The Use of Binary Search Trees in External Distribution Sorting.
ERIC Educational Resources Information Center
Cooper, David; Lynch, Michael F.
1984-01-01
Suggests new method of external distribution called tree partitioning that involves use of binary tree to split incoming file into successively smaller partitions for internal sorting. Number of disc accesses during a tree-partitioning sort were calculated in simulation using files extracted from British National Bibliography catalog files. (19…
Performance Comparison of Binary Search Tree and Framed ALOHA Algorithms for RFID Anti-Collision
NASA Astrophysics Data System (ADS)
Chen, Wen-Tzu
Binary search tree and framed ALOHA algorithms are commonly adopted to solve the anti-collision problem in RFID systems. In this letter, the read efficiency of these two anti-collision algorithms is compared through computer simulations. Simulation results indicate the framed ALOHA algorithm requires less total read time than the binary search tree algorithm. The initial frame length strongly affects the uplink throughput for the framed ALOHA algorithm.
NASA Technical Reports Server (NTRS)
Chang, Chi-Yung (Inventor); Fang, Wai-Chi (Inventor); Curlander, John C. (Inventor)
1995-01-01
A system for data compression utilizing systolic array architecture for Vector Quantization (VQ) is disclosed for both full-searched and tree-searched. For a tree-searched VQ, the special case of a Binary Tree-Search VQ (BTSVQ) is disclosed with identical Processing Elements (PE) in the array for both a Raw-Codebook VQ (RCVQ) and a Difference-Codebook VQ (DCVQ) algorithm. A fault tolerant system is disclosed which allows a PE that has developed a fault to be bypassed in the array and replaced by a spare at the end of the array, with codebook memory assignment shifted one PE past the faulty PE of the array.
A Fast Framework for Abrupt Change Detection Based on Binary Search Trees and Kolmogorov Statistic.
Qi, Jin-Peng; Qi, Jie; Zhang, Qing
2016-01-01
Change-Point (CP) detection has attracted considerable attention in the fields of data mining and statistics; it is very meaningful to discuss how to quickly and efficiently detect abrupt change from large-scale bioelectric signals. Currently, most of the existing methods, like Kolmogorov-Smirnov (KS) statistic and so forth, are time-consuming, especially for large-scale datasets. In this paper, we propose a fast framework for abrupt change detection based on binary search trees (BSTs) and a modified KS statistic, named BSTKS (binary search trees and Kolmogorov statistic). In this method, first, two binary search trees, termed as BSTcA and BSTcD, are constructed by multilevel Haar Wavelet Transform (HWT); second, three search criteria are introduced in terms of the statistic and variance fluctuations in the diagnosed time series; last, an optimal search path is detected from the root to leaf nodes of two BSTs. The studies on both the synthetic time series samples and the real electroencephalograph (EEG) recordings indicate that the proposed BSTKS can detect abrupt change more quickly and efficiently than KS, t-statistic (t), and Singular-Spectrum Analyses (SSA) methods, with the shortest computation time, the highest hit rate, the smallest error, and the highest accuracy out of four methods. This study suggests that the proposed BSTKS is very helpful for useful information inspection on all kinds of bioelectric time series signals. PMID:27413364
A Fast Framework for Abrupt Change Detection Based on Binary Search Trees and Kolmogorov Statistic
Qi, Jin-Peng; Qi, Jie; Zhang, Qing
2016-01-01
Change-Point (CP) detection has attracted considerable attention in the fields of data mining and statistics; it is very meaningful to discuss how to quickly and efficiently detect abrupt change from large-scale bioelectric signals. Currently, most of the existing methods, like Kolmogorov-Smirnov (KS) statistic and so forth, are time-consuming, especially for large-scale datasets. In this paper, we propose a fast framework for abrupt change detection based on binary search trees (BSTs) and a modified KS statistic, named BSTKS (binary search trees and Kolmogorov statistic). In this method, first, two binary search trees, termed as BSTcA and BSTcD, are constructed by multilevel Haar Wavelet Transform (HWT); second, three search criteria are introduced in terms of the statistic and variance fluctuations in the diagnosed time series; last, an optimal search path is detected from the root to leaf nodes of two BSTs. The studies on both the synthetic time series samples and the real electroencephalograph (EEG) recordings indicate that the proposed BSTKS can detect abrupt change more quickly and efficiently than KS, t-statistic (t), and Singular-Spectrum Analyses (SSA) methods, with the shortest computation time, the highest hit rate, the smallest error, and the highest accuracy out of four methods. This study suggests that the proposed BSTKS is very helpful for useful information inspection on all kinds of bioelectric time series signals. PMID:27413364
NASA Astrophysics Data System (ADS)
Noll, Keith S.; Grundy, W. M.; Ryan, E. L.; Benecchi, S. D.
2015-11-01
We have reexamined 41 Trojan asteroids observed with the Hubble Space Telescope (HST) to search for unresolved binaries. We have identified one candidate binary with a separation of 53 milliarcsec, about the width of the diffraction limited point-spread function (PSF). Sub-resolution-element detection of binaries is possible with HST because of the high signal-to-noise ratio of the observations and the stability of the PSF. Identification and confirmation of binary Trojans is important because a Trojan Tour is one of five possible New Frontiers missions. A binary could constitute a potentially high value target because of the opportunity to study two objects and to test models of the primordial nature of binaries. The potential to derive mass-based physical information from the binary orbit could yield more clues to the origin of Trojans.
Efficient Merge and Insert Operations for Binary Heaps and Trees
NASA Technical Reports Server (NTRS)
Kuszmaul, Christopher Lee; Woo, Alex C. (Technical Monitor)
2000-01-01
Binary heaps and binary search trees merge efficiently. We introduce a new amortized analysis that allows us to prove the cost of merging either binary heaps or balanced binary trees is O(l), in the amortized sense. The standard set of other operations (create, insert, delete, extract minimum, in the case of binary heaps, and balanced binary trees, as well as a search operation for balanced binary trees) remain with a cost of O(log n). For binary heaps implemented as arrays, we show a new merge algorithm that has a single operation cost for merging two heaps, a and b, of O(absolute value of a + min(log absolute value of b log log absolute value of b. log absolute value of a log absolute value of b). This is an improvement over O(absolute value of a + log absolute value of a log absolute value of b). The cost of the new merge is so low that it can be used in a new structure which we call shadow heaps. to implement the insert operation to a tunable efficiency. Shadow heaps support the insert operation for simple priority queues in an amortized time of O(f(n)) and other operations in time O((log n log log n)/f (n)), where 1 less than or equal to f (n) less than or equal to log log n. More generally, the results here show that any data structure with operations that change its size by at most one, with the exception of a merge (aka meld) operation, can efficiently amortize the cost of the merge under conditions that are true for most implementations of binary heaps and search trees.
Binary Encoded-Prototype Tree for Probabilistic Model Building GP
NASA Astrophysics Data System (ADS)
Yanase, Toshihiko; Hasegawa, Yoshihiko; Iba, Hitoshi
In recent years, program evolution algorithms based on the estimation of distribution algorithm (EDA) have been proposed to improve search ability of genetic programming (GP) and to overcome GP-hard problems. One such method is the probabilistic prototype tree (PPT) based algorithm. The PPT based method explores the optimal tree structure by using the full tree whose number of child nodes is maximum among possible trees. This algorithm, however, suffers from problems arising from function nodes having different number of child nodes. These function nodes cause intron nodes, which do not affect the fitness function. Moreover, the function nodes having many child nodes increase the search space and the number of samples necessary for properly constructing the probabilistic model. In order to solve this problem, we propose binary encoding for PPT. In this article, we convert each function node to a subtree of binary nodes where the converted tree is correct in grammar. Our method reduces ineffectual search space, and the binary encoded tree is able to express the same tree structures as the original method. The effectiveness of the proposed method is demonstrated through the use of two computational experiments.
Reconciliation with Non-Binary Species Trees
Vernot, Benjamin; Stolzer, Maureen; Goldman, Aiton
2008-01-01
Abstract Reconciliation extracts information from the topological incongruence between gene and species trees to infer duplications and losses in the history of a gene family. The inferred duplication-loss histories provide valuable information for a broad range of biological applications, including ortholog identification, estimating gene duplication times, and rooting and correcting gene trees. While reconciliation for binary trees is a tractable and well studied problem, there are no algorithms for reconciliation with non-binary species trees. Yet a striking proportion of species trees are non-binary. For example, 64% of branch points in the NCBI taxonomy have three or more children. When applied to non-binary species trees, current algorithms overestimate the number of duplications because they cannot distinguish between duplication and incomplete lineage sorting. We present the first algorithms for reconciling binary gene trees with non-binary species trees under a duplication-loss parsimony model. Our algorithms utilize an efficient mapping from gene to species trees to infer the minimum number of duplications in O(|VG| · (kS + hS)) time, where |VG| is the number of nodes in the gene tree, hS is the height of the species tree and kS is the size of its largest polytomy. We present a dynamic programming algorithm which also minimizes the total number of losses. Although this algorithm is exponential in the size of the largest polytomy, it performs well in practice for polytomies with outdegree of 12 or less. We also present a heuristic which estimates the minimal number of losses in polynomial time. In empirical tests, this algorithm finds an optimal loss history 99% of the time. Our algorithms have been implemented in Notung, a robust, production quality, tree-fitting program, which provides a graphical user interface for exploratory analysis and also supports automated, high-throughput analysis of large data sets. PMID:18808330
NASA Astrophysics Data System (ADS)
Bai, Rui; Li, Tiejian; Huang, Yuefei; Li, Jiaye; Wang, Guangqian
2015-06-01
With the increasing resolution of digital elevation models (DEMs), computational efficiency problems have been encountered when extracting the drainage network of a large river basin at billion-pixel scales. The efficiency of the most time-consuming depression-filling pretreatment has been improved by using the O(NlogN) complexity least-cost path search method, but the complete extraction steps following this method have not been proposed and tested. In this paper, an improved O(NlogN) algorithm was proposed by introducing a size-balanced binary search tree (BST) to improve the efficiency of the depression-filling pretreatment further. The following extraction steps, including the flow direction determination and the upslope area accumulation, were also redesigned to benefit from this improvement. Therefore, an efficient and comprehensive method was developed. The method was tested to extract drainage networks of 31 river basins with areas greater than 500,000 km2 from the 30-m-resolution ASTER GDEM and two sub-basins with areas of approximately 1000 km2 from the 1-m-resolution airborne LiDAR DEM. Complete drainage networks with both vector features and topographic parameters were obtained with time consumptions in O(NlogN) complexity. The results indicate that the developed method can be used to extract entire drainage networks from DEMs with billions of pixels with high efficiency.
The Search for Trojan Binaries
NASA Astrophysics Data System (ADS)
Merline, William J.; Tamblyn, P. M.; Dumas, C.; Close, L. M.; Chapman, C. R.; Durda, D. D.; Levison, H. F.; Hamilton, D. P.; Nesvorny, D.; Storrs, A.; Enke, B.; Menard, F.
2007-10-01
We report on observations of Jupiter Trojan asteroids in search of binaries. We made observations using HST/ACS of 35 small (V = 17.5-19.5) objects in Cycle 14, without detecting any binaires. We have also observed a few dozen Trojans in our ground-based study of larger Trojans, discovering only one binary. The result is that the frequency of moderately-separated binaries among the Trojans seem rather low, likely less than 5%. Although we have only statistics of small numbers, it appears that the binary frequencies are more akin to the larger Main-Belt asteroids, than to the frequency in the TNO region, which probably exceeds 10%. The low frequency is inconsistent with the projections based on Trojan contact binaries by Mann et al. (2006, BAAS 38, 6509), although our work cannot detect very close or contact binaries. We discovered and characterized the orbit and density of the first Trojan binary, (617) Patroclus using the Gemini AO system (Merline et al. 2001 IAUC 7741). A second binary, (624) Hecktor, has now been reported by Marchis et al. (2006, IAUC 8732). In a broad survey of Main Belt asteroids, we found that, among the larger objects, the binary fraction is about 2%, while we are finding that the fraction is significantly higher among smaller asteroids (and this is even more apparent from lightcurve discoveries). Further, characteristics of these smaller systems indicate a distinctly different formation mechanism the the larger MB binaries. Because the Trojans have compositions that are more like the KBOs, while they live in a collisional environment much more like the Main Belt than the KBOs, these objects should hold vital clues to binary formation mechanics. And because there seems to be a distinct difference in larger and smaller main-belt binaries, we sought to detect such differences among the Trojans as well.
A parallelized binary search tree
Technology Transfer Automated Retrieval System (TEKTRAN)
PTTRNFNDR is an unsupervised statistical learning algorithm that detects patterns in DNA sequences, protein sequences, or any natural language texts that can be decomposed into letters of a finite alphabet. PTTRNFNDR performs complex mathematical computations and its processing time increases when i...
Binary space partitioning trees and their uses
NASA Technical Reports Server (NTRS)
Bell, Bradley N.
1989-01-01
Binary Space Partitioning (BSP) trees have some qualities that make them useful in solving many graphics related problems. The purpose is to describe what a BSP tree is, and how it can be used to solve the problem of hidden surface removal, and constructive solid geometry. The BSP tree is based on the idea that a plane acting as a divider subdivides space into two parts with one being on the positive side and the other on the negative. A polygonal solid is then represented as the volume defined by the collective interior half spaces of the solid's bounding surfaces. The nature of how the tree is organized lends itself well for sorting polygons relative to an arbitrary point in 3 space. The speed at which the tree can be traversed for depth sorting is fast enough to provide hidden surface removal at interactive speeds. The fact that a BSP tree actually represents a polygonal solid as a bounded volume also makes it quite useful in performing the boolean operations used in constructive solid geometry. Due to the nature of the BSP tree, polygons can be classified as they are subdivided. The ability to classify polygons as they are subdivided can enhance the simplicity of implementing constructive solid geometry.
Efficient algorithms for dilated mappings of binary trees
NASA Technical Reports Server (NTRS)
Iqbal, M. Ashraf
1990-01-01
The problem is addressed to find a 1-1 mapping of the vertices of a binary tree onto those of a target binary tree such that the son of a node on the first binary tree is mapped onto a descendent of the image of that node in the second binary tree. There are two natural measures of the cost of this mapping, namely the dilation cost, i.e., the maximum distance in the target binary tree between the images of vertices that are adjacent in the original tree. The other measure, expansion cost, is defined as the number of extra nodes/edges to be added to the target binary tree in order to ensure a 1-1 mapping. An efficient algorithm to find a mapping of one binary tree onto another is described. It is shown that it is possible to minimize one cost of mapping at the expense of the other. This problem arises when designing pipelined arithmetic logic units (ALU) for special purpose computers. The pipeline is composed of ALU chips connected in the form of a binary tree. The operands to the pipeline can be supplied to the leaf nodes of the binary tree which then process and pass the results up to their parents. The final result is available at the root. As each new application may require a distinct nesting of operations, it is useful to be able to find a good mapping of a new binary tree over existing ALU tree. Another problem arises if every distinct required binary tree is known beforehand. Here it is useful to hardwire the pipeline in the form of a minimal supertree that contains all required binary trees.
Distributed game-tree searching
Schaeffer, J. )
1989-02-01
Conventional parallelizations of the alpha-beta ({alpha}{beta}) algorithm have met with limited success. Implementations suffer primarily from the synchronization and search overheads of parallelization. This paper describes a parallel {alpha}{beta} searching program that achieves high performance through the use of four different types of processes: Controllers, Searchers, Table Managers, and Scouts. Synchronization is reduced by having Controller process reassigning idle processes to help out busy ones. Search overhead is reduced by having two types of parallel table management: global Table Managers and the periodic merging and redistribution of local tables. Experiments show that nine processors can achieve 5.67-fold speedups but beyond that, additional processors provide diminishing returns. Given that additional resources are of little benefit, speculative computing is introduced as a means of extending the effective number of processors that can be utilized. Scout processes speculatively search ahead in the tree looking for interesting features and communicate this information back to the {alpha}{beta} program. In this way, the effective search depth is extended. These ideas have been tested experimentally and empirically as part of the chess program ParaPhoenix.
Searching for gravitational waves from binary coalescence
NASA Astrophysics Data System (ADS)
Babak, S.; Biswas, R.; Brady, P. R.; Brown, D. A.; Cannon, K.; Capano, C. D.; Clayton, J. H.; Cokelaer, T.; Creighton, J. D. E.; Dent, T.; Dietz, A.; Fairhurst, S.; Fotopoulos, N.; González, G.; Hanna, C.; Harry, I. W.; Jones, G.; Keppel, D.; McKechan, D. J. A.; Pekowsky, L.; Privitera, S.; Robinson, C.; Rodriguez, A. C.; Sathyaprakash, B. S.; Sengupta, A. S.; Vallisneri, M.; Vaulin, R.; Weinstein, A. J.
2013-01-01
We describe the implementation of a search for gravitational waves from compact binary coalescences in LIGO and Virgo data. This all-sky, all-time, multidetector search for binary coalescence has been used to search data taken in recent LIGO and Virgo runs. The search is built around a matched filter analysis of the data, augmented by numerous signal consistency tests designed to distinguish artifacts of non-Gaussian detector noise from potential detections. We demonstrate the search performance using Gaussian noise and data from the fifth LIGO science run and demonstrate that the signal consistency tests are capable of mitigating the effect of non-Gaussian noise and providing a sensitivity comparable to that achieved in Gaussian noise.
Supermassive Black Hole Binaries: The Search Continues
NASA Astrophysics Data System (ADS)
Bogdanović, Tamara
Gravitationally bound supermassive black hole binaries (SBHBs) are thought to be a natural product of galactic mergers and growth of the large scale structure in the universe. They however remain observationally elusive, thus raising a question about characteristic observational signatures associated with these systems. In this conference proceeding I discuss current theoretical understanding and latest advances and prospects in observational searches for SBHBs.
Two Upper Bounds for the Weighted Path Length of Binary Trees. Report No. UIUCDCS-R-73-565.
ERIC Educational Resources Information Center
Pradels, Jean Louis
Rooted binary trees with weighted nodes are structures encountered in many areas, such as coding theory, searching and sorting, information storage and retrieval. The path length is a meaningful quantity which gives indications about the expected time of a search or the length of a code, for example. In this paper, two sharp bounds for the total…
Search for Magnesium Diboride like Binary Superconductors
NASA Astrophysics Data System (ADS)
Isikaku-Ironkwe, O. Paul
2008-03-01
Efforts to create compounds iso-electronic and iso-structural with magnesium diboride and also superconducting have so far met with limited success. Doping the Mg-site or the B-site have also not yielded higher transition temperatures. They have either been non-superconducting or have lower transition temperatures, Tc. Searching for magnesium diboride-like compounds using the electronegativity of MgB2 (1.7333) has yielded a rich family of potential superconductors. The search has been facilitated using the recently designed ElectroNegativity Spectrum Maps [ENSMaps] of binary systems AxBy. Here we display the potential families. Using the relationship between Tc and atomic mass, we estimate the transition temperatures of the most likely MgB2-like binary superconductors. We also suggest materials that can be doped to give an electronegativity of 1.7333.
Parallel search of strongly ordered game trees
Marsland, T.A.; Campbell, M.
1982-12-01
The alpha-beta algorithm forms the basis of many programs that search game trees. A number of methods have been designed to improve the utility of the sequential version of this algorithm, especially for use in game-playing programs. These enhancements are based on the observation that alpha beta is most effective when the best move in each position is considered early in the search. Trees that have this so-called strong ordering property are not only of practical importance but possess characteristics that can be exploited in both sequential and parallel environments. This paper draws upon experiences gained during the development of programs which search chess game trees. Over the past decade major enhancements of the alpha beta algorithm have been developed by people building game-playing programs, and many of these methods will be surveyed and compared here. The balance of the paper contains a study of contemporary methods for searching chess game trees in parallel, using an arbitrary number of independent processors. To make efficient use of these processors, one must have a clear understanding of the basic properties of the trees actually traversed when alpha-beta cutoffs occur. This paper provides such insights and concludes with a brief description of a refinement to a standard parallel search algorithm for this problem. 33 references.
Local search for the generalized tree alignment problem
2013-01-01
Background A phylogeny postulates shared ancestry relationships among organisms in the form of a binary tree. Phylogenies attempt to answer an important question posed in biology: what are the ancestor-descendent relationships between organisms? At the core of every biological problem lies a phylogenetic component. The patterns that can be observed in nature are the product of complex interactions, constrained by the template that our ancestors provide. The problem of simultaneous tree and alignment estimation under Maximum Parsimony is known in combinatorial optimization as the Generalized Tree Alignment Problem (GTAP). The GTAP is the Steiner Tree Problem for the sequence edit distance. Like many biologically interesting problems, the GTAP is NP-Hard. Typically the Steiner Tree is presented under the Manhattan or the Hamming distances. Results Experimentally, the accuracy of the GTAP has been subjected to evaluation. Results show that phylogenies selected using the GTAP from unaligned sequences are competitive with the best methods and algorithms available. Here, we implement and explore experimentally existing and new local search heuristics for the GTAP using simulated and real data. Conclusions The methods presented here improve by more than three orders of magnitude in execution time the best local search heuristics existing to date when applied to real data. PMID:23441880
RNA search with decision trees and partial covariance models.
Smith, Jennifer A
2009-01-01
The use of partial covariance models to search for RNA family members in genomic sequence databases is explored. The partial models are formed from contiguous subranges of the overall RNA family multiple alignment columns. A binary decision-tree framework is presented for choosing the order to apply the partial models and the score thresholds on which to make the decisions. The decision trees are chosen to minimize computation time subject to the constraint that all of the training sequences are passed to the full covariance model for final evaluation. Computational intelligence methods are suggested to select the decision tree since the tree can be quite complex and there is no obvious method to build the tree in these cases. Experimental results from seven RNA families shows execution times of 0.066-0.268 relative to using the full covariance model alone. Tests on the full sets of known sequences for each family show that at least 95 percent of these sequences are found for two families and 100 percent for five others. Since the full covariance model is run on all sequences accepted by the partial model decision tree, the false alarm rate is at least as low as that of the full model alone. PMID:19644178
Trinary-projection trees for approximate nearest neighbor search.
Wang, Jingdong; Wang, Naiyan; Jia, You; Li, Jian; Zeng, Gang; Zha, Hongbin; Hua, Xian-Sheng
2014-02-01
We address the problem of approximate nearest neighbor (ANN) search for visual descriptor indexing. Most spatial partition trees, such as KD trees, VP trees, and so on, follow the hierarchical binary space partitioning framework. The key effort is to design different partition functions (hyperplane or hypersphere) to divide the points so that 1) the data points can be well grouped to support effective NN candidate location and 2) the partition functions can be quickly evaluated to support efficient NN candidate location. We design a trinary-projection direction-based partition function. The trinary-projection direction is defined as a combination of a few coordinate axes with the weights being 1 or -1. We pursue the projection direction using the widely adopted maximum variance criterion to guarantee good space partitioning and find fewer coordinate axes to guarantee efficient partition function evaluation. We present a coordinate-wise enumeration algorithm to find the principal trinary-projection direction. In addition, we provide an extension using multiple randomized trees for improved performance. We justify our approach on large-scale local patch indexing and similar image search. PMID:24356357
Forward estimation for game-tree search
Zhang, Weixiong
1996-12-31
It is known that bounds on the minimax values of nodes in a game tree can be used to reduce the computational complexity of minimax search for two-player games. We describe a very simple method to estimate bounds on the minimax values of interior nodes of a game tree, and use the bounds to improve minimax search. The new algorithm, called forward estimation, does not require additional domain knowledge other than a static node evaluation function, and has small constant overhead per node expansion. We also propose a variation of forward estimation, which provides a tradeoff between computational complexity and decision quality. Our experimental results show that forward estimation outperforms alpha-beta pruning on random game trees and the game of Othello.
Binary tree eigen solver in finite element analysis
Akl, F.A.; Janetzke, D.C.; Kiraly, L.J.
1993-01-01
This paper presents a transputer-based binary tree eigensolver for the solution of the generalized eigenproblem in linear elastic finite element analysis. The algorithm is based on the method of recursive doubling, which parallel implementation of a number of associative operations on an arbitrary set having N elements is of the order of o(log2N), compared to (N-1) steps if implemented sequentially. The hardware used in the implementation of the binary tree consists of 32 transputers. The algorithm is written in OCCAM which is a high-level language developed with the transputers to address parallel programming constructs and to provide the communications between processors. The algorithm can be replicated to match the size of the binary tree transputer network. Parallel and sequential finite element analysis programs have been developed to solve for the set of the least-order eigenpairs using the modified subspace method. The speed-up obtained for a typical analysis problem indicates close agreement with the theoretical prediction given by the method of recursive doubling. 5 refs.
Binary tree eigen solver in finite element analysis
NASA Technical Reports Server (NTRS)
Akl, F. A.; Janetzke, D. C.; Kiraly, L. J.
1993-01-01
This paper presents a transputer-based binary tree eigensolver for the solution of the generalized eigenproblem in linear elastic finite element analysis. The algorithm is based on the method of recursive doubling, which parallel implementation of a number of associative operations on an arbitrary set having N elements is of the order of o(log2N), compared to (N-1) steps if implemented sequentially. The hardware used in the implementation of the binary tree consists of 32 transputers. The algorithm is written in OCCAM which is a high-level language developed with the transputers to address parallel programming constructs and to provide the communications between processors. The algorithm can be replicated to match the size of the binary tree transputer network. Parallel and sequential finite element analysis programs have been developed to solve for the set of the least-order eigenpairs using the modified subspace method. The speed-up obtained for a typical analysis problem indicates close agreement with the theoretical prediction given by the method of recursive doubling.
Inevitable self-similar topology of binary trees and their diverse hierarchical density
NASA Astrophysics Data System (ADS)
Paik, K.; Kumar, P.
2007-11-01
Self-similar topology, which can be characterized as power law size distribution, has been found in diverse tree networks ranging from river networks to taxonomic trees. In this study, we find that the statistical self-similar topology is an inevitable consequence of any full binary tree organization. We show this by coding a binary tree as a unique bifurcation string. This coding scheme allows us to investigate trees over the realm from deterministic to entirely random trees. To obtain partial random trees, partial random perturbation is added to the deterministic trees by an operator similar to that used in genetic algorithms. Our analysis shows that the hierarchical density of binary trees is more diverse than has been described in earlier studies. We find that the connectivity structure of river networks is far from strict self-similar trees. On the other hand, organization of some social networks is close to deterministic supercritical trees.
Status and Future of Deep Searches for Compact Binary Mergers
NASA Astrophysics Data System (ADS)
Nitz, Alexander` Harvey; LIGO Scientific Collaboration
2016-06-01
Deep offline searches for gravitational waves from binary black hole, binary neutron star, and neutron star- black hole mergers were conducted during the first Advanced LIGO observing run, and recently Advanced LIGO announced the first detection of gravitational waves from a binary black hole merger. We discuss the recent results, the methodology of the high latency searches, along with improvements for the upcoming observing runs.
The Abelian Sandpile Model on a Random Binary Tree
NASA Astrophysics Data System (ADS)
Redig, F.; Ruszel, W. M.; Saada, E.
2012-06-01
We study the abelian sandpile model on a random binary tree. Using a transfer matrix approach introduced by Dhar and Majumdar, we prove exponential decay of correlations, and in a small supercritical region (i.e., where the branching process survives with positive probability) exponential decay of avalanche sizes. This shows a phase transition phenomenon between exponential decay and power law decay of avalanche sizes. Our main technical tools are: (1) A recursion for the ratio between the numbers of weakly and strongly allowed configurations which is proved to have a well-defined stochastic solution; (2) quenched and annealed estimates of the eigenvalues of a product of n random transfer matrices.
Searching game trees under memory constraints
Bhattacharya, S.; Bagchi, A.
1996-12-31
The best-first game-tree search algorithm SSS* has greater pruning power than the depth-first algorithm Alpha-Beta. Yet it is seldom used in practice because it is slow in execution and requires substantial memory. Variants of SSS* have been proposed in recent years that overcome some, but not all, of its limitations. The recursive controlled-memory best-first search scheme MemSSS* described here is a new derivative of SSS* that compares favourably with Alpha-Beta in respect of all three major performance measures, namely, pruning power, running time and memory needs. MemSSS* improves upon an earlier controlled-memory algorithm IterSSS* which has most of the desired properties but is slow in execution.
Power-Law Behavior in Geometric Characteristics of Full Binary Trees
NASA Astrophysics Data System (ADS)
Paik, Kyungrock; Kumar, Praveen
2011-02-01
Natural river networks exhibit regular scaling laws in their topological organization. Here, we investigate whether these scaling laws are unique characteristics of river networks or can be applicable to general binary tree networks. We generate numerous binary trees, ranging from purely ordered trees to completely random trees. For each generated binary tree, we analyze whether the tree exhibits any scaling property found in river networks, i.e., the power-laws in the size distribution, the length distribution, the distance-load relationship, and the power spectrum of width function. We found that partially random trees generated on the basis of two distinct types of deterministic trees, i.e., deterministic critical and supercritical trees, show contrasting characteristics. Partially random trees generated on the basis of deterministic critical trees exhibit all power-law characteristics investigated in this study with their fitted exponents close to the values observed in natural river networks over a wide range of random-degree. On the other hand, partially random trees generated on the basis of deterministic supercritical trees rarely follow scaling laws of river networks.
A search for binary hot subdwarfs
NASA Astrophysics Data System (ADS)
Williams, William Thomas
2001-12-01
The hot subdwarfs are evolved stars intermediate between the hydrogen burning main sequence and the white dwarfs. As the immediate precursors of white dwarfs they are essential to a complete understanding of the end points of stellar evolution, and as exemplars of extreme mass- loss stars they may be windows on one of astronomy's least understood problems. But the origins of the hot subdwarfs are obscure. Duplicity may play a role in the enhanced mass-loss hot subdwarfs must suffer, and it is known that the hydrogen-rich sdB hot subdwarfs show a high binary fraction. The helium-rich hot subdwarfs, the putative descendants of the sdB stars, are only weakly characterized with respect to binarity. The helium-rich hot subdwarfs are the subject of this research, and the question of their duplicity is its focus. Sixty-four helium-rich hot subdwarfs drawn from the Palomar-Green Survey of UV-Excess Stellar Objects were observed on the Cousins BV RI photometric system. A subset of twenty-five of the 64 program stars were observed in the IR J and K pass-bands. Spectroscopic data were obtained for thirty-two members of the sample, including seven that have not been observed in either the BV RI or the JK filter sets. A total of sixteen binary candidates were identified, twelve for the first time. Binary candidates were identified by their intrinsic color excesses in two-color plots of the extinction-corrected BV RI and JK data, and by comparison to synthetic binary system colors. Spectrophotometric color indices were derived from the spectroscopic data and used to identify binary candidates by their excess color in two color plots. The binary fraction of the sdOC stars in the sample is predicted to be at least 64% and potentially 100%. A binary fraction for the whole sample of sdOs may have limited meaning, given the probable inhomogeneity of the sample. However, performing the calculation for the whole sample again produces the estimate that at least 64% and at most 100% of
New binary polymorphisms reshape and increase resolution of the human Y chromosomal haplogroup tree
Karafet, Tatiana M.; Mendez, Fernando L.; Meilerman, Monica B.; Underhill, Peter A.; Zegura, Stephen L.; Hammer, Michael F.
2008-01-01
Markers on the non-recombining portion of the human Y chromosome continue to have applications in many fields including evolutionary biology, forensics, medical genetics, and genealogical reconstruction. In 2002, the Y Chromosome Consortium published a single parsimony tree showing the relationships among 153 haplogroups based on 243 binary markers and devised a standardized nomenclature system to name lineages nested within this tree. Here we present an extensively revised Y chromosome tree containing 311 distinct haplogroups, including two new major haplogroups (S and T), and incorporating approximately 600 binary markers. We describe major changes in the topology of the parsimony tree and provide names for new and rearranged lineages within the tree following the rules presented by the Y Chromosome Consortium in 2002. Several changes in the tree topology have important implications for studies of human ancestry. We also present demography-independent age estimates for 11 of the major clades in the new Y chromosome tree. PMID:18385274
A strip search for new very wide halo binaries
NASA Astrophysics Data System (ADS)
Quinn, D. P.; Smith, M. C.
2009-12-01
We report on a search for new wide halo binary stars in Sloan Digital Sky Survey (SDSS) Stripe 82. A list of new halo wide binary candidates which satisfy common proper motion and photometric constraints is provided. The projected separations of the sample lie between 0.007 and 0.25 pc. Although the sample is not large enough to improve constraints on dark matter in the halo, we find the wide binary angular separation function is broadly consistent with past work. We discuss the significance of the new sample for a number of astrophysical applications, including as a testbed for ideas about wide binary formation. For the subset of candidates which have radial velocity information, we make use of integrals of motion to investigate one such scheme in which the origin of Galactic wide binaries is associated with the accretion/disruption of stellar systems in the Galaxy. Additional spectroscopic observations of these candidate binaries will strengthen their usefulness in many of these respects. Based on our search experience in Stripe 82 we estimate that the upcoming Pan-STARRS survey will increase the sample size of wide halo binaries by over an order of magnitude.
The search for massive black hole binaries with LISA
NASA Astrophysics Data System (ADS)
Cornish, Neil J.; Porter, Edward K.
2007-12-01
In this work we focus on the search and detection of massive black hole binary (MBHB) systems, including systems at high redshift. As well as expanding on previous works where we used a variant of Markov chain Monte Carlo (MCMC), called Metropolis Hastings Monte Carlo, with simulated annealing, we introduce a new search method based on frequency annealing which leads to a more rapid and robust detection. We compare the two search methods on systems where we do and do not see the merger of the black holes. In the non-merger case, we also examine the posterior distribution exploration using a 7D MCMC algorithm. We demonstrate that this method is effective in dealing with the high correlations between parameters, has a higher acceptance rate than previously proposed methods and produces posterior distribution functions that are close to the prediction from the Fisher information matrix. Finally, after carrying out searches where there is only one binary in the data stream, we examine the case where two black hole binaries are present in the same data stream. We demonstrate that our search algorithm can accurately recover both binaries, and more importantly showing that we can safely extract the MBHB sources without contaminating the rest of the data stream.
Searching for gravitational waves from compact binaries with precessing spins
NASA Astrophysics Data System (ADS)
Harry, Ian; Privitera, Stephen; Bohé, Alejandro; Buonanno, Alessandra
2016-07-01
Current searches for gravitational waves from compact-object binaries with the LIGO and Virgo observatories employ waveform models with spins aligned (or antialigned) with the orbital angular momentum. Here, we derive a new statistic to search for compact objects carrying generic (precessing) spins. Applying this statistic, we construct banks of both aligned- and generic-spin templates for binary black holes and neutron star-black hole binaries, and compare the effectualness of these banks towards simulated populations of generic-spin systems. We then use these banks in a pipeline analysis of Gaussian noise to measure the increase in background incurred by using generic- instead of aligned-spin banks. Although the generic-spin banks have roughly a factor of ten more templates than the aligned-spin banks, we find an overall improvement in signal recovery at a fixed false-alarm rate for systems with high-mass ratio and highly precessing spins. This gain in sensitivity comes at a small loss of sensitivity (≲4 %) for systems that are already well covered by aligned-spin templates. Since the observation of even a single binary merger with misaligned spins could provide unique astrophysical insights into the formation of these sources, we recommend that the method described here be developed further to mount a viable search for generic-spin binary mergers in LIGO/Virgo data.
The LIGO Scientific Collaboration search for inspiralling binary neutron stars
NASA Astrophysics Data System (ADS)
Brown, Duncan
2006-04-01
The three LIGO interferometers and the GEO600 interferometer operate as a network of detectors under the LIGO Scientific Collaboration (LSC). This network has now reached unprecedented levels of sensitivity. In this talk we will present the status and current results from the binary neutron star search in LIGO/GEO data.
Continuous-time quantum search on balanced trees
NASA Astrophysics Data System (ADS)
Philipp, Pascal; Tarrataca, Luís; Boettcher, Stefan
2016-03-01
We examine the effect of network heterogeneity on the performance of quantum search algorithms. To this end, we study quantum search on a tree for the oracle Hamiltonian formulation employed by continuous-time quantum walks. We use analytical and numerical arguments to show that the exponent of the asymptotic running time ˜Nβ changes uniformly from β =0.5 to β =1 as the searched-for site is moved from the root of the tree towards the leaves. These results imply that the time complexity of the quantum search algorithm on a balanced tree is closely correlated with certain path-based centrality measures of the searched-for site.
Targeted coherent search for gravitational waves from compact binary coalescences
Harry, I. W.; Fairhurst, S.
2011-04-15
We introduce a method for conducting a targeted, coherent search for compact binary coalescences. The search is tailored to be used as a follow-up to electromagnetic transients such as gamma-ray bursts. We derive the coherent search statistic for Gaussian detector noise and discuss the benefits of a coherent, multidetector search over coincidence methods. To mitigate the effects of nonstationary data, we introduce a number of signal consistency tests, including the null signal-to-noise ratio, amplitude consistency, and several {chi}{sup 2} tests. We demonstrate the search performance on Gaussian noise and on data from LIGO's fourth science run and verify that the signal consistency tests are capable of removing the majority of noise transients, giving the search an efficiency comparable to that achieved in Gaussian noise.
Searching for pulsations in Kepler eclipsing binary stars
NASA Astrophysics Data System (ADS)
Gaulme, Patrick; Guzik, Joyce A.
2014-02-01
Eclipsing binaries can in principle provide additional constraints to facilitate asteroseismology of one or more pulsating components. We have identified 94 possible eclipsing binary systems in a sample of over 1800 stars observed in long cadence as part of the Kepler Guest Observer Program to search for γ Doradus and δ Scuti star candidates. We show the results of a procedure to fold the light curve to identify the potential binary period, subtract a fit to the binary light curve, and perform a Fourier analysis on the residuals to search for pulsation frequencies that may arise in one or both of the stellar components. From this sample, we have found a large variety of light curve types; about a dozen stars show frequencies consistent with δ Sct or γ Dor pulsations, or light curve features possibly produced by stellar activity (rotating spots). For several stars, the folded candidate `binary' light curve resembles more closely that of an RR Lyr, Cepheid, or high-amplitude δ Sct star. We show highlights of our results and discuss the potential for asteroseismology of the most interesting objects.
Upper transition point for percolation on the enhanced binary tree: A sharpened lower bound
NASA Astrophysics Data System (ADS)
Baek, Seung Ki
2012-05-01
Hyperbolic structures are obtained by tiling a hyperbolic surface with negative Gaussian curvature. These structures generally exhibit two percolation transitions: a system-wide connection can be established at a certain occupation probability p=pc1, and there emerges a unique giant cluster at pc2>pc1. There have been debates about locating the upper transition point of a prototypical hyperbolic structure called the enhanced binary tree (EBT), which is constructed by adding loops to a binary tree. This work presents its lower bound as pc2≳0.55 by using phenomenological renormalization-group methods and discusses some solvable models related to the EBT.
Accuracy of Binary Black Hole waveforms for Advanced LIGO searches
NASA Astrophysics Data System (ADS)
Kumar, Prayush; Barkett, Kevin; Bhagwat, Swetha; Chu, Tony; Fong, Heather; Brown, Duncan; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela
2015-04-01
Coalescing binaries of compact objects are flagship sources for the first direct detection of gravitational waves with LIGO-Virgo observatories. Matched-filtering based detection searches aimed at binaries of black holes will use aligned spin waveforms as filters, and their efficiency hinges on the accuracy of the underlying waveform models. A number of gravitational waveform models are available in literature, e.g. the Effective-One-Body, Phenomenological, and traditional post-Newtonian ones. While Numerical Relativity (NR) simulations provide for the most accurate modeling of gravitational radiation from compact binaries, their computational cost limits their application in large scale searches. In this talk we assess the accuracy of waveform models in two regions of parameter space, which have only been explored cursorily in the past: the high mass-ratio regime as well as the comparable mass-ratio + high spin regime.s Using the SpEC code, six q = 7 simulations with aligned-spins and lasting 60 orbits, and tens of q ∈ [1,3] simulations with high black hole spins were performed. We use them to study the accuracy and intrinsic parameter biases of different waveform families, and assess their viability for Advanced LIGO searches.
Enhancements for Multi-Player Monte-Carlo Tree Search
NASA Astrophysics Data System (ADS)
Nijssen, J. (Pim) A. M.; Winands, Mark H. M.
Monte-Carlo Tree Search (MCTS) is becoming increasingly popular for playing multi-player games. In this paper we propose two enhancements for MCTS in multi-player games: (1) Progressive History and (2) Multi-Player Monte-Carlo Tree Search Solver (MP-MCTS-Solver). We analyze the performance of these enhancements in two different multi-player games: Focus and Chinese Checkers. Based on the experimental results we conclude that Progressive History is a considerable improvement in both games and MP-MCTS-Solver, using the standard update rule, is a genuine improvement in Focus.
NASA Astrophysics Data System (ADS)
Baker, Paul T.; Caudill, Sarah; Hodge, Kari A.; Talukder, Dipongkar; Capano, Collin; Cornish, Neil J.
2015-03-01
Searches for gravitational waves produced by coalescing black hole binaries with total masses ≳25 M⊙ use matched filtering with templates of short duration. Non-Gaussian noise bursts in gravitational wave detector data can mimic short signals and limit the sensitivity of these searches. Previous searches have relied on empirically designed statistics incorporating signal-to-noise ratio and signal-based vetoes to separate gravitational wave candidates from noise candidates. We report on sensitivity improvements achieved using a multivariate candidate ranking statistic derived from a supervised machine learning algorithm. We apply the random forest of bagged decision trees technique to two separate searches in the high mass (≳25 M⊙ ) parameter space. For a search which is sensitive to gravitational waves from the inspiral, merger, and ringdown of binary black holes with total mass between 25 M⊙ and 100 M⊙ , we find sensitive volume improvements as high as 70±13%-109±11% when compared to the previously used ranking statistic. For a ringdown-only search which is sensitive to gravitational waves from the resultant perturbed intermediate mass black hole with mass roughly between 10 M⊙ and 600 M⊙ , we find sensitive volume improvements as high as 61±4%-241±12% when compared to the previously used ranking statistic. We also report how sensitivity improvements can differ depending on mass regime, mass ratio, and available data quality information. Finally, we describe the techniques used to tune and train the random forest classifier that can be generalized to its use in other searches for gravitational waves.
Bidirectional Search in a String with Wavelet Trees
NASA Astrophysics Data System (ADS)
Schnattinger, Thomas; Ohlebusch, Enno; Gog, Simon
Searching for genes encoding microRNAs (miRNAs) is an important task in genome analysis. Because the secondary structure of miRNA (but not the sequence) is highly conserved, the genes encoding it can be determined by finding regions in a genomic DNA sequence that match the structure. It is known that algorithms using a bidirectional search on the DNA sequence for this task outperform algorithms based on unidirectional search. The data structures supporting a bidirectional search (affix trees and affix arrays), however, are rather complex and suffer from their large space consumption. Here, we present a new data structure called bidirectional wavelet index that supports bidirectional search with much less space. With this data structure, it is possible to search for RNA secondary structural patterns in large genomes, for example the human genome.
Search for gravitational waves from binary black hole inspirals in LIGO data
NASA Astrophysics Data System (ADS)
Abbott, B.; Abbott, R.; Adhikari, R.; Ageev, A.; Agresti, J.; Ajith, P.; Allen, B.; Allen, J.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Araya, M.; Armandula, H.; Ashley, M.; Asiri, F.; Aufmuth, P.; Aulbert, C.; Babak, S.; Balasubramanian, R.; Ballmer, S.; Barish, B. C.; Barker, C.; Barker, D.; Barnes, M.; Barr, B.; Barton, M. A.; Bayer, K.; Beausoleil, R.; Belczynski, K.; Bennett, R.; Berukoff, S. J.; Betzwieser, J.; Bhawal, B.; Bilenko, I. A.; Billingsley, G.; Black, E.; Blackburn, K.; Blackburn, L.; Bland, B.; Bochner, B.; Bogue, L.; Bork, R.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brown, D. A.; Bullington, A.; Bunkowski, A.; Buonanno, A.; Burgess, R.; Busby, D.; Butler, W. E.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cantley, C. A.; Cao, J.; Cardenas, L.; Carter, K.; Casey, M. M.; Castiglione, J.; Chandler, A.; Chapsky, J.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Chickarmane, V.; Chin, D.; Christensen, N.; Churches, D.; Cokelaer, T.; Colacino, C.; Coldwell, R.; Coles, M.; Cook, D.; Corbitt, T.; Coyne, D.; Creighton, J. D. E.; Creighton, T. D.; Crooks, D. R. M.; Csatorday, P.; Cusack, B. J.; Cutler, C.; Dalrymple, J.; D'Ambrosio, E.; Danzmann, K.; Davies, G.; Daw, E.; Debra, D.; Delker, T.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.; di Credico, A.; Díaz, M.; Ding, H.; Drever, R. W. P.; Dupuis, R. J.; Edlund, J. A.; Ehrens, P.; Elliffe, E. J.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Fallnich, C.; Farnham, D.; Fejer, M. M.; Findley, T.; Fine, M.; Finn, L. S.; Franzen, K. Y.; Freise, A.; Frey, R.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Ganezer, K. S.; Garofoli, J.; Giaime, J. A.; Gillespie, A.; Goda, K.; Goggin, L.; González, G.; Goßler, S.; Grandclément, P.; Grant, A.; Gray, C.; Gretarsson, A. M.; Grimmett, D.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, E.; Gustafson, R.; Hamilton, W. O.; Hammond, M.; Hanna, C.; Hanson, J.; Hardham, C.; Harms, J.; Harry, G.; Hartunian, A.; Heefner, J.; Hefetz, Y.; Heinzel, G.; Heng, I. S.; Hennessy, M.; Hepler, N.; Heptonstall, A.; Heurs, M.; Hewitson, M.; Hild, S.; Hindman, N.; Hoang, P.; Hough, J.; Hrynevych, M.; Hua, W.; Ito, M.; Itoh, Y.; Ivanov, A.; Jennrich, O.; Johnson, B.; Johnson, W. W.; Johnston, W. R.; Jones, D. I.; Jones, G.; Jones, L.; Jungwirth, D.; Kalogera, V.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kells, W.; Kern, J.; Khan, A.; Killbourn, S.; Killow, C. J.; Kim, C.; King, C.; King, P.; Klimenko, S.; Koranda, S.; Kötter, K.; Kovalik, J.; Kozak, D.; Krishnan, B.; Landry, M.; Langdale, J.; Lantz, B.; Lawrence, R.; Lazzarini, A.; Lei, M.; Leonor, I.; Libbrecht, K.; Libson, A.; Lindquist, P.; Liu, S.; Logan, J.; Lormand, M.; Lubiński, M.; Lück, H.; Luna, M.; Lyons, T. T.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Majid, W.; Malec, M.; Mandic, V.; Mann, F.; Marin, A.; Márka, S.; Maros, E.; Mason, J.; Mason, K.; Matherny, O.; Matone, L.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McHugh, M.; McNabb, J. W. C.; Melissinos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messaritaki, E.; Messenger, C.; Mikhailov, E.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Miyoki, S.; Mohanty, S.; Moreno, G.; Mossavi, K.; Mueller, G.; Mukherjee, S.; Murray, P.; Myers, E.; Myers, J.; Nagano, S.; Nash, T.; Nayak, R.; Newton, G.; Nocera, F.; Noel, J. S.; Nutzman, P.; Olson, T.; O'Reilly, B.; Ottaway, D. J.; Ottewill, A.; Ouimette, D.; Overmier, H.; Owen, B. J.; Pan, Y.; Papa, M. A.; Parameshwaraiah, V.; Parameswariah, C.; Pedraza, M.; Penn, S.; Pitkin, M.; Plissi, M.; Prix, R.; Quetschke, V.; Raab, F.; Radkins, H.; Rahkola, R.; Rakhmanov, M.; Rao, S. R.; Rawlins, K.; Ray-Majumder, S.; Re, V.; Redding, D.; Regehr, M. W.; Regimbau, T.; Reid, S.; Reilly, K. T.; Reithmaier, K.; Reitze, D. H.; Richman, S.; Riesen, R.; Riles, K.; Rivera, B.; Rizzi, A.; Robertson, D. I.; Robertson, N. A.; Robinson, C.; Robison, L.; Roddy, S.; Rodriguez, A.; Rollins, J.; Romano, J. D.; Romie, J.; Rong, H.; Rose, D.; Rotthoff, E.; Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan, K.; Salzman, I.; Sandberg, V.; Sanders, G. H.; Sannibale, V.; Sarin, P.; Sathyaprakash, B.; Saulson, P. R.; Savage, R.; Sazonov, A.; Schilling, R.; Schlaufman, K.; Schmidt, V.; Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott, S. M.; Seader, S. E.; Searle, A. C.; Sears, B.; Seel, S.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Shapiro, C. A.; Shawhan, P.; Shoemaker, D. H.; Shu, Q. Z.; Sibley, A.; Siemens, X.; Sievers, L.; Sigg, D.; Sintes, A. M.; Smith, J. R.; Smith, M.; Smith, M. R.; Sneddon, P. H.; Spero, R.; Spjeld, O.; Stapfer, G.; Steussy, D.; Strain, K. A.; Strom, D.; Stuver, A.; Summerscales, T.; Sumner, M. C.; Sung, M.; Sutton, P. J.; Sylvestre, J.
2006-03-01
We report on a search for gravitational waves from binary black hole inspirals in the data from the second science run of the LIGO interferometers. The search focused on binary systems with component masses between 3 and 20M⊙. Optimally oriented binaries with distances up to 1 Mpc could be detected with efficiency of at least 90%. We found no events that could be identified as gravitational waves in the 385.6 hours of data that we searched.
Searching for Spectroscopic Binaries within Transition Disk Objects
NASA Astrophysics Data System (ADS)
Kohn, Saul A.; Shkolnik, Evgenya L.; Weinberger, Alycia J.; Carlberg, Joleen K.; Llama, Joe
2016-03-01
Transition disks (TDs) are intermediate stage circumstellar disks characterized by an inner gap within the disk structure. To test whether these gaps may have been formed by closely orbiting, previously undetected stellar companions, we collected high-resolution optical spectra of 31 TD objects to search for spectroscopic binaries (SBs). Twenty-four of these objects are in Ophiuchus and seven are within the Coronet, Corona Australis, and Chameleon I star-forming regions. We measured radial velocities for multiple epochs, obtaining a median precision of 400 ms-1. We identified double-lined SB SSTc2d J163154.7-250324 in Ophiuchus, which we determined to be composed of a K7(±0.5) and a K9(±0.5) star, with orbital limits of a < 0.6 au and P < 150 days. This results in an SB fraction of {0.04}-0.03+0.12 in Ophiuchus, which is consistent with other spectroscopic surveys of non-TD objects in the region. This similarity suggests that TDs are not preferentially sculpted by the presence of close binaries and that planet formation around close binaries may take place over similar timescales to that around single stars. This paper is based on data gathered with the 6.5 m Clay Telescope located at Las Campanas Observatory, Chile.
A search for eclipsing binaries in galactic globular clusters
NASA Astrophysics Data System (ADS)
von Braun, Kaspar
2002-09-01
We report on the discovery and analysis of short-period (0.1 days < P < 5 days), photometrically varying binary stars around and below the main-sequence turnoff of the globular clusters (GCs) NGC 3201, M10, & M12. These eclipsing binaries (EBs) may be used to determine directly the distances to GCs and constrain the Population II stellar main-sequence masses. During our search for binaries, we discovered the signature of differential reddening across the cluster fields which was especially strong for NGC 3201 and M10. We correct for this differential reddening by calculating average EV-I values for stars in small subregions of the field with respect to a fiducial region, which significantly improves the appearance of the GC color-magnitude diagrams (CMDs). The reddening zero point to be added to the differential value is determined by isochrone fitting. The results of our differential dereddening are presented in the form of high-resolution extinction maps. Our search for EBs returned 14 variable stars (11 EBs) in the field of NGC 3201, 3 variables (1 EB) in M10, and 2 EBs in M12. Of these variables, only one EB in NGC 3201 (a blue straggler W Ursa Majoris contact system) is a definite GC-member, based on spectroscopic observations. Another W UMa contact EB in M12 is most likely a member of M12, based on its location in the color-magnitude diagram (CMD) and its empirically calculated absolute magnitude. We present the phased lightcurves for all variables, estimate their distances and GC membership, and show their locations in the GC fields and CMDs, as well as the spectra of the NGC 3201 EBs. Finally, we discuss the implications of our results and outline future work.
NASA Astrophysics Data System (ADS)
Bhateja, Ashish; Sharma, Ishan; Singh, Jayant K.
2013-06-01
We investigate segregation in a horizontally vibrated binary granular mixture in a closed offset-Christmas tree channel. The segregation phenomenon occurs in two steps: vertical sorting followed by axial segregation. In the first step, sorting occurs via Brazil-nut effect or reverse Brazil-nut effect depending on the particles' size and density ratios. The two layers thus formed then separate axially towards opposite-ends of the channel with the top layer always moving towards root of the Christmas tree. We discuss the segregation mechanism responsible for axial segregation.
SIMULATING VENTILATION DISTRIBUTION IN HETEROGENOUS LUNG INJURY USING A BINARY TREE DATA STRUCTURE
Colletti, Ashley A.; Amini, Reza; Kaczka, David W.
2011-01-01
To determine the impact of mechanical heterogeneity on the distribution of regional flows and pressures in the injured lung, we developed an anatomic model of the canine lung comprised of an asymmetric branching airway network which can be stored as binary tree data structure. The entire tree can be traversed using a recursive flow divider algorithm, allowing for efficient computation of acinar flow and pressure distributions in a mechanically heterogeneous lung. These distributions were found to be highly dependent on ventilation frequency and the heterogeneity of tissue elastances, reflecting the preferential distribution of ventilation to areas of lower regional impedance. PMID:21872852
A fast recursive coordinate bisection tree for neighbour search and gravity
NASA Astrophysics Data System (ADS)
Gafton, Emanuel; Rosswog, Stephan
2011-12-01
We introduce our new binary tree code for neighbour search and gravitational force calculations in an N-particle system. The tree is built in a 'top-down' fashion by 'recursive coordinate bisection' where on each tree level we split the longest side of a cell through its centre of mass. This procedure continues until the average number of particles in the lowest tree level drops below a prescribed value. To calculate the forces on the particles in each lowest-level cell we split the gravitational interaction into a near- and a far-field. Since our main intended applications are smoothed particle hydrodynamic (SPH) simulations, we calculate the near-field by a direct, kernel-smoothed summation, while the far field is evaluated via a Cartesian Taylor expansion up to quadrupole order. Instead of applying the far-field approach for each particle separately, we use another Taylor expansion around the centre of mass of each lowest-level cell to determine the forces at the particle positions. Due to this 'cell-cell interaction' the code performance is close to ? where N is the number of used particles. We describe in detail various technicalities that ensure a low memory footprint and an efficient cache use. In a set of benchmark tests we scrutinize our new tree and compare it to the 'Press tree' that we have previously made ample use of. At a slightly higher force accuracy than the Press tree, our tree turns out to be substantially faster and increasingly more so for larger particle numbers. For four million particles our tree build is faster by a factor of 25 and the time for neighbour search and gravity is reduced by more than a factor of 6. In single processor tests with up to 108 particles we confirm experimentally that the scaling behaviour is close to ?. The current FORTRAN 90 code version is OpenMP-parallel and scales excellently with the processor number (=24) of our test machine.
NASA Astrophysics Data System (ADS)
Capano, Collin; LIGO Scientific Collaboration; Virgo Collaboration
2016-03-01
Modeled searches for gravitational waves from compact binary coalescence (CBC) use a ``bank'' of template waveforms to search the wide range of parameters that binaries may have. Recent advances in waveform modeling and template placement techniques have opened up the possibility to efficiently search for systems with non-precessing spin, using waveforms that model the inspiral, merger, and ringdown of coalescing binaries. I discuss how these advances were combined to produce the template bank used to search for CBCs in the first observing run of Advanced LIGO. This bank covered the full range of plausible masses and non-precessing spins of binary neutron stars, stellar-mass binary black holes, and binaries consisting of a neutron star and a stellar-mass black hole.
Status of searches for compact binaries in aLIGO with PyCBC
NASA Astrophysics Data System (ADS)
Biwer, Christopher
2016-03-01
Advanced LIGO began its first observing in September 2015. Gravitational waves from binary neutron stars, binary black holes and neutron star-black hole binaries are an important science goal for Advanced LIGO. The PyCBC search uses match filtering to correlate LIGO data with a bank of templates to search for transient gravitational-wave from compact object binaries with a total mass between 2 and 100 solar masses with spin. In this talk, we describe results of the PyCBC search during the first aLIGO observing run. LIGO.
Searching for continuous gravitational wave sources in binary systems
NASA Astrophysics Data System (ADS)
Dhurandhar, Sanjeev V.; Vecchio, Alberto
2001-06-01
We consider the problem of searching for continuous gravitational wave (cw) sources orbiting a companion object. This issue is of particular interest because the Low mass x-ray binaries (LMXB's), and among them Sco X-1, the brightest x-ray source in the sky, might be marginally detectable with ~2 y coherent observation time by the Earth-based laser interferometers expected to come on line by 2002 and clearly observable by the second generation of detectors. Moreover, several radio pulsars, which could be deemed to be cw sources, are found to orbit a companion star or planet, and the LIGO-VIRGO-GEO600 network plans to continuously monitor such systems. We estimate the computational costs for a search launched over the additional five parameters describing generic elliptical orbits (up to e<~0.8) using match filtering techniques. These techniques provide the optimal signal-to-noise ratio and also a very clear and transparent theoretical framework. Since matched filtering will be implemented in the final and the most computationally expensive stage of the hierarchical strategies, the theoretical framework provided here can be used to determine the computational costs. In order to disentangle the computational burden involved in the orbital motion of the cw source from the other source parameters (position in the sky and spin down) and reduce the complexity of the analysis, we assume that the source is monochromatic (there is no intrinsic change in its frequency) and its location in the sky is exactly known. The orbital elements, on the other hand, are either assumed to be completely unknown or only partly known. We provide ready-to-use analytical expressions for the number of templates required to carry out the searches in the astrophysically relevant regions of the parameter space and how the computational cost scales with the ranges of the parameters. We also determine the critical accuracy to which a particular parameter must be known, so that no search is needed
Searching for spectroscopic binaries within transition disk objects
NASA Astrophysics Data System (ADS)
Kohn, Saul; Shkolnik, E.; Weinberger, A. J.; Carlberg, J. K.
2014-01-01
We have searched for spectroscopic binaries (SB) among 30 pre-main sequence stars that are reported to host transition disks (TD). Twenty-three of these objects are in the star-forming region rho-Ophiuchus and seven are among Coronet, Corona Australis and Chameleon I. We set out to determine whether these disks are truly disks in transition due to some mechanism such as planet formation, or are circumbinary disks. Radial velocities were measured for all targets from high-resolution optical spectra obtained over a two year baseline with the MIKE spectrograph on the 6.5-m Clay Telescope. Only one double-lined SB was found in Ophiuchus. We were sensitive to companions between 0.5 and 25 AU from the primary, complementing earlier high-resolution imaging surveys for stellar companions. We find a deficiency in the binary fraction of Ophiuchus TD stars compared to other SB surveys of that region (4% versus 12-70% quoted in the literature), and we explore possible causes related to disk dispersal mechanisms. Many thanks to the National Science Foundation for their support through the Research Experience for Undergraduates Grant AST-1004107.
Fully-coherent all-sky search for gravitational-waves from compact binary coalescences
NASA Astrophysics Data System (ADS)
Macleod, D.; Harry, I. W.; Fairhurst, S.
2016-03-01
We introduce a fully coherent method for searching for gravitational wave signals generated by the merger of black hole and/or neutron star binaries. This extends the coherent analysis previously developed and used for targeted gravitational wave searches to an all-sky, all-time search. We apply the search to one month of data taken during the fifth science run of the LIGO detectors. We demonstrate an increase in sensitivity of 25% over the coincidence search, which is commensurate with expectations. Finally, we discuss prospects for implementing and running a coherent search for gravitational wave signals from binary coalescence in the advanced gravitational wave detector data.
Proposed search for the detection of gravitational waves from eccentric binary black holes
NASA Astrophysics Data System (ADS)
Tiwari, V.; Klimenko, S.; Christensen, N.; Huerta, E. A.; Mohapatra, S. R. P.; Gopakumar, A.; Haney, M.; Ajith, P.; McWilliams, S. T.; Vedovato, G.; Drago, M.; Salemi, F.; Prodi, G. A.; Lazzaro, C.; Tiwari, S.; Mitselmakher, G.; Da Silva, F.
2016-02-01
Most compact binary systems are expected to circularize before the frequency of emitted gravitational waves (GWs) enters the sensitivity band of the ground based interferometric detectors. However, several mechanisms have been proposed for the formation of binary systems, which retain eccentricity throughout their lifetimes. Since no matched-filtering algorithm has been developed to extract continuous GW signals from compact binaries on orbits with low to moderate values of eccentricity, and available algorithms to detect binaries on quasicircular orbits are suboptimal to recover these events, in this paper we propose a search method for detection of gravitational waves produced from the coalescences of eccentric binary black holes (eBBH). We study the search sensitivity and the false alarm rates on a segment of data from the second joint science run of LIGO and Virgo detectors, and discuss the implications of the eccentric binary search for the advanced GW detectors.
Losing the trees for the forest in dynamic visual search.
Jardine, Nicole L; Moore, Cathleen M
2016-05-01
Representing temporally continuous objects across change (e.g., in position) requires integration of newly sampled visual information with existing object representations. We asked what consequences representational updating has for visual search. In this dynamic visual search task, bars rotated around their central axis. Observers searched for a single episodic target state (oblique bar among vertical and horizontal bars). Search was efficient when the target display was presented as an isolated static display. Performance declined to near chance, however, when the same display was a single state of a dynamically changing scene (Experiment 1), as though temporal selection of the target display from the stream of stimulation failed entirely (Experiment 3). The deficit is attributable neither to masking (Experiment 2), nor to a lack of temporal marker for the target display (Experiment 4). The deficit was partially reduced by visually marking the target display with unique feature information (Experiment 5). We suggest that representational updating causes a loss of access to instantaneous state information in search. Similar to spatially crowded displays that are perceived as textures (Parkes, Lund, Angelucci, Solomon, & Morgan, 2001), we propose a temporal version of the trees (instantaneous orientation information) being lost for the forest (rotating bars). (PsycINFO Database Record PMID:26689307
Estimating Basin Snow Volume Using Aerial LiDAR and Binary Regression Trees (Invited)
NASA Astrophysics Data System (ADS)
Shallcross, A. T.; McNamara, J. P.; Flores, A. N.; Marshall, H.; Marks, D. G.; Glenn, N. F.
2010-12-01
Snow cover derived from airborne LiDAR (Light Detection And Ranging) is combined with binary regression trees to improve the prediction of total basin snow volume for the Dry Creek Experimental Watershed (DCEW), ID. These methods are used to identify site-specific topographic controls on the spatial distribution of snow so that future point measurements of snow depth can be distributed through space efficiently. LiDAR is used to map snow cover by differencing the digital elevation models (DEMs) obtained from a snow-covered overflight and a snow-free overflight. Topographic parameters known to control snow distribution are calculated from the snow free LiDAR dataset. Here, mean vegetation height, slope, aspect, solar radiation, and elevation are used to predict snow depth via a binary regression tree using ten-fold cross-validation. The branches leading to the terminal nodes of the regression tree are used to segment the watershed into homogeneous snow distribution units. Preliminary results indicate that 23 statistically significant discrete units exist. Thus, during future field campaigns, point measurements of snow depth can be gathered and distributed throughout these units. Mean measured SWE/depth of each unit can be summed to determine the total basin snow volume. This method should decrease field time and improve the accuracy of basin snow volume estimates for watershed analyses.
Framework for discrete-time quantum walks and a symmetric walk on a binary tree
Dimcovic, Zlatko; Rockwell, Daniel; Milligan, Ian; Burton, Robert M.; Kovchegov, Yevgeniy; Nguyen, Thinh
2011-09-15
We formulate a framework for discrete-time quantum walks, motivated by classical random walks with memory. We present a specific representation of the classical walk with memory 2, on which this is based. The framework has no need for coin spaces, it imposes no constraints on the evolution operator other than unitarity, and is unifying of other approaches. As an example we construct a symmetric discrete-time quantum walk on the semi-infinite binary tree. The generating function of the amplitude at the root is computed in closed form, as a function of time and the initial level n in the tree, and we find the asymptotic and a full numerical solution for the amplitude. It exhibits a sharp interference peak and a power-law tail, as opposed to the exponentially decaying tail of a broadly peaked distribution of the classical symmetric random walk on a binary tree. The probability peak is orders of magnitude larger than it is for the classical walk (already at small n). The quantum walk shows a polynomial algorithmic speedup in n over the classical walk, which we conjecture to be of the order 2/3, based on strong trends in data.
Improving multivariate Horner schemes with Monte Carlo tree search
NASA Astrophysics Data System (ADS)
Kuipers, J.; Plaat, A.; Vermaseren, J. A. M.; van den Herik, H. J.
2013-11-01
Optimizing the cost of evaluating a polynomial is a classic problem in computer science. For polynomials in one variable, Horner's method provides a scheme for producing a computationally efficient form. For multivariate polynomials it is possible to generalize Horner's method, but this leaves freedom in the order of the variables. Traditionally, greedy schemes like most-occurring variable first are used. This simple textbook algorithm has given remarkably efficient results. Finding better algorithms has proved difficult. In trying to improve upon the greedy scheme we have implemented Monte Carlo tree search, a recent search method from the field of artificial intelligence. This results in better Horner schemes and reduces the cost of evaluating polynomials, sometimes by factors up to two.
Searching and Studying Binary Asteroids with AO Systems
NASA Astrophysics Data System (ADS)
Marchis, F.; Descamps, P.; Berthier, J.; Hestroffer, D.; de Pater, I.; Conrad, A.; Le Mignant, D.; Chaffee, F.; Gavel, D.
2003-05-01
Our group has conducted adaptive optics observations of asteroids since 2001. Our main goal is the search and study of binary asteroids using several AO systems (Lick, Keck, VLT) and related technique such as Appulse (Berthier and Marchis, 2002) and Laser Guide Star observations (Marchis et al., AGU-EGS, 2003) to broaden the sample of asteroids observed from the main-belt out to the Kuiper Belt. We focussed our program last year on Trojan Asteroids. Six of them were observed using Appulses with Keck AO ( ˜0.05-0.10", mv=15.4-18.5), 6 with the LGS at Lick ( ˜0.25-0.35", mv<16) and 12 with the VLT/NACO system ( ˜0.10-0.14"; mv<16.7). None of these observations reveals the presence of a companion. Based on this sample, and including 617 Patroclus binary asteroid discovered by Merline et al. (IAU, 7741, 2001), we deduce that the proportion of binary Trojan asteroids larger than 40 km is less than 4%. We will promote and discuss a technique of the analysis of negative discovery in large samples. In January 2003, we conducted an observing campaign spanning 5 days of 121 Hermione with NACO, the new AO system offered at VLT. This C-type asteroid was discovered by Merline et al. (IAU, 7980, 2002). The companion, 6.1 mag fainter than the primary, is easily detected despite the faintness of the asteroid (mv ˜13). We use the method described in Marchis et al. (Icarus, 2003) to determine the orbit of the companion. Its orbital elements are a=794.7+/-2.1 km, and P=1.643+/-0.005 days. We derived a mass =1.47E19 kg, and a density of 3.1+/-0.8 g cm-3 (using IRAS diameter of 209+/-4.7 km). Considering typical densities of meteorite analogues (CI or CM carboneceous chondrite) would led to an extremely low macro-porosity of p<3%. This suggests that the volume of Hermione is ˜30% larger, which is also supported by our resolved images of this body. This work supported by the National Science Foundation Science and Technology Center for Adaptive Optics, based partly on observations
A note on subtrees rooted along the primary path of a binary tree
Troutman, B.M.; Karlinger, M.R.
1993-01-01
Let Fn denote the set of rooted binary plane trees with n external nodes, for given T???Fn let ui(T) be the altitude i node along the primary path of T, and let ??i(T) denote the number of external nodes in the induced subtree rooted at ui(T). We set ??i(T) = 0 if i is greater than the length of the primary path of T. We prove limn?????? ???i???x/n En{??i}/???itrees T???Fn and where the distribution function G is determined by its moments, for which we present an explicit expression. ?? 1993.
Improved limited discrepancy search
Korf, R.E.
1996-12-31
We present an improvement to Harvey and Ginsberg`s limited discrepancy search algorithm, which eliminates much of the redundancy in the original, by generating each path from the root to the maximum search depth only once. For a complete binary tree of depth d this reduces the asymptotic complexity from O(d+2/2 2{sup d}) to O(2{sup d}). The savings is much less in a partial tree search, or in a heavily pruned tree. The overhead of the improved algorithm on a complete binary tree is only a factor of b/(b - 1) compared to depth-first search. While this constant factor is greater on a heavily pruned tree, this improvement makes limited discrepancy search a viable alternative to depth-first search, whenever the entire tree may not be searched. Finally, we present both positive and negative empirical results on the utility of limited discrepancy search, for the problem of number partitioning.
Block-Based Connected-Component Labeling Algorithm Using Binary Decision Trees
Chang, Wan-Yu; Chiu, Chung-Cheng; Yang, Jia-Horng
2015-01-01
In this paper, we propose a fast labeling algorithm based on block-based concepts. Because the number of memory access points directly affects the time consumption of the labeling algorithms, the aim of the proposed algorithm is to minimize neighborhood operations. Our algorithm utilizes a block-based view and correlates a raster scan to select the necessary pixels generated by a block-based scan mask. We analyze the advantages of a sequential raster scan for the block-based scan mask, and integrate the block-connected relationships using two different procedures with binary decision trees to reduce unnecessary memory access. This greatly simplifies the pixel locations of the block-based scan mask. Furthermore, our algorithm significantly reduces the number of leaf nodes and depth levels required in the binary decision tree. We analyze the labeling performance of the proposed algorithm alongside that of other labeling algorithms using high-resolution images and foreground images. The experimental results from synthetic and real image datasets demonstrate that the proposed algorithm is faster than other methods. PMID:26393597
A modified binary tree codification of drainage networks to support complex hydrological models
NASA Astrophysics Data System (ADS)
Li, Tiejian; Wang, Guangqian; Chen, Ji
2010-11-01
A new codification method (named a modified binary tree codification method) is developed for coding drainage networks. To express the inner topological structure of a drainage basin, it is necessary to delineate and code digital drainage networks from digital elevation model datasets. In this study, the established software TOPAZ is used to delineate river reaches, and the new codification method is applied, which is based on the application of binary-tree structures and hierarchical zones. A coded drainage network can then be stored in a relational database management system to achieve efficient manipulation of data items for topological operations. The utility of the new codification method is demonstrated by an example applied to the Digital Yellow River Model. The drainage network of the Middle Yellow River in northern China has been coded and the hydrological and soil erosion processes of its sub-basin, the Chabagou River basin, are simulated. Because more details of the drainage network can be efficiently and effectively described, the new codification method can support complex hydrological models and extract more information from hydrological simulations than ever before.
SEARCH FOR SUPERMASSIVE BLACK HOLE BINARIES IN THE SLOAN DIGITAL SKY SURVEY SPECTROSCOPIC SAMPLE
Ju, Wenhua; Greene, Jenny E.; Rafikov, Roman R.; Bickerton, Steven J.; Badenes, Carles
2013-11-01
Supermassive black hole (SMBH) binaries are expected in a ΛCDM cosmology given that most (if not all) massive galaxies contain a massive black hole (BH) at their center. So far, however, direct evidence for such binaries has been elusive. We use cross-correlation to search for temporal velocity shifts in the Mg II broad emission lines of 0.36 < z < 2 quasars with multiple observations in the Sloan Digital Sky Survey. For ∼10{sup 9} M{sub ☉} BHs in SMBH binaries, we are sensitive to velocity drifts for binary separations of ∼0.1 pc with orbital periods of ∼100 yr. We find seven candidate sub-parsec-scale binaries with velocity shifts >3.4σ ∼ 280 km s{sup –1}, where σ is our systematic error. Comparing the detectability of SMBH binaries with the number of candidates (N ≤ 7), we can rule out that most 10{sup 9} M{sub ☉} BHs exist in ∼0.03-0.2 pc scale binaries, in a scenario where binaries stall at sub-parsec scales for a Hubble time. We further constrain that ≤16% (one-third) of quasars host SMBH binaries after considering gas-assisted sub-parsec evolution of SMBH binaries, although this result is very sensitive to the assumed size of the broad line region. We estimate the detectability of SMBH binaries with ongoing or next-generation surveys (e.g., Baryon Oscillation Spectroscopic Survey, Subaru Prime Focus Spectrograph), taking into account the evolution of the sub-parsec binary in circumbinary gas disks. These future observations will provide longer time baselines for searches similar to ours and may in turn constrain the evolutionary scenarios of SMBH binaries.
Mulder, Willem H
2011-07-01
The stationary birth-only, or Yule-Furry, process for rooted binary trees has been analysed with a view to developing explicit expressions for two fundamental statistical distributions: the probability that a randomly selected leaf is preceded by N nodes, or "ancestors", and the probability that two randomly selected leaves are separated by N nodes. For continuous-time Yule processes, the first of these distributions is presented in closed analytical form as a function of time, with time being measured with respect to the moment of "birth" of the common ancestor (which is essentially inaccessible to phylogenetic analysis), or with respect to the instant at which the first bifurcation occurred. The second distribution is shown to follow in an iterative manner from a hierarchy of second-order ordinary differential equations. For Yule trees of a given number n of tips, expressions have been derived for the mean and variance for each of these distributions as functions of n, as well as for the distributions themselves. In addition, it is shown how the methods developed to obtain these distributions can be employed to find, with minor effort, expressions for the expectation values of two statistics on Yule trees, the Sackin index (sum over all root-to-leaf distances), and the sum over all leaf-to-leaf distances. PMID:21527261
Discussion of AN Advanced LIGO Low-Latency Search for Compact Binary Gravitational Waves
NASA Astrophysics Data System (ADS)
Messick, Cody; LIGO Scientific Collaboration; Virgo Collaboration
2016-03-01
Advanced ligo completed its first observing run in january, marking the beginning of a new era in gravitational wave astronomy. Low-latency pipelines searched for gravitational waves from compact binary mergers during the observing run, uploading candidate events to a database within seconds. In my presentation, we will report on the low-latency gstlal-inspiral advanced ligo search.
A search for cataclysmic binaries containing strongly magnetic white dwarfs
NASA Technical Reports Server (NTRS)
Bond, H. E.; Chanmugam, G.
1982-01-01
The AM Herculis type binaries which contain accreting white dwarfs with surface magnetic fields of a few times 10 to the seventh power gauss were studied. If white dwarfs in cataclysmic binaries have a range of field strengths similar to that among single white dwarfs. AM Her like systems should exist with fields as high as 3 x 10 to the eighth power gauss. It is suggested that such objects will not have the strong optical polarization of the AM Her variables; however, they exhibit high harmonic cyclotron emission, making them spectacular UV sources. We made IUE observations of seven candidate cataclysmic variables selected for optical similarity to AM Her binaries. Although all seven objects were detected in the UV, none display unusually strong UV continua. It is suggested that the distribution of magnetic field strengths among single white dwarfs may be different from that among binaries.
Joint LIGO and TAMA300 search for gravitational waves from inspiralling neutron star binaries
NASA Astrophysics Data System (ADS)
Abbott, B.; Abbott, R.; Adhikari, R.; Ageev, A.; Agresti, J.; Ajith, P.; Allen, B.; Allen, J.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Araya, M.; Armandula, H.; Ashley, M.; Asiri, F.; Aufmuth, P.; Aulbert, C.; Babak, S.; Balasubramanian, R.; Ballmer, S.; Barish, B. C.; Barker, C.; Barker, D.; Barnes, M.; Barr, B.; Barton, M. A.; Bayer, K.; Beausoleil, R.; Belczynski, K.; Bennett, R.; Berukoff, S. J.; Betzwieser, J.; Bhawal, B.; Bilenko, I. A.; Billingsley, G.; Black, E.; Blackburn, K.; Blackburn, L.; Bland, B.; Bochner, B.; Bogue, L.; Bork, R.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brown, D. A.; Bullington, A.; Bunkowski, A.; Buonanno, A.; Burgess, R.; Busby, D.; Butler, W. E.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cantley, C. A.; Cao, J.; Cardenas, L.; Carter, K.; Casey, M. M.; Castiglione, J.; Chandler, A.; Chapsky, J.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Chickarmane, V.; Chin, D.; Christensen, N.; Churches, D.; Cokelaer, T.; Colacino, C.; Coldwell, R.; Coles, M.; Cook, D.; Corbitt, T.; Coyne, D.; Creighton, J. D. E.; Creighton, T. D.; Crooks, D. R. M.; Csatorday, P.; Cusack, B. J.; Cutler, C.; Dalrymple, J.; D'Ambrosio, E.; Danzmann, K.; Davies, G.; Daw, E.; Debra, D.; Delker, T.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.; di Credico, A.; Díaz, M.; Ding, H.; Drever, R. W. P.; Dupuis, R. J.; Edlund, J. A.; Ehrens, P.; Elliffe, E. J.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Fallnich, C.; Farnham, D.; Fejer, M. M.; Findley, T.; Fine, M.; Finn, L. S.; Franzen, K. Y.; Freise, A.; Frey, R.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Ganezer, K. S.; Garofoli, J.; Giaime, J. A.; Gillespie, A.; Goda, K.; Goggin, L.; González, G.; Goßler, S.; Grandclément, P.; Grant, A.; Gray, C.; Gretarsson, A. M.; Grimmett, D.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, E.; Gustafson, R.; Hamilton, W. O.; Hammond, M.; Hanna, C.; Hanson, J.; Hardham, C.; Harms, J.; Harry, G.; Hartunian, A.; Heefner, J.; Hefetz, Y.; Heinzel, G.; Heng, I. S.; Hennessy, M.; Hepler, N.; Heptonstall, A.; Heurs, M.; Hewitson, M.; Hild, S.; Hindman, N.; Hoang, P.; Hough, J.; Hrynevych, M.; Hua, W.; Ito, M.; Itoh, Y.; Ivanov, A.; Jennrich, O.; Johnson, B.; Johnson, W. W.; Johnston, W. R.; Jones, D. I.; Jones, G.; Jones, L.; Jungwirth, D.; Kalogera, V.; Katsavounidis, E.; Kawabe, K.; Kells, W.; Kern, J.; Khan, A.; Killbourn, S.; Killow, C. J.; Kim, C.; King, C.; King, P.; Klimenko, S.; Koranda, S.; Kötter, K.; Kovalik, J.; Kozak, D.; Krishnan, B.; Landry, M.; Langdale, J.; Lantz, B.; Lawrence, R.; Lazzarini, A.; Lei, M.; Leonor, I.; Libbrecht, K.; Libson, A.; Lindquist, P.; Liu, S.; Logan, J.; Lormand, M.; Lubiński, M.; Lück, H.; Luna, M.; Lyons, T. T.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Majid, W.; Malec, M.; Mandic, V.; Mann, F.; Marin, A.; Márka, S.; Maros, E.; Mason, J.; Mason, K.; Matherny, O.; Matone, L.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McHugh, M.; McNabb, J. W. C.; Melissinos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messaritaki, E.; Messenger, C.; Mikhailov, E.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Mohanty, S.; Moreno, G.; Mossavi, K.; Mueller, G.; Mukherjee, S.; Murray, P.; Myers, E.; Myers, J.; Nagano, S.; Nash, T.; Nayak, R.; Newton, G.; Nocera, F.; Noel, J. S.; Nutzman, P.; Olson, T.; O'Reilly, B.; Ottaway, D. J.; Ottewill, A.; Ouimette, D.; Overmier, H.; Owen, B. J.; Pan, Y.; Papa, M. A.; Parameshwaraiah, V.; Parameswariah, C.; Pedraza, M.; Penn, S.; Pitkin, M.; Plissi, M.; Prix, R.; Quetschke, V.; Raab, F.; Radkins, H.; Rahkola, R.; Rakhmanov, M.; Rao, S. R.; Rawlins, K.; Ray-Majumder, S.; Re, V.; Redding, D.; Regehr, M. W.; Regimbau, T.; Reid, S.; Reilly, K. T.; Reithmaier, K.; Reitze, D. H.; Richman, S.; Riesen, R.; Riles, K.; Rivera, B.; Rizzi, A.; Robertson, D. I.; Robertson, N. A.; Robinson, C.; Robison, L.; Roddy, S.; Rodriguez, A.; Rollins, J.; Romano, J. D.; Romie, J.; Rong, H.; Rose, D.; Rotthoff, E.; Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan, K.; Salzman, I.; Sandberg, V.; Sanders, G. H.; Sannibale, V.; Sarin, P.; Sathyaprakash, B.; Saulson, P. R.; Savage, R.; Sazonov, A.; Schilling, R.; Schlaufman, K.; Schmidt, V.; Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott, S. M.; Seader, S. E.; Searle, A. C.; Sears, B.; Seel, S.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Shapiro, C. A.; Shawhan, P.; Shoemaker, D. H.; Shu, Q. Z.; Sibley, A.; Siemens, X.; Sievers, L.; Sigg, D.; Sintes, A. M.; Smith, J. R.; Smith, M.; Smith, M. R.; Sneddon, P. H.; Spero, R.; Spjeld, O.; Stapfer, G.; Steussy, D.; Strain, K. A.; Strom, D.; Stuver, A.; Summerscales, T.; Sumner, M. C.; Sung, M.; Sutton, P. J.; Sylvestre, J.; Tanner, D. B.; Tariq, H.
2006-05-01
We search for coincident gravitational wave signals from inspiralling neutron star binaries using LIGO and TAMA300 data taken during early 2003. Using a simple trigger exchange method, we perform an intercollaboration coincidence search during times when TAMA300 and only one of the LIGO sites were operational. We find no evidence of any gravitational wave signals. We place an observational upper limit on the rate of binary neutron star coalescence with component masses between 1 and 3M⊙ of 49 per year per Milky Way equivalent galaxy at a 90% confidence level. The methods developed during this search will find application in future network inspiral analyses.
Photometric binary stars in Praesepe and the search for globular cluster binaries
NASA Technical Reports Server (NTRS)
Bolte, Michael
1991-01-01
A radial velocity study of the stars which are located on a second sequence above the single-star zero-age main sequence at a given color in the color-magnitude diagram of the open cluster Praesepe, (NGC 2632) shows that 10, and possibly 11, of 17 are binary systems. Of the binary systems, five have full amplitudes for their velocity variations that are greater than 50 km/s. To the extent that they can be applied to globular clusters, these results suggests that (1) observations of 'second-sequence' stars in globular clusters would be an efficient way of finding main-sequence binary systems in globulars, and (2) current instrumentation on large telescopes is sufficient for establishing unambiguously the existence of main-sequence binary systems in nearby globular clusters.
Search for gravitational waves from binary black hole inspiral, merger, and ringdown
NASA Astrophysics Data System (ADS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Arain, M. A.; Araya, M. C.; Aronsson, M.; Aso, Y.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballardin, G.; Ballinger, T.; Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Beker, M. G.; Belletoile, A.; Benacquista, M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birindelli, S.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Boccara, C.; Bock, O.; Bodiya, T. P.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Boyle, M.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Budzyński, R.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cain, J.; Calloni, E.; Camp, J. B.; Campagna, E.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coulon, J.-P.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Das, K.; Dattilo, V.; Daudert, B.; Davier, M.; Davies, G.; Davis, A.; Daw, E. J.; Day, R.; Dayanga, T.; Derosa, R.; Debra, D.; Debreczeni, G.; Degallaix, J.; Del Prete, M.; Dergachev, V.; de Rosa, R.; Desalvo, R.; Devanka, P.; Dhurandhar, S.; di Fiore, L.; di Lieto, A.; di Palma, I.; di Paolo Emilio, M.; di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Dorsher, S.; Douglas, E. S. D.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Dueck, J.; Dumas, J.-C.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Ely, G.; Engel, R.; Etzel, T.; Evans, M.; Evans, T.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flanigan, M.; Flasch, K.; Foley, S.; Forrest, C.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Garofoli, J. A.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Genin, E.; Gennai, A.; Gholami, I.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hall, P.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Hayler, T.; Heefner, J.; Heitmann, H.; Hello, P.; Heng, I. S.; Heptonstall, A. W.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hoyland, D.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J. B.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, H.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kowalska, I.; Kozak, D.; Krause, T.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kullman, J.; Kumar, R.; Kwee, P.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lazzarini, A.; Leaci, P.; Leong, J.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lin, H.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lu, P.; Luan, J.; Lubiński, M.; Lucianetti, A.; Lück, H.; Lundgren, A. D.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Mak, C.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIvor, G.; McKechan, D. J. A.; Meadors, G.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Merill, L.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mino, Y.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreau, J.; Moreno, G.; Morgado, N.; Morgia, A.; Morioka, T.; Mors, K.; Mosca, S.; Moscatelli, V.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murray, P. G.; Nash, T.; Nawrodt, R.; Nelson, J.; Neri, I.; Newton, G.; Nishizawa, A.; Nocera, F.; Nolting, D.; Ochsner, E.; O'Dell, J.; Ogin, G. H.; Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Pardi, S.; Pareja, M.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pathak, D.; Pedraza, M.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Persichetti, G.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Postiglione, F.; Prato, M.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radke, T.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Roberts, P.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sakata, S.; Sakosky, M.; Salemi, F.; Sammut, L.; Sancho de La Jordana, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Santostasi, G.; Saraf, S.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Speirits, F. C.; Sperandio, L.; Stein, A. J.; Stein, L. C.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szokoly, G. P.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Tseng, K.; Turner, L.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vaishnav, B.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vocca, H.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.; Zanolin, M.; Zhang, L.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2011-06-01
We present the first modeled search for gravitational waves using the complete binary black-hole gravitational waveform from inspiral through the merger and ringdown for binaries with negligible component spin. We searched approximately 2 years of LIGO data, taken between November 2005 and September 2007, for systems with component masses of 1-99M⊙ and total masses of 25-100M⊙. We did not detect any plausible gravitational-wave signals but we do place upper limits on the merger rate of binary black holes as a function of the component masses in this range. We constrain the rate of mergers for 19M⊙≤m1, m2≤28M⊙ binary black-hole systems with negligible spin to be no more than 2.0Mpc-3Myr-1 at 90% confidence.
Cross-indexing of binary SIFT codes for large-scale image search.
Liu, Zhen; Li, Houqiang; Zhang, Liyan; Zhou, Wengang; Tian, Qi
2014-05-01
In recent years, there has been growing interest in mapping visual features into compact binary codes for applications on large-scale image collections. Encoding high-dimensional data as compact binary codes reduces the memory cost for storage. Besides, it benefits the computational efficiency since the computation of similarity can be efficiently measured by Hamming distance. In this paper, we propose a novel flexible scale invariant feature transform (SIFT) binarization (FSB) algorithm for large-scale image search. The FSB algorithm explores the magnitude patterns of SIFT descriptor. It is unsupervised and the generated binary codes are demonstrated to be dispreserving. Besides, we propose a new searching strategy to find target features based on the cross-indexing in the binary SIFT space and original SIFT space. We evaluate our approach on two publicly released data sets. The experiments on large-scale partial duplicate image retrieval system demonstrate the effectiveness and efficiency of the proposed algorithm. PMID:24710404
Numerical database system based on a weighted search tree
NASA Astrophysics Data System (ADS)
Park, S. C.; Bahri, C.; Draayer, J. P.; Zheng, S.-Q.
1994-09-01
An on-line numerical database system, that is based on the concept of a weighted search tree and which functions like a file directory, is introduced. The system, which is designed to aid in reducing time-consuming redundant calculations in numerically intensive computations, can be used to fetch, insert and delete items from a dynamically generated list in optimal [ O(log n) where n is the number of items in the list] time. Items in the list are ordered according to a priority queue with the initial priority for each element set either automatically or by an user supplied algorithm. The priority queue is updated on-the-fly to reflect element hit frequency. Items can be added to a database so long as there is space to accommodate them, and when there is not, the lowest priority element(s) is removed to make room for an incoming element(s) with higher priority. The system acts passively and therefore can be applied to any number of databases, with the same or different structures, within a single application.
Monte-Carlo Tree Search in Settlers of Catan
NASA Astrophysics Data System (ADS)
Szita, István; Chaslot, Guillaume; Spronck, Pieter
Games are considered important benchmark opportunities for artificial intelligence research. Modern strategic board games can typically be played by three or more people, which makes them suitable test beds for investigating multi-player strategic decision making. Monte-Carlo Tree Search (MCTS) is a recently published family of algorithms that achieved successful results with classical, two-player, perfect-information games such as Go. In this paper we apply MCTS to the multi-player, non-deterministic board game Settlers of Catan. We implemented an agent that is able to play against computer-controlled and human players. We show that MCTS can be adapted successfully to multi-agent environments, and present two approaches of providing the agent with a limited amount of domain knowledge. Our results show that the agent has a considerable playing strength when compared to game implementation with existing heuristics. So, we may conclude that MCTS is a suitable tool for achieving a strong Settlers of Catan player.
Search for gravitational waves from binary inspirals in S3 and S4 LIGO data
NASA Astrophysics Data System (ADS)
Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Ajith, P.; Allen, B.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain, M.; Araya, M.; Armandula, H.; Ashley, M.; Aston, S.; Aufmuth, P.; Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.; Barish, B. C.; Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bayer, K.; Belczynski, K.; Betzwieser, J.; Beyersdorf, P. T.; Bhawal, B.; Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, K.; Blackburn, L.; Blair, D.; Bland, B.; Bogenstahl, J.; Bogue, L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brinkmann, M.; Brooks, A.; Brown, D. A.; Bullington, A.; Bunkowski, A.; Buonanno, A.; Burmeister, O.; Busby, D.; Butler, W. E.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cantley, C. A.; Cao, J.; Cardenas, L.; Carter, K.; Casey, M. M.; Castaldi, G.; Cepeda, C.; Chalkey, E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Chiadini, F.; Chin, D.; Chin, E.; Chow, J.; Christensen, N.; Clark, J.; Cochrane, P.; Cokelaer, T.; Colacino, C. N.; Coldwell, R.; Conte, R.; Cook, D.; Corbitt, T.; Coward, D.; Coyne, D.; Creighton, J. D. E.; Creighton, T. D.; Croce, R. P.; Crooks, D. R. M.; Cruise, A. M.; Cumming, A.; Dalrymple, J.; D'Ambrosio, E.; Danzmann, K.; Davies, G.; Debra, D.; Degallaix, J.; Degree, M.; Demma, T.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.; Díaz, M.; Dickson, J.; di Credico, A.; Diederichs, G.; Dietz, A.; Doomes, E. E.; Drever, R. W. P.; Dumas, J.-C.; Dupuis, R. J.; Dwyer, J. G.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Fan, Y.; Fazi, D.; Fejer, M. M.; Finn, L. S.; Fiumara, V.; Fotopoulos, N.; Franzen, A.; Franzen, K. Y.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Ganezer, K. S.; Garofoli, J.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.; Goggin, L.; González, G.; Gossler, S.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, J.; Gretarsson, A. M.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, R.; Hage, B.; Hammer, D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G.; Harstad, E.; Hayler, T.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Heurs, M.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken, D.; Hough, J.; Howell, E.; Hoyland, D.; Huttner, S. H.; Ingram, D.; Innerhofer, E.; Ito, M.; Itoh, Y.; Ivanov, A.; Jackrel, D.; Johnson, B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalili, F. Ya.; Kim, C.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R. K.; Kozak, D.; Krishnan, B.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lazzarini, A.; Lee, B.; Lei, M.; Leiner, J.; Leonhardt, V.; Leonor, I.; Libbrecht, K.; Lindquist, P.; Lockerbie, N. A.; Longo, M.; Lormand, M.; Lubiński, M.; Lück, H.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Malec, M.; Mandic, V.; Marano, S.; Márka, S.; Markowitz, J.; Maros, E.; Martin, I.; Marx, J. N.; Mason, K.; Matone, L.; Matta, V.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McKenzie, K.; McNabb, J. W. C.; McWilliams, S.; Meier, T.; Melissinos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messaritaki, E.; Messenger, C. J.; Meyers, D.; Mikhailov, E.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Mohanty, S.; Moreno, G.; Mossavi, K.; Mowlowry, C.; Moylan, A.; Mudge, D.; Mueller, G.; Mukherjee, S.; Müller-Ebhardt, H.; Munch, J.; Murray, P.; Myers, E.; Myers, J.; Nash, T.; Newton, G.; Nishizawa, A.; Nocera, F.; Numata, K.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pan, Y.; Papa, M. A.; Parameshwaraiah, V.; Parameswariah, C.; Patel, P.; Pedraza, M.; Penn, S.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H.; Plissi, M. V.; Postiglione, F.; Prix, R.; Quetschke, V.; Raab, F.; Rabeling, D.; Radkins, H.; Rahkola, R.; Rainer, N.; Rakhmanov, M.; Rawlins, K.; Ray-Majumder, S.; Re, V.; Regimbau, T.; Rehbein, H.; Reid, S.; Reitze, D. H.; Ribichini, L.; Riesen, R.; Riles, K.; Rivera, B.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Rodriguez, A.; Rogan, A. M.; Rollins, J.; Romano, J. D.; Romie, J.; Route, R.; Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan, K.; Sakata, S.; Samidi, M.; de La Jordana, L. Sancho; Sandberg, V.; Sanders, G. H.; Sannibale, V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R.; Savov, P.; Sazonov, A.; Schediwy, S.; Schilling, R.; Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott, S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Sidles, J. A.; Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Somiya, K.; Strain, K. A.; Strom, D. M.; Stuver, A.; Summerscales, T. Z.; Sun, K.-X.; Sung, M.; Sutton, P. J.; Takahashi, H.; Tanner, D. B.; Tarallo, M.; Taylor, R.; Taylor, R.; Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring, A.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.; Tyler, W.; Ugolini, D.; Ungarelli, C.; Urbanek, K.; Vahlbruch, H.; Vallisneri, M.; van den Broeck, C.; van Putten, M.; Varvella, M.; Vass, S.; Vecchio, A.; Veitch, J.; Veitch, P.; Villar, A.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward, H.; Ward, R.; Watts, K.; Webber, D.; Weidner, A.; Weinert, M.; Weinstein, A.; Weiss, R.; Wen, S.; Wette, K.; Whelan, J. T.; Whitbeck, D. M.; Whitcomb, S. E.; Whiting, B. F.; Wiley, S.; Wilkinson, C.; Willems, P. A.; Williams, L.; Willke, B.; Wilmut, I.; Winkler, W.; Wipf, C. C.; Wise, S.; Wiseman, A. G.; Woan, G.; Woods, D.; Wooley, R.; Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan, Z.; Yoshida, S.; Yunes, N.; Zanolin, M.; Zhang, J.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M.; Zur Mühlen, H.; Zweizig, J.
2008-03-01
We report on a search for gravitational waves from the coalescence of compact binaries during the third and fourth LIGO science runs. The search focused on gravitational waves generated during the inspiral phase of the binary evolution. In our analysis, we considered three categories of compact binary systems, ordered by mass: (i) primordial black hole binaries with masses in the range 0.35M⊙
Template banks to search for compact binaries with spinning components in gravitational wave data
Van Den Broeck, Chris; Cokelaer, Thomas; Harry, Ian; Jones, Gareth; Sathyaprakash, B. S.; Brown, Duncan A.; Tagoshi, Hideyuki; Takahashi, Hirotaka
2009-07-15
Gravitational waves from coalescing compact binaries are one of the most promising sources for detectors such as LIGO, Virgo, and GEO600. If the components of the binary possess significant angular momentum (spin), as is likely to be the case if one component is a black hole, spin-induced precession of a binary's orbital plane causes modulation of the gravitational-wave amplitude and phase. If the templates used in a matched-filter search do not accurately model these effects then the sensitivity, and hence the detection rate, will be reduced. We investigate the ability of several search pipelines to detect gravitational waves from compact binaries with spin. We use the post-Newtonian approximation to model the inspiral phase of the signal and construct two new template banks using the phenomenological waveforms of Buonanno, Chen, and Vallisneri [A. Buonanno, Y. Chen, and M. Vallisneri, Phys. Rev. D 67, 104025 (2003)]. We compare the performance of these template banks to that of banks constructed using the stationary phase approximation to the nonspinning post-Newtonian inspiral waveform currently used by LIGO and Virgo in the search for compact binary coalescence. We find that, at the same false alarm rate, a search pipeline using phenomenological templates is no more effective than a pipeline which uses nonspinning templates. We recommend the continued use of the nonspinning stationary phase template bank until the false alarm rate associated with templates which include spin effects can be substantially reduced.
A three-stage search for supermassive black-hole binaries in LISA data
NASA Astrophysics Data System (ADS)
Brown, Duncan A.; Crowder, Jeff; Cutler, Curt; Mandel, Ilya; Vallisneri, Michele
2007-10-01
Gravitational waves from the inspiral and coalescence of supermassive black-hole (SMBH) binaries with masses m1 ~ m2 ~ 106Modot are likely to be among the strongest sources for the Laser Interferometer Space Antenna (LISA). We describe a three-stage data-analysis pipeline designed to search for and measure the parameters of SMBH binaries in LISA data. The first stage uses a time frequency track-search method to search for inspiral signals and provide a coarse estimate of the black-hole masses m1, m2 and the coalescence time of the binary tc. The second stage uses a sequence of matched-filter template banks, seeded by the first stage, to improve the measurement accuracy of the masses and coalescence time. Finally, a Markov chain Monte Carlo search is used to estimate all nine physical parameters of the binary (masses, coalescence time, distance, initial phase, sky position and orientation). Using results from the second stage substantially shortens the Markov chain burn-in time and allows us to determine the number of SMBH-binary signals in the data before starting parameter estimation. We demonstrate our analysis pipeline using simulated data from the first Mock LISA Data Challenge. We discuss our plan for improving this pipeline and the challenges that will be faced in real LISA data analysis.
Searching Kepler Variable Stars with the Eclipsing Binary Factory Pipeline
NASA Astrophysics Data System (ADS)
Parvizi, Mahmoud; Paegert, M.
2014-01-01
Repositories of large survey data, such as the Mikulski Archive for Space Telescopes, provide an ideally sized sample from which to identify astrophysically interesting eclipsing binary systems (EBs). However, constraints on the rate of human analysis in solving for the characteristic parameters make mining this data using classical techniques prohibitive. The Kepler data set provides both the high precision simple aperture photometry necessary to detect EBs and a corresponding Kepler Eclipsing Binary Catalog - V3 (KEBC3) of 2,406 EBs in the Kepler filed of view (FoV) as a benchmark. We developed a fully automated end-to-end computational pipeline known as the Eclipsing Binary Factory (EBF) that employs pre-classification data processing modules, a feed-forward single layer perception neural network classifier (NNC), and a subsequent neural network solution estimator (NNSE). This paper focuses on the EBF component modules to include NNC, but excludes the NNSE, as a precursor to a fully automated pipeline that uses solution estimates of characteristic parameters to identify astrophysically interesting EBs. The EBF was found to recover ~94% of KEBC3 EBs contained in the Kepler “Q3” data release where the period is less than thirty days.
Searching Planets Around Some Selected Eclipsing Close Binary Stars Systems
NASA Astrophysics Data System (ADS)
Nasiroglu, Ilham; Slowikowska, Agnieszka; Krzeszowski, Krzysztof; Zejmo, M. Michal; Er, Hüseyin; Goździewski, Krzysztof; Zola, Stanislaw; Koziel-Wierzbowska, Dorota; Debski, Bartholomew; Ogloza, Waldemar; Drozdz, Marek
2016-07-01
We present updated O-C diagrams of selected short period eclipsing binaries observed since 2009 with the T100 Telescope at the TUBITAK National Observatory (Antalya, Turkey), the T60 Telescope at the Adiyaman University Observatory (Adiyaman, Turkey), the 60cm at the Mt. Suhora Observatory of the Pedagogical University (Poland) and the 50cm Cassegrain telescope at the Fort Skala Astronomical Observatory of the Jagiellonian University in Krakow, Poland. All four telescopes are equipped with sensitive, back-illuminated CCD cameras and sets of wide band filters. One of the targets in our sample is a post-common envelope eclipsing binary NSVS 14256825. We collected more than 50 new eclipses for this system that together with the literature data gives more than 120 eclipse timings over the time span of 8.5 years. The obtained O-C diagram shows quasi-periodic variations that can be well explained by the existence of the third body on Jupiter-like orbit. We also present new results indicating a possible light time travel effect inferred from the O-C diagrams of two other binary systems: HU Aqr and V470 Cam.
Fast optimization of binary clusters using a novel dynamic lattice searching method
Wu, Xia Cheng, Wen
2014-09-28
Global optimization of binary clusters has been a difficult task despite of much effort and many efficient methods. Directing toward two types of elements (i.e., homotop problem) in binary clusters, two classes of virtual dynamic lattices are constructed and a modified dynamic lattice searching (DLS) method, i.e., binary DLS (BDLS) method, is developed. However, it was found that the BDLS can only be utilized for the optimization of binary clusters with small sizes because homotop problem is hard to be solved without atomic exchange operation. Therefore, the iterated local search (ILS) method is adopted to solve homotop problem and an efficient method based on the BDLS method and ILS, named as BDLS-ILS, is presented for global optimization of binary clusters. In order to assess the efficiency of the proposed method, binary Lennard-Jones clusters with up to 100 atoms are investigated. Results show that the method is proved to be efficient. Furthermore, the BDLS-ILS method is also adopted to study the geometrical structures of (AuPd){sub 79} clusters with DFT-fit parameters of Gupta potential.
Searching for GW signals from eccentric supermassive black-hole binaries with pulsar-timing arrays
NASA Astrophysics Data System (ADS)
Taylor, Stephen; Gair, Jonathan; Huerta, Eliu; McWilliams, Sean
2015-04-01
The mergers of massive galaxies leads to the formation of supermassive black-hole binaries in the common merger remnants. Various mechanisms have been proposed to harden these binaries into the adiabatic GW inspiral regime, from interactions with circumbinary disks to stellar scattering. It may be the case that these mechanisms leave the binary with a residual eccentricity, such that the deviation to the time-of-arrival of pulsar signals induced by the emitted GW passing between the Earth and a pulsar will contain a signature of this eccentricity. Current pulsar-timing search pipelines only probe circular binary systems, but much effort is now being devoted to considering the influence of the binary environment on GW signals. We will detail our efforts in constructing a generalised GW search pipeline to constrain the eccentricity of single systems with arrays of precisely-timed pulsars, which may shed light on the influence of various supermassive black-hole binary hardening mechanisms and illuminate the importance of environmental couplings.
2012-01-01
Background There are several common ways to encode a tree as a matrix, such as the adjacency matrix, the Laplacian matrix (that is, the infinitesimal generator of the natural random walk), and the matrix of pairwise distances between leaves. Such representations involve a specific labeling of the vertices or at least the leaves, and so it is natural to attempt to identify trees by some feature of the associated matrices that is invariant under relabeling. An obvious candidate is the spectrum of eigenvalues (or, equivalently, the characteristic polynomial). Results We show for any of these choices of matrix that the fraction of binary trees with a unique spectrum goes to zero as the number of leaves goes to infinity. We investigate the rate of convergence of the above fraction to zero using numerical methods. For the adjacency and Laplacian matrices, we show that the a priori more informative immanantal polynomials have no greater power to distinguish between trees. Conclusion Our results show that a generic large binary tree is highly unlikely to be identified uniquely by common spectral invariants. PMID:22613173
A search for binary pulsar companions using multi-wavelength OBSERVATIONS
NASA Astrophysics Data System (ADS)
Mignani, Roberto; Yershov, Vladimir; Oates, Samantha; Breeveld, Alice; Pallanca, Cristina; Corongiu, Alessandro; Ferraro, Francesco
The identification of the stellar companions to binary pulsars is key to study the evolution of the binary system and how this is influenced by the interactions between the two stars. For only a fraction of the known binary pulsars, the stellar companion has been identified. Here, we used 11 source catalogues available from multi-wavelength (optical, infrared, ultraviolet) imaging sky surveys, including the recently released Swift/UVOT and XMM-Newton/OM, to search for the stellar companions of a sample of 144 field binary pulsars (i.e. not in Globular Clusters) selected from the Australia Telescope National Facility (ATNF) data base (version 1.48) and from the public list of gamma-ray pulsars detected by Fermi.
Region-based urban road extraction from VHR satellite images using Binary Partition Tree
NASA Astrophysics Data System (ADS)
Li, Mengmeng; Stein, Alfred; Bijker, Wietske; Zhan, Qingming
2016-02-01
This paper provides a hierarchical method for urban road extraction. It consists of (1) obtaining the road region of interest from a VHR image, (2) hierarchically representing this road region of interest in a Binary Partition Tree (BPT), and extracting the roads based on this BPT at hierarchical levels. Besides using two existing geometrical features (i.e. compactness and elongation), we define two other structural features based on orientation histograms and morphological profiles to guide the region merging of BPT. The morphological profiles are constructed using a series of path openings, which facilitate modeling linear or curved structures. The proposed method was applied to two types of VHR images with different urban settings, corresponding to a Pléiades-B image of Wuhan, China, and a Quickbird image of Enschede, the Netherlands. Experimental results show that the proposed method was able to group adjacent small segments that have high spectral heterogeneity and low road-like geometrical properties to form more meaningful roads sections, and performed superior to the existing methods. Furthermore, we compared the proposed method with two other existing methods in the literature. We conclude that the proposed method can provide an effective means for extracting roads over densely populated urban areas from VHR satellite images.
Optimal computation of prefix sums on a binary tree of processors
Meijer, H.; Akl, S.G.
1987-04-01
Given n numbers a/sub 0/, a/sub 1/,..., a/sub n-1/, it is required to compute all sums of the form a/sub 0/ + a/sub 1/ + ... + a/sub i/, for i = 0, 1,..., n-1. This problem arises in many applications and is trivial to solve sequentially in O(n) time. Besides its practical importance, the problem gains an additional theoretical interest in parallel computation. A technique known as recursive doubling allows all sums to be computed in O(log n) time on a model of computation where n processors communicate through an inverse perfect shuffle interconnection network. In this paper we show how the problem can be solved on a simple network, namely a binary tree of processors. In addition, we show how to extend our solution to obtain an optimal-cost algorithm. The algorithm uses p processors and runs in O((n/p) +log p) time, for a cost of O(n + p log p). This cost is optimal when p log p = O(n). Finally, two applications of our results are illustrated, namely job scheduling with deadlines and the knapsack problem.
First all-sky search for continuous gravitational waves from unknown sources in binary systems
NASA Astrophysics Data System (ADS)
Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Andersen, M.; Anderson, R.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bell, A. S.; Bell, C.; Bergmann, G.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bloemen, S.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bosi, L.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Buchman, S.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burman, R.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corpuz, A.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; Debreczeni, G.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Donath, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dossa, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Effler, A.; Eggenstein, H.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hooper, S.; Hopkins, P.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.
2014-09-01
We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO science run and the second and third Virgo science runs. The search covers a range of frequencies from 20 Hz to 520 Hz, a range of orbital periods from 2 to ˜2,254 h and a frequency- and period-dependent range of frequency modulation depths from 0.277 to 100 mHz. This corresponds to a range of projected semimajor axes of the orbit from ˜0.6×10-3 ls to ˜6,500 ls assuming the orbit of the binary is circular. While no plausible candidate gravitational wave events survive the pipeline, upper limits are set on the analyzed data. The most sensitive 95% confidence upper limit obtained on gravitational wave strain is 2.3×10-24 at 217 Hz, assuming the source waves are circularly polarized. Although this search has been optimized for circular binary orbits, the upper limits obtained remain valid for orbital eccentricities as large as 0.9. In addition, upper limits are placed on continuous gravitational wave emission from the low-mass x-ray binary Scorpius X-1 between 20 Hz and 57.25 Hz.
A Search for Close Red Dwarf-White Dwarf Binaries
NASA Astrophysics Data System (ADS)
Boyd, Mark R.; Henry, Todd J.; Subasavage, John P.
2011-08-01
We propose to observe 59 objects suspected to be red dwarf-white dwarf (RD-WD) binaries with separations < 3 arcsec using the CTIO 1.0m. Our goals are to use images of these objects to both resolve the systems and to obtain accurate BVRI photometry. The systems have been selected based on positions in three different color-color plots using SuperCOSMOS BRI plate photometry and 2MASS JHK photometry in accordance with the positions of known RD-WD binaries. This effort will identify candidates for detailed observations as part of the RECONS astrometric program on the CTIO 0.9m to yield accurate parallaxes and photocentric orbits. The parallaxes will then be used to determine the ages of the systems from WD cooling curves, and the orbits will eventually be used to measure dynamical masses. Ultimately, we aim to increase significantly the number of dynamical masses for white dwarfs because currently only three have been determined to 5% accuracy. The first observational step outlined here will allow us to identify appropriate systems for long-term work. This 1.0m project is likely to become the undergraduate senior thesis work of the PI.
Search for gravitational waves from intermediate mass binary black holes
NASA Astrophysics Data System (ADS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Ajith, P.; Allen, B.; Amador Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barayoga, J. C. B.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Beck, D.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, W.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H.; Chow, J.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Del Pozzo, W.; del Prete, M.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Flanigan, M.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P. J.; Fyffe, M.; Gair, J.; Galimberti, M.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Geng, R.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil, S.; Gill, C.; Gleason, J.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Gray, N.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Ha, T.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; James, E.; Jang, Y. J.; Jaranowski, P.; Jesse, E.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kelley, D.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B.; Kim, C.; Kim, H.; Kim, K.; Kim, N.; Kim, Y.-M.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kranz, O.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Leaci, P.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lindquist, P. E.; Liu, Y.; Liu, Z.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marandi, A.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.; McWilliams, S.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Morriss, S. R.; Mosca, S.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Necula, V.; Nelson, J.; Newton, G.; Nguyen, T.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pedraza, M.; Peiris, P.; Pekowsky, L.; Penn, S.; Perreca, A.; Persichetti, G.; Phelps, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Prato, M.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Redwine, K.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sainathan, P.; Salemi, F.; Sammut, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Somiya, K.; Sorazu, B.; Soto, J.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Stein, A. J.; Stein, L. C.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S. E.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Tseng, K.; Ugolini, D.; Vahlbruch, H.; Vajente, G.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vitale, S.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, M.; Wang, X.; Wang, Z.; Wanner, A.; Ward, R. L.; Was, M.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, R.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.; Zadroźny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhang, W.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2012-05-01
We present the results of a weakly modeled burst search for gravitational waves from mergers of nonspinning intermediate mass black holes in the total mass range 100-450M⊙ and with the component mass ratios between 1∶1 and 4∶1. The search was conducted on data collected by the LIGO and Virgo detectors between November of 2005 and October of 2007. No plausible signals were observed by the search which constrains the astrophysical rates of the intermediate mass black holes mergers as a function of the component masses. In the most efficiently detected bin centered on 88+88M⊙, for nonspinning sources, the rate density upper limit is 0.13 per Mpc3 per Myr at the 90% confidence level.
Search for Gravitational Waves from Intermediate Mass Binary Black Holes
NASA Technical Reports Server (NTRS)
Blackburn, L.; Camp, J. B.; Cannizzo, J.; Stroeer, A. S.
2012-01-01
We present the results of a weakly modeled burst search for gravitational waves from mergers of non-spinning intermediate mass black holes (IMBH) in the total mass range 100-450 solar Mass and with the component mass ratios between 1:1 and 4:1. The search was conducted on data collected by the LIGO and Virgo detectors between November of 2005 and October of 2007. No plausible signals were observed by the search which constrains the astrophysical rates of the IMBH mergers as a function of the component masses. In the most efficiently detected bin centered on 88 + 88 solar Mass , for non-spinning sources, the rate density upper limit is 0.13 per Mpc(exp 3) per Myr at the 90% confidence level.
A Search for X-ray Emitting Binary Stars in the Globular Cluster Omega Centauri
NASA Astrophysics Data System (ADS)
Deveny, Sarah; Gallien, Michael; Rickards Vaught, Ryan; Waters, Miranda; Cool, Adrienne; Bellini, Andrea; Anderson, Jay; Henleywillis, Simon; Haggard, Daryl; Heinke, Craig O.
2016-06-01
Omega Centauri is one of the most widely studied globular clusters, and is expected to harbor a significant population of binary stars. Binaries play a crucial role in determining the progression of stellar dynamics within globular clusters, and as such are relevant to questions concerning the possible formation of intermediate black holes at their centers. One effective way to identify certain classes of binary systems is to first locate X-ray sources in the cluster and then to search for their optical counterparts. Using Chandra X-ray Observatory's ACIS-I instrument we have identified 275 X-ray sources in and toward Omega Cen, more than 50 of which lie within the cluster's core radius. Here we present a search for the optical counterparts of these core sources using an extensive database of archival Hubble Space Telescope images. Using WFC3/UVIS data from 11 different filters, we construct color-magnitude diagrams that reveal a diverse array of objects, including (in addition to background and foreground objects) cataclysmic variables, coronally active binaries, and, interestingly, stars that lie on Omega Cen's anomalous giant branch. We discuss the significance of these results in the context of studies of the formation and evolution of binary stars in globular clusters.
Search for contact systems among EB-type binaries. I - TT Herculis
NASA Astrophysics Data System (ADS)
Milano, L.; Barone, F.; Mancuso, S.; Russo, G.; Vittone, A. A.
1989-02-01
In a search of contact systems among EB-type binaries, the existing photometric observations of TT Her have been analyzed. An unambiguous solution, contrary to previous analyses which presented several possibilities is found. The system is semi-detached, with the primary filling the lobe. There is evidence that the primary is evolved off the main sequence, and that mass transfer is taking place from the primary to the secondary, which is therefore enlarged by accretion. The temperature of the primary component is found to be about 7240 K, thus solving one of the problems for this system. It is concluded that TT Her is the progenitor of an evolved contact binary.
A search for binary candidates among the fundamental mode RR Lyrae stars observed by Kepler
NASA Astrophysics Data System (ADS)
Guggenberger, Elisabeth; Steixner, Jakob
2015-09-01
Although roughly half of all stars are considered to be part of binary or multiple systems, there are only two confirmed cases of RR Lyrae pulsators with companions. One of them is TU Uma [1] - a classical RR Lyrae star in a very eccentric orbit - and the other is OGLE-BLG-RRLYR-02792 [2]. Considering the wealth of well-studied RR Lyrae stars, this number is astoundingly low. Having more RR Lyrae stars in binary systems at hand would be extremely valuable to get independent measurements of the masses. The data from the Kepler mission with their unprecedented precision and the long time span of about four years offer a unique possibility to systematically search for the signatures of binarity in RR Lyrae stars. Using the pulsation as a clock, we studied the variations in the timing of maximum light to hunt for possible binary systems in the sample.
Optimizing gravitational-wave searches for a population of coalescing binaries: Intrinsic parameters
NASA Astrophysics Data System (ADS)
Dent, T.; Veitch, J.
2014-03-01
We revisit the problem of searching for gravitational waves from inspiralling compact binaries in Gaussian colored noise. If the intrinsic parameters of a quasicircular, nonprecessing binary are known, then the optimal statistic for detecting the dominant mode signal in a single interferometer is given by the well-known two-phase matched filter. However, the matched filter signal-to-noise ratio (SNR) is not in general an optimal statistic for an astrophysical population of signals, since their distribution over the intrinsic parameters will almost certainly not mirror that of noise events, which is determined by the (Fisher) information metric. Instead, the optimal statistic for a given astrophysical distribution will be the Bayes factor, which we approximate using the output of a standard template matched filter search. We then quantify the improvement in number of signals detected for various populations of nonspinning binaries: for a distribution of signals uniformly distributed in volume and with component masses distributed uniformly over the range 1≤m1,2/M⊙≤24, (m1+m2)/M⊙≤25 at fixed expected SNR, we find ≳20% more signals at a false alarm threshold of 10-6 Hz in a single detector. The method may easily be generalized to binaries with nonprecessing spins.
Search for gravitational waves from galactic and extra-galactic binary neutron stars
NASA Astrophysics Data System (ADS)
Abbott, B.; Abbott, R.; Adhikari, R.; Ageev, A.; Allen, B.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Araya, M.; Armandula, H.; Ashley, M.; Asiri, F.; Aufmuth, P.; Aulbert, C.; Babak, S.; Balasubramanian, R.; Ballmer, S.; Barish, B. C.; Barker, C.; Barker, D.; Barnes, M.; Barr, B.; Barton, M. A.; Bayer, K.; Beausoleil, R.; Belczynski, K.; Bennett, R.; Berukoff, S. J.; Betzwieser, J.; Bhawal, B.; Bilenko, I. A.; Billingsley, G.; Black, E.; Blackburn, K.; Blackburn, L.; Bland, B.; Bochner, B.; Bogue, L.; Bork, R.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brown, D. A.; Bullington, A.; Bunkowski, A.; Buonanno, A.; Burgess, R.; Busby, D.; Butler, W. E.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp, J. B.; Cantley, C. A.; Cardenas, L.; Carter, K.; Casey, M. M.; Castiglione, J.; Chandler, A.; Chapsky, J.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Chickarmane, V.; Chin, D.; Christensen, N.; Churches, D.; Cokelaer, T.; Colacino, C.; Coldwell, R.; Coles, M.; Cook, D.; Corbitt, T.; Coyne, D.; Creighton, J. D. E.; Creighton, T. D.; Crooks, D. R. M.; Csatorday, P.; Cusack, B. J.; Cutler, C.; D'Ambrosio, E.; Danzmann, K.; Daw, E.; Debra, D.; Delker, T.; Dergachev, V.; Desalvo, R.; Dhurandhar, S.; Credico, A. Di; Díaz, M.; Ding, H.; Drever, R. W. P.; Dupuis, R. J.; Edlund, J. A.; Ehrens, P.; Elliffe, E. J.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Fallnich, C.; Farnham, D.; Fejer, M. M.; Findley, T.; Fine, M.; Finn, L. S.; Franzen, K. Y.; Freise, A.; Frey, R.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Ganezer, K. S.; Garofoli, J.; Giaime, J. A.; Gillespie, A.; Goda, K.; González, G.; Goßler, S.; Grandclément, P.; Grant, A.; Gray, C.; Gretarsson, A. M.; Grimmett, D.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, E.; Gustafson, R.; Hamilton, W. O.; Hammond, M.; Hanson, J.; Hardham, C.; Harms, J.; Harry, G.; Hartunian, A.; Heefner, J.; Hefetz, Y.; Heinzel, G.; Heng, I. S.; Hennessy, M.; Hepler, N.; Heptonstall, A.; Heurs, M.; Hewitson, M.; Hild, S.; Hindman, N.; Hoang, P.; Hough, J.; Hrynevych, M.; Hua, W.; Ito, M.; Itoh, Y.; Ivanov, A.; Jennrich, O.; Johnson, B.; Johnson, W. W.; Johnston, W. R.; Jones, D. I.; Jones, L.; Jungwirth, D.; Kalogera, V.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kells, W.; Kern, J.; Khan, A.; Killbourn, S.; Killow, C. J.; Kim, C.; King, C.; King, P.; Klimenko, S.; Koranda, S.; Kötter, K.; Kovalik, J.; Kozak, D.; Krishnan, B.; Landry, M.; Langdale, J.; Lantz, B.; Lawrence, R.; Lazzarini, A.; Lei, M.; Leonor, I.; Libbrecht, K.; Libson, A.; Lindquist, P.; Liu, S.; Logan, J.; Lormand, M.; Lubiński, M.; Lück, H.; Lyons, T. T.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Majid, W.; Malec, M.; Mann, F.; Marin, A.; Márka, S.; Maros, E.; Mason, J.; Mason, K.; Matherny, O.; Matone, L.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McHugh, M.; McNabb, J. W. C.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messaritaki, E.; Messenger, C.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Miyoki, S.; Mohanty, S.; Moreno, G.; Mossavi, K.; Mueller, G.; Mukherjee, S.; Murray, P.; Myers, J.; Nagano, S.; Nash, T.; Nayak, R.; Newton, G.; Nocera, F.; Noel, J. S.; Nutzman, P.; Olson, T.; O'Reilly, B.; Ottaway, D. J.; Ottewill, A.; Ouimette, D.; Overmier, H.; Owen, B. J.; Pan, Y.; Papa, M. A.; Parameshwaraiah, V.; Parameswaran, A.; Parameswariah, C.; Pedraza, M.; Penn, S.; Pitkin, M.; Plissi, M.; Prix, R.; Quetschke, V.; Raab, F.; Radkins, H.; Rahkola, R.; Rakhmanov, M.; Rao, S. R.; Rawlins, K.; Ray-Majumder, S.; Re, V.; Redding, D.; Regehr, M. W.; Regimbau, T.; Reid, S.; Reilly, K. T.; Reithmaier, K.; Reitze, D. H.; Richman, S.; Riesen, R.; Riles, K.; Rivera, B.; Rizzi, A.; Robertson, D. I.; Robertson, N. A.; Robison, L.; Roddy, S.; Rollins, J.; Romano, J. D.; Romie, J.; Rong, H.; Rose, D.; Rotthoff, E.; Rowan, S.; Rüdiger, A.; Russell, P.; Ryan, K.; Salzman, I.; Sandberg, V.; Sanders, G. H.; Sannibale, V.; Sathyaprakash, B.; Saulson, P. R.; Savage, R.; Sazonov, A.; Schilling, R.; Schlaufman, K.; Schmidt, V.; Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott, S. M.; Seader, S. E.; Searle, A. C.; Sears, B.; Seel, S.; Seifert, F.; Sengupta, A. S.; Shapiro, C. A.; Shawhan, P.; Shoemaker, D. H.; Shu, Q. Z.; Sibley, A.; Siemens, X.; Sievers, L.; Sigg, D.; Sintes, A. M.; Smith, J. R.; Smith, M.; Smith, M. R.; Sneddon, P. H.; Spero, R.; Stapfer, G.; Steussy, D.; Strain, K. A.; Strom, D.; Stuver, A.; Summerscales, T.; Sumner, M. C.; Sutton, P. J.; Sylvestre, J.; Takamori, A.; Tanner, D. B.; Tariq, H.; Taylor, I.; Taylor, R.; Taylor, R.; Thorne, K. A.; Thorne, K. S.; Tibbits, M.; Tilav, S.; Tinto, M.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Tyler, W.; Ugolini, D.; Ungarelli, C.; Vallisneri, M.; van Putten, M.; Vass, S.; Vecchio, A.
2005-10-01
We use 373 hours (≈15 days) of data from the second science run of the LIGO gravitational-wave detectors to search for signals from binary neutron star coalescences within a maximum distance of about 1.5 Mpc, a volume of space which includes the Andromeda Galaxy and other galaxies of the Local Group of galaxies. This analysis requires a signal to be found in data from detectors at the two LIGO sites, according to a set of coincidence criteria. The background (accidental coincidence rate) is determined from the data and is used to judge the significance of event candidates. No inspiral gravitational-wave events were identified in our search. Using a population model which includes the Local Group, we establish an upper limit of less than 47 inspiral events per year per Milky Way equivalent galaxy with 90% confidence for nonspinning binary neutron star systems with component masses between 1 and 3M⊙.
Template banks to search for compact binaries with spinning components in gravitational wave data
NASA Astrophysics Data System (ADS)
van den Broeck, Chris; Brown, Duncan A.; Cokelaer, Thomas; Harry, Ian; Jones, Gareth; Sathyaprakash, B. S.; Tagoshi, Hideyuki; Takahashi, Hirotaka
2009-07-01
Gravitational waves from coalescing compact binaries are one of the most promising sources for detectors such as LIGO, Virgo, and GEO600. If the components of the binary possess significant angular momentum (spin), as is likely to be the case if one component is a black hole, spin-induced precession of a binary’s orbital plane causes modulation of the gravitational-wave amplitude and phase. If the templates used in a matched-filter search do not accurately model these effects then the sensitivity, and hence the detection rate, will be reduced. We investigate the ability of several search pipelines to detect gravitational waves from compact binaries with spin. We use the post-Newtonian approximation to model the inspiral phase of the signal and construct two new template banks using the phenomenological waveforms of Buonanno, Chen, and Vallisneri [A. Buonanno, Y. Chen, and M. Vallisneri, Phys. Rev. DPRVDAQ0556-2821 67, 104025 (2003)10.1103/PhysRevD.67.104025]. We compare the performance of these template banks to that of banks constructed using the stationary phase approximation to the nonspinning post-Newtonian inspiral waveform currently used by LIGO and Virgo in the search for compact binary coalescence. We find that, at the same false alarm rate, a search pipeline using phenomenological templates is no more effective than a pipeline which uses nonspinning templates. We recommend the continued use of the nonspinning stationary phase template bank until the false alarm rate associated with templates which include spin effects can be substantially reduced.
Searches for millisecond pulsations in low-mass X-ray binaries, 2
NASA Technical Reports Server (NTRS)
Vaughan, B. A.; Van Der Klis, M.; Wood, K. S.; Norris, J. P.; Hertz, P.; Michelson, P. F.; Paradijs, J. Van; Lewin, W. H. G.; Mitsuda, K.; Penninx, W.
1994-01-01
Coherent millisecond X-ray pulsations are expected from low-mass X-ray binaries (LMXBs), but remain undetected. Using the single-parameter Quadratic Coherence Recovery Technique (QCRT) to correct for unknown binary orbit motion, we have performed Fourier transform searches for coherent oscillations in all long, continuous segments of data obtained at 1 ms time resolution during Ginga observations of LMXB. We have searched the six known Z sources (GX 5-1, Cyg X-2, Sco X-1, GX 17+2, GX 340+0, and GX 349+2), seven of the 14 known atoll sources (GX 3+1. GX 9+1, GX 9+9, 1728-33. 1820-30, 1636-53 and 1608-52), the 'peculiar' source Cir X-1, and the high-mass binary Cyg X-3. We find no evidence for coherent pulsations in any of these sources, with 99% confidence limits on the pulsed fraction between 0.3% and 5.0% at frequencies below the Nyquist frequency of 512 Hz. A key assumption made in determining upper limits in previous searches is shown to be incorrect. We provide a recipe for correctly setting upper limits and detection thresholds. Finally we discuss and apply two strategies to improve sensitivity by utilizing multiple, independent, continuous segments of data with comparable count rates.
Part model of rotational components based on binary tree approach of form feature for CAD/CAPP/CAM
NASA Astrophysics Data System (ADS)
Cai, Ligang; Yin, Jun; Ma, Weidong; Li, Peigen; Duan, Zhengcheng
1995-08-01
From the application point of view of CIM or CAD/CAPP/CAM, there should be a unified part model through which the different application system can share the part information. Using feature as the basic information unit, form feature and its binary tree as the skeleton, a new practical part model regarding the rotational components is presented in this paper. The data structure of the model is discussed in detail. An application example of the model is shown in this article. The model has been found to be flexible and effective in part creation, representation, automatic process planning, and CAM.
B-tree search reinforcement learning for model based intelligent agent
NASA Astrophysics Data System (ADS)
Bhuvaneswari, S.; Vignashwaran, R.
2013-03-01
Agents trained by learning techniques provide a powerful approximation of active solutions for naive approaches. In this study using B - Trees implying reinforced learning the data search for information retrieval is moderated to achieve accuracy with minimum search time. The impact of variables and tactics applied in training are determined using reinforcement learning. Agents based on these techniques perform satisfactory baseline and act as finite agents based on the predetermined model against competitors from the course.
Soft-Decision Decoding of Binary Linear Block Codes Based on an Iterative Search Algorithm
NASA Technical Reports Server (NTRS)
Lin, Shu; Kasami, Tadao; Moorthy, H. T.
1997-01-01
This correspondence presents a suboptimum soft-decision decoding scheme for binary linear block codes based on an iterative search algorithm. The scheme uses an algebraic decoder to iteratively generate a sequence of candidate codewords one at a time using a set of test error patterns that are constructed based on the reliability information of the received symbols. When a candidate codeword is generated, it is tested based on an optimality condition. If it satisfies the optimality condition, then it is the most likely (ML) codeword and the decoding stops. If it fails the optimality test, a search for the ML codeword is conducted in a region which contains the ML codeword. The search region is determined by the current candidate codeword and the reliability of the received symbols. The search is conducted through a purged trellis diagram for the given code using the Viterbi algorithm. If the search fails to find the ML codeword, a new candidate is generated using a new test error pattern, and the optimality test and search are renewed. The process of testing and search continues until either the MEL codeword is found or all the test error patterns are exhausted and the decoding process is terminated. Numerical results show that the proposed decoding scheme achieves either practically optimal performance or a performance only a fraction of a decibel away from the optimal maximum-likelihood decoding with a significant reduction in decoding complexity compared with the Viterbi decoding based on the full trellis diagram of the codes.
Brown, Duncan A.; Zimmerman, Peter J.
2010-01-15
Inspiralling compact binaries are expected to circularize before their gravitational-wave signals reach the sensitive frequency band of ground-based detectors. Current searches for gravitational waves from compact binaries using the LIGO and Virgo detectors therefore use circular templates to construct matched filters. Binary formation models have been proposed which suggest that some systems detectable by the LIGO-Virgo network may have non-negligible eccentricity. We investigate the ability of the restricted 3.5 post-Newtonian order TaylorF2 template bank, used by LIGO and Virgo to search for gravitational waves from compact binaries with masses M{<=}35M{sub {center_dot},} to detect binaries with nonzero eccentricity. We model the gravitational waves from eccentric binaries using the x-model post-Newtonian formalism proposed by Hinder et al.[I. Hinder, F. Hermann, P. Laguna, and D. Shoemaker, arXiv:0806.1037v1]. We find that small residual eccentricities (e{sub 0} < or approx. 0.05 at 40 Hz) do not significantly affect the ability of current LIGO searches to detect gravitational waves from coalescing compact binaries with total mass 2M{sub {center_dot}<}M<15M{sub {center_dot}.} For eccentricities e{sub 0} > or approx. 0.1, the loss in matched filter signal-to-noise ratio due to eccentricity can be significant and so templates which include eccentric effects will be required to perform optimal searches for such systems.
Tsalmantza, P.; Decarli, R.; Hogg, David W.; Dotti, M. E-mail: decarli@mpia.de
2011-09-01
We present the results of a systematic search for massive black hole binaries in the Sloan Digital Sky Survey (SDSS) spectroscopic database. We focus on bound binaries, under the assumption that one of the black holes is active. In this framework, the broad lines associated with the accreting black hole are expected to show systematic velocity shifts with respect to the narrow lines, which trace the rest frame of the galaxy. For a sample of 54,586 quasars and 3929 galaxies at redshifts 0.1 < z < 1.5, we brute-force model each spectrum as a mixture of two quasars at two different redshifts. The spectral model is a data-driven dimensionality reduction of the SDSS quasar spectra based on a matrix factorization. We identified 32 objects with peculiar spectra. Nine of them can be interpreted as black hole binaries. This doubles the number of known black hole binary candidates. We also report on the discovery of a new class of extreme double-peaked emitters with exceptionally broad and faint Balmer lines. For all the interesting sources, we present detailed analysis of the spectra and discuss possible interpretations.
Implications of Profile Variability in Searches for Supermassive Black Hole Binaries
NASA Astrophysics Data System (ADS)
Pennell, Alison; Runnoe, Jessie C.; Brown, Stephanie Meghan; Eracleous, Michael; Bogdanovic, Tamara; Boroson, Todd A.; Halpern, Jules P.
2016-01-01
Modern galaxy evolution scenarios suggest that supermassive black hole binaries (SBHBs) are an inevitable result of merging galaxies that host black holes in their centers. Though candidates of wide-separation dual active galactic nuclei have been detected, there is no reliable evidence for the expected close, bound binaries at separations of one parsec or less. We are searching for close SBHBs among z<0.7 SDSS quasars with offset broad emission lines. Specifically, we test the idea that, if one of the black holes is active, the orbital motion within the binary will cause its broad emission lines to exhibit periodic radial velocity shifts. Among the most significant caveats to this approach is that the variability of the broad Hβ profile may mimic radial velocity changes. Cases where the flux increases in one side of the line profile and decreases in the other are of particular concern. In order to test the extent of this problem, we introduce simulated profile variability into the observed spectra of the binary candidates and then make radial velocity measurements on the Hβ lines. We will present the results of this simulation to assess how often we will measure false radial velocity shifts as a result of changes in the shape of the broad Hβ profile.
NASA Astrophysics Data System (ADS)
Haris, K.; Pai, Archana
2016-05-01
In this article, we revisit the coherent gravitational wave search problem of compact binary coalescences with multidetector network consisting of advanced interferometers like LIGO-Virgo. Based on the loss of the optimal multidetector signal-to-noise ratio (SNR), we construct a hybrid statistic as a best of maximum-likelihood-ratio (MLR) statistic tuned for face-on and face-off binaries. The statistical properties of the hybrid statistic is studied. The performance of this hybrid statistic is compared with that of the coherent MLR statistic for generic inclination angles. Owing to the single synthetic data stream, the hybrid statistic gives few false alarms compared to the multidetector MLR statistic and small fractional loss in the optimum SNR for a large range of binary inclinations. We demonstrate that, for a LIGO-Virgo network and binary inclination ɛ <7 0 ° and ɛ >11 0 ° , the hybrid statistic captures more than 98% of the network optimum matched filter SNR with a low false alarm rate. The Monte Carlo exercise with two distributions of incoming inclination angles—namely, U [cos ɛ ] and a more realistic distribution proposed by B. F. Schutz [Classical Quantum Gravity 28, 125023 (2011)]—are performed with the hybrid statistic and give approximately 5% and 7% higher detection probabilities, respectively, compared to the two stream multidetector MLR statistic for a fixed false alarm probability of 1 0-5.
Mining Planet Search Data for Binary Stars: The ψ1 Draconis system
NASA Astrophysics Data System (ADS)
Gullikson, Kevin; Endl, Michael; Cochran, William D.; MacQueen, Phillip J.
2015-12-01
Several planet-search groups have acquired a great deal of data in the form of time-series spectra of several hundred nearby stars with time baselines of over a decade. While binary star detections are generally not the goal of these long-term monitoring efforts, the binary stars hiding in existing planet search data are precisely the type that are too close to the primary star to detect with imaging or interferometry techniques. We use a cross-correlation analysis to detect the spectral lines of a new low-mass companion to ψ1 Draconis A, which has a known roughly equal-mass companion at ∼680 AU. We measure the mass of ψ1 Draconis C as M2 = 0.70 ± 0.07M⊙, with an orbital period of ∼20 years. This technique could be used to characterize binary companions to many stars that show large-amplitude modulation or linear trends in radial velocity data.
A Coincident Search for Radio and Gravitational Waves from Binary Neutron Star Mergers
NASA Astrophysics Data System (ADS)
Cardena, Brett
2011-05-01
The merger of neutron star-neutron star binary pairs may be accompanied by the prompt emission of a coherent low-frequency radio pulse. This radio transient is produced as synchrotron radiation caused by the spin and rotation of the surface charge density of a pulsar through the magnetosphere of a larger neutron star, usually referred to as a Magnetar . This type of merger event would also result in the release of a gravitational coalescence wave-form. We will discuss a coincident radio transient and gravitational wave search. This search is being conducted by two radio telescope arrays: The Long Wave Array (LWA) and the Eight-meter-wavelength Transient Array (ETA) in coordination with the Laser Interferometer Gravitational-Wave Observatory (LIGO). We will outline this ongoing coincident search and discuss some preliminary results.
A {gamma} dose distribution evaluation technique using the k-d tree for nearest neighbor searching
Yuan Jiankui; Chen Weimin
2010-09-15
Purpose: The authors propose an algorithm based on the k-d tree for nearest neighbor searching to improve the {gamma} calculation time for 2D and 3D dose distributions. Methods: The {gamma} calculation method has been widely used for comparisons of dose distributions in clinical treatment plans and quality assurances. By specifying the acceptable dose and distance-to-agreement criteria, the method provides quantitative measurement of the agreement between the reference and evaluation dose distributions. The {gamma} value indicates the acceptability. In regions where {gamma}{<=}1, the predefined criterion is satisfied and thus the agreement is acceptable; otherwise, the agreement fails. Although the concept of the method is not complicated and a quick naieve implementation is straightforward, an efficient and robust implementation is not trivial. Recent algorithms based on exhaustive searching within a maximum radius, the geometric Euclidean distance, and the table lookup method have been proposed to improve the computational time for multidimensional dose distributions. Motivated by the fact that the least searching time for finding a nearest neighbor can be an O(log N) operation with a k-d tree, where N is the total number of the dose points, the authors propose an algorithm based on the k-d tree for the {gamma} evaluation in this work. Results: In the experiment, the authors found that the average k-d tree construction time per reference point is O(log N), while the nearest neighbor searching time per evaluation point is proportional to O(N{sup 1/k}), where k is between 2 and 3 for two-dimensional and three-dimensional dose distributions, respectively. Conclusions: Comparing with other algorithms such as exhaustive search and sorted list O(N), the k-d tree algorithm for {gamma} evaluation is much more efficient.
Searching for massive black hole binaries in the first Mock LISA Data Challenge
NASA Astrophysics Data System (ADS)
Cornish, Neil J.; Porter, Edward K.
2007-10-01
The Mock LISA Data Challenge is a worldwide effort to solve the LISA data analysis problem. We present here our results for the massive black hole binary (BBH) section of round 1. Our results cover challenge 1.2.1, where the coalescence of the binary is seen, and challenge 1.2.2, where the coalescence occurs after the simulated observational period. The data stream is composed of Gaussian instrumental noise plus an unknown BBH waveform. Our search algorithm is based on a variant of the Markov chain Monte Carlo method that uses Metropolis Hastings sampling and thermostated frequency annealing. We present results from the training data sets where we know the parameter values a priori and the blind data sets where we were informed of the parameter values after the challenge had finished. We demonstrate that our algorithm is able to rapidly locate the sources, accurately recover the source parameters and provide error estimates for the recovered parameters.
GW150914: First results from the search for binary black hole coalescence with Advanced LIGO
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bohémier, K.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Cokelaer, T.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Dietz, A.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Goggin, L. M.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messaritaki, E.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Robinson, C.; Rocchi, A.; Rodriguez, A. C.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Santamaría, L.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wiesner, K.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2016-06-01
On September 14, 2015, at 09∶50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) simultaneously observed the binary black hole merger GW150914. We report the results of a matched-filter search using relativistic models of compact-object binaries that recovered GW150914 as the most significant event during the coincident observations between the two LIGO detectors from September 12 to October 20, 2015 GW150914 was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203000 years, equivalent to a significance greater than 5.1 σ .
D Nearest Neighbour Search Using a Clustered Hierarchical Tree Structure
NASA Astrophysics Data System (ADS)
Suhaibah, A.; Uznir, U.; Anton, F.; Mioc, D.; Rahman, A. A.
2016-06-01
Locating and analysing the location of new stores or outlets is one of the common issues facing retailers and franchisers. This is due to assure that new opening stores are at their strategic location to attract the highest possible number of customers. Spatial information is used to manage, maintain and analyse these store locations. However, since the business of franchising and chain stores in urban areas runs within high rise multi-level buildings, a three-dimensional (3D) method is prominently required in order to locate and identify the surrounding information such as at which level of the franchise unit will be located or is the franchise unit located is at the best level for visibility purposes. One of the common used analyses used for retrieving the surrounding information is Nearest Neighbour (NN) analysis. It uses a point location and identifies the surrounding neighbours. However, with the immense number of urban datasets, the retrieval and analysis of nearest neighbour information and their efficiency will become more complex and crucial. In this paper, we present a technique to retrieve nearest neighbour information in 3D space using a clustered hierarchical tree structure. Based on our findings, the proposed approach substantially showed an improvement of response time analysis compared to existing approaches of spatial access methods in databases. The query performance was tested using a dataset consisting of 500,000 point locations building and franchising unit. The results are presented in this paper. Another advantage of this structure is that it also offers a minimal overlap and coverage among nodes which can reduce repetitive data entry.
NASA Astrophysics Data System (ADS)
Chen, Yung-Yao; Hong, Sheng-Yi; Chen, Kai-Wen
2015-03-01
This paper proposes a novel message-embedded halftoning scheme that is based on orientation modulation (OM) encoding. To achieve high image quality, we employ a human visual system (HVS)-based error metric between the continuous-tone image and a data-embedded halftone, and integrate a modified direct binary search (DBS) framework into the proposed message-embedded halftoning method. The modified DBS framework ensures that the resulting data-embedded halftones have optimal image quality from the viewpoint of the HVS.
Search for contact systems among EB-type binaries. II - ES Lib and AR Boo
NASA Astrophysics Data System (ADS)
Milano, L.; Barone, F.; Mancuso, S.; Russo, G.
1989-03-01
In a search of contact systems among EB-type binaries, the existing photometric observations of ES Lib and AR Boo have been analyzed. It is found that ES Lib is a semi-detached system, with the primary filling the Roche lobe. AR Boo is instead found to be a contact system, with no lobe overfilling, and with a large temperature difference between the components, but this solution has to be considered as temptative, because of the poor quality of the data and the lack of any spectroscopic information.
Efficient design of direct-binary-search computer-generated holograms
Jennison, B.K.; Allebach. J.P. ); Sweeney, D.W. )
1991-04-01
Computer-generated holograms (CGH's) synthesized by the iterative direct-binary-search (DBS) algorithm yield lower reconstruction error and higher diffraction efficiency than do CGH's designed by conventional methods, but the DBS algorithm is computationally intensive. A fast algorithm for DBS is developed that recursively computes the error measure to be minimized. For complex amplitude-based error, the required computation for an L-point and modifications are considered in order to make the algorithm more efficient. An acceleration technique that attempts to increase the rate of convergence of the DBS algorithm is also investigated.
NASA Astrophysics Data System (ADS)
Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Ajith, P.; Allen, B.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain, M.; Araya, M.; Armandula, H.; Ashley, M.; Aston, S.; Aufmuth, P.; Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.; Barish, B. C.; Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bayer, K.; Betzwieser, J.; Beyersdorf, P. T.; Bhawal, B.; Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, K.; Blackburn, L.; Blair, D.; Bland, B.; Bogenstahl, J.; Bogue, L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brinkmann, M.; Brooks, A.; Brown, D. A.; Bullington, A.; Bunkowski, A.; Buonanno, A.; Burmeister, O.; Busby, D.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cantley, C. A.; Cao, J.; Cardenas, L.; Castaldi, G.; Cepeda, C.; Chalkley, E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Chiadini, F.; Christensen, N.; Clark, J.; Cochrane, P.; Cokelaer, T.; Coldwell, R.; Conte, R.; Cook, D.; Corbitt, T.; Coyne, D.; Creighton, J. D. E.; Croce, R. P.; Crooks, D. R. M.; Cruise, A. M.; Cumming, A.; Dalrymple, J.; D'Ambrosio, E.; Danzmann, K.; Davies, G.; Debra, D.; Degallaix, J.; Degree, M.; Demma, T.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.; Díaz, M.; Dickson, J.; di Credico, A.; Diederichs, G.; Dietz, A.; Doomes, E. E.; Drever, R. W. P.; Dumas, J.-C.; Dupuis, R. J.; Dwyer, J. G.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Fan, Y.; Fazi, D.; Fejer, M. M.; Finn, L. S.; Fiumara, V.; Fotopoulos, N.; Franzen, A.; Franzen, K. Y.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Garofoli, J.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.; Goggin, L. M.; González, G.; Gossler, S.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, J.; Gretarsson, A. M.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, R.; Hage, B.; Hammer, D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G.; Harstad, E.; Hayler, T.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Heurs, M.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken, D.; Hough, J.; Hoyland, D.; Huttner, S. H.; Ingram, D.; Innerhofer, E.; Ito, M.; Itoh, Y.; Ivanov, A.; Johnson, B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalili, F. Ya.; Kim, C.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R. K.; Kozak, D.; Krishnan, B.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lazzarini, A.; Lei, M.; Leiner, J.; Leonhardt, V.; Leonor, I.; Libbrecht, K.; Lindquist, P.; Lockerbie, N. A.; Longo, M.; Lormand, M.; Lubiński, M.; Lück, H.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Malec, M.; Mandic, V.; Marano, S.; Márka, S.; Markowitz, J.; Maros, E.; Martin, I.; Marx, J. N.; Mason, K.; Matone, L.; Matta, V.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McKenzie, K.; McWilliams, S.; Meier, T.; Melissinos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messaritaki, E.; Messenger, C. J.; Meyers, D.; Mikhailov, E.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Mohanty, S.; Moreno, G.; Mossavi, K.; Mowlowry, C.; Moylan, A.; Mudge, D.; Mueller, G.; Mukherjee, S.; Müller-Ebhardt, H.; Munch, J.; Murray, P.; Myers, E.; Myers, J.; Nash, T.; Newton, G.; Nishizawa, A.; Numata, K.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pan, Y.; Papa, M. A.; Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H.; Plissi, M. V.; Postiglione, F.; Prix, R.; Quetschke, V.; Raab, F.; Rabeling, D.; Radkins, H.; Rahkola, R.; Rainer, N.; Rakhmanov, M.; Ramsunder, M.; Ray-Majumder, S.; Re, V.; Rehbein, H.; Reid, S.; Reitze, D. H.; Ribichini, L.; Riesen, R.; Riles, K.; Rivera, B.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Rodriguez, A.; Rogan, A. M.; Rollins, J.; Romano, J. D.; Romie, J.; Route, R.; Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan, K.; Sakata, S.; Samidi, M.; Sancho de La Jordana, L.; Sandberg, V.; Sannibale, V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R.; Savov, P.; Schediwy, S.; Schilling, R.; Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott, S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Sidles, J. A.; Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Somiya, K.; Strain, K. A.; Strom, D. M.; Stuver, A.; Summerscales, T. Z.; Sun, K.-X.; Sung, M.; Sutton, P. J.; Takahashi, H.; Tanner, D. B.; Taylor, R.; Taylor, R.; Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring, A.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.; Tyler, W.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vallisneri, M.; van den Broeck, C.; Varvella, M.; Vass, S.; Vecchio, A.; Veitch, J.; Veitch, P.; Villar, A.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward, H.; Ward, R.; Watts, K.; Weidner, A.; Weinert, M.; Weinstein, A.; Weiss, R.; Wen, S.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, L.; Willke, B.; Wilmut, I.; Winkler, W.; Wipf, C. C.; Wise, S.; Wiseman, A. G.; Woan, G.; Woods, D.; Wooley, R.; Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan, Z.; Yoshida, S.; Yunes, N.; Zanolin, M.; Zhang, J.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M.; Zur Mühlen, H.; Zweizig, J.
2008-08-01
We report on the methods and results of the first dedicated search for gravitational waves emitted during the inspiral of compact binaries with spinning component bodies. We analyze 788 hours of data collected during the third science run (S3) of the LIGO detectors. We searched for binary systems using a detection template family specially designed to capture the effects of the spin-induced precession of the orbital plane. We present details of the techniques developed to enable this search for spin-modulated gravitational waves, highlighting the differences between this and other recent searches for binaries with nonspinning components. The template bank we employed was found to yield high matches with our spin-modulated target waveform for binaries with masses in the asymmetric range 1.0M⊙
Unbounded Binary Search for a Fast and Accurate Maximum Power Point Tracking
NASA Astrophysics Data System (ADS)
Kim, Yong Sin; Winston, Roland
2011-12-01
This paper presents a technique for maximum power point tracking (MPPT) of a concentrating photovoltaic system using cell level power optimization. Perturb and observe (P&O) has been a standard for an MPPT, but it introduces a tradeoff between the tacking speed and the accuracy of the maximum power delivered. The P&O algorithm is not suitable for a rapid environmental condition change by partial shading and self-shading due to its tracking time being linear to the length of the voltage range. Some of researches have been worked on fast tracking but they come with internal ad hoc parameters. In this paper, by using the proposed unbounded binary search algorithm for the MPPT, tracking time becomes a logarithmic function of the voltage search range without ad hoc parameters.
Search for gravitational waves from galactic and extra-galactic binary neutron stars
Abbott, B.; Anderson, S.B.; Araya, M.; Armandula, H.; Asiri, F.; Barish, B.C.; Barnes, M.; Barton, M.A.; Bhawal, B.; Billingsley, G.; Black, E.; Blackburn, K.; Bogue, L.; Bork, R.; Brown, D.A.; Busby, D.; Cardenas, L.; Chandler, A.; Chapsky, J.; Charlton, P.
2005-10-15
We use 373 hours ({approx_equal}15 days) of data from the second science run of the LIGO gravitational-wave detectors to search for signals from binary neutron star coalescences within a maximum distance of about 1.5 Mpc, a volume of space which includes the Andromeda Galaxy and other galaxies of the Local Group of galaxies. This analysis requires a signal to be found in data from detectors at the two LIGO sites, according to a set of coincidence criteria. The background (accidental coincidence rate) is determined from the data and is used to judge the significance of event candidates. No inspiral gravitational-wave events were identified in our search. Using a population model which includes the Local Group, we establish an upper limit of less than 47 inspiral events per year per Milky Way equivalent galaxy with 90% confidence for nonspinning binary neutron star systems with component masses between 1 and 3M{sub {center_dot}}.
Semicoherent search strategy for known continuous wave sources in binary systems
Messenger, C.
2011-10-15
We present a method for detection of weak continuous signals from sources in binary systems via the incoherent combination of many short coherently analyzed segments. The main focus of the work is on the construction of a metric on the parameter space for such signals for use in matched-filter based searches. The metric is defined using a maximum likelihood detection statistic applied to a binary orbit phase model including eccentricity. We find that this metric can be accurately approximated by its diagonal form in the regime where the segment length is << the orbital period. Hence, correlations between parameters are effectively removed by the combination of many independent observations. We find that the ability to distinguish signal parameters is independent of the total semicoherent observation span (for the semicoherent span >> the segment length) for all but the orbital angular frequency. Increased template density for this parameter scales linearly with the observation span. We also present two example search schemes. The first use a reparametrized phase model upon which we compute the metric on individual short coherently analyzed segments. The second assumes long >> the orbital period segment lengths from which we again compute the coherent metric and find it to be approximately diagonal. In this latter case we also show that the semicoherent metric is equal to the coherent metric.
ERIC Educational Resources Information Center
Al-Khaja, Nawal
2007-01-01
This is a thematic lesson plan for young learners about palm trees and the importance of taking care of them. The two part lesson teaches listening, reading and speaking skills. The lesson includes parts of a tree; the modal auxiliary, can; dialogues and a role play activity.
NASA Astrophysics Data System (ADS)
Mohapatra, Satya; Cadonati, Laura; Caudill, Sarah; Clark, James; Hanna, Chad; Klimenko, Sergey; Pankow, Chris; Vaulin, Ruslan; Vedovato, Gabriele; Vitale, Salvatore
2014-07-01
Searches for gravitational-wave transients from binary black hole coalescences typically rely on one of two approaches: matched filtering with templates and morphology-independent excess power searches. Multiple algorithmic implementations in the analysis of data from the first generation of ground-based gravitational-wave interferometers have used different strategies for the suppression of non-Gaussian noise transients and have targeted different regions of the binary black hole parameter space. In this paper we compare the sensitivity of three such algorithms: matched filtering with full coalescence templates, matched filtering with ringdown templates, and a morphology-independent excess power search. The comparison is performed at a fixed false alarm rate and relies on Monte Carlo simulations of binary black hole coalescences for spinning, nonprecessing systems with a total mass of 25-350 M⊙, which covers a portion of the parameter space of stellar mass and intermediate mass black hole binaries. We find that in the mass range of 25-100 M⊙, the sensitive distance of the search, marginalized over source parameters, is the best with matched filtering to full waveform templates, which is within 10% of the next most sensitive search of morphology-independent excess power algorithm, at a false alarm rate of 3 events/year. In the mass range of 100-350 M⊙, the same comparison favors the morphology-independent excess power search within 20% of matched filtering with ringdown templates. The dependence on mass and spin is also explored.
Impact of higher harmonics in searching for gravitational waves from nonspinning binary black holes
NASA Astrophysics Data System (ADS)
Capano, Collin; Pan, Yi; Buonanno, Alessandra
2014-05-01
Current searches for gravitational waves from coalescing binary black holes (BBH) use templates that only include the dominant harmonic. In this study we use effective-one-body multipolar waveforms calibrated to numerical-relativity simulations to quantify the effect of neglecting subdominant harmonics on the sensitivity of searches. We consider both signal-to-noise ratio (SNR) and the signal-based vetoes that are used to reweight SNR. We find that neglecting subdominant modes when searching for nonspinning BBHs with component masses 3 M⊙≤m1, m2≤200 M⊙ and total mass M <360 M⊙ in advanced LIGO results in a negligible reduction of the reweighted SNR at detection thresholds. Subdominant modes therefore have no effect on the detection rates predicted for advanced LIGO. Furthermore, we find that if subdominant modes are included in templates the sensitivity of the search becomes worse if we use current search priors, due to an increase in false alarm probability. Templates would need to be weighted differently than what is currently done to compensate for the increase in false alarms. If we split the template bank such that subdominant modes are only used when M ≳100 M⊙ and mass ratio q ≳4, we find that the sensitivity does improve for these intermediate mass-ratio BBHs, but the sensitive volume associated with these systems is still small compared to equal-mass systems. Using subdominant modes is therefore unlikely to substantially increase the probability of detecting gravitational waves from nonspinning BBH signals unless there is a relatively large population of intermediate mass-ratio BBHs in the universe.
Wang, Shuaiqun; Aorigele; Kong, Wei; Zeng, Weiming; Hong, Xiaomin
2016-01-01
Gene expression data composed of thousands of genes play an important role in classification platforms and disease diagnosis. Hence, it is vital to select a small subset of salient features over a large number of gene expression data. Lately, many researchers devote themselves to feature selection using diverse computational intelligence methods. However, in the progress of selecting informative genes, many computational methods face difficulties in selecting small subsets for cancer classification due to the huge number of genes (high dimension) compared to the small number of samples, noisy genes, and irrelevant genes. In this paper, we propose a new hybrid algorithm HICATS incorporating imperialist competition algorithm (ICA) which performs global search and tabu search (TS) that conducts fine-tuned search. In order to verify the performance of the proposed algorithm HICATS, we have tested it on 10 well-known benchmark gene expression classification datasets with dimensions varying from 2308 to 12600. The performance of our proposed method proved to be superior to other related works including the conventional version of binary optimization algorithm in terms of classification accuracy and the number of selected genes. PMID:27579323
A SEARCH FOR SEPARATED FRINGE PACKET BINARIES USING THE CHARA ARRAY
Raghavan, Deepak; McAlister, Harold A.; Farrington, Chris D.; Ten Brummelaar, Theo A.; Sturmann, Laszlo; Sturmann, Judit; Turner, Nils H.; Ridgway, Stephen T.
2012-01-20
We present the results of a comprehensive search for new companions to nearby solar-type stars using the separated fringe packet (SFP) technique at the Center for High Angular Resolution Astronomy (CHARA) Array. Our search included 636 observations of 186 stars, searching for companions with separations of approximately 8-80 mas and moderate brightness ratios ({Delta}K {approx}< 1.5). This survey was undertaken to support a comprehensive assessment of companions to solar-type stars within 25 pc. We detected separated fringe companions to two stars (HD 3196 and 79096) and found faint companion signatures to two more stars (HD 98231 and 137763). All of these companions are previously known by spectroscopic methods, and three of them have speckle interferometric observations as well. The faint companion seen to HD 98231 represents the first visual detection of this spectroscopic companion. Our null detection for new companions implies that the presumed gap between spectroscopic and visual techniques has largely been filled for nearby solar-type stars, thanks to systematic radial-velocity observations over multiple decades and a thorough coverage using visual techniques, especially speckle interferometric observations. We also generate simulated fringe packets to derive detection limits for SFP binaries using the CHARA Array.
Aorigele; Zeng, Weiming; Hong, Xiaomin
2016-01-01
Gene expression data composed of thousands of genes play an important role in classification platforms and disease diagnosis. Hence, it is vital to select a small subset of salient features over a large number of gene expression data. Lately, many researchers devote themselves to feature selection using diverse computational intelligence methods. However, in the progress of selecting informative genes, many computational methods face difficulties in selecting small subsets for cancer classification due to the huge number of genes (high dimension) compared to the small number of samples, noisy genes, and irrelevant genes. In this paper, we propose a new hybrid algorithm HICATS incorporating imperialist competition algorithm (ICA) which performs global search and tabu search (TS) that conducts fine-tuned search. In order to verify the performance of the proposed algorithm HICATS, we have tested it on 10 well-known benchmark gene expression classification datasets with dimensions varying from 2308 to 12600. The performance of our proposed method proved to be superior to other related works including the conventional version of binary optimization algorithm in terms of classification accuracy and the number of selected genes. PMID:27579323
First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts
NASA Astrophysics Data System (ADS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Ajith, P.; Allen, B.; Amador Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barayoga, J. C. B.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Beck, D.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, W.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Del Pozzo, W.; del Prete, M.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Emilio, M. Di Paolo; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Flanigan, M.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P. J.; Fyffe, M.; Gair, J.; Galimberti, M.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Geng, R.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Gray, N.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Ha, T.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; James, E.; Jang, Y. J.; Jaranowski, P.; Jesse, E.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kelley, D.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, H.; Kim, K.; Kim, N.; Kim, Y. M.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kranz, O.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Leaci, P.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lindquist, P. E.; Liu, Y.; Liu, Z.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marandi, A.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.; McWilliams, S.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Morriss, S. R.; Mosca, S.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Necula, V.; Nelson, J.; Neri, I.; Newton, G.; Nguyen, T.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pedraza, M.; Peiris, P.; Pekowsky, L.; Penn, S.; Perreca, A.; Persichetti, G.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Prato, M.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Redwine, K.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sainathan, P.; Salemi, F.; Sammut, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Somiya, K.; Sorazu, B.; Soto, J.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Stein, A. J.; Stein, L. C.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S. E.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Tseng, K.; Ugolini, D.; Vahlbruch, H.; Vajente, G.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, M.; Wang, X.; Wang, Z.; Wanner, A.; Ward, R. L.; Was, M.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, R.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhang, W.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2012-05-01
Aims: The detection and measurement of gravitational-waves from coalescing neutron-star binary systems is an important science goal for ground-based gravitational-wave detectors. In addition to emitting gravitational-waves at frequencies that span the most sensitive bands of the LIGO and Virgo detectors, these sources are also amongst the most likely to produce an electromagnetic counterpart to the gravitational-wave emission. A joint detection of the gravitational-wave and electromagnetic signals would provide a powerful new probe for astronomy. Methods: During the period between September 19 and October 20, 2010, the first low-latency search for gravitational-waves from binary inspirals in LIGO and Virgo data was conducted. The resulting triggers were sent to electromagnetic observatories for followup. We describe the generation and processing of the low-latency gravitational-wave triggers. The results of the electromagnetic image analysis will be described elsewhere. Results: Over the course of the science run, three gravitational-wave triggers passed all of the low-latency selection cuts. Of these, one was followed up by several of our observational partners. Analysis of the gravitational-wave data leads to an estimated false alarm rate of once every 6.4 days, falling far short of the requirement for a detection based solely on gravitational-wave data.
How Fast Did Neptune Migrate? A Search for Cold Red Resonant Binaries
NASA Astrophysics Data System (ADS)
Noll, Keith
2011-10-01
"Cold Classical" transneptunian objects share a unique set of physical properties that were acquired in their nascent environment in the protoplanetary disk. These objects are red, have high albedos, and a high fraction {>30%} are binaries with nearly equal mass components. They appear to be a relatively undisturbed remnant of the original protoplanetary disk and are concentrated in non-resonant, low inclination orbits between the 3:2 and 2:1 resonances at 39.4 and 47.7 AU. As Neptune migrated outwards in the first several hundred million years of the solar system, its mean-motion resonances moved through and were able to capture some of these objects. Identifying Cold Classicals trapped in resonances will allow us to discriminate between the two leading models for Neptune's migration. Smooth migration will result in measurable differences between resonances, fast migration {including transport by planetary scattering} will not. To accomplish this we are proposing to survey all Resonant transneptunian objects that have not yet been observed with HST to search for the distinctive physical markers of captured Cold Classicals. We will significantly increase the number of objects observed for binary companions and the number with measured colors. The database of observations derived from this survey will provide significant added value to the HST archive.
Search for gravitational waves from primordial black hole binary coalescences in the galactic halo
NASA Astrophysics Data System (ADS)
Abbott, B.; Abbott, R.; Adhikari, R.; Ageev, A.; Allen, B.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Araya, M.; Armandula, H.; Ashley, M.; Asiri, F.; Aufmuth, P.; Aulbert, C.; Babak, S.; Balasubramanian, R.; Ballmer, S.; Barish, B. C.; Barker, C.; Barker, D.; Barnes, M.; Barr, B.; Barton, M. A.; Bayer, K.; Beausoleil, R.; Belczynski, K.; Bennett, R.; Berukoff, S. J.; Betzwieser, J.; Bhawal, B.; Bilenko, I. A.; Billingsley, G.; Black, E.; Blackburn, K.; Blackburn, L.; Bland, B.; Bochner, B.; Bogue, L.; Bork, R.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brown, D. A.; Bullington, A.; Bunkowski, A.; Buonanno, A.; Burgess, R.; Busby, D.; Butler, W. E.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp, J. B.; Cantley, C. A.; Cardenas, L.; Carter, K.; Casey, M. M.; Castiglione, J.; Chandler, A.; Chapsky, J.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Chickarmane, V.; Chin, D.; Christensen, N.; Churches, D.; Cokelaer, T.; Colacino, C.; Coldwell, R.; Coles, M.; Cook, D.; Corbitt, T.; Coyne, D.; Creighton, J. D. E.; Creighton, T. D.; Crooks, D. R. M.; Csatorday, P.; Cusack, B. J.; Cutler, C.; D'Ambrosio, E.; Danzmann, K.; Daw, E.; Debra, D.; Delker, T.; Dergachev, V.; Desalvo, R.; Dhurandhar, S.; Credico, A. Di; Díaz, M.; Ding, H.; Drever, R. W. P.; Dupuis, R. J.; Edlund, J. A.; Ehrens, P.; Elliffe, E. J.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Fallnich, C.; Farnham, D.; Fejer, M. M.; Findley, T.; Fine, M.; Finn, L. S.; Franzen, K. Y.; Freise, A.; Frey, R.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Ganezer, K. S.; Garofoli, J.; Giaime, J. A.; Gillespie, A.; Goda, K.; González, G.; Goßler, S.; Grandclément, P.; Grant, A.; Gray, C.; Gretarsson, A. M.; Grimmett, D.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, E.; Gustafson, R.; Hamilton, W. O.; Hammond, M.; Hanson, J.; Hardham, C.; Harms, J.; Harry, G.; Hartunian, A.; Heefner, J.; Hefetz, Y.; Heinzel, G.; Heng, I. S.; Hennessy, M.; Hepler, N.; Heptonstall, A.; Heurs, M.; Hewitson, M.; Hild, S.; Hindman, N.; Hoang, P.; Hough, J.; Hrynevych, M.; Hua, W.; Ito, M.; Itoh, Y.; Ivanov, A.; Jennrich, O.; Johnson, B.; Johnson, W. W.; Johnston, W. R.; Jones, D. I.; Jones, L.; Jungwirth, D.; Kalogera, V.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kells, W.; Kern, J.; Khan, A.; Killbourn, S.; Killow, C. J.; Kim, C.; King, C.; King, P.; Klimenko, S.; Koranda, S.; Kötter, K.; Kovalik, J.; Kozak, D.; Krishnan, B.; Landry, M.; Langdale, J.; Lantz, B.; Lawrence, R.; Lazzarini, A.; Lei, M.; Leonor, I.; Libbrecht, K.; Libson, A.; Lindquist, P.; Liu, S.; Logan, J.; Lormand, M.; Lubiński, M.; Lück, H.; Lyons, T. T.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Majid, W.; Malec, M.; Mann, F.; Marin, A.; Márka, S.; Maros, E.; Mason, J.; Mason, K.; Matherny, O.; Matone, L.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McHugh, M.; McNabb, J. W. C.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messaritaki, E.; Messenger, C.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Miyoki, S.; Mohanty, S.; Moreno, G.; Mossavi, K.; Mueller, G.; Mukherjee, S.; Murray, P.; Myers, J.; Nagano, S.; Nash, T.; Nayak, R.; Newton, G.; Nocera, F.; Noel, J. S.; Nutzman, P.; Olson, T.; O'Reilly, B.; Ottaway, D. J.; Ottewill, A.; Ouimette, D.; Overmier, H.; Owen, B. J.; Pan, Y.; Papa, M. A.; Parameshwaraiah, V.; Parameswaran, A.; Parameswariah, C.; Pedraza, M.; Penn, S.; Pitkin, M.; Plissi, M.; Prix, R.; Quetschke, V.; Raab, F.; Radkins, H.; Rahkola, R.; Rakhmanov, M.; Rao, S. R.; Rawlins, K.; Ray-Majumder, S.; Re, V.; Redding, D.; Regehr, M. W.; Regimbau, T.; Reid, S.; Reilly, K. T.; Reithmaier, K.; Reitze, D. H.; Richman, S.; Riesen, R.; Riles, K.; Rivera, B.; Rizzi, A.; Robertson, D. I.; Robertson, N. A.; Robison, L.; Roddy, S.; Rollins, J.; Romano, J. D.; Romie, J.; Rong, H.; Rose, D.; Rotthoff, E.; Rowan, S.; Rüdiger, A.; Russell, P.; Ryan, K.; Salzman, I.; Sandberg, V.; Sanders, G. H.; Sannibale, V.; Sathyaprakash, B.; Saulson, P. R.; Savage, R.; Sazonov, A.; Schilling, R.; Schlaufman, K.; Schmidt, V.; Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott, S. M.; Seader, S. E.; Searle, A. C.; Sears, B.; Seel, S.; Seifert, F.; Sengupta, A. S.; Shapiro, C. A.; Shawhan, P.; Shoemaker, D. H.; Shu, Q. Z.; Sibley, A.; Siemens, X.; Sievers, L.; Sigg, D.; Sintes, A. M.; Smith, J. R.; Smith, M.; Smith, M. R.; Sneddon, P. H.; Spero, R.; Stapfer, G.; Steussy, D.; Strain, K. A.; Strom, D.; Stuver, A.; Summerscales, T.; Sumner, M. C.; Sutton, P. J.; Sylvestre, J.; Takamori, A.; Tanner, D. B.; Tariq, H.; Taylor, I.; Taylor, R.; Taylor, R.; Thorne, K. A.; Thorne, K. S.; Tibbits, M.; Tilav, S.; Tinto, M.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Tyler, W.; Ugolini, D.; Ungarelli, C.; Vallisneri, M.; van Putten, M.; Vass, S.; Vecchio, A.
2005-10-01
We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole binary coalescence with component masses in the range 0.2-1.0M⊙. The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing nonspinning black holes with masses in the range 0.2-1.0M⊙, we place an observational upper limit on the rate of primordial black hole coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence.
Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Anderson, S. B.; Araya, M.; Armandula, H.; Ballmer, S.; Barish, B. C.; Bhawal, B.; Billingsley, G.; Black, E.; Blackburn, K.; Bork, R.; Boschi, V.; Busby, D.; Cardenas, L.; Cepeda, C.; Chatterji, S.; Coyne, D.
2008-08-15
We report on the methods and results of the first dedicated search for gravitational waves emitted during the inspiral of compact binaries with spinning component bodies. We analyze 788 hours of data collected during the third science run (S3) of the LIGO detectors. We searched for binary systems using a detection template family specially designed to capture the effects of the spin-induced precession of the orbital plane. We present details of the techniques developed to enable this search for spin-modulated gravitational waves, highlighting the differences between this and other recent searches for binaries with nonspinning components. The template bank we employed was found to yield high matches with our spin-modulated target waveform for binaries with masses in the asymmetric range 1.0M{sub {center_dot}}
NASA Astrophysics Data System (ADS)
Privitera, Stephen; Mohapatra, Satyanarayan R. P.; Ajith, Parameswaran; Cannon, Kipp; Fotopoulos, Nickolas; Frei, Melissa A.; Hanna, Chad; Weinstein, Alan J.; Whelan, John T.
2014-01-01
We demonstrate for the first time a search pipeline with improved sensitivity to gravitational waves from coalescing binary black holes with spins aligned to the orbital angular momentum by the inclusion of spin effects in the search templates. We study the pipeline recovery of simulated gravitational wave signals from aligned-spin binary black holes added to real detector noise, comparing the pipeline performance with aligned-spin filter templates to the same pipeline with nonspinning filter templates. Our results exploit a three-parameter phenomenological waveform family that models the full inspiral-merger-ringdown coalescence and treats the effect of aligned spins with a single effective spin parameter χ. We construct template banks from these waveforms by a stochastic placement method and use these banks as filters in the recently developed gstlal search pipeline. We measure the observable volume of the analysis pipeline for binary black hole signals with Mtotal and χ ∈[0,0.85]. We find an increase in observable volume of up to 45% for systems with 0.2≤χ≤0.85 with almost no loss of sensitivity to signals with 0≤χ≤0.2. We also show that the use of spinning templates in the search pipeline provides for more accurate recovery of the binary mass parameters as well as an estimate of the effective spin parameter. We demonstrate this analysis on 25.9 days of data obtained from the Hanford and Livingston detectors in LIGO's fifth observation run.
Search for contact systems among EB-type binaries. IV - V375 Cas, UW Ori, DO Cas, RU ERI
NASA Astrophysics Data System (ADS)
Barone, F.; di Fiore, L.; Milano, L.; Pirozzi, L.; Russo, G.
1992-12-01
We present the analysis of the data of four EB-type eclipsing binaries, continuing our search for contact or almost contact systems. The Price algorithm has been used in conjunction to the Wilson-Devinney model to try to obtain, where possible, unambiguous solutions for all the systems.
Optimal Graph Search Based Segmentation of Airway Tree Double Surfaces Across Bifurcations
Chen, Danny Z.; Tawhai, Merryn H.; Wu, Xiaodong; Hoffman, Eric A.; Sonka, Milan
2014-01-01
Identification of both the luminal and the wall areas of the bronchial tree structure from volumetric X-ray computed tomography (CT) data sets is of critical importance in distinguishing important phenotypes within numerous major lung diseases including chronic obstructive pulmonary diseases (COPD) and asthma. However, accurate assessment of the inner and outer airway wall surfaces of a complete 3-D tree structure is difficult due to their complex nature, particularly around the branch areas. In this paper, we extend a graph search based technique (LOGISMOS) to simultaneously identify multiple inter-related surfaces of branching airway trees. We first perform a presegmentation of the input 3-D image to obtain basic information about the tree topology. The presegmented image is resampled along judiciously determined paths to produce a set of vectors of voxels (called voxel columns). The resampling process utilizes medial axes to ensure that voxel columns of appropriate lengths and directions are used to capture the object surfaces without interference. A geometric graph is constructed whose edges connect voxels in the resampled voxel columns and enforce validity of the smoothness and separation constraints on the sought surfaces. Cost functions with directional information are employed to distinguish inner and outer walls. The assessment of wall thickness measurement on a CT-scanned double-wall physical phantom (patterned after an in vivo imaged human airway tree) achieved highly accurate results on the entire 3-D tree. The observed mean signed error of wall thickness ranged from −0.09 ± 0.24 mm to 0.07 ± 0.23 mm in bifurcating/nonbifurcating areas. The mean unsigned errors were 0.16 ± 0.12 mm to 0.20 ± 0.11 mm. When the airway wall surface was partitioned into meaningful subregions, the airway wall thickness accuracy was the same in most tested bifurcation/nonbifurcation and carina/noncarina regions (p=NS). Once validated on phantoms, our method was applied
NASA Astrophysics Data System (ADS)
Tkachenko, A.
2015-09-01
Context. The currently operating space missions, as well as those that will be launched in the near future, will deliver high-quality data for millions of stellar objects. Since the majority of stellar astrophysical applications still (at least partly) rely on spectroscopic data, an efficient tool for the analysis of medium- to high-resolution spectroscopy is needed. Aims: We aim at developing an efficient software package for the analysis of medium- to high-resolution spectroscopy of single stars and those in binary systems. The major requirements are that the code should have a high performance, represent the state-of-the-art analysis tool, and provide accurate determinations of atmospheric parameters and chemical compositions for different types of stars. Methods: We use the method of atmosphere models and spectrum synthesis, which is one of the most commonly used approaches for the analysis of stellar spectra. Our Grid Search in Stellar Parameters (gssp) code makes use of the Message Passing Interface (OpenMPI) implementation, which makes it possible to run in parallel mode. The method is first tested on the simulated data and is then applied to the spectra of real stellar objects. Results: The majority of test runs on the simulated data were successful in that we were able to recover the initially assumed sets of atmospheric parameters. We experimentally find the limits in signal-to-noise ratios of the input spectra, below which the final set of parameters is significantly affected by the noise. Application of the gssp package to the spectra of three Kepler stars, KIC 11285625, KIC 6352430, and KIC 4931738, was also largely successful. We found an overall agreement of the final sets of the fundamental parameters with the original studies. For KIC 6352430, we found that dependence of the light dilution factor on wavelength cannot be ignored, as it has a significant impact on the determination of the atmospheric parameters of this binary system. Conclusions: The
Mastering the game of Go with deep neural networks and tree search
NASA Astrophysics Data System (ADS)
Silver, David; Huang, Aja; Maddison, Chris J.; Guez, Arthur; Sifre, Laurent; van den Driessche, George; Schrittwieser, Julian; Antonoglou, Ioannis; Panneershelvam, Veda; Lanctot, Marc; Dieleman, Sander; Grewe, Dominik; Nham, John; Kalchbrenner, Nal; Sutskever, Ilya; Lillicrap, Timothy; Leach, Madeleine; Kavukcuoglu, Koray; Graepel, Thore; Hassabis, Demis
2016-01-01
The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach to computer Go that uses ‘value networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of state-of-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm, our program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the full-sized game of Go, a feat previously thought to be at least a decade away.
Mastering the game of Go with deep neural networks and tree search.
Silver, David; Huang, Aja; Maddison, Chris J; Guez, Arthur; Sifre, Laurent; van den Driessche, George; Schrittwieser, Julian; Antonoglou, Ioannis; Panneershelvam, Veda; Lanctot, Marc; Dieleman, Sander; Grewe, Dominik; Nham, John; Kalchbrenner, Nal; Sutskever, Ilya; Lillicrap, Timothy; Leach, Madeleine; Kavukcuoglu, Koray; Graepel, Thore; Hassabis, Demis
2016-01-28
The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach to computer Go that uses 'value networks' to evaluate board positions and 'policy networks' to select moves. These deep neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of state-of-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm, our program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the full-sized game of Go, a feat previously thought to be at least a decade away. PMID:26819042
A method of characterizing network topology based on the breadth-first search tree
NASA Astrophysics Data System (ADS)
Zhou, Bin; He, Zhe; Wang, Nianxin; Wang, Bing-Hong
2016-05-01
A method based on the breadth-first search tree is proposed in this paper to characterize the hierarchical structure of network. In this method, a similarity coefficient is defined to quantitatively distinguish networks, and quantitatively measure the topology stability of the network generated by a model. The applications of the method are discussed in ER random network, WS small-world network and BA scale-free network. The method will be helpful for deeply describing network topology and provide a starting point for researching the topology similarity and isomorphism of networks.
Template banks for binary black hole searches with numerical relativity waveforms
NASA Astrophysics Data System (ADS)
Kumar, Prayush; MacDonald, Ilana; Brown, Duncan A.; Pfeiffer, Harald P.; Cannon, Kipp; Boyle, Michael; Kidder, Lawrence E.; Mroué, Abdul H.; Scheel, Mark A.; Szilágyi, Béla; Zenginoǧlu, Anıl
2014-02-01
Gravitational waves from coalescing stellar-mass black hole binaries (BBHs) are expected to be detected by the Advanced Laser Interferometer gravitational-wave observatory and Advanced Virgo. Detection searches operate by matched filtering the detector data using a bank of waveform templates. Traditionally, template banks for BBHs are constructed from intermediary analytical waveform models which are calibrated against numerical relativity simulations and which can be evaluated for any choice of BBH parameters. This paper explores an alternative to the traditional approach, namely, the construction of template banks directly from numerical BBH simulations. Using nonspinning BBH systems as an example, we demonstrate which regions of the mass-parameter plane can be covered with existing numerical BBH waveforms. We estimate the required number and required length of BBH simulations to cover the entire nonspinning BBH parameter plane up to mass ratio 10, thus illustrating that our approach can be used to guide parameter placement of future numerical simulations. We derive error bounds which are independent of analytical waveform models; therefore, our formalism can be used to independently test the accuracy of such waveform models. The resulting template banks are suitable for advanced LIGO searches.
NASA Technical Reports Server (NTRS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Ceron, E. Amador; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Arain, M. A.; Araya, M.; Aronsson, M.; Arun, K. G.; Aso, Y.; Aston, S.; Astone, P.; Atkinson, D. E.; Camp, J. B.; Cannizzo, J.
2010-01-01
We report the results of the first search for gravitational waves from compact binary coalescence using data from the Laser Interferometer Gravitational-wave Observatory (LIGO) and Virgo detectors. Five months of data were collected during the concurrent S5 (UGO) and VSRI (Virgo) science runs. The search focused on signals from binary mergers with a total mass between 2 and 35 Solar Mass. No gravitational waves are identified. The cumulative 90%-confidence upper limits on the rate of compact binary coalescence are calculated for non-spinning binary neutron stars, black hole-neutron star systems, and binary black holes to be 8.7 x 10(exp -3) / yr-1/L(sub 10) 2.2 x 10-3 yr-1L101, and 4.4 x 10(exp -4)3) / yr-1/L(sub 10) respectively, where L (sub 10) is 10(exp 10) times the blue solar luminosity. These upper limits are compared with astrophysical expectations.
Botella, Juan; Huang, Huiling; Suero, Manuel
2013-01-01
Studies that evaluate the accuracy of binary classification tools are needed. Such studies provide 2 × 2 cross-classifications of test outcomes and the categories according to an unquestionable reference (or gold standard). However, sometimes a suboptimal reliability reference is employed. Several methods have been proposed to deal with studies where the observations are cross-classified with an imperfect reference. These methods require that the status of the reference, as a gold standard or as an imperfect reference, is known. In this paper a procedure for determining whether it is appropriate to maintain the assumption that the reference is a gold standard or an imperfect reference, is proposed. This procedure fits two nested multinomial tree models, and assesses and compares their absolute and incremental fit. Its implementation requires the availability of the results of several independent studies. These should be carried out using similar designs to provide frequencies of cross-classification between a test and the reference under investigation. The procedure is applied in two examples with real data. PMID:24106484
Expanding the Search for Spectroscopic Binaries in Proto-Planetary Nebulae
NASA Astrophysics Data System (ADS)
Hrivnak, B.; Bohlender, D.; Kerber, F.; Lu, W.; Seifahrt, A.; Van de Steene, G.; Van Winckel, H.
2014-04-01
Binaries are often invoked as a shaping mechanism for the asymmetrical shapes of planetary nebulae and proto-planetary nebulae (PPNe) - particularly those that are elliptical, bipolar, or point symmetric. To test this hypothesis, we have been carrying out radial velocity monitoring of a sample of PPNe. The results of an initial study of seven bright PPNe have been published, based primarily on our observations from 1991-1995 and 2007-2010 at the Dominion Astrophysical Observatory (Victoria, Canada). Six of the seven showed no long-term variations between the two time intervals while one, IRAS 22272+5435, gave evidence of a variation consistent with a P > 22 yr (Hrivnak et al. 2011, ApJ, 734, 25). All seven of these objects do show shorter-term pulsational variations, on the order of 35-130 day over a range of about 14 km/s (peak-to-peak). We have expanded this search in two ways. Firstly, we have increased the temporal baseline by continuing to monitor the bright seven objects in radial velocity and increased the sampling with the addition of observations from the Hermes spectrograph on the Mercator telescope (Canary Islands). This has resulted in a second object with possible long-term variability that may indicate a binary companion. Secondly, we have started to monitor three edge-on PPNe with near-infrared spectroscopy; the stars are hidden in visible light but seen in the near infrared. These should show the full orbital velocity if it exists. Observations were begun in 2010, primarily from the ESO-VLT. While the spectra are more complicated than expected, we have found tantalizing evidence for systematic velocity variations in one of these three. Preliminary results for both of these expanded studies were presented. The research is supported in part by a grant from the NSF to BJH (AST-1009974).
NASA Astrophysics Data System (ADS)
Douchin, Dimitri; De Marco, Orsola; Frew, D. J.; Jacoby, G. H.; Jasniewicz, G.; Fitzgerald, M.; Passy, Jean-Claude; Harmer, D.; Hillwig, Todd; Moe, Maxwell
2015-04-01
There is no conclusive explanation of why ˜80 per cent of planetary nebulae (PNe) are non-spherical. In the Binary Hypothesis, a binary interaction is a preferred channel to form a non-spherical PN. A fundamental step to corroborate or disprove the Binary Hypothesis is to estimate the binary fraction of central stars of PNe (CSPNe) and compare it with a prediction based on the binary fraction of the progenitor, main-sequence population. In this paper, the second in a series, we search for spatially unresolved I- and J-band flux excess in an extended sample of 34 CSPN by a refined measurement technique with a better quantification of the uncertainties. The detection rate of I- (J-)band flux excess is 32 ± 16 per cent (50 ± 24 per cent). This result is very close to what was obtained in Paper I with a smaller sample. We account conservatively for unobserved cool companions down to brown dwarf luminosities, increasing these fractions to 40 ± 20 per cent (62 ± 30 per cent). This step is very sensitive to the adopted brightness limit of our survey. Accounting for visual companions increases the binary fraction to 46 ± 23 per cent (71 ± 34 per cent). These figures are lower than in Paper I. The error bars are better quantified, but still unacceptably large. Taken at face value, the current CSPN binary fraction is in line with the main-sequence progenitor population binary fraction. However, including white dwarfs companions could increase this fraction by as much as 13 (21) per cent points.
Implementing a search for gravitational waves from binary black holes with nonprecessing spin
NASA Astrophysics Data System (ADS)
Capano, Collin; Harry, Ian; Privitera, Stephen; Buonanno, Alessandra
2016-06-01
Searching for gravitational waves (GWs) from binary black holes (BBHs) with LIGO and Virgo involves matched-filtering data against a set of representative signal waveforms—a template bank—chosen to cover the full signal space of interest with as few template waveforms as possible. Although the component black holes may have significant angular momenta (spin), previous searches for BBHs have filtered LIGO and Virgo data using only waveforms where both component spins are zero. This leads to a loss of signal-to-noise ratio for signals where this is not the case. Combining the best available template placement techniques and waveform models, we construct a template bank of GW signals from BBHs with component spins χ1 ,2∈[-0.99 ,0.99 ] aligned with the orbital angular momentum, component masses m1 ,2∈[2 ,48 ]M⊙ , and total mass Mtotal≤50 M⊙ . Using effective-one-body waveforms with spin effects, we show that less than 3% of the maximum signal-to-noise ratio (SNR) of these signals is lost due to the discreetness of the bank, using the early Advanced LIGO noise curve. We use simulated Advanced LIGO noise to compare the sensitivity of this bank to a nonspinning bank covering the same parameter space. In doing so, we consider the competing effects between improved SNR and signal-based vetoes and the increase in the rate of false alarms of the aligned-spin bank due to covering a larger parameter space. We find that the aligned-spin bank can be a factor of 1.3-5 more sensitive than a nonspinning bank to BBHs with dimensionless spins >+0.6 and component masses ≳20 M⊙ . Even larger gains are obtained for systems with equally high spins but smaller component masses.
Searching for the Nearest Extragalactic Binary Black Hole:A Spectroscopic Study of NGC4736
NASA Astrophysics Data System (ADS)
Gustafsson, Annika; Kwan, Teiler J.; Bullis, Jeremy; Mason, Rachel; Fisher, Robert Scott
2015-01-01
In 1995 and 1996, Maoz et al. concluded that the nearby galaxy NGC4736 is in the late stages of a merger event. After further investigation, in 2005, Maoz et al. observed UV variability in the nuclear region of NGC4736, implying a second unknown source in the nucleus. With late stage mergers being an ideal location to search for binary black holes (BBHs), this led us to hypothesize that the second source of this galaxy is a black hole, making this a BBH system. While the existence of BBHs are necessary for many theoretical predictions and play an important role in astrophysics, evidence for their existence remains sparse. To date, only NGC6420 (Komossa et al., 2003) and Arp 299 (Ballo et al., 2004) have been discovered as merging galaxies with two active galactic nuclei (AGN). In January of 2008, NGC4736 was observed with the GMOS-N instrument on Gemini North. Optical longslit spectra of the nuclear region were obtained with spatial resolution of ~0.5". With this resolution, the two nuclear sources at a projected separation of 2.5", are therefore spatially resolved (Maoz et al., 2005). As a result, we can classify the nature of the second source by looking at the optical line ratios following Ho et al. (1997). At a distance of 4.9 Mpc, NGC4736 would be the nearest BBH system. This enables high-spectral and spatial resolution observations which will be a significant step forward in validating models of galaxy mergers.
Tabu search and binary particle swarm optimization for feature selection using microarray data.
Chuang, Li-Yeh; Yang, Cheng-Huei; Yang, Cheng-Hong
2009-12-01
Gene expression profiles have great potential as a medical diagnosis tool because they represent the state of a cell at the molecular level. In the classification of cancer type research, available training datasets generally have a fairly small sample size compared to the number of genes involved. This fact poses an unprecedented challenge to some classification methodologies due to training data limitations. Therefore, a good selection method for genes relevant for sample classification is needed to improve the predictive accuracy, and to avoid incomprehensibility due to the large number of genes investigated. In this article, we propose to combine tabu search (TS) and binary particle swarm optimization (BPSO) for feature selection. BPSO acts as a local optimizer each time the TS has been run for a single generation. The K-nearest neighbor method with leave-one-out cross-validation and support vector machine with one-versus-rest serve as evaluators of the TS and BPSO. The proposed method is applied and compared to the 11 classification problems taken from the literature. Experimental results show that our method simplifies features effectively and either obtains higher classification accuracy or uses fewer features compared to other feature selection methods. PMID:20047491
NASA Astrophysics Data System (ADS)
Jeng, Albert; Chang, Li-Chung; Chen, Sheng-Hui
There are many protocols proposed for protecting Radio Frequency Identification (RFID) system privacy and security. A number of these protocols are designed for protecting long-term security of RFID system using symmetric key or public key cryptosystem. Others are designed for protecting user anonymity and privacy. In practice, the use of RFID technology often has a short lifespan, such as commodity check out, supply chain management and so on. Furthermore, we know that designing a long-term security architecture to protect the security and privacy of RFID tags information requires a thorough consideration from many different aspects. However, any security enhancement on RFID technology will jack up its cost which may be detrimental to its widespread deployment. Due to the severe constraints of RFID tag resources (e. g., power source, computing power, communication bandwidth) and open air communication nature of RFID usage, it is a great challenge to secure a typical RFID system. For example, computational heavy public key and symmetric key cryptography algorithms (e. g., RSA and AES) may not be suitable or over-killed to protect RFID security or privacy. These factors motivate us to research an efficient and cost effective solution for RFID security and privacy protection. In this paper, we propose a new effective generic binary tree based key agreement protocol (called BKAP) and its variations, and show how it can be applied to secure the low cost and resource constraint RFID system. This BKAP is not a general purpose key agreement protocol rather it is a special purpose protocol to protect privacy, un-traceability and anonymity in a single RFID closed system domain.
Searches for Periodic Neutrino Emission from Binary Systems with 22 and 40 Strings of IceCube
NASA Technical Reports Server (NTRS)
Abassi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Allen, M. M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.
2011-01-01
Recent observations of GeV /TeV photon emission from several X-ray binaries have sparked a renewed interest in these objects as galactic particle accelerators. In spite of the available multi-wavelength data, their acceleration mechanisms are not determined, and the nature of the accelerated particles (hadrons or leptons) is unknown. While much evidence favors leptonic emission, it is very likely that a hadronic component is also accelerated in the jets of these binary systems. The observation of neutrino emission would be clear evidence for the presence of a hadronic component in the outflow of these sources. In this paper we look for periodic neutrino emission from binary systems. Such modulation, observed in the photon flux, would be caused by the geometry of these systems. The results of two searches are presented that differ in the treatment of the spectral shape and phase of the emission. The 'generic' search allows parameters to vary freely and best fit values, in a 'model-dependent' search, predictions are used to constrain these parameters. We use the IceCube data taken from May 31, 2007 to April 5, 2008 with its 22-string configuration, and from April 5, 2008 and May 20, 2009 with its 40-string configuration. For the generic search and the 40 string sample, we find that the most significant source in the catalog of 7 binary stars is Cygnus X-3 with a 1.8% probability after trials (2.10" sigma one-sided) of being produced by statistical fluctuations of the background. The model-dependent method tested a range of system geometries - the inclination and the massive star's disk size - for LS I+61 deg 303, no significant excess was found.
NASA Astrophysics Data System (ADS)
Kalaghatgi, Chinmay; Ajith, Parameswaran; Arun, K. G.
2015-06-01
Searches for gravitational waves (GWs) from binary black holes using interferometric GW detectors require the construction of template banks for performing matched filtering while analyzing the data. Placement of templates over the parameter space of binaries, as well as coincidence tests of GW triggers from multiple detectors make use of the definition of a metric over the space of gravitational waveforms. Although recent searches have employed waveform templates coherently describing the inspiral, merger and ringdown (IMR) of the coalescence, the metric used in the template banks and coincidence tests was derived from post-Newtonian inspiral waveforms. In this paper, we compute (semianalytically) the template-space metric of the IMR waveform family IMRPhenomB over the parameter space of masses and the effective spin parameter. We also propose a coordinate system, which is a modified version of post-Newtonian chirp time coordinates, in which the metric is slowly varying over the parameter space. The match function semianalytically computed using the metric has excellent agreement with the "exact" match function computed numerically. We show that the metric is able to provide a reasonable approximation to the match function of other IMR waveform families, such that the effective-one-body model calibrated to numerical relativity (EOBNRv2). The availability of this metric can contribute to improving the sensitivity of searches for GWs from binary black holes in the advanced detector era.
NASA Astrophysics Data System (ADS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Agathos, M.; Ajith, P.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amariutei, D.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barker, D.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Beker, M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet–Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; del Prete, M.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.; Dietz, A.; DiGuglielmo, J.; Donovan, F.; Dooley, K. L.; Dorsher, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Farr, W.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Flanigan, M.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P. J.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Ganija, M. R.; Garcia, J.; Garofoli, J. A.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Geng, R.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Gray, N.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Ha, T.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Hardt, A.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; Jang, H.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kamaretsos, I.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B.; Kim, C.; Kim, D.; Kim, H.; Kim, K.; Kim, N.; Kim, Y.-M.; King, P. J.; Kinsey, M.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Leaci, P.; Lee, C. H.; Lee, H. M.; Leindecker, N.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Luan, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marandi, A.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menendez, D.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Moesta, P.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Mosca, S.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Nawrodt, R.; Necula, V.; Nelson, J.; Newton, G.; Nishizawa, A.; Nocera, F.; Nolting, D.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pedraza, M.; Peiris, P.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Persichetti, G.; Phelps, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Prato, M.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C. R.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Redwine, K.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Ryll, H.; Sainathan, P.; Sakosky, M.; Salemi, F.; Samblowski, A.; Sammut, L.; Sancho de la Jordana, L.; Sandberg, V.; Sankar, S.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schlamminger, S.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Smith, R. J. E.; Somiya, K.; Sorazu, B.; Soto, J.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Stein, A. J.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Tseng, K.; Tucker, E.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vitale, S.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, X.; Wang, Z.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.; Zadroźny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhang, W.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2012-04-01
We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009, and October 20, 2010. We searched for signals from binaries with total mass between 2 and 25M⊙; this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass, including the results from previous LIGO and Virgo observations. The cumulative 90% confidence rate upper limits of the binary coalescence of binary neutron star, neutron star-black hole, and binary black hole systems are 1.3×10-4, 3.1×10-5, and 6.4×10-6Mpc-3yr-1, respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge.
NASA Technical Reports Server (NTRS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Agathos, M.; Ajith, P.; Allen, B.; Allen, G. S.; Ceron, E. Amador; Amariutei, D.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Blackburn, L.; Camp, J. B.; Cannizzo, J.
2012-01-01
We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009, and October 20. 2010. We searched for signals from binaries with total mass between 2 and 25 Stellar Mass; this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass. including the results from previous LIGO and Virgo observations. The cumulative 90% confidence rate upper limits of the binary coalescence of binary neutron star, neutron star-black hole, and binary black hole systems are 1.3 x 10(exp -4), 3.1 x 10(exp -5), and 6.4 x 10(exp -6)/cu Mpc/yr, respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge.
NASA Astrophysics Data System (ADS)
Majumdar, Satya N.
2003-08-01
We use the traveling front approach to derive exact asymptotic results for the statistics of the number of particles in a class of directed diffusion-limited aggregation models on a Cayley tree. We point out that some aspects of these models are closely connected to two different problems in computer science, namely, the digital search tree problem in data structures and the Lempel-Ziv algorithm for data compression. The statistics of the number of particles studied here is related to the statistics of height in digital search trees which, in turn, is related to the statistics of the length of the longest word formed by the Lempel-Ziv algorithm. Implications of our results to these computer science problems are pointed out.
Searching for the Nearest Extragalactic Binary Black Hole: A Spectroscopic Study of NGC 4736
NASA Astrophysics Data System (ADS)
Gustafsson, Annika; Kwan, Teiler J.; Fisher, Robert Scott; Mason, Rachel
2016-01-01
In 1995 and 1996, Maoz et al. concluded that the nearby galaxy NGC 4736 (d=16 million light years) is in the late stages of a merger event. After further investigation, in 2005, Maoz et al. observed UV variability in the nuclear region of NGC 4736, revealing a second unknown source in the nucleus. Since late stage mergers are an ideal location to search for binary black holes (BBH), members of our team hypothesized that the second source could be a second black hole, making this a potential BBH system. This is important since observational evidence for their existence remains sparse, even though BBH are predicted by many theories and potentially play an important role in galaxy evolution. In January of 2008, NGC 4736 was observed with the GMOS-N instrument on Gemini North. Optical longslit spectra of the nuclear region were obtained with spatial resolution of 0.1454''/pixel and a spectral resolution of R~1700. At this resolution, the two nuclear sources are spatially resolved at a projected separation of 2.5''. As a result, we can classify the nature of the second source by looking at the optical line ratios following Ho et al. (1997). High signal-to-noise spectra of the unknown source displayed strong emission of [SII] and [NII], but an extremely weak [OIII] emission line. The unknown source has a calculated [NII]/[Hα] ratio of 1.37 and an upper limit of 0.6 for the [OIII]/[Hβ] ratio. Placing the unknown source on the BPT-NII diagram (Baldwin et al., 1981), we tentatively conclude that it is a low-luminosity second black hole potentially making NGC 4736 the nearest BBH system. The result will enable future high-spectral and spatial resolution observations of a low-luminosity system in extremely late stages of merging, which will be a significant step forward in validating models of galaxy mergers and AGN activity.
Optimal processing for gel electrophoresis images: Applying Monte Carlo Tree Search in GelApp.
Nguyen, Phi-Vu; Ghezal, Ali; Hsueh, Ya-Chih; Boudier, Thomas; Gan, Samuel Ken-En; Lee, Hwee Kuan
2016-08-01
In biomedical research, gel band size estimation in electrophoresis analysis is a routine process. To facilitate and automate this process, numerous software have been released, notably the GelApp mobile app. However, the band detection accuracy is limited due to a band detection algorithm that cannot adapt to the variations in input images. To address this, we used the Monte Carlo Tree Search with Upper Confidence Bound (MCTS-UCB) method to efficiently search for optimal image processing pipelines for the band detection task, thereby improving the segmentation algorithm. Incorporating this into GelApp, we report a significant enhancement of gel band detection accuracy by 55.9 ± 2.0% for protein polyacrylamide gels, and 35.9 ± 2.5% for DNA SYBR green agarose gels. This implementation is a proof-of-concept in demonstrating MCTS-UCB as a strategy to optimize general image segmentation. The improved version of GelApp-GelApp 2.0-is freely available on both Google Play Store (for Android platform), and Apple App Store (for iOS platform). PMID:27251892
Extremely Low Bit-Rate Nearest Neighbor Search Using a Set Compression Tree.
Arandjelović, Relja; Zisserman, Andrew
2014-12-01
The goal of this work is a data structure to support approximate nearest neighbor search on very large scale sets of vector descriptors. The criteria we wish to optimize are: (i) that the memory footprint of the representation should be very small (so that it fits into main memory); and (ii) that the approximation of the original vectors should be accurate. We introduce a novel encoding method, named a Set Compression Tree (SCT), that satisfies these criteria. It is able to accurately compress 1 million descriptors using only a few bits per descriptor. The large compression rate is achieved by not compressing on a per-descriptor basis, but instead by compressing the set of descriptors jointly. We describe the encoding, decoding and use for nearest neighbor search, all of which are quite straightforward to implement. The method, tested on standard benchmarks (SIFT1M and 80 Million Tiny Images), achieves superior performance to a number of state-of-the-art approaches, including Product Quantization, Locality Sensitive Hashing, Spectral Hashing, and Iterative Quantization. For example, SCT has a lower error using 5 bits than any of the other approaches, even when they use 16 or more bits per descriptor. We also include a comparison of all the above methods on the standard benchmarks. PMID:26353147
Tuning into Scorpius X-1: adapting a continuous gravitational-wave search for a known binary system
NASA Astrophysics Data System (ADS)
Meadors, Grant David; Goetz, Evan; Riles, Keith
2016-05-01
We describe how the TwoSpect data analysis method for continuous gravitational waves (GWs) has been tuned for directed sources such as the low-mass X-ray binary (LMXB), Scorpius X-1 (Sco X-1). A comparison of five search algorithms generated simulations of the orbital and GW parameters of Sco X-1. Whereas that comparison focused on relative performance, here the simulations help quantify the sensitivity enhancement and parameter estimation abilities of this directed method, derived from an all-sky search for unknown sources, using doubly Fourier-transformed data. Sensitivity is shown to be enhanced when the source sky location and period are known, because we can run a fully templated search, bypassing the all-sky hierarchical stage using an incoherent harmonic sum. The GW strain and frequency, as well as the projected semi-major axis of the binary system, are recovered and uncertainty estimated, for simulated signals that are detected. Upper limits for GW strain are set for undetected signals. Applications to future GW observatory data are discussed. Robust against spin-wandering and computationally tractable despite an unknown frequency, this directed search is an important new tool for finding gravitational signals from LMXBs.
Law, Nicholas M.; Kraus, Adam L.; Street, Rachel; Fulton, Benjamin J.; Shporer, Avi; Lister, Tim; Hillenbrand, Lynne A.; Baranec, Christoph; Bui, Khanh; Davis, Jack T. C.; Dekany, Richard G.; Kulkarni, S. R.; Ofek, Eran O.; Bloom, Joshua S.; Cenko, S. Bradley; Filippenko, Alexei V.; Burse, Mahesh P.; Das, H. K.; Kasliwal, Mansi M.; Nugent, Peter; and others
2012-10-01
We present three new eclipsing white-dwarf/M-dwarf binary systems discovered during a search for transiting planets around M-dwarfs. Unlike most known eclipsing systems of this type, the optical and infrared emission is dominated by the M-dwarf components, and the systems have optical colors and discovery light curves consistent with being Jupiter-radius transiting planets around early M-dwarfs. We detail the PTF/M-dwarf transiting planet survey, part of the Palomar Transient Factory (PTF). We present a graphics processing unit (GPU)-based box-least-squares search for transits that runs approximately 8 Multiplication-Sign faster than similar algorithms implemented on general purpose systems. For the discovered systems, we decompose low-resolution spectra of the systems into white-dwarf and M-dwarf components, and use radial velocity measurements and cooling models to estimate masses and radii for the white dwarfs. The systems are compact, with periods between 0.35 and 0.45 days and semimajor axes of approximately 2 R{sub Sun} (0.01 AU). The M-dwarfs have masses of approximately 0.35 M{sub Sun }, and the white dwarfs have hydrogen-rich atmospheres with temperatures of around 8000 K and have masses of approximately 0.5 M{sub Sun }. We use the Robo-AO laser guide star adaptive optics system to tentatively identify one of the objects as a triple system. We also use high-cadence photometry to put an upper limit on the white-dwarf radius of 0.025 R{sub Sun} (95% confidence) in one of the systems. Accounting for our detection efficiency and geometric factors, we estimate that 0.08%{sub -0.05%}{sup +0.10%} (90% confidence) of M-dwarfs are in these short-period, post-common-envelope white-dwarf/M-dwarf binaries where the optical light is dominated by the M-dwarf. The lack of detections at shorter periods, despite near-100% detection efficiency for such systems, suggests that binaries including these relatively low-temperature white dwarfs are preferentially found at
NASA Astrophysics Data System (ADS)
Calderón Bustillo, Juan; Husa, Sascha; Sintes, Alicia M.; Pürrer, Michael
2016-04-01
Current template-based gravitational wave searches for compact binary coalescences use waveform models that omit the higher order modes content of the gravitational radiation emitted, considering only the quadrupolar (ℓ,|m |)=(2 ,2 ) modes. We study the effect of such omission for the case of aligned-spin compact binary coalescence searches for equal-spin (and nonspinning) binary black holes in the context of two versions of Advanced LIGO: the upcoming 2015 version, known as early Advanced LIGO (eaLIGO) and its zero-detuned high-energy power version, which we will refer to as Advanced LIGO (AdvLIGO). In addition, we study the case of a nonspinning search for initial LIGO (iLIGO). We do this via computing the effectualness of the aligned-spin SEOBNRv1 reduced order model waveform family, which only considers quadrupolar modes, toward hybrid post-Newtonian/numerical relativity waveforms which contain higher order modes. We find that for all LIGO versions losses of more than 10% of events occur in the case of AdvLIGO for mass ratio q ≥6 and total mass M ≥100 M⊙ due to the omission of higher modes, this region of the parameter space being larger for eaLIGO and iLIGO. Moreover, while the maximum event loss observed over the explored parameter space for AdvLIGO is of 15% of events, for iLIGO and eaLIGO, this increases up to (39,23)%. We find that omission of higher modes leads to observation-averaged systematic parameter biases toward lower spin, total mass, and chirp mass. For completeness, we perform a preliminar, nonexhaustive comparison of systematic biases to statistical errors. We find that, for a given signal-to-noise ratio, systematic biases dominate over statistical errors at much lower total mass for eaLIGO than for AdvLIGO.
An automated search of O'Connell effect for Large Numbers of Eclipsing Binaries
NASA Astrophysics Data System (ADS)
Papageorgiou, A.; Kleftogiannis, G.; Christopoulou, P. E.
2013-09-01
The O'Connell effect in eclipsing binary systems (unequally high maxima) has stood for many decades as one of the most perplexing challenges in binary studies. So far, this simple asymmetry has not been convincingly explained, but most theories attribute the effect to dynamic phenomena such as migrating star-spots or swirling circumstellar gas and dust. Nevertheless there has been no clear demonstration of a correlation between the assumptions of any one theory and the morphology of physical parameters of binary systems that exhibit O'Connell effect. We have developed an automated program that characterizes the morphology of light curves by depth of both minima, height of both maxima and curvature outside the eclipses. In terms of programming it is being developed in FORTRAN and PYTHON. This project results from realization of two needs, both related to recent discoveries of large number of contact binaries. Thus the first need is of a simple method to obtain essential parameters for these systems, without the necessity of full light-curve synthesis solution. The second is a statistical one: we would like to extract information from light curves with the use of coefficients that describe the asymmetry in the light curve maxima and the overall shape in the growing observational data of eclipsing binaries (OGLE, ASAS, KEPLER, GAIA). Before applying the automated program several complications must be addressed, as eccentricity, quality of data with many outlying points, limitations to the classification method already applied.
Smoly, Ilan; Carmel, Amir; Shemer-Avni, Yonat; Yeger-Lotem, Esti; Ziv-Ukelson, Michal
2016-03-01
Network querying is a powerful approach to mine molecular interaction networks. Most state-of-the-art network querying tools either confine the search to a prespecified topology in the form of some template subnetwork, or do not specify any topological constraints at all. Another approach is grammar-based queries, which are more flexible and expressive as they allow for expressing the topology of the sought pattern according to some grammar-based logic. Previous grammar-based network querying tools were confined to the identification of paths. In this article, we extend the patterns identified by grammar-based query approaches from paths to trees. For this, we adopt a higher order query descriptor in the form of a regular tree grammar (RTG). We introduce a novel problem and propose an algorithm to search a given graph for the k highest scoring subgraphs matching a tree accepted by an RTG. Our algorithm is based on the combination of dynamic programming with color coding, and includes an extension of previous k-best parsing optimization approaches to avoid isomorphic trees in the output. We implement the new algorithm and exemplify its application to mining viral infection patterns within molecular interaction networks. Our code is available online. PMID:26953875
NASA Astrophysics Data System (ADS)
Hodge, Kari Alison
The LIGO and Virgo gravitational-wave observatories are complex and extremely sensitive strain detectors that can be used to search for a wide variety of gravitational waves from astrophysical and cosmological sources. In this thesis, I motivate the search for the gravitational wave signals from coalescing black hole binary systems with total mass between 25 and 100 solar masses. The mechanisms for formation of such systems are not well-understood, and we do not have many observational constraints on the parameters that guide the formation scenarios. Detection of gravitational waves from such systems---or, in the absence of detection, the tightening of upper limits on the rate of such coalescences---will provide valuable information that can inform the astrophysics of the formation of these systems. I review the search for these systems and place upper limits on the rate of black hole binary coalescences with total mass between 25 and 100 solar masses. I then show how the sensitivity of this search can be improved by up to 40% by the the application of the multivariate statistical classifier known as a random forest of bagged decision trees to more effectively discriminate between signal and non-Gaussian instrumental noise. I also discuss the use of this classifier in the search for the ringdown signal from the merger of two black holes with total mass between 50 and 450 solar masses and present upper limits. I also apply multivariate statistical classifiers to the problem of quantifying the non-Gaussianity of LIGO data. Despite these improvements, no gravitational-wave signals have been detected in LIGO data so far. However, the use of multivariate statistical classification can significantly improve the sensitivity of the Advanced LIGO detectors to such signals.
NASA Astrophysics Data System (ADS)
Leaci, Paola; Prix, Reinhard
2015-05-01
We derive simple analytic expressions for the (coherent and semicoherent) phase metrics of continuous-wave sources in low-eccentricity binary systems for the two regimes of long and short segments compared to the orbital period. The resulting expressions correct and extend previous results found in the literature. We present results of extensive Monte Carlo studies comparing metric mismatch predictions against the measured loss of detection statistics for binary parameter offsets. The agreement is generally found to be within ˜10 %- 30 % . For an application of the metric template expressions, we estimate the optimal achievable sensitivity of an Einstein@Home directed search for Scorpius X-1, under the assumption of sufficiently small spin wandering. We find that such a search, using data from the upcoming advanced detectors, would be able to beat the torque-balance level [R. V. Wagoner, Astrophys. J. 278, 345 (1984); L. Bildsten, Astrophys. J. 501, L89 (1998).] up to a frequency of ˜500 - 600 Hz , if orbital eccentricity is well constrained, and up to a frequency of ˜160 - 200 Hz for more conservative assumptions about the uncertainty on orbital eccentricity.
THIRD COMPONENT SEARCH AND ABUNDANCES OF THE VERY DUSTY SHORT-PERIOD BINARY BD +20 Degree-Sign 307
Fekel, Francis C.; Cordero, Maria J.; Galicher, Raphael; Zuckerman, B.; Melis, Carl; Weinberger, Alycia J. E-mail: majocord@indiana.edu E-mail: ben@astro.ucla.edu E-mail: weinberger@dtm.ciw.edu
2012-04-10
We have obtained near-infrared adaptive optics imaging and collected additional radial velocity observations to search for a third component in the extremely dusty short-period binary system BD +20 Degree-Sign 307. Our image shows no evidence for a third component at separations greater than 19 AU. Our four seasons of radial velocities have a constant center-of-mass velocity and are consistent with the systemic velocities determined at two earlier epochs. Thus, the radial velocities also provide no support for a third component. Unfortunately, the separation domains covered by our imaging and radial velocity results do not overlap. Thus, we examined the parameters for possible orbits of a third component that could have been missed by our current observations. With our velocities we determined improved circular orbital elements for the 3.4 day double-lined binary. We also performed a spectroscopic abundance analysis of the short-period binary components and conclude that the stars are a mid- and a late-F dwarf. We find that the iron abundances of both components, [Fe/H] = 0.15, are somewhat greater than the solar value and comparable to that of stars in the Hyades. Despite the similarity of the binary components, the lithium abundances of the two stars are very unequal. The primary has log {epsilon} (Li) = 2.72, while in the secondary log {epsilon} (Li) {<=}1.46, which corresponds to a difference of at least a factor of 18. The very disparate lithium abundances in very similar stars make it impossible to ascribe a single age to them. While the system is likely at least 1 Gyr old, it may well be as old as the Sun.
Ruczyński, Ireneusz; Bartoń, Kamil A.
2012-01-01
Sensory limitation plays an important role in the evolution of animal behaviour. Animals have to find objects of interest (e.g. food, shelters, predators). When sensory abilities are strongly limited, animals adjust their behaviour to maximize chances for success. Bats are nocturnal, live in complex environments, are capable of flight and must confront numerous perceptual challenges (e.g. limited sensory range, interfering clutter echoes). This makes them an excellent model for studying the role of compensating behaviours to decrease costs of finding resources. Cavity roosting bats are especially interesting because the availability of tree cavities is often limited, and their quality is vital for bats during the breeding season. From a bat’s sensory point of view, cavities are difficult to detect and finding them requires time and energy. However, tree cavities are also long lasting, allowing information transfer among conspecifics. Here, we use a simple simulation model to explore the benefits of tree selection, memory and eavesdropping (compensation behaviours) to searches for tree cavities by bats with short and long perception range. Our model suggests that memory and correct discrimination of tree suitability are the basic strategies decreasing the cost of roost finding, whereas perceptual range plays a minor role in this process. Additionally, eavesdropping constitutes a buffer that reduces the costs of finding new resources (such as roosts), especially when they occur in low density. We conclude that natural selection may promote different strategies of roost finding in relation to habitat conditions and cognitive skills of animals. PMID:23028666
A Tabu-Search Heuristic for Deterministic Two-Mode Blockmodeling of Binary Network Matrices
ERIC Educational Resources Information Center
Brusco, Michael; Steinley, Douglas
2011-01-01
Two-mode binary data matrices arise in a variety of social network contexts, such as the attendance or non-attendance of individuals at events, the participation or lack of participation of groups in projects, and the votes of judges on cases. A popular method for analyzing such data is two-mode blockmodeling based on structural equivalence, where…
Searching for gravitational waves from low mass x-ray binaries
NASA Astrophysics Data System (ADS)
Messenger, Christopher; Vecchio, Alberto
2004-03-01
Accreting neutron stars in binary systems, and Sco X-1 in particular, are considered one of the prime astrophysical targets for Earth-based gravitational wave laser interferometers. Here we discuss a data analysis strategy that we have developed for this class of systems which is now being applied to the science data collected by GEO600 and LIGO.
NASA Astrophysics Data System (ADS)
Dayanga, Waduthanthree Thilina
Albert Einstein's general theory of relativity predicts the existence of gravitational waves (GWs). Direct detection of GWs will provide enormous amount of new information about physics, astronomy and cosmology. Scientists around the world are currently working towards the first direct detection of GWs. The global network of ground-based GW detectors are currently preparing for their first advanced detector Science runs. In this thesis we focus on detection of GWs from compact binary coalescence (CBC) systems. Ability to accurately model CBC GW waveforms makes them the most promising source for the first direct detection of GWs. In this thesis we try to address several challenges associated with detecting CBC signals buried in ground-based GW detector data for past and future searches. Data analysis techniques we employ to detect GW signals assume detector noise is Gaussian and stationary. However, in reality, detector data is neither Gaussian nor stationary. To estimate the performance loss due to these features, we compare the efficiencies of detecting CBC signals in simulated Gaussian and real data. Additionally, we also demonstrate the effectiveness of multi-detector signal based consistency tests such ad null-stream. Despite, non-Gaussian and non-stationary features of real detector data, with effective data quality studies and signal-based vetoes we can approach the performance of Gaussian and stationary data. As we are moving towards advanced detector era, it is important to be prepared for future CBC searches. In this thesis we investigate the performances of non-spinning binary black hole (BBH) searches in simulated Gaussian using advanced detector noise curves predicted for 2015--2016. In the same study, we analyze the GW detection probabilities of latest pN-NR hybrid waveforms submitted to second version of Numerical Injection Analysis (NINJA-2) project. The main motivation for this study is to understand the ability to detect realistic BBH signals of
NASA Astrophysics Data System (ADS)
Harry, Ian W.; Nitz, Alexander H.; Brown, Duncan A.; Lundgren, Andrew P.; Ochsner, Evan; Keppel, Drew
2014-01-01
The first direct detection of neutron-star- black-hole binaries will likely be made with gravitational-wave observatories. Advanced LIGO and Advanced Virgo will be able to observe neutron-star- black-hole mergers at a maximum distance of 900 Mpc. To achieve this sensitivity, gravitational-wave searches will rely on using a bank of filter waveforms that accurately model the expected gravitational-wave signal. The emitted signal will depend on the masses of the black hole and the neutron star and also the angular momentum of both components. The angular momentum of the black hole is expected to be comparable to the orbital angular momentum when the system is emitting gravitational waves in Advanced LIGO's and Advanced Virgo's sensitive band. This angular momentum will affect the dynamics of the inspiralling system and alter the phase evolution of the emitted gravitational-wave signal. In addition, if the black hole's angular momentum is not aligned with the orbital angular momentum, it will cause the orbital plane of the system to precess. In this work we demonstrate that if the effect of the black hole's angular momentum is neglected in the waveform models used in gravitational-wave searches, the detection rate of (10+1.4)M⊙ neutron-star- black-hole systems with isotropic spin distributions would be reduced by 33%-37% in comparison to a hypothetical perfect search at a fixed signal-to-noise ratio threshold. The error in this measurement is due to uncertainty in the post-Newtonian approximations that are used to model the gravitational-wave signal of neutron-star- black-hole inspiralling binaries. We describe a new method for creating a bank of filter waveforms where the black hole has nonzero angular momentum that is aligned with the orbital angular momentum. With this bank we find that the detection rate of (10+1.4)M⊙ neutron-star- black-hole systems would be reduced by 26%-33%. Systems that will not be detected are ones where the precession of the orbital
Quest for Orthologs Entails Quest for Tree of Life: In Search of the Gene Stream
Boeckmann, Brigitte; Marcet-Houben, Marina; Rees, Jonathan A.; Forslund, Kristoffer; Huerta-Cepas, Jaime; Muffato, Matthieu; Yilmaz, Pelin; Xenarios, Ioannis; Bork, Peer; Lewis, Suzanna E.; Gabaldón, Toni
2015-01-01
Quest for Orthologs (QfO) is a community effort with the goal to improve and benchmark orthology predictions. As quality assessment assumes prior knowledge on species phylogenies, we investigated the congruency between existing species trees by comparing the relationships of 147 QfO reference organisms from six Tree of Life (ToL)/species tree projects: The National Center for Biotechnology Information (NCBI) taxonomy, Opentree of Life, the sequenced species/species ToL, the 16S ribosomal RNA (rRNA) database, and trees published by Ciccarelli et al. (Ciccarelli FD, et al. 2006. Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287) and by Huerta-Cepas et al. (Huerta-Cepas J, Marcet-Houben M, Gabaldon T. 2014. A nested phylogenetic reconstruction approach provides scalable resolution in the eukaryotic Tree Of Life. PeerJ PrePrints 2:223) Our study reveals that each species tree suggests a different phylogeny: 87 of the 146 (60%) possible splits of a dichotomous and rooted tree are congruent, while all other splits are incongruent in at least one of the species trees. Topological differences are observed not only at deep speciation events, but also within younger clades, such as Hominidae, Rodentia, Laurasiatheria, or rosids. The evolutionary relationships of 27 archaea and bacteria are highly inconsistent. By assessing 458,108 gene trees from 65 genomes, we show that consistent species topologies are more often supported by gene phylogenies than contradicting ones. The largest concordant species tree includes 77 of the QfO reference organisms at the most. Results are summarized in the form of a consensus ToL (http://swisstree.vital-it.ch/species_tree) that can serve different benchmarking purposes. PMID:26133389
Pitman Yor Diffusion Trees for Bayesian Hierarchical Clustering.
Knowles, David A; Ghahramani, Zoubin
2015-02-01
In this paper we introduce the Pitman Yor Diffusion Tree (PYDT), a Bayesian non-parametric prior over tree structures which generalises the Dirichlet Diffusion Tree [30] and removes the restriction to binary branching structure. The generative process is described and shown to result in an exchangeable distribution over data points. We prove some theoretical properties of the model including showing its construction as the continuum limit of a nested Chinese restaurant process model. We then present two alternative MCMC samplers which allow us to model uncertainty over tree structures, and a computationally efficient greedy Bayesian EM search algorithm. Both algorithms use message passing on the tree structure. The utility of the model and algorithms is demonstrated on synthetic and real world data, both continuous and binary. PMID:26353241
Novel phases of lithium-aluminum binaries from first-principles structural search
NASA Astrophysics Data System (ADS)
Sarmiento-Pérez, Rafael; Cerqueira, Tiago F. T.; Valencia-Jaime, Irais; Amsler, Maximilian; Goedecker, Stefan; Romero, Aldo H.; Botti, Silvana; Marques, Miguel A. L.
2015-01-01
Intermetallic Li-Al compounds are on the one hand key materials for light-weight engineering, and on the other hand, they have been proposed for high-capacity electrodes for Li batteries. We determine from first-principles the phase diagram of Li-Al binary crystals using the minima hopping structural prediction method. Beside reproducing the experimentally reported phases (LiAl, Li3Al2, Li9Al4, LiAl3, and Li2Al), we unveil a structural variety larger than expected by discovering six unreported binary phases likely to be thermodynamically stable. Finally, we discuss the behavior of the elastic constants and of the electric potential profile of all Li-Al stable compounds as a function of their stoichiometry.
Novel phases of lithium-aluminum binaries from first-principles structural search
Sarmiento-Pérez, Rafael; Cerqueira, Tiago F. T.; Botti, Silvana; Marques, Miguel A. L.; Valencia-Jaime, Irais; Amsler, Maximilian; Goedecker, Stefan; Romero, Aldo H.
2015-01-14
Intermetallic Li–Al compounds are on the one hand key materials for light-weight engineering, and on the other hand, they have been proposed for high-capacity electrodes for Li batteries. We determine from first-principles the phase diagram of Li–Al binary crystals using the minima hopping structural prediction method. Beside reproducing the experimentally reported phases (LiAl, Li{sub 3}Al{sub 2}, Li{sub 9}Al{sub 4}, LiAl{sub 3}, and Li{sub 2}Al), we unveil a structural variety larger than expected by discovering six unreported binary phases likely to be thermodynamically stable. Finally, we discuss the behavior of the elastic constants and of the electric potential profile of all Li–Al stable compounds as a function of their stoichiometry.
Searching for Pulsating Stars in Eclipsing Binaries in the OMC--VAR Catalogue
NASA Astrophysics Data System (ADS)
Alfonso-Garzón, J.; Moya, A.; Montesinos, B.; Mas-Hesse, J. M.; Domingo, A.
The first catalogue of variable sources observed by OMC (OMC--VAR hereafter) contains light curves for 5263 variable stars, out of which we have been able to detect periodicities for 1137 objects. A large variety of objects can be found in the catalogue, but the most frequent ones in the present compilation are pulsating stars and eclipsing binaries. We have performed an analysis to find eclipsing systems showing evidences of pulsations in one of their components some preliminary results are shown.
Computer search for binary cyclic UEP codes of odd length up to 65
NASA Technical Reports Server (NTRS)
Lin, Mao-Chao; Lin, Chi-Chang; Lin, Shu
1990-01-01
Using an exhaustive computation, the unequal error protection capabilities of all binary cyclic codes of odd length up to 65 that have minimum distances at least 3 are found. For those codes that can only have upper bounds on their unequal error protection capabilities computed, an analytic method developed by Dynkin and Togonidze (1976) is used to show that the upper bounds meet the exact unequal error protection capabilities.
A search for substellar objects orbiting the sdB eclipsing binary HS 0705+6700
NASA Astrophysics Data System (ADS)
Qian, S.-B.; Shi, G.; Zola, S.; Koziel-Wierzbowska, D.; Winiarski, M.; Szymanski, T.; Ogloza, W.; Li, L.-J.; Zhu, L.-Y.; Liu, L.; He, J.-J.; Liao, W.-P.; Zhao, E.-G.; Wang, J.-J.; Zhang, J.; Jiang, L.-Q.
2013-12-01
By using 78 newly determined timings of light minima together with those collected from the literature, we analysed the changes in the observed minus calculated (O-C) diagram in HS 0705+6700, a short-period (2.3 h) eclipsing binary that consists of a very hot subdwarf B-type (sdB) star and a very cool fully convective red dwarf. We confirmed the cyclic variation in the O-C and refined the parameters of the circumbinary brown dwarf (reported to orbit the binary system in 2009) by analysing the changes for the light travel time effect that arises from the gravitational influence of the third body. Our results indicate the lower mass limit of the third body to be M3 sin i' = 33.7(±1.6) MJup. This companion would be a brown dwarf if its orbital inclination is larger than 27.7° and it is orbiting the central eclipsing binary with an eccentricity e ˜ 0.2 at a separation of about 3.7(±0.1) au.
NASA Astrophysics Data System (ADS)
Bose, Sukanta; Dayanga, Thilina; Ghosh, Shaon; Talukder, Dipongkar
2011-07-01
We describe a hierarchical data analysis pipeline for coherently searching for gravitational-wave signals from non-spinning compact binary coalescences (CBCs) in the data of multiple earth-based detectors. This search assumes no prior information on the sky position of the source or the time of occurrence of its transient signals and, hence, is termed 'blind'. The pipeline computes the coherent network search statistic that is optimal in stationary, Gaussian noise. More importantly, it allows for the computation of a suite of alternative multi-detector coherent search statistics and signal-based discriminators that can improve the performance of CBC searches in real data, which can be both non-stationary and non-Gaussian. Also, unlike the coincident multi-detector search statistics that have been employed so far, the coherent statistics are different in the sense that they check for the consistency of the signal amplitudes and phases in the different detectors with their different orientations and with the signal arrival times in them. Since the computation of coherent statistics entails searching in the sky, it is more expensive than that of the coincident statistics that do not require it. To reduce computational costs, the first stage of the hierarchical pipeline constructs coincidences of triggers from the multiple interferometers, by requiring their proximity in time and component masses. The second stage follows up on these coincident triggers by computing the coherent statistics. Here, we compare the performances of this hierarchical pipeline with and without the second (or coherent) stage in Gaussian noise. Although introducing hierarchy can be expected to cause some degradation in the detection efficiency compared to that of a single-stage coherent pipeline, nevertheless it improves the computational speed of the search considerably. The two main results of this work are as follows: (1) the performance of the hierarchical coherent pipeline on Gaussian data
Efficient tree codes on SIMD computer architectures
NASA Astrophysics Data System (ADS)
Olson, Kevin M.
1996-11-01
This paper describes changes made to a previous implementation of an N -body tree code developed for a fine-grained, SIMD computer architecture. These changes include (1) switching from a balanced binary tree to a balanced oct tree, (2) addition of quadrupole corrections, and (3) having the particles search the tree in groups rather than individually. An algorithm for limiting errors is also discussed. In aggregate, these changes have led to a performance increase of over a factor of 10 compared to the previous code. For problems several times larger than the processor array, the code now achieves performance levels of ~ 1 Gflop on the Maspar MP-2 or roughly 20% of the quoted peak performance of this machine. This percentage is competitive with other parallel implementations of tree codes on MIMD architectures. This is significant, considering the low relative cost of SIMD architectures.
A RADIO PULSAR SEARCH OF THE {gamma}-RAY BINARIES LS I +61 303 AND LS 5039
Virginia McSwain, M.; Ray, Paul S.; Ransom, Scott M.; Roberts, Mallory S. E.; Dougherty, Sean M.; Pooley, Guy G. E-mail: paul.ray@nrl.navy.mil E-mail: malloryr@gmail.com E-mail: guy@mrao.cam.ac.uk
2011-09-01
LS I +61 303 and LS 5039 are exceptionally rare examples of high-mass X-ray binaries with MeV-TeV emission, making them two of only five known '{gamma}-ray binaries'. There has been disagreement within the literature over whether these systems are microquasars, with stellar winds accreting onto a compact object to produce high energy emission and relativistic jets, or whether their emission properties might be better explained by a relativistic pulsar wind colliding with the stellar wind. Here we present an attempt to detect radio pulsars in both systems with the Green Bank Telescope. The upper limits of flux density are between 4.1 and 14.5 {mu}Jy, and we discuss the null results of the search. Our spherically symmetric model of the wind of LS 5039 demonstrates that any pulsar emission will be strongly absorbed by the dense wind unless there is an evacuated region formed by a relativistic colliding wind shock. LS I +61 303 contains a rapidly rotating Be star whose wind is concentrated near the stellar equator. As long as the pulsar is not eclipsed by the circumstellar disk or viewed through the densest wind regions, detecting pulsed emission may be possible during part of the orbit.
Search for magnetic fields in particle-accelerating colliding-wind binaries
NASA Astrophysics Data System (ADS)
Neiner, C.; Grunhut, J.; Leroy, B.; De Becker, M.; Rauw, G.
2015-03-01
Context. Some colliding-wind massive binaries, called particle-accelerating colliding-wind binaries (PACWB), exhibit synchrotron radio emission, which is assumed to be generated by a stellar magnetic field. However, no measurement of magnetic fields in these stars has ever been performed. Aims: We aim at quantifying the possible stellar magnetic fields present in PACWB to provide constraints for models. Methods: We gathered 21 high-resolution spectropolarimetric observations of 9 PACWB available in the ESPaDOnS, Narval and HarpsPol archives. We analysed these observations with the least squares deconvolution method. We separated the binary spectral components when possible. Results: No magnetic signature is detected in any of the 9 PACWB stars and all longitudinal field measurements are compatible with 0 G. We derived the upper field strength of a possible field that could have remained hidden in the noise of the data. While the data are not very constraining for some stars, for several stars we could derive an upper limit of the polar field strength of the order of 200 G. Conclusions: We can therefore exclude the presence of strong or moderate stellar magnetic fields in PACWB, typical of the ones present in magnetic massive stars. Weak magnetic fields could however be present in these objects. These observational results provide the first quantitative constraints for future models of PACWB. Based on archival observations obtained at the Télescope Bernard Lyot (USR5026) operated by the Observatoire Midi-Pyrénées, Université de Toulouse (Paul Sabatier), Centre National de la Recherche Scientifique (CNRS) of France, at the Canada-France-Hawaii Telescope (CFHT) operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the CNRS of France, and the University of Hawaii, and at the European Southern Observatory (ESO), Chile.
The missing GeV γ-ray binary: searching for HESS J0632+057 with Fermi-LAT
NASA Astrophysics Data System (ADS)
Caliandro, G. A.; Hill, A. B.; Torres, D. F.; Hadasch, D.; Ray, P.; Abdo, A.; Hessels, J. W. T.; Ridolfi, A.; Possenti, A.; Burgay, M.; Rea, N.; Tam, P. H. T.; Dubois, R.; Dubus, G.; Glanzman, T.; Jogler, T.
2013-11-01
The very high energy (VHE; >100 GeV) source HESS J0632+057 has been recently confirmed as a γ-ray binary, a subclass of the high-mass X-ray binary population, through the detection of an orbital period of 321 d. We performed a deep search for the emission of HESS J0632+057 in the GeV energy range using data from the Fermi Large Area Telescope (LAT). The analysis was challenging due to the source being located in close proximity to the bright γ-ray pulsar PSR J0633+0632 and lying in a crowded region of the Galactic plane where there is prominent diffuse emission. We formulated a Bayesian block algorithm adapted to work with weighted photon counts, in order to define the off-pulse phases of PSR J0633+0632. A detailed spectral-spatial model of a 5° circular region centred on the known location of HESS J0632+057 was generated to accurately model the LAT data. No significant emission from the location of HESS J0632+057 was detected in the 0.1-100 GeV energy range integrating over ˜3.5 yr of data, with a 95 per cent flux upper limit of F0.1-100 GeV < 3 × 10- 8 ph cm-2 s-1. A search for emission over different phases of the orbit also yielded no significant detection. A search for source emission on shorter time-scales (days-months) did not yield any significant detections. We also report the results of a search for radio pulsations using the 100-m Green Bank Telescope. No periodic signals or individual dispersed bursts of a likely astronomical origin were detected. We estimated the flux density limit of < 90/40 μJy at 2/9 GHz. The LAT flux upper limits combined with the detection of HESS J0632+057 in the 136-400 TeV energy band by the MAGIC collaboration imply that the VHE spectrum must turn over at energies <136 GeV placing constraints on any theoretical models invoked to explain the γ-ray emission.
Search for spinning black hole binaries in mock LISA data using a genetic algorithm
Petiteau, Antoine; Shang Yu; Babak, Stanislav; Feroz, Farhan
2010-05-15
Coalescing massive black hole binaries are the strongest and probably the most important gravitational wave sources in the LISA band. The spin and orbital precessions bring complexity in the waveform and make the likelihood surface richer in structure as compared to the nonspinning case. We introduce an extended multimodal genetic algorithm which utilizes the properties of the signal and the detector response function to analyze the data from the third round of mock LISA data challenge (MLDC3.2). The performance of this method is comparable, if not better, to already existing algorithms. We have found all five sources present in MLDC3.2 and recovered the coalescence time, chirp mass, mass ratio, and sky location with reasonable accuracy. As for the orbital angular momentum and two spins of the black holes, we have found a large number of widely separated modes in the parameter space with similar maximum likelihood values.
Search for the Binary Companion of Deep Impact Target 2002 GT
NASA Astrophysics Data System (ADS)
Chesley, Steven
2012-10-01
The first evidence for a possible companion to 2002 GT was acquired in April 2013. The current apparition is the only opportunity to verify or constrain possibly binary configurations for this Near Earth Asteroid before the 2020 arrival of the retargeted Deep Impact spacecraft. Ground-based options for verification have been nearly exhausted at this point. Rapid action is needed before 2002 GT's increasing distance from the Earth precludes any chance of direct confirmation of the presence of a companion. The presence, or not, of a companion, is absolutely essential information for the success of the mission. We are requesting two orbits of HST time as soon as is practical in July 2013.
NASA Astrophysics Data System (ADS)
Ray Pitambar Mohapatra, Satyanarayan
This is an exciting time for Gravitational Wave (GW) theory and observations. From a theoretical standpoint, the grand-challenge problem of the full evolution of a Binary Black Hole (BBH) system has been solved numerically, and a variety of source simulations are made available steadfastly. On the observational side, the first generation of state-of-the-art GW detectors, LIGO and Virgo, have achieved their design goal, collected data and provided astrophysically meaningful limits. The second generation of detectors are expected to start running by 2015. Inspired by this zeitgeist, this thesis focuses on the detection of potential GW signatures from the coalescence of BBH in ground-based laser interferometers. The LIGO Scientific Collaboration has implemented different algorithms to search for transient GW signatures, targeting different portions of the BBH coalescence waveform. This thesis has used the existing algorithms to study the detection potential of GW from colliding BBH in LIGO in a wide range of source parameters, such as mass and spin of the black holes, using a sample of data from the last two months of the S5 LIGO science run (14 Aug 2007 to 30 Sept 2007). This thesis also uses numerical relativity waveforms made available via the Numerical INJection Analysis project (NINJA). Methods such as the Chirplet based analysis and the use of multivariate classifiers to optimize burst search algorithms have been introduced in this thesis. These performance studies over a wide parameter space were designed to optimize the discovery potential of ground-based GW detectors and defining strategies for the search of BBH signatures in advanced LIGO data, as a step towards the realization of GW astronomy.
The PyCBC search pipeline for detecting gravitational waves from compact binary mergers
NASA Astrophysics Data System (ADS)
Nitz, Alexander; LIGO Scientific Collaboration
2016-03-01
We present the matched-filtering based PyCBC offline pipeline used to analyze the first Advanced LIGO observing run. The search has been developed to find gravitational waves from the mergers of black holes and neutron stars with a total mass between 2 and 100 solar masses using a bank of templates. We describe the techniques used to extract signals, suppress non-Gaussian noise transients, and estimate the background of false alarms.
A search for the prewetting line. [in binary liquid system at vapor-liquid interface
NASA Technical Reports Server (NTRS)
Schmidt, J. W.; Moldover, M. R.
1986-01-01
This paper describes efforts to locate the prewetting line in a binary liquid system (isopropanol-perfluoromethylcyclohexane) at the vapor-liquid interface. Tight upper bounds were placed on the temperature separation (0.2 K) between the prewetting line and the line of bulk liquid phase separation. The prewetting line in systems at equilibrium was not detected. Experimental signatures indicative of the prewetting line occurred only in nonequilibrium situations. Several theories predict that the adsorption of one of the components (the fluorocarbon, in this case) at the liquid-vapor interface should increase abruptly, at a temperature sightly above the temperature at which the mixture separates into two liquid phases. A regular solution calculation indicates that this prewetting line should have been easily detectable with the instruments used in this experiment. Significant features of the experiment are: (1) low-gradient thermostatting, (2) in situ stirring, (3) precision ellipsometry from the vapor-liquid interface, (4) high resolution differential index of refraction measurements using a novel cell design, and (5) computer control.
A search for planets in the metal-enriched binary HD 219542
NASA Astrophysics Data System (ADS)
Desidera, S.; Gratton, R. G.; Endl, M.; Barbieri, M.; Claudi, R. U.; Cosentino, R.; Lucatello, S.; Marzari, F.; Scuderi, S.
2003-07-01
The components of the wide binary HD 219542 were recently found to differ in metallicity by about 0.1 dex (Gratton et al. \\cite{paper1}). In this paper, we present the results of 2 years of high precision radial velocity monitoring of these stars performed at the Telecopio Nazionale Galileo (TNG) using the high resolution spectrograph SARG. No indication for radial velocity variations above the measurement errors ( ~ 5 m s-1) was found for the metal richer component A. This allows us to place upper mass-limits for planets around this star. HD 219542 B instead shows a low amplitude variation with a 112 day period at a confidence level of ~ 96-97%. This might suggest the presence of a Saturn-mass planet, although it is still possible that these variations are due to moderate activity of the star. Tests based on variations of bisectors, stellar magnitude and line equivalent widths were inconclusive so far. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Centro Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, and observations collected at the European Southern Observatory, Chile, using FEROS spectrograph at 1.5 m telescope (proposal ID: 69.D-0338).
Search for radio emission from the nearby binary brown dwarf system ɛ Indi Bab
NASA Astrophysics Data System (ADS)
Blank, D. L.
2004-11-01
We have observed the nearest known brown dwarfs, the binary system ɛ Indi Bab (d= 3.626 pc), for 8.6- and 4.8-GHz radio emission with the Australia Telescope Compact Array. If either brown dwarf emits radio flares, then they are respectively at least 5.5 and 1.2 times weaker than LP 944-20, the nearest brown dwarf with detected radio emission. We associate the ROSAT source 1WGA J2203.9 - 5647 with ɛ Indi Bab since the separation was about 30 arcsec at the time of the ROSAT observation. Assuming the association, then ɛ Indi Bab has an L0.4-2.4keV X-ray luminosity of 5.6 × 1025 erg s-1 which makes it roughly a factor of 2 less luminous than LP 944-20. The radio non-detections imply that ɛ Indi Bab does not violate, or at least does not violate as strongly as LP 944-20, the Güdel-Benz relationship of X-ray and radio emission.
NASA Astrophysics Data System (ADS)
Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Andersen, M.; Anderson, R.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauchrowitz, J.; Bauer, Th. S.; Bavigadda, V.; Behnke, B.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bell, A. S.; Bell, C.; Bergmann, G.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bloemen, S.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bosi, L.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Buchman, S.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burman, R.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corpuz, A.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Canton, T. Dal; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; Debreczeni, G.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Donath, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dossa, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Effler, A.; Eggenstein, H.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hooper, S.; Hopkins, P.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.
2014-06-01
This paper reports on an unmodeled, all-sky search for gravitational waves from merging intermediate mass black hole binaries (IMBHB). The search was performed on data from the second joint science run of the LIGO and Virgo detectors (July 2009-October 2010) and was sensitive to IMBHBs with a range up to ˜200 Mpc, averaged over the possible sky positions and inclinations of the binaries with respect to the line of sight. No significant candidate was found. Upper limits on the coalescence-rate density of nonspinning IMBHBs with total masses between 100 and 450 M⊙ and mass ratios between 0.25 and 1 were placed by combining this analysis with an analogous search performed on data from the first LIGO-Virgo joint science run (November 2005-October 2007). The most stringent limit was set for systems consisting of two 88 M⊙ black holes and is equal to 0.12 Mpc-3 Myr-1 at the 90% confidence level. This paper also presents the first estimate, for the case of an unmodeled analysis, of the impact on the search range of IMBHB spin configurations: the visible volume for IMBHBs with nonspinning components is roughly doubled for a population of IMBHBs with spins aligned with the binary's orbital angular momentum and uniformly distributed in the dimensionless spin parameter up to 0.8, whereas an analogous population with antialigned spins decreases the visible volume by ˜20%.
Tree encoding of Gaussian sources. [in data compression
NASA Technical Reports Server (NTRS)
Dick, R. J.; Berger, T.; Jelinek, F.
1974-01-01
Tree codes are known to be capable of performing arbitrarily close to the rate-distortion function for any memoryless source and single-letter fidelity criterion. Tree coding and tree search strategies are investigated for the discrete-time memoryless Gaussian source encoded for a signal-power-to-mean-squared-error ratio of about 30 dB (about 5 binary digits per source output). Also, a theoretical lower bound on average search effort is derived. Two code search strategies (the Viterbi algorithm and the stack algorithm) were simulated in assembly language on a large digital computer. After suitable modifications, both strategies yielded encoding with a signal-to-distortion ratio about 1 dB below the limit set by the rate-distortion function. Although this performance is better than that of any previously known instrumentable scheme, it unfortunately requires search computation of the order of 100,000 machine cycles per source output encoded.
Search of Binary Jupiter-Trojan Asteroids with Laser Guide Star AO systems: a moon around 624 Hektor
NASA Astrophysics Data System (ADS)
Marchis, Franck; Berthier, J.; Wong, M. H.; Descamps, P.; Hestroffer, D.; Colas, F.; de Pater, I.; Vachier, F.
2006-09-01
In 2006, we initiated a search for multiple asteroids in Jupiter Trojan L4 population with Laser Guide Star Adaptive Optics (LGS AO) technology on 8-10m class telescopes. To maximize the chance of detecting companion, we prioritized Trojan asteroids that could be member of collisional families in our search (see the PeTrA project and Beaugé and Roig (A&A, 2001)). Our first night was performed on July 17 2006 UT with the Keck LGS AO system. Twenty targets up to the 18th magnitude in R band were observed mostly in Kp broadband filter with an angular resolution 0.06 arcsec. Images of 624 Hektor, our brightest target (predicted V=14.4) revealed the presence of a moonlet companion (Marchis et al., IAU, 2006, provisional designation S/2006(624)1) located at 0.36” ( 1150 km) from the primary with a peak SNR 25. The resolved primary has a bilobated shape, but it is unclear if the primary is a contact or separated binary. It can be approximated as an ellipse with major and minor axes 2a = 350 km and 2b = 210 km (108 and 65 milli-arcseconds). The pole solution λ=329°, β=-25° in ecliptic B1950 (Magnusson 1989, and updated table) is in agreement with the observations. Based on the integrated brightness ratio between the moonlet and the primary of about 6.5, the diameter of S/2006(624)1 is estimated to be about 15 km. Additional observations will be recorded using the Keck and Gemini LGS AO system in Aug-Sept. 2006 aiming to estimate the orbit of the moonlet. The conditions of observations seem optimal since the system will be seen pole-on during this period. 624 Hektor is the first binary asteroid found in the L4 point and the first Trojan possessing a moonlet companion. The result of this campaign of observations, including Aug-Sept. observations, will be discussed.
Searching for active binary rutile oxide catalyst for water splitting from first principles.
Chen, Dong; Fang, Ya-Hui; Liu, Zhi-Pan
2012-12-28
Water electrolysis is an important route to large-scale hydrogen production using renewable energy, in which the oxygen evolution reaction (OER: 2H(2)O → O(2) + 4H(+) + 4e(-)) causes the largest energy loss in traditional electrocatalysts involving Ru-Ir mixed oxides. Following our previous mechanistic studies on the OER on RuO(2)(110) (J. Am. Chem. Soc. 2010, 132, 18214), this work aims to provide further insight into the key parameters relevant to the activity of OER catalysts by investigating a group of rutile-type binary metal oxides, including RuNiO(2), RuCoO(2), RuRhO(2), RuIrO(2) and OsIrO(2). Two key aspects are focused on, namely the surface O coverage at the relevant potential conditions and the kinetics of H(2)O activation on the O-covered surfaces. The O coverage for all the oxides investigated here is found to be 1 ML at the concerned potential (1.23 V) with all the exposed metal cations being covered by terminal O atoms. The calculated free energy barrier for the H(2)O dissociation on the O covered surfaces varies significantly on different surfaces. The highest OER activity occurs at RuCoO(2) and RuNiO(2) oxides with a predicted activity about 500 times higher than pure RuO(2). On these oxides, the surface bridging O near the terminal O atom has a high activity for accepting the H during H(2)O splitting. It is concluded that while the differential adsorption energy of the terminal O atom influences the OER activity to the largest extent, the OER activity can still be tuned by modifying the electronic structure of surface bridging O. PMID:22941355
A Search for Fine Wines: Discovering Close Red Dwarf-White Dwarf Binaries
NASA Astrophysics Data System (ADS)
Boyd, Mark; Finch, C. T.; Hambly, N. C.; Henry, T. J.; Jao, W.; Riedel, A. R.; Subasavage, J. P.; Winters, J. G.; RECONS
2012-01-01
Like fine wines, stars come in both red and white varieties. Here we present initial results of the Fine Wines Project that targets red dwarf-white dwarf pairs. The two scientific goals of Fine Wines are (1) to develop methods to estimate ages for red dwarfs based on the cooling ages of the white dwarfs, and (2) to identify suitable pairs for dynamical mass determinations of white dwarfs to probe their interior structures. Here we focus on the search for Fine Wines, including sample selection, elimination of false positives, and initial reconnaissance. The sample was extracted via color-color plots from a pool of more than 30,000 proper motion systems examined during the SuperCOSMOS-RECONS (SCR) and UCAC3 Proper Motion (UPM) surveys. The initial sample of 75 best candidates is being observed for BVRI photometry and 3500-9500 A spectroscopy to confirm whether or not the systems are red dwarf-white dwarf pairs. Early results indicate that roughly 50% of the candidates selected are indeed Fine Wine systems. This effort is supported by the NSF through grant AST 09-08402 and via observations made possible by the SMARTS Consortium.
Patrut, Adrian; von Reden, Karl F.; Danthu, Pascal; Leong Pock-Tsy, Jean-Michel; Patrut, Roxana T.; Lowy, Daniel A.
2015-01-01
We extended our research on the architecture, growth and age of trees belonging to the genus Adansonia, by starting to investigate large individuals of the most widespread Malagasy species. Our research also intends to identify the oldest baobabs of Madagascar. Here we present results of the radiocarbon investigation of the two most representative Adansonia rubrostipa (fony baobab) specimens, which are located in south-western Madagascar, in the Tsimanampetsotse National Park. We found that the fony baobab called “Grandmother” consists of 3 perfectly fused stems of different ages. The radiocarbon date of the oldest sample was found to be 1136 ± 16 BP. We estimated that the oldest part of this tree, which is mainly hollow, has an age close to 1,600 yr. This value is comparable to the age of the oldest Adansonia digitata (African baobab) specimens. By its age, the Grandmother is a major candidate for the oldest baobab of Madagascar. The second investigated specimen, called the “polygamous baobab”, consists of 6 partially fused stems of different ages. According to dating results, this fony baobab is 1,000 yr old. This research is the first investigation of the structure and age of Malagasy baobabs. PMID:25806967
Patrut, Adrian; von Reden, Karl F; Danthu, Pascal; Pock-Tsy, Jean-Michel Leong; Patrut, Roxana T; Lowy, Daniel A
2015-01-01
We extended our research on the architecture, growth and age of trees belonging to the genus Adansonia, by starting to investigate large individuals of the most widespread Malagasy species. Our research also intends to identify the oldest baobabs of Madagascar. Here we present results of the radiocarbon investigation of the two most representative Adansonia rubrostipa (fony baobab) specimens, which are located in south-western Madagascar, in the Tsimanampetsotse National Park. We found that the fony baobab called "Grandmother" consists of 3 perfectly fused stems of different ages. The radiocarbon date of the oldest sample was found to be 1136 ± 16 BP. We estimated that the oldest part of this tree, which is mainly hollow, has an age close to 1,600 yr. This value is comparable to the age of the oldest Adansonia digitata (African baobab) specimens. By its age, the Grandmother is a major candidate for the oldest baobab of Madagascar. The second investigated specimen, called the "polygamous baobab", consists of 6 partially fused stems of different ages. According to dating results, this fony baobab is 1,000 yr old. This research is the first investigation of the structure and age of Malagasy baobabs. PMID:25806967
Searching for Binary Y Dwarfs with the Gemini Multi-conjugate Adaptive Optics System (GeMS)
NASA Astrophysics Data System (ADS)
Opitz, Daniela; Tinney, C. G.; Faherty, Jacqueline K.; Sweet, Sarah; Gelino, Christopher R.; Kirkpatrick, J. Davy
2016-03-01
The NASA Wide-field Infrared Survey Explorer (WISE) has discovered almost all the known members of the new class of Y-type brown dwarfs. Most of these Y dwarfs have been identified as isolated objects in the field. It is known that binaries with L- and T-type brown dwarf primaries are less prevalent than either M-dwarf or solar-type primaries, they tend to have smaller separations and are more frequently detected in near-equal mass configurations. The binary statistics for Y-type brown dwarfs, however, are sparse, and so it is unclear if the same trends that hold for L- and T-type brown dwarfs also hold for Y-type ones. In addition, the detection of binary companions to very cool Y dwarfs may well be the best means available for discovering even colder objects. We present results for binary properties of a sample of five WISE Y dwarfs with the Gemini Multi-Conjugate Adaptive Optics System. We find no evidence for binary companions in these data, which suggests these systems are not equal-luminosity (or equal-mass) binaries with separations larger than ˜0.5-1.9 AU. For equal-mass binaries at an age of 5 Gyr, we find that the binary binding energies ruled out by our observations (i.e., 1042 erg) are consistent with those observed in previous studies of hotter ultra-cool dwarfs.
Searching for Binary Y dwarfs with the Gemini GeMS Multi-Conjugate Adaptive Optics System
NASA Astrophysics Data System (ADS)
Opitz, Daniela; Tinney, Chris
2015-01-01
The NASA Wide-field Infrared Survey Explorer (WISE) has delivered an exceptional harvest of new ultra-cool Y-type brown dwarfs. We present results from a diffraction-limited study of the binary status of a sample of Y dwarfs observed with the Gemini GeMS Multi-Conjugate Adaptive Optics System. We report no evidence of equal mass/luminosity binaries at separations larger than ˜ 0.5-2.0 AU for five Y dwarfs.
A search for p-modes and other variability in the binary system 85 Pegasi using MOST photometry
NASA Astrophysics Data System (ADS)
Huber, D.; Matthews, J. M.; Croll, B.; Obbrugger, M.; Gruberbauer, M.; Guenther, D. B.; Weiss, W. W.; Rowe, J. F.; Kallinger, T.; Kuschnig, R.; Scholtz, A. L.; Moffat, A. F. J.; Rucinski, S. M.; Sasselov, D.; Walker, G. A. H.
2009-10-01
Context: Asteroseismology has great potential for the study of metal-poor stars due to its sensitivity to determine stellar ages. Solid detections of oscillation frequencies in stars with well constrained fundamental parameters, combined with a known rotation period, should significantly advance our understanding of stellar structure and evolution in context with metallicity effects. Aims: Our goal was to detect p-mode oscillations in the metal-poor sub-dwarf 85 Peg A and to search for variability on longer timescales. Methods: We have obtained continuous high-precision optical photometry of the binary system 85 Pegasi with the MOST (Microvariability & Oscillations of STars) space telescope in two seasons (2005 & 2007). The light curves were analyzed using traditional Fourier techniques. Furthermore, we redetermined v sin i for 85 Peg A using high resolution spectra obtained through the ESO archive, and used photometric spot modeling to interpret long periodic variations. Results: Our frequency analysis yields no convincing evidence for p-modes significantly above a noise level of 4 ppm. Using simulated p-mode patterns we provide upper rms amplitude limits for 85 Peg A. After removal of instrumental trends the light curve shows evidence for variability with a period of about 11 d and this periodicity is also seen in the follow up run in 2007; however, as different methods to remove instrumental trends in the 2005 run yield vastly different results, the exact shape and periodicity of the 2005 variability remain uncertain. Our re-determined v sin i value for 85 Peg A is comparable to previous studies and we provide realistic uncertainties for this parameter. Using these values in combination with simple photometric spot models we are able to reconstruct the observed variations. Conclusions: The null-detection of p-modes in 85 Peg A is consistent with theoretical values for pulsation amplitudes in this star. The detected long-periodic variation in the 85 Peg system
Smith, K. L.; Shields, G. A.; McMullen, C. C.; Salviander, S.; Bonning, E. W.; Rosario, D. J. E-mail: shields@astro.as.utexas.ed E-mail: erin.bonning@yale.ed
2010-06-10
We present active galactic nuclei (AGNs) from the Sloan Digital Sky Survey (SDSS) having double-peaked profiles of [O III]{lambda}{lambda}5007, 4959 and other narrow emission lines, motivated by the prospect of finding candidate binary AGNs. These objects were identified by means of a visual examination of 21,592 quasars at z < 0.7 in SDSS Data Release 7 (DR7). Of the spectra with adequate signal-to-noise, 148 spectra exhibit a double-peaked [O III] profile. Of these, 86 are Type 1 AGNs and 62 are Type 2 AGNs. Only two give the appearance of possibly being optically resolved double AGNs in the SDSS images, but many show close companions or signs of recent interaction. Radio-detected quasars are three times more likely to exhibit a double-peaked [O III] profile than quasars with no detected radio flux, suggesting a role for jet interactions in producing the double-peaked profiles. Of the 66 broad-line (Type 1) AGNs that are undetected in the FIRST survey, 0.9% show double-peaked [O III] profiles. We discuss statistical tests of the nature of the double-peaked objects. Further study is needed to determine which of them are binary AGNs rather than disturbed narrow line regions, and how many additional binaries may remain undetected because of insufficient line-of-sight velocity splitting. Previous studies indicate that 0.1% of SDSS quasars are spatially resolved binaries, with typical spacings of {approx}10-100 kpc. If a substantial fraction of the double-peaked objects are indeed binaries, then our results imply that binaries occur more frequently at smaller separations (<10 kpc). This suggests that simultaneous fueling of both black holes is more common as the binary orbit decays through these spacings.
Shaffer, Franklin D.
2013-03-12
The application relates to particle trajectory recognition from a Centroid Population comprised of Centroids having an (x, y, t) or (x, y, f) coordinate. The method is applicable to visualization and measurement of particle flow fields of high particle. In one embodiment, the centroids are generated from particle images recorded on camera frames. The application encompasses digital computer systems and distribution mediums implementing the method disclosed and is particularly applicable to recognizing trajectories of particles in particle flows of high particle concentration. The method accomplishes trajectory recognition by forming Candidate Trajectory Trees and repeated searches at varying Search Velocities, such that initial search areas are set to a minimum size in order to recognize only the slowest, least accelerating particles which produce higher local concentrations. When a trajectory is recognized, the centroids in that trajectory are removed from consideration in future searches.
Searching for Binary Y dwarfs with the Gemini Multi-Conjugate Adaptive Optics System (GeMS)
NASA Astrophysics Data System (ADS)
Opitz, Daniela; Tinney, Chris
2015-08-01
The NASA Wide-field Infrared Survey Explorer (WISE) has discovered almost all the known members of the new class of Y-type brown dwarfs. Most of these Y dwarfs have been identified as isolated objects in the field. It is known that binaries with L- and T-type brown dwarf primaries are less prevalent than either M-dwarf or solar-type primaries, they tend to be closely separated and are more frequently detected in near-equal mass configurations. The binary status of Y- type brown dwarfs is still unclear and therefore, determining if Y-type primaries hold the same trend, is of considerable interest. In addition, the detection of binary companions to very cool Y dwarfs may well be the best means available for discovering even colder objects. We present results from a diffraction-limited study of a sample of five WISE Y dwarfs observed with the Gemini Multi-Conjugate Adaptive Optics System (GeMS). We find no evidence for binary companions in these data, which suggests these systems are not equal luminosity (or equivalently equal mass) binaries at separations larger than ~ 0.3-1.9 AU.
NASA Astrophysics Data System (ADS)
Bouy, H.; Moraux, E.; Bouvier, J.; Brandner, W.; Martín, E. L.; Allard, F.; Baraffe, I.; Fernández, M.
2006-02-01
We present the results of a high-resolution imaging survey for brown dwarf binaries in the Pleiades open cluster. The observations were carried out with the Advanced Camera for Surveys (Pavlovsky and coworkers) on board the Hubble Space Telescope. Our sample consists of 15 bona fide brown dwarfs. We confirm two binaries and detect their orbital motion, but we did not resolve any new binary candidates in the separation range between 5.4 and 1700 AU and masses in the range 0.035-0.065 Msolar. Together with the results of our previous study (Martín and coworkers), we can derive a visual binary frequency of 13.3+13.7-4.3% for separations greater than 7 AU, masses in the range 0.055-0.065 Msolar, and mass ratios in the range 0.45-0.9binaries (distributions of separation and mass ratio) appear to be similar to their older counterparts in the field.
NASA Astrophysics Data System (ADS)
Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Ast, S.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Bao, Y.; Barayoga, J. C. B.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Beck, D.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bhadbade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bond, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chalermsongsak, T.; Charlton, P.; Chassande-Mottin, E.; Chen, W.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Dent, T.; Dergachev, V.; DeRosa, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorsher, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Farr, B. F.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M. A.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P. J.; Fyffe, M.; Gair, J.; Galimberti, M.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gáspár, M. E.; Gelencser, G.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; James, E.; Jang, Y. J.; Jaranowski, P.; Jesse, E.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Keitel, D.; Kelley, D.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, H.; Kim, K.; Kim, N.; Kim, Y. M.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Lam, P. K.; Landry, M.; Langley, A.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Lhuillier, V.; Li, J.; Li, T. G. F.; Lindquist, P. E.; Litvine, V.; Liu, Y.; Liu, Z.; Lockerbie, N. A.; Lodhia, D.; Logue, J.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Morriss, S. R.; Mosca, S.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Necula, V.; Nelson, J.; Neri, I.; Newton, G.; Nguyen, T.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Oldenberg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Penn, S.; Perreca, A.; Persichetti, G.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pihlaja, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Poux, C.; Prato, M.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Roberts, M.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sankar, S.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Somiya, K.; Sorazu, B.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S. E.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Vahlbruch, H.; Vajente, G.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, R.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2013-01-01
We report a search for gravitational waves from the inspiral, merger and ringdown of binary black holes (BBH) with total mass between 25 and 100 solar masses, in data taken at the LIGO and Virgo observatories between July 7, 2009 and October 20, 2010. The maximum sensitive distance of the detectors over this period for a (20,20)M⊙ coalescence was 300 Mpc. No gravitational wave signals were found. We thus report upper limits on the astrophysical coalescence rates of BBH as a function of the component masses for nonspinning components, and also evaluate the dependence of the search sensitivity on component spins aligned with the orbital angular momentum. We find an upper limit at 90% confidence on the coalescence rate of BBH with nonspinning components of mass between 19 and 28M⊙ of 3.3×10-7 mergers Mpc-3yr-1.
A Wide Angle Search for Hot Jupiters and Pre-Main Sequence Binaries in Young Stellar Associations
NASA Astrophysics Data System (ADS)
Oelkers, Ryan J.; Macri, Lucas M.; Marshall, Jennifer L.; Depoy, Darren L.; Colazo, Carlos; Guzzo, Pablo; Lambas, Diego G.; Quiñones, Ceci; Stringer, Katelyn; Tapia, Luis; Wisdom, Colin
2016-01-01
The past two decades have seen a significant advancement in the detection, classification and understanding of exoplanets and binary star systems. The vast majority of these systems consist of stars on the main sequence or on the giant branch, leading to a dearth of knowledge of properties at early times (<50 Myr). Only one transiting planet candidate and a dozen eclipsing binaries are known among pre-main sequence objects, yet these are the systems that can provide the best constraints on stellar and planetary formation models. We have recently completed a photometric survey of 3 young (<50 Myr), nearby (D<150 pc) moving groups with a small-aperture instrument, nicknamed ``AggieCam''. We detected 7 candidate Hot Jupiters and over 200 likely pre-main sequence binaries, which are now being followed up photometrically and spectroscopically.
NASA Astrophysics Data System (ADS)
Graham, Matthew J.; Djorgovski, S. G.; Stern, Daniel; Drake, Andrew J.; Mahabal, Ashish A.; Donalek, Ciro; Glikman, Eilat; Larson, Steve; Christensen, Eric
2015-10-01
Hierarchical assembly models predict a population of supermassive black hole (SMBH) binaries. These are not resolvable by direct imaging but may be detectable via periodic variability (or nanohertz frequency gravitational waves). Following our detection of a 5.2-year periodic signal in the quasar PG 1302-102, we present a novel analysis of the optical variability of 243 500 known spectroscopically confirmed quasars using data from the Catalina Real-time Transient Survey (CRTS) to look for close (<0.1 pc) SMBH systems. Looking for a strong Keplerian periodic signal with at least 1.5 cycles over a baseline of nine years, we find a sample of 111 candidate objects. This is in conservative agreement with theoretical predictions from models of binary SMBH populations. Simulated data sets, assuming stochastic variability, also produce no equivalent candidates implying a low likelihood of spurious detections. The periodicity seen is likely attributable to either jet precession, warped accretion discs or periodic accretion associated with a close SMBH binary system. We also consider how other SMBH binary candidates in the literature appear in CRTS data and show that none of these are equivalent to the identified objects. Finally, the distribution of objects found is consistent with that expected from a gravitational-wave-driven population. This implies that circumbinary gas is present at small orbital radii and is being perturbed by the black holes. None of the sources is expected to merge within at least the next century. This study opens a new unique window to study a population of close SMBH binaries that must exist according to our current understanding of galaxy and SMBH evolution.
NASA Technical Reports Server (NTRS)
Buntine, Wray
1994-01-01
IND computer program introduces Bayesian and Markov/maximum-likelihood (MML) methods and more-sophisticated methods of searching in growing trees. Produces more-accurate class-probability estimates important in applications like diagnosis. Provides range of features and styles with convenience for casual user, fine-tuning for advanced user or for those interested in research. Consists of four basic kinds of routines: data-manipulation, tree-generation, tree-testing, and tree-display. Written in C language.
A search for companions to nearby brown dwarfs: the binary DENIS-P J1228.2-1547
Martin; Brandner; Basri
1999-03-12
Hubble Space Telescope imaging observations of two nearby brown dwarfs, DENIS-P J1228.2-1547 and Kelu 1, made with the near-infrared camera and multiobject spectrometer (NICMOS), show that the DENIS object is resolved into two components of nearly equal brightness with a projected separation of 0.275 arc second (5 astronomical units for a distance of 18 parsecs). This binary system will be able to provide the first dynamical measurement of the masses of two brown dwarfs in only a few years. Upper limits to the mass of any unseen companion in Kelu 1 yield a planet of 7 Jupiter masses aged 0. 5 x 10(9) years, which would have been detected at a separation larger than about 4 astronomical units. This example demonstrates that giant planets could be detected by direct imaging if they exist in Jupiter-like orbits around nearby young brown dwarfs. PMID:10073933
Enhanced tree-classifier performance by inversion with application to pap smear screening data
NASA Astrophysics Data System (ADS)
Chen, E. T. Y.; Lee, James; Nelson, Alan C.
1993-07-01
In this paper, we present an inversion method to enhance a binary decision tree classifier using boundary search of training samples. We want to enhance the training at those points which are close to the boundaries. Selection of these points is based on the Euclidean distance from those centroids close to classification boundaries. The enhanced training using these selected data was compared with training using randomly selected samples. We also applied this method to improve the classification of pap smear screening data.
Demeyer, Sofie; Michoel, Tom; Fostier, Jan; Audenaert, Pieter; Pickavet, Mario; Demeester, Piet
2013-01-01
Subgraph matching algorithms are designed to find all instances of predefined subgraphs in a large graph or network and play an important role in the discovery and analysis of so-called network motifs, subgraph patterns which occur more often than expected by chance. We present the index-based subgraph matching algorithm (ISMA), a novel tree-based algorithm. ISMA realizes a speedup compared to existing algorithms by carefully selecting the order in which the nodes of a query subgraph are investigated. In order to achieve this, we developed a number of data structures and maximally exploited symmetry characteristics of the subgraph. We compared ISMA to a naive recursive tree-based algorithm and to a number of well-known subgraph matching algorithms. Our algorithm outperforms the other algorithms, especially on large networks and with large query subgraphs. An implementation of ISMA in Java is freely available at http://sourceforge.net/projects/isma/. PMID:23620730
Demeyer, Sofie; Michoel, Tom; Fostier, Jan; Audenaert, Pieter; Pickavet, Mario; Demeester, Piet
2013-01-01
Subgraph matching algorithms are designed to find all instances of predefined subgraphs in a large graph or network and play an important role in the discovery and analysis of so-called network motifs, subgraph patterns which occur more often than expected by chance. We present the index-based subgraph matching algorithm (ISMA), a novel tree-based algorithm. ISMA realizes a speedup compared to existing algorithms by carefully selecting the order in which the nodes of a query subgraph are investigated. In order to achieve this, we developed a number of data structures and maximally exploited symmetry characteristics of the subgraph. We compared ISMA to a naive recursive tree-based algorithm and to a number of well-known subgraph matching algorithms. Our algorithm outperforms the other algorithms, especially on large networks and with large query subgraphs. An implementation of ISMA in Java is freely available at http://sourceforge.net/projects/isma/. PMID:23620730
1996-01-01
The bibliography contains citations concerning assessment, reliability, failure analysis, and safety of nuclear power plant components and systems using fault tree analysis methods. Faults caused by components, human error, environmental considerations, and common mode failures are presented. Various systems and components are analyzed, including high pressure safety injection, auxiliary feedwater, control instrumentation, emergency core flooding and cooling, and steam generator tubing. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)
1997-05-01
The bibliography contains citations concerning assessment, reliability, failure analysis, and safety of nuclear power plant components and systems using fault tree analysis methods. Faults caused by components, human error, environmental considerations, and common mode failures are presented. Various systems and components are analyzed, including high pressure safety injection, auxiliary feedwater, control instrumentation, emergency core flooding and cooling, and steam generator tubing. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)
1995-01-01
The bibliography contains citations concerning assessment, reliability, failure analysis, and safety of nuclear power plant components and systems using fault tree analysis methods. Faults caused by components, human error, environmental considerations, and common mode failures are presented. Various systems and components are analyzed, including high pressure safety injection, auxiliary feedwater, control instrumentation, emergency core flooding and cooling, and steam generator tubing. (Contains a minimum of 76 citations and includes a subject term index and title list.)
1994-01-01
The bibliography contains citations concerning assessment, reliability, failure analysis, and safety of nuclear power plant components and systems using fault tree analysis methods. Faults caused by components, human error, environmental considerations, and common mode failures are presented. Various systems and components are analyzed, including high pressure safety injection, auxiliary feedwater, control instrumentation, emergency core flooding and cooling, and steam generator tubing. (Contains a minimum of 70 citations and includes a subject term index and title list.)
Ginsberg, M.L.
1996-12-31
We introduce a new form of game search called partition search that incorporates dependency analysis, allowing substantial reductions in the portion of the tree that needs to be expanded. Both theoretical results and experimental data are presented. For the game of bridge, partition search provides approximately as much of an improvement over existing methods as {alpha}-{beta} pruning provides over minimax.
Where has all the carbon gone - in search of a missing sink in the whole-tree carbon balance
NASA Astrophysics Data System (ADS)
Hartmann, Henrik; McDowell, Nate; Trumbore, Susan
2014-05-01
Plants carbon reserves are thought to be an energy buffer during periods of environmental extremes and may be stored either via active or passive mechanisms when the environment induces conditions either favorable or necessary for storage. Here we present results of an intensively monitored experimental manipulation of whole-tree carbon balance using reduced atmospheric [CO2] and drought. Net above-ground assimilation, belowground respiration, carbon storage pool size and allocation to plant compartments and to specific carbon pools (glucose, fructose, sucrose, starch, biomass) were assessed at a high temporal resolution. We tested whether observed carbon pools could be estimated by a simple model driven by the measured carbon balance and observed allocation patterns. Under high [CO2] the model predicted patterns of carbon storage across tree compartments and storage pools. Surprisingly, predicted pool sizes were higher than observed pools, indicating the existence of a carbon pool not assessed in our study. Under low [CO2] the relative proportion of carbon not accounted for by our model increased dramatically. Because the absolute deviation from observations was relatively constant within irrigation treatments, the missing sink for assimilated C may be actively controlled and dependent on hydration status. This sink represented a non-negligible expenditure when carbon availability declined and thus may be critical to drought survival.
Universal Artifacts Affect the Branching of Phylogenetic Trees, Not Universal Scaling Laws
Altaba, Cristian R.
2009-01-01
Background The superficial resemblance of phylogenetic trees to other branching structures allows searching for macroevolutionary patterns. However, such trees are just statistical inferences of particular historical events. Recent meta-analyses report finding regularities in the branching pattern of phylogenetic trees. But is this supported by evidence, or are such regularities just methodological artifacts? If so, is there any signal in a phylogeny? Methodology In order to evaluate the impact of polytomies and imbalance on tree shape, the distribution of all binary and polytomic trees of up to 7 taxa was assessed in tree-shape space. The relationship between the proportion of outgroups and the amount of imbalance introduced with them was assessed applying four different tree-building methods to 100 combinations from a set of 10 ingroup and 9 outgroup species, and performing covariance analyses. The relevance of this analysis was explored taking 61 published phylogenies, based on nucleic acid sequences and involving various taxa, taxonomic levels, and tree-building methods. Principal Findings All methods of phylogenetic inference are quite sensitive to the artifacts introduced by outgroups. However, published phylogenies appear to be subject to a rather effective, albeit rather intuitive control against such artifacts. The data and methods used to build phylogenetic trees are varied, so any meta-analysis is subject to pitfalls due to their uneven intrinsic merits, which translate into artifacts in tree shape. The binary branching pattern is an imposition of methods, and seldom reflects true relationships in intraspecific analyses, yielding artifactual polytomies in short trees. Above the species level, the departure of real trees from simplistic random models is caused at least by two natural factors –uneven speciation and extinction rates; and artifacts such as choice of taxa included in the analysis, and imbalance introduced by outgroups and basal paraphyletic
Pérez-Losada, Marcos; Bond-Buckup, Georgina; Jara, Carlos G; Crandall, Keith A
2004-10-01
Recently new heuristic genetic algorithms such as Treefinder and MetaGA have been developed to search for optimal trees in a maximum likelihood (ML) framework. In this study we combined these methods with other standard heuristic approaches such as ML and maximum parsimony hill-climbing searches and Bayesian inference coupled with Markov chain Monte Carlo techniques under homogeneous and mixed models of evolution to conduct an extensive phylogenetic analysis of the most abundant and widely distributed southern South American freshwater"crab,"the Aegla(Anomura: Aeglidae). A total of 167 samples representing 64 Aegla species and subspecies were sequenced for one nuclear (28S rDNA) and four mitochondrial (12S and 16S rDNA, COI, and COII) genes (5352 bp total). Additionally, six other anomuran species from the genera Munida,Pachycheles, and Uroptychus(Galatheoidea), Lithodes(Paguroidea), and Lomis(Lomisoidea) and the nuclear 18S rDNA gene (1964 bp) were included in preliminary analyses for rooting the Aegla tree. Nonsignificantly different phylogenetic hypotheses resulted from all the different heuristic methods used here, although the best scored topologies found under the ML hill-climbing, Bayesian, and MetaGA approaches showed considerably better likelihood scores (Delta> 54) than those found under the MP and Treefinder approaches. Our trees provided strong support for most of the recognized Aegla species except for A. cholchol,A. jarai,A. parana,A. marginata, A. platensis, and A. franciscana, which may actually represent multiple species. Geographically, the Aegla group was divided into a basal western clade (21 species and subspecies) composed of two subclades with overlapping distributions, and a more recent central-eastern clade (43 species) composed of three subclades with fairly well-recognized distributions. This result supports the Pacific-Origin Hypothesis postulated for the group; alternative hypotheses of Atlantic or multiple origins were significantly
NASA Astrophysics Data System (ADS)
Hoyer, D.; Rauch, T.; Werner, K.; Hauschildt, P. H.; Kruk, J. W.
2015-06-01
Context. AA Dor is a close, totally eclipsing, post common-envelope binary with an sdOB-type primary star and an extremely low-mass secondary star, located close to the mass limit of stable central hydrogen burning. Within error limits, it may either be a brown dwarf or a late M-type dwarf. Aims: We aim to extract the secondary's contribution to the phase-dependent composite spectra. The spectrum and identified lines of the secondary decide on its nature. Methods: In January 2014, we measured the phase-dependent spectrum of AA Dor with X-Shooter over one complete orbital period. Since the secondary's rotation is presumable synchronized with the orbital period, its surface strictly divides into a day and night side. Therefore, we may obtain the spectrum of its cool side during its transit and of its hot, irradiated side close to its occultation. We developed the Virtual Observatory (VO) tool TLISA to search for weak lines of a faint companion in a binary system. We successfully applied it to the observations of AA Dor. Results: We identified 53 spectral lines of the secondary in the ultraviolet-blue, visual, and near-infrared X-Shooter spectra that are strongest close to its occultation. We identified 57 (20 additional) lines in available Ultraviolet and Visual Echelle Spectrograph (UVES) spectra from 2001. The lines are mostly from C ii-iii and O ii, typical for a low-mass star that is irradiated and heated by the primary. We verified the orbital period of P = 22 597.033201 ± 0.00007 s and determined the orbital velocity K_sec = 232.9+16.6-6.5 km s-1 of the secondary. The mass of the secondary is M_sec = 0.081+0.018-0.010 M_⊙ and, hence, it is not possible to reliably determine a brown dwarf or an M-type dwarf nature. Conclusions: Although we identified many emission lines of the secondary's irradiated surface, the resolution and signal-to-noise ratio of our UVES and X-Shooter spectra are not good enough to extract a good spectrum of the secondary
Not Available
1993-09-01
The bibliography contains citations concerning the application of remote sensing to forestry with regard to forest vigor and the identification of stressed trees. The uses of stress indicators for potential location of metal deposits, distribution of groundwater, infestation by disease or insects, effects of air pollution, and general forest decline are cited. Remote sensing of seedling growth and distribution of cleared forest lands are are discussed. Remote sensing techniques for forest applications such as infrared scanners, radar techniques, aerial photography, satellite imagery, airborne laser mapping are described and evaluated. Remote sensing of crop vigor and arid lands is discussed in separate bibliographies. (Contains a minimum of 175 citations and includes a subject term index and title list.)
1995-04-01
The bibliography contains citations concerning the application of remote sensing to forestry for purposes of assessing forest vigor and the identification of stressed trees. The uses of stress indicators for potential location of metal deposits, distribution of groundwater, infestation by disease or insects, effects of air pollution, and general forest decline are cited. Remote sensing of seedling growth and distribution of cleared forest lands is discussed. Remote sensing techniques for forest applications such as infrared scanners, radar techniques, aerial photography, satellite imagery, and airborne laser mapping are described and evaluated. Remote sensing of crop vigor and arid lands is discussed in separate bibliographies. (Contains 250 citations and includes a subject term index and title list.)
Binary optics: Trends and limitations
NASA Technical Reports Server (NTRS)
Farn, Michael W.; Veldkamp, Wilfrid B.
1993-01-01
We describe the current state of binary optics, addressing both the technology and the industry (i.e., marketplace). With respect to the technology, the two dominant aspects are optical design methods and fabrication capabilities, with the optical design problem being limited by human innovation in the search for new applications and the fabrication issue being limited by the availability of resources required to improve fabrication capabilities. With respect to the industry, the current marketplace does not favor binary optics as a separate product line and so we expect that companies whose primary purpose is the production of binary optics will not represent the bulk of binary optics production. Rather, binary optics' more natural role is as an enabling technology - a technology which will directly result in a competitive advantage in a company's other business areas - and so we expect that the majority of binary optics will be produced for internal use.
NASA Astrophysics Data System (ADS)
Noll, Keith S.
2015-08-01
The Pluto-Charon binary was the first trans-neptunian binary to be identified in 1978. Pluto-Charon is a true binary with both components orbiting a barycenter located between them. The Pluto system is also the first, and to date only, known binary with a satellite system consisting of four small satellites in near-resonant orbits around the common center of mass. Seven other Plutinos, objects in 3:2 mean motion resonance with Neptune, have orbital companions including 2004 KB19 reported here for the first time. Compared to the Cold Classical population, the Plutinos differ in the frequency of binaries, the relative sizes of the components, and their inclination distribution. These differences point to distinct dynamical histories and binary formation processes encountered by Plutinos.
From Family Trees to Decision Trees.
ERIC Educational Resources Information Center
Trobian, Helen R.
This paper is a preliminary inquiry by a non-mathematician into graphic methods of sequential planning and ways in which hierarchical analysis and tree structures can be helpful in developing interest in the use of mathematical modeling in the search for creative solutions to real-life problems. Highlights include a discussion of hierarchical…
On Tree-Based Phylogenetic Networks.
Zhang, Louxin
2016-07-01
A large class of phylogenetic networks can be obtained from trees by the addition of horizontal edges between the tree edges. These networks are called tree-based networks. We present a simple necessary and sufficient condition for tree-based networks and prove that a universal tree-based network exists for any number of taxa that contains as its base every phylogenetic tree on the same set of taxa. This answers two problems posted by Francis and Steel recently. A byproduct is a computer program for generating random binary phylogenetic networks under the uniform distribution model. PMID:27228397
Domingos, Marisa; Bulbovas, Patricia; Camargo, Carla Z S; Aguiar-Silva, Cristiane; Brandão, Solange E; Dafré-Martinelli, Marcelle; Dias, Ana Paula L; Engela, Marcela R G S; Gagliano, Janayne; Moura, Barbara B; Alves, Edenise S; Rinaldi, Mirian C S; Gomes, Eduardo P C; Furlan, Claudia M; Figueiredo, Ana Maria G
2015-07-01
This study summarizes the first effort to search for bioindicator tree species and respective potential biomarkers for future assessment of potential mixed pollution effects on the highly diverse Atlantic Forest in SE-Brazil. Leaves of the three most abundant species inventoried in a phytosociological survey (Croton floribundus, Piptadenia gonoacantha and Astronium graveolens) were collected in four forest remnants during winter and summer (2012). Their potential bioindicator attributes were highlighted using a screening of morphological, chemical and biochemical markers. The leaf surface structure and/or epicuticular wax composition pointed the accumulator properties of C. floribundus and P. gonoacantha. C. floribundus is a candidate for assessing potential accumulation of Cu, Cd, Mn, Ni, S and Zn. P. gonoacantha is a candidate to monitor polycyclic aromatic hydrocarbons. Increased levels of secondary metabolites and decreased antioxidant capacity in leaves of A. graveolens may support its value as a bioindicator for oxidative pollutants by visible dark stipplings. PMID:25818087
Evolutionary tree reconstruction
NASA Technical Reports Server (NTRS)
Cheeseman, Peter; Kanefsky, Bob
1990-01-01
It is described how Minimum Description Length (MDL) can be applied to the problem of DNA and protein evolutionary tree reconstruction. If there is a set of mutations that transform a common ancestor into a set of the known sequences, and this description is shorter than the information to encode the known sequences directly, then strong evidence for an evolutionary relationship has been found. A heuristic algorithm is described that searches for the simplest tree (smallest MDL) that finds close to optimal trees on the test data. Various ways of extending the MDL theory to more complex evolutionary relationships are discussed.
Predictive Classification Trees
NASA Astrophysics Data System (ADS)
Dlugosz, Stephan; Müller-Funk, Ulrich
CART (Breiman et al., Classification and Regression Trees, Chapman and Hall, New York, 1984) and (exhaustive) CHAID (Kass, Appl Stat 29:119-127, 1980) figure prominently among the procedures actually used in data based management, etc. CART is a well-established procedure that produces binary trees. CHAID, in contrast, admits multiple splittings, a feature that allows to exploit the splitting variable more extensively. On the other hand, that procedure depends on premises that are questionable in practical applications. This can be put down to the fact that CHAID relies on simultaneous Chi-Square- resp. F-tests. The null-distribution of the second test statistic, for instance, relies on the normality assumption that is not plausible in a data mining context. Moreover, none of these procedures - as implemented in SPSS, for instance - take ordinal dependent variables into account. In the paper we suggest an alternative tree-algorithm that: Requires explanatory categorical variables
Paczynacuteski, B
1984-07-20
Most stars in the solar neighborhood are either double or multiple systems. They provide a unique opportunity to measure stellar masses and radii and to study many interesting and important phenomena. The best candidates for black holes are compact massive components of two x-ray binaries: Cygnus X-1 and LMC X-3. The binary radio pulsar PSR 1913 + 16 provides the best available evidence for gravitational radiation. Accretion disks and jets observed in close binaries offer a very good testing ground for models of active galactic nuclei and quasars. PMID:17749544
Estrada, Rolando; Tomasi, Carlo; Schmidler, Scott C; Farsiu, Sina
2015-08-01
Tree-like structures are fundamental in nature, and it is often useful to reconstruct the topology of a tree - what connects to what - from a two-dimensional image of it. However, the projected branches often cross in the image: the tree projects to a planar graph, and the inverse problem of reconstructing the topology of the tree from that of the graph is ill-posed. We regularize this problem with a generative, parametric tree-growth model. Under this model, reconstruction is possible in linear time if one knows the direction of each edge in the graph - which edge endpoint is closer to the root of the tree - but becomes NP-hard if the directions are not known. For the latter case, we present a heuristic search algorithm to estimate the most likely topology of a rooted, three-dimensional tree from a single two-dimensional image. Experimental results on retinal vessel, plant root, and synthetic tree data sets show that our methodology is both accurate and efficient. PMID:26353004
New RR Lyrae variables in binary systems
NASA Astrophysics Data System (ADS)
Hajdu, G.; Catelan, M.; Jurcsik, J.; Dékány, I.; Drake, A. J.; Marquette, J.-B.
2015-04-01
Despite their importance, very few RR Lyrae (RRL) stars have been known to reside in binary systems. We report on a search for binary RRL in the OGLE-III Galactic bulge data. Our approach consists in the search for evidence of the light-travel time effect in so-called observed minus calculated (O-C) diagrams. Analysis of 1952 well-observed fundamental-mode RRL in the OGLE-III data revealed an initial sample of 29 candidates. We used the recently released OGLE-IV data to extend the baselines up to 17 yr, leading to a final sample of 12 firm binary candidates. We provide O-C diagrams and binary parameters for this final sample, and also discuss the properties of eight additional candidate binaries whose parameters cannot be firmly determined at present. We also estimate that ≳ 4 per cent of the RRL reside in binary systems.
PoInTree: a polar and interactive phylogenetic tree.
Carreras, Marco; Marco, Cerreras; Gianti, Eleonora; Eleonora, Gianti; Sartori, Luca; Luca, Sartori; Plyte, Simon Edward; Edward, Plyte Simon; Isacchi, Antonella; Antonella, Isacchi; Bosotti, Roberta; Roberta, Bosotti
2005-02-01
PoInTree (Polar and Interactive Tree) is an application that allows to build, visualize and customize phylogenetic trees in a polar interactive and highly flexible view. It takes as input a FASTA file or multiple alignment formats. Phylogenetic tree calculation is based on a sequence distance method and utilizes the Neighbor Joining (NJ) algorithm. It also allows displaying precalculated trees of the major protein families based on Pfam classification. In PoInTree, nodes can be dynamically opened and closed and distances between genes are graphically represented. Tree root can be centered on a selected leaf. Text search mechanism, color-coding and labeling display are integrated. The visualizer can be connected to an Oracle database containing information on sequences and other biological data, helping to guide their interpretation within a given protein family across multiple species. The application is written in Borland Delphi and based on VCL Teechart Pro 6 graphical component (Steema software). PMID:16144524
NASA Astrophysics Data System (ADS)
Barone, F.; Milano, L.; Russo, G.; Covino, E.; di Fiore, L.
1991-09-01
In the third paper of a series, five more EB-type eclipsing binaries with short periods (less than 1 day) are analyzed and suspected to be contact or near-contact systems. V747 Cen and ZZ Aur are almost contact systems, RY Ind is a semidetached system, while AX Vir and ST Car are both detached systems.
NASA Astrophysics Data System (ADS)
Harris, Alan W.; Pravec, P.
2006-06-01
There are now nearly 100 binary asteroids known. In the last year alone, 30 binary asteroids have been discovered, half of them by lightcurves showing eclipse events. Similar to eclipsing binary stars, such observations allow determination of orbit period and sizes and shapes of the primary and secondary relative to the orbital dimension. From these parameters one can estimate the mean density of the system, and a number of dynamical properties such as total specific angular momentum, tidal evolution time scales of spins and orbit, and precession frequencies of the orbit about the primary and of the solar induced "general precession" of the system. We have extracted parameters for all systems with enough observations to allow meaningful determinations. Some preliminary results include: (1) Binaries are roughly as prevalent among small main-belt asteroids as among Near-Earth Asteroids. (2) Most binaries are partially asynchronous, with the secondary synchronized to the orbit period, but the primary still spinning much faster. This is consistent with estimated tidal damping time scales. (3) Most systems have near the critical maximum angular momentum for a single "rubble pile" body, but not much more, and some less. Thus fission appears not to be a viable formation mechanism for all binaries, although near-critical spin rate seems to play a role. (4) Orbits of the secondaries are essentially in the equatorial plane of the primary. Since most primary spins are still fast, the satellites must have been formed into low inclination orbits. (5) Precession frequencies are in the range of the shorter resonance frequencies in the solar system (tens of thousands of years), thus resonance interactions can be expected to have altered spin orientations as systems evolved slowly by tidal friction or other processes. (6) Primaries are unusually spheroidal, which is probably necessary for stability of the binary once formed.
Templeton, Alan R.; Maxwell, Taylor; Posada, David; Stengård, Jari H.; Boerwinkle, Eric; Sing, Charles F.
2005-01-01
We use evolutionary trees of haplotypes to study phenotypic associations by exhaustively examining all possible biallelic partitions of the tree, a technique we call tree scanning. If the first scan detects significant associations, additional rounds of tree scanning are used to partition the tree into three or more allelic classes. Two worked examples are presented. The first is a reanalysis of associations between haplotypes at the Alcohol Dehydrogenase locus in Drosophila melanogaster that was previously analyzed using a nested clade analysis, a more complicated technique for using haplotype trees to detect phenotypic associations. Tree scanning and the nested clade analysis yield the same inferences when permutation testing is used with both approaches. The second example is an analysis of associations between variation in various lipid traits and genetic variation at the Apolipoprotein E (APOE) gene in three human populations. Tree scanning successfully identified phenotypic associations expected from previous analyses. Tree scanning for the most part detected more associations and provided a better biological interpretative framework than single SNP analyses. We also show how prior information can be incorporated into the tree scan by starting with the traditional three electrophoretic alleles at APOE. Tree scanning detected genetically determined phenotypic heterogeneity within all three electrophoretic allelic classes. Overall, tree scanning is a simple, powerful, and flexible method for using haplotype trees to detect phenotype/genotype associations at candidate loci. PMID:15371364
X-ray binaries in globular clusters
NASA Technical Reports Server (NTRS)
Grindlay, Jonathan E.
1988-01-01
X-ray and optical studies of compact binaries and globular clusters are reviewed. Topics covered include, the formation of compact binaries by three-body interactions and by tidal capture, studies of the 11 minute binary in NGC 6624 and the 8.5 hour binary in M 15 (AC211), and an evolutionary model for compact binary formation. Optical searches for X-ray binaries in globular clusters are examined including CCD surveys and studies of NGC 6712. In addition, globular clusters with central cusps in their surface brightness profiles, questions concerning the blue color of binaries, diffuse line emission from CVs, and the possibility that X-ray burst sources in the galactic bulge were formed by tidal capture in globular clusters which have since been disrupted are discussed.
NASA Astrophysics Data System (ADS)
Fornasini, Francesca; Tomsick, John; Bodaghee, Arash; Rahoui, Farid; Krivonos, Roman; Corral-Santana, Jesus; An, Hongjun; Bauer, Franz E.; Gotthelf, Eric V.; Stern, Daniel; NuSTAR Galactic Plane Survey Team
2016-01-01
High-mass X-ray binaries (HMXBs), which consist of a neutron star (NS) or black hole (BH) accreting material from a massive stellar companion, provide valuable insights into the evolution of massive stars and the merger rates of NS/NS, NS/BH, and BH/BH binaries whose gravitational wave signatures will soon be detectable by facilities such as Advanced-LIGO. INTEGRAL discoveries of new classes of lower-luminosity HMXBs, some highly obscured and some showing extreme transient activity, as well as the recent discovery of the very quiescent and only known Be-BH binary, have considerably changed our understanding of clumping in massive stellar winds and the relative importance of different binary evolutionary channels. In order to better characterize the low-luminosity HMXB population, we have performed a survey of a square degree region in the direction of the Norma spiral arm with Chandra and NuSTAR. These surveys, combined with optical and infrared spectroscopic follow-up of the counterparts of hard X-ray sources, have yielded three HMXB candidates to date. Future radial-velocity follow-up of these candidates, as well as other Be HMXB candidates from the NuSTAR serendipitous survey, will help determine whether these sources truly are HMXBs and, if so, constrain the mass of the compact object in these systems. If confirmed, these HMXB candidates could extend our measurement of the HMXB luminosity function by about two orders of magnitude and provide important constraints on massive binary evolutionary models. In addition, the colliding wind binaries and pulsar wind nebulae discovered in the Norma X-ray survey will help shed light on other aspects of massive stellar evolution and massive stellar remnants. Finally, these surveys provide the opportunity to compare the hard X-ray populations in the Galactic disk and the Galactic Center. While the dominant hard X-ray populations in both of these Galactic regions appear to be cataclysmic variables (CVs), those in the Norma
ERIC Educational Resources Information Center
Nature Study, 1998
1998-01-01
Presents a Project Learning Tree (PLT) activity that has students investigate and compare the lifecycle of a tree to other living things and the tree's role in the ecosystem. Includes background material as well as step-by-step instructions, variation and enrichment ideas, assessment opportunities, and student worksheets. (SJR)
NASA Technical Reports Server (NTRS)
Bond, Howard E.
1992-01-01
A brief summary of the research highlights is presented. The topics covered include the following: binary nuclei of planetary nebulae; other variable planetary nuclei; low-mass supergiants; and other IUE-related research.
Pangilinan, Monica
2010-05-01
The top quark produced through the electroweak channel provides a direct measurement of the V_{tb} element in the CKM matrix which can be viewed as a transition rate of a top quark to a bottom quark. This production channel of top quark is also sensitive to different theories beyond the Standard Model such as heavy charged gauged bosons termed W'. This thesis measures the cross section of the electroweak produced top quark using a technique based on using the matrix elements of the processes under consideration. The technique is applied to 2.3 fb^{-1} of data from the D0 detector. From a comparison of the matrix element discriminants between data and the signal and background model using Bayesian statistics, we measure the cross section of the top quark produced through the electroweak mechanism σ(p$\\bar{p}$ → tb + X, tqb + X) = 4.30_{-1.20}^{+0.98} pb. The measured result corresponds to a 4.9σ Gaussian-equivalent significance. By combining this analysis with other analyses based on the Bayesian Neural Network (BNN) and Boosted Decision Tree (BDT) method, the measured cross section is 3.94 ± 0.88 pb with a significance of 5.0σ, resulting in the discovery of electroweak produced top quarks. Using this measured cross section and constraining |V_{tb}| < 1, the 95% confidence level (C.L.) lower limit is |V_{tb}| > 0.78. Additionally, a search is made for the production of W' using the same samples from the electroweak produced top quark. An analysis based on the BDT method is used to separate the signal from expected backgrounds. No significant excess is found and 95% C.L. upper limits on the production cross section are set for W' with masses within 600-950 GeV. For four general models of W{prime} boson production using decay channel W' → t$\\bar{p}$, the lower mass limits are the following: M(W'_{L} with SM couplings) > 840 GeV; M(W'_{R}) > 880 GeV or 890 GeV if the right-handed neutrino is
NASA Astrophysics Data System (ADS)
Schmitt, Joseph R.; Tokovinin, Andrei; Wang, Ji; Fischer, Debra A.; Kristiansen, Martti H.; LaCourse, Daryll M.; Gagliano, Robert; Tan, Arvin Joseff V.; Schwengeler, Hans Martin; Omohundro, Mark R.; Venner, Alexander; Terentev, Ivan; Schmitt, Allan R.; Jacobs, Thomas L.; Winarski, Troy; Sejpka, Johann; Jek, Kian J.; Boyajian, Tabetha S.; Brewer, John M.; Ishikawa, Sascha T.; Lintott, Chris; Lynn, Stuart; Schawinski, Kevin; Schwamb, Megan E.; Weiksnar, Alex
2016-06-01
We present high-resolution observations of a sample of 75 K2 targets from Campaigns 1–3 using speckle interferometry on the Southern Astrophysical Research (SOAR) telescope and adaptive optics imaging at the Keck II telescope. The median SOAR I-band and Keck Ks-band detection limits at 1\\prime\\prime were {{Δ }}{m}I=4.4 mag and {{Δ }}{m}{Ks}=6.1 mag, respectively. This sample includes 37 stars likely to host planets, 32 targets likely to be eclipsing binaries (EBs), and 6 other targets previously labeled as likely planetary false positives. We find nine likely physically bound companion stars within 3\\prime\\prime of three candidate transiting exoplanet host stars and six likely EBs. Six of the nine detected companions are new discoveries. One of these new discoveries, EPIC 206061524, is associated with a planet candidate. Among the EB candidates, companions were only found near the shortest period ones (P\\lt 3 days), which is in line with previous results showing high multiplicity near short-period binary stars. This high-resolution data, including both the detected companions and the limits on potential unseen companions, will be useful in future planet vetting and stellar multiplicity rate studies for planets and binaries.
New binary systems: beaming binaries
NASA Astrophysics Data System (ADS)
Morales, J. C.; Weingrill, J.; Mazeh, T.; Ribas, I.
2011-11-01
Exoplanet missions such as COROT and Kepler are providing precise photometric follow-up data of new kinds of variable stars undetected till now. Beaming binaries are among these objects. On these binary systems, the orbital motion of their components is fast enough to produce a detectable modulation on the received flux due to relativistic effects (Zucker et al. 2007). The great advantage of these systems is that it is possible to reconstruct the radial velocity curve of the system from this photometric modulation and thus, orbital parameters such as the mass ratio and the semi-major axis can be estimated from photometry without the necessity of spectroscopic follow-up. In this poster, we briefly introduce the analysis of this kind of binary systems and in particular, the eclipsing cases.
NASA Astrophysics Data System (ADS)
Ryan, Keegan; Nakajima, Miki; Stevenson, David J.
2014-11-01
Can a bound pair of similar mass terrestrial planets exist? We are interested here in bodies with a mass ratio of ~ 3:1 or less (so Pluto/Charon or Earth/Moon do not qualify) and we do not regard the absence of any such discoveries in the Kepler data set to be significant since the tidal decay and merger of a close binary is prohibitively fast well inside of 1AU. SPH simulations of equal mass “Earths” were carried out to seek an answer to this question, assuming encounters that were only slightly more energetic than parabolic (zero energy). We were interested in whether the collision or near collision of two similar mass bodies would lead to a binary in which the two bodies remain largely intact, effectively a tidal capture hypothesis though with the tidal distortion being very large. Necessarily, the angular momentum of such an encounter will lead to bodies separated by only a few planetary radii if capture occurs. Consistent with previous work, mostly by Canup, we find that most impacts are disruptive, leading to a dominant mass body surrounded by a disk from which a secondary forms whose mass is small compared to the primary, hence not a binary planet by our adopted definition. However, larger impact parameter “kissing” collisions were found to produce binaries because the dissipation upon first encounter was sufficient to provide a bound orbit that was then rung down by tides to an end state where the planets are only a few planetary radii apart. The long computational times for these simulation make it difficult to fully map the phase space of encounters for which this outcome is likely but the indications are that the probability is not vanishingly small and since planetary encounters are a plausible part of planet formation, we expect binary planets to exist and be a non-negligible fraction of the larger orbital radius exoplanets awaiting discovery.
Low autocorrelation binary sequences
NASA Astrophysics Data System (ADS)
Packebusch, Tom; Mertens, Stephan
2016-04-01
Binary sequences with minimal autocorrelations have applications in communication engineering, mathematics and computer science. In statistical physics they appear as groundstates of the Bernasconi model. Finding these sequences is a notoriously hard problem, that so far can be solved only by exhaustive search. We review recent algorithms and present a new algorithm that finds optimal sequences of length N in time O(N {1.73}N). We computed all optimal sequences for N≤slant 66 and all optimal skewsymmetric sequences for N≤slant 119.
Konacki, Maciej; Helminiak, Krzysztof G.; Muterspaugh, Matthew W.; Kulkarni, Shrinivas R.
2009-10-10
We present preliminary results of the first and on-going radial velocity survey for circumbinary planets. With a novel radial velocity technique employing an iodine absorption cell, we achieve an unprecedented radial velocity (RV) precision of up to 2 m s{sup -1} for double-lined binary stars. The high-resolution spectra collected with the Keck I/Hires, TNG/Sarg, and Shane/CAT/Hamspec telescopes/spectrographs over the years 2003-2008 allow us to derive RVs and compute planet detection limits for 10 double-lined binary stars. For this initial sample of targets, we can rule out planets on dynamically stable orbits with masses as small as approx0.3 to 3 M {sub Jup} for the orbital periods of up to approx5.3 years. Even though the presented sample of stars is too small to make any strong conclusions, it is clear that the search for circumbinary planets is now technique-wise possible and eventually will provide new constraints for the planet formation theories.
Estrada, Rolando; Tomasi, Carlo; Schmidler, Scott C.; Farsiu, Sina
2015-01-01
Tree-like structures are fundamental in nature, and it is often useful to reconstruct the topology of a tree—what connects to what—from a two-dimensional image of it. However, the projected branches often cross in the image: the tree projects to a planar graph, and the inverse problem of reconstructing the topology of the tree from that of the graph is ill-posed. We regularize this problem with a generative, parametric tree-growth model. Under this model, reconstruction is possible in linear time if one knows the direction of each edge in the graph—which edge endpoint is closer to the root of the tree—but becomes NP-hard if the directions are not known. For the latter case, we present a heuristic search algorithm to estimate the most likely topology of a rooted, three-dimensional tree from a single two-dimensional image. Experimental results on retinal vessel, plant root, and synthetic tree datasets show that our methodology is both accurate and efficient. PMID:26353004
Decision tree modeling using R
2016-01-01
In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met. In the example I focus on conditional inference tree, which incorporates tree-structured regression models into conditional inference procedures. While growing a single tree is subject to small changes in the training data, random forests procedure is introduced to address this problem. The sources of diversity for random forests come from the random sampling and restricted set of input variables to be selected. Finally, I introduce R functions to perform model based recursive partitioning. This method incorporates recursive partitioning into conventional parametric model building. PMID:27570769
Decision tree modeling using R.
Zhang, Zhongheng
2016-08-01
In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met. In the example I focus on conditional inference tree, which incorporates tree-structured regression models into conditional inference procedures. While growing a single tree is subject to small changes in the training data, random forests procedure is introduced to address this problem. The sources of diversity for random forests come from the random sampling and restricted set of input variables to be selected. Finally, I introduce R functions to perform model based recursive partitioning. This method incorporates recursive partitioning into conventional parametric model building. PMID:27570769
NASA Astrophysics Data System (ADS)
Runnoe, Jessie C.; Eracleous, Michael; Mathes, Gavin; Pennell, Alison; Boroson, Todd; Sigurðsson, Steinn; Bogdanović, Tamara; Halpern, Jules P.; Liu, Jia
2015-11-01
We present new spectroscopic observations that are part of our continuing monitoring campaign of 88 quasars at z < 0.7 whose broad Hβ lines are offset from their systemic redshifts by a few thousand km s-1. These quasars have been considered as candidates for hosting supermassive black hole binaries (SBHBs) by analogy with single-lined spectroscopic binary stars. We present the data and describe our improved analysis techniques, which include an extensive evaluation of uncertainties. We also present a variety of measurements from the spectra that are of general interest and will be useful in later stages of our analysis. Additionally, we take this opportunity to study the variability of the optical continuum and integrated flux of the broad Hβ line. We compare the variability properties of the SBHB candidates to those of a sample of typical quasars with similar redshifts and luminosities observed multiple times during the Sloan Digital Sky Survey. We find that the variability properties of the two samples are similar (variability amplitudes of 10%-30% on timescales of approximately 1-7 years) and that their structure functions can be described by a common model with parameters characteristic of typical quasars. These results suggest that the broad-line regions of SBHB candidates have a similar extent as those of typical quasars. We discuss the implications of this result for the SBHB scenario and the ensuing constraints on the orbital parameters.
ERIC Educational Resources Information Center
Tolman, Marvin
2005-01-01
Students love outdoor activities and will love them even more when they build confidence in their tree identification and measurement skills. Through these activities, students will learn to identify the major characteristics of trees and discover how the pace--a nonstandard measuring unit--can be used to estimate not only distances but also the…
ERIC Educational Resources Information Center
Center for Environmental Study, Grand Rapids, MI.
Tree Amigos is a special cross-cultural program that uses trees as a common bond to bring the people of the Americas together in unique partnerships to preserve and protect the shared global environment. It is a tangible program that embodies the philosophy that individuals, acting together, can make a difference. This resource book contains…
NASA Astrophysics Data System (ADS)
Roy, Susmita; Bagchi, Biman
2013-07-01
Experimental and simulation studies have uncovered at least two anomalous concentration regimes in water-dimethyl sulfoxide (DMSO) binary mixture whose precise origin has remained a subject of debate. In order to facilitate time domain experimental investigation of the dynamics of such binary mixtures, we explore strength or extent of influence of these anomalies in dipolar solvation dynamics by carrying out long molecular dynamics simulations over a wide range of DMSO concentration. The solvation time correlation function so calculated indeed displays strong composition dependent anomalies, reflected in pronounced non-exponential kinetics and non-monotonous composition dependence of the average solvation time constant. In particular, we find remarkable slow-down in the solvation dynamics around 10%-20% and 35%-50% mole percentage. We investigate microscopic origin of these two anomalies. The population distribution analyses of different structural morphology elucidate that these two slowing down are reflections of intriguing structural transformations in water-DMSO mixture. The structural transformations themselves can be explained in terms of a change in the relative coordination number of DMSO and water molecules, from 1DMSO:2H2O to 1H2O:1DMSO and 1H2O:2DMSO complex formation. Thus, while the emergence of first slow down (at 15% DMSO mole percentage) is due to the percolation among DMSO molecules supported by the water molecules (whose percolating network remains largely unaffected), the 2nd anomaly (centered on 40%-50%) is due to the formation of the network structure where the unit of 1DMSO:1H2O and 2DMSO:1H2O dominates to give rise to rich dynamical features. Through an analysis of partial solvation dynamics an interesting negative cross-correlation between water and DMSO is observed that makes an important contribution to relaxation at intermediate to longer times.
Zhu, Ruoqing; Zeng, Donglin; Kosorok, Michael R.
2015-01-01
In this paper, we introduce a new type of tree-based method, reinforcement learning trees (RLT), which exhibits significantly improved performance over traditional methods such as random forests (Breiman, 2001) under high-dimensional settings. The innovations are three-fold. First, the new method implements reinforcement learning at each selection of a splitting variable during the tree construction processes. By splitting on the variable that brings the greatest future improvement in later splits, rather than choosing the one with largest marginal effect from the immediate split, the constructed tree utilizes the available samples in a more efficient way. Moreover, such an approach enables linear combination cuts at little extra computational cost. Second, we propose a variable muting procedure that progressively eliminates noise variables during the construction of each individual tree. The muting procedure also takes advantage of reinforcement learning and prevents noise variables from being considered in the search for splitting rules, so that towards terminal nodes, where the sample size is small, the splitting rules are still constructed from only strong variables. Last, we investigate asymptotic properties of the proposed method under basic assumptions and discuss rationale in general settings. PMID:26903687
A binary spelling interface with random errors.
Perelmouter, J; Birbaumer, N
2000-06-01
An algorithm for design of a spelling interface based on a modified Huffman's algorithm is presented. This algorithm builds a full binary tree that allows to maximize an average probability to reach a leaf where a required character is located when a choice at each node is made with possible errors. A means to correct errors (a delete-function) and an optimization method to build this delete-function into the binary tree are also discussed. Such a spelling interface could be successfully applied to any menu-orientated alternative communication system when a user (typically, a patient with devastating neuromuscular handicap) is not able to express an intended single binary response, either through motor responses or by using of brain-computer interfaces, with an absolute reliability. PMID:10896195
NASA Technical Reports Server (NTRS)
Hughes, J. P.; Long, K. S.; Novick, R.
1983-01-01
Fifteen strong X-ray sources were observed by the X-ray polarimeters on board the OSO-8 satellite from 1975 to 1978. The final results of this search for X-ray polarization in cosmic sources are presented in the form of upper limits for the ten sources which are discussed elsewhere. These limits in all cases are consistent with a thermal origin for the X-ray emission.
NASA Astrophysics Data System (ADS)
Çatmabacak, Önder; Hakan Erkut, M.; Catmabacak, Onur; Duran, Sivan
2016-07-01
The distribution of neutron star sources in the ensemble of low-mass X-ray binaries shows no evidence for a correlation between kHz quasi-periodic oscillation (QPO) frequencies and X-ray luminosity. Sources differing by orders of magnitude in luminosity can exhibit similar range of QPO frequencies. We study the possibility for the existence of a correlation between kHz QPO frequencies and accretion related parameters. The parameters such as the mass accretion rate and the size of the boundary region in the innermost disk are expected to be related to X-ray luminosity. Using the up-to-date data of neutron star low-mass X-ray binaries, we search for a possible correlation between lower kHz QPO frequencies and mass accretion rate through the mass and radius values predicted by different equations of state for the neutron star. The range of mass accretion rate for each source can be estimated if the accretion luminosity is assumed to be represented well by the X-ray luminosity of the source. Although we find no correlation between mass accretion rate and QPO frequencies, the source distribution seems to be in accordance with a correlation between kHz QPO frequencies and the parameter combining the neutron star magnetic field and the mas accretion rate. The model function we employ to descibe the correlation is able to account for the scattering of individual sources around a simple power law. The correlation argues disk-magnetosphere interaction as the origin of these millisecond oscillations.
Compression of binary images on a hypercube machine
Scheuermann, P.; Yaagoub, A. . Electrical Engineering and Computer Science); Ouksel, M.A. . IDS Dept.)
1994-10-01
The S-tree linear representation is an efficient structure for representing binary images which requires three bits for each disjoint binary region. The authors present parallel algorithms for encoding and decoding the S-tree representation from/onto a binary pixel array in a hypercube connected machine. Both the encoding and the decoding algorithms make use of a condensation procedure in order to produce the final result cooperatively. The encoding algorithm conceptually uses a pyramid configuration, where in each iteration half of the processors in the grid below it remain active. The decoding algorithm is based on the observation that each processor an independently decode a given binary region if it contains in its memory an S-tree segment augmented with a linear prefix. They analyze the algorithms in terms of processing and communication time and present results of experiments performed with real and randomly generated images that verify the theoretical results.
Not Available
1993-08-01
The bibliography contains citations concerning assessment, reliability, failure analysis, and safety of nuclear power plant components and systems using fault tree analysis methods. Faults caused by components, human error, environmental considerations, and common mode failures are presented. Various systems and components are analyzed, including high pressure safety injection, auxiliary feedwater, control instrumentation, emergency core flooding and cooling, and steam generator tubing. (Contains a minimum of 66 citations and includes a subject term index and title list.)
Not Available
1992-09-01
The bibliography contains citations concerning risk assessment, reliability analysis, failure analysis, and safety studies of nuclear power plant components and systems using fault tree analysis methods. Faults caused by components, human error, environmental considerations, and common mode failures are presented. Various systems and components are analyzed, including high pressure safety injection, auxiliary feedwater, instrumentation, emergency core flooding and cooling, and steam generator tubing. (Contains a minimum of 59 citations and includes a subject term index and title list.)
The Michigan Binary Star Program
NASA Astrophysics Data System (ADS)
Lindner, Rudi P.
2007-07-01
At the end of the nineteenth century, William J. Hussey and Robert G. Aitken, both at Lick Observatory, began a systematic search for unrecorded binary stars with the aid of the 12" and 36" refracting telescopes at Lick Observatory. Aitken's work (and book on binary stars) are well known, Hussey's contributions less so. In 1905 Hussey, a Michigan engineering graduate, returned to direct the Ann Arbor astronomy program, and immediately he began to design new instrumentation for the study of binary stars and to train potential observers. For a time, he spent six months a year at the La Plata Observatory, where he discovered a number of new pairs and decided upon a major southern hemisphere campaign. He spent a decade obtaining the lenses for a large refractor, through the vicissitudes of war and depression. Finally, he obtained a site in South Africa, a 26" refractor, and a small corps of observers, but he died in London en route to fulfill his dream. His right hand man, Richard Rossiter, established the observatory and spent the next thirty years discovering and measuring binary stars: his personal total is a record for the field. This talk is an account of the methods, results, and utility of the extraordinary binary star factory in the veldt.
Template bank for gravitational waveforms from coalescing binary black holes: Nonspinning binaries
Ajith, P.; Hewitson, M.; Babak, S.; Chen, Y.; Krishnan, B.; Whelan, J. T.; Dorband, N.; Pollney, D.; Rezzolla, L.; Sintes, A. M.; Bruegmann, B.; Hannam, M.; Husa, S.; Sperhake, U.; Diener, P.; Gonzalez, J.; Santamaria, L.; Thornburg, J.
2008-05-15
Gravitational waveforms from the inspiral and ring-down stages of the binary black-hole coalescences can be modeled accurately by approximation/perturbation techniques in general relativity. Recent progress in numerical relativity has enabled us to model also the nonperturbative merger phase of the binary black-hole coalescence problem. This enables us to coherently search for all three stages of the coalescence of nonspinning binary black holes using a single template bank. Taking our motivation from these results, we propose a family of template waveforms which can model the inspiral, merger, and ring-down stages of the coalescence of nonspinning binary black holes that follow quasicircular inspiral. This two-dimensional template family is explicitly parametrized by the physical parameters of the binary. We show that the template family is not only effectual in detecting the signals from black-hole coalescences, but also faithful in estimating the parameters of the binary. We compare the sensitivity of a search (in the context of different ground-based interferometers) using all three stages of the black-hole coalescence with other template-based searches which look for individual stages separately. We find that the proposed search is significantly more sensitive than other template-based searches for a substantial mass range, potentially bringing about remarkable improvement in the event rate of ground-based interferometers. As part of this work, we also prescribe a general procedure to construct interpolated template banks using nonspinning black-hole waveforms produced by numerical relativity.
Generic physical protection logic trees
Paulus, W.K.
1981-10-01
Generic physical protection logic trees, designed for application to nuclear facilities and materials, are presented together with a method of qualitative evaluation of the trees for design and analysis of physical protection systems. One or more defense zones are defined where adversaries interact with the physical protection system. Logic trees that are needed to describe the possible scenarios within a defense zone are selected. Elements of a postulated or existing physical protection system are tagged to the primary events of the logic tree. The likelihood of adversary success in overcoming these elements is evaluated on a binary, yes/no basis. The effect of these evaluations is propagated through the logic of each tree to determine whether the adversary is likely to accomplish the end event of the tree. The physical protection system must be highly likely to overcome the adversary before he accomplishes his objective. The evaluation must be conducted for all significant states of the site. Deficiencies uncovered become inputs to redesign and further analysis, closing the loop on the design/analysis cycle.
Contact binary stars as standard candles
NASA Astrophysics Data System (ADS)
Klagyivik, P.; Csizmadia, Sz.
2004-06-01
Rucinski (1996) suggested to use contact binary stars as standard candles. We investigated the properties of contact binary stars in order to search for possibility of their using as standard candles. For this purpose a catalogue of their light curve solution was compiled and on the basis of the catalogue data we calculated the rate of energy transfer between the two components. This allowed us to determine the mass-luminosity relation of the primary as well as secondary components in a contact binary and using Kepler's third law and the strict geometry a very reliable distance determination method was developed.
Radio Detection of Neutron Star Binary Mergers
NASA Astrophysics Data System (ADS)
Bear, Brandon; Cardena, Brett; Dispoto, Dana; Papadopoulos, Joanna; Kavic, Michael; Simonetti, John
2011-10-01
Neutron star binary systems lose energy through gravitational radiation, and eventually merge. The gravitational radiation from the merger can be detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO). It is expected that a transient radio pulse will also be produced during the merger event. Detection of such radio transients would allow for LIGO to search for signals within constrained time periods. We calculate the LWA-1 detection rate of transient events from neutron star binary mergers. We calculate the detection rate of transient events from neutron star binary mergers for the Long Wavelength Array and the Eight-meter-wavelength Transient Array.
NASA Astrophysics Data System (ADS)
Park, Conner; Read, Jocelyn; Flynn, Eric; Lockett-Ruiz, Veronica
2016-03-01
Gravitational waves, predicted by Einstein's Theory of Relativity, are a new frontier in astronomical observation we can use to observe phenomena in the universe. Laser Interferometer Gravitational wave Observatory (LIGO) is currently searching for gravitational wave signals, and requires accurate predictions in order to best extract astronomical signals from all other sources of fluctuations. The focus of my research is in increasing the accuracy of Post-Newtonian models of binary neutron star coalescence to match the computationally expensive Numerical models. Numerical simulations can take months to compute a couple of milliseconds of signal whereas the Post-Newtonian can generate similar signals in seconds. However the Post-Newtonian model is an approximation, e.g. the Taylor T4 Post-Newtonian model assumes that the two bodies in the binary neutron star system are point charges. To increase the effectiveness of the approximation, I added in tidal effects, resonance frequencies, and a windowing function. Using these observed effects from simulations significantly increases the Post-Newtonian model's similarity to the Numerical signal.
On the existence of infinitely many universal tree-based networks.
Hayamizu, Momoko
2016-05-01
A tree-based network on a set X of n leaves is said to be universal if any rooted binary phylogenetic tree on X can be its base tree. Francis and Steel showed that there is a universal tree-based network on X in the case of n = 3, and asked whether such a network exists in general. We settle this problem by proving that there are infinitely many universal tree-based networks for any n>1. PMID:26921465
Using tree diversity to compare phylogenetic heuristics
Sul, Seung-Jin; Matthews, Suzanne; Williams, Tiffani L
2009-01-01
Background Evolutionary trees are family trees that represent the relationships between a group of organisms. Phylogenetic heuristics are used to search stochastically for the best-scoring trees in tree space. Given that better tree scores are believed to be better approximations of the true phylogeny, traditional evaluation techniques have used tree scores to determine the heuristics that find the best scores in the fastest time. We develop new techniques to evaluate phylogenetic heuristics based on both tree scores and topologies to compare Pauprat and Rec-I-DCM3, two popular Maximum Parsimony search algorithms. Results Our results show that although Pauprat and Rec-I-DCM3 find the trees with the same best scores, topologically these trees are quite different. Furthermore, the Rec-I-DCM3 trees cluster distinctly from the Pauprat trees. In addition to our heatmap visualizations of using parsimony scores and the Robinson-Foulds distance to compare best-scoring trees found by the two heuristics, we also develop entropy-based methods to show the diversity of the trees found. Overall, Pauprat identifies more diverse trees than Rec-I-DCM3. Conclusion Overall, our work shows that there is value to comparing heuristics beyond the parsimony scores that they find. Pauprat is a slower heuristic than Rec-I-DCM3. However, our work shows that there is tremendous value in using Pauprat to reconstruct trees—especially since it finds identical scoring but topologically distinct trees. Hence, instead of discounting Pauprat, effort should go in improving its implementation. Ultimately, improved performance measures lead to better phylogenetic heuristics and will result in better approximations of the true evolutionary history of the organisms of interest. PMID:19426451
Exploiting graph properties of game trees
Plaat, A.; Pijls, W.; Bruin, A. de; Schaeffer, J.
1996-12-31
The state space of most adversary games is a directed graph. However, due to the success of simple recursive algorithms based on alpha-beta, theoreticians and practitioners have concentrated on the traversal of trees, giving the field the name {open_quotes}game-tree search,{close_quotes} This paper shows that the focus on trees has obscured some important properties of the underlying graphs. One of the hallmarks of the field of game-tree search has been the notion of the minimal tree, the smallest tree that has to be searched by any algorithm to find the minimax value. In fact, for most games it is a directed graph. As demonstrated in chess and checkers, we show that the minimal graph is significantly smaller than previously thought, proving that there is more room for improvement of current algorithms. We exploit the graph properties of the search space to reduce the size of trees built in practice by at least 25%. For over a decade, fixed-depth alpha-beta searching has been considered a closed subject, with research moving on to more application-dependent techniques. This work opens up new avenues of research for further application-independent improvements.
Hanover, J.W.; Hart, J.W.
1980-05-09
Michigan State University has been conducting research on growth control of woody plants with emphasis on commercial plantations. The objective was to develop the optimum levels for the major factors that affect tree seedling growth and development so that high quality plants can be produced for a specific use. This article describes the accelerated-optimal-growth (AOG) concept, describes precautions to take in its application, and shows ways to maximize the potential of AOG for producing ornamental trees. Factors considered were container growing system; protective culture including light, temperature, mineral nutrients, water, carbon dioxide, growth regulators, mycorrhizae, growing media, competition, and pests; size of seedlings; and acclamation. 1 table. (DP)
ERIC Educational Resources Information Center
National Audubon Society, New York, NY.
Included are an illustrated student reader, "The Story of Trees," a leaders' guide, and a large tree chart with 37 colored pictures. The student reader reviews several aspects of trees: a definition of a tree; where and how trees grow; flowers, pollination and seed production; how trees make their food; how to recognize trees; seasonal changes;…
A dynamic fault tree model of a propulsion system
NASA Technical Reports Server (NTRS)
Xu, Hong; Dugan, Joanne Bechta; Meshkat, Leila
2006-01-01
We present a dynamic fault tree model of the benchmark propulsion system, and solve it using Galileo. Dynamic fault trees (DFT) extend traditional static fault trees with special gates to model spares and other sequence dependencies. Galileo solves DFT models using a judicious combination of automatically generated Markov and Binary Decision Diagram models. Galileo easily handles the complexities exhibited by the benchmark problem. In particular, Galileo is designed to model phased mission systems.
Visualizing phylogenetic trees using TreeView.
Page, Roderic D M
2002-08-01
TreeView provides a simple way to view the phylogenetic trees produced by a range of programs, such as PAUP*, PHYLIP, TREE-PUZZLE, and ClustalX. While some phylogenetic programs (such as the Macintosh version of PAUP*) have excellent tree printing facilities, many programs do not have the ability to generate publication quality trees. TreeView addresses this need. The program can read and write a range of tree file formats, display trees in a variety of styles, print trees, and save the tree as a graphic file. Protocols in this unit cover both displaying and printing a tree. Support protocols describe how to download and install TreeView, and how to display bootstrap values in trees generated by ClustalX and PAUP*. PMID:18792942
Springer, Mark S; Gatesy, John
2016-01-01
grossly misaligned, and numerous loci with >50% missing data for taxa that are misplaced in their gene trees. These problems were compounded by inadequate tree searches with nearest neighbor interchange branch swapping and inadvertent application of substitution models that did not account for among-site rate heterogeneity. Sixty-six gene trees imply unrealistic deep coalescences that exceed 100 million years (MY). Gene trees that were obtained with better justified models and search parameters show large increases in both likelihood scores and congruence. Coalescence analyses based on a curated set of 413 improved gene trees and a superior coalescence method (ASTRAL) support a Scandentia (treeshrews)+Glires (rabbits, rodents) clade, contradicting one of the three primary systematic conclusions of Song et al. (2012). Robust support for a Perissodactyla+Carnivora clade within Laurasiatheria is also lost, contradicting a second major conclusion of this study. Song et al.'s (2012) MP-EST species tree provided the basis for circular simulations that led these authors to conclude that the multispecies coalescent accounts for 77% of the gene tree conflicts in their dataset, but many internal branches of their MP-EST tree are stunted by an order of magnitude or more due to wholesale gene tree reconstruction errors. An independent assessment of branch lengths suggests the multispecies coalescent accounts for ⩽ 15% of the conflicts among Song et al.'s (2012) 447 gene trees. Unfortunately, Song et al.'s (2012) flawed phylogenomic dataset has been used as a model for additional simulation work that suggests the superiority of shortcut coalescence methods relative to concatenation. Investigator error was passed on to the subsequent simulation studies, which also incorporated further logical errors that should be avoided in future simulation studies. Illegitimate branch length switches in the simulation routines unfairly protected coalescence methods from their Achilles' heel, high
Wright, Jason T.; Roy, Arpita; Mahadevan, Suvrath; Wang, Sharon X.; Fleming, Scott W.; Ford, Eric B.; Payne, Matt; Lee, Brian L.; Ge, Jian; Wang, Ji; Crepp, Justin R.; Gaudi, B. Scott; Eastman, Jason; Pepper, Joshua; Cargile, Phillip; Stassun, Keivan G.; Ghezzi, Luan; Gonzalez-Hernandez, Jonay I.; Wisniewski, John; Dutra-Ferreira, Leticia; and others
2013-06-20
We have analyzed new and previously published radial velocity (RV) observations of MARVELS-1, known to have an ostensibly substellar companion in a {approx}6 day orbit. We find significant ({approx}100 m s{sup -1}) residuals to the best-fit model for the companion, and these residuals are naievely consistent with an interior giant planet with a P = 1.965 days in a nearly perfect 3:1 period commensurability (|P{sub b} /P{sub c} - 3| < 10{sup -4}). We have performed several tests for the reality of such a companion, including a dynamical analysis, a search for photometric variability, and a hunt for contaminating stellar spectra. We find many reasons to be critical of a planetary interpretation, including the fact that most of the three-body dynamical solutions are unstable. We find no evidence for transits, and no evidence of stellar photometric variability. We have discovered two apparent companions to MARVELS-1 with adaptive optics imaging at Keck; both are M dwarfs, one is likely bound, and the other is likely a foreground object. We explore false-alarm scenarios inspired by various curiosities in the data. Ultimately, a line profile and bisector analysis lead us to conclude that the {approx}100 m s{sup -1} residuals are an artifact of spectral contamination from a stellar companion contributing {approx}15%-30% of the optical light in the system. We conclude that origin of this contamination is the previously detected RV companion to MARVELS-1, which is not, as previously reported, a brown dwarf, but in fact a G dwarf in a face-on orbit.
NASA Astrophysics Data System (ADS)
Wright, Jason T.; Roy, Arpita; Mahadevan, Suvrath; Wang, Sharon X.; Ford, Eric B.; Payne, Matt; Lee, Brian L.; Wang, Ji; Crepp, Justin R.; Gaudi, B. Scott; Eastman, Jason; Pepper, Joshua; Ge, Jian; Fleming, Scott W.; Ghezzi, Luan; González-Hernández, Jonay I.; Cargile, Phillip; Stassun, Keivan G.; Wisniewski, John; Dutra-Ferreira, Leticia; Porto de Mello, Gustavo F.; Maia, Márcio A. G.; Nicolaci da Costa, Luiz; Ogando, Ricardo L. C.; Santiago, Basilio X.; Schneider, Donald P.; Hearty, Fred R.
2013-06-01
We have analyzed new and previously published radial velocity (RV) observations of MARVELS-1, known to have an ostensibly substellar companion in a ~6 day orbit. We find significant (~100 m s-1) residuals to the best-fit model for the companion, and these residuals are naïvely consistent with an interior giant planet with a P = 1.965 days in a nearly perfect 3:1 period commensurability (|Pb /Pc - 3| < 10-4). We have performed several tests for the reality of such a companion, including a dynamical analysis, a search for photometric variability, and a hunt for contaminating stellar spectra. We find many reasons to be critical of a planetary interpretation, including the fact that most of the three-body dynamical solutions are unstable. We find no evidence for transits, and no evidence of stellar photometric variability. We have discovered two apparent companions to MARVELS-1 with adaptive optics imaging at Keck; both are M dwarfs, one is likely bound, and the other is likely a foreground object. We explore false-alarm scenarios inspired by various curiosities in the data. Ultimately, a line profile and bisector analysis lead us to conclude that the ~100 m s-1 residuals are an artifact of spectral contamination from a stellar companion contributing ~15%-30% of the optical light in the system. We conclude that origin of this contamination is the previously detected RV companion to MARVELS-1, which is not, as previously reported, a brown dwarf, but in fact a G dwarf in a face-on orbit.
Detectability of Gravitational Waves from High-Redshift Binaries
NASA Astrophysics Data System (ADS)
Rosado, Pablo A.; Lasky, Paul D.; Thrane, Eric; Zhu, Xingjiang; Mandel, Ilya; Sesana, Alberto
2016-03-01
Recent nondetection of gravitational-wave backgrounds from pulsar timing arrays casts further uncertainty on the evolution of supermassive black hole binaries. We study the capabilities of current gravitational-wave observatories to detect individual binaries and demonstrate that, contrary to conventional wisdom, some are, in principle, detectable throughout the Universe. In particular, a binary with rest-frame mass ≳1010M⊙ can be detected by current timing arrays at arbitrarily high redshifts. The same claim will apply for less massive binaries with more sensitive future arrays. As a consequence, future searches for nanohertz gravitational waves could be expanded to target evolving high-redshift binaries. We calculate the maximum distance at which binaries can be observed with pulsar timing arrays and other detectors, properly accounting for redshift and using realistic binary waveforms.
Detectability of Gravitational Waves from High-Redshift Binaries.
Rosado, Pablo A; Lasky, Paul D; Thrane, Eric; Zhu, Xingjiang; Mandel, Ilya; Sesana, Alberto
2016-03-11
Recent nondetection of gravitational-wave backgrounds from pulsar timing arrays casts further uncertainty on the evolution of supermassive black hole binaries. We study the capabilities of current gravitational-wave observatories to detect individual binaries and demonstrate that, contrary to conventional wisdom, some are, in principle, detectable throughout the Universe. In particular, a binary with rest-frame mass ≳10^{10}M_{⊙} can be detected by current timing arrays at arbitrarily high redshifts. The same claim will apply for less massive binaries with more sensitive future arrays. As a consequence, future searches for nanohertz gravitational waves could be expanded to target evolving high-redshift binaries. We calculate the maximum distance at which binaries can be observed with pulsar timing arrays and other detectors, properly accounting for redshift and using realistic binary waveforms. PMID:27015470
ERIC Educational Resources Information Center
Jenkins, Peter
Tree climbing offers a safe, inexpensive adventure sport that can be performed almost anywhere. Using standard procedures practiced in tree surgery or rock climbing, almost any tree can be climbed. Tree climbing provides challenge and adventure as well as a vigorous upper-body workout. Tree Climbers International classifies trees using a system…
Anatomical modeling of the bronchial tree
NASA Astrophysics Data System (ADS)
Hentschel, Gerrit; Klinder, Tobias; Blaffert, Thomas; Bülow, Thomas; Wiemker, Rafael; Lorenz, Cristian
2010-02-01
The bronchial tree is of direct clinical importance in the context of respective diseases, such as chronic obstructive pulmonary disease (COPD). It furthermore constitutes a reference structure for object localization in the lungs and it finally provides access to lung tissue in, e.g., bronchoscope based procedures for diagnosis and therapy. This paper presents a comprehensive anatomical model for the bronchial tree, including statistics of position, relative and absolute orientation, length, and radius of 34 bronchial segments, going beyond previously published results. The model has been built from 16 manually annotated CT scans, covering several branching variants. The model is represented as a centerline/tree structure but can also be converted in a surface representation. Possible model applications are either to anatomically label extracted bronchial trees or to improve the tree extraction itself by identifying missing segments or sub-trees, e.g., if located beyond a bronchial stenosis. Bronchial tree labeling is achieved using a naïve Bayesian classifier based on the segment properties contained in the model in combination with tree matching. The tree matching step makes use of branching variations covered by the model. An evaluation of the model has been performed in a leaveone- out manner. In total, 87% of the branches resulting from preceding airway tree segmentation could be correctly labeled. The individualized model enables the detection of missing branches, allowing a targeted search, e.g., a local rerun of the tree-segmentation segmentation.
Cool Star Binaries with ALEXIS
NASA Technical Reports Server (NTRS)
Stern, Robert A.
1998-01-01
We proposed to search for high-temperature, flare-produced Fe XXIII line emission from active cool star binary systems using the ALEXIS all-sky survey. Previous X-ray transient searches with ARIEL V and HEAO-1, and subsequent shorter duration monitoring with the GINGA and EXOSAT satellites demonstrated that active binaries can produce large (EM approximately equals 10(exp 55-56/cu cm) X-ray flares lasting several hours or longer. Hot plasma from these flares at temperatures of 10(exp 7)K or more should produce Fe XXIII line emission at lambda = 132.8 A, very near the peak response of ALEXIS telescopes 1A and 2A. Our primary goals were to estimate flare frequency for the largest flares in the active binary systems, and, if the data permitted, to derive a distribution of flare energy vs. frequency for the sample as a whole. After a long delay due to the initial problems with the ALEXIS attitude control, the heroic efforts on the part of the ALEXIS satellite team enabled us to carry out this survey. However, the combination of the higher than expected and variable background in the ALEXIS detectors, and the lower throughput of the ALEXIS telescopes resulted in no convincing detections of large flares from the active binary systems. In addition, vignetting-corrected effective exposure times from the ALEXIS aspect solution were not available prior to the end of this contract; therefore, we were unable to convert upper limits measured in ALEXIS counts to the equivalent L(sub EUV).
Hallen, Mark A; Donald, Bruce R
2016-05-01
Practical protein design problems require designing sequences with a combination of affinity, stability, and specificity requirements. Multistate protein design algorithms model multiple structural or binding "states" of a protein to address these requirements. comets provides a new level of versatile, efficient, and provable multistate design. It provably returns the minimum with respect to sequence of any desired linear combination of the energies of multiple protein states, subject to constraints on other linear combinations. Thus, it can target nearly any combination of affinity (to one or multiple ligands), specificity, and stability (for multiple states if needed). Empirical calculations on 52 protein design problems showed comets is far more efficient than the previous state of the art for provable multistate design (exhaustive search over sequences). comets can handle a very wide range of protein flexibility and can enumerate a gap-free list of the best constraint-satisfying sequences in order of objective function value. PMID:26761641
Extremal properties of random trees
NASA Astrophysics Data System (ADS)
Ben-Naim, E.; Krapivsky, P. L.; Majumdar, Satya N.
2001-09-01
We investigate extremal statistical properties such as the maximal and the minimal heights of randomly generated binary trees. By analyzing the master evolution equations we show that the cumulative distribution of extremal heights approaches a traveling wave form. The wave front in the minimal case is governed by the small-extremal-height tail of the distribution, and conversely, the front in the maximal case is governed by the large-extremal-height tail of the distribution. We determine several statistical characteristics of the extremal height distribution analytically. In particular, the expected minimal and maximal heights grow logarithmically with the tree size, N, hmin~vmin ln N, and hmax~vmax ln N, with vmin=0.373365... and vmax=4.31107..., respectively. Corrections to this asymptotic behavior are of order O(ln ln N).
White-light Flares on Close Binaries Observed with Kepler
NASA Astrophysics Data System (ADS)
Gao, Qing; Xin, Yu; Liu, Ji-Feng; Zhang, Xiao-Bin; Gao, Shuang
2016-06-01
Based on Kepler data, we present the results of a search for white light flares on 1049 close binaries. We identify 234 flare binaries, of which 6818 flares are detected. We compare the flare-binary fraction in different binary morphologies (“detachedness”). The result shows that the fractions in over-contact and ellipsoidal binaries are approximately 10%–20% lower than those in detached and semi-detached systems. We calculate the binary flare activity level (AL) of all the flare binaries, and discuss its variations along the orbital period (P orb) and rotation period (P rot, calculated for only detached binaries). We find that the AL increases with decreasing P orb or P rot, up to the critical values at P orb ∼ 3 days or P rot ∼ 1.5 days, and thereafter the AL starts decreasing no matter how fast the stars rotate. We examine the flaring rate as a function of orbital phase in two eclipsing binaries on which a large number of flares are detected. It appears that there is no correlation between flaring rate and orbital phase in these two binaries. In contrast, when we examine the function with 203 flares on 20 non-eclipse ellipsoidal binaries, bimodal distribution of amplitude-weighted flare numbers shows up at orbital phases 0.25 and 0.75. Such variation could be larger than what is expected from the cross section modification.
Microwave sensing of tree trunks
NASA Astrophysics Data System (ADS)
Jezova, Jana; Mertens, Laurence; Lambot, Sebastien
2015-04-01
was divided into three sections to separate parts with different moisture (heartwood and sapwood) or empty space (decays). For easier manipulation with the antenna we developed a special ruler for measuring the distance along the scans. Instead of the surveying wheel we read the distance with a camera, which was fixed on the antenna and focused on the ruler with a binary pattern. Hence, during whole measurement and the data processing we were able to identify an accurate position on the tree in view of the scan. Some preliminary measurements on the trees were also conducted. They were performed using a GSSI 900 MHz antenna. Several tree species (beech, horse-chestnut, birch, ...) in Louvain-la-Neuve and Brussels, Belgium, have been investigated to see the internal structure of the tree decays. The measurements were carried out mainly by circumferential measurement around the trunk and also by vertical measurement along the trunk for approximate detection of the cavity. The comparison between the numerical simulations, simplified tree trunk model and real data from trees is presented. This research is funded by the Fonds de la Recherche Scientifique (FNRS, Belgium) and benefits from networking activities carried out within the EU COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar".
Reconfigurable tree architectures using subtree oriented fault tolerance
NASA Technical Reports Server (NTRS)
Lowrie, Matthew B.
1987-01-01
An approach to the design of reconfigurable tree architecture is presented in which spare processors are allocated at the leaves. The approach is unique in that spares are associated with subtrees and sharing of spares between these subtrees can occur. The Subtree Oriented Fault Tolerance (SOFT) approach is more reliable than previous approaches capable of tolerating link and switch failures for both single chip and multichip tree implementations while reducing redundancy in terms of both spare processors and links. VLSI layout is 0(n) for binary trees and is directly extensible to N-ary trees and fault tolerance through performance degradation.
Binary pulsar evolution: unveiled links and new species
NASA Astrophysics Data System (ADS)
Possenti, Andrea
2013-03-01
In the last years a series of blind and/or targeted pulsar searches led to almost triple the number of known binary pulsars in the galactic field with respect to a decade ago. The focus will be on few outliers, which are emerging from the average properties of the enlarged binary pulsar population. Some of them may represent the long sought missing links between two kinds of neutron star binaries, while others could represent the stereotype of new groups of binaries, resulting from an evolutionary path which is more exotic than those considered until recently. In particular, a new class of binaries, which can be dubbed Ultra Low Mass Binary Pulsars (ULMBPs), is emerging from recent data.
Detecting galactic binaries with LISA
NASA Astrophysics Data System (ADS)
Cornish, Neil J.; Porter, Edward K.
2005-09-01
One of the main sources of gravitational waves for the LISA space-borne interferometer is galactic binary systems. The waveforms for these sources are represented by eight parameters of which four are intrinsic and four are extrinsic to the system. Geometrically, these signals exist in an 8D parameter space. By calculating the metric tensor on this space, we calculate the number of templates needed to search for such sources. We show in this study that below a particular monochromatic frequency of f0 ~ 1.6 × 10-3 Hz we can ignore one of the intrinsic parameters and search over a 7D space. Beyond this frequency, we have a change in dimensionality of the parameter space from 7 to 8 dimensions. This sudden change in dimensionality results in a change in the scaling of template number as a function of the monochromatic frequency from ~f1.250 to ~f5.880.
Bootstrapping on undirected binary networks via statistical mechanics.
Fushing, Hsieh; Chen, Chen; Liu, Shan-Yu; Koehl, Patrice
2014-09-01
We propose a new method inspired from statistical mechanics for extracting geometric information from undirected binary networks and generating random networks that conform to this geometry. In this method an undirected binary network is perceived as a thermodynamic system with a collection of permuted adjacency matrices as its states. The task of extracting information from the network is then reformulated as a discrete combinatorial optimization problem of searching for its ground state. To solve this problem, we apply multiple ensembles of temperature regulated Markov chains to establish an ultrametric geometry on the network. This geometry is equipped with a tree hierarchy that captures the multiscale community structure of the network. We translate this geometry into a Parisi adjacency matrix, which has a relative low energy level and is in the vicinity of the ground state. The Parisi adjacency matrix is then further optimized by making block permutations subject to the ultrametric geometry. The optimal matrix corresponds to the macrostate of the original network. An ensemble of random networks is then generated such that each of these networks conforms to this macrostate; the corresponding algorithm also provides an estimate of the size of this ensemble. By repeating this procedure at different scales of the ultrametric geometry of the network, it is possible to compute its evolution entropy, i.e. to estimate the evolution of its complexity as we move from a coarse to a ne description of its geometric structure. We demonstrate the performance of this method on simulated as well as real data networks. PMID:25071295
Bootstrapping on undirected binary networks via statistical mechanics
Fushing, Hsieh; Chen, Chen; Liu, Shan-Yu; Koehl, Patrice
2014-01-01
We propose a new method inspired from statistical mechanics for extracting geometric information from undirected binary networks and generating random networks that conform to this geometry. In this method an undirected binary network is perceived as a thermodynamic system with a collection of permuted adjacency matrices as its states. The task of extracting information from the network is then reformulated as a discrete combinatorial optimization problem of searching for its ground state. To solve this problem, we apply multiple ensembles of temperature regulated Markov chains to establish an ultrametric geometry on the network. This geometry is equipped with a tree hierarchy that captures the multiscale community structure of the network. We translate this geometry into a Parisi adjacency matrix, which has a relative low energy level and is in the vicinity of the ground state. The Parisi adjacency matrix is then further optimized by making block permutations subject to the ultrametric geometry. The optimal matrix corresponds to the macrostate of the original network. An ensemble of random networks is then generated such that each of these networks conforms to this macrostate; the corresponding algorithm also provides an estimate of the size of this ensemble. By repeating this procedure at different scales of the ultrametric geometry of the network, it is possible to compute its evolution entropy, i.e. to estimate the evolution of its complexity as we move from a coarse to a ne description of its geometric structure. We demonstrate the performance of this method on simulated as well as real data networks. PMID:25071295
PHOEBE: PHysics Of Eclipsing BinariEs
NASA Astrophysics Data System (ADS)
Prsa, Andrej; Matijevic, Gal; Latkovic, Olivera; Vilardell, Francesc; Wils, Patrick
2011-06-01
PHOEBE (PHysics Of Eclipsing BinariEs) is a modeling package for eclipsing binary stars, built on top of the widely used WD program (Wilson & Devinney 1971). This introductory paper overviews most important scientific extensions (incorporating observational spectra of eclipsing binaries into the solution-seeking process, extracting individual temperatures from observed color indices, main-sequence constraining and proper treatment of the reddening), numerical innovations (suggested improvements to WD's Differential Corrections method, the new Nelder & Mead's downhill Simplex method) and technical aspects (back-end scripter structure, graphical user interface). While PHOEBE retains 100% WD compatibility, its add-ons are a powerful way to enhance WD by encompassing even more physics and solution reliability.
ERIC Educational Resources Information Center
Smithyman, S. J.
This manual is designed to prepare students for entry-level positions as tree care professionals. Addressed in the individual chapters of the guide are the following topics: the tree service industry; clothing, eqiupment, and tools; tree workers; basic tree anatomy; techniques of pruning; procedures for climbing and working in the tree; aerial…
Spectroscopic Orbits for Kepler FOV Eclipsing Binaries
NASA Astrophysics Data System (ADS)
Matson, Rachel A.; Gies, Douglas R.; Williams, Stephen J.; Guo, Zhao
2013-02-01
We are currently involved in a four year program of precise eclipsing binary photometry with the NASA Kepler Observatory. Our goal is to search for variations in minimum light timing for intermediate mass eclipsing binaries. Such periodic variations will reveal the reflex motion caused by any distant, low mass object that orbits the close binary. it Kepler's unprecedented accuracy and continuous observations provide a unique opportunity to detect the low mass companions that are predicted to result from the angular momentum of the natal cloud. The goal of this proposal is to obtain blue spectra of short period (0.9-6d) eclipsing binaries, derive radial velocities, and produce a double-lined spectroscopic orbit (as well as estimates of the stellar effective temperatures, gravities, and metallicities). Combined with the it Kepler light curve, we will determine very accurate masses and radii for the members of the close binary, which will yield the mass-inclination product M_3 sin i for any companions detected by light travel time or other effects. An extended sample of eclipsing binaries with longer periods (up to 50d) is now being investigated to test whether the presence of a tertiary companion declines with increasing period. We propose to obtain a single spectrum at quadrature for the brightest 48 stars in this expanded sample to characterize the effective temperatures and total mass contained in these systems.
Texture classification by texton: statistical versus binary.
Guo, Zhenhua; Zhang, Zhongcheng; Li, Xiu; Li, Qin; You, Jane
2014-01-01
Using statistical textons for texture classification has shown great success recently. The maximal response 8 (Statistical_MR8), image patch (Statistical_Joint) and locally invariant fractal (Statistical_Fractal) are typical statistical texton algorithms and state-of-the-art texture classification methods. However, there are two limitations when using these methods. First, it needs a training stage to build a texton library, thus the recognition accuracy will be highly depended on the training samples; second, during feature extraction, local feature is assigned to a texton by searching for the nearest texton in the whole library, which is time consuming when the library size is big and the dimension of feature is high. To address the above two issues, in this paper, three binary texton counterpart methods were proposed, Binary_MR8, Binary_Joint, and Binary_Fractal. These methods do not require any training step but encode local feature into binary representation directly. The experimental results on the CUReT, UIUC and KTH-TIPS databases show that binary texton could get sound results with fast feature extraction, especially when the image size is not big and the quality of image is not poor. PMID:24520346
Texture Classification by Texton: Statistical versus Binary
Guo, Zhenhua; Zhang, Zhongcheng; Li, Xiu; Li, Qin; You, Jane
2014-01-01
Using statistical textons for texture classification has shown great success recently. The maximal response 8 (Statistical_MR8), image patch (Statistical_Joint) and locally invariant fractal (Statistical_Fractal) are typical statistical texton algorithms and state-of-the-art texture classification methods. However, there are two limitations when using these methods. First, it needs a training stage to build a texton library, thus the recognition accuracy will be highly depended on the training samples; second, during feature extraction, local feature is assigned to a texton by searching for the nearest texton in the whole library, which is time consuming when the library size is big and the dimension of feature is high. To address the above two issues, in this paper, three binary texton counterpart methods were proposed, Binary_MR8, Binary_Joint, and Binary_Fractal. These methods do not require any training step but encode local feature into binary representation directly. The experimental results on the CUReT, UIUC and KTH-TIPS databases show that binary texton could get sound results with fast feature extraction, especially when the image size is not big and the quality of image is not poor. PMID:24520346
TreeGenes: A Forest Tree Genome Database
Wegrzyn, Jill L.; Lee, Jennifer M.; Tearse, Brandon R.; Neale, David B.
2008-01-01
The Dendrome Project and associated TreeGenes database serve the forest genetics research community through a curated and integrated web-based relational database. The research community is composed of approximately 2 000 members representing over 730 organizations worldwide. The database itself is composed of a wide range of genetic data from many forest trees with focused efforts on commercially important members of the Pinaceae family. The primary data types curated include species, publications, tree and DNA extraction information, genetic maps, molecular markers, ESTs, genotypic, and phenotypic data. There are currently ten main search modules or user access points within this PostgreSQL database. These access points allow users to navigate logically through the related data types. The goals of the Dendrome Project are to (1) provide a comprehensive resource for forest tree genomics data to facilitate gene discovery in related species, (2) develop interfaces that encourage the submission and integration of all genomic data, and to (3) centralize and distribute existing and novel online tools for the research community that both support and ease analysis. Recent developments have focused on increasing data content, functional annotations, data retrieval, and visualization tools. TreeGenes was developed to provide a centralized web resource with analysis and visualization tools to support data storage and exchange. PMID:18725987
Long-Term Stability of Planets in Binary Systems
NASA Technical Reports Server (NTRS)
Holman, Matthew J.; Wiegert, Paul A.
1999-01-01
A simple question of celestial mechanics is investigated: in what regions of phase space near a binary system can planets persist for long times? The planets are taken to be test particles moving in the field of an eccentric binary system. A range of values of the binary eccentricity and mass ratio is studied, and both the case of planets orbiting close to one of the stars, and that of planets outside the binary orbiting the systems center of mass, are examined. From the results, empirical expressions are developed for both (1) the largest orbit around each of the stars and (2) the smallest orbit around the binary system as a whole, in which test particles survive the length of the integration (10A4 binary periods). The empirical expressions developed, which are roughly linear in both the mass ratio mu and the binary eccentricity e, are determined for the range 0.0=e=0.7-0.8 and 0.1=mu=0.9 in both regions and can be used to guide searches for planets in binary systems. After considering the case of a single low-mass planet in binary systems, the stability of a mutually interacting system of planets orbiting one star of a binary system is examined, though in less detail.
NASA Astrophysics Data System (ADS)
Desidera, S.; Gratton, R.; Endl, M.; Fiorenzano, A. F. Martinez; Barbieri, M.; Claudi, R.; Cosentino, R.; Scuderi, S.; Bonavita, M.
The search for planets in multiple systems allows to improve our knowledge of planet formation and evolution. On one hand, the frequency of planets in binary systems has a strong effect on the global frequency of planets, as more than half of solar-type stars are in binary or multiple systems (Duquennoy and Mayor 1991). On the other hand, the properties of planets in binaries, and their differences with the properties of the planets orbiting single stars, would shed light on the effects caused by the presence of the companion stars. Indeed, the first analysis of the properties of planets in binaries showed the occurrence of some differences with respect to those orbiting single stars (Zucker and Mazeh 2002; Eggenberger et al. 2004).
New program controls tree management
Beaty, W.
1995-02-01
Senior management of TransAlta Utilities Corp. (TAU) Calgary, Alberta, Canada, was highly dissatisfied with the fact that even though the distribution line clearance budget had been increased an average 35 percent a year between 1978 and 1984, there were few if any discernible positive results. Tree-related power outages kept increasing and budget requests from the field kept increasing. In searching for a solution TAU had to deal with the concept that the right level of funding can only be determined through an inventory of tree work. This inventory is comprised of two factors, the number of trees in proximity to the power lines and the local growth rates. Based on the inventory of a hired consultant, a 12-year budget projection was established. The period covered entailed a six-year, first-cycle or catch up phase, and a six-year, second-cycle maintenance phase. In implementing the new vegetation management program in 1986, TAU decided to contact each landowner directly to obtain consent to undertake the tree work. The intent was to reduce the risk of claims while maximizing tree removals. Complaints and claims were dramatically reduced and currently run at about one per 1,000 landowners and budgets have dropped back to the 1985 levels as predicted for the maintenance phase.
Consequences of Common Topological Rearrangements for Partition Trees in Phylogenomic Inference.
Chernomor, Olga; Minh, Bui Quang; von Haeseler, Arndt
2015-12-01
In phylogenomic analysis the collection of trees with identical score (maximum likelihood or parsimony score) may hamper tree search algorithms. Such collections are coined phylogenetic terraces. For sparse supermatrices with a lot of missing data, the number of terraces and the number of trees on the terraces can be very large. If terraces are not taken into account, a lot of computation time might be unnecessarily spent to evaluate many trees that in fact have identical score. To save computation time during the tree search, it is worthwhile to quickly identify such cases. The score of a species tree is the sum of scores for all the so-called induced partition trees. Therefore, if the topological rearrangement applied to a species tree does not change the induced partition trees, the score of these partition trees is unchanged. Here, we provide the conditions under which the three most widely used topological rearrangements (nearest neighbor interchange, subtree pruning and regrafting, and tree bisection and reconnection) change the topologies of induced partition trees. During the tree search, these conditions allow us to quickly identify whether we can save computation time on the evaluation of newly encountered trees. We also introduce the concept of partial terraces and demonstrate that they occur more frequently than the original "full" terrace. Hence, partial terrace is the more important factor of timesaving compared to full terrace. Therefore, taking into account the above conditions and the partial terrace concept will help to speed up the tree search in phylogenomic inference. PMID:26448206
Algorithms for optimal dyadic decision trees
Hush, Don; Porter, Reid
2009-01-01
A new algorithm for constructing optimal dyadic decision trees was recently introduced, analyzed, and shown to be very effective for low dimensional data sets. This paper enhances and extends this algorithm by: introducing an adaptive grid search for the regularization parameter that guarantees optimal solutions for all relevant trees sizes, revising the core tree-building algorithm so that its run time is substantially smaller for most regularization parameter values on the grid, and incorporating new data structures and data pre-processing steps that provide significant run time enhancement in practice.
Compact binary hashing for music retrieval
NASA Astrophysics Data System (ADS)
Seo, Jin S.
2014-03-01
With the huge volume of music clips available for protection, browsing, and indexing, there is an increased attention to retrieve the information contents of the music archives. Music-similarity computation is an essential building block for browsing, retrieval, and indexing of digital music archives. In practice, as the number of songs available for searching and indexing is increased, so the storage cost in retrieval systems is becoming a serious problem. This paper deals with the storage problem by extending the supervector concept with the binary hashing. We utilize the similarity-preserving binary embedding in generating a hash code from the supervector of each music clip. Especially we compare the performance of the various binary hashing methods for music retrieval tasks on the widely-used genre dataset and the in-house singer dataset. Through the evaluation, we find an effective way of generating hash codes for music similarity estimation which improves the retrieval performance.
Nelson, C A; Eggleton, P P
2001-03-28
We undertake a comparison of observed Algol-type binaries with a library of computed Case A binary evolution tracks. The library consists of 5500 binary tracks with various values of initial primary mass M{sub 10}, mass ratio q{sub 0}, and period P{sub 0}, designed to sample the phase-space of Case A binaries in the range -0.10 {le} log M{sub 10} {le} 1.7. Each binary is evolved using a standard code with the assumption that both total mass and orbital angular momentum are conserved. This code follows the evolution of both stars until the point where contact or reverse mass transfer occurs. The resulting binary tracks show a rich variety of behavior which we sort into several subclasses of Case A and Case B. We present the results of this classification, the final mass ratio and the fraction of time spent in Roche Lobe overflow for each binary system. The conservative assumption under which we created this library is expected to hold for a broad range of binaries, where both components have spectra in the range G0 to B1 and luminosity class III - V. We gather a list of relatively well-determined observed hot Algol-type binaries meeting this criterion, as well as a list of cooler Algol-type binaries where we expect significant dynamo-driven mass loss and angular momentum loss. We fit each observed binary to our library of tracks using a {chi}{sup 2}-minimizing procedure. We find that the hot Algols display overall acceptable {chi}{sup 2}, confirming the conservative assumption, while the cool Algols show much less acceptable {chi}{sup 2} suggesting the need for more free parameters, such as mass and angular momentum loss.
Comprehensive Decision Tree Models in Bioinformatics
Stiglic, Gregor; Kocbek, Simon; Pernek, Igor; Kokol, Peter
2012-01-01
Purpose Classification is an important and widely used machine learning technique in bioinformatics. Researchers and other end-users of machine learning software often prefer to work with comprehensible models where knowledge extraction and explanation of reasoning behind the classification model are possible. Methods This paper presents an extension to an existing machine learning environment and a study on visual tuning of decision tree classifiers. The motivation for this research comes from the need to build effective and easily interpretable decision tree models by so called one-button data mining approach where no parameter tuning is needed. To avoid bias in classification, no classification performance measure is used during the tuning of the model that is constrained exclusively by the dimensions of the produced decision tree. Results The proposed visual tuning of decision trees was evaluated on 40 datasets containing classical machine learning problems and 31 datasets from the field of bioinformatics. Although we did not expected significant differences in classification performance, the results demonstrate a significant increase of accuracy in less complex visually tuned decision trees. In contrast to classical machine learning benchmarking datasets, we observe higher accuracy gains in bioinformatics datasets. Additionally, a user study was carried out to confirm the assumption that the tree tuning times are significantly lower for the proposed method in comparison to manual tuning of the decision tree. Conclusions The empirical results demonstrate that by building simple models constrained by predefined visual boundaries, one not only achieves good comprehensibility, but also very good classification performance that does not differ from usually more complex models built using default settings of the classical decision tree algorithm. In addition, our study demonstrates the suitability of visually tuned decision trees for datasets with binary class
NASA Astrophysics Data System (ADS)
Vogt, Peter R.
2004-09-01
Nature often replicates her processes at different scales of space and time in differing media. Here a tree-trunk cross section I am preparing for a dendrochronological display at the Battle Creek Cypress Swamp Nature Sanctuary (Calvert County, Maryland) dried and cracked in a way that replicates practically all the planform features found along the Mid-Oceanic Ridge (see Figure 1). The left-lateral offset of saw marks, contrasting with the right-lateral ``rift'' offset, even illustrates the distinction between transcurrent (strike-slip) and transform faults, the latter only recognized as a geologic feature, by J. Tuzo Wilson, in 1965. However, wood cracking is but one of many examples of natural processes that replicate one or several elements of lithospheric plate tectonics. Many of these examples occur in everyday venues and thus make great teaching aids, ``teachable'' from primary school to university levels. Plate tectonics, the dominant process of Earth geology, also occurs in miniature on the surface of some lava lakes, and as ``ice plate tectonics'' on our frozen seas and lakes. Ice tectonics also happens at larger spatial and temporal scales on the Jovian moons Europa and perhaps Ganymede. Tabletop plate tectonics, in which a molten-paraffin ``asthenosphere'' is surfaced by a skin of congealing wax ``plates,'' first replicated Mid-Oceanic Ridge type seafloor spreading more than three decades ago. A seismologist (J. Brune, personal communication, 2004) discovered wax plate tectonics by casually and serendipitously pulling a stick across a container of molten wax his wife and daughters had used in making candles. Brune and his student D. Oldenburg followed up and mirabile dictu published the results in Science (178, 301-304).
ERIC Educational Resources Information Center
Boyd, Amy E.; Cooper, Jim
2004-01-01
Tree rings can be used not only to look at plant growth, but also to make connections between plant growth and resource availability. In this lesson, students in 2nd-4th grades use role-play to become familiar with basic requirements of trees and how availability of those resources is related to tree ring sizes and tree growth. These concepts can…
Spherical hashing: binary code embedding with hyperspheres.
Heo, Jae-Pil; Lee, Youngwoon; He, Junfeng; Chang, Shih-Fu; Yoon, Sung-Eui
2015-11-01
Many binary code embedding schemes have been actively studied recently, since they can provide efficient similarity search, and compact data representations suitable for handling large scale image databases. Existing binary code embedding techniques encode high-dimensional data by using hyperplane-based hashing functions. In this paper we propose a novel hypersphere-based hashing function, spherical hashing, to map more spatially coherent data points into a binary code compared to hyperplane-based hashing functions. We also propose a new binary code distance function, spherical Hamming distance, tailored for our hypersphere-based binary coding scheme, and design an efficient iterative optimization process to achieve both balanced partitioning for each hash function and independence between hashing functions. Furthermore, we generalize spherical hashing to support various similarity measures defined by kernel functions. Our extensive experiments show that our spherical hashing technique significantly outperforms state-of-the-art techniques based on hyperplanes across various benchmarks with sizes ranging from one to 75 million of GIST, BoW and VLAD descriptors. The performance gains are consistent and large, up to 100 percent improvements over the second best method among tested methods. These results confirm the unique merits of using hyperspheres to encode proximity regions in high-dimensional spaces. Finally, our method is intuitive and easy to implement. PMID:26440269
Encoding of multi-alphabet sources by binary arithmetic coding
NASA Astrophysics Data System (ADS)
Guo, Muling; Oka, Takahumi; Kato, Shigeo; Kajiwara, Hiroshi; Kawamura, Naoto
1998-12-01
In case of encoding a multi-alphabet source, the multi- alphabet symbol sequence can be encoded directly by a multi- alphabet arithmetic encoder, or the sequence can be first converted into several binary sequences and then each binary sequence is encoded by binary arithmetic encoder, such as the L-R arithmetic coder. Arithmetic coding, however, requires arithmetic operations for each symbol and is computationally heavy. In this paper, a binary representation method using Huffman tree is introduced to reduce the number of arithmetic operations, and a new probability approximation for L-R arithmetic coding is further proposed to improve the coding efficiency when the probability of LPS (Least Probable Symbol) is near 0.5. Simulation results show that our proposed scheme has high coding efficacy and can reduce the number of coding symbols.
BINARY CANDIDATES IN THE JOVIAN TROJAN AND HILDA POPULATIONS FROM NEOWISE LIGHT CURVES
Sonnett, S.; Mainzer, A.; Masiero, J.; Bauer, J.; Grav, T.
2015-02-01
Determining the binary fraction for a population of asteroids, particularly as a function of separation between the two components, helps describe the dynamical environment at the time the binaries formed, which in turn offers constraints on the dynamical evolution of the solar system. We searched the NEOWISE archival data set for close and contact binary Trojans and Hildas via their diagnostically large light curve amplitudes. We present 48 out of 554 Hilda and 34 out of 953 Trojan binary candidates in need of follow-up to confirm their large light curve amplitudes and subsequently constrain the binary orbit and component sizes. From these candidates, we calculate a preliminary estimate of the binary fraction without confirmation or debiasing of 14%-23% for Trojans larger than ∼12 km and 30%-51% for Hildas larger than ∼4 km. Once the binary candidates have been confirmed, it should be possible to infer the underlying, debiased binary fraction through estimation of survey biases.
An Improved Catalog of Halo Wide Binary Candidates
NASA Astrophysics Data System (ADS)
Allen, Christine; Monroy-Rodríguez, Miguel A.
2014-08-01
We present an improved catalog of halo wide binaries compiled from an extensive literature search. Most of our binaries stem from the common proper motion binary catalogs by Allen et al. and Chanamé & Gould, but we have also included binaries from the lists of Ryan and Zapatero-Osorio & Martín. All binaries were carefully checked and their distances and systemic radial velocities are included when available. Probable membership to the halo population was tested by means of reduced proper motion diagrams for 251 candidate halo binaries. After eliminating obvious disk binaries, we ended up with 211 probable halo binaries, 150 of which have radial velocities available. We compute galactic orbits for these 150 binaries and calculate the time they spend within the galactic disk. Considering the full sample of 251 candidate halo binaries as well as several subsamples, we find that the distribution of angular separations (or expected major semiaxes) follows a power law f(a) ~ a -1 (Oepik's relation) up to different limits. For the 50 most disk-like binaries, those that spend their entire lives within z = ±500 pc, this limit is found to be 19,000 AU (0.09 pc), while for the 50 most halo-like binaries, those that spend on average only 18% of their lives within z = ±500 pc, the limit is 63,000 AU (0.31 pc). In a companion paper, we employ this catalog to establish limits on the masses of the halo massive perturbers (massive compact halo objects).
An improved catalog of halo wide binary candidates
Allen, Christine; Monroy-Rodríguez, Miguel A.
2014-08-01
We present an improved catalog of halo wide binaries compiled from an extensive literature search. Most of our binaries stem from the common proper motion binary catalogs by Allen et al. and Chanamé and Gould, but we have also included binaries from the lists of Ryan and Zapatero-Osorio and Martín. All binaries were carefully checked and their distances and systemic radial velocities are included when available. Probable membership to the halo population was tested by means of reduced proper motion diagrams for 251 candidate halo binaries. After eliminating obvious disk binaries, we ended up with 211 probable halo binaries, 150 of which have radial velocities available. We compute galactic orbits for these 150 binaries and calculate the time they spend within the galactic disk. Considering the full sample of 251 candidate halo binaries as well as several subsamples, we find that the distribution of angular separations (or expected major semiaxes) follows a power law f(a) ∼ a {sup –1} (Oepik's relation) up to different limits. For the 50 most disk-like binaries, those that spend their entire lives within z = ±500 pc, this limit is found to be 19,000 AU (0.09 pc), while for the 50 most halo-like binaries, those that spend on average only 18% of their lives within z = ±500 pc, the limit is 63,000 AU (0.31 pc). In a companion paper, we employ this catalog to establish limits on the masses of the halo massive perturbers (massive compact halo objects).
Substellar objects around the sdB eclipsing Binaries
NASA Astrophysics Data System (ADS)
Zhu, Liying; Qian, Shengbang; Liao, Wenping; Zhao, Ergang; Li, Linjia
2016-07-01
The sdB-type eclipsing binary consists a very hot subdwarf B (sdB) type primary and a low mass secondary with short period. They are detached binaries and show very narrow eclipse profiles, which benefits the determination of the precise eclipse times. With the precise times of light minimum, we can detected small mass objects around them by analyzing the observed-calculated (O-C) curve based on the light time effect. For searching the substellar objects orbiting around the binaries, we have monitored sdB-type eclipsing binaries for decades. A group of brown dwarfs and planets have been detected since then. In the present paper, we focus on the target NSVS07826147, which may be another exoplanet host candidate among the group of the sdB-type eclipsing binaries.
On the detectability of eccentric binary pulsars
NASA Astrophysics Data System (ADS)
Bagchi, Manjari; Lorimer, Duncan R.; Wolfe, Spencer
2013-06-01
By generalizing earlier work of Johnston and Kulkarni, we present a detailed description of the reduction in the signal-to-noise ratio for observations of binary pulsars. We present analytical expressions, and provide software, to calculate the sensitivity reduction for orbits of arbitrary eccentricity. We find that this reduction can be quite significant, especially in the case of a massive companion like another neutron star or a black hole. On the other hand, the reduction is less for highly eccentric orbits. We also demonstrate that this loss of sensitivity can be recovered by employing `acceleration search' or `acceleration-jerk search' algorithms.
Which Phylogenetic Networks are Merely Trees with Additional Arcs?
Francis, Andrew R; Steel, Mike
2015-09-01
A binary phylogenetic network may or may not be obtainable from a tree by the addition of directed edges (arcs) between tree arcs. Here, we establish a precise and easily tested criterion (based on "2-SAT") that efficiently determines whether or not any given network can be realized in this way. Moreover, the proof provides a polynomial-time algorithm for finding one or more trees (when they exist) on which the network can be based. A number of interesting consequences are presented as corollaries; these lead to some further relevant questions and observations, which we outline in the conclusion. PMID:26070685
Improving minimum cost spanning trees by upgrading nodes
Krumke, S.O.; Noltemeier, H.; Wirth, H.C.; Marathe, M.V.; Ravi, R.; Ravi, S.S.; Sundaram, R.
1998-11-01
The authors study budget constrained network upgrading problems. The authors are given an undirected edge weighted graph (G = V, E) where node v {element_of} V can be upgraded at a cost of c(v). This upgrade reduces the weight of each edge incident on v. The goal is to find a minimum cost set of nodes to be upgraded so that the resulting network has a minimum spanning tree of weight no more than a given budget D. The results obtained in the paper include the following: (1) on the positive side, they provide a polynomial time approximation algorithm for the above upgrading problem when the difference between the maximum and minimum edge weights is bounded by a polynomial in n, the number of nodes in the graph, the solution produced by the algorithm satisfies the budget constrain, and the cost of the upgrading set produced by the algorithm is O (log n) times the minimum upgrading cost needed to obtain a spanning tree of weight at most D; (2) in contrast , they show that, unless NP {improper_subset} DTIME (n{sup O(log log n)}), there can be no polynomial time approximation algorithm for the problem that produces a solution with upgrading cost at most {alpha} < ln n times the optimal upgrading cost even if the budget can be violated by a factor f(n), for any polynomial time computable function f(n), this result continues to hold, with f(n) = n{sup k} being any polynomial, even when the difference between the maximum and minimum edge weights is bounded by a polynomial in n; and (3) finally, they show that using a simple binary search over the set of admissible values, the dual problem can be solved with an appropriate performance guarantee.
Composite gravitational-wave detection of compact binary coalescence
Cannon, Kipp; Hanna, Chad; Keppel, Drew; Searle, Antony C.
2011-04-15
The detection of gravitational waves from compact binaries relies on a computationally burdensome processing of gravitational-wave detector data. The parameter space of compact-binary-coalescence gravitational waves is large and optimal detection strategies often require nearly redundant calculations. Previously, it has been shown that singular value decomposition of search filters removes redundancy. Here we will demonstrate the use of singular value decomposition for a composite detection statistic. This can greatly improve the prospects for a computationally feasible rapid detection scheme across a large compact binary parameter space.
Time markers in interstellar communication. [with binary star civilizations
NASA Technical Reports Server (NTRS)
Pace, G. W.; Walker, J. C. G.
1975-01-01
The chances that two civilizations establish contact with each other by means of interstellar radio communication are exceedingly small in the absence of time markers which will tell the two civilizations when to search for one another. In the case of binary stars, suitable time markers are provided by the apastron and the periastron. Single star civilization would transmit signals to binaries at the observation of apastron and periastron and the binary star civilization would scan single stars at the proper time for the reception of these signals.
Pearl, J.
1983-01-01
This work is comprised of articles which are representative of current research on search and heuristics. The general theme is the quest for understanding the workings of heuristic knowledge; how it is acquired, stored and used by people, how it can be represented and utilized by machines and what makes one heuristic succeed where others fail. Topics covered include the following: search and reasoning in problem solving; theory formation by heuristic search; the nature of heuristics II: background and examples; Eurisko: a program that learns new heuristics and domain concepts; the nature of heuristics III: program design and results; searching for an optimal path in a tree with random costs; search rearrangement backtracking and polynomial average time; consistent-labeling problems and their algorithms: expected-complexities and theory-based heuristics; general branch and bound formulation for understanding and synthesizing and/or tree search procedures; a minimax algorithm better than alpha-beta. yes and no; and pathology on game trees revisited, and an alternative to minimaxing.
Dokla, Eman M.; Mahmoud, Amr H.; Elsayed, Mohamed S. A.; El-Khatib, Ahmed H.; Linscheid, Michael W.; Abouzid, Khaled A.
2012-01-01
This study provides a comprehensive computational procedure for the discovery of novel urea-based antineoplastic kinase inhibitors while focusing on diversification of both chemotype and selectivity pattern. It presents a systematic structural analysis of the different binding motifs of urea-based kinase inhibitors and the corresponding configurations of the kinase enzymes. The computational model depends on simultaneous application of two protocols. The first protocol applies multiple consecutive validated virtual screening filters including SMARTS, support vector-machine model (ROC = 0.98), Bayesian model (ROC = 0.86) and structure-based pharmacophore filters based on urea-based kinase inhibitors complexes retrieved from literature. This is followed by hits profiling against different extended electron distribution (XED) based field templates representing different kinase targets. The second protocol enables cancericidal activity verification by using the algorithm of feature trees (Ftrees) similarity searching against NCI database. Being a proof-of-concept study, this combined procedure was experimentally validated by its utilization in developing a novel series of urea-based derivatives of strong anticancer activity. This new series is based on 3-benzylbenzo[d]thiazol-2(3H)-one scaffold which has interesting chemical feasibility and wide diversification capability. Antineoplastic activity of this series was assayed in vitro against NCI 60 tumor-cell lines showing very strong inhibition of GI50 as low as 0.9 uM. Additionally, its mechanism was unleashed using KINEX™ protein kinase microarray-based small molecule inhibitor profiling platform and cell cycle analysis showing a peculiar selectivity pattern against Zap70, c-src, Mink1, csk and MeKK2 kinases. Interestingly, it showed activity on syk kinase confirming the recent studies finding of the high activity of diphenyl urea containing compounds against this kinase. Allover, the new series, which is
Haasl, D.F.; Roberts, N.H.; Vesely, W.E.; Goldberg, F.F.
1981-01-01
This handbook describes a methodology for reliability analysis of complex systems such as those which comprise the engineered safety features of nuclear power generating stations. After an initial overview of the available system analysis approaches, the handbook focuses on a description of the deductive method known as fault tree analysis. The following aspects of fault tree analysis are covered: basic concepts for fault tree analysis; basic elements of a fault tree; fault tree construction; probability, statistics, and Boolean algebra for the fault tree analyst; qualitative and quantitative fault tree evaluation techniques; and computer codes for fault tree evaluation. Also discussed are several example problems illustrating the basic concepts of fault tree construction and evaluation.
Binary Coded Web Access Pattern Tree in Education Domain
ERIC Educational Resources Information Center
Gomathi, C.; Moorthi, M.; Duraiswamy, K.
2008-01-01
Web Access Pattern (WAP), which is the sequence of accesses pursued by users frequently, is a kind of interesting and useful knowledge in practice. Sequential Pattern mining is the process of applying data mining techniques to a sequential database for the purposes of discovering the correlation relationships that exist among an ordered list of…
Categorizing Ideas about Trees: A Tree of Trees
Fisler, Marie; Lecointre, Guillaume
2013-01-01
The aim of this study is to explore whether matrices and MP trees used to produce systematic categories of organisms could be useful to produce categories of ideas in history of science. We study the history of the use of trees in systematics to represent the diversity of life from 1766 to 1991. We apply to those ideas a method inspired from coding homologous parts of organisms. We discretize conceptual parts of ideas, writings and drawings about trees contained in 41 main writings; we detect shared parts among authors and code them into a 91-characters matrix and use a tree representation to show who shares what with whom. In other words, we propose a hierarchical representation of the shared ideas about trees among authors: this produces a “tree of trees.” Then, we categorize schools of tree-representations. Classical schools like “cladists” and “pheneticists” are recovered but others are not: “gradists” are separated into two blocks, one of them being called here “grade theoreticians.” We propose new interesting categories like the “buffonian school,” the “metaphoricians,” and those using “strictly genealogical classifications.” We consider that networks are not useful to represent shared ideas at the present step of the study. A cladogram is made for showing who is sharing what with whom, but also heterobathmy and homoplasy of characters. The present cladogram is not modelling processes of transmission of ideas about trees, and here it is mostly used to test for proximity of ideas of the same age and for categorization. PMID:23950877
Recognizing human gestures using a novel SVM tree
NASA Astrophysics Data System (ADS)
Jain, Hitesh; Chatterjee, Abhik; Kumar, Sanjeev; Raman, Balasubramanian
2012-01-01
In this paper, a novel support vector machine (SVM) tree is proposed for gesture recognition from the silhouette images. A skeleton based strategy is adopted to extract the features from a video sequence representing any human gesture. In our binary tree implementation of SVM, the number of binary classifiers required is reduced since, instead of grouping different classes together in order to train a global classifier, we select two classes for training at every node of the tree and use probability theory to classify the remaining points based on their similarities and differences to the two classes used for training. This process is carried on, randomly selecting two classes for training at a node, thus creating two child nodes and subsequently assigning the classes to the nodes derived. In the classification phase, we start out at the root node. At each node of the tree, a binary decision is made regarding the assignment of the input data point to either of the group represented by the left and right sub-tree of the node which may contain multiple classes. This is repeated recursively downward until we reach a leaf node that represents the class to which the input data point belonging. Finally, the proposed framework is tested on various data sets to check its efficiency. Encouraging results are achieved in terms of classification accuracy.
NASA Technical Reports Server (NTRS)
Rogers, J. R., III
1980-01-01
Flexible simulator for trouble-shooting data transmission system uses binary synchronous communications protocol to produce error-free transmission of data between two points. Protocol may be used to replace display generator or be directly fed to display generator.
Double Degenerate Binary Systems
Yakut, K.
2011-09-21
In this study, angular momentum loss via gravitational radiation in double degenerate binary (DDB)systems (NS + NS, NS + WD, WD + WD, and AM CVn) is studied. Energy loss by gravitational waves has been estimated for each type of systems.
Butel, Guillaume P; Smith, Greg A; Burge, James H
2014-02-10
Deflectometry is widely used to accurately calculate the slopes of any specular reflective surface, ranging from car bodies to nanometer-level mirrors. This paper presents a new deflectometry technique using binary patterns of increasing frequency to retrieve the surface slopes. Binary Pattern Deflectometry allows almost instant, simple, and accurate slope retrieval, which is required for applications using mobile devices. The paper details the theory of this deflectometry method and the challenges of its implementation. Furthermore, the binary pattern method can also be combined with a classic phase-shifting method to eliminate the need of a complex unwrapping algorithm and retrieve the absolute phase, especially in cases like segmented optics, where spatial algorithms have difficulties. Finally, whether it is used as a stand-alone or combined with phase-shifting, the binary patterns can, within seconds, calculate the slopes of any specular reflective surface. PMID:24663273
NASA Technical Reports Server (NTRS)
1976-01-01
Satellite X-ray experiments and ground-based programs aimed at observation of X-ray binaries are discussed. Experiments aboard OAO-3, OSO-8, Ariel 5, Uhuru, and Skylab are included along with rocket and ground-based observations. Major topics covered are: Her X-1, Cyg X-3, Cen X-3, Cyg X-1, the transient source A0620-00, other possible X-ray binaries, and plans and prospects for future observational programs.
NASA Astrophysics Data System (ADS)
Batten, A.; Murdin, P.
2000-11-01
Historically, spectroscopic binary stars were binary systems whose nature was discovered by the changing DOPPLER EFFECT or shift of the spectral lines of one or both of the component stars. The observed Doppler shift is a combination of that produced by the constant RADIAL VELOCITY (i.e. line-of-sight velocity) of the center of mass of the whole system, and the variable shift resulting from the o...
NASA Technical Reports Server (NTRS)
Lopez, Hiram
1987-01-01
Transmission errors for zeros and ones tabulated separately. Binary-symmetry detector employs psuedo-random data pattern used as test message coming through channel. Message then modulo-2 added to locally generated and synchronized version of test data pattern in same manner found in manufactured test sets of today. Binary symmetrical channel shows nearly 50-percent ones to 50-percent zeroes correspondence. Degree of asymmetry represents imbalances due to either modulation, transmission, or demodulation processes of system when perturbed by noise.
IND - THE IND DECISION TREE PACKAGE
NASA Technical Reports Server (NTRS)
Buntine, W.
1994-01-01
A common approach to supervised classification and prediction in artificial intelligence and statistical pattern recognition is the use of decision trees. A tree is "grown" from data using a recursive partitioning algorithm to create a tree which has good prediction of classes on new data. Standard algorithms are CART (by Breiman Friedman, Olshen and Stone) and ID3 and its successor C4 (by Quinlan). As well as reimplementing parts of these algorithms and offering experimental control suites, IND also introduces Bayesian and MML methods and more sophisticated search in growing trees. These produce more accurate class probability estimates that are important in applications like diagnosis. IND is applicable to most data sets consisting of independent instances, each described by a fixed length vector of attribute values. An attribute value may be a number, one of a set of attribute specific symbols, or it may be omitted. One of the attributes is delegated the "target" and IND grows trees to predict the target. Prediction can then be done on new data or the decision tree printed out for inspection. IND provides a range of features and styles with convenience for the casual user as well as fine-tuning for the advanced user or those interested in research. IND can be operated in a CART-like mode (but without regression trees, surrogate splits or multivariate splits), and in a mode like the early version of C4. Advanced features allow more extensive search, interactive control and display of tree growing, and Bayesian and MML algorithms for tree pruning and smoothing. These often produce more accurate class probability estimates at the leaves. IND also comes with a comprehensive experimental control suite. IND consists of four basic kinds of routines: data manipulation routines, tree generation routines, tree testing routines, and tree display routines. The data manipulation routines are used to partition a single large data set into smaller training and test sets. The
Raven, John A; Andrews, Mitchell
2010-09-01
Using a broad definition of trees, the evolutionary origins of trees in a nutritional context is considered using data from the fossil record and molecular phylogeny. Trees are first known from the Late Devonian about 380 million years ago, originated polyphyletically at the pteridophyte grade of organization; the earliest gymnosperms were trees, and trees are polyphyletic in the angiosperms. Nutrient transporters, assimilatory pathways, homoiohydry (cuticle, intercellular gas spaces, stomata, endohydric water transport systems including xylem and phloem-like tissue) and arbuscular mycorrhizas preceded the origin of trees. Nutritional innovations that began uniquely in trees were the seed habit and, certainly (but not necessarily uniquely) in trees, ectomycorrhizas, cyanobacterial, actinorhizal and rhizobial (Parasponia, some legumes) diazotrophic symbioses and cluster roots. PMID:20581011
NASA Technical Reports Server (NTRS)
Buntine, Wray
1993-01-01
This paper introduces the IND Tree Package to prospective users. IND does supervised learning using classification trees. This learning task is a basic tool used in the development of diagnosis, monitoring and expert systems. The IND Tree Package was developed as part of a NASA project to semi-automate the development of data analysis and modelling algorithms using artificial intelligence techniques. The IND Tree Package integrates features from CART and C4 with newer Bayesian and minimum encoding methods for growing classification trees and graphs. The IND Tree Package also provides an experimental control suite on top. The newer features give improved probability estimates often required in diagnostic and screening tasks. The package comes with a manual, Unix 'man' entries, and a guide to tree methods and research. The IND Tree Package is implemented in C under Unix and was beta-tested at university and commercial research laboratories in the United States.
ERIC Educational Resources Information Center
Barry, Dana M.
1997-01-01
Provides details on the chemical composition of trees including a definition of wood. Also includes an activity on anthocyanins as well as a discussion of the resistance of wood to solvents and chemicals. Lists interesting products from trees. (DDR)
A Beta-splitting model for evolutionary trees.
Sainudiin, Raazesh; Véber, Amandine
2016-05-01
In this article, we construct a generalization of the Blum-François Beta-splitting model for evolutionary trees, which was itself inspired by Aldous' Beta-splitting model on cladograms. The novelty of our approach allows for asymmetric shares of diversification rates (or diversification 'potential') between two sister species in an evolutionarily interpretable manner, as well as the addition of extinction to the model in a natural way. We describe the incremental evolutionary construction of a tree with n leaves by splitting or freezing extant lineages through the generating, organizing and deleting processes. We then give the probability of any (binary rooted) tree under this model with no extinction, at several resolutions: ranked planar trees giving asymmetric roles to the first and second offspring species of a given species and keeping track of the order of the speciation events occurring during the creation of the tree, unranked planar trees, ranked non-planar trees and finally (unranked non-planar) trees. We also describe a continuous-time equivalent of the generating, organizing and deleting processes where tree topology and branch lengths are jointly modelled and provide code in SageMath/Python for these algorithms. PMID:27293780
A Beta-splitting model for evolutionary trees
Sainudiin, Raazesh
2016-01-01
In this article, we construct a generalization of the Blum–François Beta-splitting model for evolutionary trees, which was itself inspired by Aldous' Beta-splitting model on cladograms. The novelty of our approach allows for asymmetric shares of diversification rates (or diversification ‘potential’) between two sister species in an evolutionarily interpretable manner, as well as the addition of extinction to the model in a natural way. We describe the incremental evolutionary construction of a tree with n leaves by splitting or freezing extant lineages through the generating, organizing and deleting processes. We then give the probability of any (binary rooted) tree under this model with no extinction, at several resolutions: ranked planar trees giving asymmetric roles to the first and second offspring species of a given species and keeping track of the order of the speciation events occurring during the creation of the tree, unranked planar trees, ranked non-planar trees and finally (unranked non-planar) trees. We also describe a continuous-time equivalent of the generating, organizing and deleting processes where tree topology and branch lengths are jointly modelled and provide code in SageMath/Python for these algorithms. PMID:27293780
The Eclipsing Binary On-Line Atlas (EBOLA)
NASA Astrophysics Data System (ADS)
Bradstreet, D. H.; Steelman, D. P.; Sanders, S. J.; Hargis, J. R.
2004-05-01
In conjunction with the upcoming release of \\it Binary Maker 3.0, an extensive on-line database of eclipsing binaries is being made available. The purposes of the atlas are: \\begin {enumerate} Allow quick and easy access to information on published eclipsing binaries. Amass a consistent database of light and radial velocity curve solutions to aid in solving new systems. Provide invaluable querying capabilities on all of the parameters of the systems so that informative research can be quickly accomplished on a multitude of published results. Aid observers in establishing new observing programs based upon stars needing new light and/or radial velocity curves. Encourage workers to submit their published results so that others may have easy access to their work. Provide a vast but easily accessible storehouse of information on eclipsing binaries to accelerate the process of understanding analysis techniques and current work in the field. \\end {enumerate} The database will eventually consist of all published eclipsing binaries with light curve solutions. The following information and data will be supplied whenever available for each binary: original light curves in all bandpasses, original radial velocity observations, light curve parameters, RA and Dec, V-magnitudes, spectral types, color indices, periods, binary type, 3D representation of the system near quadrature, plots of the original light curves and synthetic models, plots of the radial velocity observations with theoretical models, and \\it Binary Maker 3.0 data files (parameter, light curve, radial velocity). The pertinent references for each star are also given with hyperlinks directly to the papers via the NASA Abstract website for downloading, if available. In addition the Atlas has extensive searching options so that workers can specifically search for binaries with specific characteristics. The website has more than 150 systems already uploaded. The URL for the site is http://ebola.eastern.edu/.
ERIC Educational Resources Information Center
Sweeney, Debra; Rounds, Judy
2011-01-01
Trees are great inspiration for artists. Many art teachers find themselves inspired and maybe somewhat obsessed with the natural beauty and elegance of the lofty tree, and how it changes through the seasons. One such tree that grows in several regions and always looks magnificent, regardless of the time of year, is the birch. In this article, the…
Max, N
2002-08-19
This paper is a survey of the author's work on illumination and shadows under trees, including the effects of sky illumination, sun penumbras, scattering in a misty atmosphere below the trees, and multiple scattering and transmission between leaves. It also describes a hierarchical image-based rendering method for trees.
Minnesota's Forest Trees. Revised.
ERIC Educational Resources Information Center
Miles, William R.; Fuller, Bruce L.
This bulletin describes 46 of the more common trees found in Minnesota's forests and windbreaks. The bulletin contains two tree keys, a summer key and a winter key, to help the reader identify these trees. Besides the two keys, the bulletin includes an introduction, instructions for key use, illustrations of leaf characteristics and twig…
ERIC Educational Resources Information Center
Brooks, Sarah DeWitt
2010-01-01
This article describes the author's experience in implementing a Wish Tree project in her school in an effort to bring the school community together with a positive art-making experience during a potentially stressful time. The concept of a wish tree is simple: plant a tree; provide tags and pencils for writing wishes; and encourage everyone to…
ERIC Educational Resources Information Center
Srulowitz, Frances
1992-01-01
Describes an activity to develop students' skills of observation and recordkeeping by studying the growth of a tree's leaves during the spring. Children monitor the growth of 11 tress over a 2-month period, draw pictures of the tree at different stages of growth, and write diaries of the tree's growth. (MDH)
2014-01-01
Background There is a need to evaluate complex interaction effects on human health, such as those induced by mixtures of environmental contaminants. The usual approach is to formulate an additive statistical model and check for departures using product terms between the variables of interest. In this paper, we present an approach to search for interaction effects among several variables using boosted regression trees. Methods We simulate a continuous outcome from real data on 27 environmental contaminants, some of which are correlated, and test the method’s ability to uncover the simulated interactions. The simulated outcome contains one four-way interaction, one non-linear effect and one interaction between a continuous variable and a binary variable. Four scenarios reflecting different strengths of association are simulated. We illustrate the method using real data. Results The method succeeded in identifying the true interactions in all scenarios except where the association was weakest. Some spurious interactions were also found, however. The method was also capable to identify interactions in the real data set. Conclusions We conclude that boosted regression trees can be used to uncover complex interaction effects in epidemiological studies. PMID:24993424
Predicting 'very poor' beach water quality gradings using classification tree.
Thoe, Wai; Choi, King Wah; Lee, Joseph Hun-wei
2016-02-01
A beach water quality prediction system has been developed in Hong Kong using multiple linear regression (MLR) models. However, linear models are found to be weak at capturing the infrequent 'very poor' water quality occasions when Escherichia coli (E. coli) concentration exceeds 610 counts/100 mL. This study uses a classification tree to increase the accuracy in predicting the 'very poor' water quality events at three Hong Kong beaches affected either by non-point source or point source pollution. Binary-output classification trees (to predict whether E. coli concentration exceeds 610 counts/100 mL) are developed over the periods before and after the implementation of the Harbour Area Treatment Scheme, when systematic changes in water quality were observed. Results show that classification trees can capture more 'very poor' events in both periods when compared to the corresponding linear models, with an increase in correct positives by an average of 20%. Classification trees are also developed at two beaches to predict the four-category Beach Water Quality Indices. They perform worse than the binary tree and give excessive false alarms of 'very poor' events. Finally, a combined modelling approach using both MLR model and classification tree is proposed to enhance the beach water quality prediction system for Hong Kong. PMID:26837834
Uncovering Binary Supermassive Black Holes in Merging Galaxy Pairs
NASA Astrophysics Data System (ADS)
McNulty, Paul; Satyapal, Shobita; Ellison, Sara L.; Secrest, Nathan; Gliozzi, Mario; Rothberg, Barry
2016-01-01
It is now well known that virtually all galaxies host a central supermassive black hole (SMBH) and that galaxy interactions are ubiquitous. Theory predicts these interactions would funnel gas toward the central regions of galaxies, potentially triggering gas accretion onto the SMBH, causing them to appear as binary active galactic nuclei (AGN). However, despite decades of searching and strong theoretical reasons that they should exist, observationally confirmed cases of binary AGNs are extremely rare, and most have been discovered serendipitously. Since galaxy mergers are likely to be characterized by dusty environments, it is possible that the optical signatures of a significant number of binary AGNs are obscured. Observations from the Wide-field Infrared Survey Explorer (WISE) may hold the key for increasing the rate of discovery of binary AGN in late-stage mergers. Starting with a sample of ~4,000 galaxy pairs, we searched for mid-IR signatures of binary AGNs. In this poster, we report on the detection frequency of binary AGNs identified through mid-infrared observations and explore its dependence on merger stage.
Morozov, Dmitriy; Weber, Gunther H.
2014-03-31
Topological techniques provide robust tools for data analysis. They are used, for example, for feature extraction, for data de-noising, and for comparison of data sets. This chapter concerns contour trees, a topological descriptor that records the connectivity of the isosurfaces of scalar functions. These trees are fundamental to analysis and visualization of physical phenomena modeled by real-valued measurements. We study the parallel analysis of contour trees. After describing a particular representation of a contour tree, called local{global representation, we illustrate how di erent problems that rely on contour trees can be solved in parallel with minimal communication.
NASA Astrophysics Data System (ADS)
Giménez, Alvaro; Rucinski, Slavek; Szkody, P.; Gies, D.; Kang, Y.-W.; Linsky, J.; Livio, M.; Morrell, N.; Hilditch, R.; Nordström, B.; Ribas, I.; Sion, E.; Vrielman, S.
2007-03-01
The triennial report from Commission 42 covers various topics like massive binaries, contact systems, cataclysmic variables and low-mass binary stars. We try in a number of sections to provide an update on the current status of the main research areas in the field of close binaries. It is not a formal review, even complete or comprehensive, but an attempt to bring the main topics on recent research to astronomers working in other fields. References are also not comprehensive and simply added to the text to help the reader looking for deeper information on the subject. For this reason, we have chosen to include references (sometimes incomplete for ongoing work) not in a list at the end but integrated with the main text body. Complete references and additional sources can be easily obtained through web access of ADS or SIMBAD. Furthermore, the summary of papers on close-binary research contained in the Bibliography of Close Binaries (BCB) can be accessed from the web site of Commission 42. I would like to express the gratitude of the commission for the careful work of Colin Scarfe as Editor-in-Chief of BCB and Andras Holl and Attila Sragli for maintaining the web pages of the Commission within the structure of Division V. Finally, K. Olah and J. Jurcsik are gratefully acknowledged for their continued support as editors of the Information Bulletin on Variable Stars (IBVS), also accessible through the commission web page.
DEVELOPMENT OF A MANAGEMENT SYSTEM OF ROADSIDE TREES USING RFID AND ONTOLOGY
NASA Astrophysics Data System (ADS)
Yabuki, Nobuyoshi; Kikushige, Yuki; Fukuda, Tomohiro; Ebashi, Yumeka
It is necessary to make scientific and systematic diagnosis for roadside trees, which are essential for comfortable urban environment, in order to keep them in healthy conditions because they may not be planted adequately. Therefore, in this research, a Roadside Tree Diagnosis Support System (RTDSS) was developed using Radio Frequency IDentification (RFID) and Personal Digital Assistants (PDA) to facilitate diagnosis based on the Visual Tree Assessment (VTA) method. The system was used on a trial basis to real roadside trees by tree surgeons and was highly evaluated. Since governmental or municipal agencies, which develop and maintain the databases of roadside trees, tend to use different terminologies, units and tree registration systems, it is difficult to compare or combine two or more roadside tree databases. Thus, the ontology of roadside tree management was developed to compare and analyze various roadside tree databases. Two different databases were developed and testing of the developed ontology system successfully showed proper searching result over different terminologies.
ERIC Educational Resources Information Center
Rollinson, Susan Wells
2012-01-01
The growth of a pine tree is examined by preparing "tree cookies" (cross-sectional disks) between whorls of branches. The use of Christmas trees allows the tree cookies to be obtained with inexpensive, commonly available tools. Students use the tree cookies to investigate the annual growth of the tree and how it corresponds to the number of whorls…
Franklin, Oskar; Palmroth, Sari; Näsholm, Torgny
2014-11-01
Tree breeding and biotechnology can enhance forest productivity and help alleviate the rising pressure on forests from climate change and human exploitation. While many physiological processes and genes are targeted in search of genetically improved tree productivity, an overarching principle to guide this search is missing. Here, we propose a method to identify the traits that can be modified to enhance productivity, based on the differences between trees shaped by natural selection and 'improved' trees with traits optimized for productivity. We developed a tractable model of plant growth and survival to explore such potential modifications under a range of environmental conditions, from non-water limited to severely drought-limited sites. We show how key traits are controlled by a trade-off between productivity and survival, and that productivity can be increased at the expense of long-term survival by reducing isohydric behavior (stomatal regulation of leaf water potential) and allocation to defense against pests compared with native trees. In contrast, at dry sites occupied by naturally drought-resistant trees, the model suggests a better strategy may be to select trees with slightly lower wood density than the native trees and to augment isohydric behavior and allocation to defense. Thus, which traits to modify, and in which direction, depend on the original tree species or genotype, the growth environment and wood-quality versus volume production preferences. In contrast to this need for customization of drought and pest resistances, consistent large gains in productivity for all genotypes can be obtained if root traits can be altered to reduce competition for water and nutrients. Our approach illustrates the potential of using eco-evolutionary theory and modeling to guide plant breeding and genetic technology in selecting target traits in the quest for higher forest productivity. PMID:25542897
Huffman, Gerald P.; Zhao, Jianmin; Feng, Zhen
1996-01-01
A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered.
Huffman, G.P.; Zhao, J.; Feng, Z.
1996-12-03
A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered. 3 figs.
NASA Astrophysics Data System (ADS)
Kadam, Kundan; Clayton, Geoffrey C.; Frank, Juhan; Tohline, Joel E.; Staff, Jan E.; Motl, Patrick M.; Marcello, Dominic
2014-06-01
About one in every 150 stars is a contact binary system of WUMa type and it was thought for a long time that such a binary would naturally proceed towards merger, forming a single star. In September 2008 such a merger was observed in the eruption of a “red nova", V1309 Sco. We are developing a hydrodynamics simulation for contact binaries using Self Consistent Field (SCF) techniques, so that their formation, structural, and merger properties could be studied. This model can also be used to probe the stability criteria such as the large-scale equatorial circulations and the minimum mass ratio. We also plan to generate light curves from the simulation data in order to compare with the observed case of V1309 Sco. A comparison between observations and simulations will help us better understand the nova-like phenomena of stellar mergers.
NASA Astrophysics Data System (ADS)
Xiao, Guoqiang; Jiang, Yang; Song, Gang; Jiang, Jianmin
2010-12-01
We propose a support-vector-machine (SVM) tree to hierarchically learn from domain knowledge represented by low-level features toward automatic classification of sports videos. The proposed SVM tree adopts a binary tree structure to exploit the nature of SVM's binary classification, where each internal node is a single SVM learning unit, and each external node represents the classified output type. Such a SVM tree presents a number of advantages, which include: 1. low computing cost; 2. integrated learning and classification while preserving individual SVM's learning strength; and 3. flexibility in both structure and learning modules, where different numbers of nodes and features can be added to address specific learning requirements, and various learning models can be added as individual nodes, such as neural networks, AdaBoost, hidden Markov models, dynamic Bayesian networks, etc. Experiments support that the proposed SVM tree achieves good performances in sports video classifications.
Massive binaries in R136 using Hubble
NASA Astrophysics Data System (ADS)
Caballero-Nieves, Saida; Crowther, Paul; Bostroem, K. Azalee; Maíz Apellániz, Jesus
2014-09-01
We have undertaken a complete HST/STIS spectroscopic survey of R136, the young, central dense starburst cluster of the LMC 30 Doradus nebula, which hosts the most massive stars currently known. Our CCD datasets, comprising 17 adjacent 0.2"×52" long slits, were split across Cycles 19 and 20 to allow us to search for spectroscopic binaries. We will present the results of our survey, including a comparison with the massive-star population in the wider 30 Doradus region from the VLT Flames Tarantula survey. We will also describe upcoming HST/FGS observations, which will probe intermediate-separation binaries in R136, and discuss this cluster in the context of unresolved young extragalactic star clusters.
Studies of Long Period Eclipsing Binaries
NASA Astrophysics Data System (ADS)
Ratajczak, M.; Hełminiak, K. G.; Konacki, M.
2015-07-01
The survey of long period eclipsing binaries from the All Sky Automated Survey (ASAS) catalog aims at searching for and characterizing subgiants and red giants in double-lined detached binary systems. Absolute physical and orbital parameters are presented based on radial velocities from high-quality optical spectra obtained with the following telescope/instrument combinations: 8.2 m Subaru/HDS, ESO 3.6 m/HARPS, 1.9 m Radcliffe/GIRAFFE, CTIO 1.5 m/CHIRON, and 1.2 m Euler/CORALIE. Photometric data from ASAS, SuperWASP, and the Solaris Project were also used. We discuss the derived uncertainties for the individual masses and radii of the components (better than 3% for several systems), as well as results from the spectral analysis performed for components of systems whose spectra we disentangled.
Advancement and New Functionality of the Binary Star DataBase (BDB)
NASA Astrophysics Data System (ADS)
Malkov, O. Yu.; Kovaleva, D. A.; Kaygorodov, P. V.
2016-06-01
A new version of Binary star DataBase BDB (bdb.inasan.ru) has been released. It is much more flexible and quick than the previous version and offers full search capabilities on all parameters. New information is progressively added, in particular data from principal catalogues of close (spectroscopic, eclipsing, X-ray) binaries. A new interface has been completed, providing a more user-friendly navigation while retaining the multiple search and browsing capabilities.
Properties OF M31. V. 298 eclipsing binaries from PAndromeda
Lee, C.-H.; Koppenhoefer, J.; Seitz, S.; Bender, R.; Riffeser, A.; Kodric, M.; Hopp, U.; Snigula, J.; Gössl, C.; Kudritzki, R.-P.; Burgett, W.; Chambers, K.; Hodapp, K.; Kaiser, N.; Waters, C.
2014-12-10
The goal of this work is to conduct a photometric study of eclipsing binaries in M31. We apply a modified box-fitting algorithm to search for eclipsing binary candidates and determine their period. We classify these candidates into detached, semi-detached, and contact systems using the Fourier decomposition method. We cross-match the position of our detached candidates with the photometry from Local Group Survey and select 13 candidates brighter than 20.5 mag in V. The relative physical parameters of these detached candidates are further characterized with the Detached Eclipsing Binary Light curve fitter (DEBiL) by Devor. We will follow up the detached eclipsing binaries spectroscopically and determine the distance to M31.
Hexagonal Pixels and Indexing Scheme for Binary Images
NASA Technical Reports Server (NTRS)
Johnson, Gordon G.
2004-01-01
A scheme for resampling binaryimage data from a rectangular grid to a regular hexagonal grid and an associated tree-structured pixel-indexing scheme keyed to the level of resolution have been devised. This scheme could be utilized in conjunction with appropriate image-data-processing algorithms to enable automated retrieval and/or recognition of images. For some purposes, this scheme is superior to a prior scheme that relies on rectangular pixels: one example of such a purpose is recognition of fingerprints, which can be approximated more closely by use of line segments along hexagonal axes than by line segments along rectangular axes. This scheme could also be combined with algorithms for query-image-based retrieval of images via the Internet. A binary image on a rectangular grid is generated by raster scanning or by sampling on a stationary grid of rectangular pixels. In either case, each pixel (each cell in the rectangular grid) is denoted as either bright or dark, depending on whether the light level in the pixel is above or below a prescribed threshold. The binary data on such an image are stored in a matrix form that lends itself readily to searches of line segments aligned with either or both of the perpendicular coordinate axes. The first step in resampling onto a regular hexagonal grid is to make the resolution of the hexagonal grid fine enough to capture all the binaryimage detail from the rectangular grid. In practice, this amounts to choosing a hexagonal-cell width equal to or less than a third of the rectangular- cell width. Once the data have been resampled onto the hexagonal grid, the image can readily be checked for line segments aligned with the hexagonal coordinate axes, which typically lie at angles of 30deg, 90deg, and 150deg with respect to say, the horizontal rectangular coordinate axis. Optionally, one can then rotate the rectangular image by 90deg, then again sample onto the hexagonal grid and check for line segments at angles of 0deg, 60deg
Identification list of binaries
NASA Astrophysics Data System (ADS)
Malkov,, O.; Karchevsky,, A.; Kaygorodov, P.; Kovaleva, D.
The Identification List of Binaries (ILB) is a star catalogue constructed to facilitate cross-referencing between different catalogues of binary stars. As of 2015, it comprises designations for approximately 120,000 double/multiple systems. ILB contains star coordinates and cross-references to the Bayer/Flemsteed, DM (BD/CD/CPD), HD, HIP, ADS, WDS, CCDM, TDSC, GCVS, SBC9, IGR (and some other X-ray catalogues), PSR designations, as well as identifications in the recently developed BSDB system. ILB eventually became a part of the BDB stellar database.
A survey of decision tree classifier methodology
NASA Technical Reports Server (NTRS)
Safavian, S. Rasoul; Landgrebe, David
1990-01-01
Decision Tree Classifiers (DTC's) are used successfully in many diverse areas such as radar signal classification, character recognition, remote sensing, medical diagnosis, expert systems, and speech recognition. Perhaps, the most important feature of DTC's is their capability to break down a complex decision-making process into a collection of simpler decisions, thus providing a solution which is often easier to interpret. A survey of current methods is presented for DTC designs and the various existing issue. After considering potential advantages of DTC's over single stage classifiers, subjects of tree structure design, feature selection at each internal node, and decision and search strategies are discussed.
A survey of decision tree classifier methodology
NASA Technical Reports Server (NTRS)
Safavian, S. R.; Landgrebe, David
1991-01-01
Decision tree classifiers (DTCs) are used successfully in many diverse areas such as radar signal classification, character recognition, remote sensing, medical diagnosis, expert systems, and speech recognition. Perhaps the most important feature of DTCs is their capability to break down a complex decision-making process into a collection of simpler decisions, thus providing a solution which is often easier to interpret. A survey of current methods is presented for DTC designs and the various existing issues. After considering potential advantages of DTCs over single-state classifiers, subjects of tree structure design, feature selection at each internal node, and decision and search strategies are discussed.
The highly eccentric detached eclipsing binaries in ACVS and MACC
NASA Astrophysics Data System (ADS)
Shivvers, Isaac; Bloom, Joshua S.; Richards, Joseph W.
2014-06-01
Next-generation synoptic photometric surveys will yield unprecedented (for the astronomical community) volumes of data and the processes of discovery and rare-object identification are, by necessity, becoming more autonomous. Such autonomous searches can be used to find objects of interest applicable to a wide range of outstanding problems in astronomy, and in this paper we present the methods and results of a largely autonomous search for highly eccentric detached eclipsing binary systems in the Machine-learned All-Sky Automated Survey Classification Catalog. 106 detached eclipsing binaries with eccentricities of e ≳ 0.1 are presented, most of which are identified here for the first time. We also present new radial-velocity curves and absolute parameters for six of those systems with the long-term goal of increasing the number of highly eccentric systems with orbital solutions, thereby facilitating further studies of the tidal circularization process in binary stars.
Adaptive prediction trees for image compression.
Robinson, John A
2006-08-01
This paper presents a complete general-purpose method for still-image compression called adaptive prediction trees. Efficient lossy and lossless compression of photographs, graphics, textual, and mixed images is achieved by ordering the data in a multicomponent binary pyramid, applying an empirically optimized nonlinear predictor, exploiting structural redundancies between color components, then coding with hex-trees and adaptive runlength/Huffman coders. Color palettization and order statistics prefiltering are applied adaptively as appropriate. Over a diverse image test set, the method outperforms standard lossless and lossy alternatives. The competing lossy alternatives use block transforms and wavelets in well-studied configurations. A major result of this paper is that predictive coding is a viable and sometimes preferable alternative to these methods. PMID:16900671
Self-Adaptive Induction of Regression Trees.
Fidalgo-Merino, Raúl; Núñez, Marlon
2011-08-01
A new algorithm for incremental construction of binary regression trees is presented. This algorithm, called SAIRT, adapts the induced model when facing data streams involving unknown dynamics, like gradual and abrupt function drift, changes in certain regions of the function, noise, and virtual drift. It also handles both symbolic and numeric attributes. The proposed algorithm can automatically adapt its internal parameters and model structure to obtain new patterns, depending on the current dynamics of the data stream. SAIRT can monitor the usefulness of nodes and can forget examples from selected regions, storing the remaining ones in local windows associated to the leaves of the tree. On these conditions, current regression methods need a careful configuration depending on the dynamics of the problem. Experimentation suggests that the proposed algorithm obtains better results than current algorithms when dealing with data streams that involve changes with different speeds, noise levels, sampling distribution of examples, and partial or complete changes of the underlying function. PMID:21263164
Optimal periodic binary codes of lengths 28 to 64
NASA Technical Reports Server (NTRS)
Tyler, S.; Keston, R.
1980-01-01
Results from computer searches performed to find repeated binary phase coded waveforms with optimal periodic autocorrelation functions are discussed. The best results for lengths 28 to 64 are given. The code features of major concern are where (1) the peak sidelobe in the autocorrelation function is small and (2) the sum of the squares of the sidelobes in the autocorrelation function is small.
Discriminating crop and other canopies by overlapping binary image layers
NASA Astrophysics Data System (ADS)
Doi, Ryoichi
2013-02-01
For optimal management of agricultural fields by remote sensing, discrimination of the crop canopy from weeds and other objects is essential. In a digital photograph, a rice canopy was discriminated from a variety of weed and tree canopies and other objects by overlapping binary image layers of red-green-blue and other color components indicating the pixels with target canopy-specific (intensity) values based on the ranges of means ±(3×) standard deviations. By overlapping and merging the binary image layers, the target canopy specificity improved to 0.0015 from 0.027 for the yellow 1× standard deviation binary image layer, which was the best among all combinations of color components and means ±(3×) standard deviations. The most target rice canopy-likely pixels were further identified by limiting the pixels at different luminosity values. The discriminatory power was also visually demonstrated in this manner.
Transforming phylogenetic networks: Moving beyond tree space.
Huber, Katharina T; Moulton, Vincent; Wu, Taoyang
2016-09-01
Phylogenetic networks are a generalization of phylogenetic trees that are used to represent reticulate evolution. Unrooted phylogenetic networks form a special class of such networks, which naturally generalize unrooted phylogenetic trees. In this paper we define two operations on unrooted phylogenetic networks, one of which is a generalization of the well-known nearest-neighbor interchange (NNI) operation on phylogenetic trees. We show that any unrooted phylogenetic network can be transformed into any other such network using only these operations. This generalizes the well-known fact that any phylogenetic tree can be transformed into any other such tree using only NNI operations. It also allows us to define a generalization of tree space and to define some new metrics on unrooted phylogenetic networks. To prove our main results, we employ some fascinating new connections between phylogenetic networks and cubic graphs that we have recently discovered. Our results should be useful in developing new strategies to search for optimal phylogenetic networks, a topic that has recently generated some interest in the literature, as well as for providing new ways to compare networks. PMID:27224010
Binary coding for hyperspectral imagery
NASA Astrophysics Data System (ADS)
Wang, Jing; Chang, Chein-I.; Chang, Chein-Chi; Lin, Chinsu
2004-10-01
Binary coding is one of simplest ways to characterize spectral features. One commonly used method is a binary coding-based image software system, called Spectral Analysis Manager (SPAM) for remotely sensed imagery developed by Mazer et al. For a given spectral signature, the SPAM calculates its spectral mean and inter-band spectral difference and uses them as thresholds to generate a binary code word for this particular spectral signature. Such coding scheme is generally effective and also very simple to implement. This paper revisits the SPAM and further develops three new SPAM-based binary coding methods, called equal probability partition (EPP) binary coding, halfway partition (HP) binary coding and median partition (MP) binary coding. These three binary coding methods along with the SPAM well be evaluated for spectral discrimination and identification. In doing so, a new criterion, called a posteriori discrimination probability (APDP) is also introduced for performance measure.
Nonparametric statistical modeling of binary star separations
NASA Technical Reports Server (NTRS)
Heacox, William D.; Gathright, John
1994-01-01
We develop a comprehensive statistical model for the distribution of observed separations in binary star systems, in terms of distributions of orbital elements, projection effects, and distances to systems. We use this model to derive several diagnostics for estimating the completeness of imaging searches for stellar companions, and the underlying stellar multiplicities. In application to recent imaging searches for low-luminosity companions to nearby M dwarf stars, and for companions to young stars in nearby star-forming regions, our analyses reveal substantial uncertainty in estimates of stellar multiplicity. For binary stars with late-type dwarf companions, semimajor axes appear to be distributed approximately as a(exp -1) for values ranging from about one to several thousand astronomical units. About one-quarter of the companions to field F and G dwarf stars have semimajor axes less than 1 AU, and about 15% lie beyond 1000 AU. The geometric efficiency (fraction of companions imaged onto the detector) of imaging searches is nearly independent of distances to program stars and orbital eccentricities, and varies only slowly with detector spatial limitations.
Nonparametric statistical modeling of binary star separations
NASA Astrophysics Data System (ADS)
Heacox, William D.; Gathright, John
1994-09-01
We develop a comprehensive statistical model for the distribution of observed separations in binary star systems, in terms of distributions of orbital elements, projection effects, and distances to systems. We use this model to derive several diagnostics for estimating the completeness of imaging searches for stellar companions, and the underlying stellar multiplicities. In application to recent imaging searches for low-luminosity companions to nearby M dwarf stars, and for companions to young stars in nearby star-forming regions, our analyses reveal substantial uncertainty in estimates of stellar multiplicity. For binary stars with late-type dwarf companions, semimajor axes appear to be distributed approximately as a-1 for values ranging from about one to several thousand astronomical units. About one-quarter of the companions to field F and G dwarf stars have semimajor axes less than 1 AU, and about 15% lie beyond 1000 AU. The geometric efficiency (fraction of companions imaged onto the detector) of imaging searches is nearly independent of distances to program stars and orbital eccentricities, and varies only slowly with detector spatial limitations.
W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis.
Trifinopoulos, Jana; Nguyen, Lam-Tung; von Haeseler, Arndt; Minh, Bui Quang
2016-07-01
This article presents W-IQ-TREE, an intuitive and user-friendly web interface and server for IQ-TREE, an efficient phylogenetic software for maximum likelihood analysis. W-IQ-TREE supports multiple sequence types (DNA, protein, codon, binary and morphology) in common alignment formats and a wide range of evolutionary models including mixture and partition models. W-IQ-TREE performs fast model selection, partition scheme finding, efficient tree reconstruction, ultrafast bootstrapping, branch tests, and tree topology tests. All computations are conducted on a dedicated computer cluster and the users receive the results via URL or email. W-IQ-TREE is available at http://iqtree.cibiv.univie.ac.at It is free and open to all users and there is no login requirement. PMID:27084950
NASA Technical Reports Server (NTRS)
Frazier, D. O.; Facemire, B. R.; Kaukler, W. F.; Witherow, W. K.; Fanning, U.
1986-01-01
Studies of monotectic alloys and alloy analogs reviewed. Report surveys research on liquid/liquid and solid/liquid separation in binary monotectic alloys. Emphasizes separation processes in low gravity, such as in outer space or in free fall in drop towers. Advances in methods of controlling separation in experiments highlighted.
Binary concatenated coding system
NASA Technical Reports Server (NTRS)
Monford, L. G., Jr.
1973-01-01
Coding, using 3-bit binary words, is applicable to any measurement having integer scale up to 100. System using 6-bit data words can be expanded to read from 1 to 10,000, and 9-bit data words can increase range to 1,000,000. Code may be ''read'' directly by observation after memorizing simple listing of 9's and 10's.
Binary primitive alternant codes
NASA Technical Reports Server (NTRS)
Helgert, H. J.
1975-01-01
In this note we investigate the properties of two classes of binary primitive alternant codes that are generalizations of the primitive BCH codes. For these codes we establish certain equivalence and invariance relations and obtain values of d and d*, the minimum distances of the prime and dual codes.
Interacting binaries. Lecture notes 1992.
NASA Astrophysics Data System (ADS)
Nussbaumer, H.; Orr, A.
These lecture notes represent a unique collection of information and references on current research on interacting binaries: S. N. Shore puts the emphasis on observations and their connection to relevant physics. He also discusses symbiotic stars. Cataclysmic variables are the subject of M. Livio's course, whereas E. P. J. van den Heuvel concentrates on more massive binaries and X-ray binaries.
Soil cover by natural trees in agroforestry systems
NASA Astrophysics Data System (ADS)
Diaz-Ambrona, C. G. H.; Almoguera Millán, C.; Tarquis Alfonso, A.
2009-04-01
The dehesa is common agroforestry system in the Iberian Peninsula. These open oak parklands with silvo-pastoral use cover about two million hectares. Traditionally annual pastures have been grazed by cows, sheep and also goats while acorns feed Iberian pig diet. Evergreen oak (Quercus ilex L.) has other uses as fuelwood collection and folder after tree pruning. The hypothesis of this work is that tree density and canopy depend on soil types. We using the spanish GIS called SIGPAC to download the images of dehesa in areas with different soil types. True colour images were restoring to a binary code, previously canopy colour range was selected. Soil cover by tree canopy was calculated and number of trees. Processing result was comparable to real data. With these data we have applied a dynamic simulation model Dehesa to determine evergreen oak acorn and annual pasture production. The model Dehesa is divided into five submodels: Climate, Soil, Evergreen oak, Pasture and Grazing. The first three require the inputs: (i) daily weather data (maximum and minimum temperatures, precipitation and solar radiation); (ii) the soil input parameters for three horizons (thickness, field capacity, permanent wilting point, and bulk density); and (iii) the tree characterization of the dehesa (tree density, canopy diameter and height, and diameter of the trunk). The influence of tree on pasture potential production is inversely proportional to the canopy cover. Acorn production increase with tree canopy cover until stabilizing itself, and will decrease if density becomes too high (more than 80% soil tree cover) at that point there is competition between the trees. Main driving force for dehesa productivity is soil type for pasture, and tree cover for acorn production. Highest pasture productivity was obtained on soil Dystric Planosol (Alfisol), Dystric Cambisol and Chromo-calcic-luvisol, these soils only cover 22.4% of southwest of the Iberian peninssula. Lowest productivity was
GRFT - Genetic Records Family Tree Web Applet.
Pimentel, Samuel; Walbot, Virginia; Fernandes, John
2011-01-01
Current software for storing and displaying records of genetic crosses does not provide an easy way to determine the lineage of an individual. The genetic records family tree (GRFT) applet processes records of genetic crosses and allows researchers to quickly visualize lineages using a family tree construct and to access other information from these records using any Internet browser. Users select from three display features: (1) a family tree view which displays a color-coded family tree for an individual, (2) a sequential list of crosses, and (3) a list of crosses matching user-defined search criteria. Each feature contains options to specify the number of records shown and the latter two contain an option to filter results by the owner of the cross. The family tree feature is interactive, displaying a popup box with genetic information when the user mouses over an individual and allowing the user to draw a new tree by clicking on any individual in the current tree. The applet is written in JavaScript and reads genetic records from a tab-delimited text file on the server, so it is cross-platform, can be accessed by anyone with an Internet connection, and supports almost instantaneous generation of new trees and table lists. Researchers can use the tool with their own genetic cross records for any sexually reproducing organism. No additional software is required and with only minor modifications to the script, researchers can add their own custom columns. GRFT's speed, versatility, and low overhead make it an effective and innovative visualization method for genetic records. A sample tool is available at http://stanford.edu/walbot/grft-sample.html. PMID:22303311
Ortiz-Barrientos, Daniel; Baack, Eric J
2014-09-01
From California sequoia, to Australian eucalyptus, to the outstanding diversity of Amazonian forests, trees are fundamental to many processes in ecology and evolution. Trees define the communities that they inhabit, are host to a multiplicity of other organisms and can determine the ecological dynamics of other plants and animals. Trees are also at the heart of major patterns of biodiversity such as the latitudinal gradient of species diversity and thus are important systems for studying the origin of new plant species. Although the role of trees in community assembly and ecological succession is partially understood, the origin of tree diversity remains largely opaque. For instance, the relative importance of differing habitats and phenologies as barriers to hybridization between closely related species is still largely uncharacterized in trees. Consequently, we know very little about the origin of trees species and their integrity. Similarly, studies on the interplay between speciation and tree community assembly are in their infancy and so are studies on how processes like forest maturation modifies the context in which reproductive isolation evolves. In this issue of Molecular Ecology, Lindtke et al. (2014) and Lagache et al. (2014) overcome some traditional difficulties in studying mating systems and sexual isolation in the iconic oaks and poplars, providing novel insights about the integrity of tree species and on how ecology leads to variation in selection on reproductive isolation over time and space. PMID:25155715
Binary Cepheids From High-Angular Resolution
NASA Astrophysics Data System (ADS)
Gallenne, A.; Mérand, A.; Kervella, P.
2015-12-01
Optical interferometry is the only technique giving access to milli-arcsecond (mas) spatial resolution. This is a powerful and unique tool to detect the close orbiting companions of Cepheids, and offers an unique opportunity to make progress in resolving the Cepheid mass discrepancy. Our goal in studying binary Cepheids is to measure the astrometric position of the high-contrast companion, and then combine them with spectroscopic measurements to derive the orbital elements, distances, and dynamical masses. In the course of this program, we developed a new tool, CANDID, to search for high-contrast companions and set detection limits from interferometric observations
NASA Astrophysics Data System (ADS)
Ajith, P.; Fotopoulos, N.; Privitera, S.; Neunzert, A.; Mazumder, N.; Weinstein, A. J.
2014-04-01
We report the construction of a three-dimensional template bank for the search for gravitational waves from inspiralling binaries consisting of spinning compact objects. The parameter space consists of two dimensions describing the mass parameters and one "reduced-spin" parameter, which describes the secular (nonprecessing) spin effects in the waveform. The template placement is based on an efficient stochastic algorithm and makes use of the semianalytical computation of a metric in the parameter space. We demonstrate that for "low-mass" (m1+m2≲12M⊙) binaries, this template bank achieves effective fitting factors ˜0.92- 0.99 towards signals from generic spinning binaries in the advanced detector era over the entire parameter space of interest (including binary neutron stars, binary black holes, and black-hole neutron-star binaries). This provides a powerful and viable method for searching for gravitational waves from generic spinning low-mass compact binaries. Under the assumption that spin magnitudes of black holes (neutron stars) are uniformly distributed between 0-0.98 [0-0.4] and spin angles are isotropically distributed, the expected improvement in the average detection volume (at a fixed signal-to-noise-ratio threshold) of a search using this reduced-spin bank is ˜20%-52%, as compared to a search using a nonspinning bank.
Evolutionary induction of sparse neural trees
Zhang; Ohm; Muhlenbein
1997-01-01
This paper is concerned with the automatic induction of parsimonious neural networks. In contrast to other program induction situations, network induction entails parametric learning as well as structural adaptation. We present a novel representation scheme called neural trees that allows efficient learning of both network architectures and parameters by genetic search. A hybrid evolutionary method is developed for neural tree induction that combines genetic programming and the breeder genetic algorithm under the unified framework of the minimum description length principle. The method is successfully applied to the induction of higher order neural trees while still keeping the resulting structures sparse to ensure good generalization performance. Empirical results are provided on two chaotic time series prediction problems of practical interest. PMID:10021759
Consequences of Common Topological Rearrangements for Partition Trees in Phylogenomic Inference
Minh, Bui Quang; von Haeseler, Arndt
2015-01-01
Abstract In phylogenomic analysis the collection of trees with identical score (maximum likelihood or parsimony score) may hamper tree search algorithms. Such collections are coined phylogenetic terraces. For sparse supermatrices with a lot of missing data, the number of terraces and the number of trees on the terraces can be very large. If terraces are not taken into account, a lot of computation time might be unnecessarily spent to evaluate many trees that in fact have identical score. To save computation time during the tree search, it is worthwhile to quickly identify such cases. The score of a species tree is the sum of scores for all the so-called induced partition trees. Therefore, if the topological rearrangement applied to a species tree does not change the induced partition trees, the score of these partition trees is unchanged. Here, we provide the conditions under which the three most widely used topological rearrangements (nearest neighbor interchange, subtree pruning and regrafting, and tree bisection and reconnection) change the topologies of induced partition trees. During the tree search, these conditions allow us to quickly identify whether we can save computation time on the evaluation of newly encountered trees. We also introduce the concept of partial terraces and demonstrate that they occur more frequently than the original “full” terrace. Hence, partial terrace is the more important factor of timesaving compared to full terrace. Therefore, taking into account the above conditions and the partial terrace concept will help to speed up the tree search in phylogenomic inference. PMID:26448206
Long frame sync words for binary PSK telemetry
NASA Technical Reports Server (NTRS)
Levitt, B. K.
1975-01-01
Correlation criteria have previously been established for identifying whether a given binary sequence would be a good frame sync word for phase-shift keyed telemetry. In the past, the search for a good K-bit sync word has involved the application of these criteria to the entire set of 2 exponent K binary K-tuples. It is shown that restricting this search to a much smaller subset consisting of K-bit prefixes of pseudonoise sequences results in sync words of comparable quality, with greatly reduced computer search times for larger values of K. As an example, this procedure is used to find good sync words of length 16-63; from a storage viewpoint, each of these sequences can be generated by a 5- or 6-bit linear feedback shift register.
TRIPLE-STAR CANDIDATES AMONG THE KEPLER BINARIES
Rappaport, S.; Deck, K.; Sanchis-Ojeda, R.; Levine, A.; Borkovits, T.; Carter, J.; El Mellah, I.; Kalomeni, B. E-mail: kdeck@mit.edu E-mail: aml@space.mit.edu E-mail: jacarter@cfa.harvard.edu
2013-05-01
We present the results of a search through the photometric database of Kepler eclipsing binaries looking for evidence of hierarchical triple-star systems. The presence of a third star orbiting the binary can be inferred from eclipse timing variations. We apply a simple algorithm in an automated determination of the eclipse times for all 2157 binaries. The ''calculated'' eclipse times, based on a constant period model, are subtracted from those observed. The resulting O - C (observed minus calculated times) curves are then visually inspected for periodicities in order to find triple-star candidates. After eliminating false positives due to the beat frequency between the {approx}1/2 hr Kepler cadence and the binary period, 39 candidate triple systems were identified. The periodic O - C curves for these candidates were then fit for contributions from both the classical Roemer delay and so-called physical delay, in an attempt to extract a number of the system parameters of the triple. We discuss the limitations of the information that can be inferred from these O - C curves without further supplemental input, e.g., ground-based spectroscopy. Based on the limited range of orbital periods for the triple-star systems to which this search is sensitive, we can extrapolate to estimate that at least 20% of all close binaries have tertiary companions.
Triple-star Candidates among the Kepler Binaries
NASA Astrophysics Data System (ADS)
Rappaport, S.; Deck, K.; Levine, A.; Borkovits, T.; Carter, J.; El Mellah, I.; Sanchis-Ojeda, R.; Kalomeni, B.
2013-05-01
We present the results of a search through the photometric database of Kepler eclipsing binaries looking for evidence of hierarchical triple-star systems. The presence of a third star orbiting the binary can be inferred from eclipse timing variations. We apply a simple algorithm in an automated determination of the eclipse times for all 2157 binaries. The "calculated" eclipse times, based on a constant period model, are subtracted from those observed. The resulting O - C (observed minus calculated times) curves are then visually inspected for periodicities in order to find triple-star candidates. After eliminating false positives due to the beat frequency between the ~1/2 hr Kepler cadence and the binary period, 39 candidate triple systems were identified. The periodic O - C curves for these candidates were then fit for contributions from both the classical Roemer delay and so-called physical delay, in an attempt to extract a number of the system parameters of the triple. We discuss the limitations of the information that can be inferred from these O - C curves without further supplemental input, e.g., ground-based spectroscopy. Based on the limited range of orbital periods for the triple-star systems to which this search is sensitive, we can extrapolate to estimate that at least 20% of all close binaries have tertiary companions.
Elser, V.; Rankenburg, I.; Thibault, P.
2007-01-01
In many problems that require extensive searching, the solution can be described as satisfying two competing constraints, where satisfying each independently does not pose a challenge. As an alternative to tree-based and stochastic searching, for these problems we propose using an iterated map built from the projections to the two constraint sets. Algorithms of this kind have been the method of choice in a large variety of signal-processing applications; we show here that the scope of these algorithms is surprisingly broad, with applications as diverse as protein folding and Sudoku. PMID:17202267
NASA Astrophysics Data System (ADS)
Marka, Zsuzsa; Bartos, Imre; Marka, Szabolcs; LIGO Collaboration; Virgo Collaboration
2016-03-01
We explore the advantage of focusing on regions of the parameter space in gravitational-wave searches for the binary mergers of neutron stars and black holes. For neutron star binaries, we show that taking advantage of their narrow observed mass distribution could improve detection rates, in some cases by more than 50%. A reduced template bank can also represent significant improvement in technical cost. We present a detailed search method using binary mass distribution to incorporate information on the mass distribution.
ERIC Educational Resources Information Center
Braus, Judy, Ed.
1992-01-01
Ranger Rick's NatureScope is a creative education series dedicated to inspiring in children an understanding and appreciation of the natural world while developing the skills they will need to make responsible decisions about the environment. Contents are organized into the following sections: (1) "What Makes a Tree a Tree?," including information…
ERIC Educational Resources Information Center
Lewis, Richard
2004-01-01
Lewis's own experiences living in Indonesia are fertile ground for telling "a ripping good story," one found in "The Flame Tree." He hopes people will enjoy the tale and appreciate the differences of an unfamiliar culture. The excerpt from "The Flame Tree" will reel readers in quickly.
ERIC Educational Resources Information Center
Greer, Sandy
1993-01-01
Describes Trees for Mother Earth, a program in which secondary students raise funds to buy fruit trees to plant during visits to the Navajo Reservation. Benefits include developing feelings of self-worth among participants, promoting cultural exchange and understanding, and encouraging self-sufficiency among the Navajo. (LP)
Structural Equation Model Trees
ERIC Educational Resources Information Center
Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman
2013-01-01
In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…
ERIC Educational Resources Information Center
Rubino, Darrin L.; Hanson, Deborah
2009-01-01
The circles and patterns in a tree's stem tell a story, but that story can be a mystery. Interpreting the story of tree rings provides a way to heighten the natural curiosity of students and help them gain insight into the interaction of elements in the environment. It also represents a wonderful opportunity to incorporate the nature of science.…
Technology Transfer Automated Retrieval System (TEKTRAN)
The major tree nuts include almonds, Brazil nuts, cashew nuts, hazelnuts, macadamia nuts, pecans, pine nuts, pistachio nuts, and walnuts. Tree nut oils are appreciated in food applications because of their flavors and are generally more expensive than other gourmet oils. Research during the last de...
Microfluidic binary phase flow
NASA Astrophysics Data System (ADS)
Angelescu, Dan; Menetrier, Laure; Wong, Joyce; Tabeling, Patrick; Salamitou, Philippe
2004-03-01
We present a novel binary phase flow regime where the two phases differ substantially in both their wetting and viscous properties. Optical tracking particles are used in order to investigate the details of such multiphase flow inside capillary channels. We also describe microfluidic filters we have developed, capable of separating the two phases based on capillary pressure. The performance of the filters in separating oil-water emulsions is discussed. Binary phase flow has been previously used in microchannels in applications such as emulsion generation, enhancement of mixing and assembly of custom colloidal paticles. Such microfluidic systems are increasingly used in a number of applications spanning a diverse range of industries, such as biotech, pharmaceuticals and more recently the oil industry.
NASA Astrophysics Data System (ADS)
Yagi, Kent; Yunes, Nicolás
2016-07-01
When in a tight binary, the mutual tidal deformations of neutron stars get imprinted onto observables, encoding information about their internal structure at supranuclear densities and gravity in the extreme-gravity regime. Gravitational wave (GW) observations of their late binary inspiral may serve as a tool to extract the individual tidal deformabilities, but this is made difficult by degeneracies between them in the GW model. We here resolve this problem by discovering approximately equation-of-state (EoS)-insensitive relations between dimensionless combinations of the individual tidal deformabilities. We show that these relations break degeneracies in the GW model, allowing for the accurate extraction of both deformabilities. Such measurements can be used to better differentiate between EoS models, and improve tests of general relativity and cosmology.
NASA Astrophysics Data System (ADS)
Mochnacki, S. W.
1981-04-01
Densities, corrected primary colors, minimum periods, inferred masses, luminosities, and specific angular momenta are computed from data on 37 W Ursae Majoris systems. A-type systems, having lower densities and angular momenta than the W-type systems, are shown to be evolved, and a new class of contact binary is identified, the OO Aquilae systems, whose members have evolved into contact. Evolutionary grids based on the contact condition agree with observation, except in that the evolved A-type systems have lost more angular momentum than predicted by gravitational radiation alone. This is accounted for by stellar wind magnetic braking, which is shown to be effective on a shorter time scale and to be important in other kinds of binaries containing a cool, tidally coupled component.
1996-04-02
This software is a set of tools for the design and analysis of binary optics. It consists of a series of stand-alone programs written in C and some scripts written in an application-specific language interpreted by a CAD program called DW2000. This software can be used to optimize the design and placement of a complex lens array from input to output and produce contours, mask designs, and data exported for diffractive optic analysis.
NASA Technical Reports Server (NTRS)
Bokhari, Shahid H.; Crockett, Thomas W.; Nicol, David M.
1993-01-01
Binary dissection is widely used to partition non-uniform domains over parallel computers. This algorithm does not consider the perimeter, surface area, or aspect ratio of the regions being generated and can yield decompositions that have poor communication to computation ratio. Parametric Binary Dissection (PBD) is a new algorithm in which each cut is chosen to minimize load + lambda x(shape). In a 2 (or 3) dimensional problem, load is the amount of computation to be performed in a subregion and shape could refer to the perimeter (respectively surface) of that subregion. Shape is a measure of communication overhead and the parameter permits us to trade off load imbalance against communication overhead. When A is zero, the algorithm reduces to plain binary dissection. This algorithm can be used to partition graphs embedded in 2 or 3-d. Load is the number of nodes in a subregion, shape the number of edges that leave that subregion, and lambda the ratio of time to communicate over an edge to the time to compute at a node. An algorithm is presented that finds the depth d parametric dissection of an embedded graph with n vertices and e edges in O(max(n log n, de)) time, which is an improvement over the O(dn log n) time of plain binary dissection. Parallel versions of this algorithm are also presented; the best of these requires O((n/p) log(sup 3)p) time on a p processor hypercube, assuming graphs of bounded degree. How PBD is applied to 3-d unstructured meshes and yields partitions that are better than those obtained by plain dissection is described. Its application to the color image quantization problem is also discussed, in which samples in a high-resolution color space are mapped onto a lower resolution space in a way that minimizes the color error.
Evolutionary models of binaries
NASA Astrophysics Data System (ADS)
van Rensbergen, Walter; Mennekens, Nicki; de Greve, Jean-Pierre; Jansen, Kim; de Loore, Bert
2011-07-01
We have put on CDS a catalog containing 561 evolutionary models of binaries: J/A+A/487/1129 (Van Rensbergen+, 2008). The catalog covers a grid of binaries with a B-type primary at birth, different values for the initial mass ratio and a wide range of initial orbital periods. The evolution was calculated with the Brussels code in which we introduced the spinning up and the creation of a hot spot on the gainer or its accretion disk, caused by impacting mass coming from the donor. When the kinetic energy of fast rotation added to the radiative energy of the hot spot exceeds the binding energy, a fraction of the transferred matter leaves the system: the evolution is liberal during a short lasting era of rapid mass transfer. The spin-up of the gainer was modulated using both strong and weak tides. The catalog shows the results for both types. For comparison, we included the evolutionary tracks calculated with the conservative assumption. Binaries with an initial primary below 6 Msolar show hardly any mass loss from the system and thus evolve conservatively. Above this limit differences between liberal and conservative evolution grow with increasing initial mass of the primary star.
THE CLOSE BINARY FRACTION OF DWARF M STARS
Clark, Benjamin M.; Blake, Cullen H.; Knapp, Gillian R.
2012-01-10
We describe a search for close spectroscopic dwarf M star binaries using data from the Sloan Digital Sky Survey to address the question of the rate of occurrence of multiplicity in M dwarfs. We use a template-fitting technique to measure radial velocities from 145,888 individual spectra obtained for a magnitude-limited sample of 39,543 M dwarfs. Typically, the three or four spectra observed for each star are separated in time by less than four hours, but for {approx}17% of the stars, the individual observations span more than two days. In these cases we are sensitive to large-amplitude radial velocity variations on timescales comparable to the separation between the observations. We use a control sample of objects having observations taken within a four-hour period to make an empirical estimate of the underlying radial velocity error distribution and simulate our detection efficiency for a wide range of binary star systems. We find the frequency of binaries among the dwarf M stars with a < 0.4 AU to be 3%-4%. Comparison with other samples of binary stars demonstrates that the close binary fraction, like the total binary fraction, is an increasing function of primary mass.
Path Planning Using a Hybrid Evolutionary Algorithm Based on Tree Structure Encoding
Wang, Siao-En; Guo, Jian-Horn
2014-01-01
A hybrid evolutionary algorithm using scalable encoding method for path planning is proposed in this paper. The scalable representation is based on binary tree structure encoding. To solve the problem of hybrid genetic algorithm and particle swarm optimization, the “dummy node” is added into the binary trees to deal with the different lengths of representations. The experimental results show that the proposed hybrid method demonstrates using fewer turning points than traditional evolutionary algorithms to generate shorter collision-free paths for mobile robot navigation. PMID:24971389
Path planning using a hybrid evolutionary algorithm based on tree structure encoding.
Ju, Ming-Yi; Wang, Siao-En; Guo, Jian-Horn
2014-01-01
A hybrid evolutionary algorithm using scalable encoding method for path planning is proposed in this paper. The scalable representation is based on binary tree structure encoding. To solve the problem of hybrid genetic algorithm and particle swarm optimization, the "dummy node" is added into the binary trees to deal with the different lengths of representations. The experimental results show that the proposed hybrid method demonstrates using fewer turning points than traditional evolutionary algorithms to generate shorter collision-free paths for mobile robot navigation. PMID:24971389
NASA Technical Reports Server (NTRS)
Griebeler, Elmer L.
2011-01-01
Binary communication through long cables, opto-isolators, isolating transformers, or repeaters can become distorted in characteristic ways. The usual solution is to slow the communication rate, change to a different method, or improve the communication media. It would help if the characteristic distortions could be accommodated at the receiving end to ease the communication problem. The distortions come from loss of the high-frequency content, which adds slopes to the transitions from ones to zeroes and zeroes to ones. This weakens the definition of the ones and zeroes in the time domain. The other major distortion is the reduction of low frequency, which causes the voltage that defines the ones or zeroes to drift out of recognizable range. This development describes a method for recovering a binary data stream from a signal that has been subjected to a loss of both higher-frequency content and low-frequency content that is essential to define the difference between ones and zeroes. The method makes use of the frequency structure of the waveform created by the data stream, and then enhances the characteristics related to the data to reconstruct the binary switching pattern. A major issue is simplicity. The approach taken here is to take the first derivative of the signal and then feed it to a hysteresis switch. This is equivalent in practice to using a non-resonant band pass filter feeding a Schmitt trigger. Obviously, the derivative signal needs to be offset to halfway between the thresholds of the hysteresis switch, and amplified so that the derivatives reliably exceed the thresholds. A transition from a zero to a one is the most substantial, fastest plus movement of voltage, and therefore will create the largest plus first derivative pulse. Since the quiet state of the derivative is sitting between the hysteresis thresholds, the plus pulse exceeds the plus threshold, switching the hysteresis switch plus, which re-establishes the data zero to one transition
Fault trees and imperfect coverage
NASA Technical Reports Server (NTRS)
Dugan, Joanne B.
1989-01-01
A new algorithm is presented for solving the fault tree. The algorithm includes the dynamic behavior of the fault/error handling model but obviates the need for the Markov chain solution. As the state space is expanded in a breadth-first search (the same is done in the conversion to a Markov chain), the state's contribution to each future state is calculated exactly. A dynamic state truncation technique is also presented; it produces bounds on the unreliability of the system by considering only part of the state space. Since the model is solved as the state space is generated, the process can be stopped as soon as the desired accuracy is reached.
Alicea, Bradly; Gordon, Richard
2016-01-01
Embryonic development proceeds through a series of differentiation events. The mosaic version of this process (binary cell divisions) can be analyzed by comparing early development of Ciona intestinalis and Caenorhabditis elegans. To do this, we reorganize lineage trees into differentiation trees using the graph theory ordering of relative cell volume. Lineage and differentiation trees provide us with means to classify each cell using binary codes. Extracting data characterizing lineage tree position, cell volume, and nucleus position for each cell during early embryogenesis, we conduct several statistical analyses, both within and between taxa. We compare both cell volume distributions and cell volume across developmental time within and between single species and assess differences between lineage tree and differentiation tree orderings. This enhances our understanding of the differentiation events in a model of pure mosaic embryogenesis and its relationship to evolutionary conservation. We also contribute several new techniques for assessing both differences between lineage trees and differentiation trees, and differences between differentiation trees of different species. The results suggest that at the level of differentiation trees, there are broad similarities between distantly related mosaic embryos that might be essential to understanding evolutionary change and phylogeny reconstruction. Differentiation trees may therefore provide a basis for an Evo-Devo Postmodern Synthesis. PMID:27548240
THIRTY NEW LOW-MASS SPECTROSCOPIC BINARIES
Shkolnik, Evgenya L.; Hebb, Leslie; Cameron, Andrew C.; Liu, Michael C.; Neill Reid, I. E-mail: Andrew.Cameron@st-and.ac.u E-mail: mliu@ifa.hawaii.ed
2010-06-20
As part of our search for young M dwarfs within 25 pc, we acquired high-resolution spectra of 185 low-mass stars compiled by the NStars project that have strong X-ray emission. By cross-correlating these spectra with radial velocity standard stars, we are sensitive to finding multi-lined spectroscopic binaries. We find a low-mass spectroscopic binary fraction of 16% consisting of 27 SB2s, 2 SB3s, and 1 SB4, increasing the number of known low-mass spectroscopic binaries (SBs) by 50% and proving that strong X-ray emission is an extremely efficient way to find M-dwarf SBs. WASP photometry of 23 of these systems revealed two low-mass eclipsing binaries (EBs), bringing the count of known M-dwarf EBs to 15. BD-22 5866, the ESB4, was fully described in 2008 by Shkolnik et al. and CCDM J04404+3127 B consists of two mid-M stars orbiting each other every 2.048 days. WASP also provided rotation periods for 12 systems, and in the cases where the synchronization time scales are short, we used P{sub rot} to determine the true orbital parameters. For those with no P{sub rot}, we used differential radial velocities to set upper limits on orbital periods and semimajor axes. More than half of our sample has near-equal-mass components (q > 0.8). This is expected since our sample is biased toward tight orbits where saturated X-ray emission is due to tidal spin-up rather than stellar youth. Increasing the samples of M-dwarf SBs and EBs is extremely valuable in setting constraints on current theories of stellar multiplicity and evolution scenarios for low-mass multiple systems.
Delineation of individual tree crowns for mobile laser scanning data
NASA Astrophysics Data System (ADS)
Wu, Rosen; Chen, Yiping; Wen, Chenglu; Wang, Cheng; Li, Jonathan
2016-03-01
The information of individual trees plays an important role in urban surveying and mapping. With the development of Light Detection and Ranging (LiDAR) technology, 3-Dimenisonal (3D) structure of trees can be generated in point clouds with high spatial resolution and accuracy. Individual tree segmentations are used to derive tree structural attributes such as tree height, crown diameter, stem position etc. In this study, a framework is proposed to take advantage of the detailed structures of tree crowns which are represented in the mobile laser scanning (MLS) data. This framework consists of five steps: (1) Automatically detect and remove ground points using RANSAC; (2) Compress all the above ground points to image grid with 3D knowledge reserved; (3) Simplify and remove unqualified grids; (4) Find tree peaks using a heuristic searching method; (5) Delineate the individual tree crowns by applying a modified watershed method. In an experiment on the point clouds on Xiamen Island, China, individual tree crowns from MLS point cloud data are successfully extracted.
Efficient Gene Tree Correction Guided by Genome Evolution
Lafond, Manuel; Seguin, Jonathan; Boussau, Bastien; Guéguen, Laurent; El-Mabrouk, Nadia; Tannier, Eric
2016-01-01
Motivations Gene trees inferred solely from multiple alignments of homologous sequences often contain weakly supported and uncertain branches. Information for their full resolution may lie in the dependency between gene families and their genomic context. Integrative methods, using species tree information in addition to sequence information, often rely on a computationally intensive tree space search which forecloses an application to large genomic databases. Results We propose a new method, called ProfileNJ, that takes a gene tree with statistical supports on its branches, and corrects its weakly supported parts by using a combination of information from a species tree and a distance matrix. Its low running time enabled us to use it on the whole Ensembl Compara database, for which we propose an alternative, arguably more plausible set of gene trees. This allowed us to perform a genome-wide analysis of duplication and loss patterns on the history of 63 eukaryote species, and predict ancestral gene content and order for all ancestors along the phylogeny. Availability A web interface called RefineTree, including ProfileNJ as well as a other gene tree correction methods, which we also test on the Ensembl gene families, is available at: http://www-ens.iro.umontreal.ca/~adbit/polytomysolver.html. The code of ProfileNJ as well as the set of gene trees corrected by ProfileNJ from Ensembl Compara version 73 families are also made available. PMID:27513924
Phylogenetic trees in bioinformatics
Burr, Tom L
2008-01-01
Genetic data is often used to infer evolutionary relationships among a collection of viruses, bacteria, animal or plant species, or other operational taxonomic units (OTU). A phylogenetic tree depicts such relationships and provides a visual representation of the estimated branching order of the OTUs. Tree estimation is unique for several reasons, including: the types of data used to represent each OTU; the use ofprobabilistic nucleotide substitution models; the inference goals involving both tree topology and branch length, and the huge number of possible trees for a given sample of a very modest number of OTUs, which implies that fmding the best tree(s) to describe the genetic data for each OTU is computationally demanding. Bioinformatics is too large a field to review here. We focus on that aspect of bioinformatics that includes study of similarities in genetic data from multiple OTUs. Although research questions are diverse, a common underlying challenge is to estimate the evolutionary history of the OTUs. Therefore, this paper reviews the role of phylogenetic tree estimation in bioinformatics, available methods and software, and identifies areas for additional research and development.
Friedman, J.H.; Yun, Yeogirl; Kohavi, R.
1996-12-31
Lazy learning algorithms, exemplified by nearest-neighbor algorithms, do not induce a concise hypothesis from a given training set; the inductive process is delayed until a test instance is given. Algorithms for constructing decision trees, such as C4.5, ID3, and CART create a single {open_quotes}best{close_quotes} decision tree during the training phase, and this tree is then used to classify test instances. The tests at the nodes of the constructed tree are good on average, but there may be better tests for classifying a specific instance. We propose a lazy decision tree algorithm-LazyDT-that conceptually constructs the {open_quotes}best{close_quote} decision tree for each test instance. In practice, only a path needs to be constructed, and a caching scheme makes the algorithm fast. The algorithm is robust with respect to missing values without resorting to the complicated methods usually seen in induction of decision trees. Experiments on real and artificial problems are presented.
Muterspaugh, Matthew W.; O'Connell, J.; Hartkopf, William I.; Lane, Benjamin F.; Williamson, M.; Kulkarni, S. R.; Konacki, Maciej; Burke, Bernard F.; Colavita, M. M.; Shao, M.; Wiktorowicz, Sloane J. E-mail: wih@usno.navy.mi E-mail: maciej@ncac.torun.p
2010-12-15
Differential astrometry measurements from the Palomar High-precision Astrometric Search for Exoplanet Systems have been combined with lower precision single-aperture measurements covering a much longer timespan (from eyepiece measurements, speckle interferometry, and adaptive optics) to determine improved visual orbits for 20 binary stars. In some cases, radial velocity observations exist to constrain the full three-dimensional orbit and determine component masses. The visual orbit of one of these binaries-{alpha} Com (HD 114378)-shows that the system is likely to have eclipses, despite its very long period of 26 years. The next eclipse is predicted to be within a week of 2015 January 24.
Pulsar-black hole binaries in the Galactic Centre
NASA Astrophysics Data System (ADS)
Faucher-Giguère, Claude-André; Loeb, Abraham
2011-08-01
Binaries consisting of a pulsar and a black hole (BH) are a holy grail of astrophysics, both for their significance for stellar evolution and for their potential application as probes of strong gravity. In spite of extensive surveys of our Galaxy and its system of globular clusters, no pulsar-black hole (PSR-BH) binary has been found to date. Clues as to where such systems might exist are therefore important. We show that if the central parsec around Sgr A★ harbours a cluster of ˜25 000 stellar BHs (as predicted by mass-segregation arguments) and if it is also rich in recycled pulsar binaries (by analogy with globular clusters), then three-body exchange interactions should produce PSR-BHs in the Galactic Centre. Simple estimates of the formation rate and survival time of these binaries suggest that a few PSR-BHs should be present in the central parsec today. The proposed formation mechanism makes unique predictions for the PSR-BH properties: (1) the binary would reside within ˜1 pc of Sgr A★; (2) the pulsar would be recycled, with a period of ˜1 to a few tens of milliseconds, and a low magnetic field B≲ 1010 G; (3) the binary would have high eccentricity, e˜ 0.8, but with a large scatter and (4) the binary would be relatively wide, with semimajor axis ab˜ 0.1 -≳3 au. The potential discovery of a PSR-BH binary therefore provides a strong motivation for deep, high-frequency radio searches for recycled pulsars towards the Galactic Centre.
Supervised hashing using graph cuts and boosted decision trees.
Lin, Guosheng; Shen, Chunhua; Hengel, Anton van den
2015-11-01
To build large-scale query-by-example image retrieval systems, embedding image features into a binary Hamming space provides great benefits. Supervised hashing aims to map the original features to compact binary codes that are able to preserve label based similarity in the binary Hamming space. Most existing approaches apply a single form of hash function, and an optimization process which is typically deeply coupled to this specific form. This tight coupling restricts the flexibility of those methods, and can result in complex optimization problems that are difficult to solve. In this work we proffer a flexible yet simple framework that is able to accommodate different types of loss functions and hash functions. The proposed framework allows a number of existing approaches to hashing to be placed in context, and simplifies the development of new problem-specific hashing methods. Our framework decomposes the hashing learning problem into two steps: binary code (hash bit) learning and hash function learning. The first step can typically be formulated as binary quadratic problems, and the second step can be accomplished by training a standard binary classifier. For solving large-scale binary code inference, we show how it is possible to ensure that the binary quadratic problems are submodular such that efficient graph cut methods may be used. To achieve efficiency as well as efficacy on large-scale high-dimensional data, we propose to use boosted decision trees as the hash functions, which are nonlinear, highly descriptive, and are very fast to train and evaluate. Experiments demonstrate that the proposed method significantly outperforms most state-of-the-art methods, especially on high-dimensional data. PMID:26440270
Fast content-based image retrieval using dynamic cluster tree
NASA Astrophysics Data System (ADS)
Chen, Jinyan; Sun, Jizhou; Wu, Rongteng; Zhang, Yaping
2008-03-01
A novel content-based image retrieval data structure is developed in present work. It can improve the searching efficiency significantly. All images are organized into a tree, in which every node is comprised of images with similar features. Images in a children node have more similarity (less variance) within themselves in relative to its parent. It means that every node is a cluster and each of its children nodes is a sub-cluster. Information contained in a node includes not only the number of images, but also the center and the variance of these images. Upon the addition of new images, the tree structure is capable of dynamically changing to ensure the minimization of total variance of the tree. Subsequently, a heuristic method has been designed to retrieve the information from this tree. Given a sample image, the probability of a tree node that contains the similar images is computed using the center of the node and its variance. If the probability is higher than a certain threshold, this node will be recursively checked to locate the similar images. So will its children nodes if their probability is also higher than that threshold. If no sufficient similar images were founded, a reduced threshold value would be adopted to initiate a new seeking from the root node. The search terminates when it found sufficient similar images or the threshold value is too low to give meaningful sense. Experiments have shown that the proposed dynamic cluster tree is able to improve the searching efficiency notably.
NASA Technical Reports Server (NTRS)
Buntine, Wray
1991-01-01
Algorithms for learning classification trees have had successes in artificial intelligence and statistics over many years. How a tree learning algorithm can be derived from Bayesian decision theory is outlined. This introduces Bayesian techniques for splitting, smoothing, and tree averaging. The splitting rule turns out to be similar to Quinlan's information gain splitting rule, while smoothing and averaging replace pruning. Comparative experiments with reimplementations of a minimum encoding approach, Quinlan's C4 and Breiman et al. Cart show the full Bayesian algorithm is consistently as good, or more accurate than these other approaches though at a computational price.
NASA Astrophysics Data System (ADS)
Espinosa Aldama, Mariana
2015-04-01
The gravity apple tree is a genealogical tree of the gravitation theories developed during the past century. The graphic representation is full of information such as guides in heuristic principles, names of main proponents, dates and references for original articles (See under Supplementary Data for the graphic representation). This visual presentation and its particular classification allows a quick synthetic view for a plurality of theories, many of them well validated in the Solar System domain. Its diachronic structure organizes information in a shape of a tree following similarities through a formal concept analysis. It can be used for educational purposes or as a tool for philosophical discussion.
Extremal paths on a random Cayley tree
NASA Astrophysics Data System (ADS)
Majumdar, Satya N.; Krapivsky, P. L.
2000-12-01
We investigate the statistics of extremal path(s) (both the shortest and the longest) from the root to the bottom of a Cayley tree. The lengths of the edges are assumed to be independent identically distributed random variables drawn from a distribution ρ(l). Besides, the number of branches from any node is also random. Exact results are derived for arbitrary distribution ρ(l). In particular, for the binary \\{0,1\\} distribution ρ(l)=pδl,1+(1-p)δl,0, we show that as p increases, the minimal length undergoes an unbinding transition from a ``localized'' phase to a ``moving'' phase at the critical value, p=pc=1-b-1, where b is the average branch number of the tree. As the height n of the tree increases, the minimal length saturates to a finite constant in the localized phase (p
Planetary Formation and Dynamics in Binary Systems
NASA Astrophysics Data System (ADS)
Xie, J. W.
2013-01-01
As of today, over 500 exoplanets have been detected since the first exoplanet was discovered around a solar-like star in 1995. The planets in binaries could be common as stars are usually born in binary or multiple star systems. Although current observations show that the planet host rate in multiple star systems is around 17%, this fraction should be considered as a lower limit because of noticeable selection effects against binaries in planet searches. Most of the current known planet-bearing binary systems are S-types, meaning the companion star acts as a distant satellite, typically orbiting the inner star-planet system over 100 AU away. Nevertheless, there are four systems with a smaller separation of 20 AU, including the Gamma Cephei, GJ 86, HD 41004, and HD 196885. In addition to the planets in circumprimary (S-type) orbits discussed above, planets in circumbinary (P-type) orbits have been found in only two systems. In this thesis, we mainly study the planet formation in the S-type binary systems. In chapter 1, we first summarize current observational facts of exoplanets both in single-star and binary systems, then review the theoretical models of planet formation, with special attention to the application in binary systems. Perturbative effects from stellar companions render the planet formation process in binary systems even more complex than that in single-star systems. The perturbations from a binary companion can excite planetesimal orbits, and increase their mutual impact velocities to the values that might exceed their escape velocity or even the critical velocity for the onset of eroding collisions. The intermediate stage of the formation process---from planetesimals to planetary embryos---is thus the most problematic. In the following chapters, we investigate whether and how the planet formation goes through such a problematic stage. In chapter 2, we study the effects of gas dissipation on the planetesimals' mutual accretion. We find that in a
Inferring optimal species trees under gene duplication and loss.
Bayzid, M S; Mirarab, S; Warnow, T
2013-01-01
Species tree estimation from multiple markers is complicated by the fact that gene trees can differ from each other (and from the true species tree) due to several biological processes, one of which is gene duplication and loss. Local search heuristics for two NP-hard optimization problems - minimize gene duplications (MGD) and minimize gene duplications and losses (MGDL) - are popular techniques for estimating species trees in the presence of gene duplication and loss. In this paper, we present an alternative approach to solving MGD and MGDL from rooted gene trees. First, we characterize each tree in terms of its "subtree-bipartitions" (a concept we introduce). Then we show that the MGD species tree is defined by a maximum weight clique in a vertex-weighted graph that can be computed from the subtree-bipartitions of the input gene trees, and the MGDL species tree is defined by a minimum weight clique in a similarly constructed graph. We also show that these optimal cliques can be found in polynomial time in the number of vertices of the graph using a dynamic programming algorithm (similar to that of Hallett and Lagergren(1)), because of the special structure of the graphs. Finally, we show that a constrained version of these problems, where the subtree-bipartitions of the species tree are drawn from the subtree-bipartitions of the input gene trees, can be solved in time that is polynomial in the number of gene trees and taxa. We have implemented our dynamic programming algorithm in a publicly available software tool, available at http://www.cs.utexas.edu/users/phylo/software/dynadup/. PMID:23424130
The Prevalence of Tree Nut Allergy: A Systematic Review.
McWilliam, Vicki; Koplin, Jennifer; Lodge, Caroline; Tang, Mimi; Dharmage, Shyamali; Allen, Katrina
2015-09-01
Tree nuts are one of the most common foods causing acute allergic reactions and nearly all tree nuts have been associated with fatal allergic reactions. Despite their clinical importance, tree nut allergy epidemiology remains understudied and the prevalence of tree nut allergy in different regions of the world has not yet been well characterised. We aimed to systematically review the population prevalence of tree nut allergy in children and adults. We searched three electronic databases (OVID MEDLINE, EMBASE and PubMed) from January 1996 to December 2014. Eligible studies were categorised by age, region and method of assessment of tree nut allergy. Of the 36 studies identified most were in children (n = 24) and from Europe (n = 18), UK (n = 8) or USA (n = 5). Challenge-confirmed IgE-mediated tree nut allergy prevalence was less than 2 % (although only seven studies used this gold standard) while probable tree nut allergy prevalence ranged from 0.05 to 4.9 %. Prevalence estimates that included oral allergy syndrome (OAS) reactions to tree nut were significantly higher (8-11.4 %) and were predominantly from Europe. Prevalence of individual tree nut allergies varied significantly by region with hazelnut the most common tree nut allergy in Europe, walnut and cashew in the USA and Brazil nut, almond and walnut most commonly reported in the UK. Monitoring time trends of tree nut allergy prevalence (both overall and by individual nuts) as well as the prevalence of OAS should be considered given the context of the overall recent rise in IgE-mediated food allergy prevalence in the developed world. PMID:26233427
Evolution of Close Binary Systems
Yakut, K; Eggleton, P
2005-01-24
We collected data on the masses, radii, etc. of three classes of close binary stars: low-temperature contact binaries (LTCBs), near-contact binaries (NCBs), and detached close binaries (DCBs). They restrict themselves to systems where (1) both components are, at least arguably, near the Main Sequence, (2) the periods are less than a day, and (3) there is both spectroscopic and photometric analysis leading to reasonably reliable data. They discuss the possible evolutionary connections between these three classes, emphasizing the roles played by mass loss and angular momentum loss in rapidly-rotating cool stars.
An Improved B+ Tree for Flash File Systems
NASA Astrophysics Data System (ADS)
Havasi, Ferenc
Nowadays mobile devices such as mobile phones, mp3 players and PDAs are becoming evermore common. Most of them use flash chips as storage. To store data efficiently on flash, it is necessary to adapt ordinary file systems because they are designed for use on hard disks. Most of the file systems use some kind of search tree to store index information, which is very important from a performance aspect. Here we improved the B+ search tree algorithm so as to make flash devices more efficient. Our implementation of this solution saves 98%-99% of the flash operations, and is now the part of the Linux kernel.
Chu, J.C.
1958-06-10
A binary storage device is described comprising a toggle provided with associsted improved driver circuits adapted to produce reliable action of the toggle during clearing of the toggle to one of its two states. or transferring information into and out of the toggle. The invention resides in the development of a self-regulating driver circuit to minimize the fluctuation of the driving voltages for the toggle. The disclosed driver circuit produces two pulses in response to an input pulse: a first or ''clear'' pulse beginning nt substantially the same time but endlrg slightly sooner than the second or ''transfer'' output pulse.
NASA Astrophysics Data System (ADS)
Griffin, R. Elizabeth; Ake, Thomas B.
This opening chapter provides a brief historical overview of the ζ Aur stars, with a focus on what K.O. Wright, his predecessors and colleagues at the Dominion Astrophysical Observatory, and his contemporaries further afield, achieved during the era of pre-electronic data. It places the topic within the framework of modern observing, data management and computing, outlines the principal features of the chromospheric-eclipse phenomena which single out the ζ Aur binaries for special study, and describes the considerable potential which this remarkable yet very select group of stars offers for increasing our understanding of stellar physics.
NASA Astrophysics Data System (ADS)
Caron-Huot, S.
2011-05-01
We investigate relations between loop and tree amplitudes in quantum field theory that involve putting on-shell some loop propagators. This generalizes the so-called Feynman tree theorem which is satisfied at 1-loop. Exploiting retarded boundary conditions, we give a generalization to ℓ-loop expressing the loops as integrals over the on-shell phase space of exactly ℓ particles. We argue that the corresponding integrand for ℓ > 2 does not involve the forward limit of any physical tree amplitude, except in planar gauge theories. In that case we explicitly construct the relevant physical amplitude. Beyond the planar limit, abandoning direct integral representations, we propose that loops continue to be determined implicitly by the forward limit of physical connected trees, and we formulate a precise conjecture along this line. Finally, we set up technology to compute forward amplitudes in supersymmetric theories, in which specific simplifications occur.
Structural Equation Model Trees
Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman
2015-01-01
In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree structures that separate a data set recursively into subsets with significantly different parameter estimates in a SEM. SEM Trees provide means for finding covariates and covariate interactions that predict differences in structural parameters in observed as well as in latent space and facilitate theory-guided exploration of empirical data. We describe the methodology, discuss theoretical and practical implications, and demonstrate applications to a factor model and a linear growth curve model. PMID:22984789
... tree nut used on the label. Read all product labels carefully before purchasing and consuming any item. Ingredients ... Getting Started Newly Diagnosed Emergency Care Plan Food Labels Mislabeled Products Tips for Managing Food Allergies Resources For... Most ...
Simpson, J R; McPherson, E G
2011-01-01
Urban trees can produce a number of benefits, among them improved air quality. Biogenic volatile organic compounds (BVOCs) emitted by some species are ozone precursors. Modifying future tree planting to favor lower-emitting species can reduce these emissions and aid air management districts in meeting federally mandated emissions reductions for these compounds. Changes in BVOC emissions are calculated as the result of transitioning to a lower-emitting species mix in future planting. A simplified method for calculating the emissions reduction and a Tree BVOC index based on the calculated reduction is described. An example illustrates the use of the index as a tool for implementation and monitoring of a tree program designed to reduce BVOC emissions as a control measure being developed as part of the State Implementation Plan (SIP) for the Sacramento Federal Nonattainment Area. PMID:21435760
Generalized constructive tree weights
Rivasseau, Vincent E-mail: adrian.tanasa@ens-lyon.org; Tanasa, Adrian E-mail: adrian.tanasa@ens-lyon.org
2014-04-15
The Loop Vertex Expansion (LVE) is a quantum field theory (QFT) method which explicitly computes the Borel sum of Feynman perturbation series. This LVE relies in a crucial way on symmetric tree weights which define a measure on the set of spanning trees of any connected graph. In this paper we generalize this method by defining new tree weights. They depend on the choice of a partition of a set of vertices of the graph, and when the partition is non-trivial, they are no longer symmetric under permutation of vertices. Nevertheless we prove they have the required positivity property to lead to a convergent LVE; in fact we formulate this positivity property precisely for the first time. Our generalized tree weights are inspired by the Brydges-Battle-Federbush work on cluster expansions and could be particularly suited to the computation of connected functions in QFT. Several concrete examples are explicitly given.
Larson, David; Jacob, Sharon E
2012-01-01
Tea tree oil is an increasingly popular ingredient in a variety of household and cosmetic products, including shampoos, massage oils, skin and nail creams, and laundry detergents. Known for its potential antiseptic properties, it has been shown to be active against a variety of bacteria, fungi, viruses, and mites. The oil is extracted from the leaves of the tea tree via steam distillation. This essential oil possesses a sharp camphoraceous odor followed by a menthol-like cooling sensation. Most commonly an ingredient in topical products, it is used at a concentration of 5% to 10%. Even at this concentration, it has been reported to induce contact sensitization and allergic contact dermatitis reactions. In 1999, tea tree oil was added to the North American Contact Dermatitis Group screening panel. The latest prevalence rates suggest that 1.4% of patients referred for patch testing had a positive reaction to tea tree oil. PMID:22653070
Charniak, E.
1996-12-31
By a {open_quotes}tree-bank grammar{close_quotes} we mean a context-free grammar created by reading the production rules directly from hand-parsed sentences in a tree bank. Common wisdom has it that such grammars do not perform well, though we know of no published data on the issue. The primary purpose of this paper is to show that the common wisdom is wrong. In particular, we present results on a tree-bank grammar based on the Penn Wall Street Journal tree bank. To the best of our knowledge, this grammar outperforms all other non-word-based statistical parsers/grammars on this corpus. That is, it outperforms parsers that consider the input as a string of tags and ignore the actual words of the corpus.
ERIC Educational Resources Information Center
Werner, Suzanne K.
2003-01-01
Describes a series of activities exploring Leonardo da Vinci's tree theory that are designed to strengthen 8th grade students' data collection and problem solving skills in physical science classes. (KHR)
Not Available
1980-01-01
Land reclamation programs sponsored by several state forestry organizations are summarized in these presentations. The use of trees as a preferred specie for revegetation of surface mined lands is addressed. Modern methods of forestry can be used to make land economically and aesthetically acceptable. Tree planting techniques are presented and the role of Mycorrhizae is discussed. There are 30 papers included in this proceedings. States represented include: Alabama, Arkansas, Georgia, Illinois, Kansas, Kentucky, Maryland, Virginia, Iowa, Ohio, Pennsylvania, and West Virginia.
Origin of the computational hardness for learning with binary synapses
NASA Astrophysics Data System (ADS)
Huang, Haiping; Kabashima, Yoshiyuki
2014-11-01
Through supervised learning in a binary perceptron one is able to classify an extensive number of random patterns by a proper assignment of binary synaptic weights. However, to find such assignments in practice is quite a nontrivial task. The relation between the weight space structure and the algorithmic hardness has not yet been fully understood. To this end, we analytically derive the Franz-Parisi potential for the binary perceptron problem by starting from an equilibrium solution of weights and exploring the weight space structure around it. Our result reveals the geometrical organization of the weight space; the weight space is composed of isolated solutions, rather than clusters of exponentially many close-by solutions. The pointlike clusters far apart from each other in the weight space explain the previously observed glassy behavior of stochastic local search heuristics.
Mock LISA data challenge for the Galactic white dwarf binaries
Blaut, Arkadiusz; Babak, Stanislav; Krolak, Andrzej
2010-03-15
We present data analysis methods used in the detection and estimation of parameters of gravitational-wave signals from the white dwarf binaries in the mock LISA data challenge. Our main focus is on the analysis of challenge 3.1, where the gravitational-wave signals from more than 6x10{sup 7} Galactic binaries were added to the simulated Gaussian instrumental noise. The majority of the signals at low frequencies are not resolved individually. The confusion between the signals is strongly reduced at frequencies above 5 mHz. Our basic data analysis procedure is the maximum likelihood detection method. We filter the data through the template bank at the first step of the search, then we refine parameters using the Nelder-Mead algorithm, we remove the strongest signal found and we repeat the procedure. We detect reliably and estimate parameters accurately of more than ten thousand signals from white dwarf binaries.
Observations of hot stars and eclipsing binaries with FRESIP
NASA Technical Reports Server (NTRS)
Gies, Douglas R.
1994-01-01
The FRESIP project offers an unprecedented opportunity to study pulsations in hot stars (which vary on time scales of a day) over a several year period. The photometric data will determine what frequencies are present, how or if the amplitudes change with time, and whether there is a connection between pulsation and mass loss episodes. It would initiate a new field of asteroseismology studies of hot star interiors. A search should be made for selected hot stars for inclusion in the list of project targets. Many of the primary solar mass targets will be eclipsing binaries, and I present estimates of their frequency and typical light curves. The photometric data combined with follow up spectroscopy and interferometric observations will provide fundamental data on these stars. The data will provide definitive information on the mass ratio distribution of solar-mass binaries (including the incidence of brown dwarf companions) and on the incidence of planets in binary systems.
X-ray observations of possible binary clusters of galaxies
NASA Technical Reports Server (NTRS)
Ulmer, M. P.; Cruddace, R. G.; Kowalski, M. P.
1985-01-01
Many studies of superclusters of galaxies have been conducted, taking into account also superclusters representing candidate binary cluster systems. The present investigation is concerned with further studies of potential binary cluster systems, giving attention to a sample of six cluster pairs, in which the redshifts and X-ray luminosities of each member of a pair have been measured. One of the objectives of the investigation was related to a search for X-ray evidence that the clusters interact in these potentially binary systems. A second objective was to provide a measure of the mass of hot gas in the clusters. Two new systems in which the two clusters may have a physical association were found.
Mock LISA data challenge for the Galactic white dwarf binaries
NASA Astrophysics Data System (ADS)
Błaut, Arkadiusz; Babak, Stanislav; Królak, Andrzej
2010-03-01
We present data analysis methods used in the detection and estimation of parameters of gravitational-wave signals from the white dwarf binaries in the mock LISA data challenge. Our main focus is on the analysis of challenge 3.1, where the gravitational-wave signals from more than 6×107 Galactic binaries were added to the simulated Gaussian instrumental noise. The majority of the signals at low frequencies are not resolved individually. The confusion between the signals is strongly reduced at frequencies above 5 mHz. Our basic data analysis procedure is the maximum likelihood detection method. We filter the data through the template bank at the first step of the search, then we refine parameters using the Nelder-Mead algorithm, we remove the strongest signal found and we repeat the procedure. We detect reliably and estimate parameters accurately of more than ten thousand signals from white dwarf binaries.
A simulation approach for change-points on phylogenetic trees.
Persing, Adam; Jasra, Ajay; Beskos, Alexandros; Balding, David; De Iorio, Maria
2015-01-01
We observe n sequences at each of m sites and assume that they have evolved from an ancestral sequence that forms the root of a binary tree of known topology and branch lengths, but the sequence states at internal nodes are unknown. The topology of the tree and branch lengths are the same for all sites, but the parameters of the evolutionary model can vary over sites. We assume a piecewise constant model for these parameters, with an unknown number of change-points and hence a transdimensional parameter space over which we seek to perform Bayesian inference. We propose two novel ideas to deal with the computational challenges of such inference. Firstly, we approximate the model based on the time machine principle: the top nodes of the binary tree (near the root) are replaced by an approximation of the true distribution; as more nodes are removed from the top of the tree, the cost of computing the likelihood is reduced linearly in n. The approach introduces a bias, which we investigate empirically. Secondly, we develop a particle marginal Metropolis-Hastings (PMMH) algorithm, that employs a sequential Monte Carlo (SMC) sampler and can use the first idea. Our time-machine PMMH algorithm copes well with one of the bottle-necks of standard computational algorithms: the transdimensional nature of the posterior distribution. The algorithm is implemented on simulated and real data examples, and we empirically demonstrate its potential to outperform competing methods based on approximate Bayesian computation (ABC) techniques. PMID:25506749
Close Binaries in the 21st Century: New Opportunities and Challenges
NASA Astrophysics Data System (ADS)
Giménez, A.; Guinan, E.; Niarchos, P.; Rucinski, S.
2006-12-01
An International Conference entitled "Close Binaries in the 21st Century: New Opportunities and Challenges", was held in Syros island, Greece, from 27 to 30 June, 2005. There are many binary star systems whose components are so close together, that they interact in various ways. Stars in such systems do not pass through all stages of their evolution independently of each other; in fact their evolutionary path is significantly affected by their companions. Processes of interaction include gravitational effects, mutual irradiation, mass exchange, mass loss from the system, phenomena of extended atmospheres, semi-transparent atmospheric clouds, variable thickness disks and gas streams. The zoo of Close Binary Systems includes: Close Eclipsing Binaries (Detached, Semi-detached, Contact), High and Low-Mass X-ray Binaries, Cataclysmic Variables, RS CVn systems, Pulsar Binaries and Symbiotic Stars. The study of these binaries triggered the development of new branches of astrophysics dealing with the structure and evolution of close binaries and the interaction effects displayed by these exciting objects. Close Binaries are classic examples of the fundamental contribution that stellar astrophysics makes to our general understanding of physical processes in the universe. Ground-based and space surveys will discover many new close binaries, which were previously unknown. In the future, new approaches will also be possible with highly efficient photometric searches looking for very shallow eclipses, such as those produced by Earth-like extra-solar planets. Contributions to this conference covered the latest achievements in the field and reflected the state of the art of the dynamically evolving area of binary star research. Link: http://www.springer.com/east/home/generic/search/results?SGWID=5-40109-22-173660047-0
Koronis binaries and the role of families in binary frequency
NASA Astrophysics Data System (ADS)
Merline, W. J.; Tamblyn, P. M.; Nesvorny, D.; Durda, D. D.; Chapman, C. R.; Dumas, C.; Owen, W. M.; Storrs, A. D.; Close, L. M.; Menard, F.
2005-08-01
Our ground-based adaptive optics observations of many larger Koronis members show no binaries, while our HST survey of smaller Koronis members (say smaller than 10 km) shows a surprising 20% binary fraction. Admittedly, this is from small-number statistics, but we nonetheless calculate a 99% confidence that the binary fraction is different from the 2% we observe among the larger (over 20km) main belt asteroids as a whole. In addition, we estimate that among the two young families (Karin and Veritas) that we surveyed for binaries in our HST Cy 13 program, the binary fraction appears to be less than 5%. These young families both have significantly smaller progenitors than the Koronis family. We have speculated that progenitor size may be a more important factor than age in determination of binary frequency. But here we suggest an alternative idea, that the binary fraction may be more related to what part of the family's size distribution is sampled. Our HST program targeted objects of the same physical sizes, but was clearly sampling further down the size distribution (to smaller sizes, relative to the largest remnant) in the Koronis sample than was the case for Karin and Veritas, which we sampled mostly at the larger sizes, relatively. Our SPH collision models are estimating the typical size-frequency distributions to be expected from catastrophic and non-catastrophic impact events. But they are also appear to be showing that the largest fragments from a collision are less likely to form binaries (as co-orbiting ejecta pairs) than are the smaller fragments. Thus, it might be expected that we would have found fewer binaries among Karin and Veritas than among the Koronis sample. In fact, models of the Karin breakup show binary formation to be unlikely in the size range measured. It some might be tempted to tie the small end of the main-belt binary population to the binaries seen among the NEAs (also small and also showing about 20% fraction), given the 20% fraction
ERIC Educational Resources Information Center
Fazio, James R., Ed.
1991-01-01
This document might easily have been called "How To Use Trees To Save Energy". It presents the energy saving advantages of landscaping the home and community with trees. The discussion includes: (1) landscaping advice to obtain the benefits of tree shade; (2) the heat island phenomenon in cities; (3) how and where to properly plant trees for…
Multilevel Models for Binary Data
ERIC Educational Resources Information Center
Powers, Daniel A.
2012-01-01
The methods and models for categorical data analysis cover considerable ground, ranging from regression-type models for binary and binomial data, count data, to ordered and unordered polytomous variables, as well as regression models that mix qualitative and continuous data. This article focuses on methods for binary or binomial data, which are…
Interim results from the ongoing hunt for supermassive black hole binaries
NASA Astrophysics Data System (ADS)
Runnoe, Jessie C.; Mathes, Gavin; Pennell, Alison; Brown, Stephanie Meghan; Eracleous, Michael; Boroson, Todd A.; Bogdanovic, Tamara; Sigurdsson, Steinn; Halpern, Jules P.; Liu, Jia
2016-01-01
Supermassive black hole binaries seem to be an inevitable product of the prevailing galaxy evolution scenarios in which most massive galaxies play host to a central black hole and undergo a history of mergers and accretion over the course of cosmic time. The early stages of this process have been observed in the form of interacting galaxy pairs as well dual active galactic nuclei with kilo-parsec separations, but detections of the close, bound binaries that are expected to follow have proven elusive. With this motivation, we have been conducting a systematic observational search for sub-parsec separation supermassive black hole binaries. Specifically, we test the hypothesis that the secondary black hole in the system is active and the resulting broad emission lines are doppler shifted due to orbital motion in the binary (analogous to a single-line spectroscopc binary star). Our sample includes 88 binary candidates selected from z<0.7 Sloan Digital Sky Survey quasars based on substantial offsets (>1000 km/s) of their broad Hβ emission lines relative to their systemic redshifts. I will present the latest results from the spectroscopic monitoring campaign that we are conducting to constrain the nature of the binary candidates. These include the radial velocity curves, which now use observations made through 2015, and the constraints that can be placed on the physical properties of the binary based on the radial velocity curves and observed flux variability of the binaries.
Accuracy of Binary Black Hole Waveform Models for Advanced LIGO
NASA Astrophysics Data System (ADS)
Kumar, Prayush; Fong, Heather; Barkett, Kevin; Bhagwat, Swetha; Afshari, Nousha; Chu, Tony; Brown, Duncan; Lovelace, Geoffrey; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela; Simulating Extreme Spacetimes (SXS) Team
2016-03-01
Coalescing binaries of compact objects, such as black holes and neutron stars, are the primary targets for gravitational-wave (GW) detection with Advanced LIGO. Accurate modeling of the emitted GWs is required to extract information about the binary source. The most accurate solution to the general relativistic two-body problem is available in numerical relativity (NR), which is however limited in application due to computational cost. Current searches use semi-analytic models that are based in post-Newtonian (PN) theory and calibrated to NR. In this talk, I will present comparisons between contemporary models and high-accuracy numerical simulations performed using the Spectral Einstein Code (SpEC), focusing at the questions: (i) How well do models capture binary's late-inspiral where they lack a-priori accurate information from PN or NR, and (ii) How accurately do they model binaries with parameters outside their range of calibration. These results guide the choice of templates for future GW searches, and motivate future modeling efforts.
Exploring Dual and Binary AGN via Radio Emission
NASA Astrophysics Data System (ADS)
Burke Spolaor, Sarah; Lazio, J.
2012-05-01
Dual and binary supermassive black holes (SMBHs) are thought to form as a direct result of a major galaxy merger. The discovery of late-stage SMBH pairs could critically inform upcoming gravitational wave science and cosmological formation models, and could provide fascinating studies of post-merger dynamics and merger-induced SMBH growth. However, it has been notoriously difficult to identify clear electromagnetic markers for dual and binary SMBHs in late-stage merger systems. Accordingly, few definitive discoveries of paired SMBHs have yet been made, with only a handful of known systems at projected separations below 1kpc. We will review the unique contributions that radio imaging observations can make to this field: particularly in the search for new systems, the confirmation of candidate small-orbit binary systems, and the potential for multi-messenger gravitational wave science when combined with pulsar timing methods. We will also provide an update on recent radio searches for binary AGN. We acknowledge that a portion of research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.
Tabu search model selection for SVM.
Lebrun, Gilles; Charrier, Christophe; Lezoray, Olivier; Cardot, Hubert
2008-02-01
A model selection method based on tabu search is proposed to build support vector machines (binary decision functions) of reduced complexity and efficient generalization. The aim is to build a fast and efficient support vector machines classifier. A criterion is defined to evaluate the decision function quality which blends recognition rate and the complexity of a binary decision functions together. The selection of the simplification level by vector quantization, of a feature subset and of support vector machines hyperparameters are performed by tabu search method to optimize the defined decision function quality criterion in order to find a good sub-optimal model on tractable times. PMID:18344220
NASA Astrophysics Data System (ADS)
Bouchaud, J.-P.; Dean, D. S.
1995-03-01
We present a detailed study of simple “tree" models for off equilibrium dynamics and aging in glassy systems. The simplest tree describes the landscape of a random energy model, whereas multifurcating trees occur in the solution of the Sherrington-Kirkpatrick model. An important ingredient taken from these models is the exponential distribution of deep free-energies, which translate into a power-law distribution of the residence time within metastable “valleys". These power law distributions have infinite mean in the spin-glass phase and this leads to the aging phenomenon. To each level of the tree is associated an overlap and the exponent of the time distribution. We solve these models for a finite (but arbitrary) number of levels and show that a two-level tree accounts very well for many experimental observations (thermoremanent magnetization, a.c. susceptibility, second noise spectrum....). We introduce the idea that the deepest levels of the tree correspond to equilibrium dynamics whereas the upper levels correspond to aging. Temperature cycling experiments suggest that the borderline between the two is temperature dependent. The spin-glass transition corresponds to the temperature at which the uppermost level is put out of equilibrium but is subsequently followed by a sequence of (dynamical) phase transitions corresponding to non equilibrium dynamics within deeper and deeper levels. We tentatively try to relate this “tree" picture to the real space “droplet" model, and speculate on how the final description of spin-glasses might look like.
Eclipsing Binaries with Classical Cepheid Component in the Magellanic System
NASA Astrophysics Data System (ADS)
Udalski, A.; Soszyński, I.; Szymański, M. K.; Pietrzyński, G.; Poleski, R.; Pietrukowicz, P.; Kozłowski, S.; Mróz, P.; Skowron, D.; Skowron, J.; Wyrzykowski, Ł.; Ulaczyk, K.; Pawlak, M.
2015-12-01
We present a census of eclipsing binary systems with classical Cepheid as a component. All such systems known were found in the OGLE collection of classical Cepheids in the Magellanic System. We extend the list of potential candidates adding four new objects found in the OGLE-IV photometric data. One of the new Cepheids in the eclipsing system, OGLE-SMC-CEP-3235, revealed only one eclipse during 15 years of the OGLE photometric monitoring. However, it additionally shows very well pronounced light-time effect indicating that the binarity is real and the system is physically bound. We also search for the light-time effect in other known eclipsing Cepheids and we clearly detect it in OGLE-LMC-CEP-1812. We discuss application of this tool for the search for Cepheids in non-eclipsing binary systems.
... this page: https://medlineplus.gov/cloud.html Search Cloud To use the sharing features on this page, ... Top 110 zoster vaccine Share the MedlinePlus search cloud with your users by embedding our search cloud ...
... www.nlm.nih.gov/medlineplus/cloud.html Search Cloud To use the sharing features on this page, please enable JavaScript. Share the MedlinePlus search cloud with your users by embedding our search cloud ...
Signature Visualization of Software Binaries
Panas, T
2008-07-01
In this paper we present work on the visualization of software binaries. In particular, we utilize ROSE, an open source compiler infrastructure, to pre-process software binaries, and we apply a landscape metaphor to visualize the signature of each binary (malware). We define the signature of a binary as a metric-based layout of the functions contained in the binary. In our initial experiment, we visualize the signatures of a series of computer worms that all originate from the same line. These visualizations are useful for a number of reasons. First, the images reveal how the archetype has evolved over a series of versions of one worm. Second, one can see the distinct changes between version. This allows the viewer to form conclusions about the development cycle of a particular worm.
precession: Dynamics of spinning black-hole binaries with python
NASA Astrophysics Data System (ADS)
Gerosa, Davide; Kesden, Michael
2016-06-01
We present the numerical code precession, a new open-source python module to study the dynamics of precessing black-hole binaries in the post-Newtonian regime. The code provides a comprehensive toolbox to (i) study the evolution of the black-hole spins along their precession cycles, (ii) perform gravitational-wave-driven binary inspirals using both orbit-averaged and precession-averaged integrations, and (iii) predict the properties of the merger remnant through fitting formulas obtained from numerical-relativity simulations. precession is a ready-to-use tool to add the black-hole spin dynamics to larger-scale numerical studies such as gravitational-wave parameter estimation codes, population synthesis models to predict gravitational-wave event rates, galaxy merger trees and cosmological simulations of structure formation. precession provides fast and reliable integration methods to propagate statistical samples of black-hole binaries from/to large separations where they form to/from small separations where they become detectable, thus linking gravitational-wave observations of spinning black-hole binaries to their astrophysical formation history. The code is also a useful tool to compute initial parameters for numerical-relativity simulations targeting specific precessing systems. precession can be installed from the python Package Index, and it is freely distributed under version control on github, where further documentation is provided.
NASA Astrophysics Data System (ADS)
Rieger, Samantha
2015-05-01
Recent observations have found that some contact binaries are oriented such that the secondary impacts with the primary at a high inclination. This research investigates the evolution of how such contact binaries came to exist. This process begins with an asteroid pair, where the secondary lies on the Laplace plane. The Laplace plane is a plane normal to the axis about which the pole of a satellites orbit precesses, causing a near constant inclination for such an orbit. For the study of the classical Laplace plane, the secondary asteroid is in circular orbit around an oblate primary with axial tilt. This system is also orbiting the Sun. Thus, there are two perturbations on the secondarys orbit: J2 and third body Sun perturbations. The Laplace surface is defined as the group of orbits that lie on the Laplace plane at varying distances from the primary. If the secondary is very close to the primary, the inclination of the Laplace plane will be near the equator of the asteroid, while further from the primary the inclination will be similar to the asteroid-Sun plane. The secondary will lie on the Laplace plane because near the asteroid the Laplace plane is stable to large deviations in motion, causing the asteroid to come to rest in this orbit. Assuming the secondary is asymmetrical in shape and the bodys rotation is synchronous with its orbit, the secondary will experience the BYORP effect. BYORP can cause secular motion such as the semi-major axis of the secondary expanding or contracting. Assuming the secondary expands due to BYORP, the secondary will eventually reach the unstable region of the Laplace plane. The unstable region exists if the primary has an obliquity of 68.875 degrees or greater. The unstable region exists at 0.9 Laplace radius to 1.25 Laplace radius, where the Laplace radius is defined as the distance from the central body where the inclination of the Laplace plane orbit is half the obliquity. In the unstable region, the eccentricity of the orbit
USING KUIPER BELT BINARIES TO CONSTRAIN NEPTUNE'S MIGRATION HISTORY
Murray-Clay, Ruth A.; Schlichting, Hilke E.
2011-04-01
Approximately 10%-20% of all Kuiper Belt objects (KBOs) occupy mean-motion resonances with Neptune. This dynamical configuration likely resulted from resonance capture as Neptune migrated outward during the late stages of planet formation. The details of Neptune's planetesimal-driven migration, including its radial extent and the concurrent eccentricity evolution of the planet, are the subject of considerable debate. Two qualitatively different proposals for resonance capture have been proposed-migration-induced capture driven by smooth outward evolution of Neptune's orbit and chaotic capture driven by damping of the planet's eccentricity near its current semi-major axis. We demonstrate that the distribution of comparable-mass, wide-separation binaries occupying resonant orbits can differentiate between these two scenarios. If migration-induced capture occurred, this fraction records information about the formation locations of different populations of KBOs. Chaotic capture, in contrast, randomizes the orbits of bodies as they are placed in resonance. In particular, if KBO binaries are formed by dynamical capture in a protoplanetary disk with a surface mass density typical of observed extrasolar disks, then migration-induced capture produces the following signatures. The 2:1 resonance should contain a dynamically cold component, with inclinations less than 5{sup 0}-10{sup 0}, having a binary fraction comparable to that among cold classical KBOs. If the 3:2 resonance also hosts a cold component, its binary fraction should be 20%-30% lower than in the cold classical belt. Among cold 2:1 (and if present 3:2) KBOs, objects with eccentricities e < 0.2 should have a binary fraction {approx}20% larger than those with e>0.2. Other binary formation scenarios and disk surface density profiles can generate analogous signatures but produce quantitatively different results. Searches for cold components in the binary fractions of resonant KBOs are currently practical. The
Eclipsing Binaries From the CSTAR Project at Dome A, Antarctica
NASA Astrophysics Data System (ADS)
Yang, Ming; Zhang, Hui; Wang, Songhu; Zhou, Ji-Lin; Zhou, Xu; Wang, Lingzhi; Wang, Lifan; Wittenmyer, R. A.; Liu, Hui-Gen; Meng, Zeyang; Ashley, M. C. B.; Storey, J. W. V.; Bayliss, D.; Tinney, Chris; Wang, Ying; Wu, Donghong; Liang, Ensi; Yu, Zhouyi; Fan, Zhou; Feng, Long-Long; Gong, Xuefei; Lawrence, J. S.; Liu, Qiang; Luong-Van, D. M.; Ma, Jun; Wu, Zhenyu; Yan, Jun; Yang, Huigen; Yang, Ji; Yuan, Xiangyan; Zhang, Tianmeng; Zhu, Zhenxi; Zou, Hu
2015-04-01
The Chinese Small Telescope ARray (CSTAR) has observed an area around the Celestial South Pole at Dome A since 2008. About 20,000 light curves in the i band were obtained during the observation season lasting from 2008 March to July. The photometric precision achieves about 4 mmag at i = 7.5 and 20 mmag at i = 12 within a 30 s exposure time. These light curves are analyzed using Lomb-Scargle, Phase Dispersion Minimization, and Box Least Squares methods to search for periodic signals. False positives may appear as a variable signature caused by contaminating stars and the observation mode of CSTAR. Therefore, the period and position of each variable candidate are checked to eliminate false positives. Eclipsing binaries are removed by visual inspection, frequency spectrum analysis, and a locally linear embedding technique. We identify 53 eclipsing binaries in the field of view of CSTAR, containing 24 detached binaries, 8 semi-detached binaries, 18 contact binaries, and 3 ellipsoidal variables. To derive the parameters of these binaries, we use the Eclipsing Binaries via Artificial Intelligence method. The primary and secondary eclipse timing variations (ETVs) for semi-detached and contact systems are analyzed. Correlated primary and secondary ETVs confirmed by false alarm tests may indicate an unseen perturbing companion. Through ETV analysis, we identify two triple systems (CSTAR J084612.64-883342.9 and CSTAR J220502.55-895206.7). The orbital parameters of the third body in CSTAR J220502.55-895206.7 are derived using a simple dynamical model.
Resonant Transneptunian Binaries: Evidence for Slow Migration of Neptune
NASA Technical Reports Server (NTRS)
Noll, Keith S.; Grundy, W. M.; Schlichting, H. E.; Murray-Clay, R. A.; Benecchi, S. B.
2012-01-01
As Neptune migrated, its mean-motion resonances preceded it into the planetesimal disk. The efficiency of capture into mean motion resonances depends on the smoothness of Neptune's migration and the local population available to be captured. The two strongest resonances, the 3:2 at 39.4 AU and 2:1 at 47.7 AU, straddle the core repository of the physically distinct and binary-rich Cold Classicals, providing a unique opportunity to test the details of Neptune's migration. Smooth migration should result in a measurable difference between the 3:2 and 2:1 resonant object properties, with low inclination 2:1s having a high fraction of red binaries, mirroring that of the Cold Classicals while the 3:2 will would have fewer binaries. Rapid migration would generate a more homogeneous result. Resonant objects observed with HST show a higher rate of binaries in the 2:1 relative to the 3:2, significant at the 2cr level. This suggests slow Neptune migration over a large enough distance that the 2:1 swept through the Cold Classical region. Colors are available for only a fraction of these targets but a prevalence of red objects in outer Resonances has been reported. We report here on ongoing observations with HST in cycle 19 targeting all unobserved Resonants with observations that will measure color and search for binary companions using the WFC3.
GBM Observations of Be X-Ray Binary Outbursts
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.; Finger, M. H.; Jenke, P. A.
2014-01-01
Since 2008 we have been monitoring accreting pulsars using the Gamma ray Burst Monitor (GBM) on Fermi. This monitoring program includes daily blind full sky searches for previously unknown or previously quiescent pulsars and source specific analysis to track the frequency evolution of all detected pulsars. To date we have detected outbursts from 23 transient accreting pulsars, including 21 confirmed or likely Be/X-ray binaries. I will describe our techniques and highlight results for selected pulsars.
NASA Astrophysics Data System (ADS)
Pourbaix, D.; Arenou, F.; Halbwachs, J.-L.; Siopis, C.
2013-02-01
Gaia's five-year observation baseline might naively lead to the expectation that it will be possible to fit the parallax of any sufficiently nearby object with the default five-parameter model (position at a reference epoch, parallax and proper motion). However, simulated Gaia observations of a `model Universe' composed of nearly 107 objects, 50% of which turn out to be multiple stars, show that the single-star hypothesis can severely affect parallax estimation and that more sophisticated models must be adopted. In principle, screening these spurious single-star solutions is rather straightforward, for example by evaluating the quality of the fits. However, the simulated Gaia observations also reveal that some seemingly acceptable single-star solutions can nonetheless lead to erroneous distances. These solutions turn out to be binaries with an orbital period close to one year. Without auxiliary (e.g., spectroscopic) data, they will remain unnoticed.
Periodic emission from the gamma-ray binary 1FGL J1018.6-5856.
Fermi LAT Collaboration; Ackermann, M; Ajello, M; Ballet, J; Barbiellini, G; Bastieri, D; Belfiore, A; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Cavazzuti, E; Cecchi, C; Çelik, Ö; Charles, E; Chaty, S; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Corbel, S; Corbet, R H D; Cutini, S; de Luca, A; den Hartog, P R; de Palma, F; Dermer, C D; Digel, S W; do Couto e Silva, E; Donato, D; Drell, P S; Drlica-Wagner, A; Dubois, R; Dubus, G; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hill, A B; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, T J; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ozaki, M; Paneque, D; Parent, D; Pesce-Rollins, M; Pierbattista, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Ritz, S; Romani, R W; Roth, M; Saz Parkinson, P M; Sgrò, C; Siskind, E J; Spandre, G; Spinelli, P; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Tinivella, M; Torres, D F; Tosti, G; Troja, E; Uchiyama, Y; Usher, T L; Vandenbroucke, J; Vianello, G; Vitale, V; Waite, A P; Winer, B L; Wood, K S; Wood, M; Yang, Z; Zimmer, S; Coe, M J; Di Mille, F; Edwards, P G; Filipović, M D; Payne, J L; Stevens, J; Torres, M A P
2012-01-13
Gamma-ray binaries are stellar systems containing a neutron star or black hole, with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL J1018.6-5856 exhibits intensity and spectral modulation with a 16.6-day period. We identified a variable x-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGL J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy. PMID:22246769
Periodic Emission from the Gamma-Ray Binary 1FGL J1018.6-5856
NASA Technical Reports Server (NTRS)
2012-01-01
Gamma-ray binaries are stellar systems containing a neutron star or black hole, with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy, A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL ]1018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable x-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGL ]1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.
Periodic Emission from the Gamma-ray Binary 1FGL J1018.6-5856
NASA Technical Reports Server (NTRS)
Celic, O.; Corbet, R. H. D.; Donato, D.; Ferrara, E. C.; Gehrels, N.; Harding, A. K.; Hays, E.; McEnery, J. E.; Thompson, D. J.; Troja, E.
2012-01-01
Gamma-ray binaries are stellar systems containing a neutron star or black hole with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that IFGL JI018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable X-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an 06V f) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. IFGL J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.
Control of broadband optically generated ultrasound pulses using binary amplitude holograms.
Brown, Michael D; Jaros, Jiri; Cox, Ben T; Treeby, Bradley E
2016-04-01
In this work, the use of binary amplitude holography is investigated as a mechanism to focus broadband acoustic pulses generated by high peak-power pulsed lasers. Two algorithms are described for the calculation of the binary holograms; one using ray-tracing, and one using an optimization based on direct binary search. It is shown using numerical simulations that when a binary amplitude hologram is excited by a train of laser pulses at its design frequency, the acoustic field can be focused at a pre-determined distribution of points, including single and multiple focal points, and line and square foci. The numerical results are validated by acoustic field measurements from binary amplitude holograms, excited by a high peak-power laser. PMID:27106311
NASA Technical Reports Server (NTRS)
Truong, Trieu-Kie (Inventor); Hsu, In-Shek (Inventor); Reed, Irving S. (Inventor)
1989-01-01
A pipeline binary updown counter is comprised of simple stages that may be readily replicated. Each stage is defined by the Boolean logic equation: A(sub n)(t) = A(sub n)(t - 1) exclusive OR (U AND P(sub n)) inclusive OR (D AND Q(sub n)), where A(sub n)(t) denotes the value of the nth bit at time t. The input to the counter has three values represented by two binary signals U and D such that if both are zero, the input is zero, if U = 0 and D = 1, the input is -1 and if U = 1 and D = 0, the input is +1. P(sub n) represents a product of A(sub k)'s for 1 is less than or equal to k is less than or equal to -1, while Q(sub n) represents the product of bar A's for 1 is less than or equal to K is less than or equal to n - 1, where bar A(sub k) is the complement of A(sub k) and P(sub n) and Q(sub n) are expressed as the following two equations: P(sub n) = A(sub n - 1) A(sub n - 2)...A(sub 1) and Q(sub n) = bar A(sub n - 1) bar A(sub n - 2)...bar A(sub 1), which can be written in recursive form as P(sub n) = P(sub n - 1) AND bar A(sub n - 1) and Q(sub n) = Q(sub n - 1) AND bar A(sub n - 1) with the initial values P(sub 1) = 1 and Q(sub 1) = 1.
Roux, Kenneth H; Teuber, Suzanne S; Sathe, Shridhar K
2003-08-01
Allergic reactions to tree nuts can be serious and life threatening. Considerable research has been conducted in recent years in an attempt to characterize those allergens that are most responsible for allergy sensitization and triggering. Both native and recombinant nut allergens have been identified and characterized and, for some, the IgE-reactive epitopes described. Some allergens, such as lipid transfer proteins, profilins, and members of the Bet v 1-related family, represent minor constituents in tree nuts. These allergens are frequently cross-reactive with other food and pollen homologues, and are considered panallergens. Others, such as legumins, vicilins, and 2S albumins, represent major seed storage protein constituents of the nuts. The allergenic tree nuts discussed in this review include those most commonly responsible for allergic reactions such as hazelnut, walnut, cashew, and almond as well as those less frequently associated with allergies including pecan, chestnut, Brazil nut, pine nut, macadamia nut, pistachio, coconut, Nangai nut, and acorn. PMID:12915766
Position around a tree: consequences for pheromone detection.
Miller, Ginger L; Loudon, Catherine; Freed, Sarah
2007-03-01
The air flow pattern expected around a cylindrical object such as a tree in slow wind, is predicted from fluid mechanics to have areas of faster flow (upwind) and slower recirculating flow with eddies (downwind). An organism located on the surface of a tree would experience different flow depending on its circumferential position. If that organism was searching for a chemical signal, such as a pheromone plume, it might maximize its probability of chemodetection by placing itself in areas of greatest flow speed (the upwind surface of the cylinder, i.e., in front of the separation points). We tested whether wood cockroaches in the genus Parcoblatta exhibit such upwind positioning; they live in forests, and males actively fly from tree to tree, while searching for females releasing sex pheromone. In contrast to an expectation of upwind preference, male cockroaches were evenly distributed around trees relative to upwind (measured with a novel "feather boa" flow visualization technique), even though the wind direction was relatively steady. We investigated whether sex pheromone could be detected at any location around a cylindrical surface in a laboratory flow chamber by using Bombyx mori wing fanning as a bioassay. Although upwind moths arrayed on the surface detected pheromone more rapidly, pheromone detection occurred at least a third of the time at any position, which could explain the even distribution of Parcoblatta males around trees. PMID:17252213
Pattern Matcher for Trees Constructed from Lists
NASA Technical Reports Server (NTRS)
James, Mark
2007-01-01
A software library has been developed that takes a high-level description of a pattern to be satisfied and applies it to a target. If the two match, it returns success; otherwise, it indicates a failure. The target is semantically a tree that is constructed from elements of terminal and non-terminal nodes represented through lists and symbols. Additionally, functionality is provided for finding the element in a set that satisfies a given pattern and doing a tree search, finding all occurrences of leaf nodes that match a given pattern. This process is valuable because it is a new algorithmic approach that significantly improves the productivity of the programmers and has the potential of making their resulting code more efficient by the introduction of a novel semantic representation language. This software has been used in many applications delivered to NASA and private industry, and the cost savings that have resulted from it are significant.
Terziev, Emil; Law, Nicholas M.; Arcavi, Iair; Baranec, Christoph; Bui, Khanh; Dekany, Richard G.; Kulkarni, S. R.; Riddle, Reed; Tendulkar, Shriharsh P.; Bloom, Joshua S.; Burse, Mahesh P.; Chorida, Pravin; Das, H. K.; Punnadi, Sujit; Ramaprakash, A. N.; Kraus, Adam L.; Nugent, Peter; Ofek, Eran O.; Sullivan, Mark
2013-06-01
The direct detection of binary systems in wide-field surveys is limited by the size of the stars' point-spread functions (PSFs). A search for elongated objects can find closer companions, but is limited by the precision to which the PSF shape can be calibrated for individual stars. Based on a technique from weak-lensing analysis, we have developed the BinaryFinder algorithm to search for close binaries by using precision measurements of PSF ellipticity across wide-field survey images. We show that the algorithm is capable of reliably detecting binary systems down to Almost-Equal-To 1/5 of the seeing limit, and can directly measure the systems' position angles, separations, and contrast ratios. To verify the algorithm's performance we evaluated 100,000 objects in Palomar Transient Factory (PTF) wide-field-survey data for signs of binarity, and then used the Robo-AO robotic laser adaptive optics system to verify the parameters of 44 high-confidence targets. We show that BinaryFinder correctly predicts the presence of close companions with a <11% false-positive rate, measures the detected binaries' position angles within 1 Degree-Sign to 4 Degree-Sign (depending on signal-to-noise ratio and separation), and separations within 25%, and weakly constrains their contrast ratios. When applied to the full PTF data set, we estimate that BinaryFinder will discover and characterize {approx}450,000 physically associated binary systems with separations <2 arcsec and magnitudes brighter than m{sub R} = 18. New wide-field synoptic surveys with high sensitivity and sub-arcsecond angular resolution, such as LSST, will allow BinaryFinder to reliably detect millions of very faint binary systems with separations as small as 0.1 arcsec.
Observational signatures of binary supermassive black holes
Roedig, Constanze; Krolik, Julian H.; Miller, M. Coleman
2014-04-20
Observations indicate that most massive galaxies contain a supermassive black hole, and theoretical studies suggest that when such galaxies have a major merger, the central black holes will form a binary and eventually coalesce. Here we discuss two spectral signatures of such binaries that may help distinguish them from ordinary active galactic nuclei. These signatures are expected when the mass ratio between the holes is not extreme and the system is fed by a circumbinary disk. One such signature is a notch in the thermal continuum that has been predicted by other authors; we point out that it should be accompanied by a spectral revival at shorter wavelengths and also discuss its dependence on binary properties such as mass, mass ratio, and separation. In particular, we note that the wavelength λ {sub n} at which the notch occurs depends on these three parameters in such a way as to make the number of systems displaying these notches ∝λ{sub n}{sup 16/3}; longer wavelength searches are therefore strongly favored. A second signature, first discussed here, is hard X-ray emission with a Wien-like spectrum at a characteristic temperature ∼100 keV produced by Compton cooling of the shock generated when streams from the circumbinary disk hit the accretion disks around the individual black holes. We investigate the observability of both signatures. The hard X-ray signal may be particularly valuable as it can provide an indicator of black hole merger a few decades in advance of the event.
MAGNETIC INTERACTIONS IN COALESCING NEUTRON STAR BINARIES
Piro, Anthony L.
2012-08-10
It is expected on both evolutionary and empirical grounds that many merging neutron star (NS) binaries are composed of a highly magnetized NS in orbit with a relatively low magnetic field NS. I study the magnetic interactions of these binaries using the framework of a unipolar inductor model. The electromotive force generated across the non-magnetic NS as it moves through the magnetosphere sets up a circuit connecting the two stars. The exact features of this circuit depend on the uncertain resistance in the space between the stars R{sub space}. Nevertheless, I show that there are interesting observational and/or dynamical effects irrespective of its exact value. When R{sub space} is large, electric dissipation as great as {approx}10{sup 46} erg s{sup -1} (for magnetar-strength fields) occurs in the magnetosphere, which would exhibit itself as a hard X-ray precursor in the seconds leading up to merger. With less certainty, there may also be an associated radio transient. When R{sub space} is small, electric dissipation largely occurs in the surface layers of the magnetic NS. This can reach {approx}10{sup 49} erg s{sup -1} during the final {approx}1 s before merger, similar to the energetics and timescales of short gamma-ray bursts. In addition, for dipole fields greater than Almost-Equal-To 10{sup 12} G and a small R{sub space}, magnetic torques spin up the magnetized NS. This drains angular momentum from the binary and accelerates the inspiral. A faster coalescence results in less orbits occurring before merger, which would impact matched-filtering gravitational-wave searches by ground-based laser interferometers and could create difficulties for studying alternative theories of gravity with compact inspirals.
A Combined Astrometric and Spectroscopic Study of Metal-Poor Binaries
NASA Astrophysics Data System (ADS)
Benamati, L.; Sozzetti, A.; Santos, N. C.; Latham, D. W.
2013-11-01
In this work we present a study of binary systems in a metal-poor sample of solar type stars. The stars analyzed were rejected from two planet search samples because they were found to be binaries. Using available radial velocity and Hipparcos astrometric data, we apply different methods to find, for every binary system, a possible range of solutions for the mass of the companion and its orbital period. In one case we find that the solution depends on the Hipparcos data used: the old and new reductions give different results. Some candidate low-mass companions are found, including some close to the brown dwarf regime.
BINARIES AMONG DEBRIS DISK STARS
Rodriguez, David R.; Zuckerman, B.
2012-02-01
We have gathered a sample of 112 main-sequence stars with known debris disks. We collected published information and performed adaptive optics observations at Lick Observatory to determine if these debris disks are associated with binary or multiple stars. We discovered a previously unknown M-star companion to HD 1051 at a projected separation of 628 AU. We found that 25% {+-} 4% of our debris disk systems are binary or triple star systems, substantially less than the expected {approx}50%. The period distribution for these suggests a relative lack of systems with 1-100 AU separations. Only a few systems have blackbody disk radii comparable to the binary/triple separation. Together, these two characteristics suggest that binaries with intermediate separations of 1-100 AU readily clear out their disks. We find that the fractional disk luminosity, as a proxy for disk mass, is generally lower for multiple systems than for single stars at any given age. Hence, for a binary to possess a disk (or form planets) it must either be a very widely separated binary with disk particles orbiting a single star or it must be a small separation binary with a circumbinary disk.
MICROLENSING BINARIES WITH CANDIDATE BROWN DWARF COMPANIONS
Shin, I.-G.; Han, C.; Gould, A.; Skowron, J.; Udalski, A.; Szymanski, M. K.; Kubiak, M.; Soszynski, I.; Pietrzynski, G.; Poleski, R.; Ulaczyk, K.; Pietrukowicz, P.; Kozlowski, S.; Wyrzykowski, L.; Sumi, T.; Dominik, M.; Beaulieu, J.-P.; Tsapras, Y.; Bozza, V.; Abe, F.; Collaboration: OGLE Collaboration; MOA Collaboration; muFUN Collaboration; and others
2012-12-01
Brown dwarfs are important objects because they may provide a missing link between stars and planets, two populations that have dramatically different formation histories. In this paper, we present the candidate binaries with brown dwarf companions that are found by analyzing binary microlensing events discovered during the 2004-2011 observation seasons. Based on the low mass ratio criterion of q < 0.2, we found seven candidate events: OGLE-2004-BLG-035, OGLE-2004-BLG-039, OGLE-2007-BLG-006, OGLE-2007-BLG-399/MOA-2007-BLG-334, MOA-2011-BLG-104/OGLE-2011-BLG-0172, MOA-2011-BLG-149, and MOA-201-BLG-278/OGLE-2011-BLG-012N. Among them, we are able to confirm that the companions of the lenses of MOA-2011-BLG-104/OGLE-2011-BLG-0172 and MOA-2011-BLG-149 are brown dwarfs by determining the mass of the lens based on the simultaneous measurement of the Einstein radius and the lens parallax. The measured masses of the brown dwarf companions are 0.02 {+-} 0.01 M {sub Sun} and 0.019 {+-} 0.002 M {sub Sun} for MOA-2011-BLG-104/OGLE-2011-BLG-0172 and MOA-2011-BLG-149, respectively, and both companions are orbiting low-mass M dwarf host stars. More microlensing brown dwarfs are expected to be detected as the number of lensing events with well-covered light curves increases with new-generation searches.
X-RAY EMISSION FROM THE BINARY CENTRAL STARS OF THE PLANETARY NEBULAE HFG 1, DS 1, AND LOTR 5
Montez, Rodolfo; Kastner, Joel H.; De Marco, Orsola; Chu, You-Hua
2010-10-01
Close binary systems undergoing mass transfer or common envelope interactions can account for the morphological properties of some planetary nebulae. The search for close binary companions in planetary nebulae is hindered by the difficulty of detecting cool, late-type, main-sequence companions in binary systems with hot pre-white-dwarf primaries. However, models of binary planetary nebula progenitor systems predict that mass accretion or tidal interactions can induce rapid rotation in the companion, leading to X-ray-emitting coronae. To test such models, we have searched for, and detected, X-ray emission from three binary central stars within planetary nebulae: the post-common envelope close binaries in HFG 1 and DS 1 consisting of O-type subdwarfs with late-type, main-sequence companions and the binary system in LoTr 5 consisting of O-type subdwarf and rapidly rotating, late-type giant companion. The X-ray emission in each case is best characterized by spectral models consisting of two optically thin thermal plasma components with characteristic temperatures of {approx}10 MK and 15-40 MK and total X-ray luminosities {approx}10{sup 30} erg s{sup -1}. We consider the possible origin of the X-ray emission from these binary systems and conclude that the most likely origin is, in each case, a corona around the late-type companion, as predicted by models of interacting binaries.
NASA Astrophysics Data System (ADS)
Dluzhnevskaya, O.; Kaygorodov, P.; Kovaleva, D.; Malkov, O.
2014-05-01
Description of the Binary star DataBase (BDB, http://bdb.inasan.ru), the world's principal database of binary and multiple systems of all observational types, is presented in the paper. BDB contains data on physical and positional parameters of 100,000 components of 40,000 systems of multiplicity 2 to 20, belonging to various observational types: visual, spectroscopic, eclipsing, etc. Information on these types of binaries is obtained from heterogeneous sources of data - astronomical and. Organization of the information is based on the careful cross-identification of the objects. BDB can be queried by star identifier, coordinates, and other parameters.
Conjugating binary systems for spacecraft thermal control
NASA Technical Reports Server (NTRS)
Grodzka, Philomena G.; Dean, William G.; Sisk, Lori A.; Karu, Zain S.
1989-01-01
The materials search was directed to liquid pairs which can form hydrogen bonds of just the right strength, i.e., strong enough to give a high heat of mixing, but weak enough to enable phase change to occur. The cursory studies performed in the area of additive effects indicate that Conjugating Binary (CB) performance can probably be fine-tuned by this means. The Fluid Loop Test Systems (FLTS) tests of candidate CBs indicate that the systems Triethylamine (TEA)/water and propionaldehyde/water show close to the ideal, reversible behavior, at least initially. The Quick Screening Tests QSTs and FLTS tests, however, both suffer from rather severe static due either to inadequate stirring or temperature control. Thus it is not possible to adequately evaluate less than ideal CB performers. Less than ideal performers, it should be noted, may have features that make them better practical CBs than ideal performers. Improvement of the evaluation instrumentation is thus indicated.
Periastron advance in black-hole binaries.
Le Tiec, Alexandre; Mroué, Abdul H; Barack, Leor; Buonanno, Alessandra; Pfeiffer, Harald P; Sago, Norichika; Taracchini, Andrea
2011-09-30
The general relativistic (Mercury-type) periastron advance is calculated here for the first time with exquisite precision in full general relativity. We use accurate numerical relativity simulations of spinless black-hole binaries with mass ratios 1/8≤m(1)/m(2)≤1 and compare with the predictions of several analytic approximation schemes. We find the effective-one-body model to be remarkably accurate and, surprisingly, so also the predictions of self-force theory [replacing m(1)/m(2)→m(1)m(2)/(m(1)+m(2))(2)]. Our results can inform a universal analytic model of the two-body dynamics, crucial for ongoing and future gravitational-wave searches. PMID:22107182
Imposing Constraints from the Source Tree on ITG Constraints for SMT
NASA Astrophysics Data System (ADS)
Yamamoto, Hirofumi; Okuma, Hideo; Sumita, Eiichiro
In the current statistical machine translation (SMT), erroneous word reordering is one of the most serious problems. To resolve this problem, many word-reordering constraint techniques have been proposed. Inversion transduction grammar (ITG) is one of these constraints. In ITG constraints, target-side word order is obtained by rotating nodes of the source-side binary tree. In these node rotations, the source binary tree instance is not considered. Therefore, stronger constraints for word reordering can be obtained by imposing further constraints derived from the source tree on the ITG constraints. For example, for the source word sequence { a b c d }, ITG constraints allow a total of twenty-two target word orderings. However, when the source binary tree instance ((a b) (c d)) is given, our proposed “imposing source tree on ITG” (IST-ITG) constraints allow only eight word orderings. The reduction in the number of word-order permutations by our proposed stronger constraints efficiently suppresses erroneous word orderings. In our experiments with IST-ITG using the NIST MT08 English-to-Chinese translation track's data, the proposed method resulted in a 1.8-points improvement in character BLEU-4 (35.2 to 37.0) and a 6.2% lower CER (74.1 to 67.9%) compared with our baseline condition.
NASA Astrophysics Data System (ADS)
Yao, W.; Krzystek, P.; Heurich, M.
2012-07-01
In forest ecology, a snag refers to a standing, partly or completely dead tree, often missing a top or most of the smaller branches. The accurate estimation of live and dead biomass in forested ecosystems is important for studies of carbon dynamics, biodiversity, and forest management. Therefore, an understanding of its availability and spatial distribution is required. So far, LiDAR remote sensing has been successfully used to assess live trees and their biomass, but studies focusing on dead trees are rare. The paper develops a methodology for retrieving individual dead trees in a mixed mountain forest using features that are derived from small-footprint airborne full waveform LIDAR data. First, 3D coordinates of the laser beam reflections, the pulse intensity and width are extracted by waveform decomposition. Secondly, 3D single trees are detected by an integrated approach, which delineates both dominate tree crowns and understory small trees in the canopy height model (CHM) using the watershed algorithm followed by applying normalized cuts segmentation to merged watershed areas. Thus, single trees can be obtained as 3D point segments associated with waveform-specific features per point. Furthermore, the tree segments are delivered to feature definition process to derive geometric and reflectional features at single tree level, e.g. volume and maximal diameter of crown, mean intensity, gap fraction, etc. Finally, the spanned feature space for the tree segments is forwarded to a binary classifier using support vector machine (SVM) in order to discriminate dead trees from the living ones. The methodology is applied to datasets that have been captured with the Riegl LMSQ560 laser scanner at a point density of 25 points/m2 in the Bavarian Forest National Park, Germany, respectively under leaf-on and leaf-off conditions for Norway spruces, European beeches and Sycamore maples. The classification experiments lead in the best case to an overall accuracy of 73% in a leaf
Binary Oscillatory Crossflow Electrophoresis
NASA Technical Reports Server (NTRS)
Molloy, Richard F.; Gallagher, Christopher T.; Leighton, David T., Jr.
1997-01-01
Electrophoresis has long been recognized as an effective analytic technique for the separation of proteins and other charged species, however attempts at scaling up to accommodate commercial volumes have met with limited success. In this report we describe a novel electrophoretic separation technique - Binary Oscillatory Crossflow Electrophoresis (BOCE). Numerical simulations indicate that the technique has the potential for preparative scale throughputs with high resolution, while simultaneously avoiding many problems common to conventional electrophoresis. The technique utilizes the interaction of an oscillatory electric field and a transverse oscillatory shear flow to create an active binary filter for the separation of charged protein species. An oscillatory electric field is applied across the narrow gap of a rectangular channel inducing a periodic motion of charged protein species. The amplitude of this motion depends on the dimensionless electrophoretic mobility, alpha = E(sub o)mu/(omega)d, where E(sub o) is the amplitude of the electric field oscillations, mu is the dimensional mobility, omega is the angular frequency of oscillation and d is the channel gap width. An oscillatory shear flow is induced along the length of the channel resulting in the separation of species with different mobilities. We present a model that predicts the oscillatory behavior of charged species and allows estimation of both the magnitude of the induced convective velocity and the effective diffusivity as a function of a in infinitely long channels. Numerical results indicate that in addition to the mobility dependence, the steady state behavior of solute species may be strongly affected by oscillating fluid into and out of the active electric field region at the ends of the cell. The effect is most pronounced using time dependent shear flows of the same frequency (cos((omega)t)) flow mode) as the electric field oscillations. Under such conditions, experiments indicate that
Stability of binaries. Part II: Rubble-pile binaries
NASA Astrophysics Data System (ADS)
Sharma, Ishan
2016-10-01
We consider the stability of the binary asteroids whose members are granular aggregates held together by self-gravity alone. A binary is said to be stable whenever both its members are orbitally and structurally stable to both orbital and structural perturbations. To this end, we extend the stability analysis of Sharma (Sharma [2015] Icarus, 258, 438-453), that is applicable to binaries with rigid members, to the case of binary systems with rubble members. We employ volume averaging (Sharma et al. [2009] Icarus, 200, 304-322), which was inspired by past work on elastic/fluid, rotating and gravitating ellipsoids. This technique has shown promise when applied to rubble-pile ellipsoids, but requires further work to settle some of its underlying assumptions. The stability test is finally applied to some suspected binary systems, viz., 216 Kleopatra, 624 Hektor and 90 Antiope. We also see that equilibrated binaries that are close to mobilizing their maximum friction can sustain only a narrow range of shapes and, generally, congruent shapes are preferred.
Finding Minimum-Power Broadcast Trees for Wireless Networks
NASA Technical Reports Server (NTRS)
Arabshahi, Payman; Gray, Andrew; Das, Arindam; El-Sharkawi, Mohamed; Marks, Robert, II
2004-01-01
Some algorithms have been devised for use in a method of constructing tree graphs that represent connections among the nodes of a wireless communication network. These algorithms provide for determining the viability of any given candidate connection tree and for generating an initial set of viable trees that can be used in any of a variety of search algorithms (e.g., a genetic algorithm) to find a tree that enables the network to broadcast from a source node to all other nodes while consuming the minimum amount of total power. The method yields solutions better than those of a prior algorithm known as the broadcast incremental power algorithm, albeit at a slightly greater computational cost.
The Inference of Gene Trees with Species Trees
Szöllősi, Gergely J.; Tannier, Eric; Daubin, Vincent; Boussau, Bastien
2015-01-01
This article reviews the various models that have been used to describe the relationships between gene trees and species trees. Molecular phylogeny has focused mainly on improving models for the reconstruction of gene trees based on sequence alignments. Yet, most phylogeneticists seek to reveal the history of species. Although the histories of genes and species are tightly linked, they are seldom identical, because genes duplicate, are lost or horizontally transferred, and because alleles can coexist in populations for periods that may span several speciation events. Building models describing the relationship between gene and species trees can thus improve the reconstruction of gene trees when a species tree is known, and vice versa. Several approaches have been proposed to solve the problem in one direction or the other, but in general neither gene trees nor species trees are known. Only a few studies have attempted to jointly infer gene trees and species trees. These models account for gene duplication and loss, transfer or incomplete lineage sorting. Some of them consider several types of events together, but none exists currently that considers the full repertoire of processes that generate gene trees along the species tree. Simulations as well as empirical studies on genomic data show that combining gene tree–species tree models with models of sequence evolution improves gene tree reconstruction. In turn, these better gene trees provide a more reliable basis for studying genome evolution or reconstructing ancestral chromosomes and ancestral gene sequences. We predict that gene tree–species tree methods that can deal with genomic data sets will be instrumental to advancing our understanding of genomic evolution. PMID:25070970
ERIC Educational Resources Information Center
Gresczyk, Rick
Created to help students understand how plants were used for food, for medicine, and for arts and crafts among the Ojibwe (Chippewa) Indians, the game Tree-Ties combines earth and social sciences within a specific culture. The game requires mutual respect, understanding, and agreement to succeed. Sounding like the word "treaties", the title is a…
Christmas Tree Category Manual.
ERIC Educational Resources Information Center
Bowman, James S.; Turmel, Jon P.
This manual provides information needed to meet the standards for pesticide applicator certification. Pests and diseases of christmas tree plantations are identified and discussed. Section one deals with weeds and woody plants and the application, formulation and effects of herbicides in controlling them. Section two discusses specific diseases…
Weinberg, Steven
2008-09-15
It is shown that the generating function for tree graphs in the ''in-in'' formalism may be calculated by solving the classical equations of motion subject to certain constraints. This theorem is illustrated by application to the evolution of a single inflaton field in a Robertson-Walker background.
A Universal Phylogenetic Tree.
ERIC Educational Resources Information Center
Offner, Susan
2001-01-01
Presents a universal phylogenetic tree suitable for use in high school and college-level biology classrooms. Illustrates the antiquity of life and that all life is related, even if it dates back 3.5 billion years. Reflects important evolutionary relationships and provides an exciting way to learn about the history of life. (SAH)
2007-04-30
MPI-FTW is a scalable MPI based software application that navigates a directory tree by dynamically allocating processes to navigate sub-directories found. Upon completion, MPI-FTW provides statistics on the number of directories found, files found, and time to complete. Inaddition, commands can be executed at each directory level.
ERIC Educational Resources Information Center
Kramer, David C.
1983-01-01
Describes a procedure for starting tree cuttings from woody plants, explaining "lag time," recommending materials, and giving step-by-step instructions for rooting and planting. Points out species which are likely candidates for cuttings and provides tips for teachers for developing a unit. (JM)
ERIC Educational Resources Information Center
Brokenleg, Martin
2000-01-01
Demographic changes in population continue to bring children of different cultural backgrounds to classrooms. This article provides suggestions teachers and counselors can use to bridge cultures. Using the parable of a medicine tree, it explains how no society can endure without caring for its young. (Author/JDM)
ERIC Educational Resources Information Center
Baum, David A.; Offner, Susan
2008-01-01
Phylogenetic trees, which are depictions of the inferred evolutionary relationships among a set of species, now permeate almost all branches of biology and are appearing in increasing numbers in biology textbooks. While few state standards explicitly require knowledge of phylogenetics, most require some knowledge of evolutionary biology, and many…
ERIC Educational Resources Information Center
Flannery, Maura
1998-01-01
Recommends introducing students to biology using a topical focus that can offer intriguing perspectives on the discipline. Describes a biology course that uses trees as a topical focus. Presents a list of literary resources and reviews student interactions. Contains 50 references. (DDR)
Arbutus unedo, Strawberry Tree
Technology Transfer Automated Retrieval System (TEKTRAN)
The Encylopedia of Fruit and Nuts is designed as a research reference source on temperate and tropical fruit and nut crops. Strawberry tree or madrone is native to the Mediterranean region of southern Europe (Arbutus unedo L., Ericaceae) with a relict population in Ireland, as well as in North Ameri...
ERIC Educational Resources Information Center
Lethbridge Univ. (Alberta).
Designed as a text for high school students and adults, this illustrated book presents ethical concepts and teachings of Native societies throughout North America concerning the nature and possibilities of human existence. The final component of a course in self-discovery and development, the book begins with the legend of the "Sacred Tree"…
ERIC Educational Resources Information Center
Growing Ideas, 2001
2001-01-01
Describes hands-on science areas that focus on trees. A project on leaf pigmentation involves putting crushed leaves in a test tube with solvent acetone to dissolve pigment. In another project, students learn taxonomy by sorting and classifying leaves based on observable characteristics. Includes a language arts connection. (PVD)
ERIC Educational Resources Information Center
Rockwell, Robert E.; And Others
1983-01-01
Methods for teaching pupils to use their senses to explore colors, shapes, textures, and sounds of the great outdoors are described. Ideas include: (1) having children hug their own special tree; (2) looking for geometric shapes in nature; (3) taking nocturnal nature walks; (4) building a track for racing insects; and (5) collecting objects with…
Cryptography with DNA binary strands.
Leier, A; Richter, C; Banzhaf, W; Rauhe, H
2000-06-01
Biotechnological methods can be used for cryptography. Here two different cryptographic approaches based on DNA binary strands are shown. The first approach shows how DNA binary strands can be used for steganography, a technique of encryption by information hiding, to provide rapid encryption and decryption. It is shown that DNA steganography based on DNA binary strands is secure under the assumption that an interceptor has the same technological capabilities as sender and receiver of encrypted messages. The second approach shown here is based on steganography and a method of graphical subtraction of binary gel-images. It can be used to constitute a molecular checksum and can be combined with the first approach to support encryption. DNA cryptography might become of practical relevance in the context of labelling organic and inorganic materials with DNA 'barcodes'. PMID:10963862
NASA Astrophysics Data System (ADS)
Evans, Nancy R.; Bond, H. E.; Schaefer, G.; Mason, B. D.; Karovska, M.; Tingle, E.
2013-01-01
Cepheids (5 Msun stars) provide an excellent sample for determining the binary properties of fairly massive stars. International Ultraviolet Explorer (IUE) observations of Cepheids brighter than 8th magnitude resulted in a list of ALL companions more massive than 2.0 Msun uniformly sensitive to all separations. Hubble Space Telescope Wide Field Camera 3 (WFC3) has resolved three of these binaries (Eta Aql, S Nor, and V659 Cen). Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations for a sample of 18 Cepheids, and also a distribution of mass ratios. The distribution of orbital periods shows that the 5 Msun binaries prefer shorter periods than 1 Msun stars, reflecting differences in star formation processes.
CHAOTIC ZONES AROUND GRAVITATING BINARIES
Shevchenko, Ivan I.
2015-01-20
The extent of the continuous zone of chaotic orbits of a small-mass tertiary around a system of two gravitationally bound primaries of comparable masses (a binary star, a binary black hole, a binary asteroid, etc.) is estimated analytically, as a function of the tertiary's orbital eccentricity. The separatrix map theory is used to demonstrate that the central continuous chaos zone emerges (above a threshold in the primaries' mass ratio) due to overlapping of the orbital resonances corresponding to the integer ratios p:1 between the tertiary and the central binary periods. In this zone, the unlimited chaotic orbital diffusion of the tertiary takes place, up to its ejection from the system. The primaries' mass ratio, above which such a chaotic zone is universally present at all initial eccentricities of the tertiary, is estimated. The diversity of the observed orbital configurations of biplanetary and circumbinary exosystems is shown to be in accord with the existence of the primaries' mass parameter threshold.
An adaptable binary entropy coder
NASA Technical Reports Server (NTRS)
Kiely, A.; Klimesh, M.
2001-01-01
We present a novel entropy coding technique which is based on recursive interleaving of variable-to-variable length binary source codes. We discuss code design and performance estimation methods, as well as practical encoding and decoding algorithms.
Simulating relativistic binaries with Whisky
NASA Astrophysics Data System (ADS)
Baiotti, L.
We report about our first tests and results in simulating the last phase of the coalescence and the merger of binary relativistic stars. The simulations were performed using our code Whisky and mesh refinement through the Carpet driver.
NASA Astrophysics Data System (ADS)
Eggleton, Peter P.
The mechanisms by which the periods of wide binaries (mass 8 solar mass or less and period 10-3000 d) are lengthened or shortened are discussed, synthesizing the results of recent theoretical investigations. A system of nomenclature involving seven evolutionary states, three geometrical states, and 10 types of orbital-period evolution is developed and applied; classifications of 71 binaries are presented in a table along with the basic observational parameters. Evolutionary processes in wide binaries (single-star-type winds, magnetic braking with tidal friction, and companion-reinforced attrition), late case B systems, low-mass X-ray binaries, and triple systems are examined in detail, and possible evolutionary paths are shown in diagrams.
Ultraviolet spectroscopy of binary systems
NASA Technical Reports Server (NTRS)
Dupree, A. K.; Hartmann, L.; Raymond, J. C.
1980-01-01
Four typical binary systems that illustrate some of the major problems in the study of binary stars are discussed. Consideration is given to (1) high-luminosity X-ray sources typified by Cyg X-1 (HDE 226868) and Vela XR-1 (HD 77581), (2) low-luminosity X-ray sources (HZ Her), (3) late-type systems of W UMa and RS CVn type, and (4) cool supergiants with a hot companion (VV Cephei).
Thirty New Low-mass Spectroscopic Binaries
NASA Astrophysics Data System (ADS)
Shkolnik, Evgenya L.; Hebb, Leslie; Liu, Michael C.; Reid, I. Neill; Collier Cameron, Andrew
2010-06-01
As part of our search for young M dwarfs within 25 pc, we acquired high-resolution spectra of 185 low-mass stars compiled by the NStars project that have strong X-ray emission. By cross-correlating these spectra with radial velocity standard stars, we are sensitive to finding multi-lined spectroscopic binaries. We find a low-mass spectroscopic binary fraction of 16% consisting of 27 SB2s, 2 SB3s, and 1 SB4, increasing the number of known low-mass spectroscopic binaries (SBs) by 50% and proving that strong X-ray emission is an extremely efficient way to find M-dwarf SBs. WASP photometry of 23 of these systems revealed two low-mass eclipsing binaries (EBs), bringing the count of known M-dwarf EBs to 15. BD-22 5866, the ESB4, was fully described in 2008 by Shkolnik et al. and CCDM J04404+3127 B consists of two mid-M stars orbiting each other every 2.048 days. WASP also provided rotation periods for 12 systems, and in the cases where the synchronization time scales are short, we used P rot to determine the true orbital parameters. For those with no P rot, we used differential radial velocities to set upper limits on orbital periods and semimajor axes. More than half of our sample has near-equal-mass components (q > 0.8). This is expected since our sample is biased toward tight orbits where saturated X-ray emission is due to tidal spin-up rather than stellar youth. Increasing the samples of M-dwarf SBs and EBs is extremely valuable in setting constraints on current theories of stellar multiplicity and evolution scenarios for low-mass multiple systems. Based on observations collected at the W. M. Keck Observatory, the Canada-France-Hawaii Telescope and by the WASP Consortium. The Keck Observatory is operated as a scientific partnership between the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation. The CFHT is operated by the National Research Council of Canada
Rates of tree throw in Appalachian shale landscapes
NASA Astrophysics Data System (ADS)
White, T. S.; Dere, A. L. D.
2014-12-01
Arborturbation, or tree throw, the upheaval of soil and sometimes bedrock in the root mass of a fallen tree, has been suggested to be a major process in the overturn and downslope transport of soil and shallow bedrock in mountainous regions. Reported here is a quantification of the effects of tree throw from six sites in the eastern U.S. from New York to Alabama. The study included field measurements of individual tree throws within a 120-meter diameter search area centered on ridge tops on the Silurian Rose Hill Formation shale and coeval strata of similar composition. The following observations were made for each tree throw at each study site: GPS location, tree girth, relative tree age, tree type, dimensions of pit, azimuth of fall, and slope and azimuth of maximum slope. These observations allowed quantification of the volume and distance of transport of sediment per event, and the number of events/area/time. The sediment fluxes reported here range from 1.8 X 10-5 m2/m/y to 2.1 X 10-4 m2/m/y. The observations double in number and verify formulations of sediment flux due to tree throw cited in the literature., and exceed by several orders of magnitude values for sediment flux rate by soil creep on slopes. Slope and prevailing wind direction, while important in places, did not control the majority of arborturbation events in this study. The total number of tree throws is observed to decrease while sediment flux by tree throw generally increases from north to south along the study transect. Larger trees evacuate larger pits, but interestingly there is no observed increase in the average girth of trees in the study area to account for the discrepancy between number of tree throws and sediment flux. However, the depth to a root limiting layer and the distance from the center of a root wad to the center of an excavated pit increases from north to south - deeper roots excavate more soil and deeper soils generally exist in warmer climates.