Sample records for binary mo-ru system

  1. Constitution and thermodynamics of the Mo-Ru, Mo-Pd, Ru-Pd and Mo-Ru-Pd systems

    NASA Astrophysics Data System (ADS)

    Kleykamp, H.

    1989-09-01

    The constitution of the Mo-Ru, Mo-Pd and Ru-Pd systems was reinvestigated between 800 and 2000°C. The Mo-Ru system is of the eutectic type, a σ-phase Mo 5Ru 3 exists between 1915 and 1143°C. The Mo-Pd system is characterized by an hcp phase Mo 9Pd 11 and by two peritectic reactions, β- Mo( Pd) + L = Mo9Pd11andMo9Pd11 + L = α- Pd( Mo). Mo 9Pd 11 decomposes eutectoidally at 1370°C. The Ru-Pd system is simple peritectic. The continuous series of the hcp solid solutions between Mo 9Pd 11 and ɛ-Ru(Mo, Pd) in the ternary Mo-Ru-Pd system observed at 1700°C are suppressed below 1370°C near the Mo-Pd boundary system by the formation of a narrow α + β + ɛ three-phase field. Relative partial molar Gibbs energies of Mo, Mo and Ru in the respective binary systems and of Mo in the ternary system were measured by the EMF method with a Zr(Ca)O 2 electrolyte. xsΔ ḠMo∞ quantities were evaluated at 1200 K which give -43 kJ/mol Mo in Ru and -94 kJ/mol Mo in Pd at infinite dilution. Gibbs energies of formation of the Mo-Ru and Mo-Pd systems were calculated.

  2. Synthesis and Characterization of CO-and H2S-Tolerant Electrocatalysts for PEM Fuel Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shamsuddin Ilias

    2005-12-22

    The present state-of-art Proton Exchange Membrane Fuel Cell (PEMFC) technology is based on platinum (Pt) as a catalyst for both the fuel (anode) and air (cathode) electrodes. This catalyst is highly active but susceptible to poisoning by CO, which may be present in the H{sub 2}-fuel used or may be introduced during the fuel processing. Presence of trace amount of CO and H{sub 2}S in the H{sub 2}-fuel poisons the anode irreversibly and decreases the performance of the PEMFCs. In an effort to reduce the Pt-loading and improve the PEMFC performance, we propose to synthesize a number of Pt-based binary,more » ternary, and quaternary electrocatalysts using Ru, Mo, Ir, Ni, and Co as a substitute for Pt. By fine-tuning the metal loadings and compositions of candidate electrocatalysts, we plan to minimize the cost and optimize the catalyst activity and performance in PEMFC. The feasibility of the novel electrocatalysts will be demonstrated in the proposed effort with gas phase CO and H{sub 2}S concentrations typical of those found in reformed fuel gas with coal/natural gas/methanol feedstocks. During this reporting period we synthesized four Pt-based electrocatalysts catalysts (Pt/Ru/Mo/Se, Pt/Ru/Mo/Ir, Pt/Ru/Mo/W, Ptr/Ru/Mo/Co) on Vulcan XG72 Carbon support by both conventional and ultra-sonication method. From current-voltage performance study, the catalytic activity was found in the increasing order of Pt/Ru/Mo/Ir > Pt/Ru/Mo/W > Pt/Ru/Mo/Co > Pt/Ru/MO/Se. Sonication method appears to provide better dispersion of catalysts on carbon support.« less

  3. Synthesis and Characterization of CO- and H2S-Tolerant Electrocatalysts for PEM Fuel Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shamsuddin Ilias

    2006-05-18

    The present state-of-art Proton Exchange Membrane Fuel Cell (PEMFC) technology is based on platinum (Pt) as a catalyst for both the fuel (anode) and air (cathode) electrodes. This catalyst is highly active but susceptible to poisoning by CO, which may be present in the H{sub 2}-fuel used or may be introduced during the fuel processing. Presence of trace amount of CO and H{sub 2}S in the H{sub 2}-fuel poisons the anode irreversibly and decreases the performance of the PEMFCs. In an effort to reduce the Pt-loading and improve the PEMFC performance, we propose to synthesize a number of Pt-based binary,more » ternary, and quaternary electrocatalysts using Ru, Mo, Ir, Ni, and Co as a substitute for Pt. By fine-tuning the metal loadings and compositions of candidate electrocatalysts, we plan to minimize the cost and optimize the catalyst activity and performance in PEMFC. The feasibility of the novel electrocatalysts will be demonstrated in the proposed effort with gas phase CO and H{sub 2}S concentrations typical of those found in reformed fuel gas with coal/natural gas/methanol feedstocks. During this reporting period we used four Pt-based electrocatalysts (Pt/Ru/Mo/Se, Pt/Ru/Mo/Ir, Pt/Ru/Mo/W, Ptr/Ru/Mo/Co) in MEAs and these were evaluated for CO-tolerance with 20 and 100 ppm CO concentration in H{sub 2}-fuel. From current-voltage performance study, the catalytic activity was found in the increasing order of Pt/Ru/Mo/Ir > Pt/Ru/Mo/W > Pt/Ru/Mo/Co > Pt/Ru/MO/Se. From preliminary cost analysis it appears that could of the catalyst metal loading can reduced by 40% to 60% depending on the selection of metal combinations without compromising the fuel cell performance.« less

  4. Ru sub 3 (CO) sub 12 and Mo(CO) sub 6 adsorbed on Ru(001) and Au/Ru: An infrared reflection-absorption study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malik, I.J.; Hrbek, J.

    1990-01-01

    The authors obtained infrared reflection absorption (IRAS) and thermal desorption spectroscopy (TDS) data for Ru{sub 3}(CO){sub 12}/Ru(001) and Mo(CO){sub 6}/Au/Ru systems for metal carbonyl coverages between submonolayer and approximately 20 monolayers. They characterized the C-O stretching mode of both systems (4cm{sup {minus}1}FWHM) and a deformation mode of Mo(CO){sub 6} at 608cm{sup {minus}1} (1 cm{sup {minus}1}FWHM). Both IRAS and TDS data suggest adsorption and desorption of metal carbonyls as molecular species with a preferential orientation in the overlayers. The IR intensity of the C-O stretch per a C-O bond projected onto the surface normal is approximately twice (five times) larger formore » Ru{sub 3}(CO){sub 12} (Mo(CO){sub 6}) at submonolayer coverages than for CO/Ru(001) at {theta}{sub CO}=0.68.« less

  5. Ru sub 3 (CO) sub 12 and Mo(CO) sub 6 adsorbed on Ru(001) and Au/Ru: An infrared reflection-absorption study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malik, I.J.; Hrbek, J.

    1990-01-01

    We obtained IRAS and TDS data for Ru{sub 3}(CO){sub 12}/Ru(001) and Mo(CO){sub 6}/Au/Ru systems for metal carbonyl coverages between submonolayer and approximately 20 monolayers. We characterized the C-O stretching mode of both systems (4 cm{sup {minus}1} FWHM) and a deformation mode of Mo(CO){sub 6} at 608 cm{sup {minus}1} (1 cm{sup {minus}1} FWHM). Both IRAS and TDS data suggest adsorption and desorption of metal carbonyls as molecular species with a preferential orientation in the overlayers. The IR intensity of the C-O stretch per a C-O bond projected onto the surface normal is approximately twice (five times) larger for Ru{sub 3}(CO){sub 12}more » (Mo(CO){sub 6}) at submonolayer coverages than for CO/Ru(001) at {theta}{sub CO}=0.68. 31 refs., 4 figs.« less

  6. Size versus electronic factors in transition metal carbide and TCP phase stability

    NASA Astrophysics Data System (ADS)

    Pettifor, D. G.; Seiser, B.; Margine, E. R.; Kolmogorov, A. N.; Drautz, R.

    2013-09-01

    The contributions of atomic size and electronic factors to the structural stability of transition metal carbides and topologically close-packed (TCP) phases are investigated. The hard-sphere model that has been used by Cottrell to rationalize the occurrence of the octahedral and trigonal local coordination polyhedra within the transition metal carbides is shown to have limitations in TiC since density functional theory (DFT) predicts that the second most metastable phase closest to the B1 (NaCl) ground state takes the B? (BN) structure type with 5-atom local coordination polyhedra with very short Ti-C bond lengths. The importance of electronic factors in the TCP phases is demonstrated by DFT predictions that the A15, ? and ? phases are stabilized between groups VI and VII of the elemental transition metals, whereas the ? and Laves phases are destabilized. The origin of this difference is related to the bimodal shape parameter of the electronic density of states by using the bond-order potential expansion of the structural energy within a canonical tight-binding model. The importance of the size factor in the TCP phases is illustrated by the DFT heats of formation for the binary systems Mo-Re, Mo-Ru, Nb-Re and Nb-Ru which show that the ? and Laves phases become more and more stable compared to A15, ? and ? as the size factor increases from Mo-Re through to Nb-Ru.

  7. Some properties of low-vapor-pressure braze alloys for thermionic converters

    NASA Technical Reports Server (NTRS)

    Bair, V. L.

    1978-01-01

    Density, dc electrical resistivity, thermal conductivity, and linear thermal expansion are measured for arc-melted rod-shaped samples of binary eutectics of Zr, Hf, Ru, Nb, Ir, Mo, Ta, Os, Re, and W selected as very-low-pressure braze fillers for thermionic converters. The first two properties are measured at 296 K for Zr-21.7 at% Ru, Zr-13 wt% W, Zr-19 wt% W, Zr-22.3 at% Nb, Nb-66.9 at% Ru, Hf-25.3 wt% Re, Zr-25.7 at% Ta, Hf-22.5 at% W, and Nb-35 wt% Mo. The last property is measured from 293 K to 2/3 melting point for specified alloys of different compositions. Resistivities of 0.000055 to 0.000181 ohm-cm are observed with the alloys having resistivities about ten times that of the less resistive constituent metal and about three times that of the more resistive constituent metal, except for Zr-19 wt% W and Nb-35 wt% Mo (greater resistivities). Thermal expansion coefficients vary from 0.000006 to 0.0000105/K. All brazes exhibit linear thermal expansion near that of their constituent metals.

  8. MoRu/Be multilayers for extreme ultraviolet applications

    DOEpatents

    Bajt, Sasa C.; Wall, Mark A.

    2001-01-01

    High reflectance, low intrinsic roughness and low stress multilayer systems for extreme ultraviolet (EUV) lithography comprise amorphous layers MoRu and crystalline Be layers. Reflectance greater than 70% has been demonstrated for MoRu/Be multilayers with 50 bilayer pairs. Optical throughput of MoRu/Be multilayers can be 30-40% higher than that of Mo/Be multilayer coatings. The throughput can be improved using a diffusion barrier to make sharper interfaces. A capping layer on the top surface of the multilayer improves the long-term reflectance and EUV radiation stability of the multilayer by forming a very thin native oxide that is water resistant.

  9. Experimental partitioning of Tc, Mo, Ru, and Re between solid and liquid during crystallization in Fe-Ni-S 1

    NASA Astrophysics Data System (ADS)

    Lazar, C.; Walker, D.; Walker, R. J.

    2004-02-01

    Technetium isotopes 97Tc, 98Tc and 99Tc decay to 97Mo, 98Ru and 99Ru, with half-lives of 2.6 My, 4.1 My, and 0.21 My respectively. If there were early solar system processes that resulted in significant fractionation of Tc from the daughter elements, decay of extant Tc could have led to the creation of Mo and Ru isotopic heterogeneities. To assess the potential of metallic core crystallization to fractionate these elements, we examine the partitioning behavior of Tc relative to Re, Mo and Ru in the Fe-Ni-S system between solid metal and liquid metal alloy. The experimental evidence shows that Tc behaves more like the modestly compatible siderophile element Ru than the more highly compatible siderophile element Re, and that Tc is substantially more compatible than Mo. We also demonstrate a pressure effect in the partitioning of Mo during the crystallization of Fe-Ni-S melts. For a sulfur concentration in the liquid fraction of the core of 10 wt% (16.3 at%), the Jones and Malvin (1990) parameter is -ln(1-2 × 1.09 × 0.163) ≅ 0.44, which yields: D(Re) ≅ 4.1; D(Ru) ≅ 2.3; D(Tc) ≅ 1.7; D(Mo) Lo-P ≅ 1.0;.and D(Mo) Hi-P ≅ 0.5. Our results suggest that detectable Tc-induced isotopic anomalies (≥0.1 ɛ unit) in Ru and Mo could only be produced by unrealistically extreme degrees of crystallization of metal during asteroidal core fractionation, regardless of the time scales and initial Tc abundances involved.

  10. Nucleosynthesis of Mo and Ru isotopes in neutrino-driven winds

    NASA Astrophysics Data System (ADS)

    Bliss, Julia; Arcones, Almudena

    2018-01-01

    The solar system origin of the p-isotopes 92,94Mo and 96,98Ru is a long-lasting mystery. Several astrophysical scenarios failed to explain their formation. Moreover, SiC X grains show a different abundance ratio of 95,97Mo than in the solar system. We have investigated if neutrino-driven winds can offer a solution to those problems.

  11. Internal stresses in wear and corrosion resistant amorphous metallic coatings of (W/0.6/Re/0.4/)76B24 and (Mo/0.6/Ru/0.4/)82B18

    NASA Technical Reports Server (NTRS)

    Thakoor, A. P.; Lamb, J. L.; Williams, R. M.; Khanna, S. K.

    1985-01-01

    Hard protective coatings in the W-Re-B and Mo-Ru-B alloy systems have been deposited by magnetron sputtering onto soda-lime glass and heat-treated AISI 52100 steel substrates. X-ray diffraction has confirmed the amorphous nature of the as-deposited coatings, and their crystallization temperatures were determined by differential thermal analysis to be 1000 and 790 C for W-Re-B and Mo-Ru-B coatings, respectively. Both coatings exhibit high microhardness; Mo-Ru-B, in addition, has excellent corrosion resistance by comparison with pure Mo at high anodic potentials. Attention is given to the influence of internal stresses on the protective properties of the coatings deposited under different conditions.

  12. Superconductor-Insulator transition in sputtered amorphous MoRu and MoRuN thin films

    NASA Astrophysics Data System (ADS)

    Makise, K.; Shinozaki, B.; Ichikawa, F.

    2018-03-01

    This work shows the experimental results of the superconductor-insulator (S-I) transition for amorphous molybdenum ruthenium (MoRu) and molybdenum ruthenium nitride (MoRuN) films. These amorphous films onto c-plane sapphire substrates have been interpreted to be homogeneous by XRD and AFM measurements. Electrical and superconducting properties measurements were carried out on MoRu and MoRuN thin films deposited by reactive sputtering technique. We have analysed the data on R sq (T) based on excess conductivity of superconducting films by the AL and MT term and weak localization and electron-electron interaction for the conductance. MoRu films which offer the most homogeneous film morphology, showed a critical sheet resistance of transition, Rc, of ∼ 2 kΩ. This values is smaller than those previously our reported for quench-condensed MoRu films on SiO underlayer held at liquid He temperature.

  13. Correction: A binary catalyst system of a cationic Ru-CNC pincer complex with an alkali metal salt for selective hydroboration of carbon dioxide.

    PubMed

    Ng, Chee Koon; Wu, Jie; Hor, T S Andy; Luo, He-Kuan

    2016-12-22

    Correction for 'A binary catalyst system of a cationic Ru-CNC pincer complex with an alkali metal salt for selective hydroboration of carbon dioxide' by Chee Koon Ng et al., Chem. Commun., 2016, 52, 11842-11845.

  14. A binary catalyst system of a cationic Ru-CNC pincer complex with an alkali metal salt for selective hydroboration of carbon dioxide.

    PubMed

    Ng, Chee Koon; Wu, Jie; Hor, T S Andy; Luo, He-Kuan

    2016-09-27

    Binary catalyst systems comprising a cationic Ru-CNC pincer complex and an alkali metal salt were developed for selective hydroboration of CO 2 utilizing pinacolborane at r.t. and 1 atm CO 2 , with the combination of [Ru(CNC Bn )(CO) 2 (H)][PF 6 ] and KOCO 2 t Bu producing formoxyborane in 76% yield. A bicyclic catalytic mechanism was proposed and discussed.

  15. Activity and Stability of Dispersed Multi Metallic Pt-based Catalysts for CO Tolerance in Proton Exchange Membrane Fuel Cell Anodes.

    PubMed

    Hassan, Ayaz; Ticianelli, Edson A

    2018-01-01

    Studies aiming at improving the activity and stability of dispersed W and Mo containing Pt catalysts for the CO tolerance in proton exchange membrane fuel cell (PEMFC) anodes are revised for the following catalyst systems: (1) a carbon supported PtMo electrocatalyst submitted to heat treatments; (2) Pt and PtMo nanoparticles deposited on carbon-supported molybdenum carbides (Mo2C/C); (3) ternary and quaternary materials formed by PtMoFe/C, PtMoRu/C and PtMoRuFe/C and; (4) Pt nanoparticles supported on tungsten carbide/carbon catalysts and its parallel evaluation with carbon supported PtW catalyst. The heat-treated (600 oC) Pt-Mo/C catalyst showed higher hydrogen oxidation activity in the absence and in the presence of CO and better stability, compared to all other Mo-containing catalysts. PtMoRuFe, PtMoFe, PtMoRu supported on carbon and Pt supported on Mo2C/C exhibited similar CO tolerances but better stability, as compared to as-prepared PtMo supported on carbon. Among the tungsten-based catalysts, tungsten carbide supported Pt catalyst showed reasonable performance and reliable stability in comparison to simple carbon supported PtW catalyst, though an uneven level of catalytic activity towards H2 oxidation in presence of CO is observed for the former as compared to Mo containing catalyst. However, a small dissolution of Mo, Ru, Fe and W from the anodes and their migration toward cathodes during the cell operation is observed. These results indicate that the fuel cell performance and stability has been improved but not yet totally resolved.

  16. Investigation of amorphous RuMoC alloy films as a seedless diffusion barrier for Cu/ p-SiOC:H ultralow- k dielectric integration

    NASA Astrophysics Data System (ADS)

    Jiao, Guohua; Liu, Bo; Li, Qiran

    2015-08-01

    Ultrathin RuMoC amorphous films prepared by magnetron co-sputtering with Ru and MoC targets in a sandwiched scheme Si/ p-SiOC:H/RuMoC/Cu were investigated as barrier in copper metallization. The evolution of final microstructure of RuMoC alloy films show sensitive correlation with the content of doped Mo and C elements and can be easily controlled by adjusting the sputtering power of the MoC target. There was no signal of interdiffusion between the Cu and SiOC:H layer in the sample of Cu/RuMoC/ p-SiOC:H/Si, even annealing up to 500 °C. Very weak signal of oxygen have been confirmed in the RuMoC barrier layer both as-deposited and after being annealed, and a good performance on preventing oxygen diffusion has been proved. Leakage current and resistivity evaluations also reveal the excellent thermal reliability of this Si/ p-SiOC:H/RuMoC/Cu film stack at the temperatures up to 500 °C, indicating its potential application in the advanced barrierless Cu metallization.

  17. Radial Mixing and Ru-Mo Isotope Systematics Under Different Accretion Scenarios

    NASA Astrophysics Data System (ADS)

    Fischer, R. A.; Nimmo, F.; O'Brien, D. P.

    2017-12-01

    The Ru-Mo isotopic compositions of inner Solar System bodies may reflect the provenance of accreted material and how it evolved with time, both of which are controlled by the accretion scenario these bodies experienced. Here we use a total of 116 N-body simulations of terrestrial planet accretion, run in the Eccentric Jupiter and Saturn (EJS), Circular Jupiter and Saturn (CJS), and Grand Tack scenarios, to model the Ru-Mo anomalies of Earth, Mars, and Theia analogues. This model starts by applying an initial step function in Ru-Mo isotopic composition, with compositions reflecting those in meteorites, and traces compositional evolution as planets accrete. The mass-weighted provenance of the resulting planets reveals more radial mixing in Grand Tack simulations than in EJS/CJS simulations, and more efficient mixing among late-accreted material than during the main phase of accretion in EJS/CJS simulations. We find that an extensive homogenous inner disk region is required to reproduce Earth's observed Ru-Mo composition. EJS/CJS simulations require a homogeneous reservoir in the inner disk extending to ≥3-4 AU (≥74-98% of initial mass) to reproduce Earth's composition, while Grand Tack simulations require a homogeneous reservoir extending to ≥3-10 AU (≥97-99% of initial mass), and likely to ≥7-10 AU. In the Grand Tack model, Jupiter's initial location (the most likely location for a discontinuity in isotopic composition) is 3.5 AU; however, this step location has only a 33% likelihood of producing an Earth with the correct Ru-Mo isotopic signature for the most plausible model conditions. Our results give the testable predictions that Mars has zero Ru anomaly and small or zero Mo anomaly, and the Moon has zero Mo anomaly. These predictions are insensitive to wide variations in parameter choices.

  18. Metal-metal bonding and aromaticity in [M2(NHCHNH)3]2 (μ-E)2 (E = O, S; M = Nb, Mo, Tc, Ru, Rh).

    PubMed

    Yan, Xiuli; Meng, Lingpeng; Sun, Zheng; Li, Xiaoyan

    2016-02-01

    The nature of M-M bonding and aromaticity of [M2(NHCHNH)3]2(μ-E)2 (E = O, S; M = Nb, Mo, Tc, Ru, Rh) was investigated using atoms in molecules (AIM) theory, electron localization function (ELF), natural bond orbital (NBO) and molecular orbital analysis. These analyses led to the following main conclusions: in [M2(NHCHNH)3]2(μ-E)2 (E = O, S; M = Nb, Mo, Tc, Ru, Rh), the Nb-Nb, Ru-Ru, and Rh-Rh bonds belong to "metallic" bonds, whereas Mo-Mo and Tc-Tc drifted toward the "dative" side; all these bonds are partially covalent in character. The Nb-Nb, Mo-Mo, and Tc-Tc bonds are stronger than Ru-Ru and Rh-Rh bonds. The M-M bonds in [M2(NHCHNH)3]2(μ-S)2 are stronger than those in [M2(NHCHNH)3]2(μ-O)2 for M = Nb, Mo, Tc, and Ru. The NICS(1)ZZ values show that all of the studied molecules, except [Ru2(NHCHNH)3]2(μ-O)2, are aromaticity molecules. O-bridged compounds have more aromaticity than S-bridged compounds. Graphical Abstract Left Molecular graph, and right electron localization function (ELF) isosurface of [M2(NHCHNH)3]2(μ-E)2(E = O, S; M = Nb, Mo, Tc, Ru, Rh).

  19. Study of superconducting state parameters of ternary metallic glasses through pseudopotential approach

    NASA Astrophysics Data System (ADS)

    Vora, Aditya M.

    2008-04-01

    A theoretical investigation on the screening dependence of the superconducting state parameters (SSPs) viz. the electron-phonon coupling strength λ, the Coulomb pseudopotential μ*, the transition temperature TC, the isotope effect exponent α and the effective interaction strength N0V of some ternary metallic glasses such as Ti50Be34Zr10, (Mo0.6Ru0.4)78B22, (Mo0.6Ru0.4)80B20, (Mo0.4Ru0.6)80P20, (Mo0.6Ru0.4)70Si30, (Mo0.6Ru0.4)84B16, (Mo0.6Ru0.4)72Si28, (Mo0.6Ru0.4)86B14, (Mo0.6Ru0.4)76Si24, (Mo0.6Ru0.4)78Si22, (Mo0.6Ru0.4)80Si20, (Mo0.6Ru0.4)82Si18 and (Mo0.6Ru0.4)80P20 is reported for the first time using Ashcroft's empty core (EMC) model potential. Five local field correction functions proposed by Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al (F) and Sarkar et al (S) are used in the present investigation to study the effect of screening on the aforesaid properties. It is observed that λ and TC are reasonably sensitive to the selection of the local field correction functions, whereas μ*, α and N0V show weak dependences on the local field correction functions. The transition temperature TC obtained from the H-local field correction function is found to be in excellent agreement with available experimental data. Also, the present results are found to be in qualitative agreement with other earlier reported data, which confirms the existence of the superconducting phase in the above ternary metallic glasses.

  20. Effect of Ni and noble metals (Ru, Pd and Pt) on performance of bifunctional MoP/SiO2 for hydroconversion of methyl laurate

    NASA Astrophysics Data System (ADS)

    Nie, Ziyang; Zhang, Zhena; Chen, Jixiang

    2017-10-01

    SiO2 supported bifunctional MoP catalysts modified with different metal promoters (Ni, Ru, Pd, Pt), where Mo/Ni and Mo/M(M = Ru, Pd and Pt) atomic ratios was respectively 10 and 40, were prepared by TPR method from the phosphate precursors. It was found that the introduction of metal promoters facilitated the reduction of phosphate precursor and enhanced the dispersion of MoP. However, the MoP catalyst acidity was scarcely influenced by the small amount of metal promoters. In the hydroconversion of methyl laurate, the promoters enhanced the MoP catalyst activity for conversion of methyl laurate and hydrogenation of alkenes (intermediate), but reduced isomerization ability. Among the promoters, Ru was an optimum to decrease selectivity to alkenes while maintain high selectivity to iso-alkanes, and Mo40RuP showed better stability than MoP. At 380 °C and 3.0 MPa, the conversion of methyl laurate, the total selectivity to C11 and C12 hydrocarbons and the selectivity to iso-alkanes maintained at 100%, ∼94% and ∼30% on Mo40RuP during 102 h, respectively. The good stability of Mo40RuP is ascribed to that the presence of Ru prevented the sintering of MoP particles and suppressed carbon deposition.

  1. Direct methanol fuel cell with extended reaction zone anode: PtRu and PtRuMo supported on graphite felt

    NASA Astrophysics Data System (ADS)

    Bauer, Alex; Gyenge, Előd L.; Oloman, Colin W.

    Pressed graphite felt (thickness ∼350 μm) with electrodeposited PtRu (43 g m -2, 1.4:1 atomic ratio) or PtRuMo (52 g m -2, 1:1:0.3 atomic ratio) nanoparticle catalysts was investigated as an anode for direct methanol fuel cells. At temperatures above 333 K the fuel cell performance of the PtRuMo catalyst was superior compared to PtRu. The power density was 2200 W m -2 with PtRuMo at 5500 A m -2 and 353 K while under the same conditions PtRu yielded 1925 W m -2. However, the degradation rate of the Mo containing catalyst formulation was higher. Compared to conventional gas diffusion electrodes with comparable PtRu catalyst composition and load, the graphite felt anodes gave higher power densities mainly due to the extended reaction zone for methanol oxidation.

  2. Experimental study of the rearrangements of valence protons and neutrons amongst single-particle orbits during double- β decay in Mo 100

    DOE PAGES

    Freeman, S. J.; Sharp, D. K.; McAllister, S. A.; ...

    2017-11-27

    The rearrangements of protons and neutrons amongst the valence single-particle orbitals during double-beta decay of Mo-100 have been determined by measuring cross sections in (d, p), (p, d), (He-3, a), and (He-3, d) reactions on Mo-98,Mo-100 and Ru-100,Ru-102 targets. The deduced nucleon occupancies reveal significant discrepancies when compared with theoretical calculations; the same calculations have previously been used to determine the nuclear matrix element associated with the decay probability of double-beta decay of the Mo-100 system.

  3. Experimental study of the rearrangements of valence protons and neutrons amongst single-particle orbits during double- β decay in Mo 100

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, S. J.; Sharp, D. K.; McAllister, S. A.

    The rearrangements of protons and neutrons amongst the valence single-particle orbitals during double-beta decay of Mo-100 have been determined by measuring cross sections in (d, p), (p, d), (He-3, a), and (He-3, d) reactions on Mo-98,Mo-100 and Ru-100,Ru-102 targets. The deduced nucleon occupancies reveal significant discrepancies when compared with theoretical calculations; the same calculations have previously been used to determine the nuclear matrix element associated with the decay probability of double-beta decay of the Mo-100 system.

  4. Bandgap renormalization and work function tuning in MoSe2/hBN/Ru(0001) heterostructures.

    PubMed

    Zhang, Qiang; Chen, Yuxuan; Zhang, Chendong; Pan, Chi-Ruei; Chou, Mei-Yin; Zeng, Changgan; Shih, Chih-Kang

    2016-12-14

    The van der Waals interaction in vertical heterostructures made of two-dimensional (2D) materials relaxes the requirement of lattice matching, therefore enabling great design flexibility to tailor novel 2D electronic systems. Here we report the successful growth of MoSe 2 on single-layer hexagonal boron nitride (hBN) on the Ru(0001) substrate using molecular beam epitaxy. Using scanning tunnelling microscopy and spectroscopy, we found that the quasi-particle bandgap of MoSe 2 on hBN/Ru is about 0.25 eV smaller than those on graphene or graphite substrates. We attribute this result to the strong interaction between hBN/Ru, which causes residual metallic screening from the substrate. In addition, the electronic structure and the work function of MoSe 2 are modulated electrostatically with an amplitude of ∼0.13 eV. Most interestingly, this electrostatic modulation is spatially in phase with the Moiré pattern of hBN on Ru(0001) whose surface also exhibits a work function modulation of the same amplitude.

  5. Radial mixing and Ru-Mo isotope systematics under different accretion scenarios

    NASA Astrophysics Data System (ADS)

    Fischer, Rebecca A.; Nimmo, Francis; O'Brien, David P.

    2018-01-01

    The Ru-Mo isotopic compositions of inner Solar System bodies may reflect the provenance of accreted material and how it evolved with time, both of which are controlled by the accretion scenario these bodies experienced. Here we use a total of 116 N-body simulations of terrestrial planet accretion, run in the Eccentric Jupiter and Saturn (EJS), Circular Jupiter and Saturn (CJS), and Grand Tack scenarios, to model the Ru-Mo anomalies of Earth, Mars, and Theia analogues. This model starts by applying an initial step function in Ru-Mo isotopic composition, with compositions reflecting those in meteorites, and traces compositional evolution as planets accrete. The mass-weighted provenance of the resulting planets reveals more radial mixing in Grand Tack simulations than in EJS/CJS simulations, and more efficient mixing among late-accreted material than during the main phase of accretion in EJS/CJS simulations. We find that an extensive homogeneous inner disk region is required to reproduce Earth's observed Ru-Mo composition. EJS/CJS simulations require a homogeneous reservoir in the inner disk extending to ≥3-4 AU (≥74-98% of initial mass) to reproduce Earth's composition, while Grand Tack simulations require a homogeneous reservoir extending to ≥3-10 AU (≥97-99% of initial mass), and likely to ≥6-10 AU. In the Grand Tack model, Jupiter's initial location (the most likely location for a discontinuity in isotopic composition) is ∼3.5 AU; however, this step location has only a 33% likelihood of producing an Earth with the correct Ru-Mo isotopic signature for the most plausible model conditions. Our results give the testable predictions that Mars has zero Ru anomaly and small or zero Mo anomaly, and the Moon has zero Mo anomaly. These predictions are insensitive to wide variations in parameter choices.

  6. Mo/Si multilayers with enhanced TiO II- and RuO II-capping layers

    NASA Astrophysics Data System (ADS)

    Yulin, Sergiy; Benoit, Nicolas; Feigl, Torsten; Kaiser, Norbert; Fang, Ming; Chandhok, Manish

    2008-03-01

    The lifetime of Mo/Si multilayer-coated projection optics is one of the outstanding issues on the road of commercialization of extreme-ultraviolet lithography (EUVL). The application of Mo/Si multilayer optics in EUVL requires both sufficient radiation stability and also the highest possible normal-incidence reflectivity. A serious problem of conventional high-reflective Mo/Si multilayers capped by silicon is the considerable degradation of reflective properties due to carbonization and oxidation of the silicon surface layer under exposure by EUV radiation. In this study, we focus on titanium dioxide (TiO II) and ruthenium dioxide (RuO II) as promising capping layer materials for EUVL multilayer coatings. The multilayer designs as well as the deposition parameters of the Mo/Si systems with different capping layers were optimized in terms of maximum peak reflectivity at the wavelength of 13.5 nm and longterm stability under high-intensive irradiation. Optimized TiO II-capped Mo/Si multilayer mirrors with an initial reflectivity of 67.0% presented a reflectivity drop of 0.6% after an irradiation dose of 760 J/mm2. The reflectivity drop was explained by the partial oxidation of the silicon sub-layer. No reflectivity loss after similar irradiation dose was found for RuO II-capped Mo/Si multilayer mirrors having initial peak reflectivity of 66%. In this paper we present data on improved reflectivity of interface-engineered TiO II- and RuO II-capped Mo/Si multilayer mirrors due to the minimization of both interdiffusion processes inside the multilayer stack and absorption loss in the oxide layer. Reflectivities of 68.5% at the wavelength of 13.4 nm were achieved for both TiO II- and RuO II-capped Mo/Si multilayer mirrors.

  7. Ru sub 3 (CO) sub 12 and Mo (CO) sub 6 overlayers adsorbed on Ru(001) and Au/Ru and their interaction with electrons and photons: An infrared reflection--absorption study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malik, I.J.; Hrbek, J.

    1991-05-01

    We studied adsorbed Ru{sub 3}(CO){sub 12} and Mo (CO){sub 6} overlayers on Ru(001) and Au/Ru surfaces by infrared reflection--absorption spectroscopy (IRAS) and thermal desorption spectroscopy (TDS). We characterized the C--O stretching mode of both metal carbonyls (4 cm{sup {minus}1} FWHM) and a deformation mode of Mo (CO){sub 6} at 608 cm{sup {minus}1} with an unusually narrow FWHM of 1 cm{sup {minus}1}. Both IRAS and TDS data suggest adsorption and desorption of metal carbonyls as molecular species with a preferential orientation in the overlayers. We discuss annealing experiments of Ru{sub 3}(CO){sub 12}/Ru(001), the interaction of Ru{sub 3}(CO){sub 12} overlayers with electronsmore » of up to 100-eV energy, and the interaction of Mo (CO){sub 6} overlayers with 300-nm photons.« less

  8. New insights into Mo and Ru isotope variation in the nebula and terrestrial planet accretionary genetics

    NASA Astrophysics Data System (ADS)

    Bermingham, K. R.; Worsham, E. A.; Walker, R. J.

    2018-04-01

    When corrected for the effects of cosmic ray exposure, Mo and Ru nucleosynthetic isotope anomalies in iron meteorites from at least nine different parent bodies are strongly correlated in a manner consistent with variable depletion in s-process nucleosynthetic components. In contrast to prior studies, the new results show no significant deviations from a single correlation trend. In the refined Mo-Ru cosmic correlation, a distinction between the non-carbonaceous (NC) group and carbonaceous chondrite (CC) group is evident. Members of the NC group are characterized by isotope compositions reflective of variable s-process depletion. Members of the CC group analyzed here plot in a tight cluster and have the most s-process depleted Mo and Ru isotopic compositions, with Mo isotopes also slightly enriched in r- and possibly p-process contributions. This indicates that the nebular feeding zone of the NC group parent bodies was characterized by Mo and Ru with variable s-process contributions, but with the two elements always mixed in the same proportions. The CC parent bodies sampled here, by contrast, were derived from a nebular feeding zone that had been mixed to a uniform s-process depleted Mo-Ru isotopic composition. Six molybdenite samples, four glacial diamictites, and two ocean island basalts were analyzed to provide a preliminary constraint on the average Mo isotope composition of the bulk silicate Earth (BSE). Combined results yield an average μ97Mo value of +3 ± 6. This value, coupled with a previously reported μ100Ru value of +1 ± 7 for the BSE, indicates that the isotopic composition of the BSE falls precisely on the refined Mo-Ru cosmic correlation. The overlap of the BSE with the correlation implies that there was homogeneous accretion of siderophile elements for the final accretion of 10 to 20 wt% of Earth's mass. The only known cosmochemical materials with an isotopic match to the BSE, with regard to Mo and Ru, are some members of the IAB iron meteorite complex and enstatite chondrites.

  9. Investigations of Nuclear Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarantites, Demetrios; Reviol, W.

    The proposal addresses studies of nuclear structure at low-energies and development of instrumentation for that purpose. The structure studies deal with features of neutron-rich nuclei with unexplored shapes (football- or pear-shaped nuclei). The regions of interest are: neutron rich nuclei like 132-138Sn, or 48-54Ca, and the Zr, Mo, and Ru isotopes. The tools used can be grouped as follows: either Gammasphere or Gretina multi-gamma detector arrays and auxiliary detectors (Microball, Neutron Shell, and the newly completed Phoswich Wall).The neutron-rich nuclei are accessed by radioactive-beam binary reactions or by 252Cf spontaneous fission. The experiments with heavy radioactive beams aim at excitingmore » the beam nuclei by pick-up or transfer a neutron or a proton from a light target like 13C, 9Be, 11B or 14N .For these binary-reaction studies the Phoswich Wall detector system is essential. It is based on four multi-anode photomultiplier tubes on which CsI and thin fast-timing plastic scintillators are attached. Their signals are digitized with a high density microchip system.« less

  10. First principles study of surface stability and segregation of PdRuRh ternary metal alloy system

    NASA Astrophysics Data System (ADS)

    Aspera, Susan Meñez; Arevalo, Ryan Lacdao; Nakanishi, Hiroshi; Kasai, Hideaki

    2018-05-01

    The recognized importance on the studies of alloyed materials is due to the high possibility of forming designer materials that caters to different applications. In any reaction and application, the stability and configuration of the alloy combination are important. In this study, we analyzed the surface stability and segregation of ternary metal alloy system PdRuRh through first principles calculation using density functional theory (DFT). We considered the possibility of forming phases as observed in the binary combinations of elements, i.e., completely miscible, and separating phases. With that, the model we analyzed for the ternary metal alloy slabs considers forming complete atomic miscibility, segregation of each component, and segregation of one component with mixing of the two other. Our results show that for the ternary combination of Pd, Rh and Ru, the Pd atoms have high tendency to segregate at the surface, while due to the high tendency of Ru and Rh to mix, core formation of a mixed RuRh is possible. Also, we determined that the trend of stability in the binary alloy system is a good determinant of stability in the ternary alloy system.

  11. Investigation of activation cross section data of alpha particle induced nuclear reaction on molybdenum up to 40 MeV: Review of production routes of medically relevant 97,103Ru

    NASA Astrophysics Data System (ADS)

    Tárkányi, F.; Hermanne, A.; Ditrói, F.; Takács, S.; Ignatyuk, A.

    2017-05-01

    The main goals of this investigations were to expand and consolidate reliable activation cross-section data for the natMo(α,x) reactions in connection with production of medically relevant 97,103Ru and the use of the natMo(α,x)97Ru reaction for monitoring beam parameters. The excitation functions for formation of the gamma-emitting radionuclides 94Ru, 95Ru, 97Ru, 103Ru, 93mTc, 93gTc(m+), 94mTc, 94gTc, 95mTc, 95gTc, 96gTc(m+), 99mTc, 93mMo, 99Mo(cum), 90Nb(m+) and 88Zr were measured up to 40 MeV alpha-particle energy by using the stacked foil technique and activation method. Data of our earlier similar experiments were re-evaluated and resulted in corrections on the reported results. Our experimental data were compared with critically analyzed literature data and with the results of model calculations, obtained by using the ALICE-IPPE, EMPIRE 3.1 (Rivoli) and TALYS codes (TENDL-2011 and TENDL-2015 on-line libraries). Nuclear data for different production routes of 97Ru and 103Ru are compiled and reviewed.

  12. New intermetallic MIrP (M=Ti, Zr, Nb, Mo) and MgRuP compounds related with MoM'P (M'=Ni and Ru) superconductor

    NASA Astrophysics Data System (ADS)

    Kito, Hijiri; Iyo, Akira; Wada, Toshimi

    2011-01-01

    Using a cubic-anvil high-pressure apparatus, ternary iridium phosphides MIrP (M=Ti, Zr, Nb, Mo) and MgRuP have been prepared by reaction of stoichiometric amounts of each metal and phosphide powders at around 2 Gpa and above 1523 K for the first time. The structure of these compounds prepared at high-pressure has been characterized by X-ray powder diffraction. Diffraction lines of these compounds are assigned by the index of the Co2Si-type structure. The electrical resistivity and the d.c magnetic susceptibility of MIrP (M=Ti, Zr, Nb, Mo) have measured at low temperatures. Unfortunately, no superconducting transition for MIrP (M=Ti, Zr, Nb, Mo) and MgRuP are observed down to 2 K.

  13. Synthesis and characterization of RuS2 nanostructures.

    PubMed

    Díaz, David; Castillo-Blum, Silvia E; Alvarez-Fregoso, Octavio; Rodríguez-Gattorno, Geonel; Santiago-Jacinto, Patricia; Rendon, Luis; Ortiz-Frade, Luis; León-Paredes, Yolia-Judith

    2005-12-08

    Small naked ruthenium sulfide nanoparticles (NPs) with narrow size distribution (2.5 +/- 0.4 nm of diameter) were synthesized in DMSO colloidal dispersions, under mild reaction conditions and using commercial RuCl3 as precursor. To test the chemical reactivity with soft and hard bases, fresh presynthesized RuS2 colloids were mixed with triethylamine (N(Et)3) and ammonium tetrathiomolybdate ((NH4)2MoS4) dimethyl sulfoxide solutions. Naked N(Et)3 and [MoS4](2-)-capped RuS2 nanoparticle colloids were characterized using UV-visible electronic absorption and emission spectroscopies and high-resolution transmission electron microscopy (HR-TEM). It has also been shown that capped RuS2-[MoS4]2- nanoparticles yield MoO3 crystalline matrix by means of HR-TEM experiments. The emission spectra of RuS2 and N(Et)3-RuS2 dispersions show that both nanosized materials have strong fluorescence. The existence of the ruthenium precursor species in solution was established by cyclic voltammetry. Moreover, naked RuS2 NPs were mixed with a chemical mixture with composition similar to gasoline (dibenzothiophene (Bz2S, 400 ppm), hexane, and toluene (55:45% v/v)). The reaction mixture consisted of two phases; in the polar phase, we found evidences of a strong interaction of Bz2S and toluene with the naked RuS2 NPs. We have also obtained self-organized thin films of capped N(Et)3- and RuS2-[MoS4]2- nanoparticles. In both cases, the shape and thickness of the resulting thin films were controlled by a dynamic vacuum procedure. The thin films have been characterized by atomic force microscopy, scanning electron microscopy, HR-TEM, energy dispersion spectroscopy, X-ray diffraction, and absorbance and fluorescence spectroscopies.

  14. Local structure distortion induced by Ti dopants boosting the pseudocapacitance of RuO2-based supercapacitors

    NASA Astrophysics Data System (ADS)

    Chen, I.-Li; Wei, Yu-Chen; Lu, Kueih-Tzu; Chen, Tsan-Yao; Hu, Chi-Chang; Chen, Jin-Ming

    2015-09-01

    Binary oxides with atomic ratios of Ru/Ti = 90/10, 70/30, and 50/50 were fabricated using H2O2-oxidative precipitation with the assistance of a cetyltrimethylammonium bromide (CTAB) template, followed by a thermal treatment at 200 °C. The characteristics of electron structure and local structure extracted from X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) analyses indicate that incorporation of Ti into the RuO2 lattice produces not only the local structural distortion of the RuO6 octahedra in (Ru-Ti)O2 with an increase in the central Ru-Ru distance but also a local crystallization of RuO2. Among the three binary oxides studied, (Ru70-Ti30)O2 exhibits a capacitance improvement of about 1.4-fold relative to the CTAB-modified RuO2, mainly due to the enhanced crystallinity of the distorted RuO6 structure rather than the surface area effect. Upon increasing the extent of Ti doping, the deteriorated supercapacitive performance of (Ru50-Ti50)O2 results from the formation of localized nano-clusters of TiO2 crystallites. These results provide insight into the important role of Ti doping in RuO2 that boosts the pseudocapacitive performance for RuO2-based supercapacitors. The present result is crucial for the design of new binary oxides for supercapacitor applications with extraordinary performance.Binary oxides with atomic ratios of Ru/Ti = 90/10, 70/30, and 50/50 were fabricated using H2O2-oxidative precipitation with the assistance of a cetyltrimethylammonium bromide (CTAB) template, followed by a thermal treatment at 200 °C. The characteristics of electron structure and local structure extracted from X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) analyses indicate that incorporation of Ti into the RuO2 lattice produces not only the local structural distortion of the RuO6 octahedra in (Ru-Ti)O2 with an increase in the central Ru-Ru distance but also a local crystallization of RuO2. Among the three binary oxides studied, (Ru70-Ti30)O2 exhibits a capacitance improvement of about 1.4-fold relative to the CTAB-modified RuO2, mainly due to the enhanced crystallinity of the distorted RuO6 structure rather than the surface area effect. Upon increasing the extent of Ti doping, the deteriorated supercapacitive performance of (Ru50-Ti50)O2 results from the formation of localized nano-clusters of TiO2 crystallites. These results provide insight into the important role of Ti doping in RuO2 that boosts the pseudocapacitive performance for RuO2-based supercapacitors. The present result is crucial for the design of new binary oxides for supercapacitor applications with extraordinary performance. Electronic supplementary information (ESI) available: A series of Ru K-edge EXAFS spectra fitting results for RuO2 together with oxides with different Ru-Ti atomic ratios treated at 200 °C. See DOI: 10.1039/c5nr03660g

  15. Reversible Li storage for nanosize cation/anion-disordered rocksalt-type oxyfluorides: LiMoO2 - x LiF (0 ≤ x ≤ 2) binary system

    NASA Astrophysics Data System (ADS)

    Takeda, Nanami; Hoshino, Satoshi; Xie, Lixin; Chen, Shuo; Ikeuchi, Issei; Natsui, Ryuichi; Nakura, Kensuke; Yabuuchi, Naoaki

    2017-11-01

    A binary system of LiMoO2 - x LiF (0 ≤ x ≤ 2), Li1+xMoO2Fx, is systematically studied as potential positive electrode materials for rechargeable Li batteries. Single phase and nanosized samples on this binary system are successfully prepared by using a mechanical milling route. Crystal structures and Li storage properties on the binary system are also examined. Li2MoO2F (x = 1), which is classified as a cation-/anion-disordered rocksalt-type structure and is a thermodynamically metastable phase, delivers a large reversible capacity of over 300 mAh g-1 in Li cells with good reversibility. Highly reversible Li storage is realized for Li2MoO2F consisting of nanosized particles based on Mo3+/Mo5+ two-electron redox as evidenced by ex-situ X-ray absorption spectroscopy coupled with ex-situ X-ray diffractometry. Moreover, the presence of the most electronegative element in the framework structure effectively increases the electrode potential of Mo redox through an inductive effect. From these results, potential of nanosized lithium molybdenum oxyfluorides for high-capacity positive electrode materials of rechargeable Li batteries are discussed.

  16. New band structures in Neutron-Rich Mo and Ru Isotopes

    DOE PAGES

    Hamilton, J. H.; Luoa, Y. X.; Zhu, S. J.; ...

    2009-01-01

    Rotational bands in 110,112Ru and 108Mo have been investigated by means of γ-γ-γ and γ-γ(θ) coincidences of prompt γ rays emitted in the spontaneous fission of 252Cf. New ΔI = 1 negative parity doublet bands are found. These bands in 110,112Ru and 108Mo have all the properties expected for chiral vibrations. Microscopic calculations that combine the TAC meanfield with random phase approximation support this interpretation.

  17. Structure and magnetic properties of Fe12X clusters

    NASA Astrophysics Data System (ADS)

    Gutsev, G. L.; Johnson, L. E.; Belay, K. G.; Weatherford, C. A.; Gutsev, L. G.; Ramachandran, B. R.

    2014-02-01

    The electronic and geometrical structures of a Fe12X family of binary clusters Fe12Al, Fe12Sc, Fe12Ti, Fe12V, Fe12Cr, Fe12Mn, Fe12Co, Fe12Ni, Fe12Cu, Fe12Zn, Fe12Y, Fe12Zr, Fe12Nb, Fe12Mo, Fe12Tc, Fe12Ru, Fe12Rh, Fe12Pd, Fe12Ag, Fe12Cd, and Fe12Gd are studied using density functional theory within generalized gradient approximation. It is found that the geometrical structures corresponding to the lowest total energy states found for the Fe12X clusters possess icosahedral shape with the substituent atom occupying the central or a surface site. The only exception presents Fe12Nb where a squeezed cage structure is the energetically most favorable. The substitution of an atom in the Fe13 cluster results in the decrease of its total spin magnetic moment of 44 μB, except for Fe12Mn and Fe12Gd. The Fe12X clusters are more stable than the parent Fe13 cluster when X = Al, Sc, Ti, V, Co, Y, Zr, Nb, Mo, Tc, Ru, and Rh.

  18. Superconducting properties of molybdenum ruthenium alloy Mo0.63Ru0.37

    NASA Astrophysics Data System (ADS)

    Wei, Wensen; Ge, Min; Wang, Shasha; Zhang, Lei; Han, Yuyan; Du, Haifeng; Tian, Mingliang; Zhang, Yuheng

    2018-03-01

    Resistance, magnetization and specific heat measurements were performed on Mo0.63Ru0.37 alloy. All of them confirm that Mo0.63Ru0.37 becomes superconducting at about 7.0 K with bulk nature. Its upper critical field behavior fits to Werthamer-Helfand-Hohenberg (WHH) model quite well, with an upper critical field of μ0Hc2(0) = 8.64 T, less than its Pauli limit. Its electronic specific heat is reproduced by Bardeen-Cooper-Schriffer (BCS)-based α-model with a gap ratio Δ0 = 1.88kBTc, which is a little larger than the standard BCS value of 1.76. We concluded that Mo0.63Ru0.37 is a fully gapped isotropic s-wave superconductor, with its features are mostly consistent with the conventional theory.

  19. Framework fluxionality of organometallic oxides: synthesis, crystal structure, EXAFS, and DFT studies on [[Ru(eta6-arene)]4Mo4O16] complexes.

    PubMed

    Laurencin, Danielle; Garcia Fidalgo, Eva; Villanneau, Richard; Villain, Françoise; Herson, Patrick; Pacifico, Jessica; Stoeckli-Evans, Helen; Bénard, Marc; Rohmer, Marie-Madeleine; Süss-Fink, Georg; Proust, Anna

    2004-01-05

    Reactions of the molybdates Na(2)MoO4.2 H2O and (nBu(4)N)2[Mo2O7] with [[Ru(arene)Cl(2)](2)] (arene=C(6)H5CH3, 1,3,5-C6H3(CH3)(3), 1,2,4,5-C6H2(CH3)4) in water or organic solvents led to formation of the triple-cubane organometallic oxides [[Ru(eta(6)-arene)](4)Mo4O16], whose crystal and molecular structures were determined. Refluxing triple cubane [[Ru(eta(6)-C6H5CH3)](4)Mo4O16] in methanol caused partial isomerization to the windmill form. The two isomers of [[Ru(eta(6)-C6H5CH3)](4)Mo4O16] were characterized by Raman and Mo K-edge X-ray absorption spectroscopy (XAS), both in the solid-state and in solution. This triple-cubane isomer was also used as a spectroscopic model to account for isomerization of the p-cymene windmill [[Ru(eta(6)-1,4-CH3C6H4CH(CH3)2)](4)Mo4O16] in solution. Using both Raman and XAS techniques, we were then able to determine the ratio between the windmill and triple-cubane isomers in dichloromethane and in chloroform. Density functional calculations on [[Ru(eta(6)-arene)](4)Mo4O16] (arene=C6H6, C6H5CH3, 1,3,5-C6H3(CH3)3, 1,4-CH3C6H4CH(CH3)2, C6(CH3)6) suggest that the windmill form is intrinsically more stable, provided the complexes are assumed to be isolated. Intramolecular electrostatic interactions and steric bulk induced by substituted arenes were found to modulate but not to reverse the energy difference between the isomers. The stability of the triple-cubane isomers should therefore be accounted for by effects of the surroundings that induce a shift in the energy balance between both forms.

  20. Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode

    NASA Astrophysics Data System (ADS)

    Mortemard de Boisse, Benoit; Liu, Guandong; Ma, Jiangtao; Nishimura, Shin-Ichi; Chung, Sai-Cheong; Kiuchi, Hisao; Harada, Yoshihisa; Kikkawa, Jun; Kobayashi, Yoshio; Okubo, Masashi; Yamada, Atsuo

    2016-04-01

    Sodium-ion batteries are attractive energy storage media owing to the abundance of sodium, but the low capacities of available cathode materials make them impractical. Sodium-excess metal oxides Na2MO3 (M: transition metal) are appealing cathode materials that may realize large capacities through additional oxygen redox reaction. However, the general strategies for enhancing the capacity of Na2MO3 are poorly established. Here using two polymorphs of Na2RuO3, we demonstrate the critical role of honeycomb-type cation ordering in Na2MO3. Ordered Na2RuO3 with honeycomb-ordered [Na1/3Ru2/3]O2 slabs delivers a capacity of 180 mAh g-1 (1.3-electron reaction), whereas disordered Na2RuO3 only delivers 135 mAh g-1 (1.0-electron reaction). We clarify that the large extra capacity of ordered Na2RuO3 is enabled by a spontaneously ordered intermediate Na1RuO3 phase with ilmenite O1 structure, which induces frontier orbital reorganization to trigger the oxygen redox reaction, unveiling a general requisite for the stable oxygen redox reaction in high-capacity Na2MO3 cathodes.

  1. Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode.

    PubMed

    Mortemard de Boisse, Benoit; Liu, Guandong; Ma, Jiangtao; Nishimura, Shin-ichi; Chung, Sai-Cheong; Kiuchi, Hisao; Harada, Yoshihisa; Kikkawa, Jun; Kobayashi, Yoshio; Okubo, Masashi; Yamada, Atsuo

    2016-04-18

    Sodium-ion batteries are attractive energy storage media owing to the abundance of sodium, but the low capacities of available cathode materials make them impractical. Sodium-excess metal oxides Na2MO3 (M: transition metal) are appealing cathode materials that may realize large capacities through additional oxygen redox reaction. However, the general strategies for enhancing the capacity of Na2MO3 are poorly established. Here using two polymorphs of Na2RuO3, we demonstrate the critical role of honeycomb-type cation ordering in Na2MO3. Ordered Na2RuO3 with honeycomb-ordered [Na(1/3)Ru(2/3)]O2 slabs delivers a capacity of 180 mAh g(-1) (1.3-electron reaction), whereas disordered Na2RuO3 only delivers 135 mAh g(-1) (1.0-electron reaction). We clarify that the large extra capacity of ordered Na2RuO3 is enabled by a spontaneously ordered intermediate Na1RuO3 phase with ilmenite O1 structure, which induces frontier orbital reorganization to trigger the oxygen redox reaction, unveiling a general requisite for the stable oxygen redox reaction in high-capacity Na2MO3 cathodes.

  2. Local structure distortion induced by Ti dopants boosting the pseudocapacitance of RuO2-based supercapacitors.

    PubMed

    Chen, I-Li; Wei, Yu-Chen; Lu, Kueih-Tzu; Chen, Tsan-Yao; Hu, Chi-Chang; Chen, Jin-Ming

    2015-10-07

    Binary oxides with atomic ratios of Ru/Ti = 90/10, 70/30, and 50/50 were fabricated using H2O2-oxidative precipitation with the assistance of a cetyltrimethylammonium bromide (CTAB) template, followed by a thermal treatment at 200 °C. The characteristics of electron structure and local structure extracted from X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) analyses indicate that incorporation of Ti into the RuO2 lattice produces not only the local structural distortion of the RuO6 octahedra in (Ru-Ti)O2 with an increase in the central Ru-Ru distance but also a local crystallization of RuO2. Among the three binary oxides studied, (Ru70-Ti30)O2 exhibits a capacitance improvement of about 1.4-fold relative to the CTAB-modified RuO2, mainly due to the enhanced crystallinity of the distorted RuO6 structure rather than the surface area effect. Upon increasing the extent of Ti doping, the deteriorated supercapacitive performance of (Ru50-Ti50)O2 results from the formation of localized nano-clusters of TiO2 crystallites. These results provide insight into the important role of Ti doping in RuO2 that boosts the pseudocapacitive performance for RuO2-based supercapacitors. The present result is crucial for the design of new binary oxides for supercapacitor applications with extraordinary performance.

  3. Combinatorial discovery of new methanol-tolerant non-noble metal cathode electrocatalysts for direct methanol fuel cells.

    PubMed

    Yu, Jong-Sung; Kim, Min-Sik; Kim, Jung Ho

    2010-12-14

    Combinatorial synthesis and screening were used to identify methanol-tolerant non-platinum cathode electrocatalysts for use in direct methanol fuel cells (DMFCs). Oxygen reduction consumes protons at the surface of DMFC cathode catalysts. In combinatorial screening, this pH change allows one to differentiate active catalysts using fluorescent acid-base indicators. Combinatorial libraries of carbon-supported catalyst compositions containing Ru, Mo, W, Sn, and Se were screened. Ternary and quaternary compositions containing Ru, Sn, Mo, Se were more active than the "standard" Alonso-Vante catalyst, Ru(3)Mo(0.08)Se(2), when tested in liquid-feed DMFCs. Physical characterization of the most active catalysts by powder X-ray diffraction, gas adsorption, and X-ray photoelectron spectroscopy revealed that the predominant crystalline phase was hexagonal close-packed (hcp) ruthenium, and showed a surface mostly covered with oxide. The best new catalyst, Ru(7.0)Sn(1.0)Se(1.0), was significantly more active than Ru(3)Se(2)Mo(0.08), even though the latter contained smaller particles.

  4. A thermodynamic database for tellurium-bearing systems relevant to nuclear technology

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, G.; Juneja, J. M.

    1993-06-01

    A thermodynamic database for tellurium-bearing condensed phases and gaseous species which are relevant to nuclear technology is presented. It contains phase diagrams of the binary systems, PdTe, RhTe, PuTe, SmTe, CsTe, ZrTe, of the ternary systems, ZrTeO, MoTeO, AgTeO, UTeO, CsTeO, BaTeO as well as thermodynamic data for crystalline and liquid Te, for the solid phases Cs 2Te, Ag 2Te, SnTe, BaTe, CeTe, SmTe, RuTe 2, ZrTe 2, Fe 0.53Te 0.47, Mo 0.43Te 0.57, Cr 0.43Te 0.57, Ni 0.5Te 0.4, Cs 2TeO 3 and for the gaseous species, Te, Te 2, TeO, TeO 2, TeO(OH) 2, H 2Te, TeI, TeI 2, TeI 4, TeOI 2, SnTe, Sn 2Te 2, SnTe 2.

  5. Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode

    PubMed Central

    Mortemard de Boisse, Benoit; Liu, Guandong; Ma, Jiangtao; Nishimura, Shin-ichi; Chung, Sai-Cheong; Kiuchi, Hisao; Harada, Yoshihisa; Kikkawa, Jun; Kobayashi, Yoshio; Okubo, Masashi; Yamada, Atsuo

    2016-01-01

    Sodium-ion batteries are attractive energy storage media owing to the abundance of sodium, but the low capacities of available cathode materials make them impractical. Sodium-excess metal oxides Na2MO3 (M: transition metal) are appealing cathode materials that may realize large capacities through additional oxygen redox reaction. However, the general strategies for enhancing the capacity of Na2MO3 are poorly established. Here using two polymorphs of Na2RuO3, we demonstrate the critical role of honeycomb-type cation ordering in Na2MO3. Ordered Na2RuO3 with honeycomb-ordered [Na1/3Ru2/3]O2 slabs delivers a capacity of 180 mAh g−1 (1.3-electron reaction), whereas disordered Na2RuO3 only delivers 135 mAh g−1 (1.0-electron reaction). We clarify that the large extra capacity of ordered Na2RuO3 is enabled by a spontaneously ordered intermediate Na1RuO3 phase with ilmenite O1 structure, which induces frontier orbital reorganization to trigger the oxygen redox reaction, unveiling a general requisite for the stable oxygen redox reaction in high-capacity Na2MO3 cathodes. PMID:27088834

  6. Theoretical study of triaxial shapes of neutron-rich Mo and Ru nuclei

    DOE PAGES

    Zhang, C. L.; Bhat, G. H.; Nazarewicz, W.; ...

    2015-09-10

    Here, whether atomic nuclei can possess triaxial shapes at their ground states is still a subject of ongoing debate. According to theory, good prospects for low-spin triaxiality are in the neutron-rich Mo-Ru region. Recently, transition quadrupole moments in rotational bands of even-mass neutron-rich isotopes of molybdenum and ruthenium nuclei have been measured. The new data have provided a challenge for theoretical descriptions invoking stable triaxial deformations. The purpose of this study is to understand experimental data on rotational bands in the neutron-rich Mo-Ru region, we carried out theoretical analysis of moments of inertia, shapes, and transition quadrupole moments of neutron-richmore » even-even nuclei around 110Ru using self-consistent mean-field and shell model techniques. Methods: To describe yrast structures in Mo and Ru isotopes, we use nuclear density functional theory (DFT) with the optimized energy density functional UNEDF0. We also apply triaxial projected shell model (TPSM) to describe yrast and positive-parity, near-yrast band structures. As a result, our self-consistent DFT calculations predict triaxial ground-state deformations in 106,108Mo and 108,110,112Ru and reproduce the observed low-frequency behavior of moments of inertia. As the rotational frequency increases, a negative-gamma structure, associated with the aligned ν(h 11/2) 2 pair, becomes energetically favored. The computed transition quadrupole moments vary with angular momentum, which reflects deformation changes with rotation; those variations are consistent with experiment. The TPSM calculations explain the observed band structures assuming stable triaxial shapes. Lastly, the structure of neutron-rich even-even nuclei around Ru-110 is consistent with triaxial shape deformations. Our DFT and TPSM frameworks provide a consistent and complementary description of experimental data.« less

  7. Hypo-electronic triple-decker sandwich complexes: synthesis and structural characterization of [(Cp*Mo)2{μ-η(6):η(6)-B4H4E-Ru(CO)3}] (E = S, Se, Te or Ru(CO)3 and Cp* = η(5)-C5Me5).

    PubMed

    Mondal, Bijan; Bhattacharyya, Moulika; Varghese, Babu; Ghosh, Sundargopal

    2016-07-05

    The syntheses and structural characterization of hypo-electronic di-molybdenum triple-decker sandwich clusters are reported. Thermolysis of [Ru3(CO)12] with an in situ generated intermediate obtained from the reaction of [Cp*MoCl4] with [LiBH4·THF] yielded an electron deficient triple-decker sandwich complex, [(Cp*Mo)2{μ-η(6):η(6)-B4H4Ru2(CO)6}], . In an effort to generate analogous triple-deckers containing group-16 elements, we isolated [(Cp*Mo)2{μ-η(6):η(6)-B4H4ERu(CO)3}] (: E = Te; : E = S; : E = Se). These clusters show a high metal coordination number and cross cluster Mo-Mo bond. The formal cluster electron count of these compounds is four or three skeletal electron pairs less than required for a canonical closo-structure of the same nuclearity. Therefore, these compounds represent a novel class of triple-decker sandwich complex with 22 or 24 valence-electrons (VE), wherein the "chair" like hexagonal middle ring is composed of B, Ru and chalcogen. One of the key differences among the synthesized triple-decker molecules is the puckering nature of the middle ring [B4RuE], which increases in the order S < Se < Ru(CO)3 < Te. In addition, Fenske-Hall and quantum-chemical calculations with DFT methods at the BP86 level of theory have been used to analyze the bonding of these novel complexes. The studies not only explain the electron unsaturation of the molecules, but also reveal the reason for the significant puckering of the middle deck. All the compounds have been characterized by IR, (1)H, (11)B, and (13)C NMR spectroscopy in solution and the solid state structures were established by crystallographic analysis.

  8. Light-Induced Activation of a Molybdenum Oxotransferase Model within a Ru(II)-Mo(VI) Dyad.

    PubMed

    Ducrot, Aurélien B; Coulson, Ben A; Perutz, Robin N; Duhme-Klair, Anne-Kathrin

    2016-12-19

    Nature uses molybdenum-containing enzymes to catalyze oxygen atom transfer (OAT) from water to organic substrates. In these enzymes, the two electrons that are released during the reaction are rapidly removed, one at a time, by spatially separated electron transfer units. Inspired by this design, a Ru(II)-Mo(VI) dyad was synthesized and characterized, with the aim of accelerating the rate-determining step in the cis-dioxo molybdenum-catalyzed OAT cycle, the transfer of an oxo ligand to triphenyl phosphine, via a photo-oxidation process. The dyad consists of a photoactive bis(bipyridyl)-phenanthroline ruthenium moiety that is covalently linked to a bioinspired cis-dioxo molybdenum thiosemicarbazone complex. The quantum yield and luminescence lifetimes of the dyad [Ru(bpy) 2 (L 2 )MoO 2 (solv)] 2+ were determined. The major component of the luminescence decay in MeCN solution (τ = 1149 ± 2 ns, 67%) corresponds closely to the lifetime of excited [Ru(bpy) 2 (phen-NH 2 )] 2+ , while the minor component (τ = 320 ± 1 ns, 31%) matches that of [Ru(bpy) 2 (H 2 -L 2 )] 2+ . In addition, the (spectro)electrochemical properties of the system were investigated. Catalytic tests showed that the dyad-catalyzed OAT from dimethyl sulfoxide to triphenyl phosphine proceeds significantly faster upon irradiation with visible light than in the dark. Methylviologen acts as a mediator in the photoredox cycle, but it is regenerated and hence only required in stoichiometric amounts with respect to the catalyst rather than sacrificial amounts. It is proposed that oxidative quenching of the photoexcited Ru unit, followed by intramolecular electron transfer, leads to the production of a reactive one-electron oxidized catalyst, which is not accessible by electrochemical methods. A significant, but less pronounced, rate enhancement was observed when an analogous bimolecular system was tested, indicating that intramolecular electron transfer between the photosensitizer and the catalytic center is more efficient than intermolecular electron transfer between the separate components.

  9. Carbon-supported, selenium-modified ruthenium-molybdenum catalysts for oxygen reduction in acidic media.

    PubMed

    Guinel, Maxime J-F; Bonakdarpour, Arman; Wang, Biao; Babu, Panakkattu K; Ernst, Frank; Ramaswamy, Nagappan; Mukerjee, Sanjeev; Wieckowski, Andrzej

    2009-07-20

    The stability and oxygen reduction activity of two carbon-supported catalyst materials are reported. The catalysts, Se/Ru and Se/(Ru-Mo), were prepared by using a chemical reduction method. The catalyst nanoparticles were evenly dispersed onto globular amorphous carbon supports, and their average size was ca. 2.4 nm. Thermal treatment at 500 °C for 2 h in an inert argon atmosphere resulted in coarsening of the nanoparticles, and also in some decrease of their activity. A gradual reduction of activity was also observed for Se/Ru during potential-cycle experiments. However, the incorporation of small amounts of Mo into the Se/Ru catalysts considerably improved the stability of the catalyst against dissolution. The Mo-containing samples showed excellent oxygen reduction activities even after cycling the potential 1000 times between 0.7 and 0.9 V. Furthermore, they showed excellent fuel-cell behavior. The performance of the Se/Ru catalysts is greatly improved by the addition of small amounts of elemental Mo. Possible mechanisms responsible for the improvement of the activity are discussed. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Investigation of the synthesis, activation, and isosteric heats of CO2 adsorption of the isostructural series of metal-organic frameworks M3(BTC)2 (M = Cr, Fe, Ni, Cu, Mo, Ru).

    PubMed

    Wade, Casey R; Dincă, Mircea

    2012-07-14

    The synthesis, activation, and heats of CO(2) adsorption for the known members of the M(3)(BTC)(2) (HKUST-1) isostructural series (M = Cr, Fe, Ni, Zn, Ni, Cu, Mo) were investigated to gain insight into the impact of CO(2)-metal interactions for CO(2) storage/separation applications. With the use of modified syntheses and activation procedures, improved BET surface areas were obtained for M = Ni, Mo, and Ru. The zero-coverage isosteric heats of CO(2) adsorption were measured for the Cu, Cr, Ni, Mo, and Ru analogues and gave values consistent with those reported for MOFs containing coordinatively unsaturated metal sites, but lower than for amine functionalized materials. Notably, the Ni and Ru congeners exhibited the highest CO(2) affinities in the studied series. These behaviors were attributed to the presence of residual guest molecules in the case of Ni(3)(BTC)(2)(Me(2)NH)(2)(H(2)O) and the increased charge of the dimetal secondary building unit in [Ru(3)(BTC)(2)][BTC](0.5).

  11. Selective hydrodesulfurization of 4,6-dimethyldibenzothiophene in the dominant presence of naphthalene over hybrid CoMo/A{sub 2}O{sub 3} and Ru/Al{sub 2}Al{sub 2}O{sub 3} catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isoda, T.; Nagao, S.; Ma, X.

    1995-12-31

    Hydrodesulfurization of 4,6-dimethyldibenzothiophene (4,6-DMDBT) in decane containing significant amount of naphthalene was examined over a hybrid of CoMo/Al{sub 2}O{sub 3} and Ru/Al{sub 2}O{sub 3} to design the selective hydrogenation and successive desulfurization of 4,6-DMDBT in aromatic moiety, and its activity was compared to those of CoMo/Al{sub 2}O{sub 3}, NiMo/Al{sub 2}O{sub 3} and Ru/Al{sub 2}O{sub 3} in their single use. HDS activity of 4,6-DMDBT over NiMo/Al{sub 2}O{sub 3} was inferior to CoMo/Al{sub 2}O{sub 3}, although that of highest hydrogenation activity for naphthalene. The hybrid showed the highest activity for HDS of 4,6-DMDBT among these catalysts without excess hydrogenation of nahthalene.

  12. A molecular hybrid polyoxometalate-organometallic moieties and its relevance to supercapacitors in physiological electrolytes

    NASA Astrophysics Data System (ADS)

    Chinnathambi, Selvaraj; Ammam, Malika

    2015-06-01

    Supercapacitors operating in physiological electrolytes are of great relevance for both their environmentally friendly aspect as well as the possibility to be employed for powering implantable microelectronic devices using directly biological fluids as electrolytes. Polyoxometalate (POMs) have been proven to be useful for supercapacitors in acidic media. However, in neutral pH, POMs are usually not stable. One relevant alternative is to stabilize POMs by pairing them with organic moieties to form hybrids. In this study, we combined K6P2Mo18O62·12H2O (P2Mo18) with Ru(bpy)3Cl2.6H2O (Ru(bpy)). The synthesis was carried out with and without the mild reducing agent KI. The hybrids were characterized by CHN analysis, TEM, FT-IR, XRD, TGA and cyclic voltammetry. CHN elemental analysis revealed that one mole [P2Mo18O62]6- is paired with 3 mol [Ru(bpy)3]2+ to form [Ru(bpy)3]3PMo18O62·nH2O. With KI present, [P2Mo18O62]6- is linked to 3.33 mol to yield [Ru(bpy)3]3.33PMo18O62·mH2O. Excess of Ru(bpy) in [Ru(bpy)3]3.33PMo18O62·mH2O was further confirmed by TEM, FT-IR, XRD, TGA and cyclic voltammetry. In turn, hybrid composition is found to strongly influence the supercapacitor behavior. The hybrid rich in Ru(bpy) is found to perform better for supercapacitors in physiological electrolytes. 125 F g-1 and 68 F g-1 are the capacitance values obtained with [Ru(bpy)3]3.33PMo18O62·mH2O and [Ru(bpy)3]3PMo18O62·nH2O, respectively. In terms of specific energy densities, 3.5 Wh kg-1 and 2 Wh kg-1 were obtained for both hybrid simultaneously. The difference in supercapacitor performance between both hybrids is also noticed in impedance spectroscopy which showed that [Ru(bpy)3]3.33PMo18O62·mH2O has lower electron transfer resistance if compared to [Ru(bpy)3]3PMo18O62·nH2O. Finally, if compared of parent K6P2Mo18O62·12H2O, the stability of both hybrids is found to be highly improved.

  13. AFLOWLIB.ORG: a Distributed Materials Properties Repository from High-throughput Ab initio Calculations

    DTIC Science & Technology

    2011-11-15

    uncle) fcc (uncle) hcp (uncle) phase-diagram Ag Al Al Au Au Bi Bi Ca Ca Cd Cd Ce Ce Co Co Cr Cr Cu Cu Fe Fe Ga Ga Gd Gd Ge Ge Hf...Hf Hg Hg In In Ir Ir La La Li Li Mg Mg Mn Mn Mo Mo Na Na Nb Nb Ni Ni Os Os Pb Pb Pd Pd Pt Pt Rb Rb Re Re Rh Rh Ru Ru Sb Sb Sc...2 S. Curtarolo, A. N. Kolmogorov, and F. H. Cocks, High-throughput ab initio analysis of the Bi-In, Bi- Mg , Bi-Sb, In- Mg , In-Sb, and Mg -Sb systems

  14. Osmium Isotope Evidence for an S-Process Carrier in Primitive Chondrites

    NASA Technical Reports Server (NTRS)

    Brandon, A. D.; Puchtel, I. S.; Humayun, M.; Zolensky, M.

    2005-01-01

    The degree of isotopic mixing in the solar nebula and the nature of pre-solar components that have contributed to our solar system remain subjects of vigorous debate. Isotopic anomalies have been identified in Ca-Al inclusions in chondrites [1-4]. This indicates that refractory pre-solar components were not completely homogenized or processed away at the high temperatures experienced by CAIs. Pre-solar grains (SiC, C, etc.) are prevalent in primitive chondrites, and preserve isotopic heterogeneity resulting from the nucleosynthetic processes occurring in the stars from which these grains formed [2,4]. Several recent studies employing precise techniques for measuring Ru, Mo and Zr isotopes in bulk meteorites, have come up with varying conclusions on the degree of effectiveness of nebular mixing on the scale of bulk meteorite material. Some of these studies have reported isotopic anomalies in Mo and Ru [3,5-7], while others have not observed anomalies in Mo, Ru, or Zr [8-10]. Debate over the quality of the data, the normalization techniques employed, the absence or presence of isobaric interferences during the measurements on different types of instruments (e.g. TIMS versus ICP-MS), and other factors, has ensued [11,12].

  15. Metal-insulator transition and superconductivity induced by Rh doping in the binary pnictides RuPn (Pn=P, As, Sb)

    NASA Astrophysics Data System (ADS)

    Hirai, Daigorou; Takayama, Tomohiro; Hashizume, Daisuke; Takagi, Hidenori

    2012-04-01

    Binary ruthenium pnictides, RuP and RuAs, with an orthorhombic MnP structure, were found to show a metal to a nonmagnetic insulator transition at TMI = 270 and 200 K, respectively. In the metallic region above TMI, a structural phase transition, accompanied with a weak anomaly in the resistivity and the magnetic susceptibility, indicative of a pseudogap formation, was identified at Ts = 330 and 280 K, respectively. These two transitions were suppressed by substituting Ru with Rh. We found superconductivity with a maximum Tc = 3.7 and 1.8 K in a narrow composition range around the critical point for the pseudogap phase, Rh content xc = 0.45 and 0.25 for Ru1-xRhxP and Ru1-xRhxAs, respectively, which may provide us with a nonmagnetic route to superconductivity at a quantum critical point.

  16. Screening of Possible Re-Substitutional Elements in Single-Crystal Ni-Based Superalloys: A Viewpoint From Interdiffusion Coefficients in Ni-Al-X Ternaries

    NASA Astrophysics Data System (ADS)

    Chen, Juan; Zhang, Lijun; Lu, Xiao-Gang

    2018-07-01

    A popular area of research in the field of high-temperature alloys concerns the search of substitutional elements for Re in order to manufacture single-crystal Ni-based superalloys with less or even no Re addition. To find the elements with similar or even lower diffusion coefficients than Re is an effective strategy. Based on 29 fcc diffusion couples in ternary Ni-Al-X (X = Re, Os, and Ir) systems, high-throughput measurement of composition- and temperature-dependent interdiffusivity matrices was performed using our recently developed numerical inverse method implemented in HitDIC software. The reliability of the determined interdiffusivities was validated by comprehensively comparing the model-predicted composition/interdiffusion flux profiles for each diffusion couple with the corresponding experimental data. Moreover, we also conducted a comparison with the interdiffusivities evaluated using the traditional Matano-Kirkaldy method as well as those from the literature and in boundary binary systems. After that, a comprehensive comparison of the interdiffusion coefficients in fcc Ni-2 wt pct Al-6 wt pct X (X = Ti, Co, Ni, Nb, Mo, Ru, Rh, Ta, W, Re, Os, Ir, and Pt) alloys at 1423 K to 1573 K was conducted. Results indicate that the diffusion rate of Re is lower than that of Os at 1473 K and 1523 K; but higher at 1573 K, while the diffusion rate of Ir is always slightly higher than those of Os and Re at 1473 K to 1573 K. Further analysis of the magnitude of the interdiffusion coefficient correlates with the alloying concentration, activation energy, atomic number, and atomic radius of different diffusing transition metal species ( i.e., Ti, Co, Ni, Nb, Mo, Ru, Rh, Ta, W, Re, Os, Ir, and Pt) was conducted, which is expected to provide useful information regarding element choice in the development of new-generation Ni-based single-crystal superalloys.

  17. Screening of Possible Re-Substitutional Elements in Single-Crystal Ni-Based Superalloys: A Viewpoint From Interdiffusion Coefficients in Ni-Al-X Ternaries

    NASA Astrophysics Data System (ADS)

    Chen, Juan; Zhang, Lijun; Lu, Xiao-Gang

    2018-05-01

    A popular area of research in the field of high-temperature alloys concerns the search of substitutional elements for Re in order to manufacture single-crystal Ni-based superalloys with less or even no Re addition. To find the elements with similar or even lower diffusion coefficients than Re is an effective strategy. Based on 29 fcc diffusion couples in ternary Ni-Al-X (X = Re, Os, and Ir) systems, high-throughput measurement of composition- and temperature-dependent interdiffusivity matrices was performed using our recently developed numerical inverse method implemented in HitDIC software. The reliability of the determined interdiffusivities was validated by comprehensively comparing the model-predicted composition/interdiffusion flux profiles for each diffusion couple with the corresponding experimental data. Moreover, we also conducted a comparison with the interdiffusivities evaluated using the traditional Matano-Kirkaldy method as well as those from the literature and in boundary binary systems. After that, a comprehensive comparison of the interdiffusion coefficients in fcc Ni-2 wt pct Al-6 wt pct X (X = Ti, Co, Ni, Nb, Mo, Ru, Rh, Ta, W, Re, Os, Ir, and Pt) alloys at 1423 K to 1573 K was conducted. Results indicate that the diffusion rate of Re is lower than that of Os at 1473 K and 1523 K; but higher at 1573 K, while the diffusion rate of Ir is always slightly higher than those of Os and Re at 1473 K to 1573 K. Further analysis of the magnitude of the interdiffusion coefficient correlates with the alloying concentration, activation energy, atomic number, and atomic radius of different diffusing transition metal species (i.e., Ti, Co, Ni, Nb, Mo, Ru, Rh, Ta, W, Re, Os, Ir, and Pt) was conducted, which is expected to provide useful information regarding element choice in the development of new-generation Ni-based single-crystal superalloys.

  18. Prediction of A2 to B2 Phase Transition in the High Entropy Alloy Mo-Nb-Ta-W

    NASA Astrophysics Data System (ADS)

    Huhn, William; Widom, Michael

    2014-03-01

    In this talk we show that an effective Hamiltonian fit with first principles calculations predicts an order/disorder transition occurs in the high entropy alloy Mo-Nb-Ta-W. Using the Alloy Theoretic Automated Toolset, we find T=0K enthalpies of formation for all binaries containing Mo, Nb, Ta, and W, and in particular we find the stable structures for binaries at equiatomic concentrations are close in energy to the associated B2 structure, suggesting that at intermediate temperatures a B2 phase is stabilized in Mo-Nb-Ta-W. Our ``hybrid Monte Carlo/molecular dynamics'' results for the Mo-Nb-Ta-W system are analyzed to identify certain preferred chemical bonding types. A mean field free energy model incorporating nearest neighbor bonds will be presented, allowing us to predict the mechanism of the order/disorder transition. We find the temperature evolution of the system is driven by strong Mo-Ta bonding. Comparison of the free energy model and our MC/MD results suggest the existence of additional low-temperature phase transitions in the system likely ending with phase segregation into binary phases. We would like to thank DOD-DTRA for funding this research under contract number DTRA-11-1-0064.

  19. Development of multilayer perceptron networks for isothermal time temperature transformation prediction of U-Mo-X alloys

    NASA Astrophysics Data System (ADS)

    Johns, Jesse M.; Burkes, Douglas

    2017-07-01

    In this work, a multilayered perceptron (MLP) network is used to develop predictive isothermal time-temperature-transformation (TTT) models covering a range of U-Mo binary and ternary alloys. The selected ternary alloys for model development are U-Mo-Ru, U-Mo-Nb, U-Mo-Zr, U-Mo-Cr, and U-Mo-Re. These model's ability to predict 'novel' U-Mo alloys is shown quite well despite the discrepancies between literature sources for similar alloys which likely arise from different thermal-mechanical processing conditions. These models are developed with the primary purpose of informing experimental decisions. Additional experimental insight is necessary in order to reduce the number of experiments required to isolate ideal alloys. These models allow test planners to evaluate areas of experimental interest; once initial tests are conducted, the model can be updated and further improve follow-on testing decisions. The model also improves analysis capabilities by reducing the number of data points necessary from any particular test. For example, if one or two isotherms are measured during a test, the model can construct the rest of the TTT curve over a wide range of temperature and time. This modeling capability reduces the cost of experiments while also improving the value of the results from the tests. The reduced costs could result in improved material characterization and therefore improved fundamental understanding of TTT dynamics. As additional understanding of phenomena driving TTTs is acquired, this type of MLP model can be used to populate unknowns (such as material impurity and other thermal mechanical properties) from past literature sources.

  20. Experimental study of the rearrangements of valence protons and neutrons amongst single-particle orbits during double-β decay in 100Mo

    NASA Astrophysics Data System (ADS)

    Freeman, S. J.; Sharp, D. K.; McAllister, S. A.; Kay, B. P.; Deibel, C. M.; Faestermann, T.; Hertenberger, R.; Mitchell, A. J.; Schiffer, J. P.; Szwec, S. V.; Thomas, J. S.; Wirth, H.-F.

    2017-11-01

    The rearrangements of protons and neutrons amongst the valence single-particle orbitals during double-β decay of 100Mo have been determined by measuring cross sections in (d ,p ), (p ,d ), (3He,α ), and (3He,d ) reactions on Mo,10098 and Ru,102100 targets. The deduced nucleon occupancies reveal significant discrepancies when compared with theoretical calculations; the same calculations have previously been used to determine the nuclear matrix element associated with the decay probability of double-β decay of the 100Mo system.

  1. Computational modeling of high-entropy alloys: Structures, thermodynamics and elasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Michael C.; Gao, Pan; Hawk, Jeffrey A.

    This study provides a short review on computational modeling on the formation, thermodynamics, and elasticity of single-phase high-entropy alloys (HEAs). Hundreds of predicted single-phase HEAs were re-examined using various empirical thermo-physical parameters. Potential BCC HEAs (CrMoNbTaTiVW, CrMoNbReTaTiVW, and CrFeMoNbReRuTaVW) were suggested based on CALPHAD modeling. The calculated vibrational entropies of mixing are positive for FCC CoCrFeNi, negative for BCC MoNbTaW, and near-zero for HCP CoOsReRu. The total entropies of mixing were observed to trend in descending order: CoCrFeNi > CoOsReRu > MoNbTaW. Calculated lattice parameters agree extremely well with averaged values estimated from the rule of mixtures (ROM) if themore » same crystal structure is used for the elements and the alloy. The deviation in the calculated elastic properties from ROM for select alloys is small but is susceptible to the choice used for the structures of pure components.« less

  2. Computational modeling of high-entropy alloys: Structures, thermodynamics and elasticity

    DOE PAGES

    Gao, Michael C.; Gao, Pan; Hawk, Jeffrey A.; ...

    2017-10-12

    This study provides a short review on computational modeling on the formation, thermodynamics, and elasticity of single-phase high-entropy alloys (HEAs). Hundreds of predicted single-phase HEAs were re-examined using various empirical thermo-physical parameters. Potential BCC HEAs (CrMoNbTaTiVW, CrMoNbReTaTiVW, and CrFeMoNbReRuTaVW) were suggested based on CALPHAD modeling. The calculated vibrational entropies of mixing are positive for FCC CoCrFeNi, negative for BCC MoNbTaW, and near-zero for HCP CoOsReRu. The total entropies of mixing were observed to trend in descending order: CoCrFeNi > CoOsReRu > MoNbTaW. Calculated lattice parameters agree extremely well with averaged values estimated from the rule of mixtures (ROM) if themore » same crystal structure is used for the elements and the alloy. The deviation in the calculated elastic properties from ROM for select alloys is small but is susceptible to the choice used for the structures of pure components.« less

  3. Comparison of Two Preparation Methods on Catalytic Activity and Selectivity of Ru-Mo/HZSM5 for Methane Dehydroaromatization

    DOE PAGES

    Petkovic, Lucia M.; Ginosar, Daniel M.

    2014-01-01

    Catalytic performance of Mo/HZSM5 and Ru-Mo/HZSM5 catalysts prepared by vaporization-deposition of molybdenum trioxide and impregnation with ammonium heptamolybdate was analyzed in terms of catalyst activity and selectivity, nitrogen physisorption analyses, temperature-programmed oxidation of carbonaceous residues, and temperature-programmed reduction. Vaporization-deposition rendered the catalyst more selective to ethylene and coke than the catalyst prepared by impregnation. This result was assigned to lower interaction of molybdenum carbide with the zeolite acidic sites.

  4. Experimental Determination of Impurity and Interdiffusion Coefficients in Seven Ti and Zr Binary Systems Using Diffusion Multiples

    NASA Astrophysics Data System (ADS)

    Chen, Zhangqi; Liu, Zi-Kui; Zhao, Ji-Cheng

    2018-05-01

    Diffusion coefficients of seven binary systems (Ti-Mo, Ti-Nb, Ti-Ta, Ti-Zr, Zr-Mo, Zr-Nb, and Zr-Ta) at 1200 °C, 1000 °C, and 800 °C were experimentally determined using three Ti-Mo-Nb-Ta-Zr diffusion multiples. Electron probe microanalysis (EPMA) was performed to collect concentration profiles at the binary diffusion regions. Forward simulation analysis (FSA) was then applied to extract both impurity and interdiffusion coefficients in Ti-rich and Zr-rich part of the bcc phase. Excellent agreements between our results and most of the literature data validate the high-throughput approach combining FSA with diffusion multiples to obtain a large amount of systematic diffusion data, which will help establish the diffusion (mobility) databases for the design and development of biomedical and structural Ti alloys.

  5. Experimental Determination of Impurity and Interdiffusion Coefficients in Seven Ti and Zr Binary Systems Using Diffusion Multiples

    NASA Astrophysics Data System (ADS)

    Chen, Zhangqi; Liu, Zi-Kui; Zhao, Ji-Cheng

    2018-07-01

    Diffusion coefficients of seven binary systems (Ti-Mo, Ti-Nb, Ti-Ta, Ti-Zr, Zr-Mo, Zr-Nb, and Zr-Ta) at 1200 °C, 1000 °C, and 800 °C were experimentally determined using three Ti-Mo-Nb-Ta-Zr diffusion multiples. Electron probe microanalysis (EPMA) was performed to collect concentration profiles at the binary diffusion regions. Forward simulation analysis (FSA) was then applied to extract both impurity and interdiffusion coefficients in Ti-rich and Zr-rich part of the bcc phase. Excellent agreements between our results and most of the literature data validate the high-throughput approach combining FSA with diffusion multiples to obtain a large amount of systematic diffusion data, which will help establish the diffusion (mobility) databases for the design and development of biomedical and structural Ti alloys.

  6. Durable pd-based alloy and hydrogen generation membrane thereof

    DOEpatents

    Benn, Raymond C.; Opalka, Susanne M.; Vanderspurt, Thomas Henry

    2010-02-02

    A durable Pd-based alloy is used for a H.sub.2-selective membrane in a hydrogen generator, as in the fuel processor of a fuel cell plant. The Pd-based alloy includes Cu as a binary element, and further includes "X", where "X" comprises at least one metal from group "M" that is BCC and acts to stabilize the .beta. BCC phase for stability during operating temperatures. The metal from group "M" is selected from the group consisting of Fe, Cr, Nb, Ta, V, Mo, and W, with Nb and Ta being most preferred. "X" may further comprise at least one metal from a group "N" that is non-BCC, preferably FCC, that enhances other properties of the membrane, such as ductility. The metal from group "N" is selected from the group consisting of Ag, Au, Re, Ru, Rh, Y, Ce, Ni, Ir, Pt, Co, La and In. The at. % of Pd in the binary Pd--Cu alloy ranges from about 35 at. % to about 55 at. %, and the at. % of "X" in the higher order alloy, based on said binary alloy, is in the range of about 1 at. % to about 15 at. %. The metals are selected according to a novel process.

  7. Thermodynamic assessment of the rhodium-ruthenium-oxygen (Rh-Ru-O) system

    NASA Astrophysics Data System (ADS)

    Gossé, S.; Bordier, S.; Guéneau, C.; Brackx, E.; Domenger, R.; Rogez, J.

    2018-03-01

    Ruthenium (Ru) and rhodium (Rh) are abundant platinum-group metals formed during burn-up of nuclear fuels. Under normal operating conditions, Rh and Ru accumulate and predominantly form metallic precipitates with other fission products like Mo, Pd and Tc. In the framework of vitrification of high-level nuclear waste, these fission products are poorly soluble in molten glasses. They precipitate as metallic particles and oxide phases. Moreover, these Ru and Rh rich phases strongly depend on temperature and the oxygen fugacity of the glass melt. In case of severe accidental conditions with air ingress, oxidation of the Ru and Rh is possible. At low temperatures (T < 1422 K for rhodium sesquioxide and T < 1815 K for ruthenium dioxide), the formed oxides are relatively stable. On the other hand, at high temperatures (T > 1422 K for rhodium sesquioxide and T > 1815 K for ruthenium dioxide), they may decompose into (Rh)-FCC or (Ru)-HCP metallic phases and radiotoxic volatile gaseous species. A thermodynamic assessment of the Rh-Ru-O system will enable the prediction of: (1) the metallic and oxide phases that form during the vitrification of high-level nuclear wastes and (2) the release of volatile gaseous species during a severe accident. The Calphad method developed herein employs a thermodynamic approach in the investigation of the thermochemistry of rhodium and ruthenium at high temperatures. Current literature on the thermodynamic properties and phase diagram data enables preliminary thermodynamic assessments of the Rh-O and Ru-O systems. Additionally, select compositions in the ternary Rh-Ru-O system underwent experimental tests to complement data found in literature and to establish the phase equilibria in the ternary system.

  8. Pt/Mo 2C/C-cp as a highly active and stable catalyst for ethanol electrooxidation

    DOE PAGES

    Lin, Lili; Sheng, Wenchao; Yao, Siyu; ...

    2017-02-09

    Here, a Pt/Mo 2C/C-cp electrocatalyst with optimized Pt-Mo 2C chemical bonding is synthesized and evaluated for the ethanol oxidation reaction (EOR). The chemical bonding of Mo 2C to Pt particles renders exceptional EOR activity at low potentials, which is 15 and 2.5 times higher than Pt/C and commercial 40% PtRu/C, respectively, at 0.6 V (vs. RHE). The stability of the Pt/Mo 2C/C-cp electrocatalyst is comparable to the commercial 40% PtRu/C catalyst. CO stripping test demonstrates the existence of highly active sites for CO oxidation on the Pt/Mo 2C/C-cp catalyst. In-situ infrared spectroscopic studies of EOR reveal that the excellent anti-poisoningmore » ability of the Pt/Mo 2C/C-cp catalyst is related to the relatively weak binding of carbonyl intermediates over the Pt/Mo 2C/C-cp catalysts.« less

  9. Pt/Mo 2C/C-cp as a highly active and stable catalyst for ethanol electrooxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Lili; Sheng, Wenchao; Yao, Siyu

    Here, a Pt/Mo 2C/C-cp electrocatalyst with optimized Pt-Mo 2C chemical bonding is synthesized and evaluated for the ethanol oxidation reaction (EOR). The chemical bonding of Mo 2C to Pt particles renders exceptional EOR activity at low potentials, which is 15 and 2.5 times higher than Pt/C and commercial 40% PtRu/C, respectively, at 0.6 V (vs. RHE). The stability of the Pt/Mo 2C/C-cp electrocatalyst is comparable to the commercial 40% PtRu/C catalyst. CO stripping test demonstrates the existence of highly active sites for CO oxidation on the Pt/Mo 2C/C-cp catalyst. In-situ infrared spectroscopic studies of EOR reveal that the excellent anti-poisoningmore » ability of the Pt/Mo 2C/C-cp catalyst is related to the relatively weak binding of carbonyl intermediates over the Pt/Mo 2C/C-cp catalysts.« less

  10. Superconductivity in the Nb-Ru-Ge σ phase

    DOE PAGES

    Carnicom, Elizabeth M.; Xie, Weiwei; Sobczak, Zuzanna; ...

    2017-12-07

    Here, we show that the previously unreported ternary σ-phase material Nb 20.4Ru 5.7Ge 3.9 (Nb 0.68Ru 0.19Ge 0.13) is a superconductor with a critical temperature of 2.2 K. Temperature-dependent magnetic susceptibility, resistance, and specific heat measurements were used to characterize the superconducting transition. The Sommerfeld constant γ for Nb 20.4Ru 5.7Ge 3.9 is 91 mJ mol-f.u. -1K -2 (~3 mJ mol-atom -1K -2) and the specific heat anomaly at the superconducting transition, ΔC/γT c, is approximately 1.38. The zero-temperature upper critical field (µ 0Hc 2(0)) was estimated to be 2 T by resistance data. Field-dependent magnetization data analysis estimated µmore » 0Hc 1(0) to be 5.5 mT. Thus, the characterization shows Nb 20.4Ru 5.7Ge 3.9 to be a type II BCS superconductor. This material appears to be the first reported ternary phase in the Nb-Ru-Ge system, and the fact that there are no previously reported binary Nb-Ru, Nb-Ge, or Ru-Ge σ-phases shows that all three elements are necessary to stabilize the material. An analogous σ-phase in the Ta-Ru-Ge system did not display superconductivity above 1.7 K, which suggests that electron count cannot govern the superconductivity observed. Preliminary characterization of a possible superconducting σ-phase in the Nb-Ru-Ga system is also reported.« less

  11. Prospects of zero Schottky barrier height in a graphene-inserted MoS2-metal interface

    NASA Astrophysics Data System (ADS)

    Chanana, Anuja; Mahapatra, Santanu

    2016-01-01

    A low Schottky barrier height (SBH) at source/drain contact is essential for achieving high drive current in atomic layer MoS2-channel-based field effect transistors. Approaches such as choosing metals with appropriate work functions and chemical doping are employed previously to improve the carrier injection from the contact electrodes to the channel and to mitigate the SBH between the MoS2 and metal. Recent experiments demonstrate significant SBH reduction when graphene layer is inserted between metal slab (Ti and Ni) and MoS2. However, the physical or chemical origin of this phenomenon is not yet clearly understood. In this work, density functional theory simulations are performed, employing pseudopotentials with very high basis sets to get insights of the charge transfer between metal and monolayer MoS2 through the inserted graphene layer. Our atomistic simulations on 16 different interfaces involving five different metals (Ti, Ag, Ru, Au, and Pt) reveal that (i) such a decrease in SBH is not consistent among various metals, rather an increase in SBH is observed in case of Au and Pt; (ii) unlike MoS2-metal interface, the projected dispersion of MoS2 remains preserved in any MoS2-graphene-metal system with shift in the bands on the energy axis. (iii) A proper choice of metal (e.g., Ru) may exhibit ohmic nature in a graphene-inserted MoS2-metal contact. These understandings would provide a direction in developing high-performance transistors involving heteroatomic layers as contact electrodes.

  12. Vibrational and rotational sequences in 101Mo and 103,4Ru studied via multinucleon transfer reactions

    DOE PAGES

    Regan, P. H.; Wheldon, C.; Yamamoto, A. D.; ...

    2005-04-01

    The near-yrast states of 42 101Mo 59 and 44 103,4Ru 59,60 have been studied following their population via heavy-ion multinucleon transfer reactions between a 136 Xe beam and a thin, self-supporting 100Mo target. The ground state sequence in 104Ru can be understood as demonstrating a simple evolution from a quasi-vibrational structure at lower spins to statically deformed, quasi-rotational excitation involving the population of a pair of low-Ω h 11/2 neutron orbitals. The effect of the decoupled h 11/2 orbital on this vibration-to-rotational evolution is demonstrated by an extension of the "E-GOS" prescription to include odd-A nuclei. The experimental results aremore » also compared with self-consistent Total Routhian Surface calculations which also highlight the polarising role of the highly aligned neutron h 11/2 orbital in these nuclei.« less

  13. Development of multilayer perceptron networks for isothermal time temperature transformation prediction of U-Mo-X alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johns, Jesse M.; Burkes, Douglas

    In this work, a multilayered perceptron (MLP) network is used to develop predictive isothermal time-temperature-transformation (TTT) models covering a range of U-Mo binary and ternary alloys. The selected ternary alloys for model development are U-Mo-Ru, U-Mo-Nb, U-Mo-Zr, U-Mo-Cr, and U-Mo-Re. These model’s ability to predict 'novel' U-Mo alloys is shown quite well despite the discrepancies between literature sources for similar alloys which likely arise from different thermal-mechanical processing conditions. These models are developed with the primary purpose of informing experimental decisions. Additional experimental insight is necessary in order to reduce the number of experiments required to isolate ideal alloys. Thesemore » models allow test planners to evaluate areas of experimental interest; once initial tests are conducted, the model can be updated and further improve follow-on testing decisions. The model also improves analysis capabilities by reducing the number of data points necessary from any particular test. For example, if one or two isotherms are measured during a test, the model can construct the rest of the TTT curve over a wide range of temperature and time. This modeling capability reduces the cost of experiments while also improving the value of the results from the tests. The reduced costs could result in improved material characterization and therefore improved fundamental understanding of TTT dynamics. As additional understanding of phenomena driving TTTs is acquired, this type of MLP model can be used to populate unknowns (such as material impurity and other thermal mechanical properties) from past literature sources.« less

  14. Microstructural characteristics of σ phase and P phase in Ru-containing single crystal superalloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huo, Jiajie, E-mail: jiajiehuo0618@163.com

    Microstructural instability caused by topologically close-packed (TCP) phase precipitation restricts the useful compositional range of advanced Ni-base single crystal superalloys in industrial applications. Limited systematic investigations of TCP formers (Cr and Mo) additions on microstructural evolution of both the σ phase and the P phase in Ru-containing single crystal superalloys have been reported. In this study, the microstructural characteristics of σ phase and P phase were investigated in three Ru-containing superalloys with different levels of Cr and Mo additions at 950 °C and 1100 °C by using phase extraction, X-ray diffraction, scanning electron microscope and high resolution transmission electron microscopy.more » The experimental results indicated that the high level additions of Cr and Mo promoted the formation of σ phase and P phase, respectively. The amount of σ phase was much higher than that of P phase after long term exposure at 950 °C and 1100 °C. The sheet-like σ phase existed in the alloy with higher Cr addition after thermal exposure at 950 °C and 1100 °C for 1000 h, while the needle-like P phase precipitated in high Mo content alloy after thermal exposure at 1100 °C for 1000 h and the intergrowth of σ phase and P phase was observed after thermal exposure at 950 °C for 500 h. Both the σ phase and P phase were enriched in Re, W, Cr and Mo, but the σ phase contained more Re and Cr while the P phase contained more Mo and Ni, and Ru was found in both phases. The nucleation of σ phase was much easier than P phase due to the more ledge steps in the interfacial structure between σ phase and matrix, as well as the higher partitioning ratios of Re, Cr and Mo. This study is helpful to understand the microstructural evolution of σ phase and P phase, and to optimize the alloy design in Ru-containing superalloys. - Highlights: •Microstructures of σ phase and P phase were characterized in detail. •Cr and Mo influenced the precipitation of σ phase and P phase, respectively. •Partitioning ratios and interfacial relationship decided precipitation behaviors.« less

  15. Effect of the structural characteristics of binary Pt-Ru and ternary Pt-Ru-M fuel cell catalysts on the activity of ethanol electrooxidation in acid medium.

    PubMed

    Antolini, Ermete

    2013-06-01

    In view of their possible use as anode materials in acid direct ethanol fuel cells, the electrocatalytic activity of Pt-Ru and Pt-Ru-M catalysts for ethanol oxidation has been investigated. This minireview examines the effects of the structural characteristics of Pt-Ru, such as the degree of alloying and Ru oxidation state, on the electrocatalytic activity for ethanol oxidation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Nuclear Reaction Rates and the Production of Light P-Process Isotopes in Fast Expansions of Proton-Rich Matter

    NASA Astrophysics Data System (ADS)

    Jordan, G. C., IV; Meyer, B. S.

    2004-09-01

    We study nucleosynthesis in rapid expansions of proton-rich matter such as might occur in winds from newly-born neutron stars. For rapid enough expansion, the system fails to maintain an equilibrium between neutrons and protons and the abundant 4He nuclei. This leads to production of quite heavy nuclei early in the expansion. As the temperature falls, the system attempts to re-establish the equilibrium between free nucleons and 4He. This causes the abundance of free neutrons to drop and the heavy nuclei to disintegrate. If the disintegration flows quench before the nuclei reach the iron group, a distribution of p-process nuclei remains. We briefly discuss the possibility of this process as the mechanism of production of light p-process isotopes (specifically 92Mo, 94Mo, 96Ru, and 98Ru), and we provide a qualitative assessment of the impact of nuclear reaction rates of heavy, proton rich isotopes on the production of these astrophysically important nuclides.

  17. Prospects of zero Schottky barrier height in a graphene-inserted MoS{sub 2}-metal interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chanana, Anuja; Mahapatra, Santanu

    2016-01-07

    A low Schottky barrier height (SBH) at source/drain contact is essential for achieving high drive current in atomic layer MoS{sub 2}-channel-based field effect transistors. Approaches such as choosing metals with appropriate work functions and chemical doping are employed previously to improve the carrier injection from the contact electrodes to the channel and to mitigate the SBH between the MoS{sub 2} and metal. Recent experiments demonstrate significant SBH reduction when graphene layer is inserted between metal slab (Ti and Ni) and MoS{sub 2}. However, the physical or chemical origin of this phenomenon is not yet clearly understood. In this work, densitymore » functional theory simulations are performed, employing pseudopotentials with very high basis sets to get insights of the charge transfer between metal and monolayer MoS{sub 2} through the inserted graphene layer. Our atomistic simulations on 16 different interfaces involving five different metals (Ti, Ag, Ru, Au, and Pt) reveal that (i) such a decrease in SBH is not consistent among various metals, rather an increase in SBH is observed in case of Au and Pt; (ii) unlike MoS{sub 2}-metal interface, the projected dispersion of MoS{sub 2} remains preserved in any MoS{sub 2}-graphene-metal system with shift in the bands on the energy axis. (iii) A proper choice of metal (e.g., Ru) may exhibit ohmic nature in a graphene-inserted MoS{sub 2}-metal contact. These understandings would provide a direction in developing high-performance transistors involving heteroatomic layers as contact electrodes.« less

  18. Ruthenium isotopic evidence for an inner Solar System origin of the late veneer

    NASA Astrophysics Data System (ADS)

    Fischer-Gödde, Mario; Kleine, Thorsten

    2017-01-01

    The excess of highly siderophile elements in the Earth’s mantle is thought to reflect the addition of primitive meteoritic material after core formation ceased. This ‘late veneer’ either comprises material remaining in the terrestrial planet region after the main stages of the Earth’s accretion, or derives from more distant asteroidal or cometary sources. Distinguishing between these disparate origins is important because a late veneer consisting of carbonaceous chondrite-like asteroids or comets could be the principal source of the Earth’s volatiles and water. Until now, however, a ‘genetic’ link between the late veneer and such volatile-rich materials has not been established or ruled out. Such genetic links can be determined using ruthenium (Ru) isotopes, because the Ru in the Earth’s mantle predominantly derives from the late veneer, and because meteorites exhibit Ru isotope variations arising from the heterogeneous distribution of stellar-derived dust. Although Ru isotopic data and the correlation of Ru and molybdenum (Mo) isotope anomalies in meteorites were previously used to argue that the late veneer derives from the same type of inner Solar System material as do Earth’s main building blocks, the Ru isotopic composition of carbonaceous chondrites has not been determined sufficiently well to rule them out as a source of the late veneer. Here we show that all chondrites, including carbonaceous chondrites, have Ru isotopic compositions distinct from that of the Earth’s mantle. The Ru isotope anomalies increase from enstatite to ordinary to carbonaceous chondrites, demonstrating that material formed at greater heliocentric distance contains larger Ru isotope anomalies. Therefore, these data refute an outer Solar System origin for the late veneer and imply that the late veneer was not the primary source of volatiles and water on the Earth.

  19. Electronic and magnetic ordering induced by Mo- and Ru doping of the Mn site in CaMnO3 perovskite: EMR probing

    NASA Astrophysics Data System (ADS)

    Shames, A. I.; Auslender, M.; Rozenberg, E.; Gorodetsky, G.; Martin, C.; Maignan, A.

    2005-05-01

    X-band electron magnetic-resonance (EMR) measurements of polycrystalline CaMn1-yMoyO3 (0⩽y ⩽0.14) samples were performed at 120K⩽T⩽540K. The data obtained are compared with those of another electron-doped manganite system, CaMn1-xRuxO3 (0⩽x ⩽0.40). The observed anomalies of the EMR parameters correlate pretty well with the temperatures of antiferro-, ferromagneticlike, and orbital/charge-ordering transitions in these systems. However, a strong difference is observed between the resonant properties of Mo- and Ru doped series at both paramagnetic (PM) and magnetically ordered states. To describe such a difference, the energy-band diagrams, which comprise the deep impurity t2g-like states +eg-like conductive band for CaMn1-xRuxO3 and shallow impurity states+conductive band, both having eg-like symmetry, for CaMn1-yMoyO3, are proposed. Specific electrons' contribution to the EMR linewidth at PM temperatures is introduced for the considered systems.

  20. Optimized capping layers for EUV multilayers

    DOEpatents

    Bajt, Sasa [Livermore, CA; Folta, James A [Livermore, CA; Spiller, Eberhard A [Livermore, CA

    2004-08-24

    A new capping multilayer structure for EUV-reflective Mo/Si multilayers consists of two layers: A top layer that protects the multilayer structure from the environment and a bottom layer that acts as a diffusion barrier between the top layer and the structure beneath. One embodiment combines a first layer of Ru with a second layer of B.sub.4 C. Another embodiment combines a first layer of Ru with a second layer of Mo. These embodiments have the additional advantage that the reflectivity is also enhanced. Ru has the best oxidation resistance of all materials investigated so far. B.sub.4 C is an excellent barrier against silicide formation while the silicide layer formed at the Si boundary is well controlled.

  1. Synthesis and electrochemistry of heterobimetallic ruthenium/platinum and molybdenum/platinum complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orth, S.D.; Terry, M.R.; Abboud, K.A.

    1996-02-14

    As starting materials for heterobimetallic complexes, [RuCp(PPh{sub 3})CO(PPh{sub 2}H)]PF{sub 6} and [RuCp(PPh{sub 3})CO({eta}-dppm)]-PF{sub 6} were prepared from RuCp(PPh{sub 3})(CO)Cl. In the course of preparing [RuCp({eta}{sup 2}-dppm)({eta}-dppm)]Cl from RuCp(Ph{sub 3}P)({eta}-dppm)Cl, the monomer RuCpCl({eta}-dppm){sub 2} was isolated. The uncommon coordination mode of the two monodentatebis(phosphines) was confirmed by X-ray crystallography [a = 11.490(1) {angstrom}, b = 14.869(2) {angstrom}, c = 15.447(2) {angstrom}, {alpha} = 84.63(1){degrees}, {beta} = 70.55(1){degrees}, {gamma} = 72.92(1){degrees}, V = 2378.7(5) {angstrom}{sup 3}, d{sub calc} = 1.355 g cm{sup -3} (298 K), triclinic, P1, Z = 2]. The dppm-bridged bimetallic complexes RuCp(PPh{sub 3})Cl({mu}-dppm)PtCl{sub 2}, RuCpCl({mu}-dppm){sub 2}PtCl{sub 2}, and [RuCp(PPh{submore » 3})CO({mu}-dppm)PtCl{sub 2}]PF{sub 6} each exhibit electrochemistry consistent with varying degrees of metal-metal interaction. The cationic heterobimetallic complexes [Mo(CO){sub 3}({mu}-dppm){sub 2}Pt(H)]PF{sub 6} and [MoCp-(CO){sub 2}-({mu}-PPh{sub 2})({mu}-H)Pt(PPh{sub 3})(MeCN)]PF{sub 6} were prepared by chloride abstraction from the corresponding neutral bimetallic species and show electrochemical behavior similar to the analogous Ru/Pt complexes.« less

  2. Continuous composition-spread thin films of transition metal oxides by pulsed-laser deposition

    NASA Astrophysics Data System (ADS)

    Ohkubo, I.; Christen, H. M.; Khalifah, P.; Sathyamurthy, S.; Zhai, H. Y.; Rouleau, C. M.; Mandrus, D. G.; Lowndes, D. H.

    2004-02-01

    We have designed an improved pulsed-laser deposition-continuous composition-spread (PLD-CCS) system that overcomes the difficulties associated with earlier related techniques. Our new PLD-CCS system is based on a precisely controlled synchronization between the laser firing, target exchange, and substrate translation/rotation, and offers more flexibility and control than earlier PLD-based approaches. Most importantly, the deposition energetics and the film thickness are kept constant across the entire composition range, and the resulting samples are sufficiently large to allow characterization by conventional techniques. We fabricated binary alloy composition-spread films composed of SrRuO 3 and CaRuO 3. Alternating ablation from two different ceramic targets leads to in situ alloy formation, and the value of x in Sr xCa x-1 RuO 3 can be changed linearly from 0 to 1 (or over any arbitrarily smaller range) along one direction of the substrate.

  3. High-activity PtRuPd/C catalyst for direct dimethyl ether fuel cells.

    PubMed

    Li, Qing; Wen, Xiaodong; Wu, Gang; Chung, Hoon T; Gao, Rui; Zelenay, Piotr

    2015-06-22

    Dimethyl ether (DME) has been considered as a promising alternative fuel for direct-feed fuel cells but lack of an efficient DME oxidation electrocatalyst has remained the challenge for the commercialization of the direct DME fuel cell. The commonly studied binary PtRu catalyst shows much lower activity in DME than methanol oxidation. In this work, guided by density functional theory (DFT) calculation, a ternary carbon-supported PtRuPd catalyst was designed and synthesized for DME electrooxidation. DFT calculations indicated that Pd in the ternary PtRuPd catalyst is capable of significantly decreasing the activation energy of the CO and CH bond scission during the oxidation process. As evidenced by both electrochemical measurements in an aqueous electrolyte and polymer-electrolyte fuel cell testing, the ternary catalyst shows much higher activity (two-fold enhancement at 0.5 V in fuel cells) than the state-of-the-art binary Pt50 Ru50 /C catalyst (HiSPEC 12100). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Design and Stereoselective Preparation of a New Class of Chiral Olefin Metathesis Catalysts and Application to Enantioselective Synthesis of Quebrachamine: Catalyst Development Inspired by Natural Product Synthesis

    PubMed Central

    Sattely, Elizabeth S.; Meek, Simon J.; Malcolmson, Steven J.; Schrock, Richard R.; Hoveyda, Amir H.

    2010-01-01

    A total synthesis of the Aspidosperma alkaloid quebrachamine in racemic form is first described. A key catalytic ring-closing metathesis of an achiral triene is used to establish the all-carbon quaternary stereogenic center and the tetracyclic structure of the natural product; the catalytic transformation proceeds with reasonable efficiency through the use of existing achiral Ru or Mo catalysts. Ru- or Mo-based chiral olefin metathesis catalysts have proven to be inefficient and entirely nonselective in cases where the desired product is observed. In the present study, the synthesis route thus serves as a platform for the discovery of new olefin metathesis catalysts that allow for efficient completion of an enantioselective synthesis of quebrachamine. Accordingly, on the basis of mechanistic principles, stereogenic-at-Mo complexes bearing only monodentate ligands have been designed. The new catalysts provide significantly higher levels of activity than observed with the previously reported Ru- or Mo-based complexes. Enantiomerically enriched chiral alkylidenes are generated through diastereoselective reactions involving achiral Mo-based bispyrrolides and enantiomerically pure silyl-protected binaphthols. Such chiral catalysts initiate the key enantioselective ring-closing metathesis step in the total synthesis of quebrachamine efficiently (1 mol % loading, 22 °C, 1 h, >98% conversion, 84% yield) and with high selectivity (98:2 er, 96% ee). PMID:19113867

  5. PtRu catalysts supported on heteropolyacid and chitosan functionalized carbon nanotubes for methanol oxidation reaction of fuel cells.

    PubMed

    Cui, Zhiming; Li, Chang Ming; Jiang, San Ping

    2011-09-28

    A simple self-assembly approach has been developed to functionalize carbon nanotubes (CNTs) with chitosan (CS) and heteropolyacids (HPAs) of phosphomolybdic acid (H(3)PMo(12)O(40), HPMo) and phosphotungstic acid (H(3)PW(12)O(40), HPW). The non-covalent functionalization method, which introduces homogenous surface functional groups with no detrimental effect on graphene structures of CNTs, can be carried out at room temperature without the use of corrosive acids. The PtRu nanoparticles supported on HPAs-CS-CNTs have a uniform distribution and much smaller size as compared to those of the PtRu nanoparticles supported on conventional acid treated CNTs (PtRu/AO-CNTs). The onset and peak potentials for CO(ad) oxidation on PtRu/HPAs-CS-CNTs catalysts are more negative than those on PtRu/AO-CNTs, indicating that HPAs facilitate the electro-oxidation of CO. The PtRu/HPMo-CS-CNTs catalyst has a higher electrocatalytic activity for methanol oxidation and higher tolerance toward CO poisoning than PtRu/HPW-CS-CNTs. The better electrocatalytic enhancement of HPMo on the PtRu/HPAs-CS-CNTs catalyst is most likely related to the fact that molybdenum-containing HPAs such as HPMo have more labile terminal oxygen to provide additional active oxygen sites while accelerating the CO and methanol oxidation in a similar way to that of Ru in the PtRu binary alloy system.

  6. DFT investigation of electronic structures and magnetic properties of halides family MeHal3 (Me=Ti, Mo,Zr,Nb, Ru, Hal=Cl,Br,I) one dimensional structures

    NASA Astrophysics Data System (ADS)

    Kuzubov, A. A.; Kovaleva, E. A.; Popova, M. I.; Kholtobina, A. S.; Mikhaleva, N. S.; Visotin, M. A.; Fedorov, A. S.

    2017-10-01

    Using DFT GGA calculations, electronic structure and magnetic properties of wide family of transition metal trihalides (TMHal3) (Zr, Ti and Nb iodides, Mo, Ru, Ti and Zr bromides and Ti or Zr chlorides) are investigated. These structures consist of transition metal atoms chains surrounded by halides atoms. Chains are connected to each other by weak interactions. All TMHal3 compounds were found to be conductive along chain axis except of MoBr3 which is indirect gap semiconductor. It was shown that NbI3 and MoBr3 have large magnetic moments on metal atoms (1.17 and 1.81 μB, respectively) but other TMHal3 materials have small or zero magnetic moments. For all structures ferromagnetic and anti-ferromagnetic phases have almost the same energies. The causes of these properties are debated.

  7. Solar photocatalytic degradation of mono azo methyl orange and diazo reactive green 19 in single and binary dye solutions: adsorbability vs photodegradation rate.

    PubMed

    Ong, Soon-An; Min, Ohm-Mar; Ho, Li-Ngee; Wong, Yee-Shian

    2013-05-01

    The objective of this study was to examine the effects of adsorbability and number of sulfonate group on solar photocatalytic degradation of mono azo methyl orange (MO) and diazo Reactive Green 19 (RG19) in single and binary dye solutions. The adsorption capacity of MO and RG19 onto the TiO₂ was 16.9 and 26.8 mg/g, respectively, in single dye solution, and reduced to 5.0 and 23.1 mg/g, respectively, in the binary dye solution. The data obtained for photocatalytic degradation of MO and RG19 in single and binary dye solution were well fitted with the Langmuir-Hinshelwood kinetic model. The pseudo-first-order rate constants of diazo RG19 were significant higher than the mono azo MO either in single or binary dye solutions. The higher number of sulfonate group in RG19 contributed to better adsorption capacity onto the surface of TiO₂ than MO indicating greater photocatalytic degradation rate.

  8. Metal phosphide catalysts and methods for making the same and uses thereof

    DOEpatents

    Habas, Susan Ellen; Wang, Jun; Ruddy, Daniel A.; Baddour, Frederick Raymond Gabriel; Schaidle, Joshua

    2017-05-02

    The present disclosure relates to a method that includes heating a mixture that includes a metal phenylphosphine-containing precursor that includes at least one of Mo(PPh.sub.3).sub.2(CO).sub.4, Pd(PPh.sub.3).sub.4, Ru(PPh.sub.3).sub.3Cl.sub.2, Ru(PPh.sub.3).sub.2(CO).sub.2Cl.sub.2, Co(PPh.sub.3)(CO).sub.2(NO), and/or Rh(PPh.sub.3).sub.2(CO)Cl, a surfactant, and a solvent. The heating is to a target temperature to form a heated mixture containing a metal phosphide nanoparticle that includes at least one of MoP, Ru.sub.2P, Co.sub.2P, Rh.sub.2P, and/or Pd.sub.3P, and the metal phosphide nanoparticle is not hollow.

  9. Effects of Solid Solution Strengthening Elements Mo, Re, Ru, and W on Transition Temperatures in Nickel-Based Superalloys with High γ'-Volume Fraction: Comparison of Experiment and CALPHAD Calculations

    NASA Astrophysics Data System (ADS)

    Ritter, Nils C.; Sowa, Roman; Schauer, Jan C.; Gruber, Daniel; Goehler, Thomas; Rettig, Ralf; Povoden-Karadeniz, Erwin; Koerner, Carolin; Singer, Robert F.

    2018-06-01

    We prepared 41 different superalloy compositions by an arc melting, casting, and heat treatment process. Alloy solid solution strengthening elements were added in graded amounts, and we measured the solidus, liquidus, and γ'-solvus temperatures of the samples by DSC. The γ'-phase fraction increased as the W, Mo, and Re contents were increased, and W showed the most pronounced effect. Ru decreased the γ'-phase fraction. Melting temperatures (i.e., solidus and liquidus) were increased by addition of Re, W, and Ru (the effect increased in that order). Addition of Mo decreased the melting temperature. W was effective as a strengthening element because it acted as a solid solution strengthener and increased the fraction of fine γ'-precipitates, thus improving precipitation strengthening. Experimentally determined values were compared with calculated values based on the CALPHAD software tools Thermo-Calc (databases: TTNI8 and TCNI6) and MatCalc (database ME-NI). The ME-NI database, which was specially adapted to the present investigation, showed good agreement. TTNI8 also showed good results. The TCNI6 database is suitable for computational design of complex nickel-based superalloys. However, a large deviation remained between the experiment results and calculations based on this database. It also erroneously predicted γ'-phase separations and failed to describe the Ru-effect on transition temperatures.

  10. Electronic and magnetic properties of SnS2 monolayer doped with 4d transition metals

    NASA Astrophysics Data System (ADS)

    Xiao, Wen-Zhi; Xiao, Gang; Rong, Qing-Yan; Chen, Qiao; Wang, Ling-Ling

    2017-09-01

    We investigate the electronic structures and magnetic properties of SnS2 monolayers substitutionally doped with 4-d transition-metal through systematic first principles calculations. The doped complexes exhibit interesting electronic and magnetic behaviors, depending on the interplay between crystal field splitting, Hund's rule, and 4d levels. The system doped with Y is nonmagnetic metal. Both the Zr- and Pd-doped systems remain nonmagnetic semiconductors. Doping results in half-metallic states for Nb-, Ru-, Rh-, Ag, and Cd doped cases, and magnetic semiconductors for systems with Mo and Tc dopants. In particular, the Nb- and Mo-doped systems display long-ranged ferromagnetic ordering with Curie temperature above room temperature, which are primarily attributable to the double-exchange mechanism, and the p-d/p-p hybridizations, respectively. Moreover, The Mo-doped system has excellent energetic stability and flexible mechanical stability, and also possesses remarkable dynamic and thermal (500 K) stability. Our studies demonstrate that Nb- and Mo-doped SnS2 monolayers are promising candidates for preparing 2D diluted magnetic semiconductors, and hence will be a helpful clue for experimentalists.

  11. Seedlayer and underlayer effects on the crystallographic orientation and magnetic recording performance of glass media

    NASA Astrophysics Data System (ADS)

    Zheng, Min; Choe, Geon; Johnson, Kenneth E.

    2002-05-01

    Seedlayer and underlayer effects on crystallographic orientation and recording performance were studied for CoCrPtB media sputtered on glass substrates. For this study, the seedlayers are XAl (X=Ni, Co, Ti, and Ru) and the underlayers are CrY (Y=V, Mo, W, and Ti). It was found that not only different seedlayers, but also different combinations of seedlayer and underlayer, led to different magnetic performance. NiAl and CoAl seedlayers orient the Co c axis to (10.0) and TiAl and RuAl seedlayers produce (11.0) Co orientation. For the NiAl and CoAl seedlayer, CrV and CrW underlayers develop less out-of-plane c-axis orientation and higher coercivity and coercive squareness while CrTi and CrMo underlayers work better for TiAl and RuAl seedlayers, respectively. Media with RuAl seedlayers have better parametric performance than media with NiAl and CoAl seedlayers. The detailed relationship between seedlayer and underlayer types and crystal orientation and recording performance is discussed.

  12. Alkali/TX[sub 2] catalysts for CO/H[sub 2] conversion to C[sub 1]-C[sub 4] alcohols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klier, K.; Herman, R.G.; Richards-Babb, M.

    1993-03-01

    The objective of this research is to determine the patterns of variations of catalyst activity and selectivity for the synthesis of alcohols from H[sub 2]/CO synthesis gas. Since the source of carbon can be coal-derived synthesis gas, this research makes a contribution to the technology for high quality clean transportation fuels and for basic chemicals from coal. Catalysts prepared were principally based on MoS[sub 2], RuS[sub 2], TaS[sub 2], and NbS[sub 2]. Catalytic testing of these materials was carried out both before and after surface doping with Cs. In alcohol synthesis activation of hydrogen by the catalyst surface is essential.more » Knowledge of transition metal disulfide surface properties is important before the mechanism of hydrogen dissociation can be addressed. The electronic structures of MoS[sub 2], RuS[sub 2], and NbS[sub 2] were studied both theoretically and experimentally. Experimental valence bands were obtained by high resolution electron spectroscopy for chemical analysis (HR-ESCA, also referred to as x-ray photoelectron spectroscopy) and theoretical valence bands were calculated using solid state extended Hueckel theory. Comparison of two-dimensional (2-D) MoS[sub 2] theoretical valence bands with the experimental HR-ESCA valence bands of polycrystalline MoS[sub 2] led to parametrization of the S 3s, S 3p, and Mo 4d atomic ionization potentials and Slater-type coefficients and exponents. The S 3s and S 3p parameters obtained for MoS[sub 2] were used to obtain the NbS[sub 2] and RuS[sub 2] theoretical valence bands.« less

  13. Alkali/TX{sub 2} catalysts for CO/H{sub 2} conversion to C{sub 1}-C{sub 4} alcohols. Final technical progress report, September 1, 1988--August 31, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klier, K.; Herman, R.G.; Richards-Babb, M.

    1993-03-01

    The objective of this research is to determine the patterns of variations of catalyst activity and selectivity for the synthesis of alcohols from H{sub 2}/CO synthesis gas. Since the source of carbon can be coal-derived synthesis gas, this research makes a contribution to the technology for high quality clean transportation fuels and for basic chemicals from coal. Catalysts prepared were principally based on MoS{sub 2}, RuS{sub 2}, TaS{sub 2}, and NbS{sub 2}. Catalytic testing of these materials was carried out both before and after surface doping with Cs. In alcohol synthesis activation of hydrogen by the catalyst surface is essential.more » Knowledge of transition metal disulfide surface properties is important before the mechanism of hydrogen dissociation can be addressed. The electronic structures of MoS{sub 2}, RuS{sub 2}, and NbS{sub 2} were studied both theoretically and experimentally. Experimental valence bands were obtained by high resolution electron spectroscopy for chemical analysis (HR-ESCA, also referred to as x-ray photoelectron spectroscopy) and theoretical valence bands were calculated using solid state extended Hueckel theory. Comparison of two-dimensional (2-D) MoS{sub 2} theoretical valence bands with the experimental HR-ESCA valence bands of polycrystalline MoS{sub 2} led to parametrization of the S 3s, S 3p, and Mo 4d atomic ionization potentials and Slater-type coefficients and exponents. The S 3s and S 3p parameters obtained for MoS{sub 2} were used to obtain the NbS{sub 2} and RuS{sub 2} theoretical valence bands.« less

  14. Ternary phase equilibria in transition metal-boron-carbon-silicon systems. Part I. Related binary systems, Volume III. Systems Mo-B and W-B. Technical documentary report, 1 November 1964-1 June 1965

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudy, E.; Windisch.

    1965-07-01

    On the basis of X-ray, melting point, metallographic, and differential thermoanalytical studies on molybdenum-boron and tungsten-boron alloys, constitution diagrams for both binary systems are presented. In the high temperature regions, the newly established phase diagrams differ significantly from previously reported systems. The results are discussed and compared with available literature data.

  15. Magnetic and electronic properties of La3 MO7 and possible polaron formation in hole-doped La3 MO7 (M  =  Ru and Os)

    NASA Astrophysics Data System (ADS)

    Gao, Bin; Weng, Yakui; Zhang, Jun-Jie; Zhang, Huimin; Zhang, Yang; Dong, Shuai

    2017-03-01

    Oxides with 4d/5d transition metal ions are physically interesting for their particular crystalline structures as well as the spin-orbit coupled electronic structures. Recent experiments revealed a series of 4d/5d transition metal oxides R 3 MO7 (R: rare earth; M: 4d/5d transition metal) with unique quasi-one-dimensional M chains. Here first-principles calculations have been performed to study the electronic structures of La3OsO7 and La3RuO7. Our study confirm both of them to be Mott insulating antiferromagnets with identical magnetic order. The reduced magnetic moments, which are much smaller than the expected value for ideal high-spin state (3 t 2g orbitals occupied), are attributed to the strong p  -  d hybridization with oxygen ions, instead of the spin-orbit coupling. The Ca-doping to La3OsO7 and La3RuO7 can not only modulate the nominal carrier density but also affect the orbital order as well as the local distortions. The Coulombic attraction and particular orbital order would prefer to form polarons, which might explain the puzzling insulating behavior of doped 5d transition metal oxides. In addition, our calculations predict that the Ca-doping can trigger ferromagnetism in La3RuO7 but not in La3OsO7.

  16. High-precision Ru isotopic measurements by multi-collector ICP-MS.

    PubMed

    Becker, Harry; Dalpe, Claude; Walker, Richard J

    2002-06-01

    Ruthenium isotopic data for a pure Aldrich ruthenium nitrate solution obtained using a Nu Plasma multi collector inductively coupled plasma-mass spectrometer (MC-ICP-MS) shows excellent agreement (better than 1 epsilon unit = 1 part in 10(4)) with data obtained by other techniques for the mass range between 96 and 101 amu. External precisions are at the 0.5-1.7 epsilon level (2sigma). Higher sensitivity for MC ICP-MS compared to negative thermal ionization mass spectrometry (N-TIMS) is offset by the uncertainties introduced by relatively large mass discrimination and instabilities in the plasma source-ion extraction region that affect the long-term reproducibility. Large mass bias correction in ICP mass spectrometry demands particular attention to be paid to the choice of normalizing isotopes. Because of its position in the mass spectrum and the large mass bias correction, obtaining precise and accurate abundance data for 104Ru by MC-ICP-MS remains difficult. Internal and external mass bias correction schemes in this mass range may show similar shortcomings if the isotope of interest does not lie within the mass range covered by the masses used for normalization. Analyses of meteorite samples show that if isobaric interferences from Mo are sufficiently large (Ru/Mo < 10(4)), uncertainties on the Mo interference correction propagate through the mass bias correction and yield inaccurate results for Ru isotopic compositions. Second-order linear corrections may be used to correct for these inaccuracies, but such results are generally less precise than N-TIMS data.

  17. [Study on high temperature oxidation of Ni-Cr ceramic alloys. Effects of Cr and Mo].

    PubMed

    Mizutani, M

    1990-03-01

    The effects of Cr and Mo addition to Ni-Cr alloys on high temperature oxidation were investigated. The alloys were prepared with the composition of Cr ranging from 5 to 40 wt%. Also 2, 4 and 9 wt% of Mo was added to both Ni-5% Cr and Ni-20% Cr binary alloys. The alloys were heated at 800 degrees C, 900 degrees C and 1000 degrees C for 15 minutes in air, and the weight change after heat treatment was measured by electric automatic balance. The weight change during heating was measured by thermogravimetric measurement (TG). The products after heat treatment were characterized by X-ray diffraction and scanning electron microscopy (SEM). The results are summarized as follows: The Ni-Cr binary alloys were classified into three types of Cr ranging from 5 to 20 wt%, Cr 25% and Cr from 30 wt% to 40 wt% according to the weight gains with oxidation. In the case of the more than 25 wt% Cr content of the Ni-Cr binary alloys, the weight gain was extremely low and the heating temperature effects on the weight change were also small. X-ray diffraction study showed that NiO, NiCr2O4 and Cr2O3 formed on the surface of the Ni-Cr binary alloys whose composition of Cr ranged from 5 to 25 wt%, whereas NiO and NiCr2O4 rarely formed on the Ni-Cr binary alloys whose composition of Cr ranged from 30 to 40 wt%. This suggests that the formation of Cr2O3 prevents the formation of NiO on the alloy with a high Cr content. The weight gain of the Ni-Cr-Mo ternary alloys was smaller than that of the Ni-Cr binary alloys without Mo, and the temperature effects on the weight gain of the Ni-Cr-Mo ternary alloys were different for each Cr content. However, the effect of the amounts of Mo was small. NiO, NiCr2O4, Cr2O3 and MoO2 were identified by X-ray diffraction on the surface of the Ni-Cr-Mo ternary alloys. According to the SEM observation, it seems that NiO was formed at the outermost layer, both NiCr2O4 and Cr2O3 at the inside layer, and MoO2 at the innermost layer. The formation of both NiO and Cr2O3 on the Ni-Cr-Mo ternary alloys was restrained compared with that of the Ni-Cr binary alloys. However, the adhesion of oxides to the Ni-Cr-Mo ternary alloys was lower than that of the Ni-Cr binary alloys.

  18. Composition and Temperature Dependence of Shear Viscosity of Hydrocarbon Mixtures

    DTIC Science & Technology

    1980-07-01

    HNN- XTHDCPD Binary System IX. VTF Eq. Parameters for Shear Viscosities Using Constant B Parameter X. Results of Fits to Master Viscosity Eqs. (43...T(K) for 5 C10 Hydrocarbons I Fig. 2a. log n versus 103/T(K) for HNNi I Fig. 2b. log n versus 103/T(K) for XTHDCPD Fig. 3. Isothem of log n versus X...CD for CO-MO Binary System Fig. 4. Isotherm of log n versus XNBC for NBC-DMO Binary System ( ~Fig. 5. Isotherm of log n versus XfINN for HNN- XTHDCPD

  19. Neutron Scattering Studies on Correlated Transition-Metal Oxides

    NASA Astrophysics Data System (ADS)

    Zhu, Mengze

    We have explored the collective phenomena of correlated electrons in two different transition-metal oxides, Ruddlesden-Popper type ruthenates (Sr,Ca) n+1RunO3n+1 and inverse-trirutile chromates Cr2MO6 (M = Te, Mo and W), using neutron scattering in combination with various material characterization methods. (Sr,Ca)n+1RunO 3n+1 are 4d transition-metal oxides exhibiting competing magnetic and electronic tendencies. The delicate balance among the competing states can be readily tuned by perturbations, such as chemical doping and magnetic field, which gives rise to emergent phenomena. We have investigated the effects of 3d transition-metal doping on the magnetic and electronic properties of layered ruthenates. For instance, the single-layer (n = 1) Sr2RuO4 is an unconventional superconductor possessing an incommensurate spin density wave instability with a wave vector qic= (0.3 0.3 L) driven by Fermi surface nesting. Upon Fe substitution, we have unveiled an unexpected commensurate spin density wave order with a propagation vector qc= (0.25 0.25 0) in Sr2Ru1-xFexO 4 (x = 0.03 and 0.05), despite the magnetic fluctuations persisting at qic. The latter feature is corroborated by the first principles calculations, which show that Fe doping barely changes the nesting vector of the Fermi surface. These results suggest that in addition to the known incommensurate magnetic instability, Sr2RuO4 is also in proximity to a commensurate magnetic tendency that can be stabilized via Fe doping. We have also studied the effects of a magnetic field. For example, the bilayer (n = 2) Ca3(Ru1-xTi x)2O7 (x = 0.03) is a G-type antiferromagnetic Mott insulator. We have revealed that a modest magnetic field can lead to colossal magnetoresistance arising from an anomalous collapse of the Mott insulating state. Such an insulator-to-metal transition is accompanied by magnetic and structural transitions. These findings call for deeper theoretical studies to reexamine the magnetic field tuning of Mott systems with magnetic and electronic instabilities, as a magnetic field usually stabilizes the insulating ground state in Mott-Hubbard systems. Cr2MO6 (M = Te, W and Mo) are spin dimer systems with the magnetic ions Cr3+ structurally dimerized favoring a singlet ground state. However, all three compounds investigated exhibit long-range antiferromagnetic orders at low temperature owing to the inter-dimer interactions. We have shown that the inter-dimer exchange coupling can be tuned from antiferromagnetic in Cr2TeO6 to ferromagnetic in Cr2WO6 and Cr2MoO6, by altering the degree of d-p orbital hybridization between W(Mo) and O atoms. The tunability of the inter-dimer interactions without introducing additional complexities such as structural distortions and carrier doping offers a rare opportunity to drive the system toward the quantum critical point (QCP) separating the dimer-based quantum disordered state and the classical long-range antiferromagnetic order. Moreover, we have unraveled Higgs amplitude modes in the magnetic excitation spectra of Cr2TeO6 and Cr2WO6, which are generally believed to survive only in systems close to the QCP where the ordered moment is suppressed significantly from its fully saturated value by quantum fluctuations. However, these two compounds are away from the QCP with the ordered moment reduced only by 24%. This study suggests that Higgs amplitude modes are not the privilege of ordered systems in the vicinity of the QCP, but may be common excitation modes in ordered spin dimer systems.

  20. Surface phenomena related to mirror degradation in extreme ultraviolet (EUV) lithography

    NASA Astrophysics Data System (ADS)

    Madey, Theodore E.; Faradzhev, Nadir S.; Yakshinskiy, Boris V.; Edwards, N. V.

    2006-12-01

    One of the most promising methods for next generation device manufacturing is extreme ultraviolet (EUV) lithography, which uses 13.5 nm wavelength radiation generated from freestanding plasma-based sources. The short wavelength of the incident illumination allows for a considerable decrease in printed feature size, but also creates a range of technological challenges not present for traditional optical lithography. Contamination and oxidation form on multilayer reflecting optics surfaces that not only reduce system throughput because of the associated reduction in EUV reflectivity, but also introduce wavefront aberrations that compromise the ability to print uniform features. Capping layers of ruthenium, films ∼2 nm thick, are found to extend the lifetime of Mo/Si multilayer mirrors used in EUV lithography applications. However, reflectivities of even the Ru-coated mirrors degrade in time during exposure to EUV radiation. Ruthenium surfaces are chemically reactive and are very effective as heterogeneous catalysts. In the present paper we summarize the thermal and radiation-induced surface chemistry of bare Ru exposed to gases; the emphasis is on H2O vapor, a dominant background gas in vacuum processing chambers. Our goal is to provide insights into the fundamental physical processes that affect the reflectivity of Ru-coated Mo/Si multilayer mirrors exposed to EUV radiation. Our ultimate goal is to identify and recommend practices or antidotes that may extend mirror lifetimes.

  1. The excretion of biotrace elements using the multitracer technique in tumour-bearing mice.

    PubMed

    Wang, X; Tian, J; Yin, X M; Zhang, X; Wang, Q Z

    2000-12-01

    A radioactive multitracer solution obtained from the nuclear reaction of selenium with 25 MeV/nucleon 40Ar ions was used for investigation of trace element excretion into the faeces and urine of cancerous mice. The excretion rates of 22 elements (Na, K, Rb, Mg, Ca, Sr, Ga, As, Sc, V, Cr, Mn, Co, Fe, Y, Zr, Mo, Nb, Tc, Ru, Ag and In) were simultaneously measured under strictly identical experimental conditions, in order to clarify the excretion behavior of these elements in cancerous mice. The faecal and urinary excretion rates of Mg, Sr, Ga, As, Sc, V, Cr, Mn, Co, Fe, Y, Zr, Nb, Ru and Mo in cancerous mice, showed the in highest value at 0-8 hours. The accumulative excretion of Ca, Mo, Y and Zr was decreased and Na, Fe, Mn and Co increased in tumour-bearing mice, when compared to normal mice.

  2. Alloy Design Data Generated for B2-Ordered Compounds

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D.; Bozzolo, Guillermo; Abel, Phillip B.

    2003-01-01

    Developing alloys based on ordered compounds is significantly more complicated than developing designs based on disordered materials. In ordered compounds, the major constituent elements reside on particular sublattices. Therefore, the addition of a ternary element to a binary-ordered compound is complicated by the manner in which the ternary addition is made (at the expense of which binary component). When ternary additions are substituted for the wrong constituent, the physical and mechanical properties usually degrade. In some cases the resulting degradation in properties can be quite severe. For example, adding alloying additions to NiAl in the wrong combination (i.e., alloying additions that prefer the Al sublattice but are added at the expense of Ni) will severely embrittle the alloy to the point that it can literally fall apart during processing on cooling from the molten state. Consequently, alloying additions that strongly prefer one sublattice over another should always be added at the expense of that component during alloy development. Elements that have a very weak preference for a sublattice can usually be safely added at the expense of either element and will accommodate any deviation from stoichiometry by filling in for the deficient component. Unfortunately, this type of information is not known beforehand for most ordered systems. Therefore, a computational survey study, using a recently developed quantum approximate method, was undertaken at the NASA Glenn Research Center to determine the preferred site occupancy of ternary alloying additions to 12 different B2-ordered compounds including NiAl, FeAl, CoAl, CoFe, CoHf, CoTi, FeTi, RuAl, RuSi, RuHf, RuTi, and RuZr. Some of these compounds are potential high temperature structural alloys; others are used in thin-film magnetic and other electronic applications. The results are summarized. The italicized elements represent the previous sum total alloying information known and verify the computational method used to establish the table. Details of the computational procedures used to determine the preferred site occupancy can be found in reference 2. As further substantiation of the validity of the technique, and its extension to even more complicated systems, it was applied to two simultaneous alloying additions in an ordered alloy.

  3. Catalytic upgrading of duckweed biocrude in subcritical water.

    PubMed

    Zhang, Caicai; Duan, Peigao; Xu, Yuping; Wang, Bing; Wang, Feng; Zhang, Lei

    2014-08-01

    Herein, a duckweed biocrude produced from the hydrothermal liquefaction of Lemna minor was treated in subcritical water with added H₂. Effects of several different commercially available materials such as Ru/C, Pd/C, Pt/C, Pt/γ-Al₂O₃, Pt/C-sulfide, Rh/γ-Al₂O₃, activated carbon, MoS₂, Mo₂C, Co-Mo/γ-Al₂O₃, and zeolite on the yields of product fractions and the deoxygenation, denitrogenation, and desulfurization of biocrude at 350°C were examined, respectively. All the materials showed catalytic activity for deoxygenation and desulfurization of the biocrude and only Ru/C showed activity for denitrogenation. Of those catalysts examined, Pt/C showed the best performance for deoxygenation. Among all the upgraded oils, the oil produced with Ru/C shows the lowest sulfur, the highest hydrocarbon content (25.6%), the highest energy recovery (85.5%), and the highest higher heating value (42.6 MJ/kg). The gaseous products were mainly unreacted H₂, CH₄, CO₂, and C₂H6. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. On the Highest Oxidation States of Metal Elements in MO4 Molecules (M = Fe, Ru, Os, Hs, Sm, and Pu).

    PubMed

    Huang, Wei; Xu, Wen-Hua; Schwarz, W H E; Li, Jun

    2016-05-02

    Metal tetraoxygen molecules (MO4, M = Fe, Ru, Os, Hs, Sm, Pu) of all metal atoms M with eight valence electrons are theoretically studied using density functional and correlated wave function approaches. The heavier d-block elements Ru, Os, Hs are confirmed to form stable tetraoxides of Td symmetry in (1)A1 electronic states with empty metal d(0) valence shell and closed-shell O(2-) ligands, while the 3d-, 4f-, and 5f-elements Fe, Sm, and Pu prefer partial occupation of their valence shells and peroxide or superoxide ligands at lower symmetry structures with various spin couplings. The different geometric and electronic structures and chemical bonding types of the six iso-stoichiometric species are explained in terms of atomic orbital energies and orbital radii. The variations found here contribute to our general understanding of the periodic trends of oxidation states across the periodic table.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snowden-Swan, Lesley J.; Spies, Kurt A.; Lee, Guo-Shuh J.

    Bio-oil from fast pyrolysis of biomass requires multi-stage catalytic hydroprocessing to produce hydrocarbon drop-in fuels. The current proposed process design involves fixed beds of ruthenium-based catalyst and conventional petroleum hydrotreating catalyst. Similar to petroleum processing, the catalyst is spent as a result of coking and other deactivation mechanisms, and must be changed out periodically. Biofuel life cycle greenhouse gas (GHG) assessments typically ignore the impact of catalyst consumed during fuel conversion as a result of limited lifetime, representing a data gap in the analyses. To help fill this data gap, life cycle GHGs were estimated for two representative examples ofmore » fast pyrolysis bio-oil hydrotreating catalyst, NiMo/Al2O3 and Ru/C, and integrated into the conversion-stage GHG analysis. Life cycle GHGs for the NiMo/Al2O3 and Ru/C catalysts are estimated at 5.5 and 81 kg CO2-e/kg catalyst, respectively. Contribution of catalyst consumption to total conversion-stage GHGs is 0.5% for NiMo/Al2O3 and 5% for Ru/C. This analysis does not consider secondary sourcing of metals for catalyst manufacture and therefore these are likely to be conservative estimates compared to applications where a spent catalyst recycler can be used.« less

  6. Alloy softening in binary molybdenum alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1972-01-01

    An investigation was conducted to determine the effects of alloy additions of Hf, Ta, W, Re, Os, Ir, and Pt on the hardness of Mo. Special emphasis was placed on alloy softening in these binary Mo alloys. Results showed that alloy softening was produced by those elements having an excess of s+d electrons compared to Mo, while those elements having an equal number or fewer s+d electrons than Mo failed to produce alloy softening. Alloy softening and hardening can be correlated with the difference in number of s+d electrons of the solute element and Mo.

  7. Effect of silicon on trace element partitioning in iron-bearing metallic melts

    NASA Astrophysics Data System (ADS)

    Chabot, Nancy L.; Safko, Trevor M.; McDonough, William F.

    2010-08-01

    Despite the fact that Si is considered a potentially important metalloid in planetary systems, little is known about the effect of Si in metallic melts on trace element partitioning behavior. Previous studies have established the effects of S, C, and P, nonmetals, through solid metal/liquid metal experiments in the corresponding Fe binary systems, but the Fe-Si system is not appropriate for similar experiments because of the high solubility of Si in solid metal. In this work, we present the results from 0.1MPa experiments with two coexisting immiscible metallic liquids in the Fe-S-Si system. By leveraging the extensive available knowledge about the effect of S on trace element partitioning behavior, we explore the effect of Si. Results for 22 trace elements are presented. Strong Si avoidance behavior is demonstrated by As, Au, Ga, Ge, Sb, Sn, and Zn. Iridium, Os, Pt, Re, Ru, and W exhibit weak Si avoidance tendencies. Silicon appears to have no significant effect on the partitioning behaviors of Ag, Co, Cu, Cr, Ni, Pd, and V, all of which had similar partition coefficients over a wide range of Si liquid concentrations from Si-free to 13 wt%. The only elements in our experiments to show evidence of a potentially weak attraction to Si were Mo and Rh. Applications of the newly determined effects of Si to problems in planetary science indicate that (1) The elements Ni, Co, Mo, and W, which are commonly used in planetary differentiation models, are minimally affected by the presence of Si in the metal, especially in comparison to other effects such as from oxygen fugacity. 2) Reduced enstatite-rich meteorites may record a chemical signature due to Si in the metallic melts during partial melting, and if so, elements identified by this study as having strong Si avoidance may offer unique insight into unraveling the history of these meteorites.

  8. Properties of binary transition-metal arsenides (TAs)

    NASA Astrophysics Data System (ADS)

    Saparov, Bayrammurad; Mitchell, Jonathan E.; Sefat, Athena S.

    2012-08-01

    We present thermodynamic and transport properties of transition-metal (T) arsenides, TAs, with T = Sc to Ni (3d), Zr, Nb, Ru (4d), Hf and Ta (5d). Characterization of these binaries is carried out with powder x-ray diffraction, temperature- and field-dependent magnetization and resistivity, temperature-dependent heat capacity, Seebeck coefficient, and thermal conductivity. All binaries show metallic behavior except TaAs and RuAs. TaAs, NbAs, ScAs and ZrAs are diamagnetic, while CoAs, VAs, TiAs, NiAs and RuAs show approximately Pauli paramagnetic behavior. FeAs and CrAs undergo antiferromagnetic ordering below TN ≈ 71 K and TN ≈ 260 K, respectively. MnAs is a ferromagnet below TC ≈ 317 K and undergoes hexagonal-orthorhombic-hexagonal transitions at TS ≈ 317 K and 384 K, respectively. For TAs, Seebeck coefficients vary between + 40 and - 40 μV K-1 in the 2-300 K range, whereas thermal conductivity values stay below 18 W m-1 K-1. The Sommerfeld coefficients γ are less than 10 mJ K-2 mol-1. At room temperature with application of 8 T magnetic field, large positive magnetoresistance is found for TaAs (˜25%), MnAs (˜90%) and NbAs (˜75%).

  9. Electrocatalysis using transition metal carbide and oxide nanocrystals

    NASA Astrophysics Data System (ADS)

    Regmi, Yagya N.

    Carbides are one of the several families of transition metal compounds that are considered economic alternatives to catalysts based on noble metals and their compounds. Phase pure transition metal carbides of group 4-6 metals, in the first three periods, were synthesized using a common eutectic salt flux synthesis method, and their electrocatalytic activities compared under uniform electrochemical conditions. Mo2C showed highest hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) activities among the nine metal carbides investigated, but all other metal carbides also showed substantial activities. All the metal carbides showed remarkable enhancement in catalytic activities as supports, when compared to traditional graphitic carbon as platinum support. Mo2C, the most active transition metal carbide electrocatalyst, was prepared using four different synthesis routes, and the synthesis route dependent activities compared. Bifunctional Mo 2C that is HER as well as oxygen evolution reaction (OER) active, was achieved when the carbide was templated on a multiwalled carbon nanotube using carbothermic reduction method. Bimetallic carbides of Fe, Co, and Ni with Mo or W were prepared using a common carbothermic reduction method. Two different stoichiometries of bimetallic carbides were obtained for each system within a 60 °C temperature window. While the bimetallic carbides showed relatively lower electrocatalytic activities towards HER and ORR in comparison to Mo2C and WC, they revealed remarkably higher OER activities than IrO2 and RuO2, the state-of-the-art OER catalysts. Bimetallic oxides of Fe, Co, and Ni with Mo and W were also prepared using a hydrothermal synthesis method and they also revealed OER activities that are much higher than RuO2 and IrO2. Additionally, the OER activities were dependent on the degree and nature of hydration in the bimetallic oxide crystal lattice, with the completely hydrated, as synthesized, cobalt molybdate and nickel molybdate showing the highest OER activities.

  10. p-Process Nucleosynthesis inside Supernova-driven Supercritical Accretion Disks

    NASA Astrophysics Data System (ADS)

    Fujimoto, Shin-ichirou; Hashimoto, Masa-aki; Koike, Osamu; Arai, Kenzo; Matsuba, Ryuichi

    2003-03-01

    We investigate p-process nucleosynthesis in a supercritical accretion disk around a compact object of 1.4 Msolar, using the self-similar solution of an optically thick advection-dominated flow. Supercritical accretion is expected to occur in a supernova with fallback material accreting onto a newborn compact object. It is found that an appreciable number of p-nuclei are synthesized via the p-process in supernova-driven supercritical accretion disks (SSADs) when the accretion rate m=Mc2/(16LEdd)>105, where LEdd is the Eddington luminosity. Abundance profiles of p-nuclei ejected from SSADs have features similar to those of the oxygen/neon layers in Type II supernovae when the abundance of the fallback gas far from the compact object is that of the oxygen/neon layers in the progenitor. The overall abundance profile is in agreement with that of the solar system. Some p-nuclei, such as Mo, Ru, Sn, and La, are underproduced in the SSADs as in Type II supernovae. If the fallback gas is mixed with a small fraction of protons through Rayleigh-Taylor instability during the explosion, significant amounts of 92Mo are produced inside the SSADs. Isotopes 96Ru and 138La are also produced when the fallback gas contains abundant protons, although the overall abundance profile of p-nuclei is rather different from that of the solar system. The p-process nucleosynthesis in SSADs contributes to the chemical evolution of p-nuclei, in particular 92Mo, if several percent of the fallback matter are ejected via jets and/or winds.

  11. Interference removals on Pd, Ru and Au with ICP-QQQ-MS in PGE RM

    NASA Astrophysics Data System (ADS)

    Nadeem Hussain Bokhari, Syed; Meisel, Thomas; Walkner, Christoph

    2015-04-01

    Gold and platinum group elements (PGE) are essential industrial precious metals with high world demand due to their unique properties. Struggle for natural exploration of PGE is on great pace and recycling from industrial wastes, electronics and catalytic convertor is on the rise for PGE supply chain. Along with these developments it is becoming more challenging for analytical chemists to determine gold and PGE out of complex matrix which causes severe interferences. The current state of art is online analysis coupled with chromatographic separation of interferences. The ICP-QQQ-MS Agilent 8800 has the capability of using multi tunes and mass shifts. We aim to remove interferences on Pd+ (for direct and isotope dilution analysis) Au+ and Ru+ in lieu of chemical separations. YO+, SrOH+, ZnAr+, NiAr+, ZrO+, CuAr+, MoO+ , Ru+and Cd+ are expected interferences on Pd+ while Au+ is interfered by TaO+, HfOH+, GdAr+ and 102Ru+ ,104Ru+ by 102Pd+ ,104Pd+ etc. Initial test were performed on pure solutions of 1mg/l (interfering elements): 1 ng/l (Pd, Ru & Au) respectively. The outcomes of initial tests were applied on PGE reference material (RM) WMG-1 and SARM-7 (digested with Na2O2 sintering). The results obtained show that YO+, SrOH+ interfere (104Pd,105Pd), 104 Ru+ on (104Pd), ZnAr+ has slight interference on (104Pd and106Pd), ZrO+, NiAr+, CuAr+ interferences are negligible, MoO+ has severe interference on (108Pd, 110Pd) and that Cd+ has severe isobaric interference on (106Pd,108Pd, 110Pd). These interference have been removed by formation of Pd(NH3)3+complex. The TaO+, HfOH+ and GdAr+ interferences on Au+ are best removed by formation of Au(NH3)+ and Au(NH3)2+ complexes. 102Pd+,104Pd+interference on 102Ru+ ,104Ru+ can be removed by formation of Ru(NH3)4+ and RuO+ compounds. The results obtained comply with certified values of RM. The developed method is being tested on low concentration PGE reference materials. References: Sugiyama, N. " Removal of complex spectral interferences on noble metal isotopes." Agilent 8800 ICP-QQQ Application Handbook, 2014, 42-46.

  12. Electrode kinetics of ethanol oxidation on novel CuNi alloy supported catalysts synthesized from PTFE suspension

    NASA Astrophysics Data System (ADS)

    Sen Gupta, S.; Datta, J.

    An understanding of the kinetics and mechanism of the electrochemical oxidation of ethanol is of considerable interest for the optimization of the direct ethanol fuel cell. In this paper, the electro-oxidation of ethanol in sodium hydroxide solution has been studied over 70:30 CuNi alloy supported binary platinum electrocatalysts. These comprised mixed deposits of Pt with Ru or Mo. The electrodepositions were carried out under galvanostatic condition from a dilute suspension of polytetrafluoroethylene (PTFE) containing the respective metal salts. Characterization of the catalyst layers by scanning electron microscope (SEM)-energy dispersive X-ray (EDX) indicated that this preparation technique yields well-dispersed catalyst particles on the CuNi alloy substrate. Cyclic voltammetry, polarization study and electrochemical impedance spectroscopy were used to investigate the kinetics and mechanism of ethanol electro-oxidation over a range of NaOH and ethanol concentrations. The relevant parameters such as Tafel slope, charge transfer resistance and the reaction orders in respect of OH - ions and ethanol were determined.

  13. Growth and sacrificial oxidation of transition metal nanolayers

    NASA Astrophysics Data System (ADS)

    Tsarfati, Tim; Zoethout, Erwin; van de Kruijs, Robbert; Bijkerk, Fred

    2009-04-01

    Growth and oxidation of Au, Pt, Pd, Rh, Cu, Ru, Ni and Co layers of 0.3-4.3 nm thickness on Mo have been investigated with ARPES and AFM. Co and Ni layers oxidize while the Mo remains metallic. For nobler metals, the on top O and oxidation state of subsurface Mo increase, suggesting sacrificial e - donation by Mo. Au and Cu, in spite of their significantly lower surface free energy, grow in islands on Mo and actually promote Mo oxidation. Applications of the sacrificial oxidation in nanometer thin layers exist in a range of nanoscopic devices, such as nano-electronics and protection of e.g. multilayer X-ray optics for astronomy, medicine and lithography.

  14. JSUS solar thermal thruster and its integration with thermionic power converter

    NASA Astrophysics Data System (ADS)

    Shimizu, Morio; Eguchi, Kunihisa; Itoh, Katsuya; Sato, Hitoshi; Fujii, Tadayuki; Okamoto, Ken-Ichi; Igarashi, Tadashi

    1998-01-01

    This paper describes solar heating test results of a single crystal Mo thruster of solar thermal propulsion (STP) with super high-temperature brazing of Mo/Ru for hydrogen-gas sealing, using the paraboloidal concentrator of 1.6 m diameter newly installed in NAL in the Japan Solar Upper Stage (JSUS) research program. The designed thruster has a target Isp about 800 sec for 2,250 K or higher temperatures of hydrogen propellant. Additionally, tungsten CVD-coating was applied to a outer surface of the thruster in order to prevent vaporization of the wall material and Mo/Ru under the condition of high temperature over 2,500K and high vacuum. Also addressed in our paper is solar thermionic power module design for the integration with the STP receiver. The thermionic converter (TIC) module is of a planar type in a Knudsen-mode operation and provides a high conversion efficiency of 23% at the TIC emitter temperature of nearly 1,850 K for a heat input flux of 24 W/cm2.

  15. Synthesis and Crystal Structure of a New Ruthenium Silicophosphate: RuP 3SiO 11

    NASA Astrophysics Data System (ADS)

    Fukuoka, Hiroshi; Imoto, Hideo; Saito, Taro

    1996-01-01

    A new ruthenium silicophosphate RuP3SiO11was obtained and the structure was determined by single-crystal X-ray diffraction. It crystallizes in the trigonal space groupR3cwitha= 8.253(3)Å,c= 39.317(4)Å,V= 2319(2)Å3,Z= 12,R= 0.029, andRW= 0.026. The structure is composed of RuO6, Si2O7, and P2O7units. The Si2O7unit shares the six oxygen atoms with six P2O7units, while the P2O7unit shares the six oxygen atoms with two Si2O7units and four RuO6octahedra. The anionic part forms an infinite three-dimensional network of silicophosphate. RuP3SiO11is isotypic with MoP3SiO11.

  16. Phase-field crystal modeling of compositional domain formation in ultrathin films.

    PubMed

    Muralidharan, Srevatsan; Haataja, Mikko

    2010-09-17

    Bulk-immiscible binary systems often form stress-induced miscible alloy phases when deposited on a substrate. Both alloying and surface dislocation formation lead to the decrease of the elastic strain energy, and the competition between these two strain-relaxation mechanisms gives rise to the emergence of pseudomorphic compositional nanoscale domains, often coexisting with a partially coherent single phase. In this work, we develop a phase-field crystal model for compositional patterning in monolayer aggregates of binary metallic systems. We first demonstrate that the model naturally incorporates the competition between alloying and misfit dislocations, and quantify the effects of misfit and line tension on equilibrium domain size. Then, we quantitatively relate the parameters of the phase-field crystal model to a specific system, CoAg/Ru(0001), and demonstrate that the simulations capture experimentally observed morphologies.

  17. An Integrated Computational and Experimental Approach Toward the Design of Materials for Fuel Cell Systems

    DTIC Science & Technology

    2012-10-01

    13 Based on the limited work done, the best reported ORR chalcogenide electrocatalysts for PEMFC applications can be ranked as follows: MoRuSe... PEMFC catalysts is the durability of the catalyst particles. Particle size distribution tends to shift towards larger particles during the...the design of new materials for applications in PEMFCs . Reference: A more detailed treatment of the topics of this section, Experimental Target 11

  18. Atomic scale modelling of hexagonal structured metallic fission product alloys

    PubMed Central

    Middleburgh, S. C.; King, D. M.; Lumpkin, G. R.

    2015-01-01

    Noble metal particles in the Mo-Pd-Rh-Ru-Tc system have been simulated on the atomic scale using density functional theory techniques for the first time. The composition and behaviour of the epsilon phases are consistent with high-entropy alloys (or multi-principal component alloys)—making the epsilon phase the only hexagonally close packed high-entropy alloy currently described. Configurational entropy effects were considered to predict the stability of the alloys with increasing temperatures. The variation of Mo content was modelled to understand the change in alloy structure and behaviour with fuel burnup (Mo molar content decreases in these alloys as burnup increases). The predicted structures compare extremely well with experimentally ascertained values. Vacancy formation energies and the behaviour of extrinsic defects (including iodine and xenon) in the epsilon phase were also investigated to further understand the impact that the metallic precipitates have on fuel performance. PMID:26064629

  19. Synthesis, Characterization, Cytotoxic Activity, and Interactions with CT-DNA and BSA of Cationic Ruthenium(II) Complexes Containing Dppm and Quinoline Carboxylates

    PubMed Central

    da Silva, Edinaldo N.; da Silva, Paulo A. B.; Graminha, Angélica E.; de Oliveira, Pollyanna F.; Damasceno, Jaqueline L.; Tavares, Denise C.; Batista, Alzir A.

    2017-01-01

    The complexes cis-[Ru(quin)(dppm)2]PF6 and cis-[Ru(kynu)(dppm)2]PF6 (quin = quinaldate; kynu = kynurenate; dppm = bis(diphenylphosphino)methane) were prepared and characterized by elemental analysis, electronic, FTIR, 1H, and 31P{1H} NMR spectroscopies. Characterization data were consistent with a cis arrangement for the dppm ligands and a bidentate coordination through carboxylate oxygens of the quin and kynu anions. These complexes were not able to intercalate CT-DNA as shown by circular dichroism spectroscopy. On the other hand, bovine serum albumin (BSA) binding constants and thermodynamic parameters suggest spontaneous interactions with this protein by hydrogen bonds and van der Waals forces. Cytotoxicity assays were carried out on a panel of human cancer cell lines including HepG2, MCF-7, and MO59J and one normal cell line GM07492A. In general, the new ruthenium(II) complexes displayed a moderate to high cytotoxicity in all the assayed cell lines with IC50 ranging from 10.1 to 36 µM and were more cytotoxic than the precursor cis-[RuCl2(dppm)2]. The cis-[Ru(quin)(dppm)2]PF6 were two to three times more active than the reference metallodrug cisplatin in the MCF-7 and MO59J cell lines. PMID:28814948

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, Rupam; Huang, Zhi-Feng; Nadgorny, Boris

    Multiple percolation transitions are observed in a binary system of RuO{sub 2}-CaCu{sub 3}Ti{sub 4}O{sub 12} metal-semiconductor nanoparticle composites near percolation thresholds. Apart from a classical percolation transition, associated with the appearance of a continuous conductance path through RuO{sub 2} metal oxide nanoparticles, at least two additional tunneling percolation transitions are detected in this composite system. Such behavior is consistent with the recently emerged picture of a quantum conductivity staircase, which predicts several percolation tunneling thresholds in a system with a hierarchy of local tunneling conductance, due to various degrees of proximity of adjacent conducting particles distributed in an insulating matrix.more » Here, we investigate a different type of percolation tunneling staircase, associated with a more complex conductive and insulating particle microstructure of two types of non-spherical constituents. As tunneling is strongly temperature dependent, we use variable temperature measurements to emphasize the hierarchical nature of consecutive tunneling transitions. The critical exponents corresponding to specific tunneling percolation thresholds are found to be nonuniversal and temperature dependent.« less

  1. Use of The Yeast Two-Hybrid System to Identify Targets of Fungal Effectors

    USDA-ARS?s Scientific Manuscript database

    The yeast-two hybrid (Y2H) system is a binary method widely used to determine direct interactions between paired proteins. Although having certain limitations, this method has become one of the two main systemic tools (along with affinity purification/mass spectrometry) for interactome mapping in mo...

  2. Eta Carina: What was the Great Eruption in the 19th Century?

    NASA Astrophysics Data System (ADS)

    Gull, Theodore; Eta Carina Bunch

    2018-01-01

    In the 1840’s, Eta Carina brightened to rival Sirius in apparent magnitude only to fade to naked-eye visibility for 5 decades, brightened somewhat in the 1890s and faded again until the 1940’s when it began a progressive brightening that continues. Today Eta Carina is a massive binary (100 Mo and 30 Mo) with a 5.54-year period, immersed in a massive (>40Mo) dusty, bipolar nebula. The radiation and kinetic energy of the 1840s event rivals that of a supernova, but the binary survived. While Eta Carina is suggested to be a supernova imposter, most imposters, seen in nearby galaxies, lead to actual supernova events months to years afterwards, yet the binary, Eta Carina, is still with us 170 years after the outburst.With modern observatories we are gaining much insight on the massive binary--followed by many ground-based telescopes, the fossil wind structures--mapped with HST/STIS, the Little Homunculus--discovered with HST/STIS and Homunculus--now being studied with ALMA. 3D models are able to explain much of the structures, but potentially much material remains hidden in the form of molecules on the far side of the Homunculus in the equatorial skirt region, where Herschel observations indicate the bulk of dust-emitting continuum resides.Was there a third star that became a supernova? Did one of the two stars go through a near supernova experience?This poster will summarize observations and modeling of the current system in hopes that theorists will become interested in providing scenarios and models that led to the ejecta and binary we observe today.

  3. Primary arm spacing in chill block melt spun Ni-Mo alloys

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Glasgow, T. K.

    1986-01-01

    Chill block melt spun ribbons of Ni-Mo binary alloys containing 8.0 to 41.8 wt % Mo have been prepared under carefully controlled processing conditions. The growth velocity has been determined as a function of distance from the quench surface from the observed ribbon thickness dependence on the melt puddle residence time. Primary arm spacings measured at the midribbon thickness locations show a dependence on growth velocity and alloy composition which is expected from dendritic growth models for binary alloys directionally solidified in a positive temperature gradient.

  4. Primary arm spacing in chill block melt spun Ni-Mo alloys

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Glasgow, T. K.

    1987-01-01

    Chill block melt spun ribbons of Ni-Mo binary alloys containing 8.0 to 41.8 wt pct Mo have been prepared under carefully controlled processing conditions. The growth velocity has been determined as a function of distance from the quench surface from the observed ribbon thickness dependence on the melt puddle residence time. Primary arm spacing measured at the midribbon thickness locations show a dependence on growth velocity and alloy composition which is expected from dendritic growth models for binary alloys directionally solidified in a positive temperature gradient.

  5. Experimental study of magnetocaloric effect in the two-level quantum system KTm(MoO4)2

    NASA Astrophysics Data System (ADS)

    Tarasenko, R.; Tkáč, V.; Orendáčová, A.; Orendáč, M.; Valenta, J.; Sechovský, V.; Feher, A.

    2018-05-01

    KTm(MoO4)2 belongs to the family of binary alkaline rare-earth molybdates. This compound can be considered to be an almost ideal quantum two-level system at low temperatures. Magnetocaloric properties of KTm(MoO4)2 single crystals were investigated using specific heat and magnetization measurement in the magnetic field applied along the easy axis. Large conventional magnetocaloric effect (-ΔSM ≈ 10.3 J/(kg K)) was observed in the magnetic field of 5 T in a relatively wide temperature interval. The isothermal magnetic entropy change of about 8 J/(kgK) has been achieved already for the magnetic field of 2 T. Temperature dependence of the isothermal entropy change under different magnetic fields is in good agreement with theoretical predictions for a quantum two-level system with Δ ≈ 2.82 cm-1. Investigation of magnetocaloric properties of KTm(MoO4)2 suggests that the studied system can be considered as a good material for magnetic cooling at low temperatures.

  6. Materials by Design - Computational Alloy Design for Corrosion

    DTIC Science & Technology

    2011-02-01

    Es = + 0.33 eV Cs Rb K · ~·Ba Sr ::~ \\ H ~ YCd ./ G B FS A~ Zn " Be• ’f_ Ni?.Au SeA. ’\\ . At-v Rh Ru • Zr Ja Mo Tc _,. • • • pt • lr Nb w...Windows Air Conditioning Autoflight Electrical Power Navigation Engine Exhaust Stabilizer Doors Fuel system Nacelles/Pylons Power Plant Equip...p. 14 ASETSDefense 2011: Sustainable Surface Engineering for Aerospace and Defense Workshop Quantum Mechanics Insights into SCC resistance 3.5 -E 0

  7. Crystal phase-based epitaxial growth of hybrid noble metal nanostructures on 4H/fcc Au nanowires

    NASA Astrophysics Data System (ADS)

    Lu, Qipeng; Wang, An-Liang; Gong, Yue; Hao, Wei; Cheng, Hongfei; Chen, Junze; Li, Bing; Yang, Nailiang; Niu, Wenxin; Wang, Jie; Yu, Yifu; Zhang, Xiao; Chen, Ye; Fan, Zhanxi; Wu, Xue-Jun; Chen, Jinping; Luo, Jun; Li, Shuzhou; Gu, Lin; Zhang, Hua

    2018-03-01

    Crystal-phase engineering offers opportunities for the rational design and synthesis of noble metal nanomaterials with unusual crystal phases that normally do not exist in bulk materials. However, it remains a challenge to use these materials as seeds to construct heterometallic nanostructures with desired crystal phases and morphologies for promising applications such as catalysis. Here, we report a strategy for the synthesis of binary and ternary hybrid noble metal nanostructures. Our synthesized crystal-phase heterostructured 4H/fcc Au nanowires enable the epitaxial growth of Ru nanorods on the 4H phase and fcc-twin boundary in Au nanowires, resulting in hybrid Au-Ru nanowires. Moreover, the method can be extended to the epitaxial growth of Rh, Ru-Rh and Ru-Pt nanorods on the 4H/fcc Au nanowires to form unique hybrid nanowires. Importantly, the Au-Ru hybrid nanowires with tunable compositions exhibit excellent electrocatalytic performance towards the hydrogen evolution reaction in alkaline media.

  8. Network structure of Mo-oxide glasses

    NASA Astrophysics Data System (ADS)

    Fabian, M.; Svab, E.; Milanova, M.; Krezhov, K.

    2017-01-01

    The structure of molybdate glasses have been investigated by neutron and high-energy X-ray diffraction coupled with Reverse Monte Carlo (RMC) simulation technique. From the modelling the partial atomic correlation functions g ij(r), the coordination number distributions CN ij and bond angle distributions have been revealed. For binary 90MoO3-10Nd2O3 glass composition the fraction of MoO4/MoO6 was 0.55/0.25. Three type of ternary system have been studied, where the most important structural units was authenticated. For MoO3-Nd2O3-B2O3 sample mixed MoO4-BO4 and MoO4-BO3 linkages form pronounced intermediate-range order. In case of MoO3-ZnO-B2O3 series the BO3 and BO4 units are linked to MoO4 and/or ZnO4, forming mixed MoO4-BO4(BO3), MoO4-ZnO4 and ZnO4-BO4(BO3) bond-linkages.

  9. Synthesis and characterization of the pseudo-hexagonal hollandites ALi{sub 2}Ru{sub 6}O{sub 12} (A=Na, K)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foo, M.L.; He, T.; Huang, Q.

    The crystal structures, synthesis and physical properties of ruthenium hollandites ALi{sub 2}Ru{sub 6}O{sub 12} (A=Na, K) with a new pseudo-hexagonal structure type are described. Analogous to tetragonal hollandites, the framework is made of MO{sub 6} octahedra in double chains that share corner oxygens with each other to create interstitial tunnels. The tunnels are either hexagonal or triangular in cross-section. Magnetic susceptibilities, low temperature specific heat, and electrical resistivities are reported. The data indicate that these materials are normal, low density of states metals. This new structure type can be extended from A=Group I to A=Group II ions with the synthesismore » of CaLi{sub 2}Ru{sub 6}O{sub 12} and SrLi{sub 2}Ru{sub 6}O{sub 12}.« less

  10. Heavy element production in inhomogeneous big bang nucleosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuura, Shunji; Fujimoto, Shin-ichirou; Nishimura, Sunao

    2005-12-15

    We present a new astrophysical site of the big bang nucleosynthesis (BBN) that are very peculiar compared with the standard BBN. Some models of the baryogenesis suggest that very high baryon density regions were formed in the early universe. On the other hand, recent observations suggest that heavy elements already exist in high red-shifts and the origin of these elements become a big puzzle. Motivated by these, we investigate BBN in very high baryon density regions. BBN proceeds in proton-rich environment, which is known to be like the p-process. However, by taking very heavy nuclei into account, we find thatmore » BBN proceeds through both the p-process and the r-process simultaneously. P-nuclei such as {sup 92}Mo, {sup 94}Mo, {sup 96}Ru, {sup 98}Ru whose origin is not well known are also synthesized.« less

  11. Comparative Study of Novel Ratio Spectra and Isoabsorptive Point Based Spectrophotometric Methods: Application on a Binary Mixture of Ascorbic Acid and Rutin.

    PubMed

    Darwish, Hany W; Bakheit, Ahmed H; Naguib, Ibrahim A

    2016-01-01

    This paper presents novel methods for spectrophotometric determination of ascorbic acid (AA) in presence of rutin (RU) (coformulated drug) in their combined pharmaceutical formulation. The seven methods are ratio difference (RD), isoabsorptive_RD (Iso_RD), amplitude summation (A_Sum), isoabsorptive point, first derivative of the ratio spectra ((1)DD), mean centering (MCN), and ratio subtraction (RS). On the other hand, RU was determined directly by measuring the absorbance at 358 nm in addition to the two novel Iso_RD and A_Sum methods. The work introduced in this paper aims to compare these different methods, showing the advantages for each and making a comparison of analysis results. The calibration curve is linear over the concentration range of 4-50 μg/mL for AA and RU. The results show the high performance of proposed methods for the analysis of the binary mixture. The optimum assay conditions were established and the proposed methods were successfully applied for the assay of the two drugs in laboratory prepared mixtures and combined pharmaceutical tablets with excellent recoveries. No interference was observed from common pharmaceutical additives.

  12. Comparative Study of Novel Ratio Spectra and Isoabsorptive Point Based Spectrophotometric Methods: Application on a Binary Mixture of Ascorbic Acid and Rutin

    PubMed Central

    Darwish, Hany W.; Bakheit, Ahmed H.; Naguib, Ibrahim A.

    2016-01-01

    This paper presents novel methods for spectrophotometric determination of ascorbic acid (AA) in presence of rutin (RU) (coformulated drug) in their combined pharmaceutical formulation. The seven methods are ratio difference (RD), isoabsorptive_RD (Iso_RD), amplitude summation (A_Sum), isoabsorptive point, first derivative of the ratio spectra (1DD), mean centering (MCN), and ratio subtraction (RS). On the other hand, RU was determined directly by measuring the absorbance at 358 nm in addition to the two novel Iso_RD and A_Sum methods. The work introduced in this paper aims to compare these different methods, showing the advantages for each and making a comparison of analysis results. The calibration curve is linear over the concentration range of 4–50 μg/mL for AA and RU. The results show the high performance of proposed methods for the analysis of the binary mixture. The optimum assay conditions were established and the proposed methods were successfully applied for the assay of the two drugs in laboratory prepared mixtures and combined pharmaceutical tablets with excellent recoveries. No interference was observed from common pharmaceutical additives. PMID:26885440

  13. Controlling n-type doping in MoO 3

    DOE PAGES

    Peelaers, H.; Chabinyc, M. L.; Van de Walle, C. G.

    2017-02-27

    Here, we study the electronic properties of native defects and intentional dopant impurities in MoO 3, a widely used transparent conductor. Using first-principles hybrid functional calculations, we show that electron polarons can be self-trapped, but they can also bind to defects; thus, they play an important role in understanding the properties of doped MoO 3. Our calculations show that oxygen vacancies can cause unintentional n-type doping in MoO 3. Mo vacancies are unlikely to form. Tc and Re impurities on the Mo site and halogens (F, Cl, and Br) on the O site all act as shallow donors but trapmore » electron polarons. Fe, Ru, and Os impurities are amphoteric and will compensate n-type MoO 3. Mn dopants are also amphoteric, and they show interesting magnetic properties. These results support the design of doping approaches that optimally exploit functionality.« less

  14. Studies on separation and purification of fission (99)Mo from neutron activated uranium aluminum alloy.

    PubMed

    Rao, Ankita; Kumar Sharma, Abhishek; Kumar, Pradeep; Charyulu, M M; Tomar, B S; Ramakumar, K L

    2014-07-01

    A new method has been developed for separation and purification of fission (99)Mo from neutron activated uranium-aluminum alloy. Alkali dissolution of the irradiated target (100mg) results in aluminum along with (99)Mo and a few fission products passing into solution, while most of the fission products, activation products and uranium remain undissolved. Subsequent purification steps involve precipitation of aluminum as Al(OH)3, iodine as AgI/AgIO3 and molybdenum as Mo-α-benzoin oxime. Ruthenium is separated by volatilization as RuO4 and final purification of (99)Mo was carried out using anion exchange method. The radiochemical yield of fission (99)Mo was found to be >80% and the purity of the product was in conformity with the international pharmacopoeia standards. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Natural variations in the rhenium isotopic composition of meteorites

    NASA Astrophysics Data System (ADS)

    Liu, R.; Hu, L.; Humayun, M.

    2017-03-01

    Rhenium is an important element with which to test hypotheses of isotope variation. Historically, it has been difficult to precisely correct the instrumental mass bias in thermal ionization mass spectrometry. We used W as an internal standard to correct mass bias on the MC-ICP-MS, and obtained the first precise δ187Re values ( ±0.02‰, 2SE) for iron meteorites and chondritic metal. Relative to metal from H chondrites, IVB irons are systematically higher in δ187Re by 0.14 ‰. δ187Re for other irons are similar to H chondritic metal, although some individual samples show significant isotope fractionation. Since 185Re has a high neutron capture cross section, the effect of galactic cosmic-ray (GCR) irradiation on δ187Re was examined using correlations with Pt isotopes. The pre-GCR irradiation δ187Re for IVB irons is lower, but the difference in δ187Re between IVB irons and other meteoritic metal remains. Nuclear volume-dependent fractionation for Re is about the right magnitude near the melting point of iron, but because of the refractory and compatible character of Re, a compelling explanation in terms of mass-dependent fractionation is elusive. The magnitude of a nucleosynthetic s-process deficit for Re estimated from Mo and Ru isotopes is essentially unresolvable. Since thermal processing reduced nucleosynthetic effects in Pd, it is conceivable that Re isotopic variations larger than those in Mo and Ru may be present in IVBs since Re is more refractory than Mo and Ru. Thus, the Re isotopic difference between IVBs and other irons or chondritic metal remains unexplained.

  16. Coordinated Isotopic and TEM Studies of Presolar Graphites from Murchison

    NASA Astrophysics Data System (ADS)

    Croat, T. K.; Stadermann, F. J.; Zinner, E.; Bernatowicz, T. J.

    2004-03-01

    TEM and NanoSIMS investigations of the same presolar Murchison KFC graphites revealed high Zr, Mo, and Ru content in refractory carbides within the graphites. Along with isotopically light carbon, these suggest a low-metallicity AGB source.

  17. Adsorption and electron-induced polymerization of methyl methacrylate on Ru(101xAF0)

    NASA Astrophysics Data System (ADS)

    Hedhili, M. N.; Yakshinskiy, B. V.; Wasielewski, R.; Ciszewski, A.; Madey, T. E.

    2008-05-01

    The adsorption and electron irradiation of methyl methacrylate (MMA) on a Ru(101¯0) surface have been studied using x-ray photoelectron spectroscopy (XPS), temperature programmed desorption (TPD), and low energy ion scattering. TPD analysis indicates that a monolayer of MMA chemisorbs and dissociates on the Ru(101¯0) surface. The reaction products observed upon heating include H2, CO, CO2, and a small amount of MMA. Physisorbed multilayers of MMA desorb at temperatures around 170K. Electron irradiation of physisorbed MMA at 140K leads to a modification of the MMA film: The XPS spectra show an increase in thermal stability of the film with retention of the MMA structure, and indicate that electron irradiation induces polymerization. An increase in the electron bombardment fluence induces a degradation of the formed polymerized species and leads to the accumulation of carbon on the Ru surface. These results are relevant to the accumulation of carbon on surfaces of Ru films that serve as capping layers on Mo /Si multilayer mirrors used in extreme ultraviolet lithography.

  18. Rapid synthesis of platinum-ruthenium bimetallic nanoparticles dispersed on carbon support as improved electrocatalysts for ethanol oxidation.

    PubMed

    Gu, Zhulan; Li, Shumin; Xiong, Zhiping; Xu, Hui; Gao, Fei; Du, Yukou

    2018-07-01

    Bimetallic nanocatalysts with small particle size benefit from markedly enhanced electrocatalytic activity and stability during small molecule oxidation. Herein, we report a facile method to synthesize binary Pt-Ru nanoparticles dispersed on a carbon support at an optimum temperature. Because of its monodispersed nanostructure, synergistic effects were observed between Pt and Ru and the PtRu/C electrocatalysts showed remarkably enhanced electrocatalytic activity towards ethanol oxidation. The peak current density of the Pt 1 Ru 1 /C electrocatalyst is 3731 mA mg -1 , which is 9.3 times higher than that of commercial Pt/C (401 mA mg -1 ). Furthermore, the synthesized Pt 1 Ru 1 /C catalyst exhibited higher stability during ethanol oxidation in an alkaline medium and maintained a significantly higher current density after successive cyclic voltammograms (CVs) of 500 cycles than commercial Pt/C. Our work highlights the significance of the reaction temperature during electrocatalyst synthesis, leading to enhanced catalytic performance towards ethanol oxidation. The Pt 1 Ru 1 /C electrocatalyst has great potential for application in direct ethanol fuel cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Valence-Band Electronic Structures of High-Pressure-Phase PdF2-type Platinum-Group Metal Dioxides MO2 (M = Ru, Rh, Ir, and Pt)

    NASA Astrophysics Data System (ADS)

    Soda, Kazuo; Kobayashi, Daichi; Mizui, Tatsuya; Kato, Masahiko; Shirako, Yuichi; Niwa, Ken; Hasegawa, Masashi; Akaogi, Masaki; Kojitani, Hiroshi; Ikenaga, Eiji; Muro, Takayuki

    2018-04-01

    The valence-band electronic structures of high-pressure-phase PdF2-type (HP-PdF2-type) platinum-group metal dioxides MO2 (M = Ru, Rh, Ir, and Pt) were studied by synchrotron radiation photoelectron spectroscopy and first-principles calculations. The obtained photoelectron spectra for HP-PdF2-type RuO2, RhO2, and IrO2 agree well with the calculated valence-band densities of states (DOSs) for these compounds, indicating their metallic properties, whereas the DOS of HP-PdF2-type PtO2 (calculated in the presence and absence of spin-orbit interactions) predicts that this material may be metallic or semimetallic, which is inconsistent with the electric conductivity reported to date and the charging effect observed in current photoelectron measurements. Compared with the calculated results, the valence-band spectrum of PtO2 appears to have shifted toward the high-binding-energy side and reveals a gradual intensity decrease toward the Fermi energy EF, implying a semiconductor-like electronic structure. Spin-dependent calculations predict a ferromagnetic ground state with a magnetization of 0.475 μB per formula unit for HP-PdF2-type RhO2.

  20. Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction

    DOE PAGES

    Scofield, Megan E.; Koenigsmann, Christopher; Wang, Lei; ...

    2014-11-25

    In the search for alternatives to conventional Pt electrocatalysts, we have synthesized ultrathin, ternary PtRuFe nanowires (NW), possessing different chemical compositions in order to probe their CO tolerance as well as electrochemical activity as a function of composition for both (i) the methanol oxidation reaction (MOR) and (ii) the formic acid oxidation reaction (FAOR). As-prepared ‘multifunctional’ ternary NW catalysts exhibited both higher MOR and FAOR activity as compared with binary Pt₇Ru₃ NW, monometallic Pt NW, and commercial catalyst control samples. In terms of synthetic novelty, we utilized a sustainably mild, ambient wet-synthesis method never previously applied to the fabrication ofmore » crystalline, pure ternary systems in order to fabricate ultrathin, homogeneous alloy PtRuFe NWs with a range of controlled compositions. Thus, these NWs were subsequently characterized using a suite of techniques including XRD, TEM, SAED, and EDAX in order to verify not only the incorporation of Ru and Fe into the Pt lattice but also their chemical homogeneity, morphology, as well as physical structure and integrity. Lastly, these NWs were electrochemically tested in order to deduce the appropriateness of conventional explanations such as (i) the bi-functional mechanism as well as (ii) the ligand effect to account for our MOR and FAOR reaction data. Specifically, methanol oxidation appears to be predominantly influenced by the Ru content, whereas formic acid oxidation is primarily impacted by the corresponding Fe content within the ternary metal alloy catalyst itself.« less

  1. Some properties of low-vapor-pressure braze alloys for thermionic converters

    NASA Technical Reports Server (NTRS)

    Bair, V. L.

    1978-01-01

    Property measurements were made for arc-melted, rod-shaped specimens. Density and dc electrical resistivity at 296 K were measured for various binary eutectic alloys. Thermal conductivity was inferred from the electrical conductivity using the Wiedemann, Franz, Lorenz relation. Linear thermal expansion from 293 K to two-thirds melting point, under a helium atmosphere, was measured for Zr, 21.7-wt percent Ru; Zr, 13-wt percent W; Zr, 22.3-wt percent Nb; Nb, 66.9-wt percent Ru; and Zr, 25.7-wt percent Ta.

  2. Use of spectroscopic technique to develop a reagent for Mo(VI) utilizing micellar effects on complex formation

    NASA Astrophysics Data System (ADS)

    Taşcioğlu, Sülin; Kaki, E.; Taşcioğlu, Senay

    2012-09-01

    Ultraviolet and visible spectral properties of aqueous solutions of molybdenum(VI) (Mo), gallic acid (GA), Lalanine (Ala), and L-Phenylalanine (Phe), and of their binary and ternary solutions were investigated in the absence and presence of anionic, cationic, and nonionic surfactant micelles. Evaluation of the spectra in a comparative way revealed that both Ala and Phe form ternary complexes with Mo and GA. The formation of a quaternary complex between Mo, GA, Phe, and cetyltrimethylammonium bromide at pH 4.5 provided a reagent system with a strikingly high sensitivity (1.2•106 l/(mol•cm)) for use in the spectrophotometric determination of Mo. A mechanism of micellar effects was discussed in terms of the substrate molecular charge and hydrophobicity, and rationalized on the basis of the spectral data obtained above and below the isoelectric pH of the amino acids.

  3. Electrochemical synthesis of binary molybdenum-tungsten carbides (Mo,W)2C from tungstate-molybdate-carbonate melts

    NASA Astrophysics Data System (ADS)

    Kushkhov, Kh. B.; Kardanov, A. L.; Adamokova, M. N.

    2013-02-01

    Nanopowders of binary tungsten-molybdenum carbide are fabricated by high-temperature electrochemical synthesis. The optimum concentration relations between electrolyte components, the current density, and the quantity of electricity are determined to synthesize binary tungsten-molybdenum carbides.

  4. Molybdenum Isotopic Composition of Iron Meteorites, Chondrites and Refractory Inclusions

    NASA Technical Reports Server (NTRS)

    Becker, H.; Walker, R. J.

    2003-01-01

    Recent Mo isotopic studies of meteorites reported evidence for differences in isotopic compositions for whole rocks of some primitive and differentiated meteorites relative to terrestrial materials. Enrichments of r- and p-process isotopes of up to 3-4 units (e unit = parts in 10(exp 4) over s-process dominated isotopes are the most prominent features. Certain types of presolar grains show large enrichments in s-process isotopes, however, it was concluded on grounds of mass balance that incomplete digestion of such grains cannot explain the enrichments of r- and p-process isotopes in whole rocks of primitive chondrites. If the reported variability in r- and p-process isotope enrichments reflects the true isotopic characteristics of the whole rocks, the implications are quite profound. It would suggest the presence of large scale Mo isotopic heterogeneity within the solar accretion disk with likely collateral effects for other elements. However, such effects were not found for Ru isotopes, nor for Zr isotopes. Another recent Mo isotopic study by multi collector ICP-MS could not confirm the reported deviations in Allende, Murchison or iron meteorites. Here, we present new results for the Mo isotopic composition of iron meteorites, chondrites and CAIs obtained by negative thermal ionization mass spectrometry (NTIMS). We discuss analytical aspects and the homogeneity of Mo isotopic compositions in solar system materials.

  5. Molybdenum sulfide/carbide catalysts

    DOEpatents

    Alonso, Gabriel [Chihuahua, MX; Chianelli, Russell R [El Paso, TX; Fuentes, Sergio [Ensenada, MX; Torres, Brenda [El Paso, TX

    2007-05-29

    The present invention provides methods of synthesizing molybdenum disulfide (MoS.sub.2) and carbon-containing molybdenum disulfide (MoS.sub.2-xC.sub.x) catalysts that exhibit improved catalytic activity for hydrotreating reactions involving hydrodesulfurization, hydrodenitrogenation, and hydrogenation. The present invention also concerns the resulting catalysts. Furthermore, the invention concerns the promotion of these catalysts with Co, Ni, Fe, and/or Ru sulfides to create catalysts with greater activity, for hydrotreating reactions, than conventional catalysts such as cobalt molybdate on alumina support.

  6. Trace element abundances in single presolar silicon carbide grains by synchrotron X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Kashiv, Yoav

    2004-12-01

    Synchrotron x-ray fluorescence (SXRF) was applied to the study of presolar grains for the first time in this study. 41 single SiC grains of the KJF size fraction (mass-weighted median size of 1.86 μm) from the Murchison (CM2) Meteorite were analyzed. The absolute abundances of the following elements were determined (not every element in every grain): S, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Sr, Y, Zr, Nb, Mo, Ru, Os, Ir and Pt (underlined elements were detected here for the first time in single grains). There is good agreement between the heavier trace element abundances in the grains and s-process nucleosynthesis calculations. It suggests that smaller 13C pocket sizes are needed in the parent stars, a free parameter in the stellar models, than is deduced from isotopic analyses of s-, and s-mainly, elements, such as Zr and Mo. In addition, the data confirms the radiogenic nature of the Nb in the grains, due to the in situ decay of 93Zr (t 1/2 = 1.5 × 106 year). The data suggest that the trace elements condensed into the host SiC grains by a combination of condensation in solid solution and incorporation of subgrains. It seems that many of the trace elements reside mainly in subgrains of two solid solution: (1)a TiC based solid solution, and (2)a Mo-Ru carbide based solid solution. The presence of subgrains of an Fe-Ni alloy solid solution is suggested as well. Subgrains of all 3 solid solutions were observed previously in presolar graphite grains.* *This dissertation is a compound document (contains both a paper copy and a CD as part of the dissertation). The CD requires the following system requirements: Adobe Acrobat.

  7. Re-Search for Extinct 99Tc and 98Tc in the Early Solar System

    NASA Astrophysics Data System (ADS)

    Yin, Q.; Jagoutz, E.; Wanke, H.

    1992-07-01

    The recent advances in negative thermal ionization mass spectrometry (N-TIMS) of Re and Os (Creaser et al., 1991) offer a new chance to search for isotopic anomalies of ruthenium (Ru) (and possibly Mo) in meteorites. The Ru isotopes are particularly important since they contain two daughter decay products of technicium, ^98Tc (tau(sub)1/2=4.2x10^6 yr) and ^99Tc (tau(sub)1/2=2.1x10^5 yr). Natural Tc is now extinct on Earth due to their short half-life, but may have been present in the early solar system; Ru isotopes might also bear witness of the various processes of nucleosynthesis and of the imperfect mixing of their products in the pre-solar nebula; Ru isotopic composition in fission is drastically different from natural; ^99Tc is crucial because of its very short half-life and is observed directly for several half-lives in s-process-enriched stars during the thermally pulsing, AGB (asymptotic giant branch) phase of evolution. The probability of detecting ^99Tc in this type of stars is typically 70% (Smith and Lambert, 1988). The chemical similarities between Ru and Os yield correspondingly high ionization efficiency for Ru with N-TIMS. Ru is obtained as a byproduct of Os chemistry, as Ru co-distills with Os. This unique combination conveniently enables a survey for extinct Tc by determining isotopic composition of Ru on a wide range of samples together with extensive studies of Re-Os system in geochemical community in the years to come. These arguments prompted us to carry out a systematic re-search for Ru isotopic anomalies initiated by Herr and coworkers more than 30 years ago (Herr et al., 1958). We have measured Ru isotopic composition in one bulk sample and a magnetic fraction of Maralinga carbonaceous chondrite and one bulk sample of the iron meteorite Gibeon. The bulk sample of Maralinga is found to be isotopically indistinguishable from the terrestrial values within analytical uncertainties. In the magnetic fraction, however, a positive deviation (0.89+- 0.24epsilon) of the ^99Ru/^101Ru ratio from the terrestrial mean is observed, a first indication that ^99Tc was alive in the early solar system. With the production ratio of ^99Tc/^99Ru=0.75 (Kappeler et al., 1989), a 2.9+-0.2 m.y. time interval (delta) between the nucleosynthetic process and formation of Maralinga is calculated, assuming there is no significant Tc/Ru fractionation since their production. This time interval is consistent with delta>=1.8 m.y. set by ^41Ca (tau(sub)1/2=1.03x10^5 yr) result (Hutcheon et al., 1984) and delta<=~3 m.y. inferred from ^26Al (tau(sub)1/2=7.16x10^5 yr) result (Lee et al., 1977), and gives the most stringent control on delta for the related nucleosynthetic process. The ^99Ru/^101Ru ratio in Gibeon is within error of the laboratory standard value. Since the nucleosynthetic origins of ^107Pd and ^99Tc are similar, the absence of ^99Ru anomaly (^99Ru*) and the presence of ^107Ag* in Gibeon (Chen and Wasserburg, 1990) indicate that core-mantle differentiation in the parent body of Gibeon happened between 2 and 10 m.y. after the nucleosynthetic sources produced these two parent nuclides. In this time span ^26Al was still alive and thus supports the model of ^26Al being a heat source for early planetary differentiation. Chen, J. H. and Wasserburg, G. J. , Geochim. Cosmochim. Acta. (1990) 54, 1729-1743. Creaser, R. A., Papanastassiou, D. A. and Wasserburg, G. J. (1991) Geochim. Cosmochim. Acta. 55, 397-401. Herr, W., Merz, E., Eberhardt, P., Geiss, J., Lang, C. and Signer, P. (1958) Geochim. Cosmochim. Acta. 14, 158. Hutcheon, I. D., Armstrong, J. T., and Wasserburg, G. J. (1984) LPSC XV, 387-388 (abstract). Kappeler, F., Beer, H., and Wisshak, K. (1989) Rep. Prog. Phys. 52. 945-1013. Lee, T., Papanastassiou, D. A. and Wasserburg, G. J. (1977) Astrophys. J. (Letters) 211, L107-L110. Smith, V. V. and Lambert, D. L. (1988)t. Astrophys. J., 333, 219- 226.

  8. Microstructural development from interdiffusion and reaction between Usbnd Mo and AA6061 alloys annealed at 600° and 550 °C

    NASA Astrophysics Data System (ADS)

    Perez, E.; Keiser, D. D.; Sohn, Y. H.

    2016-08-01

    The U.S. Material Management and Minimization Reactor Conversion Program is developing low enrichment fuel systems encased in Al-alloy for use in research and test reactors. Monolithic fuel plates have local regions where the Usbnd Mo fuel plate may come into contact with the Al-alloy 6061 (AA6061) cladding. This results in the development of interdiffusion zones with complex microstructures with multiple phases. In this study, the microstructural development of diffusion couples, Usbnd 7 wt%Mo, Usbnd 10 wt%Mo, and Usbnd 12 wt%Mo vs. AA6061, annealed at 600 °C for 24 h and at 550 °C for 1, 5, and 20 h, were analyzed by scanning electron microscopy with x-ray energy dispersive spectroscopy. The microstructural development and kinetics were compared to diffusion couples Usbnd Mo vs. high purity Al and binary Alsbnd Si alloys. The diffusion couples developed complex interaction regions where phase development was influenced by the alloying additions of the AA6061.

  9. Microstructure Characterization and Wear-Resistant Properties Evaluation of an Intermetallic Composite in Ni-Mo-Si System.

    PubMed

    Huang, Boyuan; Song, Chunyan; Liu, Yang; Gui, Yongliang

    2017-02-04

    Intermetallic compounds have been studied for their potential application as structural wear materials or coatings on engineering steels. In the present work, a newly designed intermetallic composite in a Ni-Mo-Si system was fabricated by arc-melting process with commercially pure metal powders as starting materials. The chemical composition of this intermetallic composite is 45Ni-40Mo-15Si (at %), selected according to the ternary alloy diagram. The microstructure was characterized using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS), and the wear-resistant properties at room temperature were evaluated under different wear test conditions. Microstructure characterization showed that the composite has a dense and uniform microstructure. XRD results showed that the intermetallic composite is constituted by a binary intermetallic compound NiMo and a ternary Mo₂Ni₃Si metal silicide phase. Wear test results indicated that the intermetallic composite has an excellent wear-resistance at room-temperature, which is attributed to the high hardness and strong atomic bonding of constituent phases NiMo and Mo₂Ni₃Si.

  10. Grain boundary premelting and activated sintering in binary refractory alloys

    NASA Astrophysics Data System (ADS)

    Shi, Xiaomeng

    Quasi-liquid intergranular film (IGF) which has been widely observed in ceramic systems can persist into sub-solidus region whereby an analogy to Grain boundary (GB) premelting can be made. In this work, a grain boundary (GB) premelting/prewetting model in a metallic system was firstly built based on the Benedictus' model and computational thermodynamics, predicting that GB disordering can start at 60-85% of the bulk solidus temperatures in selected systems. This model quantitatively explains the long-standing mystery of subsolidus activated sintering in W-Pd, W-Ni, W-Co, W-Fe and W-Cu, and it has broad applications for understanding GB-controlled transport kinetics and physical properties. Furthermore, this study demonstrates the necessity of developing GB phase diagrams as a tool for materials design. Subsequently, Grain boundary (GB) wetting and prewetting in Ni-doped Mo are systematically evaluated via characterizing well-quenched specimens and thermodynamic modeling. In contrast to prior reports, the delta-NiMo phase does not wet Mo GBs in the solid state. In the solid-liquid two-phase region, the Ni-rich liquid wets Mo GBs completely. Furthermore, high-resolution transmission electron microscopy demonstrates that nanometer-thick quasi-liquid IGFs persist at GBs into the single-phase region where the bulk liquid phase is no longer stable; this is interpreted as a case of GB prewetting. An analytical thermodynamic model is developed and validated, and this model can be extended to other systems. Furthermore, the analytical model was refined based upon Beneditus' model with correction in determining interaction contribution of interfacial energy. A calculation-based GB phase diagram for Ni-Mo binary system was created and validated by comparing with GB diffusivities determined through a series of controlled sintering experiments. The dependence of GB diffusivity on doping level and temperature was examined and compared with model-predicted GB phase diagram. The consistency between GB phase diagram and GB diffusivity was evidently observed. This study revealed the existence of quasi-liquid IGF in Ni-Mo and re-confirmed our prior hypothesis proposed through work in Ni-W system. It also demonstrated further the necessity of a GB phase diagram as a new tool to guide the materials processing or design, such as selection of sintering aid and heat-treatment.

  11. Study of MoVO(y) (y = 2-5) anion and neutral clusters using anion photoelectron spectroscopy and density functional theory calculations.

    PubMed

    Mann, Jennifer E; Rothgeb, David W; Waller, Sarah E; Jarrold, Caroline Chick

    2010-10-28

    The vibrationally resolved anion photoelectron (PE) spectra of MoVO(y)(-) (y = 2 - 5) metal suboxide clusters are presented and analyzed in the context of density functional theory (DFT) calculations. The electronically congested spectra reflect an increase in cluster electron affinity with increasing oxidation state. Ion beam hole-burning results reveal the features in the PE spectra of MoVO(2)(-) and MoVO(4)(-) are a result of only one anion isomer, while at least two isomers contribute to electronic structure observed in the PE spectrum of MoVO(3)(-). Spectral features of the binary systems are compared to their pure analogs, Mo(2)O(y) and V(2)O(y). An attempt to characterize the anion and neutral electronic and molecular structures is made by comparison with results from DFT calculations. However, reconciliation between the cluster spectra and the calculated spectroscopic parameters is not as straightforward as in previous studies on similar systems (Yoder, B. L.; Maze, J. T.; Raghavachari, K.; Jarrold, C. C. J. Chem. Phys. 2005, 122, 094313 and Mayhall, N. J.; Rothgeb, D. W.; Hossain, E.; Raghavachari, K.; Jarrold, C. C. J. Chem. Phys. 2009, 130, 124313).

  12. Low Pt content direct methanol fuel cell anode catalyst: nanophase PtRuNiZr

    NASA Technical Reports Server (NTRS)

    Whitacre, Jay F. (Inventor); Narayanan, Sekharipuram R. (Inventor)

    2010-01-01

    A method for the preparation of a metallic material having catalytic activity that includes synthesizing a material composition comprising a metal content with a lower Pt content than a binary alloy containing Pt but that displays at least a comparable catalytic activity on a per mole Pt basis as the binary alloy containing Pt; and evaluating a representative sample of the material composition to ensure that the material composition displays a property of at least a comparable catalytic activity on a per mole Pt basis as a representative binary alloy containing Pt. Furthermore, metallic compositions are disclosed that possess substantial resistance to corrosive acids.

  13. Characterization of Deactivated Bio-oil Hydrotreating Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Huamin; Wang, Yong

    Deactivation of bio-oil hydrotreating catalysts remains a significant challenge because of the poor quality of pyrolysis bio-oil input for hydrotreating and understanding their deactivation mode is critical to developing improved catalysts and processes. In this research, we developed an understanding of the deactivation of two-step bio-oil hydrotreating catalysts (sulfided Ru/C and sulfided CoMo/C) through detailed characterization of the catalysts using various complimentary analytical techniques. Severe fouling of both catalysts by carbonaceous species was the major form of deactivation, which is consistent with the significant loss of surface area and pore volume of both deactivated catalysts and the significant increase ofmore » the bulk density. Further analysis of the carbonaceous species by thermogravimetric analysis and x-ray photoelectron spectroscopy indicated that the carbonaceous species was formed by condensation reaction of active species such as sugars and sugar derivatives (aldehydes and ketones) in bio-oil feedstock during bio-oil hydrotreating under the conditions and catalysts used. Microscopy results did not show metal sintering of the Ru/C catalyst. However, X-ray diffraction indicated a probable transformation of the highly-active CoMoS phase in the sulfided CoMo/C catalyst to Co8S9 and MoS2 phase with low activity. Loss of the active site by transport of inorganic elements from the bio-oil and the reactor construction material onto the catalyst surface also might be a cause of deactivation as indicated by elemental analysis of spent catalysts.« less

  14. Irradiation testing of high density uranium alloy dispersion fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, S.L.; Trybus, C.L.; Meyer, M.K.

    1997-10-01

    Two irradiation test vehicles have been designed, fabricated, and inserted into the Advanced Test Reactor in Idaho. Irradiation of these experiments began in August 1997. These irradiation tests were designed to obtain irradiation performance information on a variety of potential new, high-density dispersion fuels. Each of the two irradiation vehicles contains 32 microplates. Each microplate is aluminum clad, having an aluminum matrix phase and containing one of the following compositions as the fuel phase: U-10Mo, U-8Mo, U-6Mo, U-4Mo, U-9Nb-3Zr, U-6Nb-4Zr, U-5Nb-3Zr, U-6Mo-1Pt, U-6Mo-0.6Ru, U-10Mo-0.05Sn, U{sub 2}Mo, or U{sub 3}Si{sub 2}. These experiments will be discharged at peak fuel burnups ofmore » 40% and 80%. Of particular interest is the fission gas retention/swelling characteristics of these new fuel alloys. This paper presents the design of the irradiation vehicles and the irradiation conditions.« less

  15. Wear measurement using radioactive tracer technique based on proton, deuteron and α-particle induced nuclear reactions on molybdenum

    NASA Astrophysics Data System (ADS)

    Ditrói, F.; Tárkányi, F.; Takács, S.

    2012-11-01

    Excitation functions of light ion induced nuclear reactions on natural molybdenum have been studied in the frame of a systematic investigation of charged particle induced nuclear reactions on metals for various applications. Excitation functions of 93,94g,94m,95g,95m,96,99mTc, 90,93m,99Mo, 90,91m,92m,95m,95g,96Nb and 88,89Zr were measured up to 50 MeV deuteron energy Tárkányi et al., 2012 [1], 93m,93g,94m,94g,95m,95g,96g,99mTc, 90,93m,99Mo, 90,92m,95m,95g,96Nb and 88,89Zr were measured up to 40 MeV proton energy Tárkányi et al., 2012 [2] and 93m,93g,94m,94g,95m,95g,96g,99mTc, 93m,99Mo, 90Nb, 94,95,97,103Ru and 88Zr were measured up to 40 MeV alpha energy Ditrói et al., 2012 [3] by using the stacked foil technique and activation method. The results for 3He induced reactions on natural Mo were taken from the literature Comparetto and Qaim, 1980 [4]. According to their half-lives, from the above listed radionuclides the 95m,96Tc, 91m,92m,95m,95gNb, 99Mo, 103,97Ru and 88Zr are suitable candidates for wear measurement by using thin layer activation (TLA) method. The goal of this work was to determine the necessary nuclear data for TLA of the above radionuclides and to prove their applicability for wear measurements.

  16. Electrochemical corrosion of a noble metal-bearing alloy-oxide composite

    DOE PAGES

    Chen, X.; Ebert, W. L.; Indacochea, J. E.

    2017-04-27

    The effects of added Ru and Pd on the microstructure and electrochemical behaviour of a composite material made by melting those metals with AISI 410 stainless steel, Zr, Mo, and lanthanide oxides were assessed using electrochemical and microscopic methods Furthermore, the lanthanide oxides reacted with Zr to form durable lanthanide zirconates and Mo alloyed with steel to form FeMoCr intermetallics. The noble metals alloyed with the steel to provide solid solution strengthening and inhibit carbide/nitride formation. In a passive film formed during electrochemical tests in acidic NaCl solution, but became less effective as corrosion progressed and regions over the intermetallicsmore » eventually failed.« less

  17. Non-covalent doping of graphitic carbon nitride with ultrathin graphene oxide and molybdenum disulfide nanosheets: an effective binary heterojunction photocatalyst under visible light irradiation.

    PubMed

    Hu, S W; Yang, L W; Tian, Y; Wei, X L; Ding, J W; Zhong, J X; Chu, Paul K

    2014-10-01

    A proof of concept integrating binary p-n heterojunctions into a semiconductor hybrid photocatalyst is demonstrated by non-covalent doping of graphite-like carbon nitride (g-C3N4) with ultrathin GO and MoS2 nanosheets using a facile sonochemical method. In this unique ternary hybrid, the layered MoS2 and GO nanosheets with a large surface area enhance light absorption to generate more photoelectrons. On account of the coupling between MoS2 and GO with g-C3N4, the ternary hybrid possesses binary p-n heterojunctions at the g-C3N4/MoS2 and g-C3N4/GO interfaces. The space charge layers created by the p-n heterojunctions not only enhance photogeneration, but also promote charge separation and transfer of electron-hole pairs. In addition, the ultrathin MoS2 and GO with high mobility act as electron mediators to facilitate separation of photogenerated electron-hole pairs at each p-n heterojunction. As a result, the ternary hybrid photocatalyst exhibits improved photoelectrochemical and photocatalytic activity under visible light irradiation compared to other reference materials. The results provide new insights into the large-scale production of semiconductor photocatalysts. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Hot gas, regenerative, supported H.sub.2 S sorbents

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E. (Inventor); Sharma, Pramod K. (Inventor)

    1993-01-01

    Efficient, regenerable sorbents for removal of H.sub.2 S from moderately high temperature (usually 200.degree. C.-550.degree.C.) gas streams comprise a porous, high surface area aluminosilicate support, suitably a zeolite, and most preferably a sodium deficient zeolite containing 1 to 20 weight percent of binary metal oxides. The binary oxides are a mixture of a Group VB or VIB metal oxide with a Group IB, IIB or VIII metal oxide such as V-Zn-O, V-Cu-O, Cu-Mo-O, Zn-Mo-O or Fe-Mo-O contained in the support. The sorbent effectively removes H.sub.2 S from the host gas stream in high efficiency and can be repetitively regenerated at least 10 times without loss of activity.

  19. Bonding Properties of a Novel Inorganometallic Complex, Ru(SnPh(3))(2)(CO)(2)(iPr-DAB) (iPr-DAB = N,N'-Diisopropyl-1,4-diaza-1,3-butadiene), and its Stable Radical-Anion, Studied by UV-Vis, IR, and EPR Spectroscopy, (Spectro-) Electrochemistry, and Density Functional Calculations.

    PubMed

    Aarnts, Maxim P.; Wilms, Maikel P.; Peelen, Karin; Fraanje, Jan; Goubitz, Kees; Hartl, Frantisek; Stufkens, Derk J.; Baerends, Evert Jan; Vlcek, Antonín

    1996-09-11

    Ru(SnPh(3))(2)(CO)(2)(iPr-DAB) was synthesized and characterized by UV-vis, IR, (1)H NMR, (13)C NMR, (119)Sn NMR, and mass (FAB(+)) spectroscopies and by single-crystal X-ray diffraction, which proved the presence of a nearly linear Sn-Ru-Sn unit. Crystals of Ru(SnPh(3))(2)(CO)(2)(iPr-DAB).3.5C(6)H(6) form in the triclinic space group P&onemacr; in a unit cell of dimensions a = 11.662(6) Å, b = 13.902(3) Å, c = 19.643(2) Å, alpha = 71.24(2) degrees, beta = 86.91(4) degrees, gamma = 77.89(3) degrees, and V = 2946(3) Å(3). One-electron reduction of Ru(SnPh(3))(2)(CO)(2)(iPr-DAB) produces the stable radical-anion [Ru(SnPh(3))(2)(CO)(2)(iPr-DAB)](*-) that was characterized by IR, and UV-vis spectroelectrochemistry. Its EPR spectrum shows a signal at g = 1.9960 with well resolved Sn, Ru, and iPr-DAB (H, N) hyperfine couplings. DFT-MO calculations on the model compound Ru(SnH(3))(2)(CO)(2)(H-DAB) reveal that the HOMO is mainly of sigma(Sn-Ru-Sn) character mixed strongly with the lowest pi orbital of the H-DAB ligand. The LUMO (SOMO in the reduced complex) should be viewed as predominantly pi(H-DAB) with an admixture of the sigma(Sn-Ru-Sn) orbital. Accordingly, the lowest-energy absorption band of the neutral species will mainly belong to the sigma(Sn-Ru-Sn)-->pi(iPr-DAB) charge transfer transition. The intrinsic strength of the Ru-Sn bond and the delocalized character of the three-center four-electron Sn-Ru-Sn sigma-bond account for the inherent stability of the radical anion.

  20. Pristine Basal- and Edge-Plane-Oriented Molybdenite MoS2 Exhibiting Highly Anisotropic Properties.

    PubMed

    Tan, Shu Min; Ambrosi, Adriano; Sofer, Zdenĕk; Huber, Štěpán; Sedmidubský, David; Pumera, Martin

    2015-05-04

    The layered structure of molybdenum disulfide (MoS2 ) is structurally similar to that of graphite, with individual sheets strongly covalently bonded within but held together through weak van der Waals interactions. This results in two distinct surfaces of MoS2 : basal and edge planes. The edge plane was theoretically predicted to be more electroactive than the basal plane, but evidence from direct experimental comparison is elusive. Herein, the first study comparing the two surfaces of MoS2 by using macroscopic crystals is presented. A careful investigation of the electrochemical properties of macroscopic MoS2 pristine crystals with precise control over the exposure of one plane surface, that is, basal plane or edge plane, was performed. These crystals were characterized thoroughly by AFM, Raman spectroscopy, X-ray photoelectron spectroscopy, voltammetry, digital simulation, and DFT calculations. In the Raman spectra, the basal and edge planes show anisotropy in the preferred excitation of E2g and A1g phonon modes, respectively. The edge plane exhibits a much larger heterogeneous electron transfer rate constant k(0) of 4.96×10(-5) and 1.1×10(-3)  cm s(-1) for [Fe(CN)6 ](3-/4-) and [Ru(NH3 )6 ](3+/2+) redox probes, respectively, compared to the basal plane, which yielded k(0) tending towards zero for [Fe(CN)6 ](3-/4-) and about 9.3×10(-4)  cm s(-1) for [Ru(NH3 )6 ](3+/2+) . The industrially important hydrogen evolution reaction follows the trend observed for [Fe(CN)6 ](3-/4-) in that the basal plane is basically inactive. The experimental comparison of the edge and basal planes of MoS2 crystals is supported by DFT calculations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Electrocatalytic oxidation of small organic molecules in acid medium: enhancement of activity of noble metal nanoparticles and their alloys by supporting or modifying them with metal oxides.

    PubMed

    Kulesza, Pawel J; Pieta, Izabela S; Rutkowska, Iwona A; Wadas, Anna; Marks, Diana; Klak, Karolina; Stobinski, Leszek; Cox, James A

    2013-11-01

    Different approaches to enhancement of electrocatalytic activity of noble metal nanoparticles during oxidation of small organic molecules (namely potential fuels for low-temperature fuel cells such as methanol, ethanol and formic acid) are described. A physical approach to the increase of activity of catalytic nanoparticles (e.g. platinum or palladium) involves nanostructuring to obtain highly dispersed systems of high surface area. Recently, the feasibility of enhancing activity of noble metal systems through the formation of bimetallic (e.g. PtRu, PtSn, and PdAu) or even more complex (e.g. PtRuW, PtRuSn) alloys has been demonstrated. In addition to possible changes in the electronic properties of alloys, specific interactions between metals as well as chemical reactivity of the added components have been postulated. We address and emphasize here the possibility of utilization of noble metal and alloyed nanoparticles supported on robust but reactive high surface area metal oxides (e.g. WO 3 , MoO 3 , TiO 2 , ZrO 2 , V 2 O 5 , and CeO 2 ) in oxidative electrocatalysis. This paper concerns the way in which certain inorganic oxides and oxo species can act effectively as supports for noble metal nanoparticles or their alloys during electrocatalytic oxidation of hydrogen and representative organic fuels. Among important issues are possible changes in the morphology and dispersion, as well as specific interactions leading to the improved chemisorptive and catalytic properties in addition to the feasibility of long time operation of the discussed systems.

  2. Electrocatalytic oxidation of small organic molecules in acid medium: enhancement of activity of noble metal nanoparticles and their alloys by supporting or modifying them with metal oxides

    PubMed Central

    Kulesza, Pawel J.; Pieta, Izabela S.; Rutkowska, Iwona A.; Wadas, Anna; Marks, Diana; Klak, Karolina; Stobinski, Leszek; Cox, James A.

    2013-01-01

    Different approaches to enhancement of electrocatalytic activity of noble metal nanoparticles during oxidation of small organic molecules (namely potential fuels for low-temperature fuel cells such as methanol, ethanol and formic acid) are described. A physical approach to the increase of activity of catalytic nanoparticles (e.g. platinum or palladium) involves nanostructuring to obtain highly dispersed systems of high surface area. Recently, the feasibility of enhancing activity of noble metal systems through the formation of bimetallic (e.g. PtRu, PtSn, and PdAu) or even more complex (e.g. PtRuW, PtRuSn) alloys has been demonstrated. In addition to possible changes in the electronic properties of alloys, specific interactions between metals as well as chemical reactivity of the added components have been postulated. We address and emphasize here the possibility of utilization of noble metal and alloyed nanoparticles supported on robust but reactive high surface area metal oxides (e.g. WO3, MoO3, TiO2, ZrO2, V2O5, and CeO2) in oxidative electrocatalysis. This paper concerns the way in which certain inorganic oxides and oxo species can act effectively as supports for noble metal nanoparticles or their alloys during electrocatalytic oxidation of hydrogen and representative organic fuels. Among important issues are possible changes in the morphology and dispersion, as well as specific interactions leading to the improved chemisorptive and catalytic properties in addition to the feasibility of long time operation of the discussed systems. PMID:24443590

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzales, Ivana; Chung, Hoon Taek; Kim, Yu Seung

    Slow hydrogen oxidation reaction (HOR) kinetics on Pt under alkaline conditions is a significant technical barrier for the development of high-performance hydroxide exchange membrane fuel cells. Here we report that benzene adsorption on Pt is a major factor responsible for the sluggish HOR. Furthermore, we demonstrate that bimetallic catalysts, such as PtMo/C, PtNi/C, and PtRu/C, can reduce the adsorption of benzene and thereby improve HOR activity. In particular, the HOR voltammogram of PtRu/C in 0.1 M benzyl ammonium showed minimal benzene adsorption. Density functional theory calculations indicate that the adsorption of benzyl ammonium on the bimetallic PtRu is endergonic formore » all four possible orientations of the cation, which explains the significantly better HOR activity observed for the bimetallic catalysts. In conclusion, the new HOR inhibition mechanism described here provides insights for the design of future polymer electrolytes and electrocatalysts for better-performing polymer membrane-based fuel cells.« less

  4. Thermal conduction properties of Mo/Si multilayers for extreme ultraviolet optics

    NASA Astrophysics Data System (ADS)

    Bozorg-Grayeli, Elah; Li, Zijian; Asheghi, Mehdi; Delgado, Gil; Pokrovsky, Alexander; Panzer, Matthew; Wack, Daniel; Goodson, Kenneth E.

    2012-10-01

    Extreme ultraviolet (EUV) lithography requires nanostructured optical components, whose reliability can be influenced by radiation absorption and thermal conduction. Thermal conduction analysis is complicated by sub-continuum electron and phonon transport and the lack of thermal property data. This paper measures and interprets thermal property data, and their evolution due to heating exposure, for Mo/Si EUV mirrors with 6.9 nm period and Mo/Si thickness ratios of 0.4/0.6 and 0.6/0.4. We use time-domain thermoreflectance and the 3ω method to estimate the thermal resistance between the Ru capping layer and the Mo/Si multilayers (RRu-Mo/Si = 1.5 m2 K GW-1), as well as the out-of-plane thermal conductivity (kMo/Si 1.1 W m-1 K-1) and thermal anisotropy (η = 13). This work also reports the impact of annealing on thermal conduction in a co-deposited MoSi2 layer, increasing the thermal conductivity from 1.7 W m-1 K-1 in the amorphous phase to 2.8 W m-1 K-1 in the crystalline phase.

  5. Microstructural development from interdiffusion and reaction between U–Mo and AA6061 alloys annealed at 600° and 550 °C

    DOE PAGES

    Perez, E.; Keiser, D. D.; Sohn, Y. H.

    2016-05-10

    The U.S. Material Management and Minimization Reactor Conversion Program is developing low enrichment fuel systems encased in Al-alloy for use in research and test reactors. Monolithic fuel plates have local regions where the Usingle bondMo fuel plate may come into contact with the Al-alloy 6061 (AA6061) cladding. This results in the development of interdiffusion zones with complex microstructures with multiple phases. In this study, the microstructural development of diffusion couples, U–7 wt%Mo, U–10 wt%Mo, and U–12 wt%Mo vs. AA6061, annealed at 600 °C for 24 h and at 550 °C for 1, 5, and 20 h, were analyzed by scanningmore » electron microscopy with x-ray energy dispersive spectroscopy. The microstructural development and kinetics were compared to diffusion couples U–Mo vs. high purity Al and binary Al–Si alloys. As a result, the diffusion couples developed complex interaction regions where phase development was influenced by the alloying additions of the AA6061.« less

  6. Thermodynamic modelling of the C-U and B-U binary systems

    NASA Astrophysics Data System (ADS)

    Chevalier, P. Y.; Fischer, E.

    2001-02-01

    The thermodynamic modelling of the carbon-uranium (C-U) and boron-uranium (B-U) binary systems is being performed in the framework of the development of a thermodynamic database for nuclear materials, for increasing the basic knowledge of key phenomena which may occur in the event of a severe accident in a nuclear power plant. Applications are foreseen in the nuclear safety field to the physico-chemical interaction modelling, on the one hand the in-vessel core degradation producing the corium (fuel, zircaloy, steel, control rods) and on the other hand the ex-vessel molten corium-concrete interaction (MCCI). The key O-U-Zr ternary system, previously modelled, allows us to describe the first interaction of the fuel with zircaloy cladding. Then, the three binary systems Fe-U, Cr-U and Ni-U were modelled as a preliminary work for modelling the O-U-Zr-Fe-Cr-Ni multicomponent system, allowing us to introduce the steel components in the corium. In the existing database (TDBCR, thermodynamic data base for corium), Ag and In were introduced for modelling AIC (silver-indium-cadmium) control rods which are used in French pressurized water reactors (PWR). Elsewhere, B 4C is also used for control rods. That is why it was agreed to extend in the next years the database with two new components, B and C. Such a work needs the thermodynamic modelling of all the binary and pseudo-binary sub-systems resulting from the combination of B, B 2O 3 and C with the major components of TDBCR, O-U-Zr-Fe-Cr-Ni-Ag-In-Ba-La-Ru-Sr-Al-Ca-Mg-Si + Ar-H. The critical assessment of the very numerous experimental information available for the C-U and B-U binary systems was performed by using a classical optimization procedure and the Scientific Group Thermodata Europe (SGTE). New optimized Gibbs energy parameters are given, and comparisons between calculated and experimental equilibrium phase diagrams or thermodynamic properties are presented. The self-consistency obtained is quite satisfactory.

  7. Anode materials for lithium ion batteries

    DOEpatents

    Abouimrane, Ali; Amine, Khalil

    2017-04-11

    An electrochemical device includes a composite material of general Formula (1-x)J-(x)Q wherein: J is a metal carbon alloy of formula Sn.sub.zSi.sub.z'Met.sub.wMet'.sub.w'C.sub.t; Q is a metal oxide of formula A.sub..gamma.M.sub..alpha.M'.sub..alpha.'O.sub..beta.; and wherein: A is Li, Na, or K; M and M' are individually Ge, Mo, Al, Ga, As, Sb, Te, Ti, Ta, Zr, Ca, Mg, Sr, Ba, Li, Na, K, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Rt, Ru or Cd; Met and Met' are individually Ge, Mo, Al, Ga, As, Sb, Te, Ti, Ta, Zr, Ca, Mg, Sr, Ba, Li, Na, K, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Rt, Ru or Cd; 0

  8. Endohedral gallide cluster superconductors and superconductivity in ReGa5.

    PubMed

    Xie, Weiwei; Luo, Huixia; Phelan, Brendan F; Klimczuk, Tomasz; Cevallos, Francois Alexandre; Cava, Robert Joseph

    2015-12-22

    We present transition metal-embedded (T@Gan) endohedral Ga-clusters as a favorable structural motif for superconductivity and develop empirical, molecule-based, electron counting rules that govern the hierarchical architectures that the clusters assume in binary phases. Among the binary T@Gan endohedral cluster systems, Mo8Ga41, Mo6Ga31, Rh2Ga9, and Ir2Ga9 are all previously known superconductors. The well-known exotic superconductor PuCoGa5 and related phases are also members of this endohedral gallide cluster family. We show that electron-deficient compounds like Mo8Ga41 prefer architectures with vertex-sharing gallium clusters, whereas electron-rich compounds, like PdGa5, prefer edge-sharing cluster architectures. The superconducting transition temperatures are highest for the electron-poor, corner-sharing architectures. Based on this analysis, the previously unknown endohedral cluster compound ReGa5 is postulated to exist at an intermediate electron count and a mix of corner sharing and edge sharing cluster architectures. The empirical prediction is shown to be correct and leads to the discovery of superconductivity in ReGa5. The Fermi levels for endohedral gallide cluster compounds are located in deep pseudogaps in the electronic densities of states, an important factor in determining their chemical stability, while at the same time limiting their superconducting transition temperatures.

  9. The Molybdenum Isotope System as a Tracer of Slab Input in Subduction Zones: An Example From Martinique, Lesser Antilles Arc

    NASA Astrophysics Data System (ADS)

    Gaschnig, Richard M.; Reinhard, Christopher T.; Planavsky, Noah J.; Wang, Xiangli; Asael, Dan; Chauvel, Catherine

    2017-12-01

    Molybdenum isotopes are fractionated by Earth-surface processes and may provide a tracer for the recycling of crustal material into the mantle. Here, we examined the Mo isotope composition of arc lavas from Martinique in the Lesser Antilles arc, along with Cretaceous and Cenozoic Deep Sea Drilling Project sediments representing potential sedimentary inputs into the subduction zone. Mo stable isotope composition (defined as δ98Mo in ‰ deviation from the NIST 3134 standard) in lavas older than ˜7 million years (Ma) exhibits a narrow range similar to and slightly higher than MORB, whereas those younger than ˜7 Ma show a much greater range and extend to unusually low δ98Mo values. Sediments from DSDP Leg 78A, Site 543 have uniformly low δ98Mo values whereas Leg 14, Site 144 contains both sediments with isotopically light Mo and Mo-enriched black shales with isotopically heavy Mo. When coupled with published radiogenic isotope data, Mo isotope systematics of the lavas can be explained through binary mixing between a MORB-like end-member and different sedimentary compositions identified in the DSDP cores. The lavas older than ˜7 Ma were influenced by incorporation of isotopically heavy black shales into the mantle wedge. The younger lavas are the product of mixing isotopically light sedimentary material into the mantle wedge. The change in Mo isotope composition of the lavas at ˜7 Ma is interpreted to reflect the removal of the Cretaceous black shale component due to the arrival of younger ocean crust where the age-equivalent Cretaceous sediments were deposited in shallower oxic waters. Isotopic fractionation of Mo during its removal from the slab is not required to explain the observed systematics in this system.

  10. Preparation and Thermoelectric Properties of the Skutterudite-Related Phase Ru(0.5)Pd(0.5)Sb3

    NASA Technical Reports Server (NTRS)

    Caillat, T.; Kulleck, J.; Borshchevsky, A.; Fleurial, J.-P.

    1996-01-01

    A new skutterudite phase Ru(0.5)Pd(0.5)Sb3 was prepared. This new phase adds to a large number of already known materials with the skutterudite structure which have shown good potential for thermoelectric applications. Single phase, polycrystalline samples were prepared and characterized by x-ray analysis, electron probe microanalysis, density, sound velocity, thermal-expansion coefficient, and differential thermal analysis measurements. Ru(0.5)Pd(0.5)Sb3 has a cubic lattice, space group Im3 (T(sup 5, sub h)), with a = 9.298 A and decomposes at about 920 K. The Seebeck coefficient, the electrical resistivity, the Hall effect, and the thermal conductivity were measured on hot-pressed samples over a wide range of temperatures. Preliminary results show that Ru(0.5)Pd(0.5)Sb3 behaves as a heavily doped semiconductor with an estimated band gap of about 0.6 eV. The lattice thermal conductivity of Ru(0.5)Pd(0.5)Sb3 is substantially lower than that of the binary isostructural compounds CoSb3 and IrSb3. The unusually low thermal conductivity might be explained by additional hole and charge transfer phonon scattering in this material. The potential of this material for thermoelectric applications is discussed.

  11. [Laser flash photolysis, EPR and Raman studies of liquids at elevated pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eyring, E.M.

    1992-01-01

    The proposed research will solve a number of analytical chemical problems in solutions with measurement techniques that benefit from the use of elevated hydrostatic pressures: stopped-flow spectrophotometry (Gd[sup 3+] + L(ligand), [RuL[sub 5]H[sub 2]O][sup 2+], laser flash photolysis of Mo(CO)[sub 6] + L, flash photolysis of binuclear metalloproteins), EPR spectroscopy (Gd[sup 3+] ion-exchanged into ETS-10 and ETAS-10 molecular sieves), laser flash photolysis kinetic studies of Mo(CO)[sub 6]-2,2'-bipyridine, and electrochemical studies of metalloporphyrins using resonance Raman spectroscopy.

  12. [Laser flash photolysis, EPR and Raman studies of liquids at elevated pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eyring, E.M.

    1992-10-01

    The proposed research will solve a number of analytical chemical problems in solutions with measurement techniques that benefit from the use of elevated hydrostatic pressures: stopped-flow spectrophotometry (Gd{sup 3+} + L(ligand), [RuL{sub 5}H{sub 2}O]{sup 2+}, laser flash photolysis of Mo(CO){sub 6} + L, flash photolysis of binuclear metalloproteins), EPR spectroscopy (Gd{sup 3+} ion-exchanged into ETS-10 and ETAS-10 molecular sieves), laser flash photolysis kinetic studies of Mo(CO){sub 6}-2,2`-bipyridine, and electrochemical studies of metalloporphyrins using resonance Raman spectroscopy.

  13. Isonitrile radionuclide complexes for labelling and imaging agents

    DOEpatents

    Jones, Alun G.; Davison, Alan; Abrams, Michael J.

    1984-06-04

    A coordination complex of an isonitrile ligand and radionuclide such as Tc, Ru, Co, Pt, Fe, Os, Ir, W, Re, Cr, Mo, Mn, Ni, Rh, Pd, Nb and Ta, is useful as a diagnostic agent for labelling liposomes or vesicles, and selected living cells containing lipid membranes, such as blood clots, myocardial tissue, gall bladder tissue, etc.

  14. Structural Stabilities of β-Ti Alloys Studied Using a New Mo Equivalent Derived from [ β/( α + β)] Phase-Boundary Slopes

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Dong, Chuang; Liaw, Peter K.

    2015-08-01

    Structural stabilities of β-Ti alloys are generally investigated by an empirical Mo equivalent, which quantifies the stability contribution of each alloying element, M, in comparison to that of the major β-Ti stabilizer, Mo. In the present work, a new Mo equivalent (Moeq)Q is proposed, which uses the slopes of the boundary lines between the β and ( α + β) phase zones in binary Ti-M phase diagrams. This (Moeq)Q reflects a simple fact that the β-Ti stability is enhanced, when the β phase zone is enlarged by a β-Ti stabilizer. It is expressed as (Moeq)Q = 1.0 Mo + 0.74 V + 1.01 W + 0.23 Nb + 0.30 Ta + 1.23 Fe + 1.10 Cr + 1.09 Cu + 1.67 Ni + 1.81 Co + 1.42 Mn + 0.38 Sn + 0.34 Zr + 0.99 Si - 0.57 Al (at. pct), where the equivalent coefficient of each element is the slope ratio of the [ β/( α + β)] boundary line of the binary Ti-M phase diagram to that of the Ti-Mo. This (Moeq)Q is shown to reliably characterize the critical stability limit of multi-component β-Ti alloys with low Young's moduli, where the critical lower limit for β stabilization is (Moeq)Q = 6.25 at. pct or 11.8 wt pct Mo.

  15. Intermediate phases in some rare earth-ruthenium systems

    NASA Technical Reports Server (NTRS)

    Sharifrazi, P.; Raman, A.; Mohanty, R. C.

    1984-01-01

    The phase equilibria and crystal structures of intermediate phases were investigated in eight representative RE-Ru systems using powder X-ray diffraction and metallographic techniques. The Fe3C, Mn5C2 and Er5Ru3 structures occur in all but the Ce-Ru systems. Phases analogous to Er5Ru3 possess an unknown crystal structure similar to Er5Rh3(I). MgCu2 and MgZn2 type Laves phases are encountered in the light rare earth and heavy rare earth systems, respectively, and RERu2 phases, where RE = Nd and Sm, possess both the Laves phase structures. An intermediate phase, NdRu, with an unknown structure, occurs only in the Nd-Ru system. A bcc structure with 40 atoms per unit cell is encountered in the phases Er3Ru2 and Y3Ru2. The behavior of cerium in Ce-Ru alloys is unique in that four unidentified structures, not encountered in other RE-Ru systems, have been encountered. Also a phase designated as Ce3Ru is found with the Th7Fe3 type structure.

  16. Some transition metal complexes derived from mono- and di-ethynyl perfluorobenzenes.

    PubMed

    Armitt, David J; Bruce, Michael I; Gaudio, Maryka; Zaitseva, Natasha N; Skelton, Brian W; White, Allan H; Le Guennic, Boris; Halet, Jean-François; Fox, Mark A; Roberts, Rachel L; Hartl, Frantisek; Low, Paul J

    2008-12-21

    Transition metal alkynyl complexes containing perfluoroaryl groups have been prepared directly from trimethylsilyl-protected mono- and di-ethynyl perfluoroarenes by simple desilylation/metallation reaction sequences. Reactions between Me(3)SiC[triple bond, length as m-dash]CC(6)F(5) and RuCl(dppe)Cp' [Cp' = Cp, Cp*] in the presence of KF in MeOH give the monoruthenium complexes Ru(C[triple bond, length as m-dash]CC(6)F(5))(dppe)Cp' [Cp' = Cp (); Cp* ()], which are related to the known compound Ru(C[triple bond, length as m-dash]CC(6)F(5))(PPh(3))(2)Cp (). Treatment of Me(3)SiC[triple bond, length as m-dash]CC(6)F(5) with Pt(2)(mu-dppm)(2)Cl(2) in the presence of NaOMe in MeOH gave the bis(alkynyl) complex Pt(2)(mu-dppm)(2)(C[triple bond, length as m-dash]CC(6)F(5))(2) (). The Pd(0)/Cu(i)-catalysed reactions between Au(C[triple bond, length as m-dash]CC(6)F(5))(PPh(3)) and Mo( identical withCBr)(CO)(2)Tp* [Tp* = hydridotris(3.5-dimethylpyrazoyl)borate], Co(3)(mu(3)-CBr)(mu-dppm)(CO)(7) or IC[triple bond, length as m-dash]CFc [Fc = (eta(5)-C(5)H(4))FeCp] afford Mo( identical withCC[triple bond, length as m-dash]CC(6)F(5))(CO)(2)Tp* (), Co(3)(mu(3)-CC[triple bond, length as m-dash]CC(6)F(5))(mu-dppm)(CO)(7) () and FcC[triple bond, length as m-dash]CC[triple bond, length as m-dash]CC(6)F(5) (), respectively. The diruthenium complexes 1,4-{Cp'(PP)RuC[triple bond, length as m-dash]C}(2)C(6)F(4) [(PP)Cp' = (PPh(3))(2)Cp (); (dppe)Cp (); (dppe)Cp* ()] are prepared from 1,4-(Me(3)SiC[triple bond, length as m-dash]C)(2)C(6)F(4) in a manner similar to that described for the monoruthenium complexes -. The non-fluorinated complexes 1,4-{Cp'(PP)RuC[triple bond, length as m-dash]C}(2)C(6)H(4) [(PP)Cp' = (PPh(3))(2)Cp (); (dppe)Cp (); (dppe)Cp* ()], prepared for comparison, are obtained from 1,4-(Me(3)SiC[triple bond, length as m-dash]C)(2)C(6)H(4). Spectro-electrochemical studies of the ruthenium aryl and arylene alkynyl complexes - and -, together with DFT-based computational studies on suitable model systems, indicate that perfluorination of the aromatic ring has little effect on the electronic structures of these compounds, and that the frontier orbitals have appreciable diethynylphenylene character. Molecular structure determinations are reported for the fluoroaromatic complexes , , , and .

  17. All-atom force field for molecular dynamics simulations on organotransition metal solids and liquids. Application to M(CO)(n) (M = Cr, Fe, Ni, Mo, Ru, or W) compounds.

    PubMed

    Bernardes, Carlos E S; Canongia Lopes, José N; Minas da Piedade, Manuel E

    2013-10-31

    A previously developed OPLS-based all-atom force field for organometallic compounds was extended to a series of first-, second-, and third-row transition metals based on the study of M(CO)(n) (M = Cr, Fe, Ni, Mo, Ru, or W) complexes. For materials that are solid at ambient temperature and pressure (M = Cr, Mo, W) the validation of the force field was based on reported structural data and on the standard molar enthalpies of sublimation at 298.15 K, experimentally determined by Calvet-drop microcalorimetry using samples corresponding to a specific and well-characterized crystalline phase: Δ(sub)H(m)° = 72.6 ± 0.3 kJ·mol(–1) for Cr(CO)(6), 73.4 ± 0.3 kJ·mol(–1) for Mo(CO)(6), and 77.8 ± 0.3 kJ·mol(–1) for W(CO)(6). For liquids, where problems of polymorphism or phase mixtures are absent, critically analyzed literature data were used. The force field was able to reproduce the volumetric properties of the test set (density and unit cell volume) with an average deviations smaller than 2% and the experimentally determined enthalpies of sublimation and vaporization with an accuracy better than 2.3 kJ·mol(–1). The Lennard-Jones (12-6) potential function parameters used to calculate the repulsive and dispersion contributions of the metals within the framework of the force field were found to be transferable between chromium, iron, and nickel (first row) and between molybdenum and ruthenium (second row).

  18. Beta Decay Half-Life of 84Mo

    NASA Astrophysics Data System (ADS)

    Stoker, J. B.; Mantica, P. F.; Bazin, D.; Bickley, A.; Becerril, A.; Crawford, H.; Cruse, K.; Estrade, A.; Mosby, M.; Guess, C. J.; Hitt, G. W.; Lorusso, G.; Matos, M.; Meharchand, R.; Minamisono, K.; Montes, F.; Pereira, J.; Perdikakis, G.; Pinter, J. S.; Schatz, H.; Vredevoogd, J.; Zegers, R. G. T.

    2008-10-01

    The β-decay half-life ^84Mo governs leakage out of the Zr-Nb cycle, a high temperature rp-process endpoint in x-ray binaries [1]. Treatment of the background and the poor statistics accumulated during the previous half-life measurement leave questions about statistical and systematic errors. We have remeasured the half-life of ^84Mo using a concerted setup of the NSCL β-Counting System [3] and 16 detectors from the Segmented Germanium Array [4]. We will report the half-life for ^84Mo, deduced using 40 times the previous sample size. The application of the NSCL RF Fragment Separator to remove unwanted isotopes, and hence reduce background for the half-life measurement, will also be discussed. [1] H. Schatz et al., Phys. Rep. 294, 167 1998 [2] P. Kienle et al., Prog. Part. Nuc. Phys. 46, 73 2001 [3] J. Prisciandaro et al., NIM A 505, 140 2003 [4] W. Mueller et al., NIM A 466, 492 2001 [5] D. Gorelov et al. PAC 2005, Knoxville, TN, May 16-20

  19. The Gd-Co-Al system at 870/1070 K as a representative of the rare earth-Co-Al family and new rare-earth cobalt aluminides: Crystal structure and magnetic properties

    NASA Astrophysics Data System (ADS)

    Morozkin, A. V.; Garshev, A. V.; Knotko, A. V.; Yapaskurt, V. O.; Mozharivskyj, Y.; Yuan, Fang; Yao, Jinlei; Nirmala, R.; Quezado, S.; Malik, S. K.

    2018-05-01

    The Gd-Co-Al system has been investigated at 870/1070 K by X-ray and elemental EDS analyses. The existence of the known compounds Gd2Co3Al9 (Y2Co3Ga9-type), Gd3Co4.5Al11.5 (Gd3Co4.6Al11) (Gd3Ru4Al12-type), Gd3Co6-7.4Al3-1.6 (CeNi3-type), GdCo1.15-0.65Al0.85-1.35 (MgZn2-type), Gd2Co2Al (Mo2NiB2-type) and Gd3Co3.5-3.25Al0.5-0.75 (W3CoB3-type) has been confirmed at 870/1070 K. Structure types have been determined for Gd2Co6Al19 (U2Co6Al19-type), Gd7Co6Al7 (Pr7Co6Al7-type), Gd6Co2-2.21Al1-0.79 (Ho6Co2Ga-type) and Gd14Co3.2Al2.8 (Gd14Co2.58Al3.42 at 970 K) (Lu14Co3In3-type). The structures of Gd6Co2Al, Gd6Co2.21Al0.79 and Gd14Co2.58Al3.42 flux-grown at 970 K have been refined from the single crystal X-ray diffraction data. Additionally, new ternary compounds Gd2Co5.7-5.3Al1.3-1.7 (Er2Co7-type) and Gd58Co20Al22 (unknown type structure) have been identified. Quasi-binary solid solutions were detected for Gd2Co17, GdCo5, Gd2Co7, GdCo3, GdCo2 and GdAl2 at 870/1070 K, while no appreciable solubility was observed for the other binary compounds in the Gd-Co-Al system. Magnetic properties of the Gd2Co3Al9, Gd3Co4.6Al11, Gd7Co6Al7, Gd6Co2.2Al0.8 and Gd14Co2.58Al3.42 compounds have been studied and are presented in this work. Gd6Co2.2Al0.8, Gd3Co4.6Al11, Gd7Co6Al7 and Gd14Co2.58Al3.42 order ferromagnetically, while Gd2Co3Al9 displays antiferromagnetic transition. Additionally, {Y, Sm, Tb - Tm}2Co6Al19 (U2Co6Al19-type), Yb2Co3Al9 (Y2Co3Ga9-type), {Y, Sm, Tm, Yb}3Co4.6Al11 (Gd3Ru4Al12-type) and Tb7Co6Al7 (Pr7Co6Al7-type) compounds have been synthesized and investigated.

  20. Benzene Adsorption - A Significant Inhibitor for the Hydrogen Oxidation Reaction in Alkaline Conditions

    DOE PAGES

    Gonzales, Ivana; Chung, Hoon Taek; Kim, Yu Seung

    2017-09-25

    Slow hydrogen oxidation reaction (HOR) kinetics on Pt under alkaline conditions is a significant technical barrier for the development of high-performance hydroxide exchange membrane fuel cells. Here we report that benzene adsorption on Pt is a major factor responsible for the sluggish HOR. Furthermore, we demonstrate that bimetallic catalysts, such as PtMo/C, PtNi/C, and PtRu/C, can reduce the adsorption of benzene and thereby improve HOR activity. In particular, the HOR voltammogram of PtRu/C in 0.1 M benzyl ammonium showed minimal benzene adsorption. Density functional theory calculations indicate that the adsorption of benzyl ammonium on the bimetallic PtRu is endergonic formore » all four possible orientations of the cation, which explains the significantly better HOR activity observed for the bimetallic catalysts. In conclusion, the new HOR inhibition mechanism described here provides insights for the design of future polymer electrolytes and electrocatalysts for better-performing polymer membrane-based fuel cells.« less

  1. Binary titanium alloys as dental implant materials-a review.

    PubMed

    Liu, Xiaotian; Chen, Shuyang; Tsoi, James K H; Matinlinna, Jukka Pekka

    2017-10-01

    Titanium (Ti) has been used for long in dentistry and medicine for implant purpose. During the years, not only the commercially pure Ti but also some alloys such as binary and tertiary Ti alloys were used. The aim of this review is to describe and compare the current literature on binary Ti alloys, including Ti-Zr, Ti-In, Ti-Ag, Ti-Cu, Ti-Au, Ti-Pd, Ti-Nb, Ti-Mn, Ti-Mo, Ti-Cr, Ti-Co, Ti-Sn, Ti-Ge and Ti-Ga, in particular to mechanical, chemical and biological parameters related to implant application. Literature was searched using the PubMed and Web of Science databases, as well as google without limiting the year, but with principle key terms such as ' Ti alloy', 'binary Ti ', 'Ti-X' (with X is the alloy element), 'dental implant' and 'medical implant'. Only laboratory studies that intentionally for implant or biomedical applications were included. According to available literatures, we might conclude that most of the binary Ti alloys with alloying <20% elements of Zr, In, Ag, Cu, Au, Pd, Nb, Mn, Cr, Mo, Sn and Co have high potential as implant materials, due to good mechanical performance without compromising the biocompatibility and biological behaviour compare to cp-Ti.

  2. Endohedral gallide cluster superconductors and superconductivity in ReGa5

    PubMed Central

    Xie, Weiwei; Luo, Huixia; Phelan, Brendan F.; Klimczuk, Tomasz; Cevallos, Francois Alexandre; Cava, Robert Joseph

    2015-01-01

    We present transition metal-embedded (T@Gan) endohedral Ga-clusters as a favorable structural motif for superconductivity and develop empirical, molecule-based, electron counting rules that govern the hierarchical architectures that the clusters assume in binary phases. Among the binary T@Gan endohedral cluster systems, Mo8Ga41, Mo6Ga31, Rh2Ga9, and Ir2Ga9 are all previously known superconductors. The well-known exotic superconductor PuCoGa5 and related phases are also members of this endohedral gallide cluster family. We show that electron-deficient compounds like Mo8Ga41 prefer architectures with vertex-sharing gallium clusters, whereas electron-rich compounds, like PdGa5, prefer edge-sharing cluster architectures. The superconducting transition temperatures are highest for the electron-poor, corner-sharing architectures. Based on this analysis, the previously unknown endohedral cluster compound ReGa5 is postulated to exist at an intermediate electron count and a mix of corner sharing and edge sharing cluster architectures. The empirical prediction is shown to be correct and leads to the discovery of superconductivity in ReGa5. The Fermi levels for endohedral gallide cluster compounds are located in deep pseudogaps in the electronic densities of states, an important factor in determining their chemical stability, while at the same time limiting their superconducting transition temperatures. PMID:26644566

  3. Optimisation of cosolvent concentration for topical drug delivery III--influence of lipophilic vehicles on ibuprofen permeation.

    PubMed

    Watkinson, R M; Guy, R H; Oliveira, G; Hadgraft, J; Lane, M E

    2011-01-01

    Previously, we have reported the effects of water, ethanol, propylene glycol and various binary and ternary mixtures of these solvents on the permeation of ibuprofen in model membranes and in skin. The present study investigates the influence of lipophilic vehicles on the transport of ibuprofen in silicone membrane and in human skin. The permeation of ibuprofen was measured from mineral oil (MO), Miglyol® 812 (MG) and binary mixtures of MO and MG. The solubility of ibuprofen was 5-fold higher in MG than in MO, however, the permeation of ibuprofen from the pure vehicles and combinations of both was comparable in silicone membrane. Additionally, there were no significant differences in skin permeation for MO and MG vehicles. When the permeation of various hydrophilic and lipophilic vehicles is considered, a trend between flux values for the model membrane and skin is evident (r(2) = 0.71). The findings suggest that silicone membrane may provide information on qualitative trends in skin permeation for vehicles of diverse solubility and partition characteristics. Copyright © 2010 S. Karger AG, Basel.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jae -Soon; Schwartz, Viviane; Santillan-Jimenez, Eduardo

    In this paper, we investigated the structural evolution of molybdenum carbides subjected to hot aqueous environments and their catalytic performance in low-temperature hydroprocessing of acetic acid. While bulk structures of Mo carbides were maintained after aging in hot liquid water, a portion of carbidic Mo sites were converted to oxidic sites. Water aging also induced changes to the non-carbidic carbon deposited during carbide synthesis and increased surface roughness, which in turn affected carbide pore volume and surface area. The extent of these structural changes was sensitive to the initial carbide structure and was lower under actual hydroprocessing conditions indicating themore » possibility of further improving the hydrothermal stability of Mo carbides by optimizing catalyst structure and operating conditions. Mo carbides were active in acetic acid conversion in the presence of liquid water, their activity being comparable to that of Ru/C. Finally, the results suggest that effective and inexpensive bio-oil hydroprocessing catalysts could be designed based on Mo carbides, although a more detailed understanding of the structure-performance relationships is needed, especially in upgrading of more complex reaction mixtures or real bio-oils.« less

  5. Negative thermal expansion materials related to cubic zirconium tungstate

    NASA Astrophysics Data System (ADS)

    Lind, Cora

    2001-12-01

    A non-hydrolytic sol-gel method for the preparation of ZrW2O 8 was developed. A new trigonal polymorph was discovered, which is structurally related to trigonal ZrMO2O8 and MnRe2O 8 as evidenced by powder x-ray diffraction and EXAFS studies. Seeding of the starting mixtures with cubic ZrW2O8 promoted crystallization of the cubic phase instead of trigonal material. Dehydration of ZrW2O7(OH)2·2H 2O gave cubic ZrW2O8 at 650°C, and a modification of this route led to the discovery of the new NTE materials cubic ZrMo 2O8 and HfMo2O8. These compounds crystallize in the same temperature range as the more stable trigonal AMo2O 8 polymorphs. To facilitate preparation of phase pure cubic molybdates, the influence of precursor chemistry on the crystallization behavior was investigated. The synthesis was extended to the solid solution system ZrxHf 1-xMoyW2-yO8 (0 ≤ x ≤ 1, 0 ≤ y ≤ 2). All compounds showed negative thermal expansion between 77 and 573 K. High-pressure in situ diffraction experiments were conducted on several AM2O8 polymorphs. With the exception of monoclinic ZrMo2O8, all materials underwent at least one pressure induced phase transition. Quasi-hydrostatic experiments on cubic AMo 2O8 led to a reversible transition to a new high-pressure structure, while low-pressure amorphization was observed under non-hydrostatic conditions. Isothermal kinetic studies of the cubic to trigonal transformation for ZrMo2O8 were carried out on four samples. Apparent activation energies of 170--290 kJ/mol were obtained using an Avrami model in combination with an Arrhenius analysis. This corresponds to 5% conversion levels after one year at temperatures between 220 and 315°C. Ex situ studies showed that the conversion at lower temperatures was considerably slower than what would be expected from extrapolation of the kinetic data. Drop solution calorimetry was carried out on several polymorphs of ZrMo 2O8, HfMo2O8 and ZrW2O 8. Only monoclinic ZrMo2O8 was enthalpically stabilized with respect to the binary oxides. For all other polymorphs, the differences in enthalpies of formation from the binary oxides for each AM2O 8 system (A = Zr, Hf; M = Mo, W) were small. Attempts to synthesize new materials MIIRe2O 8 (M = Mg, Zn, Mn, Co) with the cubic ZrW2O8 structure from a hydrate precursor were not successful.

  6. The ultrasound-assisted oxidative scission of monoenic fatty acids by ruthenium tetroxide catalysis: influence of the mixture of solvents.

    PubMed

    Rup, Sandrine; Zimmermann, François; Meux, Eric; Schneider, Michel; Sindt, Michele; Oget, Nicolas

    2009-02-01

    Carboxylic acids and diacids were synthesized from monoenic fatty acids by using RuO4 catalysis, under ultrasonic irradiation, in various mixtures of solvents. Ultrasound associated with Aliquat 336 have promoted in water, the quantitative oxidative cleavage of the CH=CH bond of oleic acid. A design of experiment (DOE) shows that the optimal mixture of solvents (H2O/MeCN, ratio 1/1, 2.2% RuCl3/4.1 eq. NaIO4) gives 81% azelaic acid and 97% pelargonic acid. With the binary heterogeneous mixture H2O/AcOEt, the oxidation of the oleic acid leads to a third product, the alpha-dione 9,10-dioxostearic acid.

  7. Reactivity of O2 on Pd/Ru(0001) and PdRu/Ru(0001) surface alloys

    NASA Astrophysics Data System (ADS)

    Farías, D.; Minniti, M.; Miranda, R.

    2017-05-01

    The reactivity of a Pd monolayer epitaxially grown on Ru(0001) toward O2 has been investigated by molecular beam techniques. O2 initial sticking coefficients were determined using the King and Wells method in the incident energy range of 40-450 meV and for sample temperatures of 100 K and 300 K, and compared to the corresponding values measured on the clean Ru(0001) and Pd(111) surfaces. In contrast to the high reactivity shown by Ru(0001) at 100 K, the Pd/Ru(0001) system exhibits a monotonic decrease in the sticking probability of O2 as a function of normal incident energy. At room temperature, the system was found to be inert. Thermal desorption measurements show that O2 is adsorbed molecularly at 100 K. A completely different behaviour has been measured for the Pd0.95Ru0.05/Ru(0001) surface alloy. On this surface, the O2 sticking probability increases with incident energy and resembles the one observed on the clean Ru(0001) surface, even at 300 K. Thermal desorption measurements point to dissociative adsorption of O2 in this system. Both the charge transfer from the Pd to the Ru substrate and the compressive strain on the Pd monolayer contribute to decrease in the reactivity of the Pd/Ru(0001) system well below those of both Ru(0001) and Pd(111).

  8. Binary titanium alloys as dental implant materials—a review

    PubMed Central

    Liu, Xiaotian; Chen, Shuyang; Matinlinna, Jukka Pekka

    2017-01-01

    Abstract Titanium (Ti) has been used for long in dentistry and medicine for implant purpose. During the years, not only the commercially pure Ti but also some alloys such as binary and tertiary Ti alloys were used. The aim of this review is to describe and compare the current literature on binary Ti alloys, including Ti–Zr, Ti–In, Ti–Ag, Ti–Cu, Ti–Au, Ti–Pd, Ti–Nb, Ti–Mn, Ti–Mo, Ti–Cr, Ti–Co, Ti–Sn, Ti–Ge and Ti–Ga, in particular to mechanical, chemical and biological parameters related to implant application. Literature was searched using the PubMed and Web of Science databases, as well as google without limiting the year, but with principle key terms such as ‘ Ti alloy’, ‘binary Ti ’, ‘Ti-X’ (with X is the alloy element), ‘dental implant’ and ‘medical implant’. Only laboratory studies that intentionally for implant or biomedical applications were included. According to available literatures, we might conclude that most of the binary Ti alloys with alloying <20% elements of Zr, In, Ag, Cu, Au, Pd, Nb, Mn, Cr, Mo, Sn and Co have high potential as implant materials, due to good mechanical performance without compromising the biocompatibility and biological behaviour compare to cp-Ti. PMID:29026646

  9. Carbon Dioxide Gas Sensors and Method of Manufacturing and Using Same

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W. (Inventor); Xu, Jennifer C. (Inventor)

    2014-01-01

    A gas sensor comprises a substrate layer; a pair of interdigitated metal electrodes, said electrodes include upper surfaces, the electrodes selected from the group consisting of Pt, Pd, Au, Ir, Ag, Ru, Rh, In, Os, and their alloys. A first layer of solid electrolyte staying in between electrode fingers and partially on said upper surfaces of said electrodes, said first layer selected from NASICON, LISICON, KSICON and.beta.''-Alumina. A second layer of metal carbonate(s) as an auxiliary electrolyte engaging said upper surfaces of the electrodes and the first solid electrolyte. The metal carbonates selected from the group consisting of the following ions Na.sup.+, K.sup.+, Li.sup.+, Ag.sup.+, H.sup.+, Pb.sup.2+, Sr.sup.2+, Ba.sup.2+, and any combination thereof. An extra layer of metal oxide selected from the group consisting of SnO.sub.2, In.sub.2O.sub.3, TiO.sub.2, WO.sub.3, ZnO, Fe.sub.2O.sub.3, ITO, CdO, U.sub.3O.sub.8, Ta.sub.2O.sub.5, BaO, MoO.sub.2, MoO.sub.3, V.sub.2O.sub.5, Nb.sub.2O.sub.5, CuO, Cr.sub.2O.sub.3, La.sub.2O.sub.3, RuO.sub.3, RuO.sub.2, ReO.sub.2, ReO.sub.3, Ag.sub.2O, CoO, Cu.sub.2O, SnO, NiO, Pr.sub.2O.sub.3, BaO, PdO.sub.2, HfO.sub.3, HfO.sub.3 or other metal oxide and their mixtures residing above and in engagement with the second electrolyte to improve sensor performance and/or to reduce sensor heating power consumption.

  10. Diversity of Chemical Bonding and Oxidation States in MS4 Molecules of Group 8 Elements.

    PubMed

    Huang, Wei; Jiang, Ning; Schwarz, W H Eugen; Yang, Ping; Li, Jun

    2017-08-04

    The geometric and electronic ground-state structures of 30 isomers of six MS 4 molecules (M=Group 8 metals Fe, Ru, Os, Hs, Sm, and Pu) have been studied by using quantum-chemical density functional theory and correlated wavefunction approaches. The MS 4 species were compared to analogous MO 4 species recently investigated (W. Huang, W.-H. Xu, W. H. E. Schwarz, J. Li, Inorg. Chem. 2016, 55, 4616). A metal oxidation state (MOS) with a high value of eight appeared in the low-spin singlet T d geometric species (Os,Hs)S 4 and (Ru,Os,Hs)O 4 , whereas a low MOS of two appeared in the high-spin septet D 2d species Fe(S 2 ) 2 and (slightly excited) metastable Fe(O 2 ) 2 . The ground states of all other molecules had intermediate MOS values, with S 2- , S 2 2- , S 2 1- (and O 2- , O 1- , O 2 2- , O 2 1- ) ligands bonded by ionic, covalent, and correlative contributions. The known tendencies toward lower MOS on going from oxides to sulfides, from Hs to Os to Ru, and from Pu to Sm, and the specific behavior of Fe, were found to arise from the different atomic orbital energies and radii of the (n-1)p core and (n-1)d and (n-2)f valence shells of the metal atoms in row n of the periodic table. The comparative results of the electronic and geometric structures of the MO 4 and MS 4 species provides insight into the periodicity of oxidation states and bonding. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Nanoamorphous carbon-based photonic crystal infrared emitters

    DOEpatents

    Norwood, Robert A [Tucson, AZ; Skotheim, Terje [Tucson, AZ

    2011-12-13

    Provided is a tunable radiation emitting structure comprising: a nanoamorphous carbon structure having a plurality of relief features provided in a periodic spatial configuration, wherein the relief features are separated from each other by adjacent recessed features, and wherein the nanoamorphous carbon comprises a total of from 0 to 60 atomic percent of one or more dopants of the dopant group consisting of: transition metals, lanthanoids, electro-conductive carbides, silicides and nitrides. In one embodiment, a dopant is selected from the group consisting of: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, La and other lanthanides, Hf, Ta, W, Rh, Os, Ir, Pt, Au, and Hg. In one embodiment, a dopant is selected from the group consisting of: electro-conductive carbides (like Mo.sub.2C), silicides (like MoSi.sub.2) and nitrides (like TiN).

  12. Uncertainties in the production of p nuclides in thermonuclear supernovae determined by Monte Carlo variations

    NASA Astrophysics Data System (ADS)

    Nishimura, N.; Rauscher, T.; Hirschi, R.; Murphy, A. St J.; Cescutti, G.; Travaglio, C.

    2018-03-01

    Thermonuclear supernovae originating from the explosion of a white dwarf accreting mass from a companion star have been suggested as a site for the production of p nuclides. Such nuclei are produced during the explosion, in layers enriched with seed nuclei coming from prior strong s processing. These seeds are transformed into proton-richer isotopes mainly by photodisintegration reactions. Several thousand trajectories from a 2D explosion model were used in a Monte Carlo approach. Temperature-dependent uncertainties were assigned individually to thousands of rates varied simultaneously in post-processing in an extended nuclear reaction network. The uncertainties in the final nuclear abundances originating from uncertainties in the astrophysical reaction rates were determined. In addition to the 35 classical p nuclides, abundance uncertainties were also determined for the radioactive nuclides 92Nb, 97, 98Tc, 146Sm, and for the abundance ratios Y(92Mo)/Y(94Mo), Y(92Nb)/Y(92Mo), Y(97Tc)/Y(98Ru), Y(98Tc)/Y(98Ru), and Y(146Sm)/Y(144Sm), important for Galactic Chemical Evolution studies. Uncertainties found were generally lower than a factor of 2, although most nucleosynthesis flows mainly involve predicted rates with larger uncertainties. The main contribution to the total uncertainties comes from a group of trajectories with high peak density originating from the interior of the exploding white dwarf. The distinction between low-density and high-density trajectories allows more general conclusions to be drawn, also applicable to other simulations of white dwarf explosions.

  13. Gold nanoparticles-decorated electrospun poly(N-vinyl-2-pyrrolidone) nanofibers with tunable size and coverage density for nanomolar detection of single and binary component dyes by surface-enhanced raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kurniawan, Alfin; Wang, Meng-Jiy

    2017-09-01

    The application of the electrospun nanomaterials to surface-enhanced Raman spectroscopy (SERS) is a rapidly evolving field which holds potential for future developments in the generation of portable plasmonic-based detection platforms. In this study, a simple approach to fabricate electrospun poly(N-vinylpyrrolidone) (PVP) mats decorated with gold nanoparticles (AuNPs) by combining electrospinning and calcination was presented. AuNPs were decorated on the fiber mat surface through electrostatic interactions between positively charged aminosilane groups and negatively charged AuNPs. The size and coverage density of AuNPs on the fiber mats could be tuned by varying the calcination temperature. Calcination of AuNPs-decorated PVP fibers at 500 °C-700 °C resulted in the uniform decoration of high density AuNPs with very narrow gaps on every single fiber, which in turn contribute to strong electromagnetic SERS enhancement. The robust free-standing AuNPs-decorated mat which calcined at 500 °C (500/AuNPs-F) exhibited high SERS activity toward cationic (methylene blue, MB) and anionic (methyl orange, MO) dyes in single and binary systems with a detection range from tens of nM to a few hundred μM. The fabricated SERS substrate demonstrated high reproducibility with the spot-to-spot variation in SERS signal intensities was ±10% and ±12% for single and binary dye systems, respectively. The determination of MB and MO in spiked river water and tap water with 500/AuNPs-F substrate gave satisfactory results in terms of the percent spike recoveries (ranging from 92.6%-96.6%) and reproducibility (%RSD values less than 15 for all samples).

  14. Structural evolution of molybdenum carbides in hot aqueous environments and impact on low-temperature hydroprocessing of acetic acid

    DOE PAGES

    Choi, Jae -Soon; Schwartz, Viviane; Santillan-Jimenez, Eduardo; ...

    2015-03-13

    In this paper, we investigated the structural evolution of molybdenum carbides subjected to hot aqueous environments and their catalytic performance in low-temperature hydroprocessing of acetic acid. While bulk structures of Mo carbides were maintained after aging in hot liquid water, a portion of carbidic Mo sites were converted to oxidic sites. Water aging also induced changes to the non-carbidic carbon deposited during carbide synthesis and increased surface roughness, which in turn affected carbide pore volume and surface area. The extent of these structural changes was sensitive to the initial carbide structure and was lower under actual hydroprocessing conditions indicating themore » possibility of further improving the hydrothermal stability of Mo carbides by optimizing catalyst structure and operating conditions. Mo carbides were active in acetic acid conversion in the presence of liquid water, their activity being comparable to that of Ru/C. Finally, the results suggest that effective and inexpensive bio-oil hydroprocessing catalysts could be designed based on Mo carbides, although a more detailed understanding of the structure-performance relationships is needed, especially in upgrading of more complex reaction mixtures or real bio-oils.« less

  15. New nanoparticles obtained by co-assembly of amphiphilic cyclodextrins and nonlamellar single-chain lipids: Preparation and characterization.

    PubMed

    Nguyễn, Cảnh Hưng; Putaux, Jean-Luc; Santoni, Gianluca; Tfaili, Sana; Fourmentin, Sophie; Coty, Jean-Baptiste; Choisnard, Luc; Gèze, Annabelle; Wouessidjewe, Denis; Barratt, Gillian; Lesieur, Sylviane; Legrand, François-Xavier

    2017-10-15

    This work aimed at preparing new nanoscale assemblies based on an amphiphilic bio-esterified β-cyclodextrin (β-CD), substituted at the secondary face with n-decanoic fatty acid chains (β-CD-C 10 ), and monoolein (MO) as new carriers for parenteral drug delivery. Stable binary (β-CD-C 10 /MO) and ternary (β-CD-C 10 /MO/stabilizer) nanoscale assemblies close to 100nm in size were successfully prepared in water by the solvent displacement method. The generated nanoparticles were fully characterized by dynamic light scattering, transmission electron microscopy, small-angle X-ray scattering, residual solvent analysis, complement activation and the contribution of each formulation parameter was determined by principal component analysis. The β-CD-C 10 units were shown to self-organize into nanoparticles with a hexagonal supramolecular packing that was significantly modulated by the molar ratio of the constituents and the presence of a steric or electrostatic stabilizer (DOPE-PEG 2000 or DOPA/POPA, respectively). Indeed, nanoparticles differing in morphology and in hexagonal lattice parameters were obtained while the co-existence of multiple mesophases was observed in some formulations, in particular for the β-CD-C 10 /MO/DOPA and β-CD-C 10 /MO/POPA systems. The mixed β-CD-C 10 /MO/DOPE-PEG 2000 nanoparticles (49:49:2 in mol%) appeared to be the most suitable for use as a drug delivery system since they contained a very low amount of residual solvent and showed a low level of complement C3 activation. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Photometric Analysis of Eclipsing Binary Az Vir

    NASA Astrophysics Data System (ADS)

    Neugarten, Andrew; Akiba, Tatsuya; Gokhale, Vayujeet

    2018-06-01

    We present photometric analysis of the eclipsing binary star system Az Vir. Standard BVR filter data were obtained using the 17-inch PlaneWave Instruments CDK telescope at the Truman State University Observatory in Kirksville, Mo and the 31-inch NURO telescope at the Lowell Observatory complex in Flagstaff, AZ. We apply an eight-term truncated Fourier fit to the light curves generated from these data to confirm the classification of Az Vir as a W Ursae Majoris-type eclipsing variable, using criteria specified by Rucinski (1997). We also calculate the values for the O’Connell Effect Ratio (OER) and the Light Curve Asymmetry (LCA) to quantify the asymmetry in the BVR light curves. In addition, we use data provided by the SuperWASP mission to perform long term O-C (observed minus calculated) analysis on the system to determine if and how its period is changing.

  17. Very Massive Stars and the upper end of the IMF

    NASA Astrophysics Data System (ADS)

    Crowther, P.

    2013-06-01

    I discuss theoretical and observational evidence regarding the existence of Very Massive Stars (VMS) with initial masses significantly in excess of 100~Mo. Theoretical evidence includes consideration of the (classical) Eddington limit, while observational evidence involves efforts to interpret photometric and spectroscopic observations of the brightest stars in young, high mass clusters (R136a, Arches, NGC 3603), including new VLT/SINFONI and HST/STIS spectroscopy plus consideration of multiplicity (binaries and higher order systems).

  18. Enhanced synergetic effect of Cr(VI) ion removal and anionic dye degradation with superparamagnetic cobalt ferrite meso-macroporous nanospheres

    NASA Astrophysics Data System (ADS)

    Thomas, Bintu; Alexander, L. K.

    2018-02-01

    The overall effectiveness of a photocatalytic water treatment method strongly depends on various physicochemical factors. Superparamagnetic photocatalysts have incomparable advantage of easy separation using external magnetic fields. So, the synthesis of efficient superparamagnetic photocatalysts and the development of a deep understanding of the factors influencing their catalytic performances are important. Co x Zn1- x Fe2O4 ( x = 0, 0.5, 1) ferrite nanospheres were synthesized by the solvothermal route. The reduction of Cr(VI) and degradation of methyl orange (MO) impurities were carried out in single- and binary-component system under visible light irradiation. The adsorption experiments were done by the catalyst in the water solution containing the impurities. The magnetic and optical properties were studied by VSM and UV-Vis analysis. The nature of porosity was investigated using the BET method. 3D nanospheres of diameter about 5-10 nm were fabricated. The binary-contaminant system exhibited synergetic photocatalytic effect (80% improvement in activity rate) against the nanoparticles. The corresponding mechanism is discussed. CoFe2O4 exhibited better adsorption, photocatalytic and magnetic separation efficiency due to its higher surface area (50% higher), narrower band gap (25% lesser), smaller crystallite size, a strong magnetic strength (51.35 emu/g) and meso-macro hierarchical porous structure. The adsorption of Cr(VI) and MO can be approximated to the Langmuir and Freundlich model, respectively.

  19. Design and development of novel MRI compatible zirconium- ruthenium alloys with ultralow magnetic susceptibility.

    PubMed

    Li, H F; Zhou, F Y; Li, L; Zheng, Y F

    2016-04-19

    In the present study, novel MRI compatible zirconium-ruthenium alloys with ultralow magnetic susceptibility were developed for biomedical and therapeutic devices under MRI diagnostics environments. The results demonstrated that alloying with ruthenium into pure zirconium would significantly increase the strength and hardness properties. The corrosion resistance of zirconium-ruthenium alloys increased significantly. High cell viability could be found and healthy cell morphology observed when culturing MG 63 osteoblast-like cells and L-929 fibroblast cells with zirconium-ruthenium alloys, whereas the hemolysis rates of zirconium-ruthenium alloys are <1%, much lower than 5%, the safe value for biomaterials according to ISO 10993-4 standard. Compared with conventional biomedical 316L stainless steel, Co-Cr alloys and Ti-based alloys, the magnetic susceptibilities of the zirconium-ruthenium alloys (1.25 × 10(-6) cm(3)·g(-1)-1.29 × 10(-6) cm(3)·g(-1) for zirconium-ruthenium alloys) are ultralow, about one-third that of Ti-based alloys (Ti-6Al-4V, ~3.5 × 10(-6) cm(3)·g(-1), CP Ti and Ti-6Al-7Nb, ~3.0 × 10(-6) cm(3)·g(-1)), and one-sixth that of Co-Cr alloys (Co-Cr-Mo, ~7.7 × 10(-6) cm(3)·g(-1)). Among the Zr-Ru alloy series, Zr-1Ru demonstrates enhanced mechanical properties, excellent corrosion resistance and cell viability with lowest magnetic susceptibility, and thus is the optimal Zr-Ru alloy system as therapeutic devices under MRI diagnostics environments.

  20. First-principles study on the thermal expansion of Ni-X binary alloys based on the quasi-harmonic Debye model

    NASA Astrophysics Data System (ADS)

    Shin, Yongjin; Jung, Woo-Sang; Lee, Young-Su

    2016-11-01

    In this study, we use the quasi-harmonic Debye model to predict the coefficient of thermal expansion of Ni- X binary alloys. The method bridges between the macroscopic elastic behavior and thermodynamic properties of materials without an expensive calculation of the volume dependence of the phonon density of states. Furthermore, the Grüneisen parameter is derived from the volume dependence of the Debye temperature, which is calculated from the first-principles elastic stiffness constants. The experimental coefficient of thermal expansion (CTE) of pure nickel is well reproduced, especially in the low temperature region. Among the few alloying elements tested, Al is predicted to slightly decrease the CTE whereas Mo and W are more effective in reducing the CTE. For the cases of Ni-X binary alloy systems, where the variation in the CTE is relatively small, the method used here appears to perform better than certain other formulations that rely entirely on the energy vs. volume relationship.

  1. Chevrel-phase solid solution Mo 6Se 8- xTe x. Study of its superconducting, magnetic and NMR properties

    NASA Astrophysics Data System (ADS)

    Hamard1a, C.; Auffret, V.; Peña, O.; Le Floch, M.; Nowak, B.; Wojakowski, A.

    2000-09-01

    The Chevrel-phase solid solution Mo 6Se 8-Mo 6Te 8 was studied by X-ray diffraction, AC and DC magnetic susceptibility and 77Se and 125Te NMR spectroscopy. From the smooth evolution of the lattice parameters and superconducting critical temperatures, a progressive substitution of selenium atoms by tellurium is shown, on the whole range of composition 0⩽ x⩽8, in the formulation Mo 6Se 8- xTe x: the unit-cell volume increases linearly because of the larger ionic size of tellurium, while Tc decreases rapidly (from 6.45 down to 0 K) because of the different formal oxidation states of the anions and a probable evolution of the Fermi level in the density of states. Results of magnetic susceptibility support this model and suggest the inhibition of the intrinsic metallic behavior with increasing x. The NMR spectra of the binaries Mo 6Se 8 and Mo 6Te 8 reveal two significant features, attributed to two different chalcogen positions in the R 3¯ symmetry. At low Se contents in Mo 6Se 8- xTe x ( x=7.5, 7 and 6), selenium first fills the two X(2) sites along the three-fold axis (2c positions), and then it becomes statistically distributed over the general 6f positions, leading to broad 77Se NMR lines. On the other hand, substitution of Te atoms in Mo 6Se 8 seems to occur in a random way, creating large perturbations on the 125Te NMR spectra, over the whole range of x. Theoretical analysis based on the presence of two anisotropic lines (of axial and non-axial symmetries, respectively) allowed us to estimate their anisotropy factors and to perfectly simulate the frequency response of both Mo 6Se 8 and Mo 6Te 8 binaries. Analysis of the Knight shift anisotropy leads us to conclude about the importance of the molybdenum z 2 molecular orbital contribution which controls the Mo-X dipolar interactions.

  2. The isothermal section of Gd-Ni-Si system at 1070 K

    NASA Astrophysics Data System (ADS)

    Morozkin, A. V.; Knotko, A. V.; Yapaskurt, V. O.; Manfrinetti, P.; Pani, M.; Provino, A.; Nirmala, R.; Quezado, S.; Malik, S. K.

    2016-03-01

    The Gd-Ni-Si system has been investigated at 1070 K by X-ray and microprobe analyses. The existence of the known compounds, i.e.: GdNi10Si2, GdNi8Si3, GdNi5Si3, GdNi7Si6, GdNi6Si6, GdNi4Si, GdNi2Si2, GdNiSi3, Gd3Ni6Si2, GdNiSi, GdNiSi2, GdNi0.4Si1.6, Gd2Ni2.35Si0.65, Gd3NiSi2, Gd3NiSi3 and Gd6Ni1.67Si3, has been confirmed. Moreover, five new phases have been identified in this system. The crystal structure for four of them has been determined: Gd2Ni16-12.8Si1-4.2 (Th2Zn17-type), GdNi6.6Si6 (GdNi7Si6-type), Gd3Ni8Si (Y3Co8Si-type) and Gd3Ni11.5Si4.2(Gd3Ru4Ga12-type). The compound with composition ~Gd2Ni4Si3 still remains with unknown structure. Quasi-binary phases, solid solutions, were detected at 1070 K to be formed by the binaries GdNi5, GdNi3, GdNi2, GdNi, GdSi2 and GdSi1.67; while no appreciable solubility was observed for the other binary compounds of the Gd-Ni-Si system. Magnetic properties of the GdNi6Si6, GdNi6.6Si6 and Gd3Ni11.5Si4.2 compounds have also been investigated and are here reported.

  3. Multibit data storage states formed in plasma-treated MoS₂ transistors.

    PubMed

    Chen, Mikai; Nam, Hongsuk; Wi, Sungjin; Priessnitz, Greg; Gunawan, Ivan Manuel; Liang, Xiaogan

    2014-04-22

    New multibit memory devices are desirable for improving data storage density and computing speed. Here, we report that multilayer MoS2 transistors, when treated with plasmas, can dramatically serve as low-cost, nonvolatile, highly durable memories with binary and multibit data storage capability. We have demonstrated binary and 2-bit/transistor (or 4-level) data states suitable for year-scale data storage applications as well as 3-bit/transistor (or 8-level) data states for day-scale data storage. This multibit memory capability is hypothesized to be attributed to plasma-induced doping and ripple of the top MoS2 layers in a transistor, which could form an ambipolar charge-trapping layer interfacing the underlying MoS2 channel. This structure could enable the nonvolatile retention of charged carriers as well as the reversible modulation of polarity and amount of the trapped charge, ultimately resulting in multilevel data states in memory transistors. Our Kelvin force microscopy results strongly support this hypothesis. In addition, our research suggests that the programming speed of such memories can be improved by using nanoscale-area plasma treatment. We anticipate that this work would provide important scientific insights for leveraging the unique structural property of atomically layered two-dimensional materials in nanoelectronic applications.

  4. 4-d magnetism: Electronic structure and magnetism of some Mo-based alloys

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Bose, S. K.; Kudrnovský, J.

    2017-02-01

    We report results of a first-principles density-functional study of alloys of the 4 d -element Mo with group IV elements Si, Ge and Sn in zinc blende (ZB) and rock salt (RS) structures. The study was motivated by a similar study of ours based on the 4 d -element Tc, which showed the presence of half-metallic states with integer magnetic moment (1μB) per formula unit in TcX (X=C, Si, Ge) alloys. The calculated Curie temperatures for the ferromagnetic (FM) phases were low, around or less than 300 K. Searching for the possibility of 4 d -based alloys with higher Curie temperatures we have carried out the study involving the elements Mo, Ru and Rh. Among these the most promising case appears to be that involving the element Mo. Among the MoX (X=Si, Ge, Sn) alloys in ZB and RS structures, both MoGe and MoSn in ZB structures are found to possess an integer magnetic moment of 2μB per formula unit. ZB MoSn can be classified as a marginal/weak half-metal or a spin gapless semiconductor, while ZB MoGe would be best described as a gapless magnetic semiconductor. The calculated Curie temperatures are in the range 300-700 K. Considering the theoretical uncertainty in the band gaps due not only to the treatment of exchange and correlation effects, but density functional theory itself, these classifications may change somewhat, but both merit investigation from the viewpoint of potential spintronic application. Based on their higher Curie temperatures, Mo-based alloys would serve such purpose better than the previously reported Tc-based ones.

  5. The Earth-Moon system as a typical binary in the Solar System

    NASA Astrophysics Data System (ADS)

    Ipatov, S.

    2014-07-01

    In recent years new arguments in favor of the formation of solid planetesimals by contraction of rarefied preplanetesimals (RPPs) have been found. It is often considered that masses of some RPPs can correspond to masses of solid bodies of diameter about 1000 km. [1] showed that in the vortices launched by the Rossby wave instability in the borders of the dead zone, the solids quickly achieve critical densities and undergo gravitational collapse into protoplanetary embryos in the mass range 0.1-0.6M_E (where M_E is the mass of the Earth). [2] and [3] supposed that transneptunian binaries were formed from RPPs. It was shown in [2] that the angular momenta acquired at collisions of RPPs moving in circular heliocentric orbits could have the same values as the angular momenta of discovered transneptunian and asteroid binaries. [4] obtained that the angular momenta used in [3] as initial data in calculations of the contraction of RPPs leading to formation of transneptunian binaries could be acquired at collisions of two RPPs moving in circular heliocentric orbits. I supposed that the fraction of RPPs collided with other RPPs during their contraction can be about the fraction of small bodies of diameter d>100 km with satellites (among all such small bodies), i.e., it can be about 0.3 for objects formed in the transneptunian belt. The model of collisions of RPPs explains negative angular momenta of some observed binaries, as about 20 percent of collisions of RPPs moving in circular heliocentric orbits lead to retrograde rotation. Note that if all RPPs got their angular momenta at their formation without mutual collisions, then the angular momenta of small bodies without satellites and those with satellites could be similar (but actually they differ considerably). Most of rarefied preasteroids could turn into solid asteroids before they collided with other preasteroids. Some present asteroids can be debris of larger solid bodies, and the formation of many binaries with primaries with d<100 km can be explained by other models (not by contraction of RPPs). [5] noted that the giant impact concept, which is a popular model of the Moon formation, has several weaknesses. In particular, they calculated formation of the Earth-Moon system from a rarefied protoplanet which mass equaled to the mass of the Earth-Moon system. Using the formulas presented in [2], we obtained that the ratio r_K=K_{EM}/K_{s2} of the angular momentum K_{EM} of the Earth-Moon system to the angular momentum K_{s2} at a typical collision of two identical RPPs - Hill spheres, which masses m_2 are equal to 0.5\\cdot1.0123M_E and heliocentric orbits are circular, is about 0.0335. As K_{s2} ∝ (m_2)^{3/5} [2], then K_{s2}=K_{EM} at 2 m_2=0.0335^{3/5}\\cdot 1.0123M_E=0.13M_E. For circular heliocentric orbits, the maximum value of K_{s2} is greater by a factor of 0.6^{-1} than the above typical value. In this case, r_K=0.02 and 0.02^{3/5}=0.096. Therefore, the angular momentum of the Earth-Moon system can be acquired at a collision of two RPPs with a total mass not smaller than the mass of Mars. We suppose that solid proto-Earth and proto-Moon (with masses m_{Eo} and m_{Mo}) could be formed from a RPP (e.g., according to the models of contraction of a RPP [3,5]). Let us consider the model of the growth of proto-Earth and proto-Moon to the present masses of the Earth and the Moon (M_E and 0.0123M_E, respectively) by accumulation of smaller planetesimals for the case when the effective radii of proto-Earth and proto-Moon are proportional to r (where r is a radius of a considered object). Such proportionality can be considered for large enough eccentricities of planetesimals. In this case, r_{Mo}=m_{Mo}/M_E = [ (0.0123)^{-2/3} - k + k \\cdot (m_{Eo}/M_E)^{-2/3})]^{-3/2}, where k=(k_d)^{-2/3}, and k_d is the ratio of the density of the growing Moon to that of the growing Earth (k_d=0.6 for the present Earth and Moon). For r_{Eo}=m_{Eo}/M_E=0.1, we have r_{Mo}=0.0094 at k=1 and r_{Mo}=0.0086 at k=0.6^{-2/3}. At these values of r_{Mo}, the ratio f_M=(0.0123-r_{Mo})/0.0123 of the mass of planetesimals that were accreted by the Moon at the stage of the solid body accumulation to the present mass of the Moon is 0.24 and 0.30, respectively. If we consider that effective radii of the objects are proportional to r^2 (the case of relatively small relative velocities of planetesimals), then at r_{Eo}=0.1 for k_d equal 1 and 0.6, we obtain f_M equal to 0.04 and 0.05, respectively. In the above model, the Moon could acquire up to 1/3 of its mass at the stage of accumulation of solid bodies, while the mass of the growing Earth increased by a factor of ten, but probably the initial mass of a solid proto-Earth exceeded 0.1M_E. Probably, the RPPs that contracted and formed the embryos of other terrestrial planets did not collide with massive RPPs, and therefore they did not get large enough angular momentum needed to form massive satellites.

  6. Systems and methods for treating material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheele, Randall D; McNamara, Bruce K

    Systems for treating material are provided that can include a vessel defining a volume, at least one conduit coupled to the vessel and in fluid communication with the vessel, material within the vessel, and NF.sub.3 material within the conduit. Methods for fluorinating material are provided that can include exposing the material to NF.sub.3 to fluorinate at least a portion of the material. Methods for separating components of material are also provided that can include exposing the material to NF.sub.3 to at least partially fluorinate a portion of the material, and separating at least one fluorinated component of the fluorinated portionmore » from the material. The materials exposed to the NF.sub.3 material can include but are not limited to one or more of U, Ru, Rh, Mo, Tc, Np, Pu, Sb, Ag, Am, Sn, Zr, Cs, Th, and/or Rb.« less

  7. Elastic modulus of phases in Ti–Mo alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wei-dong; Liu, Yong, E-mail: yonliu11@aliyun.com; Wu, Hong

    2015-08-15

    In this work, a series of binary Ti–Mo alloys with the Mo contents ranging from 3.2 to 12 at.% were prepared using non-consumable arc melting. The microstructures were investigated by X-ray diffraction and transmission electron microscope, and the elastic modulus was evaluated by nanoindentation testing technique. The evolution of the volume fractions of ω phase was investigated using X-ray photoelectron spectroscopy. The results indicated that the phase constitution and elastic modulus of the Ti–Mo alloys are sensitive to the Mo content. Ti–3.2Mo and Ti–8Mo alloys containing only α and β phases, respectively, have a low elastic modulus. In contrast, Ti–4.5Mo,more » Ti–6Mo, Ti–7Mo alloys, with different contents of ω phase, have a high elastic modulus. A simple micromechanical model was used to calculate the elastic modulus of ω phase (E{sub ω}), which was determined to be 174.354 GPa. - Highlights: • Ti–Mo alloys with the Mo contents ranging from 3.2 to 12 at.% were investigated. • XPS was used to investigate the volume fractions of ω phase. • The elastic modulus of Ti–Mo alloys is sensitive to the Mo content. • The elastic modulus of ω phase was determined to be 174.354 GPa.« less

  8. Electron transfer kinetics on natural crystals of MoS2 and graphite.

    PubMed

    Velický, Matěj; Bissett, Mark A; Toth, Peter S; Patten, Hollie V; Worrall, Stephen D; Rodgers, Andrew N J; Hill, Ernie W; Kinloch, Ian A; Novoselov, Konstantin S; Georgiou, Thanasis; Britnell, Liam; Dryfe, Robert A W

    2015-07-21

    Here, we evaluate the electrochemical performance of sparsely studied natural crystals of molybdenite and graphite, which have increasingly been used for fabrication of next generation monolayer molybdenum disulphide and graphene energy storage devices. Heterogeneous electron transfer kinetics of several redox mediators, including Fe(CN)6(3-/4-), Ru(NH3)6(3+/2+) and IrCl6(2-/3-) are determined using voltammetry in a micro-droplet cell. The kinetics on both materials are studied as a function of surface defectiveness, surface ageing, applied potential and illumination. We find that the basal planes of both natural MoS2 and graphite show significant electroactivity, but a large decrease in electron transfer kinetics is observed on atmosphere-aged surfaces in comparison to in situ freshly cleaved surfaces of both materials. This is attributed to surface oxidation and adsorption of airborne contaminants at the surface exposed to an ambient environment. In contrast to semimetallic graphite, the electrode kinetics on semiconducting MoS2 are strongly dependent on the surface illumination and applied potential. Furthermore, while visibly present defects/cracks do not significantly affect the response of graphite, the kinetics on MoS2 systematically accelerate with small increase in disorder. These findings have direct implications for use of MoS2 and graphene/graphite as electrode materials in electrochemistry-related applications.

  9. Adsorptive Separation of Methanol-Acetone on Isostructural Series of Metal-Organic Frameworks M-BTC (M = Ti, Fe, Cu, Co, Ru, Mo): A Computational Study of Adsorption Mechanisms and Metal-Substitution Impacts.

    PubMed

    Wu, Ying; Chen, Huiyong; Xiao, Jing; Liu, Defei; Liu, Zewei; Qian, Yu; Xi, Hongxia

    2015-12-09

    The adsorptive separation properties of M-BTC isostructural series (M = Ti, Fe, Cu, Co, Ru, Mo) for methanol-acetone mixtures were investigated by using various computational procedures of grand canonical Monte Carlo simulations (GCMC), density functional theory (DFT), and ideal adsorbed solution theory (IAST), following with comprehensive understanding of adsorbate-metal interactions on the adsorptive separation behaviors. The obtained results showed that the single component adsorptions were driven by adsorbate-framework interactions at low pressures and by framework structures at high pressures, among which the mass effects, electrostatics, and geometric accessibility of the metal sites also played roles. In the case of methanol-acetone separation, the selectivity of methanol on M-BTCs decreased with rising pressures due to the pressure-dependent separation mechanisms: the cooperative effects between methanol and acetone hindered the separation at low pressures, whereas the competitive effects of acetone further resulted in the lower selectivity at high pressures. Among these M-BTCs, Ti and Fe analogues exhibited the highest thermodynamic methanol/acetone selectivity, making them promising for adsorptive methanol/acetone separation processes. The investigation provides mechanistic insights on how the nature of metal centers affects the adsorption properties of MOFs, and will further promote the rational design of new MOF materials for effective gas mixture separation.

  10. E2/M1 mixing ratios in transitions from the gamma vibrational bands to the ground state rotational bands of 102, 104, 106, 108Mo, 108, 110, 112Ru, and 112, 114, 116Pd

    NASA Astrophysics Data System (ADS)

    Eldridge, J. M.; Fenker, B.; Hamilton, J. H.; Goodin, C.; Zachary, C. J.; Wang, E.; Ramayya, A. V.; Daniel, A. V.; Ter-Akopian, G. M.; Oganessian, Yu. Ts.; Luo, Y. X.; Rasmussen, J. O.; Zhu, S. J.

    2018-02-01

    E2/ M1 mixing ratios have been measured for transitions from states in the γ vibrational bands ( I+_{γ}) to states in the ground state bands (I+ or [I-1]+) of the neutron rich, even-even, deformed isotopes, 102, 104, 106, 108Mo, 108, 110, 112Ru, and 112, 114, 116Pd, including from states as high as 9+_{γ}. These measurements were done using the GAMMASPHERE detector array, which, at the time of the experiment, had 101 working HPGe detectors, arranged at 64 different angles. A 62 μCi source of 252Cf was placed inside GAMMASPHERE yielding 5.7× 10^{11} γ-γ-γ and higher coincidence events. The angular correlations between the transitions from the γ-bands to the ground bands, and the pure E2 transitions within the ground band were then measured. These angular correlations yielded the mixing ratios, demonstrating that these transitions are pure or nearly pure E2, in agreement with theory. In order to correct for possible attenuation due to the lifetime of the intermediate state in these correlations, the g-factors of the intermediate states needed to be known. Therefore, the g-factors of the 2+ states in the ground state band have been measured.

  11. NanoSIMS Determination of Carbon and Oxygen Isotopic Compositions of Presolar Graphites from the Murchison Meteorite

    NASA Technical Reports Server (NTRS)

    Stadermann, F. J.; Croat, T. K.; Bernatowicz, T.

    2004-01-01

    Graphite from the Murchison density separate KFC1 (2.15 - 2.20 g/cu cm) has previously been studied by combined SEM/EDX and ion microprobe analysis. These studies found several distinct morphological types of graphites and C isotopic compositions that vary over more than 3 orders of magnitude, clearly establishing their presolar origin. Subsequent TEM measurements of a subset of these particles found abundant embedded crystals of metal (Zr, Mo, Ti, Ru) carbides which were incorporated during the growth of the graphites. A new TEM study of a large set of KFC1 graphites led to the discovery of another type of presolar material, Ru-Fe metal. Here we report results of the C and O isotopic measurements in the same graphite sections, which makes it possible for the first time to directly correlate isotopic and TEM data of KFC1 grains.

  12. Three-dimensional anode engineering for the direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Bauer, A.; Oloman, C. W.; Gyenge, E. L.

    Catalyzed graphite felt three-dimensional anodes were investigated in direct methanol fuel cells (DMFCs) operated with sulfuric acid supporting electrolyte. With a conventional serpentine channel flow field the preferred anode thickness was 100 μm, while a novel flow-by anode showed the best performance with a thickness of 200-300 μm. The effects of altering the methanol concentration, anolyte flow rate and operating temperature on the fuel cell superficial power density were studied by full (2 3 + 1) factorial experiments on a cell with anode area of 5 cm 2 and excess oxidant O 2 at 200 kPa(abs). For operation in the flow-by mode with 2 M methanol at 2 cm 3 min -1 and 353 K the peak power density was 2380 W m -2 with a PtRuMo anode catalyst, while a PtRu catalyst yielded 2240 W m -2 under the same conditions.

  13. Diversity of Chemical Bonding and Oxidation States in MS 4 Molecules of Group 8 Elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Wei; Jiang, Ning; Schwarz, W. H. Eugen

    The geometric and electronic ground-state structures of six MS 4 molecules (M = group-8 metals Fe, Ru, Os, Hs, Sm, and Pu) have been studied by using quantum-chemical density-functional and correlated wave-function approaches. The MS 4 species are compared to analogous MO 4 species recently investi-gated (Inorg. Chem. 2016, 55: 4616). Metal oxidation state (MOS) of high value VIII appears in low- spin singlet Td geometric species (Os,Hs)S 4 and (Ru,Os,Hs)O 4, whereas low MOS=II appears in high- spin septet D 2d species Fe(S 2) 2 and (slightly excited) metastable Fe(O 2) 2. The ground states of all other moleculesmore » have intermediate MOS values, containing S 2-, S 2 2-, S2 1- (and resp. O 2--, O 1-, O 2 2-, O 2 1-) ligands, bonded by ionic, covalent and correlative contributions.« less

  14. Physics of the N=Z and N=Z+1 Nuclei in the A = 80--100 Region

    NASA Astrophysics Data System (ADS)

    Bucurescu, D.

    2007-04-01

    A review of the experimental work performed at the GASP array with the purpose of the identification and first spectroscopic measurements of the heaviest even-even N=Z and odd-A N=Z+1 nuclei (mass larger than 80) is made. Systematic experiments in this mass region led to the first study of seven such nuclei: 88Ru, 81Zr, 85Mo, 89Ru, 91Rh, 93Pd, and 95Ag, and extensive data on many other nuclei in their neighborhood. The systematic evolution of the level structures in both even-even and odd-A nuclei, between N approx Z approx 40 and N approx Z approx 47 is briefly presented. The possibility that effects of the neutron-proton pairing have been observed, as well as the type of collectivity observed in this region are discussed.

  15. Transition Metal Coatings for Energy Conversion and Storage; Electrochemical and High Temperature Applications

    NASA Astrophysics Data System (ADS)

    Falola, Bamidele Daniel

    Energy storage provides sustainability when coupled with renewable but intermittent energy sources such as solar, wave and wind power, and electrochemical supercapacitors represent a new storage technology with high power and energy density. For inclusion in supercapacitors, transition metal oxide and sulfide electrodes such as RuO2, IrO2, TiS2, and MoS2 exhibit rapid faradaic electron-transfer reactions combined with low resistance. The pseudocapacitance of RuO2 is about 720 F/g, and is 100 times greater than double-layer capacitance of activated carbon electrodes. Due to the two-dimensional layered structure of MoS2, it has proven to be an excellent electrode material for electrochemical supercapacitors. Cathodic electrodeposition of MoS2 onto glassy carbon electrodes is obtained from electrolytes containing (NH4)2MoS 4 and KCl. Annealing the as-deposited Mo sulfide deposit improves the capacitance by a factor of 40x, with a maximum value of 360 F/g for 50 nm thick MoS2 films. The effects of different annealing conditions were investigated by XRD, AFM and charge storage measurements. The specific capacitance measured by cyclic voltammetry is highest for MoS2 thin films annealed at 500°C for 3h and much lower for films annealed at 700°C for 1 h. Inclusion of copper as a dopant element into electrodeposited MoS2 thin films for reducing iR drop during film charge/discharge is also studied. Thin films of Cu-doped MoS2 are deposited from aqueous electrolytes containing SCN-, which acts as a complexing agent to shift the cathodic Cu deposition potential, which is much more anodic than that of MoS2. Annealed, Cu-doped MoS2 films exhibit enhanced charge storage capability about 5x higher than undoped MoS2 films. Coal combustion is currently the largest single anthropogenic source of CO2 emissions, and due to the growing concerns about climate change, several new technologies have been developed to mitigate the problem, including oxyfuel coal combustion, which makes CO2 sequestration easier. One complication of oxyfuel coal combustion is that corrosion problems can be exacerbated due to flue gas recycling, which is employed to dilute the pure O2 feed and reduce the flame temperature. Refractory metal diffusion coatings of Ti and Zr atop P91 steel were created and tested for their ability to prevent corrosion in an oxidizing atmosphere at elevated temperature. Using pack cementation, diffusion coatings of thickness approximately 12 and 20 microm are obtained for Ti and Zr, respectively. The effects of heating to 950°C for 24 hr in 5% O2 in He are studied in situ by thermogravimetric analyses (TGA), and ex situ by SEM analyses and depth profiling by EDX. For Ti-coated, Zr-coated and uncoated P91 samples, extended heating in an oxidizing environment causes relatively thick oxide growth, but extensive oxygen penetration greater than 2.7 mm below the sample surface, and eventual oxide exfoliation, are observed only for the uncoated P91 sample. For the Ti- and Zr-coated samples, oxygen penetrates approximately 16 and 56 microm, respectively, below the surface. in situ TGA verifies that Ti-and Zr-coated P91 samples undergo far smaller mass changes during corrosion than uncoated samples, reaching close to steady state mass after approximately four hours.

  16. Autonomous Filling of Grain-Boundary Cavities during Creep Loading in Fe-Mo Alloys

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Fang, H.; Gramsma, M. E.; Kwakernaak, C.; Sloof, W. G.; Tichelaar, F. D.; Kuzmina, M.; Herbig, M.; Raabe, D.; Brück, E.; van der Zwaag, S.; van Dijk, N. H.

    2016-10-01

    We have investigated the autonomous repair of creep damage by site-selective precipitation in a binary Fe-Mo alloy (6.2 wt pct Mo) during constant-stress creep tests at temperatures of 813 K, 823 K, and 838 K (540 °C, 550 °C, and 565 °C). Scanning electron microscopy studies on the morphology of the creep-failed samples reveal irregularly formed deposits that show a close spatial correlation with the creep cavities, indicating the filling of creep cavities at grain boundaries by precipitation of the Fe2Mo Laves phase. Complementary transmission electron microscopy and atom probe tomography have been used to characterize the precipitation mechanism and the segregation at grain boundaries in detail.

  17. Ternary cobalt-molybdenum-zirconium coatings for alternative energies

    NASA Astrophysics Data System (ADS)

    Yar-Mukhamedova, Gulmira; Ved', Maryna; Sakhnenko, Nikolay; Koziar, Maryna

    2017-11-01

    Consistent patterns for electrodeposition of Co-Mo-Zr coatings from polyligand citrate-pyrophosphate bath were investigated. The effect of both current density amplitude and pulse on/off time on the quality, composition and surface morphology of the galvanic alloys were determined. It was established the coating Co-Mo-Zr enrichment by molybdenum with current density increasing up to 8 A dm-2 as well as the rising of pulse time and pause duration promotes the content of molybdenum because of subsequent chemical reduction of its intermediate oxides by hydrogen ad-atoms. It was found that the content of the alloying metals in the coating Co-Mo-Zr depends on the current density and on/off times extremely and maximum Mo and Zr content corresponds to the current density interval 4-6 A dm-2, on-/off-time 2-10 ms. Chemical resistance of binary and ternary coatings based on cobalt is caused by the increased tendency to passivity and high resistance to pitting corrosion in the presence of molybdenum and zirconium, as well as the acid nature of their oxides. Binary coating with molybdenum content not less than 20 at.% and ternary ones with zirconium content in terms of corrosion deep index are in a group ;very proof;. It was shown that Co-Mo-Zr alloys exhibits the greatest level of catalytic properties as cathode material for hydrogen electrolytic production from acidic media which is not inferior a platinum electrode. The deposits Co-Mo-Zr with zirconium content 2-4 at.% demonstrate high catalytic properties in the carbon(II) oxide conversion. This confirms the efficiency of materials as catalysts for the gaseous wastes purification and gives the reason to recommend them as catalysts for red-ox processes activating by oxygen as well as electrode materials for red-ox batteries.

  18. Astrometric observations of visual binaries using 26-inch refractor during 2007-2014 at Pulkovo

    NASA Astrophysics Data System (ADS)

    Izmailov, I. S.; Roshchina, E. A.

    2016-04-01

    We present the results of 15184 astrometric observations of 322 visual binaries carried out in 2007-2014 at Pulkovo observatory. In 2007, the 26-inch refractor ( F = 10413 mm, D = 65 cm) was equipped with the CCD camera FLI ProLine 09000 (FOV 12' × 12', 3056 × 3056 pixels, 0.238 arcsec pixel-1). Telescope automation and weather monitoring system installation allowed us to increase the number of observations significantly. Visual binary and multiple systems with an angular distance in the interval 1."1-78."6 with 7."3 on average were included in the observing program. The results were studied in detail for systematic errors using calibration star pairs. There was no detected dependence of errors on temperature, pressure, and hour angle. The dependence of the 26-inch refractor's scale on temperature was taken into account in calculations. The accuracy of measurement of a single CCD image is in the range of 0."0005 to 0."289, 0."021 on average along both coordinates. Mean errors in annual average values of angular distance and position angle are equal to 0."005 and 0.°04 respectively. The results are available here http://izmccd.puldb.ru/vds.htmand in the Strasbourg Astronomical Data Center (CDS). In the catalog, the separations and position angles per night of observation and annual average as well as errors for all the values and standard deviations of a single observation are presented. We present the results of comparison of 50 pairs of stars with known orbital solutions with ephemerides.

  19. 94 Mo(γ,n) and 90Zr(γ,n) cross-section measurements towards understanding the origin of p-nuclei

    NASA Astrophysics Data System (ADS)

    Meekins, E.; Banu, A.; Karwowski, H.; Silano, J.; Zimmerman, W.; Muller, J.; Rich, G.; Bhike, M.; Tornow, W.; McClesky, M.; Travaglio, C.

    2014-09-01

    The nucleosynthesis beyond iron of the rarest stable isotopes in the cosmos, the so-called p-nuclei, is one of the forefront topics in nuclear astrophysics. Recently, a stellar source was found that, for the first time, was able to produce both light and heavy p-nuclei almost at the same level as 56Fe, including the most debated 92,94Mo and 96,98Ru; it was also found that there is an important contribution from the p-process nucleosynthesis to the neutron magic nucleus 90Zr. We focus here on constraining the origin of p-nuclei through nuclear physics by studying two key astrophysical photoneutron reaction cross sections for 94Mo(γ,n) and 90Zr(γ,n). Their energy dependencies were measured using quasi-monochromatic photon beams from Duke University's High Intensity Gamma-ray Source facility at the respective neutron threshold energies up to 18 MeV. Preliminary results of these experimental cross sections will be presented along with their comparison to predictions by a statistical model based on the Hauser-Feshbach formalism implemented in codes like TALYS and SMARAGD. The nucleosynthesis beyond iron of the rarest stable isotopes in the cosmos, the so-called p-nuclei, is one of the forefront topics in nuclear astrophysics. Recently, a stellar source was found that, for the first time, was able to produce both light and heavy p-nuclei almost at the same level as 56Fe, including the most debated 92,94Mo and 96,98Ru; it was also found that there is an important contribution from the p-process nucleosynthesis to the neutron magic nucleus 90Zr. We focus here on constraining the origin of p-nuclei through nuclear physics by studying two key astrophysical photoneutron reaction cross sections for 94Mo(γ,n) and 90Zr(γ,n). Their energy dependencies were measured using quasi-monochromatic photon beams from Duke University's High Intensity Gamma-ray Source facility at the respective neutron threshold energies up to 18 MeV. Preliminary results of these experimental cross sections will be presented along with their comparison to predictions by a statistical model based on the Hauser-Feshbach formalism implemented in codes like TALYS and SMARAGD. This research was supported by the Research Corporation for Science Advancement.

  20. Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation.

    PubMed

    Mao, Junjie; Chen, Wenxing; He, Dongsheng; Wan, Jiawei; Pei, Jiajing; Dong, Juncai; Wang, Yu; An, Pengfei; Jin, Zhao; Xing, Wei; Tang, Haolin; Zhuang, Zhongbin; Liang, Xin; Huang, Yu; Zhou, Gang; Wang, Leyu; Wang, Dingsheng; Li, Yadong

    2017-08-01

    Developing cost-effective, active, and durable electrocatalysts is one of the most important issues for the commercialization of fuel cells. Ultrathin Pt-Mo-Ni nanowires (NWs) with a diameter of ~2.5 nm and lengths of up to several micrometers were synthesized via a H 2 -assisted solution route (HASR). This catalyst was designed on the basis of the following three points: (i) ultrathin NWs with high numbers of surface atoms can increase the atomic efficiency of Pt and thus decrease the catalyst cost; (ii) the incorporation of Ni can isolate Pt atoms on the surface and produce surface defects, leading to high catalytic activity (the unique structure and superior activity were confirmed by spherical aberration-corrected electron microscopy measurements and ethanol oxidation tests, respectively); and (iii) the incorporation of Mo can stabilize both Ni and Pt atoms, leading to high catalytic stability, which was confirmed by experiments and density functional theory calculations. Furthermore, the developed HASR strategy can be extended to synthesize a series of Pt-Mo-M (M = Fe, Co, Mn, Ru, etc.) NWs. These multimetallic NWs would open up new opportunities for practical fuel cell applications.

  1. Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation

    PubMed Central

    Mao, Junjie; Chen, Wenxing; He, Dongsheng; Wan, Jiawei; Pei, Jiajing; Dong, Juncai; Wang, Yu; An, Pengfei; Jin, Zhao; Xing, Wei; Tang, Haolin; Zhuang, Zhongbin; Liang, Xin; Huang, Yu; Zhou, Gang; Wang, Leyu; Wang, Dingsheng; Li, Yadong

    2017-01-01

    Developing cost-effective, active, and durable electrocatalysts is one of the most important issues for the commercialization of fuel cells. Ultrathin Pt-Mo-Ni nanowires (NWs) with a diameter of ~2.5 nm and lengths of up to several micrometers were synthesized via a H2-assisted solution route (HASR). This catalyst was designed on the basis of the following three points: (i) ultrathin NWs with high numbers of surface atoms can increase the atomic efficiency of Pt and thus decrease the catalyst cost; (ii) the incorporation of Ni can isolate Pt atoms on the surface and produce surface defects, leading to high catalytic activity (the unique structure and superior activity were confirmed by spherical aberration–corrected electron microscopy measurements and ethanol oxidation tests, respectively); and (iii) the incorporation of Mo can stabilize both Ni and Pt atoms, leading to high catalytic stability, which was confirmed by experiments and density functional theory calculations. Furthermore, the developed HASR strategy can be extended to synthesize a series of Pt-Mo-M (M = Fe, Co, Mn, Ru, etc.) NWs. These multimetallic NWs would open up new opportunities for practical fuel cell applications. PMID:28875160

  2. Design and development of novel MRI compatible zirconium- ruthenium alloys with ultralow magnetic susceptibility

    PubMed Central

    Li, H.F.; Zhou, F.Y.; Li, L.; Zheng, Y.F.

    2016-01-01

    In the present study, novel MRI compatible zirconium-ruthenium alloys with ultralow magnetic susceptibility were developed for biomedical and therapeutic devices under MRI diagnostics environments. The results demonstrated that alloying with ruthenium into pure zirconium would significantly increase the strength and hardness properties. The corrosion resistance of zirconium-ruthenium alloys increased significantly. High cell viability could be found and healthy cell morphology observed when culturing MG 63 osteoblast-like cells and L-929 fibroblast cells with zirconium-ruthenium alloys, whereas the hemolysis rates of zirconium-ruthenium alloys are <1%, much lower than 5%, the safe value for biomaterials according to ISO 10993-4 standard. Compared with conventional biomedical 316L stainless steel, Co–Cr alloys and Ti-based alloys, the magnetic susceptibilities of the zirconium-ruthenium alloys (1.25 × 10−6 cm3·g−1–1.29 × 10−6 cm3·g−1 for zirconium-ruthenium alloys) are ultralow, about one-third that of Ti-based alloys (Ti–6Al–4V, ~3.5 × 10−6 cm3·g−1, CP Ti and Ti–6Al–7Nb, ~3.0 × 10−6 cm3·g−1), and one-sixth that of Co–Cr alloys (Co–Cr–Mo, ~7.7 × 10−6 cm3·g−1). Among the Zr–Ru alloy series, Zr–1Ru demonstrates enhanced mechanical properties, excellent corrosion resistance and cell viability with lowest magnetic susceptibility, and thus is the optimal Zr–Ru alloy system as therapeutic devices under MRI diagnostics environments. PMID:27090955

  3. Compositional effects in Ru, Pd, Pt, and Rh-doped mesoporous tantalum oxide catalysts for ammonia synthesis.

    PubMed

    Yue, Chaoyang; Qiu, Longhui; Trudeau, Michel; Antonelli, David

    2007-06-11

    A series of early metal-promoted Ru-, Pd-, Pt-, and Rh-doped mesoporous tantalum oxide catalysts were synthesized using a variety of dopant ratios and dopant precursors, and the effects of these parameters on the catalytic activity of NH3 synthesis from H2 and N2 were explored. Previous studies on this system supported an unprecedented mechanism in which N-N cleavage occurred at the Ta sites rather than on Ru. The results of the present study showed, for all systems, that Ba is a better promoter than Cs or La and that the nitrate is a superior precursor for Ba than the isopropoxide or the hydroxide. 15N-labeling studies showed that residual nitrate functions as the major ammonia source in the first hour but that it does not account for the ammonia produced after the nitrate is completely consumed. Ru3(CO)12 proved to be a better Ru precursor than RuCl(3).3H2O, and an almost linear increase in activity with increasing Ru loading level was observed at 350 degrees C (623 K). However, at 175 degrees C (448 K), the increase in Ru had no effect on the reaction rate. Pd functioned with comparable rates to Ru, while Pt and Rh functioned far less efficiently. The surprising activities for the Pd-doped catalysts, coupled with XPS evidence for low-valent Ta in this catalyst system, support a mechanism in which cleavage of the N-N triple bond occurs on Ta rather than the precious metal because the Ea value for N-N cleavage on Pd is 2.5 times greater than that for Ru, and the 9.3 kJ mol-1 Ea value measured previously for the Ru system suggests that N-N cleavage cannot occur at the Ru surface.

  4. Ruthenium nano-oxide layer in CoFe-Ru-CoFe trilayer system: An x-ray reflectivity study

    NASA Astrophysics Data System (ADS)

    Asgharizadeh, S.; Sutton, M.; Altounian, Z.; Mao, M.; Lee, C. L.

    2008-05-01

    A grazing incidence x-ray reflectivity technique is used to determine the electron density profile as a function of depth in CoFe-Ru-CoFe and CoFe-Ru nano-oxide layer (NOL)-CoFe trilayers. Four trilayers with ruthenium thicknesses of 8, 8.5, and 9Å and one with Ru 8.5Å NOL, prepared by a dc planetary sputtering system, were investigated. For all samples, the electron density profile (EDP) shows a central peak that is related to the Ru layer. Natural oxidation in all of the samples introduces a graded EDP of the top CoFe layers, which decreases gradually to zero. The large surface resistivity of Ru 8.5Å NOL as compared to Ru 8.5Å is related to the remarkable difference between their EDPs. EDP changes have also been investigated in Ru NOL trilayers after annealing at 280°C. The Ru phase in the EDP was observed to confirm the thermal stability of the spacer layer after annealing.

  5. Enhanced thermal stability of RuO2/polyimide interface for flexible device applications

    NASA Astrophysics Data System (ADS)

    Music, Denis; Schmidt, Paul; Chang, Keke

    2017-09-01

    We have studied the thermal stability of RuO2/polyimide (Kapton) interface using experimental and theoretical methods. Based on calorimetric and spectroscopic analyses, this inorganic-organic system does not exhibit any enthalpic peaks as well as all bonds in RuO2 and Kapton are preserved up to 500 °C. In addition, large-scale density functional theory based molecular dynamics, carried out in the same temperature range, validates the electronic structure and points out that numerous Ru-C and a few Ru-O covalent/ionic bonds form across the RuO2/Kapton interface. This indicates strong adhesion, but there is no evidence of Kapton degradation upon thermal excitation. Furthermore, RuO2 does not exhibit any interfacial bonds with N and H in Kapton, providing additional evidence for the thermal stability notion. It is suggested that the RuO2/Kapton interface is stable due to aromatic architecture of Kapton. This enhanced thermal stability renders Kapton an appropriate polymeric substrate for RuO2 containing systems in various applications, especially for flexible microelectronic and energy devices.

  6. Atomic hydrogen cleaning of EUV multilayer optics

    NASA Astrophysics Data System (ADS)

    Graham, Samuel, Jr.; Steinhaus, Charles A.; Clift, W. Miles; Klebanoff, Leonard E.; Bajt, Sasa

    2003-06-01

    Recent studies have been conducted to investigate the use of atomic hydrogen as an in-situ contamination removal method for EUV optics. In these experiments, a commercial source was used to produce atomic hydrogen by thermal dissociation of molecular hydrogen using a hot filament. Samples for these experiments consisted of silicon wafers coated with sputtered carbon, Mo/Si optics with EUV-induced carbon, and bare Si-capped and Ru-B4C-capped Mo/Si optics. Samples were exposed to an atomic hydrogen source at a distance of 200 - 500 mm downstream and angles between 0-90° with respect to the source. Carbon removal rates and optic oxidation rates were measured using Auger electron spectroscopy depth profiling. In addition, at-wavelength peak reflectance (13.4 nm) was measured using the EUV reflectometer at the Advanced Light Source. Data from these experiments show carbon removal rates up to 20 Ê/hr for sputtered carbon and 40 Ê/hr for EUV deposited carbon at a distance of 200 mm downstream. The cleaning rate was also observed to be a strong function of distance and angular position. Experiments have also shown that the carbon etch rate can be increased by a factor of 4 by channeling atomic hydrogen through quartz tubes in order to direct the atomic hydrogen to the optic surface. Atomic hydrogen exposures of bare optic samples show a small risk in reflectivity degradation after extended periods. Extended exposures (up to 20 hours) of bare Si-capped Mo/Si optics show a 1.2% loss (absolute) in reflectivity while the Ru-B4C-capped Mo/Si optics show a loss on the order of 0.5%. In order to investigate the source of this reflectivity degradation, optic samples were exposed to atomic deuterium and analyzed using low energy ion scattering direct recoil spectroscopy to determine any reactions of the hydrogen with the multilayer stack. Overall, the results show that the risk of over-etching with atomic hydrogen is much less than previous studies using RF discharge cleaning while providing cleaning rates suitable for EUV lithography operations.

  7. Atomic hydrogen cleaning of EUV multilayer optics

    NASA Astrophysics Data System (ADS)

    Graham, Samuel, Jr.; Steinhaus, Charles A.; Clift, W. Miles; Klebanoff, Leonard E.; Bajt, Sasa

    2003-06-01

    Recent studies have been conducted to investigate the use of atomic hydrogen as an in-situ contamination removal method for EUV optics. In these experiments, a commercial source was used to produce atomic hydrogen by thermal dissociation of molecular hydrogen using a hot filament. Samples for these experiments consisted of silicon wafers coated with sputtered carbon, Mo/Si optics with EUV-induced carbon, and bare Si-capped and Ru-B4C-capped Mo/Si optics. Samples were exposed to an atomic hydrogen source at a distance of 200 - 500 mm downstream and angles between 0-90° with respect to the source. Carbon removal rates and optic oxidation rates were measured using Auger electron spectroscopy depth profiling. In addition, at-wavelength peak reflectance (13.4 nm) was measured using the EUV reflectometer at the Advanced Light Source. Data from these experiments show carbon removal rates up to 20 Å/hr for sputtered carbon and 40 Å/hr for EUV deposited carbon at a distance of 200 mm downstream. The cleaning rate was also observed to be a strong function of distance and angular position. Experiments have also shown that the carbon etch rate can be increased by a factor of 4 by channeling atomic hydrogen through quartz tubes in order to direct the atomic hydrogen to the optic surface. Atomic hydrogen exposures of bare optic samples show a small risk in reflectivity degradation after extended periods. Extended exposures (up to 20 hours) of bare Si-capped Mo/Si optics show a 1.2% loss (absolute) in reflectivity while the Ru-B4C-capped Mo/Si optics show a loss on the order of 0.5%. In order to investigate the source of this reflectivity degradation, optic samples were exposed to atomic deuterium and analyzed using low energy ion scattering direct recoil spectroscopy to determine any reactions of the hydrogen with the multilayer stack. Overall, the results show that the risk of over-etching with atomic hydrogen is much less than previous studies using RF discharge cleaning while providing cleaning rates suitable for EUV lithography operations.

  8. Nature-Inspired, Highly Durable CO2 Reduction System Consisting of a Binuclear Ruthenium(II) Complex and an Organic Semiconductor Using Visible Light.

    PubMed

    Kuriki, Ryo; Matsunaga, Hironori; Nakashima, Takuya; Wada, Keisuke; Yamakata, Akira; Ishitani, Osamu; Maeda, Kazuhiko

    2016-04-20

    A metal-free organic semiconductor of mesoporous graphitic carbon nitride (C3N4) coupled with a Ru(II) binuclear complex (RuRu') containing photosensitizer and catalytic units selectively reduced CO2 into HCOOH under visible light (λ > 400 nm) in the presence of a suitable electron donor with high durability, even in aqueous solution. Modification of C3N4 with Ag nanoparticles resulted in a RuRu'/Ag/C3N4 photocatalyst that exhibited a very high turnover number (>33000 with respect to the amount of RuRu'), while maintaining high selectivity for HCOOH production (87-99%). This turnover number was 30 times greater than that reported previously using C3N4 modified with a mononuclear Ru(II) complex, and by far the highest among the metal-complex/semiconductor hybrid systems reported to date. The results of photocatalytic reactions, emission decay measurements, and time-resolved infrared spectroscopy indicated that Ag nanoparticles on C3N4 collected electrons having lifetimes of several milliseconds from the conduction band of C3N4, which were transferred to the excited state of RuRu', thereby promoting photocatalytic CO2 reduction driven by two-step photoexcitation of C3N4 and RuRu'. This study also revealed that the RuRu'/Ag/C3N4 hybrid photocatalyst worked efficiently in water containing a proper electron donor, despite the intrinsic hydrophobic nature of C3N4 and low solubility of CO2 in an aqueous environment.

  9. National Dam Safety Program. Structure F-2 (MO 20513), Verdigris - Neosho River Basin, Newton County, Missouri. Phase I Inspection Report.

    DTIC Science & Technology

    1980-08-01

    AXIAL- INITIAL [00 NS CL 13~ rf START DEGOF SATI END CONS;0LI- PRINCIPIAL s T. -s STRAIN AT PU n I DIE~)0.1 AT S f A RT OF IA WON STES I ru Pcf cO DA...SAM.PLE. LUCAII’N FIELD SMk -11 N,) (1711H CLOLOCIZ Cii... 3~ ( i_ . __ _ _ _ __ _ _ TNE I LNETU)D AT API’lOV’U) V~ CA CLASSIFICATION Il!LL ill/P1

  10. 7Li-induced reaction on natMo: A study of complete versus incomplete fusion

    NASA Astrophysics Data System (ADS)

    Kumar, Deepak; Maiti, Moumita; Lahiri, Susanta

    2017-07-01

    Background: Several investigations on the complete-incomplete fusion (CF-ICF) dynamics of α -cluster well-bound nuclei have been contemplated above the Coulomb barrier (˜4 -7 MeV/nucleon) in recent years. It is therefore expected to observe significant ICF over CF in the reactions induced by a weakly bound α -cluster nucleus at slightly above the barrier. Purpose: Study of the CF-ICF dynamics by measuring the populated residues in the weakly bound 7Li+natMo system at energies slightly above the Coulomb barrier to well above it. Method: In order to investigate CF-ICF in the loosely bound system, 7Li beam was bombarded on the natMo foils, separated by the aluminium (Al) catcher foils alternatively, within ˜3 -6.5 MeV/nucleon. Evaporation residues produced in each foil were identified by the off-line γ -ray spectrometry. Measured cross section data of the residues were compared with the theoretical model calculations based on the equilibrium (EQ) and pre-equilibrium (PEQ) reaction mechanisms. Results: The experimental cross section of Rh 101 m,100 ,99 m,97 ,Ru,9597,Tc 99 m,96 ,95 ,94 ,93 m+g , and 93mMo residues measured at various projectile energies were satisfactorily reproduced by the simplified coupled channel approach in comparison to single barrier penetration model calculation. Significant cross section enhancement in the α -emitting channels was observed compared to EQ and PEQ model calculations throughout observed energy region. The ICF process over CF was analyzed by comparing with EMPIRE. The increment of the incomplete fusion fraction was observed with increasing projectile energies. Conclusions: Theoretical model calculations reveal that the compound reaction mechanism is the major contributor to the production of residues in 7Li+natMo reaction. Theoretical evaluations substantiate the contribution of ICF over the CF in α -emitting channels. EMPIRE estimations shed light on its predictive capability of cross sections of the residues from the heavy-ion induced reactions.

  11. Diffusion, phase equilibria and partitioning experiments in the Ni-Fe-Ru system

    NASA Technical Reports Server (NTRS)

    Blum, Joel D.; Wasserburg, G. J.; Hutcheon, I. D.; Beckett, J. R.; Stolper, E. M.

    1989-01-01

    Results are presented on thin-film diffusion experiments designed to investigate phase equilibria in systems containing high concentrations of Pt-group elements, such as Ni-Fe-Ru-rich systems containing Pt, at temperatures of 1273, 1073, and 873 K. The rate of Ru diffusion in Ni was determined as a function of temperature, and, in addition, the degree of Pt and Ir partitioning between phases in a Ni-Fe-Ru-rich system and of V between phases in a Ni-Fe-O-rich system at 873 were determined. It was found that Pt preferentially partitions into the (gamma)Ni-Fe phase, whereas Ir prefers the (epsilon)Ru-Fe phase. V partitions strongly into Fe oxides relative to (gamma)Ni-Fe. These results have direct application to the origin and thermal history of the alloys rich in Pt-group elements in meteorites.

  12. X-ray reflectivity of ruthenium nano-oxide layer in a CoFe-Ru-CoFe trilayer system

    NASA Astrophysics Data System (ADS)

    Asghari Zadeh, Saeid; Sutton, Mark; Altonian, Zaven; Mao, Ming; Lee, Chih-Ling

    2006-03-01

    A grazing incidence X-ray reflectivity technique is used to determine electron density profile(EDP) as a function of depth in CoFe-Ru-CoFe and CoFe-Ru nano oxide layer(NOL)-CoFe trilayers. Four trilayers with ruthenium thicknesses of 8,8.5 and 9 å.08cm and one with Ru8.5.05cmå.05cmNOL, prepared by a dc planetary sputtering system, were investigated. For all samples, EDP shows a central peak which is related to the Ru layer. Natural oxidation in all samples introduces a graded EDP of the top CoFe layer that decreases gradually to zero. The large surface resistivity of Ru8.5 å.05cm NOL compared to Ru 8.5å.08cm can be related to the remarkable difference between their EDP.

  13. High-Performance Ru1 /CeO2 Single-Atom Catalyst for CO Oxidation: A Computational Exploration.

    PubMed

    Li, Fengyu; Li, Lei; Liu, Xinying; Zeng, Xiao Cheng; Chen, Zhongfang

    2016-10-18

    By means of density functional theory computations, we examine the stability and CO oxidation activity of single Ru on CeO 2 (111), TiO 2 (110) and Al 2 O 3 (001) surfaces. The heterogeneous system Ru 1 /CeO 2 has very high stability, as indicated by the strong binding energies and high diffusion barriers of a single Ru atom on the ceria support, while the Ru atom is rather mobile on TiO 2 (110) and Al 2 O 3 (001) surfaces and tends to form clusters, excluding these systems from having a high efficiency per Ru atom. The Ru 1 /CeO 2 exhibits good catalytic activity for CO oxidation via the Langmuir-Hinshelwood mechanism, thus is a promising single-atom catalyst. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Alloying effect on bright-dark exciton states in ternary monolayer Mo x W1-x Se2

    NASA Astrophysics Data System (ADS)

    Liu, Yanping; Tom, Kyle; Zhang, Xiaowei; Lou, Shuai; Liu, Yin; Yao, Jie

    2017-07-01

    Binary transition metal dichalcogenides (TMDCs) in the class MX2 (M = Mo, W; X = S, Se) have been widely investigated for potential applications in optoelectronics and nanoelectronics. Recently, alloy-based monolayers of TMDCs have provided a stable and versatile technique to tune the physical properties and optimize them for potential applications. Here, we present experimental evidence for the existence of an intermediate alloy state between the MoSe2-like and the WSe2-like behavior of the neutral exciton (X 0) using temperature-dependent photoluminescence (PL) of the monolayer Mo x W1-x Se2 alloy. The existence of a maximum PL intensity around 120 K can be explained by the competition between the thermally activated bright states and the non-radiative quenching of the bright states. Moreover, we also measured localized exciton (XB ) PL peak in the alloy and the observed behavior agrees well with a model previously proposed for the 3D case, which indicates the theory also applies to 2D systems. Our results not only shed light on bright-dark states and localized exciton physics of 2D semiconductors, but also offer a new route toward the control of the bright-dark transition and tailoring optical properties of 2D semiconductors through defect engineering.

  15. Additive Manufacturing of Metastable Beta Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Yannetta, Christopher J.

    Additive manufacturing processes of many alloys are known to develop texture during the deposition process due to the rapid reheating and the directionality of the dissipation of heat. Titanium alloys and with respect to this study beta titanium alloys are especially susceptible to these effects. This work examines Ti-20wt%V and Ti-12wt%Mo deposited under normal additive manufacturing process parameters to examine the texture of these beta-stabilized alloys. Both microstructures contained columnar prior beta grains 1-2 mm in length beginning at the substrate with no visible equiaxed grains. This microstructure remained constant in the vanadium system throughout the build. The microstructure of the alloy containing molybdenum changed from a columnar to an equiaxed structure as the build height increased. Eighteen additional samples of the Ti-Mo system were created under different processing parameters to identify what role laser power and travel speed have on the microstructure. There appears to be a correlation in alpha lath size and power density. The two binary alloys were again deposited under the same conditions with the addition of 0.5wt% boron to investigate the effects an insoluble interstitial alloying element would have on the microstructure. The size of the prior beta grains in these two alloys were reduced with the addition of boron by approximately 50 (V) and 100 (Mo) times.

  16. Reinforcement of double-exchange ferromagnetic coupling by Ru in La{sub 1.24}Sr{sub 1.76}Mn{sub 2-y}Ru{sub y}O{sub 7} manganite system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumaresavanji, M., E-mail: vanji.hplt@gmail.com; Fontes, M.B.; Lopes, A.M.L.

    2014-03-01

    Highlights: • Effect of Mn-site doping by Ru has been studied in La{sub 1.24}Sr{sub 1.76}Mn{sub 2-y}Ru{sub y}O{sub 7}. • Electrical resistance, magnetoresistance and magnetic properties were measured. • Ru substitution enhances the ferromagnetism and metallicity. • Results were interpreted by the ferromagnetically coupled Ru with Mn ions in Mn–O–Ru network. - Abstract: The effect of Mn-site doping on magnetic and transport properties in the bilayer manganites La{sub 1.24}Sr{sub 1.76}Mn{sub 2-y}Ru{sub y}O{sub 7} (y = 0.0, 0.04, 0.08 and 0.15) has been studied. The undoped compound La{sub 1.24}Sr{sub 1.76}Mn{sub 2}O{sub 7} exhibits a ferromagnetic metal to paramagnetic insulator transition at T{submore » C} = 130 K and the substitution of Ru shifts the transition temperatures to higher temperature values. The increased metal–insulator transition by Ru substitution, obtained from temperature dependence of resistivity measurements, indicates that the Ru substitution enhances the metallic state at low temperature regime and favours the Mn–Ru pairs in the Ru doped samples. Moreover, the activation energy values calculated from the temperature dependence of resistivity curves suggest that the Ru substitution weakens the formation of polarons. The increased magnetoresistance ratio from 108% to 136% by Ru substitution, measured at 5 K, points out that the Ru substitution also enhances the inter-grain tunneling magnetoresistance. Thus, the ferromagnetic order and metallic state in La{sub 1.24}Sr{sub 1.76}Mn{sub 2}O{sub 7} system have been enhanced by the presence of Ru in the Mn-site. These reinforcements of ferromagnetic metallic state and magnetoresistance have been interpreted by the ferromagnetically coupled high spin states of Ru with Mn ions in the Mn–O–Ru network.« less

  17. Molybdenum-titanium phase diagram evaluated from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Barzilai, Shmuel; Toher, Cormac; Curtarolo, Stefano; Levy, Ohad

    2017-07-01

    The design of next generation β -type titanium implants requires detailed knowledge of the relevant stable and metastable phases at temperatures where metallurgical heat treatments can be performed. Recently, a standard specification for surgical implant applications was established for Mo-Ti alloys. However, the thermodynamic properties of this binary system are not well known and two conflicting descriptions of the β -phase stability have been presented in the literature. In this study, we use ab initio calculations to investigate the Mo-Ti phase diagram. These calculations predict that the β phase is stable over a wide concentration range, in qualitative agreement with one of the reported phase diagrams. In addition, they predict stoichiometric compounds, stable at temperatures below 300 ∘C , which have not yet been detected by experiments. The resulting solvus, which defines the transition to the β -phase solid solution, therefore occurs at lower temperatures and is more complex than previously anticipated.

  18. Binary Thinking in a Complex World: The Failure of NATO Deterrence since 1994 and Implications for the NATO Readiness Action Plan

    DTIC Science & Technology

    2017-05-25

    Russian Federation, April 3, 2008, accessed November 9, 2016, http://www.mid.ru/en/ web /guest/foreign_policy/international_safety/conflicts...Gerasimov in March 2015, when he stated “Hybrid is the dark reflection of our comprehensive approach. We use a combination of military and non...Source: Micheal Kofman, “Russian Hybrid Warfare and Other Dark Arts,” War on the Rocks, March, 11, 2016, accessed November 29, 2016. https

  19. Molybdenum Carbide Synthesis Using Plasmas for Fuel Cells

    DTIC Science & Technology

    2013-06-01

    S. A. Hong, I. H. Oh, and S. J. Shin, “Performance and life time analysis of the kW-class PEMFC stack,” Journal of Power Sources, vol. 106, pp. 295...pp. 591–596, 1998. [25] M. Gotz and H. Wendt, “Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs ...and R. C. Urian, “Electrocatalysis of CO Tolerance by Carbon-Supported PtMo Electrocatalysts in PEMFCs ,” Journal of Electrochemical Society, vol

  20. Metal Composition and Polyethylenimine Doping Capacity Effects on Semiconducting Metal Oxide-Polymer Blend Charge Transport.

    PubMed

    Huang, Wei; Guo, Peijun; Zeng, Li; Li, Ran; Wang, Binghao; Wang, Gang; Zhang, Xinan; Chang, Robert P H; Yu, Junsheng; Bedzyk, Michael J; Marks, Tobin J; Facchetti, Antonio

    2018-04-25

    Charge transport and film microstructure evolution are investigated in a series of polyethylenimine (PEI)-doped (0.0-6.0 wt%) amorphous metal oxide (MO) semiconductor thin film blends. Here, PEI doping generality is broadened from binary In 2 O 3 to ternary (e.g., In+Zn in IZO, In+Ga in IGO) and quaternary (e.g., In+Zn+Ga in IGZO) systems, demonstrating the universality of this approach for polymer electron doping of MO matrices. Systematic comparison of the effects of various metal ions on the electronic transport and film microstructure of these blends are investigated by combined thin-film transistor (TFT) response, AFM, XPS, XRD, X-ray reflectivity, and cross-sectional TEM. Morphological analysis reveals that layered MO film microstructures predominate in PEI-In 2 O 3 , but become less distinct in IGO and are not detectable in IZO and IGZO. TFT charge transport measurements indicate a general coincidence of a peak in carrier mobility (μ peak ) and overall TFT performance at optimal PEI doping concentrations. Optimal PEI loadings that yield μ peak values depend not only on the MO elemental composition but also, equally important, on the metal atomic ratios. By investigating the relationship between the MO energy levels and PEI doping by UPS, it is concluded that the efficiency of PEI electron-donation is highly dependent on the metal oxide matrix work function in cases where film morphology is optimal, as in the IGO compositions. The results of this investigation demonstrate the broad generality and efficacy of PEI electron doping applied to electronically functional metal oxide systems and that the resulting film microstructure, morphology, and energy level modifications are all vital to understanding charge transport in these amorphous oxide blends.

  1. Dry etching technologies for the advanced binary film

    NASA Astrophysics Data System (ADS)

    Iino, Yoshinori; Karyu, Makoto; Ita, Hirotsugu; Yoshimori, Tomoaki; Azumano, Hidehito; Muto, Makoto; Nonaka, Mikio

    2011-11-01

    ABF (Advanced Binary Film) developed by Hoya as a photomask for 32 (nm) and larger specifications provides excellent resistance to both mask cleaning and 193 (nm) excimer laser and thereby helps extend the lifetime of the mask itself compared to conventional photomasks and consequently reduces the semiconductor manufacturing cost [1,2,3]. Because ABF uses Ta-based films, which are different from Cr film or MoSi films commonly used for photomask, a new process is required for its etching technology. A patterning technology for ABF was established to perform the dry etching process for Ta-based films by using the knowledge gained from absorption layer etching for EUV mask that required the same Ta-film etching process [4]. Using the mask etching system ARES, which is manufactured by Shibaura Mechatronics, and its optimized etching process, a favorable CD (Critical Dimension) uniformity, a CD linearity and other etching characteristics were obtained in ABF patterning. Those results are reported here.

  2. Doping Li-rich cathode material Li2MnO3 : Interplay between lattice site preference, electronic structure, and delithiation mechanism

    NASA Astrophysics Data System (ADS)

    Hoang, Khang

    2017-12-01

    We report a detailed first-principles study of doping in Li2MnO3 , in both the dilute doping limit and heavy doping, using hybrid density-functional calculations. We find that Al, Fe, Mo, and Ru impurities are energetically most favorable when incorporated into Li2MnO3 at the Mn site, whereas Mg is most favorable when doped at the Li sites. Nickel, on the other hand, can be incorporated at the Li site and/or the Mn site, and the distribution of Ni over the lattice sites can be tuned by tuning the material preparation conditions. There is a strong interplay among the lattice site preference and charge and spin states of the dopant, the electronic structure of the doped material, and the delithiation mechanism. The calculated electronic structure and voltage profile indicate that in Ni-, Mo-, or Ru-doped Li2MnO3 , oxidation occurs on the electrochemically active transition-metal ion(s) before it does on oxygen during the delithiation process. The role of the dopants is to provide charge compensation and bulk electronic conduction mechanisms in the initial stages of delithiation, hence enabling the oxidation of the lattice oxygen in the later stages. This work thus illustrates how the oxygen-oxidation mechanism can be used in combination with the conventional mechanism involving transition-metal cations in design of high-capacity battery cathode materials.

  3. E 2 / M 1 Mixing Ratios in Transitions From the Gamma-Vibrational-Bands to the Ground-State-Rotational-Bands of 102 , 104 , 106 , 108Mo, 108 , 110 , 112Ru, and 112 , 114 , 116Pd

    NASA Astrophysics Data System (ADS)

    Eldridge, Jonathan M.; Fenker, B.; Goodin, C.; Hamilton, J. H.; Wang, E. H.; Ramayya, A. V.; Daniel, A. V.; Ter-Akopian, G. M.; Luo, Y. X.; Rasmussen, J. O.; Oganesson, Yu. Ts.; Zhu, S. J.

    2017-09-01

    E 2 / M 1 mixing ratios have been measured for transitions from states in the γ-vibrational-bands (Iγ+) to states in the ground-state-bands (Ig+ or [I- 1 ] g +) of the neutron rich, deformed isotopes, 102 , 104 , 106 , 108Mo, 108 , 110 , 112Ru, and 112 , 114 , 116Pd, including from states as high as 9γ+. These measurements were done using the GAMMASPHERE detector array, which, at the time of the experiment, had 101 working HPGe detectors, arranged at 64 different angles. A 62 μCi source of 252Cf was placed inside GAMMASPHERE yielding 5.7 ×1011 γ - γ - γ and higher coincidence events. The angular correlation between the transitions from the γ-band to the ground band, and the pure E2 transitions within the ground band were then measured. These angular correlations yielded the mixing ratios, demonstrating that these transitions are all pure or nearly pure E2, in agreement with theory. In order to correct for possible attenuation due to the lifetime of the intermediate state in these correlations, the g-factors of the intermediate states needed to be known. Therefore, the g-factors of the 2g+ states in the ground state band have been measured. Supported by the US Department of Energy; Grant No. DE-FG0588ER40407, Contract No. DE-AC03-76SF00098.

  4. Skeletal Ru/Cu catalysts prepared from crystalline and quasicrystalline ternary alloy precursors: characterization by X-ray absorption spectroscopy and CO oxidation.

    PubMed

    Highfield, James; Liu, Tao; Loo, Yook Si; Grushko, Benjamin; Borgna, Armando

    2009-02-28

    The Ru/Cu system is of historical significance in catalysis. The early development and application of X-ray absorption spectroscopy (XAS) led to the original 'bimetallic cluster" concept for highly-immiscible systems. This work explores alkali leaching of Al-based ternary crystalline and quasicrystalline precursors as a potential route to bulk Ru/Cu alloys. Single-phase ternary alloys at 3 trial compositions; Al(71)Ru(22)Cu(7), Al(70.5)Ru(17)Cu(12.5), and Al(70)Ru(10)Cu(20), were prepared by arc melting of the pure metal components. After leaching, the bimetallic residues were characterized principally by transmission XAS, "as-leached" and after annealing in H(2) (and passivation) in a thermobalance. XRD and BET revealed a nanocrystalline product with a native structure of hexagonal Ru. XPS surface analysis of Ru(22)Cu(7) and Ru(17)Cu(12.5) found only slight enrichment by Cu in the as-leached forms, with little change upon annealing. Ru(10)Cu(20) was highly segregated as-leached. XANES data showed preferential oxidation of Cu in Ru(22)Cu(7), implying that it exists as an encapsulating layer. TG data supports this view since it does not show the distinct two-stage O(2) uptake characteristic of skeletal Ru. Cu K-edge EXAFS data for Ru(22)Cu(7) were unique in showing a high proportion of Ru neighbours. The spacing, d(CuRu) = 2.65 A, was that expected from a hypothetical (ideal) solid solution at this composition, but this is unlikely in such a bulk-immiscible system and Ru K-edge EXAFS failed to confirm bulk alloying. Furthermore its invariance under annealing was more indicative of an interfacial bond between bulk components, although partial alloying with retention of local order cannot entirely be ruled out. The XAS and XPS data were reconciled in a model involving surface and bulk segregation, Cu being present at both the grain exterior and in ultra-fine internal pores. This structure can be considered as the 3-dimensional analogue of the classical type. Preliminary studies in CO and H(2) oxidation were made in a DRIFTS flow reactor with on-line MS, and their activities and selectivities were compared against skeletal Ru and Cu controls, Ru/Al(2)O(3), and Au/Fe(2)O(3). All samples were active in CO oxidation above approximately 50 degrees C, showing light-off temperatures in the range 60-70 degrees C. Ru(22)Cu(7) and Ru(17)Cu(12.5) also showed good selectivities (vs. H(2) oxidation), attributed tentatively to Ru-modified Cu surfaces of varying thickness. These compositions are promising candidates to test in a (PROX) fuel processor to supply purified (CO-free) H(2) to a PEM fuel cell.

  5. Bifunctional supramolecular systems on the platform of p-sulfonatothiacalix[4]arene containing photochromic mononitrosyl Ru (II) and paramagnetic aqua Gd or Dy complexes

    NASA Astrophysics Data System (ADS)

    Kushch, L. A.; Yagubskii, E. B.; Dmitriev, A. I.; Morgunov, R. B.; Emel'Yanov, V. A.; Mustafina, A. R.; Gubaidullin, A. T.; Burilov, V. A.; Solovieva, S. E.; Schaniel, D.; Woike, Th.

    2010-06-01

    Two bifunctional supramolecular systems [RuNO(NH3)4OH]2+·[RuNO(NH3)4H2O]3+·Gd3+(H2O)6·2[TCAS]4-·4H2O (1) and [RuNO(NH3)4OH]2+·[RuNO(NH3)4H2O]3+·Dy3+(H2O)6·2[TCAS]4-·4H2O (2) on the platform of p-sulfonatothiacalix[4]arene containing photochromic mononitrosyl Ru and paramagnetic rare-earth (Gd3+, Dy3+) cations have been synthesized. The crystal structures of 1 and 2 are discussed. Their photochromic, magnetic and photomagnetic properties studied by IR and SQUID experimental techniques are presented

  6. Ternary PtRuPd/C catalyst for high-performance, low-temperature direct dimethyl ether fuel cells

    DOE PAGES

    Dumont, Joseph Henry; Martinez, Ulises; Chung, Hoon T.; ...

    2016-08-19

    Here, dimethyl ether (DME) is a promising alternative fuel option for direct-feed low-temperature fuel cells. Until recently, DME had not received the same attention as alcohol fuels, such as methanol or ethanol, despite its notable advantages. These advantages include a high theoretical open-cell voltage (1.18 V at 25 °C) that is similar to that of methanol (1.21 V), much lower toxicity than methanol, and no need for the carbon–carbon bond scission that is needed in ethanol oxidation. DME is biodegradable, has a higher energy content than methanol (8.2 vs. 6.1 kWh kg –1), and, like methanol, can be synthesized frommore » recycled carbon dioxide. Although the performance of direct DME fuel cells (DDMEFCs) has progressed over the past few years, DDMEFCs have not been viewed as fully viable. In this work, we report much improved performance from the ternary Pt 55Ru 35Pd 10/C anode catalyst, allowing DDMEFCs to compete directly with direct methanol fuel cells (DMFCs). We also report results involving binary Pt alloys as reference catalysts and an in situ infrared electrochemical study to better understand the mechanism of DME electro-oxidation on ternary PtRuPd/C catalysts.« less

  7. Large enhancement of oscillating chemiluminescence with [Ru(bpy)3 ](2+) -catalyzed Belousov-Zhabotinsky reaction in the presence of tri-n-propylamine.

    PubMed

    Lan, Xiaolan; Zheng, Baozhan; Zhao, Yan; Yuan, Hongyan; Du, Juan; Xiao, Dan

    2013-01-01

    Oscillating chemiluminescence enhanced by the addition of tri-n-propylamine (TPrA) to the typical Belousov-Zhabotinsky (BZ) reaction system catalyzed by ruthenium(II)tris(2.2'-bipyridine)(Ru(bpy)3 (2+) ) was investigated using a luminometry method. The [Ru(bpy)3 ](2+) /TPrA system was first used as the catalyst for a BZ oscillator in a closed system, which exhibited a shorter induction period, higher amplitude and much more stable chemiluminescence (CL) oscillation. The effects of various concentrations of TPrA, oxygen and nitrogen flow rate on the oscillating behavior of this system were examined. In addition, the CL intensity of the [Ru(bpy)3 ](2+) /TPrA-BZ system was found to be inhibited by phenol, thus providing a way for use of the BZ system in the determination of phenolic compounds. Moreover, the possible mechanism of the oscillating CL reaction catalyzed by [Ru(bpy)3 ](2+) /TPrA and the inhibition effects of oxygen and phenol on this oscillating CL system were considered. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Catalytic activity of platinum on ruthenium electrodes with modified (electro)chemical states.

    PubMed

    Park, Kyung-Won; Sung, Yung-Eun

    2005-07-21

    Using Pt on Ru thin-film electrodes with various (electro)chemical states designed by the sputtering method, the effect of Ru states on the catalytic activity of Pt was investigated. The chemical and electrochemical properties of Pt/Ru thin-film samples were confirmed by X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry. In addition, Pt nanoparticles on Ru metal or oxide for an actual fuel cell system showed an effect of Ru states on the catalytic activity of Pt in methanol electrooxidation. Finally, it was concluded that such an enhancement of methanol electrooxidation on the Pt is responsible for Ru metallic and/or oxidation sites compared to pure Pt without any Ru state.

  9. High-spin states in 103,105Mo, 103Nb, and the νh11/2 alignment

    NASA Astrophysics Data System (ADS)

    Hua, H.; Wu, C. Y.; Cline, D.; Hayes, A. B.; Teng, R.; Clark, R. M.; Fallon, P.; Macchiavelli, A. O.; Vetter, K.

    2002-06-01

    High-spin states in neutron-rich nuclei 103,105Mo,103Nb have been studied using the 238U(α,f) fusion-fission reaction. The deexcitation γ rays were detected by Gammasphere in coincidence with the detection of both fission fragments by the Rochester 4π heavy-ion detector array, CHICO. The measured fission kinematics were used to deduce the masses and velocity vectors for both fission fragments. This allowed Doppler-shift corrections to be applied to the observed γ rays on an event-by-event basis and the origin of γ rays from either fission fragment to be established. With such advantages, the yrast sequences for these nuclei have been extended to the band crossing region. This band crossing is ascribed to the alignment of a pair of h11/2 neutrons, which is supported by the observed blocking effect for the νh11/2 band in 105Mo while there is no evidence for blocking in the alignment measured for either the νd5/2 band in 103Mo or the πg9/2 band in 103Nb. The observed upbend, rather than the sharp backbend seen in the Ru-Pd region, indicates a strong interaction between the ground-state and the aligned h11/2 bands.

  10. The crevice corrosion of cathodically modified titanium in chloride solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lingen, E. van der

    1995-12-01

    The susceptibility of titanium to crevice corrosion in low-pH chloride solutions at elevated temperatures can result in major practical problems. Although Grade 7 titanium is considered the most crevice-corrosion resistant material available for these environments, the price increase of palladium has limited the utilization of this alloy. A cost-effective titanium alloy, containing 0.2% ruthenium by mass, has been developed for use in environments of increased chloride concentration and temperature. The crevice corrosion resistance of the Ti-0.2% Ru alloy has been evaluated and compared with that of ASTM commercially pure Grade 2 titanium, Grade 7 titanium (Ti-0.12 to 0.25% palladium bymore » mass) and Grade 12 titanium (Ti-0.8% Ni-0.3% Mo). The results indicated that the cathodically modified titanium alloys, Ti-0.2% Ru and Grade 7 titanium, showed similar resistance to crevice corrosion attack in all the solutions tested, and that their behavior was significantly better than that of Grade 2 and Grade 12 titanium.« less

  11. Damage threshold of coating materials on x-ray mirror for x-ray free electron laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koyama, Takahisa, E-mail: koyama@spring8.or.jp; Yumoto, Hirokatsu; Tono, Kensuke

    2016-05-15

    We evaluated the damage threshold of coating materials such as Mo, Ru, Rh, W, and Pt on Si substrates, and that of uncoated Si substrate, for mirror optics of X-ray free electron lasers (XFELs). Focused 1 μm (full width at half maximum) XFEL pulses with the energies of 5.5 and 10 keV, generated by the SPring-8 angstrom compact free electron laser (SACLA), were irradiated under the grazing incidence condition. The damage thresholds were evaluated by in situ measurements of X-ray reflectivity degradation during irradiation by multiple pulses. The measured damage fluences below the critical angles were sufficiently high compared withmore » the unfocused SACLA beam fluence. Rh coating was adopted for two mirror systems of SACLA. One system was a beamline transport mirror system that was partially coated with Rh for optional utilization of a pink beam in the photon energy range of more than 20 keV. The other was an improved version of the 1 μm focusing mirror system, and no damage was observed after one year of operation.« less

  12. Interactive system for geomagnetic data analysis

    NASA Astrophysics Data System (ADS)

    Solovev, Igor

    2017-10-01

    The paper suggests the methods for analyzing geomagnetic field variations, which are implemented in "Aurora" software system for complex analysis of geophysical parameters. The software system allows one to perform a detailed magnetic data analysis. The methods allow one to estimate the intensity of geomagnetic perturbations and to allocate increased geomagnetic activity periods. The software system is publicly available (http://aurorasa.ikir.ru:8580, http://www.ikir.ru:8280/lsaserver/MagneticPage.jsp). This research was supported by the Russian Science Foundation (Project No. 14-11-00194).

  13. Nuclear Data Sheets for A = 91

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baglin, Coral M.

    2013-10-15

    Experimental nuclear structure and decay data for all known A=91 nuclides (As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd) have been evaluated. This evaluation, covering data received by 1 September 2013, supersedes the 1998 evaluation by C. M. Baglin published in Nuclear Data Sheets86, 1 (1999) (15 December 1998 literature cutoff), and subsequent evaluations by C. M. Baglin added to the ENSDF database for Kr, Sr and Zr (29 December 2000 literature cutoff) and by B. Singh for {sup 91}Tc (6 November 2000 literature cutoff)

  14. Electrogenerated chemiluminescence of tris(2,2'-bipyridine)ruthenium(II) using N-(3-aminopropyl)diethanolamine as coreactant.

    PubMed

    Kitte, Shimeles Addisu; Wang, Chao; Li, Suping; Zholudov, Yuriy; Qi, Liming; Li, Jianping; Xu, Guobao

    2016-10-01

    Coreactant plays a critical role for the application of electrochemiluminescence (ECL). Herein, N-(3-aminopropyl)diethanolamine (APDEA) has been explored as a potential coreactant for enhancing tris(2,2'-bipyridyl)ruthenium(II) ECL. It is much more effective than tripropylamine at gold and platinum electrodes although it has one primary amine group besides a tertiary amine group. The presence of primary amine group and hydroxyl groups in APDEA promotes the oxidation rates of amine and thus remarkably increases ECL intensity. The ECL intensities of the Ru(bpy)3 (2+)/APDEA system are approximately 10 and 36 times stronger than that of Ru(bpy)3 (2+)/tripropylamine system and about 1.6 and 1.14 times stronger than that of Ru(bpy)3 (2+)/N-butyldiethanolamine system at Au and Pt electrodes, respectively. The ECL intensity of the Ru(bpy)3 (2+)/APDEA system is 2.42 times stronger than that of Ru(bpy)3 (2+)/N-butyldiethanolamine at glassy carbon electrodes.

  15. Ruthenium nanoparticles supported on CeO2 for catalytic permanganate oxidation of butylparaben.

    PubMed

    Zhang, Jing; Sun, Bo; Guan, Xiaohong; Wang, Hui; Bao, Hongliang; Huang, Yuying; Qiao, Junlian; Zhou, Gongming

    2013-11-19

    This study developed a heterogeneous catalytic permanganate oxidation system with ceria supported ruthenium, Ru/CeO2 (0.8‰ as Ru), as catalyst for the first time. The catalytic performance of Ru/CeO2 toward butylparaben (BP) oxidation by permanganate was strongly dependent on its dosage, pH, permanganate concentration and temperature. The presence of 1.0 g L(-1) Ru/CeO2 increased the oxidation rate of BP by permanganate at pH 4.0-8.0 by 3-96 times. The increase in Ru/CeO2 dosage led to a progressive enhancement in the oxidation rate of BP by permanganate at neutral pH. The XANES analysis revealed that (1) Ru was deposited on the surface of CeO2 as Ru(III); (2) Ru(III) was oxidized by permanganate to its higher oxidation state Ru(VI) and Ru(VII), which acted as the co-oxidants in BP oxidation; (3) Ru(VI) and Ru(VII) were reduced by BP to its initial state of Ru(III). Therefore, Ru/CeO2 acted as an electron shuttle in catalytic permanganate oxidation process. LC-MS/MS analysis implied that BP was initially attacked by permanganate or Ru(VI) and Ru(VII) at the aromatic ring, leading to the formation of various hydroxyl-substituted and ring-opening products. Ru/CeO2 could maintain its catalytic activity during the six successive runs. In conclusion, catalyzing permanganate oxidation with Ru/CeO2 is a promising technology for degrading phenolic pollutants in water treatment.

  16. Magnetic and magnetocaloric properties of Ba and Ti co-doped SrRuO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Babusona; Dalal, Biswajit; Dev Ashok, Vishal

    2014-12-28

    Temperature evolution of magnetic properties in Ba and Ti doped SrRuO{sub 3} has been investigated to observe the effects of larger ionic radius Ba at Sr site and isovalent nonmagnetic impurity Ti at Ru site. Ionic radius mismatch and different electronic configuration in comparison with Ru modify Sr(Ba)-O and Ru(Ti)-O bond lengths and Ru-O-Ru bond angle. The apical and basal Ru-O-Ru bond angles vary significantly with Ti doping. Ferromagnetic Curie temperature decreases from 161 K to 149 K monotonically with Ba (10%) and Ti (10%) substitutions at Sr and Ru sites. The zero field cooled (ZFC) magnetization reveals a prominent peak whichmore » shifts towards lower temperature with application of magnetic field. The substitution of tetravalent Ti with localized 3d{sup 0} orbitals for Ru with more delocalized 4d{sup 4} orbitals leads to a broad peak in ZFC magnetization. A spontaneous ZFC magnetization becomes negative below 160 K for all the compositions. The occurrence of both normal and inverse magnetocaloric effects in Ba and Ti co-doped SrRuO{sub 3} makes the system more interesting.« less

  17. Determinations of the {sup 12}C/{sup 13}C Ratio for the Secondary Stars of AE Aquarii, SS Cygni, and RU Pegasi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Thomas E.; Marra, Rachel E., E-mail: tharriso@nmsu.edu, E-mail: rmarra@nmsu.edu

    We present new moderate-resolution near-infrared spectroscopy of three CVs obtained using GNIRS on Gemini-North. These spectra covered three {sup 13}CO bandheads found in the K -band, allowing us to derive the isotopic abundance ratios for carbon. We find small {sup 12}C/{sup 13}C ratios for all three donor stars. In addition, these three objects show carbon deficits, with AE Aqr being the most extreme ([C/Fe] = −1.4). This result confirms the conjecture that the donor stars in some long-period CVs have undergone considerable nuclear evolution prior to becoming semi-contact binaries. In addition to the results for carbon, we find that themore » abundance of sodium is enhanced in these three objects, and the secondary stars in both RU Peg and SS Cyg suffer magnesium deficits. Explaining such anomalies appears to require higher mass progenitors than commonly assumed for the donor stars of CVs.« less

  18. Phase stability and mechanical properties of Mo1-xNx with 0 ≤ x ≤ 1

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Karthik; Huang, Liping; Gall, Daniel

    2017-11-01

    First-principle density-functional calculations coupled with the USPEX evolutionary phase-search algorithm are employed to calculate the convex hull of the Mo-N binary system. Eight molybdenum nitride compound phases are found to be thermodynamically stable: tetragonal β-Mo3N, hexagonal δ-Mo3N2, cubic γ-Mo11N8, orthorhombic ɛ-Mo4N3, cubic γ-Mo14N11, monoclinic σ-MoN and σ-Mo2N3, and hexagonal δ-MoN2. The convex hull is a straight line for 0 ≤ x ≤ 0.44 such that bcc Mo and the five listed compound phases with x ≤ 0.44 are predicted to co-exist in thermodynamic equilibrium. Comparing the convex hulls of cubic and hexagonal Mo1-xNx indicates that cubic structures are preferred for molybdenum rich (x < 0.3) compounds, and hexagonal phases are favored for nitrogen rich (x > 0.5) compositions, while similar formation enthalpies for cubic and hexagonal phases at intermediate x = 0.3-0.5 imply that kinetic factors play a crucial role in the phase formation. The volume per atom Vo of the thermodynamically stable Mo1-xNx phases decreases from 13.17 to 9.56 Å3 as x increases from 0.25 to 0.67, with plateaus at Vo = 11.59 Å3 for hexagonal and cubic phases and Vo = 10.95 Å3 for orthorhombic and monoclinic phases. The plateaus are attributed to the changes in the average coordination numbers of molybdenum and nitrogen atoms, which increase from 2 to 6 and decrease from 6 to 4, respectively, indicating an increasing covalent bonding character with increasing x. The change in bonding character and the associated phase change from hexagonal to cubic/orthorhombic to monoclinic cause steep increases in the isotropic elastic modulus E = 387-487 GPa, the shear modulus G = 150-196 GPa, and the hardness H = 14-24 GPa in the relatively narrow composition range x = 0.4-0.5. This also causes a drop in Poisson's ratio from 0.29 to 0.24 and an increase in Pugh's ratio from 0.49 to 0.64, indicating a ductile-to-brittle transition between x = 0.44 and 0.5.

  19. High temperature regenerative H.sub.2 S sorbents

    NASA Technical Reports Server (NTRS)

    Flytani-Stephanopoulos, Maria (Inventor); Gavalas, George R. (Inventor); Tamhankar, Satish S. (Inventor)

    1988-01-01

    Efficient, regenerable sorbents for removal of H.sub.2 S from high temperature gas streams comprise porous, high surface area particles. A first class of sorbents comprise a thin film of binary oxides that form a eutectic at the temperature of the gas stream coated onto a porous, high surface area refractory support. The binary oxides are a mixture of a Group VB or VIB metal oxide with a Group IB, IIB or VIII metal oxide such as a film of V-Zn-O, V-Cu-O, Cu-Mo-O, Zn-Mo-O or Fe-Mo-O coated on an alumina support. A second class of sorbents consist of particles of unsupported mixed oxides in the form of highly dispersed solid solutions of solid compounds characterized by small crystallite size, high porosity and relatively high surface area. The mixed oxide sorbents contain one Group IB, IIB or VIIB metal oxide such as copper, zinc or manganese and one or more oxides of Groups IIIA, VIB or VII such as aluminum, iron or molybdenum. The presence of iron or aluminum maintains the Group IB, IIB or VIIB metal in its oxidized state. Presence of molybdenum results in eutectic formation at sulfidation temperature and improves the efficiency of the sorbent.

  20. Molybdenum Oxide Nitrides of the Mo2(O,N,□)5 Type: On the Way to Mo2O5.

    PubMed

    Weber, Dominik; Huber, Manop; Gorelik, Tatiana E; Abakumov, Artem M; Becker, Nils; Niehaus, Oliver; Schwickert, Christian; Culver, Sean P; Boysen, Hans; Senyshyn, Anatoliy; Pöttgen, Rainer; Dronskowski, Richard; Ressler, Thorsten; Kolb, Ute; Lerch, Martin

    2017-08-07

    Blue-colored molybdenum oxide nitrides of the Mo 2 (O,N,□) 5 type were synthesized by direct nitridation of commercially available molybdenum trioxide with a mixture of gaseous ammonia and oxygen. Chemical composition, crystal structure, and stability of the obtained and hitherto unknown compounds are studied extensively. The average oxidation state of +5 for molybdenum is proven by Mo K near-edge X-ray absorption spectroscopy; the magnetic behavior is in agreement with compounds exhibiting Mo V O 6 units. The new materials are stable up to ∼773 K in an inert gas atmosphere. At higher temperatures, decomposition is observed. X-ray and neutron powder diffraction, electron diffraction, and high-resolution transmission electron microscopy reveal the structure to be related to VNb 9 O 24.9 -type phases, however, with severe disorder hampering full structure determination. Still, the results demonstrate the possibility of a future synthesis of the potential binary oxide Mo 2 O 5 . On the basis of these findings, a tentative suggestion on the crystal structure of the potential compound Mo 2 O 5 , backed by electronic-structure and phonon calculations from first principles, is given.

  1. A dark jet dominates the power output of the stellar black hole Cygnus X-1.

    PubMed

    Gallo, Elena; Fender, Rob; Kaiser, Christian; Russell, David; Morganti, Raffaella; Oosterloo, Tom; Heinz, Sebastian

    2005-08-11

    Black holes undergoing accretion are thought to emit the bulk of their power in the X-ray band by releasing the gravitational potential energy of the infalling matter. At the same time, they are capable of producing highly collimated jets of energy and particles flowing out of the system with relativistic velocities. Here we show that the 10-solar-mass (10M(o)) black hole in the X-ray binary Cygnus X-1 (refs 3-5) is surrounded by a large-scale (approximately 5 pc in diameter) ring-like structure that appears to be inflated by the inner radio jet. We estimate that in order to sustain the observed emission of the ring, the jet of Cygnus X-1 has to carry a kinetic power that can be as high as the bolometric X-ray luminosity of the binary system. This result may imply that low-luminosity stellar-mass black holes as a whole dissipate the bulk of the liberated accretion power in the form of 'dark', radiatively inefficient relativistic outflows, rather than locally in the X-ray-emitting inflow.

  2. Screening on binary Ti alloy with excellent mechanical property and castability for dental prosthesis application

    PubMed Central

    Li, H. F.; Qiu, K. J.; Yuan, W.; Zhou, F. Y.; Wang, B. L.; Li, L.; Zheng, Y. F.; Liu, Y. H.

    2016-01-01

    In the present study, the microstructure, mechanical property, castability, corrosion behavior and in vitro cytocompatibility of binary Ti–2X alloys with various alloying elements, including Ag, Bi, Ga, Ge, Hf, In, Mo, Nb, Sn and Zr, were systematically investigated, in order to assess their potential applications in dental field. The experimental results showed that all binary Ti‒2X alloys consisted entirely α–Ti phase. The tensile strength and microhardness of Ti were improved by adding alloying elements. The castability of Ti was significantly improved by separately adding 2 wt.% Bi, Ga, Hf, Mo, Nb, Sn and Zr. The corrosion resistance of Ti in both normal artificial saliva solution (AS) and extreme artificial saliva solution (ASFL, AS with 0.2 wt.% NaF and 0.3 wt.% lactic acid) has been improved by separately adding alloying elements. In addition, the extracts of studied Ti‒2X alloys produced no significant deleterious effect to both fibroblasts L929 cells and osteoblast-like MG63 cells, indicating a good in vitro cytocompatibility, at the same level as pure Ti. The combination of enhanced mechanical properties, castability, corrosion behavior, and in vitro cytocompatibility make the developed Ti‒2X alloys have great potential for future stomatological applications. PMID:27874034

  3. Osmium isotopic homogeneity in the CK carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Goderis, Steven; Brandon, Alan D.; Mayer, Bernhard; Humayun, Munir

    2017-11-01

    Variable proportions of isotopically diverse presolar components are known to account for nucleosynthetic isotopic anomalies for a variety of elements (e.g., Ca, Ti, Cr, Ni, Sr, Zr, Mo, Ru, Pd, Ba, Nd, and Sm) in both bulk chondrites and achondrites. However, although large Os isotopic anomalies have been measured in acid leachates and residues of unequilibrated chondrites, bulk chondrites of various groups, iron meteorites, and pallasites exhibit Os isotopic compositions that are indistinguishable from terrestrial or bulk solar isotopic abundances. Since the magnitude of nucleosynthetic anomalies is typically largest in the carbonaceous chondrites, this study reports high-precision Os isotopic compositions and highly siderophile element (HSE) concentrations for ten CK chondrites. The isotope dilution concentration data for HSE and high-precision Os isotope ratios were determined on the same digestion aliquots, to precisely correct for radiogenic contributions to 186Os and 187Os. While acid leached bulk unequilibrated carbonaceous chondrites show deficits of s-process Os components to the same extent as revealed by unequilibrated enstatite, ordinary, and Rumuruti chondrites, equilibrated bulk CK chondrites exhibit no resolvable Os isotopic anomalies. These observations support the idea that acid-resistant, carbon-rich presolar grains, such as silicon carbide (SiC) or graphite, are major carriers for nucleosynthetic isotopic anomalies of Os. The destruction of these presolar grains, which are omnipresent in unequilibrated meteorites, must have occurred during aqueous alteration and thermal metamorphism, early in the CK chondrite parent body history. The dispersal of CK chondrites along the IIIAB iron meteorite isochron on a 187Os/188Os versus 187Re/188Os diagram, with Re/Os ratios from 0.032 to 0.083, in combination with the observed redistribution of other HSE (e.g., Pt, Pd), highlights the influence of parent body processes, overprinted by effects of recent terrestrial alteration. Under the oxidizing conditions prevalent on the CK parent body, evident from high abundances of magnetite and limited Fe-Ni metal in CK chondrites, these parent body processes made all isotopically anomalous Os, originally hosted in reduced presolar grains, accessible. The absence of Os isotopic anomalies in ordinary, enstatite, and now also carbonaceous chondrites, implies that the carriers of s- and r-process Os must have been effectively homogenized across the region of chondrite formation, and possibly even the entire solar protoplanetary nebula, as suggested by the Os isotopic compositions of iron meteorites and non-anomalous ureilites. Except for a limited number of ureilites, the relative proportions of presolar s- and r-process carriers of Os (and other elements such as W) in chondrites, and most other planetary bodies, must have remained constant during all subsequent nebular and planetary processes, which appears not to have been the case for other siderophile elements, including Mo, Ru, and Pd. The existence of Mo, Ru, Pd and other siderophile element isotopic anomalies thus appears to be in part controlled by the chemical properties of these elements (e.g., volatility), their host phase(s) (e.g., SiC, graphite, metal, sulfides), and the nature of the nebular or planetary processes experienced in the early solar system.

  4. Simulating Ru L 3 -Edge X-ray Absorption Spectroscopy with Time-Dependent Density Functional Theory: Model Complexes and Electron Localization in Mixed-Valence Metal Dimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Kuiken, Benjamin E.; Valiev, Marat; Daifuku, Stephanie L.

    2013-05-30

    Ruthenium L3-edge X-ray absorption (XA) spectroscopy probes unoccupied 4d orbitals of the metal atom and is increasingly being used to investigate the local electronic structure in ground and excited electronic states of Ru complexes. The simultaneous development of computational tools for simulating Ru L3-edge spectra is crucial for interpreting the spectral features at a molecular level. This study demonstrates that time-dependent density functional theory (TDDFT) is a viable and predictive tool for simulating ruthenium L3-edge XA spectroscopy. We systematically investigate the effects of exchange correlation functional and implicit and explicit solvent interactions on a series of RuII and RuIII complexesmore » in their ground and electronic excited states. The TDDFT simulations reproduce all of the experimentally observed features in Ru L3-edge XA spectra within the experimental resolution (0.4 eV). Our simulations identify ligand-specific charge transfer features in complicated Ru L3-edge spectra of [Ru(CN)6]4- and RuII polypyridyl complexes illustrating the advantage of using TDDFT in complex systems. We conclude that the B3LYP functional most accurately predicts the transition energies of charge transfer features in these systems. We use our TDDFT approach to simulate experimental Ru L3-edge XA spectra of transition metal mixed-valence dimers of the form [(NC)5MII-CN-RuIII(NH3)5] (where M = Fe or Ru) dissolved in water. Our study determines the spectral signatures of electron delocalization in Ru L3-edge XA spectra. We find that the inclusion of explicit solvent molecules is necessary for reproducing the spectral features and the experimentally determined valencies in these mixed-valence complexes. This study validates the use of TDDFT for simulating Ru 2p excitations using popular quantum chemistry codes and providing a powerful interpretive tool for equilibrium and ultrafast Ru L3-edge XA spectroscopy.« less

  5. Investigation of molybdate melts as an alternative method of reprocessing used nuclear fuel

    DOE PAGES

    Hames, Amber L.; Tkac, Peter; Paulenova, Alena; ...

    2017-01-17

    Here, an investigation of molybdate melts containing sodium molybdate (Na 2MoO 4) and molybdenum trioxide (MoO 3) to achieve the separation of uranium from fission products by crystallization has been performed. The separation is based on the difference in solubility of the fission product metal oxides compared to the uranium oxide or molybdate in the molybdate melt. The molybdate melt dissolves uranium dioxide at high temperatures, and upon cooling, uranium precipitates as uranium dioxide or molybdate, whereas the fission product metals remain soluble in the melt. Small-scale experiments using gram quantities of uranium dioxide have been performed to investigate themore » feasibility of UO 2 purification from the fission products. The composition of the uranium precipitate as well as data for partitioning of several fission product surrogates between the uranium precipitate and molybdate melt for various melt compositions are presented and discussed. The fission products Cs, Sr, Ru and Rh all displayed very large distribution ratios. The fission products Zr, Pd, and the lanthanides also displayed good distribution ratios (D > 10). A melt consisting of 20 wt% MoO 3-50 wt% Na 2MoO 4-30 wt% UO 2 heated to 1313 K and cooled to 1123 K for the physical separation of the UO 2 product from the melt, and washed once with Na 2MoO 4 displays optimum conditions for separation of the UO 2 from the fission products.« less

  6. Creep-resistant, cobalt-free alloys for high temperature, liquid-salt heat exchanger systems

    DOEpatents

    Holcomb, David E; Muralidharan, Govindarajan; Wilson, Dane F.

    2016-09-06

    An essentially Fe- and Co-free alloy is composed essentially of, in terms of weight percent: 6.0 to 7.5 Cr, 0 to 0.15 Al, 0.5 to 0.85 Mn, 11 to 19.5 Mo, 0.03 to 4.5 Ta, 0.01 to 9 W, 0.03 to 0.08 C, 0 to 1 Re, 0 to 1 Ru, 0 to 0.001 B, 0.0005 to 0.005 N, balance Ni, the alloy being characterized by, at 850.degree. C., a yield strength of at least 25 Ksi, a tensile strength of at least 38 Ksi, a creep rupture life at 12 Ksi of at least 25 hours, and a corrosion rate, expressed in weight loss [g/(cm.sup.2 sec)]10.sup.-11 during a 1000 hour immersion in liquid FLiNaK at 850.degree. C., in the range of 3 to 10.

  7. Single and double beta decays in the A=100, A=116 and A=128 triplets of isobars

    NASA Astrophysics Data System (ADS)

    Suhonen, J.; Civitarese, O.

    2014-04-01

    In this paper we analyze the ground-state-to-ground-state two-neutrino double beta (2νββ) decays and single EC and β- decays for the A=100 (100Mo-100Tc-100Ru), A=116 (116Cd-116In-116Sn) and A=128 (128Te-128I-128Xe) triplets of isobars. We use the proton-neutron quasiparticle random-phase approximation (pnQRPA) with realistic G-matrix-derived effective interactions in very large single-particle bases. The purpose is to access the effective value of the axial-vector coupling constant gA in the pnQRPA calculations. We show that the three triplets of isobars represent systems with different characteristics of orbital occupancies and cumulative 2νββ nuclear matrix elements. Our analysis points to a considerably quenched averaged effective value of ≈0.6±0.2 in the pnQRPA calculations.

  8. Coverage evolution of the unoccupied Density of States in sulfur superstructures on Ru(0001)

    NASA Astrophysics Data System (ADS)

    Pisarra, M.; Bernardo-Gavito, R.; Navarro, J. J.; Black, A.; Díaz, C.; Calleja, F.; Granados, D.; Miranda, R.; Martín, F.; Vázquez de Parga, A. L.

    2018-03-01

    Sulfur adsorbed on Ru(0001) presents a large number of ordered structures. This characteristic makes S/Ru(0001) the ideal system to investigate the effect of different periodicities on the electronic properties of interfaces. We have performed scanning tunneling microscopy/spectroscopy experiments and density functional theory calculations showing that a sulfur adlayer generates interface states inside the Γ directional gap of Ru(0001) and that the position of such states varies monotonically with sulfur coverage. This is the result of the interplay between band folding effects arising from the new periodicity of the system and electron localization on the sulfur monolayer. As a consequence, by varying the amount of sulfur in S/Ru(0001) one can control the electronic properties of these interfacial materials.

  9. Mixed-valent metals bridged by a radical ligand: fact or fiction based on structure-oxidation state correlations.

    PubMed

    Sarkar, Biprajit; Patra, Srikanta; Fiedler, Jan; Sunoj, Raghavan B; Janardanan, Deepa; Lahiri, Goutam Kumar; Kaim, Wolfgang

    2008-03-19

    Electron-rich Ru(acac)2 (acac- = 2,4-pentanedionato) binds to the pi electron-deficient bis-chelate ligands L, L = 2,2'-azobispyridine (abpy) or azobis(5-chloropyrimidine) (abcp), with considerable transfer of negative charge. The compounds studied, (abpy)Ru(acac)2 (1), meso-(mu-abpy)[Ru(acac)2]2 (2), rac-(mu-abpy)[Ru(acac)2]2 (3), and (mu-abcp)[Ru(acac)2]2 (4), were calculated by DFT to assess the degree of this metal-to-ligand electron shift. The calculated and experimental structures of 2 and 3 both yield about 1.35 A for the length of the central N-N bond which suggests a monoanion character of the bridging ligand. The NBO analysis confirms this interpretation, and TD-DFT calculations reproduce the observed intense long-wavelength absorptions. While mononuclear 1 is calculated with a lower net ruthenium-to-abpy charge shift as illustrated by the computed 1.30 A for d(N-N), compound 4 with the stronger pi accepting abcp bridge is calculated with a slightly lengthened N-N distance relative to that of 2. The formulation of the dinuclear systems with monoanionic bridging ligands implies an obviously valence-averaged Ru(III)Ru(II) mixed-valent state for the neutral molecules. Mixed valency in conjunction with an anion radical bridging ligand had been discussed before in the discussion of MLCT excited states of symmetrically dinuclear coordination compounds. Whereas 1 still exhibits a conventional electrochemical and spectroelectrochemical behavior with metal centered oxidation and two ligand-based one-electron reduction waves, the two one-electron oxidation and two one-electron reduction processes for each of the dinuclear compounds Ru2.5(L*-)Ru2.5 reveal more unusual features via EPR and UV-vis-NIR spectroelectrochemistry. In spite of intense near-infrared absorptions, the EPR results show that the first reduction leads to Ru(II)(L*-)Ru(II) species, with an increased metal contribution for system 4*-. The second reduction to Ru(II)(L2-)Ru(II) causes the disappearance of the NIR band. One-electron oxidation of the Ru2.5(L*-)Ru2.5 species produces a metal-centered spin for which the alternatives RuIII(L0)Ru(II) or Ru(III)(L*-)Ru(III) can be formulated. The absence of NIR bands as common for mixed-valent species with intervalence charge transfer (IVCT) absorption favors the second alternative. The second one-electron oxidation is likely to produce a dication with Ru(III)(L0)Ru(III) formulation. The usefulness and limitations of the increasingly popular structure/oxidation state correlations for complexes with noninnocent ligands is being discussed.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murgia, Fabrizio; Antitomaso, Philippe; Stievano, Lorenzo

    The ternary Chevrel phase Cu{sub 2}Mo{sub 6}S{sub 8} was successfully synthetized using a simple and cost-effective solid-state microwave-assisted reaction. While solid-state routes require days of high-temperature treatment under inert atmosphere, highly pure and crystalline Cu{sub 2}Mo{sub 6}S{sub 8} could be obtained in only 400 s from this precursor, the Chevrel binary phase Mo{sub 6}S{sub 8} was then obtained by copper removal through acidic leaching, and was evaluated as a positive electrode material for Mg-battery. The electrochemical performance in half-cell configuration shows reversible capacity exceeding 80 mAh/g, which is comparable to previous works carried out with materials synthesized by conventional high-temperaturemore » solid-state routes. - Graphical abstract: Ultrafast micro-wave synthesis of Chevrel phase Cu{sub 2}Mo{sub 6}S{sub 8} towards Mo{sub 6}S{sub 8} as positive electrode of Mg-battery. - Highlights: • Chevrel phase Cu{sub 2}Mo{sub 6}S{sub 8} is synthesized by fast microwave-assisted solid-state reaction. • Highly-pure and well-crystalline Cu{sub 2}Mo{sub 6}S{sub 8} is obtained. • Mo{sub 6}S{sub 8} obtained from leaching is tested as a positive electrode for Mg batteries.« less

  11. Examination of Chemical Adsorption and Marine Biofouling on Metal Surfaces Using Raman Scattering Techniques and Electrochemical Impedance Spectroscopy

    DTIC Science & Technology

    1989-01-13

    aromatic amino acids adsorbed on conditioned Ag electrodes in 0.1 N KCl. A. tryptophan. B. phenylalanine. Ribulose biphosphate carboxylase ( RuBisCo ) has...Preliminary runs with a silver electrode, UV-oxidized seawater, and a putative fouling protein, Ribulose 1,5 biphosphate carboxylase ( RuBisCo ) have been...completed. Prior to adding RuBisCo to the system, a series of runs were made to establish functionality of the cell and system parameters. The system

  12. Raman and electronic transport characterization of few- and single-layer-thick α-RuCl3

    NASA Astrophysics Data System (ADS)

    Zhou, Boyi; Henriksen, Erik

    The layered magnetic semiconductor α-RuCl3, having a honeycomb lattice of spin-1/2 moments, has been identified as a potential candidate material to realize the Kitaev quantum spin liquid. In particular, bulk RuCl3 crystals have been studied and found to be on the cusp of manifesting QSL behavior. As the QSL is primarily a two-dimensional phenomenon, and since the layers of RuCl3 are weakly coupled, we propose to create and study a 2D spin-1/2 honeycomb system by isolating single sheets. Here we report the exfoliation of RuCl3 down to few- and single-layer-thick samples, which we characterize by Raman spectroscopy and atomic force microscopy at room temperature. We will also report our progress on measurements of basic electronic transport properties in the 2D RuCl3 system by controlling the chemical potential via gating in a field-effect configuration.

  13. Unravelling the pH-dependence of a molecular photocatalytic system for hydrogen production.

    PubMed

    Reynal, Anna; Pastor, Ernest; Gross, Manuela A; Selim, Shababa; Reisner, Erwin; Durrant, James R

    2015-08-01

    Photocatalytic systems for the reduction of aqueous protons are strongly pH-dependent, but the origin of this dependency is still not fully understood. We have studied the effect of different degrees of acidity on the electron transfer dynamics and catalysis taking place in a homogeneous photocatalytic system composed of a phosphonated ruthenium tris(bipyridine) dye ( RuP ) and a nickel bis(diphosphine) electrocatalyst ( NiP ) in an aqueous ascorbic acid solution. Our approach is based on transient absorption spectroscopy studies of the efficiency of photo-reduction of RuP and NiP correlated with pH-dependent photocatalytic H 2 production and the degree of catalyst protonation. The influence of these factors results in an observed optimum photoactivity at pH 4.5 for the RuP - NiP system. The electron transfer from photo-reduced RuP to NiP is efficient and independent of the pH value of the medium. At pH <4.5, the efficiency of the system is limited by the yield of RuP photo-reduction by the sacrificial electron donor, ascorbic acid. At pH >4.5, the efficiency of the system is limited by the poor protonation of NiP , which inhibits its ability to reduce protons to hydrogen. We have therefore developed a rational strategy utilising transient absorption spectroscopy combined with bulk pH titration, electrocatalytic and photocatalytic experiments to disentangle the complex pH-dependent activity of the homogenous RuP - NiP photocatalytic system, which can be widely applied to other photocatalytic systems.

  14. Direct catalytic conversion of methane and light hydrocarbon gases. Quarterly report No. 9, October 1--December 31, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, R.B. Jr.; Posin, B.M.; Chan, Yee Wai

    The goal of this research is to develop catalysts that directly convert methane and light hydrocarbons to intermediates that later can be converted to either liquid fuels or value-added chemicals, as economics dictate. During this reporting period, we completed our IR spectroscopic examination of the Ru{sub 4}/MgO and FeRu{sub 3}/MgO systems under nitrogen and methane by examining FeRu{sub 3}/MgO under methane. This system behaved quite differently than the same system under nitrogen. Under methane, only one very broad peak is observed at room temperature. Upon heating, the catalyst transformed so that by 300{degrees}C, the spectrum of FeRu{sub 3}/MgO under methanemore » was the same as that of Ru{sub 4}/MgO. This suggests that methane promotes the segregation of the metals in the mixed metal system. The differences in catalytic activity between the FeRu{sub 3}/MgO and Ru{sub 4}/MgO systems may then be due to the presence of IR transparent species such as iron ions which cause different nucleation in the ruthenium clusters. We examined several systems for activity in the methane dehydrogenation reaction. Focusing on systems which produce C{sub 6} hydrocarbons since this is the most useful product. These systems all displayed low activity so that the amount of hydrocarbon product is very low. Some C{sub 6} hydrocarbon is observed over zeolite supports, but its production ceases after the first few hours of reaction. We prepared a new system, Ru{sub 4} supported on carbon, and examined its reactivity. Its activity was very low and in fact the carbon support had the same level of activity. We synthesized four new systems for examination as catalysts in the partial oxidation of methane. Three of these (PtTSPC/MgO, PtTSPC and PdTSPC on carbon) are analogs of PdTSPC/MgO. This system is of interest because we have observed the production of ethane from methane oxidation over PdTSPC/MgO at relatively low temperatures and we wished to explore its generality among close analogs.« less

  15. Magnetic impurities in conducting oxides. II. (Sr1-xLax)(Ru1-xCox)O3 system

    NASA Astrophysics Data System (ADS)

    Mamchik, A.; Dmowski, W.; Egami, T.; Chen, I.-Wei

    2004-09-01

    The perovskite solid solution between ferromagnetic SrRuO3 and antiferromagnetic LaCoO3 is studied and its structural, electronic,and magnetic properties are compared with (Sr1-xLax)(Ru1-xFex)O3 . The lower 3d energy levels of Co3+ cause a local charge transfer from 4dRu4+ , a reaction that has the novel feature of being sensitive to the local atomic structure such as cation order. Despite such a complication, Co , like Fe , spin-polarizes the itinerant electrons in SrRuO3 to form a large local magnetic moment that is switchable at high fields. In the spin glass regime when Anderson localization dominates, a large negative magnetoresistance emerges as a result of spin polarization of mobile electronic carriers that occupy states beyond the mobility edge. A phenomenological model predicting an inverse relation between magnetoresistance and saturation magnetization is proposed to explain the composition dependence of magnetoresistance for both (Sr1-xLax)(Ru1-xCOx)O3 and (Sr1-xLax)(Ru1-xFex)O3 systems.

  16. Exploring Photoinduced Excited State Evolution in Heterobimetallic Ru(II)-Co(III) Complexes.

    PubMed

    Kuhar, Korina; Fredin, Lisa A; Persson, Petter

    2015-06-18

    Quantum chemical calculations provide detailed theoretical information concerning key aspects of photoinduced electron and excitation transfer processes in supramolecular donor-acceptor systems, which are particularly relevant to fundamental charge separation in emerging molecular approaches for solar energy conversion. Here we use density functional theory (DFT) calculations to explore the excited state landscape of heterobimetallic Ru-Co systems with varying degrees of interaction between the two metal centers, unbound, weakly bound, and tightly bound systems. The interplay between structural and electronic factors involved in various excited state relaxation processes is examined through full optimizations of multiple charge/spin states of each of the investigated systems. Low-energy relaxed heterobimetallic states of energy transfer and excitation transfer character are characterized in terms of energy, structure, and electronic properties. These findings support the notion of efficient photoinduced charge separation from a Ru(II)-Co(III) ground state, via initial optical excitation of the Ru-center, to low-energy Ru(III)-Co(II) states. The strongly coupled system has significant involvement of the conjugated bridge, qualitatively distinguishing it from the other two weakly coupled systems. Finally, by constructing potential energy surfaces for the three systems where all charge/spin state combinations are projected onto relevant reaction coordinates, excited state decay pathways are explored.

  17. Phase Segregation Behavior of Two-Dimensional Transition Metal Dichalcogenide Binary Alloys Induced by Dissimilar Substitution

    DOE PAGES

    Susarla, Sandhya; Kochat, Vidya; Kutana, Alex; ...

    2017-08-15

    Transition metal dichalcogenide (TMD) alloys form a broad class of two-dimensional (2D) layered materials with tunable bandgaps leading to interesting optoelectronic applications. In the bottom-up approach of building these atomically thin materials, atomic doping plays a crucial role. Here we demonstrate a single step CVD (chemical vapor deposition) growth procedure for obtaining binary alloys and heterostructures by tuning atomic composition. We show that a minute doping of tin during the growth phase of the Mo 1–xW xS 2 alloy system leads to formation of lateral and vertical heterostructure growth. High angle annular dark field scanning transmission electron microscopy (HAADF-STEM) imagingmore » and density functional theory (DFT) calculations also support the modified stacking and growth mechanism due to the nonisomorphous Sn substitution. Our experiments demonstrate the possibility of growing heterostructures of TMD alloys whose spectral responses can be desirably tuned for various optoelectronic applications.« less

  18. Oxygen-Dependent Photocatalytic Water Reduction with a Ruthenium(imidazolium) Chromophore and a Cobaloxime Catalyst.

    PubMed

    Petermann, Lydia; Staehle, Robert; Pfeifer, Maxim; Reichardt, Christian; Sorsche, Dieter; Wächtler, Maria; Popp, Jürgen; Dietzek, Benjamin; Rau, Sven

    2016-06-06

    Detailed investigations of a photocatalytic system capable of producing hydrogen under pre-catalytic aerobic conditions are reported. This system consists of the NHC precursor chromophore [Ru(tbbpy)2 (RR'ip)][PF6 ]3 (abbreviated as Ru(RR'ip)[PF6 ]3 ; tbbpy=4,4'-di-tert-butyl-2,2'-bipyridine, RR'ip=1,3-disubstituted-1H-imidazo[4,5-f][1,10]phenanthrolinium), the reduction catalyst Co(dmgH)2 (dmgH=dimethylglyoximato), and the electron donor ascorbic acid (AA). Screening studies with respect to solvent, cobaloxime catalyst, electron donor, pH, and concentrations of the individual components yielded optimized photocatalytic conditions. The system shows high activity based on Ru, with turnover numbers up to 2000 under oxygen-free and pre-catalytic aerobic conditions. The turnover frequency in the latter case was even higher than that for the oxygen-free catalyst system. The Ru complexes show high photostability and their first excited state is primarily located on the RR'ip ligand. X-ray crystallographic analysis of the rigid cyclophane-type ligand dd(ip)2 (Br)2 (dd(ip)2 =1,1',3,3'-bis(2,3,5,6-tetramethyl-1,4-phenylene)bis(methylene)bis(1H-imidazo[4,5-f][1,10]phenanthrolinium)) and the catalytic activity of its Ru complex [{(tbbpy)2 Ru}2 (μ-dd(ip)2 )][PF6 ]6 (abbreviated as Ru2 (dd(ip)2 )[PF6 ]6 ) suggest an intermolecular catalytic cycle. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Direct evidence for double-exchange coupling in Ru- substituted La0.7Pb0.3Mn 1 - x Ru x O3, 0.0 <= x <= 0.4

    NASA Astrophysics Data System (ADS)

    Sundar Manoharan, S.; Sahu, R. K.; Rao, M. L.; Elefant, D.; Schneider, C. M.

    2002-08-01

    The La0.7Pb0.3Mn 1 - x Ru x O3 (0.0 <= x <= 0.4) system shows an innate relationship between Mn and Ru ions by a unique double-exchange mediated transport behavior. This is exonerated by the coexistence of Tp and Tc (range 330 K 245 K for 0.0 <= x <= 0.4). For Ru > 30%, the hole carrier mass influences the transport property. X-ray absorption spectra suggest that the Tc-Tp match is due to the transport mediated by the Mn3+/Mn4+ leftrightarrow Ru4+/Ru5+ redox pair and also due to the broad low-spin Ru:4d conduction band. For x > 0.2, T < 0.5Tc obeys a modified variable-range hopping model, where kT0 propto (M/Ms)2, suggesting a random magnetic potential which localizes the charge carriers.

  20. Electrochemical Corrosion Studies for Modeling Metallic Waste Form Release Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poineau, Frederic; Tamalis, Dimitri

    The isotope 99Tc is an important fission product generated from nuclear power production. Because of its long half-life (t 1/2 = 2.13 ∙ 10 5 years) and beta-radiotoxicity (β⁻ = 292 keV), it is a major concern in the long-term management of spent nuclear fuel. In the spent nuclear fuel, Tc is present as an alloy with Mo, Ru, Rh, and Pd called the epsilon-phase, the relative amount of which increases with fuel burn-up. In some separation schemes for spent nuclear fuel, Tc would be separated from the spent fuel and disposed of in a durable waste form. Technetium wastemore » forms under consideration include metallic alloys, oxide ceramics and borosilicate glass. In the development of a metallic waste form, after separation from the spent fuel, Tc would be converted to the metal, incorporated into an alloy and the resulting waste form stored in a repository. Metallic alloys under consideration include Tc–Zr alloys, Tc–stainless steel alloys and Tc–Inconel alloys (Inconel is an alloy of Ni, Cr and iron which is resistant to corrosion). To predict the long-term behavior of the metallic Tc waste form, understanding the corrosion properties of Tc metal and Tc alloys in various chemical environments is needed, but efforts to model the behavior of Tc metallic alloys are limited. One parameter that should also be considered in predicting the long-term behavior of the Tc waste form is the ingrowth of stable Ru that occurs from the radioactive decay of 99Tc ( 99Tc → 99Ru + β⁻). After a geological period of time, significant amounts of Ru will be present in the Tc and may affect its corrosion properties. Studying the effect of Ru on the corrosion behavior of Tc is also of importance. In this context, we studied the electrochemical behavior of Tc metal, Tc-Ni alloys (to model Tc-Inconel alloy) and Tc-Ru alloys in acidic media. The study of Tc-U alloys has also been performed in order to better understand the nature of Tc in metallic spent fuel. Computational modeling and simulations were performed to shed light on experimental results and explain structural and kinetics trends.« less

  1. Site Preference of Ternary Alloying Additions to AuTi

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Mosca, Hugo O.; Noebe, Ronald D.

    2006-01-01

    Atomistic modeling of the site substitution behavior of several alloying additions, namely. Na, Mg, Al, Si. Sc, V, Cr, Mn. Fe, Co, Ni, Cu, Zn, Y, Zr. Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, and Pt in B2 TiAu is reported. The 30 elements can be grouped according to their absolute preference for a specific site, regardless of concentration, or preference for available sites in the deficient sublattice. Results of large scale simulations are also presented, distinguishing between additions that remain in solution from those that precipitate a second phase.

  2. Nuclear Data Sheets for A = 92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baglin, Coral M.

    2012-10-15

    Nuclear structure and decay data pertaining to all nuclides with mass number A = 92 (As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd) have been compiled and evaluated, and incorporated into the ENSDF data file. All literature available by 15 September 2012 has been considered. This evaluation supersedes the previous publication for this mass chain (Coral M. Baglin, Nuclear Data Sheets 91, 423 (2000) (November 2000 cutoff date)), and subsequent unpublished reevaluations by C.M. Baglin for {sup 92}Kr (January 2004 literature cut-off) and {sup 92}Sr (August 2003 literature cut-off).

  3. Dissolution of spent nuclear fuel in carbonate-peroxide solution

    NASA Astrophysics Data System (ADS)

    Soderquist, Chuck; Hanson, Brady

    2010-01-01

    This study shows that spent UO2 fuel can be completely dissolved in a room temperature carbonate-peroxide solution apparently without attacking the metallic Mo-Tc-Ru-Rh-Pd fission product phase. In parallel tests, identical samples of spent nuclear fuel were dissolved in nitric acid and in an ammonium carbonate, hydrogen peroxide solution. The resulting solutions were analyzed for strontium-90, technetium-99, cesium-137, europium-154, plutonium, and americium-241. The results were identical for all analytes except technetium, where the carbonate-peroxide dissolution had only about 25% of the technetium that the nitric acid dissolution had.

  4. Low Density, High Creep Resistant Single Crystal Super Alloy for Turbine Airfoils

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca A. (Inventor); Gabb, Timothy P. (Inventor); Smialek, James L. (Inventor); Nathal, Michael V. (Inventor)

    2007-01-01

    A nickel-base superalloy article for use in turbines has increased creep resistance and lower density. The superalloy article includes, as measured in % by weight, 6.0-12.0% Mo, 5.5-6.5%Al, 3.0-7.0% Ta, 0-15% Co, 2.0-6.0% Cr, 1.0-4.0% Re, 0-1.5% W, 0-1.5% Ru, 0-2.0% Ti, 0-3.0% Nb, 0-0.2% Hf, 0-0.02% Y, 0.001-0.005% B, 0.01-0.04% C, and a remainder including nickel plus impurities.

  5. The barium iron ruthenium oxide system

    NASA Technical Reports Server (NTRS)

    Kemmler-Sack, S.; Ehmann, A.

    1986-01-01

    In the system BaFe(1-x)Ru(x)O(3-y), three phases, separated by immiscibility gaps, are present: an Fe-rich phase (x = 0 to 0.75) with hexagonal BaTiO3 structure (6H; sequence (hcc)2), a Ru-rich phase (x = 0.9) of hexagonal 4H-type (sequence (hc)2), and the pure Ru compounds BaRuO3 with rhombohedral 9R structure (sequence (hhc)3). By vibrational spectroscopic investigations in the 6H phase a transition from n-type semiconduction (Fe-rich compounds with complete O lattice) can be detected. The 4H and 9R stacking polytypes are good, metal-like conductors. The lattice parameters are given.

  6. Elastic properties, thermal stability, and thermodynamic parameters of MoAlB

    NASA Astrophysics Data System (ADS)

    Kota, Sankalp; Agne, Matthias; Zapata-Solvas, Eugenio; Dezellus, Olivier; Lopez, Diego; Gardiola, Bruno; Radovic, Miladin; Barsoum, Michel W.

    2017-04-01

    MoAlB is the first and, so far, the only transition-metal boride that forms alumina when heated in air and is thus potentially useful for high-temperature applications. Herein, the thermal stability in argon and vacuum atmospheres and the thermodynamic parameters of bulk polycrystalline MoAlB were investigated experimentally. At temperatures above 1708 K, in vacuum and inert atmospheres, this compound incongruently melts into the binary MoB and liquid aluminum metal as confirmed by differential thermal analysis, quenching experiments, x-ray diffraction, and scanning electron microscopy. Making use of that information together with heat-capacity measurements in the 4-1000-K temperature range—successfully modeled as the sum of lattice, electronic, and dilation contributions—the standard enthalpy, entropy, and free energy of formation are computed and reported for the full temperature range. The standard enthalpy of formation of MoAlB at 298 K was found to be -132 ±3.2 kJ/mol. Lastly, the thermal conductivity values are computed and modeled using a variation of the Slack model in the 300-1600-K temperature range.

  7. Unravelling the pH-dependence of a molecular photocatalytic system for hydrogen production† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc01349f Click here for additional data file.

    PubMed Central

    Pastor, Ernest; Gross, Manuela A.; Selim, Shababa

    2015-01-01

    Photocatalytic systems for the reduction of aqueous protons are strongly pH-dependent, but the origin of this dependency is still not fully understood. We have studied the effect of different degrees of acidity on the electron transfer dynamics and catalysis taking place in a homogeneous photocatalytic system composed of a phosphonated ruthenium tris(bipyridine) dye (RuP) and a nickel bis(diphosphine) electrocatalyst (NiP) in an aqueous ascorbic acid solution. Our approach is based on transient absorption spectroscopy studies of the efficiency of photo-reduction of RuP and NiP correlated with pH-dependent photocatalytic H2 production and the degree of catalyst protonation. The influence of these factors results in an observed optimum photoactivity at pH 4.5 for the RuP–NiP system. The electron transfer from photo-reduced RuP to NiP is efficient and independent of the pH value of the medium. At pH <4.5, the efficiency of the system is limited by the yield of RuP photo-reduction by the sacrificial electron donor, ascorbic acid. At pH >4.5, the efficiency of the system is limited by the poor protonation of NiP, which inhibits its ability to reduce protons to hydrogen. We have therefore developed a rational strategy utilising transient absorption spectroscopy combined with bulk pH titration, electrocatalytic and photocatalytic experiments to disentangle the complex pH-dependent activity of the homogenous RuP–NiP photocatalytic system, which can be widely applied to other photocatalytic systems. PMID:28717491

  8. Photochemical Properties and Reactivity of a Ru Compound Containing an NAD/NADH-Functionalized 1,10-Phenanthroline Ligand.

    PubMed

    Kobayashi, Katsuaki; Ohtsu, Hideki; Nozaki, Koichi; Kitagawa, Susumu; Tanaka, Koji

    2016-03-07

    An NAD/NADH-functionalized ligand, benzo[b]pyrido[3,2-f][1,7]-phenanthroline (bpp), was newly synthesized. A Ru compound containing the bpp ligand, [Ru(bpp)(bpy)2](2+), underwent 2e(-) and 2H(+) reduction, generating the NADH form of the compound, [Ru(bppHH)(bpy)2](2+), in response to visible light irradiation in CH3CN/TEA/H2O (8/1/1). The UV-vis and fluorescent spectra of both [Ru(bpp)(bpy)2](2+) and [Ru(bppHH)(bpy)2](2+) resembled the spectra of [Ru(bpy)3](2+). Both complexes exhibited strong emission, with quantum yields of 0.086 and 0.031, respectively; values that are much higher than those obtained from the NAD/NADH-functionalized complexes [Ru(pbn)(bpy)2](2+) and [Ru(pbnHH)(bpy)2](2+) (pbn = (2-(2-pyridyl)benzo[b]-1.5-naphthyridine, pbnHH = hydrogenated form of pbn). The reduction potential of the bpp ligand in [Ru(bpp)(bpy)2](2+) (-1.28 V vs SCE) is much more negative than that of the pbn ligand in [Ru(pbn)(bpy)2](2+) (-0.74 V), although the oxidation potentials of bppHH and pbnHH are essentially equal (0.95 V). These results indicate that the electrochemical oxidation of the dihydropyridine moiety in the NADH-type ligand was independent of the π system, including the Ru polypyridyl framework. [Ru(bppHH)(bpy)2](2+) allowed the photoreduction of oxygen, generating H2O2 in 92% yield based on [Ru(bppHH)(bpy)2](2+). H2O2 production took place via singlet oxygen generated by the energy transfer from excited [Ru(bppHH)(bpy)2](2+) to triplet oxygen.

  9. Revealing the Double-Edged Sword Role of Graphene on Boosted Charge Transfer versus Active Site Control in TiO2 Nanotube Arrays@RGO/MoS2 Heterostructure.

    PubMed

    Quan, Quan; Xie, Shunji; Weng, Bo; Wang, Ye; Xu, Yi-Jun

    2018-05-01

    Charge separation/transfer is generally believed to be the most key factor affecting the efficiency of photocatalysis, which however will be counteracted if not taking the active site engineering into account for a specific photoredox reaction. Here, a 3D heterostructure composite is designed consisting of MoS 2 nanoplatelets decorated on reduced graphene oxide-wrapped TiO 2 nanotube arrays (TNTAs@RGO/MoS 2 ). Such a cascade configuration renders a directional migration of charge carriers and controlled immobilization of active sites, thereby showing much higher photoactivity for water splitting to H 2 than binary TNTAs@RGO and TNTAs/MoS 2 . The photoactivity comparison and mechanistic analysis reveal the double-edged sword role of RGO on boosted charge separation/transfer versus active site control in this composite system. The as-observed inconsistency between boosted charge transfer and lowered photoactivity over TNTAs@RGO is attributed to the decrease of active sites for H 2 evolution, which is significantly different from the previous reports in literature. The findings of the intrinsic relationship of balanced benefits from charge separation/transfer and active site control could promote the rational optimization of photocatalyst design by cooperatively manipulating charge flow and active site control, thereby improving the efficiency of photocatalysis for target photoredox processes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Clean induced feature CD shift of EUV mask

    NASA Astrophysics Data System (ADS)

    Nesládek, Pavel; Schedel, Thorsten; Bender, Markus

    2016-05-01

    EUV developed in the last decade to the most promising <7nm technology candidate. Defects are considered to be one of the most critical issues of the EUV mask. There are several contributors which make the EUV mask so different from the optical one. First one is the significantly more complicated mask stack consisting currently of 40 Mo/Si double layers, covered by Ru capping layer and TaN/TaO absorber/anti-reflective coating on top of the front face of the mask. Backside is in contrary to optical mask covered as well by conductive layer consisting of Cr or CrN. Second contributor is the fact that EUV mask is currently in contrary to optical mask not yet equipped with sealed pellicle, leading to much higher risk of mask contamination. Third reason is use of EUV mask in vacuum, possibly leading to deposition of vacuum contaminants on the EUV mask surface. Latter reason in combination with tight requirements on backside cleanliness lead to the request of frequent recleaning of the EUV mask, in order to sustain mask lifetime similar to that of optical mask. Mask cleaning process alters slightly the surface of any mask - binary COG mask, as well as phase shift mask of any type and naturally also of the EUV mask as well. In case of optical masks the changes are almost negligible, as the mask is exposed to max. 10-20 re-cleans within its life time. These modifications can be expressed in terms of different specified parameters, e.g. CD shift, phase/trans shift, change of the surface roughness etc. The CD shift, expressed as thinning (or exceptionally thickening) of the dark features on the mask is typically in order of magnitude 0.1nm per process run, which is completely acceptable for optical mask. Projected on the lifetime of EUV mask, assuming 100 clean process cycles, this will lead to CD change of about 10nm. For this reason the requirements for EUV mask cleaning are significantly tighter, << 0.1 nm per process run. This task will look even more challenging, when considering, that the tools for CD measurement at the EUV mask are identical as for optical mask. There is one aspect influencing the CD shift, which demands attention. The mask composition of the EUV mask is significantly different from the optical mask. More precisely there are 2 materials influencing the estimated CD in case of EUV mask, whereas there is one material only in case of optical masks, in first approximation. For optical masks, the CD changes can be attributed to modification of the absorber/ARC layer, as the quartz substrate can be hardly modified by the wet process. For EUV Masks chemical modification of the Ru capping layer - thinning, oxidization etc. are rather more probable and we need to take into account, how this effects can influence the CD measurement process. CD changes measured can be interpreted as either change in the feature size, or modification of the chemical nature of both absorber/ARC layer stack and the Ru capping layer. In our work we try to separate the effect of absorber and Ru/capping layer on the CD shift observed and propose independent way of estimation both parameters.

  11. Electrochemical, spectroscopic, and photophysical properties of structurally diverse polyazine-bridged Ru(II),Pt(II) and Os(II),Ru(II),Pt(II) supramolecular motifs.

    PubMed

    Knoll, Jessica D; Arachchige, Shamindri M; Wang, Guangbin; Rangan, Krishnan; Miao, Ran; Higgins, Samantha L H; Okyere, Benjamin; Zhao, Meihua; Croasdale, Paul; Magruder, Katherine; Sinclair, Brian; Wall, Candace; Brewer, Karen J

    2011-09-19

    Five new tetrametallic supramolecules of the motif [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) and three new trimetallic light absorbers [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) (TL = bpy = 2,2'-bipyridine or phen = 1,10-phenanthroline; M = Ru(II) or Os(II); BL = dpp = 2,3-bis(2-pyridyl)pyrazine, dpq = 2,3-bis(2-pyridyl)quinoxaline, or bpm = 2,2'-bipyrimidine) were synthesized and their redox, spectroscopic, and photophysical properties investigated. The tetrametallic complexes couple a Pt(II)-based reactive metal center to Ru and/or Os light absorbers through two different polyazine BL to provide structural diversity and interesting resultant properties. The redox potential of the M(II/III) couple is modulated by M variation, with the terminal Ru(II/III) occurring at 1.58-1.61 V and terminal Os(II/III) couples at 1.07-1.18 V versus Ag/AgCl. [{(TL)(2)M(dpp)}(2)Ru(BL)](PF(6))(6) display terminal M(dπ)-based highest occupied molecular orbitals (HOMOs) with the dpp(π*)-based lowest unoccupied molecular orbital (LUMO) energy relatively unaffected by the nature of BL. The coupling of Pt to the BL results in orbital inversion with localization of the LUMO on the remote BL in the tetrametallic complexes, providing a lowest energy charge separated (CS) state with an oxidized terminal Ru or Os and spatially separated reduced BL. The complexes [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) and [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) efficiently absorb light throughout the UV and visible regions with intense metal-to-ligand charge transfer (MLCT) transitions in the visible at about 540 nm (M = Ru) and 560 nm (M = Os) (ε ≈ 33,000-42,000 M(-1) cm(-1)) and direct excitation to the spin-forbidden (3)MLCT excited state in the Os complexes about 720 nm. All the trimetallic and tetrametallic Ru-based supramolecular systems emit from the terminal Ru(dπ)→dpp(π*) (3)MLCT state, λ(max)(em) ≈ 750 nm. The tetrametallic systems display complex excited state dynamics with quenching of the (3)MLCT emission at room temperature to populate the lowest-lying (3)CS state population of the emissive (3)MLCT state.

  12. Roles of aromatic side chains and template effects of the hydrophobic cavity of a self-assembled peptide nanoarchitecture for anisotropic growth of gold nanocrystals.

    PubMed

    Tomizaki, Kin-ya; Kishioka, Kohei; Kobayashi, Hiroki; Kobayashi, Akitsugu; Yamada, Naoki; Kataoka, Shunsuke; Imai, Takahito; Kasuno, Megumi

    2015-11-15

    Gold nanocrystals are promising as catalysts and for use in sensing/imaging systems, photonic/plasmonic devices, electronics, drug delivery systems, and for photothermal therapy due to their unique physical, chemical, and biocompatible properties. The use of various organic templates allows control of the size, shape, structure, surface modification and topology of gold nanocrystals; in particular, currently the synthesis of gold nanorods requires a cytotoxic surfactant to control morphology. To control the shape of gold nanocrystals, we previously demonstrated the de novo design and synthesis of a β-sheet-forming nonapeptide (RU006: Ac-AIAKAXKIA-NH2, X=L-2-naphthylalanine, Nal) and the fabrication of gold nanocrystals by mixing RU006 and HAuCl4 in water. The reaction afforded ultrathin gold nanoribbons 50-100 nm wide, several nanometers high, and microns long. To understand the mechanism underlying gold nanoribbon formation by the RU006 system, we here report (i) the effects of replacement of the Nal aromatic side chain in the RU006 sequence with other aromatic moieties, (ii) the electrochemical properties of aromatic side chains in the de novo designed template peptides to estimate the redox potential and number of electrons participating in the gold crystallization process, and (iii) the stoichiometry of the RU006 system for gold nanoribbon synthesis. Interestingly, RU006 bearing a naphthalene moiety (oxidation peak potential of 1.50 V vs Ag/Ag(+)) and an analog [Ant(6)]-RU006 bearing a bulky anthracene moiety (oxidation peak potential of 1.05 V vs Ag/Ag(+)) allowed the growth of anisotropic (ribbon-like) and isotropic (round) gold nanocrystals, respectively. This trend in morphology of gold nanocrystals was attributed to spatially-arranged hydrophobic cavities sufficiently large to accommodate the gold precursor and to allow directed crystal growth driven by cross-linking reactions among the naphthalene rings. Support for this mechanism was obtained by decreasing the mole fraction of [Ant(6)]-RU006 against the total concentration of [Ant(6)]-RU006 and [Phe(6)]-RU006: absorption spectra similar to that for RU006 were obtained. Differences in the redox properties of the anthracene and naphthalene moieties scarcely affected morphology. We propose that construction of an appropriate hydrophobic cavity is important for templating gold nanocrystal architectures by peptide self-assembly. This mechanism would be applicable for developing simple, low toxicity, mild synthetic methods for constructing metallic nanomaterials for therapeutic use. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. The isothermal section of Gd–Ni–Si system at 1070 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morozkin, A.V., E-mail: morozkin@tech.chem.msu.ru; Knotko, A.V.; Yapaskurt, V.O.

    2016-03-15

    The Gd–Ni–Si system has been investigated at 1070 K by X-ray and microprobe analyses. The existence of the known compounds, i.e.: GdNi{sub 10}Si{sub 2}, GdNi{sub 8}Si{sub 3}, GdNi{sub 5}Si{sub 3}, GdNi{sub 7}Si{sub 6}, GdNi{sub 6}Si{sub 6}, GdNi{sub 4}Si, GdNi{sub 2}Si{sub 2}, GdNiSi{sub 3}, Gd{sub 3}Ni{sub 6}Si{sub 2}, GdNiSi, GdNiSi{sub 2}, GdNi{sub 0.4}Si{sub 1.6}, Gd{sub 2}Ni{sub 2.35}Si{sub 0.65}, Gd{sub 3}NiSi{sub 2}, Gd{sub 3}NiSi{sub 3} and Gd{sub 6}Ni{sub 1.67}Si{sub 3}, has been confirmed. Moreover, five new phases have been identified in this system. The crystal structure for four of them has been determined: Gd{sub 2}Ni{sub 16−12.8}Si{sub 1−4.2} (Th{sub 2}Zn{sub 17}-type), GdNi{sub 6.6}Si{submore » 6} (GdNi{sub 7}Si{sub 6}-type), Gd{sub 3}Ni{sub 8}Si (Y{sub 3}Co{sub 8}Si-type) and Gd{sub 3}Ni{sub 11.5}Si{sub 4.2}(Gd{sub 3}Ru{sub 4}Ga{sub 12}-type). The compound with composition ~Gd{sub 2}Ni{sub 4}Si{sub 3} still remains with unknown structure. Quasi-binary phases, solid solutions, were detected at 1070 K to be formed by the binaries GdNi{sub 5}, GdNi{sub 3}, GdNi{sub 2}, GdNi, GdSi{sub 2} and GdSi{sub 1.67}; while no appreciable solubility was observed for the other binary compounds of the Gd–Ni–Si system. Magnetic properties of the GdNi{sub 6}Si{sub 6}, GdNi{sub 6.6}Si{sub 6} and Gd{sub 3}Ni{sub 11.5}Si{sub 4.2} compounds have also been investigated and are here reported. - Graphical abstract: The Gd–Ni–Si system has been investigated at 1070 K by X-ray and microprobe analyses. The known GdNi{sub 10}Si{sub 2}, GdNi{sub 8}Si{sub 3}, GdNi{sub 5}Si{sub 3}, GdNi{sub 7}Si{sub 6}, GdNi{sub 6}Si{sub 6}, GdNi{sub 4}Si, GdNi{sub 2}Si{sub 2}, GdNiSi{sub 3}, Gd{sub 3}Ni{sub 6}Si{sub 2}, GdNiSi, GdNiSi{sub 2}, GdNi{sub 0.4}Si{sub 1.6}, Gd{sub 2}Ni{sub 2.35}Si{sub 0.65}, Gd{sub 3}NiSi{sub 2}, Gd{sub 3}NiSi{sub 3} and Gd{sub 6}Ni{sub 1.67}Si{sub 3} compounds have been confirmed and five new ~Gd{sub 2}Ni{sub 4}Si{sub 3} (unknown type), Gd{sub 2}Ni{sub 16−12.8}Si{sub 1−4.2} (Th{sub 2}Zn{sub 17}-type), GdNi{sub 6.6}Si{sub 6} (GdNi{sub 7}Si{sub 6}-type), Gd{sub 3}Ni{sub 8}Si (Y{sub 3}Co{sub 8}Si-type) and Gd{sub 3}Ni{sub 11.5}Si{sub 4.2} (Gd{sub 3}Ru{sub 4}Ga{sub 12}-type) compounds have been detected in Gd–Ni–Si system at 1070 K. Quasi-binary phases, solid solutions, were detected at 1070 K to be formed by the binaries GdNi{sub 5}, GdNi{sub 3}, GdNi{sub 2}, GdNi, GdSi{sub 2} and GdSi{sub 1.67}; while no detectable solubility was observed for the other binary compounds of the Gd–Ni–Si system. Magnetic properties of the GdNi{sub 6}Si{sub 6}, GdNi{sub 6.6}Si{sub 6} and Gd{sub 3}Ni{sub 11.5}Si{sub 4.2} compounds have also been investigated and are here reported. - Highlights: • Gd–Ni–Si isothermal section was obtained at 1070 K. • Sixteen known ternary gadolinium nickel silicides were confirmed in Gd–Ni–Si. • Five new gadolinium nickel silicides were detected in Gd–Ni–Si. • GdNi{sub 6}Si{sub 6}, GdNi{sub 6.6}Si{sub 6} and Gd{sub 3}Ni{sub 11.5}Si{sub 4.2} show ferromagnetic-type ordering.« less

  14. Regulation of Ribulose-1,5-Bisphosphate Carboxylase Activity by the Activase System in Lysed Spinach Chloroplasts

    PubMed Central

    Parry, Martin A. J.; Keys, Alfred J.; Foyer, Christine H.; Furbank, Robert T.; Walker, David A.

    1988-01-01

    Ribulose-1,5-bisphosphate (RuBP) carboxylase in lysed spinach (Spinacia oleracea L. cv virtuosa) chloroplasts that had been partly inactivated at low CO2 and Mg2+ by incubating in darkness with 4 millimolar partially purified RuBP was reactivated by light. If purified RuBP was used to inhibit dark activation of the enzyme, reactivation by light was not observed unless fructose-1,6-bisphosphate, ATP, or ADP plus inorganic phosphate were also added. Presumably, ADP plus inorganic phosphate acted as an ATP-generating system with a requirement for the generation of ΔpH across the thylakoid membrane. When the RuBP obtained from Sigma Chemical Co. was used, light did not reactivate the enzyme. There was no direct correlation between ΔpH and activation. Therefore, thylakoids are required in the ribulose-1,5-bisphosphate carboxylase activase system largely to synthesize ATP. Inactivation of RuBP carboxylase in isolated chloroplasts or in the lysed chloroplast system was not promoted simply by a transition from light to dark conditions but was caused by low CO2 and Mg2+. PMID:16666184

  15. Spin-orbit excitations and electronic structure of the putative Kitaev magnet α -RuCl3

    NASA Astrophysics Data System (ADS)

    Sandilands, Luke J.; Tian, Yao; Reijnders, Anjan A.; Kim, Heung-Sik; Plumb, K. W.; Kim, Young-June; Kee, Hae-Young; Burch, Kenneth S.

    2016-02-01

    Mott insulators with strong spin-orbit coupling have been proposed to host unconventional magnetic states, including the Kitaev quantum spin liquid. The 4 d system α -RuCl3 has recently come into view as a candidate Kitaev system, with evidence for unusual spin excitations in magnetic scattering experiments. We apply a combination of optical spectroscopy and Raman scattering to study the electronic structure of this material. Our measurements reveal a series of orbital excitations involving localized total angular momentum states of the Ru ion, implying that strong spin-orbit coupling and electron-electron interactions coexist in this material. Analysis of these features allows us to estimate the spin-orbit coupling strength, as well as other parameters describing the local electronic structure, revealing a well-defined hierarchy of energy scales within the Ru d states. By comparing our experimental results with density functional theory calculations, we also clarify the overall features of the optical response. Our results demonstrate that α -RuCl3 is an ideal material system to study spin-orbit coupled magnetism on the honeycomb lattice.

  16. Synthesis, structure, and electronic properties of a dimer of Ru(bpy)2 doubly bridged by methoxide and pyrazolate.

    PubMed

    Jude, Hershel; Rein, Francisca N; White, Peter S; Dattelbaum, Dana M; Rocha, Reginaldo C

    2008-09-01

    The heterobridged dinuclear complex cis,cis-[(bpy) 2Ru(mu-OCH 3)(mu-pyz)Ru(bpy) 2] (2+) ( 1; bpy = 2,2'-bipyridine; pyz = pyrazolate) was synthesized and isolated as a hexafluorophosphate salt. Its molecular structure was fully characterized by X-ray crystallography, (1)H NMR spectroscopy, and ESI mass spectrometry. The compound 1.(PF 6) 2 (C 44H 38F 12N 10OP 2Ru 2) crystallizes in the monoclinic space group P2 1/ c with a = 13.3312(4) A, b = 22.5379(6) A, c = 17.2818(4) A, beta = 99.497(2) degrees , V = 5121.3(2) A (3), and Z = 4. The meso diastereoisomeric form was exclusively found in the crystal structure, although the NMR spectra clearly demonstrated the presence of two stereoisomers in solution (rac and meso forms at approximately 1:1 ratio). The electronic properties of the complex in acetonitrile were investigated by cyclic voltammetry and UV-vis and NIR-IR spectroelectrochemistries. The stepwise oxidation of the Ru (II)-Ru (II) complex into the mixed-valent Ru (II)-Ru (III) and fully oxidized Ru (III)-Ru (III) states is fully reversible on the time scale of the in situ (spectro)electrochemical measurements. The mixed-valent species displays strong electronic coupling, as evidenced by the large splitting between the redox potentials for the Ru(III)/Ru(II) couples (Delta E 1/2 = 0.62 V; K c = 3 x 10 (10)) and the appearance of an intervalence transfer (IT) band at 1490 nm that is intense, narrow, and independent of solvent. Whereas this salient band in the NIR region originates primarily from highest-energy of the three IT transitions predicted for Ru(II)-Ru(III) systems, a weaker absorption band corresponding to the lowest-energy IT transition was clearly evidenced in the IR region ( approximately 3200 cm (-1)). The observation of totally coalesced vibrational peaks in the 1400-1650 cm (-1) range for a set of five bpy spectator vibrations in Ru (II)-Ru (III) relative to Ru (II)-Ru (II) and Ru (III)-Ru (III) provided evidence for rapid electron transfer and valence averaging on the picosecond time scale. Other than a relatively short Ru...Ru distance (3.72 A for the crystalline Ru (II)-Ru (II) complex), the extensive communication between metal centers is attributed mostly to the pi-donor ability of the bridging ligands (pyz, OMe) combined with the pi-acceptor ability of the peripheral (bpy) ligands.

  17. Variable noninnocence of substituted azobis(phenylcyanamido)diruthenium complexes.

    PubMed

    Choudhuri, Mohommad M R; Behzad, Mahdi; Al-Noaimi, Mousa; Yap, Glenn P A; Kaim, Wolfgang; Sarkar, Biprajit; Crutchley, Robert J

    2015-02-16

    The synthetic chemistry of substituted 4,4'-azobis(phenylcyanamide) ligands was investigated, and the complexes [{Ru(tpy)(bpy)}2(μ-L)][PF6]2, where L = 2,2':5,5'-tetramethyl-4,4'-azobis(phenylcyanamido) (Me4adpc(2-)), 2,2'-dimethyl-4,4'-azobis(phenylcyanamido) (Me2adpc(2-)), unsubstituted (adpc(2-)), 3,3'-dichloro-4,4'-azobis(phenylcyanamido) (Cl2adpc(2-)), and 2,2':5,5'-tetrachloro-4,4'-azobis(phenylcyanamido) (Cl4adpc(2-)), were prepared and characterized by cyclic voltammetry and vis-near-IR (NIR) and IR spectroelectrochemistry. The room temperature electron paramagnetic resonance spectrum of [{Ru(tpy)(bpy)}2(μ-Me4adpc)](3+) showed an organic radical signal and is consistent with an oxidation-state description [Ru(II), Me4adpc(•-), Ru(II)](3+), while that of [{Ru(tpy)(bpy)}2(μ-Cl2adpc)](3+) at 10 K showed a low-symmetry Ru(III) signal, which is consistent with the description [Ru(III), Cl2adpc(2-), Ru(II)](3+). IR spectroelectrochemistry data suggest that [{Ru(tpy)(bpy)}2(μ-adpc)](3+) is delocalized and [{Ru(tpy)(bpy)}2(μ-Cl2adpc)](3+) and [{Ru(tpy)(bpy)}2(μ-Cl4adpc)](3+) are valence-trapped mixed-valence systems. A NIR absorption band that is unique to all [{Ru(tpy)(bpy)}2(μ-L)](3+) complexes is observed; however, its energy and intensity vary depending on the nature of the bridging ligand and, hence, the complexes' oxidation-state description.

  18. Multicomponent order parameter superconductivity of Sr2RuO4 revealed by topological junctions

    NASA Astrophysics Data System (ADS)

    Anwar, M. S.; Ishiguro, R.; Nakamura, T.; Yakabe, M.; Yonezawa, S.; Takayanagi, H.; Maeno, Y.

    2017-06-01

    Single crystals of the Sr2RuO4 -Ru eutectic system are known to exhibit enhanced superconductivity at 3 K in addition to the bulk superconductivity of Sr2RuO4 at 1.5 K. The 1.5 K phase is believed to be a spin-triplet, chiral p -wave state with a multicomponent order parameter, giving rise to chiral domain structure. In contrast, the 3 K phase is attributable to enhanced superconductivity of Sr2RuO4 in the strained interface region between Ru inclusion of a few to tens of micrometers in size and the surrounding Sr2RuO4 . We investigate the dynamic behavior of a topological junction, where a superconductor is surrounded by another superconductor. Specifically, we fabricated Nb/Ru/Sr2RuO4 topological superconducting junctions, in which the difference in phase winding between the s -wave superconductivity in Ru microislands induced from Nb and the superconductivity of Sr2RuO4 mainly governs the junction behavior. Comparative results of the asymmetry, hysteresis, and noise in junctions with different sizes, shapes, and configurations of Ru inclusions are explained by the chiral domain-wall motion in these topological junctions. Furthermore, a striking difference between the 1.5 and 3 K phases is clearly revealed: the large noise in the 1.5 K phase sharply disappears in the 3 K phase. These results confirm the multicomponent order-parameter superconductivity of the bulk Sr2RuO4 , consistent with the chiral p -wave state, and the proposed nonchiral single-component superconductivity of the 3 K phase.

  19. Strategic planning for MyRA performance: A causal loop diagram approach

    NASA Astrophysics Data System (ADS)

    Abidin, Norhaslinda Zainal; Zaibidi, Nerda Zura; Karim, Khairah Nazurah

    2017-10-01

    The nexus of research and innovation in higher education are continually receiving worldwide priority attention. Hence, Malaysia has taken its move to enhance public universities as a center of excellence by introducing the status of Research University (RU). To inspire all universities towards becoming a research university, The Ministry of Higher Education (MoHE) had revised an assessment called Malaysian Research Assessment Instrument (MyRA) to evaluate the performance of existence RUs, and other potential higher education institutions. The available spreadsheet tool to access MyRA performance is inadequate to support strategic planning. Since, higher education management is a complex system, in which components and their interactions are ever changing over time, there is a need to for an efficient approach to investigate system behavior and devise research management policies for the benefit of the institution itself and the higher education system. In this paper, we proposed a system dynamics simulation model to evaluate the impact of policies for obtaining the highest performance in MyRA assessment. Causal loop diagram is developed to investigate the relationship of various elements in research management, their inter-relationship that link together and their evolution of behavior over time.

  20. Relationship of ruminal temperature with parturition and estrus of beef cows.

    PubMed

    Cooper-Prado, M J; Long, N M; Wright, E C; Goad, C L; Wettemann, R P

    2011-04-01

    Spring-calving Angus cows (n = 30) were used to evaluate changes in ruminal temperature (RuT) related to parturition and estrus. Cows were synchronized and artificially inseminated with semen from a single sire. Temperature boluses were placed in the rumen at 7.0 ± 0.2 mo of gestation. Boluses were programmed to transmit RuT every 15 min. Cows (BW = 623 ± 44 kg, BCS = 4.9 ± 0.4) calved during 3 wk, and estrus was synchronized at 77 ± 7 d after calving with PGF(2α). Cows were observed every 12 h to detect estrus. Daily average ambient temperatures ranged from 2 to 22 °C during parturition (February to March) and 17 to 25 °C during estrus (May to June). Ruminal temperature from 7 d before to 3 d after parturition and 2 d before to 2 d after visual detection of estrus was analyzed using the MIXED procedure. Ruminal temperatures <37.72 °C were attributed to water consumption and excluded from analyses. Day did not influence (P = 0.36) RuT from d -2 to -7 before parturition (38.94 ± 0.05 °C). Ruminal temperature decreased (P < 0.001) from d -2 to d -1 before parturition (38.88 ± 0.05 to 38.55 ± 0.05 °C, respectively). Ruminal temperature was not influenced (P = 0.23) by day from 1 d before to 3 d after parturition (38.49 ± 0.05 °C). Ruminal temperature at 0 to 8 h after detection of estrus (38.98 ± 0.09 °C) was greater (P < 0.001) compared with RuT at the same daily hour of the day before (38.37 ± 0.11 °C) or the day after estrus (38.30 ± 0.09 °C). Ambient temperature did not influence (P > 0.30) RuT at parturition or estrus. Ruminal temperature decreased the day before parturition and increased at estrus in spring-calving beef cows and has potential use as a predictor of parturition and estrus.

  1. Crystal structures and high-temperature phase-transitions in SrNdMRuO{sub 6} (M=Zn,Co,Mg,Ni) new double perovskites studied by symmetry-mode analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iturbe-Zabalo, E., E-mail: iturbe@ill.fr; Fisika Aplikatua II Saila, Zientzia eta Teknologia Fakultatea, UPV/EHU, P.O. Box 644, 48080 Bilbao; Igartua, J.M.

    2013-02-15

    Crystal structures of SrNdZnRuO{sub 6}, SrNdCoRuO{sub 6}, SrNdMgRuO{sub 6} and SrNdNiRuO{sub 6} double perovskites have been studied by X-ray, synchrotron radiation and neutron powder diffraction method, at different temperatures, and using the symmetry-mode analysis. All compounds adopt the monoclinic space group P2{sub 1}/n at room-temperature, and contain a completely ordered array of the tilted MO{sub 6} and RuO{sub 6} octahedra, whereas Sr/Nd cations are completely disordered. The analysis of the structures in terms of symmetry-adapted modes of the parent phase allows the identification of the modes responsible for the phase-transition. The high-temperature study (300-1250 K) has shown that the compoundsmore » present a temperature induced structural phase-transition: P2{sub 1}/n{yields}P4{sub 2}/n{yields}Fm3{sup Macron }m. - Graphical abstract: Representation of the dominant distortion modes of the symmetry mode decomposition of the room-temperature (P2{sub 1}/n), intermediate (P4{sub 2}/n) and cubic (Fm-3m) phase SrNdMRuO{sub 6} (M=Zn,Co,Mg,Ni), with respect to the parent phase Fm-3m. The dominant distortion modes are: in the monoclinic phase-GM{sub 4}{sup +} (blue arrow), X{sub 3}{sup +} (green arrow) and X{sub 5}{sup +} acting on A-site cations (red arrow); in the tetragonal phase-GM{sub 4}{sup +} (pink arrow), X{sub 3}{sup +} (light blue arrow) and X{sub 5}{sup +} acting on A-site cations (brown arrow). Highlights: Black-Right-Pointing-Pointer Structural study of four ruthenate double perovskites. Black-Right-Pointing-Pointer Room-temperature structural determination using symmetry-mode procedure. Black-Right-Pointing-Pointer Determination of temperature induced structural phase-transitions. Black-Right-Pointing-Pointer Symmetry adapted-mode analysis.« less

  2. Studies of Lubricating Materials in Vacuum

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.; Johnson, R. L.; Swikert, M. A.

    1964-01-01

    Lubricating materials for use in a vacuum environment have been the subject of a series of experimental investigations. Evaporation properties were evaluated for solid polymeric compositions. Friction and wear studies explored the behavior during sliding contact for series of polymeric compositions, binary alloys containing soft film-forming phases, complex alloys with film-forming materials, and a burnished MoS2 film. Friction and wear experiments were conducted at 10(exp-9)mm Hg with a 3/16-inch-radius-hemisphere rider specimen sliding on the flat surface of a rotating 2-1/2-inch-diameter disk specimen with materials that had low rates of evaporation. The influence of fillers in polytetrafluoroethylene (PTFE) on decomposition during vacuum friction studies was determined with a mass spectrometer. A real advantage in reducing decomposition and improving friction wear properties is gained by adding fillers (e.g., copper) that improve thermal conductivity through the composite materials. A polyimide and an epoxy-MoS2 composition material were found to have better friction and wear properties than PTFE compositions. A series of alloys (cast binary as well as more complex alloys) that contained microinclusions of potential film-forming material was studied. These materials replaced the normal surface oxides as they were worn away on sliding contact. Iron sulfide, nickel oxide, and tin are typical film-forming materials employed and were demonstrated to be effective in inhibiting surface welding and reducing friction. A burnished MoS2 film applied to type 440-C stainless steel in argon with a rotating soft wire brush had good endurance properties but somewhat higher friction than commercially available bonded films. An oil film applied to the burnished MoS2 markedly reduced its endurance life.

  3. The Primordial Binary Fraction in Trumpler 14: Frequency and Multiplicity Parameters

    NASA Astrophysics Data System (ADS)

    Sabbi, Elena

    2017-08-01

    This is an astrometric proposal designed to identify and characterize the properties of medium- and long-period (orbital periods ranging from 1.8 to 100 years) visual binaries in the mass range between 4 and 20 Mo in the young compact cluster Trumpler 14 in the Carina Nebula. We aim to probe the virtually unexplored population of intermediate- and high-mass binaries that will experience a Roche-lobe overflow during their post-main-sequence evolution. These binaries are of particular interest because they are expected to be the progenitors of supernovae Type Ia, b, and c, X-ray binaries, double neutron stars and double black holes. Multiplicity properties of young stars can be further used to constrain the outcome of the star-formation process and hence distinguish between various formation scenarios. The medium- and long-period binaries (P> 0.5 yr) are hard to detect and expensive to characterize with traditional ground-based spectroscopy. Knowledge of their orbital properties is however crucial to properly estimate the overall fraction of OB stars whose evolution is affected by binary interaction and to predict the outcome of such interaction. Because of the well characterized PSF of WFC3/UVIS and its temporal stability, HST is the only facility able to characterize the properties of OB-type medium-period binaries in Tr14, and Tr14 is the only nearby high-density OB-type young cluster.

  4. Catalyzing the oxidation of sulfamethoxazole by permanganate using molecular sieves supported ruthenium nanoparticles.

    PubMed

    Zhang, Jing; Sun, Bo; Huang, Yuying; Guan, Xiaohong

    2015-12-01

    This study developed a heterogeneous catalytic permanganate oxidation system with three molecular sieves, i.e., nanosized ZSM-5 (ZSM-5A), microsized ZSM-5 (ZSM-5B) and MCM-41, supported ruthenium nanoparticles as catalyst, denoted as Ru/ZSM-5A, Ru/ZSM-5B and Ru/MCM-41, respectively. The presence of 0.5gL(-1) Ru/ZSM-5A, Ru/ZSM-5B and Ru/MCM-41 increased the oxidation rate of sulfamethoxazole (SMX) by permanganate at pH 7.0 by 27-1144 times. The catalytic performance of Ru catalysts toward SMX oxidation by permanganate was strongly dependent on Ru loading on the catalysts. The X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses confirmed that Ru catalyst acted as an electron shuttle in catalytic permanganate oxidation process. Ru(III) deposited on the surface of catalysts was oxidized by permanganate to its higher oxidation state Ru(VII), which could work as a co-oxidant with permanganate to decompose SMX and was then reduced to its initial tri-valence. During the successive runs, Ru/ZSM-5A could not maintain its catalytic activity due to the deposition of MnO2, which was the reductive product of permanganate, onto the surface of Ru/ZSM-5A. Thus, the regeneration of partially deactivated Ru catalysts by reductant NH2OH⋅HCl or ascorbic acid was proposed. Ru/ZSM-5A regenerated by NH2OH⋅HCl displayed comparable catalytic ability to its virgin counterpart, while ascorbic acid could not completely remove the deposited MnO2. A trace amount of leaching of Ru into the reaction solution was also observed, which would be ameliorated by improving the preparation conditions in the future study. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Molybdenum nitrides as oxygen reduction reaction catalysts: Structural and electrochemical studies

    DOE PAGES

    Cao, Bingfei; Neuefeind, Joerg C.; Adzic, Radoslav R.; ...

    2015-02-09

    Monometallic (δ-MoN, Mo 5N 6, and Mo 2N) and bimetallic molybdenum nitrides (Co 0.6Mo 1.4N 2) were investigated as electrocatalysts for the oxygen reduction reaction (ORR), which is a key half-reaction in hydrogen fuel cells. Monometallic hexagonal molybdenum nitrides are found to exhibit improved activities over rock salt type molybdenum nitride (γ-Mo 2N), suggesting that improvements are due to either the higher molybdenum valence or a more favorable coordination environment in the hexagonal structures. Further enhancements in activity were found for hexagonal bimetallic cobalt molybdenum nitride (Co 0.6Mo 1.4N 2), resulting in a modest onset potential of 0.713 V versusmore » reversible hydrogen electrode (RHE). Co 0.6Mo 1.4N 2 exhibits good stability in acidic environments, and in the potential range lower than 0.5 V versus RHE, the ORR appears to proceed via a four-electron mechanism based on the analysis of rotating disc electrode results. A redetermination of the structures of the binary molybdenum nitrides was carried out using neutron diffraction data, which is far more sensitive to nitrogen site positions than X-ray diffraction data. In conclusion, the revised monometallic hexagonal nitride structures all share many common features with the Co 0.6Mo 1.4N 2 structure, which has alternating layers of cations in octahedral and trigonal prismatic coordination, and are thus not limited to only trigonal prismatic Mo environments (as was originally postulated for δ-MoN).« less

  6. The valence of Ru, Ce and Eu ions in the magneto-superconductor Eu 1.5Ce 0.5RuSr 2Cu 2O 10

    NASA Astrophysics Data System (ADS)

    Felner, I.; Asaf, U.; Godart, C.; Alleno, E.

    1999-01-01

    The superconducting (T c∼32 K) Eu 1.5Ce 0.5RuSr 2Cu 2O 10 (Ru-2122) material is also magnetically ordered (T M∼122 K) with TM≫ Tc. Superconductivity (SC) is confined to the CuO 2 planes, whereas magnetism is due to the Ru sublattice. Mossbauer spectroscopy performed at 90 and 300 K on 151Eu shows a single narrow line with an isomer shift=0.69(2) and a quadrupole splitting of 1.84 mm/s, indicating that the Eu ions are trivalent with a nonmagnetic J=0 ground state. This is in agreement with X-ray-absorption spectroscopy (XAS) taken at L III edges of Eu, Ce which shows that Eu is trivalent and Ce is tetravalent. XAS experiments at the K edge of Ru indicate that Ru is pentavalent. This indicates, that in the M-2122 system, SC exists only for pentavalent M ions such as Ta, Nb and Ru.

  7. In search of the Earth-forming reservoir: Mineralogical, chemical, and isotopic characterizations of the ungrouped achondrite NWA 5363/NWA 5400 and selected chondrites

    NASA Astrophysics Data System (ADS)

    Burkhardt, Christoph; Dauphas, Nicolas; Tang, Haolan; Fischer-GöDde, Mario; Qin, Liping; Chen, James H.; Rout, Surya S.; Pack, Andreas; Heck, Philipp R.; Papanastassiou, Dimitri A.

    2017-05-01

    High-precision isotope data of meteorites show that the long-standing notion of a "chondritic uniform reservoir" is not always applicable for describing the isotopic composition of the bulk Earth and other planetary bodies. To mitigate the effects of this "isotopic crisis" and to better understand the genetic relations of meteorites and the Earth-forming reservoir, we performed a comprehensive petrographic, elemental, and multi-isotopic (O, Ca, Ti, Cr, Ni, Mo, Ru, and W) study of the ungrouped achondrites NWA 5363 and NWA 5400, for both of which terrestrial O isotope signatures were previously reported. Also, we obtained isotope data for the chondrites Pillistfer (EL6), Allegan (H6), and Allende (CV3), and compiled available anomaly data for undifferentiated and differentiated meteorites. The chemical compositions of NWA 5363 and NWA 5400 are strikingly similar, except for fluid mobile elements tracing desert weathering. We show that NWA 5363 and NWA 5400 are paired samples from a primitive achondrite parent-body and interpret these rocks as restite assemblages after silicate melt extraction and siderophile element addition. Hafnium-tungsten chronology yields a model age of 2.2 ± 0.8 Myr after CAI, which probably dates both of these events within uncertainty. We confirm the terrestrial O isotope signature of NWA 5363/NWA 5400; however, the discovery of nucleosynthetic anomalies in Ca, Ti, Cr, Mo, and Ru reveals that the NWA5363/NWA 5400 parent-body is not the "missing link" that could explain the composition of the Earth by the mixing of known meteorites. Until this "missing link" or a direct sample of the terrestrial reservoir is identified, guidelines are provided of how to use chondrites for estimating the isotopic composition of the bulk Earth.

  8. Biobased alkylphenols from lignins via a two-step pyrolysis - Hydrodeoxygenation approach.

    PubMed

    de Wild, P J; Huijgen, W J J; Kloekhorst, A; Chowdari, R K; Heeres, H J

    2017-04-01

    Five technical lignins (three organosolv, Kraft and soda lignin) were depolymerised to produce monomeric biobased aromatics, particularly alkylphenols, by a new two-stage thermochemical approach consisting of dedicated pyrolysis followed by catalytic hydrodeoxygenation (HDO) of the resulting pyrolysis oils. Pyrolysis yielded a mixture of guaiacols, catechols and, optionally, syringols in addition to alkylphenols. HDO with heterogeneous catalysts (Ru/C, CoMo/alumina, phosphided NiMO/C) effectively directed the product mixture towards alkylphenols by, among others, demethoxylation. Up to 15wt% monomeric aromatics of which 11wt% alkylphenols was obtained (on the lignin intake) with limited solid formation (<3wt% on lignin oil intake). For comparison, solid Kraft lignin was also directly hydrotreated for simultaneous depolymerisation and deoxygenation resulting in two times more alkylphenols. However, the alkylphenols concentration in the product oil is higher for the two-stage approach. Future research should compare direct hydrotreatment and the two-stage approach in more detail by techno-economic assessments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron.

    PubMed

    Liu, B; Zheng, Y F

    2011-03-01

    Pure iron was determined to be a valid candidate material for biodegradable metallic stents in recent animal tests; however, a much faster degradation rate in physiological environments was desired. C, Mn, Si, P, S, B, Cr, Ni, Pb, Mo, Al, Ti, Cu, Co, V and W are common alloying elements in industrial steels, with Cr, Ni, Mo, Cu, Ti, V and Si being acknowledged as beneficial in enhancing the corrosion resistance of iron. The purpose of the present work (using Fe-X binary alloy models) is to explore the effect of the remaining alloying elements (Mn, Co, Al, W, B, C and S) and one detrimental impurity element Sn on the biodegradability and biocompatibility of pure iron by scanning electron microscopy, X-ray diffraction, metallographic observation, tensile testing, microhardness testing, electrochemical testing, static (for 6 months) and dynamic (for 1 month with various dissolved oxygen concentrations) immersion testing, cytotoxicity testing, hemolysis and platelet adhesion testing. The results showed that the addition of all alloying elements except for Sn improved the mechanical properties of iron after rolling. Localized corrosion of Fe-X binary alloys was observed in both static and dynamic immersion tests. Except for the Fe-Mn alloy, which showed a significant decrease in corrosion rate, the other Fe-X binary alloy corrosion rates were close to that of pure iron. It was found that compared with pure iron all Fe-X binary alloys decreased the viability of the L929 cell line, none of experimental alloying elements significantly reduced the viability of vascular smooth muscle cells and all the elements except for Mn increased the viability of the ECV304 cell line. The hemolysis percentage of all Fe-X binary alloy models were less than 5%, and no sign of thrombogenicity was observed. In vitro corrosion and the biological behavior of these Fe-X binary alloys are discussed and a corresponding mechanism of corrosion of Fe-X binary alloys in Hank's solution proposed. As a concluding remark, Co, W, C and S are recommended as alloying elements for biodegradable iron-based biomaterials. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Photophysical properties of [Ru(2,2‧-bipyridine)3]2+ encapsulated within the Uio-66 zirconium based metal organic framework

    NASA Astrophysics Data System (ADS)

    Larsen, Randy W.; Wojtas, Lukasz

    2017-03-01

    The ability to encapsulate photo-active guest molecules within the pores of metal organic frameworks (MOFs) affords the opportunity to develop robust photocatalysts as well as solar energy conversion systems. An important criteria for such systems is stability of the new materials towards moisture, high temperatures, etc which preclude the use of many MOF frameworks. Here, the ability to encapsulate [Ru(II)(2,2‧-bipyridine)3]2+([Ru(bpy)3]2+) into the cavities of the zirconium based MOF Uio-66 as well as the photophysical properties of the complex are reported. The X-ray powder diffraction data of the orange Uio-66 powder are consistent with the formation of Uio-66 in the presence of [Ru(bpy)3]2+. The steady state emission exhibits a significant bathochromic shift from 603 nm in ethanol to 610 nm in Uio-66. The corresponding emission decay of the encapsulated [Ru(bpy)3]2+ complex is biexponential with a fast component of 128 ns and a slower component of 1176 ns (20 deg C). The slow component is consistent with encapsulation of [Ru(bpy)3]2+ into cavities with restricted volume that prevents the population of a triplet ligand field transition that is anti-bonding with respect to the Ru-N bonds. The origin of the fast component is unclear but may involve interactions of the [Ru(bpy)3]2+ encapsulated within large cavities formed through missing ligand defect sites within the Uio-66 materials. Co-encapsulated quenchers contained within these larger cavities gives rise to the reduced lifetimes of the [Ru(bpy)3]2+ complexes.

  11. A ruthenium(II) complex inhibits tumor growth in vivo with fewer side-effects compared with cisplatin.

    PubMed

    Wang, Jin-Quan; Zhang, Ping-Yu; Ji, Liang-Nian; Chao, Hui

    2015-05-01

    The antitumor activity of a ruthenium(II) polypyridyl complex, Δ-[Ru(bpy)2(HPIP)](ClO4)2 (Δ-Ru1, where bpy=2,2'-bipyridine, HPIP=2-(2-hydroxyphenyl)imidazo[4,5-f][1,10]phenanthroline), was evaluated. The in vivo experiments showed that Δ-Ru1 inhibited the growth of a human cervical carcinoma cell line (HeLa) xenotransplanted into nude mice with efficiency similar to that of cisplatin. Histopathology examination of the tumors from treated xenograft models was consistent with apoptosis in tumor cells. Importantly, in striking contrast with cisplatin, Δ-Ru1 did not cause any detectable side effects on the kidney, liver, peripheral neuronal system, or the hematological system at the pharmacologically effective dose. The preclinical studies reported here provide support for the clinical use of Δ-Ru1 as an exciting new drug candidate with lower toxicity than cisplatin, endowed with proapoptotic properties. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Carbon Dioxide Electroreduction into Syngas Boosted by a Partially Delocalized Charge in Molybdenum Sulfide Selenide Alloy Monolayers.

    PubMed

    Xu, Jiaqi; Li, Xiaodong; Liu, Wei; Sun, Yongfu; Ju, Zhengyu; Yao, Tao; Wang, Chengming; Ju, Huanxin; Zhu, Junfa; Wei, Shiqiang; Xie, Yi

    2017-07-24

    Structural parameters of ternary transition-metal dichalcogenide (TMD) alloy usually obey Vegard law well, while interestingly it often exhibits boosted electrocatalytic performances relative to its two pristine binary TMDs. To unveil the underlying reasons, we propose an ideal model of ternary TMDs alloy monolayer. As a prototype, MoSeS alloy monolayers are successfully synthesized, in which X-ray absorption fine structure spectroscopy manifests their shortened Mo-S and lengthened Mo-Se bonds, helping to tailor the d-band electronic structure of Mo atoms. Density functional theory calculations illustrate an increased density of states near their conduction band edge, which ensures faster electron transfer confirmed by their lower work function and smaller charge-transfer resistance. Energy calculations show the off-center charge around Mo atoms not only benefits for stabilizing COOH* intermediate confirmed by its most negative formation energy, but also facilitates the rate-limiting CO desorption step verified by CO temperature programmed desorption and electro-stripping tests. As a result, MoSeS alloy monolayers attain the highest 45.2 % Faradaic efficiency for CO production, much larger than that of MoS 2 monolayers (16.6 %) and MoSe 2 monolayers (30.5 %) at -1.15 V vs. RHE. This work discloses how the partially delocalized charge in ternary TMDs alloys accelerates electrocatalytic performances at atomic level, opening new horizons for manipulating CO 2 electroreduction properties. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Triple Quenching of a Novel Self-Enhanced Ru(II) Complex by Hemin/G-Quadruplex DNAzymes and Its Potential Application to Quantitative Protein Detection.

    PubMed

    Zhao, Min; Liao, Ni; Zhuo, Ying; Chai, Ya-Qin; Wang, Ji-Peng; Yuan, Ruo

    2015-08-04

    Herein, a novel "on-off" electrochemiluminescence (ECL) aptasensor for highly sensitive determination of thrombin has been constructed based on the triple quenching of the effect of hemin/G-quadruplex DNAzymes upon the Ru(II) complex-based ECL system. First, a strong initial ECL signal was achieved by the dual amplification strategies of (i) intramolecular coreaction of a self-enhanced Ru(II)-based molecule (PTCA-PEI-Ru(II)) and (ii) intermolecular coreaction between PTCA-PEI-Ru(II) and nicotinamide adenine dinucleotide (NADH), which was named the signal-on state. Then, a novel triple quenching of the effect of multifunctional hemin/G-quadruplex DNAzymes upon the Ru(II) complex-based ECL system was designed to realize the desirable signal-off state, which was outlined as follows: (i) the hemin/G-quadruplex DNAzymes mimicked NADH oxidase to oxidize NADH and in situ generate the H2O2, consuming the coreactant of NADH; (ii) its active center of hemin could oxidize the excited state PTCA-PEI-Ru(II)* to PTCA-PEI-Ru(III), making the energy and electron transfer quench; (iii) it also acted as horseradish peroxidase (HRP) to catalyze the H2O2 for in situ producing the quencher of O2. Based on triple quenching of the effect of hemin/G-quadruplex DNAzymes, the highly sensitive "on-off" thrombin aptasensor was developed with a wide linear detection range of 1.0 × 10(-14) M to 1.0 × 10(-10) M and a detection limit down to the femtomolar level.

  14. Photophysical properties of [Ru(2,2′-bipyridine){sub 3}]{sup 2+} encapsulated within the Uio-66 zirconium based metal organic framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Randy W., E-mail: rwlarsen@usf.edu; Wojtas, Lukasz

    2017-03-15

    The ability to encapsulate photo-active guest molecules within the pores of metal organic frameworks (MOFs) affords the opportunity to develop robust photocatalysts as well as solar energy conversion systems. An important criteria for such systems is stability of the new materials towards moisture, high temperatures, etc which preclude the use of many MOF frameworks. Here, the ability to encapsulate [Ru(II)(2,2′-bipyridine){sub 3}]{sup 2+}([Ru(bpy){sub 3}]{sup 2+}) into the cavities of the zirconium based MOF Uio-66 as well as the photophysical properties of the complex are reported. The X-ray powder diffraction data of the orange Uio-66 powder are consistent with the formation ofmore » Uio-66 in the presence of [Ru(bpy){sub 3}]{sup 2+}. The steady state emission exhibits a significant bathochromic shift from 603 nm in ethanol to 610 nm in Uio-66. The corresponding emission decay of the encapsulated [Ru(bpy){sub 3}]{sup 2+} complex is biexponential with a fast component of 128 ns and a slower component of 1176 ns (20 deg C). The slow component is consistent with encapsulation of [Ru(bpy){sub 3}]{sup 2+} into cavities with restricted volume that prevents the population of a triplet ligand field transition that is anti-bonding with respect to the Ru-N bonds. The origin of the fast component is unclear but may involve interactions of the [Ru(bpy){sub 3}]{sup 2+} encapsulated within large cavities formed through missing ligand defect sites within the Uio-66 materials. Co-encapsulated quenchers contained within these larger cavities gives rise to the reduced lifetimes of the [Ru(bpy){sub 3}]{sup 2+} complexes. - Graphical abstract: One-pot synthesis of Ru(II)tris(2,2-bipyridine)@Uio-66 (left) and the effects of encapsulation on the excited state energy levels and decay pathways of the Ru(II)tris(2,2-bipyridine) complex (right).« less

  15. Fermi Surface Properties, Metamagnetic Transition and Quantum Phase Transition of CeRu2Si2 and Its Alloys Probed by the dHvA Effect

    NASA Astrophysics Data System (ADS)

    Aoki, Haruyoshi; Kimura, Noriaki; Terashima, Taichi

    2014-07-01

    This article describes the Fermi surface properties of CeRu2Si2 and its alloy systems CeRu2(SixGe1-x)2 and CexLa1-xRu2Si2 studied by the de Haas-van Alphen (dHvA) effect. We pay particular attention to how the Fermi surface properties and the f electron state change with magnetic properties, in particular how they change associated with metamagnetic transition and quantum phase transition. After summarizing the important physical properties of CeRu2Si2, we present the magnetic phase diagrams of CeRu2(SixGe1-x)2 and CexLa1-xRu2Si2 as a function of temperature, magnetic field and concentration x. From the characteristic features of the magnetic phase diagram, we argue that the ferromagnetic interaction in addition to the antiferromagnetic interaction and the Kondo effect is responsible for the magnetic properties and that the metamagnetic transitions in these systems are relevant to the ferromagnetic interaction. We summarize the Fermi surface properties of CeRu2Si2 in fields below the metamagnetic transition where the f electron state is now well understood theoretically as well as experimentally. We present experimental results in fields above the metamagnetic transitions in CeRu2(SixGe1-x)2 and CexLa1-xRu2Si2 as well as CeRu2Si2 to show that the Fermi surface properties above the metamagnetic transitions are significantly different from those below in many important aspects. We argue that the Fermi surface properties above the metamagnetic transitions are not appropriately described in terms of either itinerant or localized f electron. The experimental results in fields below the metamagnetic transitions in CeRu2(SixGe1-x)2 and CexLa1-xRu2Si2 are presented to discuss the f electron state in the ground state. The Fermi surface properties of dilute Kondo alloys of CexLa1-xRu2Si2 have been revealed as a function of Ce concentration and temperature. We show that the f electron state can be regarded as itinerant in the ground state together with the definition of the term "itinerant" in this case. The Fermi surface properties are measured also in high concentration alloys of CeRu2(SixGe1-x)2 and CexLa1-xRu2Si2 as a function of x. With the help of the angle resolved photoemission spectroscopy studies, we show that the f electron nature does not change at the quantum phase transition between the paramagnetic and antiferromagnetic phases. However, the picture for the f electron state may be ambiguous and depend on which property one considers in the magnetic states of these systems. The ambiguity and confusion of the f electron state may come from the inherent dual nature of the f electron and we would like to point out that it is sometimes misleading and may not be fruitful to discriminate the f electron state either as itinerant or localized without any clear definition for the terms "itinerant" and "localized".

  16. Interdiffusion behaviors in doped molybdenum uranium and aluminum or aluminum silicon dispersion fuels: Effects of the microstructure

    NASA Astrophysics Data System (ADS)

    Allenou, J.; Tougait, O.; Pasturel, M.; Iltis, X.; Charollais, F.; Anselmet, M. C.; Lemoine, P.

    2011-09-01

    Si addition to Al is considered as a promising route to reduce (U,Mo)-Al interaction kinetics, due to its accumulation in the interaction layer, yielding the formation of silicide phases. The (U,Mo) alloy microstructure, and especially its homogenization state, could play a role on this accumulation process. The addition of a third element in γ(U,Mo) could also influence diffusion mechanisms of Al and Si. These two parameters were studied by means of diffusion couple experiments by joining γU based alloys with Al and (Al,Si) alloy. Chemical elements X added into γ(U,Mo) were thoroughly chosen on the following criteria: (i) the potential solubility of the alloying element into the γ(U,Mo) matrix, (ii) its capability to form the ternary aluminides based on the CeCr 2Al 20 and Ho 6Mo 4Al 43 - types, and (iii) the feasibility to control the microstructure of the alloys. On this basis, a test matrix is defined. It concerns γ(U80,Mo15,X5) alloys (in at.%) with X = Y, Cu, Zr, Ti or Cr. These alloys were homogenized and coupled with Al or (Al,Si) alloy. Results evidenced, first, the importance of the state of homogenization of the γ(U,Mo) binary alloy on interaction processes with (Al,Si) alloy, and the benefit on the diffusion of Si through the interaction layer, as observed on the elementary concentration profiles, when the third element X has some solubility into γ(U,Mo) alloy.

  17. A study on the thermal conversion of scheelite-type ABO4 into perovskite-type AB(O,N)3.

    PubMed

    Li, Wenjie; Li, Duan; Gao, Xin; Gurlo, Aleksander; Zander, Stefan; Jones, Philip; Navrotsky, Alexandra; Shen, Zhijian; Riedel, Ralf; Ionescu, Emanuel

    2015-05-07

    Phase-pure scheelite AMoO4 and AWO4 (A = Ba, Sr, Ca) were thermally treated under an ammonia atmosphere at 400 to 900 °C. SrMoO4 and SrWO4 were shown to convert into cubic perovskite SrMoO2N and SrWO1.5N1.5, at 700 °C and 900 °C respectively, and to form metastable intermediate phases (scheelite SrMoO4-xNx and SrWO4-xNx), as revealed by X-ray diffraction (XRD), elemental analysis and FTIR spectroscopy. High-temperature oxide melt solution calorimetry reveals that the enthalpy of formation for SrM(O,N)3 (M = Mo, W) perovskites is less negative than that of the corresponding scheelite oxides, though the conversion of the scheelite oxides into perovskite oxynitrides is thermodynamically favorable at moderate temperatures. The reaction of BaMO4 with ammonia leads to the formation of rhombohedral Ba3M2(O,N)8 and the corresponding binary metal nitrides Mo3N2 and W4.6N4; similar behavior was observed for CaMO4, which converted upon ammonolysis into individual oxides and nitrides. Thus, BaMO4 and CaMO4 were shown to not provide access to perovskite oxynitrides. The influence of the starting scheelite oxide precursor, the structure distortion and the degree of covalency of the B-site-N bond are discussed within the context of the formability of perovskite oxynitrides.

  18. Semiconducting glasses with flux pinning inclusions

    DOEpatents

    Johnson, William L.; Poon, Siu-Joe; Duwez, Pol E.

    1981-01-01

    A series of amorphous superconducting glassy alloys containing 1% to 10% by volume of flux pinning crystalline inclusions have been found to have potentially useful properties as high field superconducting magnet materials. The alloys are prepared by splat cooling by the piston and anvil technique. The alloys have the composition (TM).sub.90-70 (M).sub.10-30 where TM is a transition metal selected from at least one metal of Groups IVB, VB, VIB, VIIB or VIIIB of the Periodic Table such as Nb, Mo, Ru, Zr, Ta, W or Re and M is at least one metalloid such as B, P, C, N, Si, Ge or Al.

  19. METHOD AND MEANS FOR ELECTROLYTIC PURIFICATION OF PLUTONIUM

    DOEpatents

    Bjorklund, C.W.; Benz, R.; Maraman, W.J.; Leary, J.A.; Walsh, K.A.

    1960-02-01

    The technique of electrodepositing pure plutonium from a fused salt electrolyte of PuCl/sub 3/ and aixati metal halides is described. When an iron cathode is used, the plutonium deposit alloys therewith in the liquid state at the 400 to 600 deg C operating temperature, such liquid being allowed to drip through holes in the cathode and collect in a massive state in a tantallum cup. The process is adaptable to continuous processing by the use of depleted plutonium fuel as the anode: good to excellent separation from fission products is obtained with a Pu--Fe "fission" anode containing representative fractions of Ce, Ru, Zr, La, Mo, and Nb.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Shioumin; Kruijs, Robbert van de; Zoethout, Erwin

    Ion sputtering yields for Ru, Mo, and Si under Ar{sup +} ion bombardment in the near-threshold energy range have been studied using an in situ weight-loss method with a Kaufman ion source, Faraday cup, and quartz crystal microbalance. The results are compared to theoretical models. The accuracy of the in situ weight-loss method was verified by thickness-decrease measurements using grazing incidence x-ray reflectometry, and results from both methods are in good agreement. These results provide accurate data sets for theoretical modeling in the near-threshold sputter regime and are of relevance for (optical) surfaces exposed to plasmas, as, for instance, inmore » extreme ultraviolet photolithography.« less

  1. Influence of Binders and Solvents on Stability of Ru/RuOx Nanoparticles on ITO Nanocrystals as Li-O2 Battery Cathodes.

    PubMed

    Vankova, Svetoslava; Francia, Carlotta; Amici, Julia; Zeng, Juqin; Bodoardo, Silvia; Penazzi, Nerino; Collins, Gillian; Geaney, Hugh; O'Dwyer, Colm

    2017-02-08

    Fundamental research on Li-O 2 batteries remains critical, and the nature of the reactions and stability are paramount for realising the promise of the Li-O 2 system. We report that indium tin oxide (ITO) nanocrystals with supported 1-2 nm oxygen evolution reaction (OER) catalyst Ru/RuO x nanoparticles (NPs) demonstrate efficient OER processes, reduce the recharge overpotential of the cell significantly and maintain catalytic activity to promote a consistent cycling discharge potential in Li-O 2 cells even when the ITO support nanocrystals deteriorate from the very first cycle. The Ru/RuO x nanoparticles lower the charge overpotential compared with those for ITO and carbon-only cathodes and have the greatest effect in DMSO electrolytes with a solution-processable F-free carboxymethyl cellulose (CMC) binder (<3.5 V) instead of polyvinylidene fluoride (PVDF). The Ru/RuO x /ITO nanocrystalline materials in DMSO provide efficient Li 2 O 2 decomposition from within the cathode during cycling. We demonstrate that the ITO is actually unstable from the first cycle and is modified by chemical etching, but the Ru/RuO x NPs remain effective OER catalysts for Li 2 O 2 during cycling. The CMC binders avoid PVDF-based side-reactions and improve the cyclability. The deterioration of the ITO nanocrystals is mitigated significantly in cathodes with a CMC binder, and the cells show good cycle life. In mixed DMSO-EMITFSI [EMITFSI=1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide] ionic liquid electrolytes, the Ru/RuO x /ITO materials in Li-O 2 cells cycle very well and maintain a consistently very low charge overpotential of 0.5-0.8 V. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Metal-insulator transition in Ba3Fe1 -xRu2 +xO9 : Interplay between site disorder, chemical percolation, and electronic structure

    NASA Astrophysics Data System (ADS)

    Middey, S.; Aich, Payel; Meneghini, C.; Mukherjee, K.; Sampathkumaran, E. V.; Siruguri, V.; Mahadevan, P.; Ray, Sugata

    2016-11-01

    Perovskites containing barium metal at the A site often take up unusual hexagonal structures having more than one type of possible sites for the B cation to occupy. This opens up various different B -B - or B -O-B -type connectivities and consequent physical properties which are naturally missing in cubic perovskites. BaRuO3 is one such system where doping of Ru (4 d4 ) by other transition metals (Mn +) creates similar conditions, giving rise to various M -Ru interactions. Interestingly, the 6 H hexagonal structure of doped barium ruthenate triple perovskite (Ba3M Ru2O9 ) seems to possess some internal checks because within the structure M ion always occupies the 2 a site and Ru goes to the 4 f site, allowing only M -O-Ru 180∘ and Ru-O-Ru 90∘ interactions to occur. The only exception is observed in the case of the Fe dopant, which allows us to study almost the full Ba3Fe1 -xRu2 +xO9 series of compounds with wide ranges of x because here Fe ions have the ability to freely go to the 4 f sites and Ru readily takes up the 2 a positions. Therefore, here one has the opportunity to probe the evolution of electronic and magnetic properties as a function of doping by going from BaRuO3 (paramagnetic metal) to BaFeO3 (ferromagnetic insulator). Our detailed experimental and theoretical results show that the series does exhibit a percolative metal-insulator transition with an accompanying but not coincidental magnetic transition as a function of x .

  3. Synthesis and anisotropic properties of single crystalline Ln{sub 2}Ru{sub 3}Al{sub 15+x} (Ln=Gd, Tb)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, Gregory; Prestigiacomo, Joseph; Haldolaarachchige, Neel

    2016-04-15

    Single crystals of Ln{sub 2}Ru{sub 3}Al{sub 15+x} (Ln=Gd, Tb) have been grown using the self-flux method under Ru-poor conditions. The structure of the Gd analog is found to be highly dependent on the synthesis method. Gd{sub 2}Ru{sub 3}Al{sub 15.08} orders antiferromagnetically at 17.5 K. Tb{sub 2}Ru{sub 3}Al{sub 15.05} enters an antiferromagnetic state at 16.6 K followed by a likely incommensurate-to-commensurate transition at 14.9 K for crystals oriented with H//ab. For crystals oriented with H//c, a broad maximum is observed in the temperature dependent M/H, indicative of a highly anisotropic magnetic system with the hard axis in the c-direction. The magnetizationmore » as a function of field and magnetoresistance along the ab-direction of Tb{sub 2}Ru{sub 3}Al{sub 15.05} display a stepwise behavior and indicate strong crystalline electric field effects. - Graphical abstract: Single crystal, structure, and highly anisotropic magnetoresistance due to strong crystalline electric field effects of Tb{sub 2}Ru{sub 3}Al{sub 15.05}. - Highlights: • Single crystals of Ln{sub 2}Ru{sub 3}Al{sub 15+x} were grown for the first time via flux growth. • The structure of Gd{sub 2}Ru{sub 3}Al{sub 15.09} differs from that of arc melted Gd{sub 2}Ru{sub 3.08}Al{sub 15}. • Tb{sub 2}Ru{sub 3}Al{sub 15.05} exhibits highly anisotropic magnetic and transport properties. • The properties of Tb{sub 2}Ru{sub 3}Al{sub 15.05} arise due to crystalline electric field effects.« less

  4. Discovering the balance of steric and electronic factors needed to provide a new structural motif for photocatalytic hydrogen production from water.

    PubMed

    White, Travis A; Whitaker, Brittany N; Brewer, Karen J

    2011-10-05

    Ru,Rh,Ru supramolecules are known to undergo multielectron photoreduction and reduce H(2)O to H(2). Ru,Rh bimetallics were recently shown to photoreduce but not catalyze H(2)O reduction. Careful tuning of sterics and electronics for [(TL)(2)Ru(dpp)RhCl(2)(TL')](3+) produce active bimetallic photocatalysts (TL = terminal ligand). The system with TL,TL' = Ph(2)phen photocatalytically reduces H(2)O to H(2) while TL,TL' = phen,bpy or bpy,(t)Bu(2)bpy do not.

  5. Developing Cost-Effective Dense Continuous SDC Barrier Layers for SOFCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Hoang Viet P.; Hardy, John S.; Coyle, Christopher A.

    Significantly improved performance during electrochemical testing of a cell with a dense continuous pulsed laser deposited (PLD) samarium doped ceria (SDC) layer spurred investigations into the fabrication of dense continuous SDC barrier layers by means of cost-effective deposition using screen printing which is amenable to industrial production of SOFCs. Many approaches to improve the SDC density have been explored including the use of powder with reduced particle sizes, inks with increased solids loading, and doping with sintering aids (1). In terms of sintering aids, dopants like Mo or binary systems of Mo+Cu or Fe+Co greatly enhance SDC sinterability. In fact,more » adding dopants to a screen printed, prefired, porous SDC layer made it possible to achieve a dense continuous barrier layer atop the YSZ electrolyte without sintering above 1200°C. Although the objective of fabricating a dense continuous layer was achieved, additional studies have been initiated to improve the cell performance. Underlying issues with constrained sintering and dopant-enhanced ceria-zirconia solid solubility are also addressed in this paper.« less

  6. The photoelectrocatalytic activity, long term stability and corrosion performance of NiMo deposited titanium oxide nano-tubes for hydrogen production in alkaline medium

    NASA Astrophysics Data System (ADS)

    Mert, Mehmet Erman; Mert, Başak Doğru; Kardaş, Gülfeza; Yazıcı, Birgül

    2017-11-01

    In this study, titanium oxide nano-tubes are doped with Ni and Mo particles with various chemical compositions, in order to put forth the efficiency of single and binary coatings on hydrogen evolution reaction (HER) in 1 M KOH. The characterization was achieved by cyclic voltammetry, scanning electron microscopy and energy dispersive X-ray analysis. The water wettability characteristics of electrode surfaces were investigated using contact angle. The long-term catalyst stability and corrosion performance were determined by current-potential curves and electrochemical impedance spectroscopy. Furthermore, photoelectrochemical behavior was determined via linear sweep voltammetry. Results showed that, nano-structured Ni and Mo deposited titanium oxide nano-tubes decrease the hydrogen over potential and increase HER efficiency, it is stable over 168 h electrolysis and it exhibits higher corrosion performance.

  7. Characterization of upgraded fast pyrolysis oak oil distillate fractions from sulfided and non-sulfided catalytic hydrotreating

    DOE PAGES

    Olarte, Mariefel V.; Padmaperuma, Asanga B.; Ferrell, III, Jack R.; ...

    2017-04-06

    We consider catalytic hydroprocessing of pyrolysis oils from biomass which produces hydrocarbons for liquid fuel production. This process requires removal of oxygen and cracking of the heavier molecular weight bio-oil constituents into smaller fragments at high temperatures and pressures under hydrogen. Here, we present in this paper the characterization of a group of five distillate fractions from each of two types of hydroprocessed oils from oak pyrolysis oil: a low oxygen content (LOC, 1.8% O, wet basis) oil and a medium oxygen content (MOC, 6.4% O, wet basis) oil. The LOC oil was generated using a sulfided hydrotreating system consistingmore » of RuS/C and xMoS/Al 2O 3 while the MOC was produced using non-sulfided catalysts, Ru/C and Pd/C. Elemental analysis and 13C NMR (nuclear magnetic resonance) results suggest that the distillate fractions from both oils become more aromatic/unsaturated as they become heavier. Carbonyl and carboxylic groups were found in the MOC light fractions, while phenols were present in the heavier fractions for both MOC and LOC. Paraffin, iso-paraffin, olefin, naphthene, aromatic (PIONA) analysis of the light LOC fraction shows a predominance of paraffins with a minor amount of olefins. Sulfur analysis showed the comparative concentration of sulfur in the different fractions as well as the surprising similarity in content in some sulfided and non-sulfided fractions. Our results can be used to direct future research on refinery integration and production of value-added product from specific upgraded oil streams.« less

  8. Characterization of upgraded fast pyrolysis oak oil distillate fractions from sulfided and non-sulfided catalytic hydrotreating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olarte, Mariefel V.; Padmaperuma, Asanga B.; Ferrell, III, Jack R.

    We consider catalytic hydroprocessing of pyrolysis oils from biomass which produces hydrocarbons for liquid fuel production. This process requires removal of oxygen and cracking of the heavier molecular weight bio-oil constituents into smaller fragments at high temperatures and pressures under hydrogen. Here, we present in this paper the characterization of a group of five distillate fractions from each of two types of hydroprocessed oils from oak pyrolysis oil: a low oxygen content (LOC, 1.8% O, wet basis) oil and a medium oxygen content (MOC, 6.4% O, wet basis) oil. The LOC oil was generated using a sulfided hydrotreating system consistingmore » of RuS/C and xMoS/Al 2O 3 while the MOC was produced using non-sulfided catalysts, Ru/C and Pd/C. Elemental analysis and 13C NMR (nuclear magnetic resonance) results suggest that the distillate fractions from both oils become more aromatic/unsaturated as they become heavier. Carbonyl and carboxylic groups were found in the MOC light fractions, while phenols were present in the heavier fractions for both MOC and LOC. Paraffin, iso-paraffin, olefin, naphthene, aromatic (PIONA) analysis of the light LOC fraction shows a predominance of paraffins with a minor amount of olefins. Sulfur analysis showed the comparative concentration of sulfur in the different fractions as well as the surprising similarity in content in some sulfided and non-sulfided fractions. Our results can be used to direct future research on refinery integration and production of value-added product from specific upgraded oil streams.« less

  9. Experimental Study of the Partitioning of Siderophile Elements in a Crystallizing Lunar Magma Ocean

    NASA Technical Reports Server (NTRS)

    Galenas, M.; Righter, K.; Danielson, L.; Pando, K.; Walker, R. J.

    2012-01-01

    The distributions of trace elements between the lunar interior and pristine crustal rocks were controlled by the composition of starting materials, lunar core formation, and crystallization of the lunar magma ocean (LMO) [1]. This study focuses on the partitioning of highly siderophile elements (HSE) including Re, Os, Ir, Ru, Pt, Rh, Pd and Au as well as the moderately siderophile elements Mo and W, and the lithophile elements of Hf and Sr. Our experiments also include Ga, which can be slightly siderophile, but is mostly considered to be chalcophile. Partitioning of these elements is not well known at the conditions of a crystallizing LMO. Previous studies of HSE partitioning in silicate systems have yielded highly variable results for differing oxygen fugacity (fO2) and pressure [2-4]. For example, under certain conditions Pt is compatible in clinopy-roxene [2] and Rh and Ru are compatible in olivine [3]. The silicate compositions used for these experiments were nominally basaltic. Ruthenium, Rh, and Pd are incompatible in plagioclase under these conditions[4]. However, this latter study was done at extremely oxidizing conditions and at atmospheric pressure, possibly limiting the applicability for consideration of conditions of a crystallizing LMO. In this study we address the effects of pressure and oxygen fugacity on the crystal/liquid partition coefficients of these trace elements. We are especially interested in the plagioclase/melt partition coefficients so that it may be possible to use reverse modeling to constrain the concentrations of these elements in the lunar mantle through their abundances in pristine crustal rocks.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skibo, A.

    SRNL has considerable experience in designing, engineering, and operating systems for removing iodine-129 (I-129) and ruthenium-106 (Ru-106) from waste streams that are directly analogous to the Advanced Liquid Processing System (ALPS) waste streams. SRNL proposes to provide the technical background and design and engineering support for an improved I-129 and Ru-106 removal system for application to ALPS on the Fukushima Daiichi Nuclear Power Station (NPS).

  11. VizieR Online Data Catalog: New minima timings and RVs for 3 eclipsing binaries (Zasche+, 2017)

    NASA Astrophysics Data System (ADS)

    Zasche, P.; Jurysek, J.; Nemravova, J.; Uhlar, R.; Svoboda, P.; Wolf, M.; Honkova, K.; Masek, M.; Prouza, M.; Cechura, J.; Korcakova, D.; Slechta, M.

    2018-04-01

    Spectroscopy was obtained in two observatories. Most of the data points for these systems came from the Ondrejov observatory and its 2 m telescope (resolution R~12500). Additionally, data on BR Ind and some data on QS Aql were obtained with the FEROS instrument mounted on the 2.2 m MPG telescope located in La Silla Observatory in Chile (R~48000). Photometry for these three systems was collected over the time span of 2008 to 2016. Owing to the relatively high brightness of the targets, only rather small telescopes were used for these photometric observations. The system V773 Cas was observed (by one of the authors, PS) with a 34 mm refractor at a private observatory in Brno, Czech Republic, using an SBIG ST-7XME CCD camera. The star QS Aql was monitored (by one of the authors, RU) with a similar instrument at a private observatory in Jilove u Prahy, Czech Republic, using a G2-0402 CCD camera. The only southern star, BR Ind, was observed with the FRAM telescope (Prouza et al. 2010AdAst2010E..31P), installed and operated at the Pierre Auger Observatory at Malargue, Argentina. (2 data files).

  12. Antiferromagnetic instability in Sr3Ru2O7: stabilized and revealed by dilute Mn impurities

    NASA Astrophysics Data System (ADS)

    Hossain, Muhammed; Bohnenbuck, B.; Chuang, Y.-D.; Cruz, E.; Wu, H.-H.; Tjeng, L. H.; Elfimov, I. S.; Hussain, Z.; Keimer, B.; Sawatzky, G. A.; Damascelli, A.

    2009-03-01

    X-ray Absorption Spectroscopy (XAS) and Resonant Elastic Soft X-ray Scattering (RESXS) studies have been performed on Mn-doped Sr3Ru2O7, both on the Ru and Mn L-edges, to investigate the origin of the metal insulator transition. Extensive simulations based on our experimental findings point toward an intrinsic antiferromagnetic instability in the parent Sr3Ru2O7 compound that is stabilized by the dilute Mn impurities. We show that the metal-insulator transition is a direct consequence of the antiferromagnetic order and we propose a phenomenological model that may be applicable also to metal-insulator transitions seen in other oxides. Moreover, a comparison of Ru and Mn L-edge data on 5% Mn doped system reveals that dilute Mn impurities are generating much more intense signal than Ru which is occupying 95% of the lattice sites. This suggests the embedding of dilute impurities as a powerful mean to probe weak and, possibly, spatially inhomogeneous order in solid-state systems. In collaboration with: Y. Yoshida (AIST), J. Geck, D.G. Hawthorn (UBC), M.W. Haverkort, Z. Hu, C. Sch"ußler-Langeheine (Cologne), R. Mathieu, Y. Tokura, S. Satow, H. Takagi (Tokyo), J.D. Denlinger (ALS).

  13. New Bond Coat Materials for Thermal Barrier Coating Systems Processed Via Different Routes

    NASA Astrophysics Data System (ADS)

    Soare, A.; Csaki, I.; Sohaciu, M.; Oprea, C.; Soare, S.; Costina, I.; Petrescu, M. I.

    2017-06-01

    This paper aims at describing the development of new Ru-based Bond Coats (BC) as part of Thermal Barrier Coatings. The challenge of this research was to obtain an adherent and uniform layer of alumina protective layer after high temperature exposure. We have prepared a RuAl 50/50 at% alloy in an induction furnace which was subsequently subjected to oxidation in an electric furnace, in air, at 1100C, for 10h and 100h. Mechanical alloying of Ru and Al powders was another processing route used in an attempt to obtain a stoichiometric RuAl. The alloy was sintered by Spark Plasma Sintering (SPS) and then oxidized at 1100C for 1 and10h. The alloys obtained as such were analysed before and after oxidation using advanced microscopy techniques (SEM and TEM). The encouraging results in case of RuAl alloys prepared by induction melting reveal that we obtained an adherent and uniform layer of alumina, free of delta-Ru. The results for the samples processed by powder metallurgy were positive but need to be further investigated. We should note here the novelty of this method for this particular type of application - as a BC part of a TBC system.

  14. Between metamagnetic transition and spin-flip behavior in Ce 122 system of (Ce-Gd)Ru2Si2

    NASA Astrophysics Data System (ADS)

    Yano, K.; Amakai, Y.; Hara, Y.; Sato, K.; Kita, E.; Takano, H.; Ohta, T.; Murayama, S.

    2018-03-01

    Aiming at getting some clues to the mechanism of meta-magnetic transition and surprisingly small magnetic moment of Ce along hard axis in CeRu2Si2, the (Ce-Gd)Ru2Si2 system where Ce was substituted by Gd were studied through magnetic properties mainly in Gd-rich regions. At Gd=0, i.e. in CeRu2Si2, the magnetic moment of Ce showed a symptom of saturation in M-H curve under H=90,000 Oe at 2 K and the Ce magnetic moment at 4.2 K can be nearly identical to that at 2 K employing 1/H plot. At Gd-rich content of 0.8, Ce magnetic moment coupled parallel to that of Gd, Ce ↑ Gd ↑ both in easy and hard axis and the extremely smallness of Ce magnetic moment in hard axis disappeared perfectly at x=0.8. Furthermore at Gd=1, GdRu2Si2, Gd magnetic moment caused 2-step like spin-flip in both easy and hard axis.

  15. First-principle study of single TM atoms X (X=Fe, Ru or Os) doped monolayer WS2 systems

    NASA Astrophysics Data System (ADS)

    Zhu, Yuan-Yan; Zhang, Jian-Min

    2018-05-01

    We report the structural, magnetic and electronic properties of the pristine and single TM atoms X (X = Fe, Ru or Os) doped monolayer WS2 systems based on first-principle calculations. The results show that the W-S bond shows a stronger covalent bond, but the covalency is obviously weakened after the substitution of W atom with single X atoms, especially for Ru (4d75s1) with the easily lost electronic configuration. The smaller total energies of the doped systems reveal that the spin-polarized states are energetically favorable than the non-spin-polarized states, and the smallest total energy of -373.918 eV shows the spin-polarized state of the Os doped monolayer WS2 system is most stable among three doped systems. In addition, although the pristine monolayer WS2 system is a nonmagnetic-semiconductor with a direct band gap of 1.813 eV, single TM atoms Fe and Ru doped monolayer WS2 systems transfer to magnetic-HM with the total moments Mtot of 1.993 and 1.962 μB , while single TM atom Os doped monolayer WS2 systems changes to magnetic-metal with the total moments Mtot of 1.569 μB . Moreover, the impurity states with a positive spin splitting energies of 0.543, 0.276 and 0.1999 eV near the Fermi level EF are mainly contributed by X-dxy and X-dx2-y2 states hybridized with its nearest-neighbor atom W-dz2 states for Fe, Ru and Os doped monolayer WS2 system, respectively. Finally, we hope that the present study on monolayer WS2 will provide a useful theoretical guideline for exploring low-dimensional spintronic materials in future experiments.

  16. Diffusion of Redox-Sensitive Elements in Basalt at Different Oxygen Fugacities

    NASA Technical Reports Server (NTRS)

    Szumila, I.; Trail, D.; Danielson, L. R.

    2017-01-01

    The terrestrial planets and moons of our solar system have differentiated over a range of oxygen fugacity conditions. Basalts formed from magmas on the Earth cover a range of more oxidized states (from approximately IW (iron wustite) plus 2 to approximately FMQ (fayalite-magnetite-quartz) plus 3) than crustal rocks from Mars (IW to approximately IW plus 3), and basalts from the Moon are more reduced than both, ranging from IW to IW minus 2. The small body Vesta differentiated around IW minus 4. Characterization of redox sensitive elements' diffusivities will offer insight into behavior of these elements as a function of f (fugacity of) O2 for these planetary bodies. Here, we report a systematic study of the diffusion of redox-sensitive elements in basaltic melts with varying oxygen fugacities (fO2) for trace elements, V, Nb, W, Mo, La, Ce, Pr, Sm, Eu, Gd, Ta, and W. Since fO2 is an intensive variable that is different for the reservoirs of various planets and moons in our solar system, it is important to characterize how changes in redox states will affect diffusion. We conducted experiments in a piston cylinder device at 1300 degrees Centigrade and 1 gigapascal, at the University of Rochester and NASA Johnson Space Center. We buffered some experiments at Ru-RuO2 (FMQ plus 6.00), and conducted other experiments within either a graphite or Mo capsule, which corresponds to fO2s of either FMQ minus1.2, or FMQ minus 3.00, respectively. Characterizing the diffusivities of redox sensitive elements at different fO2s is important because some elements, like Eu, have varying valence states, such as Eu (sup 2 plus) and Eu (sup 3 plus). Differences in charge and ion radii may lead to differences in diffusivities within silicate melts. This could, lead to formation of a Eu anomaly by diffusion, the magnitude of which may be controlled by the fO2. Characterization of trace element diffusion is also important in understanding trace element fractionation. We found, during the course of our investigation, that not only did the diffusivities of the redox sensitive elements change with fO2, but that the diffusivities of all other analyzed elements also changed. This indicates that not only do changes in valence influence trace elements diffusivities but that the structure of melt may have changed with varying oxygen fugacity, probably due to changes in the speciation of the major element Fe.

  17. A dual-potential electrochemiluminescence ratiometric sensor for sensitive detection of dopamine based on graphene-CdTe quantum dots and self-enhanced Ru(II) complex.

    PubMed

    Fu, Xiaomin; Tan, Xingrong; Yuan, Ruo; Chen, Shihong

    2017-04-15

    A novel dual-potential ratiometric electrochemiluminescence (ECL) sensor was designed for detecting dopamine (DA) based on graphene-CdTe quantum dots (G-CdTe QDs) as the cathodic emitter and self-enhanced Ru(II) composite (TAEA-Ru) as the anodic emitter. TAEA-Ru was prepared by linking ruthenium(II) tris(2,2'-bipyridyl-4,4'-dicarboxylato) with tris(2-aminoethyl)amine. Firstly, 3-aminopropyltriethoxysilane founctionalized G-CdTe QDs was used as the substrate for capturing target DA via the specific recognition of the diol of DA to the oxyethyl group of APTES. Then, Cu 2 O nanocrystals supported TAEA-Ru was further bound by the strong interaction between amino groups of DA and carboxyl groups of the Cu 2 O-TAEA-Ru. With the increase in DA concentration, the loading of Cu 2 O-TAEA-Ru at the electrode increased. As a result, the anodic ECL signal from TAEA-Ru increased, and the cathodic ECL signal from G-CdTe QDs/O 2 system decreased correspondingly. Such a decrease was resulted from the ECL resonance energy transfer (RET) from G-CdTe QDs to TAEA-Ru as well as the dual quenching effects of Cu 2 O to G-CdTe QDs, namely the ECL-RET from G-CdTe QDs to Cu 2 O and the consumption of coreactant O 2 by Cu 2 O. Based on the ratio of two ECL signals, the determination of DA was achieved with a linear range from 10.0 fM to 1.0nM and a detection limit low to 2.9 fM (S/N=3). The combination of G-CdTe QDs/O 2 and TAEA-Ru would break the limitation of the same coreatant shared in previous ECL ratiometric systems and provide a potential application of ECL ratiometric sensor in the detection of biological small molecules with the assistance of the dual molecular recognition strategy. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. High temperature behavior of B2-based ruthenium aluminide systems

    NASA Astrophysics Data System (ADS)

    Cao, Fang

    Ru-modified NiAl-based bond coats have the potential to improve the durability of Superalloy-Thermal Barrier Coating systems (TBCs) for advanced gas turbine engines. A fundamental understanding of the high temperature mechanical behavior across the Ni-Al-Ru B2 phase field can provide direction for the development of these new bond coats for TBCs. The purpose of this study has been to describe the fundamental processes of creep deformation in single phase B2 Ru-Al-Ni ternary alloys which would form the basis for the bond coats. To accomplish this, five ternary alloys with compositions located within the B2 field across the NiAl-RuAl phase region were fabricated and investigated. Special emphasis was placed on characterizing creep deformation and describing the operative creep mechanisms in these alloys. At room temperature, brittle failure was observed in the Ni-rich alloys in compression, while improved strength and ductility were displayed in two Ru-rich ternary alloys at temperatures up to 700°C. Exceptional creep strength was observed in these alloys, as compared to other high melting temperature B2 intermetallics. A continuous increase of the melting temperature and creep resistance with the increasing of the Ru/Ni ratio in these alloys was observed. Post-creep dislocation analyses identified the presence of <100> and <110> edge dislocations in the Ni-rich alloys, while uniformly distributed jogged <100> screw dislocations predominated in the Ru-rich ternary alloys. A transition of the creep mechanism from viscous glide controlled to jogged screw motion in these Ru-Al-Ni ternary B2 alloys with increasing Ru/Ni ratio is demonstrated by the characteristics of the creep deformation process, stress change creep tests, post-creep dislocation analyses, and numerical modeling. Additionally, the knowledge of the cyclic oxidation behavior of ruthenium aluminide-based alloy is essential, as many high-temperature applications for which this intermetallic might be utilized undergo repeated severe thermal cycling. Thus the second portion of this thesis focuses on the characterization of the cyclic oxidation properties of RuAl-based alloys. The cyclic oxidation behavior of six RuAl-based alloys was studied in air over the temperature range of 1000°C to 1300°C. Oxidation kinetics have been shown to be influenced by microstructure as well as the addition of platinum.

  19. Enhanced decolorization of methyl orange in aqueous solution using iron-carbon micro-electrolysis activation of sodium persulfate.

    PubMed

    Li, Peng; Liu, Zhipeng; Wang, Xuegang; Guo, Yadan; Wang, Lizhang

    2017-08-01

    Reactivity of sodium persulfate (PS) in the decolorization of methyl orange (MO) in aqueous solution using an iron-carbon micro-electrolysis (ICE) method was investigated. The effects of sodium persulfate doses, pH, Fe-to-C mass ratios, initial MO concentration as well as the reaction temperature were comprehensively studied in batch experiments. The ICE-PS coupled process was more suitable for wide ranges of pH, initial MO concentration and reaction temperature, accompanied by the reduction of Fe compared ICE. The MO removal efficiency improved substantially by ICE-PS technique, 76.03% for ICE and 91.27% for ICE-PS at experimental conditions of pH 3.0, Fe-to-C mass ratio 3:1, PS addition 10 mM and initial MO concentration 0.61 mM. Furthermore, the biodegradability index (BI) dramatically increased from 0.26 to 0.65. The binary hydroxyl and sulfate radicals that non-selectively degrade MO to the derivatives with small molecules are ascribed to ICE-PS method as detected by the UV-vis spectra. The PS activation resource was Fe 2+ through the hydroxyl radical quenching reaction by the additive tert-butanol (TBA). This study provides an in-depth theoretical understanding of the development and wide commercial application of the ICE technology to refractory industrial dye wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Ruthenium porphyrin-induced photodamage in bladder cancer cells.

    PubMed

    Bogoeva, Vanya; Siksjø, Monica; Sæterbø, Kristin G; Melø, Thor Bernt; Bjørkøy, Astrid; Lindgren, Mikael; Gederaas, Odrun A

    2016-06-01

    Photodynamic therapy (PDT) is a noninvasive treatment for solid malignant and flat tumors. Light activated sensitizers catalyze photochemical reactions that produce reactive oxygen species which can cause cancer cell death. In this work we investigated the photophysical properties of the photosensitizer ruthenium(II) porphyrin (RuP), along with its PDT efficiency onto rat bladder cancer cells (AY27). Optical spectroscopy verified that RuP is capable to activate singlet oxygen via blue and red absorption bands and inter system crossing (ISC) to the triplet state. In vitro experiments on AY27 indicated increased photo-toxicity of RuP (20μM, 18h incubation) after cell illumination (at 435nm), as a function of blue light exposure. Cell survival fraction was significantly reduced to 14% after illumination of 20μM RuP with 15.6J/cm(2), whereas the "dark toxicity" of 20μM RuP was 17%. Structural and morphological changes of cells were observed, due to RuP accumulation, as well as light-dependent cell death was recorded by confocal microscopy. Flow cytometry verified that PDT-RuP (50μM) triggered significant photo-induced cellular destruction with a photoxicity of (93%±0.9%). Interestingly, the present investigation of RuP-PDT showed that the dominating mode of cell death is necrosis. RuP "dark toxicity" compared to the conventional chemotherapeutic drug cisplatin was higher, both evaluated by the MTT assay (24h). In conclusion, the present investigation shows that RuP with or without photoactivation induces cell death of bladder cancer cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Condensation of refractory metals in asymptotic giant branch and other stellar environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwander, D.; Berg, T.; Schönhense, G.

    2014-09-20

    The condensation of material from a gas of solar composition has been extensively studied, but less so condensation in the environment of evolved stars, which has been mainly restricted to major compounds and some specific element groups such as the Rare Earth elements. Also of interest, however, are refractory metals like Mo, Ru, Os, W, Ir, and Pt, which may condense to form refractory metal nuggets (RMNs) like the ones that have been found in association with presolar graphite. We have performed calculations describing the condensation of these elements in the outflows of s-process enriched AGB stars as well asmore » from gas enriched in r-process products. While in carbon-rich environments (C > O), the formation of carbides is expected to consume W, Mo, and V (Lodders and Fegley), the condensation sequence for the other refractory metals under these conditions does not significantly differ from the case of a cooling gas of solar composition. The composition in detail, however, is significantly different due to the completely different source composition. Condensation from an r-process enriched source differs less from the solar case. Elemental abundance ratios of the refractory metals can serve as a guide for finding candidate presolar grains among the RMNs in primitive meteorites—most of which have a solar system origin—for confirmation by isotopic analysis. We apply our calculations to the case of the four RMNs found by Croat et al., which may very well be presolar.« less

  2. Highly efficient bioinspired molecular Ru water oxidation catalysts with negatively charged backbone ligands.

    PubMed

    Duan, Lele; Wang, Lei; Li, Fusheng; Li, Fei; Sun, Licheng

    2015-07-21

    The oxygen evolving complex (OEC) of the natural photosynthesis system II (PSII) oxidizes water to produce oxygen and reducing equivalents (protons and electrons). The oxygen released from PSII provides the oxygen source of our atmosphere; the reducing equivalents are used to reduce carbon dioxide to organic products, which support almost all organisms on the Earth planet. The first photosynthetic organisms able to split water were proposed to be cyanobacteria-like ones appearing ca. 2.5 billion years ago. Since then, nature has chosen a sustainable way by using solar energy to develop itself. Inspired by nature, human beings started to mimic the functions of the natural photosynthesis system and proposed the concept of artificial photosynthesis (AP) with the view to creating energy-sustainable societies and reducing the impact on the Earth environments. Water oxidation is a highly energy demanding reaction and essential to produce reducing equivalents for fuel production, and thereby effective water oxidation catalysts (WOCs) are required to catalyze water oxidation and reduce the energy loss. X-ray crystallographic studies on PSII have revealed that the OEC consists of a Mn4CaO5 cluster surrounded by oxygen rich ligands, such as oxyl, oxo, and carboxylate ligands. These negatively charged, oxygen rich ligands strongly stabilize the high valent states of the Mn cluster and play vital roles in effective water oxidation catalysis with low overpotential. This Account describes our endeavors to design effective Ru WOCs with low overpotential, large turnover number, and high turnover frequency by introducing negatively charged ligands, such as carboxylate. Negatively charged ligands stabilized the high valent states of Ru catalysts, as evidenced by the low oxidation potentials. Meanwhile, the oxygen production rates of our Ru catalysts were improved dramatically as well. Thanks to the strong electron donation ability of carboxylate containing ligands, a seven-coordinate Ru(IV) species was isolated as a reaction intermediate, shedding light on the reaction mechanisms of Ru-catalyzed water oxidation chemistry. Auxiliary ligands have dramatic effects on the water oxidation catalysis in terms of the reactivity and the reaction mechanism. For instance, Ru-bda (H2bda = 2,2'-bipyridine-6,6'-dicarboxylic acid) water oxidation catalysts catalyze Ce(IV)-driven water oxidation extremely fast via the radical coupling of two Ru(V)═O species, while Ru-pda (H2pda = 1,10-phenanthroline-2,9-dicarboxylic acid) water oxidation catalysts catalyze the same reaction slowly via water nucleophilic attack on a Ru(V)═O species. With a number of active Ru catalysts in hands, light driven water oxidation was accomplished using catalysts with low catalytic onset potentials. The structures of molecular catalysts could be readily tailored to introduce additional functional groups, which favors the fabrication of state-of-the-art Ru-based water oxidation devices, such as electrochemical water oxidation anodes and photo-electrochemical anodes. The development of efficient water oxidation catalysts has led to a step forward in the sustainable energy system.

  3. A novel binary Pt 3Te x/C nanocatalyst for ethanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Huang, Meihua; Wang, Fei; Li, Lirong; Guo, Yonglang

    The Pt 3Te x/C nanocatalyst was prepared and its catalytic performance for ethanol oxidation was investigated for the first time. The Pt 3Te/C nanoparticles were characterized by an X-ray diffractometer (XRD), transmission electron microscope (TEM) and energy dispersive X-ray spectroscopy equipped with TEM (TEM-EDX). The Pt 3Te/C catalyst has a typical fcc structure of platinum alloys with the presence of Te. Its particle size is about 2.8 nm. Among the synthesized catalysts with different atomic ratios, the Pt 3Te/C catalyst has the highest anodic peak current density. The cyclic voltammograms (CV) show that the anodic peak current density for the Pt 3Te/C, commercial PtRu/C and Pt/C catalysts reaches 1002, 832 and 533 A g -1, respectively. On the current-time curve, the anodic current on the Pt 3Te/C catalyst was higher than those for the catalysts reported. So, these findings show that the Pt 3Te/C catalyst has uniform nanoparticles and the best activity among the synthesized catalysts, and it is better than commercial PtRu/C and Pt/C catalysts for ethanol oxidation at room temperature.

  4. Interfacial and Alloying Effects on Activation of Ethanol from First-Principles

    DOE PAGES

    An, Wei; Men, Yong; Wang, Jinguo; ...

    2017-02-24

    Here, we present a first-principles density-functional theory study of ethanol activation at oxide/Rh(111) interface and the alloying effect on mitigating carbon deposition, which are essential to direct ethanol fuel cell (DEFC) anode reaction and steam reforming of ethanol (SRE) reaction. Our calculated results show that charge can transfer from Rh(111) substrate to MO x chain (e.g., MoO 3 and MnO 2), or from MO x chain (e.g., MgO, SnO 2, ZrO 2, and TiO 2) to Rh(111) substrate. The OH-binding strength is increased exponentially with M δ+ charge ranging from 1.4 to 2.2, which renders MnO 2/Rh(111) and MgO/Rh(111) interfacesmore » weaker OH-binding, and thereby enhanced oxidizing functionality of OH* for promoting ethanol oxidation reaction (EOR) at DEFC anode. For efficient C–C bond breaking, a large number of Rh ensemble sizes are critically needed at the interface of MO x/Rh(111). We found that Rh 1Au 3 near surface alloy has the weakest C* and CO* binding, followed by Rh 1Cu 3 and Rh 1Pd 3 near surface alloys, while Rh 1Ir 3 and Rh 1Ru 3 surface alloys have C* and CO* binding strength similar to that of pure Rh metal. The general implication of this study is that by engineering alloyed structure of weakened C* and CO* binding complemented with metal oxides of weakened OH-binding, high-performance DEFC anode or SRE catalysts can be identified.« less

  5. CO oxidation on Ru-Pt bimetallic nanoclusters supported on TiO2(101): The effect of charge polarization

    NASA Astrophysics Data System (ADS)

    Jia, Chuanyi; Zhong, Wenhui; Deng, Mingsen; Jiang, Jun

    2018-03-01

    Pt-based catalyst is widely used in CO oxidation, while its catalytic activity is often undermined because of the CO poisoning effect. Here, using density functional theory, we propose the use of a Ru-Pt bimetallic cluster supported on TiO2 for CO oxidation, to achieve both high activity and low CO poisoning effect. Excellent catalytic activity is obtained in a Ru1Pt7/TiO2(101) system, which is ascribed to strong electric fields induced by charge polarization between one Ru atom and its neighboring Pt atoms. Because of its lower electronegativity, the Ru atom donates electrons to neighboring Pt. This induces strong electric fields around the top-layered Ru, substantially promoting the adsorption of O2/CO + O2 and eliminating the CO poisoning effect. In addition, the charge polarization also drives the d-band center of the Ru1Pt7 cluster to up-shift to the Fermi level. For surface O2 activation/CO oxidation, the strong electric field and d-band center close to the Fermi level can promote the adsorption of O2 and CO as well as reduce the reaction barrier of the rate-determining step. Meanwhile, since O2 easily dissociates on Ru1Pt7/TiO2(101) resulting in unwanted oxidation of Ru and Pt, a CO-rich condition is necessary to protect the catalyst at high temperature.

  6. Ruthenium in komatiitic chromite

    NASA Astrophysics Data System (ADS)

    Locmelis, Marek; Pearson, Norman J.; Barnes, Stephen J.; Fiorentini, Marco L.

    2011-07-01

    The distinction between Ru in solid solution and Ru-bearing inclusions is essential for the predictive modeling of platinum-group element (PGE) geochemistry in applications such as the lithogeochemical exploration for magmatic sulfide deposits in komatiites. This study investigates the role of chromite in the fractionation of Ru in ultramafic melts by analyzing chromite grains from sulfide-undersaturated komatiites and a komatiitic basalt from the Yilgarn Craton in Western Australia. In situ analysis using laser ablation ICP-MS yields uniform Ru concentrations in chromites both within-grain and on a sample scale, with concentrations between 220 and 540 ppb. All other platinum-group elements are below the detection limit of the laser ablation ICP-MS analysis. Carius tube digestion isotope dilution ICP-MS analysis of chromite concentrates confirms the accuracy of the in-situ method. Time resolved laser ablation ICP-MS analyses have identified the presence of sub-micron Ir-bearing inclusions in some chromite grains from the komatiitic basalt. However, Ru-bearing inclusions have not been recognized in the analyzed chromites and this combined with the in situ data suggests that Ru exists in solid solution in the crystal lattice of chromite. These results show that chromite can control the fractionation and concentration of Ru in ultramafic systems.

  7. Cellular accumulation of the new ketolide RU 64004 by human neutrophils: comparison with that of azithromycin and roxithromycin.

    PubMed Central

    Vazifeh, D; Abdelghaffar, H; Labro, M T

    1997-01-01

    We analyzed the uptake of RU 64004 by human neutrophils (polymorphonuclear leukocytes [PMNs]) relative to those of azithromycin and roxithromycin. RU 64004 was strongly and rapidly accumulated by PMNs, with a cellular concentration/extracellular concentration ratio (C/E) of greater than 200 in the first 5 min, and this was followed by a plateau at 120 to 180 min, with a C/E of 461 +/- 14.8 (10 experiments) at 180 min. RU 64004 uptake was moderately sensitive to external pH, and activation energy was also moderate (63 +/- 3.8 kJ/mol). RU 64004 was mainly located in PMN granules (about 70%) and egressed slowly from loaded cells, owing to avid reuptake. The possibility that PMN uptake of RU 64004 and other macrolides occurs through a carrier-mediated system was suggested by three key results. First, there existed a strong interindividual variability in uptake kinetics, suggesting variability in the numbers or activity of a transport protein. Second, macrolide uptake displayed saturation kinetics characteristic of that of a carrier-mediated transport system: RU 64004 had the highest Vmax value (3,846 ng/2.5 x 10(6) PMNs/5 min) and the lowest Km value (about 28 microM), indicating a high affinity for the transporter. Third, as observed previously with other erythromycin A derivatives, Ni2+ (a blocker of the Na+/Ca2+ exchanger which mediates Ca2+ influx in resting neutrophils) impaired RU 64004 uptake by PMNs, with a 50% inhibitory concentration of about 3.5 mM. In addition, we found that an active process is also involved in macrolide efflux, because verapamil significantly potentiated the release of all three macrolides tested. This effect of verapamil does not seem to be related to an inhibition of Ca2+ influx, because neither EGTA [ethylene glycol-bis (beta-aminoethyl ether)-N,N',N'-tetraacetic acid] nor Ni2+ modified macrolide efflux. The nature and characteristics of the entry- and efflux-mediating carrier systems are under investigation. PMID:9333032

  8. Ru-Catalyzed Estragole Isomerization under Homogeneous and Ionic Liquid Biphasic Conditions

    PubMed Central

    2017-01-01

    The isomerization of estragole to trans-anethole is an important reaction and is industrially performed using an excess of NaOH or KOH in ethanol at high temperatures with very low selectivity. Simple Ru-based transition-metal complexes, under homogeneous, ionic liquid (IL)-supported (biphasic) and “solventless” conditions, can be used for this reaction. The selectivity of this reaction is more sensitive to the solvent/support used than the ligands associated with the metal catalyst. Thus, under the optimized reaction conditions, 100% conversion can be achieved in the estragole isomerization, using as little as 4 × 10–3 mol % (40 ppm) of [RuHCl(CO)(PPh3)3] in toluene, reflecting a total turnover number (TON) of 25 000 and turnover frequencies (TOFs) of up to 500 min–1 at 80 °C. Using a dimeric Ru precursor, [RuCl(μ-Cl)(η3:η3-C10H16)]2, in ethanol associated with P(OEt)3, a TON of 10 000 and a TOF of 125 min–1 are obtained with 100% conversion and 99% selectivity. These two Ru catalytic systems can be transposed to biphasic IL systems by using ionic-tagged P-ligands such as 1-(3-(diphenylphosphanyl)propyl)-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide immobilized in 1-(3-hydroxypropyl)-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl) imide with up to 99% selectivity and almost complete estragole conversion. However, the reaction is much slower than that performed under solventless or homogeneous conditions. The use of ionic-tagged ligands significantly reduces the Ru leaching to the organic phase, compared to that in reactions performed under homogeneous conditions, where the catalytic system loses catalytic performance after the second recycling. Detailed kinetic investigations of the reaction catalyzed by [RuHCl(CO)(PPh3)3] indicate that a simplified kinetic model (a monomolecular reversible first-order reaction) is adequate for fitting the homogeneous reaction at 80 °C and under biphasic conditions. However, the kinetics of the reaction are better described if all of the elementary steps are taken into consideration, especially at 40 °C. PMID:28393133

  9. Experimental study of EUV mirror radiation damage resistance under long-term free-electron laser exposures below the single-shot damage threshold

    PubMed Central

    Makhotkin, Igor A.; Sobierajski, Ryszard; Chalupský, Jaromir; Tiedtke, Kai; de Vries, Gosse; Störmer, Michael; Scholze, Frank; Siewert, Frank; van de Kruijs, Robbert W. E.; Milov, Igor; Louis, Eric; Jacyna, Iwanna; Jurek, Marek; Klinger, Dorota; Syryanyy, Yevgen; Juha, Libor; Hájková, Věra; Saksl, Karel; Faatz, Bart; Keitel, Barbara; Plönjes, Elke; Toleikis, Sven; Loch, Rolf; Hermann, Martin; Strobel, Sebastian; Nienhuys, Han-Kwang; Gwalt, Grzegorz; Mey, Tobias; Enkisch, Hartmut

    2018-01-01

    The durability of grazing- and normal-incidence optical coatings has been experimentally assessed under free-electron laser irradiation at various numbers of pulses up to 16 million shots and various fluence levels below 10% of the single-shot damage threshold. The experiment was performed at FLASH, the Free-electron LASer in Hamburg, using 13.5 nm extreme UV (EUV) radiation with 100 fs pulse duration. Polycrystalline ruthenium and amorphous carbon 50 nm thin films on silicon substrates were tested at total external reflection angles of 20° and 10° grazing incidence, respectively. Mo/Si periodical multilayer structures were tested in the Bragg reflection condition at 16° off-normal angle of incidence. The exposed areas were analysed post-mortem using differential contrast visible light microscopy, EUV reflectivity mapping and scanning X-ray photoelectron spectroscopy. The analysis revealed that Ru and Mo/Si coatings exposed to the highest dose and fluence level show a few per cent drop in their EUV reflectivity, which is explained by EUV-induced oxidation of the surface. PMID:29271755

  10. Experimental study of EUV mirror radiation damage resistance under long-term free-electron laser exposures below the single-shot damage threshold.

    PubMed

    Makhotkin, Igor A; Sobierajski, Ryszard; Chalupský, Jaromir; Tiedtke, Kai; de Vries, Gosse; Störmer, Michael; Scholze, Frank; Siewert, Frank; van de Kruijs, Robbert W E; Milov, Igor; Louis, Eric; Jacyna, Iwanna; Jurek, Marek; Klinger, Dorota; Nittler, Laurent; Syryanyy, Yevgen; Juha, Libor; Hájková, Věra; Vozda, Vojtěch; Burian, Tomáš; Saksl, Karel; Faatz, Bart; Keitel, Barbara; Plönjes, Elke; Schreiber, Siegfried; Toleikis, Sven; Loch, Rolf; Hermann, Martin; Strobel, Sebastian; Nienhuys, Han Kwang; Gwalt, Grzegorz; Mey, Tobias; Enkisch, Hartmut

    2018-01-01

    The durability of grazing- and normal-incidence optical coatings has been experimentally assessed under free-electron laser irradiation at various numbers of pulses up to 16 million shots and various fluence levels below 10% of the single-shot damage threshold. The experiment was performed at FLASH, the Free-electron LASer in Hamburg, using 13.5 nm extreme UV (EUV) radiation with 100 fs pulse duration. Polycrystalline ruthenium and amorphous carbon 50 nm thin films on silicon substrates were tested at total external reflection angles of 20° and 10° grazing incidence, respectively. Mo/Si periodical multilayer structures were tested in the Bragg reflection condition at 16° off-normal angle of incidence. The exposed areas were analysed post-mortem using differential contrast visible light microscopy, EUV reflectivity mapping and scanning X-ray photoelectron spectroscopy. The analysis revealed that Ru and Mo/Si coatings exposed to the highest dose and fluence level show a few per cent drop in their EUV reflectivity, which is explained by EUV-induced oxidation of the surface.

  11. Thermodynamic description of multicomponent nickel-base superalloys containing aluminum, chromium, ruthenium and platinum: A computational thermodynamic approach coupled with experiments

    NASA Astrophysics Data System (ADS)

    Zhu, Jun

    Ru and Pt are candidate additional component for improving the high temperature properties of Ni-base superalloys. A thermodynamic description of the Ni-Al-Cr-Ru-Pt system, serving as an essential knowledge base for better alloy design and processing control, was developed in the present study by means of thermodynamic modeling coupled with experimental investigations of phase equilibria. To deal with the order/disorder transition occurring in the Ni-base superalloys, a physical sound model, Cluster/Site Approximation (CSA) was used to describe the fcc phases. The CSA offers computational advantages, without loss of accuracy, over the Cluster Variation Method (CVM) in the calculation of multicomponent phase diagrams. It has been successfully applied to fcc phases in calculating technologically important Ni-Al-Cr phase diagrams. Our effort in this study focused on the two key ternary systems: Ni-Al-Ru and Ni-Al-Pt. The CSA calculated Ni-Al-Ru ternary phase diagrams are in good agreement with the experimental results in the literature and from the current study. A thermodynamic description of quaternary Ni-Al-Cr-Ru was obtained based on the descriptions of the lower order systems and the calculated results agree with experimental data available in literature and in the current study. The Ni-Al-Pt system was thermodynamically modeled based on the limited experimental data available in the literature and obtained from the current study. With the help of the preliminary description, a number of alloy compositions were selected for further investigation. The information obtained was used to improve the current modeling. A thermodynamic description of the Ni-Al-Cr-Pt quaternary was then obtained via extrapolation from its constituent lower order systems. The thermodynamic description for Ni-base superalloy containing Al, Cr, Ru and Pt was obtained via extrapolation. It is believed to be reliable and useful to guide the alloy design and further experimental investigation.

  12. Spent fuel reaction - the behavior of the {epsilon}-phase over 3.1 years

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finn, P.A.; Hoh, J.C.; Wolf, S.F.

    The release fractions of the five elements in the {epsilon}-phase ({sup 99}Tc, {sup 97}Mo, Ru, Rh, and Pd) as well as that of {sup 238}U are reported for the reaction of two oxide fuels (ATM-103 and ATM-106) in unsaturated tests under oxidizing conditions. The {sup 99}Tc release fractions provide a lower limit for the magnitude of the spent fuel reaction. The {sup 99}Tc release fractions indicate that a surface reaction might be the rate controlling mechanism for fuel reaction under unsaturated conditions and the oxidant is possibly H{sub 2}O{sub 2}, a product of alpha radiolysis of water.

  13. Single-reactor process for producing liquid-phase organic compounds from biomass

    DOEpatents

    Dumesic, James A.; Simonetti, Dante A.; Kunkes, Edward L.

    2015-12-08

    Disclosed is a method for preparing liquid fuel and chemical intermediates from biomass-derived oxygenated hydrocarbons. The method includes the steps of reacting in a single reactor an aqueous solution of a biomass-derived, water-soluble oxygenated hydrocarbon reactant, in the presence of a catalyst comprising a metal selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Mo, Tc, Ru, Rh, Pd, Ag, W, Re, Os, Ir, Pt, and Au, at a temperature, and a pressure, and for a time sufficient to yield a self-separating, three-phase product stream comprising a vapor phase, an organic phase containing linear and/or cyclic mono-oxygenated hydrocarbons, and an aqueous phase.

  14. Single-reactor process for producing liquid-phase organic compounds from biomass

    DOEpatents

    Dumesic, James A [Verona, WI; Simonetti, Dante A [Middleton, WI; Kunkes, Edward L [Madison, WI

    2011-12-13

    Disclosed is a method for preparing liquid fuel and chemical intermediates from biomass-derived oxygenated hydrocarbons. The method includes the steps of reacting in a single reactor an aqueous solution of a biomass-derived, water-soluble oxygenated hydrocarbon reactant, in the presence of a catalyst comprising a metal selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Mo, Tc, Ru, Rh, Pd, Ag, W, Re, Os, Ir, Pt, and Au, at a temperature, and a pressure, and for a time sufficient to yield a self-separating, three-phase product stream comprising a vapor phase, an organic phase containing linear and/or cyclic mono-oxygenated hydrocarbons, and an aqueous phase.

  15. Oxidation of Bromide to Bromine by Ruthenium(II) Bipyridine-Type Complexes Using the Flash-Quench Technique.

    PubMed

    Tsai, Kelvin Yun-Da; Chang, I-Jy

    2017-07-17

    Six ruthenium complexes, [Ru(bpy) 3 ] 2+ (1), [Ru(bpy) 2 (deeb)] 2+ (2), [Ru(deeb) 2 (dmbpy)] 2+ (3), [Ru(deeb) 2 (bpy)] 2+ (4), [Ru(deeb) 3 ] 2+ (5), and [Ru(deeb) 2 (bpz)] 2+ (6) (bpy: 2,2'-bipyridine; deeb: 4,4'-diethylester-2,2'-bipyridine; dmbpy: 4,4'-dimethyl-2,2'-bipyridine, bpz: 2,2'-bipyrazine), have been employed to sensitize photochemical oxidation of bromide to bromine. The oxidation potential for complexes 1-6 are 1.26, 1.36, 1.42, 1.46, 1.56, and 1.66 V vs SCE, respectively. The bimolecular rate constants for the quenching of complexes 1-6 by ArN 2 + (bromobenzenediazonium) are determined as 1.1 × 10 9 , 1.6 × 10 8 , 1.4 × 10 8 , 1.2 × 10 8 , 6.4 × 10 7 , and 8.9 × 10 6 M -1 s -1 , respectively. Transient kinetics indicated that Br - reacted with photogenerated Ru(III) species at different rates. Bimolecular rate constants for the oxidation of Br - by the Ru(III) species derived from complexes 1-5 are observed as 1.2 × 10 8 , 1.3 × 10 9 , 4.0 × 10 9 , 4.8 × 10 9 , and 1.1 × 10 10 , M -1 s -1 , respectively. The last reaction kinetics observed in the three-component system consisting of a Ru sensitizer, quencher, and bromide is shown to be independent of the Ru sensitizer. The final product was identified as bromine by its reaction with hexene. The last reaction kinetics is assigned to the disproportionation reaction of Br 2 -• ions, for which the rate constant is determined as 5 × 10 9 M -1 s -1 . Though complex 6 has the highest oxidation potential in the Ru(II)/Ru(III) couple, its excited state fails to react with ArN 2 + sufficiently for subsequent reactions. The Ru(III) species derived from complex 1 reacts with Br - at the slowest rate. Complexes 2-5 are excellent photosensitizers to drive photooxidation of bromide to bromine.

  16. Nanoporous Ru as a carbon- and binder-free cathode for Li-O2 batteries.

    PubMed

    Liao, Kaiming; Zhang, Tao; Wang, Yongqing; Li, Fujun; Jian, Zelang; Yu, Haijun; Zhou, Haoshen

    2015-04-24

    Porous carbon-free cathodes are critical to achieve a high discharge capacity and efficient cycling for rechargeable Li-O2 battery. Herein, we present a very simple method to directly grow nanoporous Ru (composed of polycrystalline particles of ∼5 nm) on one side of a current collector of Ni foam via a galvanic replacement reaction. The resulting Ru@Ni can be employed as a carbon- and binder-free cathode for Li-O2 batteries and delivers a specific capacity of 3720 mAh gRu (-1) at a current density of 200 mA gRu (-1) . 100 cycles of continuous discharge and charge are obtained at a very narrow terminal voltage window of 2.75∼3.75 V with a limited capacity of 1000 mAh gRu (-1) . The good performance of the nanoporous Ru@Ni cathode can be mainly attributed to the effective suppression of the by-products related to carbon or binder, the good adhesion of the catalyst to the current collector, and the good permeation of O2 and electrolyte into the active sites of the nanoporous Ru with the open pore system. This new type electrode provides a snapshot toward developing high-performance carbon- and binder-free Li-O2 batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Stable monolayer honeycomb-like structures of RuX2 (X =S,Se)

    NASA Astrophysics Data System (ADS)

    Ersan, Fatih; Cahangirov, Seymur; Gökoǧlu, Gökhan; Rubio, Angel; Aktürk, Ethem

    2016-10-01

    Recent studies show that several metal oxides and dichalcogenides (M X2) , which exist in nature, can be stable in two-dimensional (2D) form and each year several new M X2 structures are explored. The unstable structures in H (hexagonal) or T (octahedral) forms can be stabilized through Peierls distortion. In this paper, we propose new 2D forms of RuS2 and RuSe2 materials. We investigate in detail the stability, electronic, magnetic, optical, and thermodynamic properties of 2D Ru X2 (X =S,Se) structures from first principles. While their H and T structures are unstable, the distorted T structures (T'-Ru X2) are stable and have a nonmagnetic semiconducting ground state. The molecular dynamic simulations also confirm that T'-Ru X2 systems are stable even at 500 K without any structural deformation. T'-RuS2 and T'-RuSe2 have indirect band gaps with 0.745 eV (1.694 eV with HSE) and 0.798 eV (1.675 eV with HSE) gap values, respectively. We also examine their bilayer and trilayer forms and find direct and smaller band gaps. We find that AA stacking is more favorable than the AB configuration. The new 2D materials obtained can be good candidates with striking properties for applications in semiconductor electronic, optoelectronic devices, and sensor technology.

  18. Ultrafast relaxation dynamics of amine-substituted bipyridyl ruthenium(II) complexes

    NASA Astrophysics Data System (ADS)

    Song, Hongwei; Wang, Xian; Yang, WenWen; He, Guiying; Kuang, Zhuoran; Li, Yang; Xia, Andong; Zhong, Yu-Wu; Kong, Fan'ao

    2017-09-01

    The excited state properties of a series of ruthenium(II) amine-substituted bipyridyl complexes, [Ru(bpy)n(NNbpy)3-n]2+, were investigated by steady-state and transient absorption spectroscopy, as well as quantum chemical calculations. The steady-state absorption spectra of these complexes in CH3CN show a distinct red-shift of the 1MLCT absorption with increasing numbers of amine substituent, whereas the emission spectra indicate an energy gap order of [Ru(bpy)3]2+ > [Ru(bpy)2(NNbpy)]2+ > [Ru(NNbpy)3]2+ > [Ru(bpy)(NNbpy)2]2+. Nanosecond, femtosecond transient absorption and electrochemical measurements suggest that NNbpy ligand has a strong influence on the electronic and emission properties of these complexes, due to electron-rich amine substituent. We illustrate how the numbers of amine substituent modulate the spectroscopic properties of transition metal complexes, which is related to the design of new electro-active systems with novel photoelectrochemical properties.

  19. Production of Primary Amines by Reductive Amination of Biomass-Derived Aldehydes/Ketones.

    PubMed

    Liang, Guanfeng; Wang, Aiqin; Li, Lin; Xu, Gang; Yan, Ning; Zhang, Tao

    2017-03-06

    Transformation of biomass into valuable nitrogen-containing compounds is highly desired, yet limited success has been achieved. Here we report an efficient catalyst system, partially reduced Ru/ZrO 2 , which could catalyze the reductive amination of a variety of biomass-derived aldehydes/ketones in aqueous ammonia. With this approach, a spectrum of renewable primary amines was produced in good to excellent yields. Moreover, we have demonstrated a two-step approach for production of ethanolamine, a large-market nitrogen-containing chemical, from lignocellulose in an overall yield of 10 %. Extensive characterizations showed that Ru/ZrO 2 -containing multivalence Ru association species worked as a bifunctional catalyst, with RuO 2 as acidic promoter to facilitate the activation of carbonyl groups and Ru as active sites for the subsequent imine hydrogenation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Coupled Electronic and Magnetic Phase Transition in the Infinite-Layer Phase LaSrNiRuO4.

    PubMed

    Patino, Midori Amano; Zeng, Dihao; Bower, Ryan; McGrady, John E; Hayward, Michael A

    2016-09-06

    Topochemical reduction of the ordered double perovskite LaSrNiRuO6 with CaH2 yields LaSrNiRuO4, an extended oxide phase containing infinite sheets of apex-linked, square-planar Ni(1+)O4 and Ru(2+)O4 units ordered in a checkerboard arrangement. At room temperature the localized Ni(1+) (d(9), S = (1)/2) and Ru(2+) (d(6), S = 1) centers behave paramagnetically. However, on cooling below 250 K the system undergoes a cooperative phase transition in which the nickel spins align ferromagnetically, while the ruthenium cations appear to undergo a change in spin configuration to a diamagnetic spin state. Features of the low-temperature crystal structure suggest a symmetry lowering Jahn-Teller distortion could be responsible for the observed diamagnetism of the ruthenium centers.

  1. Energy level shifts at the silica/Ru(0001) heterojunction driven by surface and interface dipoles

    DOE PAGES

    Wang, Mengen; Zhong, Jian -Qiang; Kestell, John; ...

    2016-09-12

    Charge redistribution at heterogeneous interfaces is a fundamental aspect of surface chemistry. Manipulating the amount of charges and the magnitude of dipole moments at the interface in a controlled way has attracted tremendous attention for its potential to modify the activity of heterogeneous catalysts in catalyst design. Two-dimensional ultrathin silica films with well-defined atomic structures have been recently synthesized and proposed as model systems for heterogeneous catalysts studies. R. Wlodarczyk et al. (Phys. Rev. B, 85, 085403 (2012)) have demonstrated that the electronic structure of silica/Ru(0001) can be reversibly tuned by changing the amount of interfacial chemisorbed oxygen. Here wemore » carried out systematic investigations to understand the underlying mechanism through which the electronic structure at the silica/Ru(0001) interface can be tuned. As corroborated by both in situ X-ray photoelectron spectroscopy and density functional theory calculations, the observed interface energy level alignments strongly depend on the surface and interfacial charge transfer induced dipoles at the silica/Ru(0001) heterojunction. These observations may help to understand variations in catalytic performance of the model system from the viewpoint of the electronic properties at the confined space between the silica bilayer and the Ru(0001) surface. As a result, the same behavior is observed for the aluminosilicate bilayer, which has been previously proposed as a model system for zeolites.« less

  2. Visible-Light-Driven Oxidation of Organic Substrates with Dioxygen Mediated by a [Ru(bpy)3 ](2+) /Laccase System.

    PubMed

    Schneider, Ludovic; Mekmouche, Yasmina; Rousselot-Pailley, Pierre; Simaan, A Jalila; Robert, Viviane; Réglier, Marius; Aukauloo, Ally; Tron, Thierry

    2015-09-21

    Oxidation reactions are highly important chemical transformations that still require harsh reaction conditions and stoichiometric amounts of chemical oxidants that are often toxic. To circumvent these issues, olefins oxidation is achieved in mild conditions upon irradiation of an aqueous solution of the complex [Ru(bpy)3 ](2+) and the enzyme laccase. Epoxide formation is coupled to the light-driven reduction of O2 by [Ru(bpy)3 ](2+) /laccase system. The reactivity can be explained by dioxygen acting both as an oxidative agent and as renewable electron acceptor, avoiding the use of a sacrificial electron acceptor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Electrochemical and surface analysis of the Fe-Cr-Ru system in non-oxidizing acid solutions

    NASA Astrophysics Data System (ADS)

    Tjong, S. C.

    1990-03-01

    The effect of ruthenium addition on the spontaneous passivation behaviour of Fe-40Cr alloy in 0.5M H 2SO 4 and 0.5M HCl acid solutions has been studied. Auger and XPS techniques were also used to investigate the surface chemistries of the spontaneously passivated film. Electrochemical measurements indicate that the Fe-40Cr-0.1Ru and Fe-40Cr-0.2Ru alloys exhibit spontaneous passivation upon exposing them in both hydrochloric and sulphuric acid solutions from 25 to 85 ° C. However, the transition time for spontaneous passivation reduces dramatically with an increase in the ruthenium content and solution temperature. Furthermore, this transition time also decreases for the investigated alloys exposed in a less aggressive sulphuric acid solution. AES results show that ruthenium and chromium are enriched in the spontaneous passive films formed on the Fe-40Cr-0.1Ru alloy in both hydrochloric and sulphuric acid solutions at 25 °C, and also in the spontaneous passive film formed on the Fe-40Cr-0.2Ru alloy in hydrochloric acid solution at 25 ° C. AES does not detect the presence of ruthenium in the spontaneous passive film formed on the Fe-40Cr-0.2Ru alloy in sulphuric acid solution. However, XPS analysis shows that ruthenium and chromium are incorporated into the spontaneous passive films formed on the Fe-40Cr-0.1Ru and Fe-40Cr-0.2Ru alloys in both hydrochloric and sulphuric acid solutions as Ru 4+ and Cr 3+ species.

  4. Inner-shell photodetachment of transition metal negative ions

    NASA Astrophysics Data System (ADS)

    Dumitriu, Ileana

    This thesis focuses on the study of inner-shell photodetachment of transition metal negative ions, specifically Fe- and Ru- . Experimental investigations have been performed with the aim of gaining new insights into the physics of negative atomic ions and providing valuable absolute cross section data for astrophysics. The experiments were performed using the X-ray radiation from the Advanced Light Source, Lawrence Berkeley National Laboratory, and the merged-beam technique for photoion spectroscopy. Negative ions are a special class of atomic systems very different from neutral atoms and positive ions. The fundamental physics of the interaction of transition metal negative ions with photons is interesting but difficult to analyze in detail because the angular momentum coupling generates a large number of possible terms resulting from the open d shell. Our work reports on the first inner-shell photodetachment studies and absolute cross section measurements for Fe- and Ru -. In the case of Fe-, an important astrophysical abundant element, the inner-shell photodetachment cross section was obtained by measuring the Fe+ and Fe2+ ion production over the photon energy range of 48--72 eV. The absolute cross sections for the production of Fe+ and Fe2+ were measured at four photon energies. Strong shape resonances due to the 3p→3d photoexcitation were measured above the 3p detachment threshold. The production of Ru+, Ru2+, and Ru3+ from Ru- was measured over 30--90 eV photon energy range The absolute photodetachment cross sections of Ru - ([Kr] 4d75s 2) leading to Ru+, Ru2+, and Ru 3+ ion production were measured at three photon energies. Resonance effects were observed due to interference between transitions of the 4 p-electrons to the quasi-bound 4p54d85s 2 states and the 4d→epsilonf continuum. The role of many-particle effects, intershell interaction, and polarization seems much more significant in Ru- than in Fe- photodetachment.

  5. Electrochemiluminescence detection of TNT by resonance energy transfer through the formation of a TNT-amine complex.

    PubMed

    Qi, Wenjing; Xu, Min; Pang, Lei; Liu, Zhongyuan; Zhang, Wei; Majeed, Saadat; Xu, Guobao

    2014-04-14

    2,4,6-Trinitrotoluene (TNT) is a widely used nitroaromatic explosive with significant detrimental effects on the environment and human health. Its detection is of great importance. In this study, both electrochemiluminescence (ECL)-based detection of TNT through the formation of a TNT-amine complex and the detection of TNT through electrochemiluminescence resonance energy transfer (ECRET) are developed for the first time. 3-Aminopropyltriethoxysilane (APTES)-modified [Ru(phen)3](2+) (phen=1,10-phenanthroline)-doped silica nanoparticles (RuSiNPs) with uniform sizes of (73±3) nm were synthesized. TNT can interact with APTES-modified RuSiNPs through charge transfer from electron-rich amines in the RuSiNPs to the electron-deficient aromatic ring of TNT to form a red TNT-amine complex. The absorption spectrum of this complex overlaps with the ECL spectrum of the APTES-modified RuSiNPs/triethylamine system. As a result, ECL signals of the APTES-modified RuSiNPs/triethylamine system are turned off in the presence of TNT owing to resonance energy transfer from electrochemically excited RuSiNPs to the TNT-amine complex. This ECRET method has been successfully applied for the sensitive determination of TNT with a linear range from 1×10(-9) to 1×10(-6) M with a fast response time within 1 min. The limit of detection is 0.3 nM. The method exhibits good selectivity towards 2,4-dinitrotoluene, p-nitrotoluene, nitrobenzene, phenol, p-quinone, 8-hydroxyquinoline, p-phenylenediamine, K3[Fe(CN)6], Fe(3+), NO3(-), NO2(-), Cr(3+), Fe(2+), Pb(2+), SO3(2-), formaldehyde, oxalate, proline, and glycine. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Rhodium-105 Bombesin Analogs for Prostate Cancer Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silvia S. Jurisson, PhD

    2005-12-31

    Over the period of this grant (11/01/2001 to 12/31/2005), the consistent and reproducible production of Rh-105, synthesis and evaluation of three new chelate systems based on hydroxymethyl phosphines, development of a new non-hydroxymethyl phosphine N{sub 2}P{sub 2} chelate system, conjugation of two of the chelates to the bombesin peptide analog BBN[7-14]NH{sub 2}, evaluation of the bombesin conjugates and their Rh-105 complexes for stability, cell binding affinity, and in vivo biodistribution in normal mice has been developed. The BBN analogs bind to GRP receptors that are overexpressed on PC-3 prostate tumor cells. A dedicated glove box is used for the separationmore » and isolation of {sup 105}Rh from the target ({sup 104}Ru). All tubing/connections/valves from the point of the Cl{sub 2} tank are made of Teflon to minimize/eliminate the introduction of any metal into the process (e.g., iron from stainless steel corrosion). The separation of {sup 105}Rh produced from the enriched {sup 104}Ru target involves oxidation of the enriched {sup 104}Ru metal target to ruthenium tetroxide with chlorine gas and sodium hydroxide solution to generate hypochlorite in situ. The RuO4 is removed by distillation and the {sup 105}Rh remaining in the reaction vial is converted into {sup 105}Rh-chloride by acidification with hydrochloric acid and heating. The {sup 105}Rh production process has become reproducible over the past year to consistently make 10-30 mCi of {sup 105}Rh from 1-3 mg of an enriched (99.21%) {sup 104}Ru target. The process itself involves irradiation of the enriched {sup 104}Ru target in the core of the reactor (University of Missouri Research Reactor (MURR)) for one week to yield 16-40 mCi of {sup 105}Rh. The irradiated target is processed to separate the Rh-105 in high specific activity from the {sup 104}Ru target. The irradiated target is dissolved in NaOH (2M, 3 mL) by bubbling Cl{sub 2} gas through the solution (generating NaOCl in situ) to generate RuO{sub 4} and Rh(III). The RuO{sub 4} is distilled from the solution into an HCl trap to allow for recovery of the enriched Ru as RuO{sub 2}. The {sup 105}Rh remains in the reaction vessel, and on acidification with 0.1 M HCl, {sup 105}Rh-chloride is available for use. A schematic of the purification and Ru-104 recovery process is shown.« less

  7. Gold Nanoclusters@Ru(bpy)₃²⁺-Layered Double Hydroxide Ultrathin Film as a Cathodic Electrochemiluminescence Resonance Energy Transfer Probe.

    PubMed

    Yu, Yingchang; Lu, Chao; Zhang, Meining

    2015-08-04

    Herein, it is the first report that a cathodic electrochemiluminescence (ECL) resonance energy transfer (ERET) system is fabricated by layer-by-layer (LBL) electrostatic assembly of CoAl layered double hydroxide (LDH) nanosheets with a mixture of blue BSA-gold nanoclusters (AuNCs) and Ru(bpy)3(2+) (denoted as AuNCs@Ru) on an Au electrode. The possible ECL mechanism indicates that the appearance of CoAl-LDH nanosheets generates a long-range stacking order of the AuNCs@Ru on an Au electrode, facilitating the occurrence of the ERET between BSA-AuNC donors and Ru(bpy)3(2+) acceptors on the as-prepared AuNCs@Ru-LDH ultrathin films (UTFs). Furthermore, it is observed that the cathodic ECL intensity can be quenched efficiently in the presence of 6-mercaptopurine (6-MP) in a linear range of 2.5-100 nM with a detection limit of 1.0 nM. On the basis of these interesting phenomena, a facile cathodic ECL sensor has successfully distinguished 6-MP from other thiol-containing compounds (e.g., cysteine and glutathione) in human serum and urine samples. The proposed sensing scheme opens a way for employing the layered UTFs as a platform for the cathodic ECL of Ru(bpy)3(2+).

  8. Photoinduced water oxidation sensitized by a tetranuclear Ru(II) dendrimer.

    PubMed

    La Ganga, Giuseppina; Nastasi, Francesco; Campagna, Sebastiano; Puntoriero, Fausto

    2009-12-07

    A multimetallic ruthenium(II) dendrimer is used for the first time to photosensitize dioxygen production from water by IrO2 nanoparticles; the system is more efficient than an analogous system based on the more commonly used [Ru(bpy)3]2+-type photosensitizers, in particular for the ability of the dendrimer to take advantage of the red portion of the solar spectrum.

  9. Determining the isotopic compositions of uranium and fission products in radioactive environmental microsamples using laser ablation ICP-MS with multiple ion counters.

    PubMed

    Boulyga, Sergei F; Prohaska, Thomas

    2008-01-01

    This paper presents the application of a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS)--a Nu Plasma HR--equipped with three ion-counting multipliers and coupled to a laser ablation system (LA) for the rapid and sensitive determination of the 235U/238U, 236U/238U, 145Nd/143Nd, 146Nd/143Nd, 101Ru/(99Ru+99Tc) and 102Ru/(99Ru+99Tc) isotope ratios in microsamples collected in the vicinity of Chernobyl. Microsamples with dimensions ranging from a hundred mum to about 1 mm and with surface alpha activities of 3-38 mBq were first identified using nuclear track radiography. U, Nd and Ru isotope systems were then measured sequentially for the same microsample by LA-MC-ICP-MS. The application of a zoom ion optic for aligning the ion beams into the ion counters allows fast switching between different isotope systems, which enables all of the abovementioned isotope ratios to be measured for the same microsample within a total analysis time of 15-20 min (excluding MC-ICP-MS optimization and calibration). The 101Ru/(99Ru+99Tc) and 102Ru/(99Ru+99Tc) isotope ratios were measured for four microsamples and were found to be significantly lower than the natural ratios, indicating that the microsamples were contaminated with the corresponding fission products (Ru and Tc). A slight depletion in 146Nd of about 3-5% was observed in the contaminated samples, but the Nd isotopic ratios measured in the contaminated samples coincided with natural isotopic composition within the measurement uncertainty, as most of the Nd in the analyzed samples originates from the natural soil load of this element. The 235U/238U and 236U/238U isotope ratios were the most sensitive indicators of irradiated uranium. The present work yielded a significant variation in uranium isotope ratios in microsamples, in contrast with previously published results from the bulk analysis of contaminated samples originating from the vicinity of Chernobyl. Thus, the 235U/238U ratios measured in ten microsamples varied in the range from 0.0073 (corresponding to the natural uranium isotopic composition) to 0.023 (corresponding to initial 235U enrichment in reactor fuel). An inverse correlation was observed between the 236U/238U and 235U/238U isotope ratios, except in the case of one sample with natural uranium. The heterogeneity of the uranium isotope composition is attributed to the different burn-up grades of uranium in the fuel rods from which the microsamples originated.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roederer, Ian U.; Karakas, Amanda I.; Pignatari, Marco

    We present a detailed analysis of the composition and nucleosynthetic origins of the heavy elements in the metal-poor ([Fe/H] = −1.62 ± 0.09) star HD 94028. Previous studies revealed that this star is mildly enhanced in elements produced by the slow neutron-capture process (s process; e.g., [Pb/Fe] = +0.79 ± 0.32) and rapid neutron-capture process (r process; e.g., [Eu/Fe] = +0.22 ± 0.12), including unusually large molybdenum ([Mo/Fe] = +0.97 ± 0.16) and ruthenium ([Ru/Fe] = +0.69 ± 0.17) enhancements. However, this star is not enhanced in carbon ([C/Fe] = −0.06 ± 0.19). We analyze an archival near-ultraviolet spectrum of HD 94028, collected using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope, and other archival optical spectra collected frommore » ground-based telescopes. We report abundances or upper limits derived from 64 species of 56 elements. We compare these observations with s-process yields from low-metallicity AGB evolution and nucleosynthesis models. No combination of s- and r-process patterns can adequately reproduce the observed abundances, including the super-solar [As/Ge] ratio (+0.99 ± 0.23) and the enhanced [Mo/Fe] and [Ru/Fe] ratios. We can fit these features when including an additional contribution from the intermediate neutron-capture process (i process), which perhaps operated through the ingestion of H in He-burning convective regions in massive stars, super-AGB stars, or low-mass AGB stars. Currently, only the i process appears capable of consistently producing the super-solar [As/Ge] ratios and ratios among neighboring heavy elements found in HD 94028. Other metal-poor stars also show enhanced [As/Ge] ratios, hinting that operation of the i process may have been common in the early Galaxy.« less

  11. The series of carbon-chain complexes {Ru(dppe)Cp*}₂{μ-(C≡C )x} (x = 4–8, 11): Synthesis, structures, properties and some reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruce, Michael I.; Cole, Marcus L.; Ellis, Benjamin G.

    The construction of a series of compounds {Ru(dppe)Cp*} 2(μ-C 2x) (Ru*-C2x-Ru*, x = 4–8, 11)) is described. A direct reaction between RuCl(dppe)Cp* and Me 3Si(Ctriple bond; length of mdashC) 4SiMe 3 afforded Ru*-C8-Ru* in 89% yield. The Pd(0)/Cu(I)-catalysed coupling of Ru{Ctriple bond; length of mdashCCtriple bond; length of mdashCAu(PPh 3)}(dppe)Cp*Ru*-C4-Au (2 equiv.) with diiodoethyne gave Ru*-C10-Ru* (64%), or of 1 equiv. with I(Ctriple bond; length of mdashC) 3I gave Ru*-C14-Ru* (36%); similarly, Ru{(Ctriple bond; length of mdashC) 4Au(PPh 3)}(dppe)Cp*Ru*-C8-Au and I(Ctriple bond; length of mdashC) 3I gave Ru*-C22-Ru* (12%). Desilylation (TBAF) of Ru{(Ctriple bond; length of mdashC)xSiMe 3}(dppe)Cp*Ru*-C2x-Si (x =more » 3, 4) followed by oxidative coupling [Cu(OAc) 2/py] gave Ru*-C12-Ru* (82%) and Ru*-C16-Ru* (58%), respectively. Similar oxidative coupling of Ru(Ctriple bond; length of mdashCCtriple bond; length of mdashCH)(dppe)Cp* was a second route to Ru*-C8-Ru* (82%). Appropriate precursors are already known, or obtained by coupling of Ru*-C2x-Si (x = 2, 4) with AuCl(PPh 3)/NaOMe [Ru*-C4-Au, 95%; Ru*-C8-Au, 74%] or from Pd(0)/Cu(I) catalysed coupling of Ru*-C2x-Au (x = 2, 3) with I(Ctriple bond; length of mdashC) 2SiMe 3 (Ru*-C8-Si, 64%; Ru*-C10-Si, 2%). Reactions between Ru*-C2x-Ru* (x = 3, 4) and Fe 2(CO) 9 gave {Fe 3(CO) 9}{μ 3-CCtriple bond; length of mdashC[Ru(dppe)Cp*]} 2Fe(C 3-Ru*) 2 and {Fe 3(CO) 9}{μ 3-CCtriple bond; length of mdashC[Ru(dppe)Cp*]}{μ 3-C(Ctriple bond; length of mdashC) 2[Ru(dppe)Cp*]} Fe(C 3-Ru*)(C 5-Ru*), respectively. The redox properties of the series of complexes with 2x = 2–16 were measured and showed a diminution of the separation of the first two oxidation potentials, ΔE = E 2 - E 1, with increasing carbon chain length. The X-ray-determined molecular structures of Ru*-C8-Si, Ru*-C8-Ru*, Ru*-C14-Ru* (two C 6H 6 solvates), {Ru(PPh 3) 2Cp} 2{μ-(Ctriple bond; length of mdashC) 4}·4CHCl 3Ru-C 8-Ru·4CHCl 3 and of Fe(C 3-Ru*) 2 and Fe(C 3-Ru*)(C 5-Ru*) are reported.« less

  12. Mass-independent isotope fractionation of Mo, Ru, Cd, and Te

    NASA Astrophysics Data System (ADS)

    Fujii, T.; Moynier, F.; Albarède, F.

    2006-12-01

    The variation of the mean charge distribution in the nucleus with the neutron number of different isotopes induces a tenuous shift of the nuclear field. The mass fractionation induced during phase changes is irregular, notably with 'staggering' between odd and even masses, and becomes increasingly non-linear for neutron-rich isotopes. A strong correlation is observed between the deviation of the isotopic effects from the linear dependence with mass and the corresponding nuclear charge radii. We first demonstrated on a number of elements the existence of such mass-independent isotope fractionation in laboratory experiments of solvent extraction with a macrocyclic compound. The isotope ratios were analyzed by multiple-collector inductively coupled plasma mass spectrometry with a typical precision of <100 ppm. The isotopes of odd and even atomic masses are enriched in the solvent to an extent that closely follows the variation of their nuclear charge radii. The present results fit Bigeleisen's (1996) model, which is the standard mass-dependent theory modified to include a correction term named the nuclear field shift effect. For heavy elements like uranium, the mass-independent effect is important enough to dominate the mass-dependent effect. We subsequently set out to compare the predictions of Bigeleisen's theory with the isotopic anomalies found in meteorites. Some of these anomalies are clearly inconsistent with nucleosynthetic effects (either s- or r-processes). Isotopic variations of Mo and Ru in meteorites, especially in Allende (CV3), show a clear indication of nucleosynthetic components. However, the mass-independent anomaly of Ru observed in Murchison (CM2) is a remarkable exception which cannot be explained by the nucleosynthetic model, but fits the nuclear field shift theory extremely well. The abundances of the even atomic mass Te isotopes in the leachates of carbonaceous chondrites, Allende, Murchison, and Orgueil, fit a mass-dependent law well, but the odd atomic mass isotope ^{125}Te clearly deviates from this correlation. The nuclear field shift theory shows that there is no effect on ^{130}Te but that the ^{125}Te anomaly is real. Carbonaceous chondrites do not reveal significant isotope fractionation of Cd isotopes, but a nuclear field shift effect is clearly present in type-3 (unequilibrated) ordinary chondrites. The nuclear field shift effect is temperature dependent and is probably more frequent in nature than commonly thought. It remains, together with nucleosynthetric anomalies, perfectly visible through the normalization of isotopic ratios to a reference value. In meteorites, this effect may originate both during condensation/evaporation processes in the nebular gas and during the metamorphism of the meteorite parent bodies.

  13. High turnover in a photocatalytic system for water reduction to produce hydrogen using a Ru,  Rh,  Ru photoinitiated electron collector.

    PubMed

    Arachchige, Shamindri M; Shaw, Ryan; White, Travis A; Shenoy, Vimal; Tsui, Hei-Man; Brewer, Karen J

    2011-04-18

    Covalent coupling of Ru(II) light absorbers to a Rh(III) electron collecting site through polyazine bridging ligands affords photocatalytic production of H(2) in the presence of visible light and a sacrificial electron donor. A robust photocatalytic system displaying a high turnover of the photocatalyst has been developed using the photoinitiated electron collector [{(bpy)(2)Ru(dpp)}(2)RhBr(2)](5+) (bpy=2,2'-bipyridine; dpp=2,3-bis(2-pyridyl)pyrazine) and N,N-dimethylaniline in DMF/H(2)O. Studies have shown that increased [DMA], the headspace volume, and the use of DMF solvent improves the systems performance and stability providing mechanistic insight into the deactivation routes of the photocatalytic system. Photolysis of the system at 460 nm generates 20 mL of H(2) in 19.5 h with a maximum Φ=0.023 based on H(2) produced and an overall Φ=0.014 and 280 turnovers of the photocatalyst. The photocatalytic system also displays long-term photostability with 30 mL of H(2) generated and 420 turnovers in 50 h under the same conditions. Prolonged photolysis provides 820 mol H(2) per mole of catalyst. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synthesis of ruthenium(II) complexes containing hydroxymethylphosphines and their catalytic activities for hydrogenation of supercritical carbon dioxide.

    PubMed

    Kayaki, Yoshihito; Shimokawatoko, Yoshiki; Ikariya, Takao

    2007-07-09

    Ligand substitution of RuCl2[P(C6H5)3]3 and Cp*RuCl(isoprene) (Cp*=1,2,3,4,5-pentamethylcyclopentadienyl) complexes with hydroxymethylphosphines was investigated to develop new catalyst systems for CO2 hydrogenation. A reaction of P(C6H5)2CH2OH with RuCl2[P(C6H5)3]3 in CH2Cl2 gave Ru(H)Cl(CO)[P(C6H5)2CH2OH]3 (1), which was characterized by NMR spectroscopy and X-ray crystallographic analysis. An isotope labeling experiment using P(C6H5)213CH2OH indicated that the carbonyl moiety in complex 1 originated from formaldehyde formed by degradation of the hydroxymethylphosphine. Elimination of formaldehyde from PCy2CH2OH (Cy=cyclohexyl) was also promoted by treatment of RuCl2[P(C6H5)3]3 in ethanol to give RuCl2(PHCy2)4 under mild conditions. On the other hand, the substitution reaction using Cp*RuCl(isoprene) with the hydroxymethylphosphine ligands proceeded smoothly with formation of Cp*RuCl(L)2 [2a-2c; L=P(C6H5)2CH2OH, PCy(CH2OH)2, and P(CH2OH)3] in good yields. The isolable hydroxymethylphosphine complexes 1 and 2 efficiently catalyzed the hydrogenative amidation of supercritical carbon dioxide (scCO2) to N,N-dimethylformamide (DMF).

  15. Comparative absorption, electroabsorption and electrochemical studies of intervalence electron transfer and electronic coupling in cyanide-bridged bimetallic systems: ancillary ligand effects

    NASA Astrophysics Data System (ADS)

    Vance, Fredrick W.; Slone, Robert V.; Stern, Charlotte L.; Hupp, Joseph T.

    2000-03-01

    Electroabsorption or Stark spectroscopy has been used to evaluate the systems (NC) 5M II-CN-Ru III(NH 3) 51- and (NC) 5M II-CN-Ru III(NH 3) 4py 1-, where M II=Fe II or Ru II. When a pyridine ligand is present in the axial position on the Ru III acceptor, the effective optical electron transfer distance - as measured by the change in dipole moment, |Δ μ| - is increased by more than 35% relative to the ammine substituted counterpart. Comparison of the charge transfer distances to the crystal structure of Na[(CN) 5Fe-CN-Ru(NH 3) 4py] · 6H 2O reveals that the Stark derived distances are ˜50% to ˜90% of the geometric separation of the metal centers. The differences result in an upward revision in the Hush delocalization parameter, c b2, and of the electronic coupling matrix element, H ab, relative to those parameters obtained exclusively from electronic absorption measurements. The revised parameters are compared to those, which are obtained via electrochemical techniques and found to be in only fair agreement. We conclude that the absorption/electroabsorption analysis likely yields a more reliable set of mixing and coupling parameters.

  16. Wall-like hierarchical metal oxide nanosheet arrays grown on carbon cloth for excellent supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Huang, Zongyu; Zhang, Zhen; Qi, Xiang; Ren, Xiaohui; Xu, Guanghua; Wan, Pengbo; Sun, Xiaoming; Zhang, Han

    2016-07-01

    Recently, considerable efforts have been made to satisfy the future requirements of electrochemical energy storage using novel functional electrode materials. Binary transition metal oxides (BTMOs) possess multiple oxidation states that enable multiple redox reactions, showing higher supercapacitive properties than single component metal oxides. In this work, a facile hydrothermal method is provided for the synthesis of wall-like hierarchical metal oxide MMoO4 (M = Ni, Co) nanosheet arrays, which are directly grown on flexible carbon cloth for use as advanced binder-free electrodes for supercapacitors. By virtue of their intriguing structure, the resulted active material nanosheets with a high specific surface area can provide a large electroactive region, which could facilitate easy accession of electrolyte ions and fast charge transport, resulting in an enhanced electrochemical performance. Separately, the as-synthesized MMoO4 (M = Ni, Co) samples have exhibited superior specific capacitances (1483 F g-1 of NiMoO4 and 452 F g-1 of CoMoO4 at a current density of 2 A g-1), as well as excellent cycling stability (93.1% capacitance retention of NiMoO4 and 95.9% capacitance retention of CoMoO4 after 2000 cycles). The results show that the binder-free electrodes constructed by deposition of MMoO4 (M = Ni, Co) nanosheets on carbon cloth are promising candidates for the application of supercapacitors.Recently, considerable efforts have been made to satisfy the future requirements of electrochemical energy storage using novel functional electrode materials. Binary transition metal oxides (BTMOs) possess multiple oxidation states that enable multiple redox reactions, showing higher supercapacitive properties than single component metal oxides. In this work, a facile hydrothermal method is provided for the synthesis of wall-like hierarchical metal oxide MMoO4 (M = Ni, Co) nanosheet arrays, which are directly grown on flexible carbon cloth for use as advanced binder-free electrodes for supercapacitors. By virtue of their intriguing structure, the resulted active material nanosheets with a high specific surface area can provide a large electroactive region, which could facilitate easy accession of electrolyte ions and fast charge transport, resulting in an enhanced electrochemical performance. Separately, the as-synthesized MMoO4 (M = Ni, Co) samples have exhibited superior specific capacitances (1483 F g-1 of NiMoO4 and 452 F g-1 of CoMoO4 at a current density of 2 A g-1), as well as excellent cycling stability (93.1% capacitance retention of NiMoO4 and 95.9% capacitance retention of CoMoO4 after 2000 cycles). The results show that the binder-free electrodes constructed by deposition of MMoO4 (M = Ni, Co) nanosheets on carbon cloth are promising candidates for the application of supercapacitors. Electronic supplementary information (ESI) available: XRD pattern and charge-discharge plots. See DOI: 10.1039/c6nr04020a

  17. Secondary ion mass spectrometric investigation on ruthenium oxide systems: a comparison between poly- and nanocrystalline deposits

    PubMed

    Barison; Barreca; Daolio; Fabrizio; Piccirillo

    2000-01-01

    The influence of different RuO(2) crystallite sizes was investigated by secondary ion mass spectrometry (SIMS) on the oxide deposited on various support materials (Ni, Ti, Al(2)O(3), oxidized Si(100)). In order to examine the effect of an oxidic environment on the film structure, RuO(2) 20%-TiO(2) 80% at. mixed oxide was deposited on Ti. The polycrystalline coatings were prepared by heating the Ru (and Ti)-containing solution dropped on the supports.1 RuO(2) nanocrystalline coatings were grown by chemical vapor deposition (CVD) from Ru(COD)(eta(3)-allyl)(2).2 The identification of mixed oxide clusters showed the higher reactivity of Ni and Al(2)O(3) over the other substrates. Diffusion and migration characteristics were observed to be influenced by the nature of the support. The results are complementary to those of a previous SIMS investigation.3 Copyright 2000 John Wiley & Sons, Ltd.

  18. SULFUR REDUCTION IN GASOLINE AND DIESEL FUELS BY EXTRACTION/ADSORPTION OF REFRACTORY DIBENZOTHIOPHENES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott G. McKinley; Celedonio M. Alvarez

    2003-03-01

    The purpose of this study was to remove thiophene, benzothiophene and dibenzothiophene from a simulated gasoline feedstock. We found that Ru(NH{sub 3}){sub 5}(H{sub 2}O){sup 2+} reacts with a variety of thiophenes (Th*), affording Ru(NH{sub 3}){sub 5}(Th*){sup 2+}. We used this reactivity to design a biphasic extraction process that removes more than 50% of the dibenzothiophene in the simulated feedstock. This extraction system consists of a hydrocarbon phase (simulated petroleum feedstock) and extractant Ru(NH{sub 3}){sub 5}(H{sub 2}O){sup 2+} in an aqueous phase (70% dimethylformamide, 30% H{sub 2}O). The DBT is removed in situ from the newly formed Ru(NH{sub 3}){sub 5}(DBT){sup 2+}more » by either an oxidation process or addition of H{sub 2}O, to regenerate Ru(NH{sub 3}){sub 5}(H{sub 2}O){sup 2+}.« less

  19. New isomer and decay half-life of {sup 115}Ru

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurpeta, J.; Plochocki, A.; Rissanen, J.

    2010-12-15

    Exotic, neutron-rich nuclei of mass A=115 produced in proton-induced fission of {sup 238}U were extracted using the IGISOL mass separator. The beam of isobars was transferred to the JYFLTRAP Penning trap system for further separation to the isotopic level. Monoisotopic samples of {sup 115}Ru nuclei were used for {gamma}and {beta} coincidence spectroscopy. In {sup 115}Ru we have observed excited levels, including an isomer with a half-life of 76(6) ms and (7/2{sup -}) spin and parity. The first excited 61.7-keV level in {sup 115}Ru with spins and parity (3/2{sup +}) may correspond to an oblate 3/2{sup +}[431] Nilsson orbital. A half-lifemore » of 318(19) ms for the {beta}{sup -} decay of the (1/2{sup +}) ground state in {sup 115}Ru has been firmly established in two independent measurements, a value which is significantly shorter than that previously reported.« less

  20. Infrared vibrational spectroscopy of [Ru(bpy)2(bpm)]2+ and [Ru(bpy)3]2+ in the excited triplet state.

    PubMed

    Mukuta, Tatsuhiko; Fukazawa, Naoto; Murata, Kei; Inagaki, Akiko; Akita, Munetaka; Tanaka, Sei'ichi; Koshihara, Shin-ya; Onda, Ken

    2014-03-03

    This work involved a detailed investigation into the infrared vibrational spectra of ruthenium polypyridyl complexes, specifically heteroleptic [Ru(bpy)2(bpm)](2+) (bpy = 2,2'-bipyridine and bpm = 2,2'-bipyrimidine) and homoleptic [Ru(bpy)3](2+), in the excited triplet state. Transient spectra were acquired 500 ps after photoexcitation, corresponding to the vibrational ground state of the excited triplet state, using time-resolved infrared spectroscopy. We assigned the observed bands to specific ligands in [Ru(bpy)2(bpm)](2+) based on the results of deuterium substitution and identified the corresponding normal vibrational modes using quantum-chemical calculations. Through this process, the more complex vibrational bands of [Ru(bpy)3](2+) were assigned to normal vibrational modes. The results are in good agreement with the model in which excited electrons are localized on a single ligand. We also found that the vibrational bands of both complexes associated with the ligands on which electrons are little localized appear at approximately 1317 and 1608 cm(-1). These assignments should allow the study of the reaction dynamics of various photofunctional systems including ruthenium polypyridyl complexes.

  1. Synthesis of PtRu/Ru heterostructure for efficient methanol electrooxidation: The role of extra Ru

    NASA Astrophysics Data System (ADS)

    Bai, Lei

    2018-03-01

    Platinum-ruthenium (PtRu) nanocubes and PtRu/Ru heterostructure via epitaxial growth were synthesized by varying the amount of Ru precursor. As model catalysts, the PtRu/Ru heterostructure demonstrated the highest catalytic performance in electrooxidation of methanol, which was possibly due to the more hydroxyl species produced from the extra Ru nanoparticles as well as enhanced adsorption of methanol of PtRu alloys in the PtRu/Ru heterostructure. The catalytic performance of the catalysts was closely related with the structure, which was well characterized by a series of methods. It was expected that the present work could provide a new insight for the synthesis of PtRu based nanocatalysts.

  2. Phase Structure and Site Preference Behavior of Ternary Alloying Additions to PdTi and PtTi Shape-Memory Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Mosca, Hugo O.; Noebe, Ronald D.

    2006-01-01

    The phasc structure and concentration dependence of the lattice parameter and energy of formation of ternary Pd-'I-X and Pt-Ti-X alloys for a large number of ternary alloying additions X (X = Na, Mg, Al, Si, Sc. V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Ag, Cd, Hf, Ta, W, Re, Os, Ir) are investigated with an atomistic modeling approach. In addition, a detailed description of the site preference behavior of such additions showing that the elements can be grouped according to their absolute preference for a specific site, regardless of concentration, or preference for available sites in the deficient sublattice is provided.

  3. Testing Room-Temperature Ionic Liquid Solutions for Depot Repair of Aluminum Coatings

    DTIC Science & Technology

    2011-05-01

    Ne 3 Na Mg IIIB IVB VB VIB VIIB ------ VIIIB ------ IB IIB Al Si P S Cl Ar 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 5 Rb Sr Y Zr Nb Mo Tc...Ru Rh Pd Ag Cd In Sn Sb Te I Xe 6 Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 7 Fr Ra Ac Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np...Electroplating Bath Lid Arrangement ;:::::::::::=== Thermometer Purge gas vent Anode lead Cathode lead (Extractable from the lid) Purge feed gas

  4. Method for fabricating beryllium-based multilayer structures

    DOEpatents

    Skulina, Kenneth M.; Bionta, Richard M.; Makowiecki, Daniel M.; Alford, Craig S.

    2003-02-18

    Beryllium-based multilayer structures and a process for fabricating beryllium-based multilayer mirrors, useful in the wavelength region greater than the beryllium K-edge (111 .ANG. or 11.1 nm). The process includes alternating sputter deposition of beryllium and a metal, typically from the fifth row of the periodic table, such as niobium (Nb), molybdenum (Mo), ruthenium (Ru), and rhodium (Rh). The process includes not only the method of sputtering the materials, but the industrial hygiene controls for safe handling of beryllium. The mirrors made in accordance with the process may be utilized in soft x-ray and extreme-ultraviolet projection lithography, which requires mirrors of high reflectivity (>60%) for x-rays in the range of 60-140 .ANG. (60-14.0 nm).

  5. Average and recommended half-life values for two neutrino double beta decay: Upgrade-2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barabash, A. S.

    2013-12-30

    All existing positive results on two neutrino double beta decay in different nuclei were analyzed. Using the procedure recommended by the Particle Data Group, weighted average values for half-lives of {sup 48}Ca, {sup 76}Ge, {sup 82}Se, {sup 96}Zr, {sup 100}Mo, {sup 100}Mo−{sup 100}Ru (0{sub 1}{sup +}), {sup 116}Cd, {sup 130}Te, {sup 136}Xe, {sup 150}Nd, {sup 150}Nd−{sup 150}Sm (0{sub 1}{sup +}) and {sup 238}U were obtained. Existing geochemical data were analyzed and recommended values for half-lives of {sup 128}Te and {sup 130}Ba are proposed. I recommend the use of these results as the most currently reliable values for half-lives.

  6. Enhanced interfacial Dzyaloshinskii-Moriya interaction and isolated skyrmions in the inversion-symmetry-broken Ru/Co/W/Ru films

    NASA Astrophysics Data System (ADS)

    Samardak, Alexander; Kolesnikov, Alexander; Stebliy, Maksim; Chebotkevich, Ludmila; Sadovnikov, Alexandr; Nikitov, Sergei; Talapatra, Abhishek; Mohanty, Jyoti; Ognev, Alexey

    2018-05-01

    An enhancement of the spin-orbit effects arising on an interface between a ferromagnet (FM) and a heavy metal (HM) is possible through the strong breaking of the structural inversion symmetry in the layered films. Here, we show that an introduction of an ultrathin W interlayer between Co and Ru in Ru/Co/Ru films enables to preserve perpendicular magnetic anisotropy (PMA) and simultaneously induce a large interfacial Dzyaloshinskii-Moriya interaction (iDMI). The study of the spin-wave propagation in the Damon-Eshbach geometry by Brillouin light scattering spectroscopy reveals the drastic increase in the iDMI value with the increase in W thickness (tW). The maximum iDMI of -3.1 erg/cm2 is observed for tW = 0.24 nm, which is 10 times larger than for the quasi-symmetrical Ru/Co/Ru films. We demonstrate the evidence of the spontaneous field-driven nucleation of isolated skyrmions supported by micromagnetic simulations. Magnetic force microscopy measurements reveal the existence of sub-100-nm skyrmions in the zero magnetic field. The ability to simultaneously control the strength of PMA and iDMI in quasi-symmetrical HM/FM/HM trilayer systems through the interface engineered inversion asymmetry at the nanoscale excites new fundamental and practical interest in ultrathin ferromagnets, which are a potential host for stable magnetic skyrmions.

  7. Transparent metal selenide alloy counter electrodes for high-efficiency bifacial dye-sensitized solar cells.

    PubMed

    Duan, Yanyan; Tang, Qunwei; Liu, Juan; He, Benlin; Yu, Liangmin

    2014-12-22

    The exploration of cost-effective and transparent counter electrodes (CEs) is a persistent objective in the development of bifacial dye-sensitized solar cells (DSSCs). Transparent counter electrodes based on binary-alloy metal selenides (M-Se; M=Co, Ni, Cu, Fe, Ru) are now obtained by a mild, solution-based method and employed in efficient bifacial DSSCs. Owing to superior charge-transfer ability for the I(-) /I3 (-) redox couple, electrocatalytic activity toward I3 (-) reduction, and optical transparency, the bifacial DSSCs with CEs consisting of a metal selenide alloy yield front and rear efficiencies of 8.30 % and 4.63 % for Co0.85 Se, 7.85 % and 4.37 % for Ni0.85 Se, 6.43 % and 4.24 % for Cu0.50 Se, 7.64 % and 5.05 % for FeSe, and 9.22 % and 5.90 % for Ru0.33 Se in comparison with 6.18 % and 3.56 % for a cell with an electrode based on pristine platinum, respectively. Moreover, fast activity onset, high multiple start/stop capability, and relatively good stability demonstrate that these new electrodes should find applications in solar panels. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A VNTR element associated with steroid sulfatase gene deletions stimulates recombination in cultured cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Y.; Li, X.M.; Shapiro, L.J.

    1994-09-01

    Steroid sulfatase deficiency is a common genetic disorder, with a prevalence of approximately one in every 3500 males world wide. About 90% of these patients have complete gene deletions, which appear to result from recombination between members of a low-copy repeat family (CRI-232 is the prototype) that flank the gene. RU1 and RU2 are two VNTR elements found within each of these family members. RU1 consists of 30 bp repeating units and its length shows minimal variation among individuals. The RU2 element consists of repeating sequences which are highly asymmetric, with about 90% purines and no C`s on one strand,more » and range from 0.6 kb to over 23 kb among different individuals. We conducted a study to determine if the RU1 or RU2 elements can promote recombination in an in vivo test system. We inserted these elements adjacent to the neo gene in each of two pSV2neo derivatives, one of which has a deletion in the 5{prime} portion of the neo gene and the other having a deletion in the 3{prime} portion. These plasmids were combined and used to transfect EJ cells. Survival of cells in G418 indicates restoration of a functional neo gene by recombination between two deletion constructs. Thus counting G418 resistant colonies gives a quantitative measure of the enhancement of recombination by the inserted VNTR elements. The results showed no effect on recombination by the inserted RU1 element (compared to the insertion of a nonspecific sequence), while the RU2 element stimulated recombination by 3.5-fold (P<0.01). A separate set of constructs placed RU1 or RU2 within the intron of an exon trapping vector. Following tranfection of cells, recombination events were monitored by a PCR assay that detected the approximation of primer binding sites (as a result of recombination). These studies showed that, as in the first set of experiments, the highly variable RU2 element is capable of stimulating somatic recombination in mammalian cells.« less

  9. Homogeneous and label-free electrochemiluminescence aptasensor based on the difference of electrostatic interaction and exonuclease-assisted target recycling amplification.

    PubMed

    Ni, Jiancong; Yang, Weiqiang; Wang, Qingxiang; Luo, Fang; Guo, Longhua; Qiu, Bin; Lin, Zhenyu; Yang, Huanghao

    2018-05-15

    The difference of electrostatic interaction between free Ru(phen) 3 2+ and Ru(phen) 3 2+ embedded in double strand DNA (dsDNA) to the negatively charged indium tin oxide (ITO) electrode has been applied to develop a homogeneous and label-free electrochemiluminescence (ECL) aptasensor for the first time. Ochratoxin A (OTA) has been chosen as the model target. The OTA aptamer is first hybridized with its complementary single strand DNA (ssDNA) to form dsDNA and then interacted with Ru(phen) 3 2+ via the grooves binding mode to form dsDNA-Ru(phen) 3 2+ complex, which remains negatively charged feature as well as low diffusion capacity to the negatively charged ITO electrode surface owing to the electrostatic repulsion. Meanwhile, the intercalated Ru(phen) 3 2+ in the grooves of dsDNA works as an ECL signal reporter instead of the labor-intensive labeling steps and can generate much more ECL signal than that from the labeling probe. In the presence of target, the aptamer prefers to form an aptamer-target complex in lieu of dsDNA, which induces the releasing of Ru(phen) 3 2+ from the dsDNA-Ru(phen) 3 2+ complex into the solution. With the assistance of RecJ f exonuclease (a ssDNA specific exonuclease), the released ssDNA and the aptamer in the target-complex were digested into mononucleotides. In the meantime, the target can be also liberated from OTA-aptamer complex and induce target cycling and large amount of free Ru(phen) 3 2+ present in the solution. Since Ru(phen) 3 2+ contains positive charges, which can diffuses easily to the ITO electrode surface because of electrostatic attraction, causing an obviously enhanced ECL signal detected. Under the optimal conditions, the enhanced ECL of the system has a linear relationship with the OTA concentration in the range of 0.01-1.0 ng/mL with a detection limit of 2 pg/mL. This innovative system not only expands the immobilization-free sensors in the electrochemiluminescent fields, but also can be developed for the detection of different targets easily with the same strategy by changing the aptamer used. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Selective hydrodesulfurization of 4,6-dimethyl-dibenzothiophene in the dominant presence of naphthalene over hybrid CoMo/Al{sub 2}O{sub 3} and Ru/Al{sub 2}O{sub 3} catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isoda, Takaaki; Nagao, Shinichi; Ma, Xiaoliang

    1995-12-31

    It has been revealed that significant desulfurization of refractory 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene (4,6-DMDBT) is very essential to achive the low sulfur level of gas oil requested by the current regulation. Their direct desulfurization through the interaction of their sulfur atom with the catalyst surface is sterically hindered by its neighbouring methyl groups. The substrate is found kinetically to be hydrogenated at one of its phenyl rings prior to the desulfurization in order to reduce the steric hindrance through non-planaring configuration (2-4). NiMo / Al{sub 2}O{sub 3} was reported to be superior to CoMo / Al{sub 2}O{sub 3} in the deepmore » desulufurization, because of its higher hydrogenation activity. However, such a hydrogenation route suffers severe inhibition by aromatic species in their dominant presence, because 4,6-DMDBT must compete with the aromatic species to the hydrogenation sites on the catalysts. The aromatic species up to 30 wt % in the gas oil was that completely stop the desulfurization of the particular substrate. The catalyst for the selective hydrogenation of 4,6-DMDBT in the dominant aromatic partners is most wanted to achive its extensive desulfurization in the gas oil, although there have been reported activities of various transition metal sulfides for HDS of dibenzothiophene, and hydrogenation of aromatic hydrocarbons.« less

  11. Magnetic phase transitions and magnetization reversal in MnRuP

    NASA Astrophysics Data System (ADS)

    Lampen-Kelley, P.; Mandrus, D.

    The ternary phosphide MnRuP is an incommensurate antiferromagnetic metal crystallizing in the non-centrosymmetric Fe2P-type crystal structure. Below the Neel transition at 250 K, MnRuP exhibits hysteretic anomalies in resistivity and magnetic susceptibility curves as the propagation vectors of the spiral spin structure change discontinuously across T1 = 180 K and T2 = 100 K. Temperature-dependent X-ray diffraction data indicate that the first-order spin reorientation occurs in the absence of a structural transition. A strong magnetization reversal (MR) effect is observed upon cooling the system through TN in moderate dc magnetic fields. Positive magnetization is recovered on further cooling through T1 and maintained in subsequent warming curves. The field dependence and training of the MR effect in MnRuP will be discussed in terms of the underlying magnetic structures and compared to anomalous MR observed in vanadate systems. This work is supported by the Gordon and Betty Moore Foundation GBMF4416 and U.S. DOE, Office of Science, BES, Materials Science and Engineering Division.

  12. Optical system storage design with diffractive optical elements

    NASA Technical Reports Server (NTRS)

    Kostuk, Raymond K.; Haggans, Charles W.

    1993-01-01

    Optical data storage systems are gaining widespread acceptance due to their high areal density and the ability to remove the high capacity hard disk from the system. In magneto-optical read-write systems, a small rotation of the polarization state in the return signal from the MO media is the signal which must be sensed. A typical arrangement used for detecting these signals and correcting for errors in tracking and focusing on the disk is illustrated. The components required to achieve these functions are listed. The assembly and alignment of this complex system has a direct impact on cost, and also affects the size, weight, and corresponding data access rates. As a result, integrating these optical components and improving packaging techniques is an active area of research and development. Most designs of binary optic elements have been concerned with optimizing grating efficiency. However, rigorous coupled wave models for vector field diffraction from grating surfaces can be extended to determine the phase and polarization state of the diffracted field, and the design of polarization components. A typical grating geometry and the phase and polarization angles associated with the incident and diffracted fields are shown. In our current stage of work, we are examining system configurations which cascade several polarization functions on a single substrate. In this design, the beam returning from the MO disk illuminates a cascaded grating element which first couples light into the substrate, then introduces a quarter wave retardation, then a polarization rotation, and finally separates s- and p-polarized fields through a polarization beam splitter. The input coupler and polarization beam splitter are formed in volume gratings, and the two intermediate elements are zero-order elements.

  13. Syntheses, structures, and physicochemical properties of diruthenium compounds of tetrachlorocatecholate with metal-metal bonded Ru(3+)(mu-OR)(2)Ru(3+) and Ru(3.5+)(mu-OR)(2)Ru(3.5+) cores (R = CH(3) and C(2)H(5)).

    PubMed

    Miyasaka, H; Chang, H C; Mochizuki, K; Kitagawa, S

    2001-07-02

    Metal-metal bonded Ru(3+)(mu-OR)(2)Ru(3+) and Ru(3.5+)(mu-OR)(2)Ru(3.5+) (R = CH(3) and CH(3)CH(2)) compounds with tetrachlorocatecholate (Cl(4)Cat) have been synthesized in the corresponding alcohol, MeOH and EtOH, from a nonbridged Ru(2+)-Ru(3+) compound, Na(3)[Ru(2)(Cl(4)Cat)(4)(THF)].3H(2)O.7THF (1). In alcohol solvents, compound 1 is continuously oxidized by oxygen to form Ru(3+)(mu-OR)(2)Ru(3+) and Ru(3.5+)(mu-OR)(2)Ru(3.5+) species. The presence of a characteristic countercation leads to selective isolation of either Ru(3+)(mu-OR)(2)Ru(3+) or Ru(3.5+)(mu-OR)(2)Ru(3.5+) as a stable adduct species. In methanol, Ph(4)PCl and dibenzo-18-crown-6-ether afford Ru(3+)(mu-OMe)(2)Ru(3+) species, [A](2)[Ru(2)(Cl(4)Cat)(4)(mu-OMe)(2)Na(2)(MeOH)(6)] ([A](+) = Ph(4)P(+) (2), [Na(dibenzo-18-crown-6)(H(2)O)(MeOH)](+) (3)), while benzo-15-crown-5-ether provides a Ru(3.5+)(mu-OMe)(2)Ru(3.5+) species, [Na(benzo-15-crown-5)(2)][Ru(2)(Cl(4)Cat)(4)(mu-OMe)(2)Na(2)(MeOH)(6)] (4). The air oxidation of 1 in a MeOH/EtOH mixed solvent (1:1 v/v) containing benzo-15-crown-5-ether provides a Ru(3.5+)(mu-OMe)(2)Ru(3.5+) species, [Na(benzo-15-crown-5)(H(2)O)][Ru(2)(Cl(4)Cat)(2)(mu-OMe)(2)Na(2)(EtOH)(2)(H(2)O)(2)(MeOH)(2)].(benzo-15-crown-5) (5). Similarly, the oxidation of 1 in ethanol with Ph(4)PCl provides a Ru(3.5+)(mu-OEt)(2)Ru(3.5+) species, (Ph(4)P)[Ru(2)(Cl(4)Cat)(4)(mu-OEt)(2)Na(2)(EtOH)(6)] (7). A selective formation of a Ru(3+)(mu-OEt)(2)Ru(3+) species, (Ph(4)P)(2)[Ru(2)(Cl(4)Cat)(4)(mu-OEt)(2)Na(2)(EtOH)(2)(H(2)O)(2)] (6), is found in the presence of pyrazine or 2,5-dimethylpyrazine. The crystal structures of these compounds, except 2 and 7, have been determined by X-ray crystallography, and all compounds have been characterized by several spectroscopic and magnetic investigations. The longer Ru-Ru bonds are found in the Ru(3+)(mu-OR)(2)Ru(3+) species (2.606(1) and 2.628(2) A for 3 and 6, respectively) compared with those of Ru(3.5+)(mu-OMe)(2)Ru(3.5+) species (2.5260(6) A and 2.514(2) A for 4 and 5, respectively). These structural features and magnetic and ESR data revealed the electronic configurations of sigma(2)pi(2)delta(2)delta(2)pi(2) and sigma(2)pi(2)delta(2)delta(2)pi(1) for Ru(3+)(mu-OR)(2)Ru(3+) and Ru(3.5+)(mu-OR)(2)Ru(3.5+), respectively, in which the former is diamagnetic and the latter is paramagnetic with S = (1)/(2) ground state. Compound 5 forms a one-dimensional chain with alternating arrangement of a Ru(3.5+)(mu-OMe)(2)Ru(3.5+) unit and a free benzo-15-crown-5-ether molecule by intermolecular hydrogen bonds (O(H(2)O).O(crown-ether) = 2.91-3.04 A). The cyclic voltammetry in DMF affords characteristic metal-origin voltammograms; two reversible and two quasi-reversible redox waves were observed. The feature of cyclic voltammograms for the Ru(3+)(mu-OR)(2)Ru(3+) species (2, 3, and 6) and the Ru(3.5+)(mu-OR)(2)Ru(3.5+) species (4 and 7) are similar to each other, indicating that both species are electrochemically stable. The isolation of the pyrazine-trans-coordinated species, [Ph(4)P][Ru(Cl(4)Cat)(2)(L)(2)] (L = pyrazine (8), 2,5-dimethylpyrazine (9)), revealed the selective isolation of 6 from pyrazine-containing solution. UV-vis spectral variation by ethanolysis for 9 demonstrated the selective conversion from the pyrazine-trans-coordinated species to the Ru(3+)(mu-OEt)(2)Ru(3+) species without an oxidation to the Ru(3.5+)(mu-OEt)(2)Ru(3.5+) species. This result suggests the presence of equilibrium between [Ru(Cl(4)Cat)(2)(L)(2)](-) and Ru(3+)(mu-OEt)(2)Ru(3+) species in the synthetic condition for 6.

  14. Studies on phase transition temperature of rare earth niobates Ln3NbO7 (Ln = Pr, Sm, Eu) with orthorhombic fluorite-related structure

    NASA Astrophysics Data System (ADS)

    Hinatsu, Yukio; Doi, Yoshihiro

    2017-06-01

    The phase transition of ternary rare earth niobates Ln3NbO7 (Ln = Pr, Sm, Eu) was investigated by the measurements of high-temperature and low-temperature X-ray diffraction, differential scanning calorimetry (DSC) and differential thermal analysis (DTA). These compounds crystallize in an orthorhombic superstructure derived from the structure of cubic fluorite (space group Pnma for Ln = Pr; C2221 for Ln = Sm, Eu). Sm3NbO7 undergoes the phase transition when the temperature is increased through ca. 1080 K and above the transition temperature, its structure is well described with space group Pnma. For Eu3NbO7, the phase transition was not observed up to 1273 K Pr3NbO7 indicates the phase transition when the temperature is increased through ca. 370 K. The change of the phase transition temperature against the Ln ionic radius for Ln3NbO7 is quite different from those for Ln3MO7 (M = Mo, Ru, Re, Os, or Ir), i.e., no systematic relationship between the phase transition temperature and the Ln ionic radius has been observed for Ln3NbO7 compounds.

  15. Stabilization of Small Boron Cage by Transition Metal Encapsulation

    NASA Astrophysics Data System (ADS)

    Zhang, Lijun; Lv, Jian; Wang, Yanchao; Ma, Yanming

    2015-03-01

    The discovery of chemically stable fullerene-like structures formed by elements other than carbon has been long-standing desired. On this aspect significant efforts have centered around boron, only one electron deficient compared with carbon. However, during the past decade a large number of experimental and theoretical studies have established that small boron clusters are either planar/quasi-planar or forming double-ring tubular structures. Until recently, two all-boron fullerenes have been independently discovered: B38 proposed by our structure searching calculations and B40 observed in a joint experimental and theoretical study. Here we extend our work to the even smaller boron clusters and propose an effective routine to stabilize them by transition metal encapsulation. By combining swarm-intelligence structure searching and first-principles calculations, we have systematically investigated the energy landscapes of transition-metal-doped MB24 clusters (M = Ti, Zr, Hf, Cr, Mo, W, Fe, Ru and Os). Two stable symmetric endohedral boron cages, MoB24 and WB24 are identified. The stability of them can be rationalized in terms of their unique 18-electron closed-shell electronic structures. Funded by Recruitment Program of Global Experts of China and China Postdoctoral Science Foundation.

  16. 1,5-Diamido-9,10-anthraquinone, a Centrosymmetric Redox-Active Bridge with Two Coupled β-Ketiminato Chelate Functions: Symmetric and Asymmetric Diruthenium Complexes.

    PubMed

    Ansari, Mohd Asif; Mandal, Abhishek; Paretzki, Alexa; Beyer, Katharina; Fiedler, Jan; Kaim, Wolfgang; Lahiri, Goutam Kumar

    2016-06-06

    The dinuclear complexes {(μ-H2L)[Ru(bpy)2]2}(ClO4)2 ([3](ClO4)2), {(μ-H2L)[Ru(pap)2]2}(ClO4)2 ([4](ClO4)2), and the asymmetric [(bpy)2Ru(μ-H2L)Ru(pap)2](ClO4)2 ([5](ClO4)2) were synthesized via the mononuclear species [Ru(H3L)(bpy)2]ClO4 ([1]ClO4) and [Ru(H3L)(pap)2]ClO4 ([2]ClO4), where H4L is the centrosymmetric 1,5-diamino-9,10-anthraquinone, bpy is 2,2'-bipyridine, and pap is 2-phenylazopyridine. Electrochemistry of the structurally characterized [1]ClO4, [2]ClO4, [3](ClO4)2, [4](ClO4)2, and [5](ClO4)2 reveals multistep oxidation and reduction processes, which were analyzed by electron paramagnetic resonance (EPR) of paramagnetic intermediates and by UV-vis-NIR spectro-electrochemistry. With support by time-dependent density functional theory (DFT) calculations the redox processes could be assigned. Significant results include the dimetal/bridging ligand mixed spin distribution in 3(3+) versus largely bridge-centered spin in 4(3+)-a result of the presence of Ru(II)-stabilizig pap coligands. In addition to the metal/ligand alternative for electron transfer and spin location, the dinuclear systems allow for the observation of ligand/ligand and metal/metal site differentiation within the multistep redox series. DFT-supported EPR and NIR absorption spectroscopy of the latter case revealed class II mixed-valence behavior of the oxidized asymmetric system 5(3+) with about equal contributions from a radical bridge formulation. In comparison to the analogues with the deprotonated 1,4-diaminoanthraquinone isomer the centrosymmetric H2L(2-) bridge shows anodically shifted redox potentials and weaker electronic coupling between the chelate sites.

  17. In situ formed catalytically active ruthenium nanocatalyst in room temperature dehydrogenation/dehydrocoupling of ammonia-borane from Ru(cod)(cot) precatalyst.

    PubMed

    Zahmakiran, Mehmet; Ayvalı, Tuğçe; Philippot, Karine

    2012-03-20

    The development of simply prepared and effective catalytic materials for dehydrocoupling/dehydrogenation of ammonia-borane (AB; NH(3)BH(3)) under mild conditions remains a challenge in the field of hydrogen economy and material science. Reported herein is the discovery of in situ generated ruthenium nanocatalyst as a new catalytic system for this important reaction. They are formed in situ during the dehydrogenation of AB in THF at 25 °C in the absence of any stabilizing agent starting with homogeneous Ru(cod)(cot) precatalyst (cod = 1,5-η(2)-cyclooctadiene; cot = 1,3,5-η(3)-cyclooctatriene). The preliminary characterization of the reaction solutions and the products was done by using ICP-OES, ATR-IR, TEM, XPS, ZC-TEM, GC, EA, and (11)B, (15)N, and (1)H NMR, which reveal that ruthenium nanocatalyst is generated in situ during the dehydrogenation of AB from homogeneous Ru(cod)(cot) precatalyst and B-N polymers formed at the initial stage of the catalytic reaction take part in the stabilization of this ruthenium nanocatalyst. Moreover, following the recently updated approach (Bayram, E.; et al. J. Am. Chem. Soc.2011, 133, 18889) by performing Hg(0), CS(2) poisoning experiments, nanofiltration, time-dependent TEM analyses, and kinetic investigation of active catalyst formation to distinguish single metal or in the present case subnanometer Ru(n) cluster-based catalysis from polymetallic Ru(0)(n) nanoparticle catalysis reveals that in situ formed Ru(n) clusters (not Ru(0)(n) nanoparticles) are kinetically dominant catalytically active species in our catalytic system. The resulting ruthenium catalyst provides 120 total turnovers over 5 h with an initial turnover frequency (TOF) value of 35 h(-1) at room temperature with the generation of more than 1.0 equiv H(2) at the complete conversion of AB to polyaminoborane (PAB; [NH(2)BH(2)](n)) and polyborazylene (PB; [NHBH](n)) units.

  18. Trans-packaging of human immunodeficiency virus type 1 genome into Gag virus-like particles in Saccharomyces cerevisiae.

    PubMed

    Tomo, Naoki; Goto, Toshiyuki; Morikawa, Yuko

    2013-03-26

    Yeast is recognized as a generally safe microorganism and is utilized for the production of pharmaceutical products, including vaccines. We previously showed that expression of human immunodeficiency virus type 1 (HIV-1) Gag protein in Saccharomyces cerevisiae spheroplasts released Gag virus-like particles (VLPs) extracellularly, suggesting that the production system could be used in vaccine development. In this study, we further establish HIV-1 genome packaging into Gag VLPs in a yeast cell system. The nearly full-length HIV-1 genome containing the entire 5' long terminal repeat, U3-R-U5, did not transcribe gag mRNA in yeast. Co-expression of HIV-1 Tat, a transcription activator, did not support the transcription. When the HIV-1 promoter U3 was replaced with the promoter for the yeast glyceraldehyde-3-phosphate dehydrogenase gene, gag mRNA transcription was restored, but no Gag protein expression was observed. Co-expression of HIV-1 Rev, a factor that facilitates nuclear export of gag mRNA, did not support the protein synthesis. Progressive deletions of R-U5 and its downstream stem-loop-rich region (SL) to the gag start ATG codon restored Gag protein expression, suggesting that a highly structured noncoding RNA generated from the R-U5-SL region had an inhibitory effect on gag mRNA translation. When a plasmid containing the HIV-1 genome with the R-U5-SL region was coexpressed with an expression plasmid for Gag protein, the HIV-1 genomic RNA was transcribed and incorporated into Gag VLPs formed by Gag protein assembly, indicative of the trans-packaging of HIV-1 genomic RNA into Gag VLPs in a yeast cell system. The concentration of HIV-1 genomic RNA in Gag VLPs released from yeast was approximately 500-fold higher than that in yeast cytoplasm. The deletion of R-U5 to the gag gene resulted in the failure of HIV-1 RNA packaging into Gag VLPs, indicating that the packaging signal of HIV-1 genomic RNA present in the R-U5 to gag region functions similarly in yeast cells. Our data indicate that selective trans-packaging of HIV-1 genomic RNA into Gag VLPs occurs in a yeast cell system, analogous to a mammalian cell system, suggesting that yeast may provide an alternative packaging system for lentiviral RNA.

  19. AuRu/AC as an effective catalyst for hydrogenation reactions

    DOE PAGES

    Villa, Alberto; Chan-Thaw, Carine E.; Campisi, Sebastiano; ...

    2015-03-23

    AuRu bimetallic catalysts have been prepared by sequential deposition of Au on Ru or vice versa obtaining different nanostructures: when Ru has been deposited on Au, a Au core–Ru shell has been observed, whereas the deposition of Au on Ru leads to a bimetallic phase with Ru enrichment on the surface. In the latter case, the unexpected Ru enrichment could be attributed to the weak adhesion of Ru on the carbon support, thus allowing Ru particles to diffuse on Au particles. Both structures result very active in catalysing the liquid phase hydrogenolysis of glycerol and levulinic acid but the activity,more » the selectivity and the stability depend on the structure of the bimetallic nanoparticles. Ru@Au/AC core–shell structure mostly behaved as the monometallic Ru, whereas the presence of bimetallic AuRu phase in Au@Ru/AC provides a great beneficial effect on both activity and stability.« less

  20. Magnetization measurements of Sr2RuO4-Ru eutectic microplates using dc-SQUIDs

    NASA Astrophysics Data System (ADS)

    Nago, Y.; Sakuma, D.; Ishiguro, R.; Kashiwaya, S.; Nomura, S.; Kono, K.; Maeno, Y.; Takayanagi, H.

    2018-03-01

    We report magnetization measurements of Sr2RuO4-Ru eutectic microplates using micro-dc-SQUIDs. Sr2RuO4 is considered as a chiral p-wave superconductor and hence Sr2RuO4-Ru eutectic becomes in an unstable state with a superconducting phase frustration between a chiral p-wave state of Sr2RuO4 and a s-wave state of Ru. To compensate the frustration, a single quantum vortex is spontaneously formed at the center of the Ru inclusion at sufficiently low temperatures. However, such a spontaneous vortex state has not been experimentally observed yet. In this study, we prepared a micro-dc-SQUID and a Sr2RuO4-Ru eutectic microplate containing a single Ru-inclusion at the center of the microplate. We performed magnetization measurements down below the superconducting transition temperature of the Ru inclusion to investigate the spontaneous Ru-center vortex state.

  1. Tetra- and Heptametallic Ru(II),Rh(III) Supramolecular Hydrogen Production Photocatalysts

    DOE PAGES

    Manbeck, Gerald F.; Fujita, Etsuko; Brewer, Karen J.

    2017-06-01

    Supramolecular mixed metal complexes combining the trimetallic chromophore [{(bpy) 2Ru(dpp)} 2Ru(dpp)] 6+ (Ru 3) with [Rh(bpy)Cl 2] + or [RhCl 2] + catalytic fragments to form [{(bpy) 2Ru(dpp)} 2Ru(dpp)RhCl 2(bpy)](PF 6) 7 (Ru 3Rh) or [{(bpy) 2Ru(dpp)} 2Ru(dpp)] 2RhCl 2(PF 6) 13 (Ru 3RhRu 3) (bpy = 2,2'-bipyridine and dpp = 2,3-bis(2-pyridyl)pyrazine) catalyze the photochemical reduction of protons to H 2. This first example of a heptametallic Ru,Rh photocatalyst produces over 300 turnovers of H 2 upon photolysis of a solution of acetonitrile, water, triflic acid, and N,N-dimethylaniline as an electron donor. Conversely, the tetrametallic Ru 3Rh produces only 40more » turnovers of H 2 due to differences in the excited state properties and nature of the catalysts upon reduction as ascertained from electrochemical data, transient absorption spectroscopy, and flash-quench experiments. And while the lowest unoccupied molecular orbital of Ru 3Rh is localized on a bridging ligand, it is Rh-centered in Ru 3RhRu 3 facilitating electron collection at Rh in the excited state and reductively quenched state. The Ru → Rh charge separated state of Ru 3RhRu 3 is endergonic with respect to the emissive Ru → dpp 3MLCT excited and cannot be formed by static electron transfer quenching of the 3MLCT state. Instead, a mechanism of subnanosecond charge separation from high lying states is proposed. Multiple reductions of Ru 3 and Ru 3Rh using sodium amalgam were carried out to compare UV–vis absorption spectra of reduced species and to evaluate the stability of highly reduced complexes. Furthermore, the Ru 3 and Ru 3Rh can be reduced by 10 and 13 electrons, respectively, to final states with all bridging ligands doubly reduced and all bpy ligands singly reduced.« less

  2. A Simple, General Synthetic Route toward Nanoscale Transition Metal Borides.

    PubMed

    Jothi, Palani R; Yubuta, Kunio; Fokwa, Boniface P T

    2018-04-01

    Most nanomaterials, such as transition metal carbides, phosphides, nitrides, chalcogenides, etc., have been extensively studied for their various properties in recent years. The similarly attractive transition metal borides, on the contrary, have seen little interest from the materials science community, mainly because nanomaterials are notoriously difficult to synthesize. Herein, a simple, general synthetic method toward crystalline transition metal boride nanomaterials is proposed. This new method takes advantage of the redox chemistry of Sn/SnCl 2 , the volatility and recrystallization of SnCl 2 at the synthesis conditions, as well as the immiscibility of tin with boron, to produce crystalline phases of 3d, 4d, and 5d transition metal nanoborides with different morphologies (nanorods, nanosheets, nanoprisms, nanoplates, nanoparticles, etc.). Importantly, this method allows flexibility in the choice of the transition metal, as well as the ability to target several compositions within the same binary phase diagram (e.g., Mo 2 B, α-MoB, MoB 2 , Mo 2 B 4 ). The simplicity and wide applicability of the method should enable the fulfillment of the great potential of this understudied class of materials, which show a variety of excellent chemical, electrochemical, and physical properties at the microscale. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. On-line measurements of RuO{sub 4} during a PWR severe accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reymond-Laruinaz, S.; Doizi, D.; Manceron, L.

    After the Fukushima accident, it became essential to have a way to monitor in real time the evolution of a nuclear reactor during a severe accident, in order to react efficiently and minimize the industrial, ecological and health consequences of the accident. Among gaseous fission products, the tetroxide of ruthenium RuO{sub 4} is of prime importance since it has a significant radiological impact. Ruthenium is a low volatile fission product but in case of the rupture of the vessel lower head by the molten corium, the air entering into the vessel oxidizes Ru into gaseous RuO{sub 4}, which is notmore » trapped by the Filtered Containment Venting Systems. To monitor the presence of RuO{sub 4} allows making a diagnosis of the core degradation and quantifying the release into the atmosphere. To determine the presence of RuO{sub 4}, FTIR spectrometry was selected. To study the feasibility of the monitoring, high-resolution IR measurements were realized at the French synchrotron facility SOLEIL on the infrared beam line AILES. Thereafter, theoretical calculations were done to simulate the FTIR spectrum to describe the specific IR fingerprint of the molecule for each isotope and based on its partial pressure in the air. (authors)« less

  4. Atomic layer deposition of TiO2 on nitrogen-doped carbon nanofibers supported Ru nanoparticles for flexible Li-O2 battery: A combined DFT and experimental study

    NASA Astrophysics Data System (ADS)

    Yang, Jingbo; Mi, Hongwei; Luo, Shan; Li, Yongliang; Zhang, Peixin; Deng, Libo; Sun, Lingna; Ren, Xiangzhong

    2017-11-01

    Flexible Li-O2 batteries have attracted worldwide research interests and been considered to be potential alternatives for the next-generation flexible devices. Nitrogen-doped carbon nanofibers (N-CNFs) prepared by electrospinning are used as flexible substrate and an amorphous TiO2 layer is coated by atomic layer deposition (ALD) and then decorated with Ru nanoparticles. The Ru/N-CNFs@TiO2 composite is directly used as a free-standing electrode for Li-O2 batteries and the electrode delivers a high specific capacity, improved round-trip efficiency and good cycling ability. The superior electrochemical performance can be attributed to the amorphous TiO2 protecting layer and superior catalytic activity of Ru nanoparticles. Based on density functional theory (DFT) calculations from first principles, the carbon electrode after coating with TiO2 is more stable during discharge/charge process. The analysis of Li2O2 on three different interfaces (Li2O2/N-CNFs, Li2O2/TiO2, and Li2O2/Ru) indicates that the electron transport capacity was higher on Ru and TiO2 compared with N-CNFs, therefore, Li2O2 could be formed and decomposed more easily on the Ru/N-CNFs@TiO2 cathode. This work paves a way to develop the free-standing cathode materials for the future development of high-performance flexible energy storage systems.

  5. Electrochemical oxidation of methanol using dppm-bridged Ru/Pd, Ru/Pt and Ru/Au catalysts.

    PubMed

    Yang, Ying; McElwee-White, Lisa

    2004-08-07

    The electrochemical oxidation of methanol was carried out using a series of dppm-bridged Ru/Pd, Ru/Pt and Ru/Au heterobimetallic complexes as catalysts. The major oxidation products were formaldehyde dimethyl acetal (dimethoxymethane, DMM) and methyl formate (MF). The Ru/Pd and Ru/Pt bimetallic catalysts generally afforded lower product ratios of DMM/MF and higher current efficiencies than the Ru/Au catalysts. The Ru/Au bimetallics exhibited product ratios and current efficiencies similar to those obtained from the Ru mononuclear compound CpRu(PPh(3))(2)Cl. Increasing the methanol concentration afforded higher current efficiencies, while the addition of water to the samples shifted the product distribution toward the more highly oxidized product, MF.

  6. Raman scattering studies of the orbital, magnetic, and conducting phases in double layer ruthenates

    NASA Astrophysics Data System (ADS)

    Karpus, John Francis

    In this dissertation, light scattering techniques are used to probe the exotic orbital, magnetic, and conducting phases of the double layer ruthenate, Ca3Ru2O7, as functions of temperature, applied pressure, and applied magnetic field. These phases result from a rich interplay between the orbital, spin, and electronic degrees of freedom in such a strongly coupled system as Ca3Ru2O7. The Raman-active phonon and magnon excitations in Ca3Ru2O7 convey sufficient information to map out the orbital, magnetic, and conducting (H, T) and (P, T) phase diagrams of this material. This study finds that quasihydrostatic pressure causes a linear suppression of the orbital-ordering temperature (TOO = 48 K at P = 0), up to a T = 0 critical point near P* ˜ 55 kbar, above which the material is in a metallic, orbital-degenerate phase. This pressure-induced collapse of the antiferromagnetic orbital-ordered phase is associated with a suppression of the RuO6 octahedral distortions that are responsible for orbital-ordering. It is also shown that an applied magnetic field at low temperatures induces a change from an orbital-ordered to an orbital-degenerate phase for fields aligned along the in-plane hard-axis, but induces a reentrant orbital-ordered to orbital-disordered to orbital-ordered phase change for fields aligned along the in-plane easy-axis. This complex magnetic field dependence betrays the importance of the spin-orbit coupling in this system, which makes the field-induced phase behavior highly sensitive to both the applied magnetic field magnitude and direction. It is further shown that rapid field-induced changes in the structure and orbital populations are responsible for the highly field-tunable conducting properties of Ca3Ru2O7, and that the most dramatic magneto-conductivities are associated with an "orbital disordered" phase regime in which there is a random mixture of a- and b-axis oriented Ru moments and d-orbital populations on the Ru ions. Dilute La doping in Ca3Ru2O7 changes the lattice parameter along the c-axis and also adds an extra electron, providing bandwidth and band filling control, respectively. This addition of La also lowers the orbital ordering temperature to T ˜ 43 K, and provides a greater sensitivity of the orbital phases to applied magnetic fields, as evidenced by changes in the phases occurring at lower fields and over a greater field range than seen in the undoped system.

  7. Electronic structure investigation of atomic layer deposition ruthenium(oxide) thin films using photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Schaefer, Michael; Schlaf, Rudy

    2015-08-01

    Analyzing and manipulating the electronic band line-up of interfaces in novel micro- and nanoelectronic devices is important to achieve further advancement in this field. Such band alignment modifications can be achieved by introducing thin conformal interfacial dipole layers. Atomic layer deposition (ALD), enabling angstrom-precise control over thin film thickness, is an ideal technique for this challenge. Ruthenium (Ru0) and its oxide (RuO2) have gained interest in the past decade as interfacial dipole layers because of their favorable properties like metal-equivalent work functions, conductivity, etc. In this study, initial results of the electronic structure investigation of ALD Ru0 and RuO2 films via photoemission spectroscopy are presented. These experiments give insight into the band alignment, growth behavior, surface structure termination, and dipole formation. The experiments were performed in an integrated vacuum system attached to a home-built, stop-flow type ALD reactor without exposing the samples to the ambient in between deposition and analysis. Bis(ethylcyclopentadienyl)ruthenium(II) was used as precursor and oxygen as reactant. The analysis chamber was outfitted with X-ray photoemission spectroscopy (LIXPS, XPS). The determined growth modes are consistent with a strong growth inhibition situation with a maximum average growth rate of 0.21 Å/cycle for RuO2 and 0.04 Å/cycle for Ru.0 An interface dipole of up to -0.93 eV was observed, supporting the assumption of a strongly physisorbed interface. A separate experiment where the surface of a RuO film was sputtered suggests that the surface is terminated by an intermediate, stable, non-stoichiometric RuO2/OH compound whose surface is saturated with hydroxyl groups.

  8. Localized-itinerant dichotomy and unconventional magnetism in SrRu2O6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamoto, Satoshi; Ochi, Masayuki; Arita, Ryotaro

    Electron correlations tend to generate local magnetic moments that usually order if the lattices are not too frustrated. The hexagonal compound SrRumore » $$_2$$O$$_6$$ has a relatively high N{\\'e}el temperature but small local moments, which seem to be at odds with the nominal valence of Ru$$^{5+}$$ in the $$t_{2g}^3$$ configuration. Here, we investigate the electronic and magnetic properties of SrRu$$_2$$O$$_6$$ using density functional theory (DFT) combined with dynamical mean field theory (DMFT). We find that the strong hybridization between Ru $d$ and O $p$ states results in a Ru valence that is closer to $+4$, leading to the small ordered moment, consistent with a DFT prediction. While the agreement with DFT might indicate that SrRu$$_2$$O$$_6$$ is in the weak coupling regime, our DMFT studies provide evidence from the mass enhancement and local moment formation that indicate correlation effects play a significant role. The local moment per Ru site is about a factor 2 larger than the ordered moment at low temperatures and remains finite in the whole temperature range investigated. Our theoretical N{\\'e}el temperature $$\\sim 700$$~K is in reasonable agreement with experimental observations. Due to a small lattice distortion, the degenerate $$t_{2g}$$ manifold is split and the quasiparticle weight is renormalized significantly in the $$a_{1g}$$ state, while correlation effects in $$e_g'$$ states are about a factor of 2--3 weaker. SrRu$$_2$$O$$_6$$ is a unique system in which localized and itinerant electrons coexist with the proximity to an orbitally-selective Mott transition within the $$t_{2g}$$ sector.« less

  9. Solar photocatalytic disinfection of E. coli and bacteriophages MS2, ΦX174 and PR772 using TiO2, ZnO and ruthenium based complexes in a continuous flow system.

    PubMed

    Mac Mahon, Joanne; Pillai, Suresh C; Kelly, John M; Gill, Laurence W

    2017-05-01

    The performance of photocatalytic treatment processes were assessed using different photocatalysts against E. coli and bacteriophages MS2, ΦX174 and PR772, in a recirculating continuous flow compound parabolic collector system under real sunlight conditions. Suspended TiO 2 and ZnO nanoparticle powders and Tris(2,2'-bipyridyl)dichlororuthenium(II) hexahydrate in solution were tested separately, as well as in combination, using E. coli. For a 3-log reduction of E. coli in distilled water, inactivation rates in terms of cumulative dose were in the order Ru(bpy) 3 Cl 2 >(TiO 2 & Ru(bpy) 3 Cl 2 )>(ZnO & Ru(bpy) 3 Cl 2 )>ZnO>TiO 2 >photolysis. Reactivation of E. coli was observed following all trials despite the detection limit being reached, although the reactivated colonies were observed to be under stress and much slower growing when compared to original colonies. Treatment with Ru(bpy) 3 Cl 2 was also compared against standard photolysis of bacteriophages MS2, ΦX174 and PR772 with the order of photolytic inactivation for a 3-log reduction in terms of cumulative UV-A dose being ΦX174>PR772>MS2. However, MS2 was found to be the most susceptible bacteriophage to treatment with Ru(bpy) 3 Cl 2 , with complete removal of the phage observed within the first 15min of exposure. Ru(bpy) 3 Cl 2 also significantly improved inactivation rates for PR772 and ΦX174. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Real-time observation of the dehydrogenation processes of methanol on clean Ru(001) and Ru(001)-p(2×2) O surfaces by a temperature-programmed electron-stimulated desorption ion angular distribution/time-of-flight system

    NASA Astrophysics Data System (ADS)

    Sasaki, Takehiko; Itai, Yuichiro; Iwasawa, Yasuhiro

    1999-12-01

    Decomposition processes of methanol on clean and oxygen-precovered Ru(001) surfaces have been visualized in real time with a temperature-programmed (TP) electron-stimulated desorption ion angular distribution (ESDIAD)/time-of-flight (TOF) system. The mass of desorbed ions during temperature-programmed surface processes was identified by TOF measurements. In the case of methanol (CH 3OD) adsorption on Ru(001)-p(2×2)-O, a halo pattern of H + from the methyl group of methoxy species was observed at 100-200 K, followed by a broad pattern from the methyl group at 230-250 K and by a near-center pattern from O + ions originating from adsorbed CO above 300 K. The halo pattern is attributed to a perpendicular conformation of the CO bond axis of the methoxy species, leading to off-normal CH bond scission. On the other hand, methanol adsorbed on clean Ru(001) did not give any halo pattern but a broad pattern was observed along the surface normal, indicating that the conformation of the methoxy species is not ordered on the clean surface. Comparison between the ESDIAD images of the oxygen-precovered surface and the clean surface suggests that the precovered oxygen adatoms induce ordering of the methoxy species. Real-time ESDIAD measurements revealed that the oxygen atoms at the Ru(001)-p(2×2)-O surface have a positive effect on selective dehydrogenation of the methoxy species to CO+H 2 and a blocking effect on CO bond breaking of the methoxy species.

  11. Enhanced photocatalytic CO2 reduction to CH4 over separated dual co-catalysts Au and RuO2

    NASA Astrophysics Data System (ADS)

    Dong, Chunyang; Hu, Songchang; Xing, Mingyang; Zhang, Jinlong

    2018-04-01

    A spatially separated, dual co-catalyst photocatalytic system was constructed by the stepwise introduction of RuO2 and Au nanoparticles (NPs) at the internal and external surfaces of a three dimensional, hierarchically ordered TiO2-SiO2 (HTSO) framework (the final photocatalyst was denoted as Au/HRTSO). Characterization by HR-TEM, EDS-mapping, XRD and XPS confirmed the existence and spatially separated locations of Au and RuO2. In CO2 photocatalytic reduction (CO2PR), Au/HRTSO (0.8%) shows the optimal performance in both the activity and selectivity towards CH4; the CH4 yield is almost twice that of the singular Au/HTSO or HRTSO (0.8%, weight percentage of RuO2) counterparts. Generally, Au NPs at the external surface act as electron trapping agents and RuO2 NPs at the inner surface act as hole collectors. This advanced spatial configuration could promote charge separation and transfer efficiency, leading to enhanced CO2PR performance in both the yield and selectivity toward CH4 under simulated solar light irradiation.

  12. The Mystery of the Electronic Spectrum of Ruthenium Monophosphide

    NASA Astrophysics Data System (ADS)

    Adam, Allan G.; Christensen, Ryan M.; Dore, Jacob M.; Konder, Ricarda M.; Tokaryk, Dennis W.

    2016-06-01

    Using PH3 as a reactant gas and ruthenium as the target metal in the UNB laser ablation spectrometer, the ruthenium monophosphide molecule (RuP) has been detected. Dispersed fluorescence experiments have been performed to determine ground state vibrational frequencies and the presence of any low-lying electronic states. Rotationally resolved spectra of two vibrational bands at 577nm and 592nm have been taken; the bands have been identified as 1-0 and 0-0 bands based on isotopic shifts. Ruthenium has seven stable isotopes and rotational transitions have been observed for six of the RuP isotopologues. RuP is isoelectronic to RuN so it is expected that RuP will have a 2Σ+ ground state and low resolution spectra indicated a likely 2Σ+ - 2Σ+ electronic transition. Further investigation has led us to believe we are observing a 2Π - 2Σ+ transition but mysteriously some important rotational branches are missing. It is hoped that new data to be recorded on a second electronic system we have observed at 535nm will help shed light on this mystery.

  13. Photochemical Synthesis and Ligand Exchange Reactions of Ru(CO)[subscript 4] (Eta[superscript 2]-Alkene) Compounds

    ERIC Educational Resources Information Center

    Cooke, Jason; Berry, David E.; Fawkes, Kelli L.

    2007-01-01

    The photochemical synthesis and subsequent ligand exchange reactions of Ru(CO)[subscript 4] (eta[superscript2]-alkene) compounds has provided a novel experiment for upper-level inorganic chemistry laboratory courses. The experiment is designed to provide a system in which the changing electronic properties of the alkene ligands could be easily…

  14. Synthesis and Characterization of Platinum-Ruthenium-Tin Catalysts

    NASA Astrophysics Data System (ADS)

    Uffalussy, Karen

    Magnesia-supported trimetallic Pt-Ru-Sn catalysts prepared through a cluster and a conventional synthetic route have been investigated in terms of their structural properties and their catalytic activity for the hydrogenation of citral and crotonaldehyde. FTIR results indicate that the majority of the stabilizing ligands remain attached to the PtRu5(μ-SnPh 2)(C)(CO)15 cluster used following impregnation onto the MgO support. Under H2 reduction conditions, partial and full ligand removal are both observed at 473 and 573 K, respectively. HRSTEM analysis shows that cluster-derived samples exhibit significantly smaller average metal particle sizes, as well as narrower particle size distributions than the corresponding conventionally prepared ones. EDX measurements show that in the cluster-derived catalysts, the majority of the metal particles present are trimetallic in nature, with metal compositions similar to those of the original cluster. In contrast, the conventionally prepared materials contain mostly bimetallic and monometallic particles with variable compositions. XPS was used to determine how the variation in method of Sn addition to bimetallic Pt-Ru affects the electronic state for the trimetallic Pt-Ru-Sn/MgO system prepared by impregnation using multimetallic clusters, metal-salts, and the combination of both precursor types. Results show that the PtRu5Sn/MgO material has a significantly higher percentage of Sn0 in comparison to Pt-Ru-Sn/MgO and PtRu5-Sn/MgO, and a corresponding shift in both Pt and Ru peaks can be correlated to this relative change in Sn oxidation state. The formation of smaller metal particles and electronic modification of Pt and Ru by Sn in the cluster-derived catalysts and the presence of the three metals in these particles in close proximity result in higher activity and selectivity to the unsaturated alcohols for the hydrogenation of both citral and crotonaldehyde.

  15. Versatile Photocatalytic Systems for H2 Generation in Water Based on an Efficient DuBois-Type Nickel Catalyst

    PubMed Central

    2013-01-01

    The generation of renewable H2 through an efficient photochemical route requires photoinduced electron transfer (ET) from a light harvester to an efficient electrocatalyst in water. Here, we report on a molecular H2 evolution catalyst (NiP) with a DuBois-type [Ni(P2R′N2R″)2]2+ core (P2R′N2R″ = bis(1,5-R′-diphospha-3,7-R″-diazacyclooctane), which contains an outer coordination sphere with phosphonic acid groups. The latter functionality allows for good solubility in water and immobilization on metal oxide semiconductors. Electrochemical studies confirm that NiP is a highly active electrocatalyst in aqueous electrolyte solution (overpotential of approximately 200 mV at pH 4.5 with a Faradaic yield of 85 ± 4%). Photocatalytic experiments and investigations on the ET kinetics were carried out in combination with a phosphonated Ru(II) tris(bipyridine) dye (RuP) in homogeneous and heterogeneous environments. Time-resolved luminescence and transient absorption spectroscopy studies confirmed that directed ET from RuP to NiP occurs efficiently in all systems on the nano- to microsecond time scale, through three distinct routes: reductive quenching of RuP in solution or on the surface of ZrO2 (“on particle” system) or oxidative quenching of RuP when the compounds were immobilized on TiO2 (“through particle” system). Our studies show that NiP can be used in a purely aqueous solution and on a semiconductor surface with a high degree of versatility. A high TOF of 460 ± 60 h–1 with a TON of 723 ± 171 for photocatalytic H2 generation with a molecular Ni catalyst in water and a photon-to-H2 quantum yield of approximately 10% were achieved for the homogeneous system. PMID:24320740

  16. Stabilization of the Ti{sub 3}Co{sub 5}B{sub 2}-type structure for Ti{sub 3−x}Si{sub x}Ru{sub 5}B{sub 2} through Si–Ti substitution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Weiwei, E-mail: weiweix@princeton.edu; Fuccillo, M.K.; Phelan, B.F.

    2015-07-15

    We report a route for designing and synthesizing Ti{sub 3}Co{sub 5}B{sub 2}-type compounds in the Ti–Ru–B system by using chemical substitution of Si for Ti to decrease the d-electron-based antibonding interactions that it is argued would otherwise drive an instability in this structure for unsubstituted Ti{sub 3}Ru{sub 5}B{sub 2}. Ti{sub 3−x}Si{sub x}Ru{sub 5}B{sub 2} with x=0.75, 1.00 and 1.25 nominal compositions crystalizes in the Ti{sub 3}Co{sub 5}B{sub 2} structure type using arc melting methods, whereas at lower doping levels (x=0.0, 0.25 and 0.50) the more complex Zn{sub 11}Rh{sub 18}B{sub 8}-type structure is stable. Electronic structure calculations show that in hypothetical,more » unsubstituted Ti{sub 3}Ru{sub 5}B{sub 2} with the Ti{sub 3}Co{sub 5}B{sub 2}-type structure, the antibonding interactions are strong around the Fermi level between the Ti and Ru in the structure that form tetragonal prisms. We propose that weakening these strong interactions through the partial substitution of isovalent Si for Ti leads to the observed stability of the Ti{sub 3}Co{sub 5}B{sub 2}-type structure for Ti{sub 3−x}Si{sub x}Ru{sub 5}B{sub 2} for x≈1. - Graphical abstract: We present the designing and synthesizing of Ti{sub 3}Co{sub 5}B{sub 2}-type compounds in the Ti–Ru–B system by using chemical substitution of Si for Ti to decrease the d-electron-based antibonding interactions that would otherwise drive an instability in this structure for unsubstituted Ti{sub 3}Ru{sub 5}B{sub 2}. Electronic structure calculations show that in hypothetical, unsubstituted Ti{sub 3}Ru{sub 5}B{sub 2} with the Ti{sub 3}Co{sub 5}B{sub 2}-type structure, the antibonding interactions are strong around the Fermi level between the Ti and Ru in the structure that form tetragonal prisms. We propose that weakening these strong interactions through the partial substitution of isovalent Si for Ti leads to the observed stability of the Ti{sub 3}Co{sub 5}B{sub 2}-type structure for Ti{sub 3−x}Si{sub x}Ru{sub 5}B{sub 2} for x≈1. - Highlights: • New quaternary phase Ti{sub 3−x}Si{sub x}Ru{sub 5}B{sub 2} in Ti{sub 3}Co{sub 5}B{sub 2}-type structure is reported. • Chemical substitution of isovalent Si for Ti is used to stabilize the phase. • Decreasing the d-electron-based antibonding interactions is proved by calculation. • Physical properties of Ti{sub 3−x}Si{sub x}Ru{sub 5}B{sub 2} are presented down to 0.4 K.« less

  17. Effect of Ru thickness on spin pumping in Ru/Py bilayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behera, Nilamani; Singh, M. Sanjoy; Chaudhary, Sujeet

    2015-05-07

    We report the effect of Ru thickness (t{sub Ru}) on ferromagnetic resonance (FMR) line-width of Ru(t{sub Ru})/Py(23 nm) bilayer samples grown on Si(100)/SiO{sub 2} substrates at room temperature by magnetron sputtering. The FMR line-width is found to vary linearly with frequency for all thicknesses of Ru, indicating intrinsic origin of damping. For Ru thicknesses below 15 nm, Gilbert-damping parameter, α is almost constant. We ascribe this behavior to spin back flow that is operative for Ru thicknesses lower than the spin diffusion length in Ru, λ{sub sd}. For thicknesses >15 nm (>λ{sub sd}), the damping constant increases with Ru thickness, indicating spin pumpingmore » from Py into Ru.« less

  18. Effects of nanoscale coatings on reliability of MEMS ohmic contact switches

    NASA Astrophysics Data System (ADS)

    Tremper, Amber Leigh

    This thesis examines how the electrical and mechanical behavior of Au thin films is altered by the presence of ultra-thin metallic coatings. To examine the mechanical behavior, nanoindentation, nano-scratch, and atomic force microscopy (AFM) testing was performed. The electrical behavior was evaluated through Kelvin probe contact resistance measurements. This thesis shows that ultra-thin, hard, ductile coatings on a softer, ductile underlying layer (such as Ru or Pt on Au) had a significant effect on mechanical behavior of the system, and can be tailored to control the deformation resistance of the thin film system. Despite Ru and Pt having a higher hardness and plane strain modulus than Au, the Ru and Pt coatings decreased both the hardness and plane strain modulus of the layered system when the indentation depth was on the order of the coating thickness. Alternately, when the indentation depth was several times the coating thickness, the ductile, plastically hard, elastically stiff layer significantly hardened the contact response. These results correlate well with membrane stress theoretical predictions, and demonstrate that membrane theory can be applied even when the ratio of indentation depth, h, to coating thickness, t, is very large ( h/t<10). The transition from film-substrate models to membrane models occurs when the indent penetration depth to coating thickness ratio is less than ˜0.5. When the electrical behavior of the Ru-coated Au films was examined, it was found that all the measured resistances of the Au-only film and Ru-coated systems were several orders of magnitude larger than those predicted by Holm's law, but were still in good agreement with previously reported values in the literature. Previous studies attributed the high contact resistances to a variety of causes, including the buildup of an insulating contamination layer. This thesis determined the cause of the deviations to be large sheet resistance contributions to the total measured resistance. Further, studies on aged samples (with thicker contamination layers) conclusively showed that, while contamination increases the contact resistance, it also increases the dependence on force. This thesis also details that the relative contribution of contact resistance to the total measured resistance can be maximized by decreasing the probe spacing and tip radius. AFM testing of the layered systems showed that the coated samples had larger predicted plane strain moduli than the Au sample, in contrast to the nanoindentation testing. Thus, when the contact depth was kept sufficiently small, the contact stiffness increased as predicted by substrate models. When the contact depth was on the order of the coating thickness, the contact stiffness actually decreased. Additionally, the forceseparation plots showed that the Ru and Pt surfaces either accumulated large amounts of contamination or were less susceptible to being wiped clean than the Au film. Further, scratch testing of the Au film and Ru and Pt coatings show that the hard surface coatings reduce material removal and contact wear. Ultra-thin Ru and Pt surface coatings on Au films are shown to be improved material systems for ohmic contact switches. The wear is reduced for coated materials, while the resistance and power consumption through the coating are not significantly affected.

  19. The strength and ductility of polycrystalline NiAl in tension

    NASA Technical Reports Server (NTRS)

    Schulson, E. M.

    1982-01-01

    Experiments at temperatures from 20 C to 400 C at two strain rates (.0001/s and .000005/s) establish that: (1) at room temperatures, binary and microalloyed ( 1000 ppm La, Y, Mo, Ti) NiAl shows negligible ductility, independent of grain size over the range 5 to 140 micrometers; (2) at 295 C the tensile elongation of binary 51 Ni/49 Al increases from 1% to about 5% upon decreasing the grain size to below approximately 10 micrometers; (3) similarly, at 400 C the ductility increases from about 2% to 15% upon decreasing the grain size to below 15 micrometers; (4) the ductility of fine grained (7 micrometer) binary aggregates deformed at 295 C increases from approximately 5% to 12% upon decreasing the strain rate from .0001/s to .000005/s; (5) partial recrystallization (10% to 20%) of warm extruded binary and microalloyed material imparts 1% to 2% ductility at room temperature where fully recrystallized material is brittle; (6) the yield strength obeys a Hall-Petch relationship; and (7) when ductility is not observed, fracture coincides with yielding. The mechanisms underlying the flow and fracture of NiAl are discussed in terms of the nucleation and growth of microcracks. The concept of a critical grain size is considered in the light of the results.

  20. Variable electron correlation in high-quality MBE- and PLD-grown SrRuO3 thin films.

    NASA Astrophysics Data System (ADS)

    Siemons, Wolter; Koster, Gertjan; Yamamoto, Hideki; Vailionis, Arturas; Geballe, Theodore; Blank, Dave; Beasley, Malcolm

    2007-03-01

    We show that systematic variations in the degree of correlation can occur within SrRuO3 as a function of disorder/off-stoichiometry. In particular, we find that one source of disorder can be controlled in SrRuO3 thin films by varying the deposition conditions or the deposition technique. Specifically, we clearly demonstrate that variation of vacancies on the ruthenium site gives rise to a variation in correlated behavior as seen in the photoemission spectra (XPS and UPS),. Moreover, the transport properties of our samples are clearly linked to their photoemission spectra, and independently the crystal unit cell parameters. SrRuO3 appears to be a system where these effects can be studied in a more systematic fashion, usually not easily accessible, but we suspect that the underlying physics is generic in complex oxidesWork supported by the DoE BES and EPRI.

  1. Half-metallic ferromagnetism in Sr3Ru2O7

    NASA Astrophysics Data System (ADS)

    Rivero, Pablo; Meunier, Vincent; Shelton, William

    2017-05-01

    The bilayered member of the Ruddesden-Popper family of ruthenates, Sr3Ru2O7 , has received increasing attention due to its interesting properties and phases. By using first principle calculations we find that the ground state is characterized by a ferromagnetic (FM) half-metallic state. This state strongly competes with an antiferromagnetic metallic phase, which indicates the possible presence of a particular state characterized by the existence of different magnetic domains. To drive the system towards a phase transition we studied the electronic and magnetic properties as a function of RuO6 octahedra rotations and found that the magnetic phase does not couple with the rotation angle. Our results provide accurate electronic, structure, and magnetic ground-state properties of Sr3Ru2O7 and stimulate the investigation of other types of octahedra rotations and distortions in the search of phase transitions.

  2. Infrared spectra of RuTPP, RuCOTPP, and Ru(CO)2TPP isolated in solid argon.

    PubMed

    Krim, Lahouari; Sorgues, Sébastien; Soep, Benoit; Shafizadeh, Niloufar

    2005-09-22

    Infrared spectra of unstable species such as CO-free ruthenium tetraphenylporphyrin RuTPP and RuCOTPP (species with vacant coordination sites) isolated in solid argon at 8 K have been recorded. Selective deposition conditions allow the isolation of either RuTPP and RuCOTPP or RuCOTPP and Ru(CO)2TPP. This depends on the preparation conditions of the sample. A specific Ru-CO bending mode has been characterized at 590.1 cm(-1) for Ru(CO)2TPP. The behavior of each vibrational mode of RuTPP, RuCOTPP, and Ru(CO)2TPP has been analyzed. Modes such as gamma8 at 721.3 cm(-1) (out-of-plane stretching mode gamma(Cbeta-H)sym) and nu41 at 1342.8 cm(-1) (nuCalpha-N coupled with deltaCalpha-Cm) reflect the charge transfer in the porphyrin. Indeed, the addition of one or two CO ligands to RuTPP reduces the charge transfer between the metal center and the porphyrin, which appears as an increase in the frequency of the nu41 mode and in a decrease in that of the gamma8 mode.

  3. LA-ICP-MS Study of Trace Elements in the Chanuskij Metal

    NASA Technical Reports Server (NTRS)

    Petaev, Michail I.

    2005-01-01

    This progress report covers work done during the second year of the 3-year proposal. During this year we resolved many issues relevant to the analytical technique developed by us for measuring trace elements in meteoritic metals. This technique was used to measure concentrations of Fe, Ni, Co, Cr, Cu, Ga, Ge, As, Mo, Ru, Rh, Pd, Sb, W, Re, Os, Ir, Pt, and Au in eight large (120 - 160 microns) metal grains from both "igneous" and "metamorphic" lithologies of the Chanuskij silicate inclusions. The first application of OUT technique to metal grains from thin sections showed some limitations. Small thickness of metal grains in the thin section limited the signal to 3-4 time-slices instead of 10- 1 1 ones in polished sections of iron meteorites studied before.

  4. Uncertainties in nuclear transition matrix elements for neutrinoless {beta}{beta} decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rath, P. K.

    Uncertainties in nuclear transition matrix elements M{sup (0{nu})} and M{sub N}{sup (0{nu})} due to the exchange of light and heavy Majorana neutrinos, respectively have been estimated by calculating sets of twelve nuclear transition matrix elements for the neutrinoless {beta}{beta} decay of {sup 94,96}Zr, {sup 98,100}Mo, {sup 104}Ru, {sup 110}Pd, {sup 128,130}Te and {sup 150}Nd isotopes in the case of 0{sup +}{yields}0{sup +} transition by considering four different parameterizations of a Hamiltonian with pairing plus multipolar effective two-body interaction and three different parameterizations of Jastrow short range correlations. Exclusion of nuclear transition matrix elements calculated with the Miller-Spencer parametrization reduces themore » uncertainties by 10%-15%.« less

  5. Ternary oxide nanostructures and methods of making same

    DOEpatents

    Wong, Stanislaus S [Stony Brook, NY; Park, Tae-Jin [Port Jefferson, NY

    2009-09-08

    A single crystalline ternary nanostructure having the formula A.sub.xB.sub.yO.sub.z, wherein x ranges from 0.25 to 24, and y ranges from 1.5 to 40, and wherein A and B are independently selected from the group consisting of Ag, Al, As, Au, B, Ba, Br, Ca, Cd, Ce, Cl, Cm, Co, Cr, Cs, Cu, Dy, Er, Eu, F, Fe, Ga, Gd, Ge, Hf, Ho, I, In, Ir, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, Os, P, Pb, Pd, Pr, Pt, Rb, Re, Rh, Ru, S, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Tc, Te, Ti, Tl, Tm, U, V, W, Y, Yb, and Zn, wherein the nanostructure is at least 95% free of defects and/or dislocations.

  6. Recommended values of clean metal surface work functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derry, Gregory N., E-mail: gderry@loyola.edu; Kern, Megan E.; Worth, Eli H.

    2015-11-15

    A critical review of the experimental literature for measurements of the work functions of clean metal surfaces of single-crystals is presented. The tables presented include all results found for low-index crystal faces except cases that were known to be contaminated surfaces. These results are used to construct a recommended value of the work function for each surface examined, along with an uncertainty estimate for that value. The uncertainties are based in part on the error distribution for all measured work functions in the literature, which is included here. The metals included in this review are silver (Ag), aluminum (Al), goldmore » (Au), copper (Cu), iron (Fe), iridium (Ir), molybdenum (Mo), niobium (Nb), nickel (Ni), palladium (Pd), platinum (Pt), rhodium (Rh), ruthenium (Ru), tantalum (Ta), and tungsten (W)« less

  7. GCN capabilities and status, and the incorporation of LIGO/Virgo

    NASA Astrophysics Data System (ADS)

    Barthelmy, Scott

    2016-03-01

    The Gamma-ray Coordinates Network / Transient Astronomy Network (GCN/TAN) is a single-point source for all transient astronomy notification. It collects the astrophysical transients from the missions (space-based and nearly all ground-based), puts them into a standard format, and distributes them to whomever wants to receive them. This is all done autonomously (completely autonomous within GCN/TAN, and almost always autonomously within the producer end of operations). This automation means minimal time delays (<0.1 sec within GCN for VOEvent and binary socket-based distribution methods, and typically a few sec for email-based which is dependent on the internet email protocol and the number of hops, both of which are out of the control of GCN/TAN). The LIGO-VIRGO Collaboration (LVC) Notices are now implemented in the GCN/TAN system. During the proprietary phase, the recipients must have an MoU with LVC and LVC must authorize GCN to distribute LVC Notices to each given MoU follow-up observer. In addition to Notices, there are the GCN Circulars, which are prose-style reports of follow-up observations made and results obtains. During the LVC Proprietary phase there are also the GCN LVC Circulars, which also require authorization from LVC to join the LVC Circulars.

  8. Reversible voltage dependent transition of abnormal and normal bipolar resistive switching.

    PubMed

    Wang, Guangyu; Li, Chen; Chen, Yan; Xia, Yidong; Wu, Di; Xu, Qingyu

    2016-11-14

    Clear understanding the mechanism of resistive switching is the important prerequisite for the realization of high performance nonvolatile resistive random access memory. In this paper, binary metal oxide MoO x layer sandwiched by ITO and Pt electrodes was taken as a model system, reversible transition of abnormal and normal bipolar resistive switching (BRS) in dependence on the maximum voltage was observed. At room temperature, below a critical maximum voltage of 2.6 V, butterfly shaped I-V curves of abnormal BRS has been observed with low resistance state (LRS) to high resistance state (HRS) transition in both polarities and always LRS at zero field. Above 2.6 V, normal BRS was observed, and HRS to LRS transition happened with increasing negative voltage applied. Temperature dependent I-V measurements showed that the critical maximum voltage increased with decreasing temperature, suggesting the thermal activated motion of oxygen vacancies. Abnormal BRS has been explained by the partial compensation of electric field from the induced dipoles opposite to the applied voltage, which has been demonstrated by the clear amplitude-voltage and phase-voltage hysteresis loops observed by piezoelectric force microscopy. The normal BRS was due to the barrier modification at Pt/MoO x interface by the accumulation and depletion of oxygen vacancies.

  9. Ru-N-C Hybrid Nanocomposite for Ammonia Dehydrogenation: Influence of N-doping on Catalytic Activity

    PubMed Central

    Hien, Nguyen Thi Bich; Kim, Hyo Young; Jeon, Mina; Lee, Jin Hee; Ridwan, Muhammad; Tamarany, Rizcky; Yoon, Chang Won

    2015-01-01

    For application to ammonia dehydrogenation, novel Ru-based heterogeneous catalysts, Ru-N-C and Ru-C, were synthesized via simple pyrolysis of a mixture of RuCl3·6H2O and carbon black with or without dicyandiamide as a nitrogen-containing precursor at 550 °C. Characterization of the prepared Ru-N-C and Ru-C catalysts via scanning transmission electron microscopy, in conjunction with energy dispersive X-ray spectroscopy, indicated the formation of hollow nanocomposites in which the average sizes of the Ru nanoparticles were 1.3 nm and 5.1 nm, respectively. Compared to Ru-C, the Ru-N-C nanocomposites not only proved to be highly active for ammonia dehydrogenation, giving rise to a NH3 conversion of >99% at 550 °C, but also exhibited high durability. X-ray photoelectron spectroscopy revealed that the Ru active sites in Ru-N-C were electronically perturbed by the incorporated nitrogen atoms, which increased the Ru electron density and ultimately enhanced the catalyst activity.

  10. CORROSION STUDIES FOR A FUSED SALT-LIQUID METAL EXTRACTION PROCESS FOR THE LIQUID METAL FUEL REACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susskind, H.; Hill, F.B.; Green, L.

    1960-06-30

    Corrosion screening tests were carried out on potential materials of construction for use in a fused salt-liquid metal extraction process plant. The corrodents of interest were NaCl--KCl-- MgCl/sub 2/ eutectic, LiCl--KCl eutectic, Bi-- U fuel, and BiCl/sub 3/, either separately or in various combinations. Screening tests to determine the resistance of a wide range of commercial alloys to the corrodents were performed in static and tilting-furnace capsules. Some ceramic materials were tested in static capsules. Largerscale tests of metallic materials were conducted in thermal convection loops and in a forced circulation loop. Some of the tests were conducted isothermally atmore » 500 deg C, and others were performed under 40 to 50 deg C temperature differences at roughly the same teinperature level. On the basis of metallographic examination of exposed test tabs and chemical analyses of corrodents, it was found that the binary and ternary eutectics by themselves produced little attack on any of the materials tested. A wide variety of materials including 1020 mild steel, 2 1/4 Cr--1 Mo alloy steel, types 304 (ELC), 310, 316, 347, 430, and 446 stainless steel, 16-1 Croloy, Inconel, Hastelloy C, Inor-8, Mo, and Ta is, therefore, available for further study. Corrosion by the ternary salt-fuel system was characteristic of that produced by the fuel alone. Alloys such as 1020 mild steel, and 1 1/4 Cr--1/ 2 Mo, and 2 1/4 Cr--1 Mo alloy steel, which are resistant to fuel, would be likely choices at present for container materials. BiCl/sub 3/ produced extensive attack on ternary salt-fuel containers when the fuel contained insufficient concentrations of oxidizable solutes. Au and Al/sub 2/O/sub 3/ were the only materials not attacked by BiCl/sub 3/ in ternary salt alone. (auth)« less

  11. Novel Electronic Structures of Ru-pnictides RuPn (Pn = P, As, Sb)

    NASA Astrophysics Data System (ADS)

    Goto, H.; Toriyama, T.; Konishi, T.; Ohta, Y.

    Density-functional-theory-based electronic structure calculations are made to consider the novel electronic states of Ru-pnictides RuP and RuAs where the intriguing phase transitions and superconductivity under doping of Rh have been reported. We find that there appear nearly degenerate flat bands just at the Fermi level in the high-temperature metallic phase of RuP and RuAs; the flat-band states come mainly from the 4dxy orbitals of Ru ions and the Rh doping shifts the Fermi level just above the flat bands. The splitting of the flat bands caused by their electronic instability may then be responsible for the observed phase transition to the nonmagnetic insulating phase at low temperatures. We also find that the band structure calculated for RuSb resembles that of the doped RuP and RuAs, which is consistent with experiment where superconductivity occurs in RuSb without Rh doping.

  12. EG&G Florida, Inc., KSC base operations contractor Launch Readiness Assessment System

    NASA Technical Reports Server (NTRS)

    Geaslen, W. D.

    1988-01-01

    A computerized Launch Readiness Assessment System (LRAS) which compares 'current status' of readiness against the 'required status' of readiness for the Space Shuttle. The five subsystems of the LRAS are examined in detail. The LRAS Plan specifies the overall system requirements, procedures, and reports. The LRAS Manager drives the operation of the LRAS system. The Responding Units (RU) maintain support plans and procedures which specify the detail requirements for each mission or milestone. The Master Data Tables contain the milestone, responsible RU relationships, and requirements assessment categories. The LRAS Status System serves as the launch readiness assessment reporting system. The relationships between these subsystems are displayed in diagrams.

  13. Platinum-group elements fractionation by selective complexing, the Os, Ir, Ru, Rh-arsenide-sulfide systems above 1020 °C

    NASA Astrophysics Data System (ADS)

    Helmy, Hassan M.; Bragagni, Alessandro

    2017-11-01

    The platinum-group element (PGE) contents in magmatic ores and rocks are normally in the low μg/g (even in the ng/g) level, yet they form discrete platinum-group mineral (PGM) phases. IPGE (Os, Ir, Ru) + Rh form alloys, sulfides, and sulfarsenides while Pt and Pd form arsenides, tellurides, bismuthoids and antimonides. We experimentally investigate the behavior of Os, Ru, Ir and Rh in As-bearing sulfide system between 1300 and 1020 °C and show that the prominent mineralogical difference between IPGE (+Rh) and Pt and Pd reflects different chemical preference in the sulfide melt. At temperatures above 1200 °C, Os shows a tendency to form alloys. Ruthenium forms a sulfide (laurite RuS2) while Ir and Rh form sulfarsenides (irarsite IrAsS and hollingworthite RhAsS, respectively). The chemical preference of PGE is selective: IPGE + Rh form metal-metal, metal-S and metal-AsS complexes while Pt and Pd form semimetal complexes. Selective complexing followed by mechanical separation of IPGE (and Rh)-ligand from Pt- and Pd-ligand associations lead to PGE fractionation.

  14. Examining ruthenium chromophores for the photochemical reduction of CO2 to methanol

    NASA Astrophysics Data System (ADS)

    Boston, David J.

    Our consumption of energy for transportation and electricity has been growing as quickly as our population. As this demand for energy increases we increase our production of carbon dioxide by the burning of fossil fuels to try and meet this increasing demand. A sustainable method to convert carbon dioxide (CO2) to a viable liquid fuel is one potential way in which both the increasing energy demand and increasing CO2 concentration issues can both be helped. Currently such methods being investigated include thermal, electrochemical, and photochemical processes. Because thermal conversion is not an ideal situation because of the requirement of strong reducing agents or extreme conditions such as steam reformation reactions, we need to find better alternatives such as electrochemical and photochemical methods. Both electrochemical and photochemical methods have the ability to be sustainable, however, the vast majority of these systems are limited to producing CO and/or formic acid, with only a few performing deeper reduction to products such formaldehyde, methanol and methane. All of the systems capable of reducing CO2 past two electrons involve either a heterogeneous catalyst (e.g. TiO2) or an electrode. In recent times Bocarsly and coworkers have shown that pyridine was capable of reducing CO2 to methanol through a sequential process of proton and electron transfers. This process seems to start with the formation of a CO2-pyridine adduct in solution that is reduced one more time to form formate/formic acid. The next reduction is a slow process and allows for a buildup of formate in solution leading to a higher formate concentration in solution. The subsequent reductions seem to occur very rapidly and form methanol at good efficiencies. Theoretical work done recently has argued for the necessity of the Pt, Pd, or GaP surface in the electrochemistry. Carter and coworkers have claimed that the surface of the electrode is a necessary part of the catalysis with the pyridinium being only a cocatalyst for the reduction of CO2. However, Musgrave and coworkers predict that the homogeneous reductions can take place with the aid of water molecules in solution. They allow for a PCET process to take place between the CO 2 and the pyridinium radical. This would allow for a second pathway for the catalytic reduction of CO2 to methanol. Work done during this dissertation has shown that the photochemical reduction of carbon dioxide to methanol is possible using pyridine in a similar manner to Bocarsly and coworkers in their electrochemical system. By replacing the electrode with Ru(phen)3Cl2 it is still possible to drive the reaction using excited states of the chromophore to provide the electrons with enough energy to reduce the pyridinium to the radical species. This system has been shown to produce up to 66 BM methanol after 6 hours of irradiation of 470 nm light. Production of formate is also observed, with ~27 mM being observed within the first hour of irradiation. This system was further investigated with the incorporation of the pyridine catalyst into a chromophore system using the complex [Ru(phen)2dppz](PF 6)2, [Ru(phen)2pbtpalpha](PF6) 2, and [Ru(phen)2pbtpbeta](PF6)2. Cyclic voltammetry experiments for these complexes show similar reduction potentials for with ~100 mV difference between them with [Ru(phen)2dppz](PF 6)2 being the most negative and [Ru(phen)2pbtpbeta](PF 6)2 being the most positive. When the electrolyte solution was saturated with CO2 only [Ru(phen)2pbtpalpha](PF 6)2 and [Ru(phen)2pbtpbeta](PF6) 2 showed a response signifying catalysis was taking place. Initial photochemical tests with these complexes showed that [Ru(phen)2pbtpalpha](PF 6)2 seemed to undergo dimer formation in the absence of CO 2 with [Ru(phen)2pbtpbeta](PF6)2 forming a singly reduced species that is oxidized upon introduction of additional CO2. Electrolysis of [Ru(phen)2pbtpbeta](PF6 )2 produces ~900 BM methanol with both CO and formate being produced as well. Photolysis of [Ru(phen)2pbtpbeta](PF6 )2 in DMF with 1 M H2O and 0.1M TEA, no CO formation observed, however, both methanol and formic acid were observed after 1 hours of irradiation with methanol reaching 45 BM, 285 microM formaldehyde and 650 microM formate.

  15. Mechanism study on inorganic oxidants induced inhibition of Ru(bpy)₃²+ electrochemiluminescence and its application for sensitive determination of some inorganic oxidants.

    PubMed

    Qiu, Bin; Xue, Lingling; Wu, Yanping; Lin, Zhenyu; Guo, Longhua; Chen, Guonan

    2011-07-15

    Inhibited Ru(bpy)(3)(2+) electrochemiluminescence by inorganic oxidants is investigated. Results showed that a number of inorganic oxidants can quench the ECL of Ru(bpy)(3)(2+)/tri-n-propylamine (TPrA) system, and the logarithm of the decrease in ECL intensity (ΔI) was proportional to the logarithm of analyte concentrations. Based on which, a sensitive approach for detection of these inorganic oxidants was established, e.g. the log-log plots of ΔI versus the concentration of MnO(4)(-), Cr(2)O(7)(2-) and Fe(CN)(6)(3-) are linear in the range of 1×10(-7) to 3×10(-4)M for MnO(4)(-) and Cr(2)O(7)(2-), and 1×10(-7) to 1×10(-4)M for Fe(CN)(6)(3-), with the limit of detection (LOD) of 8.0×10(-8)M, 2×10(-8)M, and 1×10(-8)M, respectively. A series of experiments such as a comparison of the inhibitory effect of different compounds on Ru(bpy)(3)(2+)/TPrA ECL, ECL emission spectra, UV-Vis absorption spectra etc. were investigated in order to discover how these inorganic analytes quench the ECL of Ru(bpy)(3)(2+)/TPrA system. A mechanism based on consumption of TPrA intermediate (TPrA(·)) by inorganic oxidants was proposed. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. HOCOMOCO: towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP-Seq analysis.

    PubMed

    Kulakovskiy, Ivan V; Vorontsov, Ilya E; Yevshin, Ivan S; Sharipov, Ruslan N; Fedorova, Alla D; Rumynskiy, Eugene I; Medvedeva, Yulia A; Magana-Mora, Arturo; Bajic, Vladimir B; Papatsenko, Dmitry A; Kolpakov, Fedor A; Makeev, Vsevolod J

    2018-01-04

    We present a major update of the HOCOMOCO collection that consists of patterns describing DNA binding specificities for human and mouse transcription factors. In this release, we profited from a nearly doubled volume of published in vivo experiments on transcription factor (TF) binding to expand the repertoire of binding models, replace low-quality models previously based on in vitro data only and cover more than a hundred TFs with previously unknown binding specificities. This was achieved by systematic motif discovery from more than five thousand ChIP-Seq experiments uniformly processed within the BioUML framework with several ChIP-Seq peak calling tools and aggregated in the GTRD database. HOCOMOCO v11 contains binding models for 453 mouse and 680 human transcription factors and includes 1302 mononucleotide and 576 dinucleotide position weight matrices, which describe primary binding preferences of each transcription factor and reliable alternative binding specificities. An interactive interface and bulk downloads are available on the web: http://hocomoco.autosome.ru and http://www.cbrc.kaust.edu.sa/hocomoco11. In this release, we complement HOCOMOCO by MoLoTool (Motif Location Toolbox, http://molotool.autosome.ru) that applies HOCOMOCO models for visualization of binding sites in short DNA sequences. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Bond strength of primer/cement systems to zirconia subjected to artificial aging.

    PubMed

    Zhao, Li; Jian, Yu-Tao; Wang, Xiao-Dong; Zhao, Ke

    2016-11-01

    Creating reliable and durable adhesion to the nonactive zirconia surface is difficult and has limited zirconia use. The introduction of functional monomers such as 10-methacryloyloxydecyl dihydrogen phosphate (MDP) appears to have enhanced bond strength to zirconia. The purpose of this in vitro study was to evaluate the long-term bond strength of several MDP-containing primer/cement systems to zirconia. Zirconia blocks were divided into 6 groups (n=24) according to the 3 primers/cements to be bonded, as follows: Scotchbond Universal/RelyX Ultimate (SU/RU; consisting of MDP-containing primer/MDP-free cement); Clearfil ceramic primer/Panavia F (CCP/PAN; consisting ofMDP-containing/MDP-containing); and Z-Prime Plus/Duo-Link (ZP/DUO; consisting ofMDP-containing/MDP-free), which were compared with 3 nonprimed groups, RU, PAN, and DUO. After bonding, each group was further divided into 3 subgroups (n=8) according to the level of aging: 24-hour storage in water at 37°C (24H); 30-day storage at 37°C (30D); and 30-day storage at 37°C followed by 3000 thermal cycles (30D/TC). After aging, a shear bond strength test and failure mode analysis were performed. The data were analyzed using 2-way ANOVA (α=.05). After aging, nearly all primer/cement groups presented significantly higher bond strength than the related nonprimed groups for each level of aging (P<.05), except for CCP/PAN versus PAN with 24H (P=.741). SU/RU had the highest bond strength among the groups for all treatments (P<.05), except for CCP/PAN versus SU/RU with 30D/TC (P=.171). Among the nonprimed groups, only RU went through 30D/TC without premature debonding. With 24H and 30D, the failure modes in SU/RU and CCP/PAN were purely mixed, whereas those in the other groups were mainly adhesive, except for RU. The superiority of the initial bond strength in SU/RU may result from some functional components other than MDP. The presence of MDP in the cement did not appear to have a positive effect on long-term bond strength to zirconia. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  18. Computational studies of the geometry and electronic structure of an all-inorganic and homogeneous tetra-Ru-polyoxotungstate catalyst for water oxidation and its four subsequent one-electron oxidized forms.

    PubMed

    Quiñonero, David; Kaledin, Alexey L; Kuznetsov, Aleksey E; Geletii, Yurii V; Besson, Claire; Hill, Craig L; Musaev, Djamaladdin G

    2010-01-14

    Geometry and electronic structure of five species [{Ru(4)O(4)(OH)(2)(H(2)O)(4)}(gamma-SiW(10)O(36))(2)](10-) (1), [{Ru(4)O(4)(OH)(2)(H(2)O)(4)}(gamma-SiW(10)O(36))(2)](9-) (2), [{Ru(4)O(4)(OH)(2)(H(2)O)(4)}(gamma-SiW(10)O(36))(2)](8-) (3), [{Ru(4)O(4)(OH)(2)(H(2)O)(4)}(gamma-SiW(10)O(36))(2)](7-) (4), and [{Ru(4)O(4)(OH)(2)(H(2)O)(4)}(gamma-SiW(10)O(36))(2)](6-) (5) with different oxidation states of Ru centers were studied at the density functional and COSMO levels of theory. These species are expected to be among the possible intermediates of the recently reported 1-catalyzed water oxidation (Geletii, Y. V.; Botar, B.; Kogerler, P.; Hillesheim, D. A.; Musaev, D. G.; Hill, C. L. Angew. Chem. Int. Ed. 2008, 47, 3896-3899 and Sartorel, A.; Carraro, M.; Scorrano, G.; Zorzi, R. D.; Geremia, S.; McDaniel, N. D.; Bernhard, S.; Bonchio, M. J. Am. Chem. Soc. 2008, 130, 5006-5007). It was shown that RI-BP86 correctly describes the geometry and energy of the low-lying electronic states of compound 1, whereas the widely used B3LYP approach overestimates the energy of its high-spin states. Including the solvent and/or countercation effects into calculations improves the agreement between the calculated and experimental data. It was found that the several HOMOs and LUMOs of the studied complexes are bonding and antibonding orbitals of the [Ru(4)O(4)(OH)(2)(H(2)O)(4)](6+) core, and four subsequent one-electron oxidations of 1, leading to formation of 2, 3, 4, and 5, respectively, involve only {Ru(4)} core orbitals. In other words, catalyst instability due to ligand oxidation in the widely studied Ru-blue dimer, [(bpy)(2)(O)Ru(V)-(mu-O)-Ru(V)(O)(bpy)(2)](4+), is not operable for 1: the latter all-inorganic catalyst is predicted to be stable under water oxidation turnover conditions. The calculated HOMOs and LUMOs of all the studied species are very close in energy and exhibit a "quasi-continuum" or "nanoparticle-type" electronic structure similar to that of nanosized transition metal clusters. This conclusion closely correlates with the experimentally reported oxidation and reduction features of 1 and explains the unusual linear dependence of oxidation potential versus charges for these compounds. The decrease in total negative charge of the system via 1 > 2 > 3 > 4 > 5, on average, decreases the {Ru(4)}-{SiW(10)} distance. It is predicted that at higher pH compound 1 will, initially, release protons from the mu-O(Ru) oxygen centers.

  19. Thermal transport properties, magnetic susceptibility and neutron diffraction studies of the (Cr100-xAlx)95Mo5 alloy system

    NASA Astrophysics Data System (ADS)

    Muchono, B.; Sheppard, C. J.; Venter, A. M.; Prinsloo, A. R. E.

    2018-05-01

    The Seebeck coefficient has been used to investigate QCB in Cr alloys [8,9]. Plots of d S /d T (in the limit T → 2 K) as function of concentration for the (Cr97.8Si2.2)100-yMoy [8] and the (Cr84Re16)100-zVz [9] alloy systems depicted anomalies at the QCP. The possibility of QCB in the (Cr100-xAlx)95Mo5 alloy system is explored by analysing the S(T) data of Fig. 1 by performing a linear-least-squares fit through the 2 K < T < 6.5 K data points. The gradient was taken as dS / dT|T → 2K . Fig. 8 shows dS / dT|T → 2K for concentrations in the range 0.5 ≤ x ≤ 8.6. It increases rapidly to a maximum at x = 1.0, then decreases on further Al addition and displays a minimum just above x = 1.4. This is the concentration where magnetism is seen to disappear on the TN(x) magnetic phase diagram. dS / dT|T → 2K shows a second minimum just above x = 4.4, i.e. corresponding to the concentration where magnetism reappears on the TN(x) magnetic phase diagram (see Fig. 17). Similar minima were also observed at the QCP in the (Cr84Re16)100-zVz [9] and (Cr86Ru14)100-rVr [13] alloy systems. The relatively large error bars in Fig. 8 originate from the large errors in the fitting routine due to a significant scatter in the original Seebeck coefficient data at low temperatures. The solid line through the dS / dT|T → 2K data points is a guide to the eye, while the dotted vertical lines indicate the boundaries between the ISDW, P and CSDW phases. The minima observed in the dS / dT|T → 2K curve correlate to these boundaries.

  20. Electron microscope studies of nano-domain structures in Ru-based magneto-superconductors: RuSr(2)Gd(1.5)Ce(0.5)Cu(2)O(10-delta) (Ru-1222) and RuSr(2)GdCu(2)O(8) (Ru-1212).

    PubMed

    Yokosawa, Tadahiro; Awana, V P S Veer Pal Singh; Kimoto, Koji; Takayama-Muromachi, Eiji; Karppinen, Maarit; Yamauchi, Hisao; Matsui, Yoshio

    2004-01-01

    Microstructures of the RuSr(2)Gd(1.5)Ce(0.5)Cu(2)O(10-delta) (Ru-1222) and RuSr(2)GdCu(2)O(8) (Ru-1212) magneto-superconductors have been investigated by using selected-area electron diffraction, convergent-beam electron diffraction, dark-field electron microscopy and high-resolution electron microscopy at room temperature. Both Ru-1212 and Ru-1222 consist of nm-size domains stacked along the [Formula: see text] direction, where the domains are formed by two types of superstructures due to ordering of rotated RuO(6) octahedra about the c-axis. In Ru-1212, both primitive-and body-centered tetragonal superstructures (the possible space groups: P4/mbm and I4/mcm) are derived to form the corresponding nm-domains. It is of great interest that Ru-1212 consists of domains of two crystallographically different superstructures, while the similar domains observed in Ru-1222 have crystallographically identical superstructure with an orthorhombic symmetry (possible space group: Aeam), related by 90 degrees rotation around the c-axis (Yokosawa et al., 2003, submitted for publication).

  1. Enhancement of activity of RuSex electrocatalyst by modification with nanostructured iridium towards more efficient reduction of oxygen

    NASA Astrophysics Data System (ADS)

    Dembinska, Beata; Kiliszek, Malgorzata; Elzanowska, Hanna; Pisarek, Marcin; Kulesza, Pawel J.

    2013-12-01

    Electrocatalytic activity of carbon (Vulcan XC-72) supported selenium-modified ruthenium, RuSex/C, nanoparticles for reduction of oxygen was enhanced through intentional decoration with iridium nanostructures (dimensions, 2-3 nm). The catalytic materials were characterized in oxygenated 0.5 mol dm-3 H2SO4 using cyclic and rotating ring disk voltammetric techniques as well as using transmission electron microscopy and scanning electron microscopy equipped with X-ray dispersive analyzer. Experiments utilizing gas diffusion electrode aimed at mimicking conditions existing in the low-temperature fuel cell. Upon application of our composite catalytic system, the reduction of oxygen proceeded at more positive potentials, and higher current densities were observed when compared to the behavior of the simple iridium-free system (RuSex/C) investigated under the analogous conditions. The enhancement effect was more pronounced than that one would expect from simple superposition of voltammetric responses for the oxygen reduction at RuSex/C and iridium nanostructures studied separately. Nanostructured iridium acted here as an example of a powerful catalyst for the reduction of H2O2 (rather than O2) and, when combined with such a moderate catalyst as ruthenium-selenium (for O2 reduction), it produced an integrated system of increased electrocatalytic activity in the oxygen reduction process. The proposed system retained its activity in the presence of methanol that could appear in a cathode compartment of alcohol fuel cell.

  2. Magnetic Properties of Restacked 2D Spin 1/2 honeycomb RuCl3 Nanosheets.

    PubMed

    Weber, Daniel; Schoop, Leslie M; Duppel, Viola; Lippmann, Judith M; Nuss, Jürgen; Lotsch, Bettina V

    2016-06-08

    Spin 1/2 honeycomb materials have gained substantial interest due to their exotic magnetism and possible application in quantum computing. However, in all current materials out-of-plane interactions are interfering with the in-plane order, hence a true 2D magnetic honeycomb system is still in demand. Here, we report the exfoliation of the magnetic semiconductor α-RuCl3 into the first halide monolayers and the magnetic characterization of the spin 1/2 honeycomb arrangement of turbostratically stacked RuCl3 monolayers. The exfoliation is based on a reductive lithiation/hydration approach, which gives rise to a loss of cooperative magnetism due to the disruption of the spin 1/2 state by electron injection into the layers. The restacked, macroscopic pellets of RuCl3 layers lack symmetry along the stacking direction. After an oxidative treatment, cooperative magnetism similar to the bulk is restored. The oxidized pellets of restacked single layers feature a magnetic transition at TN = 7 K if the field is aligned parallel to the ab-plane, while the magnetic properties differ from bulk α-RuCl3 if the field is aligned perpendicular to the ab-plane. The deliberate introduction of turbostratic disorder to manipulate the magnetic properties of RuCl3 is of interest for research in frustrated magnetism and complex magnetic order as predicted by the Kitaev-Heisenberg model.

  3. Catalysts for ultrahigh current density oxygen cathodes for space fuel cell applications

    NASA Technical Reports Server (NTRS)

    Tryk, D.; Yeager, E.; Shingler, M.; Aldred, W.; Wang, C.

    1990-01-01

    The objective of this research was to identify promising electrocatalyst/support systems for the oxygen cathode in alkaline fuel cells operating at relatively high temperatures, O2 pressures and current densities. A number of materials were prepared, including Pb-Ru and Pb-Ir pyrochlores, RuO2 and Pt-doped RuO2, and lithiated NiO. Several of these were prepared using techniques that had not been previously used to prepare them. Particularly interesting is the use of the alkaline solution technique to prepare the Pt-doped Pb-Ru pyrochlore in high area form. Well-crystallized Pb(2)Ru(2)O(7-y) was used to fabricate high performance O2 cathodes with relatively good stability in room temperature KOH. This material was also found to be stable over a useful potential range at approximately 140 C in concentrated KOH. Other pyrochlores were found to be either unstable (amorphous samples) or the fabrication of the gas-fed electrodes could not be fully optimized during this project period. Future work may be directed at this problem. High area platinum supported on conductive metal oxide supports produced mixed results: small improvements in O2 reduction performance for Pb(2)Ru(2)O(7-y) but a large improvement for Li-doped NiO at room temperature. Nearly reversible behavior was observed for the O2/OH couple for Li-doped NiO at approximately 200 C.

  4. Inhibition of ammonia poisoning by addition of platinum to Ru/α-Al2 O3 for preferential CO oxidation in fuel cells.

    PubMed

    Sato, Katsutoshi; Yagi, Sho; Zaitsu, Shuhei; Kitayama, Godai; Kayada, Yuto; Teramura, Kentaro; Takita, Yusaku; Nagaoka, Katsutoshi

    2014-12-01

    In polymer electrolyte fuel cell (PEFC) systems, small amounts of ammonia (NH3 ) present in the reformate gas deactivate the supported ruthenium catalysts used for preferential oxidation (PROX) of carbon monoxide (CO). In this study, we investigated how the addition of a small amount of platinum to a Ru/α-Al2 O3 catalyst (Pt/Ru=1:9 w/w) affected the catalyst's PROX activity in both the absence and the presence of NH3 (130 ppm) under conditions mimicking the reformate conditions during steam reforming of natural gas. The activity of undoped Ru/α-Al2 O3 decreased sharply upon addition of NH3 , whereas Pt/Ru/α-Al2 O3 exhibited excellent PROX activity even in the presence of NH3 . Ruthenium K-edge X-ray absorption near-edge structure (XANES) spectra indicated that in the presence of NH3 , some of the ruthenium in the undoped catalyst was oxidized in the presence of NH3 , whereas ruthenium oxidation was not observed with Pt/Ru/α-Al2 O3 . These results suggest that ruthenium oxidation is retarded by the platinum, so that the catalyst shows high activity even in the presence of NH3 . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. MoRFchibi SYSTEM: software tools for the identification of MoRFs in protein sequences.

    PubMed

    Malhis, Nawar; Jacobson, Matthew; Gsponer, Jörg

    2016-07-08

    Molecular recognition features, MoRFs, are short segments within longer disordered protein regions that bind to globular protein domains in a process known as disorder-to-order transition. MoRFs have been found to play a significant role in signaling and regulatory processes in cells. High-confidence computational identification of MoRFs remains an important challenge. In this work, we introduce MoRFchibi SYSTEM that contains three MoRF predictors: MoRFCHiBi, a basic predictor best suited as a component in other applications, MoRFCHiBi_ Light, ideal for high-throughput predictions and MoRFCHiBi_ Web, slower than the other two but best for high accuracy predictions. Results show that MoRFchibi SYSTEM provides more than double the precision of other predictors. MoRFchibi SYSTEM is available in three different forms: as HTML web server, RESTful web server and downloadable software at: http://www.chibi.ubc.ca/faculty/joerg-gsponer/gsponer-lab/software/morf_chibi/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Photosynthesis and Ribulose 1,5-Bisphosphate Concentrations in Intact Leaves of Xanthium strumarium L. 1

    PubMed Central

    Mott, Keith A.; Jensen, Richard G.; O'Leary, James W.; Berry, Joseph A.

    1984-01-01

    The interacting effects of the rate of ribulose 1,5-bisphosphate (RuBP) regeneration and the rate of RuBP utilization as influenced by the amount and activation of RuBP carboxylase on photosynthesis and RuBP concentrations were resolved in experiments which examined the kinetics of the response of photosynthesis and RuBP concentrations after step changes from a rate-saturating to a rate-limiting light intensity in Xanthium strumarium. Because RuBP carboxylase requires several minutes to deactivate in vivo, it was possible to observe the effect of reducing the rate of RuBP regeneration on the RuBP concentration at constant enzyme activation state by sampling very soon after reducing the light intensity. Samples taken over longer time periods showed the effect of changes in enzyme activation at constant RuBP regeneration rate on RuBP concentration and photosynthetic rate. Within 15 s of lowering the light intensity from 1500 to 600 microEinsteins per square meter per second the RuBP concentration in the leaves dropped below the enzyme active site concentration, indicating that RuBP regeneration rate was limiting for photosynthesis. After longer intervals of time, the RuBP concentration in the leaf increased as the RuBP carboxylase assumed a new steady state activation level. No change in the rate of photosynthesis was observed during the interval that RuBP concentration increased. It is concluded that the rate of photosynthesis at the lower light intensity was limited by the rate of RuBP regeneration and that parallel changes in the activation of RuBP carboxylase occurred such that concentrations of RuBP at steady state were not altered by changes in light intensity. PMID:16663982

  7. Photosynthesis and Ribulose 1,5-Bisphosphate Concentrations in Intact Leaves of Xanthium strumarium L.

    PubMed

    Mott, K A; Jensen, R G; O'leary, J W; Berry, J A

    1984-12-01

    The interacting effects of the rate of ribulose 1,5-bisphosphate (RuBP) regeneration and the rate of RuBP utilization as influenced by the amount and activation of RuBP carboxylase on photosynthesis and RuBP concentrations were resolved in experiments which examined the kinetics of the response of photosynthesis and RuBP concentrations after step changes from a rate-saturating to a rate-limiting light intensity in Xanthium strumarium. Because RuBP carboxylase requires several minutes to deactivate in vivo, it was possible to observe the effect of reducing the rate of RuBP regeneration on the RuBP concentration at constant enzyme activation state by sampling very soon after reducing the light intensity. Samples taken over longer time periods showed the effect of changes in enzyme activation at constant RuBP regeneration rate on RuBP concentration and photosynthetic rate. Within 15 s of lowering the light intensity from 1500 to 600 microEinsteins per square meter per second the RuBP concentration in the leaves dropped below the enzyme active site concentration, indicating that RuBP regeneration rate was limiting for photosynthesis. After longer intervals of time, the RuBP concentration in the leaf increased as the RuBP carboxylase assumed a new steady state activation level. No change in the rate of photosynthesis was observed during the interval that RuBP concentration increased. It is concluded that the rate of photosynthesis at the lower light intensity was limited by the rate of RuBP regeneration and that parallel changes in the activation of RuBP carboxylase occurred such that concentrations of RuBP at steady state were not altered by changes in light intensity.

  8. Single d-metal atoms on F(s) and F(s+) defects of MgO(001): a theoretical study across the periodic table.

    PubMed

    Neyman, Konstantin M; Inntam, Chan; Matveev, Alexei V; Nasluzov, Vladimir A; Rösch, Notker

    2005-08-24

    Single d-metal atoms on oxygen defects F(s) and F(s+) of the MgO(001) surface were studied theoretically. We employed an accurate density functional method combined with cluster models, embedded in an elastic polarizable environment, and we applied two gradient-corrected exchange-correlation functionals. In this way, we quantified how 17 metal atoms from groups 6-11 of the periodic table (Cu, Ag, Au; Ni, Pd, Pt; Co, Rh, Ir; Fe, Ru, Os; Mn, Re; and Cr, Mo, W) interact with terrace sites of MgO. We found bonding with F(s) and F(s+) defects to be in general stronger than that with O2- sites, except for Mn-, Re-, and Fe/F(s) complexes. In M/F(s) systems, electron density is accumulated on the metal center in a notable fashion. The binding energy on both kinds of O defects increases from 3d- to 4d- to 5d-atoms of a given group, at variance with the binding energy trend established earlier for the M/O2- complexes, 4d < 3d < 5d. Regarding the evolution of the binding energy along a period, group 7 atoms are slightly destabilized compared to their group 6 congeners in both the F(s) and F(s+) complexes; for later transition elements, the binding energy increases gradually up to group 10 and finally decreases again in group 11, most strongly on the F(s) site. This trend is governed by the negative charge on the adsorbed atoms. We discuss implications for an experimental detection of metal atoms on oxide supports based on computed core-level energies.

  9. Chemical interference with iron transport systems to suppress bacterial growth of Streptococcus pneumoniae.

    PubMed

    Yang, Xiao-Yan; Sun, Bin; Zhang, Liang; Li, Nan; Han, Junlong; Zhang, Jing; Sun, Xuesong; He, Qing-Yu

    2014-01-01

    Iron is an essential nutrient for the growth of most bacteria. To obtain iron, bacteria have developed specific iron-transport systems located on the membrane surface to uptake iron and iron complexes such as ferrichrome. Interference with the iron-acquisition systems should be therefore an efficient strategy to suppress bacterial growth and infection. Based on the chemical similarity of iron and ruthenium, we used a Ru(II) complex R-825 to compete with ferrichrome for the ferrichrome-transport pathway in Streptococcus pneumoniae. R-825 inhibited the bacterial growth of S. pneumoniae and stimulated the expression of PiuA, the iron-binding protein in the ferrichrome-uptake system on the cell surface. R-825 treatment decreased the cellular content of iron, accompanying with the increase of Ru(II) level in the bacterium. When the piuA gene (SPD_0915) was deleted in the bacterium, the mutant strain became resistant to R-825 treatment, with decreased content of Ru(II). Addition of ferrichrome can rescue the bacterial growth that was suppressed by R-825. Fluorescence spectral quenching showed that R-825 can bind with PiuA in a similar pattern to the ferrichrome-PiuA interaction in vitro. These observations demonstrated that Ru(II) complex R-825 can compete with ferrichrome for the ferrichrome-transport system to enter S. pneumoniae, reduce the cellular iron supply, and thus suppress the bacterial growth. This finding suggests a novel antimicrobial approach by interfering with iron-uptake pathways, which is different from the mechanisms used by current antibiotics.

  10. Experimental Proof of the Bifunctional Mechanism for the Hydrogen Oxidation in Alkaline Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jingkun; Ghoshal, Shraboni; Bates, Michael K.

    Realization of the hydrogen economy relies on effective hydrogen production, storage, and utilization. The slow kinetics of hydrogen evolution and oxidation reaction (HER/HOR) in alkaline media limits many practical applications involving hydrogen generation and utilization, and how to overcome this fundamental limitation remains debatable. Here we present a kinetic study of the HOR on representative catalytic systems in alkaline media. Electrochemical measurements show that the HOR rate of Pt-Ru/C and Ru/C systems is decoupled to their hydrogen binding energy (HBE), challenging the current prevailing HBE mechanism. The alternative bifunctional mechanism is verified by combined electrochemical and in situ spectroscopic data,more » which provide convincing evidence for the presence of hydroxy groups on surface Ru sites in the HOR potential region and its key role in promoting the rate-determining Volmer step. The conclusion presents important references for design and selection of HOR catalysts.« less

  11. Experimental Proof of the Bifunctional Mechanism for the Hydrogen Oxidation in Alkaline Media

    DOE PAGES

    Li, Jingkun; Ghoshal, Shraboni; Bates, Michael K.; ...

    2017-10-16

    Realization of the hydrogen economy relies on effective hydrogen production, storage, and utilization. The slow kinetics of hydrogen evolution and oxidation reaction (HER/HOR) in alkaline media limits many practical applications involving hydrogen generation and utilization, and how to overcome this fundamental limitation remains debatable. Here we present a kinetic study of the HOR on representative catalytic systems in alkaline media. Electrochemical measurements show that the HOR rate of Pt-Ru/C and Ru/C systems is decoupled to their hydrogen binding energy (HBE), challenging the current prevailing HBE mechanism. The alternative bifunctional mechanism is verified by combined electrochemical and in situ spectroscopic data,more » which provide convincing evidence for the presence of hydroxy groups on surface Ru sites in the HOR potential region and its key role in promoting the rate-determining Volmer step. The conclusion presents important references for design and selection of HOR catalysts.« less

  12. Isotopic And Geochemical Investigations Of Meteorites

    NASA Technical Reports Server (NTRS)

    Walker, Richard J.

    2005-01-01

    The primary goals of our research over the past four years are to constrain the timing of certain early planetary accretion/differentiation events, and to constrain the proportions and provenance of materials involved in these processes. This work was achieved via the analysis and interpretation of long- and short-lived isotope systems, and the study of certain trace elements. Our research targeted these goals primarily via the application of the Re-187, Os-187, Pt-190 Os-186 Tc-98 Ru-99 and Tc-99 Ru-99 isotopic systems, and the determination/modeling of abundances of the highly siderophile elements (HSE; including Re, Os, Ir, Ru, Pd, Pt, and maybe Tc). The specific events we examined include the segregation and crystallization histories of asteroidal cores, the accretion and metamorphic histories of chondrites and chondrite components, and the accretionary and differentiation histories of Mars and the Moon.

  13. Light-harvesting photocatalysis for water oxidation using mesoporous organosilica.

    PubMed

    Takeda, Hiroyuki; Ohashi, Masataka; Goto, Yasutomo; Ohsuna, Tetsu; Tani, Takao; Inagaki, Shinji

    2014-07-14

    An organic-based photocatalysis system for water oxidation, with visible-light harvesting antennae, was constructed using periodic mesoporous organosilica (PMO). PMO containing acridone groups in the framework (Acd-PMO), a visible-light harvesting antenna, was supported with [Ru(II)(bpy)3(2+)] complex (bpy = 2,2'-bipyridyl) coupled with iridium oxide (IrO(x)) particles in the mesochannels as photosensitizer and catalyst, respectively. Acd-PMO absorbed visible light and funneled the light energy into the Ru complex in the mesochannels through excitation energy transfer. The excited state of Ru complex is oxidatively quenched by a sacrificial oxidant (Na2S2O8) to form Ru(3+) species. The Ru(3+) species extracts an electron from IrO(x) to oxidize water for oxygen production. The reaction quantum yield was 0.34 %, which was improved to 0.68 or 1.2 % by the modifications of PMO. A unique sequence of reactions mimicking natural photosystem II, 1) light-harvesting, 2) charge separation, and 3) oxygen generation, were realized for the first time by using the light-harvesting PMO. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Determinations of the 12C/13C Ratio for the Secondary Stars of AE Aquarii, SS Cygni, and RU Pegasi

    NASA Astrophysics Data System (ADS)

    Harrison, Thomas E.; Marra, Rachel E.

    2017-07-01

    We present new moderate-resolution near-infrared spectroscopy of three CVs obtained using GNIRS on Gemini-North. These spectra covered three 13CO bandheads found in the K-band, allowing us to derive the isotopic abundance ratios for carbon. We find small 12C/13C ratios for all three donor stars. In addition, these three objects show carbon deficits, with AE Aqr being the most extreme ([C/Fe] = -1.4). This result confirms the conjecture that the donor stars in some long-period CVs have undergone considerable nuclear evolution prior to becoming semi-contact binaries. In addition to the results for carbon, we find that the abundance of sodium is enhanced in these three objects, and the secondary stars in both RU Peg and SS Cyg suffer magnesium deficits. Explaining such anomalies appears to require higher mass progenitors than commonly assumed for the donor stars of CVs. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).

  15. Search for the elusive magnetic state of hexagonal iron: The antiferromagnetic Fe71Ru29 hcp alloy

    NASA Astrophysics Data System (ADS)

    Petrillo, C.; Postorino, P.; Orecchini, A.; Sacchetti, F.

    2018-03-01

    The magnetic states of iron and their dependence on crystal structure represent an important case study for the physics of magnetism and its role in fundamental and applied science, including geophysical sciences. hcp iron is the most elusive structure as it exists only at high pressure but, at the same time, it is expected to be stable up to very high temperature. Exploring the magnetic state of pure Fe at high pressure is difficult and no conclusive results have been obtained. Simple binary alloys where the hexagonal phase of Fe is stabilized, offer a more controllable alternative to investigate iron magnetism. We carried out a neutron diffraction experiment on hcp Fe71Ru29 disordered alloy as a function of temperature. Fe in the hexagonal lattice of this specific alloy results to be antiferromagnetically aligned with a rather complex structure and a small magnetic moment. The temperature dependence suggests a Néel temperature TN = 124 ± 10 K, a value consistent with the low magnetic moment of 1.04 ± 0.10 μB obtained from the diffraction data that also suggest a non-commensurate magnetic structure with magnetic moments probably aligned along the c axis. The present data provide evidence for magnetic ordering in hcp Fe and support the theoretical description of magnetism of pure Fe at high pressure.

  16. Albibacter methylovorans gen. nov., sp. nov., a novel aerobic, facultatively autotrophic and methylotrophic bacterium that utilizes dichloromethane.

    PubMed

    Doronina, N V; Trotsenko, Y A; Tourova, T P; Kuznetsov, B B; Leisinger, T

    2001-05-01

    A novel genus, Albibacter, with one species, Albibacter methylovorans sp. nov., is proposed for a facultatively chemolithotrophic and methylotrophic bacterium (strain DM10T) with the ribulose bisphosphate (RuBP) pathway of C1 assimilation. The bacterium is a Gram-negative, aerobic, asporogenous, nonmotile, colourless rod that multiplies by binary fission. The organism utilizes dichloromethane, methanol, methylamine, formate and CO2/H2, as well as a variety of polycarbon compounds, as carbon and energy sources. It is neutrophilic and mesophilic. The major cellular fatty acids are straight-chain unsaturated C18:1, saturated C16:0 and cyclopropane C19:0 acids. The main ubiquinone is Q-10. The dominant phospholipids are phosphatidyl ethanolamine, phosphatidyl glycerol, phosphatidyl choline and cardiolipin. The DNA G+C content is 66.7 mol%. Strain DM10T has a very low degree of DNA-DNA hybridization (4-7%) with the type species of the genera Paracoccus, Xanthobacter, Blastobacter, Angulomicrobium, Ancylobacter and Ralstonia of RuBP pathway methylobacteria. Another approach, involving comparative 16S rDNA analysis, has shown that the novel isolate represents a separate branch within the alpha-2 subgroup of the Proteobacteria. The type species of the new genus is Albibacter methylovorans sp. nov.; the type strain is DM10T (= VKM B-2236T = DSM 13819T).

  17. Study of Ni-Mo electrodeposition in direct and pulse-reverse current

    NASA Astrophysics Data System (ADS)

    Stryuchkova, Yu M.; Rybin, N. B.; Suvorov, D. V.; Gololobov, G. P.; Tolstoguzov, A. B.; Tarabrin, D. Yu; Serpova, M. A.; Korotchenko, V. A.; Slivkin, E. V.

    2017-05-01

    Process of electrochemical deposition of the coating based on a binary nickel-molybdenum alloy onto a nickel substrate under pulse mode with current reverse within the range of current density change from 2 to 9 A/dm2 has been researched. Coating structure and its surface morphology have been studied. Method of X-ray energy dispersive spectroscopy has determined a percentage ratio of alloy components in the coating. Mode to obtain the densest and smoothest deposits has been identified under considered terms.

  18. Investigation of High Temperature Ductility Losses in Alpha-Beta Titanium Alloys

    DTIC Science & Technology

    1988-04-01

    Gleeble simulation of GTAW thermal _ cycles, Figure 1.1 (6). They found that Ti-6AI-4V (Ti-64), Ti-6A1-2Nb-lTa-0.8Mo (Ti-6211), and Ti-6AI suffered...or weak beta stabilizers depending on the other alloying elements present. Vanadium, molybdenum, tantalum, niobium, chromium , silicon, copper...elements. Chromium , - silicon, copper, manganese, cobalt, iron, and hydrogen are all eutectic formers. A schematic binary phase diagram of a 0 beta

  19. Chromospherically active stars. 12: ADS 11060 C: A double lined K dwarf binary in a quintuple system

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Henry, Gregory W.; Hampton, Melissa L.; Fried, Robert; Morton, Mary D.

    1994-01-01

    ADS 11060 C is a double lined spectroscopic binary with a period of 25.7631 days and an eccentricity of 0.565. Spectral types of the two stars are estimated as K7 V and MO V with a magnitude difference of about 0.55 mag in V. The stars appear to be somewhat metal rich with respect to the Sun. Despite the relatively large masses of 0.53 and 0.51 solar mass, our photometric observations find no evidence for eclipses and we estimate an inclination of 77 deg plus or minus 11 deg. ADS 11060 C is, however, photometrically variable with a period of 9 plus or minus 1 day and an amplitude of 0.05 mag in V. Thus, it is a newly identified BY Draconis variable. The center-of-mass velocity of ADS 11060 C and an estimated parallax of 0.030 sec support its physical association with ADS 11060 AB, making this a quintuple system. The projected separation of the AB-C system is nearly 1200 AU. Although the log lithium abundances of the two components of ADS 11060 C are only upper limits, less than or equal to -0.14, lithium abundances of the AB-C components appear to be consistent with those of similar stars in the alpha Persei and Pleiades clusters, suggesting an age of about 70 Myr for ADS 11060 AB-C. The system is a possible member of the Pleiades moving group. Listed as an optical counterpart to a source in the ROSAT Wide Field Camera extreme-ultraviolet bright source catalog, both ADS 11060 AB and C may contribute to the observed flux.

  20. Evidence that Ribulose 1,5-Bisphosphate (RuBP) Binds to Inactive Sites of RuBP Carboxylase in Vivo and an Estimate of the Rate Constant for Dissociation 1

    PubMed Central

    Cardon, Zoe G.; Mott, Keith A.

    1989-01-01

    The binding of ribulose 1,5-bisphosphate (RuBP) to inactive (noncarbamylated) sites of the enzyme RuBP carboxylase in vivo was investigated in Spinacia oleracea and Helianthus annuus. The concentrations of RuBP and inactive sites were determined in leaf tissue as a function of time after a change to darkness. RuBP concentrations fell rapidly after the change to darkness and were approximately equal to the concentration of inactive sites after 60 s. Variations in the concentration of inactive sites, which were induced by differences in the light intensity before the light-dark transition, correlated with the concentration of RuBP between 60 and 120 s after the change to darkness. These data are discussed as evidence that RuBP binds to inactive sites of RuBP carboxylase in vivo. After the concentration of RuBP fell below that of inactive sites (at times longer than 60 s of darkness), the decline in RuBP was logarithmic with time. This would be expected if the dissociation of RuBP from inactive sites controlled the decline in RuBP concentration. These data were used to estimate the rate constant for dissociation of RuBP from inactive sites in vivo. PMID:16666692

  1. RuO2 supported NaY zeolite catalysts: Effect of preparation methods on catalytic performance during aerobic oxidation of benzyl alcohol

    NASA Astrophysics Data System (ADS)

    Jung, Dasom; Lee, Sunwoo; Na, Kyungsu

    2017-10-01

    The effects of preparation method for RuO2 supported zeolite catalysts on the catalytic consequences during the aerobic oxidation of benzyl alcohol to benzaldehyde were investigated. Three preparation methods, i.e., (i) simultaneous crystallization of the zeolite framework in the presence of RuCl3 (Ru(SC)/NaY), (ii) post ion-exchange with RuCl3 on the zeolite framework (Ru(IE)/NaY), and (iii) post support of preformed Ru metal nanoparticles on the zeolite surface (Ru(PS)/NaY), were used to construct three different RuO2 supported NaY zeolite catalysts. The catalyst performance was investigated as functions of the reaction time and temperature, in correlation with the structural changes of the catalysts, as analyzed by X-ray diffraction (XRD). The results revealed that the catalytic consequences were dramatically affected by the preparation methods. Although similar conversion was achieved with all three catalysts, the turnover frequency (TOF) differed. The Ru(PS)/NaY catalyst exhibited the highest TOF (33-48 h-1), whereas the other catalysts produced much lower TOFs (9-12 h-1). The Ru(PS)/NaY catalyst also had the highest activation energy (Ea) of 48.39 kJ mol-1, whereas the Ru(SC)/NaY and Ru(IE)/NaY catalysts had Ea values of 18.58 and 24.11 kJ mol-1, respectively. Notably, the Ru(PS)/NaY catalyst yielded a significantly higher pre-exponential factor of 5.22 × 105 h-1, which is about 5 orders of magnitude larger than that of the Ru(SC)/NaY catalyst (7.15 × 100 h-1). This suggests that collision between benzyl alcohol and molecular oxygen was very intensive on the Ru(PS)/NaY catalyst, which explains the higher TOF of the Ru(PS)/NaY catalyst relative to the others in spite of the higher Ea value of the former. In terms of recyclability, the pristine crystallinity of the zeolite framework was maintained in the Ru(SC)/NaY catalyst and the RuO2 phase exhibited an insignificant loss of the initial activity up to three catalytic cycles, whereas Ru(PS)/NaY showed slight loss of activity and Ru(IE)/NaY showed a significant loss of activity due to the disappearance of the RuO2 phase.

  2. Tuning Magnetic Order in Transition Metal Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Grutter, Alexander John

    In recent decades, one of the most active and promising areas of condensed matter research has been that of complex oxides. With the advent of new growth techniques such as pulsed laser deposition and molecular beam epitaxy, a wealth of new magnetic and electronic ground states have emerged in complex oxide heterostructures. The wide variety of ground states in complex oxides is well known and generally attributed to the unprecedented variety of valence, structure, and bonding available in these systems. The tunability of this already diverse playground of states and interactions is greatly multiplied in thin films and heterostructures by the addition of parameters such as substrate induced strain and interfacial electronic reconstruction. Thus, recent studies have shown emergent properties such as the stabilization of ferromagnetism in a paramagnetic system, conductivity at the interface of two insulators, and even exchange bias at the interface between a paramagnet and a ferromagnet. Despite these steps forward, there remains remarkable disagreement on the mechanisms by which these emergent phenomena are stabilized. The contributions of strain, stoichiometry, defects, intermixing, and electronic reconstruction are often very difficult to isolate in thin films and superlattices. This thesis will present model systems for isolating the effects of strain and interfacial electronic interactions on the magnetic state of complex oxides from alternative contributions. We will focus first on SrRuO3, an ideal system in which to isolate substrate induced strain effects. We explore the effects of structural distortions in the simplest case of growth on (100) oriented substrates. We find that parameters including saturated magnetic moment and Curie temperature are all highly tunable through substrate induced lattice distortions. We also report the stabilization of a nonmagnetic spin-zero configuration of Ru4+ in tetragonally distorted films under tensile strain. Through growth on (110) and (111) oriented substrates we explore the effects of different distortion symmetries on SrRuO3 and demonstrate the first reported strain induced transition to a high-spin state of Ru 4+. Finally, we examine the effects of strain on SrRuO3 thin films and demonstrate a completely reversible universal out-of-plane magnetic easy axis on films grown on different substrate orientations. Having demonstrated the ability to tune nearly every magnetic parameter of SrRuO 3 through strain, we turn to magnetic properties at interfaces. We study the emergent interfacial ferromagnetism in superlattices of the paramagnetic metal CaRuO3 and the antiferromagnetic insulator CaMnO3 and demonstrate that the interfacial ferromagnetic layer in this system is confined to a single unit cell of CaMnO3 at the interface. We discuss the remarkable oscillatory dependence of the saturated magnetic moment on the thickness of the CaMnO3 layers and explore mechanisms by which this oscillation may be stabilized. We find long range coherence of the antiferromagnetism of the CaMnO3 layers across intervening layers of paramagnetic CaRuO3. Finally, we utilize the system of LaNiO3/CaMnO3 to separate the effects of intermixing and interfacial electronic reconstruction and conclusively demonstrate intrinsic interfacial ferromagnetism at the interface between a paramagnetic metal and an antiferromagnetic insulator. We find that the emergent ferromagnetism is stabilized through interfacial double exchange and that the leakage of conduction electrons from the paramagnetic metal to the antiferromagnetic insulator is critical to establishing the ferromagnetic ground state.

  3. Platinum-ruthenium nanotubes and platinum-ruthenium coated copper nanowires as efficient catalysts for electro-oxidation of methanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jie; Cullen, David A.; Forest, Robert V.

    2015-01-15

    The sluggish kinetics of methanol oxidation reaction (MOR) is a major barrier to the commercialization of direct methanol fuel cells (DMFCs). In this study, we report a facile synthesis of platinum–ruthenium nanotubes (PtRuNTs) and platinum–ruthenium-coated copper nanowires (PtRu/CuNWs) by galvanic displacement reaction using copper nanowires as a template. The PtRu compositional effect on MOR is investigated; the optimum Pt/Ru bulk atomic ratio is about 4 and surface atomic ratio about 1 for both PtRuNTs and PtRu/CuNWs. Enhanced specific MOR activities are observed on both PtRuNTs and PtRu/CuNWs compared with the benchmark commercial carbon-supported PtRu catalyst (PtRu/C, Hispec 12100). Finally, x-raymore » photoelectron spectroscopy (XPS) reveals a larger extent of electron transfer from Ru to Pt on PtRu/CuNWs, which may lead to a modification of the d-band center of Pt and consequently a weaker bonding of CO (the poisoning intermediate) on Pt and a higher MOR activity on PtRu/CuNWs.« less

  4. Adsorption of n-butane on graphene/Ru(0001)—A molecular beam scattering study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivapragasam, Nilushni; Nayakasinghe, Mindika T.; Burghaus, Uwe, E-mail: uwe.burghaus@ndsu.edu

    2016-07-15

    Adsorption kinetics/dynamics of n-butane on graphene, physical vapor deposited on Ru(0001) (hereafter G/Ru), and bare Ru(0001) (hereafter Ru) are discussed. The chemical activity of the supported-graphene as well as the support was probed by thermal desorption spectroscopy (adsorption kinetics). In addition and to the best of our knowledge, for the first time, molecular beam scattering data of larger molecules were collected for graphene (probing the adsorption dynamics). Furthermore, samples were inspected by x-ray photoelectron spectroscopy and Auger electron spectroscopy. At the measuring conditions used here, n-butane adsorption kinetics/dynamics are molecular and nonactivated. Binding energies of butane on Ru and G/Rumore » are indistinguishable within experimental uncertainty. Thus, G/Ru is “kinetically transparent.” Initial adsorption probabilities, S{sub 0}, of n-butane decrease with increasing impact energy (0.76–1.72 eV) and are adsorption temperature independent for both Ru and G/Ru, again consistent with molecular adsorption. Also, S{sub 0} of Ru and G/Ru are indistinguishable within experimental uncertainty. Thus, G/Ru is “dynamically transparent.” Coverage dependent adsorption probabilities indicate precursor effects for graphene/Ru.« less

  5. Oxidation resistant Mo-Mo2B-silica and Mo-Mo2B-silicate composites for high temperature applications

    NASA Astrophysics Data System (ADS)

    Cochran, J. K.; Daloz, W. L.; Marshall, P. E.

    2011-12-01

    Development of Mo composites based on the Mo-Si-B system has been demonstrated as a possible new route to achieving a high temperature Mobased material. In this new system, the silicide phases are replaced directly with silica or other silicate materials. These composites avoid the high ductile to brittle transition temperature observed for Mo-Si-B alloys by removing the Si that exists in solid solution in Mo at equilibrium with its silicides. A variety of compositions is tested for room temperature ductility and oxidation resistance. A system based upon Mo, Mo2B, and SrO·Al2O3·(SiO2)2 is shown to possess both ductility at 80 vol.% Mo and oxidation resistance at 60 vol.%. These composites can be produced using a powder processing approach and fired to greater than 95% theoretical density with a desirable microstructure of isolated boride and silicate phases within a ductile Mo matrix.

  6. The Ruinous Influence of Close Binary Companions on Planetary Systems

    NASA Astrophysics Data System (ADS)

    Kraus, Adam L.; Ireland, Michael; Mann, Andrew; Huber, Daniel; Dupuy, Trent J.

    2017-01-01

    The majority of solar-type stars are found in binary systems, and the dynamical influence of binary companions is expected to profoundly influence planetary systems. However, the difficulty of identifying planets in binary systems has left the magnitude of this effect uncertain; despite numerous theoretical hurdles to their formation and survival, at least some binary systems clearly host planets. We present high-resolution imaging of nearly 500 Kepler Objects of Interest (KOIs) obtained using adaptive-optics imaging and nonredundant aperture-mask interferometry on the Keck II telescope. We super-resolve some binary systems to projected separations of under 5 AU, showing that planets might form in these dynamically active environments. However, the full distribution of projected separations for our planet-host sample more broadly reveals a deep paucity of binary companions at solar-system scales. When the binary population is parametrized with a semimajor axis cutoff a cut and a suppression factor inside that cutoff S bin, we find with correlated uncertainties that inside acut = 47 +59/-23 AU, the planet occurrence rate in binary systems is only Sbin = 0.34 +0.14/-0.15 times that of wider binaries or single stars. Our results demonstrate that a fifth of all solar-type stars in the Milky Way are disallowed from hosting planetary systems due to the influence of a binary companion.

  7. The Ruinous Influence of Close Binary Companions on Planetary Systems

    NASA Astrophysics Data System (ADS)

    Kraus, Adam L.; Ireland, Michael; Mann, Andrew; Huber, Daniel; Dupuy, Trent J.

    2017-06-01

    The majority of solar-type stars are found in binary systems, and the dynamical influence of binary companions is expected to profoundly influence planetary systems. However, the difficulty of identifying planets in binary systems has left the magnitude of this effect uncertain; despite numerous theoretical hurdles to their formation and survival, at least some binary systems clearly host planets. We present high-resolution imaging of nearly 500 Kepler Objects of Interest (KOIs) obtained using adaptive-optics imaging and nonredundant aperture-mask interferometry on the Keck II telescope. We super-resolve some binary systems to projected separations of under 5 AU, showing that planets might form in these dynamically active environments. However, the full distribution of projected separations for our planet-host sample more broadly reveals a deep paucity of binary companions at solar-system scales. When the binary population is parametrized with a semimajor axis cutoff a cut and a suppression factor inside that cutoff S bin, we find with correlated uncertainties that inside acut = 47 +59/-23 AU, the planet occurrence rate in binary systems is only Sbin = 0.34+0.14/-0.15 times that of wider binaries or single stars. Our results demonstrate that a fifth of all solar-type stars in the Milky Way are disallowed from hosting planetary systems due to the influence of a binary companion.

  8. Development and Application of Operando TEM to a Ruthenium Catalyst for CO Oxidation

    NASA Astrophysics Data System (ADS)

    Miller, Benjamin Kyle

    Operando transmission electron microscopy (TEM) is an extension of in-situ TEM in which the performance of the material being observed is measured simultaneously. This is of great value, since structure-performance relationships lie at the heart of materials science. For catalyst materials, like the SiO2-supported Ru nanoparticles studied, the important performance metric, catalyst activity, is measured inside the microscope by determining the gas composition during imaging. This is accomplished by acquisition of electron energy loss spectra (EELS) of the gas in the environmental TEM while catalysis is taking place. In this work, automated methods for rapidly quantifying low-loss and core-loss EELS of gases were developed. A new sample preparation method was also established to increase catalytic conversion inside a differentially-pumped environmental TEM, and the maximum CO conversion observed was about 80%. A system for mixing gases and delivering them to the environmental TEM was designed and built, and a method for locating and imaging nanoparticles in zone axis orientations while minimizing electron dose rate was determined. After atomic resolution images of Ru nanoparticles observed during CO oxidation were obtained, the shape and surface structures of these particles was investigated. A Wulff model structure for Ru particles was compared to experimental images both by manually rotating the model, and by automatically determining a matching orientation using cross-correlation of shape signatures. From this analysis, it was determined that most Ru particles are close to Wulff-shaped during CO oxidation. While thick oxide layers were not observed to form on Ru during CO oxidation, thin RuO2 layers on the surface of Ru nanoparticles were imaged with atomic resolution for the first time. The activity of these layers is discussed in the context of the literature on the subject, which has thus far been inconclusive. We conclude that disordered oxidized ruthenium, rather than crystalline RuO2 is the most active species.

  9. Synthesis of 4‧-substituted-2,2‧;6‧,2″-terpyridine Ru(II) complexes electrochemical, fluorescence quenching and antibacterial studies

    NASA Astrophysics Data System (ADS)

    Ezhilarasu, Tamilarasu; Sathiyaseelan, Anbazhagan; Kalaichelvan, Pudupalayam Thangavelu; Balasubramanian, Sengottuvelan

    2017-04-01

    Three new Ru(II) terpyridine complexes viz. [Ru(BBtpy)2](PF6)2 [Ru(L1)] (BBtpy = 4‧-(4-benzyloxybenzaldehyde)-2,2‧:6‧,2″-terpyridine), [Ru(BMBtpy)2](PF6)2 [Ru(L2)] (BMBtpy = 4‧-(4-benzyloxy-3-methoxybenzaldehyde)-2,2‧:6‧,2″-terpyridine) and [Ru(BEBtpy)2](PF6)2 [Ru(L3)] (BEBtpy = 4‧-(4-benzyloxy-3-ethoxybenzaldehyde)-2,2‧:6‧,2″-terpyridine) have been synthesized and characterized. The MALDI-TOF/MS fragmentation pattern of [Ru(BMBtpy)2](PF6)2 complex exhibits a molecular ion peak at m/z = 987.09 [M-2PF6]2+ fragment. These Ru(II) complexes are redox active, show both metal centered oxidation and ligand centered reduction processes. The peak potential and peak current Ipa and Ipc also undergo definite shift and increase with increase in the scan rate (20-120 mV/s). The fluorescence of Ru(II) complexes [Ru(L1)], [Ru(L2)] and [Ru(L3)] are effectively quenched by 1,4-benzoquinone and 1,4-naphthoquinone in acetonitrile. The antibacterial activity of ruthenium(II) complexes were screened against four human pathogens both gram-positive bacteria (Bacillus subtilis, Staphylococcus aureus) and gram negative bacteria (Escherichia coli, Klebsiella pneumonia) by the well diffusion method. The antibacterial activity of Ru(II) complexes is comparable to that of standard antibiotics like tetracycline.

  10. Synthesis of Pd 9Ru@Pt nanoparticles for oxygen reduction reaction in acidic electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yu; Hsieh, Yu -Chi; Chang, Li -Chung

    2014-11-22

    Nanoparticles of PdRu, Pd₃Ru, and Pd₉Ru are synthesized and impregnated on carbon black via a wet chemical reflux process. X-ray diffraction patterns of the as-synthesized samples, Pd xRu/C (x=1/3/9), suggest succesful formation of alloy without presence of individual Pd and Ru nanoparticles. Images from transmission electron microscope confirm irregularly-shaped nanoparticles with average size below 3 nm. Analysis from extended X-ray absorption fine structure on both Pd and Ru K-edge absorption profiles indicate the Ru atoms are enriched on the surface of Pd xRu/C. Among these samples, the Pd₉Ru/C exhibits the strongest electrocatalytic activity for oxygen reduction reaction (ORR) in anmore » oxygen-saturated 0.1 M aqueous HClO₄ solution. Subsequently, the Pd₉Ru/C undegoes Cu under potential deposition, followed by a galvanic displacement reaction to deposit a Pt monolayer on the Pd₉Ru surface (Pd₉Ru@Pt). The Pd₉Ru@Pt reveals better ORR performance than that of Pt, reaching a mass activity of 0.38 mA μg⁻¹ Pt, as compared to that of commercially available Pt nanoparticles (0.107 mA μg⁻¹ Pt). Thus, the mechanisms responsible for the ORR enhancement are attributed to the combined effects of lattice strain and ligand interaction. In addition, this core-shell Pd₉Ru@Pt electrocatalyst represents a substantial reduction in the amount of Pt consumption and raw material cost.« less

  11. Synthesis of Pd9Ru@Pt nanoparticles for oxygen reduction reaction in acidic electrolytes

    NASA Astrophysics Data System (ADS)

    Sun, Yu; Hsieh, Yu-Chi; Chang, Li-Chung; Wu, Pu-Wei; Lee, Jyh-Fu

    2015-03-01

    Nanoparticles of PdRu, Pd3Ru, and Pd9Ru are synthesized and impregnated on carbon black via a wet chemical reflux process. X-ray diffraction patterns of the as-synthesized samples, PdxRu/C (x = 1/3/9), suggest successful formation of alloy without presence of individual Pd and Ru nanoparticles. Images from transmission electron microscope confirm irregularly-shaped nanoparticles with average size below 3 nm. Analysis from extended X-ray absorption fine structure on both Pd and Ru K-edge absorption profiles indicate the Ru atoms are enriched on the surface of PdxRu/C. Among these samples, the Pd9Ru/C exhibits the strongest electrocatalytic activity for oxygen reduction reaction (ORR) in an oxygen-saturated 0.1 M aqueous HClO4 solution. Subsequently, the Pd9Ru/C undergoes Cu under potential deposition, followed by a galvanic displacement reaction to deposit a Pt monolayer on the Pd9Ru surface (Pd9Ru@Pt). The Pd9Ru@Pt reveals better ORR performance than that of Pt, reaching a mass activity of 0.38 mA μg-1Pt, as compared to that of commercially available Pt nanoparticles (0.107 mA μg-1Pt). The mechanisms responsible for the ORR enhancement are attributed to the combined effects of lattice strain and ligand interaction. In addition, this core-shell Pd9Ru@Pt electrocatalyst represents a substantial reduction in the amount of Pt consumption and raw material cost.

  12. The high-mass star-forming core G35.2N: what have we learnt from SOFIA and ALMA observations?

    NASA Astrophysics Data System (ADS)

    Zinnecker, Hans; Sandell, Goeran

    2014-07-01

    G35.2N is a luminouos, star forming core in a filamentary cloud at a distance of 2.2 kpc. It is associated with a thermal N-S radio jet and a misaligned NE-SW CO outflow observed both with SOFIA FORCAST (30 and 40 microns, ~4" resolution; Zhang, Tan, de Buizer et al. 2013) and with ALMA band 7 (850 micron line and continuum, 0.4" resolution; Sanchez-Monge, Cesaroni, Beltran et al. 2013, 2014). The ALMA observations revealed a NW-SE Keplerian rotating disk in the CH3CN molecule (Sanchez-Monge et al.) with an enclosed protostellar mass of 18 +/- 3 Mo, whose orientation is inconsistent with the N-S radio jet, and whose protostellar mass is marginally inconsistent with the one inferred from the SED modelling (20-34 Mo, L ~ 10(5) Lo; Zhang et al.) We review the various assumptions involved in the derivation of the disk interpretation and the SED modelling. The dynamical mass could be in the form of a close binary (two 9 Mo stars, say) in which case the predicted total luminosity would be 3 x 10(4) Lo, close to the actually observed one (as opposed to the modelled one, which takes into account the flashlight effect and unmeasured radiation that escapes along a bipolar cavity). One the other hand, if the inferred higher-luminosity model is correct, the disk interpretation of ALMA rotation curve may have to be challenged, and what seems like a nice disk might be a more complex dynamical structure, such as a warped or precessing disk around a binary protostar or a different (outflow-related) velocity-structure altogether. These observations show the complexity of the interpretation of multi-wavelength observations of high-mass star forming regions when viewed with different spatial resolutions.

  13. Long-Range Intramolecular Electronic Communication in a Trinuclear Ruthenium Tropolonate Complex.

    PubMed

    Yoshida, Jun; Kuwahara, Kyohei; Suzuki, Kota; Yuge, Hidetaka

    2017-02-20

    Dinuclear and trinuclear ruthenium complexes, [Ru(trop) 2 (C 2 trop)Ru(dppe)Cp] [2b; trop = tropolonato, C 2 trop = ethynyltropolonato, dppe = 1,2-bis(diphenylphosphino)ethane] and [Ru(trop){(C 2 trop)Ru(dppe)Cp} 2 ] (3), were synthesized, and their electronic and electrochemical properties were investigated in comparison with our previously reported complex [Ru(acac) 2 (C 2 trop)Ru(dppe)Cp] (2a). The electron-donating Ru II (dppe)Cp unit and electron-accepting Ru III O 6 unit are connected by C 2 trop in these complexes. 2a incorporates acetylacetonate as an ancillary ligand, while 2b and 3 incorporate tropolonate as an ancillary ligand. Every complex, 2a, 2b, and 3, exhibits similar UV-vis-near-IR (NIR) absorption spectra, demonstrating the lack of explicit intramolecular electronic communication between the units at least in the neutral state. The weak NIR absorption in 2a further diminished upon electrochemical oxidation, indicating almost no electronic communication between the units. In contrast, 2b and 3 exhibit broad NIR absorptions upon oxidation. Additionally, 3 exhibits four stepwise redox couples in the electrochemical study, which are formally attributed to [Ru II (trop) 3 ] - /[Ru III (trop) 3 ], two [Ru II (dppe)Cp]/[Ru III (dppe)Cp] + , and [Ru III (trop) 3 ]/[Ru IV (trop) 3 ] + couples. Clear separation of the redox couples attributed to the two terminal [Ru(dppe)Cp] units demonstrates the thermodynamic stability of the intermediate oxidation states with respect to disproportionation. Further electrochemical studies using an electrolyte including perfluorinated weakly coordinating anions and density functional theory/time-dependent density functional theory calculations confirmed the effect of ancillary ligands, acetylacetonate and tropolonate. In the case of 2a, electronic delocalization over the whole complex, especially over the [Ru(acac) 2 (trop)] unit, appears to be small. In contrast, the electronic communication between [Ru(dppe)Cp] and [Ru(trop) 3 ] units in 3 seems to be enhanced upon oxidation, resulting in the long-range intramolecular electronic communication.

  14. Surface-enhanced molecularly imprinted electrochemiluminescence sensor based on Ru@SiO2 for ultrasensitive detection of fumonisin B1.

    PubMed

    Zhang, Wei; Xiong, Huiwen; Chen, Miaomiao; Zhang, Xiuhua; Wang, Shengfu

    2017-10-15

    A novel molecularly imprinted electrochemiluminescence (MIP-ECL) sensor based on Ru(bpy) 3 2+ -doped silica nanoparticles (Ru@SiO 2 NPs) is developed for highly sensitive detection of fumonisin B 1 (FB 1 ). Gold-nanoparticles (AuNPs), Ru@SiO 2 NPs with chitosan (CS) composites and a molecularly imprinted polymer (MIP) are assembled on a glassy carbon electrode (GCE) to fabricate an ECL platform step by step. AuNPs could greatly promote the ECL intensity and improve the analytical sensitivity according to the localized surface plasmon resonance (LSPR) and the electrochemical effect. In this surface-enhanced electrochemiluminescence (SEECL) system, AuNPs work as the LSPR source to improve the ECL intensity and Ru@SiO 2 NPs are used as ECL luminophores. In the phosphate buffer solution (PBS), the evident anodic ECL of Ru@SiO 2 on the above working electrode is observed in the presence of the template molecule fumonisin B 1 (FB 1 ), which could act as the coreactant of Ru@SiO 2 NPs due to the amino group of FB 1 . When the template molecules were eluted from the MIP, little coreactant was left, resulting in an apparent decrease of ECL signal. After the MIP-ECL sensor was incubated in FB 1 solution, the template molecules rebound to the MIP surface, leading to the enhancement of ECL signal again. On the basis of these results, a facile MIP-ECL sensor has been successfully fabricated, which exhibited a linear range from 0.001 to 100ngmL -1 with a detection limit of 0.35pgmL -1 for FB 1 . Moreover, the proposed MIP-ECL sensor displayed an excellent application in real samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Particle size dependence of CO tolerance of anode PtRu catalysts for polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Yamanaka, Toshiro; Takeguchi, Tatsuya; Wang, Guoxiong; Muhamad, Ernee Noryana; Ueda, Wataru

    An anode catalyst for a polymer electrolyte fuel cell must be CO-tolerant, that is, it must have the function of hydrogen oxidation in the presence of CO, because hydrogen fuel gas generated by the steam reforming process of natural gas contains a small amount of CO. In the present study, PtRu/C catalysts were prepared with control of the degree of Pt-Ru alloying and the size of PtRu particles. This control has become possible by a new method of heat treatment at the final step in the preparation of catalysts. The CO tolerances of PtRu/C catalysts with the same degree of Pt-Ru alloying and with different average sizes of PtRu particles were thus compared. Polarization curves were obtained with pure H 2 and CO/H 2 (CO concentrations of 500-2040 ppm). It was found that the CO tolerance of highly dispersed PtRu/C (high dispersion (HD)) with small PtRu particles was much higher than that of poorly dispersed PtRu/C (low dispersion (LD)) with large metal particles. The CO tolerance of PtRu/C (HD) was higher than that of any commercial PtRu/C. The high CO tolerance of PtRu/C (HD) is thought to be due to efficient concerted functions of Pt, Ru, and their alloy.

  16. Nanoparticle Precipitation in Irradiated and Annealed Ceria Doped with Metals for Emulation of Spent Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Weilin; Conroy, Michele A.; Kruska, Karen

    Epsilon alloy precipitates have been observed with varied compositions and sizes in spent nuclear fuels, such as UO2. Presence of the inclusions, along with other oxide precipitates, gas bubbles and irradiation-induced structural defects, can significantly degrade the physical properties of the fuel. To predict fuel performance, a fundamental study of the precipitation processes is needed. This study uses ceria (CeO2) as a surrogate for UO2. Polycrystalline CeO2 films doped with Mo, Ru, Rh, Pd and Re (surrogate for Tc) were grown at 823 K using pulsed laser deposition, irradiated at 673 K with He+ ions, and subsequently annealed at highermore » temperatures. A number of methods, including transmission electron microscopy and atom probe tomography, were applied to characterize the samples. The results indicate that there is a uniform distribution of the doped metals in the as-grown CeO2 film. Pd particles of ~3 nm in size appear near dislocation edges after He+ ion irradiation to ~13 dpa. Thermal annealing at 1073 K in air leads to formation of precipitates with Mo and Pd around grain boundaries. Further annealing at 1373 K produces 70 nm sized precipitates with small grains at cavities.« less

  17. Growth of metal oxide nanowires from supercooled liquid nanodroplets.

    PubMed

    Kim, Myung Hwa; Lee, Byeongdu; Lee, Sungsik; Larson, Christopher; Baik, Jeong Min; Yavuz, Cafer T; Seifert, Sönke; Vajda, Stefan; Winans, Randall E; Moskovits, Martin; Stucky, Galen D; Wodtke, Alec M

    2009-12-01

    Nanometer-sized liquid droplets formed at temperatures below the bulk melting point become supercooled as they grow through Ostwald ripening or coalescence and can be exploited to grow nanowires without any catalyst. We used this simple approach to synthesize a number of highly crystalline metal oxide nanowires in a chemical or physical vapor deposition apparatus. Examples of nanowires made in this way include VO(2), V(2)O(5), RuO(2), MoO(2), MoO(3), and Fe(3)O(4), some of which have not been previously reported. Direct evidence of this new mechanism of nanowire growth is found from in situ 2-dimensional GISAXS (grazing incidence small angle X-ray scattering) measurements of VO(2) nanowire growth, which provides quantitative information on the shapes and sizes of growing nanowires as well as direct evidence of the presence of supercooled liquid droplets. We observe dramatic changes in nanowire growth by varying the choice of substrate, reflecting the influence of wetting forces on the supercooled nanodroplet shape and mobility as well as substrate-nanowire lattice matching on the definition of nanowire orientation. Surfaces with defects can also be used to pattern the growth of the nanowires. The simplicity of this synthesis concept suggests it may be rather general in its application.

  18. The disruption of multiplanet systems through resonance with a binary orbit.

    PubMed

    Touma, Jihad R; Sridhar, S

    2015-08-27

    Most exoplanetary systems in binary stars are of S-type, and consist of one or more planets orbiting a primary star with a wide binary stellar companion. Planetary eccentricities and mutual inclinations can be large, perhaps forced gravitationally by the binary companion. Earlier work on single planet systems appealed to the Kozai-Lidov instability wherein a sufficiently inclined binary orbit excites large-amplitude oscillations in the planet's eccentricity and inclination. The instability, however, can be quenched by many agents that induce fast orbital precession, including mutual gravitational forces in a multiplanet system. Here we report that orbital precession, which inhibits Kozai-Lidov cycling in a multiplanet system, can become fast enough to resonate with the orbital motion of a distant binary companion. Resonant binary forcing results in dramatic outcomes ranging from the excitation of large planetary eccentricities and mutual inclinations to total disruption. Processes such as planetary migration can bring an initially non-resonant system into resonance. As it does not require special physical or initial conditions, binary resonant driving is generic and may have altered the architecture of many multiplanet systems. It can also weaken the multiplanet occurrence rate in wide binaries, and affect planet formation in close binaries.

  19. IMPACT OF Ce DOPING ON THE MAGNETIC AND TRANSPORT PROPERTIES OF Y1-xCexSr2Ru0.9Cu2.1O7.9; x = 0.05 AND 0.1

    NASA Astrophysics Data System (ADS)

    Balamurugan, S.

    2012-11-01

    The magnetic and transport properties of lightly Ce doped, Y1-xCexSr2Ru0.9Cu2.1 O7.9(x = 0.05 and 0.1) samples have been studied and their results are compared with the pristine rutheno-cuprate, YSr2Ru0.9Cu2.1O7.9. The electron doping due to Ce4+ for Y3+ ion impacts on the physical properties of the present system. The tetragonal stabilized samples exhibit magneto superconducting properties under zero field cooled condition (H = 10 Oe) and the diamagnetic onset transition, Td shift slightly towards higher temperature with the increase of "x". Weak antiferromagnetic like hysteresis curves are seen for these samples at 2 K in the magnetic field strength up to ±10 kOe and the magnetization moment, M(μB/Ru) decreases with increase of "x". While the magnetic property of the present system is due to canted Ru moments, the superconducting signal originates from CuO2 plane. Through electrical resistivity measurements we observe that none of the samples exhibit bulk superconductivity down to 2 K. However the x = 0.05 sample reveals lowest resistivity in the entire temperature range than x = 0 and 0.1 samples. The isothermal magnetoresistance, MR(H) measured at different temperatures vary with tuning of "x". While x = 0.1 doped sample shows lower -MR( 8%), the pristine sample exhibits maximum -MR(45%) at 2 K under ±90 kOe field condition.

  20. Ultrasensitive electrochemiluminescent aptasensor for ochratoxin A detection with the loop-mediated isothermal amplification.

    PubMed

    Yuan, Yali; Wei, Shiqiang; Liu, Guangpeng; Xie, Shunbi; Chai, Yaqin; Yuan, Ruo

    2014-02-06

    In this study, we for the first time presented an efficient, accurate, rapid, simple and ultrasensitive detection system for small molecule ochratoxin A (OTA) by using the integration of loop-mediated isothermal amplification (LAMP) technique and subsequently direct readout of LAMP amplicons with a signal-on electrochemiluminescent (ECL) system. Firstly, the dsDNA composed by OTA aptamer and its capture DNA were immobilized on the electrode. After the target recognition, the OTA aptamer bond with target OTA and subsequently left off the electrode, which effectively decreased the immobilization amount of OTA aptamer on electrode. Then, the remaining OTA aptamers on the electrode served as inner primer to initiate the LAMP reaction. Interestingly, the LAMP amplification was detected by monitoring the intercalation of DNA-binding Ru(phen)3(2+) ECL indictors into newly formed amplicons with a set of integrated electrodes. The ECL indictor Ru(phen)3(2+) binding to amplicons caused the reduction of the ECL intensity due to the slow diffusion of Ru(phen)3(2+)-amplicons complex to the electrode surface. Therefore, the presence of more OTA was expected to lead to the release of more OTA aptamer, which meant less OTA aptamer remained on electrode for producing LAMP amplicons, resulting in less Ru(phen)3(2+) interlaced into the formed amplicons within a fixed Ru(phen)3(2+) amount with an obviously increased ECL signal input. As a result, a detection limit as low as 10 fM for OTA was achieved. The aptasensor also has good reproducibility and stability. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. The effect of coating patterns with spinel-based investment on the castability and porosity of titanium cast into three phosphate-bonded investments.

    PubMed

    Pieralini, Anelise R F; Benjamin, Camila M; Ribeiro, Ricardo Faria; Scaf, Gulnara; Adabo, Gelson Luis

    2010-10-01

    This study evaluated the effect of pattern coating with spinel-based investment Rematitan Ultra (RU) on the castability and internal porosity of commercially pure (CP) titanium invested into phosphate-bonded investments. The apparent porosity of the investment was also measured. Square patterns (15 × 15 × 0.3 mm(3)) were either coated with RU, or not and invested into the phosphate-bonded investments: Rematitan Plus (RP), Rema Exakt (RE), Castorit Super C (CA), and RU (control group). The castings were made in an Ar-arc vacuum-pressure machine. The castability area (mm(2) ) was measured by an image-analysis system (n = 10). For internal porosity, the casting (12 × 12 × 2 mm(3) ) was studied by the X-ray method, and the projected porous area percentage was measured by an image-analysis system (n = 10). The apparent porosity of the investment (n = 10) was measured in accordance with the ASTM C373-88 standard. Analysis of variance (One-way ANOVA) of castability was significant, and the Tukey test indicated that RU had the highest mean but the investing technique with coating increased the castability for all phosphate-bonded investments. The analysis of the internal porosity of the cast by the nonparametric test demonstrated that the RP, RE, and CA with coating and RP without coating did not differ from the control group (RU), while the CA and RE casts without coating were more porous. The one-way ANOVA of apparent porosity of the investment was significant, and the Tukey test showed that the means of RU (36.10%) and CA (37.22%) were higher than those of RP (25.91%) and RE (26.02%). Pattern coating with spinel-based material prior to phosphate-bonded investments can influence the castability and the internal porosity of CP Ti. © 2010 by The American College of Prosthodontists.

  2. Unipro UGENE: a unified bioinformatics toolkit.

    PubMed

    Okonechnikov, Konstantin; Golosova, Olga; Fursov, Mikhail

    2012-04-15

    Unipro UGENE is a multiplatform open-source software with the main goal of assisting molecular biologists without much expertise in bioinformatics to manage, analyze and visualize their data. UGENE integrates widely used bioinformatics tools within a common user interface. The toolkit supports multiple biological data formats and allows the retrieval of data from remote data sources. It provides visualization modules for biological objects such as annotated genome sequences, Next Generation Sequencing (NGS) assembly data, multiple sequence alignments, phylogenetic trees and 3D structures. Most of the integrated algorithms are tuned for maximum performance by the usage of multithreading and special processor instructions. UGENE includes a visual environment for creating reusable workflows that can be launched on local resources or in a High Performance Computing (HPC) environment. UGENE is written in C++ using the Qt framework. The built-in plugin system and structured UGENE API make it possible to extend the toolkit with new functionality. UGENE binaries are freely available for MS Windows, Linux and Mac OS X at http://ugene.unipro.ru/download.html. UGENE code is licensed under the GPLv2; the information about the code licensing and copyright of integrated tools can be found in the LICENSE.3rd_party file provided with the source bundle.

  3. A New Class of Ternary Compound for Lithium-Ion Battery: from Composite to Solid Solution.

    PubMed

    Wang, Jiali; Wu, Hailong; Cui, Yanhua; Liu, Shengzhou; Tian, Xiaoqing; Cui, Yixiu; Liu, Xiaojiang; Yang, Yin

    2018-02-14

    Searching for high-performance cathode materials is a crucial task to develop advanced lithium-ion batteries (LIBs) with high-energy densities for electrical vehicles (EVs). As a promising lithium-rich material, Li 2 MnO 3 delivers high capacity over 200 mAh g -1 but suffers from poor structural stability and electronic conductivity. Replacing Mn 4+ ions by relatively larger Sn 4+ ions is regarded as a possible strategy to improve structural stability and thus cycling performance of Li 2 MnO 3 material. However, large difference in ionic radii of Mn 4+ and Sn 4+ ions leads to phase separation of Li 2 MnO 3 and Li 2 SnO 3 during high-temperature synthesis. To prepare solid-solution phase of Li 2 MnO 3 -Li 2 SnO 3 , a buffer agent of Ru 4+ , whose ionic radius is in between that of Mn 4+ and Sn 4+ ions, is introduced to assist the formation of a single solid-solution phase. The results show that the Li 2 RuO 3 -Li 2 MnO 3 -Li 2 SnO 3 ternary system evolves from mixed composite phases into a single solid-solution phase with increasing Ru content. Meanwhile, discharge capacity of this ternary system shows significantly increase at the transformation point which is ascribed to the improvement of Li + /e - transportation kinetics and anionic redox chemistry for solid-solution phase. The role of Mn/Sn molar ratio of Li 2 RuO 3 -Li 2 MnO 3 -Li 2 SnO 3 ternary system has also been studied. It is revealed that higher Sn content benefits cycling stability of the system because Sn 4+ ions with larger sizes could partially block the migration of Mn 4+ and Ru 4+ from transition metal layer to Li layer, thus suppressing structural transformation of the system from layered-to-spinel phase. These findings may enable a new route for exploring ternary or even quaternary lithium-rich cathode materials for LIBs.

  4. Terrestrial Planet Formation in Binary Star Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Quintana, Elisa V.; Chambers, John; Duncan, Martin J.; Adams, Fred

    2003-01-01

    Most stars reside in multiple star systems; however, virtually all models of planetary growth have assumed an isolated single star. Numerical simulations of the collapse of molecular cloud cores to form binary stars suggest that disks will form within such systems. Observations indirectly suggest disk material around one or both components within young binary star systems. If planets form at the right places within such circumstellar disks, they can remain in stable orbits within the binary star systems for eons. We are simulating the late stages of growth of terrestrial planets within binary star systems, using a new, ultrafast, symplectic integrator that we have developed for this purpose. We show that the late stages of terrestrial planet formation can indeed take place in a wide variety of binary systems and we have begun to delineate the range of parameter space for which this statement is true. Results of our initial simulations of planetary growth around each star in the alpha Centauri system and other 'wide' binary systems, as well as around both stars in very close binary systems, will be presented.

  5. When ruthenia met titania: Achieving extraordinary catalytic activity at low temperature by nanostructuring of oxides

    DOE PAGES

    Graciani, J.; Stacchiola, D.; Yang, F.; ...

    2015-09-09

    Nanostructured RuO x/TiO 2(110) catalysts have a remarkable catalytic activity for CO oxidation at temperatures in the range of 350–375 K. Furthermore, the RuO 2(110) surface has no activity. The state-of-the-art DFT calculations indicate that the main reasons for such an impressive improvement in the catalytic activity are: (i) a decrease of the diffusion barrier of adsorbed O atoms by around 40%, from 1.07 eV in RuO 2(110) to 0.66 eV in RuO x/TiO 2(110), which explains the shift of the activity to lower temperatures and (ii) a lowering of the barrier by 20% for the association of adsorbed COmore » and O species to give CO 2 (the main barrier for the CO oxidation reaction) passing from around 0.7 eV in RuO 2(110) to 0.55 eV in RuO x/TiO 2(110). We show that the catalytic properties of ruthenia are strongly modified when supported as nanostructures on titania, attaining higher activity at temperatures 100 K lower than that needed for pure ruthenia. As in other systems consisting of ceria nanostructures supported on titania, nanostructured ruthenia shows strongly modified properties compared to the pure oxide, consolidating the fact that the nanostructuring of oxides is a main way to attain higher catalytic activity at lower temperatures.« less

  6. Substituent-directed structural and physicochemical controls of diruthenium catecholate complexes with ligand-unsupported Ru-Ru bonds.

    PubMed

    Chang, Ho-Chol; Mochizuki, Katsunori; Kitagawa, Susumu

    2005-05-30

    A family of diruthenium complexes with ligand-unsupported Ru-Ru bonds has been systematically synthesized, and their crystal structures and physical properties have been examined. A simple, useful reaction between Ru2(OAc)4Cl (OAc- = acetate) and catechol derivatives in the presence of bases afforded a variety of diruthenium complexes, generally formulated as [Na(n){Ru2(R4Cat)4}] (n = 2 or 3; R4 = -F4, -Cl4, -Br4, -H4, -3,5-di-t-Bu, and -3,6-di-t-Bu; Cat(2-) = catecholate). The most characteristic feature of the complexes is the formation of short ligand-unsupported Ru-Ru bonds (2.140-2.273 A). These comprehensive studies were carried out to evaluate the effects of the oxidation states and the substituents governing the molecular structures and physicochemical properties. The Ru-Ru bond distances, rotational conformations, and bending structures of the complexes were successfully varied. The results presented in this manuscript clearly demonstrate that the complexes with ligand-unsupported Ru-Ru bonds can sensitively respond to redox reactions and ligand substituents on the basis of the greater degree of freedom in their molecular structures.

  7. Heterobimetallic Nitrido Complexes of Group 8 Metalloporphyrins.

    PubMed

    Cheung, Wai-Man; Chiu, Wai-Hang; de Vere-Tucker, Matthew; Sung, Herman H-Y; Williams, Ian D; Leung, Wa-Hung

    2017-05-15

    Heterobimetallic nitrido porphyrin complexes with the [(L)(por)M-N-M'(L OEt )Cl 2 ] formula {por 2- = 5,10,15,20-tetraphenylporphyrin (TPP 2- ) or 5,10,15,20-tetra(p-tolyl)porphyrin (TTP 2- ) dianion; L OEt - = [Co(η 5 -C 5 H 5 ){P(O)(OEt) 2 } 3 ] - ; M = Fe, Ru, or Os; M' = Ru or Os; L = H 2 O or pyridine} have been synthesized, and their electrochemistry has been studied. Treatment of trans-[Fe(TPP)(py) 2 ] (py = pyridine) with Ru(VI) nitride [Ru(L OEt )(N)Cl 2 ] (1) afforded Fe/Ru μ-nitrido complex [(py)(TPP)Fe(μ-N)Ru(L OEt )Cl 2 ] (2). Similarly, Fe/Os analogue [(py)(TPP)Fe(μ-N)Os(L OEt )Cl 2 ] (3) was obtained from trans-[Fe(TPP)(py) 2 ] and [Os(L OEt )(N)Cl 2 ]. However, no reaction was found between trans-[Fe(TPP)(py) 2 ] and [Re(L OEt )(N)Cl(PPh 3 )]. Treatment of trans-[M(TPP)(CO)(EtOH)] with 1 afforded μ-nitrido complexes [(H 2 O)(TPP)M(μ-N)Ru(L OEt )Cl 2 ] [M = Ru (4a) or Os (5)]. TTP analogue [(H 2 O)(TTP)Ru(μ-N)Ru(L OEt )Cl 2 ] (4b) was prepared similarly from trans-[Ru(TTP)(CO)(EtOH)] and 1. Reaction of [(H 2 O)(por)M(μ-N)M(L OEt )Cl 2 ] with pyridine gave adducts [(py)(por)M(μ-N)Ru(L OEt )Cl 2 ] [por = TTP, and M = Ru (6); por = TPP, and M = Os (7)]. The diamagnetism and short (por)M-N(nitride) distances in 2 [Fe-N, 1.683(3) Å] and 4b [Ru-N, 1.743(3) Å] are indicative of the M IV ═N═M' IV bonding description. The cyclic voltammograms of the Fe/Ru (2) and Ru/Ru (4b) complexes in CH 2 Cl 2 displayed oxidation couples at approximately +0.29 and +0.35 V versus Fc +/0 (Fc = ferrocene) that are tentatively ascribed to the oxidation of the {L OEt Ru} and {Ru(TTP)} moieties, respectively, whereas the Fe/Os (3) and Os/Ru (5) complexes exhibited Os-centered oxidation at approximately -0.06 and +0.05 V versus Fc +/0 , respectively. The crystal structures of 2 and 4b have been determined.

  8. For cermet inert anode containing oxide and metal phases useful for the electrolytic production of metals

    DOEpatents

    Ray, Siba P.; Liu, Xinghua; Weirauch, Douglas A.

    2002-01-01

    A cermet inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode comprises a ceramic phase including an oxide of Ni, Fe and M, where M is at least one metal selected from Zn, Co, Al, Li, Cu, Ti, V, Cr, Zr, Nb, Ta, W, Mo, Hf and rare earths, preferably Zn and/or Co. Preferred ceramic compositions comprise Fe.sub.2 O.sub.3, NiO and ZnO or CoO. The cermet inert anode also comprises a metal phase such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. A preferred metal phase comprises Cu and Ag. The cermet inert anodes may be used in electrolytic reduction cells for the production of commercial purity aluminum as well as other metals.

  9. Anode materials for lithium ion batteries

    DOEpatents

    Abouimrane, Ali; Amine, Khalil

    2015-06-09

    A composite material has general Formula (1-x)J-(x)Q wherein: J is a metal carbon alloy of formula Sn.sub.zSi.sub.z'Met.sub.wMet'.sub.w'C.sub.t; Q is a metal oxide of formula A.sub..gamma.M.sub..alpha.M'.sub..alpha.'O.sub..beta.; A is Li, Na, or K; M, M', Met, and Met' are individually Ge, Mo, Al, Ga, As, Sb, Te, Ti, Ta, Zr, Ca, Mg, Sr, Ba, Li, Na, K, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Rt, Ru or Cd; 0

  10. Observation of New Neutron-rich Isotopes among Fission Fragments from In-flight Fission of 345 MeV/nucleon 238U: Search for New Isotopes Conducted Concurrently with Decay Measurement Campaigns

    NASA Astrophysics Data System (ADS)

    Shimizu, Yohei; Kubo, Toshiyuki; Fukuda, Naoki; Inabe, Naohito; Kameda, Daisuke; Sato, Hiromi; Suzuki, Hiroshi; Takeda, Hiroyuki; Yoshida, Koichi; Lorusso, Giuseppe; Watanabe, Hiroshi; Simpson, Gary S.; Jungclaus, Andrea; Baba, Hidetada; Browne, Frank; Doornenbal, Pieter; Gey, Guillaunme; Isobe, Tadaaki; Li, Zhihuan; Nishimura, Shunji; Söderström, Pär-Anders; Sumikama, Toshiyuki; Taprogge, Jan; Vajta, Zsolt; Wu, Jin; Xu, Zhengyu; Odahara, Atsuko; Yagi, Ayumi; Nishibata, Hiroki; Lozeva, Radomira; Moon, Changbum; Jung, HyoSoon

    2018-01-01

    The search for new isotopes using the in-flight fission of a 238U beam has been conducted concurrently with decay measurements, during the so-called EURICA campaigns, at the RIKEN Nishina Center RI Beam Factory. Fission fragments were analyzed and identified in flight using the BigRIPS separator. We have identified the following 36 new neutron-rich isotopes: 104Rb, 113Zr, 116Nb, 118,119Mo, 121,122Tc, 125Ru, 127,128Rh, 129,130,131Pd, 132Ag, 134Cd, 136,137In, 139,140Sn, 141,142Sb, 144,145Te, 146,147I, 149,150Xe, 149,150,151Cs, 153,154Ba, and 154,155,156,157La.

  11. Catalytic Enantioselective Olefin Metathesis in Natural Product Synthesis. Chiral Metal-Based Complexes that Deliver High Enantioselectivity and More

    PubMed Central

    Malcolmson, Steven J.; Meek, Simon J.; Zhugralin, Adil R.

    2012-01-01

    Chiral olefin metathesis catalysts enable chemists to access enantiomerically enriched small molecules with high efficiency; synthesis schemes involving such complexes can be substantially more concise than those that would involve enantiomerically pure substrates and achiral Mo alkylidenes or Ru-based carbenes. The scope of research towards design and development of chiral catalysts is not limited to discovery of complexes that are merely the chiral versions of the related achiral variants. A chiral olefin metathesis catalyst, in addition to furnishing products of high enantiomeric purity, can offer levels of efficiency, product selectivity and/or olefin stereoselectivity that are unavailable through the achiral variants. Such positive attributes of chiral catalysts (whether utilized in racemic or enantiomerically enriched form) should be considered as general, applicable to other classes of transformations. PMID:19967680

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susarla, Sandhya; Kochat, Vidya; Kutana, Alex

    Transition metal dichalcogenide (TMD) alloys form a broad class of two-dimensional (2D) layered materials with tunable bandgaps leading to interesting optoelectronic applications. In the bottom-up approach of building these atomically thin materials, atomic doping plays a crucial role. Here we demonstrate a single step CVD (chemical vapor deposition) growth procedure for obtaining binary alloys and heterostructures by tuning atomic composition. We show that a minute doping of tin during the growth phase of the Mo 1–xW xS 2 alloy system leads to formation of lateral and vertical heterostructure growth. High angle annular dark field scanning transmission electron microscopy (HAADF-STEM) imagingmore » and density functional theory (DFT) calculations also support the modified stacking and growth mechanism due to the nonisomorphous Sn substitution. Our experiments demonstrate the possibility of growing heterostructures of TMD alloys whose spectral responses can be desirably tuned for various optoelectronic applications.« less

  13. Fractionation of the platinum-group elments and Re during crystallization of basalt in Kilauea Iki Lava Lake, Hawaii

    USGS Publications Warehouse

    Pitcher, L.; Helz, R.T.; Walker, R.J.; Piccoli, P.

    2009-01-01

    Kilauea Iki lava lake formed during the 1959 summit eruption of Kilauea Volcano, then crystallized and differentiated over a period of 35??years. It offers an opportunity to evaluate the fractionation behavior of trace elements in a uniquely well-documented basaltic system. A suite of 14 core samples recovered from 1967 to 1981 has been analyzed for 5 platinum-group elements (PGE: Ir, Os, Ru, Pt, Pd), plus Re. These samples have MgO ranging from 2.4 to 26.9??wt.%, with temperatures prior to quench ranging from 1140????C to ambient (110????C). Five eruption samples were also analyzed. Osmium and Ru concentrations vary by nearly four orders of magnitude (0.0006-1.40??ppb for Os and 0.0006-2.01??ppb for Ru) and are positively correlated with MgO content. These elements behaved compatibly during crystallization, mostly likely being concentrated in trace phases (alloy or sulfide) present in olivine phenocrysts or included chromite. Iridium also correlates positively with MgO, although less strongly than Os and Ru. The somewhat poorer correlation for Ir, compared with Os and Ru, may reflect variable loss of Ir as volatile IrF6 in some of the most magnesian samples. Rhenium is negatively correlated with MgO, behaving as an incompatible trace element. Its behavior in the lava lake is complicated by apparent volatile loss of Re, as suggested by a decrease in Re concentration with time of quenching for lake samples vs. eruption samples. Platinum and Pd concentrations are negatively, albeit weakly, correlated with MgO, so these elements were modestly incompatible during crystallization of the major silicate phases. Palladium contents peaked before precipitation of immiscible sulfide liquid, however, and decline sharply in the most differentiated samples. In contrast, Pt appears to have been unaffected by sulfide precipitation. Microprobe data confirm that Pd entered the sulfide liquid before Re, and that Pt is not strongly chalcophile in this system. Occasional high Pt values in both eruption and lava lake samples suggest the presence of unevenly distributed, unidentified Pt-rich trace phases in some Kilauea Iki materials. Estimated mineral (olivine + chromite)/melt D values for Os, Ir, Ru and Pt for equilibrium crystallization for samples from ~ 7 to 27??wt.% MgO are 26, 8.2, 19 and 0.55, respectively. These Os, Ir and Ru estimates are somewhat higher than previous estimates for similar systems. If fractional crystallization is instead assumed, D values are much more similar. Results confirm many prior observations in other mafic systems that olivine (together with included phases) has a major effect on absolute and relative abundances of Re and the PGE. The relatively linear correlations between these elements and MgO potentially permit accurate estimation of the concentrations of these elements in the primary melts of comparable systems, especially in instances where the MgO content of the primary melt is well constrained. ?? 2008 Elsevier B.V.

  14. Equilibrium points and associated periodic orbits in the gravity of binary asteroid systems: (66391) 1999 KW4 as an example

    NASA Astrophysics Data System (ADS)

    Shi, Yu; Wang, Yue; Xu, Shijie

    2018-04-01

    The motion of a massless particle in the gravity of a binary asteroid system, referred as the restricted full three-body problem (RF3BP), is fundamental, not only for the evolution of the binary system, but also for the design of relevant space missions. In this paper, equilibrium points and associated periodic orbit families in the gravity of a binary system are investigated, with the binary (66391) 1999 KW4 as an example. The polyhedron shape model is used to describe irregular shapes and corresponding gravity fields of the primary and secondary of (66391) 1999 KW4, which is more accurate than the ellipsoid shape model in previous studies and provides a high-fidelity representation of the gravitational environment. Both of the synchronous and non-synchronous states of the binary system are considered. For the synchronous binary system, the equilibrium points and their stability are determined, and periodic orbit families emanating from each equilibrium point are generated by using the shooting (multiple shooting) method and the homotopy method, where the homotopy function connects the circular restricted three-body problem and RF3BP. In the non-synchronous binary system, trajectories of equivalent equilibrium points are calculated, and the associated periodic orbits are obtained by using the homotopy method, where the homotopy function connects the synchronous and non-synchronous systems. Although only the binary (66391) 1999 KW4 is considered, our methods will also be well applicable to other binary systems with polyhedron shape data. Our results on equilibrium points and associated periodic orbits provide general insights into the dynamical environment and orbital behaviors in proximity of small binary asteroids and enable the trajectory design and mission operations in future binary system explorations.

  15. Bipyrimidine ruthenium(II) arene complexes: structure, reactivity and cytotoxicity.

    PubMed

    Betanzos-Lara, Soledad; Novakova, Olga; Deeth, Robert J; Pizarro, Ana M; Clarkson, Guy J; Liskova, Barbora; Brabec, Viktor; Sadler, Peter J; Habtemariam, Abraha

    2012-10-01

    The synthesis and characterization of complexes [(η(6)-arene)Ru(N,N')X][PF(6)], where arene is para-cymene (p-cym), biphenyl (bip), ethyl benzoate (etb), hexamethylbenzene (hmb), indane (ind) or 1,2,3,4-tetrahydronaphthalene (thn), N,N' is 2,2'-bipyrimidine (bpm) and X is Cl, Br or I, are reported, including the X-ray crystal structures of [(η(6)-p-cym)Ru(bpm)I][PF(6)], [(η(6)-bip)Ru(bpm)Cl][PF(6)], [(η(6)-bip)Ru(bpm)I][PF(6)] and [(η(6)-etb)Ru(bpm)Cl][PF(6)]. Complexes in which N,N' is 1,10-phenanthroline (phen), 1,10-phenanthroline-5,6-dione or 4,7-diphenyl-1,10-phenanthroline (bathophen) were studied for comparison. The Ru(II) arene complexes undergo ligand-exchange reactions in aqueous solution at 310 K; their half-lives for hydrolysis range from 14 to 715 min. Density functional theory calculations on [(η(6)-p-cym)Ru(bpm)Cl][PF(6)], [(η(6)-p-cym)Ru(bpm)Br][PF(6)], [(η(6)-p-cym)Ru(bpm)I][PF(6)], [(η(6)-bip)Ru(bpm)Cl][PF(6)], [(η(6)-bip)Ru(bpm)Br][PF(6)] and [(η(6)-bip)Ru(bpm)I][PF(6)] suggest that aquation occurs via an associative pathway and that the reaction is thermodynamically favourable when the leaving ligand is I > Br ≈ Cl. pK (a)* values for the aqua adducts of the complexes range from 6.9 to 7.32. A binding preference for 9-ethylguanine (9-EtG) compared with 9-ethyladenine (9-EtA) was observed for [(η(6)-p-cym)Ru(bpm)Cl][PF(6)], [(η(6)-hmb)Ru(bpm)Cl](+), [(η(6)-ind)Ru(bpm)Cl](+), [(η(6)-thn)Ru(bpm)Cl](+), [(η(6)-p-cym)Ru(phen)Cl](+) and [(η(6)-p-cym)Ru(bathophen)Cl](+) in aqueous solution at 310 K. The X-ray crystal structure of the guanine complex [(η(6)-p-cym)Ru(bpm)(9-EtG-N7)][PF(6)](2) shows multiple hydrogen bonding. Density functional theory calculations show that the 9-EtG adducts of all complexes are thermodynamically preferred compared with those of 9-EtA. However, the bmp complexes are inactive towards A2780 human ovarian cancer cells. Calf thymus DNA interactions for [(η(6)-p-cym)Ru(bpm)Cl][PF(6)] and [(η(6)-p-cym)Ru(phen)Cl][PF(6)] consist of weak coordinative, intercalative and monofunctional coordination. Binding to biomolecules such as glutathione may play a role in deactivating the bpm complexes.

  16. Probing the formation mechanism and chemical states of carbon-supported Pt-Ru nanoparticles by in situ X-ray absorption spectroscopy.

    PubMed

    Hwang, Bing Joe; Chen, Ching-Hsiang; Sarma, Loka Subramanyam; Chen, Jiun-Ming; Wang, Guo-Rung; Tang, Mau-Tsu; Liu, Din-Goa; Lee, Jyh-Fu

    2006-04-06

    The understanding of the formation mechanism of nanoparticles is essential for the successful particle design and scaling-up process. This paper reports findings of an X-ray absorption spectroscopy (XAS) investigation, comprised of X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) regions, to understand the mechanism of the carbon-supported Pt-Ru nanoparticles (NPs) formation process. We have utilized Watanabe's colloidal reduction method to synthesize Pt-Ru/C NPs. We slightly modified the Watanabe method by introducing a mixing and heat treatment step of Pt and Ru oxidic species at 100 degrees C for 8 h with a view to enhance the mixing efficiency of the precursor species, thereby one can achieve improved homogeneity and atomic distribution in the resultant Pt-Ru/C NPs. During the reduction process, in situ XAS measurements allowed us to follow the evolution of Pt and Ru environments and their chemical states. The Pt LIII-edge XAS indicates that when H2PtCl6 is treated with NaHSO3, the platinum compound is found to be reduced to a Pt(II) form corresponding to the anionic complex [Pt(SO3)4]6-. Further oxidation of this anionic complex with hydrogen peroxide forms dispersed [Pt(OH)6]2- species. Analysis of Ru K-edge XAS results confirms the reduction of RuIIICl3 to [RuII(OH)4]2- species upon addition of NaHSO3. Addition of hydrogen peroxide to [RuII(OH)4]2- causes dehydrogenation and forms RuOx species. Mixing of [Pt(OH)6]2- and RuOx species and heat treatment at 100 degrees C for 8 h produced a colloidal sol containing both Pt and Ru metallic as well as ionic contributions. The reduction of this colloidal mixture at 300 degrees C in hydrogen atmosphere for 2 h forms Pt-Ru nanoparticles as indicated by the presence of Pt and Ru atoms in the first coordination shell. Determination of the alloying extent or atomic distribution of Pt and Ru atoms in the resulting Pt-Ru/C NPs reveals that the alloying extent of Ru (JRu) is greater than that of the alloying extent of Pt (JPt). The XAS results support the Pt-rich core and Ru-rich shell structure with a considerable amount of segregation in the Pt region and with less segregation in the Ru region for the obtained Pt-Ru/C NPs.

  17. Investigation of the Vortex States of Sr2RuO4-Ru Eutectic Microplates Using DC-SQUIDs

    NASA Astrophysics Data System (ADS)

    Sakuma, Daisuke; Nago, Yusuke; Ishiguro, Ryosuke; Kashiwaya, Satoshi; Nomura, Shintaro; Kono, Kimitoshi; Maeno, Yoshiteru; Takayanagi, Hideaki

    2017-11-01

    We investigated the magnetic properties of a Sr2RuO4-Ru eutectic microplate containing a single Ru-inclusion using micrometer-sized DC-SQUIDs (direct-current superconducting quantum interference devices). A phase frustration at the interface between chiral p-wave superconducting Sr2RuO4 and s-wave superconducting Ru is expected to cause novel magnetic vortex states such as the spontaneous Ru-center vortex under zero magnetic field [as reported by H. Kaneyasu and M. Sigrist, J. Phys. Soc. Jpn. 79, 053706 (2010)]. Our experimental results show no positive evidence for such a spontaneous vortex state. However, in an applied field, an abrupt change in the magnetic flux distribution was observed at a superconducting transition of Ru. The flux distribution is clarified by comparing our experimental results with electromagnetic field simulations in our sample geometry. We discuss the transition of the vortex states and the superconducting coupling at the Sr2RuO4/Ru interface.

  18. The Impact of Binary Companions on Planetary Systems

    NASA Astrophysics Data System (ADS)

    Kraus, Adam L.; Ireland, Michael; Dupuy, Trent; Mann, Andrew; Huber, Daniel

    2018-01-01

    The majority of solar-type stars are found in binary systems, and the dynamical influence of binary companions is expected to profoundly influence planetary systems. However, the difficulty of identifying planets in binary systems has left the magnitude of this effect uncertain; despite numerous theoretical hurdles to their formation and survival, at least some binary systems clearly host planets. We present high-resolution imaging of nearly 500 Kepler Objects of Interest (KOIs) obtained using adaptive-optics imaging and nonredundant aperture-mask interferometry on the Keck II telescope. We super-resolve some binary systems to projected separations of under 5 AU, showing that planets might form in these dynamically active environments. However, the full distribution of projected separations for our planet-host sample more broadly reveals a deep paucity of binary companions at solar-system scales. Our results demonstrate that a fifth of all solar-type stars in the Milky Way are disallowed from hosting planetary systems due to the influence of a binary companion. We now update these results with multi-epoch imaging to reject non-comoving background stars and securely identify even the least massive stellar companions, as well as tracing out the orbital motion of stellar companions. These results are beginning to reveal not just the fraction of binaries that do not host planets, but also potential explanations for planet survival even in some very close, dynamically active binary systems.

  19. Pharmacological profile of the aerial parts of Rubus ulmifolius Schott.

    PubMed

    Ali, Niaz; Shaoib, Mohammad; Shah, Syed Wadood Ali; Shah, Ismail; Shuaib, Muhammad

    2017-01-19

    As aerial parts of Rubus ulmifolius contains phytochemicals like flavonoids and tannins. And whereas flavonoids and tannins have antioxidant and antipyretic activity, hence, current work is carried out to screen crude methanolic extract of aerial parts of Rubus ulmifolius (Ru.Cr) and crude flavonoids rich extract of Rubus ulmifolius (Ru.F) for possible antioxidant and antipyretic activity. Ru.Cr and Ru.F are also tested for brine shrimps lethality bioassay. Ru.F is tested for the first time for possible antioxidant and antipyretic activity. Preliminary phytochemical screening of Ru.Cr and Ru.F was performed as it provides rapid finger printing for targeting a pharmacological activity. Acute toxicity and Brine shrimps' cytotoxicity studies of Ru.Cr and Ru.F were performed to determine its safe dose range. Antioxidant and antipyretic studies were also performed as per reported procedures. Ru.Cr tested positive for presence of tannins, alkaloids, flavonoids and steroids. Ru.Cr is safe up to 6 g/kg following oral doses for acute toxicity study. Ru.Cr is safe up to 75 μg/kg (p.o), LC 50 for Ru.Cr and Ru.F are 16.7 ± 1.4 μg/ml 10.6 ± 1.8 μg/ml, respectively (n = 3). Both Ru.Cr and Ru.F demonstrated comparable antioxidant activity using vitamin C as standard (p ≤ 0.05). In test dose of 300 mg of Ru.Cr, rectal temperature was reduced by 74% (p ≤ 0.05) on 4 th hour of the administration. More, Ru.F produced 72% reduction in pyrexia (p ≤ 0.05) on 4 th hour of administration of paracetamol in Westar rats. The current work confirms that aerial parts of Rubus ulmifolius contain flavonoids that are safe up to 6 g/kg (p.o). Crude methanolic extract and flavonoids rich fraction of Rubus ulmifolius have significant antioxidant and antipyretic activity. Further work is required to isolate the pharmacologically active substances for relatively safe and effective antipyretics and antioxidants.

  20. Synthesis of Ruthenium Carbonyl Complexes with Phosphine or Substituted Cp Ligands, and Their Activity in the Catalytic Deoxygenation of 1,2-Propanediol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Prasenjit; Fagan, Paul J.; Marshall, William J.

    2009-07-20

    A ruthenium hydride with a bulky substituted Cp ligand, (CpiPr4)Ru(CO)2H (CpiPr4 = C5(i-C3H7)4H) was prepared from the reaction of Ru3(CO)12 with 1,2,3,4-tetraisopropylcyclopentadiene. The molecular structure of (CpiPr4)Ru(CO)2H was determined by x-ray crystallography. The ruthenium hydride complex (C5Bz5)Ru(CO)2H (Bz = CH2Ph) was similarly prepared. The Ru-Ru bonded dimer, [(1,2,3-trimethylindenyl)Ru(CO)2]2, was produced from the reaction of 1,2,3-trimethylindene with Ru3(CO)12, and protonation of this dimer with HOTf gives {[(1,2,3-trimethylindenyl)Ru(CO)2]2(μ H)}+OTf –. A series of ruthenium hydride complexes CpRu(CO)(L)H [L = P(OPh)3, PCy3, PMe3, P(p C6H4F)3] were prepared by reaction of Cp(CO)2RuH with added L. Protonation of (CpiPr4)Ru(CO)2H, Cp*Ru(CO)2H or CpRu(CO)[P(OPh)3]H by HOTf 80more » °C led to equilibria with the cationic dihydrogen complexes, but H2 was released at higher temperatures. Protonation of CpRu[P(OPh)3]2H with HOTf gave an observable dihydrogen complex, {CpRu[P(OPh)3]2(η2 H2)}+OTf – that was converted at -20 °C to the dihydride complex {CpRu[P(OPh)3]2(H)2}+OTf –. These Ru complexes serve as catalyst precursors for the catalytic deoxygenation of 1,2-propanediol to give n-propanol. The catalytic reactions were carried out in sulfolane solvent with added HOTf under H2 (750 psi) at 110 °C. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program. Pacific Northwest National Laboratory is operated by Battelle for DOE.« less

Top