La and Tm containing particles and its detection by an antimouse IgG bearing a metal-chelating polymer with Pr.
Ashok, Anushruti; Rai, Nagendra Kumar; Tripathi, Sachin; Bandyopadhyay, Sanghamitra
2015-01-01
Environmental pollutants act as risk factors for Alzheimer's disease (AD), mainly affecting the aging population. We investigated early manifestations of AD-like pathology by a mixture of arsenic (As), cadmium (Cd), and lead (Pb), reported to impair neurodevelopment. We treated rats with As+Cd+Pb at their concentrations detected in groundwater of India, ie, 0.38, 0.098, and 0.22 ppm or 10 times of each, respectively, from gestation-05 to postnatal day-180. We identified dose-dependent increase in amyloid-beta (Aβ) in frontal cortex and hippocampus as early as post-weaning. The effect was strongly significant during early-adulthood, reaching levels comparable to an Aβ-infused AD-like rat model. The metals activated the proamyloidogenic pathway, mediated by increase in amyloid precursor protein (APP), and subsequent beta secretase (BACE) and presenilin (PS)-mediated APP-processing. Investigating the mechanism of Aβ-induction revealed an augmentation in oxidative stress-dependent neuroinflammation that stimulated APP expression through interleukin-responsive-APP-mRNA 5'-untranslated region. We then examined the effects of individual metals and binary mixtures in comparison with the tertiary. Among individual metals, Pb triggered maximum induction of Aβ, whereas individual As or Cd had a relatively non-significant effect on Aβ despite enhanced APP, owing to reduced induction of BACE and PS. Interestingly, when combined the metals demonstrated synergism, with a major contribution by As. The synergistic effect was significant and consistent in tertiary mixture, resulting in the augmentation of Aβ. Eventually, increase in Aβ culminated in cognitive impairments in the young rats. Together, our data demonstrate that exposure to As+Cd+Pb induces premature manifestation of AD-like pathology that is synergistic, and oxidative stress and inflammation dependent. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Ramanaiah, S.; Rao, C. Narasimha; Nagaraja, P.; Venkateswarlu, P.
2015-11-01
Exces volumes, VE, and excess isentropic compressibilities, κSE, have been reported as a function of composition for binary liquid mixtures of trichloroethylene with ethyl acetate, n-propyl acetate, and n-butyl acetate at 303.15 K. Isentropic compressibilities are calculated using measured sound speeds and density data for pure components and for binary mixtures. Excess volumes and excess isentropic compressibilities are found to be negative for the three systems studied over the entire composition range at 303.15 K, whereas these values become more negative with an increase of carbon chain length. The results are discussed in terms of intermolecular interactions between unlike molecules.
Induced smectic phase in binary mixtures of twist-bend nematogens.
Knežević, Anamarija; Dokli, Irena; Sapunar, Marin; Šegota, Suzana; Baumeister, Ute; Lesac, Andreja
2018-01-01
The investigation of liquid crystal (LC) mixtures is of great interest in tailoring material properties for specific applications. The recent discovery of the twist-bend nematic phase (N TB ) has sparked great interest in the scientific community, not only from a fundamental viewpoint, but also due to its potential for innovative applications. Here we report on the unexpected phase behaviour of a binary mixture of twist-bend nematogens. A binary phase diagram for mixtures of imino-linked cyanobiphenyl (CBI) dimer and imino-linked benzoyloxy-benzylidene (BB) dimer shows two distinct domains. While mixtures containing less than 35 mol % of BB possess a wide temperature range twist-bend nematic phase, the mixtures containing 55-80 mol % of BB exhibit a smectic phase despite that both pure compounds display a Iso-N-N TB -Cr phase sequence. The phase diagram shows that the addition of BB of up to 30 mol % significantly extends the temperature range of the N TB phase, maintaining the temperature range of the nematic phase. The periodicity, obtained by atomic force microscopy (AFM) imaging, is in the range of 6-7 nm. The induction of the smectic phase in the mixtures containing 55-80 mol % of BB was confirmed using polarising optical microscopy (POM), differential scanning calorimetry (DSC) and X-ray diffraction. The origin of the intercalated smectic phase was unravelled by combined spectroscopic and computational methods and can be traced to conformational disorder of the terminal chains. These results show the importance of understanding the phase behaviour of binary mixtures, not only in targeting a wide temperature range but also in controlling the self-organizing processes.
Preparation and evaluation of advanced catalysts for phosphoric acid fuel cells
NASA Technical Reports Server (NTRS)
Stonehart, P.; Baris, J.; Hockmuth, J.; Pagliaro, P.
1984-01-01
The platinum electrocatalysts were characterized for their crystallite sizes and the degree of dispersion on the carbon supports. One application of these electrocatalysts was for anodic oxidation of hydrogen in hot phosphoric acid fuel cells, coupled with the influence of low concentrations of carbon monoxide in the fuel gas stream. In a similar way, these platinum on carbon electrocatalysts were evaluated for oxygen reduction in hot phosphoric acid. Binary noble metal alloys were prepared for anodic oxidation of hydrogen and noble metal-refractory metal mixtures were prepared for oxygen reduction. An exemplar alloy of platinum and palladium (50/50 atom %) was discovered for anodic oxidation of hydrogen in the presence of carbon monoxide, and patent disclosures were submitted. For the cathode, platinum-vanadium alloys were prepared showing improved performance over pure platinum. Preliminary experiments on electrocatalyst utilization in electrode structures showed low utilization of the noble metal when the electrocatalyst loading exceeded one weight percent on the carbon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sag, Y.; Atacoglu, I.; Kutsal, T.
1999-12-01
The simultaneous biosorption of Cr(VI) and Cu(II) on free Rhizopus arrhizus in a packed column operated in the continuous mode was investigated and compared to the single metal ion situation. The breakthrough curves were measured as a function of feed flow rate, feed pH, and different combinations of metal ion concentrations in the feed solutions. Column competitive biosorption data were evaluated in terms of the maximum (equilibrium) capacity in the column, the amount of metal loading on the R. arrhizus surface, the adsorption yield, and the total adsorption yield. In the single-ion situation the adsorption isotherms were developed for optimummore » conditions, and it was seen that the adsorption equilibrium data fit the noncompetitive Freundlich model. For the multicomponent adsorption equilibrium the competitive adsorption isotherms were also developed. The competitive Freundlich model for binary metal mixtures represented most the column adsorption equilibrium data of Cr(VI) and Cu(II) on R. arrhizus satisfactorily.« less
USDA-ARS?s Scientific Manuscript database
Year-round forage production is feasible in much of the southeastern USA through utilization of cool- and warm-season forages. This study determined if productivity and nutritive value in binary mixtures of tall fescue [Schedonorus arundinaceus (Schreb.) Dumort] and bermudagrass [Cynodon dactylon (L...
Adsorption isotherms were measured for ethanol, acetic acid, and water adsorbed on high-silica ZSM-5 zeolite powder from binary and ternary liquid mixtures at room temperature. Ethanol and water adsorption on two high-silica ZSM-5 zeolites with different aluminum contents and a h...
NASA Astrophysics Data System (ADS)
Banerjee, Saikat; Bagchi, Biman
2013-10-01
In aqueous binary mixtures, amphiphilic solutes such as dimethylsulfoxide (DMSO), ethanol, tert-butyl alcohol (TBA), etc., are known to form aggregates (or large clusters) at small to intermediate solute concentrations. These aggregates are transient in nature. Although the system remains homogeneous on macroscopic length and time scales, the microheterogeneous aggregation may profoundly affect the properties of the mixture in several distinct ways, particularly if the survival times of the aggregates are longer than density relaxation times of the binary liquid. Here we propose a theoretical scheme to quantify the lifetime and thus the stability of these microheterogeneous clusters, and apply the scheme to calculate the same for water-ethanol, water-DMSO, and water-TBA mixtures. We show that the lifetime of these clusters can range from less than a picosecond (ps) for ethanol clusters to few tens of ps for DMSO and TBA clusters. This helps explaining the absence of a strong composition dependent anomaly in water-ethanol mixtures but the presence of the same in water-DMSO and water-TBA mixtures.
Elzanfaly, Eman S; Hassan, Said A; Salem, Maissa Y; El-Zeany, Badr A
2015-12-05
A comparative study was established between two signal processing techniques showing the theoretical algorithm for each method and making a comparison between them to indicate the advantages and limitations. The methods under study are Numerical Differentiation (ND) and Continuous Wavelet Transform (CWT). These methods were studied as spectrophotometric resolution tools for simultaneous analysis of binary and ternary mixtures. To present the comparison, the two methods were applied for the resolution of Bisoprolol (BIS) and Hydrochlorothiazide (HCT) in their binary mixture and for the analysis of Amlodipine (AML), Aliskiren (ALI) and Hydrochlorothiazide (HCT) as an example for ternary mixtures. By comparing the results in laboratory prepared mixtures, it was proven that CWT technique is more efficient and advantageous in analysis of mixtures with severe overlapped spectra than ND. The CWT was applied for quantitative determination of the drugs in their pharmaceutical formulations and validated according to the ICH guidelines where accuracy, precision, repeatability and robustness were found to be within the acceptable limit. Copyright © 2015 Elsevier B.V. All rights reserved.
Simple views on critical binary liquid mixtures in porous glass
NASA Astrophysics Data System (ADS)
Tremblay, L.; Socol, S. M.; Lacelle, S.
2000-01-01
A simple scenario, different from previous attempts, is proposed to resolve the problem of the slow phase separation dynamics of binary liquid mixtures confined in porous Vycor glass. We demonstrate that simply mutual diffusion, renormalized by critical composition fluctuations and geometrical hindrance of the porous glass, accounts for the slow phase separation kinetics. Capillary invasion studies of porous Vycor glass by the critical isobutyric acid-water mixture, close to the consolute solution temperature, corroborate our analysis.
Less common applications of simulated moving bed chromatography in the pharmaceutical industry.
Huthmann, E; Juza, M
2005-10-21
Simulated moving bed (SMB) chromatography is often perceived in the pharmaceutical industry as chromatographic method for separating binary mixtures, like racemates. However, SMB can also be used for unbalanced separations, i.e. binary mixtures of varying compositions and multi-component mixtures. These less common application modes of isocratic SMB chromatography are exemplified for four different compounds (racemates and diastereomers) and discussed in view of the so-called 'triangle theory' from an industrial perspective.
Ritter, James A; Pan, Huanhua; Balbuena, Perla B
2010-09-07
Classical density functional theory (DFT) was used to predict the adsorption of nine different binary gas mixtures in a heterogeneous BPL activated carbon with a known pore size distribution (PSD) and in single, homogeneous, slit-shaped carbon pores of different sizes. By comparing the heterogeneous results with those obtained from the ideal adsorbed solution theory and with those obtained in the homogeneous carbon, it was determined that adsorption nonideality and adsorption azeotropes are caused by the coupled effects of differences in the molecular size of the components in a gas mixture and only slight differences in the pore sizes of a heterogeneous adsorbent. For many binary gas mixtures, selectivity was found to be a strong function of pore size. As the width of a homogeneous pore increases slightly, the selectivity for two different sized adsorbates may change from being greater than unity to less than unity. This change in selectivity can be accompanied by the formation of an adsorption azeotrope when this same binary mixture is adsorbed in a heterogeneous adsorbent with a PSD, like in BPL activated carbon. These results also showed that the selectivity exhibited by a heterogeneous adsorbent can be dominated by a small number of pores that are very selective toward one of the components in the gas mixture, leading to adsorption azeotrope formation in extreme cases.
Defining an additivity framework for mixture research in inducible whole-cell biosensors
NASA Astrophysics Data System (ADS)
Martin-Betancor, K.; Ritz, C.; Fernández-Piñas, F.; Leganés, F.; Rodea-Palomares, I.
2015-11-01
A novel additivity framework for mixture effect modelling in the context of whole cell inducible biosensors has been mathematically developed and implemented in R. The proposed method is a multivariate extension of the effective dose (EDp) concept. Specifically, the extension accounts for differential maximal effects among analytes and response inhibition beyond the maximum permissive concentrations. This allows a multivariate extension of Loewe additivity, enabling direct application in a biphasic dose-response framework. The proposed additivity definition was validated, and its applicability illustrated by studying the response of the cyanobacterial biosensor Synechococcus elongatus PCC 7942 pBG2120 to binary mixtures of Zn, Cu, Cd, Ag, Co and Hg. The novel method allowed by the first time to model complete dose-response profiles of an inducible whole cell biosensor to mixtures. In addition, the approach also allowed identification and quantification of departures from additivity (interactions) among analytes. The biosensor was found to respond in a near additive way to heavy metal mixtures except when Hg, Co and Ag were present, in which case strong interactions occurred. The method is a useful contribution for the whole cell biosensors discipline and related areas allowing to perform appropriate assessment of mixture effects in non-monotonic dose-response frameworks
Flash-point prediction for binary partially miscible mixtures of flammable solvents.
Liaw, Horng-Jang; Lu, Wen-Hung; Gerbaud, Vincent; Chen, Chan-Cheng
2008-05-30
Flash point is the most important variable used to characterize fire and explosion hazard of liquids. Herein, partially miscible mixtures are presented within the context of liquid-liquid extraction processes. This paper describes development of a model for predicting the flash point of binary partially miscible mixtures of flammable solvents. To confirm the predictive efficacy of the derived flash points, the model was verified by comparing the predicted values with the experimental data for the studied mixtures: methanol+octane; methanol+decane; acetone+decane; methanol+2,2,4-trimethylpentane; and, ethanol+tetradecane. Our results reveal that immiscibility in the two liquid phases should not be ignored in the prediction of flash point. Overall, the predictive results of this proposed model describe the experimental data well. Based on this evidence, therefore, it appears reasonable to suggest potential application for our model in assessment of fire and explosion hazards, and development of inherently safer designs for chemical processes containing binary partially miscible mixtures of flammable solvents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henni, A.; Maham, Y.; Tontiwachwuthikul, P.
2000-04-01
Recent studies done on the absorption and desorption of acid gases (CO{sub 2}, H{sub 2}S) from natural gas, petroleum, and ammonia synthesis streams have shown that aqueous solutions of N-methyldiethanolamine (MDEA) can be used effectively for the selective removal of H{sub 2}S. This paper reports the measured values of the density and viscosity of binary mixtures of N-methyldiethanolamine (MDEA) and triethylene glycol monomethyl ether (TEGMME) at five temperatures in the range 25 C to 70 C over the whole concentration range. The authors also report the density and viscosity of the binary mixture MDEA + ethanol at 40 C. Themore » results are compared with data for aqueous mixtures and other alkanolamines when these are available. The derived excess molar volumes and viscosity deviations were correlated as a function of composition. The Grunberg-Nissan interaction energy constants are also reported.« less
NASA Astrophysics Data System (ADS)
Ziosi, Brunetto Marco; Mapelli, Michela; Branchesi, Marica; Tormen, Giuseppe
2014-07-01
In this paper, we study the formation and dynamical evolution of black hole-black hole (BH-BH) binaries in young star clusters (YSCs), by means of N-body simulations. The simulations include metallicity-dependent recipes for stellar evolution and stellar winds, and have been run for three different metallicities (Z = 0.01, 0.1 and 1 Z⊙). Following recent theoretical models of wind mass-loss and core-collapse supernovae, we assume that the mass of the stellar remnants depends on the metallicity of the progenitor stars. We find that BH-BH binaries form efficiently because of dynamical exchanges: in our simulations, we find about 10 times more BH-BH binaries than double neutron star binaries. The simulated BH-BH binaries form earlier in metal-poor YSCs, which host more massive black holes (BHs) than in metal-rich YSCs. The simulated BH-BH binaries have very large chirp masses (up to 80 M⊙), because the BH mass is assumed to depend on metallicity, and because BHs can grow in mass due to the merger with stars. The simulated BH-BH binaries span a wide range of orbital periods (10-3-107 yr), and only a small fraction of them (0.3 per cent) is expected to merge within a Hubble time. We discuss the estimated merger rate from our simulations and the implications for Advanced VIRGO and LIGO.
Preferential solvation bromophenol blue in water-alcohol binary mixture.
Dangui, Anayana Z; Santos, Vanessa M S; Gomes, Benhur S; de Castilho, Taiane S; Nicolini, Keller P; Nicolini, Jaqueline
2018-05-29
In this study, the perichromic behavior of bromophenol blue (BPB) in various binary solvent mixtures was investigated. The binary mixtures considered were comprised of water and methanol (MeOH), ethanol (EtOH), n-propanol (n-PrOH), isopropanol (iso-PrOH) or t-butanol (t-BuOH). The investigation of a preferential solvation model that considers the addition of small quantities of alcohol to water in the presence of bromophenol blue (BPB) is described in this paper. The data obtained were employed to study the preferential solvation (PS) of the probe. It was observed that with increases in the molar fraction of water the spontaneity of the system decreases. This can be explained by the high solubility of BPB in ethanol, with ∆G>0 at higher wavelengths (region rich in water with violet solution) and ∆G<0 at lower wavelengths (region rich in alcohol with yellow solution). The pK of the binary mixture changed in all solvents and for all ratios, and the higher the water ratio is the lower the pK In will be. In binary mixture, an increase in the hydrogen bond acceptor (HBA) nature of the solvents tested resulted in a bathochromic effect on the absorption band of BPB (Δλ=12nm). All of the data obtained showed a good nonlinear fit with the mathematical model (SD≤6.6×10 -3 ), suggesting that BPB has other potential applications besides its use as a pH indicator. Copyright © 2017. Published by Elsevier B.V.
Detection of cocrystal formation based on binary phase diagrams using thermal analysis.
Yamashita, Hiroyuki; Hirakura, Yutaka; Yuda, Masamichi; Teramura, Toshio; Terada, Katsuhide
2013-01-01
Although a number of studies have reported that cocrystals can form by heating a physical mixture of two components, details surrounding heat-induced cocrystal formation remain unclear. Here, we attempted to clarify the thermal behavior of a physical mixture and cocrystal formation in reference to a binary phase diagram. Physical mixtures prepared using an agate mortar were heated at rates of 2, 5, 10, and 30 °C/min using differential scanning calorimetry (DSC). Some mixtures were further analyzed using X-ray DSC and polarization microscopy. When a physical mixture consisting of two components which was capable of cocrystal formation was heated using DSC, an exothermic peak associated with cocrystal formation was detected immediately after an endothermic peak. In some combinations, several endothermic peaks were detected and associated with metastable eutectic melting, eutectic melting, and cocrystal melting. In contrast, when a physical mixture of two components which is incapable of cocrystal formation was heated using DSC, only a single endothermic peak associated with eutectic melting was detected. These experimental observations demonstrated how the thermal events were attributed to phase transitions occurring in a binary mixture and clarified the relationship between exothermic peaks and cocrystal formation.
Osgood, Ross S; Upham, Brad L; Bushel, Pierre R; Velmurugan, Kalpana; Xiong, Ka-Na; Bauer, Alison K
2017-05-01
Low molecular weight polycyclic aromatic hydrocarbons (LMW PAHs; < 206.3 g/mol) are prevalent and ubiquitous environmental contaminants, presenting a human health concern, and have not been as thoroughly studied as the high MW PAHs. LMW PAHs exert their pulmonary effects, in part, through P38-dependent and -independent mechanisms involving cell-cell communication and the production of pro-inflammatory mediators known to contribute to lung disease. Specifically, we determined the effects of two representative LMW PAHs, 1-methylanthracene (1-MeA) and fluoranthene (Flthn), individually and as a binary PAH mixture on the dysregulation of gap junctional intercellular communication (GJIC) and connexin 43 (Cx43), activation of mitogen activated protein kinases (MAPK), and induction of inflammatory mediators in a mouse non-tumorigenic alveolar type II cell line (C10). Both 1-MeA, Flthn, and the binary PAH mixture of 1-MeA and Flthn dysregulated GJIC in a dose and time-dependent manner, reduced Cx43 protein, and activated the following MAPKs: P38, ERK1/2, and JNK. Inhibition of P38 MAPK prevented PAH-induced dysregulation of GJIC, whereas inhibiting ERK and JNK did not prevent these PAHs from dysregulating GJIC indicating a P38-dependent mechanism. A toxicogenomic approach revealed significant P38-dependent and -independent pathways involved in inflammation, steroid synthesis, metabolism, and oxidative responses. Genes in these pathways were significantly altered by the binary PAH mixture when compared with 1-MeA and Flthn alone suggesting interactive effects. Exposure to the binary PAH mixture induced the production and release of cytokines and metalloproteinases from the C10 cells. Our findings with a binary mixture of PAHs suggest that combinations of LMW PAHs may elicit synergistic or additive inflammatory responses which warrant further investigation and confirmation. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Osgood, Ross S.; Upham, Brad L.; Bushel, Pierre R.; Velmurugan, Kalpana; Xiong, Ka-Na
2017-01-01
Abstract Low molecular weight polycyclic aromatic hydrocarbons (LMW PAHs; < 206.3 g/mol) are prevalent and ubiquitous environmental contaminants, presenting a human health concern, and have not been as thoroughly studied as the high MW PAHs. LMW PAHs exert their pulmonary effects, in part, through P38-dependent and -independent mechanisms involving cell-cell communication and the production of pro-inflammatory mediators known to contribute to lung disease. Specifically, we determined the effects of two representative LMW PAHs, 1-methylanthracene (1-MeA) and fluoranthene (Flthn), individually and as a binary PAH mixture on the dysregulation of gap junctional intercellular communication (GJIC) and connexin 43 (Cx43), activation of mitogen activated protein kinases (MAPK), and induction of inflammatory mediators in a mouse non-tumorigenic alveolar type II cell line (C10). Both 1-MeA, Flthn, and the binary PAH mixture of 1-MeA and Flthn dysregulated GJIC in a dose and time-dependent manner, reduced Cx43 protein, and activated the following MAPKs: P38, ERK1/2, and JNK. Inhibition of P38 MAPK prevented PAH-induced dysregulation of GJIC, whereas inhibiting ERK and JNK did not prevent these PAHs from dysregulating GJIC indicating a P38-dependent mechanism. A toxicogenomic approach revealed significant P38-dependent and -independent pathways involved in inflammation, steroid synthesis, metabolism, and oxidative responses. Genes in these pathways were significantly altered by the binary PAH mixture when compared with 1-MeA and Flthn alone suggesting interactive effects. Exposure to the binary PAH mixture induced the production and release of cytokines and metalloproteinases from the C10 cells. Our findings with a binary mixture of PAHs suggest that combinations of LMW PAHs may elicit synergistic or additive inflammatory responses which warrant further investigation and confirmation. PMID:28329830
Chromonic liquid crystalline nematic phase exhibited in binary mixture of two liquid crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Govindaiah, T. N., E-mail: tngovi.phy@gmail.com; Sreepad, H. R.; Sridhar, K. N.
2015-06-24
A binary mixture of abietic acid and orthophosphoric acid (H{sub 3}PO{sub 4}) exhibits co-existence of biphasic region of Nematic+Isotropic (N+I), lyotropic Nematic (ND) and Smectic-G (SmG) phases. The mixture exhibits N+I, N and SmG phases at different concentrations and at different temperatures. Mixtures with all concentrations of abietic acid exhibit I→N+I→N→SmG phases sequentially when the specimen is cooled from its isotropic melt. These phases have been characterized by using differential scanning calorimetric, X-ray diffraction, and optical texture studies.
NASA Astrophysics Data System (ADS)
Yoshida, Koji; Sato, Toyoto; Unemoto, Atsushi; Matsuo, Motoaki; Ikeshoji, Tamio; Udovic, Terrence J.; Orimo, Shin-ichi
2017-03-01
In the present work, we developed highly sodium-ion conductive Na2B10H10-Na2B12H12 pseudo-binary complex hydride via mechanically ball-milling admixtures of the pure Na2B10H10 and Na2B12H12 components. Both of these components show a monoclinic phase at room temperature, but ball-milled mixtures partially stabilized highly ion-conductive, disordered cubic phases, whose fraction and favored structural symmetry (body-centered cubic or face-centered cubic) depended on the conditions of mechanical ball-milling and molar ratio of the component compounds. First-principles molecular-dynamics simulations demonstrated that the total energy of the closo-borane mixtures and pure materials is quite close, helping to explain the observed stabilization of the mixed compounds. The ionic conductivity of the closo-borane mixtures appeared to be correlated with the fraction of the body-centered-cubic phase, exhibiting a maximum at a molar ratio of Na2B10H10:Na2B12H12 = 1:3. A conductivity as high as log(σ/S cm-1) = -3.5 was observed for the above ratio at 303 K, being approximately 2-3 orders of magnitude higher than that of either pure material. A bulk-type all-solid-state sodium-ion battery with a closo-borane-mixture electrolyte, sodium-metal negative-electrode, and TiS2 positive-electrode demonstrated a high specific capacity, close to the theoretical value of NaTiS2 formation and a stable discharge/charge cycling for at least eleven cycles, with a high discharge capacity retention ratio above 91% from the second cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senesac, Larry R; Datskos, Panos G; Sepaniak, Michael J
2006-01-01
In the present work, we have performed analyte species and concentration identification using an array of ten differentially functionalized microcantilevers coupled with a back-propagation artificial neural network pattern recognition algorithm. The array consists of ten nanostructured silicon microcantilevers functionalized by polymeric and gas chromatography phases and macrocyclic receptors as spatially dense, differentially responding sensing layers for identification and quantitation of individual analyte(s) and their binary mixtures. The array response (i.e. cantilever bending) to analyte vapor was measured by an optical readout scheme and the responses were recorded for a selection of individual analytes as well as several binary mixtures. Anmore » artificial neural network (ANN) was designed and trained to recognize not only the individual analytes and binary mixtures, but also to determine the concentration of individual components in a mixture. To the best of our knowledge, ANNs have not been applied to microcantilever array responses previously to determine concentrations of individual analytes. The trained ANN correctly identified the eleven test analyte(s) as individual components, most with probabilities greater than 97%, whereas it did not misidentify an unknown (untrained) analyte. Demonstrated unique aspects of this work include an ability to measure binary mixtures and provide both qualitative (identification) and quantitative (concentration) information with array-ANN-based sensor methodologies.« less
De Mezquia, D Alonso; Bou-Ali, M Mounir; Larrañaga, M; Madariaga, J A; Santamaría, C
2012-03-08
In this work we have measured the molecular diffusion coefficient of the n-alkane binary series nC(i)-nC(6), nC(i)-nC(10), and nC(i)-nC(12) at 298 K and 1 atm and a mass fraction of 0.5 by using the so-called sliding symmetric tubes technique. The results show that the diffusion coefficient at this concentration is proportional to the inverse viscosity of the mixture. In addition, we have also measured the diffusion coefficient of the systems nC(12)-nC(6), nC(12)-nC(7), and nC(12)-nC(8) as a function of concentration. From the data obtained, it is shown that the diffusion coefficient of the n-alkane binary mixtures at any concentration can be calculated from the molecular weight of the components and the dynamic viscosity of the corresponding mixture at 50% mass fraction.
Composition measurements of binary mixture droplets by rainbow refractometry.
Wilms, J; Weigand, B
2007-04-10
So far, refractive index measurements by rainbow refractometry have been used to determine the temperature of single droplets and ensembles of droplets. Rainbow refractometry is, for the first time, to the best of our knowledge, applied to measure composition histories of evaporating, binary mixture droplets. An evaluation method is presented that makes use of Airy theory and the simultaneous size measurement by Mie scattering imaging. The method further includes an empirical correction function for a certain diameter and refractive index range. The measurement uncertainty was investigated by numerical simulations with Lorenz-Mie theory. For the experiments, an optical levitation setup was used allowing for long measurement periods. Temperature measurements of single-component droplets at different temperature levels are shown to demonstrate the accuracy of rainbow refractometry. Measurements of size and composition histories of binary mixture droplets are presented for two different mixtures. Experimental results show good agreement with numerical results using a rapid-mixing model.
Yehia, Ali M
2013-05-15
New, simple, specific, accurate and precise spectrophotometric technique utilizing ratio spectra is developed for simultaneous determination of two different binary mixtures. The developed ratio H-point standard addition method (RHPSAM) was managed successfully to resolve the spectral overlap in itopride hydrochloride (ITO) and pantoprazole sodium (PAN) binary mixture, as well as, mosapride citrate (MOS) and PAN binary mixture. The theoretical background and advantages of the newly proposed method are presented. The calibration curves are linear over the concentration range of 5-60 μg/mL, 5-40 μg/mL and 4-24 μg/mL for ITO, MOS and PAN, respectively. Specificity of the method was investigated and relative standard deviations were less than 1.5. The accuracy, precision and repeatability were also investigated for the proposed method according to ICH guidelines. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yehia, Ali M.
2013-05-01
New, simple, specific, accurate and precise spectrophotometric technique utilizing ratio spectra is developed for simultaneous determination of two different binary mixtures. The developed ratio H-point standard addition method (RHPSAM) was managed successfully to resolve the spectral overlap in itopride hydrochloride (ITO) and pantoprazole sodium (PAN) binary mixture, as well as, mosapride citrate (MOS) and PAN binary mixture. The theoretical background and advantages of the newly proposed method are presented. The calibration curves are linear over the concentration range of 5-60 μg/mL, 5-40 μg/mL and 4-24 μg/mL for ITO, MOS and PAN, respectively. Specificity of the method was investigated and relative standard deviations were less than 1.5. The accuracy, precision and repeatability were also investigated for the proposed method according to ICH guidelines.
Guo, Dongmei; Wang, Yanhua; Qian, Yongzhong; Chen, Chen; Jiao, Bining; Cai, Leiming; Wang, Qiang
2017-01-01
It remains a daunting challenge to determine ecotoxicological risks of exposure to mixtures of endocrine disrupting chemicals (EDCs) in environmental toxicology. In the present study, we investigated acute and endocrine disruptive toxicities of cypermethrin (CPM), malathion (MAL), prochloraz (PRO) and their binary mixtures of MAL + CPM and MAL + PRO to the early life stages of zebrafish. In the acute lethal toxicity test, three pesticides exhibited different levels of toxicity to zebrafish larvae, and the order of toxicity was as follows: CPM > PRO > MAL. The binary mixture of MAL + CPM displayed a synergistic effect on zebrafish larvae after exposure for 24, 48, 72 and 96 h. However, binary mixture of MAL + PRO showed an antagonistic effect. To evaluate the estrogenic effect, the expression of genes in the hypothalamic-pituitary-gonadal axis was assessed after zebrafish embryos were exposed to CPM, MAL, PRO and their binary mixtures from blastula stage (1 h post-fertilization, 1 hpf) to 14 dpf (14 d post-fertilization). Our data indicated that the transcription patterns of many key genes (vtg1, vtg2, era, erβ1, erβ2, cyp19a1a and cyp19a1b) were affected in hatched zebrafish after exposure to CPM, MAL and PRO. Moreover, following exposure to binary mixtures of 1000 μg/L MAL +4 μg/L CPM and 1000 μg/L MAL +900 μg/L PRO, the gene expressions were significantly changed compared with the individual pesticides. Our data provided a better understanding of bidirectional interactions of toxic response induced by these pesticides. Copyright © 2016 Elsevier Ltd. All rights reserved.
Synergism and Combinatorial Coding for Binary Odor Mixture Perception in Drosophila
Chakraborty, Tuhin Subhra; Siddiqi, Obaid
2016-01-01
Most odors in the natural environment are mixtures of several compounds. Olfactory receptors housed in the olfactory sensory neurons detect these odors and transmit the information to the brain, leading to decision-making. But whether the olfactory system detects the ingredients of a mixture separately or treats mixtures as different entities is not well understood. Using Drosophila melanogaster as a model system, we have demonstrated that fruit flies perceive binary odor mixtures in a manner that is heavily dependent on both the proportion and the degree of dilution of the components, suggesting a combinatorial coding at the peripheral level. This coding strategy appears to be receptor specific and is independent of interneuronal interactions. PMID:27588303
Harnessing Active Fins to Segregate Nanoparticles from Binary Mixtures
NASA Astrophysics Data System (ADS)
Liu, Ya; Kuksenok, Olga; Bhattacharya, Amitabh; Ma, Yongting; He, Ximin; Aizenberg, Joanna; Balazs, Anna
2014-03-01
One of the challenges in creating high-performance polymeric nanocomposites for optoelectronic applications, such as bilayer solar cells, is establishing effective and facile routes for controlling the properties of interface and segregation of binary particles with hole conductor particles and electron conductor particles. We model nanocomposites that encompass binary particles and binary blends in a microchannel. An array of oscillating microfins is immersed in the fluid and tethered to the floor of the microchannel; the fluid containing mixture of nanoparticles is driven along the channel by an imposed pressure gradient. During the oscillations, the fins with the specific chemical wetting reach the upper fluid when they are upright and are entirely within the lower stream when they are tilted. We introduce specific interaction between the fins and particulates in the solution. Fins can selectively ``catch'' target nanoparticles within the upper fluid stream and then release them into the lower stream. We focus on different modes of fins motion to optimize selective segregation of particles within binary mixture. Our approach provides an effective means of tailoring the properties and ultimate performance of the composites.
ERIC Educational Resources Information Center
De Lorenzi Pezzolo, Alessandra
2013-01-01
Unlike most spectroscopic calibrations that are based on the study of well-separated features ascribable to the different components, this laboratory experience is especially designed to exploit spectral features that are nearly overlapping. The investigated system consists of a binary mixture of two commonly occurring minerals, calcite and…
López de Haro, Mariano; Tejero, Carlos F; Santos, Andrés
2013-04-28
The problem of demixing in a binary fluid mixture of highly asymmetric additive hard spheres is revisited. A comparison is presented between the results derived previously using truncated virial expansions for three finite size ratios with those that one obtains with the same approach in the extreme case in which one of the components consists of point particles. Since this latter system is known not to exhibit fluid-fluid segregation, the similarity observed for the behavior of the critical constants arising in the truncated series in all instances, while not being conclusive, may cast serious doubts as to the actual existence of a demixing fluid-fluid transition in disparate-sized binary additive hard-sphere mixtures.
Microwave dielectric study of polar liquids at 298 K
NASA Astrophysics Data System (ADS)
Maharolkar, Aruna P.; Murugkar, A.; Khirade, P. W.
2018-05-01
Present paper deals with study of microwave dielectric properties like dielectric constant, viscosity, density and refractive index for the binary mixtures of Dimethylsulphoxide (DMSO) and Methanol over the entire concentration range were measured at 298K. The experimental data further used to determine the excess properties viz. excess static dielectric constant, excess molar volume, excess viscosity& derived properties viz. molar refraction&Bruggman factor. The values of excess properties further fitted with Redlich-Kister (R-K Fit) equation to calculate the binary coefficients and standard deviation. The resulting excess parameters are used to indicate the presence of intermolecular interactions and strength of intermolecular interactions between the molecules in the binary mixtures. Excess parameters indicate structure breaking factor in the mixture predominates in the system.
Thermo-acoustical molecular interaction study in binary mixtures of glycerol and ethylene glycol
NASA Astrophysics Data System (ADS)
Kaur, Kirandeep; Juglan, K. C.; Kumar, Harsh
2017-07-01
Ultrasonic velocity, density and viscosity are measured over the entire composition range for binary liquid mixtures of glycerol (CH2OH-CHOH-CH2OH) and ethylene glycol (HOCH2CH2OH) at different temperatures and constant frequency of 2MHz using ultrasonic interferometer, specific gravity bottle and viscometer respectively. Measured experimental values are used to obtained various acoustical parameters such as adiabatic compressibility, acoustic impedance, intermolecular free length, relaxation time, ultrasonic attenuation, effective molar weight, free volume, available volume, molar volume, Wada's constant, Rao's constant, Vander Waal's constant, internal pressure, Gibb's free energy and enthalpy. The variation in acoustical parameters are interpreted in terms of molecular interactions between the components of molecules of binary liquid mixtures.
Effect of stirring on the safety of flammable liquid mixtures.
Liaw, Horng-Jang; Gerbaud, Vincent; Chen, Chan-Cheng; Shu, Chi-Min
2010-05-15
Flash point is the most important variable employed to characterize fire and explosion hazard of liquids. The models developed for predicting the flash point of partially miscible mixtures in the literature to date are all based on the assumption of liquid-liquid equilibrium. In real-world environments, however, the liquid-liquid equilibrium assumption does not always hold, such as the collection or accumulation of waste solvents without stirring, where complete stirring for a period of time is usually used to ensure the liquid phases being in equilibrium. This study investigated the effect of stirring on the flash-point behavior of binary partially miscible mixtures. Two series of partially miscible binary mixtures were employed to elucidate the effect of stirring. The first series was aqueous-organic mixtures, including water+1-butanol, water+2-butanol, water+isobutanol, water+1-pentanol, and water+octane; the second series was the mixtures of two flammable solvents, which included methanol+decane, methanol+2,2,4-trimethylpentane, and methanol+octane. Results reveal that for binary aqueous-organic solutions the flash-point values of unstirred mixtures were located between those of the completely stirred mixtures and those of the flammable component. Therefore, risk assessment could be done based on the flammable component flash-point value. However, for the assurance of safety, it is suggested to completely stir those mixtures before handling to reduce the risk. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Selective Encaging of N2O in N2O-N2 Binary Gas Hydrates via Hydrate-Based Gas Separation.
Yang, Youjeong; Shin, Donghoon; Choi, Seunghyun; Woo, Yesol; Lee, Jong-Won; Kim, Dongseon; Shin, Hee-Young; Cha, Minjun; Yoon, Ji-Ho
2017-03-21
The crystal structure and guest inclusion behaviors of nitrous oxide-nitrogen (N 2 O-N 2 ) binary gas hydrates formed from N 2 O/N 2 gas mixtures are determined through spectroscopic analysis. Powder X-ray diffraction results indicate that the crystal structure of all the N 2 O-N 2 binary gas hydrates is identified as the structure I (sI) hydrate. Raman spectra for the N 2 O-N 2 binary gas hydrate formed from N 2 O/N 2 (80/20, 60/40, 40/60 mol %) gas mixtures reveal that N 2 O molecules occupy both large and small cages of the sI hydrate. In contrast, there is a single Raman band of N 2 O molecules for the N 2 O-N 2 binary gas hydrate formed from the N 2 O/N 2 (20/80 mol %) gas mixture, indicating that N 2 O molecules are trapped in only large cages of the sI hydrate. From temperature-dependent Raman spectra and the Predictive Soave-Redlich-Kwong (PSRK) model calculation, we confirm the self-preservation of N 2 O-N 2 binary gas hydrates in the temperature range of 210-270 K. Both the experimental measurements and the PSRK model calculations demonstrate the preferential occupation of N 2 O molecules rather than N 2 molecules in the hydrate cages, leading to a possible process for separating N 2 O from gas mixtures via hydrate formation. The phase equilibrium conditions, pseudo-pressure-composition (P-x) diagram, and gas storage capacity of N 2 O-N 2 binary gas hydrates are discussed in detail.
Rahimi, Mahshid; Singh, Jayant K; Müller-Plathe, Florian
2016-02-07
The adsorption and separation behavior of SO2-CO2, SO2-N2 and CO2-N2 binary mixtures in bundles of aligned double-walled carbon nanotubes is investigated using the grand-canonical Monte Carlo (GCMC) method and ideal adsorbed solution theory. Simulations were performed at 303 K with nanotubes of 3 nm inner diameter and various intertube distances. The results showed that the packing with an intertube distance d = 0 has the highest selectivity for SO2-N2 and CO2-N2 binary mixtures. For the SO2-CO2 case, the optimum intertube distance for having the maximum selectivity depends on the applied pressure, so that at p < 0.8 bar d = 0 shows the highest selectivity and at 0.8 bar < p < 2.5 bar, the highest selectivity belongs to d = 0.5 nm. Ideal adsorbed solution theory cannot predict the adsorption of the binary systems containing SO2, especially when d = 0. As the intertube distance is increased, the ideal adsorbed solution theory based predictions become closer to those of GCMC simulations. Only in the case of CO2-N2, ideal adsorbed solution theory is everywhere in good agreement with simulations. In a ternary mixture of all three gases, the behavior of SO2 and CO2 remains similar to that in a SO2-CO2 binary mixture because of the weak interaction between N2 molecules and CNTs.
Taste Mixture Interactions: Suppression, Additivity, and the Predominance of Sweetness
Green, Barry G.; Lim, Juyun; Osterhoff, Floor; Blacher, Karen; Nachtigal, Danielle
2010-01-01
Most of what is known about taste interactions has come from studies of binary mixtures. The primary goal of this study was to determine whether asymmetries in suppression between stimuli in binary mixtures predict the perception of tastes in more complex mixtures (e.g., ternary, quaternary mixtures). Also of interest was the longstanding question of whether overall taste intensity derives from the sum of the tastes perceived within a mixture (perceptual additivity) or from the sum of the perceived intensities of the individual stimuli (stimulus additivity). Using the general Labeled Magnitude Scale together with a sip-and-spit procedure, we asked subjects to rate overall taste intensity and the sweetness, sourness, saltiness and bitterness of approximately equi- intense sucrose, NaCl, citric acid and QSO4 stimuli presented alone and in all possible binary, ternary and quaternary mixtures. The results showed a consistent pattern of mixture suppression in which sucrose sweetness tended to be both the least suppressed quality and the strongest suppressor of other tastes. The overall intensity of mixtures was found to be predicted best by perceptual additivity. A second experiment that was designed to rule out potentially confounding effects of the order of taste ratings and the temperature of taste solutions replicated the main findings of the first experiment. Overall, the results imply that mixture suppression favors perception of sweet carbohydrates in foods at the expense of other potentially harmful ingredients, such as high levels of sodium (saltiness) and potential poisons or spoilage (bitterness, sourness). PMID:20800076
Separation Potential for Multicomponent Mixtures: State-of-the Art of the Problem
NASA Astrophysics Data System (ADS)
Sulaberidze, G. A.; Borisevich, V. D.; Smirnov, A. Yu.
2017-03-01
Various approaches used in introducing a separation potential (value function) for multicomponent mixtures have been analyzed. It has been shown that all known potentials do not satisfy the Dirac-Peierls axioms for a binary mixture of uranium isotopes, which makes their practical application difficult. This is mainly due to the impossibility of constructing a "standard" cascade, whose role in the case of separation of binary mixtures is played by the ideal cascade. As a result, the only universal search method for optimal parameters of the separation cascade is their numerical optimization by the criterion of the minimum number of separation elements in it.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvarez, E.; Rendo, R.; Sanjurjo, B.
1998-11-01
The surface tension of aqueous solutions of N-methyldiethanolamine and diethanolamine + N-methyldiethanolamine, monoethanolamine + N-methyldiethanolamine and 2-amino-2-methyl-1-propanol + N-methyldiethanolamine was measured at temperatures from 25 C to 50 C. For binary mixtures the concentration range was 0--50 mass % N-methyldiethanolamine, and for the tertiary mixtures the concentration range for each amine was 0--50 mass %. The experimental values were correlated with temperature and mole fraction. The maximum deviation in both cases was always less than 0.5%.
NASA Astrophysics Data System (ADS)
Dymond, J. H.; Awan, M. A.; Glen, N. F.; Isdale, J. D.
1991-05-01
A two-coil self-centering falling-body viscometer has been used to measure viscosity coefficients for acetonitrile and three binary mixtures of toluene+ acetonitrile at 25, 50, 75, and 100°C and pressures up to 500 MPa. The results for acetonitrile can be interpreted by an approach based on hard-sphere theory, with a roughness factor of 1.46. The binary-mixture data are well represented by the Grunberg and Nissan equation with a mixing parameter which is pressure and temperature dependent but composition independent.
NASA Astrophysics Data System (ADS)
Oswal, S. L.; Dave, J. P.
1992-11-01
Viscosity measurements are reported for mixtures of ethyl ethanoate, ethyl propionate, ethyl butyrate, ethyl-2-bromopropionate, ethyl-3-bromopropionate, ethyl-2-bromobutyrate, and ethyl-4-bromobutyrate with n-hexane at 303.15 K. The viscosity data have been correlated with equations of Grunberg and Nissan, of McAllister, and of Auslaender. Furthermore, excess Gibbs energies of activation ΔG * E of viscous flow have been calculated with Eyring's theory of absolute reaction rates and values of ΔG * E for the present binary mixtures have been explained in terms of the dipole-dipole interaction in alkanoates and the intramolecular Br...O interaction in bromoalkanoates.
Viscosity minima in binary mixtures of ionic liquids + molecular solvents.
Tariq, M; Shimizu, K; Esperança, J M S S; Canongia Lopes, J N; Rebelo, L P N
2015-05-28
The viscosity (η) of four binary mixtures (ionic liquids plus molecular solvents, ILs+MSs) was measured in the 283.15 < T/K < 363.15 temperature range. Different IL/MS combinations were selected in such a way that the corresponding η(T) functions exhibit crossover temperatures at which both pure components present identical viscosity values. Consequently, most of the obtained mixture isotherms, η(x), exhibit clear viscosity minima in the studied T-x range. The results are interpreted using auxiliary molecular dynamics (MD) simulation data in order to correlate the observed η(T,x) trends with the interactions in each mixture, including the balance between electrostatic forces and hydrogen bonding.
Refractive Index Mixing Rules and Excess Infrared Spectra of Binary Mixtures.
Baranović, Goran
2017-05-01
Three refractive index mixing rules, Arago-Biot, Lorentz-Lorenz, and Newton, are generalized to complex refractive index and used to define infrared (IR) spectra of the corresponding ideal liquid mixtures. Using the measured optical constants n and k for acetonitrile-water mixtures (Bertie and Lan, 1997) the excess absorbances, A E = A obs - A ideal , are calculated. Relying upon the well-established properties of the acetonitrile-water mixtures, the interpretation of the excess absorbances is established that is essentially based on the understanding of a liquid as a set of oscillators. The set depends on the composition of the mixture and comprises oscillators as present in the pure components and oscillators perturbed by hydrogen bonding between unlike molecules. The main features of an excess spectrum can be established assuming chemical equilibria among various oscillators. The most informative parts of the spectrum of a yet unstudied binary system can well be observed and even qualitatively explained from the excess absorbance provided: first, a detailed vibrational study of the components has been done; and, second, it is well understood what actually is subtracted from A obs . As examples, the binary mixtures of ethynylbenzene and tetrachloroethylene and 2-ethynylpyridine and tetrachloroethylene are considered.
USDA-ARS?s Scientific Manuscript database
A common problem when poultry litter is applied to pastures in the southeastern USA is the buildup of soil P because of the difference in N-P-K ratio of the litter and plant requirements. This 2-yr study tested the theory that if the N requirement of a tall fescue-bermudagrass binary mixture is only...
A globally accurate theory for a class of binary mixture models
NASA Astrophysics Data System (ADS)
Dickman, Adriana G.; Stell, G.
The self-consistent Ornstein-Zernike approximation results for the 3D Ising model are used to obtain phase diagrams for binary mixtures described by decorated models, yielding the plait point, binodals, and closed-loop coexistence curves for the models proposed by Widom, Clark, Neece, and Wheeler. The results are in good agreement with series expansions and experiments.
On hydrodynamic phase field models for binary fluid mixtures
NASA Astrophysics Data System (ADS)
Yang, Xiaogang; Gong, Yuezheng; Li, Jun; Zhao, Jia; Wang, Qi
2018-05-01
Two classes of thermodynamically consistent hydrodynamic phase field models have been developed for binary fluid mixtures of incompressible viscous fluids of possibly different densities and viscosities. One is quasi-incompressible, while the other is incompressible. For the same binary fluid mixture of two incompressible viscous fluid components, which one is more appropriate? To answer this question, we conduct a comparative study in this paper. First, we visit their derivation, conservation and energy dissipation properties and show that the quasi-incompressible model conserves both mass and linear momentum, while the incompressible one does not. We then show that the quasi-incompressible model is sensitive to the density deviation of the fluid components, while the incompressible model is not in a linear stability analysis. Second, we conduct a numerical investigation on coarsening or coalescent dynamics of protuberances using the two models. We find that they can predict quite different transient dynamics depending on the initial conditions and the density difference although they predict essentially the same quasi-steady results in some cases. This study thus cast a doubt on the applicability of the incompressible model to describe dynamics of binary mixtures of two incompressible viscous fluids especially when the two fluid components have a large density deviation.
Mukundan, Vineetha; Yin, Jun; Joseph, Pharrah; Luo, Jin; Shan, Shiyao; Zakharov, Dmitri N; Zhong, Chuan-Jian; Malis, Oana
2014-01-01
Nanoscale alloying and phase transformations in physical mixtures of Pd and Cu ultrafine nanoparticles are investigated in real time with in situ synchrotron-based x-ray diffraction complemented by ex situ high-resolution transmission electron microscopy. The combination of metal–support interaction and reactive/non-reactive environment was found to determine the thermal evolution and ultimate structure of this binary system. At 300 °C, the nanoparticles supported on silica and carbon black intermix to form a chemically ordered CsCl-type (B2) alloy phase. The B2 phase transforms into a disordered fcc alloy at higher temperature (> 450 °C). The alloy nanoparticles supported on silica and carbon black are homogeneous in volume, but evidence was found of Pd surface enrichment. In sharp contrast, when supported on alumina, the two metals segregated at 300 °C to produce almost pure fcc Cu and Pd phases. Upon further annealing of the mixture on alumina above 600 °C, the two metals interdiffused, forming two distinct disordered alloys of compositions 30% and 90% Pd. The annealing atmosphere also plays a major role in the structural evolution of these bimetallic nanoparticles. The nanoparticles annealed in forming gas are larger than the nanoparticles annealing in helium due to reduction of the surface oxides that promotes coalescence and sintering. PMID:27877663
NASA Astrophysics Data System (ADS)
Pabalan, Roberto T.; Pitzer, Kenneth S.
1987-09-01
Mineral solubilities in binary and ternary electrolyte mixtures in the system Na-K-Mg-Cl-SO 4-OH-H 2O are calculated to high temperatures using available thermodynamic data for solids and for aqueous electrolyte solutions. Activity and osmotic coefficients are derived from the ion-interaction model of Pitzer (1973, 1979) and co-workers, the parameters of which are evaluated from experimentally determined solution properties or from solubility data in binary and ternary mixtures. Excellent to good agreement with experimental solubilities for binary and ternary mixtures indicate that the model can be successfully used to predict mineral-solution equilibria to high temperatures. Although there are currently no theoretical forms for the temperature dependencies of the various model parameters, the solubility data in ternary mixtures can be adequately represented by constant values of the mixing term θ ij and values of ψ ijk which are either constant or have a simple temperature dependence. Since no additional parameters are needed to describe the thermodynamic properties of more complex electrolyte mixtures, the calculations can be extended to equilibrium studies relevant to natural systems. Examples of predicted solubilities are given for the quaternary system NaCl-KCl-MgCl 2-H 2O.
Modeling CO2 mass transfer in amine mixtures: PZ-AMP and PZ-MDEA.
Puxty, Graeme; Rowland, Robert
2011-03-15
The most common method of carbon dioxide (CO(2)) capture is the absorption of CO(2) into a falling thin film of an aqueous amine solution. Modeling of mass transfer during CO(2) absorption is an important way to gain insight and understanding about the underlying processes that are occurring. In this work a new software tool has been used to model CO(2) absorption into aqueous piperazine (PZ) and binary mixtures of PZ with 2-amino-2-methyl-1-propanol (AMP) or methyldiethanolamine (MDEA). The tool solves partial differential and simultaneous equations describing diffusion and chemical reaction automatically derived from reactions written using chemical notation. It has been demonstrated that by using reactions that are chemically plausible the mass transfer in binary mixtures can be fully described by combining the chemical reactions and their associated parameters determined for single amines. The observed enhanced mass transfer in binary mixtures can be explained through chemical interactions occurring in the mixture without need to resort to using additional reactions or unusual transport phenomena such as the "shuttle mechanism".
Microlayered flow structure around an acoustically levitated droplet under a phase-change process.
Hasegawa, Koji; Abe, Yutaka; Goda, Atsushi
2016-01-01
The acoustic levitation method (ALM) has found extensive applications in the fields of materials science, analytical chemistry, and biomedicine. This paper describes an experimental investigation of a levitated droplet in a 19.4-kHz single-axis acoustic levitator. We used water, ethanol, water/ethanol mixture, and hexane as test samples to investigate the effect of saturated vapor pressure on the flow field and evaporation process using a high-speed camera. In the case of ethanol, water/ethanol mixtures with initial ethanol fractions of 50 and 70 wt%, and hexane droplets, microlayered toroidal vortexes are generated in the vicinity of the droplet interface. Experimental results indicate the presence of two stages in the evaporation process of ethanol and binary mixture droplets for ethanol content >10%. The internal and external flow fields of the acoustically levitated droplet of pure and binary mixtures are clearly observed. The binary mixture of the levitated droplet shows the interaction between the configurations of the internal and external flow fields of the droplet and the concentration of the volatile fluid. Our findings can contribute to the further development of existing theoretical prediction.
The Phase Behavior of γ-Oryzanol and β-Sitosterol in Edible Oil.
Sawalha, Hassan; Venema, Paul; Bot, Arjen; Flöter, Eckhard; Adel, Ruud den; van der Linden, Erik
The phase behavior of binary mixtures of γ-oryzanol and β-sitosterol and ternary mixtures of γ-oryzanol and β-sitosterol in sunflower oil was studied. Binary mixtures of γ-oryzanol and β-sitosterol show double-eutectic behavior. Complex phase behavior with two intermediate mixed solid phases was derived from differential scanning calorimetry (DSC) and small-angle X-ray scattering (SAXS) data, in which a compound that consists of γ-oryzanol and β-sitosterol molecules at a specific ratio can be formed. SAXS shows that the organization of γ-oryzanol and β-sitosterol in the mixed phases is different from the structure of tubules in ternary systems. Ternary mixtures including sunflower oil do not show a sudden structural transition from the compound to a tubule, but a gradual transition occurs as γ-oryzanol and β-sitosterol are diluted in edible oil. The same behavior is observed when melting binary mixtures of γ-oryzanol and β-sitosterol at higher temperatures. This indicates the feasibility of having an organogelling agent in dynamic exchange between solid and liquid phase, which is an essential feature of triglyceride networks.
Li, Song; Feng, Guang; Fulvio, Pasquale F; Hillesheim, Patrick C; Liao, Chen; Dai, Sheng; Cummings, Peter T
2012-09-06
An equimolar mixture of 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([C3mpy][Tf2N]), 1-methyl-1-butylpiperidinium bis(trifluoromethylsulfonyl)imide ([C4mpip][Tf2N]) was investigated by classic molecular dynamics (MD) simulation. Differential scanning calorimetry (DSC) measurements verified that the binary mixture exhibited lower glass transition temperature than either of the pure room-temperature ionic liquids (RTILs). Moreover, the binary mixture gave rise to higher conductivity than the neat RTILs at lower temperature range. In order to study its capacitive performance in supercapacitors, simulations were performed of the mixture, and the neat RTILs used as electrolytes near an onion-like carbon (OLC) electrode at varying temperatures. The differential capacitance exhibited independence of the electrical potential applied for three electrolytes, which is in agreement with previous work on OLC electrodes in a different RTILs. Positive temperature dependence of the differential capacitance was observed, and it was dominated by the electrical double layer (EDL) thickness, which is for the first time substantiated in MD simulation.
Shear viscosity of binary mixtures: The Gay-Berne potential
NASA Astrophysics Data System (ADS)
Khordad, R.
2012-05-01
The Gay-Berne (GB) potential model is an interesting and useful model to study the real systems. Using the potential model, we intend to examine the thermodynamical properties of some anisotropic binary mixtures in two different phases, liquid and gas. For this purpose, we apply the integral equation method and solve numerically the Percus-Yevick (PY) integral equation. Then, we obtain the expansion coefficients of correlation functions to calculate the thermodynamical properties. Finally, we compare our results with the available experimental data [e.g., HFC-125 + propane, R-125/143a, methanol + toluene, benzene + methanol, cyclohexane + ethanol, benzene + ethanol, carbon tetrachloride + ethyl acetate, and methanol + ethanol]. The results show that the GB potential model is capable for predicting the thermodynamical properties of binary mixtures with acceptable accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rohitash, E-mail: dootrohit1976@gmail.com; Department of Physics & Center for Solar Energy, Indian Institute of Technology Jodhpur, Rajasthan, India 342011, +91-291-2449045; Kumar, Ravindra
2016-05-06
Thermal properties of Acetamide (AM) – Benzoic acid (BA) and Benzoic acid (BA) – Phthalimide (PM) binary eutectic systems are theoretically calculated using thermodynamic principles. We found that the binary systems of AM-BA at 67.6 : 32.4 molar ratio, BA-PM at 89.7 : 10.3 molar ratio form eutectic mixtures with melting temperatures ~ 54.5 °C and 114.3 °C respectively. Calculated latent heat of fusion for these eutectic mixtures are 191 kJ/kg and 146.5 kJ/kg respectively. These melting temperatures and heat of fusions of these eutectic mixtures make them suitable for thermal energy storage applications in solar water heating and solarmore » cooking systems.« less
NASA Astrophysics Data System (ADS)
Thanuja, B.; Kanakam, C.; Nithya, G.
2013-12-01
Density ( ρ) and ultrasonic velocity ( U), for binary mixtures of 2-chloro-4'-methoxy benzoin with ethanol, chloroform, acetonitrile, benzene and 1,4-dioxane of different compositions have been measured at 298 K and explanation of solute solvent interactions and effect of polarity of the solvent on type of interactions are presented in this paper. From the above data, adiabatic compressibility ( β), intermolecular free length ( L f ) and relative association ( R A ) have been calculated. Other useful parameters such as excess density, excess velocity, excess intermolecular freelength and excess adiabatic compressibility have also been calculated. These parameters have been used to study the nature and extent of intermolecular interactions between component molecules in present binary mixtures.
NASA Astrophysics Data System (ADS)
Yurtseven, H.; Dogan, E. Kilit
2018-06-01
Thermodynamic properties of the cholesteryl myristate (CM) and its binary mixture CM/PCPB ( p-pentylphenyl-2-chloro-4( p-pentylbenzoyl)-benzoate) are studied at the concentrations of x PCPB = 0.052 and 0.219 as a function of temperature near the cholosteric/smectic A transition. By analyzing the observed molar volume from the literature, the temperature dependences of the thermal expansion, isothermal compressibility and the difference in the specific heat are calculated and, the Pippard relations are established for those compounds close to the cholesteric/smectic A transition. Predictions of the thermodynamic quantities and the Pippard relations can be examined by the experimental measurements of the CM and its binary mixture of CM/PCPB close to the cholesteric/smectic A transition.
Uniform phases in fluids of hard isosceles triangles: One-component fluid and binary mixtures
NASA Astrophysics Data System (ADS)
Martínez-Ratón, Yuri; Díaz-De Armas, Ariel; Velasco, Enrique
2018-05-01
We formulate the scaled particle theory for a general mixture of hard isosceles triangles and calculate different phase diagrams for the one-component fluid and for certain binary mixtures. The fluid of hard triangles exhibits a complex phase behavior: (i) the presence of a triatic phase with sixfold symmetry, (ii) the isotropic-uniaxial nematic transition is of first order for certain ranges of aspect ratios, and (iii) the one-component system exhibits nematic-nematic transitions ending in critical points. We found the triatic phase to be stable not only for equilateral triangles but also for triangles of similar aspect ratios. We focus the study of binary mixtures on the case of symmetric mixtures: equal particle areas with aspect ratios (κi) symmetric with respect to the equilateral one, κ1κ2=3 . For these mixtures we found, aside from first-order isotropic-nematic and nematic-nematic transitions (the latter ending in a critical point): (i) a region of triatic phase stability even for mixtures made of particles that do not form this phase at the one-component limit, and (ii) the presence of a Landau point at which two triatic-nematic first-order transitions and a nematic-nematic demixing transition coalesce. This phase behavior is analogous to that of a symmetric three-dimensional mixture of rods and plates.
Wide binaries in Tycho-Gaia II: metallicities, abundances and prospects for chemical tagging
NASA Astrophysics Data System (ADS)
Andrews, Jeff J.; Chanamé, Julio; Agüeros, Marcel A.
2018-02-01
From our recent catalogue based on the first Gaia data release (TGAS), we select wide binaries in which both stars have been observed by the Radial Velocity Experiment (RAVE) or the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). Using RAVE and LAMOST metallicities and RAVE Mg, Al, Si, Ti and Fe abundances, we find that the differences in the metallicities and elemental abundances of components of wide binaries are consistent with being due to observational uncertainties, in agreement with previous results for smaller and more restricted samples. The metallicity and elemental abundance consistency between wide binary components presented in this work confirms their common origin and bolsters the status of wide binaries as 'mini-open clusters'. Furthermore, this is evident that wide binaries are effectively co-eval and co-chemical, supporting their use for, e.g. constraining age-activity-rotation relations, the initial-final mass relation for white dwarfs and M-dwarf metallicity indicators. Additionally, we demonstrate that the common proper motion, common parallax pairs in TGAS with the most extreme separations (s ≳ 0.1 pc) typically have inconsistent metallicities, radial velocities or both and are therefore likely to be predominantly comprised of random alignments of unassociated stars with similar astrometry, in agreement with our previous results. Finally, we propose that wide binaries form an ideal data set with which we can test chemical tagging as a method to identify stars of common origin, particularly because the stars in wide binaries span a wide range of metallicities, much wider than that spanned by nearby open clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Q.; Kaewsarn, P.
1999-06-01
Much work on the biosorption of heavy metals by low-cost, natural biomass has been on the uptake of single metals. In practice, wastewaters often contain multiple heavy metal ions. In this paper the binary adsorption of copper(II) and cadmium(II) by a pretreated biomass of the marine alga Durvillaea potatorum from aqueous solutions was studied. The results showed that the uptake capacities for each heavy metal of the binary system were lower when compared with the single metal biosorption for copper and cadmium, respectively, but the total capacities for the binary system were similar to those obtained for single metal biosorption.more » The uptake capacities for copper and cadmium increased as the equilibrium pH increased and reached a plateau at a pH around 5.0. The uptake process was relatively fast, with 90% of the adsorption completed within 10 minutes for copper and 30 minutes for cadmium, and equilibrium reached after about 60 minutes of stirring. The biosorption isotherms of binary systems were not significantly affected by equilibrium temperature. The presence of light metal ions in solution also did not affect adsorption significantly. The binary adsorption was successfully predicted by the extended Langmuir model, using parameters and capacities obtained from single component systems.« less
Kirkwood–Buff integrals for ideal solutions
Ploetz, Elizabeth A.; Bentenitis, Nikolaos; Smith, Paul E.
2010-01-01
The Kirkwood–Buff (KB) theory of solutions is a rigorous theory of solution mixtures which relates the molecular distributions between the solution components to the thermodynamic properties of the mixture. Ideal solutions represent a useful reference for understanding the properties of real solutions. Here, we derive expressions for the KB integrals, the central components of KB theory, in ideal solutions of any number of components corresponding to the three main concentration scales. The results are illustrated by use of molecular dynamics simulations for two binary solutions mixtures, benzene with toluene, and methanethiol with dimethylsulfide, which closely approach ideal behavior, and a binary mixture of benzene and methanol which is nonideal. Simulations of a quaternary mixture containing benzene, toluene, methanethiol, and dimethylsulfide suggest this system displays ideal behavior and that ideal behavior is not limited to mixtures containing a small number of components. PMID:20441282
Silo discharge of binary granular mixtures.
Madrid, M; Asencio, K; Maza, D
2017-08-01
We present numerical and experimental results on the mass flow rate during the discharge of three-dimensional silos filled with a bidisperse mixture of grains of different sizes. We analyzed the influence of the ratio between coarse and fine particles on the profile of volume fraction and velocity across the orifice. By using numerical simulations, we have shown that the velocity profile has the same shape as that in the monodisperse case and is insensitive to the composition of the mixture. On the contrary, the volume fraction profile is strongly affected by the composition of the mixture. Assuming that an effective particle size can be introduced to characterize the mixture, we have shown that previous expression for the mass flow rate of monodisperse particles can be used for binary mixtures. A comparison with Beverloo's correlation is also presented.
Hoogerstraete, Tom Vander; Onghena, Bieke; Binnemans, Koen
2013-01-01
Several fundamental extraction parameters such as the kinetics and loading were studied for a new type of metal solvent extraction system with ionic liquids. The binary mixture of the ionic liquid betainium bis(trifluoromethylsulfonyl)imide and water shows thermomorphic behavior with an upper critical solution temperature (UCST), which can be used to avoid the slower mass transfer due to the generally higher viscosity of ionic liquids. A less viscous homogeneous phase and mixing on a molecular scale are obtained when the mixture is heated up above 55 °C. The influence of the temperature, the heating and cooling times, were studied for the extraction of neodymium(III) with betaine. A plausible and equal extraction mechanism is proposed in bis(trifluoromethylsulfonyl)imide, nitrate, and chloride media. After stripping of the metals from the ionic liquid phase, a higher recovery of the ionic liquid was obtained by salting-out of the ionic liquid fraction lost by dissolution in the aqueous phase. The change of the upper critical solution temperature by the addition of HCl or betaine was investigated. In addition, the viscosity was measured below and above the UCST as a function of the temperature. PMID:24169434
Coal liquefaction process using pretreatment with a binary solvent mixture
Miller, R.N.
1986-10-14
An improved process for thermal solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprises pretreating the coal with a binary mixture of an aromatic hydrocarbon and an aliphatic alcohol at a temperature below 300 C before the hydroliquefaction step. This treatment generally increases both conversion of coal and yields of oil. 1 fig.
Coal liquefaction process using pretreatment with a binary solvent mixture
Miller, Robert N.
1986-01-01
An improved process for thermal solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprises pretreating the coal with a binary mixture of an aromatic hydrocarbon and an aliphatic alcohol at a temperature below 300.degree. C. before the hydroliquefaction step. This treatment generally increases both conversion of coal and yields of oil.
Composition measurements of binary mixture droplets by rainbow refractometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilms, J.; Weigand, B
2007-04-10
So far, refractive index measurements by rainbow refractometry have been used to determine the temperature of single droplets and ensembles of droplets. Rainbow refractometry is, for the first time, to the best of our knowledge, applied to measure composition histories of evaporating, binary mixture droplets. An evaluation method is presented that makes use of Airy theory and the simultaneous size measurement by Mie scattering imaging. The method further includes an empirical correction function for a certain diameter and refractive index range. The measurement uncertainty was investigated by numerical simulations with Lorenz-Mie theory. For the experiments, an optical levitation setup wasmore » used allowing for long measurement periods. Temperature measurements of single-component droplets at different temperature levels are shown to demonstrate the accuracy of rainbow refractometry. Measurements of size and composition histories of binary mixture droplets are presented for two different mixtures. Experimental results show good agreement with numerical results using a rapid-mixing model.« less
Li, Dan; Chen, Hongxing; Bi, Ran; Xie, Haibo; Zhou, Yu; Luo, Yongju; Xie, Lingtian
2018-01-01
In recent years, many new chemicals have been synthesized from biomass with an aim for sustainable development by replacing the existing toxic chemicals with those having similar properties and applications. However, the effects of these new chemicals on aquatic organisms remain relatively unknown. In this study, the effects of bisphenol A (BPA) and lignin-derived bisphenol (LD-BP, a BPA analogue) on Daphnia magna were evaluated. The animals were exposed to BPA, LD-BP, and their binary mixture at concentrations (2-2000 μg L -1 ) for 21 days. The expression of various biochemical markers and the effects on growth, molting, and reproduction parameters were examined. The results showed that the weight of daphnids significantly increased after exposure to BPA, LD-BP, and the binary mixture relative to that of the control animals. The activity of superoxide dismutase was significantly inhibited by LD-BP and the binary mixture. At the highest exposure concentration of the binary mixture, the activities of acetylcholinesterase and α-glucosidase, fecundity, and the number of neonates per brood were significantly altered. Our results showed that the effects of BPA and LD-BP on D. magna were generally comparable, except for the effect on the weight at their environmentally relevant concentrations (e.g., <20 μg L -1 ). The effects on the reproduction of D. magna could be mainly due to the shift in energy redistribution under BPA and LD-BP exposures. Our results implied that exposures to both BPA and LD-BP could potentially cause deleterious effects at the population level in D. magna. Copyright © 2017 Elsevier Ltd. All rights reserved.
Method for retorting oil shale
Shang, Jer-Yu; Lui, A.P.
1985-08-16
The recovery of oil from oil shale is provided in a fluidized bed by using a fluidizing medium of a binary mixture of carbon dioxide and 5 steam. The mixture with a steam concentration in the range of about 20 to 75 volume percent steam provides an increase in oil yield over that achievable by using a fluidizing gas of carbon dioxide or steam alone when the mixture contains higher steam concentrations. The operating parameters for the fluidized bed retorted are essentially the same as those utilized with other gaseous fluidizing mediums with the significant gain being in the oil yield recovered which is attributable solely to the use of the binary mixture of carbon dioxide and steam. 2 figs.
NASA Astrophysics Data System (ADS)
Das Mahanta, Debasish; Rana, Debkumar; Patra, Animesh; Mukherjee, Biswaroop; Mitra, Rajib Kumar
2018-05-01
Water is often found in (micro)-heterogeneous environments and therefore it is necessary to understand their H-bonded network structure in such altered environments. We explore the structure and dynamics of water in its binary mixture with relatively less polar small biocompatible amphiphilic molecule 1,2-Dimethoxyethane (DME) by a combined spectroscopic and molecular dynamics (MD) simulation study. Picosecond (ps) resolved fluorescence spectroscopy using coumarin 500 as the fluorophore establishes a non-monotonic behaviour of the mixture. Simulation studies also explore the various possible H-bond formations between water and DME. The relative abundance of such different water species manifests the heterogeneity in the mixture.
Rangreez, Tauseef Ahmad; Alhogbi, Basma G.; Naushad, Mu.
2017-01-01
In this study, graphene Th(IV) phosphate was prepared by sol–gel precipitation method. The ion-exchange behavior of this cation-exchanger was studied by investigating properties like ion-exchange capacity for various metal ions, the effect of eluent concentration, elution behavior, and thermal effect on ion-exchange capacity (IEC). Several physicochemical properties as Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) study, thermal studies, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies were also carried out. The material possessed an IEC of 1.56 meq·dry·g−1 of the exchanger and was found to be nano-composite. The selectivity studies showed that the material is selective towards Pb(II) ions. The selectivity of this cation-exchanger was demonstrated in the binary separation of Pb(II) ions from mixture with other metal ions. The recovery was found to be both quantitative and reproducible. PMID:28737717
High-resolution spectroscopy of extremely metal-poor stars from SDSS/Segue. II. Binary fraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoki, Wako; Suda, Takuma; Beers, Timothy C.
2015-02-01
The fraction of binary systems in various stellar populations of the Galaxy and the distribution of their orbital parameters are important but not well-determined factors in studies of star formation, stellar evolution, and Galactic chemical evolution. While observational studies have been carried out for a large sample of nearby stars, including some metal-poor Population II stars, almost no constraints on the binary nature for extremely metal-poor (EMP; [Fe/H] <−3.0) stars have yet been obtained. Here we investigate the fraction of double-lined spectroscopic binaries and carbon-enhanced metal-poor (CEMP) stars, many of which could have formed as pairs of low-mass and intermediate-massmore » stars, to estimate the lower limit of the fraction of binary systems having short periods. The estimate is based on a sample of very metal-poor stars selected from the Sloan Digital Sky Survey and observed at high spectral resolution in a previous study by Aoki et al. That survey reported 3 double-lined spectroscopic binaries and 11 CEMP stars, which we consider along with a sample of EMP stars from the literature compiled in the SAGA database. We have conducted measurements of the velocity components for stacked absorption features of different spectral lines for each double-lined spectroscopic binary. Our estimate indicates that the fraction of binary stars having orbital periods shorter than 1000 days is at least 10%, and possibly as high as 20% if the majority of CEMP stars are formed in such short-period binaries. This result suggests that the period distribution of EMP binary systems is biased toward short periods, unless the binary fraction of low-mass EMP stars is significantly higher than that of other nearby stars.« less
Viscosity and thermal conductivity of moderately dense gas mixtures.
NASA Technical Reports Server (NTRS)
Wakeham, W. A.; Kestin, J.; Mason, E. A.; Sandler, S. I.
1972-01-01
Derivation of a simple, semitheoretical expression for the initial density dependence of the viscosity and thermal conductivity of gaseous mixtures in terms of the appropriate properties of the pure components and of their interaction quantities. The derivation is based on Enskog's theory of dense gases and yields an equation in which the composition dependence of the linear factor in the density expansion is explicit. The interaction quantities are directly related to those of the mixture extrapolated to zero density and to a universal function valid for all gases. The reliability of the formulation is assessed with respect to the viscosity of several binary mixtures. It is found that the calculated viscosities of binary mixtures agree with the experimental data with a precision which is comparable to that of the most precise measurements.
NASA Astrophysics Data System (ADS)
Zaeva, M. A.; Tsirlin, A. M.; Sukin, I. A.
2018-05-01
The range of realizable rates of flows in a binary-rectification column in which heat is supplied into the boiler and is removed from the dephlegmator was investigated. It is shown that this range is determined by two characteristic parameters related to the kinetics of heat and mass transfer in the column and the composition of the mixture subjected to separation. The limiting capabilities of a cascade of two binary-rectification columns for the separation of a ternary mixture in it were considered. The conditions for an optimum sequence of separation of a mixture in this cascade and for a consistent arrangement of its heat and mass exchange surfaces and the relation between the ultimate production rate of the cascade and the total heat losses in it were determined.
NASA Astrophysics Data System (ADS)
Zaeva, M. A.; Tsirlin, A. M.; Sukin, I. A.
2018-03-01
The range of realizable rates of flows in a binary-rectification column in which heat is supplied into the boiler and is removed from the dephlegmator was investigated. It is shown that this range is determined by two characteristic parameters related to the kinetics of heat and mass transfer in the column and the composition of the mixture subjected to separation. The limiting capabilities of a cascade of two binary-rectification columns for the separation of a ternary mixture in it were considered. The conditions for an optimum sequence of separation of a mixture in this cascade and for a consistent arrangement of its heat and mass exchange surfaces and the relation between the ultimate production rate of the cascade and the total heat losses in it were determined.
Mixing and demixing of binary mixtures of polar chiral active particles.
Ai, Bao-Quan; Shao, Zhi-Gang; Zhong, Wei-Rong
2018-05-17
We study a binary mixture of polar chiral (counterclockwise or clockwise) active particles in a two-dimensional box with periodic boundary conditions. Besides the excluded volume interactions between particles, the particles are also subjected to the polar velocity alignment. From the extensive Brownian dynamics simulations, it is found that the particle configuration (mixing or demixing) is determined by the competition between the chirality difference and the polar velocity alignment. When the chirality difference competes with the polar velocity alignment, the clockwise particles aggregate in one cluster and the counterclockwise particles aggregate in the other cluster; thus, the particles are demixed and can be separated. However, when the chirality difference or the polar velocity alignment is dominant, the particles are mixed. Our findings could be used for the experimental pursuit of the separation of binary mixtures of chiral active particles.
Thanuja, B; Nithya, G; Kanagam, Charles C
2012-11-01
Density (ρ), ultrasonic velocity (U), for the binary mixtures of 4-methoxy benzoin (4MB) with ethanol, chloroform, acetonitrile, benzene, and di-oxane were measured at 298K. The solute-solvent interactions and the effect of the polarity of the solvent on the type of intermolecular interactions are discussed here. From the above data, adiabatic compressibility (β), intermolecular free length (L(f)), acoustic impedance (Z), apparent molar volume (Ø), relative association (RA) have been calculated. Other useful parameters such as excess density, excess velocity and excess adiabatic compressibility have also been calculated. These parameters were used to study the nature and extent of intermolecular interactions between component molecules in the binary mixtures. Copyright © 2012 Elsevier B.V. All rights reserved.
Catalyst and electrode research for phosphoric acid fuel cells
NASA Technical Reports Server (NTRS)
Antoine, A. C.; King, R. B.
1987-01-01
An account is given of the development status of phosphoric acid fuel cells' high performance catalyst and electrode materials. Binary alloys have been identified which outperform the baseline platinum catalyst; it has also become apparent that pressurized operation is required to reach the desired efficiencies, calling in turn for the use of graphitized carbon blacks in the role of catalyst supports. Efforts to improve cell performance and reduce catalyst costs have led to the investigation of a class of organometallic cathode catalysts represented by the tetraazaannulenes, and a mixed catalyst which is a mixture of carbons catalyzed with an organometallic and a noble metal.
Multisubstrate biodegradation kinetics of naphthalene, phenanthrene, and pyrene mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guha, S.; Peters, C.A.; Jaffe, P.R.
Biodegradation kinetics of naphthalene, phenanthrene and pyrene were studied in sole-substrate systems, and in binary and ternary mixtures to examine substrate interactions. The experiments were conducted in aerobic batch aqueous systems inoculated with a mixed culture that had been isolated from soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Monod kinetic parameters and yield coefficients for the individual parameters and yield coefficients for the individual compounds were estimated from substrate depletion and CO{sub 2} evolution rate data in sole-substrate experiments. In all three binary mixture experiments, biodegradation kinetics were comparable to the sole-substrate kinetics. In the ternary mixture, biodegradation of naphthalenemore » was inhibited and the biodegradation rates of phenanthrene and pyrene were enhanced. A multisubstrate form of the Monod kinetic model was found to adequately predict substrate interactions in the binary and ternary mixtures using only the parameters derived from sole-substrate experiments. Numerical simulations of biomass growth kinetics explain the observed range of behaviors in PAH mixtures. In general, the biodegradation rates of the more degradable and abundant compounds are reduced due to competitive inhibition, but enhanced biodegradation of the more recalcitrant PAHs occurs due to simultaneous biomass growth on multiple substrates. In PAH-contaminated environments, substrate interactions may be very large due to additive effects from the large number of compounds present.« less
On Thermocapillary Mechanism of Spatial Separation of Metal Melts
NASA Astrophysics Data System (ADS)
Demin, V. A.; Mizev, A. I.; Petukhov, M. I.
2018-02-01
Theoretical research has been devoted to the study of binary metal melts behavior in a thin capillary. Earlier it has been found experimentally that unusually significant and quick redistribution of melts components takes place along capillary after the cooling. Numerical simulation of concentration-induced convection has been carried out to explain these experimental data. Two-component melt of both liquid metals filling vertical thin capillary with non-uniform temperature distribution on the boundaries is considered. It is assumed that the condition of absolute non-wetting is valid on the sidewalls. Because of this effect there is a free surface on vertical boundaries, where thermocapillary force is appeared due to the external longitudinal temperature gradient. It makes to move liquid elements at a big distance, compared with axial size of capillary. Effects of adsorption-desorption on the surface, thermal and concentration-capillary forces, convective motion in a volume and diffusion generate the large-scale circulation. This process includes the admixture carrying-out on the surface in the more hot higher part of the channel, its following transfer down along the boundary due to the thermocapillary force and its return in the volume over the desorption in the lower part of capillary. Intensity of motion and processes of adsorption-desorption on the free boundary have the decisive influence upon the formation of concentration fields and speed of components redistribution. Thus, one of the possible mechanisms of longitudinal division on components of liquid binary mixtures in thin channels has been demonstrated.
NASA Astrophysics Data System (ADS)
Sharma, Ravi; Thakur, R. C.; Sani, Balwinder; Kumar, Harsh
2017-12-01
Using density and sound velocity partial molar volumes, partial molar adiabatic compressibilities, partial molar expansibilities and structure of L-ascorbic acid have been determined in water and aqueous mixtures of D-glucose and D-fructose at different concentrations and temperatures. Masson's equation was used to analyze the measured data. The obtained parameters have been interpreted in terms of solute-solute and solute-solvent interactions. It is found that the L-ascorbic acid acts as structure breaker in water as well in binary studied mixtures.
Hansen, Lone Rykær; Roslev, Peter
2016-10-01
Glyphosate (N-(phosphonomethyl)glycine) is the active ingredient in a range of popular broad-spectrum herbicide formulations. Glyphosate is a chelating agent that can form stable complexes with divalent metal ions including Cu(II). Little is known about the bioavailability and ecotoxicity of glyphosate-Cu(II) complexes to aquatic organisms. In this study, we used video tracking and behavior analysis to investigate sublethal effects of binary mixtures of glyphosate and Cu(II) to juvenile D. magna. Behavioral responses were quantified for individual D. magna after 24h and 48h exposure to glyphosate and glyhosate-Cu(II) mixtures. Sublethal concentrations resulted in decreases in swimming velocity, acceleration speed, and distance moved whereas inactive time of D. magna increased. Distance moved and inactive time were the most responsive parameters to glyphosate and glyphosate-Cu(II) exposure. On a molar basis, glyphosate-Cu(II) complexes appeared more toxic to D. magna than glyphosate alone. The 48h EC50 for glyphosate and glyphosate-Cu(II) determined from swimming distance were 75.2μM and 8.4μM, respectively. In comparison, traditional visual observation of mobility resulted in 48h EC50 values of 52.8μM and 25.5μM for glyphosate and glyphosate-Cu(II), respectively. The behavioral responses indicated that exposure of D. magna to mixtures of glyphosate and Cu(II) attenuated acute metal toxicity but increased apparent glyphosate toxicity due to complexation with Cu(II). The study suggests that glyphosate is a likely mediator of aquatic metal toxicity, and that video tracking provides an opportunity for quantitative studies of sublethal effects of pesticide complexes. Copyright © 2016 Elsevier B.V. All rights reserved.
Modeling of the Structure of Disordered Metallic Alloys and Its Transformation Under Thermal Forcing
NASA Astrophysics Data System (ADS)
Cress, Ryan Paul
The morphology of disordered binary metallic alloys is investigated. The structure of disordered binary metallic alloys is modeled as a randomly close packed (RCP) assembly of atoms. It was observed through a 2-D binary hard sphere experiment that RCP structure can be modeled as a mixture of nano-crystallites and glassy matter. We define the degree of crystallinity as the fraction of atoms contained in nano-crystallites in an RCP medium. Nano-crystallites by size in a crystallite size distribution were determined experimentally to define the morphology of the RCP medium. Both the degree of crystallinity and the crystallite size distribution have been found to be determined by the composition of a given binary mixture. A 2-D Monte Carlo simulation was developed in order to replicate the RCP structure observed in the experiment which is then extended to cases of arbitrary composition. Crystallites were assumed to be spherical with isotropic cross sections. The number of atoms in an individual crystallite in 2-D is simply transformed into the number of atoms in 3-D; we then obtain the crystallite size distribution in 3-D. This experiment accounts for the contribution from the repulsive core of the inter-atomic potential. The attractive part of the potential is recovered by constructing spherical nano-crystallites of a given radius from a crystalline specimen of each given alloy. A structural model of a disordered alloy is thus obtained. With the basic structure of the RCP medium defined, the response to heating would be in the form of changes to the crystallite size distribution. This was first investigated in a hard sphere mechanical oven experiment. The experimental setup consists of a 2-D cell which is driven by two independent stepper motors. The motors drive a binary RCP bed of spheres on a slightly tilted plane according to a chaotic algorithmm. The motors are driven at four different speed settings. The RCP medium was analyzed using a sequence of digital images taken of the beds. The bursts of images provide a Gaussian distribution of particle speeds in x and y directions thus giving rise to the notion of "temperature." This temperature scales with the motor speed settings. The measured average degree of crystallinity is found to decrease as the effective temperature was raised suggesting that nano-crystallites dissociate under thermal forcing. The evolution of a specimen's structure is calculated rigorously by means of the law of mass action formalism. A system of thermal dissociation reaction equations is written out for the set of nano-crystallites according to the 3-D crystallite size distribution. The equilibrium treatment is justified because the energy differences between metastable RCP structures fall within kT. Thermal dissociation of one surface atom at a time is assumed because the energy cost in dissociation of a surface atom on a nano-crystallite is significantly less than that of a multi atom cluster. The full set of reaction equations cover all possible dissociation steps, which may amount to several thousand for a disordered alloy specimen. The primary determining factor in each of these dissociation equations is the dissociation potential or the amount of attractive energy needed to remove a surface atom on a nano-crystallite of a given size. The attractive potential between atoms is calculated using a Lennard-Jones potential between a pair of atoms for which quantum chemistry calculations exist in the literature. All interactions impinged on the surface atom by all other atoms in a crystallite are summed. As the nano-crystallites dissociate due to heating, the structure of the alloy changes, and this leads to modifications of alloy's transport properties. The model is found to predict the melting temperature of various disordered binary alloys as well as refractory metals in good agreement with known data. The structure model for disordered binary alloys gives an excellent characterization of the alloy morphology. It therefore provides fruitful avenues for making predictions about how thermophysical properties of disordered binary alloys change as the alloy temperature is raised by heating.
Jo, Wonjun; Bak, June Ha; Yoo, Byoungseung
2018-03-20
The steady and dynamic shear rheological properties of binary gum mixtures with xanthan gum (XG) and galactomannans (guar gum (GG) and locust bean gum (LBG)) were examined in a concentrated solution (1% w/w) as a function of gum mixing ratio (100/0, 75/25, 50/50, and 0/100). All samples, except for individual GG and LBG, showed high shear-thinning behavior with yield stress. The values of flow (K, η a,50 , and σ oc ) and dynamic rheological parameters (G' and G″) of XG-GG and XG-LBG mixtures were significantly higher compared to XG alone, indicating that the flow and viscoelastic properties of binary gum mixtures were greatly affected by the addition of GG and LBG. The maximum elasticity synergistic interaction for XG-galactomannans mixtures was observed at a mixing ratio of 50/50, showing a greatly positive deviation between measured and calculated values of G'. These results suggest that the synergistic effect of GG and LBG addition on rheological properties of XG appears to be due to intermolecular interaction occurred between XG and galactomannans, as confirmed by dynamic rheological properties. Copyright © 2018 Elsevier B.V. All rights reserved.
Microlayered flow structure around an acoustically levitated droplet under a phase-change process
Hasegawa, Koji; Abe, Yutaka; Goda, Atsushi
2016-01-01
The acoustic levitation method (ALM) has found extensive applications in the fields of materials science, analytical chemistry, and biomedicine. This paper describes an experimental investigation of a levitated droplet in a 19.4-kHz single-axis acoustic levitator. We used water, ethanol, water/ethanol mixture, and hexane as test samples to investigate the effect of saturated vapor pressure on the flow field and evaporation process using a high-speed camera. In the case of ethanol, water/ethanol mixtures with initial ethanol fractions of 50 and 70 wt%, and hexane droplets, microlayered toroidal vortexes are generated in the vicinity of the droplet interface. Experimental results indicate the presence of two stages in the evaporation process of ethanol and binary mixture droplets for ethanol content >10%. The internal and external flow fields of the acoustically levitated droplet of pure and binary mixtures are clearly observed. The binary mixture of the levitated droplet shows the interaction between the configurations of the internal and external flow fields of the droplet and the concentration of the volatile fluid. Our findings can contribute to the further development of existing theoretical prediction. PMID:28725723
Finotello, Alexia; Bara, Jason E; Narayan, Suguna; Camper, Dean; Noble, Richard D
2008-02-28
This study focuses on the solubility behaviors of CO2, CH4, and N2 gases in binary mixtures of imidazolium-based room-temperature ionic liquids (RTILs) using 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][Tf2N]) and 1-ethyl-3-methylimidazolium tetrafluoroborate ([C2mim][BF4]) at 40 degrees C and low pressures (approximately 1 atm). The mixtures tested were 0, 25, 50, 75, 90, 95, and 100 mol % [C2mim][BF4] in [C2mim][Tf2N]. Results show that regular solution theory (RST) can be used to describe the gas solubility and selectivity behaviors in RTIL mixtures using an average mixture solubility parameter or an average measured mixture molar volume. Interestingly, the solubility selectivity, defined as the ratio of gas mole fractions in the RTIL mixture, of CO2 with N2 or CH4 in pure [C2mim][BF4] can be enhanced by adding 5 mol % [C2mim][Tf2N].
Pervaporative stripping of acetone, butanol and ethanol to improve ABE fermentation.
Jitesh, K; Pangarkar, V G; Niranjan, K
2000-01-01
Acetone-butanol-ethanol fermentation by anaerobic bacterium C. acetobutylicum is a potential source for feedstock chemicals. The problem of product induced inhibition makes this fermentation economically infeasible. Pervaporation is studied as an effective separation technique to remove the toxic inhibitory products. Various membranes like Styrene Butadiene Rubber (SBR), Ethylene Propylene Diene Rubber (EPDM), plain Poly Dimethyl Siloxane (PDMS) and silicalite filled PDMS were studied for the removal of acetone, butanol and ethanol, from binary aqueous mixtures and from a quaternary mixture. It was found that the overall performance of PDMS filled with 15% w/w of silicalite was the best for removal of butanol in binary mixture study. SBR performance was best for the quaternary mixture studied.
NASA Astrophysics Data System (ADS)
Dymond, J. H.; Awan, M. A.; Glen, N. F.; Isdale, J. D.
1991-03-01
Viscosity coefficients measured using a two-coil self-centering falling-body viscometer are reported for toluene and three binary mixtures of toluene + n-hexane at 25, 50, 75, and 100°C at pressures up to 500 MPa. The data for a given composition at different temperatures and pressures are correlated very satisfactorily by a plot of reduced viscosity η * versus log V', where V'= V· V 0(TR)/V0(T) and V 0 represents a characteristic volume. The binary mixture data are well represented by the Grunberg and Nissan equation with a mixing parameter which is pressure dependent but composition and temperature independent.
Dielectric properties of binary mixtures of methyl iso butyl ketone and amino silicone oil
NASA Astrophysics Data System (ADS)
Shah, K. N.; Rana, V. A.; Trivedi, C. M.; Vankar, H. P.
2017-05-01
Dielectric permittivity ɛ*(ω) = ɛ' - jɛ″ of the binary mixtures of the methyl iso butyl ketone and amino silicone oil in the frequency range 100 Hz to 2 MHz were measured using precision LCR meter at 305.15 K. Relative complex permittivity spectra in the frequency range 100 Hz to 2 MHz, of the mixture solutions of varying concentrations is reported. Determined values of the permittivity at optical frequency of all the samples are also reported. The dielectric parameters are used to gain information about the effect of concentration variation of components of the mixtures on the dielectric properties. It also provides the information about electrode polarization phenomena taking place under the low frequency A.C. electric field.
Das, Dipak Kumar; Patra, Animesh; Mitra, Rajib Kumar
2016-09-01
We report the changes in the hydration dynamics around a model protein hen egg white lysozyme (HEWL) in water-dimethyl sulfoxide (DMSO) binary mixture using THz time domain spectroscopy (TTDS) technique. DMSO molecules get preferentially solvated at the protein surface, as indicated by circular dichroism (CD) and Fourier transform infrared (FTIR) study in the mid-infrared region, resulting in a conformational change in the protein, which consequently modifies the associated hydration dynamics. As a control we also study the collective hydration dynamics of water-DMSO binary mixture and it is found that it follows a non-ideal behavior owing to the formation of DMSO-water clusters. It is observed that the cooperative dynamics of water at the protein surface does follow the DMSO-mediated conformational modulation of the protein. Copyright © 2016 Elsevier B.V. All rights reserved.
Upadhyay, Ganesh; Gomti Devi, Th
2014-12-10
The interacting nature of dimethyl sulfoxide (DMSO) in binary mixtures has been carried out on CH and CSC stretching modes of vibration using chloroform (CLF), chloroform-d (CLFd), acetonitrile (ACN) and acetonitrile-d3 (ACNd) solvents. Peak frequencies of both the stretching modes show blue shift with the increase in solvent concentration. Variation of Raman bandwidth with the solvent concentration was discussed using different mechanisms. Ab initio calculation for geometry optimization and vibrational wavenumber calculation have been performed on monomer and dimer structures of DMSO to explain the experimentally observed Raman spectra. Theoretically calculated values are found in good agreement with the experimental results. Vibrational and reorientational relaxation times have been studied corresponding to solvent concentrations to elucidate the interacting mechanisms of binary mixtures. Copyright © 2014 Elsevier B.V. All rights reserved.
Binary Phase Behavior of Saturated-Unsaturated Mixed-Acid Triacylglycerols-A Review.
Zhang, Lu; Ueno, Satoru; Sato, Kiyotaka
2018-06-01
Most natural lipids contain a complex mixture of individual triacylglycerols (TAGs). An in-depth knowledge of the mixing behavior of TAGs is necessary for the rational design and engineering of food materials. The binary phase diagram of TAGs is a simplified model that can be explored to help foster an understanding of the phase behavior of complex fats and oils. This article reviews recent research on the binary phase behavior of saturated-unsaturated mixed-acid TAGs, with special emphasis on the stearicunsaturated and palmitic-unsaturated diacid TAGs. The occurrence of polymorphic forms and mutual solubility of TAG mixtures are strongly related to the glycerol conformation of the saturated-oleic diacid TAGs; it appears to be most influenced by the chain-length mismatch in saturated-elaidic diacid TAGs. In addition, the polymorphism of pure enantiomers and racemic mixture of chiral TAGs was also reviewed, while the effect of chirality on mixing behavior was discussed.
The toxicity of binary mixture of Cu (II) ion and phenols on Tetrahymena thermophila.
Luo, Hui; Li, Xi; Fang, Tingting; Liu, Peng; Zhang, Chaocan; Xie, Hao; Sun, Enjie
2015-03-01
The toxicity of binary mixture of Cu(2+) and phenols (phenol; o-nitrophenol; m-nitrophenol; p-nitrophenol) was evaluated using Tetrahymena thermophila as the model organism, by microcalorimetry, optical density, field emission scanning electron microscope (FESEM) and attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR). The growth curves and metabolic properties of Tetrahymena exposed to Cu(2+) and phenols were monitored by microcalorimetry. Binary mixture toxicity changed with the concentration of Cu(2+)/phenols and the order of toxicity was Cu(2+)/phenol
Saad, Ahmed S; Attia, Ali K; Alaraki, Manal S; Elzanfaly, Eman S
2015-11-05
Five different spectrophotometric methods were applied for simultaneous determination of fenbendazole and rafoxanide in their binary mixture; namely first derivative, derivative ratio, ratio difference, dual wavelength and H-point standard addition spectrophotometric methods. Different factors affecting each of the applied spectrophotometric methods were studied and the selectivity of the applied methods was compared. The applied methods were validated as per the ICH guidelines and good accuracy; specificity and precision were proven within the concentration range of 5-50 μg/mL for both drugs. Statistical analysis using one-way ANOVA proved no significant differences among the proposed methods for the determination of the two drugs. The proposed methods successfully determined both drugs in laboratory prepared and commercially available binary mixtures, and were found applicable for the routine analysis in quality control laboratories. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shah, N. S.; Vankar, H. P.; Rana, V. A.
2017-05-01
The complex relative dielectric function ɛ*(ω)=ɛ'-jɛ″ of the binary mixture of 2-chloroaniline(2-CA) and methanol (MeOH) were measured using precision LCR meter in the frequency range of 10 KHz to 2 MHz The measurements were carried out at eight different temperatures and five different concentrations of 2-CA and MeOH. The loss tangent peaks were observed in the studied frequency range for all the binary mixtures. From the loss tangent peaks electrode polarization relaxation time were evaluated. In the plot of real part of complex permittivity against frequency, at different temperatures for 2-CA (54.54%) + MeOH (45.45%) and 2-CA (27.27%) + MeOH (72.72%)and 100% MeOH systems permittivity inversion effect was observed.
Nithya, G; Thanuja, B; Kanagam, Charles C
2013-01-01
Density (ρ), ultrasonic velocity (u), adiabatic compressibility (β), apparent molar volume (Ø), acoustic impedance (Z), intermolecular free length (L(f)), relative association (RA) of binary mixtures of 2'-chloro-4-methoxy-3-nitro benzil (abbreviated as 2CBe) in ethanol, acetonitrile, chloroform, dioxane and benzene were measured at different concentrations at 298 K. Several useful parameters such as excess density, excess ultrasonic velocity, excess adiabatic compressibility, excess apparent molar volume, excess acoustic impedance and excess intermolecular free length have been calculated. These parameters are used to explain the nature of intermolecular interactions taking place in the binary mixture. The above study is useful in understanding the solute--solvent interactions occurring in different concentrations at room temperature. Copyright © 2012 Elsevier B.V. All rights reserved.
Jović, Ozren; Smolić, Tomislav; Primožič, Ines; Hrenar, Tomica
2016-04-19
The aim of this study was to investigate the feasibility of FTIR-ATR spectroscopy coupled with the multivariate numerical methodology for qualitative and quantitative analysis of binary and ternary edible oil mixtures. Four pure oils (extra virgin olive oil, high oleic sunflower oil, rapeseed oil, and sunflower oil), as well as their 54 binary and 108 ternary mixtures, were analyzed using FTIR-ATR spectroscopy in combination with principal component and discriminant analysis, partial least-squares, and principal component regression. It was found that the composition of all 166 samples can be excellently represented using only the first three principal components describing 98.29% of total variance in the selected spectral range (3035-2989, 1170-1140, 1120-1100, 1093-1047, and 930-890 cm(-1)). Factor scores in 3D space spanned by these three principal components form a tetrahedral-like arrangement: pure oils being at the vertices, binary mixtures at the edges, and ternary mixtures on the faces of a tetrahedron. To confirm the validity of results, we applied several cross-validation methods. Quantitative analysis was performed by minimization of root-mean-square error of cross-validation values regarding the spectral range, derivative order, and choice of method (partial least-squares or principal component regression), which resulted in excellent predictions for test sets (R(2) > 0.99 in all cases). Additionally, experimentally more demanding gas chromatography analysis of fatty acid content was carried out for all specimens, confirming the results obtained by FTIR-ATR coupled with principal component analysis. However, FTIR-ATR provided a considerably better model for prediction of mixture composition than gas chromatography, especially for high oleic sunflower oil.
Separation of C2 hydrocarbons from methane in a microporous metal-organic framework
NASA Astrophysics Data System (ADS)
Tang, Fu-Shun; Lin, Rui-Biao; Lin, Rong-Guang; Zhao, John Cong-Gui; Chen, Banglin
2018-02-01
The recovery of C2 hydrocarbons including acetylene, ethylene and ethane is challenging but important for natural gas upgrading. The separation of C2 hydrocarbons over methane was demonstrated here by using a microporous metal-organic framework [Zn3(OH)2(SDB)2] (H2SDB = 4,4'-sulfonyldibenzoic acid) consisting narrow one-dimensional pore channels. Gas sorption experiments revealed that this MOF material showed considerable uptake capacity for C2H2, C2H4 and C2H6 under ambient conditions, while its capacity for CH4 was very low. High selectivity from IAST calculations for C2H2/CH4, C2H4/CH4 and C2H6/CH4 binary mixtures demonstrated that this MOF material were promising for efficiently separating important separation of C2 hydrocarbons from methane in natural gas processing.
NASA Astrophysics Data System (ADS)
Ramírez-Santiago, Guillermo; Díaz-Herrera, Enrique; Moreno Razo, José A.
2004-03-01
We have carried out extensive equilibrium MD simulations to study wetting phenomena in the liquid-vapor phase coexistence of a partially miscible binary LJ mixture. We find that in the temperature range 0.60 ≤ T^* < 0.80, the system separates forming a liquid A-liquid B interface in coexistence with the vapor phase. At higher temperatures, 0.80 ≤ T^* < 1.25 the liquid phases are wet by the vapor phase. By studying the behavior of the surface tension as a function of temperature we estimate the wetting transition temperature (WTT) to be T^*_w≃ 0.80. The adsorption of molecules at the liquid-liquid interface shows a discontinuity at about T^*≃ 0.79 suggesting that the wetting transition is a first order phase transition. These results are in agreement with some experiments carried out in fluid binary mixtures. In addition, we estimated the consolute temperature to be T^* _cons≃ 1.25. The calculated phase diagram of the mixture suggest the existence of a tricritical point.
Implementation of Ultrasonic Sensing for High Resolution Measurement of Binary Gas Mixture Fractions
Bates, Richard; Battistin, Michele; Berry, Stephane; Bitadze, Alexander; Bonneau, Pierre; Bousson, Nicolas; Boyd, George; Bozza, Gennaro; Crespo-Lopez, Olivier; Riva, Enrico Da; Degeorge, Cyril; Deterre, Cecile; DiGirolamo, Beniamino; Doubek, Martin; Favre, Gilles; Godlewski, Jan; Hallewell, Gregory; Hasib, Ahmed; Katunin, Sergey; Langevin, Nicolas; Lombard, Didier; Mathieu, Michel; McMahon, Stephen; Nagai, Koichi; Pearson, Benjamin; Robinson, David; Rossi, Cecilia; Rozanov, Alexandre; Strauss, Michael; Vitek, Michal; Vacek, Vaclav; Zwalinski, Lukasz
2014-01-01
We describe an ultrasonic instrument for continuous real-time analysis of the fractional mixture of a binary gas system. The instrument is particularly well suited to measurement of leaks of a high molecular weight gas into a system that is nominally composed of a single gas. Sensitivity < 5 × 10−5 is demonstrated to leaks of octaflouropropane (C3F8) coolant into nitrogen during a long duration (18 month) continuous study. The sensitivity of the described measurement system is shown to depend on the difference in molecular masses of the two gases in the mixture. The impact of temperature and pressure variances on the accuracy of the measurement is analysed. Practical considerations for the implementation and deployment of long term, in situ ultrasonic leak detection systems are also described. Although development of the described systems was motivated by the requirements of an evaporative fluorocarbon cooling system, the instrument is applicable to the detection of leaks of many other gases and to processes requiring continuous knowledge of particular binary gas mixture fractions. PMID:24961217
Lotfy, Hayam Mahmoud; Hegazy, Maha A; Rezk, Mamdouh R; Omran, Yasmin Rostom
2014-05-21
Two smart and novel spectrophotometric methods namely; absorbance subtraction (AS) and amplitude modulation (AM) were developed and validated for the determination of a binary mixture of timolol maleate (TIM) and dorzolamide hydrochloride (DOR) in presence of benzalkonium chloride without prior separation, using unified regression equation. Additionally, simple, specific, accurate and precise spectrophotometric methods manipulating ratio spectra were developed and validated for simultaneous determination of the binary mixture namely; simultaneous ratio subtraction (SRS), ratio difference (RD), ratio subtraction (RS) coupled with extended ratio subtraction (EXRS), constant multiplication method (CM) and mean centering of ratio spectra (MCR). The proposed spectrophotometric procedures do not require any separation steps. Accuracy, precision and linearity ranges of the proposed methods were determined and the specificity was assessed by analyzing synthetic mixtures of both drugs. They were applied to their pharmaceutical formulation and the results obtained were statistically compared to that of a reported spectrophotometric method. The statistical comparison showed that there is no significant difference between the proposed methods and the reported one regarding both accuracy and precision. Copyright © 2014 Elsevier B.V. All rights reserved.
Separating Iso-Propanol-Toluene mixture by azeotropic distillation
NASA Astrophysics Data System (ADS)
Iqbal, Asma; Ahmad, Syed Akhlaq
2018-05-01
The separation of Iso-Propanol-Toluene azeotropic mixture using Acetone as an entrainer has been simulated on Aspen Plus software package using rigorous methods. Calculations of the vapor-liquid equilibrium for the binary system are done using UNIQUAC-RK model which gives a good agreement with the experimental data reported in literature. The effects of the Reflux ratio (RR), distillate-to-feed molar ratio (D/F), feed stage, solvent feed stage, Total no. of stages and solvent feed temperature on the product purities and recoveries are studied to obtain their optimum values that give the maximum purity and recovery of products. The configuration consists of 20 theoretical stages with an equimolar feed of binary mixture. The desired separation of binary mixture has been achieved at the feed stage and an entrainer feeding stage of 15 and 12 respectively with the reflux ratios of 2.5 and 4.0, and D/F ratio of 0.75 and 0.54 respectively in the two columns. The simulation results thus obtained are useful to setup the optimal column configuration of the azeotropic distillation process.
Antiandrogenic activity of phthalate mixtures: Validity of concentration addition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christen, Verena; Crettaz, Pierre; Oberli-Schrämmli, Aurelia
2012-03-01
Phthalates and bisphenol A have very widespread use leading to significant exposure of humans. They are suspected to interfere with the endocrine system, including the androgen, estrogen and the thyroid hormone system. Here we analyzed the antiandrogenic activity of six binary, and one ternary mixture of phthalates exhibiting complete antiandrogenic dose–response curves, and binary mixtures of phthalates and bisphenol A at equi-effective concentrations of EC{sub 10}, EC{sub 25} and EC{sub 50} in MDA-kb2 cells. Mixture activity followed the concentration addition (CA) model with a tendency to synergism at high and antagonism at low concentrations. Isoboles and the toxic unit approachmore » (TUA) confirmed the additive to synergistic activity of the binary mixtures BBP + DBP, DBP + DEP and DEP + BPA at high concentrations. Both methods indicate a tendency to antagonism for the EC{sub 10} mixtures BBP + DBP, BBP + DEP and DBP + DEP, and the EC{sub 25} mixture of DBP + BPA. A ternary mixture revealed synergism at the EC{sub 50}, and weak antagonistic activity at the EC{sub 25} level by the TUA. A mixture of five phthalates representing a human urine composition and reflecting exposure to corresponding parent compounds showed no antiandrogenic activity. Our study demonstrates that CA is an appropriate concept to account for mixture effects of antiandrogenic phthalates and bisphenol A. The interaction indicates a departure from additivity to antagonism at low concentrations, probably due to interaction with the androgen receptor and/or cofactors. This study emphasizes that a risk assessment of phthalates should account for mixture effects by applying the CA concept. -- Highlights: ► Antiandrogenic activity of mixtures of 2 and 3 phthalates are assessed in MDA-kb2 cells. ► Mixture activities followed the concentration addition model. ► A tendency to synergism at high and antagonism at low levels occurred.« less
The virial coefficients of hard hypersphere binary mixtures
NASA Astrophysics Data System (ADS)
Enciso, E.; Almarza, N. G.; Gonzalez, M. A.; Bermejo, F. J.
The third, fourth and fifth virial coefficients of hard hypersphere binary mixtures with dimensionality d = 4, 5 have been calculated for size ratios R ≥0.1, R ı σ22 / σ11 , where σ ii is the diameter of component i . The composition independent partial virial coefficients have been evaluated by Monte Carlo integration of the corresponding Mayer modified star diagrams. The results are compared with the predictions of Santos, S., Yuste, S. B., and Lopez de Haro, M., 1999, Molec. Phys ., 96 , 1 of the equation of state of a multicomponent mixture of hard hyperspheres, and the good agreement gives strong support to the validity of that recipe.
Ion-water wires in imidazolium-based ionic liquid/water solutions induce unique trends in density.
Ghoshdastidar, Debostuti; Senapati, Sanjib
2016-03-28
Ionic liquid/water binary mixtures are rapidly gaining popularity as solvents for dissolution of cellulose, nucleobases, and other poorly water-soluble biomolecules. Hence, several studies have focused on measuring the thermophysical properties of these versatile mixtures. Among these, 1-ethyl-3-methylimidazolium ([emim]) cation-based ILs containing different anions exhibit unique density behaviours upon addition of water. While [emim][acetate]/water binary mixtures display an unusual rise in density with the addition of low-to-moderate amounts of water, those containing the [trifluoroacetate] ([Tfa]) anion display a sluggish decrease in density. The density of [emim][tetrafluoroborate] ([emim][BF4])/water mixtures, on the other hand, declines rapidly in close accordance with the experimental reports. Here, we unravel the structural basis underlying this unique density behavior of [emim]-based IL/water mixtures using all-atom molecular dynamics (MD) simulations. The results revealed that the distinct nature of anion-water hydrogen bonded networks in the three systems was a key in modulating the observed unique density behaviour. Vast expanses of uninterrupted anion-water-anion H-bonded stretches, denoted here as anion-water wires, induced significant structuring in [emim][Ac]/water mixtures that resulted in the density rise. Conversely, the presence of intermittent large water clusters disintegrated the anion-water wires in [emim][Tfa]/water and [emim][BF4]/water mixtures to cause a monotonic density decrease. The differential nanostructuring affected the dynamics of the solutions proportionately, with the H-bond making and breaking dynamics found to be greatly retarded in [emim][Ac]/water mixtures, while it exhibited a faster relaxation in the other two binary solutions.
Allahham, Ayman; Stewart, Peter J; Das, Shyamal C
2013-11-30
Influence of ternary, poorly water-soluble components on the agglomerate strength of cohesive indomethacin mixtures during dissolution was studied to explore the relationship between agglomerate strength and extent of de-agglomeration and dissolution of indomethacin (Ind). Dissolution profiles of Ind from 20% Ind-lactose binary mixtures, and ternary mixtures containing additional dibasic calcium phosphate (1% or 10%; DCP), calcium sulphate (10%) and talc (10%) were determined. Agglomerate strength distributions were estimated by Monte Carlo simulation of particle size, work of cohesion and packing fraction distributions. The agglomerate strength of Ind decreased from 1.19 MPa for the binary Ind mixture to 0.84 MPa for 1DCP:20Ind mixture and to 0.42 MPa for 1DCP:2Ind mixture. Both extent of de-agglomeration, demonstrated by the concentration of the dispersed indomethacin distribution, and extent of dispersion, demonstrated by the particle size of the dispersed indomethacin, were in descending order of 1DCP:2Ind>1DCP:20Ind>binary Ind. The addition of calcium sulphate dihydrate and talc also reduced the agglomerate strength and improved de-agglomeration and dispersion of indomethacin. While not definitively causal, the improved de-agglomeration and dispersion of a poorly water soluble drug by poorly water soluble components was related to the agglomerate strength of the cohesive matrix during dissolution. Copyright © 2013 Elsevier B.V. All rights reserved.
Hierarchically self-assembled hexagonal honeycomb and kagome superlattices of binary 1D colloids.
Lim, Sung-Hwan; Lee, Taehoon; Oh, Younghoon; Narayanan, Theyencheri; Sung, Bong June; Choi, Sung-Min
2017-08-25
Synthesis of binary nanoparticle superlattices has attracted attention for a broad spectrum of potential applications. However, this has remained challenging for one-dimensional nanoparticle systems. In this study, we investigate the packing behavior of one-dimensional nanoparticles of different diameters into a hexagonally packed cylindrical micellar system and demonstrate that binary one-dimensional nanoparticle superlattices of two different symmetries can be obtained by tuning particle diameter and mixing ratios. The hexagonal arrays of one-dimensional nanoparticles are embedded in the honeycomb lattices (for AB 2 type) or kagome lattices (for AB 3 type) of micellar cylinders. The maximization of free volume entropy is considered as the main driving force for the formation of superlattices, which is well supported by our theoretical free energy calculations. Our approach provides a route for fabricating binary one-dimensional nanoparticle superlattices and may be applicable for inorganic one-dimensional nanoparticle systems.Binary mixtures of 1D particles are rarely observed to cooperatively self-assemble into binary superlattices, as the particle types separate into phases. Here, the authors design a system that avoids phase separation, obtaining binary superlattices with different symmetries by simply tuning the particle diameter and mixture composition.
Additive and synergistic antiandrogenic activities of mixtures of azol fungicides and vinclozolin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christen, Verena; Crettaz, Pierre; Fent, Karl, E-mail: karl.fent@fhnw.ch
Objective: Many pesticides including pyrethroids and azole fungicides are suspected to have an endocrine disrupting property. At present, the joint activity of compound mixtures is only marginally known. Here we tested the hypothesis that the antiandrogenic activity of mixtures of azole fungicides can be predicted by the concentration addition (CA) model. Methods: The antiandrogenic activity was assessed in MDA-kb2 cells. Following assessing single compounds activities mixtures of azole fungicides and vinclozolin were investigated. Interactions were analyzed by direct comparison between experimental and estimated dose–response curves assuming CA, followed by an analysis by the isobole method and the toxic unit approach.more » Results: The antiandrogenic activity of pyrethroids deltamethrin, cypermethrin, fenvalerate and permethrin was weak, while the azole fungicides tebuconazole, propiconazole, epoxiconazole, econazole and vinclozolin exhibited strong antiandrogenic activity. Ten binary and one ternary mixture combinations of five antiandrogenic fungicides were assessed at equi-effective concentrations of EC{sub 25} and EC{sub 50}. Isoboles indicated that about 50% of the binary mixtures were additive and 50% synergistic. Synergism was even more frequently indicated by the toxic unit approach. Conclusion: Our data lead to the conclusion that interactions in mixtures follow the CA model. However, a surprisingly high percentage of synergistic interactions occurred. Therefore, the mixture activity of antiandrogenic azole fungicides is at least additive. Practice: Mixtures should also be considered for additive antiandrogenic activity in hazard and risk assessment. Implications: Our evaluation provides an appropriate “proof of concept”, but whether it equally translates to in vivo effects should further be investigated. - Highlights: • Humans are exposed to pesticide mixtures such as pyrethroids and azole fungicides. • We assessed the antiandrogenicity of pyrethroids and azole fungizides. • Many azole fungicides showed significant antiandrogenic activity . • Many binary mixtures of antiandrogenic azole fungicides showed synergistic interactions. • Concentration addition of pesticides in mixtures should be considered.« less
Nguyen, Khoi T; Nguyen, Tuan D; Nguyen, Anh V
2014-06-24
Remarkable adsorption enhancement and packing of dilute mixtures of water-soluble oppositely-charged surfactants, sodium dodecyl sulfate (SDS) and dodecyl amine hydrochloride (DAH), at the air-water interface were observed by using sum frequency generation spectroscopy and tensiometry. The interfacial water structure was also observed to be significantly influenced by the SDS-DAH mixtures, differently from the synergy of the single surfactants. Most strikingly, the obtained spectroscopic evidence suggests that the interfacial hydrophobic alkyl chains of the binary mixtures assemble differently from those of single surfactants. This study highlights the significance of the cooperative interaction between the headgroups of oppositely charged binary surfactant systems and subsequently provides some insightful observations about the molecular structure of the air-aqueous interfacial water molecules and, more importantly, about the packing nature of the surfactant hydrophobic chains of dilute SDS-DAH mixtures of concentration below 1% of the CMC.
NASA Astrophysics Data System (ADS)
Rander, D. N.; Joshi, Y. S.; Kanse, K. S.; Kumbharkhane, A. C.
2016-01-01
The measurements of complex dielectric permittivity of xylitol-water mixtures have been carried out in the frequency range of 10 MHz-30 GHz using a time domain reflectometry technique. Measurements have been done at six temperatures from 0 to 25 °C and at different weight fractions of xylitol (0 < W X ≤ 0.7) in water. There are different models to explain the dielectric relaxation behaviour of binary mixtures, such as Debye, Cole-Cole or Cole-Davidson model. We have observed that the dielectric relaxation behaviour of binary mixtures of xylitol-water can be well described by Cole-Davidson model having an asymmetric distribution of relaxation times. The dielectric parameters such as static dielectric constant and relaxation time for the mixtures have been evaluated. The molecular interaction between xylitol and water molecules is discussed using the Kirkwood correlation factor ( g eff ) and thermodynamic parameter.
NASA Astrophysics Data System (ADS)
Deosarkar, S. D.; Ghatbandhe, A. S.
2014-01-01
Molecular interactions and structural fittings in binary ethylene glycol + ethanol (EGE, x EG = 0.4111-0.0418) and ethylene glycol + water (EGW, x EG = 0.1771-0.0133) mixtures were studied through the measurement of densities (ρ), viscosities (η), and refractive indices ( n D ) at 303.15 K. Excess viscosities (η E ), molar volumes ( V m ), excess molar volumes ( V {/m E }), and molar retractions ( R M ) of the both binary systems were computed from measured properties. The measured and computed properties have been used to understand the molecular interactions in unlike solvents and structural fittings in these binary mixtures.
NASA Astrophysics Data System (ADS)
Swami, M. B.; Hudge, P. G.; Pawar, V. P.
The dielectric properties of binary mixtures of benzylamine-1,2,6-hexantriol mixtures at different volume fractions of 1,2,6-hexanetriol have been measured using Time Domain Reflectometry (TDR) technique in the frequency range of 10 MHz to 30 GHz. Complex permittivity spectra were fitted using Havriliak-Negami equation. By using least square fit method the dielectric parameters such as static dielectric constant (ɛ0), dielectric constant at high frequency (ɛ∞), relaxation time τ (ps) and relaxation distribution parameter (β) were extracted from complex permittivity spectra at 25∘C. The intramolecular interaction of different molecules has been discussed using the Kirkwood correlation factor, Bruggeman factor. The Kirkwood correlation factor (gf) and effective Kirkwood correlation factor (geff) indicate the dipole ordering of the binary mixtures.
Metastable liquid lamellar structures in binary and ternary mixtures of Lennard-Jones fluids
NASA Astrophysics Data System (ADS)
Díaz-Herrera, Enrique; Ramírez-Santiago, Guillermo; Moreno Razo, José A.
2004-03-01
We have carried out extensive equilibrium MD simulations to investigate the Liquid-Vapor coexistence in partially miscible binary and ternary mixtures LJ fluids. We have studied in detail the time evolution of the density profiles and the interfacial properties in a temperature region of the phase diagram where the condensed phase is demixed. The composition of the mixtures are fixed, 50% for the binary mixture and 33.33% for the ternary mixture. The results of the simulations clearly indicate that in the range of temperatures 78 < T < 102 ^oK,--in the scale of argon-- the system evolves towards a metastable alternated liquid-liquid lamellar state in coexistence with its vapor phase. These states can be achieved if the initial configuration is fully disordered, that is, when the particles of the fluids are randomly placed on the sites of an FCC crystal or the system is completely mixed. As temperature decreases these states become very well defined and more stable in time. We find that below 90 ^oK, the alternated liquid-liquid lamellar state remains alive for 80 ns, in the scale of argon, the longest simulation we have carried out. Nonetheless, we believe that in this temperature region these states will be alive for even much longer times.
NASA Astrophysics Data System (ADS)
Yamaguchi, H.; Takamori, K.; Perrier, P.; Graur, I.; Matsuda, Y.; Niimi, T.
2016-09-01
The viscous slip coefficient for helium-argon binary gas mixture is extracted from the experimental values of the mass flow rate through a microtube. The mass flow rate is measured by the constant-volume method. The viscous slip coefficient was obtained by identifying the measured mass flow rate through a microtube with the corresponding analytical expression, which is a function of the Knudsen number. The measurements were carried out in the slip flow regime where the first-order slip boundary condition can be applied. The measured viscous slip coefficients of binary gas mixtures exhibit a concave function of the molar ratio of the mixture, showing a similar profile with numerical results. However, from the detailed comparison between the measured and numerical values with the complete and incomplete accommodation at a surface, it is inappropriate to estimate the viscous slip coefficient for the mixture numerically by employing separately measured tangential momentum accommodation coefficient for each component. The time variation of the molar ratio in the downstream chamber was measured by sampling the gas from the chamber using the quadrupole mass spectrometer. In our measurements, it is indicated that the volume flow rate of argon is larger than that of helium because of the difference in the tangential momentum accommodation coefficient.
Birthdays and the Binary System: A Magical Mixture.
ERIC Educational Resources Information Center
Karp, Karen S.; Ronau, Robert N.
1997-01-01
Presents an activity involving the use of students' birth dates. Activity includes a classic binary representation of numerical values. In the Green Machine, Sorting Cards, and Window Cards, students observe, describe, and analyze patterns. (PVD)
Self-Assembled Nano-energetic Gas Generators based on Bi2O3
NASA Astrophysics Data System (ADS)
Hobosyan, Mkhitar; Trevino, Tyler; Martirosyan, Karen
2012-10-01
Nanoenergetic Gas-Generators are formulations that rapidly release a large amount of gaseous products and generate a fast moving thermal wave. They are mainly based on thermite systems, which are pyrotechnic mixtures of metal powders (fuel- Al, Mg, etc.) and metal oxides (oxidizer, Bi2O3, Fe2O3, WO3, MoO3 etc.) that can generate an exothermic oxidation-reduction reaction referred to as a thermite reaction. A thermite reaction releases a large amount of energy and can generate rapidly extremely high temperatures. The intimate contact between the fuel and oxidizer can be enhanced by use of nano instead of micro particles. The contact area between oxidizer and metal particles depends from method of mixture preparation. In this work we utilize the self-assembly processes, which use the electrostatic forces to produce ordered and self-organized binary systems. In this process the intimate contact significantly enhances and gives the ability to build an energetic material in molecular level, which is crucial for thepressure discharge efficiency of nano-thermites. The DTA-TGA, Zeta-size analysis and FTIR technique were performed to characterize the Bi2O3 particles. The self-assembly of Aluminum and Bi2O3 was conducted in sonic bath with appropriate solvents and linkers. The resultant thermite pressure discharge values were tested in modified Parr reactor. In general, the self-assembled thermites give much higher-pressure discharge values than the thermites prepared with conventional roll-mixing technique.
QSAR prediction of additive and non-additive mixture toxicities of antibiotics and pesticide.
Qin, Li-Tang; Chen, Yu-Han; Zhang, Xin; Mo, Ling-Yun; Zeng, Hong-Hu; Liang, Yan-Peng
2018-05-01
Antibiotics and pesticides may exist as a mixture in real environment. The combined effect of mixture can either be additive or non-additive (synergism and antagonism). However, no effective predictive approach exists on predicting the synergistic and antagonistic toxicities of mixtures. In this study, we developed a quantitative structure-activity relationship (QSAR) model for the toxicities (half effect concentration, EC 50 ) of 45 binary and multi-component mixtures composed of two antibiotics and four pesticides. The acute toxicities of single compound and mixtures toward Aliivibrio fischeri were tested. A genetic algorithm was used to obtain the optimized model with three theoretical descriptors. Various internal and external validation techniques indicated that the coefficient of determination of 0.9366 and root mean square error of 0.1345 for the QSAR model predicted that 45 mixture toxicities presented additive, synergistic, and antagonistic effects. Compared with the traditional concentration additive and independent action models, the QSAR model exhibited an advantage in predicting mixture toxicity. Thus, the presented approach may be able to fill the gaps in predicting non-additive toxicities of binary and multi-component mixtures. Copyright © 2018 Elsevier Ltd. All rights reserved.
Method of producing homogeneous mixed metal oxides and metal-metal oxide mixtures
Quinby, Thomas C.
1978-01-01
Metal powders, metal oxide powders, and mixtures thereof of controlled particle size are provided by reacting an aqueous solution containing dissolved metal values with excess urea. Upon heating, urea reacts with water from the solution leaving a molten urea solution containing the metal values. The molten urea solution is heated to above about 180.degree. C. whereupon metal values precipitate homogeneously as a powder. The powder is reduced to metal or calcined to form oxide particles. One or more metal oxides in a mixture can be selectively reduced to produce metal particles or a mixture of metal and metal oxide particles.
Pycnonuclear reaction rates for binary ionic mixtures
NASA Technical Reports Server (NTRS)
Ichimaru, S.; Ogata, S.; Van Horn, H. M.
1992-01-01
Through a combination of compositional scaling arguments and examinations of Monte Carlo simulation results for the interparticle separations in binary-ionic mixture (BIM) solids, we have derived parameterized expressions for the BIM pycnonuclear rates as generalizations of those in one-component solids obtained previously by Salpeter and Van Horn and by Ogata et al. We have thereby discovered a catalyzing effect of the heavier elements, which enhances the rates of reactions among the lighter elements when the charge ratio exceeds a critical value of approximately 2.3.
Jouyban, Abolghasem; Soltanpour, Shahla
2010-09-01
The solubility of pioglitazone hydrochloride in binary mixtures of polyethylene glycol 400 with ethanol, N-methyl-2-pyrrolidone, propylene glycol, and water at 25 degrees C are reported. The generated data are fitted to the Jouyban-Acree model and the mean relative deviations are 2.6%, 1.5%, 5.8%, and 7.4%, respectively for ethanol, N-methyl-2-pyrrolidone, propylene glycol, and water.
Instability of a solidifying binary mixture
NASA Technical Reports Server (NTRS)
Antar, B. N.
1982-01-01
An analysis is performed on the stability of a solidifying binary mixture due to surface tension variation of the free liquid surface. The basic state solution is obtained numerically as a nonstationary function of time. Due to the time dependence of the basic state, the stability analysis is of the global type which utilizes a variational technique. Also due to the fact that the basic state is a complex function of both space and time, the stability analysis is performed through numerical means.
Soret motion in non-ionic binary molecular mixtures
NASA Astrophysics Data System (ADS)
Leroyer, Yves; Würger, Alois
2011-08-01
We study the Soret coefficient of binary molecular mixtures with dispersion forces. Relying on standard transport theory for liquids, we derive explicit expressions for the thermophoretic mobility and the Soret coefficient. Their sign depends on composition, the size ratio of the two species, and the ratio of Hamaker constants. Our results account for several features observed in experiment, such as a linear variation with the composition; they confirm the general rule that small molecules migrate to the warm, and large ones to the cold.
González, A; Norambuena-Contreras, J; Storey, L; Schlangen, E
2018-05-15
The concept of self-healing asphalt mixtures by bitumen temperature increase has been used by researchers to create an asphalt mixture with crack-healing properties by microwave or induction heating. Metals, normally steel wool fibers (SWF), are added to asphalt mixtures prepared with virgin materials to absorb and conduct thermal energy. Metal shavings, a waste material from the metal industry, could be used to replace SWF. In addition, reclaimed asphalt pavement (RAP) could be added to these mixtures to make a more sustainable road material. This research aimed to evaluate the effect of adding metal shavings and RAP on the properties of asphalt mixtures with crack-healing capabilities by microwave heating. The research indicates that metal shavings have an irregular shape with widths larger than typical SWF used with asphalt self-healing purposes. The general effect of adding metal shavings was an improvement in the crack-healing of asphalt mixtures, while adding RAP to mixtures with metal shavings reduced the healing. The average surface temperature of the asphalt samples after microwave heating was higher than temperatures obtained by induction heating, indicating that shavings are more efficient when mixtures are heated by microwave radiation. CT scan analysis showed that shavings uniformly distribute in the mixture, and the addition of metal shavings increases the air voids. Overall, it is concluded that asphalt mixtures with RAP and waste metal shavings have the potential of being crack-healed by microwave heating. Copyright © 2018 Elsevier Ltd. All rights reserved.
A Novel Approach for Evaluating Carbamate Mixtures for Dose Additivity
Two mathematical approaches were used to test the hypothesis ofdose-addition for a binary and a seven-chemical mixture ofN-methyl carbamates, toxicologically similar chemicals that inhibit cholinesterase (ChE). In the more novel approach, mixture data were not included in the ana...
Grafting of vinyl acetate-ethylacrylate binary monomer mixture onto guar gum.
Singh, Vandana; Singh, Angela; Joshi, Sneha; Malviya, Tulika
2016-03-01
Present article reports on guar gum (GG) functionalization through graftcopolymerization of vinylacetate (VAC) and ethylacrylate (EA) from their binary mixtures. The potassium persulfate/ascorbic acid (KPS/AA) redox initiator system has been used for the binary grafting under the previously optimized conditions for VAC grafting at guar gum. The concentration of ascorbic acid (AA), persulfate (KPS), and grafting temperature were varied to optimize the binary grafting. A preliminary investigation revealed that the copolymer has excellent ability to capture Hg(II) from aqueous solution. It was observed that the optimum % grafting sample (CP3) was best at Hg(II) adsorption. CP3 and mercury loaded CP3 (CP3-Hg) have been extensively characterized using Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), and Thermo gravimetric analysis (TGA) and a plausible mechanism for the grafting has been proposed. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kwak, Jongheon; Han, Sunghyun; Kim, Jin Kon
2014-03-01
A binary mixture of two block copolymers whose blocks are capable of forming the hydrogen bonding allows one to obtain various microdomains that could not be expected for neat block copolymer. For instance, the binary blend of symmetric polystyrene-block-poly(2-vinylpyridine) copolymer (PS-b-P2VP) and polystyrene-block-polyhydroxystyrene copolymer (PS-b-PHS) blends where the hydrogen bonding occurred between P2VP and PHS showed hexagonally packed (HEX) cylindrical and body centered cubic (BCC) spherical microdomains. To know the exact location of short block copolymer chains at the interface, we synthesized deuterated polystyrene-block-polyhydroxystyrene copolymer (dPS-b-PHS) and prepared a binary mixture with PS-b-P2VP. We investigate, via small angle X-ray scattering (SAXS) and neutron reflectivity (NR), the exact location of shorter dPS block chain near the interface of the microdomains.
NASA Astrophysics Data System (ADS)
Pattebahadur, Kanchan. L.; Deshmukh, S. D.; Mohod, A. G.; Undre, P. B.; Patil, S. S.; Khirade, P. W.
2018-05-01
The Dielectric constant, density and refractive index of binary mixture of 2-ethoxy ethanol (2-EE) with ethyl methyl ketone (EMK) including those of the pure liquids were measured for 11 concentrations at 25°C temperature. The experimental data is used to calculate the Excess molar volume, Excess dielectric constant, Kirkwood correlation factor and Bruggemann factor. The excess parameters results were fitted to the Redlich-Kister type polynomial equation to derive its fitting coefficient. The Kirkwood correlation factor of the mixture has been discussed to yield information about solute solvent interaction. The Bruggeman plot shows a deviation from linearity. The FT-IR spectra of pure and their binary mixtures are also studied.
Domain wall suppression in trapped mixtures of Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Pepe, Francesco V.; Facchi, Paolo; Florio, Giuseppe; Pascazio, Saverio
2012-08-01
The ground-state energy of a binary mixture of Bose-Einstein condensates can be estimated for large atomic samples by making use of suitably regularized Thomas-Fermi density profiles. By exploiting a variational method on the trial densities the energy can be computed by explicitly taking into account the normalization condition. This yields analytical results and provides the basis for further improvement of the approximation. As a case study, we consider a binary mixture of 87Rb atoms in two different hyperfine states in a double-well potential and discuss the energy crossing between density profiles with different numbers of domain walls, as the number of particles and the interspecies interaction vary.
Thermophysical properties of N, N-dimethylacetamide mixtures with n-butanol
NASA Astrophysics Data System (ADS)
Maharolkar, Aruna P.; Murugkar, A. G.; Khirade, P. W.; Mehrotra, S. C.
2017-09-01
The refraction, dielectric, viscosity, density, data of the binary mixtures of N, N-dimethylacetamide (DMA) with n-butanol at 308.15 and 313.15 K. The measured parameters used to obtain derived properties like Bruggeman factor, molar refraction and excess static dielectric constant, excess inverse relaxation time, excess molar volume and excess viscosity, excess molar refraction. The variation in magnitude with composition and temperature of these quantities has been used to discuss the type, strength and nature of binary interactions. Results confirm that there are strong hydrogen-bond interactions between unlike molecules of DMA+ n-butanol mixtures and that 1: 1 complexes are formed and strength of intermolecular interaction increases with temperature.
Fragility and glass transition for binary mixtures of 1,2-propanediol and LiBF4
NASA Astrophysics Data System (ADS)
Terashima, Y.; Mori, M.; Sugimoto, N.; Takeda, K.
2014-04-01
The fragility and glass transition for binary mixtures of 1,2-propanediol and LiBF4 were investigated by measuring the heating rate dependence of glass transition temperature (Tg) using differential scanning calorimetry. With increasing LiBF4 mole fraction, x, up to 0.25, fragility, m, increased rapidly from 53 to 85, and then remained approximately unchanged for x > 0.25. The concentration dependences of Tg and heat capacity jump at Tg also showed anomalies around x = 0.25. We suggest this mixture transformed from a moderate to quite fragile liquid at x = 0.25 because of a structural change from a hydrogen-bonding- to ionic-interaction-dominant system.
Dynamics of dense granular flows of small-and-large-grain mixtures in an ambient fluid.
Meruane, C; Tamburrino, A; Roche, O
2012-08-01
Dense grain flows in nature consist of a mixture of solid constituents that are immersed in an ambient fluid. In order to obtain a good representation of these flows, the interaction mechanisms between the different constituents of the mixture should be considered. In this article, we study the dynamics of a dense granular flow composed of a binary mixture of small and large grains immersed in an ambient fluid. In this context, we extend the two-phase approach proposed by Meruane et al. [J. Fluid Mech. 648, 381 (2010)] to the case of flowing dense binary mixtures of solid particles, by including in the momentum equations a constitutive relation that describes the interaction mechanisms between the solid constituents in a dense regime. These coupled equations are solved numerically and validated by comparing the numerical results with experimental measurements of the front speed of gravitational granular flows resulting from the collapse, in ambient air or water, of two-dimensional granular columns that consisted of mixtures of small and large spherical particles of equal mass density. Our results suggest that the model equations include the essential features that describe the dynamics of grains flows of binary mixtures in an ambient fluid. In particular, it is shown that segregation of small and large grains can increase the front speed because of the volumetric expansion of the flow. This increase in flow speed is damped by the interaction forces with the ambient fluid, and this behavior is more pronounced in water than in air.
The effects of binary UV filter mixtures on the midge Chironomus riparius.
Ozáez, Irene; Morcillo, Gloria; Martínez-Guitarte, José-Luis
2016-06-15
Organic ultraviolet (UV) filters are used in a wide variety of products, including cosmetics, to prevent damage from UV light in tissues and industrial materials. Their extensive use has raised concerns about potential adverse effects in human health and aquatic ecosystems that accumulate these pollutants. To increase sun radiation protection, UV filters are commonly used in mixtures. Here, we studied the toxicity of binary mixtures of 4-methylbenzylidene camphor (4MBC), octyl-methoxycinnamate (OMC), and benzophenone-3 (BP-3), by evaluating the larval mortality of Chironomus riparius. Also molecular endpoints have been analyzed, including alterations in the expression levels of a gene related with the endocrine system (EcR, ecdysone receptor) and a gene related with the stress response (hsp70, heat shock protein 70). The results showed that the mortality caused by binary mixtures was similar to that observed for each compound alone; however, some differences in LC50 were observed between groups. Gene expression analysis showed that EcR mRNA levels increased in the presence of 0.1mg/L 4MBC but returned to normal levels after exposure to mixtures of 4MBC with 0.1, 1, and 10mg/L of BP-3 or OMC. In contrast, the hsp70 mRNA levels increased after exposure to the combinations tested of 4MBC and BP-3 or OMC mixtures. These data suggest that 4MBC, BP-3, and OMC may have antagonist effects on EcR gene transcription and a synergistic effect on hsp70 gene activation. This is the first experimental study to show the complex patterned effects of UV filter mixtures on invertebrates. The data suggest that the interactions within these chemicals mixtures are complex and show diverse effects on various endpoints. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alhroob, M.; Boyd, G.; Hasib, A.
Precision ultrasonic measurements in binary gas systems provide continuous real-time monitoring of mixture composition and flow. Using custom micro-controller-based electronics, we have developed an ultrasonic instrument, with numerous potential applications, capable of making continuous high-precision sound velocity measurements. The instrument measures sound transit times along two opposite directions aligned parallel to - or obliquely crossing - the gas flow. The difference between the two measured times yields the gas flow rate while their average gives the sound velocity, which can be compared with a sound velocity vs. molar composition look-up table for the binary mixture at a given temperature andmore » pressure. The look-up table may be generated from prior measurements in known mixtures of the two components, from theoretical calculations, or from a combination of the two. We describe the instrument and its performance within numerous applications in the ATLAS experiment at the CERN Large Hadron Collider (LHC). The instrument can be of interest in other areas where continuous in-situ binary gas analysis and flowmetry are required. (authors)« less
Wankhede, Dnyaneshwar Shamrao
2012-06-01
Refractive indices (n) have been experimentally determined for the binary liquid-liquid mixtures of Propylene carbonate (PC) (1) with benzene, ethylbenzene, o-xylene and p-xylene (2) at 298.15, 303.15 and 308.15 K over the entire mole fraction range. The experimental values of n are utilised to calculate deviation in refractive index (Δn), molar refraction (R) and deviation in molar refraction (ΔR). A comparative study of Arago-Biot (A-B), Newton (NW), Eyring and John (E-J) equations for determining refractive index of a liquid has been carried out to test their validity for all the binary mixtures over the entire composition range at 298.15 K. Comparison of various mixing relations is represented in terms of average deviation (AVD). The Δn and ΔR values have been fitted to Redlich-Kister equation at 298.15 K and standard deviations have been calculated. The results are discussed in terms of intermolecular interactions present amongst the components.
Destro, Massimo; Ottolini, Luca; Vicentini, Lorenza; Boschetti, Silvia
2012-10-01
The parenteral administration of combinations of drugs is often necessary in palliative medicine, particularly in the terminal stage of life, when patients are no longer able to take medication orally. The use of infusers to administer continuous subcutaneous infusions is a well-established practice in the palliative care setting and enables several drugs to be given simultaneously, avoiding the need for repeated administrations and the effects of peaks and troughs in the doses of medication. The method is also appreciated by patients and caregivers in the home care setting because the devices and infusion sites are easy to manage. Despite their frequent use, however, the mixtures of drugs adopted in clinical practice are sometimes not supported by reliable data concerning their chemical and physical compatibility. The present study investigates the chemical compatibility of binary mixtures (morphine with ketorolac) and the physical compatibility of binary (morphine or methadone with ketorolac) or ternary mixtures (morphine with ketorolac and/or haloperidol, and/or dexamethasone, and/or metoclopramide, and/or hyoscine butylbromide) with a view to reducing the aleatory nature of the empirical use of such combinations, thereby increasing their safety and clinical appropriateness.
An odor interaction model of binary odorant mixtures by a partial differential equation method.
Yan, Luchun; Liu, Jiemin; Wang, Guihua; Wu, Chuandong
2014-07-09
A novel odor interaction model was proposed for binary mixtures of benzene and substituted benzenes by a partial differential equation (PDE) method. Based on the measurement method (tangent-intercept method) of partial molar volume, original parameters of corresponding formulas were reasonably displaced by perceptual measures. By these substitutions, it was possible to relate a mixture's odor intensity to the individual odorant's relative odor activity value (OAV). Several binary mixtures of benzene and substituted benzenes were respectively tested to establish the PDE models. The obtained results showed that the PDE model provided an easily interpretable method relating individual components to their joint odor intensity. Besides, both predictive performance and feasibility of the PDE model were proved well through a series of odor intensity matching tests. If combining the PDE model with portable gas detectors or on-line monitoring systems, olfactory evaluation of odor intensity will be achieved by instruments instead of odor assessors. Many disadvantages (e.g., expense on a fixed number of odor assessors) also will be successfully avoided. Thus, the PDE model is predicted to be helpful to the monitoring and management of odor pollutions.
Lubrication model for evaporation of binary sessile drops
NASA Astrophysics Data System (ADS)
Williams, Adam; Sáenz, Pedro; Karapetsas, George; Matar, Omar; Sefiane, Khellil; Valluri, Prashant
2017-11-01
Evaporation of a binary mixture sessile drop from a solid substrate is a highly dynamic and complex process with flow driven both thermal and solutal Marangoni stresses. Experiments on ethanol/water drops have identified chaotic regimes on both the surface and interior of the droplet, while mixture composition has also been seen to govern drop wettability. Using a lubrication-type approach, we present a finite element model for the evaporation of an axisymmetric binary drop deposited on a heated substrate. We consider a thin drop with a moving contact line, taking also into account the commonly ignored effects of inertia which drives interfacial instability. We derive evolution equations for the film height, the temperature and the concentration field considering that the mixture comprises two ideally mixed volatile components with a surface tension linearly dependent on both temperature and concentration. The properties of the mixture such as viscosity also vary locally with concentration. We explore the parameter space to examine the resultant effects on wetting and evaporation where we find qualitative agreement with experiments in both these areas. This enables us to understand the nature of the instabilities that spontaneously emerge over the drop lifetime. EPSRC - EP/K00963X/1.
Bernier, Ulrich R; Kline, Daniel L; Allan, Sandra A; Barnard, Donald R
2015-03-01
The attraction of female Aedes aegypti to single compounds and binary compositions containing L-lactic acid and an additional saturated compound from a set of ketones, sulfides, and chloroalkanes was studied using a triple-cage dual-port olfactometer. These chemical classes were studied because of their structural relation to acetone, dimethyl disulfide, and dichloromethane, which have all been reported to synergize attraction to L-lactic acid. Human odors, carbon dioxide, and the binary mixture of L-lactic acid and CO₂served as controls for comparison of attraction responses produced by the binary mixtures. All tested mixtures that contained chloroalkanes attracted mosquitoes at synergistic levels, as did L-lactic acid and CO₂. Synergism was less frequent in mixtures of L-lactic acid with sulfides and ketones; in the case of ketones, synergistic attraction was observed only for L-lactic acid combined with acetone or butanone. Suppression or inhibition of attraction response was observed for combinations that contained ketones of C7-C12 molecular chain length (optimum in the C8-C10 range). This inhibition effect is similar to that observed previously for specific ranges of carboxylic acids, aldehydes, and alcohols.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vidal, Judith C; Mohan, Gowtham; Venkataraman, Mahesh
A novel ternary eutectic salt mixture for high-temperature sensible heat storage, composed of sodium chloride, potassium chloride and magnesium chloride (NaKMg-Cl) was developed based on a phase diagram generated with FactSage(R). The differential scanning calorimetry (DSC) technique was used to experimentally validate the predicted melting point of the ternary eutectic composition, which was measured as 387 degrees C, in good agreement with the prediction. The ternary eutectic was compared to two binary salts formulated based on prediction of the eutectic composition by FactSage, but unfortunately DSC measurements showed that neither binary salt composition was eutectic. Nonetheless, the measured thermo-physical propertiesmore » of the ternary and the two binary mixtures are compared. Liquid heat capacities of both the ternary and binary salts were determined by using DSC with sapphire as the standard reference. The average heat capacity of the ternary mixture was recorded as 1.18 J g-1 K-1. The mass loss of the molten eutectic salts was studied up to 1000 degrees C using a thermogravimetric analyser in nitrogen, argon and air. The results showed a significant mass loss due to vaporisation in an open system, particularly above 700 degrees C. However, simulation of mass loss in a closed system with an inert cover gas indicates storage temperatures above 700 degrees C may be feasible, and highlights the importance of the design of the storage tank system. In terms of storage material cost, the NaKMg-Cl mixture is approximately 4.5 USD/kWh, which is 60% cheaper than current state-of-the-art nitrate salt mixtures.« less
Molecular dynamics study of polysaccharides in binary solvent mixtures of an ionic liquid and water.
Liu, Hanbin; Sale, Kenneth L; Simmons, Blake A; Singh, Seema
2011-09-01
Some ionic liquids (ILs) have great promise as effective solvents for biomass pretreatment, and there are several that have been reported that can dissolve large amounts of cellulose. The solubilized cellulose can then be recovered by addition of antisolvents, such as water or ethanol, and this regeneration process plays an important role in the subsequent enzymatic saccharification reactions and in the recovery of the ionic liquid. To date, little is known about the fundamental intermolecular interactions that drive the dissolution and subsequent regeneration of cellulose in complex mixtures of ionic liquids, water, and cellulose. To investigate these interactions, in this work, molecular dynamics (MD) simulations were carried out to study binary and ternary mixtures of the ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) with water and a cellulose oligomer. Simulations of a cellulose oligomer dissolved in three concentrations of binary mixtures of [C2mim][OAc] and water were used to represent the ternary system in the dissolution phase (high [C2mim][OAc] concentration) and present during the initial phase of the regeneration step (intermediate and low [C2mim][OAc] concentrations). The MD analysis of the structure and dynamics that exist in these binary and ternary mixtures provides information on the key intermolecular interactions between cellulose and [C2mim][OAc] that lead to dissolution of cellulose and the key intermolecular interactions in the intermediate states of cellulose precipitation as a function of water content in the cellulose/IL/water system. The analysis of this intermediate state provides new insight into the molecular driving forces present in this ternary system. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Abidin, Nurul Hafizah Zainal; Mokhtar, Nor Fadzillah Mohd; Majid, Zanariah Abdul; Ghani, Siti Salwa Abd
2017-11-01
Temperature dependent viscosity and Coriolis force were applied to the steady Benard-Marangoni convection where the lower boundary of a horizontal layer of the binary mixture is heated from below and cooled from above. The purpose of this paper is to study in detail the onset of convection with these effects. Few cases of boundary conditions are studied which are rigid-rigid, rigid-free and free-free representing the lower-upper boundaries. A detailed numerical calculation of the marginal stability curves was performed by using the Galerkin method and it is showed that temperature dependent viscosity and Soret number destabilize the binary fluid layer system and Taylor number act oppositely.
Pan, Xiaohong; Julian, Thomas; Augsburger, Larry
2006-02-10
Differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRPD) methods were developed for the quantitative analysis of the crystallinity of indomethacin (IMC) in IMC and silica gel (SG) binary system. The DSC calibration curve exhibited better linearity than that of XRPD. No phase transformation occurred in the IMC-SG mixtures during DSC measurement. The major sources of error in DSC measurements were inhomogeneous mixing and sampling. Analyzing the amount of IMC in the mixtures using high-performance liquid chromatography (HPLC) could reduce the sampling error. DSC demonstrated greater sensitivity and had less variation in measurement than XRPD in quantifying crystalline IMC in the IMC-SG binary system.
Bioethanol production optimization: a thermodynamic analysis.
Alvarez, Víctor H; Rivera, Elmer Ccopa; Costa, Aline C; Filho, Rubens Maciel; Wolf Maciel, Maria Regina; Aznar, Martín
2008-03-01
In this work, the phase equilibrium of binary mixtures for bioethanol production by continuous extractive process was studied. The process is composed of four interlinked units: fermentor, centrifuge, cell treatment unit, and flash vessel (ethanol-congener separation unit). A proposal for modeling the vapor-liquid equilibrium in binary mixtures found in the flash vessel has been considered. This approach uses the Predictive Soave-Redlich-Kwong equation of state, with original and modified molecular parameters. The congeners considered were acetic acid, acetaldehyde, furfural, methanol, and 1-pentanol. The results show that the introduction of new molecular parameters r and q in the UNIFAC model gives more accurate predictions for the concentration of the congener in the gas phase for binary and ternary systems.
Picosecond solvation dynamics—A potential viewer of DMSO—Water binary mixtures
NASA Astrophysics Data System (ADS)
Banik, Debasis; Kundu, Niloy; Kuchlyan, Jagannath; Roy, Arpita; Banerjee, Chiranjib; Ghosh, Surajit; Sarkar, Nilmoni
2015-02-01
In this work, we have investigated the composition dependent anomalous behavior of dimethyl sulfoxide (DMSO)-water binary mixture by collecting the ultrafast solvent relaxation response around a well known solvation probe Coumarin 480 (C480) by using a femtosecond fluorescence up-conversion spectrometer. Recent molecular dynamics simulations have predicted two anomalous regions of DMSO-water binary mixture. Particularly, these studies encourage us to investigate the anomalies from experimental background. DMSO-water binary mixture has repeatedly given evidences of its dual anomalous nature in front of our systematic investigation through steady-state and time-resolved measurements. We have calculated average solvation times of C480 by two individual well-known methods, among them first one is spectral-reconstruction method and another one is single-wavelength measurement method. The results of both the methods roughly indicate that solvation time of C480 reaches maxima in the mole fraction of DMSO XD = 0.12-0.17 and XD = 0.27-0.35, respectively. Among them, the second region (XD = 0.27-0.35) is very common as most of the thermodynamic properties exhibit deviation in this range. Most probably, the anomalous solvation trend in this region is fully guided by the shear viscosity of the medium. However, the first region is the most interesting one. In this region due to formation of strongly hydrogen bonded 1DMSO:2H2O complexes, hydration around the probe C480 decreases, as a result of which solvation time increases.
NASA Astrophysics Data System (ADS)
Bluhm, P.; Jones, M. I.; Vanzi, L.; Soto, M. G.; Vos, J.; Wittenmyer, R. A.; Drass, H.; Jenkins, J. S.; Olivares, F.; Mennickent, R. E.; Vučković, M.; Rojo, P.; Melo, C. H. F.
2016-10-01
We report the discovery of 24 spectroscopic binary companions to giant stars. We fully constrain the orbital solution for 6 of these systems. We cannot unambiguously derive the orbital elements for the remaining stars because the phase coverage is incomplete. Of these stars, 6 present radial velocity trends that are compatible with long-period brown dwarf companions. The orbital solutions of the 24 binary systems indicate that these giant binary systems have a wide range in orbital periods, eccentricities, and companion masses. For the binaries with restricted orbital solutions, we find a range of orbital periods of between ~97-1600 days and eccentricities of between ~0.1-0.4. In addition, we studied the metallicity distribution of single and binary giant stars. We computed the metallicity of a total of 395 evolved stars, 59 of wich are in binary systems. We find a flat distribution for these binary stars and therefore conclude that stellar binary systems, and potentially brown dwarfs, have a different formation mechanism than planets. This result is confirmed by recent works showing that extrasolar planets orbiting giants are more frequent around metal-rich stars. Finally, we investigate the eccentricity as a function of the orbital period. We analyzed a total of 130 spectroscopic binaries, including those presented here and systems from the literature. We find that most of the binary stars with periods ≲30 days have circular orbits, while at longer orbital periods we observe a wide spread in their eccentricities. Based on observations collected at La Silla - Paranal Observatory under programs IDs IDs 085.C-0557, 087.C.0476, 089.C-0524, 090.C-0345, 096.A-9020 and through the Chilean Telescope Time under programs IDs CN2012A-73, CN2012B-47, CN2013A-111, CN2013B-51, CN2014A-52 and CN2015A-48.
DOE Office of Scientific and Technical Information (OSTI.GOV)
John E. Aston; William A. Apel; Brady D. Lee
2010-12-01
The current study reports the single and combined toxicities of Pb, Zn, and Cu to Acidithiobacillus caldus strain BC13. The observed half-maximal inhibitory concentrations (IC50),?±?95% confidence intervals, for Pb, Zn, and Cu were 0.9?±?0.1?mM, 39?±?0.5?mM, and 120?±?8?mM, respectively. The observed minimum inhibitory concentrations (MIC) for Pb, Zn, and Cu were 7.5?mM, 75?mM, and 250?mM, respectively. When metals were presented in binary mixtures, the toxicities were less than additive. For example, when 50% of the Pb MIC and 50% of the Cu MIC were presented together, the specific growth rate was inhibited by only 59?±?3%, rather than 100%. In addition, themore » presence of ferrous iron in the growth media decreased Pb and Zn toxicity to A. caldus strain BC13. The importance of inoculum history was evaluated by pre-adapting cultures through subsequent transfers in the presence of Pb, Zn, and Cu at their respective IC50s. After pre-adaptation, cultures had specific growth rates 39?±?11, 32?±?7, and 28?±?12% higher in the presence of Pb, Zn, and Cu IC50s, respectively, compared with cultures that had not been pre-adapted. In addition, when cells exposed to the MICs of Pb, Zn, and Cu were harvested, washed, and re-inoculated into fresh, metal-free medium, they grew, showing that the cells remained viable with little residual toxicity. Finally, metal chlorides showed more toxicity than metal sulfates, and studies using sodium chloride or a mixture of metal sulfates and sodium chloride suggested that this was attributable to an additive combination of the metal and chloride toxicities. Environ. Toxicol. Chem. 2010;29:2669–2675. © 2010 SETAC« less
Aston, John E; Peyton, Brent M; Lee, Brady D; Apel, William A
2010-12-01
The current study reports the single and combined toxicities of Pb, Zn, and Cu to Acidithiobacillus caldus strain BC13. The observed half-maximal inhibitory concentrations (IC50), ± 95% confidence intervals, for Pb, Zn, and Cu were 0.9 ± 0.1 mM, 39 ± 0.5 mM, and 120 ± 8 mM, respectively. The observed minimum inhibitory concentrations (MIC) for Pb, Zn, and Cu were 7.5 mM, 75 mM, and 250 mM, respectively. When metals were presented in binary mixtures, the toxicities were less than additive. For example, when 50% of the Pb MIC and 50% of the Cu MIC were presented together, the specific growth rate was inhibited by only 59 ± 3%, rather than 100%. In addition, the presence of ferrous iron in the growth media decreased Pb and Zn toxicity to A. caldus strain BC13. The importance of inoculum history was evaluated by pre-adapting cultures through subsequent transfers in the presence of Pb, Zn, and Cu at their respective IC50s. After pre-adaptation, cultures had specific growth rates 39 ± 11, 32 ± 7, and 28 ± 12% higher in the presence of Pb, Zn, and Cu IC50s, respectively, compared with cultures that had not been pre-adapted. In addition, when cells exposed to the MICs of Pb, Zn, and Cu were harvested, washed, and re-inoculated into fresh, metal-free medium, they grew, showing that the cells remained viable with little residual toxicity. Finally, metal chlorides showed more toxicity than metal sulfates, and studies using sodium chloride or a mixture of metal sulfates and sodium chloride suggested that this was attributable to an additive combination of the metal and chloride toxicities. Copyright © 2010 SETAC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarvis, Ian W.H., E-mail: Ian.Jarvis@ki.se; Bergvall, Christoffer, E-mail: Christoffer.Bergvall@anchem.su.se; Bottai, Matteo, E-mail: Matteo.Bottai@ki.se
2013-02-01
Complex mixtures of polycyclic aromatic hydrocarbons (PAHs) are present in air particulate matter (PM) and have been associated with many adverse human health effects including cancer and respiratory disease. However, due to their complexity, the risk of exposure to mixtures is difficult to estimate. In the present study the effects of binary mixtures of benzo[a]pyrene (BP) and dibenzo[a,l]pyrene (DBP) and complex mixtures of PAHs in urban air PM extracts on DNA damage signaling was investigated. Applying a statistical model to the data we observed a more than additive response for binary mixtures of BP and DBP on activation of DNAmore » damage signaling. Persistent activation of checkpoint kinase 1 (Chk1) was observed at significantly lower BP equivalent concentrations in air PM extracts than BP alone. Activation of DNA damage signaling was also more persistent in air PM fractions containing PAHs with more than four aromatic rings suggesting larger PAHs contribute a greater risk to human health. Altogether our data suggests that human health risk assessment based on additivity such as toxicity equivalency factor scales may significantly underestimate the risk of exposure to complex mixtures of PAHs. The data confirms our previous findings with PAH-contaminated soil (Niziolek-Kierecka et al., 2012) and suggests a possible role for Chk1 Ser317 phosphorylation as a biological marker for future analyses of complex mixtures of PAHs. -- Highlights: ► Benzo[a]pyrene (BP), dibenzo[a,l]pyrene (DBP) and air PM PAH extracts were compared. ► Binary mixture of BP and DBP induced a more than additive DNA damage response. ► Air PM PAH extracts were more potent than toxicity equivalency factor estimates. ► Larger PAHs (> 4 rings) contribute more to the genotoxicity of PAHs in air PM. ► Chk1 is a sensitive marker for persistent activation of DNA damage signaling from PAH mixtures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gábelová, Alena, E-mail: alena.gabelova@savba.sk; Poláková, Veronika; Prochazka, Gabriela
To gain a deeper insight into the potential interactions between individual aromatic hydrocarbons in a mixture, several benzo[a]pyrene (B[a]P) and 7H-dibenzo[c,g]carbazole (DBC) binary mixtures were studied. The biological activity of the binary mixtures was investigated in the HepG2 and WB-F344 liver cell lines and the Chinese hamster V79 cell line that stably expresses the human cytochrome P4501A1 (hCYP1A1). In the V79 cells, binary mixtures, in contrast to individual carcinogens, caused a significant decrease in the levels of micronuclei, DNA adducts and gene mutations, but not in cell survival. Similarly, a lower frequency of micronuclei and levels of DNA adducts weremore » found in rat liver WB-F344 cells treated with a binary mixture, regardless of the exposure time. The observed antagonism between B[a]P and DBC may be due to an inhibition of Cyp1a1 expression because cells exposed to B[a]P:DBC showed a decrease in Cyp1a1 mRNA levels. In human liver HepG2 cells exposed to binary mixtures for 2 h, a reduction in micronuclei frequency was also found. However, after a 24 h treatment, synergism between B[a]P and DBC was determined based on DNA adduct formation. Accordingly, the up-regulation of CYP1A1 expression was detected in HepG2 cells exposed to B[a]P:DBC. Our results show significant differences in the response of human and rat cells to B[a]P:DBC mixtures and stress the need to use multiple experimental systems when evaluating the potential risk of environmental pollutants. Our data also indicate that an increased expression of CYP1A1 results in a synergistic effect of B[a]P and DBC in human cells. As humans are exposed to a plethora of noxious chemicals, our results have important implications for human carcinogenesis. - Highlights: • B[a]P:DBC mixtures were less genotoxic in V79MZh1A1 cells than B[a]P and DBC alone. • An antagonism between B[a]P and DBC was determined in rat liver WB-F344 cells. • The inhibition of CYP1a1 expression by B[a]P:DBC mixture underlies this antagonism. • A synergism between B[a]P and DBC was detected in human liver HepG2 cells. • The up-regulation of CYP1A1 expression was found in B[a]P:DBC-exposed HepG2 cells.« less
Xia, Qing; Lamb, Dane; Peng, Cheng; Ng, Jack C
2017-02-01
Interaction effects of As, Cd and Pb on their respective bioaccessibility in co-contaminated soils were reported. In addition, the influence of aging time (up to 90 days) on potential interactions was also investigated. Experiments were carried out by spiking four diverse soils with single, binary or ternary mixtures of As, Cd and Pb. Soils were measured for bioaccessibility at different aging periods. Results demonstrate that bioaccessibility of As, Cd and Pb reached a steady state after soils were aged for 30 days. Bioaccessibility of As, Cd and Pb in soils spiked with binary mixtures of As, Cd and Pb were not affected by the other co-existing metal/metalloid. But when As, Cd and Pb were introduced together to acidic soils which lacked abundant binding sites, intestinal bioaccessibility of Cd was increased at the early stage of aging (7 to 30 days) whilst bioaccessibility of As and Pb remained unchanged. However, when Pb and As were added after Cd has been incubated in soil for 7 days, Cd intestinal bioaccessibility was not influenced by As and Pb. Therefore, a number of factors should be taken into consideration when estimating the bioaccessibility of mixed As, Cd and Pb, including the loadings of As, Cd and Pb in soils, the time for which they have been aged together and the time period between As, Cd and Pb entering the soils.
Studying of crystal growth and overall crystallization of naproxen from binary mixtures.
Kaminska, E; Madejczyk, O; Tarnacka, M; Jurkiewicz, K; Kaminski, K; Paluch, M
2017-04-01
Broadband dielectric spectroscopy (BDS) and differential scanning calorimetry (DSC) were applied to investigate the molecular dynamics and phase transitions in binary mixtures composed of naproxen (NAP) and acetylated saccharides: maltose (acMAL) and sucrose (acSUC). Moreover, the application of BDS method and optical microscopy enabled us to study both crystallization kinetics and crystal growth of naproxen from the solid dispersions with the highest content of modified carbohydrates (1:5wt ratio). It was found that the activation barriers of crystallization estimated from dielectric measurements are completely different for both studied herein mixtures. Much higher E a (=205kJ/mol) was obtained for NAP-acMAL solid dispersion. It is probably due to simultaneous crystallization of both components of the mixture. On the other hand, lower value of E a in the case of NAP-acSUC solid dispersion (81kJ/mol) indicated, that naproxen is the only crystallizing compound. This hypothesis was confirmed by X-ray diffraction studies. We also suggested that specific intermolecular dipole-dipole interactions between active substance and excipient may be an alternative explanation for the difference between activation barrier obtained for NAP-acMAL and NAP-acSUC binary mixtures. Furthermore, optical measurements showed that the activation energy for crystal growth of naproxen increases in binary mixtures. They also revealed that both excipients: acMAL and acSUC move the temperature of the maximum of crystal growth towards lower temperatures. Interestingly, this maximum occurs for nearly the same structural relaxation time, which is a good approximation of viscosity, for all samples. Finally, it was also noticed that although naproxen crystallizes to the same polymorphic form in both systems, there are some differences in morphology of obtained crystals. Thus, the observed behavior may have a significant impact on the bioavailability and dissolution rate of API produced in that way. Copyright © 2016 Elsevier B.V. All rights reserved.
Turak, Fatma; Dinç, Mithat; Dülger, Öznur; Özgür, Mahmure Ustun
2014-01-01
Four simple, rapid, and accurate spectrophotometric methods were developed for the simultaneous determination of two food colorants, Carmoisine (E122) and Ponceau 4R (E124), in their binary mixtures and soft drinks. The first method is based on recording the first derivative curves and determining each component using the zero-crossing technique. The second method uses the first derivative of ratio spectra. The ratio spectra are obtained by dividing the absorption spectra of the binary mixture by that of one of the components. The third method, derivative differential procedure, is based on the measurement of difference absorptivities derivatized in first order of solution of drink samples in 0,1 N NaOH relative to that of an equimolar solution in 0,1 N HCl at wavelengths of 366 and 451 nm for Carmoisine and Ponceau 4R, respectively. The last method, based on the compensation method is presented for derivative spectrophotometric determination of E122 and E124 mixtures with overlapping spectra. By using ratios of the derivative maxima, the exact compensation of either component in the mixture can be achieved, followed by its determination. These proposed methods have been successfully applied to the binary mixtures and soft drinks and the results were statistically compared with the reference HPLC method (NMKL 130). PMID:24672549
Hunt, T.K.; Novak, R.F.
1991-05-07
An improved active metal braze filler material is provided in which the coefficient of thermal expansion of the braze filler is more closely matched with that of the ceramic and metal, or two ceramics, to provide ceramic to metal, or ceramic to ceramic, sealed joints and articles which can withstand both high temperatures and repeated thermal cycling without failing. The braze filler material comprises a mixture of a material, preferably in the form of a powder, selected from the group consisting of molybdenum, tungsten, silicon carbide and mixtures thereof, and an active metal filler material selected from the group consisting of alloys or mixtures of nickel and titanium, alloys or mixtures of nickel and zirconium, alloys or mixtures of nickel, titanium, and copper, alloys or mixtures of nickel, titanium, and zirconium, alloys or mixtures of niobium and nickel, alloys or mixtures of niobium and zirconium, alloys or mixtures of niobium and titanium, alloys or mixtures of niobium, titanium, and nickel, alloys or mixtures of niobium, zirconium, and nickel, and alloys or mixtures of niobium, titanium, zirconium, and nickel. The powder component is selected such that its coefficient of thermal expansion will effect the overall coefficient of thermal expansion of the braze material so that it more closely matches the coefficients of thermal expansion of the ceramic and metal parts to be joined. 3 figures.
Hunt, Thomas K.; Novak, Robert F.
1991-01-01
An improved active metal braze filler material is provided in which the coefficient of thermal expansion of the braze filler is more closely matched with that of the ceramic and metal, or two ceramics, to provide ceramic to metal, or ceramic to ceramic, sealed joints and articles which can withstand both high temperatures and repeated thermal cycling without failing. The braze filler material comprises a mixture of a material, preferably in the form of a powder, selected from the group consisting of molybdenum, tungsten, silicon carbide and mixtures thereof, and an active metal filler material selected from the group consisting of alloys or mixtures of nickel and titanium, alloys or mixtures of nickel and zirconium, alloys or mixtures of nickel, titanium, and copper, alloys or mixtures of nickel, titanium, and zirconium, alloys or mixtures of niobium and nickel, alloys or mixtures of niobium and zirconium, alloys or mixtures of niobium and titanium, alloys or mixtures of niobium, titanium, and nickel, alloys or mixtures of niobium, zirconium, and nickel, and alloys or mixtures of niobium, titanium, zirconium, and nickel. The powder component is selected such that its coefficient of thermal expansion will effect the overall coefficient of thermal expansion of the braze material so that it more closely matches the coefficients of thermal expansion of the ceramic and metal parts to be joined.
An experimental study of adsorption interference in binary mixtures flowing through activated carbon
NASA Technical Reports Server (NTRS)
Madey, R.; Photinos, P. J.
1983-01-01
The isothermal transmission through activated carbon adsorber beds at 25 C of acetaldehyde-propane and acetylene-ethane mixtures in a helium carrier gas was measured. The inlet concentration of each component was in the range between 10 ppm and 500 ppm. The constant inlet volumetric flow rate was controlled at 200 cc (STP)/min in the acetaldehyde-propane experiments and at 50 cc (STP)/min in the acetaldehyde-ethane experiments. Comparison of experimental results with the corresponding single-component experiments under similar conditions reveals interference phenomena between the components of the mixtures as evidenced by changes in both the adsorption capacity and the dispersion number. Propane was found to displace acetaldehyde from the adsorbed state. The outlet concentration profiles of propane in the binary mixtures tend to become more diffuse than the corresponding concentration profiles of the one-component experiments. Similar features were observed with mixtures of acetylene and ethane; however, the displacement of acetylene by ethane is less pronounced.
Duan, Erhong; Guo, Bin; Zhang, Miaomiao; Guan, Yanan; Sun, Hua; Han, Jing
2011-10-30
The solubility of SO(2) in a binary mixture of water and caprolactam tetrabutyl ammonium bromide ionic liquid (CPL-TBAB IL) was investigated. Though the ionic liquid and water were fully miscible, a phase separation occurred when SO(2) was introduced into the mixture. The SO(2) concentrated in the lower layer, and it could be released by heating the solution under reduced pressure (382.2K, 10.1 kPa). After desorption, the mixture could be reused to absorb SO(2). It was found that SO(2) acts as a switch to cause the water and CPL-TBAB IL to phase separate, and the mechanics of this phase separation process was studied by gas chromatography-mass spectrometry, fourier transform-infrared spectroscopy and Karl-Fisher titration. The absorption and desorption of SO(2) in the CPL-TBAB/water mixtures were reversible. Copyright © 2011 Elsevier B.V. All rights reserved.
Cosolvent effect on the dynamics of water in aqueous binary mixtures
NASA Astrophysics Data System (ADS)
Zhang, Xia; Zhang, Lu; Jin, Tan; Zhang, Qiang; Zhuang, Wei
2018-04-01
Water rotational dynamics in the mixtures of water and amphiphilic molecules, such as acetone and dimethyl sulfoxide (DMSO), measured by femtosecond infrared, often vary non-monotonically as the amphiphilic molecule's molar fraction changes from 0 to 1. Recent study has attributed the non-ideal water rotation with concentration in DMSO-water mixtures to different microscopic hydrophilic-hydrophobic segregation structure in water-rich and water-poor mixtures. Interestingly, the acetone molecule has very similar molecular structure to DMSO, but the extremum of the water rotational time in the DMSO-water mixtures significantly shifts to lower concentration and the rotation of water is much faster than those in acetone-water mixtures. The simulation results here shows that the non-ideal rotational dynamics of water in both mixtures are due to the frame rotation during the interval of hydrogen bond (HB) switchings. A turnover of the frame rotation with concentration takes place as the structure transition of mixture from the hydrogen bond percolation structure to the hydrophobic percolation structure. The weak acetone-water hydrogen bond strengthens the hydrophobic aggregation and accelerates the relaxation of the hydrogen bond, so that the structure transition takes places at lower concentration and the rotation of water is faster in acetone-water mixture than in DMSO-water mixture. A generally microscopic picture on the mixing effect on the water dynamics in binary aqueous mixtures is presented here.
NASA Astrophysics Data System (ADS)
Shah, N. S.; Vankar, H. P.; Rana, V. A.
2018-05-01
Static permittivity (ɛ0) and permittivity at optical frequency (ɛ∞) of the Benzaldehyde (BZ), Methanol (MeOH) and their binary mixtures were measured in the temperature range from 293.15 K to 323.15 K (in the interval of 10 K). From the ɛ0 and ɛ∞ other parameters such as effective Kirkwood correlation factor (geff), corrective Kirkwood correction factor (gf), Bruggman factor (fB), excess permittivity (ɛ0E ) and permittivity at optical frequency (ɛ∞E ) were evaluated.
Pesticides are nearly ubiquitous in surface waters of the United States, where they often are found as mixtures. The molecular mechanisms underlying the toxic effects of sub-lethal exposure to pesticides as both individual and mixtures are unclear. The current work aims to ident...
An odorant congruent with a colour cue is selectively perceived in an odour mixture.
Arao, Mari; Suzuki, Maya; Katayama, Jun'ich; Akihiro, Yagi
2012-01-01
Odour identification can be influenced by colour cues. This study examined the mechanism underlying this colour context effect. We hypothesised that a specific odour component congruent with a colour would be selectively perceived in preference to another odour component in a binary odour mixture. We used a ratio estimation method under two colour conditions, a binary odour mixture (experiment 1) and single chemicals presented individually (experiment 2). Each colour was congruent with one of the odour components. Participants judged the perceived mixture ratio in each odour container on which a colour patch was pasted. An influence of colour was not observed when the odour stimulus did not contain the odour component congruent with the colour (experiment 2); however, the odour component congruent with the colour was perceived as more dominant when the odour stimulus did contain the colour-congruent odorant (experiment 1). This pattern indicates that a colour-congruent odour component is selectively perceived in an odour mixture. This finding suggests that colours can enhance the perceptual representation of the colour-associated component in an odour mixture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adebambo, Oluwadamilare A.; Ray, Paul D.; Shea, Damian
Exposure to elevated levels of the toxic metals inorganic arsenic (iAs) and cadmium (Cd) represents a major global health problem. These metals often occur as mixtures in the environment, creating the potential for interactive or synergistic biological effects different from those observed in single exposure conditions. In the present study, environmental mixtures collected from two waste sites in China and comparable mixtures prepared in the laboratory were tested for toxicogenomic response in placental JEG-3 cells. These cells serve as a model for evaluating cellular responses to exposures during pregnancy. One of the mixtures was predominated by iAs and one bymore » Cd. Six gene biomarkers were measured in order to evaluate the effects from the metal mixtures using dose and time-course experiments including: heme oxygenase 1 (HO-1) and metallothionein isoforms (MT1A, MT1F and MT1G) previously shown to be preferentially induced by exposure to either iAs or Cd, and metal transporter genes aquaporin-9 (AQP9) and ATPase, Cu{sup 2+} transporting, beta polypeptide (ATP7B). There was a significant increase in the mRNA expression levels of ATP7B, HO-1, MT1A, MT1F, and MT1G in mixture-treated cells compared to the iAs or Cd only-treated cells. Notably, the genomic responses were observed at concentrations significantly lower than levels found at the environmental collection sites. These data demonstrate that metal mixtures increase the expression of gene biomarkers in placental JEG-3 cells in a synergistic manner. Taken together, the data suggest that toxic metals that co-occur may induce detrimental health effects that are currently underestimated when analyzed as single metals. - Highlights: • Toxicogenomic responses of environmental metal mixtures assessed • Induction of ATP7B, HO-1, MT1A, MT1F and MT1G by metal mixtures observed in placental cells • Higher gene induction in response to metal mixtures versus single metal treatments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abe, Yoshiyuki; Iwasaki, Akira
1999-07-01
Although non-azeotropic mixtures are considered to be promising working fluids in advanced energy conversion systems, the primary technical problems in the heat transfer degradation in phase change processes cause economical handicap to wide-spread applications. The boiling behavior of mixtures still remains a number of basic questions being not answered yet, and the present authors believe that the most essential information for the boiling process in non-azeotropic mixtures is how temperature and concentration profiles are developed around the bubbles. The present study attempts at understanding fundamental heat and mass transfer mechanisms in nucleate pool boiling of non-azeotropic binary mixtures, and withmore » the knowledge to develop a passive boiling heat transfer enhancement eventually. To this end, the authors have employed microgravity environment for rather detailed observation around vapor bubbles in the course of boiling inception and bubble growth. A two-wavelength Mach-Zehnder interferometer has been developed, which withstands mechanical shock caused by gravity change from very low gravity of the order of 10{sup {minus}5} g to relatively high gravity of approximately 8 g exposed during deceleration period. A series of experiments on single vapor bubbles for CFC113 single component and CFC12/CFC112 non-azeotropic binary mixture have been conducted under a high quality microgravity conditions available in 10-second free-fall facility of Japan Microgravity Center (JAMIC). The results for single component liquid showed a strong influence due to Marangoni effect caused by the temperature profile around the bubble. The results for non-azeotropic binary mixture showed, however, considerably different behavior from single component liquid. Both temperature and concentration profiles around a single vapor bubble were evaluated from the interferograms. The temperature and concentration layers established around the bubbles were nearly one order of magnitude larger than those predicted by thermal diffusion and mass diffusion. The temperature and concentration profiles evaluated from the present experiments suggest the role of Marangoni effects due to both concentration profile and temperature profile around the bubble interface.« less
Finite-Size Effects of Binary Mutual Diffusion Coefficients from Molecular Dynamics
2018-01-01
Molecular dynamics simulations were performed for the prediction of the finite-size effects of Maxwell-Stefan diffusion coefficients of molecular mixtures and a wide variety of binary Lennard–Jones systems. A strong dependency of computed diffusivities on the system size was observed. Computed diffusivities were found to increase with the number of molecules. We propose a correction for the extrapolation of Maxwell–Stefan diffusion coefficients to the thermodynamic limit, based on the study by Yeh and Hummer (J. Phys. Chem. B, 2004, 108, 15873−15879). The proposed correction is a function of the viscosity of the system, the size of the simulation box, and the thermodynamic factor, which is a measure for the nonideality of the mixture. Verification is carried out for more than 200 distinct binary Lennard–Jones systems, as well as 9 binary systems of methanol, water, ethanol, acetone, methylamine, and carbon tetrachloride. Significant deviations between finite-size Maxwell–Stefan diffusivities and the corresponding diffusivities at the thermodynamic limit were found for mixtures close to demixing. In these cases, the finite-size correction can be even larger than the simulated (finite-size) Maxwell–Stefan diffusivity. Our results show that considering these finite-size effects is crucial and that the suggested correction allows for reliable computations. PMID:29664633
NASA Astrophysics Data System (ADS)
Attia, Khalid A. M.; Nassar, Mohammed W. I.; El-Zeiny, Mohamed B.; Serag, Ahmed
2016-03-01
Different chemometric models were applied for the quantitative analysis of amoxicillin (AMX), and flucloxacillin (FLX) in their binary mixtures, namely, partial least squares (PLS), spectral residual augmented classical least squares (SRACLS), concentration residual augmented classical least squares (CRACLS) and artificial neural networks (ANNs). All methods were applied with and without variable selection procedure (genetic algorithm GA). The methods were used for the quantitative analysis of the drugs in laboratory prepared mixtures and real market sample via handling the UV spectral data. Robust and simpler models were obtained by applying GA. The proposed methods were found to be rapid, simple and required no preliminary separation steps.
Heat Transfer and Pressure Drop in Concentric Annular Flows of Binary Inert Gas Mixtures
NASA Technical Reports Server (NTRS)
Reid, R. S.; Martin, J. J.; Yocum, D. J.; Stewart, E. T.
2007-01-01
Studies of heat transfer and pressure drop of binary inert gas mixtures flowing through smooth concentric circular annuli, tubes with fully developed velocity profiles, and constant heating rate are described. There is a general lack of agreement among the constant property heat transfer correlations for such mixtures. No inert gas mixture data exist for annular channels. The intent of this study was to develop highly accurate and benchmarked pressure drop and heat transfer correlations that can be used to size heat exchangers and cores for direct gas Brayton nuclear power plants. The inside surface of the annular channel is heated while the outer surface of the channel is insulated. Annulus ratios range 0.5 < r* < 0.83. These smooth tube data may serve as a reference to the heat transfer and pressure drop performance in annuli, tubes, and channels having helixes or spacer ribs, or other surfaces.
NASA Astrophysics Data System (ADS)
Wu, Zhiyan; Huang, Kama
2018-05-01
For the nonlinearly phenomena on the dielectric properties of dimethyl sulfoxide (DMSO)-ethanol mixtures under a low intensity microwave field, we propose a conjecture that there exist some abnormal molecular clusters. To interpret the mechanism of abnormal phenomena and confirm our conjecture about the existence of abnormal molecular clusters, an in-depth investigation about the structure evolutions of (DMSO)m(C2H5OH)n (m = 0-4; n = 0-4; m + n ≤ 4) molecular clusters induced by external electric fields has been given by using density functional theory. The results show that there exist some binary molecular clusters with large cluster radii in mixtures, and some of them are unstable under exposure of electric fields. It implies that the existence of certain abnormal molecular clusters in DMSO-ethanol mixtures results in their abnormality of dielectric properties.
The calculation of the phase equilibrium of the multicomponent hydrocarbon systems
NASA Astrophysics Data System (ADS)
Molchanov, D. A.
2018-01-01
Hydrocarbon mixtures filtration process simulation development has resulted in use of cubic equations of state of the van der Waals type to describe the thermodynamic properties of natural fluids under real thermobaric conditions. Binary hydrocarbon systems allow to simulate the fluids of different types of reservoirs qualitatively, what makes it possible to carry out the experimental study of their filtration features. Exploitation of gas-condensate reservoirs shows the possibility of existence of various two-phase filtration regimes, including self-oscillatory one, which occurs under certain values of mixture composition, temperature and pressure drop. Plotting of the phase diagram of the model mixture is required to determine these values. A software package to calculate the vapor-liquid equilibrium of binary systems using cubic equation of state of the van der Waals type has been created. Phase diagrams of gas-condensate model mixtures have been calculated.
Clough, Matthew T.; Crick, Colin R.; Gräsvik, John; Niedermeyer, Heiko; Whitaker, Oliver P.
2015-01-01
Ionic liquids have earned the reputation of being ‘designer solvents’ due to the wide range of accessible properties and the degree of fine-tuning afforded by varying the constituent ions. Mixtures of ionic liquids offer the opportunity for further fine-tuning of properties. A broad selection of common ionic liquid cations and anions are employed to create a sample of binary and reciprocal binary ionic liquid mixtures, which are analysed and described in this paper. Physical properties such as the conductivity, viscosity, density and phase behaviour (glass transition temperatures) are examined. In addition, thermal stabilities of the mixtures are evaluated. The physical properties examined for these formulations are found to generally adhere remarkably closely to ideal mixing laws, with a few consistent exceptions, allowing for the facile prediction and control of properties of ionic liquid mixtures. PMID:29560198
Physical properties of new binary antiferroelectric liquid crystal mixtures
NASA Astrophysics Data System (ADS)
Fitas, Jakub; Jaworska-Gołąb, Teresa; Deptuch, Aleksandra; Tykarska, Marzena; Kurp, Katarzyna; Żurowska, Magdalena; Marzec, Monika
2018-02-01
Three newly prepared binary mixtures exhibiting chiral tilted smectic phases have been studied using differential scanning calorimetry, dielectric spectroscopy and electro-optic method, as well as X-ray diffraction. Broad temperature range of ferroelectric and antiferroelectric phases was detected in these mixtures and temperature dependence of spontaneous polarization, tilt angle and switching time were measured for all of them. It's occurred that all of the studied mixtures are orthoconic antiferroelectric liquid crystals. Based on the X-ray diffraction results, the temperature dependence of layer thickness in the paraelectric, ferroelectric and antiferroelectric phases was found. By using dielectric spectroscopy, Goldstone mode was identified in the ferroelectric phase, while antiphase fluctuations of azimuthal angle have been found in the antiferroelectric phase. Based on the results of the complementary methods, the transition temperatures were found as well as the order of the para-ferroelectric phase transition was determined as non-continuous one with critical parameter β equal to ca. 0.25.
Marangoni Effects in the Boiling of Binary Fluid Mixtures
NASA Technical Reports Server (NTRS)
Ahmed, Sayeed; Carey, Van P.; Motil, Brian
1996-01-01
Results of very recent experimental studies indicate that during nucleate boiling in some binary mixture, Marangoni effects augment the gravity driven flow of liquid towards the heated surface. With gravity present, it is impossible to separate the two effects. The reduced gravity environment gives an unique opportunity to explore th role of Marangoni effects on the boiling mechanisms free of gravitational body forces that obscure the role of such effects. However, recent experimental results suggest that under reduced gravity conditions, Marangoni effects is the dominant mechanism of vapor-liquid exchange at the surface for some binary mixture. To further explore such effects, experiments have been conducted with water/2-propanol mixtures at three different concentrations under normal gravity with different orientations of the heater surface and under reduce gravity aboard the DC-9 aircraft at NASA Lewis Research Center. The system pressure was sub atmospheric (approx. 8 kP at 1g(n)) and the bulk liquid temperature varied from low subcooling to near saturation. The molar concentrations of 2-propanol tested were 0.015, 0.025, and 0.1. Boiling curves were obtained both for high gravity (approx. 2g(n)) and reduce gravity (approx. 0.01g(n)). For each concentration of 2-propanol, the critical heat flux has been determined in the flight experiments only for reduced gravity conditions. Comparison of boiling curves and CHF obtained under l-g(n) an reduced gravity indicates that boiling mechanism in this mixtures is nearly independent of gravity. The results also indicate that the Marangoni mechanism is strong enough in these mixtures to sustain the boiling under reduced gravity conditions.
Effects of binary taste stimuli on the neural activity of the hamster chorda tympani
1980-01-01
Binary mixtures of taste stimuli were applied to the tongue of the hamster and the reaction of the whole corda tympani was recorded. Some of the chemicals that were paired in mixtures (HCl, NH4Cl, NaCl, CaCl2, sucrose, and D-phenylalanine) have similar tastes to human and/or hamster, and/or common stimulatory effects on individual fibers of the hamster chorda tympani; other pairs of these chemicals have dissimilar tastes and/or distinct neural stimulatory effects. The molarity of each chemical with approximately the same effect on the activity of the nerve as 0.01 M NaCl was selected, and an established relation between stimulus concentration and response allowed estimation of the effect of a "mixture" of two concentrations of one chemical. Each mixture elicited a response that was smaller than the sum of the responses to its components. However, responses to some mixtures approached this sum, and responses to other mixtures closely approached the response to a "mixture" of two concentrations of one chemical. Responses of the former variety were generated by mixtures of an electrolyte and a nonelectrolyte and the latter by mixtures of two electrolytes or two nonelectrolytes. But, beyond the distinction between electrolytes and nonelectrolytes, the whole-nerve response to a mixture could not be predicted from the known neural or psychophysical effects of its components. PMID:7411114
Grillo, Claudia A; Alvarez, Florencia; Fernández Lorenzo de Mele, Mónica A
2016-01-01
This work is focused on the processes occurring at the bioabsorbable metallic biomaterial/cell interfaces that may lead to toxicity. A critical analysis of the results obtained when degradable metal disks (pure Mg and rare earth-containing alloys (ZEK100 alloys)) are in direct contact with cell culture and those obtained with indirect methods such as the use of metal salts and extracts was made. Viability was assessed by Acridine Orange dye, neutral red and clonogenic assays. The effects of concentration of corrosion products and possible joint effects of the binary and ternary combinations of La, Zn and Mg ions, as constituents of ZEK alloys, were evaluated on a mammalian cell culture. In all cases more detrimental effects were found for pure Mg than for the alloys. Experiments with disks showed that gradual alterations in pH and in the amount of corrosion products were better tolerated by cells and resulted in higher viability than abrupt changes. In addition, viability was dependent on the distance from the source of ions. Experiments with extracts showed that the effect of insoluble degradation products was highly detrimental. Indirect tests with Zn ions revealed that harmful effects may be found at concentrations ≥ 150 μM and at ≥ 100 μM in mixtures with Mg. These mixtures lead to more deleterious effects than single ions. Results highlight the need to develop a battery of tests to evaluate the biocompatibility of bioabsorbable biomaterials. Copyright © 2015 Elsevier B.V. All rights reserved.
Chang, Kyu-Sik; Shin, E-Hyun; Yoo, Dae-Hyun; Ahn, Young-Joon
2014-07-01
An assessment was made of the toxicity of 12 insecticides and three essential oils as well as Bacillus thuringiensis subsp. israelensis (Bti) alone or in combination with the oil major constituents (E)-anethole (AN), (E) -cinnamaldehyde (CA), and eugenol (EU; 1:1 ratio) to third instars of bamboo forest-collected Aedes albopictus (Skuse) and rice paddy field-collected Anopheles sinensis Wiedemann. An. sinensis larvae were resistant to various groups of the tested insecticides. Based on 24-h LC50 values, binary mixtures of Bti and CA, AN, or EU were significantly more toxic against Ae. albopictus larvae (0.0084, 0.0134, and 0.0237 mg/liter) and An. sinensis larvae (0.0159, 0.0388, and 0.0541 mg/liter) than either Bti (1.7884 and 2.1681 mg/liter) or CA (11.46 and 18.56 mg/liter), AN (16.66 and 25.11 mg/liter), or EU (24.60 and 31.09 mg/liter) alone. As judged by cotoxicity coefficient (CC) and synergistic factor (SF), the three binary mixtures operated in a synergy pattern (CC, 140.7-368.3 and SF, 0.0007-0.0010 for Ae. albopictus; CC, 75.1-245.3 and SF, 0.0008-0.0017 for An. sinensis). Global efforts to reduce the level of highly toxic synthetic insecticides in the aquatic environment justify further studies on the binary mixtures of Bti and essential oil constituents described, in particular CA, as potential larvicides for the control of malaria vector mosquito populations.
Lu, Xiaoqing; Jin, Dongliang; Wei, Shuxian; Zhang, Mingmin; Zhu, Qing; Shi, Xiaofan; Deng, Zhigang; Guo, Wenyue; Shen, Wenzhong
2015-01-21
The effect of edge-functionalization on the competitive adsorption of a binary CO2-CH4 mixture in nanoporous carbons (NPCs) has been investigated for the first time by combining density functional theory (DFT) and grand canonical Monte Carlo (GCMC) simulation. Our results show that edge-functionalization has a more positive effect on the single-component adsorption of CO2 than CH4, therefore significantly enhancing the selectivity of CO2 over CH4, in the order of NH2-NPC > COOH-NPC > OH-NPC > H-NPC > NPC at low pressure. The enhanced adsorption originates essentially from the effects of (1) the conducive environment with a large pore size and an effective accessible surface area, (2) the high electronegativity/electropositivity, (3) the strong adsorption energy, and (4) the large electrostatic contribution, due to the inductive effect/direct interaction of the embedded edge-functionalized groups. The larger difference from these effects results in the higher competitive adsorption advantage of CO2 in the binary CO2-CH4 mixture. Temperature has a negative effect on the gas adsorption, but no obvious influence on the electrostatic contribution on selectivity. With the increase of pressure, the selectivity of CO2 over CH4 first decreases sharply and subsequently flattens out to a constant value. This work highlights the potential of edge-functionalized NPCs in competitive adsorption, capture, and separation for the binary CO2-CH4 mixture, and provides an effective and superior alternative strategy in the design and screening of adsorbent materials for carbon capture and storage.
NASA Astrophysics Data System (ADS)
Lotfy, Hayam M.; Saleh, Sarah S.; Hassan, Nagiba Y.; Salem, Hesham
2015-02-01
This work presents the application of different spectrophotometric techniques based on two wavelengths for the determination of severely overlapped spectral components in a binary mixture without prior separation. Four novel spectrophotometric methods were developed namely: induced dual wavelength method (IDW), dual wavelength resolution technique (DWRT), advanced amplitude modulation method (AAM) and induced amplitude modulation method (IAM). The results of the novel methods were compared to that of three well-established methods which were: dual wavelength method (DW), Vierordt's method (VD) and bivariate method (BV). The developed methods were applied for the analysis of the binary mixture of hydrocortisone acetate (HCA) and fusidic acid (FSA) formulated as topical cream accompanied by the determination of methyl paraben and propyl paraben present as preservatives. The specificity of the novel methods was investigated by analyzing laboratory prepared mixtures and the combined dosage form. The methods were validated as per ICH guidelines where accuracy, repeatability, inter-day precision and robustness were found to be within the acceptable limits. The results obtained from the proposed methods were statistically compared with official ones where no significant difference was observed. No difference was observed between the obtained results when compared to the reported HPLC method, which proved that the developed methods could be alternative to HPLC techniques in quality control laboratories.
Bevilaqua, Tharly; da Silva, Domingas C; Machado, Vanderlei G
2004-03-01
The ET polarity values of 4-[(1-methyl-4(1H)-pyridinylidene)-ethylidene]-2,5-cyclohexadien-1-one (Brooker's merocyanine) were collected in mixed-solvent systems comprising a formamide [N,N-dimethylformamide (DMF), N-methylformamide (NMF) or formamide (FA)] and a hydroxylic (water, methanol, ethanol, propan-2-ol or butan-1-ol) solvent. Binary mixtures involving DMF and the other formamides (NMF and FA) as well as NMF and FA were also studied. These data were employed in the investigation of the preferential solvation (PS) of the probe. Each solvent system was analyzed in terms of both solute-solvent and solvent-solvent interactions. These latter interactions were responsible for the synergism observed in many binary mixtures. This synergistic behaviour was observed for DMF-propan-2-ol, DMF-butan-1-ol, FA-methanol, FA-ethanol and for the mixtures of the alcohols with NMF. All data were successfully fitted to a model based on solvent-exchange equilibria, which allowed the separation of the different contributions of the solvent species in the solvation shell of the dye. The results suggest that both hydrogen bonding and solvophobic interactions contribute to the formation of the solvent complexes responsible for the observed synergistic effects in the PS of the dye.
1986-02-01
determined by refractometry using a Bausch and Lomb Refractometer (Abbe 3-L). Refractive index calibrations for the binary mixtures examined are given in...mixture sample was taken and analyzed by refractometry . b. Results The results of the vapor pressure experiments and the Redlich- Kister coefficients
Diffuse interface method for a compressible binary fluid.
Liu, Jiewei; Amberg, Gustav; Do-Quang, Minh
2016-01-01
Multicomponent, multiphase, compressible flows are very important in real life, as well as in scientific research, while their modeling is in an early stage. In this paper, we propose a diffuse interface model for compressible binary mixtures, based on the balance of mass, momentum, energy, and the second law of thermodynamics. We show both analytically and numerically that this model is able to describe the phase equilibrium for a real binary mixture (CO_{2} + ethanol is considered in this paper) very well by adjusting the parameter which measures the attraction force between molecules of the two components in the model. We also show that the calculated surface tension of the CO_{2} + ethanol mixture at different concentrations match measurements in the literature when the mixing capillary coefficient is taken to be the geometric mean of the capillary coefficient of each component. Three different cases of two droplets in a shear flow, with the same or different concentration, are simulated, showing that the higher concentration of CO_{2} the smaller the surface tension and the easier the drop deforms.
Yusuf, Kareem; Badjah-Hadj-Ahmed, Ahmed Yacine; Aqel, Ahmad; ALOthman, Zeid Abdullah
2016-03-01
A monolithic capillary column containing a composite of metal-organic framework MIL-53(Al) incorporated into hexyl methacrylate-co-ethylene dimethacrylate was prepared to enhance the separation of mixtures of small aromatic compounds by using capillary liquid chromatography. The addition of 10 mg/mL MIL-53(Al) microparticles increased the micropore content in the monolithic matrix and increased the Brunauer-Emmett-Teller surface area from 26.92 to 85.12 m(2) /g. The presence of 1,4-benzenedicarboxylate moieties within the structure of MIL-53(Al) as an organic linker greatly influenced the separation of aromatic mixtures through π-π interactions. High-resolution separation was obtained for a series of alkylbenzenes (with resolution factors in the range 0.96-1.75) in less than 8 min, with 14 710 plates/m efficiency for propylbenzene, using a binary polar mobile phase of water/acetonitrile in isocratic mode. A reversed-phase separation mechanism was indicated by the increased retention factor and resolution as the water percentage in the mobile phase increased. A stability study on the composite column showed excellent mechanical stability under various conditions. The higher resolution and faster separation observed at increased temperature indicated an exothermic separation, whereas the negative values for the free energy change of transfer indicated a spontaneous process. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yang, Shengchao; Ye, Fanggui; Lv, Qinghui; Zhang, Cong; Shen, Shufen; Zhao, Shulin
2014-09-19
Metal-organic framework (MOF) HKUST-1 nanoparticles have been incorporated into poly(glycidyl methacrylate-co-ethylene dimethacrylate) (HKUST-1-poly(GMA-co-EDMA)) monoliths to afford stationary phases with enhanced chromatographic performance of small molecules in the reversed phase capillary liquid chromatography. The effect of HKUST-1 nanoparticles in the polymerization mixture on the performance of the monolithic column was explored in detail. While the bare poly(GMA-co-EDMA) monolith exhibited poor resolution (Rs<1.0) and low efficiency (800-16,300plates/m), addition of a small amount of HKUST-1 nanoparticles to the polymerization mixture provide high increased resolution (Rs≥1.3) and high efficiency ranged from 16,300 to 44,300plates/m. Chromatographic performance of HKUST-1-poly(GMA-co-EDMA) monolith was demonstrated by separation of various analytes including polycyclic aromatic hydrocarbons, ethylbenzene and styrene, phenols and aromatic acids using a binary polar mobile phase (CH3CN/H2O). The HKUST-1-poly(GMA-co-EDMA) monolith displayed enhanced hydrophobic and π-π interaction characteristics in the reversed phase separation of test analytes compared to the bare poly(GMA-co-EDMA) monolith. The experiment results showed that HKUST-1-poly(GMA-co-EDMA) monoliths are an alternative to enhance the chromatographic separation of small molecules. Copyright © 2014 Elsevier B.V. All rights reserved.
Dynamics of glycerine and water transport across human skin from binary mixtures.
Ventura, S A; Kasting, G B
2017-04-01
Skin transport properties of glycerine and water from binary mixtures contacting human skin were determined to better understand the mechanism of skin moisturization by aqueous glycerine formulations. Steady-state permeation for 3 H 2 O and 14 C-glycerine across split-thickness human skin in vitro and desorption dynamics of the same permeants in isolated human stratum corneum (HSC) were experimentally determined under near equilibrium conditions. These data were compared to a priori values developed in the context of a thermodynamic model for binary mixtures of glycerine and water and a previously determined water sorption isotherm for HSC. This allowed the estimation of diffusion and partition coefficients for each permeant in the HSC, as well as HSC thickness, as a function of composition of the contacting solution. These data may be used to estimate water retention and associated HSC swelling related to the absorption and slow release of glycerine from the skin. It took 6+ days for glycerine to completely desorb from HSC immersed in glycerine/water binary solutions. Desorption of both 3 H 2 O and 14 C-glycerine from HSC was slower in pure water than from binary mixtures, a result that is largely explained by the greater swelling of HSC in water. Parametric relationships were developed for water and glycerine intradiffusivities in HSC as functions of HSC water content, and a mutual diffusion coefficient was estimated by analogy with glycerine/water binary solutions. The intradiffusivity of 14 C-glycerine in HSC as inferred from sorption/desorption experiments was shown to be approximately 10-fold less than that inferred from permeation experiments, whereas the corresponding values for 3 H 2 O were comparable. These studies confirm that glycerine enters HSC in substantial quantities and has a long residence time therein. The coupling between bulk water and glycerine transport projected from binary solution data suggests the net effect of glycerine is to slow water loss from the skin. The data support the concept of glycerine as a humectant with an excellent balance of skin penetration and retention characteristics; however, they do not rule out the possibility of an additional biological effect on skin barrier homoeostasis. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Nys, Charlotte; Janssen, Colin R; De Schamphelaere, Karel A C
2017-01-01
Recently, several bioavailability-based models have been shown to predict acute metal mixture toxicity with reasonable accuracy. However, the application of such models to chronic mixture toxicity is less well established. Therefore, we developed in the present study a chronic metal mixture bioavailability model (MMBM) by combining the existing chronic daphnid bioavailability models for Ni, Zn, and Pb with the independent action (IA) model, assuming strict non-interaction between the metals for binding at the metal-specific biotic ligand sites. To evaluate the predictive capacity of the MMBM, chronic (7d) reproductive toxicity of Ni-Zn-Pb mixtures to Ceriodaphnia dubia was investigated in four different natural waters (pH range: 7-8; Ca range: 1-2 mM; Dissolved Organic Carbon range: 5-12 mg/L). In each water, mixture toxicity was investigated at equitoxic metal concentration ratios as well as at environmental (i.e. realistic) metal concentration ratios. Statistical analysis of mixture effects revealed that observed interactive effects depended on the metal concentration ratio investigated when evaluated relative to the concentration addition (CA) model, but not when evaluated relative to the IA model. This indicates that interactive effects observed in an equitoxic experimental design cannot always be simply extrapolated to environmentally realistic exposure situations. Generally, the IA model predicted Ni-Zn-Pb mixture toxicity more accurately than the CA model. Overall, the MMBM predicted Ni-Zn-Pb mixture toxicity (expressed as % reproductive inhibition relative to a control) in 85% of the treatments with less than 20% error. Moreover, the MMBM predicted chronic toxicity of the ternary Ni-Zn-Pb mixture at least equally accurately as the toxicity of the individual metal treatments (RMSE Mix = 16; RMSE Zn only = 18; RMSE Ni only = 17; RMSE Pb only = 23). Based on the present study, we believe MMBMs can be a promising tool to account for the effects of water chemistry on metal mixture toxicity during chronic exposure and could be used in metal risk assessment frameworks. Copyright © 2016 Elsevier Ltd. All rights reserved.
Method of CO and/or CO.sub.2 hydrogenation to higher hydrocarbons using doped mixed-metal oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shekhawat, Dushyant; Berry, David A.; Haynes, Daniel J.
2017-03-21
A method of hydrogenation utilizing a reactant gas mixture comprising a carbon oxide and a hydrogen agent, and a hydrogenation catalyst comprising a mixed-metal oxide containing metal sites supported and/or incorporated into the lattice. The mixed-metal oxide comprises a pyrochlore, a brownmillerite, or mixtures thereof doped at the A-site or the B-site. The metal site may comprise a deposited metal, where the deposited metal is a transition metal, an alkali metal, an alkaline earth metal, or mixtures thereof. Contact between the carbon oxide, hydrogen agent, and hydrogenation catalyst under appropriate conditions of temperature, pressure and gas flow rate generate amore » hydrogenation reaction and produce a hydrogenated product made up of carbon from the carbon oxide and some portion of the hydrogen agent. The carbon oxide may be CO, CO.sub.2, or mixtures thereof and the hydrogen agent may be H.sub.2. In a particular embodiment, the hydrogenated product comprises olefins, paraffins, or mixtures thereof.« less
Lebrun, Jérémie D; Uher, Emmanuelle; Fechner, Lise C
2017-12-01
Metals are usually present as mixtures at low concentrations in aquatic ecosystems. However, the toxicity and sub-lethal effects of metal mixtures on organisms are still poorly addressed in environmental risk assessment. Here we investigated the biochemical and behavioural responses of Gammarus fossarum to Cu, Cd, Ni, Pb and Zn tested individually or in mixture (M2X) at concentrations twice the levels of environmental quality standards (EQSs) from the European Water Framework Directive. The same metal mixture was also tested with concentrations equivalent to EQSs (M1X), thus in a regulatory context, as EQSs are proposed to protect aquatic biota. For each exposure condition, mortality, locomotion, respiration and enzymatic activities involved in digestive metabolism and moult were monitored over a 120h exposure period. Multi-metric variations were summarized by the integrated biomarker response index (IBR). Mono-metallic exposures shed light on biological alterations occurring at environmental exposure levels in gammarids and depending on the considered metal and gender. As regards mixtures, biomarkers were altered for both M2X and M1X. However, no additive or synergistic effect of metals was observed comparing to mono-metallic exposures. Indeed, bioaccumulation data highlighted competitive interactions between metals in M2X, decreasing subsequently their internalisation and toxicity. IBR values indicated that the health of gammarids was more impacted by M1X than M2X, because of reduced competitions and enhanced uptakes of metals for the mixture at lower, EQS-like concentrations. Models using bioconcentration data obtained from mono-metallic exposures generated successful predictions of global toxicity both for M1X and M2X. We conclude that sub-lethal effects of mixtures identified by the multi-biomarker approach can lead to disturbances in population dynamics of gammarids. Although IBR-based models offer promising lines of enquiry to predict metal mixture toxicity, further studies are needed to confirm their predictive quality on larger ranges of metallic combinations before their use in field conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
Low Pt content direct methanol fuel cell anode catalyst: nanophase PtRuNiZr
NASA Technical Reports Server (NTRS)
Whitacre, Jay F. (Inventor); Narayanan, Sekharipuram R. (Inventor)
2010-01-01
A method for the preparation of a metallic material having catalytic activity that includes synthesizing a material composition comprising a metal content with a lower Pt content than a binary alloy containing Pt but that displays at least a comparable catalytic activity on a per mole Pt basis as the binary alloy containing Pt; and evaluating a representative sample of the material composition to ensure that the material composition displays a property of at least a comparable catalytic activity on a per mole Pt basis as a representative binary alloy containing Pt. Furthermore, metallic compositions are disclosed that possess substantial resistance to corrosive acids.
Mesoporous metal oxides and processes for preparation thereof
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suib, Steven L.; Poyraz, Altug Suleyman
A process for preparing a mesoporous metal oxide, i.e., transition metal oxide. Lanthanide metal oxide, a post-transition metal oxide and metalloid oxide. The process comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to form the mesoporous metal oxide. A mesoporous metal oxide prepared by the above process. A method of controlling nano-sized wall crystallinity and mesoporosity in mesoporous metal oxides. The method comprises providing an acidic mixture comprising a metal precursor, an interface modifier,more » a hydrotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to control nano-sized wall crystallinity and mesoporosity in the mesoporous metal oxides. Mesoporous metal oxides and a method of tuning structural properties of mesoporous metal oxides.« less
Surface segregation in binary mixtures of imidazolium-based ionic liquids
NASA Astrophysics Data System (ADS)
Souda, Ryutaro
2010-09-01
Surface composition of binary mixtures of room-temperature ionic liquids has been investigated using time-of-flight secondary ion mass spectrometry at room temperature over a wide composition range. The imidazolium cations with longer aliphatic groups tend to segregate to the surface, and a bis(trifluoromethanesulfonyl)imide anion (Tf 2N -) is enriched at the surface relative to hexafluorophosphate (PF 6-). The surface of an equimolar mixture of Li[Tf 2N] and 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF 6]) has a nominal composition of [bmim][Tf 2N] because of surface segregation and ligand exchange. The surface segregation of cations and anions is likely to result from alignment of specific ligand-exchanged molecules at the topmost surface layer to exclude more hydrophobic part of the molecules.
Phase-transition oscillations induced by a strongly focused laser beam
NASA Astrophysics Data System (ADS)
Devailly, Clémence; Crauste-Thibierge, Caroline; Petrosyan, Artyom; Ciliberto, Sergio
2015-11-01
We report the observation of a surprising phenomenon consisting in a oscillating phase transition which appears in a binary mixture when this is enlightened by a strongly focused infrared laser beam. The mixture is poly-methyl-meth-acrylate (PMMA)-3-octanone, which has an upper critical solution temperature at Tc=306.6 K and volume fraction ϕc=12.8 % [Crauste et al., arXiv:1310.6720, 2013]. We describe the dynamical properties of the oscillations, which are produced by a competition between various effects: the local accumulation of PMMA produced by the laser beam, thermophoresis, and nonlinear diffusion. We show that the main properties of this kind of oscillations can be reproduced in the Landau theory for a binary mixture in which a local driving mechanism, simulating the laser beam, is introduced.
NASA Astrophysics Data System (ADS)
Roy, Mahendra Nath; Das, Rajesh Kumar; Chanda, Riju
2010-03-01
Densities and viscosities were measured for the binary mixtures of cyclohexylamine and cyclohexanone with butyl acetate, butanone, butylamine, tert-butylamine, and 2-butoxyethanol at 298.15 K over the entire composition range. From density data, the values of the excess molar volume ( V E) have been calculated. The experimental viscosity data were correlated by means of the equation of Grunberg-Nissan. The density and viscosity data have been analyzed in terms of some semiempirical viscosity models. The results are discussed in terms of molecular interactions and structural effects. The excess molar volume is found to be either negative or positive depending on the molecular interactions and the nature of the liquid mixtures and is discussed in terms of molecular interactions and structural changes.
Electrical properties of binary mixtures of amino silicone oil and methyl iso butyl ketone
NASA Astrophysics Data System (ADS)
Shah, K. N.; Rana, V. A.; Vankar, H. P.
2018-05-01
The real and imaginary parts of the dielectric function of the binary mixtures of the methyl iso butyl ketone and amino silicone oil in the frequency range 100 Hz to 2 MHz were measured using precision LCR meter at 305.15 K. The electrical properties such as electrical modulus M*(ω), electrical conductivity σ*(ω) and complex impedance Z*(ω) were calculated using the dielectric function ɛ*(ω). The ionic polarization relaxation time (Τσ) and D.C. conductivity (σdc) were also calculated using electrical properties. The ionic behavior of methyl iso butyl ketone and non-ionic behavior of amino silicone oil are also explained. The electrical parameters are used to gain information about the effect of concentration variation of components of the mixtures on the electrical properties.
Process feasibility study in support of silicon material, task 1
NASA Technical Reports Server (NTRS)
Li, K. Y.; Hansen, K. C.; Yaws, C. L.
1979-01-01
Analyses of process system properties were continued for materials involved in the alternate processes under consideration for semiconductor silicon. Primary efforts centered on physical and thermodynamic property data for dichlorosilane. The following property data are reported for dichlorosilane which is involved in processing operations for solar cell grade silicon: critical temperature, critical pressure, critical volume, critical density, acentric factor, vapor pressure, heat of vaporization, gas heat capacity, liquid heat capacity and density. Work was initiated on the assembly of a system to prepare binary gas mixtures of known proportions and to measure the thermal conductivity of these mixtures between 30 and 350 C. The binary gas mixtures include silicon source material such as silanes and halogenated silanes which are used in the production of semiconductor silicon.
NASA Astrophysics Data System (ADS)
Pizzirusso, Antonio; Brasiello, Antonio; De Nicola, Antonio; Marangoni, Alejandro G.; Milano, Giuseppe
2015-12-01
The first simulation study of the crystallisation of a binary mixture of triglycerides using molecular dynamics simulations is reported. Coarse-grained models of tristearin (SSS) and tripalmitin (PPP) molecules have been considered. The models have been preliminarily tested in the crystallisation of pure SSS and PPP systems. Two different quenching procedures have been tested and their performances have been analysed. The structures obtained from the crystallisation procedures show a high orientation order and a high content of molecules in the tuning fork conformation, comparable with the crystalline α phase. The behaviour of melting temperatures for the α phase of the mixture SSS/PPP obtained from the simulations is in qualitative agreement with the behaviour that was experimentally determined.
Odourant dominance in olfactory mixture processing: what makes a strong odourant?
Schubert, Marco; Sandoz, Jean-Christophe; Galizia, Giovanni; Giurfa, Martin
2015-01-01
The question of how animals process stimulus mixtures remains controversial as opposing views propose that mixtures are processed analytically, as the sum of their elements, or holistically, as unique entities different from their elements. Overshadowing is a widespread phenomenon that can help decide between these alternatives. In overshadowing, an individual trained with a binary mixture learns one element better at the expense of the other. Although element salience (learning success) has been suggested as a main explanation for overshadowing, the mechanisms underlying this phenomenon remain unclear. We studied olfactory overshadowing in honeybees to uncover the mechanisms underlying olfactory-mixture processing. We provide, to our knowledge, the most comprehensive dataset on overshadowing to date based on 90 experimental groups involving more than 2700 bees trained either with six odourants or with their resulting 15 binary mixtures. We found that bees process olfactory mixtures analytically and that salience alone cannot predict overshadowing. After normalizing learning success, we found that an unexpected feature, the generalization profile of an odourant, was determinant for overshadowing. Odourants that induced less generalization enhanced their distinctiveness and became dominant in the mixture. Our study thus uncovers features that determine odourant dominance within olfactory mixtures and allows the referring of this phenomenon to differences in neural activity both at the receptor and the central level in the insect nervous system. PMID:25652840
Long-time tails of the green-kubo integrands for a binary mixture
NASA Astrophysics Data System (ADS)
Wood, W. W.
1989-11-01
The long-time tails for the mutual diffusion coefficient, the thermal diffusivity, the thermal conductivity, and the shear and longitudinal viscosities (from which the tail of the bulk viscosity can be calculated) of a nonreactive binary mixture are calculated from mode-coupling theory, and compared with a prior calculation by Pomeau. Three different choices of the thermal forces and currents are considered, with the results found to take their simplest form in the case of the de Groot "double-primed set". The decompositions into the kinetic, potential, and cross terms are given.
Organosilica Membrane with Ionic Liquid Properties for Separation of Toluene/H₂ Mixture.
Hirota, Yuichiro; Maeda, Yohei; Yamamoto, Yusuke; Miyamoto, Manabu; Nishiyama, Norikazu
2017-08-03
In this study, we present a new concept in chemically stabilized ionic liquid membranes: an ionic liquid organosilica (ILOS) membrane, which is an organosilica membrane with ionic liquid-like properties. A silylated ionic liquid was used as a precursor for synthesis. The permselectivity, permeation mechanism, and stability of the membrane in the H₂/toluene binary system were then compared with a supported ionic liquid membrane. The membrane showed a superior separation factor of toluene/H₂ (>17,000) in a binary mixture system based on a solution-diffusion mechanism with improved durability over the supported ionic liquid membrane.
Solidification of a binary mixture
NASA Technical Reports Server (NTRS)
Antar, B. N.
1982-01-01
The time dependent concentration and temperature profiles of a finite layer of a binary mixture are investigated during solidification. The coupled time dependent Stefan problem is solved numerically using an implicit finite differencing algorithm with the method of lines. Specifically, the temporal operator is approximated via an implicit finite difference operator resulting in a coupled set of ordinary differential equations for the spatial distribution of the temperature and concentration for each time. Since the resulting differential equations set form a boundary value problem with matching conditions at an unknown spatial point, the method of invariant imbedding is used for its solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mapelli, Michela; Zampieri, Luca, E-mail: michela.mapelli@oapd.inaf.it
2014-10-10
We have run 600 N-body simulations of intermediate-mass (∼3500 M {sub ☉}) young star clusters (SCs; with three different metallicities (Z = 0.01, 0.1, and 1 Z {sub ☉}). The simulations include the dependence of stellar properties and stellar winds on metallicity. Massive stellar black holes (MSBHs) with mass >25 M {sub ☉} are allowed to form through direct collapse of very massive metal-poor stars (Z < 0.3 Z {sub ☉}). We focus on the demographics of black hole (BH) binaries that undergo mass transfer via Roche lobe overflow (RLO). We find that 44% of all binaries that undergo anmore » RLO phase (RLO binaries) formed through dynamical exchange. RLO binaries that formed via exchange (RLO-EBs) are powered by more massive BHs than RLO primordial binaries (RLO-PBs). Furthermore, the RLO-EBs tend to start the RLO phase later than the RLO-PBs. In metal-poor SCs (0.01-0.1 Z {sub ☉}), >20% of all RLO binaries are powered by MSBHs. The vast majority of RLO binaries powered by MSBHs are RLO-EBs. We have produced optical color-magnitude diagrams of the simulated RLO binaries, accounting for the emission of both the donor star and the irradiated accretion disk. We find that RLO-PBs are generally associated with bluer counterparts than RLO-EBs. We compare the simulated counterparts with the observed counterparts of nine ultraluminous X-ray sources. We discuss the possibility that IC 342 X-1, Ho IX X-1, NGC 1313 X-2, and NGC 5204 X-1 are powered by an MSBH.« less
ZnO-based regenerable sulfur sorbents for fluid-bed/transport reactor applications
Slimane, Rachid B.; Abbasian, Javad; Williams, Brett E.
2004-09-21
A method for producing regenerable sulfur sorbents in which a support material precursor is mixed with isopropanol and a first portion of deionized water at an elevated temperature to form a sol mixture. A metal oxide precursor comprising a metal suitable for use as a sulfur sorbent is dissolved in a second portion of deionized water, forming a metal salt solution. The metal salt solution and the sol mixture are mixed with a sol peptizing agent while heating and stirring, resulting in formation of a peptized sol mixture. The metal oxide precursor is dispersed substantially throughout the peptized sol mixture, which is then dried, forming a dry peptized sol mixture. The dry peptized sol mixture is then calcined and the resulting calcined material is then converted to particles.
Li, Guosheng; Camaioni, Donald M; Amonette, James E; Zhang, Z Conrad; Johnson, Timothy J; Fulton, John L
2010-10-07
We studied the coordination environment about Cu(II) in a pure ionic liquid, 1-ethyl-3-methylimidazolium chloride ([EMIM]Cl), and in binary mixtures of this compound with water across the entire range of compositions, using a combination of X-ray absorption fine structure (XAFS), ultraviolet-visible (UV-vis) spectroscopy, and electronic structure calculations. Our results show a series of stages in the ion pairing of the divalent cation, Cu(II), including the contact ion pairing of Cu(2+) with multiple Cl(-) ligands to form various CuCl(n)((2-n)) polyanions, as well as the subsequent solvation and ion pairing of the polychlorometallate anion with the EMIM(+) cation. Ion-pair formation is strongly promoted in [EMIM]Cl by the low dielectric constant and by the extensive breakdown of the water hydrogen-bond network in [EMIM]Cl-water mixtures. The CuCl(4)(2-) species dominates in the [EMIM]Cl solvent, and calculations along with spectroscopy show that its geometry distorts to C(2) symmetry compared to D(2d) in the gas phase. These results are important in understanding catalysis and separation processes involving transition metals in ionic liquid systems.
Feenstra, Adam D.; Ames Lab., Ames, IA; O'Neill, Kelly C.; ...
2016-10-13
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a widely adopted, versatile technique, especially in high-throughput analysis and imaging. However, matrix-dependent selectivity of analytes is often a severe limitation. In this work, a mixture of organic 2,5-dihydroxybenzoic acid and inorganic Fe 3O 4 nanoparticles is developed as a binary MALDI matrix to alleviate the well-known issue of triacylglycerol (TG) ion suppression by phosphatidylcholine (PC). In application to lipid standards and maize seed cross-sections, the binary matrix not only dramatically reduced the ion suppression of TG, but also efficiently desorbed and ionized a wide variety of lipids such as cationic PC, anionicmore » phosphatidylethanolamine (PE) and phosphatidylinositol (PI), and neutral digalactosyldiacylglycerol (DGDG). The binary matrix was also very efficient for large polysaccharides, which were not detected by either of the individual matrices. As a result, the usefulness of the binary matrix is demonstrated in MS imaging of maize seed sections, successfully visualizing diverse medium-size molecules and acquiring high-quality MS/MS spectra for these compounds.« less
Experimental evidence for excess entropy discontinuities in glass-forming solutions.
Lienhard, Daniel M; Zobrist, Bernhard; Zuend, Andreas; Krieger, Ulrich K; Peter, Thomas
2012-02-21
Glass transition temperatures T(g) are investigated in aqueous binary and multi-component solutions consisting of citric acid, calcium nitrate (Ca(NO(3))(2)), malonic acid, raffinose, and ammonium bisulfate (NH(4)HSO(4)) using a differential scanning calorimeter. Based on measured glass transition temperatures of binary aqueous mixtures and fitted binary coefficients, the T(g) of multi-component systems can be predicted using mixing rules. However, the experimentally observed T(g) in multi-component solutions show considerable deviations from two theoretical approaches considered. The deviations from these predictions are explained in terms of the molar excess mixing entropy difference between the supercooled liquid and glassy state at T(g). The multi-component mixtures involve contributions to these excess mixing entropies that the mixing rules do not take into account. © 2012 American Institute of Physics
Configuration-specific kinetic theory applied to an ideal binary gas mixture.
Wiseman, Floyd L
2006-10-05
This paper is the second in a two-part series dealing with the configuration-specific analyses for molecular collision events of hard, spherical molecules at thermal equilibrium. The first paper analyzed a single-component system, and the reader is referred to it for the fundamental concepts. In this paper, the expressions for the configuration-specific collision frequencies and the average line-of-centers collision angles and speeds are derived for an ideal binary gas mixture. The analyses show that the average line-of-centers quantities are all dependent upon the ratio of the masses of the two components, but not upon molecular size. Of course, the configuration-specific collision frequencies do depend on molecular size. The expression for the overall binary collision frequency is a simple sum of the configuration-specific collision frequencies and is identical to the conventional expression.
Low Mach number fluctuating hydrodynamics of multispecies liquid mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donev, Aleksandar, E-mail: donev@courant.nyu.edu; Bhattacharjee, Amit Kumar; Nonaka, Andy
We develop a low Mach number formulation of the hydrodynamic equations describing transport of mass and momentum in a multispecies mixture of incompressible miscible liquids at specified temperature and pressure, which generalizes our prior work on ideal mixtures of ideal gases [Balakrishnan et al., “Fluctuating hydrodynamics of multispecies nonreactive mixtures,” Phys. Rev. E 89 013017 (2014)] and binary liquid mixtures [Donev et al., “Low mach number fluctuating hydrodynamics of diffusively mixing fluids,” Commun. Appl. Math. Comput. Sci. 9(1), 47-105 (2014)]. In this formulation, we combine and extend a number of existing descriptions of multispecies transport available in the literature. Themore » formulation applies to non-ideal mixtures of arbitrary number of species, without the need to single out a “solvent” species, and includes contributions to the diffusive mass flux due to gradients of composition, temperature, and pressure. Momentum transport and advective mass transport are handled using a low Mach number approach that eliminates fast sound waves (pressure fluctuations) from the full compressible system of equations and leads to a quasi-incompressible formulation. Thermal fluctuations are included in our fluctuating hydrodynamics description following the principles of nonequilibrium thermodynamics. We extend the semi-implicit staggered-grid finite-volume numerical method developed in our prior work on binary liquid mixtures [Nonaka et al., “Low mach number fluctuating hydrodynamics of binary liquid mixtures,” http://arxiv.org/abs/1410.2300 (2015)] and use it to study the development of giant nonequilibrium concentration fluctuations in a ternary mixture subjected to a steady concentration gradient. We also numerically study the development of diffusion-driven gravitational instabilities in a ternary mixture and compare our numerical results to recent experimental measurements [Carballido-Landeira et al., “Mixed-mode instability of a miscible interface due to coupling between Rayleigh–Taylor and double-diffusive convective modes,” Phys. Fluids 25, 024107 (2013)] in a Hele-Shaw cell. We find that giant nonequilibrium fluctuations can trigger the instability but are eventually dominated by the deterministic growth of the unstable mode, in both quasi-two-dimensional (Hele-Shaw) and fully three-dimensional geometries used in typical shadowgraph experiments.« less
Rider, Cynthia V.; Furr, Johnathan R.; Wilson, Vickie S.; Gray, L. Earl
2010-01-01
Although risk assessments are typically conducted on a chemical-by-chemical basis, the 1996 Food Quality Protection Act required the US Environmental Protection Agency to consider cumulative risk of chemicals that act via a common mechanism of toxicity. To this end, we are conducting studies with mixtures of chemicals to elucidate mechanisms of joint action at the systemic level with the end goal of providing a framework for assessing the cumulative effects of reproductive toxicants. Previous mixture studies conducted with antiandrogenic chemicals are reviewed briefly and two new studies are described in detail. In all binary mixture studies, rats were dosed during pregnancy with chemicals, singly or in pairs at dosage levels equivalent to approximately one half of the ED50 for hypospadias or epididymal agenesis. The binary mixtures included: androgen receptor (AR) antagonists (vinclozolin plus procymidone), phthalate esters (DBP plus BBP and DEHP plus DBP), a phthalate ester plus an AR antagonist (DBP plus procymidone), a mixed mechanism androgen signaling disruptor (linuron) plus BBP, and two chemicals which disrupt epididymal differentiation through entirely different toxicity pathways: DBP (AR pathway) plus 2,3,7,8 TCDD (AhR pathway). We also conducted multi-component mixture studies combining several “antiandrogens” together. In the first study, seven chemicals (four pesticides and three phthalates) that elicit antiandrogenic effects at two different sites in the androgen signaling pathway (i.e. AR antagonist or inhibition of androgen synthesis) were combined. In the second study, three additional phthalates were added to make a ten chemical mixture. In both the binary mixture studies and the multi-component mixture studies, chemicals that targeted male reproductive tract development displayed cumulative effects that exceeded predictions based upon a response addition model and most often were in accordance with predictions based upon dose addition models. In summary, our results indicate that compounds that act by disparate mechanisms of toxicity to disrupt the dynamic interactions among the interconnected signaling pathways in differentiating tissues produce cumulative dose-additive effects, regardless of the mechanism or mode of action of the individual mixture component. PMID:20487044
Exposure to metals mixtures: Genomic alterations of infectious ...
Exposure to toxic metals can have harmful health effects, particularly in children. Although studies have investigated the individual effects toxic metals have on gene expression and health outcomes, there are no studies assessing the effect of metal mixtures on gene expression profiles. Here, we assessed the mixture effect of six toxic metals (arsenic, beryllium, cadmium, chromium, mercury, and lead) on gene expression profiles in children in Detroit, Michigan. As part of the Mechanistic Indicators of Childhood Asthma (MICA) cross sectional study, we assessed metal exposure in 131 children in Detroit using fingernail metals levels. A metals mixture score was calculated and compared to gene expression profiles across the population adjusting for age and race. There were 145 unique genes that were significantly differentially expressed when comparing children exposed to low and high levels of the metals mixture. Of the genes differentially expressed, 107 (74%) had increased expression while 38 (26%) had decreased expression. The main biological function associated with multiple metals was infectious disease. Within that group, genes were associated with infection of respiratory tract (P < 10-6) severe acute respiratory syndrome (P < 10-5), and sepsis (P < 10-3). Taken together, these data demonstrate that exposure to metals mixtures may activate gene networks related to infectious disease response. This abstract does not necessarily reflect the views or policie
Navas, Ana; Ortega, Juan; Palomar, José; Díaz, Carlos; Vreekamp, Remko
2011-05-07
A theoretical-experimental study for a set of 18 binary systems comprised of [bXmpy][BF(4)] (X=2-4) + 1,ω-Br(CH(2))(v)Br (v =ω=1-6) at a temperature of 298.15 K is presented. The solubility curves are determined for each binary system, establishing the intervals of measurement for the excess properties, H(E)(m) and V(E)(m). These properties are then determined for those systems that present a miscibility zone. Binary systems containing 1,ω-dibromoalkanes with ω=5,6 present reduced solubility intervals at the temperature of 298.15 K. However, the mixtures with 1,1-dibromomethane were totally miscible with the three isomers of 1-butyl-X-methylpyridinium tetrafluoroborate. Mixtures with dibromomethane present H(E)(m) <0, whereas H(E)(m) >0 for the other binary systems. Sigmoidal curves were observed for the V(E)(m) describing expansion and contraction processes for all the systems, except for the mixtures of [b2mpy][BF(4)] with the smaller dibromoalkanes, which present contraction effects. The COSMO-RS methodology was used to estimate the solubilities and the intermolecular interaction energies, giving an acceptable explanation of the behavioral structure of pure compounds and solutions. This journal is © the Owner Societies 2011
Reschke, Thomas; Zherikova, Kseniya V; Verevkin, Sergey P; Held, Christoph
2016-03-01
Benzoic acid is a model compound for drug substances in pharmaceutical research. Process design requires information about thermodynamic phase behavior of benzoic acid and its mixtures with water and organic solvents. This work addresses phase equilibria that determine stability and solubility. In this work, Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) was used to model the phase behavior of aqueous and organic solutions containing benzoic acid and chlorobenzoic acids. Absolute vapor pressures of benzoic acid and 2-, 3-, and 4-chlorobenzoic acid from literature and from our own measurements were used to determine pure-component PC-SAFT parameters. Two binary interaction parameters between water and/or benzoic acid were used to model vapor-liquid and liquid-liquid equilibria of water and/or benzoic acid between 280 and 413 K. The PC-SAFT parameters and 1 binary interaction parameter were used to model aqueous solubility of the chlorobenzoic acids. Additionally, solubility of benzoic acid in organic solvents was predicted without using binary parameters. All results showed that pure-component parameters for benzoic acid and for the chlorobenzoic acids allowed for satisfying modeling phase equilibria. The modeling approach established in this work is a further step to screen solubility and to predict the whole phase region of mixtures containing pharmaceuticals. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
A nonlinear isobologram model with Box-Cox transformation to both sides for chemical mixtures.
Chen, D G; Pounds, J G
1998-12-01
The linear logistical isobologram is a commonly used and powerful graphical and statistical tool for analyzing the combined effects of simple chemical mixtures. In this paper a nonlinear isobologram model is proposed to analyze the joint action of chemical mixtures for quantitative dose-response relationships. This nonlinear isobologram model incorporates two additional new parameters, Ymin and Ymax, to facilitate analysis of response data that are not constrained between 0 and 1, where parameters Ymin and Ymax represent the minimal and the maximal observed toxic response. This nonlinear isobologram model for binary mixtures can be expressed as [formula: see text] In addition, a Box-Cox transformation to both sides is introduced to improve the goodness of fit and to provide a more robust model for achieving homogeneity and normality of the residuals. Finally, a confidence band is proposed for selected isobols, e.g., the median effective dose, to facilitate graphical and statistical analysis of the isobologram. The versatility of this approach is demonstrated using published data describing the toxicity of the binary mixtures of citrinin and ochratoxin as well as a new experimental data from our laboratory for mixtures of mercury and cadmium.
A nonlinear isobologram model with Box-Cox transformation to both sides for chemical mixtures.
Chen, D G; Pounds, J G
1998-01-01
The linear logistical isobologram is a commonly used and powerful graphical and statistical tool for analyzing the combined effects of simple chemical mixtures. In this paper a nonlinear isobologram model is proposed to analyze the joint action of chemical mixtures for quantitative dose-response relationships. This nonlinear isobologram model incorporates two additional new parameters, Ymin and Ymax, to facilitate analysis of response data that are not constrained between 0 and 1, where parameters Ymin and Ymax represent the minimal and the maximal observed toxic response. This nonlinear isobologram model for binary mixtures can be expressed as [formula: see text] In addition, a Box-Cox transformation to both sides is introduced to improve the goodness of fit and to provide a more robust model for achieving homogeneity and normality of the residuals. Finally, a confidence band is proposed for selected isobols, e.g., the median effective dose, to facilitate graphical and statistical analysis of the isobologram. The versatility of this approach is demonstrated using published data describing the toxicity of the binary mixtures of citrinin and ochratoxin as well as a new experimental data from our laboratory for mixtures of mercury and cadmium. PMID:9860894
NASA Astrophysics Data System (ADS)
Denton, Alan R.; Schmidt, Matthias
2005-06-01
The equilibrium phase behavior of a binary mixture of charged colloids and neutral, nonadsorbing polymers is studied within free-volume theory. A model mixture of charged hard-sphere macroions and ideal, coarse-grained, effective-sphere polymers is mapped first onto a binary hard-sphere mixture with nonadditive diameters and then onto an effective Asakura-Oosawa model [S. Asakura and F. Oosawa, J. Chem. Phys. 22, 1255 (1954)]. The effective model is defined by a single dimensionless parameter—the ratio of the polymer diameter to the effective colloid diameter. For high salt-to-counterion concentration ratios, a free-volume approximation for the free energy is used to compute the fluid phase diagram, which describes demixing into colloid-rich (liquid) and colloid-poor (vapor) phases. Increasing the range of electrostatic interactions shifts the demixing binodal toward higher polymer concentration, stabilizing the mixture. The enhanced stability is attributed to a weakening of polymer depletion-induced attraction between electrostatically repelling macroions. Comparison with predictions of density-functional theory reveals a corresponding increase in the liquid-vapor interfacial tension. The predicted trends in phase stability are consistent with observed behavior of protein-polysaccharide mixtures in food colloids.
Leroy, S; Grenier, J; Rohe, D; Even, C; Pieranski, P
2006-05-01
From experiments with metal crystals, in the vicinity of their crystal/liquid/vapor triple points, it is known that melting of crystals starts on their surfaces and is anisotropic. Recently, we have shown that anisotropic surface melting occurs also in lyotropic systems. In our previous paper (Eur. Phys. J. E 19, 223 (2006)), we have focused on the case of poor faceting at the Pn3m/L1 interface in C12EO2/water binary mixtures. There anisotropic melting occurs in the vicinity of a Pn3m/L3/L1 triple point. In the present paper, we focus on the opposite case of a rich devil's-staircase-type faceting at Ia3d/vapor interfaces in monoolein/water and phytantriol/water mixtures. We show that anisotropic surface melting takes place in these systems in a narrow humidity range close to the Ia3d-L2 transition. As whole (hkl) sets of facets disappear one after another when the transition is approached, surface melting occurs in a facet-by-facet type.
Ng, Chee Koon; Wu, Jie; Hor, T S Andy; Luo, He-Kuan
2016-12-22
Correction for 'A binary catalyst system of a cationic Ru-CNC pincer complex with an alkali metal salt for selective hydroboration of carbon dioxide' by Chee Koon Ng et al., Chem. Commun., 2016, 52, 11842-11845.
Robbins, C A; Breysse, P N
1996-08-01
This research evaluated the effect of the polarity of a second vapor on the adsorption of a polar and a nonpolar vapor using the Wheeler model. To examine the effect of polarity, it was also necessary to observe the effect of component boiling point. The 1% breakthrough time (1% tb), kinetic adsorption capacity (W(e)), and rate constant (kv) of the Wheeler model were determined for vapor challenges on carbon beds for both p-xylene and pyrrole (referred to as test vapors) individually, and in equimolar binary mixtures with the polar and nonpolar vapors toluene, p-fluorotoluene, o-dichlorobenzene, and p-dichlorobenzene (referred to as probe vapors). Probe vapor polarity (0 to 2.5 Debye) did not systematically alter the 1% tb, W(e), or kv of the test vapors. The 1% tb and W(e) for test vapors in binary mixtures can be estimated reasonably well, using the Wheeler model, from single-vapor data (1% tb +/- 30%, W(e) +/- 20%). The test vapor 1% tb depended mainly on total vapor concentration in both single and binary systems. W(e) was proportional to test vapor fractional molar concentration (mole fraction) in mixtures. The kv for p-xylene was significantly different (p < or = 0.001) when compared according to probe boiling point; however, these differences were apparently of limited importance in estimating 1% tb for the range of boiling points tested (111 to 180 degrees C). Although the polarity and boiling point of chemicals in the range tested are not practically important in predicting 1% tb with the Wheeler model, an effect due to probe boiling point is suggested, and tests with chemicals of more widely ranging boiling point are warranted. Since the 1% tb, and thus, respirator service life, depends mainly on total vapor concentration, these data underscore the importance of taking into account the presence of other vapors when estimating respirator service life for a vapor in a mixture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Sanjay V.; Jenkins, Mark W.; Hughes, Robert C.
1999-07-19
We demonstrate a ''universal solvent sensor'' constructed from a small array of carbon/polymer composite chemiresistors that respond to solvents spanning a wide range of Hildebrand volubility parameters. Conductive carbon particles provide electrical continuity in these composite films. When the polymer matrix absorbs solvent vapors, the composite film swells, the average separation between carbon particles increases, and an increase in film resistance results, as some of the conduction pathways are broken. The adverse effects of contact resistance at high solvent concentrations are reported. Solvent vapors including isooctane, ethanol, dlisopropyhnethylphosphonate (DIMP), and water are correctly identified (''classified'') using three chemiresistors, their compositemore » coatings chosen to span the full range of volubility parameters. With the same three sensors, binary mixtures of solvent vapor and water vapor are correctly classified, following classification, two sensors suffice to determine the concentrations of both vapor components. Polyethylene vinylacetate and polyvinyl alcohol (PVA) are two such polymers that are used to classify binary mixtures of DIMP with water vapor; the PVA/carbon-particle-composite films are sensitive to less than 0.25{degree}A relative humidity. The Sandia-developed VERI (Visual-Empirical Region of Influence) technique is used as a method of pattern recognition to classify the solvents and mixtures and to distinguish them from water vapor. In many cases, the response of a given composite sensing film to a binary mixture deviates significantly from the sum of the responses to the isolated vapor components at the same concentrations. While these nonlinearities pose significant difficulty for (primarily) linear methods such as principal components analysis, VERI handles both linear and nonlinear data with equal ease. In the present study the maximum speciation accuracy is achieved by an array containing three or four sensor elements, with the addition of more sensors resulting in a measurable accuracy decrease.« less
Rasouli, Zolaikha; Ghavami, Raouf
2016-08-05
Vanillin (VA), vanillic acid (VAI) and syringaldehyde (SIA) are important food additives as flavor enhancers. The current study for the first time is devote to the application of partial least square (PLS-1), partial robust M-regression (PRM) and feed forward neural networks (FFNNs) as linear and nonlinear chemometric methods for the simultaneous detection of binary and ternary mixtures of VA, VAI and SIA using data extracted directly from UV-spectra with overlapped peaks of individual analytes. Under the optimum experimental conditions, for each compound a linear calibration was obtained in the concentration range of 0.61-20.99 [LOD=0.12], 0.67-23.19 [LOD=0.13] and 0.73-25.12 [LOD=0.15] μgmL(-1) for VA, VAI and SIA, respectively. Four calibration sets of standard samples were designed by combination of a full and fractional factorial designs with the use of the seven and three levels for each factor for binary and ternary mixtures, respectively. The results of this study reveal that both the methods of PLS-1 and PRM are similar in terms of predict ability each binary mixtures. The resolution of ternary mixture has been accomplished by FFNNs. Multivariate curve resolution-alternating least squares (MCR-ALS) was applied for the description of spectra from the acid-base titration systems each individual compound, i.e. the resolution of the complex overlapping spectra as well as to interpret the extracted spectral and concentration profiles of any pure chemical species identified. Evolving factor analysis (EFA) and singular value decomposition (SVD) were used to distinguish the number of chemical species. Subsequently, their corresponding dissociation constants were derived. Finally, FFNNs has been used to detection active compounds in real and spiked water samples. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rasouli, Zolaikha; Ghavami, Raouf
2016-08-01
Vanillin (VA), vanillic acid (VAI) and syringaldehyde (SIA) are important food additives as flavor enhancers. The current study for the first time is devote to the application of partial least square (PLS-1), partial robust M-regression (PRM) and feed forward neural networks (FFNNs) as linear and nonlinear chemometric methods for the simultaneous detection of binary and ternary mixtures of VA, VAI and SIA using data extracted directly from UV-spectra with overlapped peaks of individual analytes. Under the optimum experimental conditions, for each compound a linear calibration was obtained in the concentration range of 0.61-20.99 [LOD = 0.12], 0.67-23.19 [LOD = 0.13] and 0.73-25.12 [LOD = 0.15] μg mL- 1 for VA, VAI and SIA, respectively. Four calibration sets of standard samples were designed by combination of a full and fractional factorial designs with the use of the seven and three levels for each factor for binary and ternary mixtures, respectively. The results of this study reveal that both the methods of PLS-1 and PRM are similar in terms of predict ability each binary mixtures. The resolution of ternary mixture has been accomplished by FFNNs. Multivariate curve resolution-alternating least squares (MCR-ALS) was applied for the description of spectra from the acid-base titration systems each individual compound, i.e. the resolution of the complex overlapping spectra as well as to interpret the extracted spectral and concentration profiles of any pure chemical species identified. Evolving factor analysis (EFA) and singular value decomposition (SVD) were used to distinguish the number of chemical species. Subsequently, their corresponding dissociation constants were derived. Finally, FFNNs has been used to detection active compounds in real and spiked water samples.
Composition inversion in mixtures of binary colloids and polymer
NASA Astrophysics Data System (ADS)
Zhang, Isla; Pinchaipat, Rattachai; Wilding, Nigel B.; Faers, Malcolm A.; Bartlett, Paul; Evans, Robert; Royall, C. Patrick
2018-05-01
Understanding the phase behaviour of mixtures continues to pose challenges, even for systems that might be considered "simple." Here, we consider a very simple mixture of two colloidal and one non-adsorbing polymer species, which can be simplified even further to a size-asymmetrical binary mixture, in which the effective colloid-colloid interactions depend on the polymer concentration. We show that this basic system exhibits surprisingly rich phase behaviour. In particular, we enquire whether such a system features only a liquid-vapor phase separation (as in one-component colloid-polymer mixtures) or whether, additionally, liquid-liquid demixing of two colloidal phases can occur. Particle-resolved experiments show demixing-like behaviour, but when combined with bespoke Monte Carlo simulations, this proves illusory, and we reveal that only a single liquid-vapor transition occurs. Progressive migration of the small particles to the liquid phase as the polymer concentration increases gives rise to composition inversion—a maximum in the large particle concentration in the liquid phase. Close to criticality, the density fluctuations are found to be dominated by the larger colloids.
Mazel, Vincent; Busignies, Virginie; Duca, Stéphane; Leclerc, Bernard; Tchoreloff, Pierre
2011-05-30
In the pharmaceutical industry, tablets are obtained by the compaction of two or more components which have different physical properties and compaction behaviours. Therefore, it could be interesting to predict the physical properties of the mixture using the single-component results. In this paper, we have focused on the prediction of the compressibility of binary mixtures using the Kawakita model. Microcrystalline cellulose (MCC) and L-alanine were compacted alone and mixed at different weight fractions. The volume reduction, as a function of the compaction pressure, was acquired during the compaction process ("in-die") and after elastic recovery ("out-of-die"). For the pure components, the Kawakita model is well suited to the description of the volume reduction. For binary mixtures, an original approach for the prediction of the volume reduction without using the effective Kawakita parameters was proposed and tested. The good agreement between experimental and predicted data proved that this model was efficient to predict the volume reduction of MCC and L-alanine mixtures during compaction experiments. Copyright © 2011 Elsevier B.V. All rights reserved.
Solubility Limits in Lennard-Jones Mixtures: Effects of Disparate Molecule Geometries.
Dyer, Kippi M; Perkyns, John S; Pettitt, B Montgomery
2015-07-23
In order to better understand general effects of the size and energy disparities between macromolecules and solvent molecules in solution, especially for macromolecular constructs self-assembled from smaller molecules, we use the first- and second-order exact bridge diagram extensions of the HNC integral equation theory to investigate single-component, binary, ternary, and quaternary mixtures of Lennard-Jones fluids. For pure fluids, we find that the HNCH3 bridge function integral equation (i.e., exact to third order in density) is necessary to quantitatively predict the pure gas and pure liquid sides of the coexistence region of the phase diagram of the Lennard-Jones fluid. For the mixtures, we find that the HNCH2 bridge function integral equation is sufficient to qualitatively predict solubility in the binary, ternary, and quaternary mixtures, up to the nominal solubility limit. The results, as limiting cases, should be useful to several problems, including accurate phase diagram predictions for complex mixtures, design of self-assembling nanostructures via solvent controls, and the solvent contributions to the conformational behavior of macromolecules in complex fluids.
Preference for internucleotide linkages as a function of the number of constituents in a mixture
NASA Technical Reports Server (NTRS)
Kanavarioti, A.
1998-01-01
Phosphoimidazolide-activated ribomononucleotides (*pN; see Scheme I) are useful substrates for the nonenzymatic synthesis of oligonucleotides. In the presence of metal ions dilute neutral aqueous solutions of *pN (0.01 M) typically yield only small amounts of dimers and traces of oligomers; most of *pN hydrolyzes to yield nucleoside 5'-monophosphate (5'NMP). An earlier investigation of *pN reactions in highly concentrated aqueous solutions (up to 1.4 M) showed, as expected, that the percentage yield of the condensation products increases and the yield of the hydrolysis product correspondingly decreases with *pN concentration (Kanavarioti 1997). Here we report product distributions in reactions with one, two, or three reactive components at the same total nucleotide concentration. *pN used as substrates were the nucleoside 5'-phosphate 2-methylimidazolides, 2-MeImpN, with N = cytidine (C), uridine (U), or guanosine (G). Reactions were conducted as self-condensations, i. e., one nucleotide only, with two components in the three binary U,C, U,G, and C,G mixtures, and with three components in the ternary U,C, G mixture. The products are 5'NMP, 5',5'-pyrophosphate-, 2',5'-, 3', 5'-linked dimers, cyclic dimers, and a small percentage of longer oligomers. The surprising finding was that, under identical conditions, including the same total monomer concentration, the product distribution differs substantially from one reaction to another, most likely due to changing intermolecular interactions depending on the constituents. Even more unexpected was the observed trend according to which reactions of the U,C,G mixture produce the highest yield of internucleotide-linked dimers, whereas the self-condensations produce the least and the reactions with the binary mixtures produce yields that fall in between. What is remarkable is that the approximately two-fold increase in the percentage yield of internucleotide-linked dimers is not due to a concentration effect or a catalyst, but to the increased complexity of the system from a single to two and three components. These observations, perhaps, provide an example of how increased complexity in relatively simple chemical systems leads to organization of the material and consequently to chemical evolution. A possible link between prebiotic chemistry and the postulated RNA world is discussed.
Stephens, Jr., John J.; Hosking, F. Michael; Yost, Frederick G.
2003-12-16
A binary allow braze composition has been prepared and used in a bonded article of ceramic-ceramic and ceramic-metal materials. The braze composition comprises greater than approximately 95 wt % silver, greater than approximately 2 wt % hafnium and less than approximately 4.1 wt % hafnium, and less than approximately 0.2 wt % trace elements. The binary braze alloy is used to join a ceramic material to another ceramic material or a ceramic material, such as alumina, quartz, aluminum nitride, silicon nitride, silicon carbide, and mullite, to a metal material, such as iron-based metals, cobalt-based metals, nickel-based metals, molybdenum-based metals, tungsten-based metals, niobium-based metals, and tantalum-based metals. A hermetic bonded article is obtained with a strength greater than 10,000 psi.
Iswarya, V; Bhuvaneshwari, M; Chandrasekaran, N; Mukherjee, Amitava
2018-04-01
Owing to the increase in the usage of titanium dioxide nanoparticles (TiO 2 NPs), their release into the aquatic environment is inevitable. In the aquatic ecosystem, TiO 2 NPs can bio-magnify at various trophic levels in the food chain through dietary exposure. In the current study, the trophic transfer potential of two crystalline phases of TiO 2, anatase and rutile nanoparticles (individual as well as a binary mixture) has been evaluated in the lake water matrix using algae-daphnia system. Chlorella sp. and Ceriodaphnia dubia were used as test organisms to represent the algae-daphnia food chain of the freshwater ecosystem. Other than crystallinity, the effect of irradiation (visible and UV-A) was also investigated at the test concentrations, 75, 300, and 1200 μM. TiO 2 NPs treated algal diet produced significant mortality only at the test concentrations, 300 and 1200 μM. The type of irradiation and crystallinity doesn't have any impact on the mortality of daphnids through the dietary exposure of TiO 2 NPs. Comparing the mixture with individual NPs, binary mixture induced less mortality on C. dubia which signifies the antagonistic effect of NPs when they coexist. Statistical modeling confirmed the antagonistic effect of the binary mixture on C. dubia. As individual NPs, anatase and rutile forms showed a maximum Ti accumulation under UV-A and visible irradiation, respectively. BMF of TiO 2 NPs has been in validation with the bioaccumulation noted in C. dubia. Individual NPs (75 μM) showed higher BMF value of ∼23 under both UV-A (anatase) and visible (rutile) irradiation. Individual NPs showing higher BMF confirmed their trophic transfer potential in the aquatic food chain, primarily through the diet. In contrast, the binary mixture obtained a higher BMF of 1.9 and 0.79 at 75 and 300 μM under visible and UV-A irradiation, respectively. The plausible reason behind this decrement was the antagonistic effect of the mixture which significantly reduced their Ti bioaccumulation on C. dubia. Copyright © 2018 Elsevier B.V. All rights reserved.
Soft Multifunctional Composites and Emulsions with Liquid Metals.
Kazem, Navid; Hellebrekers, Tess; Majidi, Carmel
2017-07-01
Binary mixtures of liquid metal (LM) or low-melting-point alloy (LMPA) in an elastomeric or fluidic carrier medium can exhibit unique combinations of electrical, thermal, and mechanical properties. This emerging class of soft multifunctional composites have potential applications in wearable computing, bio-inspired robotics, and shape-programmable architectures. The dispersion phase can range from dilute droplets to connected networks that support electrical conductivity. In contrast to deterministically patterned LM microfluidics, LMPA- and LM-embedded elastomer (LMEE) composites are statistically homogenous and exhibit effective bulk properties. Eutectic Ga-In (EGaIn) and Ga-In-Sn (Galinstan) alloys are typically used due to their high conductivity, low viscosity, negligible nontoxicity, and ability to wet to nonmetallic materials. Because they are liquid-phase, these alloys can alter the electrical and thermal properties of the composite while preserving the mechanics of the surrounding medium. For composites with LMPA inclusions (e.g., Field's metal, Pb-based solder), mechanical rigidity can be actively tuned with external heating or electrical activation. This progress report, reviews recent experimental and theoretical studies of this emerging class of soft material architectures and identifies current technical challenges and opportunities for further advancement. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Terahertz time-domain spectroscopy and quantitative analysis of metal gluconates.
Li, Shaoxian; Yang, Jingqi; Zhao, Hongwei; Yang, Na; Jing, Dandan; Zhang, Jianbing; Li, Qingnuan; Han, Jiaguang
2015-01-01
A series of metal gluconates (Na(+), K(+), Mg(2+), Ca(2+), Fe(2+), Cu(2+), and Zn(2+)) were investigated by terahertz (THz) time-domain spectroscopy. The absorption coefficients and refractive indices of the samples were obtained in the frequency range of 0.5-2.6 THz. The gluconates showed distinct THz characteristic fingerprints, and the dissimilarities reflect their different structures, hydrogen-bond networks, and molecular interactions. In addition, some common features were observed among these gluconates, and the similarities probably come from the similar carbohydrate anion group. The X-ray powder diffraction measurements of these metal gluconates were performed, and the copper(II) gluconate was found to be amorphous, corresponding to the monotonic increase feature in the THz absorption spectrum. The results suggest that THz spectroscopy is sensitive to molecular structure and physical form. Binary and ternary mixtures of different gluconates were quantitatively analyzed based on the Beer-Lambert law. A chemical map of a tablet containing calcium D-gluconate monohydrate and α-lactose in the polyethylene host was obtained by THz imaging. The study shows that THz technology is a useful tool in pharmaceutical research and quality control applications.
Wang, Ting; Sun, Hongwen; Ren, Xinhao; Li, Bing; Mao, Hongjun
2018-02-01
Two kinds of biochars, one derived from corn straw (CBC) and one from pig manure (PBC), were used as the carriers of a bacterium (B38) to adsorb heavy metals in solution. CBC exhibited high affinity to Hg(II), while PBC showed large adsorption capacity of Pb(II). After loading with B38, the sorption capacity of the co-sorbents were enhanced for Pb(II), but weakened for Hg(II). In a binary system, the overall adsorption capacity to Hg-Pb (CBC+B38, 136.7mg/g; PBC+B38, 181.3mg/g) on co-sorbents was equal to the sum of the single-component values for Hg(II) and Pb(II). Electrostatic interactions and precipitation are the major mechanisms in the adsorption of Hg(II). In contrast, cation-π interactions and precipitation were involved in the sorption process of Pb(II). Moreover, the sorption sites of Hg(II) and Pb(II) partially overlapped on the biochar surface, but were different on co-sorbents. Hence, the co-sorbents have an advantage over the biochar alone in the removal of heavy metal mixtures. Copyright © 2017 Elsevier Inc. All rights reserved.
Lu, Cailing; Svoboda, Kurt R; Lenz, Kade A; Pattison, Claire; Ma, Hongbo
2018-06-01
Manganese (Mn) is considered as an emerging metal contaminant in the environment. However, its potential interactions with companying toxic metals and the associated mixture effects are largely unknown. Here, we investigated the toxicity interactions between Mn and two commonly seen co-occurring toxic metals, Pb and Cd, in a model organism the nematode Caenorhabditis elegans. The acute lethal toxicity of mixtures of Mn+Pb and Mn+Cd were first assessed using a toxic unit model. Multiple toxicity endpoints including reproduction, lifespan, stress response, and neurotoxicity were then examined to evaluate the mixture effects at sublethal concentrations. Stress response was assessed using a daf-16::GFP transgenic strain that expresses GFP under the control of DAF-16 promotor. Neurotoxicity was assessed using a dat-1::GFP transgenic strain that expresses GFP in dopaminergic neurons. The mixture of Mn+Pb induced a more-than-additive (synergistic) lethal toxicity in the worm whereas the mixture of Mn+Cd induced a less-than-additive (antagonistic) toxicity. Mixture effects on sublethal toxicity showed more complex patterns and were dependent on the toxicity endpoints as well as the modes of toxic action of the metals. The mixture of Mn+Pb induced additive effects on both reproduction and lifespan, whereas the mixture of Mn+Cd induced additive effects on lifespan but not reproduction. Both mixtures seemed to induce additive effects on stress response and neurotoxicity, although a quantitative assessment was not possible due to the single concentrations used in mixture tests. Our findings demonstrate the complexity of metal interactions and the associated mixture effects. Assessment of metal mixture toxicity should take into consideration the unique property of individual metals, their potential toxicity mechanisms, and the toxicity endpoints examined.
Method of CO and/or CO.sub.2 hydrogenation using doped mixed-metal oxides
Shekhawat, Dushyant; Berry, David A.; Haynes, Daniel J.; Abdelsayed, Victor; Smith, Mark W.; Spivey, James J.
2015-10-06
A method of hydrogenation utilizing a reactant gas mixture comprising a carbon oxide and a hydrogen agent, and a hydrogenation catalyst comprising a mixed-metal oxide containing metal sites supported and/or incorporated into the lattice. The mixed-metal oxide comprises a perovskite, a pyrochlore, a fluorite, a brownmillerite, or mixtures thereof doped at the A-site or the B-site. The metal site may comprise a deposited metal, where the deposited metal is a transition metal, an alkali metal, an alkaline earth metal, or mixtures thereof. Contact between the carbon oxide, hydrogen agent, and hydrogenation catalyst under appropriate conditions of temperature, pressure and gas flow rate generate a hydrogenation reaction and produce a hydrogenated product made up of carbon from the carbon oxide and some portion of the hydrogen agent. The carbon oxide may be CO, CO.sub.2, or mixtures thereof and the hydrogen agent may be H.sub.2. In a particular embodiment, the hydrogenated product comprises an alcohol, an olefin, an aldehyde, a ketone, an ester, an oxo-product, or mixtures thereof.
Das, Arya; Ali, Sk Musharaf
2018-02-21
Tri-isoamyl phosphate (TiAP) has been proposed to be an alternative for tri-butyl phosphate (TBP) in the Plutonium Uranium Extraction (PUREX) process. Recently, we have successfully calibrated and tested all-atom optimized potentials for liquid simulations using Mulliken partial charges for pure TiAP, TBP, and dodecane by performing molecular dynamics (MD) simulation. It is of immense importance to extend this potential for the various molecular properties of TiAP and TiAP/n-dodecane binary mixtures using MD simulation. Earlier, efforts were devoted to find out a suitable force field which can explain both structural and dynamical properties by empirical parameterization. Therefore, the present MD study reports the structural, dynamical, and thermodynamical properties with different mole fractions of TiAP-dodecane mixtures at the entire range of mole fraction of 0-1 employing our calibrated Mulliken embedded optimized potentials for liquid simulation (OPLS) force field. The calculated electric dipole moment of TiAP was seen to be almost unaffected by the TiAP concentration in the dodecane diluent. The calculated liquid densities of the TiAP-dodecane mixture are in good agreement with the experimental data. The mixture densities at different temperatures are also studied which was found to be reduced with temperature as expected. The plot of diffusivities for TiAP and dodecane against mole fraction in the binary mixture intersects at a composition in the range of 25%-30% of TiAP in dodecane, which is very much closer to the TBP/n-dodecane composition used in the PUREX process. The excess volume of mixing was found to be positive for the entire range of mole fraction and the excess enthalpy of mixing was shown to be endothermic for the TBP/n-dodecane mixture as well as TiAP/n-dodecane mixture as reported experimentally. The spatial pair correlation functions are evaluated between TiAP-TiAP and TiAP-dodecane molecules. Further, shear viscosity has been computed by performing the non-equilibrium molecular dynamics employing the periodic perturbation method. The calculated shear viscosity of the binary mixture is found to be in excellent agreement with the experimental values. The use of the newly calibrated OPLS force field embedding Mulliken charges is shown to be equally reliable in predicting the structural and dynamical properties for the mixture without incorporating any arbitrary scaling in the force field or Lennard-Jones parameters. Further, the present MD simulation results demonstrate that the Stokes-Einstein relation breaks down at the molecular level. The present methodology might be adopted to evaluate the liquid state properties of an aqueous-organic biphasic system, which is of great significance in the interfacial science and technology.
NASA Astrophysics Data System (ADS)
Das, Arya; Ali, Sk. Musharaf
2018-02-01
Tri-isoamyl phosphate (TiAP) has been proposed to be an alternative for tri-butyl phosphate (TBP) in the Plutonium Uranium Extraction (PUREX) process. Recently, we have successfully calibrated and tested all-atom optimized potentials for liquid simulations using Mulliken partial charges for pure TiAP, TBP, and dodecane by performing molecular dynamics (MD) simulation. It is of immense importance to extend this potential for the various molecular properties of TiAP and TiAP/n-dodecane binary mixtures using MD simulation. Earlier, efforts were devoted to find out a suitable force field which can explain both structural and dynamical properties by empirical parameterization. Therefore, the present MD study reports the structural, dynamical, and thermodynamical properties with different mole fractions of TiAP-dodecane mixtures at the entire range of mole fraction of 0-1 employing our calibrated Mulliken embedded optimized potentials for liquid simulation (OPLS) force field. The calculated electric dipole moment of TiAP was seen to be almost unaffected by the TiAP concentration in the dodecane diluent. The calculated liquid densities of the TiAP-dodecane mixture are in good agreement with the experimental data. The mixture densities at different temperatures are also studied which was found to be reduced with temperature as expected. The plot of diffusivities for TiAP and dodecane against mole fraction in the binary mixture intersects at a composition in the range of 25%-30% of TiAP in dodecane, which is very much closer to the TBP/n-dodecane composition used in the PUREX process. The excess volume of mixing was found to be positive for the entire range of mole fraction and the excess enthalpy of mixing was shown to be endothermic for the TBP/n-dodecane mixture as well as TiAP/n-dodecane mixture as reported experimentally. The spatial pair correlation functions are evaluated between TiAP-TiAP and TiAP-dodecane molecules. Further, shear viscosity has been computed by performing the non-equilibrium molecular dynamics employing the periodic perturbation method. The calculated shear viscosity of the binary mixture is found to be in excellent agreement with the experimental values. The use of the newly calibrated OPLS force field embedding Mulliken charges is shown to be equally reliable in predicting the structural and dynamical properties for the mixture without incorporating any arbitrary scaling in the force field or Lennard-Jones parameters. Further, the present MD simulation results demonstrate that the Stokes-Einstein relation breaks down at the molecular level. The present methodology might be adopted to evaluate the liquid state properties of an aqueous-organic biphasic system, which is of great significance in the interfacial science and technology.
Proteomic analysis of a model fish species exposed to individual pesticides and a binary mixture
Aquatic organisms are often exposed to multiple pesticides simultaneously. Due to the relatively poor characterization of mixture constituent interactions and the potential for highly complex exposure scenarios, there is considerable uncertainty in understanding the toxicity of m...
ERIC Educational Resources Information Center
Cardinali, Mario Emilio; Giomini, Claudio
1989-01-01
Proposes a simple procedure based on an expansion of the exponential terms of Raoult's law by applying it to the case of the benzene-toluene mixture. The results with experimental values are presented as a table. (YP)
Separation of non-racemic mixtures of enantiomers: an essential part of optical resolution.
Faigl, Ferenc; Fogassy, Elemér; Nógrádi, Mihály; Pálovics, Emese; Schindler, József
2010-03-07
Non-racemic enantiomeric mixtures form homochiral and heterochiral aggregates in melt or suspension, during adsorption or recrystallization, and these diastereomeric associations determine the distribution of the enantiomers between the solid and other (liquid or vapour) phases. That distribution depends on the stability order of the homo- and heterochiral aggregates (conglomerate or racemate formation). Therefore, there is a correlation between the binary melting point phase diagrams and the experimental ee(I)vs. ee(0) curves (ee(I) refers to the crystallized enantiomeric mixtures, ee(0) is the composition of the starting ones). Accordingly, distribution of the enantiomeric mixtures between two phases is characteristic and usually significant enrichment can be achieved. There are two exceptions: no enrichment could be observed under thermodynamically controlled conditions when the starting enantiomer composition corresponded to the eutectic composition, or when the method used was unsuitable for separation. In several cases, when kinetic control governed the crystallization, the character of the ee(0)-ee(I) curve did not correlate with the melting point binary phase diagram.
Ghosh, Soumadwip; Dey, Souvik; Patel, Mahendra; Chakrabarti, Rajarshi
2017-03-15
The folding/unfolding equilibrium of proteins in aqueous medium can be altered by adding small organic molecules generally termed as co-solvents. Denaturants such as urea are instrumental in the unfolding of proteins while protecting osmolytes favour the folded ensemble. Recently, room temperature ionic liquids (ILs) have been shown to counteract the deleterious effect of urea on proteins. In this paper, using atomistic molecular dynamics we show that a ternary mixture containing a particular ammonium-based IL, triethylammonium acetate (TEAA), and urea (in 1 : 5 molar ratio) helps a small 15-residue S-peptide analogue regain most of its native structure, whereas a binary aqueous mixture containing a large amount of urea alone completely distorts it. Our simulations show that the denaturant urea directly interacts with the peptide backbone in the binary mixture while for the ternary mixture both urea as well as the IL are preferentially excluded from the peptide surface.
Adebambo, Oluwadamilare A.; Ray, Paul D.; Shea, Damian; Fry, Rebecca C.
2016-01-01
Exposure to elevated levels of the toxic metals inorganic arsenic (iAs) and cadmium (Cd) represents a major global health problem. These metals often occur as mixtures in the environment, creating the potential for interactive or synergistic biological effects different from those observed in single exposure conditions. In the present study, environmental mixtures collected from two waste sites in China and comparable mixtures prepared in the laboratory were tested for toxicogenomic response in placental JEG-3 cells. These cells serve as a model for evaluating cellular responses to exposures during pregnancy. One of the mixtures was predominated by iAs and one by Cd. Six gene biomarkers were measured in order to evaluate the effects from the metals mixtures using dose and time-course experiments including: heme oxygenase 1 (HO-1) and metallothionein isoforms (MT1A, MT1F and MT1G) previously shown to be preferentially induced by exposure to either iAs or Cd, and metal transporter genes aquaporin-9 (AQP9) and ATPase, Cu2+ transporting, beta polypeptide (ATP7B). There was a significant increase in the mRNA expression levels of ATP7B, HO-1, MT1A, MT1F, and MT1G in mixture-treated cells compared to the iAs or Cd only-treated cells. Notably, the genomic responses were observed at concentrations significantly lower than levels found at the environmental collection sites. These data demonstrate that metal mixtures increase the expression of gene biomarkers in placental JEG-3 cells in a synergistic manner. Taken together, the data suggest that toxic metals that co-occur may induce detrimental health effects that are currently underestimated when analyzed as single metals. PMID:26472158
1989-01-01
In vivo electrophysiological recordings from populations of olfactory receptor neurons in the channel catfish, Ictalurus punctatus, clearly showed that responses to binary and trinary mixtures of amino acids were predictable with knowledge obtained from previous cross-adaptation studies of the relative independence of the respective binding sites of the component stimuli. All component stimuli, from which equal aliquots were drawn to form the mixtures, were adjusted in concentration to provide for approximately equal response magnitudes. The magnitude of the response to a mixture whose component amino acids showed significant cross-reactivity was equivalent to the response to any single component used to form that mixture. A mixture whose component amino acids showed minimal cross-adaptation produced a significantly larger relative response than a mixture whose components exhibited considerable cross-reactivity. This larger response approached the sum of the responses to the individual component amino acids tested at the resulting concentrations in the mixture, even though olfactory receptor dose-response functions for amino acids in this species are characterized by extreme sensory compression (i.e., successive concentration increments produce progressively smaller physiological responses). Thus, the present study indicates that the response to sensory stimulation of olfactory receptor sites is more enhanced by the activation of different receptor site types than by stimulus interaction at a single site type. PMID:2703818
Breakdown and Limit of Continuum Diffusion Velocity for Binary Gas Mixtures from Direct Simulation
NASA Astrophysics Data System (ADS)
Martin, Robert Scott; Najmabadi, Farrokh
2011-05-01
This work investigates the breakdown of the continuum relations for diffusion velocity in inert binary gas mixtures. Values of the relative diffusion velocities for components of a gas mixture may be calculated using of Chapman-Enskog theory and occur not only due to concentration gradients, but also pressure and temperature gradients in the flow as described by Hirschfelder. Because Chapman-Enskog theory employs a linear perturbation around equilibrium, it is expected to break down when the velocity distribution deviates significantly from equilibrium. This breakdown of the overall flow has long been an area of interest in rarefied gas dynamics. By comparing the continuum values to results from Bird's DS2V Monte Carlo code, we propose a new limit on the continuum approach specific to binary gases. To remove the confounding influence of an inconsistent molecular model, we also present the application of the variable hard sphere (VSS) model used in DS2V to the continuum diffusion velocity calculation. Fitting sample asymptotic curves to the breakdown, a limit, Vmax, that is a fraction of an analytically derived limit resulting from the kinetic temperature of the mixture is proposed. With an expected deviation of only 2% between the physical values and continuum calculations within ±Vmax/4, we suggest this as a conservative estimate on the range of applicability for the continuum theory.
Condensation of binary mixtures on horizontal tubes
NASA Astrophysics Data System (ADS)
Büchner, A.; Reif, A.; Rehfeldt, S.; Klein, H.
2017-12-01
The two most common models to describe the condensation of binary mixtures are the equilibrium model by Silver (Trans Inst Chem Eng 25:30-42, 1947) and the film model by Colburn and Drew (Transactions of the American Institute of Chemical Engineers 33:197-215, 1937), which is stated by Webb et al. (Int J Heat Mass Transf 39:3147-3156, 1996) as more accurate. The film model describes the outer heat transfer coefficient by subdividing it into two separate resistances against the heat transfer. The resistance of the liquid condensate film on the tube can be calculated with equations for the condensation of pure substances for the analogous flow pattern and geometry using the property data of the mixture. The resistance in the gas phase can be described by a thermodynamic parameter Z and the single phase heat transfer coefficient α G . In this work measurements for condensation of the binary mixtures n-pentane/iso-octane and iso-propanol/water on horizontal tubes for free convection are carried out. The obtained results are compared with the film model by Colburn and Drew (Transactions of the American Institute of Chemical Engineers 33:197-215, 1937). The comparison shows a rather big deviation between the theoretical model and the experimental results. To improve the prediction quality an own model based on dimensionless numbers is proposed, which describes the experimental results of this work significantly better than the film model.
Enhanced and selective optical trapping in a slot-graphite photonic crystal.
Krishnan, Aravind; Huang, Ningfeng; Wu, Shao-Hua; Martínez, Luis Javier; Povinelli, Michelle L
2016-10-03
Applicability of optical trapping tools for nanomanipulation is limited by the available laser power and trap efficiency. We utilized the strong confinement of light in a slot-graphite photonic crystal to develop high-efficiency parallel trapping over a large area. The stiffness is 35 times higher than our previously demonstrated on-chip, near field traps. We demonstrate the ability to trap both dielectric and metallic particles of sub-micron size. We find that the growth kinetics of nanoparticle arrays on the slot-graphite template depends on particle size. This difference is exploited to selectively trap one type of particle out of a binary colloidal mixture, creating an efficient optical sieve. This technique has rich potential for analysis, diagnostics, and enrichment and sorting of microscopic entities.
NASA Astrophysics Data System (ADS)
Lizarraga, Ion; Bou-Ali, M. Mounir; Santamaría, C.
2018-03-01
In this study, the thermodiffusion coefficient of n-dodecane/n-hexane binary mixture at 25 ∘C mean temperature was determined for several pressure conditions and mass fractions. The experimental technique used to determine the thermodiffusion coefficient was the thermograviational column of cylindrical configuration. In turn, thermophysical properties, such as density, thermal expansion, mass expansion and dynamic viscosity up to 10 MPa were also determined. The results obtained in this work showed a linear relation between the thermophysical properties and the pressure. Thermodiffusion coefficient values confirm a linear effect when the pressure increases. Additionally, a new correlation based on the thermodiffusion coefficient for n C12/n C6 binary mixture at 25 ∘C temperature for any mass fraction and pressures, which reproduces the data within the experimental error, was proposed.
Kiley, Erin M; Yakovlev, Vadim V; Ishizaki, Kotaro; Vaucher, Sebastien
2012-01-01
Microwave thermal processing of metal powders has recently been a topic of a substantial interest; however, experimental data on the physical properties of mixtures involving metal particles are often unavailable. In this paper, we perform a systematic analysis of classical and contemporary models of complex permittivity of mixtures and discuss the use of these models for determining effective permittivity of dielectric matrices with metal inclusions. Results from various mixture and core-shell mixture models are compared to experimental data for a titanium/stearic acid mixture and a boron nitride/graphite mixture (both obtained through the original measurements), and for a tungsten/Teflon mixture (from literature). We find that for certain experiments, the average error in determining the effective complex permittivity using Lichtenecker's, Maxwell Garnett's, Bruggeman's, Buchelnikov's, and Ignatenko's models is about 10%. This suggests that, for multiphysics computer models describing the processing of metal powder in the full temperature range, input data on effective complex permittivity obtained from direct measurement has, up to now, no substitute.
Phase equilibrium measurements on twelve binary mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giles, N.F.; Wilson, H.L.; Wilding, W.V.
1996-11-01
Phase equilibrium measurements have been performed on twelve binary mixtures. The PTx method was used to obtain vapor-liquid equilibrium data for the following binary systems at two temperatures each: ethanethiol + propylene; nitrobenzene + methanol; pyridine + ethyl acetate; octane + tert-amyl methyl ether; diisopropyl ether + butane; 1,3-dichloro-2-propanol + epichlorohydrin; 2,3-dichloro-1-propanol + epichlorohydrin; 2,3-epoxy-1-propanol + epichlorohydrin; 3-chloro-1,2-propanediol + epichlorohydrin; methanol + hydrogen cyanide. For these systems, equilibrium vapor and liquid phase compositions were derived from the PTx data using the Soave equation of state to represent the vapor phase and the Wilson, NRTL, or Redlich-Kister activity coefficient model tomore » represent the liquid phase. The infinite dilution activity coefficient of methylamine in N-methyl-2-pyrrolidone was determined at three temperatures by performing PTx measurements on the N-methyl-2-pyrrolidone was determined at three temperatures by performing PTx measurements on the N-methyl-2-pyrrolidone-rich half of the binary. Liquid-liquid equilibrium studies were made on the triethylene glycol + 1-pentene system at two temperatures by directly analyzing samples taken from each liquid phase.« less
NASA Astrophysics Data System (ADS)
Fort, Charles; Fu, Christopher D.; Weichselbaum, Noah A.; Bardet, Philippe M.
2015-12-01
To deploy optical diagnostics such as particle image velocimetry or planar laser-induced fluorescence (PLIF) in complex geometries, it is beneficial to use index-matched facilities. A binary mixture of para-cymene and cinnamaldehyde provides a viable option for matching the refractive index of acrylic, a common material for scaled models and test sections. This fluid is particularly appropriate for large-scale facilities and when a low-density and low-viscosity fluid is sought, such as in fluid-structure interaction studies. This binary solution has relatively low kinematic viscosity and density; its use enables the experimentalist to select operating temperature and to increase fluorescence signal in PLIF experiments. Measurements of spectral and temperature dependence of refractive index, density, and kinematic viscosity are reported. The effect of the binary mixture on solubility control of Rhodamine 6G is also characterized.
Nongonierma, Alice B; FitzGerald, Richard J
2015-01-01
Inhibition of dipeptidyl peptidase-IV (DPP-IV) is used as a means to regulate post-prandial serum glucose in type 2 diabetics. The effect of drug (Sitagliptin®)/peptide and binary peptide mixtures on DPP-IV inhibition was studied using an isobole approach. Five peptides (Ile-Pro-Ile-Gln-Tyr, Trp-Lys, Trp-Pro, Trp-Arg and Trp-Leu), having DPP-IV half maximum inhibitory concentration values (IC₅₀)<60 μM and reported to act through different inhibition mechanisms, were investigated. The dose response relationship of Sitagliptin : peptide (1:0, 0:1, 1:852, 1:426 and 1:1704 on a molar basis) and binary Ile-Pro-Ile-Gln-Tyr : peptide (1:0, 0:1, 1:1, 1:2 and 2:1 on a molar basis) mixtures for DPP-IV inhibition was characterised. Isobolographic analysis showed, in most instances, an additive effect on DPP-IV inhibition. However, a synergistic effect was observed with two Sitagliptin:Ile-Pro-Ile-Gln-Tyr (1:426 and 1:852) mixtures and an antagonistic effect was seen with one Sitagliptin : Trp-Pro (1:852) mixture, and three binary peptide mixtures (Ile-Pro-Ile-Gln-Tyr : Trp-Lys (1:1 and 2:1) and Ile-Pro-Ile-Gln-Tyr:Trp-Leu (1:2)). The results show that Sitagliptin and food protein-derived peptides can interact, thereby enhancing overall DPP-IV inhibition. Combination of Sitagliptin with food protein-derived peptides may help in reducing drug dosage and possible associated side-effects.
Picker, K M; Bikane, F
2001-08-01
The aim of the study is to use the 3D modeling technique of compaction cycles for analysis of binary and ternary mixtures. Three materials with very different deformation and densification characteristics [cellulose acetate (CAC), dicalcium phosphate dihydrate (EM) and theophylline monohydrate (TM)] have been tableted at graded maximum relative densities (rhorel, max) on an eccentric tableting machine. Following that, graded binary mixtures from CAC and EM have been compacted. Finally, the same ratios of CAC and EM have been tableted in a ternary mixture with 20 vol% TM. All compaction cycles have been analyzed by using different data analysis methods. Three-dimensional modeling, conventional determination of the slope of the Heckel function, determination of the elastic recovery during decompression, and calculations according to the pressure-time function were the methods of choice. The results show that the 3D model technique is able to gain the information in one step instead of three different approaches, which is an advantage for formulation development. The results show that this model enables one to better distinguish the compaction properties of mixtures and the interaction of the components in the tablet than 2D models. Furthermore, the information by 3D modeling is more precise since in the slope K of the Heckel-plot (in die) elasticity is included, and in the parameters of the pressure-time function beta and gamma plastic deformation due to pressure is included. The influence of time and pressure on the displacement can now be differentiated.
Role of Oxidative Stress in Transformation Induced by Metal Mixture
Martín, Silva-Aguilar; Emilio, Rojas; Mahara, Valverde
2011-01-01
Metals are ubiquitous pollutants present as mixtures. In particular, mixture of arsenic-cadmium-lead is among the leading toxic agents detected in the environment. These metals have carcinogenic and cell-transforming potential. In this study, we used a two step cell transformation model, to determine the role of oxidative stress in transformation induced by a mixture of arsenic-cadmium-lead. Oxidative damage and antioxidant response were determined. Metal mixture treatment induces the increase of damage markers and the antioxidant response. Loss of cell viability and increased transforming potential were observed during the promotion phase. This finding correlated significantly with generation of reactive oxygen species. Cotreatment with N-acetyl-cysteine induces effect on the transforming capacity; while a diminution was found in initiation, in promotion phase a total block of the transforming capacity was observed. Our results suggest that oxidative stress generated by metal mixture plays an important role only in promotion phase promoting transforming capacity. PMID:22191014
Evaluation of alfalfa-tall fescue mixtures across multiple environments
USDA-ARS?s Scientific Manuscript database
Binary grass-legume mixtures can benefit forage production systems in different ways helping growers cope both with increasing input costs (e.g., N fertilizer, herbicides) and potentially more variable weather. The main objective of this study was to evaluate alfalfa (Medicago sativa L.) and tall f...
Binary mixtures of condensates in generic confining potentials
NASA Astrophysics Data System (ADS)
Facchi, P.; Florio, G.; Pascazio, S.; Pepe, F. V.
2011-12-01
We study a binary mixture of Bose-Einstein condensates, confined in a generic potential, in the Thomas-Fermi approximation. We search for the zero-temperature ground state of the system, both in the case of fixed numbers of particles and fixed chemical potentials. For generic potentials, we analyze the transition from mixed to separated ground-state configurations as the inter-species interaction increases. We derive a simple formula that enables one to determine the location of the domain walls. Finally, we find criteria for the energetic stability of separated configurations, depending on the number and the position of the domain walls separating the two species.
Sol-gel type synthesis of Bi.sub.2 (Sr,Ta.sub.2)O.sub.9 using an acetate based system
Boyle, Timothy J.
1997-01-01
A method of forming a layered-perovskite bismuth-strontium-tantalum oxide (SBT) ferroelectric material is performed by dissolving a bismuth compound in a first solvent to form a first solution, mixing a strontium compound and a tantalum compound to form a binary mixture, dissolving the binary mixture in a second solvent to form a second solution, mixing the first solution with the second solution to form a SBT precursor solution, evaporating the first and second solvents to form a SBT precursor material and subsequently sintering said SBT precursor material in the presence of oxygen.
Sol-gel type synthesis of Bi{sub 2}(Sr,Ta{sub 2})O{sub 9} using an acetate based system
Boyle, T.J.
1997-11-04
A method of forming a layered-perovskite bismuth-strontium-tantalum oxide (SBT) ferroelectric material is performed by dissolving a bismuth compound in a first solvent to form a first solution, mixing a strontium compound and a tantalum compound to form a binary mixture, dissolving the binary mixture in a second solvent to form a second solution, mixing the first solution with the second solution to form a SBT precursor solution, evaporating the first and second solvents to form a SBT precursor material and subsequently sintering said SBT precursor material in the presence of oxygen. 6 figs.
NASA Astrophysics Data System (ADS)
Dymond, J. H.; Robertson, J.
1985-01-01
Viscosity coefficients for binary mixtures of hexafluorobenzene with benzene, toluene, para-xylene, and mesitylene have been measured along the saturation line at temperatures from 15 to 120°C using specially designed capillary viscometers. Densities were measured using a pyknometer and volume-change apparatus. Deviations of the viscosities from a rectilinear dependence on mole fraction are consistent with enhanced interactions between unlike species, which increase with increasing number of methyl groups on the aromatic hydrocarbon and decrease with increasing temperature. The application of the Grunberg and Nissan equation, the Hildebrand equation, and energy of activation theories to these results is examined.
Theory of anomalous critical-cluster content in high-pressure binary nucleation.
Kalikmanov, V I; Labetski, D G
2007-02-23
Nucleation experiments in binary (a-b) mixtures, when component a is supersaturated and b (carrier gas) is undersaturated, reveal that for some mixtures at high pressures the a content of the critical cluster dramatically decreases with pressure contrary to expectations based on classical nucleation theory. We show that this phenomenon is a manifestation of the dominant role of the unlike interactions at high pressures resulting in the negative partial molar volume of component a in the vapor phase beyond the compensation pressure. The analysis is based on the pressure nucleation theorem for multicomponent systems which is invariant to a nucleation model.
NASA Astrophysics Data System (ADS)
Al-Aqeeli, N.; Suryanarayana, C.; Hussein, M. A.
2013-10-01
Mechanical alloying of binary Nb-Zr powder mixtures was carried out to evaluate the formation of metastable phases in this immiscible system. The milled powders were characterized for their constitution and structure by X-ray diffraction and transmission electron microscopy methods. It was shown that an amorphous phase had formed on milling the binary powder mixture for about 10 h and that it had crystallized on subsequent milling up to 50-70 h, referred to as mechanical crystallization. Thermodynamic and structural arguments have been presented to explain the formation of the amorphous phase and its subsequent crystallization.
The susceptibility critical exponent for a nonaqueous ionic binary mixture near a consolute point
NASA Technical Reports Server (NTRS)
Zhang, Kai C.; Briggs, Matthew E.; Gammon, Robert W.; Levelt Sengers, J. M. H.
1992-01-01
We report turbidity measurements of a nonaqueous ionic solution of triethyl n-hexylammonium triethyl n-hexylboride in diphenyl ether. A classical susceptibility critical exponent gamma = 1.01 +/- 0.01 is obtained over the reduced temperature range t between values of 0.1 and 0.0001. The best fits of the sample transmission had a standard deviation of 0.39 percent over this range. Ising and spherical model critical exponents are firmly excluded. The correlation length amplitude xi sub 0 from fitting is 1.0 +/- 0.2 nm which is much larger than values found in neutral fluids and some aqueous binary mixtures.
Guo, Canyong; Luo, Xuefang; Zhou, Xiaohua; Shi, Beijia; Wang, Juanjuan; Zhao, Jinqi; Zhang, Xiaoxia
2017-06-05
Vibrational spectroscopic techniques such as infrared, near-infrared and Raman spectroscopy have become popular in detecting and quantifying polymorphism of pharmaceutics since they are fast and non-destructive. This study assessed the ability of three vibrational spectroscopy combined with multivariate analysis to quantify a low-content undesired polymorph within a binary polymorphic mixture. Partial least squares (PLS) regression and support vector machine (SVM) regression were employed to build quantitative models. Fusidic acid, a steroidal antibiotic, was used as the model compound. It was found that PLS regression performed slightly better than SVM regression in all the three spectroscopic techniques. Root mean square errors of prediction (RMSEP) were ranging from 0.48% to 1.17% for diffuse reflectance FTIR spectroscopy and 1.60-1.93% for diffuse reflectance FT-NIR spectroscopy and 1.62-2.31% for Raman spectroscopy. The results indicate that diffuse reflectance FTIR spectroscopy offers significant advantages in providing accurate measurement of polymorphic content in the fusidic acid binary mixtures, while Raman spectroscopy is the least accurate technique for quantitative analysis of polymorphs. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ansari, Istafaul Haque; Rivas, Nicolas; Alam, Meheboob
2018-01-01
We report patterns consisting of coexistence of synchronous and asynchronous states [for example, a granular gas co-existing with (i) bouncing bed, (ii) undulatory subharmonic waves, and (iii) Leidenfrost-like states] in experiments on vertically vibrated binary granular mixtures in a Hele-Shaw cell. Most experiments have been carried out with equimolar binary mixtures of glass and steel balls of same diameter by varying the total layer height (F ) for a range of shaking acceleration (Γ ). All patterns as well as the related phase diagram in the (Γ ,F ) plane have been reproduced via molecular dynamics simulations of the same system. The segregation of heavier and lighter particles along the horizontal direction is shown to be the progenitor of such phase-coexisting patterns as confirmed in both experiment and simulation. At strong shaking we uncover a partial convection state in which a pair of convection rolls is found to coexist with a Leidenfrost-like state. The crucial role of the relative number density of two species on controlling the buoyancy-driven granular convection is demonstrated. The onset of horizontal segregation can be explained in terms of an anisotropic diffusion tensor.
Almandoz, M C; Sancho, M I; Duchowicz, P R; Blanco, S E
2014-08-14
The solvatochromic behavior of trimethoprim (TMP) was analyzed using UV-Vis spectroscopy and DFT methods in neat and binary aqueous solvent mixtures. The effects of solvent dipolarity/polarizability and solvent-solute hydrogen bonding interactions on the absorption maxima were evaluated by means of the linear solvation energy relationship concept of Kamlet and Taft. This analysis indicated that both interactions play an important role in the position of the absorption maxima in neat solvents. The simulated absorption spectra of TMP and TMP:(solvent)n complexes in ACN and H2O using TD-DFT methods were in agreement with the experimental ones. Binary aqueous mixtures containing as co-solvents DMSO, ACN and EtOH were studied. Preferential solvation was detected as a nonideal behavior of the wavenumber curve respective to the analytical mole fraction of co-solvent in all binary systems. TMP molecules were preferentially solvated by the organic solvent over the whole composition range. Index of preferential solvation, as well as the influence of solvent parameters were calculated as a function of solvent composition. Copyright © 2014 Elsevier B.V. All rights reserved.
Evolution of Optical Binary Fraction in Sparse Stellar Systems
NASA Astrophysics Data System (ADS)
Li, Zhongmu; Mao, Caiyan
2018-05-01
This work studies the evolution of the fraction of optical binary stars (OBF; not including components such as neutron stars and black holes), which is caused by stellar evolution, and the contributions of various binaries to OBF via the stellar population synthesis technique. It is shown that OBF decreases from 1 to about 0.81 for stellar populations with the Salpeter initial mass function (IMF), and to about 0.85 for the case of the Kroupa IMF, on a timescale of 15 Gyr. This result depends on metallicity, slightly. The contributions of binaries varying with mass ratio, orbital period, separation, spectral types of primary and secondary, contact degree, and pair type to OBF are calculated for stellar populations with different ages and metallicities. The contribution of different kinds of binaries to OBF depends on age and metallicity. The results can be used for estimating the global OBF of star clusters or galaxies from the fraction of a kind of binary. It is also helpful for estimating the primordial and future binary fractions of sparse stellar systems from the present observations. Our results are suitable for studying field stars, open clusters, and the outer part of globular clusters, because the OBF of such objects is affected by dynamical processes, relatively slightly, but they can also be used for giving some limits for other populations.
NASA Astrophysics Data System (ADS)
Lei, Zhenxin; Zhao, Gang; Zeng, Aihua; Shen, Lihua; Lan, Zhongjian; Jiang, Dengkai; Han, Zhanwen
2016-12-01
Employing tidally enhanced stellar wind, we studied in binaries the effects of metallicity, mass ratio of primary to secondary, tidal enhancement efficiency and helium abundance on the formation of blue hook (BHk) stars in globular clusters (GCs). A total of 28 sets of binary models combined with different input parameters are studied. For each set of binary model, we presented a range of initial orbital periods that is needed to produce BHk stars in binaries. All the binary models could produce BHk stars within different range of initial orbital periods. We also compared our results with the observation in the Teff-logg diagram of GC NGC 2808 and ω Cen. Most of the BHk stars in these two GCs locate well in the region predicted by our theoretical models, especially when C/N-enhanced model atmospheres are considered. We found that mass ratio of primary to secondary and tidal enhancement efficiency have little effects on the formation of BHk stars in binaries, while metallicity and helium abundance would play important roles, especially for helium abundance. Specifically, with helium abundance increasing in binary models, the space range of initial orbital periods needed to produce BHk stars becomes obviously wider, regardless of other input parameters adopted. Our results were discussed with recent observations and other theoretical models.
Mechanochemical synthesis of MgF2 - MF2 composite systems (M = Ca, Sr, Ba)
NASA Astrophysics Data System (ADS)
Scholz, G.; Breitfeld, S.; Krahl, T.; Düvel, A.; Heitjans, P.; Kemnitz, E.
2015-12-01
The capability of mechanochemical synthesis for the formation of MgF2-MF2 (M: Ca, Sr, Ba) composites, solid solutions or well-defined compounds was tested applying a fluorination of different fluorine-free metal sources with NH4F directly at milling. No evidence was found for a substitution of Mg2+ with Ca2+ (Sr2+, Ba2+) ions, or vice versa, in rutile or fluorite structure. However, an equimolar ratio of Mg2+ to the second cation allows the mechanochemical synthesis of tetrafluoromagnesates, MMgF4, which is more and more hampered the smaller the radius of the cation M2+ is. BaMgF4 is formed even phase pure from the acetates, SrMgF4 can only be observed in a mixture accompanied by the binary fluorides. In addition, 19F MAS NMR spectra along with calculations of 19F isotropic chemical shift values according to the superposition model point to the formation of a metastable phase of CaMgF4, which disappears at thermal treatment and decomposes into the binary fluorides CaF2 and MgF2.
NASA Astrophysics Data System (ADS)
Senturk, Bilge Seda
Metallic contacts are a ubiquitous method of connecting electrical and electronic components/systems. These contacts are usually fabricated from base metals because they are inexpensive, have high bulk electrical conductivities and exhibit excellent formability. Unfortunately, such base metals oxidize in air under ambient conditions, and the characteristics of the native oxide scales leads to contact resistances orders of magnitude higher than those for mating bare metal surface. This is a critical technological issue since the development of unacceptably high contact resistances over time is now by far the most common cause of failure in electrical/electronic devices and systems. To overcome these problems, several distinct approaches are developed for alloying base metals to promote the formation of self-healing inherently conductive native oxide scales. The objective of this dissertation study is to demonstrate the viability of these approaches through analyzing the data from Cu-9La (at%) and Fe-V binary alloy systems. The Cu-9 La alloy structure consists of eutectic colonies tens of microns in diameter wherein a rod-like Cu phase lies within a Cu6La matrix phase. The thin oxide scale formed on the Cu phase was found to be Cu2O as expected while the thicker oxide scale formed on the Cu6La phase was found to be a polycrystalline La-rich Cu2O. The enhanced electrical conductivity in the native oxide scale of the Cu-9La alloy arises from heavy n-type doping of the Cu2O lattice by La3+. The Fe-V alloy structures consist of a mixture of large elongated and equiaxed grains. A thin polycrystalline Fe3O4 oxide scale formed on all of the Fe-V alloys. The electrical conductivities of the oxide scales formed on the Fe-V alloys are higher than that formed on pure Fe. It is inferred that this enhanced conductivity arises from doping of the magnetite with V+4 which promotes electron-polaron hopping. Thus, it has been demonstrated that even in simple binary alloy systems one can obtain a dramatic reduction in the contact resistances of alloy oxidized surfaces as compared with those of the pure base metals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timchalk, Chuck; Poet, Torka S.
2008-05-01
Physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) models have been developed and validated for the organophosphorus (OP) insecticides chlorpyrifos (CPF) and diazinon (DZN). Based on similar pharmacokinetic and mode of action properties it is anticipated that these OPs could interact at a number of important metabolic steps including: CYP450 mediated activation/detoxification, and blood/tissue cholinesterase (ChE) binding/inhibition. We developed a binary PBPK/PD model for CPF, DZN and their metabolites based on previously published models for the individual insecticides. The metabolic interactions (CYP450) between CPF and DZN were evaluated in vitro and suggests that CPF is more substantially metabolized to its oxon metabolite than ismore » DZN. These data are consistent with their observed in vivo relative potency (CPF>DZN). Each insecticide inhibited the other’s in vitro metabolism in a concentration-dependent manner. The PBPK model code used to described the metabolism of CPF and DZN was modified to reflect the type of inhibition kinetics (i.e. competitive vs. non-competitive). The binary model was then evaluated against previously published rodent dosimetry and ChE inhibition data for the mixture. The PBPK/PD model simulations of the acute oral exposure to single- (15 mg/kg) vs. binary-mixtures (15+15 mg/kg) of CFP and DZN at this lower dose resulted in no differences in the predicted pharmacokinetics of either the parent OPs or their respective metabolites; whereas, a binary oral dose of CPF+DZN at 60+60 mg/kg did result in observable changes in the DZN pharmacokinetics. Cmax was more reasonably fit by modifying the absorption parameters. It is anticipated that at low environmentally relevant binary doses, most likely to be encountered in occupational or environmental related exposures, that the pharmacokinetics are expected to be linear, and ChE inhibition dose-additive.« less
X-ray binary formation in low-metallicity blue compact dwarf galaxies
NASA Astrophysics Data System (ADS)
Brorby, M.; Kaaret, P.; Prestwich, A.
2014-07-01
X-rays from binaries in small, metal-deficient galaxies may have contributed significantly to the heating and reionization of the early Universe. We investigate this claim by studying blue compact dwarfs (BCDs) as local analogues to these early galaxies. We constrain the relation of the X-ray luminosity function (XLF) to the star formation rate (SFR) using a Bayesian approach applied to a sample of 25 BCDs. The functional form of the XLF is fixed to that found for near-solar metallicity galaxies and is used to find the probability distribution of the normalization that relates X-ray luminosity to SFR. Our results suggest that the XLF normalization for low-metallicity BCDs (12+log(O/H) < 7.7) is not consistent with the XLF normalization for galaxies with near-solar metallicities, at a confidence level 1-5 × 10- 6. The XLF normalization for the BCDs is found to be 14.5± 4.8 ({M}_{⊙}^{-1} yr), a factor of 9.7 ± 3.2 higher than for near-solar metallicity galaxies. Simultaneous determination of the XLF normalization and power-law index result in estimates of q = 21.2^{+12.2}_{-8.8} ({M}_{⊙}^{-1} yr) and α = 1.89^{+0.41}_{-0.30}, respectively. Our results suggest a significant enhancement in the population of high-mass X-ray binaries in BCDs compared to the near-solar metallicity galaxies. This suggests that X-ray binaries could have been a significant source of heating in the early Universe.
Oxide reduction during triggered-lightning fulgurite formation
NASA Astrophysics Data System (ADS)
Jones, B. E.; Jones, K. S.; Rambo, K. J.; Rakov, V. A.; Jerald, J.; Uman, M. A.
2005-03-01
In this study triggered-lightning induced fulgurites were formed in 99.9% pure binary oxides of manganese (MnO) and nickel (NiO) in order to study oxide reduction mechanisms. The fulgurite formation process involved packing the oxide in PVC holders and using the standard rocket-and-wire technique to trigger a lightning strike through the oxide at the International Center for Lightning Research and Testing in Camp Blanding, Florida. These two oxides were chosen from the thermodynamic extrapolation of the oxide stability using the Ellingham Diagram. This diagram indicates that NiO is significantly less stable than MnO. Fulgurites from the pure oxides were analyzed in a scanning electron microscope (SEM); secondary electron images, backscattered images and energy dispersive spectroscopy (EDS) were used to determine the microstructure and composition of the fulgurites. SEM/EDS analysis of the NiO and MnO prior to fulgurite formation confirmed they were pure binary oxides with no metallic contamination. After fulgurite formation, it was found that the nickel oxide fulgurite contained metallic nickel particles; the manganese oxide fulgurite showed no metallic phase formation. Transmission electron microscopy (TEM) examination confirmed that the MnO was a pure oxide with no sign of metallic phase formation. However, TEM results of the NiO showed that approximately 50% of the NiO was reduced to metallic face-centered cubic Ni. The Ni and NiO were observed to be coherent with the [1 0 0]Ni//[1 0 0]NiO and [1 1 0]Ni//[1 1 0]NiO. These results are consistent with the aforementioned thermodynamic stability calculations and show that the presence of carbonaceous material or mixtures of oxides is not necessary for oxide reduction during fulgurite formation. These studies do not rule out the possibility that electrolysis plays a role in oxide reduction. However, these fulgurites were made simultaneously during the same lightning strike and therefore were subjected to the same electrical current, and thus it is proposed the thermodynamic stability of the oxide must play a role in oxide reduction.
NASA Astrophysics Data System (ADS)
Zakharov, A. G.; Voronova, M. I.; Batov, D. V.; Smirnova, K. V.
2011-03-01
The solution of phenol and benzoic acid in water-dimethylsulfoxide (DMSO) and water-acetonitrile (AN) mixtures was studied. As distinct from benzoic acid, the thermodynamic characteristics of solution of phenol sharply change at concentrations corresponding to a change in the character of cluster formation in water-DMSO and water-AN mixtures. Differences in the solvation of phenol and benzoic acid are explained by different mechanisms of the interaction of the solutes with clusters existing in binary mixtures.
Aquatic organisms are continuously exposed to complex mixtures of chemicals, many of which can interfere with their endocrine system, resulting in impaired reproduction, development or survival, among others. In order to analyze the effects and mechanisms of action of estrogen...
Construction of Lines of Constant Density and Constant Refractive Index for Ternary Liquid Mixtures.
ERIC Educational Resources Information Center
Tasic, Aleksandar Z.; Djordjevic, Bojan D.
1983-01-01
Demonstrates construction of density constant and refractive index constant lines in triangular coordinate system on basis of systematic experimental determinations of density and refractive index for both homogeneous (single-phase) ternary liquid mixtures (of known composition) and the corresponding binary compositions. Background information,…
New Approach to Remove Metals from Chromated Copper Arsenate (CCA)-Treated Wood
Todd F. Shupe; Chung Y. Hse; Hui Pan
2012-01-01
Recovery of metals from chromated copper arsenate (CCA)-treated southern pine wood particles was investigated using binary acid solutions consisting of acetic, oxalic, and phosphoric acids in a microwave reactor. Formation of an insoluble copper oxalate complex in the binary solution containing oxalic acid was the major factor for low copper removal. Furthermore, the...
On ternary species mixing and combustion in isotropic turbulence at high pressure
NASA Astrophysics Data System (ADS)
Lou, Hong; Miller, Richard S.
2004-05-01
Effects of Soret and Dufour cross-diffusion, whereby both concentration and thermal diffusion occur in the presence of mass fraction, temperature, and pressure gradients, are investigated in the context of both binary and ternary species mixing and combustion in isotropic turbulence at large pressure. The compressible flow formulation is based on a cubic real-gas state equation, and includes generalized forms for heat and mass diffusion derived from nonequilibrium thermodynamics and fluctuation theory. A previously derived formulation of the generalized binary species heat and mass fluxes is first extended to the case of ternary species, and appropriate treatment of the thermal and mass diffusion factors is described. Direct numerical simulations (DNS) are then conducted for both binary and ternary species mixing and combustion in stationary isotropic turbulence. Mean flow temperatures and pressures of
Inert electrode containing metal oxides, copper and noble metal
Ray, Siba P.; Woods, Robert W.; Dawless, Robert K.; Hosler, Robert B.
2001-01-01
A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.
Inert electrode containing metal oxides, copper and noble metal
Ray, Siba P.; Woods, Robert W.; Dawless, Robert K.; Hosler, Robert B.
2000-01-01
A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.
Synthesis of refractory materials
Holt, Joseph B.
1984-01-01
Refractory metal nitrides are synthesized during a self-propagating combustion process utilizing a solid source of nitrogren. For this purpose, a metal azide is employed, preferably NaN.sub.3. The azide is combusted with Mg or Ca, and a metal oxide is selected from Groups III-A, IV-A, III-B, IV-B, or a rare earth metal oxide. The mixture of azide, Ca or Mg and metal oxide is heated to the mixture's ignition temperature. At that temperature the mixture is ignited and undergoes self-sustaining combustion until the starter materials are exhausted, producing the metal nitride.
Synthesis of refractory materials
Holt, J.B.
1983-08-16
Refractory metal nitrides are synthesized during a self-propagating combustion process utilizing a solid source of nitrogen. For this purpose, a metal azide is employed, preferably NaN/sub 3/. The azide is combusted with Mg or Ca, and a metal oxide is selected from Groups III-A, IV-A, III-B, IV-B, or a rare earth metal oxide. The mixture of azide, Ca or Mg and metal oxide is heated to the mixture's ignition temperature. At that temperature the mixture is ignited and undergoes self-sustaining combustion until the starter materials are exhausted, producing the metal nitride.
Tsui, Lok-kun; Benavidez, Angelica; Palanisamy, Ponnusamy; ...
2017-04-13
The development of on-board sensors for emissions monitoring is necessary for continuous monitoring of the performance of catalytic systems in automobiles. We have fabricated mixed potential electrochemical gas sensing devices with Pt, La 0.8Sr 0.2CrO 3 (LSCO), and Au/Pd alloy electrodes and a porous yttria-stabilized zirconia electrolyte. The three-electrode design takes advantage of the preferential selectivity of the Pt + Au/Pd and Pt + LSCO pairs towards different species of gases and has additional tunable selectivity achieved by applying a current bias to the latter pair. Voltages were recorded in single, binary, and ternary gas streams of NO, NO 2,more » C 3H 8, and CO. We have also trained artificial neural networks to examine the voltage output from sensors in biased and unbiased modes to both identify which single test gas or binary mixture of two test gases is present in a gas stream as well as extract concentration values. We were then able to identify single and binary mixtures of these gases with accuracy of at least 98%. For determining concentration, the peak in the error distribution for binary mixtures was 5% and 80% of test data fell under <12% error. The sensor stability was also evaluated over the course of over 100 days and the ability to retrain ANNs with a small dataset was demonstrated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsui, Lok-kun; Benavidez, Angelica; Palanisamy, Ponnusamy
The development of on-board sensors for emissions monitoring is necessary for continuous monitoring of the performance of catalytic systems in automobiles. We have fabricated mixed potential electrochemical gas sensing devices with Pt, La 0.8Sr 0.2CrO 3 (LSCO), and Au/Pd alloy electrodes and a porous yttria-stabilized zirconia electrolyte. The three-electrode design takes advantage of the preferential selectivity of the Pt + Au/Pd and Pt + LSCO pairs towards different species of gases and has additional tunable selectivity achieved by applying a current bias to the latter pair. Voltages were recorded in single, binary, and ternary gas streams of NO, NO 2,more » C 3H 8, and CO. We have also trained artificial neural networks to examine the voltage output from sensors in biased and unbiased modes to both identify which single test gas or binary mixture of two test gases is present in a gas stream as well as extract concentration values. We were then able to identify single and binary mixtures of these gases with accuracy of at least 98%. For determining concentration, the peak in the error distribution for binary mixtures was 5% and 80% of test data fell under <12% error. The sensor stability was also evaluated over the course of over 100 days and the ability to retrain ANNs with a small dataset was demonstrated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
A system for removing components of a gaseous mixture is provided comprising: a reactor fluid containing vessel having conduits extending therefrom, aqueous fluid within the reactor, the fluid containing a ligand and a metal, and at least one reactive surface within the vessel coupled to a power source. A method for removing a component from a gaseous mixture is provided comprising exposing the gaseous mixture to a fluid containing a ligand and a reactive metal, the exposing chemically binding the component of the gaseous mixture to the ligand. A method of capturing a component of a gaseous mixture is providedmore » comprising: exposing the gaseous mixture to a fluid containing a ligand and a reactive metal, the exposing chemically binding the component of the gaseous mixture to the ligand, altering the oxidation state of the metal, the altering unbinding the component from the ligand, and capturing the component.« less
Rock Content Influence on Soil Hydraulic Properties
NASA Astrophysics Data System (ADS)
Parajuli, K.; Sadeghi, M.; Jones, S. B.
2015-12-01
Soil hydraulic properties including the soil water retention curve (SWRC) and hydraulic conductivity function are important characteristics of soil affecting a variety of soil properties and processes. The hydraulic properties are commonly measured for seived soils (i.e. particles < 2 mm), but many natural soils include rock fragments of varying size that alter bulk hydraulic properties. Relatively few studies have addressed this important problem using physically-based concepts. Motivated by this knowledge gap, we set out to describe soil hydraulic properties using binary mixtures (i.e. rock fragment inclusions in a soil matrix) based on individual properties of the rock and soil. As a first step of this study, special attention was devoted to the SWRC, where the impact of rock content on the SWRC was quantified using laboratory experiments for six different mixing ratios of soil matrix and rock. The SWRC for each mixture was obtained from water mass and water potential measurements. The resulting data for the studied mixtures yielded a family of SWRC indicating how the SWRC of the mixture is related to that of the individual media, i.e., soil and rock. A consistent model was also developed to describe the hydraulic properties of the mixture as a function of the individual properties of the rock and soil matrix. Key words: Soil hydraulic properties, rock content, binary mixture, experimental data.
Thermal shock resistance ceramic insulator
Morgan, Chester S.; Johnson, William R.
1980-01-01
Thermal shock resistant cermet insulators containing 0.1-20 volume % metal present as a dispersed phase. The insulators are prepared by a process comprising the steps of (a) providing a first solid phase mixture of a ceramic powder and a metal precursor; (b) heating the first solid phase mixture above the minimum decomposition temperature of the metal precursor for no longer than 30 minutes and to a temperature sufficiently above the decomposition temperature to cause the selective decomposition of the metal precursor to the metal to provide a second solid phase mixture comprising particles of ceramic having discrete metal particles adhering to their surfaces, said metal particles having a mean diameter no more than 1/2 the mean diameter of the ceramic particles, and (c) densifying the second solid phase mixture to provide a cermet insulator having 0.1-20 volume % metal present as a dispersed phase.
Ferrando, Nicolas; Lachet, Véronique; Boutin, Anne
2010-07-08
Ketone and aldehyde molecules are involved in a large variety of industrial applications. Because they are mainly present mixed with other compounds, the prediction of phase equilibrium of mixtures involving these classes of molecules is of first interest particularly to design and optimize separation processes. The main goal of this work is to propose a transferable force field for ketones and aldehydes that allows accurate molecular simulations of not only pure compounds but also complex mixtures. The proposed force field is based on the anisotropic united-atoms AUA4 potential developed for hydrocarbons, and it introduces only one new atom, the carbonyl oxygen. The Lennard-Jones parameters of this oxygen atom have been adjusted on saturated thermodynamic properties of both acetone and acetaldehyde. To simulate mixtures, Monte Carlo simulations are carried out in a specific pseudoensemble which allows a direct calculation of the bubble pressure. For polar mixtures involved in this study, we show that this approach is an interesting alternative to classical calculations in the isothermal-isobaric Gibbs ensemble. The pressure-composition diagrams of polar + polar and polar + nonpolar binary mixtures are well reproduced. Mutual solubilities as well as azeotrope location, if present, are accurately predicted without any empirical binary interaction parameters or readjustment. Such result highlights the transferability of the proposed force field, which is an essential feature toward the simulation of complex oxygenated mixtures of industrial interest.
CO2/H2O adsorption equilibrium and rates on metal-organic frameworks: HKUST-1 and Ni/DOBDC.
Liu, Jian; Wang, Yu; Benin, Annabelle I; Jakubczak, Paulina; Willis, Richard R; LeVan, M Douglas
2010-09-07
Metal-organic frameworks (MOFs) have recently attracted intense research interest because of their permanent porous structures, huge surface areas, and potential applications as novel adsorbents and catalysts. In order to provide a basis for consideration of MOFs for removal of carbon dioxide from gases containing water vapor, such as flue gas, we have studied adsorption equilibrium of CO(2), H(2)O vapor, and their mixtures and also rates of CO(2) adsorption in two MOFs: HKUST-1 (CuBTC) and Ni/DOBDC (CPO-27-Ni or Ni/MOF-74). The MOFs were synthesized via solvothermal methods, and the as-synthesized products were solvent exchanged and regenerated before experiments. Pure component adsorption equilibria and CO(2)/H(2)O binary adsorption equilibria were studied using a volumetric system. The effects of H(2)O adsorption on CO(2) adsorption for both MOF samples were determined, and the results for 5A and NaX zeolites were included for comparison. The hydrothermal stabilities for the two MOFs over the course of repetitive measurements of H(2)O and CO(2)/H(2)O mixture equilibria were also studied. CO(2) adsorption rates from helium for the MOF samples were investigated by using a unique concentration-swing frequency response (CSFR) system. Mass transfer into the MOFs is rapid with the controlling resistance found to be macropore diffusion, and rate parameters were established for the mechanism.
Powder Extinguishants for Jet-Fuel Fires
NASA Technical Reports Server (NTRS)
Altman, R. L.; Mayer, L. A.; Ling, A. C.
1986-01-01
Mixtures of alkali metal dawsonite and metal halide show superior performance. In tests of new dry powder fire extinguishants, mixtures of potassium dawsonite with either stannous iodide or potassium iodide found effective for extinguishing jet-fuel fires on hot metal surfaces (up to 900 degrees C). Mixtures performed more effectively than either compound alone.
NASA Astrophysics Data System (ADS)
Kruppa, Tobias; Neuhaus, Tim; Messina, René; Löwen, Hartmut
2012-04-01
A binary mixture of particles interacting via long-ranged repulsive forces is studied in gravity by computer simulation and theory. The more repulsive A-particles create a depletion zone of less repulsive B-particles around them reminiscent to a bubble. Applying Archimedes' principle effectively to this bubble, an A-particle can be lifted in a fluid background of B-particles. This "depletion bubble" mechanism explains and predicts a brazil-nut effect where the heavier A-particles float on top of the lighter B-particles. It also implies an effective attraction of an A-particle towards a hard container bottom wall which leads to boundary layering of A-particles. Additionally, we have studied a periodic inversion of gravity causing perpetuous mutual penetration of the mixture in a slit geometry. In this nonequilibrium case of time-dependent gravity, the boundary layering persists. Our results are based on computer simulations and density functional theory of a two-dimensional binary mixture of colloidal repulsive dipoles. The predicted effects also occur for other long-ranged repulsive interactions and in three spatial dimensions. They are therefore verifiable in settling experiments on dipolar or charged colloidal mixtures as well as in charged granulates and dusty plasmas.
Kruppa, Tobias; Neuhaus, Tim; Messina, René; Löwen, Hartmut
2012-04-07
A binary mixture of particles interacting via long-ranged repulsive forces is studied in gravity by computer simulation and theory. The more repulsive A-particles create a depletion zone of less repulsive B-particles around them reminiscent to a bubble. Applying Archimedes' principle effectively to this bubble, an A-particle can be lifted in a fluid background of B-particles. This "depletion bubble" mechanism explains and predicts a brazil-nut effect where the heavier A-particles float on top of the lighter B-particles. It also implies an effective attraction of an A-particle towards a hard container bottom wall which leads to boundary layering of A-particles. Additionally, we have studied a periodic inversion of gravity causing perpetuous mutual penetration of the mixture in a slit geometry. In this nonequilibrium case of time-dependent gravity, the boundary layering persists. Our results are based on computer simulations and density functional theory of a two-dimensional binary mixture of colloidal repulsive dipoles. The predicted effects also occur for other long-ranged repulsive interactions and in three spatial dimensions. They are therefore verifiable in settling experiments on dipolar or charged colloidal mixtures as well as in charged granulates and dusty plasmas.
Columnar to Nematic Mesophase Transition: Binary Mixtures of Unlike Copper Soaps
NASA Astrophysics Data System (ADS)
Seghrouchni, R.; Skoulios, A.
1995-10-01
Copper (II) soaps are known to produce columnar mesophases at high temperature. The polar groups of the soap molecules are stacked over one another within columns surrounded by the alkyl chains in a disordered conformation and laterally arranged according to a two-dimensional hexagonal lattice. The present work studies the mesomorphic behaviour of binary mixtures of copper soaps using differential scanning calorimetry, polarizing microscopy, and X-ray diffraction. When the soaps are of comparable molecular sizes the mixtures are homogeneous and columnar at all compositions. The columns of the two soaps, remaining intact in the mixture, are distributed randomly on the nodes of a hexagonal Bravais lattice. Crystallographic homogeneity is obtained by transfer of methylene groups from cell to cell. When, on the other hand, the soaps are different enough in molecular sizes, the columnar structure of the mixtures is interrupted in the middle range of compositions for the benefit of a nematic one. The transfer of methylene groups gets indeed harder to achieve and the distortion of the hexagonal units cells becomes important. The columnar to nematic phase transition is discussed on a molecular and a topological level.
NASA Astrophysics Data System (ADS)
Wu, Liang; Malijevský, Alexandr; Avendaño, Carlos; Müller, Erich A.; Jackson, George
2018-04-01
A molecular simulation study of binary mixtures of hard spherocylinders (HSCs) and hard spheres (HSs) confined between two structureless hard walls is presented. The principal aim of the work is to understand the effect of the presence of hard spheres on the entropically driven surface nematization of hard rod-like particles at surfaces. The mixtures are studied using a constant normal-pressure Monte Carlo algorithm. The surface adsorption at different compositions is examined in detail. At moderate hard-sphere concentrations, preferential adsorption of the spheres at the wall is found. However, at moderate to high pressure (density), we observe a crossover in the adsorption behavior with nematic layers of the rods forming at the walls leading to local demixing of the system. The presence of the spherical particles is seen to destabilize the surface nematization of the rods, and the degree of demixing increases on increasing the hard-sphere concentration.
Croker, Denise M; Hennigan, Michelle C; Maher, Anthony; Hu, Yun; Ryder, Alan G; Hodnett, Benjamin K
2012-04-07
Diffraction and spectroscopic methods were evaluated for quantitative analysis of binary powder mixtures of FII(6.403) and FIII(6.525) piracetam. The two polymorphs of piracetam could be distinguished using powder X-ray diffraction (PXRD), Raman and near-infrared (NIR) spectroscopy. The results demonstrated that Raman and NIR spectroscopy are most suitable for quantitative analysis of this polymorphic mixture. When the spectra are treated with the combination of multiplicative scatter correction (MSC) and second derivative data pretreatments, the partial least squared (PLS) regression model gave a root mean square error of calibration (RMSEC) of 0.94 and 0.99%, respectively. FIII(6.525) demonstrated some preferred orientation in PXRD analysis, making PXRD the least preferred method of quantification. Copyright © 2012 Elsevier B.V. All rights reserved.
Wu, Liang; Malijevský, Alexandr; Avendaño, Carlos; Müller, Erich A; Jackson, George
2018-04-28
A molecular simulation study of binary mixtures of hard spherocylinders (HSCs) and hard spheres (HSs) confined between two structureless hard walls is presented. The principal aim of the work is to understand the effect of the presence of hard spheres on the entropically driven surface nematization of hard rod-like particles at surfaces. The mixtures are studied using a constant normal-pressure Monte Carlo algorithm. The surface adsorption at different compositions is examined in detail. At moderate hard-sphere concentrations, preferential adsorption of the spheres at the wall is found. However, at moderate to high pressure (density), we observe a crossover in the adsorption behavior with nematic layers of the rods forming at the walls leading to local demixing of the system. The presence of the spherical particles is seen to destabilize the surface nematization of the rods, and the degree of demixing increases on increasing the hard-sphere concentration.
NASA Astrophysics Data System (ADS)
Lamie, Nesrine T.
2015-10-01
Four, accurate, precise, and sensitive spectrophotometric methods are developed for simultaneous determination of a binary mixture of amlodipine besylate (AM) and atenolol (AT). AM is determined at its λmax 360 nm (0D), while atenolol can be determined by four different methods. Method (A) is absorption factor (AF). Method (B) is the new ratio difference method (RD) which measures the difference in amplitudes between 210 and 226 nm. Method (C) is novel constant center spectrophotometric method (CC). Method (D) is mean centering of the ratio spectra (MCR) at 284 nm. The methods are tested by analyzing synthetic mixtures of the cited drugs and they are applied to their commercial pharmaceutical preparation. The validity of results is assessed by applying standard addition technique. The results obtained are found to agree statistically with those obtained by official methods, showing no significant difference with respect to accuracy and precision.
Abdel-Aleem, Eglal A; Hegazy, Maha A; Sayed, Nour W; Abdelkawy, M; Abdelfatah, Rehab M
2015-02-05
This work is concerned with development and validation of three simple, specific, accurate and precise spectrophotometric methods for determination of flumethasone pivalate (FP) and clioquinol (CL) in their binary mixture and ear drops. Method A is a ratio subtraction spectrophotometric one (RSM). Method B is a ratio difference spectrophotometric one (RDSM), while method C is a mean center spectrophotometric one (MCR). The calibration curves are linear over the concentration range of 3-45 μg/mL for FP, and 2-25 μg/mL for CL. The specificity of the developed methods was assessed by analyzing different laboratory prepared mixtures of the FP and CL. The three methods were validated as per ICH guidelines; accuracy, precision and repeatability are found to be within the acceptable limits. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Barot, D. K.; Chaube, H. A.; Rana, V. A.
2017-05-01
The complex relative dielectric function ɛ*(ω) = ɛ'-jɛ″ of binary mixture of 1-Butyl-3-methylimadazolium (BMiCl) with water of varying concentration have been measured using Precision LCR meter in the frequency range 20 Hz to 2 MHz at 293.15 K. The dielectric and electrical properties of BMiCl and water are represented in terms of electrical conductivity σ*(ω) and complex relative dielectric function ɛ*(ω). To describe the relationship of the electrical conductivity with concentration, the empirical Casteel-Amis (C-A) equation was used. The influence of concentration variation of BMiCl in water to the various electrical parameters was discussed. All of these presentations are used to explore various processes contributed in the electrical/dielectric properties of the mixtures of BMiCl and water.
Solubility of Naproxen in Polyethylene Glycol 200 + Water Mixtures at Various Temperatures
Panahi-Azar, Vahid; Soltanpour, Shahla; Martinez, Fleming; Jouyban, Abolghasem
2015-01-01
The solubility of naproxen in binary mixtures of polyethylene glycol 200 (PEG 200) + water at the temperature range from 298.0 K to 318.0 K were reported. The combinations of Jouyban-Acree model + van’t Hoff and Jouyban-Acree model + partial solubility parameters were used to predict the solubility of naproxen in PEG 200 + water mixtures at different temperatures. Combination of Jouyban-Acree model with van’t Hoff equation can be used to predict solubility in PEG 200 + water with only four solubility data in mono-solvents. The obtained solubility calculation errors vary from ~ 17 % up to 35 % depend on the number of required input data. Non-linear enthalpy-entropy compensation was found for naproxen in the investigated solvent system and the Jouyban−Acree model provides reasonably accurate mathematical descriptions of the thermodynamic data of naproxen in the investigated binary solvent systems. PMID:26664370
Delfosse, Vanessa; Dendele, Béatrice; Huet, Tiphaine; Grimaldi, Marina; Boulahtouf, Abdelhay; Gerbal-Chaloin, Sabine; Beucher, Bertrand; Roecklin, Dominique; Muller, Christina; Rahmani, Roger; Cavaillès, Vincent; Daujat-Chavanieu, Martine; Vivat, Valérie; Pascussi, Jean-Marc; Balaguer, Patrick; Bourguet, William
2015-09-03
Humans are chronically exposed to multiple exogenous substances, including environmental pollutants, drugs and dietary components. Many of these compounds are suspected to impact human health, and their combination in complex mixtures could exacerbate their harmful effects. Here we demonstrate that a pharmaceutical oestrogen and a persistent organochlorine pesticide, both exhibiting low efficacy when studied separately, cooperatively bind to the pregnane X receptor, leading to synergistic activation. Biophysical analysis shows that each ligand enhances the binding affinity of the other, so the binary mixture induces a substantial biological response at doses at which each chemical individually is inactive. High-resolution crystal structures reveal the structural basis for the observed cooperativity. Our results suggest that the formation of 'supramolecular ligands' within the ligand-binding pocket of nuclear receptors contributes to the synergistic toxic effect of chemical mixtures, which may have broad implications for the fields of endocrine disruption, toxicology and chemical risk assessment.
Interactions of a pesticide/heavy metal mixture in marine bivalves: a transcriptomic assessment
2011-01-01
Background Mixtures of chemicals present in aquatic environments may elicit toxicity due to additive or synergistic effects among the constituents or, vice versa, the adverse outcome may be reduced by antagonistic interactions. Deviations from additivity should be explained either by the perturbations of toxicokinetic parameters and/or chemical toxicodynamics. We addressed this important question in marine mussels exposed subchronically to a binary mixture made of two wide-spread pollutants: the heavy metal nickel and the organic phosphorus pesticide Chlorpyrifos. To this aim, we carried out in tissues of Mytius galloprovincialis (Lam) a systems approach based on the evaluation and integration of different disciplines, i.e. high throughput gene expression profiling, functional genomics, stress biomakers and toxicokinetics. Results Cellular and tissue biomarkers, viz. digestive gland lysosomal membrane stability, lysosomal/cytosol volume ratio, neutral lipid content and gill acetylcholinesterase activity were, in general, altered by either the exposure to nickel and Chlorpyrifos. However, their joint action rendered (i) an overall decrease of the stress syndrome level, as evaluated through an expert system integrating biomarkers and (ii) statistically significant antagonistic deviations from the reference model systems to predict mixture toxicity. While toxicokinetic modeling did not explain mixture interactions, gene expression profiling and further Gene Ontology-based functional genomics analysis provided clues that the decrement of toxicity may arise from the development of specific toxicodynamics. Multivariate statistics of microarray data (238 genes in total, representing about 14% of the whole microarray catalogue) showed two separate patterns for the single chemicals: the one belonging to the heavy metal -135 differentially expressed genes (DEGs) was characterized by the modulation of transcript levels involved in nucleic acid metabolism, cell proliferation and lipid metabolic processes. Chlorpyrifos exposure (43 DEGs) yielded a molecular signature which was biased towards carbohydrate catabolism (indeed, chitin metabolism) and developmental processes. The exposure to the mixture (103 DEGs) elicited a composite complex profile which encompassed the core properties of the pesticide but also a relevant set of unique features. Finally, the relative mRNA abundance of twelve genes was followed by Q-PCR to either confirm or complement microarray data. These results, in general, were compatible with those from arrays and indeed confirmed the association of the relative abundance of two GM-2 ganglioside activator genes in the development of the hyperlipidosis syndrome observed in digestive gland lysosomes of single chemical exposed mussels. Conclusion The transcriptomic assessment fitted with biological data to indicate the occurrence of different toxicodynamic events and, in general, a decrease of toxicity, driven by the mitigation or even abolition of lysosomal responses. Furthermore, our results emphasized the importance of the application of mechanistic approaches and the power of systems assessment to study toxicological responses in ecologically relevant organisms. PMID:21496282
Interactions of a pesticide/heavy metal mixture in marine bivalves: a transcriptomic assessment.
Dondero, Francesco; Banni, Mohamed; Negri, Alessandro; Boatti, Lara; Dagnino, Alessandro; Viarengo, Aldo
2011-04-16
Mixtures of chemicals present in aquatic environments may elicit toxicity due to additive or synergistic effects among the constituents or, vice versa, the adverse outcome may be reduced by antagonistic interactions. Deviations from additivity should be explained either by the perturbations of toxicokinetic parameters and/or chemical toxicodynamics. We addressed this important question in marine mussels exposed subchronically to a binary mixture made of two wide-spread pollutants: the heavy metal nickel and the organic phosphorus pesticide Chlorpyrifos. To this aim, we carried out in tissues of Mytius galloprovincialis (Lam) a systems approach based on the evaluation and integration of different disciplines, i.e. high throughput gene expression profiling, functional genomics, stress biomakers and toxicokinetics. Cellular and tissue biomarkers, viz. digestive gland lysosomal membrane stability, lysosomal/cytosol volume ratio, neutral lipid content and gill acetylcholinesterase activity were, in general, altered by either the exposure to nickel and Chlorpyrifos. However, their joint action rendered (i) an overall decrease of the stress syndrome level, as evaluated through an expert system integrating biomarkers and (ii) statistically significant antagonistic deviations from the reference model systems to predict mixture toxicity. While toxicokinetic modeling did not explain mixture interactions, gene expression profiling and further Gene Ontology-based functional genomics analysis provided clues that the decrement of toxicity may arise from the development of specific toxicodynamics. Multivariate statistics of microarray data (238 genes in total, representing about 14% of the whole microarray catalogue) showed two separate patterns for the single chemicals: the one belonging to the heavy metal -135 differentially expressed genes (DEGs) was characterized by the modulation of transcript levels involved in nucleic acid metabolism, cell proliferation and lipid metabolic processes. Chlorpyrifos exposure (43 DEGs) yielded a molecular signature which was biased towards carbohydrate catabolism (indeed, chitin metabolism) and developmental processes. The exposure to the mixture (103 DEGs) elicited a composite complex profile which encompassed the core properties of the pesticide but also a relevant set of unique features. Finally, the relative mRNA abundance of twelve genes was followed by Q-PCR to either confirm or complement microarray data. These results, in general, were compatible with those from arrays and indeed confirmed the association of the relative abundance of two GM-2 ganglioside activator genes in the development of the hyperlipidosis syndrome observed in digestive gland lysosomes of single chemical exposed mussels. The transcriptomic assessment fitted with biological data to indicate the occurrence of different toxicodynamic events and, in general, a decrease of toxicity, driven by the mitigation or even abolition of lysosomal responses. Furthermore, our results emphasized the importance of the application of mechanistic approaches and the power of systems assessment to study toxicological responses in ecologically relevant organisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timchalk, Chuck; Poet, Torka S.; Hinman, Melissa N.
2005-05-15
Chlorpyrifos (CPF) and diazinon (DZN) are two commonly used organophosphorus (OP) insecticides and potential exists for concurrent exposures. The primary neurotoxic effects from OP pesticide exposures result from the inhibition of acetylcholinesterase (AChE) by their oxon metabolites. The pharmacokinetic and pharmacodynamic impact of acute binary exposures to CPF and DZN in rats were evaluated in this study. Rats were orally administered CPF, DZN or a CPF/DZN mixture (0, 15, 30 or 60 mg/kg) and blood (plasma and RBC), and brain were collected at 0, 3, 6, 12 and 24 h post-dosing, urine was also collected at 24 h. Chlorpyrifos, DZNmore » and their respective metabolites 3,5,6-trichloro-2-pyridinol (TCP) and 2-isopropyl-4-methyl-6-hydroxypyrimidine (IMHP) were quantified in blood and/or urine and cholinesterase (ChE) inhibition was measured in brain, RBCs and plasma. Co-exposure to CPF/DZN at 15/15 mg/kg, did not appreciably alter the pharmacokinetics of CPF, DZN or their metabolites in blood; whereas, a 60/60 mg/kg dose resulted in a transient increase in Cmax, AUC, and decreased clearance of both compounds, likely due to competition between CPF and DZN for CYP450 metabolism. At lower doses, most likely to be encountered in occupational or environmental exposures, the pharmacokinetics were linear. A dose-dependent inhibition of ChE was noted in tissues for both the single and co-exposures. The overall potency for ChE inhibition was greater for CPF than DZN and the binary mixture response appeared to be strongly influenced by CPF. A comparison of the ChE binary response at the low dose (15 mg/kg), where there were no apparent pharmacokinetic interactions, suggested that the overall ChE response was additive. These are the first reported experiments we are aware of that characterize both the pharmacokinetic and pharmacodynamic interactions between CPF and DZN in the rat, and will be used to further develop a binary physiologically based pharmacokinetic and pharmacodynamic model for mixtures.« less
Molecular simulation of fluid mixtures in bulk and at solid-liquid interfaces
NASA Astrophysics Data System (ADS)
Kern, Jesse L.
The properties of a diverse range of mixture systems at interfaces are investigated using a variety of computational techniques. Molecular simulation is used to examine the thermodynamic, structural, and transport properties of heterogeneous systems of theoretical and practical importance. The study of binary hard-sphere mixtures at a hard wall demonstrates the high accuracy of recently developed classical-density functionals. The study of aluminum--gallium solid--liquid heterogeneous interfaces predicts a significant amount of prefreezing of the liquid by adopting the structure of the solid surface. The study of ethylene-expanded methanol within model silica mesopores shows the effect of confinement and surface functionalzation on the mixture composition and transport inside of the pores. From our molecular-dynamics study of binary hard-sphere fluid mixtures at a hard wall, we obtained high-precision calculations of the wall-fluid interfacial free energies, gamma. We have considered mixtures of varying diameter ratio, alpha = 0.7,0.8,0.9; mole fraction, x 1 = 0.25,0.50,0.75; and packing fraction, eta < 0.50. Using Gibbs-Cahn Integration, gamma is calculated from the system pressure, chemical potentials, and density profiles. Recent classical density-functional theory predictions agree very well with our results. Structural, thermodynamic, and transport properties of the aluminum--gallium solid--liquid interface at 368 K are obtained for the (100), (110), and (111) orientations using molecular dynamics. Density, potential energy, stress, and diffusion profiles perpendicular to the interface are calculated. The layers of Ga that form on the Al surface are strongly adsorbed and take the in-plane structure of the underlying crystal layers for all orientations, which results in significant compressive stress on the Ga atoms. Bulk methanol--ethylene mixtures under vapor-liquid equilibrium conditions have been characterized using Monte Carlo and molecular dynamics. The simulated vapor-liquid coexistence curves for the pure-component and binary mixtures agree well with experiment, as do the mixture volumetric expansion results. Using chemical potentials obtained from the bulk simulations, the filling of a number of model silica mesopores with ethylene and methanol is simulated. We report the compositions of the confined fluid mixtures over a range of pressures and for three degrees of nominal pore hydrophobicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, Se-Young, E-mail: ohs@uoguelph.ca
Penicillium mycotoxins (PMs) are toxic contaminants commonly found as mixtures in animal feed. Therefore, it is important to investigate potential joint toxicity of PM mixtures. In the present study, we assessed the joint effect of binary combinations of the following PMs: citrinin (CIT), ochratoxin A (OTA), patulin (PAT), mycophenolic acid (MPA) and penicillic acid (PA) using independent action (IA) and concentration addition (CA) concepts. Previously published toxicity data (i.e. IC25; PM concentration that inhibited bovine macrophage (BoMacs) proliferation by 25%) were initially analyzed, and both concepts agreed that OTA + PA demonstrated synergism (p < 0.05), while PAT + PAmore » showed antagonism (p < 0.05). When a follow-up dilution study was carried out using binary combinations of PMs at three different dilution levels (i.e. IC25, 0.5 ∗ IC25, 0.25 ∗ IC25), only the mixture of CIT + OTA at 0.5 ∗ IC25 was determined to have synergism by both IA and CA concepts with Model Deviation Ratios (MDRs; the ratio of predicted versus observed effect concentrations) of 1.4 and 1.7, respectively. The joint effect of OTA + MPA, OTA + PA and CIT + PAT complied with the IA concept, while CIT + PA, PAT + MPA and PAT + PA were better predicted with the CA over the IA concept. The present study suggests to test both IA and CA concepts using multiple doses when assessing risk of mycotoxin mixtures if the mode of action is unknown. In addition, the study showed that the tested PMs could be predicted by IA or CA within an approximate two-fold certainty, raising the possibility for a joint risk assessment of mycotoxins in food and feed. - Highlights: • We investigated the potential joint toxicity of Penicillium mycotoxin (PM) mixtures. • Independent action (IA) and concentration addition (CA) concepts were used. • 7 out of 10 mixtures followed joint toxicity described by IA or CA concepts. • Both concepts agreed that CIT + OTA mixture had synergistic interaction.« less
Three Boundary Conditions for Computing the Fixed-Point Property in Binary Mixture Data.
van Maanen, Leendert; Couto, Joaquina; Lebreton, Mael
2016-01-01
The notion of "mixtures" has become pervasive in behavioral and cognitive sciences, due to the success of dual-process theories of cognition. However, providing support for such dual-process theories is not trivial, as it crucially requires properties in the data that are specific to mixture of cognitive processes. In theory, one such property could be the fixed-point property of binary mixture data, applied-for instance- to response times. In that case, the fixed-point property entails that response time distributions obtained in an experiment in which the mixture proportion is manipulated would have a common density point. In the current article, we discuss the application of the fixed-point property and identify three boundary conditions under which the fixed-point property will not be interpretable. In Boundary condition 1, a finding in support of the fixed-point will be mute because of a lack of difference between conditions. Boundary condition 2 refers to the case in which the extreme conditions are so different that a mixture may display bimodality. In this case, a mixture hypothesis is clearly supported, yet the fixed-point may not be found. In Boundary condition 3 the fixed-point may also not be present, yet a mixture might still exist but is occluded due to additional changes in behavior. Finding the fixed-property provides strong support for a dual-process account, yet the boundary conditions that we identify should be considered before making inferences about underlying psychological processes.
Exposure to toxic metals can have harmful health effects, particularly in children. Although studies have investigated the individual effects toxic metals have on gene expression and health outcomes, there are no studies assessing the effect of metal mixtures on gene expression p...
Cai, Xin; Xie, Ni; Qiu, Zijie; Yang, Junxian; He, Minghao; Wong, Kam Sing; Tang, Ben Zhong; Qiu, Huihe
2017-08-30
In this study, the concentration gradient inside evaporating binary sessile droplets of 30, 50, and 60 vol % tetrahydrofuran (THF)/water mixtures was investigated. The 5 μL THF/water droplets were evaporated on a transparent hydrophobic substrate. This is the first demonstration of local concentration mapping within an evaporating binary droplet utilizing the aggregation-induced emission material. During the first two evaporation stages of the binary droplet, the local concentration can be directly visualized by the change of fluorescence emission intensity. Time-resolved average and local concentrations can be estimated by using the pre-established function of fluorescence intensity versus water volume fraction.
Mallampati, Srinivasa Reddy; Mitoma, Yoshiharu; Okuda, Tetsuji; Sakita, Shogo; Simion, Cristian
2014-01-01
In the present work, we investigated the use of nano-metallic calcium (Ca) and calcium oxide (CaO) dispersion mixture for the simultaneous remediation of contaminated soils with both heavy metals (As, Cd, Cr, and Pb) and polychlorinated biphenyls (PCBs). Regardless of soil moisture content, nano-metallic Ca/CaO dispersion mixture achieved about 95-99% of heavy metal immobilization by a simple grinding process. During the same treatment, reasonable PCB hydrodechlorination efficiencies were obtained (up to 97%), though higher hydrodechlorination efficiency by preliminary drying of soil was observed.
Internal zone growth method for producing metal oxide metal eutectic composites
Clark, Grady W.; Holder, John D.; Pasto, Arvid E.
1980-01-01
An improved method for preparing a cermet comprises preparing a compact having about 85 to 95 percent theoretical density from a mixture of metal and metal oxide powders from a system containing a eutectic composition, and inductively heating the compact in a radiofrequency field to cause the formation of an internal molten zone. The metal oxide particles in the powder mixture are effectively sized relative to the metal particles to permit direct inductive heating of the compact by radiofrequency from room temperature. Surface melting is prevented by external cooling or by effectively sizing the particles in the powder mixture.
NASA Astrophysics Data System (ADS)
Noguchi, Hiroshi
Micelle formation in binary mixtures of surfactants is studied using a coarse-grained molecular simulation. When a vesicle composed of lipid and detergent types of molecules is ruptured, a disk-shaped micelle, the bicelle, is typically formed. It is found that cup-shaped vesicles and bicelles connected with worm-like micelles are also formed depending on the surfactant ratio and critical micelle concentration. The obtained octopus shape of micelles agree with those observed in the cryo-TEM images reported in [S. Jain and F. S. Bates, Macromol. 37, 1511 (2004).]. Two types of connection structures between the worm-like micelles and the bicelles are revealed.
The Dissolution of an Interfween Miscible Liquids
NASA Technical Reports Server (NTRS)
Vlad, D.H.; Maher, J.V.
1999-01-01
The disappearance of the surface tension of the interface of a binary mixture, measured using the dynamic surface light scattering technique, is slower for a binary mixture of higher density contrast. A comparison with a naive diffusion model, expected to provide a lower limit for the speed of dissolution in the absence of gravity shows that the interfacial surface tension disappears much slower than even by diffusion with the effect becoming much more pronounced when density contrast between the liquid phases is increased. Thus, the factor most likely to be responsible for this anomalously slow dissolution is gravity. A mechanism could be based on the competition between diffusive relaxation and sedimentation at the dissolving interface.
NASA Astrophysics Data System (ADS)
Dahire, S. L.; Morey, Y. C.; Agrawal, P. S.
2015-12-01
Density (ρ), viscosity (η), and ultrasonic velocity ( U) of binary mixtures of aliphatic solvents like dimethylformamide (DMF) and dimethylsulfoxide (DMSO) with aromatic solvents viz. chlorobenzene (CB), bromobenzene (BB), and nitrobenzene (NB) have been determined at 313 K. These parameters were used to calculate the adiabatic compressibility (β), intermolecular free length ( L f), molar volume ( V m), and acoustic impedance ( Z). From the experimental data excess molar volume ( V m E ), excess intermolecular free length ( L f E )), excess adiabatic compressibility (βE), and excess acoustic impedance ( Z E) have been computed. The excess values were correlated using Redlich-Kister polynomial equation to obtain their coefficients and standard deviations (σ).
Experimental measurements of vapor-liquid equilibria of the H2O + CO2 + CH4 ternary system
Qin, J.; Rosenbauer, R.J.; Duan, Zhenhao
2008-01-01
Reported are the experimental measurements on vapor-liquid equilibria in the H2O + CO2 + CH4 ternary system at temperatures from (324 to 375) K and pressures from (10 to 50) MPa. The results indicate that the CH4 solubility in the ternary mixture is about 10 % to 40 % more than that calculated by interpolation from the Henry's law constants of the binary system, H2O + CH4, and the solubility of CO2 is 6 % to 20 % more than what is calculated by the interpolation from the Henry's law constants of the binary mixture, H 2O + CO2. ?? 2008 American Chemical Society.
Turbidity of a binary fluid mixture: Determining eta
NASA Technical Reports Server (NTRS)
Jacobs, Donald T.
1994-01-01
A ground based (1-g) experiment is in progress that will measure the turbidity of a density-matched, binary fluid mixture extremely close to the critical point. By covering the range of reduced temperatures t is equivalent to (T-T(sub c))/T(sub c) from 10(exp -8) to 10(exp -2), the turbidity measurements will allow the critical exponent eta to be determined. No experiment has determined a value of the critical exponent eta, yet its value is significant to theorists in critical phenomena. Interpreting the turbidity correctly is important if future NASA flight experiments use turbidity as an indirect measurement of relative temperature in shuttle experiments on critical phenomena in fluids.
Turbidity of a Binary Fluid Mixture: Determining Eta
NASA Technical Reports Server (NTRS)
Jacobs, Donald T.
1996-01-01
A ground based (1-g) experiment is in progress that will measure the turbidity of a density-matched, binary fluid mixture extremely close to its liquid-liquid critical point. By covering the range of reduced temperatures t equivalent to (T-T(sub c)) / T(sub c) from 10(exp -8) to 10(exp -2), the turbidity measurements will allow the critical exponent eta to be determined. No experiment has precisely determined a value of the critical exponent eta, yet its value is significant to theorists in critical phenomena. Relatively simple critical phenomena, as in the liquid-liquid system studied here, serve as model systems for more complex systems near a critical point.
Additive and synergistic antiandrogenic activities of mixtures of azol fungicides and vinclozolin.
Christen, Verena; Crettaz, Pierre; Fent, Karl
2014-09-15
Many pesticides including pyrethroids and azole fungicides are suspected to have an endocrine disrupting property. At present, the joint activity of compound mixtures is only marginally known. Here we tested the hypothesis that the antiandrogenic activity of mixtures of azole fungicides can be predicted by the concentration addition (CA) model. The antiandrogenic activity was assessed in MDA-kb2 cells. Following assessing single compounds activities mixtures of azole fungicides and vinclozolin were investigated. Interactions were analyzed by direct comparison between experimental and estimated dose-response curves assuming CA, followed by an analysis by the isobole method and the toxic unit approach. The antiandrogenic activity of pyrethroids deltamethrin, cypermethrin, fenvalerate and permethrin was weak, while the azole fungicides tebuconazole, propiconazole, epoxiconazole, econazole and vinclozolin exhibited strong antiandrogenic activity. Ten binary and one ternary mixture combinations of five antiandrogenic fungicides were assessed at equi-effective concentrations of EC25 and EC50. Isoboles indicated that about 50% of the binary mixtures were additive and 50% synergistic. Synergism was even more frequently indicated by the toxic unit approach. Our data lead to the conclusion that interactions in mixtures follow the CA model. However, a surprisingly high percentage of synergistic interactions occurred. Therefore, the mixture activity of antiandrogenic azole fungicides is at least additive. Mixtures should also be considered for additive antiandrogenic activity in hazard and risk assessment. Our evaluation provides an appropriate "proof of concept", but whether it equally translates to in vivo effects should further be investigated. Copyright © 2014 Elsevier Inc. All rights reserved.
Yan, Luchun; Liu, Jiemin; Jiang, Shen; Wu, Chuandong; Gao, Kewei
2017-07-13
The olfactory evaluation function (e.g., odor intensity rating) of e-nose is always one of the most challenging issues in researches about odor pollution monitoring. But odor is normally produced by a set of stimuli, and odor interactions among constituents significantly influenced their mixture's odor intensity. This study investigated the odor interaction principle in odor mixtures of aldehydes and esters, respectively. Then, a modified vector model (MVM) was proposed and it successfully demonstrated the similarity of the odor interaction pattern among odorants of the same type. Based on the regular interaction pattern, unlike a determined empirical model only fit for a specific odor mixture in conventional approaches, the MVM distinctly simplified the odor intensity prediction of odor mixtures. Furthermore, the MVM also provided a way of directly converting constituents' chemical concentrations to their mixture's odor intensity. By combining the MVM with usual data-processing algorithm of e-nose, a new e-nose system was established for an odor intensity rating. Compared with instrumental analysis and human assessor, it exhibited accuracy well in both quantitative analysis (Pearson correlation coefficient was 0.999 for individual aldehydes ( n = 12), 0.996 for their binary mixtures ( n = 36) and 0.990 for their ternary mixtures ( n = 60)) and odor intensity assessment (Pearson correlation coefficient was 0.980 for individual aldehydes ( n = 15), 0.973 for their binary mixtures ( n = 24), and 0.888 for their ternary mixtures ( n = 25)). Thus, the observed regular interaction pattern is considered an important foundation for accelerating extensive application of olfactory evaluation in odor pollution monitoring.
Sensitivities of single nerve fibers in the hamster chorda tympani to mixtures of taste stimuli
1980-01-01
Responses of three groups of neural fibers from the chorda tympani of the hamster to binary mixtures of taste stimuli applied to the tongue were analyzed. The groups displayed different sensitivities to six chemicals at concentrations that had approximately equal effects on the whole nerve. Sucrose-best fibers responded strongly only to sucrose and D-phenylalanine. NaCl-best and HCl-best fibers, responded to four electrolytes: equally to CaCl2 and nearly equally to HCl, but the former responded more to NaCl, and the latter responded more to NH4Cl. The groups of fibers dealt differently with binary mixtures. Sucrose- best fibers responded to a mixture of sucrose and D-phenylalanine as if one of the chemicals had been appropriately increased in concentration, but they responded to a mixture of either one and an electrolyte as if the concentration of sucrose or D-phenylalanine had been reduced. NaCl- best fibers responded to a mixture as if it were a "mixture" of two appropriate concentrations of one chemical, or somewhat less. But, responses of HCl-best fibers to mixtures were greater than that, approaching a sum of responses to components. These results explain effects on the whole nerve, suggest that the sensitivity of a mammalian taste receptor to one chemical can be affected by a second, which may or may not be a stimulus for that receptor, and suggest that some effects of taste mixtures in humans may be the result of peripheral processes. PMID:7190997
Perfluoroalkyl acids (PFAAs) are found globally in the environment and in animal tissues, and are present as mixtures of PFAA congeners. Mechanistic studies have found that in vivo effects of PFAAs are mediated by PPARL. Our previous studies showed that individual PFAAs activate ...
Responses of honey bees to lethal and sublethal doses of formulated clothianidin alone and mixtures
USDA-ARS?s Scientific Manuscript database
The widespread use of neonicotinoid insecticides has inevitably sparked concern over the toxicity risk to honey bees. In this study, feeding treatments with the clothianidin formulation Belay® at 2.6 ppb (residue concentration) or its binary mixtures with 5 representative pesticides (classes) did no...
NASA Astrophysics Data System (ADS)
Khanlarzadeh, K.; Iloukhani, H.; Soleimani, M.
2017-07-01
Densities were measured for binary mixtures of isobutanol with 1-alkanols, namely: methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol and 1-hexanol at the temperatures of (288.15, 298.15 and 308.15) K and ambient pressure. Excess molar volumes, VmE , thermal expansion coefficients α, excess thermal expansion coefficients αE, and isothermal coefficients of pressure excess molar enthalpy, (∂HmE / ∂ P) T , x , were derived from the experimental data and the computed results were fitted to the Redlich-Kister equation. The Peng-Robinson-Stryjek-Vera (PRSV) equation of state was applied, in combination with simple mixing rules to predict the excess molar volume. The VmE results were positive for the mixtures of isobutanol with methanol, ethanol, 1-propanol, 1-butanol, and negative for isobutanol with 1-pentanol and 1-hexanol over the whole composition range. The results showed very small deviations from the behavior of ideal solutions in these mixtures and were analyzed to discuss the nature and strength of intermolecular interactions.
NASA Astrophysics Data System (ADS)
Gámez, Francisco; Acemel, Rafael D.; Cuetos, Alejandro
2013-10-01
Parsons-Lee approach is formulated for the isotropic-nematic transition in a binary mixture of oblate hard spherocylinders and hard spheres. Results for the phase coexistence and for the equation of state in both phases for fluids with different relative size and composition ranges are presented. The predicted behaviour is in agreement with Monte Carlo simulations in a qualitative fashion. The study serves to provide a rational view of how to control key aspects of the behaviour of these binary nematogenic colloidal systems. This behaviour can be tuned with an appropriate choice of the relative size and molar fractions of the depleting particles. In general, the mixture of discotic and spherical particles is stable against demixing up to very high packing fractions. We explore in detail the narrow geometrical range where demixing is predicted to be possible in the isotropic phase. The influence of molecular crowding effects on the stability of the mixture when spherical molecules are added to a system of discotic colloids is also studied.
NASA Astrophysics Data System (ADS)
Edison, John R.; Dasgupta, Tonnishtha; Dijkstra, Marjolein
2016-08-01
We study the phase behaviour of a binary mixture of colloidal hard spheres and freely jointed chains of beads using Monte Carlo simulations. Recently Panagiotopoulos and co-workers predicted [Nat. Commun. 5, 4472 (2014)] that the hexagonal close packed (HCP) structure of hard spheres can be stabilized in such a mixture due to the interplay between polymer and the void structure in the crystal phase. Their predictions were based on estimates of the free-energy penalty for adding a single hard polymer chain in the HCP and the competing face centered cubic (FCC) phase. Here we calculate the phase diagram using free-energy calculations of the full binary mixture and find a broad fluid-solid coexistence region and a metastable gas-liquid coexistence region. For the colloid-monomer size ratio considered in this work, we find that the HCP phase is only stable in a small window at relatively high polymer reservoir packing fractions, where the coexisting HCP phase is nearly close packed. Additionally we investigate the structure and dynamic behaviour of these mixtures.
NASA Technical Reports Server (NTRS)
Bernstein, Max P.; Sandford, Scott A.; Mead, Susan (Technical Monitor)
2002-01-01
We present the 2335-2325 cm(exp -1) infrared spectra and band positions, profiles, and strengths (A values) of solid nitrogen and binary mixtures of N2 with other molecules at 12 K. The data demonstrate that the strength of the infrared forbidden N2 fundamental near 2328 cm(exp -1) is moderately enhanced in the presence of NH3, strongly enhanced in the presence of H2O and very strongly enhanced in the presence of CO2, but is not significantly affected by CO, CH4, or O2. The mechanisms for the enhancements in N2-NH3 and N2-H2O mixtures are fundamentally different from those proposed for N2-CO2 mixtures. In the first case, interactions involving hydrogen-bonding are likely the cause. In the latter, a resonant exchange between the N2 stretching fundamental and the O-18=C-12 asymmetric stretch of O-18C-12O-16 is indicated. The implications of these results for several astrophysical issues are briefly discussed.
Chen, Lianguo; Wang, Xianfeng; Zhang, Xiaohua; Lam, Paul K S; Guo, Yongyong; Lam, James C W; Zhou, Bingsheng
2017-11-01
Polybrominated diphenyl ethers (PBDEs) and heavy metals are two key groups of electric and electronic equipment contaminants. Despite their co-occurrence in aquatic environments, their combined effects remain largely unknown, particularly under a chronic exposure regime. In the present study, adult zebrafish (Danio rerio) were exposed to environmentally relevant concentrations of BDE-209 and lead (Pb), or their binary mixtures, for 3 months. After chronic parental exposure, increased transfer of BDE-209 and Pb to the offspring eggs was activated in the coexposure groups, with BDE-197 being the predominant PBDE congener, indicating the dynamic metabolism of BDE-209 in parental zebrafish. In the presence of Pb, culturing the eggs in clean water until 5 days post-fertilization (dpf) further accelerated the debromination of BDE-209 towards BDE-197 in the offspring, caused by the preferential removal of bromine atoms at meta positions. BDE-209 and Pb combinations induced reproductive and thyroid endocrine disruption in adults, which resulted in an imbalanced deposition of hormones in the eggs. However, compared with single chemical exposure, the larval offspring at 5 dpf from the coexposure groups had reversed the adverse influences from maternal origin. In addition, the interaction between BDE-209 and Pb led to transgenerational developmental neurotoxicity in the larval offspring, where inhibited neuronal growth and neurotransmitter signaling, disorganized muscular assembly, and impaired visual function contributed to the observed neurobehavioral deficits. Overall, depending on specific biological events, the complex interaction between BDE-209 and Pb under chronic exposure resulted in significant alterations in their environmental fate and toxicological actions, thus complicating the accurate evaluation of ecological risks and constituting an unquantified threat to environmental safety. Copyright © 2017 Elsevier Ltd. All rights reserved.
Milenković, Aleksandra S; Smičiklas, Ivana D; Šljivić-Ivanović, Marija Z; Živković, Ljiljana S; Vukelić, Nikola S
2016-07-02
The prospects of rinsed red mud (alumina production residue) utilization for liquid radioactive waste treatment have been investigated, with Co(2+) and Sr(2+) as model cations of radioactive elements. To evaluate the sorption effectiveness and corresponding binding mechanisms, the process was analyzed in batch conditions, by varying experimental conditions (pH, Co(2+) and Sr(2+) concentrations in single solutions and binary mixtures, contact time, and the concentration of competing cations and ligands common in liquid radioactive waste). Comparison of the Co(2+) and Sr(2+) sorption pH edges with the red mud isoelectric point has revealed that Co(2+) removal took place at both positive and negative red mud surface, while Sr(2+) sorption abruptly increased when the surface became negatively charged. The increase of initial cation content and pH resulted in increased equilibrium times and sorption capacity and decreased rate constants. From single metal solutions and various binary mixtures, Co(2+) was sorbed more efficiently and selectively than Sr(2+). While Sr(2+) sorption was reduced by coexisting cations in the order Al(3+) ≥ Ca(2+) >Na(+) ≥Cs(+), removal of Co(2+) was affected by Al(3+) species and complexing agents (EDTA and citrate). Desorption of Co(2+) was negligible in Ca(2+) and Sr(2+) containing media and in solutions with initial pH 4-7. Sr(2+) desorption was generally more pronounced, especially at low pH and in the presence of Co(2+). Collected macroscopic data signify that Co(2+) sorption by red mud minerals occurred via strong chemical bonds, while Sr(2+) was retained mainly by weaker ion-exchange or electrostatic interactions. Results indicate that the rinsed red mud represent an efficient, low-cost sorbent for Co(2+) and Sr(2+) immobilization.
Míguez, J M; Piñeiro, M M; Algaba, J; Mendiboure, B; Torré, J P; Blas, F J
2015-11-05
The high-pressure phase diagrams of the tetrahydrofuran(1) + carbon dioxide(2), + methane(2), and + water(2) mixtures are examined using the SAFT-VR approach. Carbon dioxide molecule is modeled as two spherical segments tangentially bonded, water is modeled as a spherical segment with four associating sites to represent the hydrogen bonding, methane is represented as an isolated sphere, and tetrahydrofuran is represented as a chain of m tangentially bonded spherical segments. Dispersive interactions are modeled using the square-well intermolecular potential. In addition, two different molecular model mixtures are developed to take into account the subtle balance between water-tetrahydrofuran hydrogen-bonding interactions. The polar and quadrupolar interactions present in water, tetrahydrofuran, and carbon dioxide are treated in an effective way via square-well potentials of variable range. The optimized intermolecular parameters are taken from the works of Giner et al. (Fluid Phase Equil. 2007, 255, 200), Galindo and Blas (J. Phys. Chem. B 2002, 106, 4503), Patel et al. (Ind. Eng. Chem. Res. 2003, 42, 3809), and Clark et al. (Mol. Phys. 2006, 104, 3561) for tetrahydrofuran, carbon dioxide, methane, and water, respectively. The phase diagrams of the binary mixtures exhibit different types of phase behavior according to the classification of van Konynenburg and Scott, ranging from types I, III, and VI phase behavior for the tetrahydrofuran(1) + carbon dioxide(2), + methane(2), and + water(2) binary mixtures, respectively. This last type is characterized by the presence of a Bancroft point, positive azeotropy, and the so-called closed-loop curves that represent regions of liquid-liquid immiscibility in the phase diagram. The system exhibits lower critical solution temperatures (LCSTs), which denote the lower limit of immiscibility together with upper critical solution temperatures (UCSTs). This behavior is explained in terms of competition between the incompatibility with the alkyl parts of the tetrahydrofuran ring chain and the hydrogen bonding between water and the ether group. A minimum number of unlike interaction parameters are fitted to give the optimal representation of the most representative features of the binary phase diagrams. In the particular case of tetrahydrofuran(1) + water(2), two sets of intermolecular potential model parameters are proposed to describe accurately either the hypercritical point associated with the closed-loop liquid-liquid immiscibility region or the location of the mixture lower- and upper-critical end-points. The theory is not only able to predict the type of phase behavior of each mixture, but also provides a reasonably good description of the global phase behavior whenever experimental data are available.
Precision of proportion estimation with binary compressed Raman spectrum.
Réfrégier, Philippe; Scotté, Camille; de Aguiar, Hilton B; Rigneault, Hervé; Galland, Frédéric
2018-01-01
The precision of proportion estimation with binary filtering of a Raman spectrum mixture is analyzed when the number of binary filters is equal to the number of present species and when the measurements are corrupted with Poisson photon noise. It is shown that the Cramer-Rao bound provides a useful methodology to analyze the performance of such an approach, in particular when the binary filters are orthogonal. It is demonstrated that a simple linear mean square error estimation method is efficient (i.e., has a variance equal to the Cramer-Rao bound). Evolutions of the Cramer-Rao bound are analyzed when the measuring times are optimized or when the considered proportion for binary filter synthesis is not optimized. Two strategies for the appropriate choice of this considered proportion are also analyzed for the binary filter synthesis.
Investigation of drug-excipient compatibility using rheological and thermal tools
NASA Astrophysics Data System (ADS)
Trivedi, Maitri R.
HYPOTHESIS: We plan to investigate a different approach to evaluate drug-excipient physical compatibility using rheological and thermal tools as opposed to commonly used chemical techniques in pharmaceutical industry. This approach offers practical solutions to routinely associated problems arising with API's and commonly used hydrates forms of excipients. ABSTRACT: Drug-Excipient compatibility studies are an important aspect of pre-formulation and formulation development in pharmaceutical research and development. Various approaches have been used in pharmaceutical industry including use of thermal analysis and quantitative assessment of drug-excipient mixtures after keeping the samples under stress environment depending upon the type of formulation. In an attempt to provide better understanding of such compatibility aspect of excipients with different properties of API, various rheological and thermal studies were conducted on binary mixtures of excipients which exist in different hydrates. Dibasic Calcium Phosphate (DCP, anhydrous and dihydrate forms) and Lactose (Lac, anhydrous and monohydrate) were selected with cohesive API's (Acetaminophen and Aspirin). Binary mixtures of DCP and Lac were prepared by addition of 0% w/w to 50% w/w of the API into each powder blend. Rheological and thermal aspects were considered using different approaches such as powder rheometer, rotational shear cell and traditional rheometery approaches like angle of repose (AOR), hausner's ratio (HR) and cares index (CI). Thermal analysis was conducted using modulated differential scanning calorimetry (MDSC) and thermal effusivity. The data suggested that the powder rheometer showed distinctive understanding in the flowability behavior of binary mixtures with addition of increasing proportion of API's than traditional approaches. Thermal approaches revealed the potential interaction of water of crystallization DCP-D with the API (APAP) while such interactions were absent in DCP-A, while in case of Lac-M and Lac-A, interaction with water of crystallization were not present. Binary mixtures prepared with DCP-D were better flowable while blends with DCP-A were better in stability (physical), compressibility and permeability. Similarly binary mixtures prepared with Lac-M were better flowable and stable in physical compatibility as compared to Lac-A. Lac-A were better in compressibility and permeability. Second part of these research included understanding the powder behavior from wet granulation point of view. Wet granulation includes the formation of agglomerates with powders to form granules in order to have better flowability, content uniformity and compressibility of granular mass. End point determination of powders involving change in powder energies and compressibility, permeability along with thermal analyses were conducted. The effects of water of crystallization on end point determination was studied and based on which overall effects on drug-excipient compatibility using different hydrate forms of excipients were evaluated.
Sheinberg, H.
1983-07-26
A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 wt % boron carbide and the remainder a metal mixture comprising from 70 to 90% tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 and 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.
Sheinberg, Haskell
1986-01-01
A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 weight percent boron carbide and the remainder a metal mixture comprising from 70 to 90 percent tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 to 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.
Theories of binary fluid mixtures: from phase-separation kinetics to active emulsions
NASA Astrophysics Data System (ADS)
Cates, Michael E.; Tjhung, Elsen
2018-02-01
Binary fluid mixtures are examples of complex fluids whose microstructure and flow are strongly coupled. For pairs of simple fluids, the microstructure consists of droplets or bicontinuous demixed domains and the physics is controlled by the interfaces between these domains. At continuum level, the structure is defined by a composition field whose gradients which are steep near interfaces drive its diffusive current. These gradients also cause thermodynamic stresses which can drive fluid flow. Fluid flow in turn advects the composition field, while thermal noise creates additional random fluxes that allow the system to explore its configuration space and move towards the Boltzmann distribution. This article introduces continuum models of binary fluids, first covering some well-studied areas such as the thermodynamics and kinetics of phase separation, and emulsion stability. We then address cases where one of the fluid components has anisotropic structure at mesoscopic scales creating nematic (or polar) liquid-crystalline order; this can be described through an additional tensor (or vector) order parameter field. We conclude by outlining a thriving area of current research, namely active emulsions, in which one of the binary components consists of living or synthetic material that is continuously converting chemical energy into mechanical work.
Enhanced heat transport during phase separation of liquid binary mixtures
NASA Astrophysics Data System (ADS)
Molin, Dafne; Mauri, Roberto
2007-07-01
We show that heat transfer in regular binary fluids is enhanced by induced convection during phase separation. The motion of binary mixtures is simulated using the diffuse interface model, where convection and diffusion are coupled via a nonequilibrium, reversible Korteweg body force. Assuming that the mixture is regular, i.e., its components are van der Waals fluids, we show that the two parameters that describe the mixture, namely the Margules constant and the interfacial thickness, depend on temperature as T-1 and T-1/2, respectively. Two quantities are used to measure heat transfer, namely the heat flux at the walls and the characteristic cooling time. Comparing these quantities with those of very viscous mixtures, where diffusion prevails over convection, we saw that the ratio between heat fluxes, which defines the Nusselt number, NNu, equals that between cooling times and remains almost constant in time. The Nusselt number depends on the following: the Peclet number, NPe, expressing the ratio between convective and diffusive mass fluxes; the Lewis number, NLe, expressing the ratio between thermal and mass diffusivities; the specific heat of the mixture, as it determines how the heat generated by mixing can be stored within the system; and the quenching depth, defined as the distance of the temperature at the wall from its critical value. In particular, the following results were obtained: (a) The Nusselt number grows monotonically with the Peclet number until it reaches an asymptotic value at NNu≈2 when NPe≈106; (b) the Nusselt number increases with NLe when NLe<1, remains constant at 1
Microwave-assisted synthesis of transition metal phosphide
Viswanathan, Tito
2014-12-30
A method of synthesizing transition metal phosphide. In one embodiment, the method has the steps of preparing a transition metal lignosulfonate, mixing the transition metal lignosulfonate with phosphoric acid to form a mixture, and subjecting the mixture to a microwave radiation for a duration of time effective to obtain a transition metal phosphide.
Feitosa-Alcantara, Rosana B; Bacci, Leandro; Blank, Arie F; Alves, Péricles B; Silva, Indira Morgana de A; Soares, Caroline A; Sampaio, Taís S; Nogueira, Paulo Cesar de L; Arrigoni-Blank, Maria de Fátima
2017-04-12
Leaf-cutting ants are pests of great economic importance due to the damage they cause to agricultural and forest crops. The use of organosynthetic insecticides is the main form of control of these insects. In order to develop safer technology, the objective of this work was to evaluate the formicidal activity of the essential oils of two Hyptis pectinata genotypes (chemotypes) and their major compounds on the leaf-cutting ants Acromyrmex balzani Emery and Atta sexdens rubropilosa Forel. Bioassays of exposure pathways (contact and fumigation) and binary mixtures of the major compounds were performed. The major compounds identified in the essential oils of H. pectinata were β-caryophyllene, caryophyllene oxide and calamusenone. The essential oils of H. pectinata were toxic to the ants in both exposure pathways. Essential oils were more toxic than their major compounds alone. The chemotype calamusenone was more toxic to A. balzani in both exposure pathways. A. sexdens rubropilosa was more susceptible to the essential oil of the chemotype β-caryophyllene in both exposure pathways. In general, the binary mixtures of the major compounds resulted in additive effect of toxicity. The essential oils of H. pectinata is a raw material of great potential for the development of new insecticides.
NASA Astrophysics Data System (ADS)
Abdullah, Muhammad Faiz; Puay, How Tion; Zakaria, Nor Azazi
2017-10-01
Sustainable Urban Drainage System (SuDS) such as swales and rain gardens is showing growing popularity as a green technology for stormwater management and it can be used in all types of development to provide a natural approach to managing drainage. Soil permeability is a critical factor in selecting the right SuDS technique for a site. On this basis, we have set up a laboratory experiment to investigate the porosity and saturated hydraulic conductivity of single size and binary (two sizes) mixture using column-test as a preliminary investigation with two sets of glass beads with different sizes are used in this study. The porosity and saturated hydraulic conductivity for varies volume fraction of the course and fine glass beads were measured. It was found that the porosity of the binary mixture does not increase with the increment of the ratio of coarse to fine beads until the volume fraction of fine particles is equal to the coarse component. Saturated hydraulic conductivity result shows that the assumption of random packing was not achieved at the higher coarse ratio where most of the fine particles tend to sit at the bottom of the column forming separate layers which lower the overall hydraulic conductivity value.
Active Brownian motion tunable by light.
Buttinoni, Ivo; Volpe, Giovanni; Kümmel, Felix; Volpe, Giorgio; Bechinger, Clemens
2012-07-18
Active Brownian particles are capable of taking up energy from their environment and converting it into directed motion; examples range from chemotactic cells and bacteria to artificial micro-swimmers. We have recently demonstrated that Janus particles, i.e. gold-capped colloidal spheres, suspended in a critical binary liquid mixture perform active Brownian motion when illuminated by light. In this paper, we investigate in more detail their swimming mechanism, leading to active Brownian motion. We show that the illumination-borne heating induces a local asymmetric demixing of the binary mixture, generating a spatial chemical concentration gradient which is responsible for the particle's self-diffusiophoretic motion. We study this effect as a function of the functionalization of the gold cap, the particle size and the illumination intensity: the functionalization determines what component of the binary mixture is preferentially adsorbed at the cap and the swimming direction (towards or away from the cap); the particle size determines the rotational diffusion and, therefore, the random reorientation of the particle; and the intensity tunes the strength of the heating and, therefore, of the motion. Finally, we harness this dependence of the swimming strength on the illumination intensity to investigate the behavior of a micro-swimmer in a spatial light gradient, where its swimming properties are space-dependent.
Diffusion of Magnetized Binary Ionic Mixtures at Ultracold Plasma Conditions
NASA Astrophysics Data System (ADS)
Vidal, Keith R.; Baalrud, Scott D.
2017-10-01
Ultracold plasma experiments offer an accessible means to test transport theories for strongly coupled systems. Application of an external magnetic field might further increase their utility by inhibiting heating mechanisms of ions and electrons and increasing the temperature at which strong coupling effects are observed. We present results focused on developing and validating a transport theory to describe binary ionic mixtures across a wide range of coupling and magnetization strengths relevant to ultracold plasma experiments. The transport theory is an extension of the Effective Potential Theory (EPT), which has been shown to accurately model correlation effects at these conditions, to include magnetization. We focus on diffusion as it can be measured in ultracold plasma experiments. Using EPT within the framework of the Chapman-Enskog expansion, the parallel and perpendicular self and interdiffusion coefficients for binary ionic mixtures with varying mass ratios are calculated and are compared to molecular dynamics simulations. The theory is found to accurately extend Braginskii-like transport to stronger coupling, but to break down when the magnetization strength becomes large enough that the typical gyroradius is smaller than the interaction scale length. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-16-1-0221.
Salem, Hesham
2010-01-01
Three methods were developed for simultaneous determination of metformin hydrochloride and glyburide in an antihyperglycemic binary mixture without previous separation. In the first method, a reversed-phase HPLC column with acetonitrile-water (60 + 40, v/v) mobile phase at 0.9 mL/min flow rate was used to separate both compounds, with UV detection at 254 nm. Linearity was obtained in the concentration range of 0.06--0.24 microg/mL for glyburide and 1.5-6.0 microg/mL for metformin hydrochloride. The second method depended on first- and second-derivative UV spectrometry with zero-crossing measurements. The first-derivative amplitude at 261 nm was selected for the assay of glyburide, and the second-derivative amplitude at 235 nm was selected for the assay of metformin hydrochloride. The third method depended on measuring the first derivative of the ratio-spectra at 241 nm for glyburide and 227 nm for metformin hydrochloride. For the second and third methods, Beer's law was obeyed in the range of 10-55 microg/mL for glyburide and 20-200 microg/mL for metformin. The proposed methods were extensively validated and applied for the analysis of some pharmaceutical formulations containing binary mixtures of the mentioned drugs.
Gonzato, Carlo; Semsarilar, Mona; Jones, Elizabeth R; Li, Feng; Krooshof, Gerard J P; Wyman, Paul; Mykhaylyk, Oleksandr O; Tuinier, Remco; Armes, Steven P
2014-08-06
Block copolymer self-assembly is normally conducted via post-polymerization processing at high dilution. In the case of block copolymer vesicles (or "polymersomes"), this approach normally leads to relatively broad size distributions, which is problematic for many potential applications. Herein we report the rational synthesis of low-polydispersity diblock copolymer vesicles in concentrated solution via polymerization-induced self-assembly using reversible addition-fragmentation chain transfer (RAFT) polymerization of benzyl methacrylate. Our strategy utilizes a binary mixture of a relatively long and a relatively short poly(methacrylic acid) stabilizer block, which become preferentially expressed at the outer and inner poly(benzyl methacrylate) membrane surface, respectively. Dynamic light scattering was utilized to construct phase diagrams to identify suitable conditions for the synthesis of relatively small, low-polydispersity vesicles. Small-angle X-ray scattering (SAXS) was used to verify that this binary mixture approach produced vesicles with significantly narrower size distributions compared to conventional vesicles prepared using a single (short) stabilizer block. Calculations performed using self-consistent mean field theory (SCMFT) account for the preferred self-assembled structures of the block copolymer binary mixtures and are in reasonable agreement with experiment. Finally, both SAXS and SCMFT indicate a significant degree of solvent plasticization for the membrane-forming poly(benzyl methacrylate) chains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deboodt, Tyler; Ideker, Jason H.; Isgor, O. Burkan
2017-12-01
The use of x-ray computed tomography (CT) as a standalone method has primarily been used to characterize pore structure, cracking and mechanical damage in cementitious systems due to low contrast in the hydrated phases. These limitations have resulted in the inability to extract quantifiable information on such phases. The goal of this research was to address the limitations caused by low contrast and improving the ability to distinguish the four primary hydrated phases in portland cement; C-S-H, calcium hydroxide, monosulfate, and ettringite. X-ray CT on individual layers, binary mixtures of phases, and quaternary mixtures of phases to represent a hydratedmore » portland cement paste were imaged with synchrotron radiation. Known masses of each phase were converted to a volume and compared to the segmented image volumes. It was observed that adequate contrast in binary mixing of phases allowed for segmentation, and subsequent image analysis indicated quantifiable volumes could be extracted from the tomographic volume. However, low contrast was observed when C-S-H and monosulfate were paired together leading to difficulties segmenting in an unbiased manner. Quantification of phases in quaternary mixtures included larger errors than binary mixes due to histogram overlaps of monosulfate, C-S-H, and calcium hydroxide.« less
Gu, Yao; Ni, Yongnian; Kokot, Serge
2012-09-13
A novel, simple and direct fluorescence method for analysis of complex substances and their potential substitutes has been researched and developed. Measurements involved excitation and emission (EEM) fluorescence spectra of powdered, complex, medicinal herbs, Cortex Phellodendri Chinensis (CPC) and the similar Cortex Phellodendri Amurensis (CPA); these substances were compared and discriminated from each other and the potentially adulterated samples (Caulis mahoniae (CM) and David poplar bark (DPB)). Different chemometrics methods were applied for resolution of the complex spectra, and the excitation spectra were found to be the most informative; only the rank-ordering PROMETHEE method was able to classify the samples with single ingredients (CPA, CPC, CM) or those with binary mixtures (CPA/CPC, CPA/CM, CPC/CM). Interestingly, it was essential to use the geometrical analysis for interactive aid (GAIA) display for a full understanding of the classification results. However, these two methods, like the other chemometrics models, were unable to classify composite spectral matrices consisting of data from samples of single ingredients and binary mixtures; this suggested that the excitation spectra of the different samples were very similar. However, the method is useful for classification of single-ingredient samples and, separately, their binary mixtures; it may also be applied for similar classification work with other complex substances.
Physical properties and catalog of EW-type eclipsing binaries observed by LAMOST
NASA Astrophysics Data System (ADS)
Qian, Sheng-Bang; He, Jia-Jia; Zhang, Jia; Zhu, Li-Ying; Shi, Xiang-Dong; Zhao, Er-Gang; Zhou, Xiao
2017-08-01
EW-type eclipsing binaries (hereafter called EWs) are strong interacting systems in which both component stars usually fill their critical Roche lobes and share a common envelope. Numerous EWs were discovered by several deep photometric surveys and there were about 40 785 EW-type binary systems listed in the international variable star index (VSX) by 2017 March 13. 7938 of them were observed with LAMOST by 2016 November 30 and their spectral types were identified. Stellar atmospheric parameters of 5363 EW-type binary stars were determined based on good spectroscopic observations. In the paper, those EWs are cataloged and their properties are analyzed. The distributions of orbital period (P), effective temperature (T), gravitational acceleration (log(g)), metallicity ([Fe/H]) and radial velocity (RV) are presented for these observed EW-type systems. It is shown that about 80.6% of sample stars have metallicity below zero, indicating that EW-type systems are old stellar populations. This is in agreement with the conclusion that EW binaries are formed from moderately close binaries through angular momentum loss via magnetic braking that takes a few hundred million to a few billion years. The unusually high metallicities of a few percent of EWs may be caused by contamination of material from the evolution of unseen neutron stars or black holes in the systems. The correlations between orbital period and effective temperature, gravitational acceleration and metallicity are presented and their scatters are mainly caused by (i) the presence of third bodies and (ii) sometimes wrongly determined periods. It is shown that some EWs contain evolved component stars and the physical properties of EWs mainly depend on their orbital periods. It is found that extremely short-period EWs may be older than their long-period cousins because they have lower metallicities. This reveals that they have a longer timescale of pre-contact evolution and their formation and evolution aremainly driven by angular momentum loss via magnetic braking.
The acute effects of many individual, seawater-solubilized metals on meiobenthic copepods and nematodes are well known. In sediments, however, metals most often occur as mixtures, and it is not known whether such mixtures exhibit simple additive toxicity to me...
Children Exposed to Metals Mixtures Demonstrate Dysregulation of Infectious Disease Response
Exposure to toxic metals can have harmful health effects, particularly in children. Although studies have investigated the individual effects toxic metals have on gene expression and health outcomes, there are no studies assessing the effect of metal mixtures on gene expression p...
Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules
2015-07-14
A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.
Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules L.
2015-11-20
A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.
Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules L.
2017-01-03
A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.
Friedrich, Alexandra; Winkler, Björn; Juarez-Arellano, Erick A.; Bayarjargal, Lkhamsuren
2011-01-01
Transition metal nitrides, carbides and borides have a high potential for industrial applications as they not only have a high melting point but are generally harder and less compressible than the pure metals. Here we summarize recent advances in the synthesis of binary transition metal nitrides, carbides and borides focusing on the reaction of the elements at extreme conditions generated within the laser-heated diamond anvil cell. The current knowledge of their structures and high-pressure properties like high-(p,T) stability, compressibility and hardness is described as obtained from experiments. PMID:28824101
NASA Astrophysics Data System (ADS)
Badelin, V. G.; Smirnov, V. I.
2013-01-01
The enthalpies of L-tryptophane solution in water-methanol, water-ethanol, water-1-propanol, and water-2-propanol mixtures at alcohol concentrations of x 2 = 0-0.4 mole fractions were measured by calorimetry. The standard enthalpies of L-tryptophane solution (Δsol H ∘) and transfer (Δtr H ∘) from water to the binary solvent were calculated. The influence of the composition of the water-alcohol mixture and the structure and properties of L-tryptophane on the enthalpy characteristics of the latter was considered. The enthalpy coefficients of pair interactions ( h xy ) of L-tryptophane with alcohol molecules were calculated. The coefficients were positive and increased in the series: methanol (MeOH), ethanol (EtOH), 1-propanol (1-PrOH), and 2-propanol (2-PrOH). The solution and transfer enthalpies of L-tryptophane were compared with those of aliphatic amino acids (glycine, L-threonine, DL-alanine, L-valine, and L-phenylalanine) in similar binary solvents.
Choi, Young Cheol; Lee, Han Myoung; Kim, Woo Youn; Kwon, S K; Nautiyal, Tashi; Cheng, Da-Yong; Vishwanathan, K; Kim, Kwang S
2007-02-16
On the basis of first-principles calculations of clusters and one dimensional infinitely long subnanowires of the binary systems, we find that alkali-noble metal alloy wires show better linearity and stability than either pure alkali metal or noble metal wires. The enhanced alternating charge buildup on atoms by charge transfer helps the atoms line up straight. The cesium doped gold wires showing significant charge transfer from cesium to gold can be stabilized as linear or circular monoatomic chains.
Method of coating metal surfaces to form protective metal coating thereon
Krikorian, Oscar H.; Curtis, Paul G.
1992-01-01
A process is disclosed for forming a protective metal coating on a metal surface using a flux consisting of an alkali metal fluoride, an alkaline earth metal fluoride, an alkali metal fluoaluminate, an alkali metal fluosilicate, and mixtures thereof. The flux, in particulate form, is mixed with particles of a metal coating material which may comprise aluminum, chromium, mixtures thereof, and alloys containing at least 50 wt. % aluminum and the particulate mixture is applied to the metal surface in a single step, followed by heating the coated metal surface to a temperature sufficient to cause the metal coating material to react with the metal surface to form a protective reaction product in the form of a metal coating bonded to the metal surface. The metal surface which reacts with the metal coating material to form the protective coating may comprise Fe, Co, Ni, Ti, V, Cr, Mn, Zr, Nb, Mo, Tc, Hf, Ta, W, Re and alloys thereof.
Method of coating metal surfaces to form protective metal coating thereon
Krikorian, O.H.; Curtis, P.G.
1992-03-31
A process is disclosed for forming a protective metal coating on a metal surface using a flux consisting of an alkali metal fluoride, an alkaline earth metal fluoride, an alkali metal fluoaluminate, an alkali metal fluosilicate, and mixtures thereof. The flux, in particulate form, is mixed with particles of a metal coating material which may comprise aluminum, chromium, mixtures thereof, and alloys containing at least 50 wt. % aluminum and the particulate mixture is applied to the metal surface in a single step, followed by heating the coated metal surface to a temperature sufficient to cause the metal coating material to react with the metal surface to form a protective reaction product in the form of a metal coating bonded to the metal surface. The metal surface which reacts with the metal coating material to form the protective coating may comprise Fe, Co, Ni, Ti, V, Cr, Mn, Zr, Nb, Mo, Tc, Hf, Ta, W, Re and alloys thereof. 1 figure.
Method for preparing porous metal hydride compacts
Ron, M.; Gruen, D.M.; Mendelsohn, M.H.; Sheft, I.
1980-01-21
A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.
Method for preparing porous metal hydride compacts
Ron, Moshe; Gruen, Dieter M.; Mendelsohn, Marshall H.; Sheft, Irving
1981-01-01
A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.
Enhanced selective metal adsorption on optimised agroforestry waste mixtures.
Rosales, Emilio; Ferreira, Laura; Sanromán, M Ángeles; Tavares, Teresa; Pazos, Marta
2015-04-01
The aim of this work is to ascertain the potentials of different agroforestry wastes to be used as biosorbents in the removal of a mixture of heavy metals. Fern (FE), rice husk (RI) and oak leaves (OA) presented the best removal percentages for Cu(II) and Ni(II), Mn(II) and Zn(II) and Cr(VI), respectively. The performance of a mixture of these three biosorbents was evaluated, and an improvement of 10% in the overall removal was obtained (19.25mg/g). The optimum mixture proportions were determined using simplex-centroid mixture design method (FE:OA:RI=50:13.7:36.3). The adsorption kinetics and isotherms of the optimised mixture were fit by the pseudo-first order kinetic model and Langmuir isotherm. The adsorption mechanism was studied, and the effects of the carboxylic, hydroxyl and phenolic groups on metal-biomass binding were demonstrated. Finally, the recoveries of the metals using biomass were investigated, and cationic metal recoveries of 100% were achieved when acidic solutions were used. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nibu; Suemori; Inoue
1997-07-01
Differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR) were used to construct and characterize the phase diagram for a binary mixture of heptaethylene glycol decyl ether (C10 E7 ) and water in the temperature range from -60 to 80°C. Plots of the endothermic peak temperatures obtained by DSC measurements against compositions provided eutectic solid-liquid phase boundaries with a eutectic composition of 34 wt% of H2 O. On the other hand, heat of fusion per unit weight of the mixture changed discretely at the composition corresponding to the "eutectic" composition. Furthermore, the IR spectra obtained for the mixture in the solid phase were well reproduced as a superposition of those for the mixture of 34 wt% H2 O and pure components but were not reproduced by superimposing the spectra obtained for the solid surfactant and ice. These observations indicate that a solid phase compound is formed between C10 E7 and water with a stoichiometry of 1:14 and that the compound and pure components exist as separate phases, rather than the phases separating into surfactant and ice, which would be expected if the C10 E7 /water mixture formed a true eutectic mixture system. It is estimated from the composition corresponding to the phase compounds that two molecules of water per oxyethylene unit are bound to hydrophilic polyoxyethylene chain of C10 E7 to form a hydrated compound.
Three Boundary Conditions for Computing the Fixed-Point Property in Binary Mixture Data
Couto, Joaquina; Lebreton, Mael
2016-01-01
The notion of “mixtures” has become pervasive in behavioral and cognitive sciences, due to the success of dual-process theories of cognition. However, providing support for such dual-process theories is not trivial, as it crucially requires properties in the data that are specific to mixture of cognitive processes. In theory, one such property could be the fixed-point property of binary mixture data, applied–for instance- to response times. In that case, the fixed-point property entails that response time distributions obtained in an experiment in which the mixture proportion is manipulated would have a common density point. In the current article, we discuss the application of the fixed-point property and identify three boundary conditions under which the fixed-point property will not be interpretable. In Boundary condition 1, a finding in support of the fixed-point will be mute because of a lack of difference between conditions. Boundary condition 2 refers to the case in which the extreme conditions are so different that a mixture may display bimodality. In this case, a mixture hypothesis is clearly supported, yet the fixed-point may not be found. In Boundary condition 3 the fixed-point may also not be present, yet a mixture might still exist but is occluded due to additional changes in behavior. Finding the fixed-property provides strong support for a dual-process account, yet the boundary conditions that we identify should be considered before making inferences about underlying psychological processes. PMID:27893868
Zhao, Yanbin; Castiglioni, Sara; Fent, Karl
2015-04-07
Medroxyprogesterone acetate (MPA) and dydrogesterone (DDG) are synthetic progestins widely used in human and veterinary medicine. Although aquatic organisms are exposed to them through wastewater and animal farm runoff, very little is known about their effects in the environment. Here we provide a comprehensive analysis of the responses of zebrafish (Danio rerio) to MPA, DDG, and their binary mixtures at measured concentrations between 4.5 and 1663 ng/L. DDG and both mixtures impaired reproductive capacities (egg production) of breeding pairs and led to histological alterations of ovaries and testes and increased gonadosomatic index. Transcriptional analysis of up to 28 genes belonging to different pathways demonstrated alterations in steroid hormone receptors, steroidogenesis enzymes, and specifically, the circadian rhythm genes, in different organs of adult zebrafish and eleuthero-embryos. Alterations occurred even at environmentally relevant concentrations of 4.5-4.8 ng/L MPA, DDG and the mixture in eleuthero-embryos and at 43-89 ng/L in adult zebrafish. Additionally, the mixtures displayed additive effects in most but not all parameters in adults and eleuthero-embryos, suggesting concentration addition. Our data suggest that MPA and DDG and their mixtures induce multiple transcriptional responses at environmentally relevant concentrations and adverse effects on reproduction and gonad histology at higher levels.
Thermodynamic properties of model CdTe/CdSe mixtures
van Swol, Frank; Zhou, Xiaowang W.; Challa, Sivakumar R.; ...
2015-02-20
We report on the thermodynamic properties of binary compound mixtures of model groups II–VI semiconductors. We use the recently introduced Stillinger–Weber Hamiltonian to model binary mixtures of CdTe and CdSe. We use molecular dynamics simulations to calculate the volume and enthalpy of mixing as a function of mole fraction. The lattice parameter of the mixture closely follows Vegard's law: a linear relation. This implies that the excess volume is a cubic function of mole fraction. A connection is made with hard sphere models of mixed fcc and zincblende structures. We found that the potential energy exhibits a positive deviation frommore » ideal soluton behaviour; the excess enthalpy is nearly independent of temperatures studied (300 and 533 K) and is well described by a simple cubic function of the mole fraction. Using a regular solution approach (combining non-ideal behaviour for the enthalpy with ideal solution behaviour for the entropy of mixing), we arrive at the Gibbs free energy of the mixture. The Gibbs free energy results indicate that the CdTe and CdSe mixtures exhibit phase separation. The upper consolute temperature is found to be 335 K. Finally, we provide the surface energy as a function of composition. Moreover, it roughly follows ideal solution theory, but with a negative deviation (negative excess surface energy). This indicates that alloying increases the stability, even for nano-particles.« less