Nearest Neighbor Searching in Binary Search Trees: Simulation of a Multiprocessor System.
ERIC Educational Resources Information Center
Stewart, Mark; Willett, Peter
1987-01-01
Describes the simulation of a nearest neighbor searching algorithm for document retrieval using a pool of microprocessors. Three techniques are described which allow parallel searching of a binary search tree as well as a PASCAL-based system, PASSIM, which can simulate these techniques. Fifty-six references are provided. (Author/LRW)
NASA Technical Reports Server (NTRS)
Chang, Chi-Yung (Inventor); Fang, Wai-Chi (Inventor); Curlander, John C. (Inventor)
1995-01-01
A system for data compression utilizing systolic array architecture for Vector Quantization (VQ) is disclosed for both full-searched and tree-searched. For a tree-searched VQ, the special case of a Binary Tree-Search VQ (BTSVQ) is disclosed with identical Processing Elements (PE) in the array for both a Raw-Codebook VQ (RCVQ) and a Difference-Codebook VQ (DCVQ) algorithm. A fault tolerant system is disclosed which allows a PE that has developed a fault to be bypassed in the array and replaced by a spare at the end of the array, with codebook memory assignment shifted one PE past the faulty PE of the array.
Two Improved Access Methods on Compact Binary (CB) Trees.
ERIC Educational Resources Information Center
Shishibori, Masami; Koyama, Masafumi; Okada, Makoto; Aoe, Jun-ichi
2000-01-01
Discusses information retrieval and the use of binary trees as a fast access method for search strategies such as hashing. Proposes new methods based on compact binary trees that provide faster access and more compact storage, explains the theoretical basis, and confirms the validity of the methods through empirical observations. (LRW)
Efficient Merge and Insert Operations for Binary Heaps and Trees
NASA Technical Reports Server (NTRS)
Kuszmaul, Christopher Lee; Woo, Alex C. (Technical Monitor)
2000-01-01
Binary heaps and binary search trees merge efficiently. We introduce a new amortized analysis that allows us to prove the cost of merging either binary heaps or balanced binary trees is O(l), in the amortized sense. The standard set of other operations (create, insert, delete, extract minimum, in the case of binary heaps, and balanced binary trees, as well as a search operation for balanced binary trees) remain with a cost of O(log n). For binary heaps implemented as arrays, we show a new merge algorithm that has a single operation cost for merging two heaps, a and b, of O(absolute value of a + min(log absolute value of b log log absolute value of b. log absolute value of a log absolute value of b). This is an improvement over O(absolute value of a + log absolute value of a log absolute value of b). The cost of the new merge is so low that it can be used in a new structure which we call shadow heaps. to implement the insert operation to a tunable efficiency. Shadow heaps support the insert operation for simple priority queues in an amortized time of O(f(n)) and other operations in time O((log n log log n)/f (n)), where 1 less than or equal to f (n) less than or equal to log log n. More generally, the results here show that any data structure with operations that change its size by at most one, with the exception of a merge (aka meld) operation, can efficiently amortize the cost of the merge under conditions that are true for most implementations of binary heaps and search trees.
The Use of Binary Search Trees in External Distribution Sorting.
ERIC Educational Resources Information Center
Cooper, David; Lynch, Michael F.
1984-01-01
Suggests new method of external distribution called tree partitioning that involves use of binary tree to split incoming file into successively smaller partitions for internal sorting. Number of disc accesses during a tree-partitioning sort were calculated in simulation using files extracted from British National Bibliography catalog files. (19…
A Fast Framework for Abrupt Change Detection Based on Binary Search Trees and Kolmogorov Statistic
Qi, Jin-Peng; Qi, Jie; Zhang, Qing
2016-01-01
Change-Point (CP) detection has attracted considerable attention in the fields of data mining and statistics; it is very meaningful to discuss how to quickly and efficiently detect abrupt change from large-scale bioelectric signals. Currently, most of the existing methods, like Kolmogorov-Smirnov (KS) statistic and so forth, are time-consuming, especially for large-scale datasets. In this paper, we propose a fast framework for abrupt change detection based on binary search trees (BSTs) and a modified KS statistic, named BSTKS (binary search trees and Kolmogorov statistic). In this method, first, two binary search trees, termed as BSTcA and BSTcD, are constructed by multilevel Haar Wavelet Transform (HWT); second, three search criteria are introduced in terms of the statistic and variance fluctuations in the diagnosed time series; last, an optimal search path is detected from the root to leaf nodes of two BSTs. The studies on both the synthetic time series samples and the real electroencephalograph (EEG) recordings indicate that the proposed BSTKS can detect abrupt change more quickly and efficiently than KS, t-statistic (t), and Singular-Spectrum Analyses (SSA) methods, with the shortest computation time, the highest hit rate, the smallest error, and the highest accuracy out of four methods. This study suggests that the proposed BSTKS is very helpful for useful information inspection on all kinds of bioelectric time series signals. PMID:27413364
A Fast Framework for Abrupt Change Detection Based on Binary Search Trees and Kolmogorov Statistic.
Qi, Jin-Peng; Qi, Jie; Zhang, Qing
2016-01-01
Change-Point (CP) detection has attracted considerable attention in the fields of data mining and statistics; it is very meaningful to discuss how to quickly and efficiently detect abrupt change from large-scale bioelectric signals. Currently, most of the existing methods, like Kolmogorov-Smirnov (KS) statistic and so forth, are time-consuming, especially for large-scale datasets. In this paper, we propose a fast framework for abrupt change detection based on binary search trees (BSTs) and a modified KS statistic, named BSTKS (binary search trees and Kolmogorov statistic). In this method, first, two binary search trees, termed as BSTcA and BSTcD, are constructed by multilevel Haar Wavelet Transform (HWT); second, three search criteria are introduced in terms of the statistic and variance fluctuations in the diagnosed time series; last, an optimal search path is detected from the root to leaf nodes of two BSTs. The studies on both the synthetic time series samples and the real electroencephalograph (EEG) recordings indicate that the proposed BSTKS can detect abrupt change more quickly and efficiently than KS, t-statistic (t), and Singular-Spectrum Analyses (SSA) methods, with the shortest computation time, the highest hit rate, the smallest error, and the highest accuracy out of four methods. This study suggests that the proposed BSTKS is very helpful for useful information inspection on all kinds of bioelectric time series signals.
Two Upper Bounds for the Weighted Path Length of Binary Trees. Report No. UIUCDCS-R-73-565.
ERIC Educational Resources Information Center
Pradels, Jean Louis
Rooted binary trees with weighted nodes are structures encountered in many areas, such as coding theory, searching and sorting, information storage and retrieval. The path length is a meaningful quantity which gives indications about the expected time of a search or the length of a code, for example. In this paper, two sharp bounds for the total…
NASA Technical Reports Server (NTRS)
Owre, Sam; Shankar, Natarajan
1997-01-01
PVS (Prototype Verification System) is a general-purpose environment for developing specifications and proofs. This document deals primarily with the abstract datatype mechanism in PVS which generates theories containing axioms and definitions for a class of recursive datatypes. The concepts underlying the abstract datatype mechanism are illustrated using ordered binary trees as an example. Binary trees are described by a PVS abstract datatype that is parametric in its value type. The type of ordered binary trees is then presented as a subtype of binary trees where the ordering relation is also taken as a parameter. We define the operations of inserting an element into, and searching for an element in an ordered binary tree; the bulk of the report is devoted to PVS proofs of some useful properties of these operations. These proofs illustrate various approaches to proving properties of abstract datatype operations. They also describe the built-in capabilities of the PVS proof checker for simplifying abstract datatype expressions.
Fast Localization in Large-Scale Environments Using Supervised Indexing of Binary Features.
Youji Feng; Lixin Fan; Yihong Wu
2016-01-01
The essence of image-based localization lies in matching 2D key points in the query image and 3D points in the database. State-of-the-art methods mostly employ sophisticated key point detectors and feature descriptors, e.g., Difference of Gaussian (DoG) and Scale Invariant Feature Transform (SIFT), to ensure robust matching. While a high registration rate is attained, the registration speed is impeded by the expensive key point detection and the descriptor extraction. In this paper, we propose to use efficient key point detectors along with binary feature descriptors, since the extraction of such binary features is extremely fast. The naive usage of binary features, however, does not lend itself to significant speedup of localization, since existing indexing approaches, such as hierarchical clustering trees and locality sensitive hashing, are not efficient enough in indexing binary features and matching binary features turns out to be much slower than matching SIFT features. To overcome this, we propose a much more efficient indexing approach for approximate nearest neighbor search of binary features. This approach resorts to randomized trees that are constructed in a supervised training process by exploiting the label information derived from that multiple features correspond to a common 3D point. In the tree construction process, node tests are selected in a way such that trees have uniform leaf sizes and low error rates, which are two desired properties for efficient approximate nearest neighbor search. To further improve the search efficiency, a probabilistic priority search strategy is adopted. Apart from the label information, this strategy also uses non-binary pixel intensity differences available in descriptor extraction. By using the proposed indexing approach, matching binary features is no longer much slower but slightly faster than matching SIFT features. Consequently, the overall localization speed is significantly improved due to the much faster key point detection and descriptor extraction. It is empirically demonstrated that the localization speed is improved by an order of magnitude as compared with state-of-the-art methods, while comparable registration rate and localization accuracy are still maintained.
Compact 0-complete trees: A new method for searching large files
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orlandic, R.; Pfaltz, J.L.
1988-01-26
In this report, a novel approach to ordered retrieval in very large files is developed. The method employs a B-tree like search algorithm that is independent of key type or key length because all keys in index blocks are encoded by a 1 byte surrogate. The replacement of actual key sequences by the 1 byte surrogate ensures a maximal possible fan out and greatly reduces the storage overhead of maintaining access indices. Initially, retrieval in binary trie structure is developed. With the aid of a fairly complex recurrence relation, the rather scraggly binary trie is transformed into compact multi-way searchmore » tree. Then the recurrence relation itself is replaced by an unusually simple search algorithm. Then implementation details and empirical performance results are presented. Reduction of index size by 50%--75% opens up the possibility of replicating system-wide indices for parallel access in distributed databases. 23 figs.« less
In Search of Speedier Searches.
ERIC Educational Resources Information Center
Peterson, Ivars
1984-01-01
Methods to make computer searching as simple and efficient as possible have led to the development of various data structures. Data structures specify the items involved in searching and what can be done to them. The nature and advantages of using "self-adjusting" data structures (self-adjusting binary search trees) are discussed. (JN)
Novel ID-based anti-collision approach for RFID
NASA Astrophysics Data System (ADS)
Zhang, De-Gan; Li, Wen-Bin
2016-09-01
Novel correlation ID-based (CID) anti-collision approach for RFID under the banner of the Internet of Things (IOT) has been presented in this paper. The key insights are as follows: according to the deterministic algorithms which are based on the binary search tree, we propose a method to increase the association between tags so that tags can initiatively send their own ID under certain trigger conditions, at the same time, we present a multi-tree search method for querying. When the number of tags is small, by replacing the actual ID with the temporary ID, it can greatly reduce the number of times that the reader reads and writes to tag's ID. Active tags send data to the reader by the way of modulation binary pulses. When applying this method to the uncertain ALOHA algorithms, the reader can determine the locations of the empty slots according to the position of the binary pulse, so it can avoid the decrease in efficiency which is caused by reading empty slots when reading slots. Theory and experiment show that this method can greatly improve the recognition efficiency of the system when applied to either the search tree or the ALOHA anti-collision algorithms.
CSTutor: A Sketch-Based Tool for Visualizing Data Structures
ERIC Educational Resources Information Center
Buchanan, Sarah; Laviola, Joseph J., Jr.
2014-01-01
We present CSTutor, a sketch-based interface designed to help students understand data structures, specifically Linked Lists, Binary Search Trees, AVL Trees, and Heaps. CSTutor creates an environment that seamlessly combines a user's sketched diagram and code. In each of these data structure modes, the user can naturally sketch a data structure on…
ERIC Educational Resources Information Center
Liu, Tsung-Yu
2016-01-01
This study investigates how educational games impact on students' academic performance and multimedia flow experiences in a computer science course. A curriculum consists of five basic learning units, that is, the stack, queue, sort, tree traversal, and binary search tree, was conducted for 110 university students during one semester. Two groups…
NASA Astrophysics Data System (ADS)
Yin, Lucy; Andrews, Jennifer; Heaton, Thomas
2018-05-01
Earthquake parameter estimations using nearest neighbor searching among a large database of observations can lead to reliable prediction results. However, in the real-time application of Earthquake Early Warning (EEW) systems, the accurate prediction using a large database is penalized by a significant delay in the processing time. We propose to use a multidimensional binary search tree (KD tree) data structure to organize large seismic databases to reduce the processing time in nearest neighbor search for predictions. We evaluated the performance of KD tree on the Gutenberg Algorithm, a database-searching algorithm for EEW. We constructed an offline test to predict peak ground motions using a database with feature sets of waveform filter-bank characteristics, and compare the results with the observed seismic parameters. We concluded that large database provides more accurate predictions of the ground motion information, such as peak ground acceleration, velocity, and displacement (PGA, PGV, PGD), than source parameters, such as hypocenter distance. Application of the KD tree search to organize the database reduced the average searching process by 85% time cost of the exhaustive method, allowing the method to be feasible for real-time implementation. The algorithm is straightforward and the results will reduce the overall time of warning delivery for EEW.
A parallelized binary search tree
USDA-ARS?s Scientific Manuscript database
PTTRNFNDR is an unsupervised statistical learning algorithm that detects patterns in DNA sequences, protein sequences, or any natural language texts that can be decomposed into letters of a finite alphabet. PTTRNFNDR performs complex mathematical computations and its processing time increases when i...
Efficient algorithms for dilated mappings of binary trees
NASA Technical Reports Server (NTRS)
Iqbal, M. Ashraf
1990-01-01
The problem is addressed to find a 1-1 mapping of the vertices of a binary tree onto those of a target binary tree such that the son of a node on the first binary tree is mapped onto a descendent of the image of that node in the second binary tree. There are two natural measures of the cost of this mapping, namely the dilation cost, i.e., the maximum distance in the target binary tree between the images of vertices that are adjacent in the original tree. The other measure, expansion cost, is defined as the number of extra nodes/edges to be added to the target binary tree in order to ensure a 1-1 mapping. An efficient algorithm to find a mapping of one binary tree onto another is described. It is shown that it is possible to minimize one cost of mapping at the expense of the other. This problem arises when designing pipelined arithmetic logic units (ALU) for special purpose computers. The pipeline is composed of ALU chips connected in the form of a binary tree. The operands to the pipeline can be supplied to the leaf nodes of the binary tree which then process and pass the results up to their parents. The final result is available at the root. As each new application may require a distinct nesting of operations, it is useful to be able to find a good mapping of a new binary tree over existing ALU tree. Another problem arises if every distinct required binary tree is known beforehand. Here it is useful to hardwire the pipeline in the form of a minimal supertree that contains all required binary trees.
Multiprocessor sparse L/U decomposition with controlled fill-in
NASA Technical Reports Server (NTRS)
Alaghband, G.; Jordan, H. F.
1985-01-01
Generation of the maximal compatibles of pivot elements for a class of small sparse matrices is studied. The algorithm involves a binary tree search and has a complexity exponential in the order of the matrix. Different strategies for selection of a set of compatible pivots based on the Markowitz criterion are investigated. The competing issues of parallelism and fill-in generation are studied and results are provided. A technque for obtaining an ordered compatible set directly from the ordered incompatible table is given. This technique generates a set of compatible pivots with the property of generating few fills. A new hueristic algorithm is then proposed that combines the idea of an ordered compatible set with a limited binary tree search to generate several sets of compatible pivots in linear time. Finally, an elimination set to reduce the matrix is selected. Parameters are suggested to obtain a balance between parallelism and fill-ins. Results of applying the proposed algorithms on several large application matrices are presented and analyzed.
Exact Algorithms for Duplication-Transfer-Loss Reconciliation with Non-Binary Gene Trees.
Kordi, Misagh; Bansal, Mukul S
2017-06-01
Duplication-Transfer-Loss (DTL) reconciliation is a powerful method for studying gene family evolution in the presence of horizontal gene transfer. DTL reconciliation seeks to reconcile gene trees with species trees by postulating speciation, duplication, transfer, and loss events. Efficient algorithms exist for finding optimal DTL reconciliations when the gene tree is binary. In practice, however, gene trees are often non-binary due to uncertainty in the gene tree topologies, and DTL reconciliation with non-binary gene trees is known to be NP-hard. In this paper, we present the first exact algorithms for DTL reconciliation with non-binary gene trees. Specifically, we (i) show that the DTL reconciliation problem for non-binary gene trees is fixed-parameter tractable in the maximum degree of the gene tree, (ii) present an exponential-time, but in-practice efficient, algorithm to track and enumerate all optimal binary resolutions of a non-binary input gene tree, and (iii) apply our algorithms to a large empirical data set of over 4700 gene trees from 100 species to study the impact of gene tree uncertainty on DTL-reconciliation and to demonstrate the applicability and utility of our algorithms. The new techniques and algorithms introduced in this paper will help biologists avoid incorrect evolutionary inferences caused by gene tree uncertainty.
On defining a unique phylogenetic tree with homoplastic characters.
Goloboff, Pablo A; Wilkinson, Mark
2018-05-01
This paper discusses the problem of whether creating a matrix with all the character state combinations that have a fixed number of steps (or extra steps) on a given tree T, produces the same tree T when analyzed with maximum parsimony or maximum likelihood. Exhaustive enumeration of cases up to 20 taxa for binary characters, and up to 12 taxa for 4-state characters, shows that the same tree is recovered (as unique most likely or most parsimonious tree) as long as the number of extra steps is within 1/4 of the number of taxa. This dependence, 1/4 of the number of taxa, is discussed with a general argumentation, in terms of the spread of the character changes on the tree used to select character state distributions. The present finding allows creating matrices which have as much homoplasy as possible for the most parsimonious or likely tree to be predictable, and examination of these matrices with hill-climbing search algorithms provides additional evidence on the (lack of a) necessary relationship between homoplasy and the ability of search methods to find optimal trees. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Baker, Paul T.; Caudill, Sarah; Hodge, Kari A.; Talukder, Dipongkar; Capano, Collin; Cornish, Neil J.
2015-03-01
Searches for gravitational waves produced by coalescing black hole binaries with total masses ≳25 M⊙ use matched filtering with templates of short duration. Non-Gaussian noise bursts in gravitational wave detector data can mimic short signals and limit the sensitivity of these searches. Previous searches have relied on empirically designed statistics incorporating signal-to-noise ratio and signal-based vetoes to separate gravitational wave candidates from noise candidates. We report on sensitivity improvements achieved using a multivariate candidate ranking statistic derived from a supervised machine learning algorithm. We apply the random forest of bagged decision trees technique to two separate searches in the high mass (≳25 M⊙ ) parameter space. For a search which is sensitive to gravitational waves from the inspiral, merger, and ringdown of binary black holes with total mass between 25 M⊙ and 100 M⊙ , we find sensitive volume improvements as high as 70±13%-109±11% when compared to the previously used ranking statistic. For a ringdown-only search which is sensitive to gravitational waves from the resultant perturbed intermediate mass black hole with mass roughly between 10 M⊙ and 600 M⊙ , we find sensitive volume improvements as high as 61±4%-241±12% when compared to the previously used ranking statistic. We also report how sensitivity improvements can differ depending on mass regime, mass ratio, and available data quality information. Finally, we describe the techniques used to tune and train the random forest classifier that can be generalized to its use in other searches for gravitational waves.
On the Complexity of Duplication-Transfer-Loss Reconciliation with Non-Binary Gene Trees.
Kordi, Misagh; Bansal, Mukul S
2017-01-01
Duplication-Transfer-Loss (DTL) reconciliation has emerged as a powerful technique for studying gene family evolution in the presence of horizontal gene transfer. DTL reconciliation takes as input a gene family phylogeny and the corresponding species phylogeny, and reconciles the two by postulating speciation, gene duplication, horizontal gene transfer, and gene loss events. Efficient algorithms exist for finding optimal DTL reconciliations when the gene tree is binary. However, gene trees are frequently non-binary. With such non-binary gene trees, the reconciliation problem seeks to find a binary resolution of the gene tree that minimizes the reconciliation cost. Given the prevalence of non-binary gene trees, many efficient algorithms have been developed for this problem in the context of the simpler Duplication-Loss (DL) reconciliation model. Yet, no efficient algorithms exist for DTL reconciliation with non-binary gene trees and the complexity of the problem remains unknown. In this work, we resolve this open question by showing that the problem is, in fact, NP-hard. Our reduction applies to both the dated and undated formulations of DTL reconciliation. By resolving this long-standing open problem, this work will spur the development of both exact and heuristic algorithms for this important problem.
Path Planning Method in Multi-obstacle Marine Environment
NASA Astrophysics Data System (ADS)
Zhang, Jinpeng; Sun, Hanxv
2017-12-01
In this paper, an improved algorithm for particle swarm optimization is proposed for the application of underwater robot in the complex marine environment. Not only did consider to avoid obstacles when path planning, but also considered the current direction and the size effect on the performance of the robot dynamics. The algorithm uses the trunk binary tree structure to construct the path search space and A * heuristic search method is used in the search space to find a evaluation standard path. Then the particle swarm algorithm to optimize the path by adjusting evaluation function, which makes the underwater robot in the current navigation easier to control, and consume less energy.
ERIC Educational Resources Information Center
Gillingham, Mark G.
A study examined what happened when a group of adult students read a hypertext for the goal of answering specific questions. Subjects, 30 students enrolled in an upper-division psychology course at a state university in the northwestern United States, read a binary tree-structured hypertext to answer three two-part questions on the topic of…
NASA Astrophysics Data System (ADS)
Behzadi, Naghi; Ahansaz, Bahram
2018-04-01
We propose a mechanism for quantum state transfer (QST) over a binary tree spin network on the basis of incomplete collapsing measurements. To this aim, we perform initially a weak measurement (WM) on the central qubit of the binary tree network where the state of our concern has been prepared on that qubit. After the time evolution of the whole system, a quantum measurement reversal (QMR) is performed on a chosen target qubit. By taking optimal value for the strength of QMR, it is shown that the QST quality from the sending qubit to any typical target qubit on the binary tree is considerably improved in terms of the WM strength. Also, we show that how high-quality entanglement distribution over the binary tree network is achievable by using this approach.
Phan, Thanh G; Chen, Jian; Beare, Richard; Ma, Henry; Clissold, Benjamin; Van Ly, John; Srikanth, Velandai
2017-01-01
Prognostication following intracerebral hemorrhage (ICH) has focused on poor outcome at the expense of lumping together mild and moderate disability. We aimed to develop a novel approach at classifying a range of disability following ICH. The Virtual International Stroke Trial Archive collaboration database was searched for patients with ICH and known volume of ICH on baseline CT scans. Disability was partitioned into mild [modified Rankin Scale (mRS) at 90 days of 0-2], moderate (mRS = 3-4), and severe disabilities (mRS = 5-6). We used binary and trichotomy decision tree methodology. The data were randomly divided into training (2/3 of data) and validation (1/3 data) datasets. The area under the receiver operating characteristic curve (AUC) was used to calculate the accuracy of the decision tree model. We identified 957 patients, age 65.9 ± 12.3 years, 63.7% males, and ICH volume 22.6 ± 22.1 ml. The binary tree showed that lower ICH volume (<13.7 ml), age (<66.5 years), serum glucose (<8.95 mmol/l), and systolic blood pressure (<170 mm Hg) discriminate between mild versus moderate-to-severe disabilities with AUC of 0.79 (95% CI 0.73-0.85). Large ICH volume (>27.9 ml), older age (>69.5 years), and low Glasgow Coma Scale (<15) classify severe disability with AUC of 0.80 (95% CI 0.75-0.86). The trichotomy tree showed that ICH volume, age, and serum glucose can separate mild, moderate, and severe disability groups with AUC 0.79 (95% CI 0.71-0.87). Both the binary and trichotomy methods provide equivalent discrimination of disability outcome after ICH. The trichotomy method can classify three categories at once, whereas this action was not possible with the binary method. The trichotomy method may be of use to clinicians and trialists for classifying a range of disability in ICH.
Binary partition tree analysis based on region evolution and its application to tree simplification.
Lu, Huihai; Woods, John C; Ghanbari, Mohammed
2007-04-01
Pyramid image representations via tree structures are recognized methods for region-based image analysis. Binary partition trees can be applied which document the merging process with small details found at the bottom levels and larger ones close to the root. Hindsight of the merging process is stored within the tree structure and provides the change histories of an image property from the leaf to the root node. In this work, the change histories are modelled by evolvement functions and their second order statistics are analyzed by using a knee function. Knee values show the reluctancy of each merge. We have systematically formulated these findings to provide a novel framework for binary partition tree analysis, where tree simplification is demonstrated. Based on an evolvement function, for each upward path in a tree, the tree node associated with the first reluctant merge is considered as a pruning candidate. The result is a simplified version providing a reduced solution space and still complying with the definition of a binary tree. The experiments show that image details are preserved whilst the number of nodes is dramatically reduced. An image filtering tool also results which preserves object boundaries and has applications for segmentation.
Generation and Termination of Binary Decision Trees for Nonparametric Multiclass Classification.
1984-10-01
O M coF=F;; UMBER2. GOVT ACCE5SION NO.1 3 . REC,PINS :A7AL:,G NUMBER ( ’eneration and Terminat_,on :)f Binary D-ecision jC j ik; Trees for Nonnararetrc...1-I . v)IAMO 0~I4 EDvt" O F I 00 . 3 15I OR%.OL.ETL - S-S OCTOBER 1984 LIDS-P-1411 GENERATION AND TERMINATION OF BINARY DECISION TREES FOR...minimizes the Bayes risk. Tree generation and termination are based on the training and test samples, respectively. 0 0 0/ 6 0¢ A 3 I. Introduction We state
CARTAM. The Cartesian Access Method for Data Structures with n-dimensional Keys.
1979-01-01
become apparent later, I have chosen to store structural information in an explicit binary tree , with modifications. instead of the left and right links of...the usual binary tree , I use the child and twin pointers of a ring structure or circular list. This ring structure as illustrated in figure 3-1* also...Since the file is being stored as an explicit binary tree , note that additional records are being generated, and the concept of an Ni-thm record for
Universal artifacts affect the branching of phylogenetic trees, not universal scaling laws.
Altaba, Cristian R
2009-01-01
The superficial resemblance of phylogenetic trees to other branching structures allows searching for macroevolutionary patterns. However, such trees are just statistical inferences of particular historical events. Recent meta-analyses report finding regularities in the branching pattern of phylogenetic trees. But is this supported by evidence, or are such regularities just methodological artifacts? If so, is there any signal in a phylogeny? In order to evaluate the impact of polytomies and imbalance on tree shape, the distribution of all binary and polytomic trees of up to 7 taxa was assessed in tree-shape space. The relationship between the proportion of outgroups and the amount of imbalance introduced with them was assessed applying four different tree-building methods to 100 combinations from a set of 10 ingroup and 9 outgroup species, and performing covariance analyses. The relevance of this analysis was explored taking 61 published phylogenies, based on nucleic acid sequences and involving various taxa, taxonomic levels, and tree-building methods. All methods of phylogenetic inference are quite sensitive to the artifacts introduced by outgroups. However, published phylogenies appear to be subject to a rather effective, albeit rather intuitive control against such artifacts. The data and methods used to build phylogenetic trees are varied, so any meta-analysis is subject to pitfalls due to their uneven intrinsic merits, which translate into artifacts in tree shape. The binary branching pattern is an imposition of methods, and seldom reflects true relationships in intraspecific analyses, yielding artifactual polytomies in short trees. Above the species level, the departure of real trees from simplistic random models is caused at least by two natural factors--uneven speciation and extinction rates; and artifacts such as choice of taxa included in the analysis, and imbalance introduced by outgroups and basal paraphyletic taxa. This artifactual imbalance accounts for tree shape convergence of large trees. There is no evidence for any universal scaling in the tree of life. Instead, there is a need for improved methods of tree analysis that can be used to discriminate the noise due to outgroups from the phylogenetic signal within the taxon of interest, and to evaluate realistic models of evolution, correcting the retrospective perspective and explicitly recognizing extinction as a driving force. Artifacts are pervasive, and can only be overcome through understanding the structure and biological meaning of phylogenetic trees. Catalan Abstract in Translation S1.
Blooming Trees: Substructures and Surrounding Groups of Galaxy Clusters
NASA Astrophysics Data System (ADS)
Yu, Heng; Diaferio, Antonaldo; Serra, Ana Laura; Baldi, Marco
2018-06-01
We develop the Blooming Tree Algorithm, a new technique that uses spectroscopic redshift data alone to identify the substructures and the surrounding groups of galaxy clusters, along with their member galaxies. Based on the estimated binding energy of galaxy pairs, the algorithm builds a binary tree that hierarchically arranges all of the galaxies in the field of view. The algorithm searches for buds, corresponding to gravitational potential minima on the binary tree branches; for each bud, the algorithm combines the number of galaxies, their velocity dispersion, and their average pairwise distance into a parameter that discriminates between the buds that do not correspond to any substructure or group, and thus eventually die, and the buds that correspond to substructures and groups, and thus bloom into the identified structures. We test our new algorithm with a sample of 300 mock redshift surveys of clusters in different dynamical states; the clusters are extracted from a large cosmological N-body simulation of a ΛCDM model. We limit our analysis to substructures and surrounding groups identified in the simulation with mass larger than 1013 h ‑1 M ⊙. With mock redshift surveys with 200 galaxies within 6 h ‑1 Mpc from the cluster center, the technique recovers 80% of the real substructures and 60% of the surrounding groups; in 57% of the identified structures, at least 60% of the member galaxies of the substructures and groups belong to the same real structure. These results improve by roughly a factor of two the performance of the best substructure identification algorithm currently available, the σ plateau algorithm, and suggest that our Blooming Tree Algorithm can be an invaluable tool for detecting substructures of galaxy clusters and investigating their complex dynamics.
Searches for all types of binary mergers in the first Advanced LIGO observing run
NASA Astrophysics Data System (ADS)
Read, Jocelyn
2017-01-01
The first observational run of the Advanced LIGO detectors covered September 12, 2015 to January 19, 2016. In that time, two definitive observations of merging binary black hole systems were made. In particular, the second observation, GW151226, relied on matched-filter searches targeting merging binaries. These searches were also capable of detecting binary mergers from binary neutron stars and from black-hole/neutron-star binaries. In this talk, I will give an overview of LIGO compact binary coalescence searches, in particular focusing on systems that contain neutron stars. I will discuss the sensitive volumes of the first observing run, the astrophysical implications of detections and non-detections, and prospects for future observations
Binary tree eigen solver in finite element analysis
NASA Technical Reports Server (NTRS)
Akl, F. A.; Janetzke, D. C.; Kiraly, L. J.
1993-01-01
This paper presents a transputer-based binary tree eigensolver for the solution of the generalized eigenproblem in linear elastic finite element analysis. The algorithm is based on the method of recursive doubling, which parallel implementation of a number of associative operations on an arbitrary set having N elements is of the order of o(log2N), compared to (N-1) steps if implemented sequentially. The hardware used in the implementation of the binary tree consists of 32 transputers. The algorithm is written in OCCAM which is a high-level language developed with the transputers to address parallel programming constructs and to provide the communications between processors. The algorithm can be replicated to match the size of the binary tree transputer network. Parallel and sequential finite element analysis programs have been developed to solve for the set of the least-order eigenpairs using the modified subspace method. The speed-up obtained for a typical analysis problem indicates close agreement with the theoretical prediction given by the method of recursive doubling.
Teaching Non-Recursive Binary Searching: Establishing a Conceptual Framework.
ERIC Educational Resources Information Center
Magel, E. Terry
1989-01-01
Discusses problems associated with teaching non-recursive binary searching in computer language classes, and describes a teacher-directed dialog based on dictionary use that helps students use their previous searching experiences to conceptualize the binary search process. Algorithmic development is discussed and appropriate classroom discussion…
Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization.
Nishio, Mizuho; Nishizawa, Mitsuo; Sugiyama, Osamu; Kojima, Ryosuke; Yakami, Masahiro; Kuroda, Tomohiro; Togashi, Kaori
2018-01-01
We aimed to evaluate a computer-aided diagnosis (CADx) system for lung nodule classification focussing on (i) usefulness of the conventional CADx system (hand-crafted imaging feature + machine learning algorithm), (ii) comparison between support vector machine (SVM) and gradient tree boosting (XGBoost) as machine learning algorithms, and (iii) effectiveness of parameter optimization using Bayesian optimization and random search. Data on 99 lung nodules (62 lung cancers and 37 benign lung nodules) were included from public databases of CT images. A variant of the local binary pattern was used for calculating a feature vector. SVM or XGBoost was trained using the feature vector and its corresponding label. Tree Parzen Estimator (TPE) was used as Bayesian optimization for parameters of SVM and XGBoost. Random search was done for comparison with TPE. Leave-one-out cross-validation was used for optimizing and evaluating the performance of our CADx system. Performance was evaluated using area under the curve (AUC) of receiver operating characteristic analysis. AUC was calculated 10 times, and its average was obtained. The best averaged AUC of SVM and XGBoost was 0.850 and 0.896, respectively; both were obtained using TPE. XGBoost was generally superior to SVM. Optimal parameters for achieving high AUC were obtained with fewer numbers of trials when using TPE, compared with random search. Bayesian optimization of SVM and XGBoost parameters was more efficient than random search. Based on observer study, AUC values of two board-certified radiologists were 0.898 and 0.822. The results show that diagnostic accuracy of our CADx system was comparable to that of radiologists with respect to classifying lung nodules.
Characterizing the phylogenetic tree-search problem.
Money, Daniel; Whelan, Simon
2012-03-01
Phylogenetic trees are important in many areas of biological research, ranging from systematic studies to the methods used for genome annotation. Finding the best scoring tree under any optimality criterion is an NP-hard problem, which necessitates the use of heuristics for tree-search. Although tree-search plays a major role in obtaining a tree estimate, there remains a limited understanding of its characteristics and how the elements of the statistical inferential procedure interact with the algorithms used. This study begins to answer some of these questions through a detailed examination of maximum likelihood tree-search on a wide range of real genome-scale data sets. We examine all 10,395 trees for each of the 106 genes of an eight-taxa yeast phylogenomic data set, then apply different tree-search algorithms to investigate their performance. We extend our findings by examining two larger genome-scale data sets and a large disparate data set that has been previously used to benchmark the performance of tree-search programs. We identify several broad trends occurring during tree-search that provide an insight into the performance of heuristics and may, in the future, aid their development. These trends include a tendency for the true maximum likelihood (best) tree to also be the shortest tree in terms of branch lengths, a weak tendency for tree-search to recover the best tree, and a tendency for tree-search to encounter fewer local optima in genes that have a high information content. When examining current heuristics for tree-search, we find that nearest-neighbor-interchange performs poorly, and frequently finds trees that are significantly different from the best tree. In contrast, subtree-pruning-and-regrafting tends to perform well, nearly always finding trees that are not significantly different to the best tree. Finally, we demonstrate that the precise implementation of a tree-search strategy, including when and where parameters are optimized, can change the character of tree-search, and that good strategies for tree-search may combine existing tree-search programs.
Live phylogeny with polytomies: Finding the most compact parsimonious trees.
Papamichail, D; Huang, A; Kennedy, E; Ott, J-L; Miller, A; Papamichail, G
2017-08-01
Construction of phylogenetic trees has traditionally focused on binary trees where all species appear on leaves, a problem for which numerous efficient solutions have been developed. Certain application domains though, such as viral evolution and transmission, paleontology, linguistics, and phylogenetic stemmatics, often require phylogeny inference that involves placing input species on ancestral tree nodes (live phylogeny), and polytomies. These requirements, despite their prevalence, lead to computationally harder algorithmic solutions and have been sparsely examined in the literature to date. In this article we prove some unique properties of most parsimonious live phylogenetic trees with polytomies, and their mapping to traditional binary phylogenetic trees. We show that our problem reduces to finding the most compact parsimonious tree for n species, and describe a novel efficient algorithm to find such trees without resorting to exhaustive enumeration of all possible tree topologies. Copyright © 2017 Elsevier Ltd. All rights reserved.
A biclustering algorithm for extracting bit-patterns from binary datasets.
Rodriguez-Baena, Domingo S; Perez-Pulido, Antonio J; Aguilar-Ruiz, Jesus S
2011-10-01
Binary datasets represent a compact and simple way to store data about the relationships between a group of objects and their possible properties. In the last few years, different biclustering algorithms have been specially developed to be applied to binary datasets. Several approaches based on matrix factorization, suffix trees or divide-and-conquer techniques have been proposed to extract useful biclusters from binary data, and these approaches provide information about the distribution of patterns and intrinsic correlations. A novel approach to extracting biclusters from binary datasets, BiBit, is introduced here. The results obtained from different experiments with synthetic data reveal the excellent performance and the robustness of BiBit to density and size of input data. Also, BiBit is applied to a central nervous system embryonic tumor gene expression dataset to test the quality of the results. A novel gene expression preprocessing methodology, based on expression level layers, and the selective search performed by BiBit, based on a very fast bit-pattern processing technique, provide very satisfactory results in quality and computational cost. The power of biclustering in finding genes involved simultaneously in different cancer processes is also shown. Finally, a comparison with Bimax, one of the most cited binary biclustering algorithms, shows that BiBit is faster while providing essentially the same results. The source and binary codes, the datasets used in the experiments and the results can be found at: http://www.upo.es/eps/bigs/BiBit.html dsrodbae@upo.es Supplementary data are available at Bioinformatics online.
Thuillard, Marc; Fraix-Burnet, Didier
2015-01-01
This article presents an innovative approach to phylogenies based on the reduction of multistate characters to binary-state characters. We show that the reduction to binary characters' approach can be applied to both character- and distance-based phylogenies and provides a unifying framework to explain simply and intuitively the similarities and differences between distance- and character-based phylogenies. Building on these results, this article gives a possible explanation on why phylogenetic trees obtained from a distance matrix or a set of characters are often quite reasonable despite lateral transfers of genetic material between taxa. In the presence of lateral transfers, outer planar networks furnish a better description of evolution than phylogenetic trees. We present a polynomial-time reconstruction algorithm for perfect outer planar networks with a fixed number of states, characters, and lateral transfers.
Shorofsky, Stephen R; Peters, Robert W; Rashba, Eric J; Gold, Michael R
2004-02-01
Determination of DFT is an integral part of ICD implantation. Two commonly used methods of DFT determination, the step-down method and the binary search method, were compared in 44 patients undergoing ICD testing for standard clinical indications. The step-down protocol used an initial shock of 18 J. The binary search method began with a shock energy of 9 J and successive shock energies were increased or decreased depending on the success of the previous shock. The DFT was defined as the lowest energy that successfully terminated ventricular fibrillation. The binary search method has the advantage of requiring a predetermined number of shocks, but some have questioned its accuracy. The study found that (mean) DFT obtained by the step-down method was 8.2 +/- 5.0, whereas by the binary search method DFT was 8.1 +/- 0.7 J, P = NS. DFT differed by no more than one step between methods in 32 (71%) of patients. The number of shocks required to determine DFT by the step-down method was 4.6 +/- 1.4, whereas by definition, the binary search method always required three shocks. In conclusion, the binary search method is preferable because it is of comparable efficacy and requires fewer shocks.
Balk, Benjamin; Elder, Kelly
2000-01-01
We model the spatial distribution of snow across a mountain basin using an approach that combines binary decision tree and geostatistical techniques. In April 1997 and 1998, intensive snow surveys were conducted in the 6.9‐km2 Loch Vale watershed (LVWS), Rocky Mountain National Park, Colorado. Binary decision trees were used to model the large‐scale variations in snow depth, while the small‐scale variations were modeled through kriging interpolation methods. Binary decision trees related depth to the physically based independent variables of net solar radiation, elevation, slope, and vegetation cover type. These decision tree models explained 54–65% of the observed variance in the depth measurements. The tree‐based modeled depths were then subtracted from the measured depths, and the resulting residuals were spatially distributed across LVWS through kriging techniques. The kriged estimates of the residuals were added to the tree‐based modeled depths to produce a combined depth model. The combined depth estimates explained 60–85% of the variance in the measured depths. Snow densities were mapped across LVWS using regression analysis. Snow‐covered area was determined from high‐resolution aerial photographs. Combining the modeled depths and densities with a snow cover map produced estimates of the spatial distribution of snow water equivalence (SWE). This modeling approach offers improvement over previous methods of estimating SWE distribution in mountain basins.
Scalable Nearest Neighbor Algorithms for High Dimensional Data.
Muja, Marius; Lowe, David G
2014-11-01
For many computer vision and machine learning problems, large training sets are key for good performance. However, the most computationally expensive part of many computer vision and machine learning algorithms consists of finding nearest neighbor matches to high dimensional vectors that represent the training data. We propose new algorithms for approximate nearest neighbor matching and evaluate and compare them with previous algorithms. For matching high dimensional features, we find two algorithms to be the most efficient: the randomized k-d forest and a new algorithm proposed in this paper, the priority search k-means tree. We also propose a new algorithm for matching binary features by searching multiple hierarchical clustering trees and show it outperforms methods typically used in the literature. We show that the optimal nearest neighbor algorithm and its parameters depend on the data set characteristics and describe an automated configuration procedure for finding the best algorithm to search a particular data set. In order to scale to very large data sets that would otherwise not fit in the memory of a single machine, we propose a distributed nearest neighbor matching framework that can be used with any of the algorithms described in the paper. All this research has been released as an open source library called fast library for approximate nearest neighbors (FLANN), which has been incorporated into OpenCV and is now one of the most popular libraries for nearest neighbor matching.
DOE Office of Scientific and Technical Information (OSTI.GOV)
- PNNL, Harold Trease
2012-10-10
ASSA is a software application that processes binary data into summarized index tables that can be used to organize features contained within the data. ASSA's index tables can also be used to search for user specified features. ASSA is designed to organize and search for patterns in unstructured binary data streams or archives, such as video, images, audio, and network traffic. ASSA is basically a very general search engine used to search for any pattern in any binary data stream. It has uses in video analytics, image analysis, audio analysis, searching hard-drives, monitoring network traffic, etc.
The PyCBC search for binary black hole coalescences in Advanced LIGO's first observing run
NASA Astrophysics Data System (ADS)
Willis, Joshua; LIGO Scientific Collaboration
2017-01-01
Advanced LIGO's first observing run saw the first detections of binary black hole coalescences. We describe the PyCBC matched filter analysis, and the results of that search for binary systems with total mass up to 100 solar masses. This is a matched filter search for general-relativistic signals from binary black hole systems. Two signals, GW150914 and GW151226, were identified with very high significance, and a third possible signal, LVT151012, was found, though at much lower significance. Supported by NSF award PHY-1506254.
NASA Astrophysics Data System (ADS)
Xiao, Guoqiang; Jiang, Yang; Song, Gang; Jiang, Jianmin
2010-12-01
We propose a support-vector-machine (SVM) tree to hierarchically learn from domain knowledge represented by low-level features toward automatic classification of sports videos. The proposed SVM tree adopts a binary tree structure to exploit the nature of SVM's binary classification, where each internal node is a single SVM learning unit, and each external node represents the classified output type. Such a SVM tree presents a number of advantages, which include: 1. low computing cost; 2. integrated learning and classification while preserving individual SVM's learning strength; and 3. flexibility in both structure and learning modules, where different numbers of nodes and features can be added to address specific learning requirements, and various learning models can be added as individual nodes, such as neural networks, AdaBoost, hidden Markov models, dynamic Bayesian networks, etc. Experiments support that the proposed SVM tree achieves good performances in sports video classifications.
Searching for Compact Binary Mergers with Advanced LIGO
NASA Astrophysics Data System (ADS)
Nitz, Alexander` Harvey
2017-06-01
Several binary black hole mergers were discovered during Advanced LIGOs first observing run, and LIGO is currently well into its second observing run. We will discuss the state of the art in searching for merger signals in LIGO data, and how this will aid in the detection of binary neutron star, neutron-star black hole, and binary black hole mergers.
NASA Astrophysics Data System (ADS)
Calderón Bustillo, Juan; Salemi, Francesco; Dal Canton, Tito; Jani, Karan P.
2018-01-01
The sensitivity of gravitational wave searches for binary black holes is estimated via the injection and posterior recovery of simulated gravitational wave signals in the detector data streams. When a search reports no detections, the estimated sensitivity is then used to place upper limits on the coalescence rate of the target source. In order to obtain correct sensitivity and rate estimates, the injected waveforms must be faithful representations of the real signals. Up to date, however, injected waveforms have neglected radiation modes of order higher than the quadrupole, potentially biasing sensitivity and coalescence rate estimates. In particular, higher-order modes are known to have a large impact in the gravitational waves emitted by intermediate-mass black holes binaries. In this work, we evaluate the impact of this approximation in the context of two search algorithms run by the LIGO Scientific Collaboration in their search for intermediate-mass black hole binaries in the O1 LIGO Science Run data: a matched filter-based pipeline and a coherent unmodeled one. To this end, we estimate the sensitivity of both searches to simulated signals for nonspinning binaries including and omitting higher-order modes. We find that omission of higher-order modes leads to biases in the sensitivity estimates which depend on the masses of the binary, the search algorithm, and the required level of significance for detection. In addition, we compare the sensitivity of the two search algorithms across the studied parameter space. We conclude that the most recent LIGO-Virgo upper limits on the rate of coalescence of intermediate-mass black hole binaries are conservative for the case of highly asymmetric binaries. However, the tightest upper limits, placed for nearly equal-mass sources, remain unchanged due to the small contribution of higher modes to the corresponding sources.
NASA Technical Reports Server (NTRS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.;
2012-01-01
We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009, and October 20. 2010. We searched for signals from binaries with total mass between 2 and 25 Stellar Mass; this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass. including the results from previous LIGO and Virgo observations. The cumulative 90% confidence rate upper limits of the binary coalescence of binary neutron star, neutron star-black hole, and binary black hole systems are 1.3 x 10(exp -4), 3.1 x 10(exp -5), and 6.4 x 10(exp -6)/cu Mpc/yr, respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge.
NASA Astrophysics Data System (ADS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Agathos, M.; Ajith, P.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amariutei, D.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barker, D.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Beker, M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet–Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; del Prete, M.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.; Dietz, A.; DiGuglielmo, J.; Donovan, F.; Dooley, K. L.; Dorsher, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Farr, W.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Flanigan, M.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P. J.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Ganija, M. R.; Garcia, J.; Garofoli, J. A.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Geng, R.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Gray, N.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Ha, T.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Hardt, A.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; Jang, H.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kamaretsos, I.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B.; Kim, C.; Kim, D.; Kim, H.; Kim, K.; Kim, N.; Kim, Y.-M.; King, P. J.; Kinsey, M.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Leaci, P.; Lee, C. H.; Lee, H. M.; Leindecker, N.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Luan, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marandi, A.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menendez, D.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Moesta, P.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Mosca, S.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Nawrodt, R.; Necula, V.; Nelson, J.; Newton, G.; Nishizawa, A.; Nocera, F.; Nolting, D.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pedraza, M.; Peiris, P.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Persichetti, G.; Phelps, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Prato, M.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C. R.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Redwine, K.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Ryll, H.; Sainathan, P.; Sakosky, M.; Salemi, F.; Samblowski, A.; Sammut, L.; Sancho de la Jordana, L.; Sandberg, V.; Sankar, S.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schlamminger, S.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Smith, R. J. E.; Somiya, K.; Sorazu, B.; Soto, J.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Stein, A. J.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Tseng, K.; Tucker, E.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vitale, S.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, X.; Wang, Z.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.; Zadroźny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhang, W.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2012-04-01
We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009, and October 20, 2010. We searched for signals from binaries with total mass between 2 and 25M⊙; this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass, including the results from previous LIGO and Virgo observations. The cumulative 90% confidence rate upper limits of the binary coalescence of binary neutron star, neutron star-black hole, and binary black hole systems are 1.3×10-4, 3.1×10-5, and 6.4×10-6Mpc-3yr-1, respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge.
Method and apparatus for detecting a desired behavior in digital image data
Kegelmeyer, Jr., W. Philip
1997-01-01
A method for detecting stellate lesions in digitized mammographic image data includes the steps of prestoring a plurality of reference images, calculating a plurality of features for each of the pixels of the reference images, and creating a binary decision tree from features of randomly sampled pixels from each of the reference images. Once the binary decision tree has been created, a plurality of features, preferably including an ALOE feature (analysis of local oriented edges), are calculated for each of the pixels of the digitized mammographic data. Each of these plurality of features of each pixel are input into the binary decision tree and a probability is determined, for each of the pixels, corresponding to the likelihood of the presence of a stellate lesion, to create a probability image. Finally, the probability image is spatially filtered to enforce local consensus among neighboring pixels and the spatially filtered image is output.
Method and apparatus for detecting a desired behavior in digital image data
Kegelmeyer, Jr., W. Philip
1997-01-01
A method for detecting stellate lesions in digitized mammographic image data includes the steps of prestoring a plurality of reference images, calculating a plurality of features for each of the pixels of the reference images, and creating a binary decision tree from features of randomly sampled pixels from each of the reference images. Once the binary decision tree has been created, a plurality of features, preferably including an ALOE feature (analysis of local oriented edges), are calculated for each of the pixels of the digitized mammographic data. Each of these plurality of features of each pixel are input into the binary decision tree and a probability is determined, for each of the pixels, corresponding to the likelihood of the presence of a stellate lesion, to create a probability image. Finally, the probability image is spacially filtered to enforce local consensus among neighboring pixels and the spacially filtered image is output.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Duncan A.; Zimmerman, Peter J.
2010-01-15
Inspiralling compact binaries are expected to circularize before their gravitational-wave signals reach the sensitive frequency band of ground-based detectors. Current searches for gravitational waves from compact binaries using the LIGO and Virgo detectors therefore use circular templates to construct matched filters. Binary formation models have been proposed which suggest that some systems detectable by the LIGO-Virgo network may have non-negligible eccentricity. We investigate the ability of the restricted 3.5 post-Newtonian order TaylorF2 template bank, used by LIGO and Virgo to search for gravitational waves from compact binaries with masses M{<=}35M{sub {center_dot},} to detect binaries with nonzero eccentricity. We model themore » gravitational waves from eccentric binaries using the x-model post-Newtonian formalism proposed by Hinder et al.[I. Hinder, F. Hermann, P. Laguna, and D. Shoemaker, arXiv:0806.1037v1]. We find that small residual eccentricities (e{sub 0} < or approx. 0.05 at 40 Hz) do not significantly affect the ability of current LIGO searches to detect gravitational waves from coalescing compact binaries with total mass 2M{sub {center_dot}<}M<15M{sub {center_dot}.} For eccentricities e{sub 0} > or approx. 0.1, the loss in matched filter signal-to-noise ratio due to eccentricity can be significant and so templates which include eccentric effects will be required to perform optimal searches for such systems.« less
Searching for the full symphony of black hole binary mergers
NASA Astrophysics Data System (ADS)
Harry, Ian; Bustillo, Juan Calderón; Nitz, Alex
2018-01-01
Current searches for the gravitational-wave signature of compact binary mergers rely on matched-filtering data from interferometric observatories with sets of modeled gravitational waveforms. These searches currently use model waveforms that do not include the higher-order mode content of the gravitational-wave signal. Higher-order modes are important for many compact binary mergers and their omission reduces the sensitivity to such sources. In this work we explore the sensitivity loss incurred from omitting higher-order modes. We present a new method for searching for compact binary mergers using waveforms that include higher-order mode effects, and evaluate the sensitivity increase that using our new method would allow. We find that, when evaluating sensitivity at a constant rate-of-false alarm, and when including the fact that signal-consistency tests can reject some signals that include higher-order mode content, we observe a sensitivity increase of up to a factor of 2 in volume for high mass ratio, high total-mass systems. For systems with equal mass, or with total mass ˜50 M⊙, we see more modest sensitivity increases, <10 %, which indicates that the existing search is already performing well. Our new search method is also directly applicable in searches for generic compact binaries.
An Improved Binary Differential Evolution Algorithm to Infer Tumor Phylogenetic Trees.
Liang, Ying; Liao, Bo; Zhu, Wen
2017-01-01
Tumourigenesis is a mutation accumulation process, which is likely to start with a mutated founder cell. The evolutionary nature of tumor development makes phylogenetic models suitable for inferring tumor evolution through genetic variation data. Copy number variation (CNV) is the major genetic marker of the genome with more genes, disease loci, and functional elements involved. Fluorescence in situ hybridization (FISH) accurately measures multiple gene copy number of hundreds of single cells. We propose an improved binary differential evolution algorithm, BDEP, to infer tumor phylogenetic tree based on FISH platform. The topology analysis of tumor progression tree shows that the pathway of tumor subcell expansion varies greatly during different stages of tumor formation. And the classification experiment shows that tree-based features are better than data-based features in distinguishing tumor. The constructed phylogenetic trees have great performance in characterizing tumor development process, which outperforms other similar algorithms.
Computing all hybridization networks for multiple binary phylogenetic input trees.
Albrecht, Benjamin
2015-07-30
The computation of phylogenetic trees on the same set of species that are based on different orthologous genes can lead to incongruent trees. One possible explanation for this behavior are interspecific hybridization events recombining genes of different species. An important approach to analyze such events is the computation of hybridization networks. This work presents the first algorithm computing the hybridization number as well as a set of representative hybridization networks for multiple binary phylogenetic input trees on the same set of taxa. To improve its practical runtime, we show how this algorithm can be parallelized. Moreover, we demonstrate the efficiency of the software Hybroscale, containing an implementation of our algorithm, by comparing it to PIRNv2.0, which is so far the best available software computing the exact hybridization number for multiple binary phylogenetic trees on the same set of taxa. The algorithm is part of the software Hybroscale, which was developed specifically for the investigation of hybridization networks including their computation and visualization. Hybroscale is freely available(1) and runs on all three major operating systems. Our simulation study indicates that our approach is on average 100 times faster than PIRNv2.0. Moreover, we show how Hybroscale improves the interpretation of the reported hybridization networks by adding certain features to its graphical representation.
Machine Learning Through Signature Trees. Applications to Human Speech.
ERIC Educational Resources Information Center
White, George M.
A signature tree is a binary decision tree used to classify unknown patterns. An attempt was made to develop a computer program for manipulating signature trees as a general research tool for exploring machine learning and pattern recognition. The program was applied to the problem of speech recognition to test its effectiveness for a specific…
Leportier, Thibault; Park, Min Chul; Kim, You Seok; Kim, Taegeun
2015-02-09
In this paper, we present a three-dimensional holographic imaging system. The proposed approach records a complex hologram of a real object using optical scanning holography, converts the complex form to binary data, and then reconstructs the recorded hologram using a spatial light modulator (SLM). The conversion from the recorded hologram to a binary hologram is achieved using a direct binary search algorithm. We present experimental results that verify the efficacy of our approach. To the best of our knowledge, this is the first time that a hologram of a real object has been reconstructed using a binary SLM.
Fernández, Alberto; Carmona, Cristobal José; José Del Jesus, María; Herrera, Francisco
2017-09-01
Imbalanced classification is related to those problems that have an uneven distribution among classes. In addition to the former, when instances are located into the overlapped areas, the correct modeling of the problem becomes harder. Current solutions for both issues are often focused on the binary case study, as multi-class datasets require an additional effort to be addressed. In this research, we overcome these problems by carrying out a combination between feature and instance selections. Feature selection will allow simplifying the overlapping areas easing the generation of rules to distinguish among the classes. Selection of instances from all classes will address the imbalance itself by finding the most appropriate class distribution for the learning task, as well as possibly removing noise and difficult borderline examples. For the sake of obtaining an optimal joint set of features and instances, we embedded the searching for both parameters in a Multi-Objective Evolutionary Algorithm, using the C4.5 decision tree as baseline classifier in this wrapper approach. The multi-objective scheme allows taking a double advantage: the search space becomes broader, and we may provide a set of different solutions in order to build an ensemble of classifiers. This proposal has been contrasted versus several state-of-the-art solutions on imbalanced classification showing excellent results in both binary and multi-class problems.
2010-01-01
Background The Maximal Pairing Problem (MPP) is the prototype of a class of combinatorial optimization problems that are of considerable interest in bioinformatics: Given an arbitrary phylogenetic tree T and weights ωxy for the paths between any two pairs of leaves (x, y), what is the collection of edge-disjoint paths between pairs of leaves that maximizes the total weight? Special cases of the MPP for binary trees and equal weights have been described previously; algorithms to solve the general MPP are still missing, however. Results We describe a relatively simple dynamic programming algorithm for the special case of binary trees. We then show that the general case of multifurcating trees can be treated by interleaving solutions to certain auxiliary Maximum Weighted Matching problems with an extension of this dynamic programming approach, resulting in an overall polynomial-time solution of complexity (n4 log n) w.r.t. the number n of leaves. The source code of a C implementation can be obtained under the GNU Public License from http://www.bioinf.uni-leipzig.de/Software/Targeting. For binary trees, we furthermore discuss several constrained variants of the MPP as well as a partition function approach to the probabilistic version of the MPP. Conclusions The algorithms introduced here make it possible to solve the MPP also for large trees with high-degree vertices. This has practical relevance in the field of comparative phylogenetics and, for example, in the context of phylogenetic targeting, i.e., data collection with resource limitations. PMID:20525185
A note on subtrees rooted along the primary path of a binary tree
Troutman, B.M.; Karlinger, M.R.
1993-01-01
Let Fn denote the set of rooted binary plane trees with n external nodes, for given T???Fn let ui(T) be the altitude i node along the primary path of T, and let ??i(T) denote the number of external nodes in the induced subtree rooted at ui(T). We set ??i(T) = 0 if i is greater than the length of the primary path of T. We prove limn?????? ???i???x/n En{??i}/???i?? En{??i} = G(x), where En denotes the average over trees T???Fn and where the distribution function G is determined by its moments, for which we present an explicit expression. ?? 1993.
Expected performance of m-solution backtracking
NASA Technical Reports Server (NTRS)
Nicol, D. M.
1986-01-01
This paper derives upper bounds on the expected number of search tree nodes visited during an m-solution backtracking search, a search which terminates after some preselected number m problem solutions are found. The search behavior is assumed to have a general probabilistic structure. The results are stated in terms of node expansion and contraction. A visited search tree node is said to be expanding if the mean number of its children visited by the search exceeds 1 and is contracting otherwise. It is shown that if every node expands, or if every node contracts, then the number of search tree nodes visited by a search has an upper bound which is linear in the depth of the tree, in the mean number of children a node has, and in the number of solutions sought. Also derived are bounds linear in the depth of the tree in some situations where an upper portion of the tree contracts (expands), while the lower portion expands (contracts). While previous analyses of 1-solution backtracking have concluded that the expected performance is always linear in the tree depth, the model allows superlinear expected performance.
Search for gravitational waves from binary black hole inspiral, merger, and ringdown
NASA Astrophysics Data System (ADS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Arain, M. A.; Araya, M. C.; Aronsson, M.; Aso, Y.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballardin, G.; Ballinger, T.; Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Beker, M. G.; Belletoile, A.; Benacquista, M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birindelli, S.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Boccara, C.; Bock, O.; Bodiya, T. P.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Boyle, M.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Budzyński, R.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cain, J.; Calloni, E.; Camp, J. B.; Campagna, E.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coulon, J.-P.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Das, K.; Dattilo, V.; Daudert, B.; Davier, M.; Davies, G.; Davis, A.; Daw, E. J.; Day, R.; Dayanga, T.; Derosa, R.; Debra, D.; Debreczeni, G.; Degallaix, J.; Del Prete, M.; Dergachev, V.; de Rosa, R.; Desalvo, R.; Devanka, P.; Dhurandhar, S.; di Fiore, L.; di Lieto, A.; di Palma, I.; di Paolo Emilio, M.; di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Dorsher, S.; Douglas, E. S. D.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Dueck, J.; Dumas, J.-C.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Ely, G.; Engel, R.; Etzel, T.; Evans, M.; Evans, T.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flanigan, M.; Flasch, K.; Foley, S.; Forrest, C.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Garofoli, J. A.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Genin, E.; Gennai, A.; Gholami, I.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hall, P.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Hayler, T.; Heefner, J.; Heitmann, H.; Hello, P.; Heng, I. S.; Heptonstall, A. W.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hoyland, D.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J. B.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, H.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kowalska, I.; Kozak, D.; Krause, T.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kullman, J.; Kumar, R.; Kwee, P.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lazzarini, A.; Leaci, P.; Leong, J.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lin, H.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lu, P.; Luan, J.; Lubiński, M.; Lucianetti, A.; Lück, H.; Lundgren, A. D.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Mak, C.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIvor, G.; McKechan, D. J. A.; Meadors, G.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Merill, L.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mino, Y.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreau, J.; Moreno, G.; Morgado, N.; Morgia, A.; Morioka, T.; Mors, K.; Mosca, S.; Moscatelli, V.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murray, P. G.; Nash, T.; Nawrodt, R.; Nelson, J.; Neri, I.; Newton, G.; Nishizawa, A.; Nocera, F.; Nolting, D.; Ochsner, E.; O'Dell, J.; Ogin, G. H.; Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Pardi, S.; Pareja, M.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pathak, D.; Pedraza, M.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Persichetti, G.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Postiglione, F.; Prato, M.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radke, T.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Roberts, P.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sakata, S.; Sakosky, M.; Salemi, F.; Sammut, L.; Sancho de La Jordana, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Santostasi, G.; Saraf, S.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Speirits, F. C.; Sperandio, L.; Stein, A. J.; Stein, L. C.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szokoly, G. P.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Tseng, K.; Turner, L.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vaishnav, B.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vocca, H.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.; Zanolin, M.; Zhang, L.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2011-06-01
We present the first modeled search for gravitational waves using the complete binary black-hole gravitational waveform from inspiral through the merger and ringdown for binaries with negligible component spin. We searched approximately 2 years of LIGO data, taken between November 2005 and September 2007, for systems with component masses of 1-99M⊙ and total masses of 25-100M⊙. We did not detect any plausible gravitational-wave signals but we do place upper limits on the merger rate of binary black holes as a function of the component masses in this range. We constrain the rate of mergers for 19M⊙≤m1, m2≤28M⊙ binary black-hole systems with negligible spin to be no more than 2.0Mpc-3Myr-1 at 90% confidence.
Block-Based Connected-Component Labeling Algorithm Using Binary Decision Trees
Chang, Wan-Yu; Chiu, Chung-Cheng; Yang, Jia-Horng
2015-01-01
In this paper, we propose a fast labeling algorithm based on block-based concepts. Because the number of memory access points directly affects the time consumption of the labeling algorithms, the aim of the proposed algorithm is to minimize neighborhood operations. Our algorithm utilizes a block-based view and correlates a raster scan to select the necessary pixels generated by a block-based scan mask. We analyze the advantages of a sequential raster scan for the block-based scan mask, and integrate the block-connected relationships using two different procedures with binary decision trees to reduce unnecessary memory access. This greatly simplifies the pixel locations of the block-based scan mask. Furthermore, our algorithm significantly reduces the number of leaf nodes and depth levels required in the binary decision tree. We analyze the labeling performance of the proposed algorithm alongside that of other labeling algorithms using high-resolution images and foreground images. The experimental results from synthetic and real image datasets demonstrate that the proposed algorithm is faster than other methods. PMID:26393597
A Search for Low Mass Stars and Substellar Companions and A Study of Circumbinary Gas and Dust Disks
NASA Astrophysics Data System (ADS)
Rodriguez, David R.
2011-01-01
We have searched for nearby low-mass stars and brown dwarfs and have studied the planet-forming environment of binary stars. We have carried out a search for young, low-mass stars in nearby stellar associations using X-ray and UV source catalogs. We discovered a new technique to identify 10-100 Myr-old low-mass stars within 100 pc of the Earth using GALEX-optical/near-IR data. We present candidate young stars found by applying this new method in the 10 Myr old TW Hydrae and Scorpius-Centaurus associations. In addition, we have searched for the coolest brown dwarf class: Y-dwarfs, expected to appear at temperatures <500 K. Using wide-field near infrared imaging with ground (CTIO, Palomar, KPNO) and space (Spitzer, AKARI) observatories, we have looked for companions to nearby, old (2 Gyr or older), high proper motion white dwarfs. We present results for Southern Hemisphere white dwarfs. Additionally, we have characterized how likely planet formation occurs in binary star systems. While 20% of planets have been discovered around one member of a binary system, these binaries have semi-major axes larger than 20 AU. We have performed an AO and spectroscopic search for binary stars among a sample of known debris disk stars, which allows us to indirectly study planet formation and evolution in binary systems. As a case study, we examined the gas and dust present in the circumbinary disk around V4046 Sagittarii, a 2.4-day spectroscopic binary. Our results demonstrate it is unlikely that planets can form in binaries with stellar semi-major axes of 10s of AU. This research has been funded by a NASA ADA grant to UCLA and RIT.
Fast optimization of binary clusters using a novel dynamic lattice searching method.
Wu, Xia; Cheng, Wen
2014-09-28
Global optimization of binary clusters has been a difficult task despite of much effort and many efficient methods. Directing toward two types of elements (i.e., homotop problem) in binary clusters, two classes of virtual dynamic lattices are constructed and a modified dynamic lattice searching (DLS) method, i.e., binary DLS (BDLS) method, is developed. However, it was found that the BDLS can only be utilized for the optimization of binary clusters with small sizes because homotop problem is hard to be solved without atomic exchange operation. Therefore, the iterated local search (ILS) method is adopted to solve homotop problem and an efficient method based on the BDLS method and ILS, named as BDLS-ILS, is presented for global optimization of binary clusters. In order to assess the efficiency of the proposed method, binary Lennard-Jones clusters with up to 100 atoms are investigated. Results show that the method is proved to be efficient. Furthermore, the BDLS-ILS method is also adopted to study the geometrical structures of (AuPd)79 clusters with DFT-fit parameters of Gupta potential.
Nearest neighbor imputation using spatial–temporal correlations in wireless sensor networks
Li, YuanYuan; Parker, Lynne E.
2016-01-01
Missing data is common in Wireless Sensor Networks (WSNs), especially with multi-hop communications. There are many reasons for this phenomenon, such as unstable wireless communications, synchronization issues, and unreliable sensors. Unfortunately, missing data creates a number of problems for WSNs. First, since most sensor nodes in the network are battery-powered, it is too expensive to have the nodes retransmit missing data across the network. Data re-transmission may also cause time delays when detecting abnormal changes in an environment. Furthermore, localized reasoning techniques on sensor nodes (such as machine learning algorithms to classify states of the environment) are generally not robust enough to handle missing data. Since sensor data collected by a WSN is generally correlated in time and space, we illustrate how replacing missing sensor values with spatially and temporally correlated sensor values can significantly improve the network’s performance. However, our studies show that it is important to determine which nodes are spatially and temporally correlated with each other. Simple techniques based on Euclidean distance are not sufficient for complex environmental deployments. Thus, we have developed a novel Nearest Neighbor (NN) imputation method that estimates missing data in WSNs by learning spatial and temporal correlations between sensor nodes. To improve the search time, we utilize a kd-tree data structure, which is a non-parametric, data-driven binary search tree. Instead of using traditional mean and variance of each dimension for kd-tree construction, and Euclidean distance for kd-tree search, we use weighted variances and weighted Euclidean distances based on measured percentages of missing data. We have evaluated this approach through experiments on sensor data from a volcano dataset collected by a network of Crossbow motes, as well as experiments using sensor data from a highway traffic monitoring application. Our experimental results show that our proposed 𝒦-NN imputation method has a competitive accuracy with state-of-the-art Expectation–Maximization (EM) techniques, while using much simpler computational techniques, thus making it suitable for use in resource-constrained WSNs. PMID:28435414
Deep Hashing for Scalable Image Search.
Lu, Jiwen; Liong, Venice Erin; Zhou, Jie
2017-05-01
In this paper, we propose a new deep hashing (DH) approach to learn compact binary codes for scalable image search. Unlike most existing binary codes learning methods, which usually seek a single linear projection to map each sample into a binary feature vector, we develop a deep neural network to seek multiple hierarchical non-linear transformations to learn these binary codes, so that the non-linear relationship of samples can be well exploited. Our model is learned under three constraints at the top layer of the developed deep network: 1) the loss between the compact real-valued code and the learned binary vector is minimized, 2) the binary codes distribute evenly on each bit, and 3) different bits are as independent as possible. To further improve the discriminative power of the learned binary codes, we extend DH into supervised DH (SDH) and multi-label SDH by including a discriminative term into the objective function of DH, which simultaneously maximizes the inter-class variations and minimizes the intra-class variations of the learned binary codes with the single-label and multi-label settings, respectively. Extensive experimental results on eight widely used image search data sets show that our proposed methods achieve very competitive results with the state-of-the-arts.
NASA Astrophysics Data System (ADS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Amador Ceron, E.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Arain, M. A.; Araya, M.; Aronsson, M.; Arun, K. G.; Aso, Y.; Aston, S.; Astone, P.; Atkinson, D. E.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballardin, G.; Ballinger, T.; Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Beker, M. G.; Belletoile, A.; Benacquista, M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bigotta, S.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birindelli, S.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Boccara, C.; Bock, O.; Bodiya, T. P.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Bose, S.; Bosi, L.; Bouhou, B.; Boyle, M.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Budzyński, R.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet–Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cain, J.; Calloni, E.; Camp, J. B.; Campagna, E.; Campsie, P.; Cannizzo, J.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C.; Carbognani, F.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coulon, J.-P.; Coward, D.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Das, K.; Dattilo, V.; Daudert, B.; Davier, M.; Davies, G.; Davis, A.; Daw, E. J.; Day, R.; Dayanga, T.; de Rosa, R.; Debra, D.; Degallaix, J.; Del Prete, M.; Dergachev, V.; Derosa, R.; Desalvo, R.; Devanka, P.; Dhurandhar, S.; di Fiore, L.; di Lieto, A.; di Palma, I.; di Paolo Emilio, M.; di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Dorsher, S.; Douglas, E. S. D.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Dueck, J.; Dumas, J.-C.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Ely, G.; Engel, R.; Etzel, T.; Evans, M.; Evans, T.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flanigan, M.; Flasch, K.; Foley, S.; Forrest, C.; Forsi, E.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Garofoli, J. A.; Garufi, F.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hall, P.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Hayler, T.; Heefner, J.; Heitmann, H.; Hello, P.; Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Howell, E.; Hoyland, D.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh–Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, H.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kowalska, I.; Kozak, D.; Krause, T.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kullman, J.; Kumar, R.; Kwee, P.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lazzarini, A.; Leaci, P.; Leong, J.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Lin, H.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lu, P.; Luan, J.; Lubiński, M.; Lucianetti, A.; Lück, H.; Lundgren, A.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Mak, C.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIvor, G.; McKechan, D. J. A.; Meadors, G.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Merill, L.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mino, Y.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreau, J.; Moreno, G.; Morgado, N.; Morgia, A.; Mors, K.; Mosca, S.; Moscatelli, V.; Mossavi, K.; Mours, B.; Mowlowry, C.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murray, P. G.; Nash, T.; Nawrodt, R.; Nelson, J.; Neri, I.; Newton, G.; Nishida, E.; Nishizawa, A.; Nocera, F.; Nolting, D.; Ochsner, E.; O'Dell, J.; Ogin, G. H.; Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Pardi, S.; Pareja, M.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pathak, D.; Pedraza, M.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Persichetti, G.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Postiglione, F.; Prato, M.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Radke, T.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Roberts, P.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Röver, C.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sakata, S.; Sakosky, M.; Salemi, F.; Sammut, L.; Sancho de La Jordana, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Santostasi, G.; Saraf, S.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Speirits, F. C.; Sperandio, L.; Stein, A. J.; Stein, L. C.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Trummer, J.; Tseng, K.; Turner, L.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vaishnav, B.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A.; Vinet, J.-Y.; Vocca, H.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yeaton-Massey, D.; Yoshida, S.; Yu, P. P.; Yvert, M.; Zanolin, M.; Zhang, L.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2010-11-01
We report the results of the first search for gravitational waves from compact binary coalescence using data from the Laser Interferometer Gravitational-Wave Observatory and Virgo detectors. Five months of data were collected during the Laser Interferometer Gravitational-Wave Observatory’s S5 and Virgo’s VSR1 science runs. The search focused on signals from binary mergers with a total mass between 2 and 35M⊙. No gravitational waves are identified. The cumulative 90%-confidence upper limits on the rate of compact binary coalescence are calculated for nonspinning binary neutron stars, black hole-neutron star systems, and binary black holes to be 8.7×10-3yr-1L10-1, 2.2×10-3yr-1L10-1, and 4.4×10-4yr-1L10-1, respectively, where L10 is 1010 times the blue solar luminosity. These upper limits are compared with astrophysical expectations.
NASA Technical Reports Server (NTRS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.;
2010-01-01
We report the results of the first search for gravitational waves from compact binary coalescence using data from the Laser Interferometer Gravitational-wave Observatory (LIGO) and Virgo detectors. Five months of data were collected during the concurrent S5 (UGO) and VSRI (Virgo) science runs. The search focused on signals from binary mergers with a total mass between 2 and 35 Solar Mass. No gravitational waves are identified. The cumulative 90%-confidence upper limits on the rate of compact binary coalescence are calculated for non-spinning binary neutron stars, black hole-neutron star systems, and binary black holes to be 8.7 x 10(exp -3) / yr-1/L(sub 10) 2.2 x 10-3 yr-1L101, and 4.4 x 10(exp -4)3) / yr-1/L(sub 10) respectively, where L (sub 10) is 10(exp 10) times the blue solar luminosity. These upper limits are compared with astrophysical expectations.
A laid-back trip through the Hennigian Forests
2017-01-01
Background This paper is a comment on the idea of matrix-free Cladistics. Demonstration of this idea’s efficiency is a major goal of the study. Within the proposed framework, the ordinary (phenetic) matrix is necessary only as “source” of Hennigian trees, not as a primary subject of the analysis. Switching from the matrix-based thinking to the matrix-free Cladistic approach clearly reveals that optimizations of the character-state changes are related not to the real processes, but to the form of the data representation. Methods We focused our study on the binary data. We wrote the simple ruby-based script FORESTER version 1.0 that helps represent a binary matrix as an array of the rooted trees (as a “Hennigian forest”). The binary representations of the genomic (DNA) data have been made by script 1001. The Average Consensus method as well as the standard Maximum Parsimony (MP) approach has been used to analyze the data. Principle findings The binary matrix may be easily re-written as a set of rooted trees (maximal relationships). The latter might be analyzed by the Average Consensus method. Paradoxically, this method, if applied to the Hennigian forests, in principle can help to identify clades despite the absence of the direct evidence from the primary data. Our approach may handle the clock- or non clock-like matrices, as well as the hypothetical, molecular or morphological data. Discussion Our proposal clearly differs from the numerous phenetic alignment-free techniques of the construction of the phylogenetic trees. Dealing with the relations, not with the actual “data” also distinguishes our approach from all optimization-based methods, if the optimization is defined as a way to reconstruct the sequences of the character-state changes on a tree, either the standard alignment-based techniques or the “direct” alignment-free procedure. We are not viewing our recent framework as an alternative to the three-taxon statement analysis (3TA), but there are two major differences between our recent proposal and the 3TA, as originally designed and implemented: (1) the 3TA deals with the three-taxon statements or minimal relationships. According to the logic of 3TA, the set of the minimal trees must be established as a binary matrix and used as an input for the parsimony program. In this paper, we operate directly with maximal relationships written just as trees, not as binary matrices, while also using the Average Consensus method instead of the MP analysis. The solely ‘reversal’-based groups can always be found by our method without the separate scoring of the putative reversals before analyses. PMID:28740753
Cross-indexing of binary SIFT codes for large-scale image search.
Liu, Zhen; Li, Houqiang; Zhang, Liyan; Zhou, Wengang; Tian, Qi
2014-05-01
In recent years, there has been growing interest in mapping visual features into compact binary codes for applications on large-scale image collections. Encoding high-dimensional data as compact binary codes reduces the memory cost for storage. Besides, it benefits the computational efficiency since the computation of similarity can be efficiently measured by Hamming distance. In this paper, we propose a novel flexible scale invariant feature transform (SIFT) binarization (FSB) algorithm for large-scale image search. The FSB algorithm explores the magnitude patterns of SIFT descriptor. It is unsupervised and the generated binary codes are demonstrated to be dispreserving. Besides, we propose a new searching strategy to find target features based on the cross-indexing in the binary SIFT space and original SIFT space. We evaluate our approach on two publicly released data sets. The experiments on large-scale partial duplicate image retrieval system demonstrate the effectiveness and efficiency of the proposed algorithm.
An All-Sky Search for Wide Binaries in the SUPERBLINK Proper Motion Catalog
NASA Astrophysics Data System (ADS)
Hartman, Zachary; Lepine, Sebastien
2017-01-01
We present initial results from an all-sky search for Common Proper Motion (CPM) binaries in the SUPERBLINK all-sky proper motion catalog of 2.8 million stars with proper motions greater than 40 mas/yr, which has been recently enhanced with data from the GAIA mission. We initially search the SUPERBLINK catalog for pairs of stars with angular separations up to 1 degree and proper motion difference less than 40 mas/yr. In order to determine which of these pairs are real binaries, we develop a Bayesian analysis to calculate probabilities of true companionship based on a combination of proper motion magnitude, angular separation, and proper motion differences. The analysis reveals that the SUPERBLINK catalog most likely contains ~40,000 genuine common proper motion binaries. We provide initial estimates of the distances and projected physical separations of these wide binaries.
SAGE III L2 Lunar Event Species Profiles (Binary)
Atmospheric Science Data Center
2017-10-27
... Search and Order: Earthdata Search FTP Access: Data Pool Parameters: Chlorine Dioxide Nitrogen Dioxide ... Data Additional Info: Data Format: Big Endian/IEEE Binary; Avg Size in MB: 0.017 SCAR-B Block: ...
Searching Ultra-compact Pulsar Binaries with Abnormal Timing Behavior
NASA Astrophysics Data System (ADS)
Gong, B. P.; Li, Y. P.; Yuan, J. P.; Tian, J.; Zhang, Y. Y.; Li, D.; Jiang, B.; Li, X. D.; Wang, H. G.; Zou, Y. C.; Shao, L. J.
2018-03-01
Ultra-compact pulsar binaries are both ideal sources of gravitational radiation for gravitational wave detectors and laboratories for fundamental physics. However, the shortest orbital period of all radio pulsar binaries is currently 1.6 hr. The absence of pulsar binaries with a shorter orbital period is most likely due to technique limit. This paper points out that a tidal effect occurring on pulsar binaries with a short orbital period can perturb the orbital elements and result in a significant change in orbital modulation, which dramatically reduces the sensitivity of the acceleration searching that is widely used. Here a new search is proposed. The abnormal timing residual exhibited in a single pulse observation is simulated by a tidal effect occurring on an ultra-compact binary. The reproduction of the main features represented by the sharp peaks displayed in the abnormal timing behavior suggests that pulsars like PSR B0919+06 could be a candidate for an ultra-compact binary of an orbital period of ∼10 minutes and a companion star of a white dwarf star. The binary nature of such a candidate is further tested by (1) comparing the predicted long-term binary effect with decades of timing noise observed and (2) observing the optical counterpart of the expected companion star. Test (1) likely supports our model, while more observations are needed in test (2). Some interesting ultra-compact binaries could be found in the near future by applying such a new approach to other binary candidates.
Scoring-and-unfolding trimmed tree assembler: concepts, constructs and comparisons.
Narzisi, Giuseppe; Mishra, Bud
2011-01-15
Mired by its connection to a well-known -complete combinatorial optimization problem-namely, the Shortest Common Superstring Problem (SCSP)-historically, the whole-genome sequence assembly (WGSA) problem has been assumed to be amenable only to greedy and heuristic methods. By placing efficiency as their first priority, these methods opted to rely only on local searches, and are thus inherently approximate, ambiguous or error prone, especially, for genomes with complex structures. Furthermore, since choice of the best heuristics depended critically on the properties of (e.g. errors in) the input data and the available long range information, these approaches hindered designing an error free WGSA pipeline. We dispense with the idea of limiting the solutions to just the approximated ones, and instead favor an approach that could potentially lead to an exhaustive (exponential-time) search of all possible layouts. Its computational complexity thus must be tamed through a constrained search (Branch-and-Bound) and quick identification and pruning of implausible overlays. For his purpose, such a method necessarily relies on a set of score functions (oracles) that can combine different structural properties (e.g. transitivity, coverage, physical maps, etc.). We give a detailed description of this novel assembly framework, referred to as Scoring-and-Unfolding Trimmed Tree Assembler (SUTTA), and present experimental results on several bacterial genomes using next-generation sequencing technology data. We also report experimental evidence that the assembly quality strongly depends on the choice of the minimum overlap parameter k. SUTTA's binaries are freely available to non-profit institutions for research and educational purposes at http://www.bioinformatics.nyu.edu.
On Tree-Based Phylogenetic Networks.
Zhang, Louxin
2016-07-01
A large class of phylogenetic networks can be obtained from trees by the addition of horizontal edges between the tree edges. These networks are called tree-based networks. We present a simple necessary and sufficient condition for tree-based networks and prove that a universal tree-based network exists for any number of taxa that contains as its base every phylogenetic tree on the same set of taxa. This answers two problems posted by Francis and Steel recently. A byproduct is a computer program for generating random binary phylogenetic networks under the uniform distribution model.
Efficient multifeature index structures for music data retrieval
NASA Astrophysics Data System (ADS)
Lee, Wegin; Chen, Arbee L. P.
1999-12-01
In this paper, we propose four index structures for music data retrieval. Based on suffix trees, we develop two index structures called combined suffix tree and independent suffix trees. These methods still show shortcomings for some search functions. Hence we develop another index, called Twin Suffix Trees, to overcome these problems. However, the Twin Suffix Trees lack of scalability when the amount of music data becomes large. Therefore we propose the fourth index, called Grid-Twin Suffix Trees, to provide scalability and flexibility for a large amount of music data. For each index, we can use different search functions, like exact search and approximate search, on different music features, like melody, rhythm or both. We compare the performance of the different search functions applied on each index structure by a series of experiments.
Schmid, Matthias; Küchenhoff, Helmut; Hoerauf, Achim; Tutz, Gerhard
2016-02-28
Survival trees are a popular alternative to parametric survival modeling when there are interactions between the predictor variables or when the aim is to stratify patients into prognostic subgroups. A limitation of classical survival tree methodology is that most algorithms for tree construction are designed for continuous outcome variables. Hence, classical methods might not be appropriate if failure time data are measured on a discrete time scale (as is often the case in longitudinal studies where data are collected, e.g., quarterly or yearly). To address this issue, we develop a method for discrete survival tree construction. The proposed technique is based on the result that the likelihood of a discrete survival model is equivalent to the likelihood of a regression model for binary outcome data. Hence, we modify tree construction methods for binary outcomes such that they result in optimized partitions for the estimation of discrete hazard functions. By applying the proposed method to data from a randomized trial in patients with filarial lymphedema, we demonstrate how discrete survival trees can be used to identify clinically relevant patient groups with similar survival behavior. Copyright © 2015 John Wiley & Sons, Ltd.
Searching for gravitational waves from compact binaries with precessing spins
NASA Astrophysics Data System (ADS)
Harry, Ian; Privitera, Stephen; Bohé, Alejandro; Buonanno, Alessandra
2016-07-01
Current searches for gravitational waves from compact-object binaries with the LIGO and Virgo observatories employ waveform models with spins aligned (or antialigned) with the orbital angular momentum. Here, we derive a new statistic to search for compact objects carrying generic (precessing) spins. Applying this statistic, we construct banks of both aligned- and generic-spin templates for binary black holes and neutron star-black hole binaries, and compare the effectualness of these banks towards simulated populations of generic-spin systems. We then use these banks in a pipeline analysis of Gaussian noise to measure the increase in background incurred by using generic- instead of aligned-spin banks. Although the generic-spin banks have roughly a factor of ten more templates than the aligned-spin banks, we find an overall improvement in signal recovery at a fixed false-alarm rate for systems with high-mass ratio and highly precessing spins. This gain in sensitivity comes at a small loss of sensitivity (≲4 %) for systems that are already well covered by aligned-spin templates. Since the observation of even a single binary merger with misaligned spins could provide unique astrophysical insights into the formation of these sources, we recommend that the method described here be developed further to mount a viable search for generic-spin binary mergers in LIGO/Virgo data.
Homology search with binary and trinary scoring matrices.
Smith, Scott F
2006-01-01
Protein homology search can be accelerated with the use of bit-parallel algorithms in conjunction with constraints on the values contained in the scoring matrices. Trinary scoring matrices (containing only the values -1, 0, and 1) allow for significant acceleration without significant reduction in the receiver operating characteristic (ROC) score of a Smith-Waterman search. Binary scoring matrices (containing the values 0 and 1) result in some reduction in ROC score, but result in even more acceleration. Binary scoring matrices and five-bit saturating scores can be used for fast prefilters to the Smith-Waterman algorithm.
Continuous-time quantum search on balanced trees
NASA Astrophysics Data System (ADS)
Philipp, Pascal; Tarrataca, Luís; Boettcher, Stefan
2016-03-01
We examine the effect of network heterogeneity on the performance of quantum search algorithms. To this end, we study quantum search on a tree for the oracle Hamiltonian formulation employed by continuous-time quantum walks. We use analytical and numerical arguments to show that the exponent of the asymptotic running time ˜Nβ changes uniformly from β =0.5 to β =1 as the searched-for site is moved from the root of the tree towards the leaves. These results imply that the time complexity of the quantum search algorithm on a balanced tree is closely correlated with certain path-based centrality measures of the searched-for site.
Binary space partitioning trees and their uses
NASA Technical Reports Server (NTRS)
Bell, Bradley N.
1989-01-01
Binary Space Partitioning (BSP) trees have some qualities that make them useful in solving many graphics related problems. The purpose is to describe what a BSP tree is, and how it can be used to solve the problem of hidden surface removal, and constructive solid geometry. The BSP tree is based on the idea that a plane acting as a divider subdivides space into two parts with one being on the positive side and the other on the negative. A polygonal solid is then represented as the volume defined by the collective interior half spaces of the solid's bounding surfaces. The nature of how the tree is organized lends itself well for sorting polygons relative to an arbitrary point in 3 space. The speed at which the tree can be traversed for depth sorting is fast enough to provide hidden surface removal at interactive speeds. The fact that a BSP tree actually represents a polygonal solid as a bounded volume also makes it quite useful in performing the boolean operations used in constructive solid geometry. Due to the nature of the BSP tree, polygons can be classified as they are subdivided. The ability to classify polygons as they are subdivided can enhance the simplicity of implementing constructive solid geometry.
Goloboff, Pablo A
2014-10-01
Three different types of data sets, for which the uniquely most parsimonious tree can be known exactly but is hard to find with heuristic tree search methods, are studied. Tree searches are complicated more by the shape of the tree landscape (i.e. the distribution of homoplasy on different trees) than by the sheer abundance of homoplasy or character conflict. Data sets of Type 1 are those constructed by Radel et al. (2013). Data sets of Type 2 present a very rugged landscape, with narrow peaks and valleys, but relatively low amounts of homoplasy. For such a tree landscape, subjecting the trees to TBR and saving suboptimal trees produces much better results when the sequence of clipping for the tree branches is randomized instead of fixed. An unexpected finding for data sets of Types 1 and 2 is that starting a search from a random tree instead of a random addition sequence Wagner tree may increase the probability that the search finds the most parsimonious tree; a small artificial example where these probabilities can be calculated exactly is presented. Data sets of Type 3, the most difficult data sets studied here, comprise only congruent characters, and a single island with only one most parsimonious tree. Even if there is a single island, missing entries create a very flat landscape which is difficult to traverse with tree search algorithms because the number of equally parsimonious trees that need to be saved and swapped to effectively move around the plateaus is too large. Minor modifications of the parameters of tree drifting, ratchet, and sectorial searches allow travelling around these plateaus much more efficiently than saving and swapping large numbers of equally parsimonious trees with TBR. For these data sets, two new related criteria for selecting taxon addition sequences in Wagner trees (the "selected" and "informative" addition sequences) produce much better results than the standard random or closest addition sequences. These new methods for Wagner trees and for moving around plateaus can be useful when analyzing phylogenomic data sets formed by concatenation of genes with uneven taxon representation ("sparse" supermatrices), which are likely to present a tree landscape with extensive plateaus. Copyright © 2014 Elsevier Inc. All rights reserved.
The k-d Tree: A Hierarchical Model for Human Cognition.
ERIC Educational Resources Information Center
Vandendorpe, Mary M.
This paper discusses a model of information storage and retrieval, the k-d tree (Bentley, 1975), a binary, hierarchical tree with multiple associate terms, which has been explored in computer research, and it is suggested that this model could be useful for describing human cognition. Included are two models of human long-term memory--networks and…
Expected Number of Passes in a Binary Search Scheme
ERIC Educational Resources Information Center
Tenenbein, Aaron
1974-01-01
The binary search scheme is a method of finding a particular file from a set of ordered files stored in a computer. In this article an exact expression for the expected number of passes required to find a file is derived. (Author)
Phylogenetic search through partial tree mixing
2012-01-01
Background Recent advances in sequencing technology have created large data sets upon which phylogenetic inference can be performed. Current research is limited by the prohibitive time necessary to perform tree search on a reasonable number of individuals. This research develops new phylogenetic algorithms that can operate on tens of thousands of species in a reasonable amount of time through several innovative search techniques. Results When compared to popular phylogenetic search algorithms, better trees are found much more quickly for large data sets. These algorithms are incorporated in the PSODA application available at http://dna.cs.byu.edu/psoda Conclusions The use of Partial Tree Mixing in a partition based tree space allows the algorithm to quickly converge on near optimal tree regions. These regions can then be searched in a methodical way to determine the overall optimal phylogenetic solution. PMID:23320449
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abadie, J.; Abbott, B. P.; Abbott, R.
We report the results of the first search for gravitational waves from compact binary coalescence using data from the Laser Interferometer Gravitational-Wave Observatory and Virgo detectors. Five months of data were collected during the Laser Interferometer Gravitational-Wave Observatory's S5 and Virgo's VSR1 science runs. The search focused on signals from binary mergers with a total mass between 2 and 35M{sub {center_dot}}. No gravitational waves are identified. The cumulative 90%-confidence upper limits on the rate of compact binary coalescence are calculated for nonspinning binary neutron stars, black hole-neutron star systems, and binary black holes to be 8.7x10{sup -3} yr{sup -1} L{submore » 10}{sup -1}, 2.2x10{sup -3} yr{sup -1} L{sub 10}{sup -1}, and 4.4x10{sup -4} yr{sup -1} L{sub 10}{sup -1}, respectively, where L{sub 10} is 10{sup 10} times the blue solar luminosity. These upper limits are compared with astrophysical expectations.« less
NASA Technical Reports Server (NTRS)
Hut, Piet; Mcmillan, Steve; Goodman, Jeremy; Mateo, Mario; Phinney, E. S.; Pryor, Carlton; Richer, Harvey B.; Verbunt, Frank; Weinberg, Martin
1992-01-01
Recent observations have shown that globular clusters contain a substantial number of binaries most of which are believed to be primordial. We discuss different successful optical search techniques, based on radial-velocity variables, photometric variables, and the positions of stars in the color-magnitude diagram. In addition, we review searches in other wavelengths, which have turned up low-mass X-ray binaries and more recently a variety of radio pulsars. On the theoretical side, we give an overview of the different physical mechanisms through which individual binaries evolve. We discuss the various simulation techniques which recently have been employed to study the effects of a primordial binary population, and the fascinating interplay between stellar evolution and stellar dynamics which drives globular-cluster evolution.
SAGE III L2 Solar Event Species Profiles (Binary)
Atmospheric Science Data Center
2016-06-14
... Search and Order: Earthdata Search FTP Access: Data Pool V3 | Data Pool V4 Parameters: Aerosol ... Data Additional Info: Data Format: Big Endian/IEEE Binary; Avg Size in MB: 0.044 SCAR-B Block: ...
A dynamic fault tree model of a propulsion system
NASA Technical Reports Server (NTRS)
Xu, Hong; Dugan, Joanne Bechta; Meshkat, Leila
2006-01-01
We present a dynamic fault tree model of the benchmark propulsion system, and solve it using Galileo. Dynamic fault trees (DFT) extend traditional static fault trees with special gates to model spares and other sequence dependencies. Galileo solves DFT models using a judicious combination of automatically generated Markov and Binary Decision Diagram models. Galileo easily handles the complexities exhibited by the benchmark problem. In particular, Galileo is designed to model phased mission systems.
NASA Astrophysics Data System (ADS)
Maiti, Anup Kumar; Nath Roy, Jitendra; Mukhopadhyay, Sourangshu
2007-08-01
In the field of optical computing and parallel information processing, several number systems have been used for different arithmetic and algebraic operations. Therefore an efficient conversion scheme from one number system to another is very important. Modified trinary number (MTN) has already taken a significant role towards carry and borrow free arithmetic operations. In this communication, we propose a tree-net architecture based all optical conversion scheme from binary number to its MTN form. Optical switch using nonlinear material (NLM) plays an important role.
Kernel and divergence techniques in high energy physics separations
NASA Astrophysics Data System (ADS)
Bouř, Petr; Kůs, Václav; Franc, Jiří
2017-10-01
Binary decision trees under the Bayesian decision technique are used for supervised classification of high-dimensional data. We present a great potential of adaptive kernel density estimation as the nested separation method of the supervised binary divergence decision tree. Also, we provide a proof of alternative computing approach for kernel estimates utilizing Fourier transform. Further, we apply our method to Monte Carlo data set from the particle accelerator Tevatron at DØ experiment in Fermilab and provide final top-antitop signal separation results. We have achieved up to 82 % AUC while using the restricted feature selection entering the signal separation procedure.
Search for Open binaries in the Southern Celestial Hemisphere using SPM4
NASA Astrophysics Data System (ADS)
Dávila, E.; Vieira, K.; Rosales, K.
2018-01-01
Open binaries' weak gravitational binding makes them vulnerable to any perturbation, turning them into excellent probes of the gravitational field where they are located. Currently there are only a few hundreds known or suspected open binaries, therefore a search for more of these systems is highly encouraging by looking for pairs of stars with common proper motions in an extensive, deep, and high quality astrometric catalog such as the SPM4 (Girard et al. 2011).
Stolzer, Maureen; Lai, Han; Xu, Minli; Sathaye, Deepa; Vernot, Benjamin; Durand, Dannie
2012-09-15
Gene duplication (D), transfer (T), loss (L) and incomplete lineage sorting (I) are crucial to the evolution of gene families and the emergence of novel functions. The history of these events can be inferred via comparison of gene and species trees, a process called reconciliation, yet current reconciliation algorithms model only a subset of these evolutionary processes. We present an algorithm to reconcile a binary gene tree with a nonbinary species tree under a DTLI parsimony criterion. This is the first reconciliation algorithm to capture all four evolutionary processes driving tree incongruence and the first to reconcile non-binary species trees with a transfer model. Our algorithm infers all optimal solutions and reports complete, temporally feasible event histories, giving the gene and species lineages in which each event occurred. It is fixed-parameter tractable, with polytime complexity when the maximum species outdegree is fixed. Application of our algorithms to prokaryotic and eukaryotic data show that use of an incomplete event model has substantial impact on the events inferred and resulting biological conclusions. Our algorithms have been implemented in Notung, a freely available phylogenetic reconciliation software package, available at http://www.cs.cmu.edu/~durand/Notung. mstolzer@andrew.cmu.edu.
Detecting binary neutron star systems with spin in advanced gravitational-wave detectors
NASA Astrophysics Data System (ADS)
Brown, Duncan A.; Harry, Ian; Lundgren, Andrew; Nitz, Alexander H.
2012-10-01
The detection of gravitational waves from binary neutron stars is a major goal of the gravitational-wave observatories Advanced LIGO and Advanced Virgo. Previous searches for binary neutron stars with LIGO and Virgo neglected the component stars’ angular momentum (spin). We demonstrate that neglecting spin in matched-filter searches causes advanced detectors to lose more than 3% of the possible signal-to-noise ratio for 59% (6%) of sources, assuming that neutron star dimensionless spins, cJ/GM2, are uniformly distributed with magnitudes between 0 and 0.4 (0.05) and that the neutron stars have isotropically distributed spin orientations. We present a new method for constructing template banks for gravitational-wave searches for systems with spin. We present a new metric in a parameter space in which the template placement metric is globally flat. This new method can create template banks of signals with nonzero spins that are (anti-)aligned with the orbital angular momentum. We show that this search loses more than 3% of the maximum signal-to-noise for only 9% (0.2%) of binary neutron star sources with dimensionless spins between 0 and 0.4 (0.05) and isotropic spin orientations. Use of this template bank will prevent selection bias in gravitational-wave searches and allow a more accurate exploration of the distribution of spins in binary neutron stars.
First all-sky search for continuous gravitational waves from unknown sources in binary systems
NASA Astrophysics Data System (ADS)
Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Andersen, M.; Anderson, R.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bell, A. S.; Bell, C.; Bergmann, G.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bloemen, S.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bosi, L.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Buchman, S.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burman, R.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corpuz, A.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; Debreczeni, G.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Donath, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dossa, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Effler, A.; Eggenstein, H.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hooper, S.; Hopkins, P.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jaranowski, P.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karlen, J.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N.; Kim, N. G.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kremin, A.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Leonardi, M.; Leong, J. R.; Le Roux, A.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M. J.; Lück, H.; Luijten, E.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; Macdonald, E. P.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Maglione, C.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mangini, N.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Milde, S.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moesta, P.; Mohan, M.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nanda Kumar, D.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palashov, O.; Palomba, C.; Pan, H.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poteomkin, A.; Powell, J.; Prasad, J.; Premachandra, S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Ramirez, K.; Rapagnani, P.; Raymond, V.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Reid, S.; Reitze, D. H.; Rhoades, E.; Ricci, F.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Scheuer, J.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Stebbins, J.; Steinlechner, J.; Steinlechner, S.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Stops, D.; Strain, K. A.; Straniero, N.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Urbanek, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S. S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Wang, M.; Wang, X.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Williams, K.; Williams, L.; Williams, R.; Williams, T.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yang, Z.; Yoshida, S.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, Fan; Zhang, L.; Zhao, C.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2014-09-01
We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO science run and the second and third Virgo science runs. The search covers a range of frequencies from 20 Hz to 520 Hz, a range of orbital periods from 2 to ˜2,254 h and a frequency- and period-dependent range of frequency modulation depths from 0.277 to 100 mHz. This corresponds to a range of projected semimajor axes of the orbit from ˜0.6×10-3 ls to ˜6,500 ls assuming the orbit of the binary is circular. While no plausible candidate gravitational wave events survive the pipeline, upper limits are set on the analyzed data. The most sensitive 95% confidence upper limit obtained on gravitational wave strain is 2.3×10-24 at 217 Hz, assuming the source waves are circularly polarized. Although this search has been optimized for circular binary orbits, the upper limits obtained remain valid for orbital eccentricities as large as 0.9. In addition, upper limits are placed on continuous gravitational wave emission from the low-mass x-ray binary Scorpius X-1 between 20 Hz and 57.25 Hz.
Optimal Search for an Astrophysical Gravitational-Wave Background
NASA Astrophysics Data System (ADS)
Smith, Rory; Thrane, Eric
2018-04-01
Roughly every 2-10 min, a pair of stellar-mass black holes merge somewhere in the Universe. A small fraction of these mergers are detected as individually resolvable gravitational-wave events by advanced detectors such as LIGO and Virgo. The rest contribute to a stochastic background. We derive the statistically optimal search strategy (producing minimum credible intervals) for a background of unresolved binaries. Our method applies Bayesian parameter estimation to all available data. Using Monte Carlo simulations, we demonstrate that the search is both "safe" and effective: it is not fooled by instrumental artifacts such as glitches and it recovers simulated stochastic signals without bias. Given realistic assumptions, we estimate that the search can detect the binary black hole background with about 1 day of design sensitivity data versus ≈40 months using the traditional cross-correlation search. This framework independently constrains the merger rate and black hole mass distribution, breaking a degeneracy present in the cross-correlation approach. The search provides a unified framework for population studies of compact binaries, which is cast in terms of hyperparameter estimation. We discuss a number of extensions and generalizations, including application to other sources (such as binary neutron stars and continuous-wave sources), simultaneous estimation of a continuous Gaussian background, and applications to pulsar timing.
What the Computer Taught Me About My Students...or Is Binary Search "Natural"?
ERIC Educational Resources Information Center
Pasquino, Anne
1978-01-01
Several examples of student-written programs "teaching" a computer to guess systematically in finding a number between 0 and 10,000 are illustrated. These lend support to the contention that rather than being a "natural" application, using a binary search is a learned technique. (MN)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hrivnak, Bruce J.; Lu, Wenxian; Steene, Griet Van de
We present the results of an expanded, long-term radial velocity search (25 years) for evidence of binarity in a sample of seven bright proto-planetary nebulae (PPNe). The goal is to investigate the widely held view that the bipolar or point-symmetric shapes of planetary nebulae (PNe) and PPNe are due to binary interactions. Observations from three observatories were combined from 2007 to 2015 to search for variations on the order of a few years and then combined with earlier observations from 1991 to 1995 to search for variations on the order of decades. All seven show velocity variations due to periodicmore » pulsation in the range of 35–135 days. However, in only one PPN, IRAS 22272+5435, did we find even marginal evidence for multi-year variations that might be due to a binary companion. This object shows marginally significant evidence of a two-year period of low semi-amplitude, which could be due to a low-mass companion, and it also displays some evidence of a much longer period of >30 years. The absence of evidence in the other six objects for long-period radial velocity variations due to a binary companion sets significant constraints on the properties of any undetected binary companions: they must be of low mass, ≤0.2 M {sub ⊙}, or long period, >30 years. Thus the present observations do not provide direct support for the binary hypothesis to explain the shapes of PNe and PPNe and severely constrains the properties of any such undetected companions.« less
NASA Astrophysics Data System (ADS)
Indik, Nathaniel; Fehrmann, Henning; Harke, Franz; Krishnan, Badri; Nielsen, Alex B.
2018-06-01
Efficient multidimensional template placement is crucial in computationally intensive matched-filtering searches for gravitational waves (GWs). Here, we implement the neighboring cell algorithm (NCA) to improve the detection volume of an existing compact binary coalescence (CBC) template bank. This algorithm has already been successfully applied for a binary millisecond pulsar search in data from the Fermi satellite. It repositions templates from overdense regions to underdense regions and reduces the number of templates that would have been required by a stochastic method to achieve the same detection volume. Our method is readily generalizable to other CBC parameter spaces. Here we apply this method to the aligned-single-spin neutron star-black hole binary coalescence inspiral-merger-ringdown gravitational wave parameter space. We show that the template nudging algorithm can attain the equivalent effectualness of the stochastic method with 12% fewer templates.
On the error probability of general tree and trellis codes with applications to sequential decoding
NASA Technical Reports Server (NTRS)
Johannesson, R.
1973-01-01
An upper bound on the average error probability for maximum-likelihood decoding of the ensemble of random binary tree codes is derived and shown to be independent of the length of the tree. An upper bound on the average error probability for maximum-likelihood decoding of the ensemble of random L-branch binary trellis codes of rate R = 1/n is derived which separates the effects of the tail length T and the memory length M of the code. It is shown that the bound is independent of the length L of the information sequence. This implication is investigated by computer simulations of sequential decoding utilizing the stack algorithm. These simulations confirm the implication and further suggest an empirical formula for the true undetected decoding error probability with sequential decoding.
Gretchen G. Moisen; Elizabeth A. Freeman; Jock A. Blackard; Tracey S. Frescino; Niklaus E. Zimmermann; Thomas C. Edwards
2006-01-01
Many efforts are underway to produce broad-scale forest attribute maps by modelling forest class and structure variables collected in forest inventories as functions of satellite-based and biophysical information. Typically, variants of classification and regression trees implemented in Rulequest's© See5 and Cubist (for binary and continuous responses,...
Towards improving searches for optimal phylogenies.
Ford, Eric; St John, Katherine; Wheeler, Ward C
2015-01-01
Finding the optimal evolutionary history for a set of taxa is a challenging computational problem, even when restricting possible solutions to be "tree-like" and focusing on the maximum-parsimony optimality criterion. This has led to much work on using heuristic tree searches to find approximate solutions. We present an approach for finding exact optimal solutions that employs and complements the current heuristic methods for finding optimal trees. Given a set of taxa and a set of aligned sequences of characters, there may be subsets of characters that are compatible, and for each such subset there is an associated (possibly partially resolved) phylogeny with edges corresponding to each character state change. These perfect phylogenies serve as anchor trees for our constrained search space. We show that, for sequences with compatible sites, the parsimony score of any tree [Formula: see text] is at least the parsimony score of the anchor trees plus the number of inferred changes between [Formula: see text] and the anchor trees. As the maximum-parsimony optimality score is additive, the sum of the lower bounds on compatible character partitions provides a lower bound on the complete alignment of characters. This yields a region in the space of trees within which the best tree is guaranteed to be found; limiting the search for the optimal tree to this region can significantly reduce the number of trees that must be examined in a search of the space of trees. We analyze this method empirically using four different biological data sets as well as surveying 400 data sets from the TreeBASE repository, demonstrating the effectiveness of our technique in reducing the number of steps in exact heuristic searches for trees under the maximum-parsimony optimality criterion. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allen, G.; Allocca, A.; Almoubayyed, H.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Deelman, E.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mayani, R.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Rynge, M.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, J. A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahi, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.; Wang, Y.-F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2017-07-01
During their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves (GWs) from merging intermediate mass black hole binaries (IMBHBs). The combined results from two independent search techniques were used in this study: the first employs a matched-filter algorithm that uses a bank of filters covering the GW signal parameter space, while the second is a generic search for GW transients (bursts). No GWs from IMBHBs were detected; therefore, we constrain the rate of several classes of IMBHB mergers. The most stringent limit is obtained for black holes of individual mass 100 M⊙ , with spins aligned with the binary orbital angular momentum. For such systems, the merger rate is constrained to be less than 0.93 Gpc-3 yr-1 in comoving units at the 90% confidence level, an improvement of nearly 2 orders of magnitude over previous upper limits.
Inverted Signature Trees and Text Searching on CD-ROMs.
ERIC Educational Resources Information Center
Cooper, Lorraine K. D.; Tharp, Alan L.
1989-01-01
Explores the new storage technology of optical data disks and introduces a data structure, the inverted signature tree, for storing data on optical data disks for efficient text searching. The inverted signature tree approach is compared to the use of text signatures and the B+ tree. (22 references) (Author/CLB)
Beaulieu, Jeremy M; O'Meara, Brian C; Donoghue, Michael J
2013-09-01
The growth of phylogenetic trees in scope and in size is promising from the standpoint of understanding a wide variety of evolutionary patterns and processes. With trees comprised of larger, older, and globally distributed clades, it is likely that the lability of a binary character will differ significantly among lineages, which could lead to errors in estimating transition rates and the associated inference of ancestral states. Here we develop and implement a new method for identifying different rates of evolution in a binary character along different branches of a phylogeny. We illustrate this approach by exploring the evolution of growth habit in Campanulidae, a flowering plant clade containing some 35,000 species. The distribution of woody versus herbaceous species calls into question the use of traditional models of binary character evolution. The recognition and accommodation of changes in the rate of growth form evolution in different lineages demonstrates, for the first time, a robust picture of growth form evolution across a very large, very old, and very widespread flowering plant clade.
Consequences of Common Topological Rearrangements for Partition Trees in Phylogenomic Inference.
Chernomor, Olga; Minh, Bui Quang; von Haeseler, Arndt
2015-12-01
In phylogenomic analysis the collection of trees with identical score (maximum likelihood or parsimony score) may hamper tree search algorithms. Such collections are coined phylogenetic terraces. For sparse supermatrices with a lot of missing data, the number of terraces and the number of trees on the terraces can be very large. If terraces are not taken into account, a lot of computation time might be unnecessarily spent to evaluate many trees that in fact have identical score. To save computation time during the tree search, it is worthwhile to quickly identify such cases. The score of a species tree is the sum of scores for all the so-called induced partition trees. Therefore, if the topological rearrangement applied to a species tree does not change the induced partition trees, the score of these partition trees is unchanged. Here, we provide the conditions under which the three most widely used topological rearrangements (nearest neighbor interchange, subtree pruning and regrafting, and tree bisection and reconnection) change the topologies of induced partition trees. During the tree search, these conditions allow us to quickly identify whether we can save computation time on the evaluation of newly encountered trees. We also introduce the concept of partial terraces and demonstrate that they occur more frequently than the original "full" terrace. Hence, partial terrace is the more important factor of timesaving compared to full terrace. Therefore, taking into account the above conditions and the partial terrace concept will help to speed up the tree search in phylogenomic inference.
Decision and Game Theory for Security
NASA Astrophysics Data System (ADS)
Alpcan, Tansu; Buttyán, Levente; Baras, John S.
Attack--defense trees are used to describe security weaknesses of a system and possible countermeasures. In this paper, the connection between attack--defense trees and game theory is made explicit. We show that attack--defense trees and binary zero-sum two-player extensive form games have equivalent expressive power when considering satisfiability, in the sense that they can be converted into each other while preserving their outcome and their internal structure.
Speckle Imaging and Spectroscopy of Kepler Exo-planet Transit Candidate Stars
NASA Astrophysics Data System (ADS)
Howell, Steve B.; Sherry, William; Horch, Elliott; Doyle, Laurance
2010-02-01
The NASA Kepler mission was successfully launched on 6 March 2009 and has begun science operations. Commissioning tests done early on in the mission have shown that for the bright sources, 10-15 ppm relative photometry can be achieved. This level assures we will detect Earth- like transits if they are present. ``Hot Jupiter" and similar large planet candidates have already been discovered and will be discussed at the Jan. AAS meeting as well as in a special issue of Science magazine to appear near years end. The plethora of variability observed is astounding and includes a number of eclipsing binaries which appear to have Jupiter and smaller size objects as an orbiting their body. Our proposal consists of three highly related objectives: 1) To continue our highly successful speckle imaging program which is a major component of defense to weed out false positive candidate transiting planets found by Kepler and move the rest to probable or certain exo-planet detections; 2) To obtain low resolution ``discovery" type spectra for planet candidate stars in order to provide spectral type and luminosity class indicators as well as a first look triage to eliminate binaries and rapid rotators; and 3) to obtain ~1Aresolution time ordered spectra of eclipsing binaries that are exo-planet candidates in order to obtain the velocity solution for the binary star, allowing its signal to be modeled and removed from the Keck or HET exo-planet velocity search. As of this writing, Kepler has produced a list of 227 exo-planet candidates which require false positive decision tree observations. Our proposed effort performs much of the first line of defense for the mission.
Results of the GstLAL Search for Compact Binary Mergers in Advanced LIGO's First Observing Run
NASA Astrophysics Data System (ADS)
Lang, Ryan; LIGO Scientific Collaboration; Virgo Collaboration Collaboration
2017-01-01
Advanced LIGO's first observing period ended in January 2016. We discuss the GstLAL matched-filter search over this data set for gravitational waves from compact binary objects with total mass up to 100 solar masses. In particular, we discuss the recovery of the unambiguous gravitational wave signals GW150914 and GW151226, as well as the possible third signal LVT151012. Additionally, we discuss the constraints we can place on binary-neutron-star and neutron-star-black-hole system merger rates.
NASA Astrophysics Data System (ADS)
McKechan, David J. A.
2010-11-01
This thesis concerns the use, in gravitational wave data analysis, of higher order wave form models of the gravitational radiation emitted by compact binary coalescences. We begin with an introductory chapter that includes an overview of the theory of general relativity, gravitational radiation and ground-based interferometric gravitational wave detectors. We then discuss, in Chapter 2, the gravitational waves emitted by compact binary coalescences, with an explanation of higher order waveforms and how they differ from leading order waveforms we also introduce the post-Newtonian formalism. In Chapter 3 the method and results of a gravitational wave search for low mass compact binary coalescences using a subset of LIGO's 5th science run data are presented and in the subsequent chapter we examine how one could use higher order waveforms in such analyses. We follow the development of a new search algorithm that incorporates higher order waveforms with promising results for detection efficiency and parameter estimation. In Chapter 5, a new method of windowing time-domain waveforms that offers benefit to gravitational wave searches is presented. The final chapter covers the development of a game designed as an outreach project to raise public awareness and understanding of the search for gravitational waves.
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D’Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O’Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O’Reilly, B.; O’Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2018-03-01
The first observing run of Advanced LIGO spanned 4 months, from 12 September 2015 to 19 January 2016, during which gravitational waves were directly detected from two binary black hole systems, namely GW150914 and GW151226. Confident detection of gravitational waves requires an understanding of instrumental transients and artifacts that can reduce the sensitivity of a search. Studies of the quality of the detector data yield insights into the cause of instrumental artifacts and data quality vetoes specific to a search are produced to mitigate the effects of problematic data. In this paper, the systematic removal of noisy data from analysis time is shown to improve the sensitivity of searches for compact binary coalescences. The output of the PyCBC pipeline, which is a python-based code package used to search for gravitational wave signals from compact binary coalescences, is used as a metric for improvement. GW150914 was a loud enough signal that removing noisy data did not improve its significance. However, the removal of data with excess noise decreased the false alarm rate of GW151226 by more than two orders of magnitude, from 1 in 770 yr to less than 1 in 186 000 yr.
Canonical multi-valued input Reed-Muller trees and forms
NASA Technical Reports Server (NTRS)
Perkowski, M. A.; Johnson, P. D.
1991-01-01
There is recently an increased interest in logic synthesis using EXOR gates. The paper introduces the fundamental concept of Orthogonal Expansion, which generalizes the ring form of the Shannon expansion to the logic with multiple-valued (mv) inputs. Based on this concept we are able to define a family of canonical tree circuits. Such circuits can be considered for binary and multiple-valued input cases. They can be multi-level (trees and DAG's) or flattened to two-level AND-EXOR circuits. Input decoders similar to those used in Sum of Products (SOP) PLA's are used in realizations of multiple-valued input functions. In the case of the binary logic the family of flattened AND-EXOR circuits includes several forms discussed by Davio and Green. For the case of the logic with multiple-valued inputs, the family of the flattened mv AND-EXOR circuits includes three expansions known from literature and two new expansions.
Gravitational wave searches for aligned-spin binary neutron stars using nonspinning templates
NASA Astrophysics Data System (ADS)
Cho, Hee-Suk; Lee, Chang-Hwan
2018-01-01
We study gravitational wave searches for merging binary neutron stars (NSs). We use nonspinning template waveforms towards the signals emitted from aligned-spin NS-NS binaries, in which the spins of the NSs are aligned with the orbital angular momentum. We use the TaylorF2 waveform model, which can generate inspiral waveforms emitted from aligned-spin compact binaries. We employ the single effective spin parameter χeff to represent the effect of two component spins (χ1, χ2) on the wave function. For a target system, we choose a binary consisting of the same component masses of 1.4 M ⊙ and consider the spins up to χ i = 0.4. We investigate fitting factors of the nonspinning templates to evaluate their efficiency in gravitational wave searches for the aligned-spin NS-NS binaries. We find that the templates can achieve the fitting factors exceeding 0.97 only for the signals in the range of -0.2 ≲ χeff ≲ 0. Therefore, we demonstrate the necessity of using aligned-spin templates not to lose the signals outside that range. We also show how much the recovered total mass can be biased from the true value depending on the spin of the signal.
Detectability of gravitational waves from binary black holes: Impact of precession and higher modes
NASA Astrophysics Data System (ADS)
Calderón Bustillo, Juan; Laguna, Pablo; Shoemaker, Deirdre
2017-05-01
Gravitational wave templates used in current searches for binary black holes omit the effects of precession of the orbital plane and higher-order modes. While this omission seems not to impact the detection of sources having mass ratios and spins similar to those of GW150914, even for total masses M >200 M⊙ , we show that it can cause large fractional losses of sensitive volume for binaries with mass ratio q ≥4 and M >100 M⊙, measured in the detector frame. For the highest precessing cases, this is true even when the source is face-on to the detector. Quantitatively, we show that the aforementioned omission can lead to fractional losses of sensitive volume of ˜15 %, reaching >25 % for the worst cases studied. Loss estimates are obtained by evaluating the effectualness of the SEOBNRv2-ROM double spin model, currently used in binary black hole searches, towards gravitational wave signals from precessing binaries computed by means of numerical relativity. We conclude that, for sources with q ≥4 , a reliable search for binary black holes heavier than M >100 M⊙ needs to consider the effects of higher-order modes and precession. The latter seems especially necessary when Advanced LIGO reaches its design sensitivity.
Bootstrapping on Undirected Binary Networks Via Statistical Mechanics
NASA Astrophysics Data System (ADS)
Fushing, Hsieh; Chen, Chen; Liu, Shan-Yu; Koehl, Patrice
2014-09-01
We propose a new method inspired from statistical mechanics for extracting geometric information from undirected binary networks and generating random networks that conform to this geometry. In this method an undirected binary network is perceived as a thermodynamic system with a collection of permuted adjacency matrices as its states. The task of extracting information from the network is then reformulated as a discrete combinatorial optimization problem of searching for its ground state. To solve this problem, we apply multiple ensembles of temperature regulated Markov chains to establish an ultrametric geometry on the network. This geometry is equipped with a tree hierarchy that captures the multiscale community structure of the network. We translate this geometry into a Parisi adjacency matrix, which has a relative low energy level and is in the vicinity of the ground state. The Parisi adjacency matrix is then further optimized by making block permutations subject to the ultrametric geometry. The optimal matrix corresponds to the macrostate of the original network. An ensemble of random networks is then generated such that each of these networks conforms to this macrostate; the corresponding algorithm also provides an estimate of the size of this ensemble. By repeating this procedure at different scales of the ultrametric geometry of the network, it is possible to compute its evolution entropy, i.e. to estimate the evolution of its complexity as we move from a coarse to a fine description of its geometric structure. We demonstrate the performance of this method on simulated as well as real data networks.
Consequences of Common Topological Rearrangements for Partition Trees in Phylogenomic Inference
Minh, Bui Quang; von Haeseler, Arndt
2015-01-01
Abstract In phylogenomic analysis the collection of trees with identical score (maximum likelihood or parsimony score) may hamper tree search algorithms. Such collections are coined phylogenetic terraces. For sparse supermatrices with a lot of missing data, the number of terraces and the number of trees on the terraces can be very large. If terraces are not taken into account, a lot of computation time might be unnecessarily spent to evaluate many trees that in fact have identical score. To save computation time during the tree search, it is worthwhile to quickly identify such cases. The score of a species tree is the sum of scores for all the so-called induced partition trees. Therefore, if the topological rearrangement applied to a species tree does not change the induced partition trees, the score of these partition trees is unchanged. Here, we provide the conditions under which the three most widely used topological rearrangements (nearest neighbor interchange, subtree pruning and regrafting, and tree bisection and reconnection) change the topologies of induced partition trees. During the tree search, these conditions allow us to quickly identify whether we can save computation time on the evaluation of newly encountered trees. We also introduce the concept of partial terraces and demonstrate that they occur more frequently than the original “full” terrace. Hence, partial terrace is the more important factor of timesaving compared to full terrace. Therefore, taking into account the above conditions and the partial terrace concept will help to speed up the tree search in phylogenomic inference. PMID:26448206
Visualizing the Bayesian 2-test case: The effect of tree diagrams on medical decision making.
Binder, Karin; Krauss, Stefan; Bruckmaier, Georg; Marienhagen, Jörg
2018-01-01
In medicine, diagnoses based on medical test results are probabilistic by nature. Unfortunately, cognitive illusions regarding the statistical meaning of test results are well documented among patients, medical students, and even physicians. There are two effective strategies that can foster insight into what is known as Bayesian reasoning situations: (1) translating the statistical information on the prevalence of a disease and the sensitivity and the false-alarm rate of a specific test for that disease from probabilities into natural frequencies, and (2) illustrating the statistical information with tree diagrams, for instance, or with other pictorial representation. So far, such strategies have only been empirically tested in combination for "1-test cases", where one binary hypothesis ("disease" vs. "no disease") has to be diagnosed based on one binary test result ("positive" vs. "negative"). However, in reality, often more than one medical test is conducted to derive a diagnosis. In two studies, we examined a total of 388 medical students from the University of Regensburg (Germany) with medical "2-test scenarios". Each student had to work on two problems: diagnosing breast cancer with mammography and sonography test results, and diagnosing HIV infection with the ELISA and Western Blot tests. In Study 1 (N = 190 participants), we systematically varied the presentation of statistical information ("only textual information" vs. "only tree diagram" vs. "text and tree diagram in combination"), whereas in Study 2 (N = 198 participants), we varied the kinds of tree diagrams ("complete tree" vs. "highlighted tree" vs. "pruned tree"). All versions were implemented in probability format (including probability trees) and in natural frequency format (including frequency trees). We found that natural frequency trees, especially when the question-related branches were highlighted, improved performance, but that none of the corresponding probabilistic visualizations did.
Reconfigurable tree architectures using subtree oriented fault tolerance
NASA Technical Reports Server (NTRS)
Lowrie, Matthew B.
1987-01-01
An approach to the design of reconfigurable tree architecture is presented in which spare processors are allocated at the leaves. The approach is unique in that spares are associated with subtrees and sharing of spares between these subtrees can occur. The Subtree Oriented Fault Tolerance (SOFT) approach is more reliable than previous approaches capable of tolerating link and switch failures for both single chip and multichip tree implementations while reducing redundancy in terms of both spare processors and links. VLSI layout is 0(n) for binary trees and is directly extensible to N-ary trees and fault tolerance through performance degradation.
Encoding phylogenetic trees in terms of weighted quartets.
Grünewald, Stefan; Huber, Katharina T; Moulton, Vincent; Semple, Charles
2008-04-01
One of the main problems in phylogenetics is to develop systematic methods for constructing evolutionary or phylogenetic trees. For a set of species X, an edge-weighted phylogenetic X-tree or phylogenetic tree is a (graph theoretical) tree with leaf set X and no degree 2 vertices, together with a map assigning a non-negative length to each edge of the tree. Within phylogenetics, several methods have been proposed for constructing such trees that work by trying to piece together quartet trees on X, i.e. phylogenetic trees each having four leaves in X. Hence, it is of interest to characterise when a collection of quartet trees corresponds to a (unique) phylogenetic tree. Recently, Dress and Erdös provided such a characterisation for binary phylogenetic trees, that is, phylogenetic trees all of whose internal vertices have degree 3. Here we provide a new characterisation for arbitrary phylogenetic trees.
NASA Astrophysics Data System (ADS)
Imara, Nia; Di Stefano, Rosanne
2018-05-01
We recommend that the search for exoplanets around binary stars be extended to include X-ray binaries (XRBs) in which the accretor is a white dwarf, neutron star, or black hole. We present a novel idea for detecting planets bound to such mass transfer binaries, proposing that the X-ray light curves of these binaries be inspected for signatures of transiting planets. X-ray transits may be the only way to detect planets around some systems, while providing a complementary approach to optical and/or radio observations in others. Any planets associated with XRBs must be in stable orbits. We consider the range of allowable separations and find that orbital periods can be hours or longer, while transit durations extend upward from about a minute for Earth-radius planets, to hours for Jupiter-radius planets. The search for planets around XRBs could begin at once with existing X-ray observations of these systems. If and when a planet is detected around an X-ray binary, the size and mass of the planet may be readily measured, and it may also be possible to study the transmission and absorption of X-rays through its atmosphere. Finally, a noteworthy application of our proposal is that the same technique could be used to search for signals from extraterrestrial intelligence. If an advanced exocivilization placed a Dyson sphere or similar structure in orbit around the accretor of an XRB in order to capture energy, such an artificial structure might cause detectable transits in the X-ray light curve.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moody, A. T.
2014-12-26
Avalaunch implements a tree-based process launcher. It first bootstraps itself on to a set of compute nodes by launching children processes, which immediately connect back to the parent process to acquire info needed t launch their own children. Once the tree is established, user processes are started by broadcasting commands and application binaries through the tree. All communication flows over high-performance network protocols via spawnnet. The goal is to start MPI jobs having hundreds of thousands of processes within seconds.
A Telescopic Binary Learning Machine for Training Neural Networks.
Brunato, Mauro; Battiti, Roberto
2017-03-01
This paper proposes a new algorithm based on multiscale stochastic local search with binary representation for training neural networks [binary learning machine (BLM)]. We study the effects of neighborhood evaluation strategies, the effect of the number of bits per weight and that of the maximum weight range used for mapping binary strings to real values. Following this preliminary investigation, we propose a telescopic multiscale version of local search, where the number of bits is increased in an adaptive manner, leading to a faster search and to local minima of better quality. An analysis related to adapting the number of bits in a dynamic way is presented. The control on the number of bits, which happens in a natural manner in the proposed method, is effective to increase the generalization performance. The learning dynamics are discussed and validated on a highly nonlinear artificial problem and on real-world tasks in many application domains; BLM is finally applied to a problem requiring either feedforward or recurrent architectures for feedback control.
Mining Planet Search Data for Binary Stars: The ψ1 Draconis system
NASA Astrophysics Data System (ADS)
Gullikson, Kevin; Endl, Michael; Cochran, William D.; MacQueen, Phillip J.
2015-12-01
Several planet-search groups have acquired a great deal of data in the form of time-series spectra of several hundred nearby stars with time baselines of over a decade. While binary star detections are generally not the goal of these long-term monitoring efforts, the binary stars hiding in existing planet search data are precisely the type that are too close to the primary star to detect with imaging or interferometry techniques. We use a cross-correlation analysis to detect the spectral lines of a new low-mass companion to ψ1 Draconis A, which has a known roughly equal-mass companion at ∼680 AU. We measure the mass of ψ1 Draconis C as M2 = 0.70 ± 0.07M⊙, with an orbital period of ∼20 years. This technique could be used to characterize binary companions to many stars that show large-amplitude modulation or linear trends in radial velocity data.
Using classification tree analysis to predict oak wilt distribution in Minnesota and Texas
Marla c. Downing; Vernon L. Thomas; Jennifer Juzwik; David N. Appel; Robin M. Reich; Kim Camilli
2008-01-01
We developed a methodology and compared results for predicting the potential distribution of Ceratocystis fagacearum (causal agent of oak wilt), in both Anoka County, MN, and Fort Hood, TX. The Potential Distribution of Oak Wilt (PDOW) utilizes a binary classification tree statistical technique that incorporates: geographical information systems (GIS...
Peculiar spectral statistics of ensembles of trees and star-like graphs
NASA Astrophysics Data System (ADS)
Kovaleva, V.; Maximov, Yu; Nechaev, S.; Valba, O.
2017-07-01
In this paper we investigate the eigenvalue statistics of exponentially weighted ensembles of full binary trees and p-branching star graphs. We show that spectral densities of corresponding adjacency matrices demonstrate peculiar ultrametric structure inherent to sparse systems. In particular, the tails of the distribution for binary trees share the ‘Lifshitz singularity’ emerging in the one-dimensional localization, while the spectral statistics of p-branching star-like graphs is less universal, being strongly dependent on p. The hierarchical structure of spectra of adjacency matrices is interpreted as sets of resonance frequencies, that emerge in ensembles of fully branched tree-like systems, known as dendrimers. However, the relaxational spectrum is not determined by the cluster topology, but has rather the number-theoretic origin, reflecting the peculiarities of the rare-event statistics typical for one-dimensional systems with a quenched structural disorder. The similarity of spectral densities of an individual dendrimer and of an ensemble of linear chains with exponential distribution in lengths, demonstrates that dendrimers could be served as simple disorder-less toy models of one-dimensional systems with quenched disorder.
Universal features of dendrites through centripetal branch ordering
Effenberger, Felix; Muellerleile, Julia
2017-01-01
Dendrites form predominantly binary trees that are exquisitely embedded in the networks of the brain. While neuronal computation is known to depend on the morphology of dendrites, their underlying topological blueprint remains unknown. Here, we used a centripetal branch ordering scheme originally developed to describe river networks—the Horton-Strahler order (SO)–to examine hierarchical relationships of branching statistics in reconstructed and model dendritic trees. We report on a number of universal topological relationships with SO that are true for all binary trees and distinguish those from SO-sorted metric measures that appear to be cell type-specific. The latter are therefore potential new candidates for categorising dendritic tree structures. Interestingly, we find a faithful correlation of branch diameters with centripetal branch orders, indicating a possible functional importance of SO for dendritic morphology and growth. Also, simulated local voltage responses to synaptic inputs are strongly correlated with SO. In summary, our study identifies important SO-dependent measures in dendritic morphology that are relevant for neural function while at the same time it describes other relationships that are universal for all dendrites. PMID:28671947
van Iersel, Leo; Kelk, Steven; Lekić, Nela; Scornavacca, Celine
2014-05-05
Reticulate events play an important role in determining evolutionary relationships. The problem of computing the minimum number of such events to explain discordance between two phylogenetic trees is a hard computational problem. Even for binary trees, exact solvers struggle to solve instances with reticulation number larger than 40-50. Here we present CycleKiller and NonbinaryCycleKiller, the first methods to produce solutions verifiably close to optimality for instances with hundreds or even thousands of reticulations. Using simulations, we demonstrate that these algorithms run quickly for large and difficult instances, producing solutions that are very close to optimality. As a spin-off from our simulations we also present TerminusEst, which is the fastest exact method currently available that can handle nonbinary trees: this is used to measure the accuracy of the NonbinaryCycleKiller algorithm. All three methods are based on extensions of previous theoretical work (SIDMA 26(4):1635-1656, TCBB 10(1):18-25, SIDMA 28(1):49-66) and are publicly available. We also apply our methods to real data.
Peculiar spectral statistics of ensembles of trees and star-like graphs
Kovaleva, V.; Maximov, Yu; Nechaev, S.; ...
2017-07-11
In this paper we investigate the eigenvalue statistics of exponentially weighted ensembles of full binary trees and p-branching star graphs. We show that spectral densities of corresponding adjacency matrices demonstrate peculiar ultrametric structure inherent to sparse systems. In particular, the tails of the distribution for binary trees share the \\Lifshitz singularity" emerging in the onedimensional localization, while the spectral statistics of p-branching star-like graphs is less universal, being strongly dependent on p. The hierarchical structure of spectra of adjacency matrices is interpreted as sets of resonance frequencies, that emerge in ensembles of fully branched tree-like systems, known as dendrimers. However,more » the relaxational spectrum is not determined by the cluster topology, but has rather the number-theoretic origin, re ecting the peculiarities of the rare-event statistics typical for one-dimensional systems with a quenched structural disorder. The similarity of spectral densities of an individual dendrimer and of ensemble of linear chains with exponential distribution in lengths, demonstrates that dendrimers could be served as simple disorder-less toy models of one-dimensional systems with quenched disorder.« less
Peculiar spectral statistics of ensembles of trees and star-like graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovaleva, V.; Maximov, Yu; Nechaev, S.
In this paper we investigate the eigenvalue statistics of exponentially weighted ensembles of full binary trees and p-branching star graphs. We show that spectral densities of corresponding adjacency matrices demonstrate peculiar ultrametric structure inherent to sparse systems. In particular, the tails of the distribution for binary trees share the \\Lifshitz singularity" emerging in the onedimensional localization, while the spectral statistics of p-branching star-like graphs is less universal, being strongly dependent on p. The hierarchical structure of spectra of adjacency matrices is interpreted as sets of resonance frequencies, that emerge in ensembles of fully branched tree-like systems, known as dendrimers. However,more » the relaxational spectrum is not determined by the cluster topology, but has rather the number-theoretic origin, re ecting the peculiarities of the rare-event statistics typical for one-dimensional systems with a quenched structural disorder. The similarity of spectral densities of an individual dendrimer and of ensemble of linear chains with exponential distribution in lengths, demonstrates that dendrimers could be served as simple disorder-less toy models of one-dimensional systems with quenched disorder.« less
Accuracy of Binary Black Hole waveforms for Advanced LIGO searches
NASA Astrophysics Data System (ADS)
Kumar, Prayush; Barkett, Kevin; Bhagwat, Swetha; Chu, Tony; Fong, Heather; Brown, Duncan; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela
2015-04-01
Coalescing binaries of compact objects are flagship sources for the first direct detection of gravitational waves with LIGO-Virgo observatories. Matched-filtering based detection searches aimed at binaries of black holes will use aligned spin waveforms as filters, and their efficiency hinges on the accuracy of the underlying waveform models. A number of gravitational waveform models are available in literature, e.g. the Effective-One-Body, Phenomenological, and traditional post-Newtonian ones. While Numerical Relativity (NR) simulations provide for the most accurate modeling of gravitational radiation from compact binaries, their computational cost limits their application in large scale searches. In this talk we assess the accuracy of waveform models in two regions of parameter space, which have only been explored cursorily in the past: the high mass-ratio regime as well as the comparable mass-ratio + high spin regime.s Using the SpEC code, six q = 7 simulations with aligned-spins and lasting 60 orbits, and tens of q ∈ [1,3] simulations with high black hole spins were performed. We use them to study the accuracy and intrinsic parameter biases of different waveform families, and assess their viability for Advanced LIGO searches.
Binary recursive partitioning: background, methods, and application to psychology.
Merkle, Edgar C; Shaffer, Victoria A
2011-02-01
Binary recursive partitioning (BRP) is a computationally intensive statistical method that can be used in situations where linear models are often used. Instead of imposing many assumptions to arrive at a tractable statistical model, BRP simply seeks to accurately predict a response variable based on values of predictor variables. The method outputs a decision tree depicting the predictor variables that were related to the response variable, along with the nature of the variables' relationships. No significance tests are involved, and the tree's 'goodness' is judged based on its predictive accuracy. In this paper, we describe BRP methods in a detailed manner and illustrate their use in psychological research. We also provide R code for carrying out the methods.
Fast Exact Search in Hamming Space With Multi-Index Hashing.
Norouzi, Mohammad; Punjani, Ali; Fleet, David J
2014-06-01
There is growing interest in representing image data and feature descriptors using compact binary codes for fast near neighbor search. Although binary codes are motivated by their use as direct indices (addresses) into a hash table, codes longer than 32 bits are not being used as such, as it was thought to be ineffective. We introduce a rigorous way to build multiple hash tables on binary code substrings that enables exact k-nearest neighbor search in Hamming space. The approach is storage efficient and straight-forward to implement. Theoretical analysis shows that the algorithm exhibits sub-linear run-time behavior for uniformly distributed codes. Empirical results show dramatic speedups over a linear scan baseline for datasets of up to one billion codes of 64, 128, or 256 bits.
The PyCBC search for compact binary mergers in the second run of Advanced LIGO
NASA Astrophysics Data System (ADS)
Dal Canton, Tito; PyCBC Team
2017-01-01
The PyCBC software implements a matched-filter search for gravitational-wave signals associated with mergers of compact binaries. During the first observing run of Advanced LIGO, it played a fundamental role in the discovery of the binary-black-hole merger signals GW150914, GW151226 and LVT151012. In preparation for Advanced LIGO's second run, PyCBC has been modified with the goal of increasing the sensitivity of the search, reducing its computational cost and expanding the explored parameter space. The ability to report signals with a latency of tens of seconds and to perform inference on the parameters of the detected signals has also been introduced. I will give an overview of PyCBC and present the new features and their impact.
Long frame sync words for binary PSK telemetry
NASA Technical Reports Server (NTRS)
Levitt, B. K.
1975-01-01
Correlation criteria have previously been established for identifying whether a given binary sequence would be a good frame sync word for phase-shift keyed telemetry. In the past, the search for a good K-bit sync word has involved the application of these criteria to the entire set of 2 exponent K binary K-tuples. It is shown that restricting this search to a much smaller subset consisting of K-bit prefixes of pseudonoise sequences results in sync words of comparable quality, with greatly reduced computer search times for larger values of K. As an example, this procedure is used to find good sync words of length 16-63; from a storage viewpoint, each of these sequences can be generated by a 5- or 6-bit linear feedback shift register.
The Optical Gravitational Lensing Experiment. Eclipsing Binary Stars in the Large Magellanic Cloud
NASA Astrophysics Data System (ADS)
Wyrzykowski, L.; Udalski, A.; Kubiak, M.; Szymanski, M.; Zebrun, K.; Soszynski, I.; Wozniak, P. R.; Pietrzynski, G.; Szewczyk, O.
2003-03-01
We present the catalog of 2580 eclipsing binary stars detected in 4.6 square degree area of the central parts of the Large Magellanic Cloud. The photometric data were collected during the second phase of the OGLE microlensing search from 1997 to 2000. The eclipsing objects were selected with the automatic search algorithm based on an artificial neural network. Basic statistics of eclipsing stars are presented. Also, the list of 36 candidates of detached eclipsing binaries for spectroscopic study and for precise LMC distance determination is provided. The full catalog is accessible from the OGLE Internet archive.
VizieR Online Data Catalog: Parameters of 529 Kepler eclipsing binaries (Kjurkchieva+, 2017)
NASA Astrophysics Data System (ADS)
Kjurkchieva, D.; Vasileva, D.; Atanasova, T.
2017-11-01
We reviewed the Kepler eclipsing binary catalog (Prsa et al. 2011, Cat. J/AJ/141/83; Slawson et al. 2011, Cat. J/AJ/142/160; Matijevic et al. 2012) to search for detached eclipsing binaries with eccentric orbits. (5 data files).
Searching for brown dwarfs from submotions of binaries with speckle observations
NASA Astrophysics Data System (ADS)
Fu, Hsieh-Hai
1994-01-01
The search for brown dwarfs in binary systems is of great scientific interest and is a quest that pushes observing accuracy to its limit. The study of brown dwarfs is related to the search for dark matter, the initial mass function for stars of all masses, and theories of stellar formation. On the other hand, searching for brown dwarfs is a challenge because of their faintness and very low mass. Although many techniques have been used to detect brown dwarfs, a direct measurement of mass is the only criterion for distinguishing a brown dwarf from a star, and binary observation is still the best way for determining the accurate masses of celestial objects through Kepler's third law. Since 1976, CHARA has accumulated thousands of binary star speckle observations with high precision that can be used to find masses of possible unseen companions in binary systems through astrometrically measured submotions. A modified discrete Fourier transform was used to detect periodicity in data sets having uneven temporal distributions. This dissertation, an extension of work initiated by Dr. Ali Al-Shukri in 1991, uses the CHARA speckle measurements to evaluate their limiting accuracy and then to search for unseen companions from submotions of binary orbital motions. The successful detection of the previously known 1.83-year period sub-motion of the astrometric system ADS 8119 Aa demonstrates that this analysis can be used to find other systems in future investigations, even though no convincing evidence was found for the existence of a brown dwarf. Four possible companions were found to the binaries ADS 8197, ADS 9392, ADS 9494, and ADS 14073 with periods of 3.3, 2.6, 0.3, and 3.78 years and minimum masses in the ranges of 0.015-0.019, 0.11-0.65, 0.04-0.19, and 0.14-0.16 solar masses, respectively. The overall null result for detecting brown dwarfs may be partially explained as a real lack of massive brown dwarfs as members of multiple systems.
The coalescent of a sample from a binary branching process.
Lambert, Amaury
2018-04-25
At time 0, start a time-continuous binary branching process, where particles give birth to a single particle independently (at a possibly time-dependent rate) and die independently (at a possibly time-dependent and age-dependent rate). A particular case is the classical birth-death process. Stop this process at time T>0. It is known that the tree spanned by the N tips alive at time T of the tree thus obtained (called a reduced tree or coalescent tree) is a coalescent point process (CPP), which basically means that the depths of interior nodes are independent and identically distributed (iid). Now select each of the N tips independently with probability y (Bernoulli sample). It is known that the tree generated by the selected tips, which we will call the Bernoulli sampled CPP, is again a CPP. Now instead, select exactly k tips uniformly at random among the N tips (a k-sample). We show that the tree generated by the selected tips is a mixture of Bernoulli sampled CPPs with the same parent CPP, over some explicit distribution of the sampling probability y. An immediate consequence is that the genealogy of a k-sample can be obtained by the realization of k random variables, first the random sampling probability Y and then the k-1 node depths which are iid conditional on Y=y. Copyright © 2018. Published by Elsevier Inc.
Einstein@Home Discovery of 24 Pulsars in the Parkes Multi-beam Pulsar Survey
NASA Astrophysics Data System (ADS)
Knispel, B.; Eatough, R. P.; Kim, H.; Keane, E. F.; Allen, B.; Anderson, D.; Aulbert, C.; Bock, O.; Crawford, F.; Eggenstein, H.-B.; Fehrmann, H.; Hammer, D.; Kramer, M.; Lyne, A. G.; Machenschalk, B.; Miller, R. B.; Papa, M. A.; Rastawicki, D.; Sarkissian, J.; Siemens, X.; Stappers, B. W.
2013-09-01
We have conducted a new search for radio pulsars in compact binary systems in the Parkes multi-beam pulsar survey (PMPS) data, employing novel methods to remove the Doppler modulation from binary motion. This has yielded unparalleled sensitivity to pulsars in compact binaries. The required computation time of ≈17, 000 CPU core years was provided by the distributed volunteer computing project Einstein@Home, which has a sustained computing power of about 1 PFlop s-1. We discovered 24 new pulsars in our search, 18 of which were isolated pulsars, and 6 were members of binary systems. Despite the wide filterbank channels and relatively slow sampling time of the PMPS data, we found pulsars with very large ratios of dispersion measure (DM) to spin period. Among those is PSR J1748-3009, the millisecond pulsar with the highest known DM (≈420 pc cm-3). We also discovered PSR J1840-0643, which is in a binary system with an orbital period of 937 days, the fourth largest known. The new pulsar J1750-2536 likely belongs to the rare class of intermediate-mass binary pulsars. Three of the isolated pulsars show long-term nulling or intermittency in their emission, further increasing this growing family. Our discoveries demonstrate the value of distributed volunteer computing for data-driven astronomy and the importance of applying new analysis methods to extensively searched data.
Scalable InP integrated wavelength selector based on binary search.
Calabretta, Nicola; Stabile, Ripalta; Albores-Mejia, Aaron; Williams, Kevin A; Dorren, Harm J S
2011-10-01
We present an InP monolithically integrated wavelength selector that implements a binary search for selecting one from N modulated wavelengths. The InP chip requires only log(2)N optical filters and log(2)N optical switches. Experimental results show nanosecond reconfiguration and error-free wavelength selection of four modulated wavelengths with 2 dB of power penalty. © 2011 Optical Society of America
Analysis of the Discourse of Power in Etel Adnan's Play "Like a Christmas Tree"
ERIC Educational Resources Information Center
Alashqar, Hossam Mahmoud
2015-01-01
This paper seeks to investigate the sources of power in the discourse of an Arab-American writer, Etel Adnan's one act play, "Like a Christmas Tree." The play represents a heated argument between two figures who stand for two different ideologies and who fall within the frame of "binary opposition," transcultural…
Adversarial search by evolutionary computation.
Hong, T P; Huang, K Y; Lin, W Y
2001-01-01
In this paper, we consider the problem of finding good next moves in two-player games. Traditional search algorithms, such as minimax and alpha-beta pruning, suffer great temporal and spatial expansion when exploring deeply into search trees to find better next moves. The evolution of genetic algorithms with the ability to find global or near global optima in limited time seems promising, but they are inept at finding compound optima, such as the minimax in a game-search tree. We thus propose a new genetic algorithm-based approach that can find a good next move by reserving the board evaluation values of new offspring in a partial game-search tree. Experiments show that solution accuracy and search speed are greatly improved by our algorithm.
Searching for Solar System Wide Binaries with Pan-STARRS-1
NASA Astrophysics Data System (ADS)
Holman, Matthew J.; Protopapas, P.; Tholen, D. J.
2007-10-01
Roughly 60% of the observing time of the Pan-STARRS-1 (PS1) telescope will be dedicated to a "3pi steradian" survey with an observing cadence that is designed for the detection of near-Earth asteroids and slow-moving solar system bodies. Over this course of its 3.5 year cience mission, this unprecedented survey will discover nearly every asteroid, Trojan, Centaur, long-period comet, short-period comet, and trans-neptunian object (TNO) brighter than magnitude R=23. This census will be used to address a large number of questions regarding the physical and dynamical properties of the various small body populations of the solar system. Roughly 1-2% of TNOs are wide binaries with companions at separations greater than 1 arcsec and brightness differences less than 2 magnitudes (Kern & Elliot 2006; Noll et al 2007). These can be readily detected by PS1; we will carry out such a search with PS1 data. To do so, we will modify the Pan-STARRS Moving Object Processing System (MOPS) such that it will associate the components of resolved or marginally resolved binaries, link such pairs of detections obtained at different epochs, and the estimate the relative orbit of the binary. We will also determine the efficiency with which such binaries are detected as a function of the binary's relative orbit and the relative magnitudes of the components. Based on an estimated 7000 TNOs that PS1 will discover, we anticipate finding 70-140 wide binaries. The PS1 data, 60 epochs over three years, is naturally suited to determining the orbits of these objects. Our search will accurately determine the binary fraction for a variety of subclasses of TNOs.
Searches for Periodic Neutrino Emission from Binary Systems with 22 and 40 Strings of IceCube
NASA Technical Reports Server (NTRS)
Abassi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Allen, M. M.; Altmann, D.; Andeen, K.;
2011-01-01
Recent observations of GeV /TeV photon emission from several X-ray binaries have sparked a renewed interest in these objects as galactic particle accelerators. In spite of the available multi-wavelength data, their acceleration mechanisms are not determined, and the nature of the accelerated particles (hadrons or leptons) is unknown. While much evidence favors leptonic emission, it is very likely that a hadronic component is also accelerated in the jets of these binary systems. The observation of neutrino emission would be clear evidence for the presence of a hadronic component in the outflow of these sources. In this paper we look for periodic neutrino emission from binary systems. Such modulation, observed in the photon flux, would be caused by the geometry of these systems. The results of two searches are presented that differ in the treatment of the spectral shape and phase of the emission. The 'generic' search allows parameters to vary freely and best fit values, in a 'model-dependent' search, predictions are used to constrain these parameters. We use the IceCube data taken from May 31, 2007 to April 5, 2008 with its 22-string configuration, and from April 5, 2008 and May 20, 2009 with its 40-string configuration. For the generic search and the 40 string sample, we find that the most significant source in the catalog of 7 binary stars is Cygnus X-3 with a 1.8% probability after trials (2.10" sigma one-sided) of being produced by statistical fluctuations of the background. The model-dependent method tested a range of system geometries - the inclination and the massive star's disk size - for LS I+61 deg 303, no significant excess was found.
Fast large-scale object retrieval with binary quantization
NASA Astrophysics Data System (ADS)
Zhou, Shifu; Zeng, Dan; Shen, Wei; Zhang, Zhijiang; Tian, Qi
2015-11-01
The objective of large-scale object retrieval systems is to search for images that contain the target object in an image database. Where state-of-the-art approaches rely on global image representations to conduct searches, we consider many boxes per image as candidates to search locally in a picture. In this paper, a feature quantization algorithm called binary quantization is proposed. In binary quantization, a scale-invariant feature transform (SIFT) feature is quantized into a descriptive and discriminative bit-vector, which allows itself to adapt to the classic inverted file structure for box indexing. The inverted file, which stores the bit-vector and box ID where the SIFT feature is located inside, is compact and can be loaded into the main memory for efficient box indexing. We evaluate our approach on available object retrieval datasets. Experimental results demonstrate that the proposed approach is fast and achieves excellent search quality. Therefore, the proposed approach is an improvement over state-of-the-art approaches for object retrieval.
Directed intermittent search for a hidden target on a dendritic tree
NASA Astrophysics Data System (ADS)
Newby, Jay M.; Bressloff, Paul C.
2009-08-01
Motivated by experimental observations of active (motor-driven) intracellular transport in neuronal dendrites, we analyze a stochastic model of directed intermittent search on a tree network. A particle injected from the cell body or soma into the primary branch of the dendritic tree randomly switches between a stationary search phase and a mobile nonsearch phase that is biased in the forward direction. A (synaptic) target is presented somewhere within the tree, which the particle can locate if it is within a certain range and in the searching phase. We approximate the moment generating function using Green’s function methods. The moment generating function is then used to compute the hitting probability and conditional mean first passage time to the target. We show that in contrast to a previously explored finite interval case, there is a range of parameters for which a bidirectional search strategy is more efficient than a unidirectional one in finding the target.
Computational efficiency of parallel combinatorial OR-tree searches
NASA Technical Reports Server (NTRS)
Li, Guo-Jie; Wah, Benjamin W.
1990-01-01
The performance of parallel combinatorial OR-tree searches is analytically evaluated. This performance depends on the complexity of the problem to be solved, the error allowance function, the dominance relation, and the search strategies. The exact performance may be difficult to predict due to the nondeterminism and anomalies of parallelism. The authors derive the performance bounds of parallel OR-tree searches with respect to the best-first, depth-first, and breadth-first strategies, and verify these bounds by simulation. They show that a near-linear speedup can be achieved with respect to a large number of processors for parallel OR-tree searches. Using the bounds developed, the authors derive sufficient conditions for assuring that parallelism will not degrade performance and necessary conditions for allowing parallelism to have a speedup greater than the ratio of the numbers of processors. These bounds and conditions provide the theoretical foundation for determining the number of processors required to assure a near-linear speedup.
Competitive code-based fast palmprint identification using a set of cover trees
NASA Astrophysics Data System (ADS)
Yue, Feng; Zuo, Wangmeng; Zhang, David; Wang, Kuanquan
2009-06-01
A palmprint identification system recognizes a query palmprint image by searching for its nearest neighbor from among all the templates in a database. When applied on a large-scale identification system, it is often necessary to speed up the nearest-neighbor searching process. We use competitive code, which has very fast feature extraction and matching speed, for palmprint identification. To speed up the identification process, we extend the cover tree method and propose to use a set of cover trees to facilitate the fast and accurate nearest-neighbor searching. We can use the cover tree method because, as we show, the angular distance used in competitive code can be decomposed into a set of metrics. Using the Hong Kong PolyU palmprint database (version 2) and a large-scale palmprint database, our experimental results show that the proposed method searches for nearest neighbors faster than brute force searching.
Simulation-Based Model Checking for Nondeterministic Systems and Rare Events
2016-03-24
year, we have investigated AO* search and Monte Carlo Tree Search algorithms to complement and enhance CMU’s SMCMDP. 1 Final Report, March 14... tree , so we can use it to find the probability of reachability for a property in PRISM’s Probabilistic LTL. By finding the maximum probability of...savings, particularly when handling very large models. 2.3 Monte Carlo Tree Search The Monte Carlo sampling process in SMCMDP can take a long time to
Pitcher, Brandon; Alaqla, Ali; Noujeim, Marcel; Wealleans, James A; Kotsakis, Georgios; Chrepa, Vanessa
2017-03-01
Cone-beam computed tomographic (CBCT) analysis allows for 3-dimensional assessment of periradicular lesions and may facilitate preoperative periapical cyst screening. The purpose of this study was to develop and assess the predictive validity of a cyst screening method based on CBCT volumetric analysis alone or combined with designated radiologic criteria. Three independent examiners evaluated 118 presurgical CBCT scans from cases that underwent apicoectomies and had an accompanying gold standard histopathological diagnosis of either a cyst or granuloma. Lesion volume, density, and specific radiologic characteristics were assessed using specialized software. Logistic regression models with histopathological diagnosis as the dependent variable were constructed for cyst prediction, and receiver operating characteristic curves were used to assess the predictive validity of the models. A conditional inference binary decision tree based on a recursive partitioning algorithm was constructed to facilitate preoperative screening. Interobserver agreement was excellent for volume and density, but it varied from poor to good for the radiologic criteria. Volume and root displacement were strong predictors for cyst screening in all analyses. The binary decision tree classifier determined that if the volume of the lesion was >247 mm 3 , there was 80% probability of a cyst. If volume was <247 mm 3 and root displacement was present, cyst probability was 60% (78% accuracy). The good accuracy and high specificity of the decision tree classifier renders it a useful preoperative cyst screening tool that can aid in clinical decision making but not a substitute for definitive histopathological diagnosis after biopsy. Confirmatory studies are required to validate the present findings. Published by Elsevier Inc.
Algorithms for searching Fast radio bursts and pulsars in tight binary systems.
NASA Astrophysics Data System (ADS)
Zackay, Barak
2017-01-01
Fast radio bursts (FRB's) are an exciting, recently discovered, astrophysical transients which their origins are unknown.Currently, these bursts are believed to be coming from cosmological distances, allowing us to probe the electron content on cosmological length scales. Even though their precise localization is crucial for the determination of their origin, radio interferometers were not extensively employed in searching for them due to computational limitations.I will briefly present the Fast Dispersion Measure Transform (FDMT) algorithm,that allows to reduce the operation count in blind incoherent dedispersion by 2-3 orders of magnitude.In addition, FDMT enables to probe the unexplored domain of sub-microsecond astrophysical pulses.Pulsars in tight binary systems are among the most important astrophysical objects as they provide us our best tests of general relativity in the strong field regime.I will provide a preview to a novel algorithm that enables the detection of pulsars in short binary systems using observation times longer than an orbital period.Current pulsar search programs limit their searches for integration times shorter than a few percents of the orbital period.Until now, searching for pulsars in binary systems using observation times longer than an orbital period was considered impossible as one has to blindly enumerate all options for the Keplerian parameters, the pulsar rotation period, and the unknown DM.Using the current state of the art pulsar search techniques and all computers on the earth, such an enumeration would take longer than a Hubble time. I will demonstrate that using the new algorithm, it is possible to conduct such an enumeration on a laptop using real data of the double pulsar PSR J0737-3039.Among the other applications of this algorithm are:1) Searching for all pulsars on all sky positions in gamma ray observations of the Fermi LAT satellite.2) Blind searching for continuous gravitational wave sources emitted by pulsars with non-axis-symmetric matter distribution.Previous attempts to conduct all of the above searches contained substantial sensitivity compromises.
COBRA: a Bayesian approach to pulsar searching
NASA Astrophysics Data System (ADS)
Lentati, L.; Champion, D. J.; Kramer, M.; Barr, E.; Torne, P.
2018-02-01
We introduce COBRA, a GPU-accelerated Bayesian analysis package for performing pulsar searching, that uses candidates from traditional search techniques to set the prior used for the periodicity of the source, and performs a blind search in all remaining parameters. COBRA incorporates models for both isolated and accelerated systems, as well as both Keplerian and relativistic binaries, and exploits pulse phase information to combine search epochs coherently, over time, frequency or across multiple telescopes. We demonstrate the efficacy of our approach in a series of simulations that challenge typical search techniques, including highly aliased signals, and relativistic binary systems. In the most extreme case, we simulate an 8 h observation containing 24 orbits of a pulsar in a binary with a 30 M⊙ companion. Even in this scenario we show that we can build up from an initial low-significance candidate, to fully recovering the signal. We also apply the method to survey data of three pulsars from the globular cluster 47Tuc: PSRs J0024-7204D, J0023-7203J and J0024-7204R. This final pulsar is in a 1.6 h binary, the shortest of any pulsar in 47Tuc, and additionally shows significant scintillation. By allowing the amplitude of the source to vary as a function of time, however, we show that we are able to obtain optimal combinations of such noisy data. We also demonstrate the ability of COBRA to perform high-precision pulsar timing directly on the single pulse survey data, and obtain a 95 per cent upper limit on the eccentricity of PSR J0024-7204R of εb < 0.0007.
Searches for millisecond pulsations in low-mass X-ray binaries, 2
NASA Technical Reports Server (NTRS)
Vaughan, B. A.; Van Der Klis, M.; Wood, K. S.; Norris, J. P.; Hertz, P.; Michelson, P. F.; Paradijs, J. Van; Lewin, W. H. G.; Mitsuda, K.; Penninx, W.
1994-01-01
Coherent millisecond X-ray pulsations are expected from low-mass X-ray binaries (LMXBs), but remain undetected. Using the single-parameter Quadratic Coherence Recovery Technique (QCRT) to correct for unknown binary orbit motion, we have performed Fourier transform searches for coherent oscillations in all long, continuous segments of data obtained at 1 ms time resolution during Ginga observations of LMXB. We have searched the six known Z sources (GX 5-1, Cyg X-2, Sco X-1, GX 17+2, GX 340+0, and GX 349+2), seven of the 14 known atoll sources (GX 3+1. GX 9+1, GX 9+9, 1728-33. 1820-30, 1636-53 and 1608-52), the 'peculiar' source Cir X-1, and the high-mass binary Cyg X-3. We find no evidence for coherent pulsations in any of these sources, with 99% confidence limits on the pulsed fraction between 0.3% and 5.0% at frequencies below the Nyquist frequency of 512 Hz. A key assumption made in determining upper limits in previous searches is shown to be incorrect. We provide a recipe for correctly setting upper limits and detection thresholds. Finally we discuss and apply two strategies to improve sensitivity by utilizing multiple, independent, continuous segments of data with comparable count rates.
Edge-SIFT: discriminative binary descriptor for scalable partial-duplicate mobile search.
Zhang, Shiliang; Tian, Qi; Lu, Ke; Huang, Qingming; Gao, Wen
2013-07-01
As the basis of large-scale partial duplicate visual search on mobile devices, image local descriptor is expected to be discriminative, efficient, and compact. Our study shows that the popularly used histogram-based descriptors, such as scale invariant feature transform (SIFT) are not optimal for this task. This is mainly because histogram representation is relatively expensive to compute on mobile platforms and loses significant spatial clues, which are important for improving discriminative power and matching near-duplicate image patches. To address these issues, we propose to extract a novel binary local descriptor named Edge-SIFT from the binary edge maps of scale- and orientation-normalized image patches. By preserving both locations and orientations of edges and compressing the sparse binary edge maps with a boosting strategy, the final Edge-SIFT shows strong discriminative power with compact representation. Furthermore, we propose a fast similarity measurement and an indexing framework with flexible online verification. Hence, the Edge-SIFT allows an accurate and efficient image search and is ideal for computation sensitive scenarios such as a mobile image search. Experiments on a large-scale dataset manifest that the Edge-SIFT shows superior retrieval accuracy to Oriented BRIEF (ORB) and is superior to SIFT in the aspects of retrieval precision, efficiency, compactness, and transmission cost.
Two Dimensional Path Planning with Obstacles and Shadows.
1987-01-01
22060College Park, MD 20742 8la NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER •" " .N!ZATION f (If...quadtree is a tip node (if the tree . It represents a tinifirmly c(olored -Iq tiare region of the picture. A gray n()de ()f the (tii tree is a nd((e...Sight Algorithm traversal of the quadtree, they can be sorted using a binary tree by their relative location on the line of sight, given by the x or y
Wang, Jing; Sheng, Yunlong
2016-09-20
A new approach for designing the binary computer-generated hologram (CGH) of a very large number of pixels is proposed. Diffraction of the CGH apertures is computed by the analytical Abbe transform and by considering the aperture edges as the basic diffracting elements. The computation cost is independent of the CGH size. The arbitrary-shaped polygonal apertures in the CGH consist of quadrilateral apertures, which are designed by assigning the binary phases using the parallel genetic algorithm with a local search, followed by optimizing the locations of the co-vertices with a direct search. The design results in high performance with low image reconstruction error.
VizieR Online Data Catalog: OGLE eclipsing binaries in LMC (Wyrzykowski+, 2003)
NASA Astrophysics Data System (ADS)
Wyrzykowski, L.; Udalski, A.; Kubiak, M.; Szymanski, M.; Zebrun, K.; Soszynski, I.; Wozniak, P. R.; Pietrzynski, G.; Szewczyk, O.
2003-09-01
We present the catalog of 2580 eclipsing binary stars detected in 4.6 square degree area of the central parts of the Large Magellanic Cloud. The photometric data were collected during the second phase of the OGLE microlensing search from 1997 to 2000. The eclipsing objects were selected with the automatic search algorithm based on an artificial neural network. Basic statistics of eclipsing stars are presented. Also, the list of 36 candidates of detached eclipsing binaries for spectroscopic study and for precise LMC distance determination is provided. The full catalog is accessible from the OGLE Internet archive. (2 data files).
MINING PLANET SEARCH DATA FOR BINARY STARS: THE ψ{sup 1} DRACONIS SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gullikson, Kevin; Endl, Michael; Cochran, William D.
Several planet-search groups have acquired a great deal of data in the form of time-series spectra of several hundred nearby stars with time baselines of over a decade. While binary star detections are generally not the goal of these long-term monitoring efforts, the binary stars hiding in existing planet search data are precisely the type that are too close to the primary star to detect with imaging or interferometry techniques. We use a cross-correlation analysis to detect the spectral lines of a new low-mass companion to ψ{sup 1} Draconis A, which has a known roughly equal-mass companion at ∼680 AU.more » We measure the mass of ψ{sup 1} Draconis C as M{sub 2} = 0.70 ± 0.07M{sub ⊙}, with an orbital period of ∼20 years. This technique could be used to characterize binary companions to many stars that show large-amplitude modulation or linear trends in radial velocity data.« less
Study on the Secant Segmentation Algorithm of Rubber Tree
NASA Astrophysics Data System (ADS)
Li, Shute; Zhang, Jie; Zhang, Jian; Sun, Liang; Liu, Yongna
2018-04-01
Natural rubber is one of the most important materials in the national defense and industry, and the tapping panel dryness (TPD) of the rubber tree is one of the most serious diseases that affect the production of rubber. Although considerable progress has been made in the more than 100 years of research on the TPD, there are still many areas to be improved. At present, the method of artificial observation is widely used to identify TPD, but the diversity of rubber tree secant symptoms leads to the inaccurate judgement of the level of TPD. In this paper, image processing technology is used to separate the secant and latex, so that we can get rid of the interference factors, get the exact secant and latex binary image. By calculating the area ratio of the corresponding binary images, the grade of TPD can be classified accurately. and can also provide an objective basis for the accurate identification of the tapping panel dryness (TPD) level.
Binary-space-partitioned images for resolving image-based visibility.
Fu, Chi-Wing; Wong, Tien-Tsin; Tong, Wai-Shun; Tang, Chi-Keung; Hanson, Andrew J
2004-01-01
We propose a novel 2D representation for 3D visibility sorting, the Binary-Space-Partitioned Image (BSPI), to accelerate real-time image-based rendering. BSPI is an efficient 2D realization of a 3D BSP tree, which is commonly used in computer graphics for time-critical visibility sorting. Since the overall structure of a BSP tree is encoded in a BSPI, traversing a BSPI is comparable to traversing the corresponding BSP tree. BSPI performs visibility sorting efficiently and accurately in the 2D image space by warping the reference image triangle-by-triangle instead of pixel-by-pixel. Multiple BSPIs can be combined to solve "disocclusion," when an occluded portion of the scene becomes visible at a novel viewpoint. Our method is highly automatic, including a tensor voting preprocessing step that generates candidate image partition lines for BSPIs, filters the noisy input data by rejecting outliers, and interpolates missing information. Our system has been applied to a variety of real data, including stereo, motion, and range images.
SVM-based tree-type neural networks as a critic in adaptive critic designs for control.
Deb, Alok Kanti; Jayadeva; Gopal, Madan; Chandra, Suresh
2007-07-01
In this paper, we use the approach of adaptive critic design (ACD) for control, specifically, the action-dependent heuristic dynamic programming (ADHDP) method. A least squares support vector machine (SVM) regressor has been used for generating the control actions, while an SVM-based tree-type neural network (NN) is used as the critic. After a failure occurs, the critic and action are retrained in tandem using the failure data. Failure data is binary classification data, where the number of failure states are very few as compared to the number of no-failure states. The difficulty of conventional multilayer feedforward NNs in learning this type of classification data has been overcome by using the SVM-based tree-type NN, which due to its feature to add neurons to learn misclassified data, has the capability to learn any binary classification data without a priori choice of the number of neurons or the structure of the network. The capability of the trained controller to handle unforeseen situations is demonstrated.
Reconstructing Unrooted Phylogenetic Trees from Symbolic Ternary Metrics.
Grünewald, Stefan; Long, Yangjing; Wu, Yaokun
2018-03-09
Böcker and Dress (Adv Math 138:105-125, 1998) presented a 1-to-1 correspondence between symbolically dated rooted trees and symbolic ultrametrics. We consider the corresponding problem for unrooted trees. More precisely, given a tree T with leaf set X and a proper vertex coloring of its interior vertices, we can map every triple of three different leaves to the color of its median vertex. We characterize all ternary maps that can be obtained in this way in terms of 4- and 5-point conditions, and we show that the corresponding tree and its coloring can be reconstructed from a ternary map that satisfies those conditions. Further, we give an additional condition that characterizes whether the tree is binary, and we describe an algorithm that reconstructs general trees in a bottom-up fashion.
LETTER TO THE EDITOR: Exhaustive search for low-autocorrelation binary sequences
NASA Astrophysics Data System (ADS)
Mertens, S.
1996-09-01
Binary sequences with low autocorrelations are important in communication engineering and in statistical mechanics as ground states of the Bernasconi model. Computer searches are the main tool in the construction of such sequences. Owing to the exponential size 0305-4470/29/18/005/img1 of the configuration space, exhaustive searches are limited to short sequences. We discuss an exhaustive search algorithm with run-time characteristic 0305-4470/29/18/005/img2 and apply it to compile a table of exact ground states of the Bernasconi model up to N = 48. The data suggest F > 9 for the optimal merit factor in the limit 0305-4470/29/18/005/img3.
Maximum-likelihood soft-decision decoding of block codes using the A* algorithm
NASA Technical Reports Server (NTRS)
Ekroot, L.; Dolinar, S.
1994-01-01
The A* algorithm finds the path in a finite depth binary tree that optimizes a function. Here, it is applied to maximum-likelihood soft-decision decoding of block codes where the function optimized over the codewords is the likelihood function of the received sequence given each codeword. The algorithm considers codewords one bit at a time, making use of the most reliable received symbols first and pursuing only the partially expanded codewords that might be maximally likely. A version of the A* algorithm for maximum-likelihood decoding of block codes has been implemented for block codes up to 64 bits in length. The efficiency of this algorithm makes simulations of codes up to length 64 feasible. This article details the implementation currently in use, compares the decoding complexity with that of exhaustive search and Viterbi decoding algorithms, and presents performance curves obtained with this implementation of the A* algorithm for several codes.
Soft context clustering for F0 modeling in HMM-based speech synthesis
NASA Astrophysics Data System (ADS)
Khorram, Soheil; Sameti, Hossein; King, Simon
2015-12-01
This paper proposes the use of a new binary decision tree, which we call a soft decision tree, to improve generalization performance compared to the conventional `hard' decision tree method that is used to cluster context-dependent model parameters in statistical parametric speech synthesis. We apply the method to improve the modeling of fundamental frequency, which is an important factor in synthesizing natural-sounding high-quality speech. Conventionally, hard decision tree-clustered hidden Markov models (HMMs) are used, in which each model parameter is assigned to a single leaf node. However, this `divide-and-conquer' approach leads to data sparsity, with the consequence that it suffers from poor generalization, meaning that it is unable to accurately predict parameters for models of unseen contexts: the hard decision tree is a weak function approximator. To alleviate this, we propose the soft decision tree, which is a binary decision tree with soft decisions at the internal nodes. In this soft clustering method, internal nodes select both their children with certain membership degrees; therefore, each node can be viewed as a fuzzy set with a context-dependent membership function. The soft decision tree improves model generalization and provides a superior function approximator because it is able to assign each context to several overlapped leaves. In order to use such a soft decision tree to predict the parameters of the HMM output probability distribution, we derive the smoothest (maximum entropy) distribution which captures all partial first-order moments and a global second-order moment of the training samples. Employing such a soft decision tree architecture with maximum entropy distributions, a novel speech synthesis system is trained using maximum likelihood (ML) parameter re-estimation and synthesis is achieved via maximum output probability parameter generation. In addition, a soft decision tree construction algorithm optimizing a log-likelihood measure is developed. Both subjective and objective evaluations were conducted and indicate a considerable improvement over the conventional method.
NASA Astrophysics Data System (ADS)
Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Andersen, M.; Anderson, R.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauchrowitz, J.; Bauer, Th. S.; Bavigadda, V.; Behnke, B.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bell, A. S.; Bell, C.; Bergmann, G.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bloemen, S.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bosi, L.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Buchman, S.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burman, R.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corpuz, A.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Canton, T. Dal; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; Debreczeni, G.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Donath, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dossa, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Effler, A.; Eggenstein, H.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hooper, S.; Hopkins, P.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jaranowski, P.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karlen, J.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kremin, A.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Leonardi, M.; Leong, J. R.; Le Roux, A.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M. J.; Lück, H.; Luijten, E.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; Macdonald, E. P.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Maglione, C.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mangini, N.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Milde, S.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moesta, P.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nanda Kumar, D.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palashov, O.; Palomba, C.; Pan, H.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poteomkin, A.; Powell, J.; Prasad, J.; Premachandra, S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Ramirez, K.; Rapagnani, P.; Raymond, V.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Reid, S.; Reitze, D. H.; Rhoades, E.; Ricci, F.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Scheuer, J.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Staley, A.; Stebbins, J.; Steinlechner, J.; Steinlechner, S.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Stops, D.; Strain, K. A.; Straniero, N.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Urbanek, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S. S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Wang, M.; Wang, X.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Williams, K.; Williams, L.; Williams, R.; Williams, T.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yang, Z.; Yoshida, S.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, Fan; Zhang, L.; Zhao, C.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2014-06-01
This paper reports on an unmodeled, all-sky search for gravitational waves from merging intermediate mass black hole binaries (IMBHB). The search was performed on data from the second joint science run of the LIGO and Virgo detectors (July 2009-October 2010) and was sensitive to IMBHBs with a range up to ˜200 Mpc, averaged over the possible sky positions and inclinations of the binaries with respect to the line of sight. No significant candidate was found. Upper limits on the coalescence-rate density of nonspinning IMBHBs with total masses between 100 and 450 M⊙ and mass ratios between 0.25 and 1 were placed by combining this analysis with an analogous search performed on data from the first LIGO-Virgo joint science run (November 2005-October 2007). The most stringent limit was set for systems consisting of two 88 M⊙ black holes and is equal to 0.12 Mpc-3 Myr-1 at the 90% confidence level. This paper also presents the first estimate, for the case of an unmodeled analysis, of the impact on the search range of IMBHB spin configurations: the visible volume for IMBHBs with nonspinning components is roughly doubled for a population of IMBHBs with spins aligned with the binary's orbital angular momentum and uniformly distributed in the dimensionless spin parameter up to 0.8, whereas an analogous population with antialigned spins decreases the visible volume by ˜20%.
EINSTEIN-HOME DISCOVERY OF 24 PULSARS IN THE PARKES MULTI-BEAM PULSAR SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knispel, B.; Kim, H.; Allen, B.
2013-09-10
We have conducted a new search for radio pulsars in compact binary systems in the Parkes multi-beam pulsar survey (PMPS) data, employing novel methods to remove the Doppler modulation from binary motion. This has yielded unparalleled sensitivity to pulsars in compact binaries. The required computation time of Almost-Equal-To 17, 000 CPU core years was provided by the distributed volunteer computing project Einstein-Home, which has a sustained computing power of about 1 PFlop s{sup -1}. We discovered 24 new pulsars in our search, 18 of which were isolated pulsars, and 6 were members of binary systems. Despite the wide filterbank channelsmore » and relatively slow sampling time of the PMPS data, we found pulsars with very large ratios of dispersion measure (DM) to spin period. Among those is PSR J1748-3009, the millisecond pulsar with the highest known DM ( Almost-Equal-To 420 pc cm{sup -3}). We also discovered PSR J1840-0643, which is in a binary system with an orbital period of 937 days, the fourth largest known. The new pulsar J1750-2536 likely belongs to the rare class of intermediate-mass binary pulsars. Three of the isolated pulsars show long-term nulling or intermittency in their emission, further increasing this growing family. Our discoveries demonstrate the value of distributed volunteer computing for data-driven astronomy and the importance of applying new analysis methods to extensively searched data.« less
Accuracy of Binary Black Hole Waveform Models for Advanced LIGO
NASA Astrophysics Data System (ADS)
Kumar, Prayush; Fong, Heather; Barkett, Kevin; Bhagwat, Swetha; Afshari, Nousha; Chu, Tony; Brown, Duncan; Lovelace, Geoffrey; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela; Simulating Extreme Spacetimes (SXS) Team
2016-03-01
Coalescing binaries of compact objects, such as black holes and neutron stars, are the primary targets for gravitational-wave (GW) detection with Advanced LIGO. Accurate modeling of the emitted GWs is required to extract information about the binary source. The most accurate solution to the general relativistic two-body problem is available in numerical relativity (NR), which is however limited in application due to computational cost. Current searches use semi-analytic models that are based in post-Newtonian (PN) theory and calibrated to NR. In this talk, I will present comparisons between contemporary models and high-accuracy numerical simulations performed using the Spectral Einstein Code (SpEC), focusing at the questions: (i) How well do models capture binary's late-inspiral where they lack a-priori accurate information from PN or NR, and (ii) How accurately do they model binaries with parameters outside their range of calibration. These results guide the choice of templates for future GW searches, and motivate future modeling efforts.
Upper limits for gravitational radiation from supermassive coalescing binaries
NASA Technical Reports Server (NTRS)
Anderson, J. D.; Armstrong, J. W.; Lau, E. L.
1993-01-01
We report a search for waves from supermassive coalescing binaries using a 10.5 day Pioneer 10 data set taken in 1988. Depending on the time to coalescence, the initial frequency of the wave, and the length of the observing interval, a coalescing binary waveform appears in the tracking record either as a sinusoid, a 'chirp', or as a more complicated signal. We searched our data for coalescing binary waveforms in all three regimes. We successfully detected a (fortuitous) 'chirp' signal caused by the varying spin rate of the spacecraft; this nicely served as a calibration of the data quality and as a test of our analysis procedures on real data. We did not detect any signals of astronomical origin in the millihertz band to an upper limit of about 7 x 10 exp -15 (rms amplitude). This is the first time spacecraft Doppler data have been analyzed for coalescing binary waveforms, and the upper limits reported here are the best to date for any waveform in the millihertz band.
A HST Search to Constrain the Binary Fraction of Stripped-Envelope Supernovae
NASA Astrophysics Data System (ADS)
Fox, Ori
2018-01-01
Stripped-envelope supernovae (e.g., SNe IIb, Ib, and Ic) refer to a subset of core-collapse explosions with progenitors that have lost some fraction of their outer envelopes in pre-SN mass loss. Mounting evidence over the past decade suggests that the mass loss in a large fraction of these systems occurs due to binary interaction. An unbiased, statistically significant sample of companion-star characteristics (including deep upper limits) can constrain the binary fraction, having direct implications on the theoretical physics of both single star and binary evolution. To date, however, only two detections have been made: SNe 1993J and 2011dh. Over the past year, we have improved this sample with an HST WFC3/NUV survey for binary companions of three additional nearby stripped-envelope SNe: 2002ap, 2001ig, and 2010br. I will present a review of previous companion searches and results from our current HST survey, which include one detection and two meaningful upper limits.
Tuning into Scorpius X-1: adapting a continuous gravitational-wave search for a known binary system
NASA Astrophysics Data System (ADS)
Meadors, Grant David; Goetz, Evan; Riles, Keith
2016-05-01
We describe how the TwoSpect data analysis method for continuous gravitational waves (GWs) has been tuned for directed sources such as the low-mass X-ray binary (LMXB), Scorpius X-1 (Sco X-1). A comparison of five search algorithms generated simulations of the orbital and GW parameters of Sco X-1. Whereas that comparison focused on relative performance, here the simulations help quantify the sensitivity enhancement and parameter estimation abilities of this directed method, derived from an all-sky search for unknown sources, using doubly Fourier-transformed data. Sensitivity is shown to be enhanced when the source sky location and period are known, because we can run a fully templated search, bypassing the all-sky hierarchical stage using an incoherent harmonic sum. The GW strain and frequency, as well as the projected semi-major axis of the binary system, are recovered and uncertainty estimated, for simulated signals that are detected. Upper limits for GW strain are set for undetected signals. Applications to future GW observatory data are discussed. Robust against spin-wandering and computationally tractable despite an unknown frequency, this directed search is an important new tool for finding gravitational signals from LMXBs.
GW150914: First results from the search for binary black hole coalescence with Advanced LIGO
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bohémier, K.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Cokelaer, T.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Dietz, A.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Goggin, L. M.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messaritaki, E.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Robinson, C.; Rocchi, A.; Rodriguez, A. C.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Santamaría, L.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wiesner, K.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2016-06-01
On September 14, 2015, at 09∶50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) simultaneously observed the binary black hole merger GW150914. We report the results of a matched-filter search using relativistic models of compact-object binaries that recovered GW150914 as the most significant event during the coincident observations between the two LIGO detectors from September 12 to October 20, 2015 GW150914 was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203000 years, equivalent to a significance greater than 5.1 σ .
GW150914: First Results from the Search for Binary Black Hole Coalescence with Advanced LIGO
NASA Technical Reports Server (NTRS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.;
2016-01-01
On September 14, 2015, at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) simultaneously observed the binary black hole merger GW150914. We report the results of a matched-filter search using relativistic models of compact-object binaries that recovered GW150914 as the most significant event during the coincident observations between the two LIGO detectors from September 12 to October 20, 2015 GW150914 was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203000 years, equivalent to a significance greater than 5.1 sigma.
NASA Astrophysics Data System (ADS)
To, Cuong; Pham, Tuan D.
2010-01-01
In machine learning, pattern recognition may be the most popular task. "Similar" patterns identification is also very important in biology because first, it is useful for prediction of patterns associated with disease, for example cancer tissue (normal or tumor); second, similarity or dissimilarity of the kinetic patterns is used to identify coordinately controlled genes or proteins involved in the same regulatory process. Third, similar genes (proteins) share similar functions. In this paper, we present an algorithm which uses genetic programming to create decision tree for binary classification problem. The application of the algorithm was implemented on five real biological databases. Base on the results of comparisons with well-known methods, we see that the algorithm is outstanding in most of cases.
Genetic Algorithms and Classification Trees in Feature Discovery: Diabetes and the NHANES database
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heredia-Langner, Alejandro; Jarman, Kristin H.; Amidan, Brett G.
2013-09-01
This paper presents a feature selection methodology that can be applied to datasets containing a mixture of continuous and categorical variables. Using a Genetic Algorithm (GA), this method explores a dataset and selects a small set of features relevant for the prediction of a binary (1/0) response. Binary classification trees and an objective function based on conditional probabilities are used to measure the fitness of a given subset of features. The method is applied to health data in order to find factors useful for the prediction of diabetes. Results show that our algorithm is capable of narrowing down the setmore » of predictors to around 8 factors that can be validated using reputable medical and public health resources.« less
Multistage classification of multispectral Earth observational data: The design approach
NASA Technical Reports Server (NTRS)
Bauer, M. E. (Principal Investigator); Muasher, M. J.; Landgrebe, D. A.
1981-01-01
An algorithm is proposed which predicts the optimal features at every node in a binary tree procedure. The algorithm estimates the probability of error by approximating the area under the likelihood ratio function for two classes and taking into account the number of training samples used in estimating each of these two classes. Some results on feature selection techniques, particularly in the presence of a very limited set of training samples, are presented. Results comparing probabilities of error predicted by the proposed algorithm as a function of dimensionality as compared to experimental observations are shown for aircraft and LANDSAT data. Results are obtained for both real and simulated data. Finally, two binary tree examples which use the algorithm are presented to illustrate the usefulness of the procedure.
Six New Millisecond Pulsars From Arecibo Searches Of Fermi Gamma-Ray Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cromartie, H. T.; Camilo, F.; Kerr, M.
2016-02-25
We have discovered six radio millisecond pulsars (MSPs) in a search with the Arecibo telescope of 34 unidentified gamma-ray sources from the Fermi Large Area Telescope (LAT) 4-year point source catalog. Among the 34 sources, we also detected two MSPs previously discovered elsewhere. Each source was observed at a center frequency of 327 MHz, typically at three epochs with individual integration times of 15 minutes. The new MSP spin periods range from 1.99 to 4.66 ms. Five of the six pulsars are in interacting compact binaries (period ≤ 8.1 hr), while the sixth is a more typical neutron star-white dwarfmore » binary with an 83-day orbital period. This is a higher proportion of interacting binaries than for equivalent Fermi-LAT searches elsewhere. The reason is that Arecibo’s large gain afforded us the opportunity to limit integration times to 15 minutes, which significantly increased our sensitivity to these highly accelerated systems. Seventeen of the remaining 26 gamma-ray sources are still categorized as strong MSP candidates, and will be re-searched.« less
SIX NEW MILLISECOND PULSARS FROM ARECIBO SEARCHES OF FERMI GAMMA-RAY SOURCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cromartie, H. T.; Camilo, F.; Kerr, M.
2016-03-01
We have discovered six radio millisecond pulsars (MSPs) in a search with the Arecibo telescope of 34 unidentified gamma-ray sources from the Fermi Large Area Telescope (LAT) four year point source catalog. Among the 34 sources, we also detected two MSPs previously discovered elsewhere. Each source was observed at a center frequency of 327 MHz, typically at three epochs with individual integration times of 15 minutes. The new MSP spin periods range from 1.99 to 4.66 ms. Five of the six pulsars are in interacting compact binaries (period ≤ 8.1 hr), while the sixth is a more typical neutron star-whitemore » dwarf binary with an 83 day orbital period. This is a higher proportion of interacting binaries than for equivalent Fermi-LAT searches elsewhere. The reason is that Arecibo's large gain afforded us the opportunity to limit integration times to 15 minutes, which significantly increased our sensitivity to these highly accelerated systems. Seventeen of the remaining 26 gamma-ray sources are still categorized as strong MSP candidates, and will be re-searched.« less
Permutation parity machines for neural cryptography.
Reyes, Oscar Mauricio; Zimmermann, Karl-Heinz
2010-06-01
Recently, synchronization was proved for permutation parity machines, multilayer feed-forward neural networks proposed as a binary variant of the tree parity machines. This ability was already used in the case of tree parity machines to introduce a key-exchange protocol. In this paper, a protocol based on permutation parity machines is proposed and its performance against common attacks (simple, geometric, majority and genetic) is studied.
Permutation parity machines for neural cryptography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reyes, Oscar Mauricio; Escuela de Ingenieria Electrica, Electronica y Telecomunicaciones, Universidad Industrial de Santander, Bucaramanga; Zimmermann, Karl-Heinz
2010-06-15
Recently, synchronization was proved for permutation parity machines, multilayer feed-forward neural networks proposed as a binary variant of the tree parity machines. This ability was already used in the case of tree parity machines to introduce a key-exchange protocol. In this paper, a protocol based on permutation parity machines is proposed and its performance against common attacks (simple, geometric, majority and genetic) is studied.
NASA Technical Reports Server (NTRS)
Bond, Howard E.
1992-01-01
A brief summary of the research highlights is presented. The topics covered include the following: binary nuclei of planetary nebulae; other variable planetary nuclei; low-mass supergiants; and other IUE-related research.
Binary pulsar evolution: unveiled links and new species
NASA Astrophysics Data System (ADS)
Possenti, Andrea
2013-03-01
In the last years a series of blind and/or targeted pulsar searches led to almost triple the number of known binary pulsars in the galactic field with respect to a decade ago. The focus will be on few outliers, which are emerging from the average properties of the enlarged binary pulsar population. Some of them may represent the long sought missing links between two kinds of neutron star binaries, while others could represent the stereotype of new groups of binaries, resulting from an evolutionary path which is more exotic than those considered until recently. In particular, a new class of binaries, which can be dubbed Ultra Low Mass Binary Pulsars (ULMBPs), is emerging from recent data.
Nonbinary Tree-Based Phylogenetic Networks.
Jetten, Laura; van Iersel, Leo
2018-01-01
Rooted phylogenetic networks are used to describe evolutionary histories that contain non-treelike evolutionary events such as hybridization and horizontal gene transfer. In some cases, such histories can be described by a phylogenetic base-tree with additional linking arcs, which can, for example, represent gene transfer events. Such phylogenetic networks are called tree-based. Here, we consider two possible generalizations of this concept to nonbinary networks, which we call tree-based and strictly-tree-based nonbinary phylogenetic networks. We give simple graph-theoretic characterizations of tree-based and strictly-tree-based nonbinary phylogenetic networks. Moreover, we show for each of these two classes that it can be decided in polynomial time whether a given network is contained in the class. Our approach also provides a new view on tree-based binary phylogenetic networks. Finally, we discuss two examples of nonbinary phylogenetic networks in biology and show how our results can be applied to them.
The observed distribution of spectroscopic binaries from the Anglo-Australian Planet Search
NASA Astrophysics Data System (ADS)
Jenkins, J. S.; Díaz, M.; Jones, H. R. A.; Butler, R. P.; Tinney, C. G.; O'Toole, S. J.; Carter, B. D.; Wittenmyer, R. A.; Pinfield, D. J.
2015-10-01
We report the detection of sixteen binary systems from the Anglo-Australian Planet Search. Solutions to the radial velocity data indicate that the stars have companions orbiting with a wide range of masses, eccentricities and periods. Three of the systems potentially contain brown-dwarf companions while another two have eccentricities that place them in the extreme upper tail of the eccentricity distribution for binaries with periods less than 1000 d. For periods up to 12 years, the distribution of our stellar companion masses is fairly flat, mirroring that seen in other radial velocity surveys, and contrasts sharply with the current distribution of candidate planetary masses, which rises strongly below 10 MJ. When looking at a larger sample of binaries that have FGK star primaries as a function of the primary star metallicity, we find that the distribution maintains a binary fraction of ˜43 ± 4 per cent between -1.0 and +0.6 dex in metallicity. This is in stark contrast to the giant exoplanet distribution. This result is in good agreement with binary formation models that invoke fragmentation of a collapsing giant molecular cloud, suggesting that this is the dominant formation mechanism for close binaries and not fragmentation of the primary star's remnant protoplanetary disc.
Adaptive feature selection using v-shaped binary particle swarm optimization.
Teng, Xuyang; Dong, Hongbin; Zhou, Xiurong
2017-01-01
Feature selection is an important preprocessing method in machine learning and data mining. This process can be used not only to reduce the amount of data to be analyzed but also to build models with stronger interpretability based on fewer features. Traditional feature selection methods evaluate the dependency and redundancy of features separately, which leads to a lack of measurement of their combined effect. Moreover, a greedy search considers only the optimization of the current round and thus cannot be a global search. To evaluate the combined effect of different subsets in the entire feature space, an adaptive feature selection method based on V-shaped binary particle swarm optimization is proposed. In this method, the fitness function is constructed using the correlation information entropy. Feature subsets are regarded as individuals in a population, and the feature space is searched using V-shaped binary particle swarm optimization. The above procedure overcomes the hard constraint on the number of features, enables the combined evaluation of each subset as a whole, and improves the search ability of conventional binary particle swarm optimization. The proposed algorithm is an adaptive method with respect to the number of feature subsets. The experimental results show the advantages of optimizing the feature subsets using the V-shaped transfer function and confirm the effectiveness and efficiency of the feature subsets obtained under different classifiers.
Adaptive feature selection using v-shaped binary particle swarm optimization
Dong, Hongbin; Zhou, Xiurong
2017-01-01
Feature selection is an important preprocessing method in machine learning and data mining. This process can be used not only to reduce the amount of data to be analyzed but also to build models with stronger interpretability based on fewer features. Traditional feature selection methods evaluate the dependency and redundancy of features separately, which leads to a lack of measurement of their combined effect. Moreover, a greedy search considers only the optimization of the current round and thus cannot be a global search. To evaluate the combined effect of different subsets in the entire feature space, an adaptive feature selection method based on V-shaped binary particle swarm optimization is proposed. In this method, the fitness function is constructed using the correlation information entropy. Feature subsets are regarded as individuals in a population, and the feature space is searched using V-shaped binary particle swarm optimization. The above procedure overcomes the hard constraint on the number of features, enables the combined evaluation of each subset as a whole, and improves the search ability of conventional binary particle swarm optimization. The proposed algorithm is an adaptive method with respect to the number of feature subsets. The experimental results show the advantages of optimizing the feature subsets using the V-shaped transfer function and confirm the effectiveness and efficiency of the feature subsets obtained under different classifiers. PMID:28358850
Lim, Meng-Hui; Teoh, Andrew Beng Jin; Toh, Kar-Ann
2013-06-01
Biometric discretization is a key component in biometric cryptographic key generation. It converts an extracted biometric feature vector into a binary string via typical steps such as segmentation of each feature element into a number of labeled intervals, mapping of each interval-captured feature element onto a binary space, and concatenation of the resulted binary output of all feature elements into a binary string. Currently, the detection rate optimized bit allocation (DROBA) scheme is one of the most effective biometric discretization schemes in terms of its capability to assign binary bits dynamically to user-specific features with respect to their discriminability. However, we learn that DROBA suffers from potential discriminative feature misdetection and underdiscretization in its bit allocation process. This paper highlights such drawbacks and improves upon DROBA based on a novel two-stage algorithm: 1) a dynamic search method to efficiently recapture such misdetected features and to optimize the bit allocation of underdiscretized features and 2) a genuine interval concealment technique to alleviate crucial information leakage resulted from the dynamic search. Improvements in classification accuracy on two popular face data sets vindicate the feasibility of our approach compared with DROBA.
MDTS: automatic complex materials design using Monte Carlo tree search.
M Dieb, Thaer; Ju, Shenghong; Yoshizoe, Kazuki; Hou, Zhufeng; Shiomi, Junichiro; Tsuda, Koji
2017-01-01
Complex materials design is often represented as a black-box combinatorial optimization problem. In this paper, we present a novel python library called MDTS (Materials Design using Tree Search). Our algorithm employs a Monte Carlo tree search approach, which has shown exceptional performance in computer Go game. Unlike evolutionary algorithms that require user intervention to set parameters appropriately, MDTS has no tuning parameters and works autonomously in various problems. In comparison to a Bayesian optimization package, our algorithm showed competitive search efficiency and superior scalability. We succeeded in designing large Silicon-Germanium (Si-Ge) alloy structures that Bayesian optimization could not deal with due to excessive computational cost. MDTS is available at https://github.com/tsudalab/MDTS.
MDTS: automatic complex materials design using Monte Carlo tree search
NASA Astrophysics Data System (ADS)
Dieb, Thaer M.; Ju, Shenghong; Yoshizoe, Kazuki; Hou, Zhufeng; Shiomi, Junichiro; Tsuda, Koji
2017-12-01
Complex materials design is often represented as a black-box combinatorial optimization problem. In this paper, we present a novel python library called MDTS (Materials Design using Tree Search). Our algorithm employs a Monte Carlo tree search approach, which has shown exceptional performance in computer Go game. Unlike evolutionary algorithms that require user intervention to set parameters appropriately, MDTS has no tuning parameters and works autonomously in various problems. In comparison to a Bayesian optimization package, our algorithm showed competitive search efficiency and superior scalability. We succeeded in designing large Silicon-Germanium (Si-Ge) alloy structures that Bayesian optimization could not deal with due to excessive computational cost. MDTS is available at https://github.com/tsudalab/MDTS.
Recent searches for continuous gravitational waves
NASA Astrophysics Data System (ADS)
Riles, Keith
2017-12-01
Gravitational wave astronomy opened dramatically in September 2015 with the LIGO discovery of a distant and massive binary black hole coalescence. The more recent discovery of a binary neutron star merger, followed by a gamma ray burst (GRB) and a kilonova, reinforces the excitement of this new era, in which we may soon see other sources of gravitational waves, including continuous, nearly monochromatic signals. Potential continuous wave (CW) sources include rapidly spinning galactic neutron stars and more exotic possibilities, such as emission from axion Bose Einstein “clouds” surrounding black holes. Recent searches in Advanced LIGO data are presented, and prospects for more sensitive future searches are discussed.
NASA Astrophysics Data System (ADS)
Bouffon, T.; Rice, R.; Bales, R.
2006-12-01
The spatial distributions of snow water equivalent (SWE) and snow depth within a 1, 4, and 16 km2 grid element around two automated snow pillows in a forested and open- forested region of the Upper Merced River Basin (2,800 km2) of Yosemite National Park were characterized using field observations and analyzed using binary regression trees. Snow surveys occurred at the forested site during the accumulation and ablation seasons, while at the open-forest site a survey was performed only during the accumulation season. An average of 130 snow depth and 7 snow density measurements were made on each survey, within the 4 km2 grid. Snow depth was distributed using binary regression trees and geostatistical methods using the physiographic parameters (e.g. elevation, slope, vegetation, aspect). Results in the forest region indicate that the snow pillow overestimated average SWE within the 1, 4, and 16 km2 areas by 34 percent during ablation, but during accumulation the snow pillow provides a good estimate of the modeled mean SWE grid value, however it is suspected that the snow pillow was underestimating SWE. However, at the open forest site, during accumulation, the snow pillow was 28 percent greater than the mean modeled grid element. In addition, the binary regression trees indicate that the independent variables of vegetation, slope, and aspect are the most influential parameters of snow depth distribution. The binary regression tree and multivariate linear regression models explain about 60 percent of the initial variance for snow depth and 80 percent for density, respectively. This short-term study provides motivation and direction for the installation of a distributed snow measurement network to fill the information gap in basin-wide SWE and snow depth measurements. Guided by these results, a distributed snow measurement network was installed in the Fall 2006 at Gin Flat in the Upper Merced River Basin with the specific objective of measuring accumulation and ablation across topographic variables with the aim of providing guidance for future larger scale observation network designs.
Decision tree modeling using R.
Zhang, Zhongheng
2016-08-01
In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met. In the example I focus on conditional inference tree, which incorporates tree-structured regression models into conditional inference procedures. While growing a single tree is subject to small changes in the training data, random forests procedure is introduced to address this problem. The sources of diversity for random forests come from the random sampling and restricted set of input variables to be selected. Finally, I introduce R functions to perform model based recursive partitioning. This method incorporates recursive partitioning into conventional parametric model building.
Automatic creation of object hierarchies for ray tracing
NASA Technical Reports Server (NTRS)
Goldsmith, Jeffrey; Salmon, John
1987-01-01
Various methods for evaluating generated trees are proposed. The use of the hierarchical extent method of Rubin and Whitted (1980) to find the objects that will be hit by a ray is examined. This method employs tree searching; the construction of a tree of bounding volumes in order to determine the number of objects that will be hit by a ray is discussed. A tree generation algorithm, which uses a heuristic tree search strategy, is described. The effects of shuffling and sorting on the input data are investigated. The cost of inserting an object into the hierarchy during the construction of a tree algorithm is estimated. The steps involved in estimating the number of intersection calculations are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levine, Alan M.; Bradt, Hale V.; Chakrabarty, Deepto
2011-09-01
We present the results of a systematic search in {approx}14 years of Rossi X-ray Timing Explorer All-Sky Monitor (ASM) data for evidence of periodicities. Two variations of the commonly used Fourier analysis search method have been employed to significantly improve upon the sensitivity achieved by Wen et al. in 2006, who also searched for periodicities in ASM data. In addition, the present search is comprehensive in terms of sources studied and frequency range covered, and has yielded the detection of the signatures of the orbital periods of eight low-mass X-ray binary systems and of ten high-mass X-ray binaries not listedmore » in the tables of Wen et al. Orbital periods, epochs, signal amplitudes, modulation fractions, and folded light curves are given for each of these systems. Seven of the orbital periods are the most precise reported to date. In the course of this work, the 18.545 day orbital period of IGR J18483-0311 was co-discovered, and the first detections in X-rays were made of the {approx}3.9 day orbital period of LMC X-1 and the {approx}3.79 hr orbital period of 4U 1636-536. The results inform future searches for orbital and other periodicities in X-ray binaries.« less
A search for Lyman-alpha emission in beta Lyrae from Copernicus
NASA Technical Reports Server (NTRS)
Kondo, Y.; Mccluskey, G. E., Jr.
1974-01-01
High-resolution (0.2 A) spectrophotometric observations of the complex eclipsing binary beta Lyrae were obtained with the Princeton Telescope Spectrometer on the Copernicus satellite. We discuss the search for L-alpha emission in beta Lyrae and compare the Copernicus results with the OAO-2 observations of the same binary system. The possible L-alpha emission features observed from OAO-2 are identified as blends of the emission lines of other elements in the vicinity of L-alpha.
Efficient Decoding of Compressed Data.
ERIC Educational Resources Information Center
Bassiouni, Mostafa A.; Mukherjee, Amar
1995-01-01
Discusses the problem of enhancing the speed of Huffman decoding of compressed data. Topics addressed include the Huffman decoding tree; multibit decoding; binary string mapping problems; and algorithms for solving mapping problems. (22 references) (LRW)
A Model of Adding Relations in Multi-levels to a Formal Organization Structure with Two Subordinates
NASA Astrophysics Data System (ADS)
Sawada, Kiyoshi; Amano, Kazuyuki
2009-10-01
This paper proposes a model of adding relations in multi-levels to a formal organization structure with two subordinates such that the communication of information between every member in the organization becomes the most efficient. When edges between every pair of nodes with the same depth in L (L = 1, 2, …, H) levels are added to a complete binary tree of height H, an optimal set of depths {N1, N2, …, NL} (H⩾N1>N2> …>NL⩾1) is obtained by maximizing the total shortening path length which is the sum of shortening lengths of shortest paths between every pair of all nodes in the complete binary tree. It is shown that {N1, N2, …, NL}* = {H, H-1, …, H-L+1}.
Stereo-vision-based terrain mapping for off-road autonomous navigation
NASA Astrophysics Data System (ADS)
Rankin, Arturo L.; Huertas, Andres; Matthies, Larry H.
2009-05-01
Successful off-road autonomous navigation by an unmanned ground vehicle (UGV) requires reliable perception and representation of natural terrain. While perception algorithms are used to detect driving hazards, terrain mapping algorithms are used to represent the detected hazards in a world model a UGV can use to plan safe paths. There are two primary ways to detect driving hazards with perception sensors mounted to a UGV: binary obstacle detection and traversability cost analysis. Binary obstacle detectors label terrain as either traversable or non-traversable, whereas, traversability cost analysis assigns a cost to driving over a discrete patch of terrain. In uncluttered environments where the non-obstacle terrain is equally traversable, binary obstacle detection is sufficient. However, in cluttered environments, some form of traversability cost analysis is necessary. The Jet Propulsion Laboratory (JPL) has explored both approaches using stereo vision systems. A set of binary detectors has been implemented that detect positive obstacles, negative obstacles, tree trunks, tree lines, excessive slope, low overhangs, and water bodies. A compact terrain map is built from each frame of stereo images. The mapping algorithm labels cells that contain obstacles as nogo regions, and encodes terrain elevation, terrain classification, terrain roughness, traversability cost, and a confidence value. The single frame maps are merged into a world map where temporal filtering is applied. In previous papers, we have described our perception algorithms that perform binary obstacle detection. In this paper, we summarize the terrain mapping capabilities that JPL has implemented during several UGV programs over the last decade and discuss some challenges to building terrain maps with stereo range data.
Stereo Vision Based Terrain Mapping for Off-Road Autonomous Navigation
NASA Technical Reports Server (NTRS)
Rankin, Arturo L.; Huertas, Andres; Matthies, Larry H.
2009-01-01
Successful off-road autonomous navigation by an unmanned ground vehicle (UGV) requires reliable perception and representation of natural terrain. While perception algorithms are used to detect driving hazards, terrain mapping algorithms are used to represent the detected hazards in a world model a UGV can use to plan safe paths. There are two primary ways to detect driving hazards with perception sensors mounted to a UGV: binary obstacle detection and traversability cost analysis. Binary obstacle detectors label terrain as either traversable or non-traversable, whereas, traversability cost analysis assigns a cost to driving over a discrete patch of terrain. In uncluttered environments where the non-obstacle terrain is equally traversable, binary obstacle detection is sufficient. However, in cluttered environments, some form of traversability cost analysis is necessary. The Jet Propulsion Laboratory (JPL) has explored both approaches using stereo vision systems. A set of binary detectors has been implemented that detect positive obstacles, negative obstacles, tree trunks, tree lines, excessive slope, low overhangs, and water bodies. A compact terrain map is built from each frame of stereo images. The mapping algorithm labels cells that contain obstacles as no-go regions, and encodes terrain elevation, terrain classification, terrain roughness, traversability cost, and a confidence value. The single frame maps are merged into a world map where temporal filtering is applied. In previous papers, we have described our perception algorithms that perform binary obstacle detection. In this paper, we summarize the terrain mapping capabilities that JPL has implemented during several UGV programs over the last decade and discuss some challenges to building terrain maps with stereo range data.
Observing gravitational-wave transient GW150914 with minimal assumptions
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chatterji, S.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Clark, M.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Haas, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinder, I.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinsey, M.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Laguna, P.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Page, J.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2016-06-01
The gravitational-wave signal GW150914 was first identified on September 14, 2015, by searches for short-duration gravitational-wave transients. These searches identify time-correlated transients in multiple detectors with minimal assumptions about the signal morphology, allowing them to be sensitive to gravitational waves emitted by a wide range of sources including binary black hole mergers. Over the observational period from September 12 to October 20, 2015, these transient searches were sensitive to binary black hole mergers similar to GW150914 to an average distance of ˜600 Mpc . In this paper, we describe the analyses that first detected GW150914 as well as the parameter estimation and waveform reconstruction techniques that initially identified GW150914 as the merger of two black holes. We find that the reconstructed waveform is consistent with the signal from a binary black hole merger with a chirp mass of ˜30 M⊙ and a total mass before merger of ˜70 M⊙ in the detector frame.
Tree decomposition based fast search of RNA structures including pseudoknots in genomes.
Song, Yinglei; Liu, Chunmei; Malmberg, Russell; Pan, Fangfang; Cai, Liming
2005-01-01
Searching genomes for RNA secondary structure with computational methods has become an important approach to the annotation of non-coding RNAs. However, due to the lack of efficient algorithms for accurate RNA structure-sequence alignment, computer programs capable of fast and effectively searching genomes for RNA secondary structures have not been available. In this paper, a novel RNA structure profiling model is introduced based on the notion of a conformational graph to specify the consensus structure of an RNA family. Tree decomposition yields a small tree width t for such conformation graphs (e.g., t = 2 for stem loops and only a slight increase for pseudo-knots). Within this modelling framework, the optimal alignment of a sequence to the structure model corresponds to finding a maximum valued isomorphic subgraph and consequently can be accomplished through dynamic programming on the tree decomposition of the conformational graph in time O(k(t)N(2)), where k is a small parameter; and N is the size of the projiled RNA structure. Experiments show that the application of the alignment algorithm to search in genomes yields the same search accuracy as methods based on a Covariance model with a significant reduction in computation time. In particular; very accurate searches of tmRNAs in bacteria genomes and of telomerase RNAs in yeast genomes can be accomplished in days, as opposed to months required by other methods. The tree decomposition based searching tool is free upon request and can be downloaded at our site h t t p ://w.uga.edu/RNA-informatics/software/index.php.
Inferring phylogenetic trees from the knowledge of rare evolutionary events.
Hellmuth, Marc; Hernandez-Rosales, Maribel; Long, Yangjing; Stadler, Peter F
2018-06-01
Rare events have played an increasing role in molecular phylogenetics as potentially homoplasy-poor characters. In this contribution we analyze the phylogenetic information content from a combinatorial point of view by considering the binary relation on the set of taxa defined by the existence of a single event separating two taxa. We show that the graph-representation of this relation must be a tree. Moreover, we characterize completely the relationship between the tree of such relations and the underlying phylogenetic tree. With directed operations such as tandem-duplication-random-loss events in mind we demonstrate how non-symmetric information constrains the position of the root in the partially reconstructed phylogeny.
The Eclipsing Binary On-Line Atlas (EBOLA)
NASA Astrophysics Data System (ADS)
Bradstreet, D. H.; Steelman, D. P.; Sanders, S. J.; Hargis, J. R.
2004-05-01
In conjunction with the upcoming release of \\it Binary Maker 3.0, an extensive on-line database of eclipsing binaries is being made available. The purposes of the atlas are: \\begin {enumerate} Allow quick and easy access to information on published eclipsing binaries. Amass a consistent database of light and radial velocity curve solutions to aid in solving new systems. Provide invaluable querying capabilities on all of the parameters of the systems so that informative research can be quickly accomplished on a multitude of published results. Aid observers in establishing new observing programs based upon stars needing new light and/or radial velocity curves. Encourage workers to submit their published results so that others may have easy access to their work. Provide a vast but easily accessible storehouse of information on eclipsing binaries to accelerate the process of understanding analysis techniques and current work in the field. \\end {enumerate} The database will eventually consist of all published eclipsing binaries with light curve solutions. The following information and data will be supplied whenever available for each binary: original light curves in all bandpasses, original radial velocity observations, light curve parameters, RA and Dec, V-magnitudes, spectral types, color indices, periods, binary type, 3D representation of the system near quadrature, plots of the original light curves and synthetic models, plots of the radial velocity observations with theoretical models, and \\it Binary Maker 3.0 data files (parameter, light curve, radial velocity). The pertinent references for each star are also given with hyperlinks directly to the papers via the NASA Abstract website for downloading, if available. In addition the Atlas has extensive searching options so that workers can specifically search for binaries with specific characteristics. The website has more than 150 systems already uploaded. The URL for the site is http://ebola.eastern.edu/.
Binary Black Hole Mergers in the First Advanced LIGO Observing Run
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gaebel, S.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hamilton, H.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2016-10-01
The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper, we present full results from a search for binary black hole merger signals with total masses up to 100 M⊙ and detailed implications from our observations of these systems. Our search, based on general-relativistic models of gravitational-wave signals from binary black hole systems, unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than 5 σ over the observing period. It also identified a third possible signal, LVT151012, with substantially lower significance and with an 87% probability of being of astrophysical origin. We provide detailed estimates of the parameters of the observed systems. Both GW150914 and GW151226 provide an unprecedented opportunity to study the two-body motion of a compact-object binary in the large velocity, highly nonlinear regime. We do not observe any deviations from general relativity, and we place improved empirical bounds on several high-order post-Newtonian coefficients. From our observations, we infer stellar-mass binary black hole merger rates lying in the range 9 - 240 Gpc-3 yr-1 . These observations are beginning to inform astrophysical predictions of binary black hole formation rates and indicate that future observing runs of the Advanced detector network will yield many more gravitational-wave detections.
NASA Astrophysics Data System (ADS)
Meadors, Grant David; Krishnan, Badri; Papa, Maria Alessandra; Whelan, John T.; Zhang, Yuanhao
2018-02-01
Continuous-wave (CW) gravitational waves (GWs) call for computationally-intensive methods. Low signal-to-noise ratio signals need templated searches with long coherent integration times and thus fine parameter-space resolution. Longer integration increases sensitivity. Low-mass x-ray binaries (LMXBs) such as Scorpius X-1 (Sco X-1) may emit accretion-driven CWs at strains reachable by current ground-based observatories. Binary orbital parameters induce phase modulation. This paper describes how resampling corrects binary and detector motion, yielding source-frame time series used for cross-correlation. Compared to the previous, detector-frame, templated cross-correlation method, used for Sco X-1 on data from the first Advanced LIGO observing run (O1), resampling is about 20 × faster in the costliest, most-sensitive frequency bands. Speed-up factors depend on integration time and search setup. The speed could be reinvested into longer integration with a forecast sensitivity gain, 20 to 125 Hz median, of approximately 51%, or from 20 to 250 Hz, 11%, given the same per-band cost and setup. This paper's timing model enables future setup optimization. Resampling scales well with longer integration, and at 10 × unoptimized cost could reach respectively 2.83 × and 2.75 × median sensitivities, limited by spin-wandering. Then an O1 search could yield a marginalized-polarization upper limit reaching torque-balance at 100 Hz. Frequencies from 40 to 140 Hz might be probed in equal observing time with 2 × improved detectors.
Majumdar, Satya N
2003-08-01
We use the traveling front approach to derive exact asymptotic results for the statistics of the number of particles in a class of directed diffusion-limited aggregation models on a Cayley tree. We point out that some aspects of these models are closely connected to two different problems in computer science, namely, the digital search tree problem in data structures and the Lempel-Ziv algorithm for data compression. The statistics of the number of particles studied here is related to the statistics of height in digital search trees which, in turn, is related to the statistics of the length of the longest word formed by the Lempel-Ziv algorithm. Implications of our results to these computer science problems are pointed out.
NASA Astrophysics Data System (ADS)
Majumdar, Satya N.
2003-08-01
We use the traveling front approach to derive exact asymptotic results for the statistics of the number of particles in a class of directed diffusion-limited aggregation models on a Cayley tree. We point out that some aspects of these models are closely connected to two different problems in computer science, namely, the digital search tree problem in data structures and the Lempel-Ziv algorithm for data compression. The statistics of the number of particles studied here is related to the statistics of height in digital search trees which, in turn, is related to the statistics of the length of the longest word formed by the Lempel-Ziv algorithm. Implications of our results to these computer science problems are pointed out.
Johnson, Rebecca N; Agapow, Paul-Michael; Crozier, Ross H
2003-11-01
The ant subfamily Formicinae is a large assemblage (2458 species (J. Nat. Hist. 29 (1995) 1037), including species that weave leaf nests together with larval silk and in which the metapleural gland-the ancestrally defining ant character-has been secondarily lost. We used sequences from two mitochondrial genes (cytochrome b and cytochrome oxidase 2) from 18 formicine and 4 outgroup taxa to derive a robust phylogeny, employing a search for tree islands using 10000 randomly constructed trees as starting points and deriving a maximum likelihood consensus tree from the ML tree and those not significantly different from it. Non-parametric bootstrapping showed that the ML consensus tree fit the data significantly better than three scenarios based on morphology, with that of Bolton (Identification Guide to the Ant Genera of the World, Harvard University Press, Cambridge, MA) being the best among these alternative trees. Trait mapping showed that weaving had arisen at least four times and possibly been lost once. A maximum likelihood analysis showed that loss of the metapleural gland is significantly associated with the weaver life-pattern. The graph of the frequencies with which trees were discovered versus their likelihood indicates that trees with high likelihoods have much larger basins of attraction than those with lower likelihoods. While this result indicates that single searches are more likely to find high- than low-likelihood tree islands, it also indicates that searching only for the single best tree may lose important information.
Wang, Xueyi
2012-02-08
The k-nearest neighbors (k-NN) algorithm is a widely used machine learning method that finds nearest neighbors of a test object in a feature space. We present a new exact k-NN algorithm called kMkNN (k-Means for k-Nearest Neighbors) that uses the k-means clustering and the triangle inequality to accelerate the searching for nearest neighbors in a high dimensional space. The kMkNN algorithm has two stages. In the buildup stage, instead of using complex tree structures such as metric trees, kd-trees, or ball-tree, kMkNN uses a simple k-means clustering method to preprocess the training dataset. In the searching stage, given a query object, kMkNN finds nearest training objects starting from the nearest cluster to the query object and uses the triangle inequality to reduce the distance calculations. Experiments show that the performance of kMkNN is surprisingly good compared to the traditional k-NN algorithm and tree-based k-NN algorithms such as kd-trees and ball-trees. On a collection of 20 datasets with up to 10(6) records and 10(4) dimensions, kMkNN shows a 2-to 80-fold reduction of distance calculations and a 2- to 60-fold speedup over the traditional k-NN algorithm for 16 datasets. Furthermore, kMkNN performs significant better than a kd-tree based k-NN algorithm for all datasets and performs better than a ball-tree based k-NN algorithm for most datasets. The results show that kMkNN is effective for searching nearest neighbors in high dimensional spaces.
NASA Astrophysics Data System (ADS)
Xu, Shuo; Ji, Ze; Truong Pham, Duc; Yu, Fan
2011-11-01
The simultaneous mission assignment and home allocation for hospital service robots studied is a Multidimensional Assignment Problem (MAP) with multiobjectives and multiconstraints. A population-based metaheuristic, the Binary Bees Algorithm (BBA), is proposed to optimize this NP-hard problem. Inspired by the foraging mechanism of honeybees, the BBA's most important feature is an explicit functional partitioning between global search and local search for exploration and exploitation, respectively. Its key parts consist of adaptive global search, three-step elitism selection (constraint handling, non-dominated solutions selection, and diversity preservation), and elites-centred local search within a Hamming neighbourhood. Two comparative experiments were conducted to investigate its single objective optimization, optimization effectiveness (indexed by the S-metric and C-metric) and optimization efficiency (indexed by computational burden and CPU time) in detail. The BBA outperformed its competitors in almost all the quantitative indices. Hence, the above overall scheme, and particularly the searching history-adapted global search strategy was validated.
A Sequence of Sorting Strategies.
ERIC Educational Resources Information Center
Duncan, David R.; Litwiller, Bonnie H.
1984-01-01
Describes eight increasingly sophisticated and efficient sorting algorithms including linear insertion, binary insertion, shellsort, bubble exchange, shakersort, quick sort, straight selection, and tree selection. Provides challenges for the reader and the student to program these efficiently. (JM)
Optimum Array Processing for Detecting Binary Signals Corrupted by Directional Interference.
1972-12-01
specific cases. Two different series representations of a vector random process are discussed in Van Trees [3]. These two methods both require the... spaci ~ng d, etc.) its detection error represents a lower bound for the performance that might be obtained with other types of array processing (such...Middleton, Introduction to Statistical Communication Theory, New York: McGraw-Hill, 1960. 3. H.L. Van Trees , Detection, Estimation, and Modulation Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, A.; André, M.; Anghinolfi, M.
The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by the Fermi Gamma-ray Burst Monitor (Fermi-GBM), and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory (INTEGRAL), indicating particle acceleration by the source. The precise location of the event was determined by optical detections of emission following the merger. We searched for high-energy neutrinos from the merger in the GeV–EeV energy range using the Antares, IceCube, and Pierre Auger Observatories. No neutrinos directionally coincidentmore » with the source were detected within ±500 s around the merger time. Additionally, no MeV neutrino burst signal was detected coincident with the merger. We further carried out an extended search in the direction of the source for high-energy neutrinos within the 14 day period following the merger, but found no evidence of emission. We used these results to probe dissipation mechanisms in relativistic outflows driven by the binary neutron star merger. The non-detection is consistent with model predictions of short GRBs observed at a large off-axis angle.« less
Albert, A.; André, M.; Anghinolfi, M.; ...
2017-11-29
The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by the Fermi Gamma-ray Burst Monitor (Fermi-GBM), and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory (INTEGRAL), indicating particle acceleration by the source. The precise location of the event was determined by optical detections of emission following the merger. We searched for high-energy neutrinos from the merger in the GeV–EeV energy range using the Antares, IceCube, and Pierre Auger Observatories. No neutrinos directionally coincidentmore » with the source were detected within ±500 s around the merger time. Additionally, no MeV neutrino burst signal was detected coincident with the merger. We further carried out an extended search in the direction of the source for high-energy neutrinos within the 14 day period following the merger, but found no evidence of emission. We used these results to probe dissipation mechanisms in relativistic outflows driven by the binary neutron star merger. The non-detection is consistent with model predictions of short GRBs observed at a large off-axis angle.« less
NASA Astrophysics Data System (ADS)
Albert, A.; André, M.; Anghinolfi, M.; Ardid, M.; Aubert, J.-J.; Aublin, J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Belhorma, B.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M. C.; Brânzaş, H.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Cherkaoui El Moursli, R.; Chiarusi, T.; Circella, M.; Coelho, J. A. B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Díaz, A. F.; Deschamps, A.; De Bonis, G.; Distefano, C.; Di Palma, I.; Domi, A.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; El Khayati, N.; Elsässer, D.; Enzenhöfer, A.; Ettahiri, A.; Fassi, F.; Felis, I.; Fusco, L. A.; Gay, P.; Giordano, V.; Glotin, H.; Grégoire, T.; Ruiz, R. Gracia; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Navas, S.; Nezri, E.; Organokov, M.; Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sánchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schüssler, F.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tönnis, C.; Vallage, B.; Van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzoca, A.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; ANTARES Collaboration; Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Samarai, I. Al; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Barron, J. P.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Bourbeau, E.; Bourbeau, J.; Bradascio, F.; Braun, J.; Brayeur, L.; Brenzke, M.; Bretz, H.-P.; Bron, S.; Brostean-Kaiser, J.; Burgman, A.; Carver, T.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; DeLaunay, J. J.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Dvorak, E.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; Hünnefeld, M.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kalaczynski, P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koschinsky, J. P.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lesiak-Bzdak, M.; Leuermann, M.; Liu, Q. R.; Lu, L.; Lünemann, J.; Luszczak, W.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.; Momenté, G.; Montaruli, T.; Moore, R. W.; Moulai, M.; Nahnhauer, R.; Nakarmi, P.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O’Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Plum, M.; Pranav, D.; Price, P. B.; Przybylski, G. T.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Rea, I. C.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sälzer, T.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soedingrekso, J.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strotjohann, N. L.; Stuttard, T.; Sullivan, G. W.; Sutherland, M.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Turley, C. F.; Ty, B.; Unger, E.; Usner, M.; Vandenbroucke, J.; Van Driessche, W.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Vehring, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandler, F. D.; Wandkowsky, N.; Waza, A.; Weaver, C.; Weiss, M. J.; Wendt, C.; Werthebach, J.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, J.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Yuan, T.; Zoll, M.; IceCube Collaboration; Aab, A.; Abreu, P.; Aglietta, M.; Albuquerque, I. F. M.; Albury, J. M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arsene, N.; Asorey, H.; Assis, P.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Barbato, F.; Barreira Luz, R. J.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caruso, R.; Castellina, A.; Catalani, F.; Cataldi, G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Cobos Cerutti, A. C.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Consolati, G.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D’Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; Day, J. A.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D’Olivo, J. C.; Dorosti, Q.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Farmer, J.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Feldbusch, F.; Fenu, F.; Fick, B.; Figueira, J. M.; Filipčič, A.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaïor, R.; García, B.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gorgi, A.; Gottowik, M.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Halliday, R.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harvey, V. M.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Johnsen, J. A.; Josebachuili, M.; Jurysek, J.; Kääpä, A.; Kampert, K. H.; Keilhauer, B.; Kemmerich, N.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; Lago, B. L.; LaHurd, D.; Lang, R. G.; Lauscher, M.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lo Presti, D.; Lopes, L.; López, R.; López Casado, A.; Lorek, R.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Merenda, K.-D.; Michal, S.; Micheletti, M. I.; Middendorf, L.; Miramonti, L.; Mitrica, B.; Mockler, D.; Mollerach, S.; Montanet, F.; Morello, C.; Morlino, G.; Mostafá, M.; Müller, A. L.; Müller, G.; Muller, M. A.; Müller, S.; Mussa, R.; Naranjo, I.; Nellen, L.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Núñez, L. A.; Oikonomou, F.; Olinto, A.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perlin, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Pierog, T.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Poh, J.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.; Ravignani, D.; Ridky, J.; Riehn, F.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl, P.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Schauer, M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schröder, S.; Schulz, A.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Soriano, J. F.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Stassi, P.; Stolpovskiy, M.; Strafella, F.; Streich, A.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Šupík, J.; Swain, J.; Szadkowski, Z.; Taboada, A.; Taborda, O. A.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Torralba Elipe, G.; Travnicek, P.; Trini, M.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Vázquez, R. A.; Veberič, D.; Ventura, C.; Vergara Quispe, I. D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiedeński, M.; Wiencke, L.; Wilczyński, H.; Wirtz, M.; Wittkowski, D.; Wundheiler, B.; Yang, L.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.; The Pierre Auger Collaboration; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D’Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O’Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O’Reilly, B.; Ormiston, R.; Ortega, L. F.; O’Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2017-12-01
The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by the Fermi Gamma-ray Burst Monitor (Fermi-GBM), and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory (INTEGRAL), indicating particle acceleration by the source. The precise location of the event was determined by optical detections of emission following the merger. We searched for high-energy neutrinos from the merger in the GeV–EeV energy range using the ANTARES, IceCube, and Pierre Auger Observatories. No neutrinos directionally coincident with the source were detected within ±500 s around the merger time. Additionally, no MeV neutrino burst signal was detected coincident with the merger. We further carried out an extended search in the direction of the source for high-energy neutrinos within the 14 day period following the merger, but found no evidence of emission. We used these results to probe dissipation mechanisms in relativistic outflows driven by the binary neutron star merger. The non-detection is consistent with model predictions of short GRBs observed at a large off-axis angle.
EnviroAtlas Estimated Percent Tree Cover Along Walkable Roads Web Service
This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. For specific information about each community's Estimated Percent Tree Cover Along Walkable Roads layer, consult their individual metadata records: Austin, TX (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B4876FD99-C14A-464A-9E31-5CB5F2225687%7D); Cleveland, OH (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B28e3f937-6f22-45c5-98cf-1707b0fc92df%7D); Des Moines, IA (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B09FE7D60-B636-405C-BB07-68147DFE8CAF%7D); Durham, NC (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7BF341A26B-4972-4C6B-B675-9B5E02F4F25F%7D); Fresno, CA (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7BB71334B9-C53A-4674-A739-1031969E5163%7D); Green Bay, WI (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7BB9AFEBED-9C29-4DB0-8B54-0CAF58BE5A2D%7D); Memphis, TN (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7BBE552E7A-A789-4AA9-ADF9-234109C6517E%7D); Mi
Nodal distances for rooted phylogenetic trees.
Cardona, Gabriel; Llabrés, Mercè; Rosselló, Francesc; Valiente, Gabriel
2010-08-01
Dissimilarity measures for (possibly weighted) phylogenetic trees based on the comparison of their vectors of path lengths between pairs of taxa, have been present in the systematics literature since the early seventies. For rooted phylogenetic trees, however, these vectors can only separate non-weighted binary trees, and therefore these dissimilarity measures are metrics only on this class of rooted phylogenetic trees. In this paper we overcome this problem, by splitting in a suitable way each path length between two taxa into two lengths. We prove that the resulting splitted path lengths matrices single out arbitrary rooted phylogenetic trees with nested taxa and arcs weighted in the set of positive real numbers. This allows the definition of metrics on this general class of rooted phylogenetic trees by comparing these matrices through metrics in spaces M(n)(R) of real-valued n x n matrices. We conclude this paper by establishing some basic facts about the metrics for non-weighted phylogenetic trees defined in this way using L(p) metrics on M(n)(R), with p [epsilon] R(>0).
Rodrigues, Vera Lúcia Cortiço Corrêa; Pauliquevis, Clovis; da Silva, Rubens Antonio; Wanderley, Dalva Marli Valério; Guirardo, Marluci Monteiro; Rodas, Lilian Aparecida Colebrusco; Casanova, Claudio; Pachioni, Marcio L.; Souza, Wilson A.; Costa, Abílio Jose Batista; Baitelo, Delvo; Tonietti, Vera Lúcia Braga
2014-01-01
The objective of this study is to report on the colonization of palm trees by Rhodnius neglectus, its invasion in an urban area, in Araçatuba - São Paulo, and the control and surveillance measures that have been put in place. Domiciliary triatomine searches occurred in apartments upon the inhabitants' notification. The collected insects were identified and examined for natural infection and food sources with a precipitin test. To search the palm trees, tarps were used to cover the floor, and a “Munck” truck equipped with a tree-pruning device was utilized. Chemical control was performed with the utilization of a manual compression. In 2009, 81 specimens of Rhodnius neglectus were collected from the domiciles by the population. The precipitin test revealed a presence of human blood in 2.7% of the samples. Entomological studies were carried out in these domiciles and in those located within a radius of 200 meters. The search performed in the palm trees resulted in the capture of 882 specimens of triatomines, negative for tripanosomatids. Mechanical and chemical controls were carried out. New searches conducted in the palm trees in the same year resulted in the capture of six specimens. The mechanical and chemical controls of the palm trees, together with the population's work, proved to be effective, therefore preventing these insects' colonization of the city's domiciles. PMID:24878999
Matter effects on LIGO/Virgo searches for gravitational waves from merging neutron stars
NASA Astrophysics Data System (ADS)
Cullen, Torrey; Harry, Ian; Read, Jocelyn; Flynn, Eric
2017-12-01
Gravitational waves from merging neutron stars are expected to be observed in the next five years. We explore the potential impact of matter effects on gravitational waves from merging double neutron-star binaries. If neutron star binaries exist with chirp masses less than roughly one solar mass and typical neutron-star radii are larger than roughly 14 km, or if neutron-star radii are larger than 15-16 km for the chirp masses of galactic neutron-star binaries, then matter will have a significant impact on the effectiveness of a point-particle-based search at Advanced LIGO design sensitivity (roughly 5% additional loss of signals). In a configuration typical of LIGO’s first observing run, extreme matter effects lead to up to 10% potential loss in the most extreme cases.
Li, Jia-Han; Webb, Kevin J; Burke, Gerald J; White, Daniel A; Thompson, Charles A
2006-05-01
A multiresolution direct binary search iterative procedure is used to design small dielectric irregular diffractive optical elements that have subwavelength features and achieve near-field focusing below the diffraction limit. Designs with a single focus or with two foci, depending on wavelength or polarization, illustrate the possible functionalities available from the large number of degrees of freedom. These examples suggest that the concept of such elements may find applications in near-field lithography, wavelength-division multiplexing, spectral analysis, and polarization beam splitters.
A Search for Variable Stars in Ruprecht 134 (Abstract)
NASA Astrophysics Data System (ADS)
El Hamri, R.; Blake, M.
2018-06-01
(Abstract only) Contact binary stars have been found in many old open clusters. These stars are useful for obtaining the distances to these star clusters and for understanding the stellar populations and evolution of the old clusters. Ruprecht 134 is a relatively neglected, old open cluster with an age of about 1 Gyr. We have obtained observations of Ruprecht 134 using the 1-meter telescope at Cerro Tololo Interamerican Observatory for the purpose of identifying candidate contact binaries. We present the preliminary results of this search and discuss future observations.
NASA Technical Reports Server (NTRS)
Indik, Nathaniel; Haris, K.; Dal Canton, Tito; Fehrmann, Henning; Krishnan, Badri; Lundgren, Andrew; Nielsen, Alex B.; Pai, Archana
2017-01-01
Gravitational wave searches to date have largely focused on non-precessing systems. Including precession effects greatly increases the number of templates to be searched over. This leads to a corresponding increase in the computational cost and can increase the false alarm rate of a realistic search. On the other hand, there might be astrophysical systems that are entirely missed by non-precessing searches. In this paper we consider the problem of constructing a template bank using stochastic methods for neutron star-black hole binaries allowing for precession, but with the restrictions that the total angular momentum of the binary is pointing toward the detector and that the neutron star spin is negligible relative to that of the black hole. We quantify the number of templates required for the search, and we explicitly construct the template bank. We show that despite the large number of templates, stochastic methods can be adapted to solve the problem. We quantify the parameter space region over which the non-precessing search might miss signals.
Fast correspondences search in anatomical trees
NASA Astrophysics Data System (ADS)
dos Santos, Thiago R.; Gergel, Ingmar; Meinzer, Hans-Peter; Maier-Hein, Lena
2010-03-01
Registration of multiple medical images commonly comprises the steps feature extraction, correspondences search and transformation computation. In this paper, we present a new method for a fast and pose independent search of correspondences using as features anatomical trees such as the bronchial system in the lungs or the vessel system in the liver. Our approach scores the similarities between the trees' nodes (bifurcations) taking into account both, topological properties extracted from their graph representations and anatomical properties extracted from the trees themselves. The node assignment maximizes the global similarity (sum of the scores of each pair of assigned nodes), assuring that the matches are distributed throughout the trees. Furthermore, the proposed method is able to deal with distortions in the data, such as noise, motion, artifacts, and problems associated with the extraction method, such as missing or false branches. According to an evaluation on swine lung data sets, the method requires less than one second on average to compute the matching and yields a high rate of correct matches compared to state of the art work.
Control of broadband optically generated ultrasound pulses using binary amplitude holograms.
Brown, Michael D; Jaros, Jiri; Cox, Ben T; Treeby, Bradley E
2016-04-01
In this work, the use of binary amplitude holography is investigated as a mechanism to focus broadband acoustic pulses generated by high peak-power pulsed lasers. Two algorithms are described for the calculation of the binary holograms; one using ray-tracing, and one using an optimization based on direct binary search. It is shown using numerical simulations that when a binary amplitude hologram is excited by a train of laser pulses at its design frequency, the acoustic field can be focused at a pre-determined distribution of points, including single and multiple focal points, and line and square foci. The numerical results are validated by acoustic field measurements from binary amplitude holograms, excited by a high peak-power laser.
The Design of a Polymorphous Cognitive Agent Architecture (PCAA)
2008-05-01
tree, and search agents may search the tree for documents or clusters, depositing pheromones on the way down the tree. 46 19 The quality of SODAS...location in the lattice is a node, connected to its neighbors by links, and agents roam across the lattice, depositing pheromones . 49 21 A possible FPGA...provided by swarming, and also figure out a way for learning in ACT-R to trickle down to swarming computations, e.g., through the pheromones . Integration
VizieR Online Data Catalog: Wide binaries in Tycho-Gaia: search method (Andrews+, 2017)
NASA Astrophysics Data System (ADS)
Andrews, J. J.; Chaname, J.; Agueros, M. A.
2017-11-01
Our catalogue of wide binaries identified in the Tycho-Gaia Astrometric Solution catalogue. The Gaia source IDs, Tycho IDs, astrometry, posterior probabilities for both the log-flat prior and power-law prior models, and angular separation are presented. (1 data file).
NASA Astrophysics Data System (ADS)
Chen, Wen-Yuan; Liu, Chen-Chung
2006-01-01
The problems with binary watermarking schemes are that they have only a small amount of embeddable space and are not robust enough. We develop a slice-based large-cluster algorithm (SBLCA) to construct a robust watermarking scheme for binary images. In SBLCA, a small-amount cluster selection (SACS) strategy is used to search for a feasible slice in a large-cluster flappable-pixel decision (LCFPD) method, which is used to search for the best location for concealing a secret bit from a selected slice. This method has four major advantages over the others: (a) SBLCA has a simple and effective decision function to select appropriate concealment locations, (b) SBLCA utilizes a blind watermarking scheme without the original image in the watermark extracting process, (c) SBLCA uses slice-based shuffling capability to transfer the regular image into a hash state without remembering the state before shuffling, and finally, (d) SBLCA has enough embeddable space that every 64 pixels could accommodate a secret bit of the binary image. Furthermore, empirical results on test images reveal that our approach is a robust watermarking scheme for binary images.
Search for A-F Spectral type pulsating components in Algol-type eclipsing binary systems
NASA Astrophysics Data System (ADS)
Kim, S.-L.; Lee, J. W.; Kwon, S.-G.; Youn, J.-H.; Mkrtichian, D. E.; Kim, C.
2003-07-01
We present the results of a systematic search for pulsating components in Algol-type eclipsing binary systems. A total number of 14 eclipsing binaries with A-F spectral type primary components were observed for 22 nights. We confirmed small-amplitude oscillating features of a recently detected pulsator TW Dra, which has a pulsating period of 0.053 day and a semi-amplitude of about 5 mmag in B-passband. We discovered new pulsating components in two eclipsing binaries of RX Hya and AB Per. The primary component of RX Hya is pulsating with a dominant period of 0.052 day and a semi-amplitude of about 7 mmag. AB Per has also a pulsating component with a period of 0.196 day and a semi-amplitude of about 10 mmag in B-passband. We suggest that these two new pulsators are members of the newly introduced group of mass-accreting pulsating stars in semi-detached Algol-type eclipsing binary systems. Table 4 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/405/231
PcapDB: Search Optimized Packet Capture, Version 0.1.0.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrell, Paul; Steinfadt, Shannon
PcapDB is a packet capture system designed to optimize the captured data for fast search in the typical (network incident response) use case. The technology involved in this software has been submitted via the IDEAS system and has been filed as a provisional patent. It includes the following primary components: capture: The capture component utilizes existing capture libraries to retrieve packets from network interfaces. Once retrieved the packets are passed to additional threads for sorting into flows and indexing. The sorted flows and indexes are passed to other threads so that they can be written to disk. These components aremore » written in the C programming language. search: The search components provide a means to find relevant flows and the associated packets. A search query is parsed and represented as a search tree. Various search commands, written in C, are then used resolve this tree into a set of search results. The tree generation and search execution management components are written in python. interface: The PcapDB web interface is written in Python on the Django framework. It provides a series of pages, API's, and asynchronous tasks that allow the user to manage the capture system, perform searches, and retrieve results. Web page components are written in HTML,CSS and Javascript.« less
NASA Astrophysics Data System (ADS)
dos Santos, Leonardo A.; Meléndez, Jorge; Bedell, Megan; Bean, Jacob L.; Spina, Lorenzo; Alves-Brito, Alan; Dreizler, Stefan; Ramírez, Iván; Asplund, Martin
2017-12-01
Previous studies on the rotation of Sun-like stars revealed that the rotational rates of young stars converge towards a well-defined evolution that follows a power-law decay. It seems, however, that some binary stars do not obey this relation, often by displaying enhanced rotational rates and activity. In the Solar Twin Planet Search program, we observed several solar twin binaries, and found a multiplicity fraction of 42 per cent ± 6 per cent in the whole sample; moreover, at least three of these binaries (HIP 19911, HIP 67620 and HIP 103983) clearly exhibit the aforementioned anomalies. We investigated the configuration of the binaries in the program, and discovered new companions for HIP 6407, HIP 54582, HIP 62039 and HIP 30037, of which the latter is orbited by a 0.06 M⊙ brown dwarf in a 1 m long orbit. We report the orbital parameters of the systems with well-sampled orbits and, in addition, the lower limits of parameters for the companions that only display a curvature in their radial velocities. For the linear trend binaries, we report an estimate of the masses of their companions when their observed separation is available, and a minimum mass otherwise. We conclude that solar twin binaries with low-mass stellar companions at moderate orbital periods do not display signs of a distinct rotational evolution when compared to single stars. We confirm that the three peculiar stars are double-lined binaries, and that their companions are polluting their spectra, which explains the observed anomalies.
Parallel Monte Carlo Search for Hough Transform
NASA Astrophysics Data System (ADS)
Lopes, Raul H. C.; Franqueira, Virginia N. L.; Reid, Ivan D.; Hobson, Peter R.
2017-10-01
We investigate the problem of line detection in digital image processing and in special how state of the art algorithms behave in the presence of noise and whether CPU efficiency can be improved by the combination of a Monte Carlo Tree Search, hierarchical space decomposition, and parallel computing. The starting point of the investigation is the method introduced in 1962 by Paul Hough for detecting lines in binary images. Extended in the 1970s to the detection of space forms, what came to be known as Hough Transform (HT) has been proposed, for example, in the context of track fitting in the LHC ATLAS and CMS projects. The Hough Transform transfers the problem of line detection, for example, into one of optimization of the peak in a vote counting process for cells which contain the possible points of candidate lines. The detection algorithm can be computationally expensive both in the demands made upon the processor and on memory. Additionally, it can have a reduced effectiveness in detection in the presence of noise. Our first contribution consists in an evaluation of the use of a variation of the Radon Transform as a form of improving theeffectiveness of line detection in the presence of noise. Then, parallel algorithms for variations of the Hough Transform and the Radon Transform for line detection are introduced. An algorithm for Parallel Monte Carlo Search applied to line detection is also introduced. Their algorithmic complexities are discussed. Finally, implementations on multi-GPU and multicore architectures are discussed.
Genetic programming based ensemble system for microarray data classification.
Liu, Kun-Hong; Tong, Muchenxuan; Xie, Shu-Tong; Yee Ng, Vincent To
2015-01-01
Recently, more and more machine learning techniques have been applied to microarray data analysis. The aim of this study is to propose a genetic programming (GP) based new ensemble system (named GPES), which can be used to effectively classify different types of cancers. Decision trees are deployed as base classifiers in this ensemble framework with three operators: Min, Max, and Average. Each individual of the GP is an ensemble system, and they become more and more accurate in the evolutionary process. The feature selection technique and balanced subsampling technique are applied to increase the diversity in each ensemble system. The final ensemble committee is selected by a forward search algorithm, which is shown to be capable of fitting data automatically. The performance of GPES is evaluated using five binary class and six multiclass microarray datasets, and results show that the algorithm can achieve better results in most cases compared with some other ensemble systems. By using elaborate base classifiers or applying other sampling techniques, the performance of GPES may be further improved.
Genetic Programming Based Ensemble System for Microarray Data Classification
Liu, Kun-Hong; Tong, Muchenxuan; Xie, Shu-Tong; Yee Ng, Vincent To
2015-01-01
Recently, more and more machine learning techniques have been applied to microarray data analysis. The aim of this study is to propose a genetic programming (GP) based new ensemble system (named GPES), which can be used to effectively classify different types of cancers. Decision trees are deployed as base classifiers in this ensemble framework with three operators: Min, Max, and Average. Each individual of the GP is an ensemble system, and they become more and more accurate in the evolutionary process. The feature selection technique and balanced subsampling technique are applied to increase the diversity in each ensemble system. The final ensemble committee is selected by a forward search algorithm, which is shown to be capable of fitting data automatically. The performance of GPES is evaluated using five binary class and six multiclass microarray datasets, and results show that the algorithm can achieve better results in most cases compared with some other ensemble systems. By using elaborate base classifiers or applying other sampling techniques, the performance of GPES may be further improved. PMID:25810748
Gravitational waves from rotating neutron stars and compact binary systems
NASA Astrophysics Data System (ADS)
Wade, Leslie E., IV
It is widely anticipated that the first direct detections of gravitational waves will be made by advanced gravitational-wave detectors, such as the two Laser Interferometer Gravitational-wave Observatories (LIGO) and the Virgo interferometer. In preparation for the advanced detector era, I have worked on both detection and post-detection efforts involving two gravitational wave sources: isolated rotating neutron stars (NSs) and compact binary coalescences (CBCs). My dissertation includes three main research projects: 1) a population synthesis study assessing the detectability of isolated NSs, 2) a CBC search for intermediate-mass black-hole binaries (IMBHBs), and 3) new methods for directly measuring the neutron-star (NS) equation of state (EOS). Direct detections of gravitational waves will enrich our current astrophysical knowledge. One such contribution will be through population synthesis of isolated NSs. My collaborators and I show that advanced gravitational-wave detectors can be used to constrain the properties of the Galactic NS population. Gravitational wave detections can also shine light on a currently mysterious astrophysical object: intermediate mass black holes. In developing the IMBHB search, we performed a mock data challenge where signals with total masses up to a few hundred solar masses were injected into recolored data from LIGO's sixth science run. Since this is the first time a matched filter search has been developed to search for IMBHBs, I discuss what was learned during the mock data challenge and how we plan to improve the search going forward. The final aspect of my dissertation focuses on important post-detection science. I present results for a new method of directly measuring the NS EOS. This is done by estimating the parameters of a 4-piece polytropic EOS model that matches theoretical EOS candidates to a few percent. We show that advanced detectors will be capable of measuring the NS radius to within a kilometer for stars with canonical masses. However, this can only be accomplished with binary NS waveform models that are accurate to the rich EOS physics that happens near merger. We show that the waveforms typically used to model binary NS systems result in unavoidable systematic error that can significantly bias the estimation of the NS EOS.
Nonlinear inversion of potential-field data using a hybrid-encoding genetic algorithm
Chen, C.; Xia, J.; Liu, J.; Feng, G.
2006-01-01
Using a genetic algorithm to solve an inverse problem of complex nonlinear geophysical equations is advantageous because it does not require computer gradients of models or "good" initial models. The multi-point search of a genetic algorithm makes it easier to find the globally optimal solution while avoiding falling into a local extremum. As is the case in other optimization approaches, the search efficiency for a genetic algorithm is vital in finding desired solutions successfully in a multi-dimensional model space. A binary-encoding genetic algorithm is hardly ever used to resolve an optimization problem such as a simple geophysical inversion with only three unknowns. The encoding mechanism, genetic operators, and population size of the genetic algorithm greatly affect search processes in the evolution. It is clear that improved operators and proper population size promote the convergence. Nevertheless, not all genetic operations perform perfectly while searching under either a uniform binary or a decimal encoding system. With the binary encoding mechanism, the crossover scheme may produce more new individuals than with the decimal encoding. On the other hand, the mutation scheme in a decimal encoding system will create new genes larger in scope than those in the binary encoding. This paper discusses approaches of exploiting the search potential of genetic operations in the two encoding systems and presents an approach with a hybrid-encoding mechanism, multi-point crossover, and dynamic population size for geophysical inversion. We present a method that is based on the routine in which the mutation operation is conducted in the decimal code and multi-point crossover operation in the binary code. The mix-encoding algorithm is called the hybrid-encoding genetic algorithm (HEGA). HEGA provides better genes with a higher probability by a mutation operator and improves genetic algorithms in resolving complicated geophysical inverse problems. Another significant result is that final solution is determined by the average model derived from multiple trials instead of one computation due to the randomness in a genetic algorithm procedure. These advantages were demonstrated by synthetic and real-world examples of inversion of potential-field data. ?? 2005 Elsevier Ltd. All rights reserved.
Binary Black Hole Mergers in the First Advanced LIGO Observing Run
NASA Technical Reports Server (NTRS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, F.; Camp, J. B.;
2016-01-01
The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper we present full results from a search for binary black hole merger signals with total masses up to 100M solar mass and detailed implications from our observations of these systems. Our search, based on general-relativistic models of gravitational wave signals from binary black hole systems, unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than 5 alpha over the observing period. It also identified a third possible signal, LVT151012, with substantially lower significance, which has a 87 probability of being of astrophysical origin. We provide detailed estimates of the parameters of the observed systems. Both GW150914 and GW151226 provide an unprecedented opportunity to study the two-body motion of a compact-object binary in the large velocity, highly nonlinear regime. We do not observe any deviations from general relativity, and place improved empirical bounds on several high-order post-Newtonian coefficients. From our observations we infer stellar-mass binary black hole merger rates lying in the range 9-240 Gpc-3 yr-1. These observations are beginning to inform astrophysical predictions of binary black hole formation rates, and indicate that future observing runs of the Advanced detector network will yield many more gravitational wave detections.
An efficient indexing scheme for binary feature based biometric database
NASA Astrophysics Data System (ADS)
Gupta, P.; Sana, A.; Mehrotra, H.; Hwang, C. Jinshong
2007-04-01
The paper proposes an efficient indexing scheme for binary feature template using B+ tree. In this scheme the input image is decomposed into approximation, vertical, horizontal and diagonal coefficients using the discrete wavelet transform. The binarized approximation coefficient at second level is divided into four quadrants of equal size and Hamming distance (HD) for each quadrant with respect to sample template of all ones is measured. This HD value of each quadrant is used to generate upper and lower range values which are inserted into B+ tree. The nodes of tree at first level contain the lower and upper range values generated from HD of first quadrant. Similarly, lower and upper range values for the three quadrants are stored in the second, third and fourth level respectively. Finally leaf node contains the set of identifiers. At the time of identification, the test image is used to generate HD for four quadrants. Then the B+ tree is traversed based on the value of HD at every node and terminates to leaf nodes with set of identifiers. The feature vector for each identifier is retrieved from the particular bin of secondary memory and matched with test feature template to get top matches. The proposed scheme is implemented on ear biometric database collected at IIT Kanpur. The system is giving an overall accuracy of 95.8% at penetration rate of 34%.
A three-sided rearrangeable switching network for a binary fat tree
NASA Astrophysics Data System (ADS)
Yen, Mao-Hsu; Yu, Chu; Shin, Haw-Yun; Chen, Sao-Jie
2011-06-01
A binary fat tree needs an internal node to interconnect the left-children, right-children and parent terminals to each other. In this article, we first propose a three-stage, 3-sided rearrangeable switching network for the implementation of a binary fat tree. The main component of this 3-sided switching network (3SSN) consists of a polygonal switch block (PSB) interconnected by crossbars. With the same size and the same number of switches as our 3SSN, a three-stage, 3-sided clique-based switching network is shown to be not rearrangeable. Also, the effects of the rearrangeable structure and the number of terminals on the network switch-efficiency are explored and a proper set of parameters has been determined to minimise the number of switches. We derive that a rearrangeable 3-sided switching network with switches proportional to N 3/2 is most suitable to interconnect N terminals. Moreover, we propose a new Polygonal Field Programmable Gate Array (PFPGA) that consists of logic blocks interconnected by our 3SSN, such that the logic blocks in this PFPGA can be grouped into clusters to implement different logic functions. Since the programmable switches usually have high resistance and capacitance and occupy a large area, we have to consider the effect of the 3SSN structure and the granularity of its cluster logic blocks on the switch efficiency of PFPGA. Experiments on benchmark circuits show that the switch and speed performances are significantly improved. Based on the experimental results, we can determine the parameters of PFPGA for the VLSI implementation.
NASA Astrophysics Data System (ADS)
Park, Byeongjin; Sohn, Hoon
2018-04-01
The practicality of laser ultrasonic scanning is limited because scanning at a high spatial resolution demands a prohibitively long scanning time. Inspired by binary search, an accelerated defect visualization technique is developed to visualize defect with a reduced scanning time. The pitch-catch distance between the excitation point and the sensing point is also fixed during scanning to maintain a high signal-to-noise ratio of measured ultrasonic responses. The approximate defect boundary is identified by examining the interactions between ultrasonic waves and defect observed at the scanning points that are sparsely selected by a binary search algorithm. Here, a time-domain laser ultrasonic response is transformed into a spatial ultrasonic domain response using a basis pursuit approach so that the interactions between ultrasonic waves and defect can be better identified in the spatial ultrasonic domain. Then, the area inside the identified defect boundary is visualized as defect. The performance of the proposed defect visualization technique is validated through an experiment on a semiconductor chip. The proposed defect visualization technique accelerates the defect visualization process in three aspects: (1) The number of measurements that is necessary for defect visualization is dramatically reduced by a binary search algorithm; (2) The number of averaging that is necessary to achieve a high signal-to-noise ratio is reduced by maintaining the wave propagation distance short; and (3) With the proposed technique, defect can be identified with a lower spatial resolution than the spatial resolution required by full-field wave propagation imaging.
Steel, Mike
2012-10-01
Neutral macroevolutionary models, such as the Yule model, give rise to a probability distribution on the set of discrete rooted binary trees over a given leaf set. Such models can provide a signal as to the approximate location of the root when only the unrooted phylogenetic tree is known, and this signal becomes relatively more significant as the number of leaves grows. In this short note, we show that among models that treat all taxa equally, and are sampling consistent (i.e. the distribution on trees is not affected by taxa yet to be included), all such models, except one (the so-called PDA model), convey some information as to the location of the ancestral root in an unrooted tree. Copyright © 2012 Elsevier Inc. All rights reserved.
Minimum triplet covers of binary phylogenetic X-trees.
Huber, K T; Moulton, V; Steel, M
2017-12-01
Trees with labelled leaves and with all other vertices of degree three play an important role in systematic biology and other areas of classification. A classical combinatorial result ensures that such trees can be uniquely reconstructed from the distances between the leaves (when the edges are given any strictly positive lengths). Moreover, a linear number of these pairwise distance values suffices to determine both the tree and its edge lengths. A natural set of pairs of leaves is provided by any 'triplet cover' of the tree (based on the fact that each non-leaf vertex is the median vertex of three leaves). In this paper we describe a number of new results concerning triplet covers of minimum size. In particular, we characterize such covers in terms of an associated graph being a 2-tree. Also, we show that minimum triplet covers are 'shellable' and thereby provide a set of pairs for which the inter-leaf distance values will uniquely determine the underlying tree and its associated branch lengths.
Nonparametric statistical modeling of binary star separations
NASA Technical Reports Server (NTRS)
Heacox, William D.; Gathright, John
1994-01-01
We develop a comprehensive statistical model for the distribution of observed separations in binary star systems, in terms of distributions of orbital elements, projection effects, and distances to systems. We use this model to derive several diagnostics for estimating the completeness of imaging searches for stellar companions, and the underlying stellar multiplicities. In application to recent imaging searches for low-luminosity companions to nearby M dwarf stars, and for companions to young stars in nearby star-forming regions, our analyses reveal substantial uncertainty in estimates of stellar multiplicity. For binary stars with late-type dwarf companions, semimajor axes appear to be distributed approximately as a(exp -1) for values ranging from about one to several thousand astronomical units. About one-quarter of the companions to field F and G dwarf stars have semimajor axes less than 1 AU, and about 15% lie beyond 1000 AU. The geometric efficiency (fraction of companions imaged onto the detector) of imaging searches is nearly independent of distances to program stars and orbital eccentricities, and varies only slowly with detector spatial limitations.
NASA Astrophysics Data System (ADS)
Liu, Yuan; Du, Zhihui; Chung, Shin Kee; Hooper, Shaun; Blair, David; Wen, Linqing
2012-12-01
We present a graphics processing unit (GPU)-accelerated time-domain low-latency algorithm to search for gravitational waves (GWs) from coalescing binaries of compact objects based on the summed parallel infinite impulse response (SPIIR) filtering technique. The aim is to facilitate fast detection of GWs with a minimum delay to allow prompt electromagnetic follow-up observations. To maximize the GPU acceleration, we apply an efficient batched parallel computing model that significantly reduces the number of synchronizations in SPIIR and optimizes the usage of the memory and hardware resource. Our code is tested on the CUDA ‘Fermi’ architecture in a GTX 480 graphics card and its performance is compared with a single core of Intel Core i7 920 (2.67 GHz). A 58-fold speedup is achieved while giving results in close agreement with the CPU implementation. Our result indicates that it is possible to conduct a full search for GWs from compact binary coalescence in real time with only one desktop computer equipped with a Fermi GPU card for the initial LIGO detectors which in the past required more than 100 CPUs.
FBC: a flat binary code scheme for fast Manhattan hash retrieval
NASA Astrophysics Data System (ADS)
Kong, Yan; Wu, Fuzhang; Gao, Lifa; Wu, Yanjun
2018-04-01
Hash coding is a widely used technique in approximate nearest neighbor (ANN) search, especially in document search and multimedia (such as image and video) retrieval. Based on the difference of distance measurement, hash methods are generally classified into two categories: Hamming hashing and Manhattan hashing. Benefitting from better neighborhood structure preservation, Manhattan hashing methods outperform earlier methods in search effectiveness. However, due to using decimal arithmetic operations instead of bit operations, Manhattan hashing becomes a more time-consuming process, which significantly decreases the whole search efficiency. To solve this problem, we present an intuitive hash scheme which uses Flat Binary Code (FBC) to encode the data points. As a result, the decimal arithmetic used in previous Manhattan hashing can be replaced by more efficient XOR operator. The final experiments show that with a reasonable memory space growth, our FBC speeds up more than 80% averagely without any search accuracy loss when comparing to the state-of-art Manhattan hashing methods.
Steensels, M; Antler, A; Bahr, C; Berckmans, D; Maltz, E; Halachmi, I
2016-09-01
Early detection of post-calving health problems is critical for dairy operations. Separating sick cows from the herd is important, especially in robotic-milking dairy farms, where searching for a sick cow can disturb the other cows' routine. The objectives of this study were to develop and apply a behaviour- and performance-based health-detection model to post-calving cows in a robotic-milking dairy farm, with the aim of detecting sick cows based on available commercial sensors. The study was conducted in an Israeli robotic-milking dairy farm with 250 Israeli-Holstein cows. All cows were equipped with rumination- and neck-activity sensors. Milk yield, visits to the milking robot and BW were recorded in the milking robot. A decision-tree model was developed on a calibration data set (historical data of the 10 months before the study) and was validated on the new data set. The decision model generated a probability of being sick for each cow. The model was applied once a week just before the veterinarian performed the weekly routine post-calving health check. The veterinarian's diagnosis served as a binary reference for the model (healthy-sick). The overall accuracy of the model was 78%, with a specificity of 87% and a sensitivity of 69%, suggesting its practical value.
Searches for millisecond pulsations in low-mass X-ray binaries
NASA Technical Reports Server (NTRS)
Wood, K. S.; Hertz, P.; Norris, J. P.; Vaughan, B. A.; Michelson, P. F.; Mitsuda, K.; Lewin, W. H. G.; Van Paradijs, J.; Penninx, W.; Van Der Klis, M.
1991-01-01
High-sensitivity search techniques for millisecond periods are presented and applied to data from the Japanese satellite Ginga and HEAO 1. The search is optimized for pulsed signals whose period, drift rate, and amplitude conform with what is expected for low-class X-ray binary (LMXB) sources. Consideration is given to how the current understanding of LMXBs guides the search strategy and sets these parameter limits. An optimized one-parameter coherence recovery technique (CRT) developed for recovery of phase coherence is presented. This technique provides a large increase in sensitivity over the method of incoherent summation of Fourier power spectra. The range of spin periods expected from LMXB phenomenology is discussed, the necessary constraints on the application of CRT are described in terms of integration time and orbital parameters, and the residual power unrecovered by the quadratic approximation for realistic cases is estimated.
A Deep Pulse Search in 11 Low Mass X-Ray Binaries
NASA Astrophysics Data System (ADS)
Patruno, A.; Wette, K.; Messenger, C.
2018-06-01
We present a systematic coherent X-ray pulsation search in 11 low mass X-ray binaries (LMXBs). We select a relatively broad variety of LMXBs, including persistent and transient sources, spanning orbital periods between 0.3 and 17 hr. We use about 3.6 Ms of data collected by the Rossi X-Ray Timing Explorer and XMM-Newton and apply a semi-coherent search strategy to look for weak and persistent pulses in a wide spin frequency range. We find no evidence for X-ray pulsations in these systems and consequently set upper limits on the pulsed sinusoidal semi-amplitude below 1.6% for ten outbursting/persistent LMXBs and 6% for a quiescent system; the upper limits are further refined, by searching a narrower parameter space around the outliers, down to 0.14%–0.78% and 2.9%, respectively. These results suggest that weak pulsations might not form in (most) non pulsating LMXBs.
Computing Maximum Cardinality Matchings in Parallel on Bipartite Graphs via Tree-Grafting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azad, Ariful; Buluc, Aydn; Pothen, Alex
It is difficult to obtain high performance when computing matchings on parallel processors because matching algorithms explicitly or implicitly search for paths in the graph, and when these paths become long, there is little concurrency. In spite of this limitation, we present a new algorithm and its shared-memory parallelization that achieves good performance and scalability in computing maximum cardinality matchings in bipartite graphs. This algorithm searches for augmenting paths via specialized breadth-first searches (BFS) from multiple source vertices, hence creating more parallelism than single source algorithms. Algorithms that employ multiple-source searches cannot discard a search tree once no augmenting pathmore » is discovered from the tree, unlike algorithms that rely on single-source searches. We describe a novel tree-grafting method that eliminates most of the redundant edge traversals resulting from this property of multiple-source searches. We also employ the recent direction-optimizing BFS algorithm as a subroutine to discover augmenting paths faster. Our algorithm compares favorably with the current best algorithms in terms of the number of edges traversed, the average augmenting path length, and the number of iterations. Here, we provide a proof of correctness for our algorithm. Our NUMA-aware implementation is scalable to 80 threads of an Intel multiprocessor and to 240 threads on an Intel Knights Corner coprocessor. On average, our parallel algorithm runs an order of magnitude faster than the fastest algorithms available. The performance improvement is more significant on graphs with small matching number.« less
Computing Maximum Cardinality Matchings in Parallel on Bipartite Graphs via Tree-Grafting
Azad, Ariful; Buluc, Aydn; Pothen, Alex
2016-03-24
It is difficult to obtain high performance when computing matchings on parallel processors because matching algorithms explicitly or implicitly search for paths in the graph, and when these paths become long, there is little concurrency. In spite of this limitation, we present a new algorithm and its shared-memory parallelization that achieves good performance and scalability in computing maximum cardinality matchings in bipartite graphs. This algorithm searches for augmenting paths via specialized breadth-first searches (BFS) from multiple source vertices, hence creating more parallelism than single source algorithms. Algorithms that employ multiple-source searches cannot discard a search tree once no augmenting pathmore » is discovered from the tree, unlike algorithms that rely on single-source searches. We describe a novel tree-grafting method that eliminates most of the redundant edge traversals resulting from this property of multiple-source searches. We also employ the recent direction-optimizing BFS algorithm as a subroutine to discover augmenting paths faster. Our algorithm compares favorably with the current best algorithms in terms of the number of edges traversed, the average augmenting path length, and the number of iterations. Here, we provide a proof of correctness for our algorithm. Our NUMA-aware implementation is scalable to 80 threads of an Intel multiprocessor and to 240 threads on an Intel Knights Corner coprocessor. On average, our parallel algorithm runs an order of magnitude faster than the fastest algorithms available. The performance improvement is more significant on graphs with small matching number.« less
VizieR Online Data Catalog: Binary systems among nearby dwarfs searching (Khovritchev+, 2018)
NASA Astrophysics Data System (ADS)
Khovritchev, M. Yu.; Apetyan, A. A.; Roshchina, E. A.; Izmailov, I. S.; Bikulova, D. A.; Ershova, A. P.; Balyaev, I. A.; Kulikova, A. M.; Petjur, V. V.; Shumilov, A. A.; Oskina, K. I.; Maksimova, L. A.
2018-03-01
All results are collected in three tables: saturn1m-bc.dat, saturn1m-sdss-bc.dat and sdss-bc.dat. They have the same byte-by-byte description. The tables contain the estimates of spatial parameters of binaries (rho and d_m), relative ellipticity and asymmetry index. In addition, the positions, proper motions, photometric magnitudes, parallaxes and metallicities are presented. All stars listed in these tables are binary candidates. (3 data files).
NASA Technical Reports Server (NTRS)
Dal Canton, Tito; Harry, Ian W.
2017-01-01
We describe the methodology and novel techniques used to construct a set of waveforms, or template bank, applicable to searches for compact binary coalescences in Advanced LIGO's second observing run. This template bank is suitable for observing systems composed of two neutron stars, two black holes, or a neutron star and a black hole. The Post-Newtonian formulation is used to model waveforms with total mass less than 4 Solar Mass and the most recent effective-one-body model, calibrated to numerical relativity to include the merger and ringdown, is used for total masses greater than 4 Solar Mass. The effects of spin precession, matter, orbital eccentricity and radiation modes beyond the quadrupole are neglected. In contrast to the template bank used to search for compact binary mergers in Advanced LIGO's first observing run, here we are including binary-black-hole systems with total mass up to several hundreds of solar masses, thereby improving the ability to observe such systems. We introduce a technique to vary the starting frequency of waveform filters so that our bank can simultaneously contain binary-neutron-star and high-mass binary-black hole waveforms. We also introduce a lower-bound on the filter waveform length, to exclude very short-duration, high-mass templates whose sensitivity is strongly reduced by the characteristics and performance of the interferometers.
Photometric binary stars in Praesepe and the search for globular cluster binaries
NASA Technical Reports Server (NTRS)
Bolte, Michael
1991-01-01
A radial velocity study of the stars which are located on a second sequence above the single-star zero-age main sequence at a given color in the color-magnitude diagram of the open cluster Praesepe, (NGC 2632) shows that 10, and possibly 11, of 17 are binary systems. Of the binary systems, five have full amplitudes for their velocity variations that are greater than 50 km/s. To the extent that they can be applied to globular clusters, these results suggests that (1) observations of 'second-sequence' stars in globular clusters would be an efficient way of finding main-sequence binary systems in globulars, and (2) current instrumentation on large telescopes is sufficient for establishing unambiguously the existence of main-sequence binary systems in nearby globular clusters.
Dynamic Inertia Weight Binary Bat Algorithm with Neighborhood Search
2017-01-01
Binary bat algorithm (BBA) is a binary version of the bat algorithm (BA). It has been proven that BBA is competitive compared to other binary heuristic algorithms. Since the update processes of velocity in the algorithm are consistent with BA, in some cases, this algorithm also faces the premature convergence problem. This paper proposes an improved binary bat algorithm (IBBA) to solve this problem. To evaluate the performance of IBBA, standard benchmark functions and zero-one knapsack problems have been employed. The numeric results obtained by benchmark functions experiment prove that the proposed approach greatly outperforms the original BBA and binary particle swarm optimization (BPSO). Compared with several other heuristic algorithms on zero-one knapsack problems, it also verifies that the proposed algorithm is more able to avoid local minima. PMID:28634487
Dynamic Inertia Weight Binary Bat Algorithm with Neighborhood Search.
Huang, Xingwang; Zeng, Xuewen; Han, Rui
2017-01-01
Binary bat algorithm (BBA) is a binary version of the bat algorithm (BA). It has been proven that BBA is competitive compared to other binary heuristic algorithms. Since the update processes of velocity in the algorithm are consistent with BA, in some cases, this algorithm also faces the premature convergence problem. This paper proposes an improved binary bat algorithm (IBBA) to solve this problem. To evaluate the performance of IBBA, standard benchmark functions and zero-one knapsack problems have been employed. The numeric results obtained by benchmark functions experiment prove that the proposed approach greatly outperforms the original BBA and binary particle swarm optimization (BPSO). Compared with several other heuristic algorithms on zero-one knapsack problems, it also verifies that the proposed algorithm is more able to avoid local minima.
B-tree search reinforcement learning for model based intelligent agent
NASA Astrophysics Data System (ADS)
Bhuvaneswari, S.; Vignashwaran, R.
2013-03-01
Agents trained by learning techniques provide a powerful approximation of active solutions for naive approaches. In this study using B - Trees implying reinforced learning the data search for information retrieval is moderated to achieve accuracy with minimum search time. The impact of variables and tactics applied in training are determined using reinforcement learning. Agents based on these techniques perform satisfactory baseline and act as finite agents based on the predetermined model against competitors from the course.
Discriminating crop and other canopies by overlapping binary image layers
NASA Astrophysics Data System (ADS)
Doi, Ryoichi
2013-02-01
For optimal management of agricultural fields by remote sensing, discrimination of the crop canopy from weeds and other objects is essential. In a digital photograph, a rice canopy was discriminated from a variety of weed and tree canopies and other objects by overlapping binary image layers of red-green-blue and other color components indicating the pixels with target canopy-specific (intensity) values based on the ranges of means ±(3×) standard deviations. By overlapping and merging the binary image layers, the target canopy specificity improved to 0.0015 from 0.027 for the yellow 1× standard deviation binary image layer, which was the best among all combinations of color components and means ±(3×) standard deviations. The most target rice canopy-likely pixels were further identified by limiting the pixels at different luminosity values. The discriminatory power was also visually demonstrated in this manner.
Search for Pulsating Stars in the Open Cluster NGC 1502
NASA Astrophysics Data System (ADS)
Stęślicki, M.
2006-04-01
We present results of a variability search in the field of the young open cluster NGC 1502. We confirm that a beta Cephei suspect WEBDA 26 is indeed pulsating with a period of 0.09612 d and semi-amplitude of about 3 mmag in V. A new VI light curve of the bright eclipsing binary and cluster member SZ Cam was obtained. In addition, we found two new variable stars. One is an interesting eclipsing binary showing total eclipses, which can be used to derive the distance to the cluster once radial velocities of the components will be obtained.
NASA Astrophysics Data System (ADS)
Chung, Shin Kee; Wen, Linqing; Blair, David; Cannon, Kipp; Datta, Amitava
2010-07-01
We report a novel application of a graphics processing unit (GPU) for the purpose of accelerating the search pipelines for gravitational waves from coalescing binaries of compact objects. A speed-up of 16-fold in total has been achieved with an NVIDIA GeForce 8800 Ultra GPU card compared with one core of a 2.5 GHz Intel Q9300 central processing unit (CPU). We show that substantial improvements are possible and discuss the reduction in CPU count required for the detection of inspiral sources afforded by the use of GPUs.
MulRF: a software package for phylogenetic analysis using multi-copy gene trees.
Chaudhary, Ruchi; Fernández-Baca, David; Burleigh, John Gordon
2015-02-01
MulRF is a platform-independent software package for phylogenetic analysis using multi-copy gene trees. It seeks the species tree that minimizes the Robinson-Foulds (RF) distance to the input trees using a generalization of the RF distance to multi-labeled trees. The underlying generic tree distance measure and fast running time make MulRF useful for inferring phylogenies from large collections of gene trees, in which multiple evolutionary processes as well as phylogenetic error may contribute to gene tree discord. MulRF implements several features for customizing the species tree search and assessing the results, and it provides a user-friendly graphical user interface (GUI) with tree visualization. The species tree search is implemented in C++ and the GUI in Java Swing. MulRF's executable as well as sample datasets and manual are available at http://genome.cs.iastate.edu/CBL/MulRF/, and the source code is available at https://github.com/ruchiherself/MulRFRepo. ruchic@ufl.edu Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Binary optics: Trends and limitations
NASA Technical Reports Server (NTRS)
Farn, Michael W.; Veldkamp, Wilfrid B.
1993-01-01
We describe the current state of binary optics, addressing both the technology and the industry (i.e., marketplace). With respect to the technology, the two dominant aspects are optical design methods and fabrication capabilities, with the optical design problem being limited by human innovation in the search for new applications and the fabrication issue being limited by the availability of resources required to improve fabrication capabilities. With respect to the industry, the current marketplace does not favor binary optics as a separate product line and so we expect that companies whose primary purpose is the production of binary optics will not represent the bulk of binary optics production. Rather, binary optics' more natural role is as an enabling technology - a technology which will directly result in a competitive advantage in a company's other business areas - and so we expect that the majority of binary optics will be produced for internal use.
NASA Technical Reports Server (NTRS)
Gies, Douglas R.; Wiggs, Michael S.
1991-01-01
AO Cas, a short-period, double-lined spectroscopic binary, is studied as part of a search for spectroscopic evidence of colliding stellar winds in binary systems of O-type stars. High S/N ratio spectra of the H-alpha and He I 6678-A line profiles are presented, and their orbital-phase-related variations are examined in order to derive the location and motions of high-density circumstellar gas in the system. These profile variations are compared with those observed in the UV stellar wind lines in IUE archival spectra. IUE spectra are also used to derive a system mass ratio by constructing cross-correlation functions of a single-lined phase spectrum with each of the other spectra. The resulting mass ratio is consistent with the rotational line broadening of the primary star, if the primary is rotating synchronously with the binary system. The best-fit models were found to have an inclination of 61.1 deg + or - 3.0 deg and have a primary which is close to filling its critical Roche lobe.
Subdwarf B Stars: Tracers Of Binary Evolution
NASA Astrophysics Data System (ADS)
Morales-Rueda, L.; Maxted, P. F. L.; Marsh, T. R.
2007-08-01
Subdwarf B stars are a superb stellar population to study binary evolution. In 2001, Maxted et al. (MNRAS, 326, 1391) found that 21 out of the 36 subdwarf B stars they studied were in short period binaries. These observations inspired new theoretical work that suggests that up to 90 per cent of subdwarf B stars are in binary systems with the remaining apparently single stars being the product of merging pairs. This high binary fraction added to the fact that they are detached binaries that have not changed significantly since they came out of the common envelope, make subdwarf B stars a perfect population to study binary evolution. By comparing the observed orbital period distribution of subdwarf B stars with that obtained from population synthesis calculations we can determine fundamental parameters of binary evolution such as the common envelope ejection efficiency. Here we give an overview of the fraction of short period binaries found from different surveys as well as the most up to date orbital period distribution determined observationally. We also present results from a recent search for subdwarf B stars in long period binaries.
Spectral analysis of white ash response to emerald ash borer infestations
NASA Astrophysics Data System (ADS)
Calandra, Laura
The emerald ash borer (EAB) (Agrilus planipennis Fairmaire) is an invasive insect that has killed over 50 million ash trees in the US. The goal of this research was to establish a method to identify ash trees infested with EAB using remote sensing techniques at the leaf-level and tree crown level. First, a field-based study at the leaf-level used the range of spectral bands from the WorldView-2 sensor to determine if there was a significant difference between EAB-infested white ash (Fraxinus americana) and healthy leaves. Binary logistic regression models were developed using individual and combinations of wavelengths; the most successful model included 545 and 950 nm bands. The second half of this research employed imagery to identify healthy and EAB-infested trees, comparing pixel- and object-based methods by applying an unsupervised classification approach and a tree crown delineation algorithm, respectively. The pixel-based models attained the highest overall accuracies.
Fast Construction of Near Parsimonious Hybridization Networks for Multiple Phylogenetic Trees.
Mirzaei, Sajad; Wu, Yufeng
2016-01-01
Hybridization networks represent plausible evolutionary histories of species that are affected by reticulate evolutionary processes. An established computational problem on hybridization networks is constructing the most parsimonious hybridization network such that each of the given phylogenetic trees (called gene trees) is "displayed" in the network. There have been several previous approaches, including an exact method and several heuristics, for this NP-hard problem. However, the exact method is only applicable to a limited range of data, and heuristic methods can be less accurate and also slow sometimes. In this paper, we develop a new algorithm for constructing near parsimonious networks for multiple binary gene trees. This method is more efficient for large numbers of gene trees than previous heuristics. This new method also produces more parsimonious results on many simulated datasets as well as a real biological dataset than a previous method. We also show that our method produces topologically more accurate networks for many datasets.
A Search for Black Holes and Neutron Stars in the Kepler Field
NASA Astrophysics Data System (ADS)
Orosz, Jerome; Short, Donald; Welsh, William; Windmiller, Gur; Dabney, David
2018-01-01
Black holes and neutron stars represent the final evolutionary stages of the most massive stars. In addition to their use as probes into the evolution of massive stars, black holes and neutron stars are ideal laboratories to test General Relativity in the strong field limit. The number of neutron stars and black holes in the Milky Way is not precisely known, but there are an estimated one billion neutron stars in the galaxy based on the observed numbers of radio pulsars. The number of black holes is about 100 million, based on the behavior of the Initial Mass Function at high stellar masses.All of the known steller-mass black holes (and a fair number of neutron stars) are in ``X-ray binaries'' that were discovered because of their luminous X-ray emission. The requirement to be in an X-ray-emitting binary places a strong observational bias on the discovery of stellar-mass black holes. Thus the 21 known black hole binaries represent only the very uppermost tip of the population iceberg.We have conducted an optical survey using Kepler data designed to uncover black holes and neutron stars in both ``quiescent'' X-ray binaries and ``pre-contact'' X-ray binaries. We discuss how the search was conducted, including how potentially interesting light curves were classified and the how variability types were identified. Although we did not find any convincing candidate neutron star or black hole systems, we did find a few noteworthy binary systems, including two binaries that contain low-mass stars with unusually low albedos.
Distributed Adaptive Binary Quantization for Fast Nearest Neighbor Search.
Xianglong Liu; Zhujin Li; Cheng Deng; Dacheng Tao
2017-11-01
Hashing has been proved an attractive technique for fast nearest neighbor search over big data. Compared with the projection based hashing methods, prototype-based ones own stronger power to generate discriminative binary codes for the data with complex intrinsic structure. However, existing prototype-based methods, such as spherical hashing and K-means hashing, still suffer from the ineffective coding that utilizes the complete binary codes in a hypercube. To address this problem, we propose an adaptive binary quantization (ABQ) method that learns a discriminative hash function with prototypes associated with small unique binary codes. Our alternating optimization adaptively discovers the prototype set and the code set of a varying size in an efficient way, which together robustly approximate the data relations. Our method can be naturally generalized to the product space for long hash codes, and enjoys the fast training linear to the number of the training data. We further devise a distributed framework for the large-scale learning, which can significantly speed up the training of ABQ in the distributed environment that has been widely deployed in many areas nowadays. The extensive experiments on four large-scale (up to 80 million) data sets demonstrate that our method significantly outperforms state-of-the-art hashing methods, with up to 58.84% performance gains relatively.
Binary encoding of multiplexed images in mixed noise.
Lalush, David S
2008-09-01
Binary coding of multiplexed signals and images has been studied in the context of spectroscopy with models of either purely constant or purely proportional noise, and has been shown to result in improved noise performance under certain conditions. We consider the case of mixed noise in an imaging system consisting of multiple individually-controllable sources (X-ray or near-infrared, for example) shining on a single detector. We develop a mathematical model for the noise in such a system and show that the noise is dependent on the properties of the binary coding matrix and on the average number of sources used for each code. Each binary matrix has a characteristic linear relationship between the ratio of proportional-to-constant noise and the noise level in the decoded image. We introduce a criterion for noise level, which is minimized via a genetic algorithm search. The search procedure results in the discovery of matrices that outperform the Hadamard S-matrices at certain levels of mixed noise. Simulation of a seven-source radiography system demonstrates that the noise model predicts trends and rank order of performance in regions of nonuniform images and in a simple tomosynthesis reconstruction. We conclude that the model developed provides a simple framework for analysis, discovery, and optimization of binary coding patterns used in multiplexed imaging systems.
New O-C Observations for 150 Algols: Insight to the Origins of Period Shifts
NASA Astrophysics Data System (ADS)
Hoffman, D. I.; Harrison, T. E.; McNamara, B. J.; Vestrand, W. T.
2005-12-01
Many eclipsing binaries of type Algol, RS CVn, and W UMa have observed orbital period shifts. Of these, many show both increasing and decreasing period shifts. Two leading explanations for these shifts are third body effects and magnetic activity changing the oblateness of the secondary, though neither one can explain all of the observed period oscillations. The first-generation Robotic Optical Transient Search Experiment (ROTSE-I) based in Los Alamos, NM, was primarily designed to look for the optical counterparts to gamma-ray bursts as well as searching for other optical transients not detected in gamma-rays. The telescope, consisting of four 200mm camera lenses, can image the entire northern sky twice in a night, which is a very useful tool in monitoring relatively bright eclipsing binaries for period shifts. The public data release from ROTSE-I, the Northern Sky Variability Survey (NSVS), spans one year of data stating in April, 1999. O-C data for 150 eclipsing binaries are presented using the NSVS data. We revisit work by Borkovits and Hegedüs on some third body candidates in several eclipsing binary systems using recent AAVSO and NSVS data. Some unusual light curves of eclipsing binaries produced from NSVS data is presented and discussed.
Properties OF M31. V. 298 eclipsing binaries from PAndromeda
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C.-H.; Koppenhoefer, J.; Seitz, S.
2014-12-10
The goal of this work is to conduct a photometric study of eclipsing binaries in M31. We apply a modified box-fitting algorithm to search for eclipsing binary candidates and determine their period. We classify these candidates into detached, semi-detached, and contact systems using the Fourier decomposition method. We cross-match the position of our detached candidates with the photometry from Local Group Survey and select 13 candidates brighter than 20.5 mag in V. The relative physical parameters of these detached candidates are further characterized with the Detached Eclipsing Binary Light curve fitter (DEBiL) by Devor. We will follow up the detachedmore » eclipsing binaries spectroscopically and determine the distance to M31.« less
Generation of binary holograms for deep scenes captured with a camera and a depth sensor
NASA Astrophysics Data System (ADS)
Leportier, Thibault; Park, Min-Chul
2017-01-01
This work presents binary hologram generation from images of a real object acquired from a Kinect sensor. Since hologram calculation from a point-cloud or polygon model presents a heavy computational burden, we adopted a depth-layer approach to generate the holograms. This method enables us to obtain holographic data of large scenes quickly. Our investigations focus on the performance of different methods, iterative and noniterative, to convert complex holograms into binary format. Comparisons were performed to examine the reconstruction of the binary holograms at different depths. We also propose to modify the direct binary search algorithm to take into account several reference image planes. Then, deep scenes featuring multiple planes of interest can be reconstructed with better efficiency.
Astone, Pia; Weinstein, Alan; Agathos, Michalis; Bejger, Michał; Christensen, Nelson; Dent, Thomas; Graff, Philip; Klimenko, Sergey; Mazzolo, Giulio; Nishizawa, Atsushi; Robinet, Florent; Schmidt, Patricia; Smith, Rory; Veitch, John; Wade, Madeline; Aoudia, Sofiane; Bose, Sukanta; Calderon Bustillo, Juan; Canizares, Priscilla; Capano, Colin; Clark, James; Colla, Alberto; Cuoco, Elena; Da Silva Costa, Carlos; Dal Canton, Tito; Evangelista, Edgar; Goetz, Evan; Gupta, Anuradha; Hannam, Mark; Keitel, David; Lackey, Benjamin; Logue, Joshua; Mohapatra, Satyanarayan; Piergiovanni, Francesco; Privitera, Stephen; Prix, Reinhard; Pürrer, Michael; Re, Virginia; Serafinelli, Roberto; Wade, Leslie; Wen, Linqing; Wette, Karl; Whelan, John; Palomba, C; Prodi, G
The Amaldi 10 Parallel Session C2 on gravitational wave (GW) search results, data analysis and parameter estimation included three lively sessions of lectures by 13 presenters, and 34 posters. The talks and posters covered a huge range of material, including results and analysis techniques for ground-based GW detectors, targeting anticipated signals from different astrophysical sources: compact binary inspiral, merger and ringdown; GW bursts from intermediate mass binary black hole mergers, cosmic string cusps, core-collapse supernovae, and other unmodeled sources; continuous waves from spinning neutron stars; and a stochastic GW background. There was considerable emphasis on Bayesian techniques for estimating the parameters of coalescing compact binary systems from the gravitational waveforms extracted from the data from the advanced detector network. This included methods to distinguish deviations of the signals from what is expected in the context of General Relativity.
NASA Astrophysics Data System (ADS)
Yelkenci Köse, Simge; Demir, Leyla; Tunalı, Semra; Türsel Eliiyi, Deniz
2015-02-01
In manufacturing systems, optimal buffer allocation has a considerable impact on capacity improvement. This study presents a simulation optimization procedure to solve the buffer allocation problem in a heat exchanger production plant so as to improve the capacity of the system. For optimization, three metaheuristic-based search algorithms, i.e. a binary-genetic algorithm (B-GA), a binary-simulated annealing algorithm (B-SA) and a binary-tabu search algorithm (B-TS), are proposed. These algorithms are integrated with the simulation model of the production line. The simulation model, which captures the stochastic and dynamic nature of the production line, is used as an evaluation function for the proposed metaheuristics. The experimental study with benchmark problem instances from the literature and the real-life problem show that the proposed B-TS algorithm outperforms B-GA and B-SA in terms of solution quality.
NASA Technical Reports Server (NTRS)
Astone, Pia; Weinstein, Alan; Agathos, Michalis; Bejger, Michal; Christensen, Nelson; Dent, Thomas; Graff, Philip; Klimenko, Sergey; Mazzolo, Giulio; Nishizawa, Atsushi
2015-01-01
The Amaldi 10 Parallel Session C2 on gravitational wave(GW) search results, data analysis and parameter estimation included three lively sessions of lectures by 13 presenters, and 34 posters. The talks and posters covered a huge range of material, including results and analysis techniques for ground-based GW detectors, targeting anticipated signals from different astrophysical sources: compact binary inspiral, merger and ringdown; GW bursts from intermediate mass binary black hole mergers, cosmic string cusps, core-collapse supernovae, and other unmodeled sources; continuous waves from spinning neutron stars; and a stochastic GW background. There was considerable emphasis on Bayesian techniques for estimating the parameters of coalescing compact binary systems from the gravitational waveforms extracted from the data from the advanced detector network. This included methods to distinguish deviations of the signals from what is expected in the context of General Relativity.
A Search for Quiet Massive X-ray Binaries
NASA Astrophysics Data System (ADS)
McSwain, M. V.; Boyajian, T. S.; Grundstrom, E.; Gies, D. R.
2005-12-01
Wind accretion models of the X-ray luminosity in massive X-ray binaries (MXRBs) predict a class of "quiet" MXRBs in which the stellar wind is too weak to power a strong X-ray source. The first two candidates systems, HD 14633 and HD 15137, were recently detected. These O star + neutron star systems were ejected from the open cluster NGC 654, but although they both show evidence of a past supernova within the binary system, neither is a known X-ray emitter. These systems provide a new opportunity to examine the ejection mechanisms responsible for the OB runaway stars, and they can also provide key information about the evolution of spun-up, rejuvenated massive stars. We present here preliminary results from a search for other such quiet MXRBs. MVM is supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-0401460.
Sub-Selective Quantization for Learning Binary Codes in Large-Scale Image Search.
Li, Yeqing; Liu, Wei; Huang, Junzhou
2018-06-01
Recently with the explosive growth of visual content on the Internet, large-scale image search has attracted intensive attention. It has been shown that mapping high-dimensional image descriptors to compact binary codes can lead to considerable efficiency gains in both storage and performing similarity computation of images. However, most existing methods still suffer from expensive training devoted to large-scale binary code learning. To address this issue, we propose a sub-selection based matrix manipulation algorithm, which can significantly reduce the computational cost of code learning. As case studies, we apply the sub-selection algorithm to several popular quantization techniques including cases using linear and nonlinear mappings. Crucially, we can justify the resulting sub-selective quantization by proving its theoretic properties. Extensive experiments are carried out on three image benchmarks with up to one million samples, corroborating the efficacy of the sub-selective quantization method in terms of image retrieval.
The SUrvey for Pulsars and Extragalactic Radio Bursts - I. Survey description and overview
NASA Astrophysics Data System (ADS)
Keane, E. F.; Barr, E. D.; Jameson, A.; Morello, V.; Caleb, M.; Bhandari, S.; Petroff, E.; Possenti, A.; Burgay, M.; Tiburzi, C.; Bailes, M.; Bhat, N. D. R.; Burke-Spolaor, S.; Eatough, R. P.; Flynn, C.; Jankowski, F.; Johnston, S.; Kramer, M.; Levin, L.; Ng, C.; van Straten, W.; Krishnan, V. Venkatraman
2018-01-01
We describe the Survey for Pulsars and Extragalactic Radio Bursts (SUPERB), an ongoing pulsar and fast transient survey using the Parkes radio telescope. SUPERB involves real-time acceleration searches for pulsars and single-pulse searches for pulsars and fast radio bursts. We report on the observational set-up, data analysis, multiwavelength/messenger connections, survey sensitivities to pulsars and fast radio bursts and the impact of radio frequency interference. We further report on the first 10 pulsars discovered in the project. Among these is PSR J1306-40, a millisecond pulsar in a binary system where it appears to be eclipsed for a large fraction of the orbit. PSR J1421-4407 is another binary millisecond pulsar; its orbital period is 30.7 d. This orbital period is in a range where only highly eccentric binaries are known, and expected by theory; despite this its orbit has an eccentricity of 10-5.
An implementation of a tree code on a SIMD, parallel computer
NASA Technical Reports Server (NTRS)
Olson, Kevin M.; Dorband, John E.
1994-01-01
We describe a fast tree algorithm for gravitational N-body simulation on SIMD parallel computers. The tree construction uses fast, parallel sorts. The sorted lists are recursively divided along their x, y and z coordinates. This data structure is a completely balanced tree (i.e., each particle is paired with exactly one other particle) and maintains good spatial locality. An implementation of this tree-building algorithm on a 16k processor Maspar MP-1 performs well and constitutes only a small fraction (approximately 15%) of the entire cycle of finding the accelerations. Each node in the tree is treated as a monopole. The tree search and the summation of accelerations also perform well. During the tree search, node data that is needed from another processor is simply fetched. Roughly 55% of the tree search time is spent in communications between processors. We apply the code to two problems of astrophysical interest. The first is a simulation of the close passage of two gravitationally, interacting, disk galaxies using 65,636 particles. We also simulate the formation of structure in an expanding, model universe using 1,048,576 particles. Our code attains speeds comparable to one head of a Cray Y-MP, so single instruction, multiple data (SIMD) type computers can be used for these simulations. The cost/performance ratio for SIMD machines like the Maspar MP-1 make them an extremely attractive alternative to either vector processors or large multiple instruction, multiple data (MIMD) type parallel computers. With further optimizations (e.g., more careful load balancing), speeds in excess of today's vector processing computers should be possible.
Periodic Emission from the Gamma-ray Binary 1FGL J1018.6-5856
NASA Technical Reports Server (NTRS)
Celic, O.; Corbet, R. H. D.; Donato, D.; Ferrara, E. C.; Gehrels, N.; Harding, A. K.; Hays, E.; McEnery, J. E.; Thompson, D. J.; Troja, E.
2012-01-01
Gamma-ray binaries are stellar systems containing a neutron star or black hole with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that IFGL JI018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable X-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an 06V f) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. IFGL J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.
Periodic emission from the gamma-ray binary 1FGL J1018.6-5856.
Fermi LAT Collaboration; Ackermann, M; Ajello, M; Ballet, J; Barbiellini, G; Bastieri, D; Belfiore, A; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Cavazzuti, E; Cecchi, C; Çelik, Ö; Charles, E; Chaty, S; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Corbel, S; Corbet, R H D; Cutini, S; de Luca, A; den Hartog, P R; de Palma, F; Dermer, C D; Digel, S W; do Couto e Silva, E; Donato, D; Drell, P S; Drlica-Wagner, A; Dubois, R; Dubus, G; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hill, A B; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, T J; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ozaki, M; Paneque, D; Parent, D; Pesce-Rollins, M; Pierbattista, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Ritz, S; Romani, R W; Roth, M; Saz Parkinson, P M; Sgrò, C; Siskind, E J; Spandre, G; Spinelli, P; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Tinivella, M; Torres, D F; Tosti, G; Troja, E; Uchiyama, Y; Usher, T L; Vandenbroucke, J; Vianello, G; Vitale, V; Waite, A P; Winer, B L; Wood, K S; Wood, M; Yang, Z; Zimmer, S; Coe, M J; Di Mille, F; Edwards, P G; Filipović, M D; Payne, J L; Stevens, J; Torres, M A P
2012-01-13
Gamma-ray binaries are stellar systems containing a neutron star or black hole, with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL J1018.6-5856 exhibits intensity and spectral modulation with a 16.6-day period. We identified a variable x-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGL J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.
Periodic Emission from the Gamma-Ray Binary 1FGL J1018.6-5856
NASA Technical Reports Server (NTRS)
2012-01-01
Gamma-ray binaries are stellar systems containing a neutron star or black hole, with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy, A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL ]1018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable x-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGL ]1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.
Triplet supertree heuristics for the tree of life
Lin, Harris T; Burleigh, J Gordon; Eulenstein, Oliver
2009-01-01
Background There is much interest in developing fast and accurate supertree methods to infer the tree of life. Supertree methods combine smaller input trees with overlapping sets of taxa to make a comprehensive phylogenetic tree that contains all of the taxa in the input trees. The intrinsically hard triplet supertree problem takes a collection of input species trees and seeks a species tree (supertree) that maximizes the number of triplet subtrees that it shares with the input trees. However, the utility of this supertree problem has been limited by a lack of efficient and effective heuristics. Results We introduce fast hill-climbing heuristics for the triplet supertree problem that perform a step-wise search of the tree space, where each step is guided by an exact solution to an instance of a local search problem. To realize time efficient heuristics we designed the first nontrivial algorithms for two standard search problems, which greatly improve on the time complexity to the best known (naïve) solutions by a factor of n and n2 (the number of taxa in the supertree). These algorithms enable large-scale supertree analyses based on the triplet supertree problem that were previously not possible. We implemented hill-climbing heuristics that are based on our new algorithms, and in analyses of two published supertree data sets, we demonstrate that our new heuristics outperform other standard supertree methods in maximizing the number of triplets shared with the input trees. Conclusion With our new heuristics, the triplet supertree problem is now computationally more tractable for large-scale supertree analyses, and it provides a potentially more accurate alternative to existing supertree methods. PMID:19208181
Wu, Yufeng
2012-03-01
Incomplete lineage sorting can cause incongruence between the phylogenetic history of genes (the gene tree) and that of the species (the species tree), which can complicate the inference of phylogenies. In this article, I present a new coalescent-based algorithm for species tree inference with maximum likelihood. I first describe an improved method for computing the probability of a gene tree topology given a species tree, which is much faster than an existing algorithm by Degnan and Salter (2005). Based on this method, I develop a practical algorithm that takes a set of gene tree topologies and infers species trees with maximum likelihood. This algorithm searches for the best species tree by starting from initial species trees and performing heuristic search to obtain better trees with higher likelihood. This algorithm, called STELLS (which stands for Species Tree InfErence with Likelihood for Lineage Sorting), has been implemented in a program that is downloadable from the author's web page. The simulation results show that the STELLS algorithm is more accurate than an existing maximum likelihood method for many datasets, especially when there is noise in gene trees. I also show that the STELLS algorithm is efficient and can be applied to real biological datasets. © 2011 The Author. Evolution© 2011 The Society for the Study of Evolution.
Helium: lifting high-performance stencil kernels from stripped x86 binaries to halide DSL code
Mendis, Charith; Bosboom, Jeffrey; Wu, Kevin; ...
2015-06-03
Highly optimized programs are prone to bit rot, where performance quickly becomes suboptimal in the face of new hardware and compiler techniques. In this paper we show how to automatically lift performance-critical stencil kernels from a stripped x86 binary and generate the corresponding code in the high-level domain-specific language Halide. Using Halide's state-of-the-art optimizations targeting current hardware, we show that new optimized versions of these kernels can replace the originals to rejuvenate the application for newer hardware. The original optimized code for kernels in stripped binaries is nearly impossible to analyze statically. Instead, we rely on dynamic traces to regeneratemore » the kernels. We perform buffer structure reconstruction to identify input, intermediate and output buffer shapes. Here, we abstract from a forest of concrete dependency trees which contain absolute memory addresses to symbolic trees suitable for high-level code generation. This is done by canonicalizing trees, clustering them based on structure, inferring higher-dimensional buffer accesses and finally by solving a set of linear equations based on buffer accesses to lift them up to simple, high-level expressions. Helium can handle highly optimized, complex stencil kernels with input-dependent conditionals. We lift seven kernels from Adobe Photoshop giving a 75 % performance improvement, four kernels from Irfan View, leading to 4.97 x performance, and one stencil from the mini GMG multigrid benchmark netting a 4.25 x improvement in performance. We manually rejuvenated Photoshop by replacing eleven of Photoshop's filters with our lifted implementations, giving 1.12 x speedup without affecting the user experience.« less
Multimodal Discriminative Binary Embedding for Large-Scale Cross-Modal Retrieval.
Wang, Di; Gao, Xinbo; Wang, Xiumei; He, Lihuo; Yuan, Bo
2016-10-01
Multimodal hashing, which conducts effective and efficient nearest neighbor search across heterogeneous data on large-scale multimedia databases, has been attracting increasing interest, given the explosive growth of multimedia content on the Internet. Recent multimodal hashing research mainly aims at learning the compact binary codes to preserve semantic information given by labels. The overwhelming majority of these methods are similarity preserving approaches which approximate pairwise similarity matrix with Hamming distances between the to-be-learnt binary hash codes. However, these methods ignore the discriminative property in hash learning process, which results in hash codes from different classes undistinguished, and therefore reduces the accuracy and robustness for the nearest neighbor search. To this end, we present a novel multimodal hashing method, named multimodal discriminative binary embedding (MDBE), which focuses on learning discriminative hash codes. First, the proposed method formulates the hash function learning in terms of classification, where the binary codes generated by the learned hash functions are expected to be discriminative. And then, it exploits the label information to discover the shared structures inside heterogeneous data. Finally, the learned structures are preserved for hash codes to produce similar binary codes in the same class. Hence, the proposed MDBE can preserve both discriminability and similarity for hash codes, and will enhance retrieval accuracy. Thorough experiments on benchmark data sets demonstrate that the proposed method achieves excellent accuracy and competitive computational efficiency compared with the state-of-the-art methods for large-scale cross-modal retrieval task.
Mathematical Notation in Bibliographic Databases.
ERIC Educational Resources Information Center
Pasterczyk, Catherine E.
1990-01-01
Discusses ways in which using mathematical symbols to search online bibliographic databases in scientific and technical areas can improve search results. The representations used for Greek letters, relations, binary operators, arrows, and miscellaneous special symbols in the MathSci, Inspec, Compendex, and Chemical Abstracts databases are…
ERIC Educational Resources Information Center
Zaslavsky, Orit; Peled, Irit
1996-01-01
Inservice (n=36) and preservice (n=67) mathematics teachers were asked for a commutative, nonassociative binary operation. Responses were analyzed for correctness, productiveness, mathematical content, and underlying difficulties. Both groups exhibited a weak concept by failing to produce an example and using a limited content search space.…
NASA Astrophysics Data System (ADS)
Roy, Soumen; Sengupta, Anand S.; Thakor, Nilay
2017-05-01
Astrophysical compact binary systems consisting of neutron stars and black holes are an important class of gravitational wave (GW) sources for advanced LIGO detectors. Accurate theoretical waveform models from the inspiral, merger, and ringdown phases of such systems are used to filter detector data under the template-based matched-filtering paradigm. An efficient grid over the parameter space at a fixed minimal match has a direct impact on the overall time taken by these searches. We present a new hybrid geometric-random template placement algorithm for signals described by parameters of two masses and one spin magnitude. Such template banks could potentially be used in GW searches from binary neutron stars and neutron star-black hole systems. The template placement is robust and is able to automatically accommodate curvature and boundary effects with no fine-tuning. We also compare these banks against vanilla stochastic template banks and show that while both are equally efficient in the fitting-factor sense, the bank sizes are ˜25 % larger in the stochastic method. Further, we show that the generation of the proposed hybrid banks can be sped up by nearly an order of magnitude over the stochastic bank. Generic issues related to optimal implementation are discussed in detail. These improvements are expected to directly reduce the computational cost of gravitational wave searches.
On the Number of Non-equivalent Ancestral Configurations for Matching Gene Trees and Species Trees.
Disanto, Filippo; Rosenberg, Noah A
2017-09-14
An ancestral configuration is one of the combinatorially distinct sets of gene lineages that, for a given gene tree, can reach a given node of a specified species tree. Ancestral configurations have appeared in recursive algebraic computations of the conditional probability that a gene tree topology is produced under the multispecies coalescent model for a given species tree. For matching gene trees and species trees, we study the number of ancestral configurations, considered up to an equivalence relation introduced by Wu (Evolution 66:763-775, 2012) to reduce the complexity of the recursive probability computation. We examine the largest number of non-equivalent ancestral configurations possible for a given tree size n. Whereas the smallest number of non-equivalent ancestral configurations increases polynomially with n, we show that the largest number increases with [Formula: see text], where k is a constant that satisfies [Formula: see text]. Under a uniform distribution on the set of binary labeled trees with a given size n, the mean number of non-equivalent ancestral configurations grows exponentially with n. The results refine an earlier analysis of the number of ancestral configurations considered without applying the equivalence relation, showing that use of the equivalence relation does not alter the exponential nature of the increase with tree size.
Hierarchical colorant-based direct binary search halftoning.
He, Zhen
2010-07-01
Colorant-based direct binary search (CB-DBS) halftoning proposed in provides an image quality benchmark for dispersed-dot halftoning algorithms. The objective of this paper is to further push the image quality limit. An algorithm called hierarchical colorant-based direct binary search (HCB-DBS) is developed in this paper. By appropriately integrating yellow colorant into dot-overlapping and dot-positioning controls, it is demonstrated that HCB-DBS can achieve better halftone texture of both individual and joint dot-color planes, without compromising the dot distribution of more visible halftone of cyan and magenta colorants. The input color specification is first converted from colorant space to dot-color space with minimum brightness variation principle for full dot-overlapping control. The dot-colors are then split into groups based upon dot visibility. Hierarchical monochrome DBS halftoning is applied to make dot-positioning decision for each group, constrained on the already generated halftone of the groups with higher priority. And dot-coloring is decided recursively with joint monochrome DBS halftoning constrained on the related total dot distribution. Experiments show HCB-DBS improves halftone texture for both individual and joint dot-color planes. And it reduces the halftone graininess and free of color mottle artifacts, comparing to CB-DBS.
High-energy astrophysics and the search for sources of gravitational waves
NASA Astrophysics Data System (ADS)
O'Brien, P. T.; Evans, P.
2018-05-01
The dawn of the gravitational-wave (GW) era has sparked a greatly renewed interest into possible links between sources of high-energy radiation and GWs. The most luminous high-energy sources-gamma-ray bursts (GRBs)-have long been considered as very likely sources of GWs, particularly from short-duration GRBs, which are thought to originate from the merger of two compact objects such as binary neutron stars and a neutron star-black hole binary. In this paper, we discuss: (i) the high-energy emission from short-duration GRBs; (ii) what other sources of high-energy radiation may be observed from binary mergers; and (iii) how searches for high-energy electromagnetic counterparts to GW events are performed with current space facilities. While current high-energy facilities, such as Swift and Fermi, play a crucial role in the search for electromagnetic counterparts, new space missions will greatly enhance our capabilities for joint observations. We discuss why such facilities, which incorporate new technology that enables very wide-field X-ray imaging, are required if we are to truly exploit the multi-messenger era. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.
High-energy astrophysics and the search for sources of gravitational waves.
O'Brien, P T; Evans, P
2018-05-28
The dawn of the gravitational-wave (GW) era has sparked a greatly renewed interest into possible links between sources of high-energy radiation and GWs. The most luminous high-energy sources-gamma-ray bursts (GRBs)-have long been considered as very likely sources of GWs, particularly from short-duration GRBs, which are thought to originate from the merger of two compact objects such as binary neutron stars and a neutron star-black hole binary. In this paper, we discuss: (i) the high-energy emission from short-duration GRBs; (ii) what other sources of high-energy radiation may be observed from binary mergers; and (iii) how searches for high-energy electromagnetic counterparts to GW events are performed with current space facilities. While current high-energy facilities, such as Swift and Fermi, play a crucial role in the search for electromagnetic counterparts, new space missions will greatly enhance our capabilities for joint observations. We discuss why such facilities, which incorporate new technology that enables very wide-field X-ray imaging, are required if we are to truly exploit the multi-messenger era.This article is part of a discussion meeting issue 'The promises of gravitational-wave astronomy'. © 2018 The Author(s).
NASA Astrophysics Data System (ADS)
Messenger, C.; Bulten, H. J.; Crowder, S. G.; Dergachev, V.; Galloway, D. K.; Goetz, E.; Jonker, R. J. G.; Lasky, P. D.; Meadors, G. D.; Melatos, A.; Premachandra, S.; Riles, K.; Sammut, L.; Thrane, E. H.; Whelan, J. T.; Zhang, Y.
2015-07-01
The low-mass X-ray binary Scorpius X-1 (Sco X-1) is potentially the most luminous source of continuous gravitational-wave radiation for interferometers such as LIGO and Virgo. For low-mass X-ray binaries this radiation would be sustained by active accretion of matter from its binary companion. With the Advanced Detector Era fast approaching, work is underway to develop an array of robust tools for maximizing the science and detection potential of Sco X-1. We describe the plans and progress of a project designed to compare the numerous independent search algorithms currently available. We employ a mock-data challenge in which the search pipelines are tested for their relative proficiencies in parameter estimation, computational efficiency, robustness, and most importantly, search sensitivity. The mock-data challenge data contains an ensemble of 50 Scorpius X-1 (Sco X-1) type signals, simulated within a frequency band of 50-1500 Hz. Simulated detector noise was generated assuming the expected best strain sensitivity of Advanced LIGO [1] and Advanced VIRGO [2] (4 ×10-24 Hz-1 /2 ). A distribution of signal amplitudes was then chosen so as to allow a useful comparison of search methodologies. A factor of 2 in strain separates the quietest detected signal, at 6.8 ×10-26 strain, from the torque-balance limit at a spin frequency of 300 Hz, although this limit could range from 1.2 ×10-25 (25 Hz) to 2.2 ×10-26 (750 Hz) depending on the unknown frequency of Sco X-1. With future improvements to the search algorithms and using advanced detector data, our expectations for probing below the theoretical torque-balance strain limit are optimistic.
A Heuristic Bioinspired for 8-Piece Puzzle
NASA Astrophysics Data System (ADS)
Machado, M. O.; Fabres, P. A.; Melo, J. C. L.
2017-10-01
This paper investigates a mathematical model inspired by nature, and presents a Meta-Heuristic that is efficient in improving the performance of an informed search, when using strategy A * using a General Search Tree as data structure. The work hypothesis suggests that the investigated meta-heuristic is optimal in nature and may be promising in minimizing the computational resources required by an objective-based agent in solving high computational complexity problems (n-part puzzle) as well as In the optimization of objective functions for local search agents. The objective of this work is to describe qualitatively the characteristics and properties of the mathematical model investigated, correlating the main concepts of the A * function with the significant variables of the metaheuristic used. The article shows that the amount of memory required to perform this search when using the metaheuristic is less than using the A * function to evaluate the nodes of a general search tree for the eight-piece puzzle. It is concluded that the meta-heuristic must be parameterized according to the chosen heuristic and the level of the tree that contains the possible solutions to the chosen problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Andrew F.; Wetzstein, M.; Naab, T.
2009-10-01
We continue our presentation of VINE. In this paper, we begin with a description of relevant architectural properties of the serial and shared memory parallel computers on which VINE is intended to run, and describe their influences on the design of the code itself. We continue with a detailed description of a number of optimizations made to the layout of the particle data in memory and to our implementation of a binary tree used to access that data for use in gravitational force calculations and searches for smoothed particle hydrodynamics (SPH) neighbor particles. We describe the modifications to the codemore » necessary to obtain forces efficiently from special purpose 'GRAPE' hardware, the interfaces required to allow transparent substitution of those forces in the code instead of those obtained from the tree, and the modifications necessary to use both tree and GRAPE together as a fused GRAPE/tree combination. We conclude with an extensive series of performance tests, which demonstrate that the code can be run efficiently and without modification in serial on small workstations or in parallel using the OpenMP compiler directives on large-scale, shared memory parallel machines. We analyze the effects of the code optimizations and estimate that they improve its overall performance by more than an order of magnitude over that obtained by many other tree codes. Scaled parallel performance of the gravity and SPH calculations, together the most costly components of most simulations, is nearly linear up to at least 120 processors on moderate sized test problems using the Origin 3000 architecture, and to the maximum machine sizes available to us on several other architectures. At similar accuracy, performance of VINE, used in GRAPE-tree mode, is approximately a factor 2 slower than that of VINE, used in host-only mode. Further optimizations of the GRAPE/host communications could improve the speed by as much as a factor of 3, but have not yet been implemented in VINE. Finally, we find that although parallel performance on small problems may reach a plateau beyond which more processors bring no additional speedup, performance never decreases, a factor important for running large simulations on many processors with individual time steps, where only a small fraction of the total particles require updates at any given moment.« less
The Search for Bright Variable Stars in Open Cluster NGC 6819.
NASA Astrophysics Data System (ADS)
Talamantes, Antonio; Sandquist, E. L.
2009-01-01
During this research period data was taken for seven nights at the 1m telescope at Mt. Laguna Observatory for the open cluster NGC 6819. For four of the nights data was taken using a V-band filter. For the three nights remaining nights the data was taken using an R-band filter. Photometry was done using the ISIS image subtraction package. Six new variable stars were located using these techniques. These variable types include a pulsating variable, five detached eclipsing binaries. Of the detached eclipsing binaries, three are near the cluster turnoff and two in the blue straggler region(and one of these has total eclipses). Nine previously known variables(six contact binaries, two detached eclipsing binaries and one near-contact binary) were also studied.
Periodic Emission from the Gamma-Ray Binary 1FGL J1018.6-5856
Ackermann, M.
2012-01-12
Gamma-ray binaries are stellar systems containing a neutron star or black hole with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL J1018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable X-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGLmore » J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.« less
Time-dependent search for neutrino emission from X-ray binaries with the ANTARES telescope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, A.; André, M.; Anton, G.
2017-04-01
ANTARES is currently the largest neutrino telescope operating in the Northern Hemisphere, aiming at the detection of high-energy neutrinos from astrophysical sources. Neutrino telescopes constantly monitor at least one complete hemisphere of the sky, and are thus well-suited to detect neutrinos produced in transient astrophysical sources. A time-dependent search has been applied to a list of 33 X-ray binaries undergoing high flaring activities in satellite data (RXTE/ASM, MAXI and Swift/BAT) and during hardness transition states in the 2008–2012 period. The background originating from interactions of charged cosmic rays in the Earth's atmosphere is drastically reduced by requiring a directional andmore » temporal coincidence with astrophysical phenomena. The results of this search are presented together with comparisons between the neutrino flux upper limits and the neutrino flux predictions from astrophysical models. The neutrino flux upper limits resulting from this search limit the jet parameter space for some astrophysical models.« less
Time-dependent search for neutrino emission from X-ray binaries with the ANTARES telescope
NASA Astrophysics Data System (ADS)
Albert, A.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; De Bonis, G.; Distefano, C.; Di Palma, I.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Felis, I.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Glotin, H.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu, A.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Roensch, K.; Saldaña, M.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schnabel, J.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Trovato, A.; Tselengidou, M.; Turpin, D.; Tönnis, C.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.
2017-04-01
ANTARES is currently the largest neutrino telescope operating in the Northern Hemisphere, aiming at the detection of high-energy neutrinos from astrophysical sources. Neutrino telescopes constantly monitor at least one complete hemisphere of the sky, and are thus well-suited to detect neutrinos produced in transient astrophysical sources. A time-dependent search has been applied to a list of 33 X-ray binaries undergoing high flaring activities in satellite data (RXTE/ASM, MAXI and Swift/BAT) and during hardness transition states in the 2008-2012 period. The background originating from interactions of charged cosmic rays in the Earth's atmosphere is drastically reduced by requiring a directional and temporal coincidence with astrophysical phenomena. The results of this search are presented together with comparisons between the neutrino flux upper limits and the neutrino flux predictions from astrophysical models. The neutrino flux upper limits resulting from this search limit the jet parameter space for some astrophysical models.
A Swarm Optimization Genetic Algorithm Based on Quantum-Behaved Particle Swarm Optimization.
Sun, Tao; Xu, Ming-Hai
2017-01-01
Quantum-behaved particle swarm optimization (QPSO) algorithm is a variant of the traditional particle swarm optimization (PSO). The QPSO that was originally developed for continuous search spaces outperforms the traditional PSO in search ability. This paper analyzes the main factors that impact the search ability of QPSO and converts the particle movement formula to the mutation condition by introducing the rejection region, thus proposing a new binary algorithm, named swarm optimization genetic algorithm (SOGA), because it is more like genetic algorithm (GA) than PSO in form. SOGA has crossover and mutation operator as GA but does not need to set the crossover and mutation probability, so it has fewer parameters to control. The proposed algorithm was tested with several nonlinear high-dimension functions in the binary search space, and the results were compared with those from BPSO, BQPSO, and GA. The experimental results show that SOGA is distinctly superior to the other three algorithms in terms of solution accuracy and convergence.
Using tree diversity to compare phylogenetic heuristics.
Sul, Seung-Jin; Matthews, Suzanne; Williams, Tiffani L
2009-04-29
Evolutionary trees are family trees that represent the relationships between a group of organisms. Phylogenetic heuristics are used to search stochastically for the best-scoring trees in tree space. Given that better tree scores are believed to be better approximations of the true phylogeny, traditional evaluation techniques have used tree scores to determine the heuristics that find the best scores in the fastest time. We develop new techniques to evaluate phylogenetic heuristics based on both tree scores and topologies to compare Pauprat and Rec-I-DCM3, two popular Maximum Parsimony search algorithms. Our results show that although Pauprat and Rec-I-DCM3 find the trees with the same best scores, topologically these trees are quite different. Furthermore, the Rec-I-DCM3 trees cluster distinctly from the Pauprat trees. In addition to our heatmap visualizations of using parsimony scores and the Robinson-Foulds distance to compare best-scoring trees found by the two heuristics, we also develop entropy-based methods to show the diversity of the trees found. Overall, Pauprat identifies more diverse trees than Rec-I-DCM3. Overall, our work shows that there is value to comparing heuristics beyond the parsimony scores that they find. Pauprat is a slower heuristic than Rec-I-DCM3. However, our work shows that there is tremendous value in using Pauprat to reconstruct trees-especially since it finds identical scoring but topologically distinct trees. Hence, instead of discounting Pauprat, effort should go in improving its implementation. Ultimately, improved performance measures lead to better phylogenetic heuristics and will result in better approximations of the true evolutionary history of the organisms of interest.
The 4U 0115+63: Another energetic gamma ray binary pulsar
NASA Technical Reports Server (NTRS)
Chadwick, P. M.; Dipper, N. A.; Dowthwaite, J. C.; Kirkman, I. W.; Mccomb, T. J. L.; Orford, K. J.; Turver, K. E.
1985-01-01
Following the discovery of Her X-1 as a source of pulsed 1000 Gev X-rays, a search for emission from an X-ray binary containing a pulsar with similar values of period, period derivative and luminosity was successful. The sporadic X-ray binary 4U 0115-63 has been observed, with probability 2.5 x 10 to the minus 6 power ergs/s to emit 1000 GeV gamma-rays with a time averaged energy flux of 6 to 10 to the 35th power.
1990-04-01
focus of attention ). The inherent local control in the FA/C model allows it to achieve just that, since it only requires a global goal to become...Computing Terms Agent Modelling : is concerned with modelling actor’s intentions and plans, and their modification in the light of information... model or program that is based on a mathematical system of logic. B-tree : or "binary-tree" is a self organising storage mechanism that works by taking
Linear chirp phase perturbing approach for finding binary phased codes
NASA Astrophysics Data System (ADS)
Li, Bing C.
2017-05-01
Binary phased codes have many applications in communication and radar systems. These applications require binary phased codes to have low sidelobes in order to reduce interferences and false detection. Barker codes are the ones that satisfy these requirements and they have lowest maximum sidelobes. However, Barker codes have very limited code lengths (equal or less than 13) while many applications including low probability of intercept radar, and spread spectrum communication, require much higher code lengths. The conventional techniques of finding binary phased codes in literatures include exhaust search, neural network, and evolutionary methods, and they all require very expensive computation for large code lengths. Therefore these techniques are limited to find binary phased codes with small code lengths (less than 100). In this paper, by analyzing Barker code, linear chirp, and P3 phases, we propose a new approach to find binary codes. Experiments show that the proposed method is able to find long low sidelobe binary phased codes (code length >500) with reasonable computational cost.
Searching for Unresolved Binary Brown Dwarfs
NASA Astrophysics Data System (ADS)
Albretsen, Jacob; Stephens, Denise
2007-10-01
There are currently L and T brown dwarfs (BDs) with errors in their classification of +/- 1 to 2 spectra types. Metallicity and gravitational differences have accounted for some of these discrepancies, and recent studies have shown unresolved binary BDs may offer some explanation as well. However limitations in technology and resources often make it difficult to clearly resolve an object that may be binary in nature. Stephens and Noll (2006) identified statistically strong binary source candidates from Hubble Space Telescope (HST) images of Trans-Neptunian Objects (TNOs) that were apparently unresolved using model point-spread functions for single and binary sources. The HST archive contains numerous observations of BDs using the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) that have never been rigorously analyzed for binary properties. Using methods developed by Stephens and Noll (2006), BD observations from the HST data archive are being analyzed for possible unresolved binaries. Preliminary results will be presented. This technique will identify potential candidates for future observations to determine orbital information.
NASA Technical Reports Server (NTRS)
Buntine, Wray
1994-01-01
IND computer program introduces Bayesian and Markov/maximum-likelihood (MML) methods and more-sophisticated methods of searching in growing trees. Produces more-accurate class-probability estimates important in applications like diagnosis. Provides range of features and styles with convenience for casual user, fine-tuning for advanced user or for those interested in research. Consists of four basic kinds of routines: data-manipulation, tree-generation, tree-testing, and tree-display. Written in C language.
Assessment of various supervised learning algorithms using different performance metrics
NASA Astrophysics Data System (ADS)
Susheel Kumar, S. M.; Laxkar, Deepak; Adhikari, Sourav; Vijayarajan, V.
2017-11-01
Our work brings out comparison based on the performance of supervised machine learning algorithms on a binary classification task. The supervised machine learning algorithms which are taken into consideration in the following work are namely Support Vector Machine(SVM), Decision Tree(DT), K Nearest Neighbour (KNN), Naïve Bayes(NB) and Random Forest(RF). This paper mostly focuses on comparing the performance of above mentioned algorithms on one binary classification task by analysing the Metrics such as Accuracy, F-Measure, G-Measure, Precision, Misclassification Rate, False Positive Rate, True Positive Rate, Specificity, Prevalence.
Fast content-based image retrieval using dynamic cluster tree
NASA Astrophysics Data System (ADS)
Chen, Jinyan; Sun, Jizhou; Wu, Rongteng; Zhang, Yaping
2008-03-01
A novel content-based image retrieval data structure is developed in present work. It can improve the searching efficiency significantly. All images are organized into a tree, in which every node is comprised of images with similar features. Images in a children node have more similarity (less variance) within themselves in relative to its parent. It means that every node is a cluster and each of its children nodes is a sub-cluster. Information contained in a node includes not only the number of images, but also the center and the variance of these images. Upon the addition of new images, the tree structure is capable of dynamically changing to ensure the minimization of total variance of the tree. Subsequently, a heuristic method has been designed to retrieve the information from this tree. Given a sample image, the probability of a tree node that contains the similar images is computed using the center of the node and its variance. If the probability is higher than a certain threshold, this node will be recursively checked to locate the similar images. So will its children nodes if their probability is also higher than that threshold. If no sufficient similar images were founded, a reduced threshold value would be adopted to initiate a new seeking from the root node. The search terminates when it found sufficient similar images or the threshold value is too low to give meaningful sense. Experiments have shown that the proposed dynamic cluster tree is able to improve the searching efficiency notably.
A New Binary Star System of EW Type in Draco: GSC 03905-01870
NASA Astrophysics Data System (ADS)
Barquin, S.
2018-05-01
Discovery of a new binary star system (GSC 03905-01870 = USNO-B1.0 1431-0327922 = UCAC4 716-059522) in the Draco constellation is presented. It was discovered during a search for previously unreported eclipsing binary stars through the ASAS-SN database. The shape of the light curve and its characteristics (period of 0.428988+-0.000001 d, amplitude of 0.34+-0.02 V Mag, primary minimum epoch HJD 2457994.2756+-0.0002) indicates that the new variable star is an eclipsing binary of W Ursae Majoris type. I registered this variable star in The International Variable Star Index (VSX), its AAVSO UID is 000-BMP-891.
Ken Gibson; Sandy Kegley; Barbara Bentz
2009-01-01
The mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae) is a member of a group of insects known as bark beetles. Its entire life cycle is spent beneath the bark of host trees, except when adults emerge from brood trees and fly in search of new host trees.
A Tabu-Search Heuristic for Deterministic Two-Mode Blockmodeling of Binary Network Matrices
ERIC Educational Resources Information Center
Brusco, Michael; Steinley, Douglas
2011-01-01
Two-mode binary data matrices arise in a variety of social network contexts, such as the attendance or non-attendance of individuals at events, the participation or lack of participation of groups in projects, and the votes of judges on cases. A popular method for analyzing such data is two-mode blockmodeling based on structural equivalence, where…
In search of a signature of binary Kuiper Belt Objects in the Pluto-Charon crater population
NASA Astrophysics Data System (ADS)
Zangari, Amanda Marie; Parker, Alex; Singer, Kelsi N.; Stern, S. Alan; Young, Leslie; Olkin, Catherine B.; Ennico, Kimberly; Weaver, Harold A.; New Horizons Geology, Geophysics and Imaging Science Theme Team
2016-10-01
In July 2015, New Horizons flew by Pluto and Charon, allowing mapping of the encounter hemisphere at high enough resolution to produce crater counts from the surfaces of the pair. We investigate the distribution of craters in search of a signature of binary impactors. The Kuiper Belt -- especially the cold classical region -- has a large fraction of binary objects, many of which are close-in, equal-mass binaries. We will present results on how the distribution of craters seen on Pluto and Charon compares to a random distribution of single body impactors on the surfaces of each. Examining the surfaces of Pluto and Charon proves challenging due to resurfacing, and the presence of tectonic and other geographic features. For example, the informally-named Cthulhu region is among the oldest on Pluto, yet it abuts a craterless region millions of years young. On Charon, chastmata divide the surface into regions informally named Vulcan Planum and Oz terra. In our statistics, we pay careful attention to the boundaries of where craters may appear, and the dependence of our results on crater size. This work was supported by NASA's New Horizons project.
SIM Lite Detection of Habitable Planets in P-Type Binary-Planetary Systems
NASA Technical Reports Server (NTRS)
Pan, Xiaopei; Shao, Michael; Shaklan, Stuart; Goullioud, Renaud
2010-01-01
Close binary stars like spectroscopic binaries create a completely different environment than single stars for the evolution of a protoplanetary disk. Dynamical interactions between one star and protoplanets in such systems provide more challenges for theorists to model giant planet migration and formation of multiple planets. For habitable planets the majority of host stars are in binary star systems. So far only a small amount of Jupiter-size planets have been discovered in binary stars, whose minimum separations are 20 AU and the median value is about 1000 AU (because of difficulties in radial velocity measurements). The SIM Lite mission, a space-based astrometric observatory, has a unique capability to detect habitable planets in binary star systems. This work analyzed responses of the optical system to the field stop for companion stars and demonstrated that SIM Lite can observe exoplanets in visual binaries with small angular separations. In particular we investigated the issues for the search for terrestrial planets in P-type binary-planetary systems, where the planets move around both stars in a relatively distant orbit.
DupTree: a program for large-scale phylogenetic analyses using gene tree parsimony.
Wehe, André; Bansal, Mukul S; Burleigh, J Gordon; Eulenstein, Oliver
2008-07-01
DupTree is a new software program for inferring rooted species trees from collections of gene trees using the gene tree parsimony approach. The program implements a novel algorithm that significantly improves upon the run time of standard search heuristics for gene tree parsimony, and enables the first truly genome-scale phylogenetic analyses. In addition, DupTree allows users to examine alternate rootings and to weight the reconciliation costs for gene trees. DupTree is an open source project written in C++. DupTree for Mac OS X, Windows, and Linux along with a sample dataset and an on-line manual are available at http://genome.cs.iastate.edu/CBL/DupTree
Searching for Binary Systems Among Nearby Dwarfs Based on Pulkovo Observations and SDSS Data
NASA Astrophysics Data System (ADS)
Khovrichev, M. Yu.; Apetyan, A. A.; Roshchina, E. A.; Izmailov, I. S.; Bikulova, D. A.; Ershova, A. P.; Balyaev, I. A.; Kulikova, A. M.; Petyur, V. V.; Shumilov, A. A.; Os'kina, K. I.; Maksimova, L. A.
2018-02-01
Our goal is to find previously unknown binary systems among low-mass dwarfs in the solar neighborhood and to test the search technique. The basic ideas are to reveal the images of stars with significant ellipticities and/or asymmetries compared to the background stars on CCD frames and to subsequently determine the spatial parameters of the binary system and the magnitude difference between its components. For its realization we have developed a method based on an image shapelet decomposition. All of the comparatively faint stars with large proper motions ( V >13 m , μ > 300 mas yr-1) for which the "duplicate source" flag in the Gaia DR1 catalogue is equal to one have been included in the list of objects for our study. As a result, we have selected 702 stars. To verify our results, we have performed additional observations of 65 stars from this list with the Pulkovo 1-m "Saturn" telescope (2016-2017). We have revealed a total of 138 binary candidates (nine of them from the "Saturn" telescope and SDSS data). Six program stars are known binaries. The images of the primaries of the comparatively wide pairs WDS 14519+5147, WDS 11371+6022, and WDS 15404+2500 are shown to be resolved into components; therefore, we can talk about the detection of triple systems. The angular separation ρ, position angle, and component magnitude difference Δ m have been estimated for almost all of the revealed binary systems. For most stars 1.5'' < ρ < 2.5'', while Δ m <1.5m.
A new algorithm to construct phylogenetic networks from trees.
Wang, J
2014-03-06
Developing appropriate methods for constructing phylogenetic networks from tree sets is an important problem, and much research is currently being undertaken in this area. BIMLR is an algorithm that constructs phylogenetic networks from tree sets. The algorithm can construct a much simpler network than other available methods. Here, we introduce an improved version of the BIMLR algorithm, QuickCass. QuickCass changes the selection strategy of the labels of leaves below the reticulate nodes, i.e., the nodes with an indegree of at least 2 in BIMLR. We show that QuickCass can construct simpler phylogenetic networks than BIMLR. Furthermore, we show that QuickCass is a polynomial-time algorithm when the output network that is constructed by QuickCass is binary.
NASA Astrophysics Data System (ADS)
Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Ast, S.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Bao, Y.; Barayoga, J. C. B.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Beck, D.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bhadbade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bond, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chalermsongsak, T.; Charlton, P.; Chassande-Mottin, E.; Chen, W.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Dent, T.; Dergachev, V.; DeRosa, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorsher, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Farr, B. F.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M. A.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P. J.; Fyffe, M.; Gair, J.; Galimberti, M.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gáspár, M. E.; Gelencser, G.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; James, E.; Jang, Y. J.; Jaranowski, P.; Jesse, E.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Keitel, D.; Kelley, D.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, H.; Kim, K.; Kim, N.; Kim, Y. M.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Lam, P. K.; Landry, M.; Langley, A.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Lhuillier, V.; Li, J.; Li, T. G. F.; Lindquist, P. E.; Litvine, V.; Liu, Y.; Liu, Z.; Lockerbie, N. A.; Lodhia, D.; Logue, J.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Morriss, S. R.; Mosca, S.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Necula, V.; Nelson, J.; Neri, I.; Newton, G.; Nguyen, T.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Oldenberg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Penn, S.; Perreca, A.; Persichetti, G.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pihlaja, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Poux, C.; Prato, M.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Roberts, M.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sankar, S.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Somiya, K.; Sorazu, B.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S. E.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Vahlbruch, H.; Vajente, G.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, R.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2013-01-01
We report a search for gravitational waves from the inspiral, merger and ringdown of binary black holes (BBH) with total mass between 25 and 100 solar masses, in data taken at the LIGO and Virgo observatories between July 7, 2009 and October 20, 2010. The maximum sensitive distance of the detectors over this period for a (20,20)M⊙ coalescence was 300 Mpc. No gravitational wave signals were found. We thus report upper limits on the astrophysical coalescence rates of BBH as a function of the component masses for nonspinning components, and also evaluate the dependence of the search sensitivity on component spins aligned with the orbital angular momentum. We find an upper limit at 90% confidence on the coalescence rate of BBH with nonspinning components of mass between 19 and 28M⊙ of 3.3×10-7 mergers Mpc-3yr-1.
Wide Binaries in TGAS: Search Method and First Results
NASA Astrophysics Data System (ADS)
Andrews, Jeff J.; Chanamé, Julio; Agüeros, Marcel A.
2018-04-01
Half of all stars reside in binary systems, many of which have orbital separations in excess of 1000 AU. Such binaries are typically identified in astrometric catalogs by matching the proper motions vectors of close stellar pairs. We present a fully Bayesian method that properly takes into account positions, proper motions, parallaxes, and their correlated uncertainties to identify widely separated stellar binaries. After applying our method to the >2 × 106 stars in the Tycho-Gaia astrometric solution from Gaia DR1, we identify over 6000 candidate wide binaries. For those pairs with separations less than 40,000 AU, we determine the contamination rate to be ~5%. This sample has an orbital separation (a) distribution that is roughly flat in log space for separations less than ~5000 AU and follows a power law of a -1.6 at larger separations.
Evidence for a planetary mass third body orbiting the binary star KIC 5095269
NASA Astrophysics Data System (ADS)
Getley, A. K.; Carter, B.; King, R.; O'Toole, S.
2017-07-01
In this paper, we report the evidence for a planetary mass body orbiting the close binary star KIC 5095269. This detection arose from a search for eclipse timing variations amongst the more than 2000 eclipsing binaries observed by Kepler. Light curve and periodic eclipse time variations have been analysed using systemic and a custom Binary Eclipse Timings code based on the Transit Analysis Package which indicates a 7.70 ± 0.08MJup object orbiting every 237.7 ± 0.1 d around a 1.2 M⊙ primary and a 0.51 M⊙ secondary in an 18.6 d orbit. A dynamical integration over 107 yr suggests a stable orbital configuration. Radial velocity observations are recommended to confirm the properties of the binary star components and the planetary mass of the companion.
Clustered-dot halftoning with direct binary search.
Goyal, Puneet; Gupta, Madhur; Staelin, Carl; Fischer, Mani; Shacham, Omri; Allebach, Jan P
2013-02-01
In this paper, we present a new algorithm for aperiodic clustered-dot halftoning based on direct binary search (DBS). The DBS optimization framework has been modified for designing clustered-dot texture, by using filters with different sizes in the initialization and update steps of the algorithm. Following an intuitive explanation of how the clustered-dot texture results from this modified framework, we derive a closed-form cost metric which, when minimized, equivalently generates stochastic clustered-dot texture. An analysis of the cost metric and its influence on the texture quality is presented, which is followed by a modification to the cost metric to reduce computational cost and to make it more suitable for screen design.
p3d--Python module for structural bioinformatics.
Fufezan, Christian; Specht, Michael
2009-08-21
High-throughput bioinformatic analysis tools are needed to mine the large amount of structural data via knowledge based approaches. The development of such tools requires a robust interface to access the structural data in an easy way. For this the Python scripting language is the optimal choice since its philosophy is to write an understandable source code. p3d is an object oriented Python module that adds a simple yet powerful interface to the Python interpreter to process and analyse three dimensional protein structure files (PDB files). p3d's strength arises from the combination of a) very fast spatial access to the structural data due to the implementation of a binary space partitioning (BSP) tree, b) set theory and c) functions that allow to combine a and b and that use human readable language in the search queries rather than complex computer language. All these factors combined facilitate the rapid development of bioinformatic tools that can perform quick and complex analyses of protein structures. p3d is the perfect tool to quickly develop tools for structural bioinformatics using the Python scripting language.
Sparse Gaussian elimination with controlled fill-in on a shared memory multiprocessor
NASA Technical Reports Server (NTRS)
Alaghband, Gita; Jordan, Harry F.
1989-01-01
It is shown that in sparse matrices arising from electronic circuits, it is possible to do computations on many diagonal elements simultaneously. A technique for obtaining an ordered compatible set directly from the ordered incompatible table is given. The ordering is based on the Markowitz number of the pivot candidates. This technique generates a set of compatible pivots with the property of generating few fills. A novel heuristic algorithm is presented that combines the idea of an order-compatible set with a limited binary tree search to generate several sets of compatible pivots in linear time. An elimination set for reducing the matrix is generated and selected on the basis of a minimum Markowitz sum number. The parallel pivoting technique presented is a stepwise algorithm and can be applied to any submatrix of the original matrix. Thus, it is not a preordering of the sparse matrix and is applied dynamically as the decomposition proceeds. Parameters are suggested to obtain a balance between parallelism and fill-ins. Results of applying the proposed algorithms on several large application matrices using the HEP multiprocessor (Kowalik, 1985) are presented and analyzed.
Henrard, S; Speybroeck, N; Hermans, C
2015-11-01
Haemophilia is a rare genetic haemorrhagic disease characterized by partial or complete deficiency of coagulation factor VIII, for haemophilia A, or IX, for haemophilia B. As in any other medical research domain, the field of haemophilia research is increasingly concerned with finding factors associated with binary or continuous outcomes through multivariable models. Traditional models include multiple logistic regressions, for binary outcomes, and multiple linear regressions for continuous outcomes. Yet these regression models are at times difficult to implement, especially for non-statisticians, and can be difficult to interpret. The present paper sought to didactically explain how, why, and when to use classification and regression tree (CART) analysis for haemophilia research. The CART method is non-parametric and non-linear, based on the repeated partitioning of a sample into subgroups based on a certain criterion. Breiman developed this method in 1984. Classification trees (CTs) are used to analyse categorical outcomes and regression trees (RTs) to analyse continuous ones. The CART methodology has become increasingly popular in the medical field, yet only a few examples of studies using this methodology specifically in haemophilia have to date been published. Two examples using CART analysis and previously published in this field are didactically explained in details. There is increasing interest in using CART analysis in the health domain, primarily due to its ease of implementation, use, and interpretation, thus facilitating medical decision-making. This method should be promoted for analysing continuous or categorical outcomes in haemophilia, when applicable. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Mishra, S. K.; Sahithi, V. V. D.; Rao, C. S. P.
2016-09-01
The lot sizing problem deals with finding optimal order quantities which minimizes the ordering and holding cost of product mix. when multiple items at multiple levels with all capacity restrictions are considered, the lot sizing problem become NP hard. Many heuristics were developed in the past have inevitably failed due to size, computational complexity and time. However the authors were successful in the development of PSO based technique namely iterative improvement binary particles swarm technique to address very large capacitated multi-item multi level lot sizing (CMIMLLS) problem. First binary particle Swarm Optimization algorithm is used to find a solution in a reasonable time and iterative improvement local search mechanism is employed to improvise the solution obtained by BPSO algorithm. This hybrid mechanism of using local search on the global solution is found to improve the quality of solutions with respect to time thus IIBPSO method is found best and show excellent results.
NASA Astrophysics Data System (ADS)
Leinhardt, Zoë M.; Richardson, Derek C.
2005-08-01
We present a new code ( companion) that identifies bound systems of particles in O(NlogN) time. Simple binaries consisting of pairs of mutually bound particles and complex hierarchies consisting of collections of mutually bound particles are identifiable with this code. In comparison, brute force binary search methods scale as O(N) while full hierarchy searches can be as expensive as O(N), making analysis highly inefficient for multiple data sets with N≳10. A simple test case is provided to illustrate the method. Timing tests demonstrating O(NlogN) scaling with the new code on real data are presented. We apply our method to data from asteroid satellite simulations [Durda et al., 2004. Icarus 167, 382-396; Erratum: Icarus 170, 242; reprinted article: Icarus 170, 243-257] and note interesting multi-particle configurations. The code is available at http://www.astro.umd.edu/zoe/companion/ and is distributed under the terms and conditions of the GNU Public License.
NASA Astrophysics Data System (ADS)
Nitz, Alexander H.
2018-02-01
‘Blip glitches’ are a type of short duration transient noise in LIGO data. The cause for the majority of these is currently unknown. Short duration transient noise creates challenges for searches of the highest mass binary black hole systems, as standard methods of applying signal consistency, which look for consistency in the accumulated signal-to-noise of the candidate event, are unable to distinguish many blip glitches from short duration gravitational-wave signals due to similarities in their time and frequency evolution. We demonstrate a straightforward method, employed during Advanced LIGO’s second observing run, including the period of joint observation with the Virgo observatory, to separate the majority of this transient noise from potential gravitational-wave sources. This yields a ∼20% improvement in the detection rate of high mass binary black hole mergers (> 60 Mȯ ) for the PyCBC analysis.
Arboreal nests of Phenacomys longgicaudus in Oregon.
A.M. Gillesberg; A.B. Carey
1991-01-01
Searching felled trees proved effective for finding nests of Phenacomys longicaudus; 117 nests were found in 50 trees. Nests were located throughout the live crowns, but were concentrated in the lower two-thirds of the canopy. Abundance of nests increased with tree size; old-growth forests provide optimum habitat.
Stochastic model search with binary outcomes for genome-wide association studies.
Russu, Alberto; Malovini, Alberto; Puca, Annibale A; Bellazzi, Riccardo
2012-06-01
The spread of case-control genome-wide association studies (GWASs) has stimulated the development of new variable selection methods and predictive models. We introduce a novel Bayesian model search algorithm, Binary Outcome Stochastic Search (BOSS), which addresses the model selection problem when the number of predictors far exceeds the number of binary responses. Our method is based on a latent variable model that links the observed outcomes to the underlying genetic variables. A Markov Chain Monte Carlo approach is used for model search and to evaluate the posterior probability of each predictor. BOSS is compared with three established methods (stepwise regression, logistic lasso, and elastic net) in a simulated benchmark. Two real case studies are also investigated: a GWAS on the genetic bases of longevity, and the type 2 diabetes study from the Wellcome Trust Case Control Consortium. Simulations show that BOSS achieves higher precisions than the reference methods while preserving good recall rates. In both experimental studies, BOSS successfully detects genetic polymorphisms previously reported to be associated with the analyzed phenotypes. BOSS outperforms the other methods in terms of F-measure on simulated data. In the two real studies, BOSS successfully detects biologically relevant features, some of which are missed by univariate analysis and the three reference techniques. The proposed algorithm is an advance in the methodology for model selection with a large number of features. Our simulated and experimental results showed that BOSS proves effective in detecting relevant markers while providing a parsimonious model.
Gravitational Wave Detection of Compact Binaries Through Multivariate Analysis
NASA Astrophysics Data System (ADS)
Atallah, Dany Victor; Dorrington, Iain; Sutton, Patrick
2017-01-01
The first detection of gravitational waves (GW), GW150914, as produced by a binary black hole merger, has ushered in the era of GW astronomy. The detection technique used to find GW150914 considered only a fraction of the information available describing the candidate event: mainly the detector signal to noise ratios and chi-squared values. In hopes of greatly increasing detection rates, we want to take advantage of all the information available about candidate events. We employ a technique called Multivariate Analysis (MVA) to improve LIGO sensitivity to GW signals. MVA techniques are efficient ways to scan high dimensional data spaces for signal/noise classification. Our goal is to use MVA to classify compact-object binary coalescence (CBC) events composed of any combination of black holes and neutron stars. CBC waveforms are modeled through numerical relativity. Templates of the modeled waveforms are used to search for CBCs and quantify candidate events. Different MVA pipelines are under investigation to look for CBC signals and un-modelled signals, with promising results. One such MVA pipeline used for the un-modelled search can theoretically analyze far more data than the MVA pipelines currently explored for CBCs, potentially making a more powerful classifier. In principle, this extra information could improve the sensitivity to GW signals. We will present the results from our efforts to adapt an MVA pipeline used in the un-modelled search to classify candidate events from the CBC search.
EnviroAtlas Tree Cover Configuration and Connectivity, Water Background Web Service
This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The 1-meter resolution tree cover configuration and connectivity map categorizes tree cover into structural elements (e.g. core, edge, connector, etc.). Source imagery varies by community. For specific information about methods and accuracy of each community's tree cover configuration and connectivity classification, consult their individual metadata records: Austin, TX (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B29D2B039-905C-4825-B0B4-9315122D6A9F%7D); Cleveland, OH (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B03cd54e1-4328-402e-ba75-e198ea9fbdc7%7D); Des Moines, IA (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B350A83E6-10A2-4D5D-97E6-F7F368D268BB%7D); Durham, NC (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7BC337BA5F-8275-4BA8-9647-F63C443F317D%7D); Fresno, CA (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B84B98749-9C1C-4679-AE24-9B9C0998EBA5%7D); Green Bay, WI (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B69E48A44-3D30-4E84-A764-38FBDCCAC3D0%7D); Memphis, TN (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7BB7313ADA-04F7-4D80-ABBA-77E753AAD002%7D); Milwaukee, WI (https://edg.epa.gov/metadata/catalog/search/resource/details.page?u
New variable stars discovered in the fields of three Galactic open clusters using the VVV survey
NASA Astrophysics Data System (ADS)
Palma, T.; Minniti, D.; Dékány, I.; Clariá, J. J.; Alonso-García, J.; Gramajo, L. V.; Ramírez Alegría, S.; Bonatto, C.
2016-11-01
This project is a massive near-infrared (NIR) search for variable stars in highly reddened and obscured open cluster (OC) fields projected on regions of the Galactic bulge and disk. The search is performed using photometric NIR data in the J-, H- and Ks- bands obtained from the Vista Variables in the Vía Láctea (VVV) Survey. We performed in each cluster field a variability search using Stetson's variability statistics to select the variable candidates. Later, those candidates were subjected to a frequency analysis using the Generalized Lomb-Scargle and the Phase Dispersion Minimization algorithms. The number of independent observations range between 63 and 73. The newly discovered variables in this study, 157 in total in three different known OCs, are classified based on their light curve shapes, periods, amplitudes and their location in the corresponding color-magnitude (J -Ks ,Ks) and color-color (H -Ks , J - H) diagrams. We found 5 possible Cepheid stars which, based on the period-luminosity relation, are very likely type II Cepheids located behind the bulge. Among the newly discovered variables, there are eclipsing binaries, δ Scuti, as well as background RR Lyrae stars. Using the new version of the Wilson & Devinney code as well as the "Physics Of Eclipsing Binaries" (PHOEBE) code, we analyzed some of the best eclipsing binaries we discovered. Our results show that these studied systems turn out to be ranging from detached to double-contact binaries, with low eccentricities and high inclinations of approximately 80°. Their surface temperatures range between 3500 K and 8000 K.
Optimal periodic binary codes of lengths 28 to 64
NASA Technical Reports Server (NTRS)
Tyler, S.; Keston, R.
1980-01-01
Results from computer searches performed to find repeated binary phase coded waveforms with optimal periodic autocorrelation functions are discussed. The best results for lengths 28 to 64 are given. The code features of major concern are where (1) the peak sidelobe in the autocorrelation function is small and (2) the sum of the squares of the sidelobes in the autocorrelation function is small.
Searching for planets around eclipsing binary stars using timing method: NSVS 14256825
NASA Astrophysics Data System (ADS)
Nasiroglu, Ilham; Goździewski, Krzysztof; Słowikowska, Aga; Krzeszowski, Krzysztof; Żejmo, Michal; Zola, Staszek; Er, Huseyin
2018-04-01
We present four new mid eclipse times and an updated O-C diagram of the short period eclipsing binary NSVS14256825. The new data follow the (O-C) trend and its model proposed in Nasiroglu et al. (2017). The (O-C) diagram shows quasi-periodic variations that can be explained with the presence of a brown-dwarf in a quasi-circular circumbinary orbit.
Colliding stellar winds in O-type close binary systems
NASA Technical Reports Server (NTRS)
Gies, Douglas R.
1991-01-01
A study of the stellar wind properties of O-type close binary systems is presented. The main objective of this program was to search for colliding winds in four systems, AO Cas, iota Ori, Plaskett's star, and 29 UW CMa, through an examination of high dispersion UV spectra from IUE and optical spectra of the H alpha and He I lambda 6678 emission lines.
An Improved B+ Tree for Flash File Systems
NASA Astrophysics Data System (ADS)
Havasi, Ferenc
Nowadays mobile devices such as mobile phones, mp3 players and PDAs are becoming evermore common. Most of them use flash chips as storage. To store data efficiently on flash, it is necessary to adapt ordinary file systems because they are designed for use on hard disks. Most of the file systems use some kind of search tree to store index information, which is very important from a performance aspect. Here we improved the B+ search tree algorithm so as to make flash devices more efficient. Our implementation of this solution saves 98%-99% of the flash operations, and is now the part of the Linux kernel.
Tree breeding for pest resistance for the next 50 years: the search for cross resistance?
Alvin D. Yanchuk
2012-01-01
Research activities aimed at developing resistance to pests (insect, pathogens, mammals) in forest trees can be documented back over 5 decades. While a substantial body of research has been published on resistances in forest trees, not much of this work has made its way into applied tree improvement programs. There are several reasons for this, e.g.: (i) a new...
Theoretical Bounds of Direct Binary Search Halftoning.
Liao, Jan-Ray
2015-11-01
Direct binary search (DBS) produces the images of the best quality among half-toning algorithms. The reason is that it minimizes the total squared perceived error instead of using heuristic approaches. The search for the optimal solution involves two operations: (1) toggle and (2) swap. Both operations try to find the binary states for each pixel to minimize the total squared perceived error. This error energy minimization leads to a conjecture that the absolute value of the filtered error after DBS converges is bounded by half of the peak value of the autocorrelation filter. However, a proof of the bound's existence has not yet been found. In this paper, we present a proof that shows the bound existed as conjectured under the condition that at least one swap occurs after toggle converges. The theoretical analysis also indicates that a swap with a pixel further away from the center of the autocorrelation filter results in a tighter bound. Therefore, we propose a new DBS algorithm which considers toggle and swap separately, and the swap operations are considered in the order from the edge to the center of the filter. Experimental results show that the new algorithm is more efficient than the previous algorithm and can produce half-toned images of the same quality as the previous algorithm.
WISE Brown Dwarf Binaries: The Discovery of a T5+T5 and a T8.5+T9 System
NASA Astrophysics Data System (ADS)
Gelino, Christopher R.; Kirkpatrick, J. Davy; Cushing, Michael C.; Eisenhardt, Peter R.; Griffith, Roger L.; Mainzer, Amanda K.; Marsh, Kenneth A.; Skrutskie, Michael F.; Wright, Edward L.
2011-08-01
The multiplicity properties of brown dwarfs are critical empirical constraints for formation theories, while multiples themselves provide unique opportunities to test evolutionary and atmospheric models and examine empirical trends. Studies using high-resolution imaging cannot only uncover faint companions, but they can also be used to determine dynamical masses through long-term monitoring of binary systems. We have begun a search for the coolest brown dwarfs using preliminary processing of data from the Wide-field Infrared Survey Explorer and have confirmed many of the candidates as late-type T dwarfs. In order to search for companions to these objects, we are conducting observations using the Laser Guide Star Adaptive Optics system on Keck II. Here we present the first results of that search, including a T5 binary with nearly equal mass components and a faint companion to a T8.5 dwarf with an estimated spectral type of T9. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
A close-pair binary in a distant triple supermassive black hole system.
Deane, R P; Paragi, Z; Jarvis, M J; Coriat, M; Bernardi, G; Fender, R P; Frey, S; Heywood, I; Klöckner, H-R; Grainge, K; Rumsey, C
2014-07-03
Galaxies are believed to evolve through merging, which should lead to some hosting multiple supermassive black holes. There are four known triple black hole systems, with the closest black hole pair being 2.4 kiloparsecs apart (the third component in this system is at 3 kiloparsecs), which is far from the gravitational sphere of influence (about 100 parsecs for a black hole with mass one billion times that of the Sun). Previous searches for compact black hole systems concluded that they were rare, with the tightest binary system having a separation of 7 parsecs (ref. 10). Here we report observations of a triple black hole system at redshift z = 0.39, with the closest pair separated by about 140 parsecs and significantly more distant from Earth than any other known binary of comparable orbital separation. The effect of the tight pair is to introduce a rotationally symmetric helical modulation on the structure of the large-scale radio jets, which provides a useful way to search for other tight pairs without needing extremely high resolution observations. As we found this tight pair after searching only six galaxies, we conclude that tight pairs are more common than hitherto believed, which is an important observational constraint for low-frequency gravitational wave experiments.
The first orbital solution for the massive colliding-wind binary HD 93162 (≡ WR 25)
NASA Astrophysics Data System (ADS)
Gamen, R.; Gosset, E.; Morrell, N. I.; Niemela, V. S.; Sana, H.; Nazé, Y.; Rauw, G.; Barbá, R. H.; Solivella, G. R.
2008-08-01
Since the discovery, with EINSTEIN, of strong X-ray emission associated with HD 93162, this object was recurrently predicted by some authors to be a colliding-wind binary system. However, radial-velocity variations that would prove the suspected binary nature have never been found so far. We spectroscopically monitored this object in order to investigate its possible variability and to provide an answer to the above-mentioned discordance. We derived radial velocities from spectroscopic data acquired mainly between 1994 and 2006, and searched for periodicities. For the first time, periodic radial-velocity variations are detected. Our analysis definitively shows that the Wolf-Rayet star WR 25 is actually an eccentric binary system with a probable period of about 208 days.
Close Binaries in the η Chamaeleontis Cluster
NASA Astrophysics Data System (ADS)
Köhler, Rainer; Petr-Gotzens, Monika G.
2002-11-01
We have used speckle interferometry and adaptive optics observations to search for multiple systems among 13 stars in the η Chamaeleontis cluster. We discovered two previously unknown subarcsecond binaries. Placing the components in infrared color-magnitude diagrams shows that most members of η Cha are coeval. Repeated observations of the binary RECX 1 allow us to determine a preliminary orbit and derive a system mass of about 2 Msolar. Based on observations obtained at the European Southern Observatory, La Silla, proposals 56.E-0197, 62.I-0399, 65.I-0350, 65.I-0086, 67.C-0354, and 68.C-0539.
The Optical Gravitational Lensing Experiment. Eclipsing Binary Stars in the Small Magellanic Cloud
NASA Astrophysics Data System (ADS)
Wyrzykowski, L.; Udalski, A.; Kubiak, M.; Szymanski, M. K.; Zebrun, K.; Soszynski, I.; Wozniak, P. R.; Pietrzynski, G.; Szewczyk, O.
2004-03-01
We present new version of the OGLE-II catalog of eclipsing binary stars detected in the Small Magellanic Cloud, based on Difference Image Analysis catalog of variable stars in the Magellanic Clouds containing data collected from 1997 to 2000. We found 1351 eclipsing binary stars in the central 2.4 square degree area of the SMC. 455 stars are newly discovered objects, not found in the previous release of the catalog. The eclipsing objects were selected with the automatic search algorithm based on the artificial neural network. The full catalog is accessible from the OGLE Internet archive.
NASA Technical Reports Server (NTRS)
Blackburn, L.; Briggs, M. S.; Camp, J.; Christensen, N.; Connaughton, V.; Jenke, P.; Remillard, R. A.; Veitch, J.
2015-01-01
We present two different search methods for electromagnetic counterparts to gravitational-wave (GW) events from ground-based detectors using archival NASA high-energy data from the Fermi Gamma-ray Burst Monitor (GBM) and RXTE All-sky Monitor (ASM) instruments. To demonstrate the methods, we use a limited number of representative GW background noise events produced by a search for binary neutron star coalescence over the last two months of the LIGO-Virgo S6/VSR3 joint science run. Time and sky location provided by the GW data trigger a targeted search in the high-energy photon data. We use two custom pipelines: one to search for prompt gamma-ray counterparts in GBM, and the other to search for a variety of X-ray afterglow model signals in ASM. We measure the efficiency of the joint pipelines to weak gamma-ray burst counterparts, and a family of model X-ray afterglows. By requiring a detectable signal in either electromagnetic instrument coincident with a GW event, we are able to reject a large majority of GW candidates. This reduces the signal-to-noise ratio of the loudest surviving GW background event by around 15-20 percent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blackburn, L.; Camp, J.; Briggs, M. S.
2015-03-15
We present two different search methods for electromagnetic counterparts to gravitational-wave (GW) events from ground-based detectors using archival NASA high-energy data from the Fermi Gamma-ray Burst Monitor (GBM) and RXTE All-sky Monitor (ASM) instruments. To demonstrate the methods, we use a limited number of representative GW background noise events produced by a search for binary neutron star coalescence over the last two months of the LIGO-Virgo S6/VSR3 joint science run. Time and sky location provided by the GW data trigger a targeted search in the high-energy photon data. We use two custom pipelines: one to search for prompt gamma-ray counterpartsmore » in GBM, and the other to search for a variety of X-ray afterglow model signals in ASM. We measure the efficiency of the joint pipelines to weak gamma-ray burst counterparts, and a family of model X-ray afterglows. By requiring a detectable signal in either electromagnetic instrument coincident with a GW event, we are able to reject a large majority of GW candidates. This reduces the signal-to-noise ratio of the loudest surviving GW background event by around 15–20%.« less
Huang, Wei Tao; Luo, Hong Qun; Li, Nian Bing
2014-05-06
The most serious, and yet unsolved, problem of constructing molecular computing devices consists in connecting all of these molecular events into a usable device. This report demonstrates the use of Boolean logic tree for analyzing the chemical event network based on graphene, organic dye, thrombin aptamer, and Fenton reaction, organizing and connecting these basic chemical events. And this chemical event network can be utilized to implement fluorescent combinatorial logic (including basic logic gates and complex integrated logic circuits) and fuzzy logic computing. On the basis of the Boolean logic tree analysis and logic computing, these basic chemical events can be considered as programmable "words" and chemical interactions as "syntax" logic rules to construct molecular search engine for performing intelligent molecular search query. Our approach is helpful in developing the advanced logic program based on molecules for application in biosensing, nanotechnology, and drug delivery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, Nicholas M.; Kraus, Adam L.; Street, Rachel
2012-10-01
We present three new eclipsing white-dwarf/M-dwarf binary systems discovered during a search for transiting planets around M-dwarfs. Unlike most known eclipsing systems of this type, the optical and infrared emission is dominated by the M-dwarf components, and the systems have optical colors and discovery light curves consistent with being Jupiter-radius transiting planets around early M-dwarfs. We detail the PTF/M-dwarf transiting planet survey, part of the Palomar Transient Factory (PTF). We present a graphics processing unit (GPU)-based box-least-squares search for transits that runs approximately 8 Multiplication-Sign faster than similar algorithms implemented on general purpose systems. For the discovered systems, we decomposemore » low-resolution spectra of the systems into white-dwarf and M-dwarf components, and use radial velocity measurements and cooling models to estimate masses and radii for the white dwarfs. The systems are compact, with periods between 0.35 and 0.45 days and semimajor axes of approximately 2 R{sub Sun} (0.01 AU). The M-dwarfs have masses of approximately 0.35 M{sub Sun }, and the white dwarfs have hydrogen-rich atmospheres with temperatures of around 8000 K and have masses of approximately 0.5 M{sub Sun }. We use the Robo-AO laser guide star adaptive optics system to tentatively identify one of the objects as a triple system. We also use high-cadence photometry to put an upper limit on the white-dwarf radius of 0.025 R{sub Sun} (95% confidence) in one of the systems. Accounting for our detection efficiency and geometric factors, we estimate that 0.08%{sub -0.05%}{sup +0.10%} (90% confidence) of M-dwarfs are in these short-period, post-common-envelope white-dwarf/M-dwarf binaries where the optical light is dominated by the M-dwarf. The lack of detections at shorter periods, despite near-100% detection efficiency for such systems, suggests that binaries including these relatively low-temperature white dwarfs are preferentially found at relatively large orbital radii. Similar eclipsing binary systems can have arbitrarily small eclipse depths in red bands and generate plausible small-planet-transit light curves. As such, these systems are a source of false positives for M-dwarf transiting planet searches. We present several ways to rapidly distinguish these binaries from transiting planet systems.« less
NASA Astrophysics Data System (ADS)
Park, Byeongjin; Sohn, Hoon
2017-07-01
Laser ultrasonic scanning, especially full-field wave propagation imaging, is attractive for damage visualization thanks to its noncontact nature, sensitivity to local damage, and high spatial resolution. However, its practicality is limited because scanning at a high spatial resolution demands a prohibitively long scanning time. Inspired by binary search, an accelerated damage visualization technique is developed to visualize damage with a reduced scanning time. The pitch-catch distance between the excitation point and the sensing point is also fixed during scanning to maintain a high signal-to-noise ratio (SNR) of measured ultrasonic responses. The approximate damage boundary is identified by examining the interactions between ultrasonic waves and damage observed at the scanning points that are sparsely selected by a binary search algorithm. Here, a time-domain laser ultrasonic response is transformed into a spatial ultrasonic domain response using a basis pursuit approach so that the interactions between ultrasonic waves and damage, such as reflections and transmissions, can be better identified in the spatial ultrasonic domain. Then, the area inside the identified damage boundary is visualized as damage. The performance of the proposed damage visualization technique is validated excusing a numerical simulation performed on an aluminum plate with a notch and experiments performed on an aluminum plate with a crack and a wind turbine blade with delamination. The proposed damage visualization technique accelerates the damage visualization process in three aspects: (1) the number of measurements that is necessary for damage visualization is dramatically reduced by a binary search algorithm; (2) the number of averaging that is necessary to achieve a high SNR is reduced by maintaining the wave propagation distance short; and (3) with the proposed technique, the same damage can be identified with a lower spatial resolution than the spatial resolution required by full-field wave propagation imaging.
Directed searches for continuous gravitational waves from spinning neutron stars in binary systems
NASA Astrophysics Data System (ADS)
Meadors, Grant David
2014-09-01
Gravitational wave detectors such as the Laser Interferometer Gravitational-wave Observatory (LIGO) seek to observe ripples in space predicted by General Relativity. Black holes, neutron stars, supernovae, the Big Bang and other sources can radiate gravitational waves. Original contributions to the LIGO effort are presented in this thesis: feedforward filtering, directed binary neutron star searches for continuous waves, and scientific outreach and education, as well as advances in quantum optical squeezing. Feedforward filtering removes extraneous noise from servo-controlled instruments. Filtering of the last science run, S6, improves LIGO's astrophysical range (+4.14% H1, +3.60% L1: +12% volume) after subtracting noise from auxiliary length control channels. This thesis shows how filtering enhances the scientific sensitivity of LIGO's data set during and after S6. Techniques for non-stationarity and verifying calibration and integrity may apply to Advanced LIGO. Squeezing is planned for future interferometers to exceed the standard quantum limit on noise from electromagnetic vacuum fluctuations; this thesis discusses the integration of a prototype squeezer at LIGO Hanford Observatory and impact on astrophysical sensitivity. Continuous gravitational waves may be emitted by neutron stars in low-mass X-ray binary systems such as Scorpius X-1. The TwoSpect directed binary search is designed to detect these waves. TwoSpect is the most sensitive of 4 methods in simulated data, projecting an upper limit of 4.23e-25 in strain, given a year-long data set at an Advanced LIGO design sensitivity of 4e-24 Hz. (-1/2). TwoSpect is also used on real S6 data to set 95% confidence upper limits (40 Hz to 2040 Hz) on strain from Scorpius X-1. A millisecond pulsar, X-ray transient J1751-305, is similarly considered. Search enhancements for Advanced LIGO are proposed. Advanced LIGO and fellow interferometers should detect gravitational waves in the coming decade. Methods in these thesis will benefit both the instrumental and analytical sides of observation.
Biclustering sparse binary genomic data.
van Uitert, Miranda; Meuleman, Wouter; Wessels, Lodewyk
2008-12-01
Genomic datasets often consist of large, binary, sparse data matrices. In such a dataset, one is often interested in finding contiguous blocks that (mostly) contain ones. This is a biclustering problem, and while many algorithms have been proposed to deal with gene expression data, only two algorithms have been proposed that specifically deal with binary matrices. None of the gene expression biclustering algorithms can handle the large number of zeros in sparse binary matrices. The two proposed binary algorithms failed to produce meaningful results. In this article, we present a new algorithm that is able to extract biclusters from sparse, binary datasets. A powerful feature is that biclusters with different numbers of rows and columns can be detected, varying from many rows to few columns and few rows to many columns. It allows the user to guide the search towards biclusters of specific dimensions. When applying our algorithm to an input matrix derived from TRANSFAC, we find transcription factors with distinctly dissimilar binding motifs, but a clear set of common targets that are significantly enriched for GO categories.
Alternation blindness in the representation of binary sequences.
Yu, Ru Qi; Osherson, Daniel; Zhao, Jiaying
2018-03-01
Binary information is prevalent in the environment and contains 2 distinct outcomes. Binary sequences consist of a mixture of alternation and repetition. Understanding how people perceive such sequences would contribute to a general theory of information processing. In this study, we examined how people process alternation and repetition in binary sequences. Across 4 paradigms involving estimation, working memory, change detection, and visual search, we found that the number of alternations is underestimated compared with repetitions (Experiment 1). Moreover, recall for binary sequences deteriorates as the sequence alternates more (Experiment 2). Changes in bits are also harder to detect as the sequence alternates more (Experiment 3). Finally, visual targets superimposed on bits of a binary sequence take longer to process as alternation increases (Experiment 4). Overall, our results indicate that compared with repetition, alternation in a binary sequence is less salient in the sense of requiring more attention for successful encoding. The current study thus reveals the cognitive constraints in the representation of alternation and provides a new explanation for the overalternation bias in randomness perception. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
1987-07-01
position of the camshaft (for example), the position of each other kinematic pair will have a definite computable value. Thus the only state variables needed...DF CONNROD _CON ROD DIF C OD WF CYL /N. D I T.~ UN ,BLO CT!L \\ CYL C"YL CYL Y I C BLO"cB BLO CYL BLO Figure 2 CSG Tree for Crank .Mechanism program...ships plate. The actual representation is a binary tree who-e - internal nodes are set operation, and rigid motions and The first step for kinematic
Retrieving and Indexing Spatial Data in the Cloud Computing Environment
NASA Astrophysics Data System (ADS)
Wang, Yonggang; Wang, Sheng; Zhou, Daliang
In order to solve the drawbacks of spatial data storage in common Cloud Computing platform, we design and present a framework for retrieving, indexing, accessing and managing spatial data in the Cloud environment. An interoperable spatial data object model is provided based on the Simple Feature Coding Rules from the OGC such as Well Known Binary (WKB) and Well Known Text (WKT). And the classic spatial indexing algorithms like Quad-Tree and R-Tree are re-designed in the Cloud Computing environment. In the last we develop a prototype software based on Google App Engine to implement the proposed model.
CytoSPADE: high-performance analysis and visualization of high-dimensional cytometry data
Linderman, Michael D.; Simonds, Erin F.; Qiu, Peng; Bruggner, Robert V.; Sheode, Ketaki; Meng, Teresa H.; Plevritis, Sylvia K.; Nolan, Garry P.
2012-01-01
Motivation: Recent advances in flow cytometry enable simultaneous single-cell measurement of 30+ surface and intracellular proteins. CytoSPADE is a high-performance implementation of an interface for the Spanning-tree Progression Analysis of Density-normalized Events algorithm for tree-based analysis and visualization of this high-dimensional cytometry data. Availability: Source code and binaries are freely available at http://cytospade.org and via Bioconductor version 2.10 onwards for Linux, OSX and Windows. CytoSPADE is implemented in R, C++ and Java. Contact: michael.linderman@mssm.edu Supplementary Information: Additional documentation available at http://cytospade.org. PMID:22782546
Performance of Point and Range Queries for In-memory Databases using Radix Trees on GPUs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, Maksudul; Yoginath, Srikanth B; Perumalla, Kalyan S
In in-memory database systems augmented by hardware accelerators, accelerating the index searching operations can greatly increase the runtime performance of database queries. Recently, adaptive radix trees (ART) have been shown to provide very fast index search implementation on the CPU. Here, we focus on an accelerator-based implementation of ART. We present a detailed performance study of our GPU-based adaptive radix tree (GRT) implementation over a variety of key distributions, synthetic benchmarks, and actual keys from music and book data sets. The performance is also compared with other index-searching schemes on the GPU. GRT on modern GPUs achieves some of themore » highest rates of index searches reported in the literature. For point queries, a throughput of up to 106 million and 130 million lookups per second is achieved for sparse and dense keys, respectively. For range queries, GRT yields 600 million and 1000 million lookups per second for sparse and dense keys, respectively, on a large dataset of 64 million 32-bit keys.« less
A search for cataclysmic binaries containing strongly magnetic white dwarfs
NASA Technical Reports Server (NTRS)
Bond, H. E.; Chanmugam, G.
1982-01-01
The AM Herculis type binaries which contain accreting white dwarfs with surface magnetic fields of a few times 10 to the seventh power gauss were studied. If white dwarfs in cataclysmic binaries have a range of field strengths similar to that among single white dwarfs. AM Her like systems should exist with fields as high as 3 x 10 to the eighth power gauss. It is suggested that such objects will not have the strong optical polarization of the AM Her variables; however, they exhibit high harmonic cyclotron emission, making them spectacular UV sources. We made IUE observations of seven candidate cataclysmic variables selected for optical similarity to AM Her binaries. Although all seven objects were detected in the UV, none display unusually strong UV continua. It is suggested that the distribution of magnetic field strengths among single white dwarfs may be different from that among binaries.
The first orbital solution for the massive colliding-wind binary HD 93162 (≡WR 25)
NASA Astrophysics Data System (ADS)
Gamen, R.; Gosset, E.; Morrell, N.; Niemela, V.; Sana, H.; Nazé, Y.; Rauw, G.; Barbá, R.; Solivella, G.
2006-12-01
Context: Since the discovery, with the EINSTEIN satellite, of strong X-ray emission associated with HD 93162 (≡WR 25), this object has been predicted to be a colliding-wind binary system. However, radial-velocity variations that would prove the suspected binary nature have yet to be found. Aims: We spectroscopically monitored this object to investigate its possible variability to address this discordance. Methods: We compiled the largest available radial-velocity data set for this star to look for variations that might be due to binary motion. We derived radial velocities from spectroscopic data acquired mainly between 1994 and 2006, and searched these radial velocities for periodicities using different numerical methods. Results: For the first time, periodic radial-velocity variations are detected. Our analysis definitively shows that the Wolf-Rayet star WR 25 is an eccentric binary system with a probable period of about 208 days.
Generation of binary holograms with a Kinect sensor for a high speed color holographic display
NASA Astrophysics Data System (ADS)
Leportier, Thibault; Park, Min-Chul; Yano, Sumio; Son, Jung-Young
2017-05-01
The Kinect sensor is a device that enables to capture a real scene with a camera and a depth sensor. A virtual model of the scene can then be obtained with a point cloud representation. A complex hologram can then be computed. However, complex data cannot be used directly because display devices cannot handle amplitude and phase modulation at the same time. Binary holograms are commonly used since they present several advantages. Among the methods that were proposed to convert holograms into a binary format, the direct-binary search (DBS) not only gives the best performance, it also offers the possibility to choose the display parameters of the binary hologram differently than the original complex hologram. Since wavelength and reconstruction distance can be modified, compensation of chromatic aberrations can be handled. In this study, we examine the potential of DBS for RGB holographic display.
Cool Star Binaries with ALEXIS
NASA Technical Reports Server (NTRS)
Stern, Robert A.
1998-01-01
We proposed to search for high-temperature, flare-produced Fe XXIII line emission from active cool star binary systems using the ALEXIS all-sky survey. Previous X-ray transient searches with ARIEL V and HEAO-1, and subsequent shorter duration monitoring with the GINGA and EXOSAT satellites demonstrated that active binaries can produce large (EM approximately equals 10(exp 55-56/cu cm) X-ray flares lasting several hours or longer. Hot plasma from these flares at temperatures of 10(exp 7)K or more should produce Fe XXIII line emission at lambda = 132.8 A, very near the peak response of ALEXIS telescopes 1A and 2A. Our primary goals were to estimate flare frequency for the largest flares in the active binary systems, and, if the data permitted, to derive a distribution of flare energy vs. frequency for the sample as a whole. After a long delay due to the initial problems with the ALEXIS attitude control, the heroic efforts on the part of the ALEXIS satellite team enabled us to carry out this survey. However, the combination of the higher than expected and variable background in the ALEXIS detectors, and the lower throughput of the ALEXIS telescopes resulted in no convincing detections of large flares from the active binary systems. In addition, vignetting-corrected effective exposure times from the ALEXIS aspect solution were not available prior to the end of this contract; therefore, we were unable to convert upper limits measured in ALEXIS counts to the equivalent L(sub EUV).
Binary Coded Web Access Pattern Tree in Education Domain
ERIC Educational Resources Information Center
Gomathi, C.; Moorthi, M.; Duraiswamy, K.
2008-01-01
Web Access Pattern (WAP), which is the sequence of accesses pursued by users frequently, is a kind of interesting and useful knowledge in practice. Sequential Pattern mining is the process of applying data mining techniques to a sequential database for the purposes of discovering the correlation relationships that exist among an ordered list of…
Lateral gene transfers have polished animal genomes: lessons from nematodes
Danchin, Etienne G. J.; Rosso, Marie-Noëlle
2012-01-01
It is now accepted that lateral gene transfers (LGT), have significantly contributed to the composition of bacterial genomes. The amplitude of the phenomenon is considered so high in prokaryotes that it challenges the traditional view of a binary hierarchical tree of life to correctly represent the evolutionary history of species. Given the plethora of transfers between prokaryotes, it is currently impossible to infer the last common ancestral gene set for any extant species. For this ensemble of reasons, it has been proposed that the Darwinian binary tree of life may be inappropriate to correctly reflect the actual relations between species, at least in prokaryotes. In contrast, the contribution of LGT to the composition of animal genomes is less documented. In the light of recent analyses that reported series of LGT events in nematodes, we discuss the importance of this phenomenon in the evolutionary history and in the current composition of an animal genome. Far from being neutral, it appears that besides having contributed to nematode genome contents, LGT have favored the emergence of important traits such as plant-parasitism. PMID:22919619
A fast learning method for large scale and multi-class samples of SVM
NASA Astrophysics Data System (ADS)
Fan, Yu; Guo, Huiming
2017-06-01
A multi-class classification SVM(Support Vector Machine) fast learning method based on binary tree is presented to solve its low learning efficiency when SVM processing large scale multi-class samples. This paper adopts bottom-up method to set up binary tree hierarchy structure, according to achieved hierarchy structure, sub-classifier learns from corresponding samples of each node. During the learning, several class clusters are generated after the first clustering of the training samples. Firstly, central points are extracted from those class clusters which just have one type of samples. For those which have two types of samples, cluster numbers of their positive and negative samples are set respectively according to their mixture degree, secondary clustering undertaken afterwards, after which, central points are extracted from achieved sub-class clusters. By learning from the reduced samples formed by the integration of extracted central points above, sub-classifiers are obtained. Simulation experiment shows that, this fast learning method, which is based on multi-level clustering, can guarantee higher classification accuracy, greatly reduce sample numbers and effectively improve learning efficiency.
Binary Cepheids: Separations and Mass Ratios in 5 Solar Mass Binaries
2013-10-01
astrometry, photometry , direct imaging), each with selection biases. However, Cepheids—cool, evolved stars of∼5M—are a special case because ultraviolet...detected velocity variability. In an imaging survey with the Hubble Space Telescope Wide Field Camera 3, we resolved three of the companions (those...1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and
Analog Computer-Aided Detection (CAD) information can be more effective than binary marks.
Cunningham, Corbin A; Drew, Trafton; Wolfe, Jeremy M
2017-02-01
In socially important visual search tasks, such as baggage screening and diagnostic radiology, experts miss more targets than is desirable. Computer-aided detection (CAD) programs have been developed specifically to improve performance in these professional search tasks. For example, in breast cancer screening, many CAD systems are capable of detecting approximately 90% of breast cancer, with approximately 0.5 false-positive detections per image. Nevertheless, benefits of CAD in clinical settings tend to be small (Birdwell, 2009) or even absent (Meziane et al., 2011; Philpotts, 2009). The marks made by a CAD system can be "binary," giving the same signal to any location where the signal is above some threshold. Alternatively, a CAD system presents an analog signal that reflects strength of the signal at a location. In the experiments reported, we compare analog and binary CAD presentations using nonexpert observers and artificial stimuli defined by two noisy signals: a visible color signal and an "invisible" signal that informed our simulated CAD system. We found that analog CAD generally yielded better overall performance than binary CAD. The analog benefit is similar at high and low target prevalence. Our data suggest that the form of the CAD signal can directly influence performance. Analog CAD may allow the computer to be more helpful to the searcher.
SETI at X-energies - parasitic searches from astrophysical observations.
NASA Astrophysics Data System (ADS)
Corbet, R. H. D.
1997-01-01
If a sufficiently advanced civilization can either modulate the emission from an X-ray binary, or make use of the natural high luminosity to power an artificial transmitter, these can serve as good beacons for interstellar communication without involving excessive energy costs to the broadcasting civilization. In addition, the small number of X-ray binaries in the Galaxy considerably reduces the number of targets that must be investigated compared to searches in other energy bands. Low mass X-ray binaries containing neutron stars in particular are considered as prime potential natural and artificial beacons and high time resolution (better than 1ms) observations are encouraged. All sky monitors provide the capability of detecting brief powerful artificial signals from isolated neutron stars. New capabilities of X-ray astronomy satellites developed for astrophysical purposes are enabling SETI in new parameter regimes. For example, the X-ray Timing Explorer satellite provides the capability of exploring the sub-millisecond region. Other planned X-ray astronomy satellites should provide significantly improved spectral resolution. While SETI at X-ray energies is highly speculative (and rather unfashionable) by using a parasitic approach little additional cost is involved. The inclusion of X-ray binaries in target lists for SETI at radio and other wavebands is also advocated.
Optimized stereo matching in binocular three-dimensional measurement system using structured light.
Liu, Kun; Zhou, Changhe; Wei, Shengbin; Wang, Shaoqing; Fan, Xin; Ma, Jianyong
2014-09-10
In this paper, we develop an optimized stereo-matching method used in an active binocular three-dimensional measurement system. A traditional dense stereo-matching algorithm is time consuming due to a long search range and the high complexity of a similarity evaluation. We project a binary fringe pattern in combination with a series of N binary band limited patterns. In order to prune the search range, we execute an initial matching before exhaustive matching and evaluate a similarity measure using logical comparison instead of a complicated floating-point operation. Finally, an accurate point cloud can be obtained by triangulation methods and subpixel interpolation. The experiment results verify the computational efficiency and matching accuracy of the method.
NASA Technical Reports Server (NTRS)
Thompson, David
2012-01-01
Gamma rays reveal extreme, nonthermal conditions in the Universe. The Fermi Gamma-ray Space Telescope has been exploring the gamma-ray sky for more than four years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge gamma-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.
Development of Pulsar Detection Methods for a Galactic Center Search
NASA Astrophysics Data System (ADS)
Thornton, Stephen; Wharton, Robert; Cordes, James; Chatterjee, Shami
2018-01-01
Finding pulsars within the inner parsec of the galactic center would be incredibly beneficial: for pulsars sufficiently close to Sagittarius A*, extremely precise tests of general relativity in the strong field regime could be performed through measurement of post-Keplerian parameters. Binary pulsar systems with sufficiently short orbital periods could provide the same laboratories with which to test existing theories. Fast and efficient methods are needed to parse large sets of time-domain data from different telescopes to search for periodicity in signals and differentiate radio frequency interference (RFI) from pulsar signals. Here we demonstrate several techniques to reduce red noise (low-frequency interference), generate signals from pulsars in binary orbits, and create plots that allow for fast detection of both RFI and pulsars.
Zhou, Xiaofan; Shen, Xing-Xing; Hittinger, Chris Todd
2018-01-01
Abstract The sizes of the data matrices assembled to resolve branches of the tree of life have increased dramatically, motivating the development of programs for fast, yet accurate, inference. For example, several different fast programs have been developed in the very popular maximum likelihood framework, including RAxML/ExaML, PhyML, IQ-TREE, and FastTree. Although these programs are widely used, a systematic evaluation and comparison of their performance using empirical genome-scale data matrices has so far been lacking. To address this question, we evaluated these four programs on 19 empirical phylogenomic data sets with hundreds to thousands of genes and up to 200 taxa with respect to likelihood maximization, tree topology, and computational speed. For single-gene tree inference, we found that the more exhaustive and slower strategies (ten searches per alignment) outperformed faster strategies (one tree search per alignment) using RAxML, PhyML, or IQ-TREE. Interestingly, single-gene trees inferred by the three programs yielded comparable coalescent-based species tree estimations. For concatenation-based species tree inference, IQ-TREE consistently achieved the best-observed likelihoods for all data sets, and RAxML/ExaML was a close second. In contrast, PhyML often failed to complete concatenation-based analyses, whereas FastTree was the fastest but generated lower likelihood values and more dissimilar tree topologies in both types of analyses. Finally, data matrix properties, such as the number of taxa and the strength of phylogenetic signal, sometimes substantially influenced the programs’ relative performance. Our results provide real-world gene and species tree phylogenetic inference benchmarks to inform the design and execution of large-scale phylogenomic data analyses. PMID:29177474
Initialization Method for Grammar-Guided Genetic Programming
NASA Astrophysics Data System (ADS)
García-Arnau, M.; Manrique, D.; Ríos, J.; Rodríguez-Patón, A.
This paper proposes a new tree-generation algorithm for grammarguided genetic programming that includes a parameter to control the maximum size of the trees to be generated. An important feature of this algorithm is that the initial populations generated are adequately distributed in terms of tree size and distribution within the search space. Consequently, genetic programming systems starting from the initial populations generated by the proposed method have a higher convergence speed. Two different problems have been chosen to carry out the experiments: a laboratory test involving searching for arithmetical equalities and the real-world task of breast cancer prognosis. In both problems, comparisons have been made to another five important initialization methods.
WHITE-LIGHT FLARES ON CLOSE BINARIES OBSERVED WITH KEPLER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Qing; Xin, Yu; Liu, Ji-Feng
2016-06-01
Based on Kepler data, we present the results of a search for white light flares on 1049 close binaries. We identify 234 flare binaries, of which 6818 flares are detected. We compare the flare-binary fraction in different binary morphologies (“detachedness”). The result shows that the fractions in over-contact and ellipsoidal binaries are approximately 10%–20% lower than those in detached and semi-detached systems. We calculate the binary flare activity level (AL) of all the flare binaries, and discuss its variations along the orbital period ( P {sub orb}) and rotation period ( P {sub rot}, calculated for only detached binaries). Wemore » find that the AL increases with decreasing P {sub orb} or P {sub rot}, up to the critical values at P {sub orb} ∼ 3 days or P {sub rot} ∼ 1.5 days, and thereafter the AL starts decreasing no matter how fast the stars rotate. We examine the flaring rate as a function of orbital phase in two eclipsing binaries on which a large number of flares are detected. It appears that there is no correlation between flaring rate and orbital phase in these two binaries. In contrast, when we examine the function with 203 flares on 20 non-eclipse ellipsoidal binaries, bimodal distribution of amplitude-weighted flare numbers shows up at orbital phases 0.25 and 0.75. Such variation could be larger than what is expected from the cross section modification.« less
The extraneous eclipses on binary light curves: KIC 5255552, KIC 10091110, and KIC 11495766
NASA Astrophysics Data System (ADS)
Zhang, J.; Qian, S. B.; Wang, S. M.; Sun, L. L.; Wu, Y.; Jiang, L. Q.
2018-03-01
Aims: We aim to find more eclipsing multiple systems and obtain their parameters, thus increasing our understanding of multiple systems. Methods: The extraneous eclipses on the Kepler binary light curves indicating extraneous bodies were searched. The binary light curves were analyzed using the binary model, and the extraneous eclipses were studied on their periodicity and shape changes. Results: Three binaries with extraneous eclipses on the binary light curves were found and studied based on the Kepler observations. The object KIC 5255552 is an eclipsing triple system with a fast changing inner binary and an outer companion uncovered by three groups of extraneous eclipses of 862.1(±0.1) d period. The KIC 10091110 is suggested to be a double eclipsing binary system with several possible extraordinary coincidences: the two binaries share similar extremely small mass ratios (0.060(13) and 0.0564(18)), similar mean primary densities (0.3264(42) ρ⊙ and 0.3019(28) ρ⊙), and, most notably, the ratio of the two binaries' periods is very close to integer 2 (8.5303353/4.2185174 = 2.022). The KIC 11495766 is a probable triple system with a 120.73 d period binary and (at least) one non-eclipse companion. Furthermore, very close to it in the celestial sphere, there is a blended background stellar binary of 8.3404432 d period. A first list of 25 eclipsing multiple candidates is presented, with the hope that it will be beneficial for study of eclipsing multiples.
NASA Technical Reports Server (NTRS)
Lure, Y. M. Fleming; Grody, Norman C.; Chiou, Y. S. Peter; Yeh, H. Y. Michael
1993-01-01
A data fusion system with artificial neural networks (ANN) is used for fast and accurate classification of five earth surface conditions and surface changes, based on seven SSMI multichannel microwave satellite measurements. The measurements include brightness temperatures at 19, 22, 37, and 85 GHz at both H and V polarizations (only V at 22 GHz). The seven channel measurements are processed through a convolution computation such that all measurements are located at same grid. Five surface classes including non-scattering surface, precipitation over land, over ocean, snow, and desert are identified from ground-truth observations. The system processes sensory data in three consecutive phases: (1) pre-processing to extract feature vectors and enhance separability among detected classes; (2) preliminary classification of Earth surface patterns using two separate and parallely acting classifiers: back-propagation neural network and binary decision tree classifiers; and (3) data fusion of results from preliminary classifiers to obtain the optimal performance in overall classification. Both the binary decision tree classifier and the fusion processing centers are implemented by neural network architectures. The fusion system configuration is a hierarchical neural network architecture, in which each functional neural net will handle different processing phases in a pipelined fashion. There is a total of around 13,500 samples for this analysis, of which 4 percent are used as the training set and 96 percent as the testing set. After training, this classification system is able to bring up the detection accuracy to 94 percent compared with 88 percent for back-propagation artificial neural networks and 80 percent for binary decision tree classifiers. The neural network data fusion classification is currently under progress to be integrated in an image processing system at NOAA and to be implemented in a prototype of a massively parallel and dynamically reconfigurable Modular Neural Ring (MNR).
MusiCat System Makes Library Searches More Fruitful.
ERIC Educational Resources Information Center
Hansen, Per Hofman
2002-01-01
Describes MusiCat, an experimental user interface designed in Denmark that reflects the different ways that patrons think when searching for musical material on the Web. Discusses technology versus content; search trees that use a hierarchy of subject terms; and usability testing. (LRW)
On the Occurrence of Wide Binaries in the Local Disk and Halo Populations
NASA Astrophysics Data System (ADS)
Hartman, Zachary; Lepine, Sebastien
2018-01-01
We present results from our search for wide binaries in the SUPERBLINK+GAIA all-sky catalog of 2.8 million high proper motion stars (μ>40 mas/yr). Through a Bayesian analysis of common proper motion pairs, we have identified highly probable wide binary/multiple systems based on statistics of their proper motion differences and angular separations. Using a reduced proper motion diagram, we determine whether these wide are part of the young disk, old disk, or Galactic halo population. We examine the relative occurrence rate for very wide companions in these respective populations. All groups are found to contain a significant number of wide binary systems, with about 1 percent of the stars in each group having pairs with separations >1,000 AU.
A tree classification for the selection forests of the Sierra Nevada
Duncan Dunning
1928-01-01
Individuality in man is accepted without question. In domestic animals, also, good and bad individuals are generally recognized. Even in some cultivated plants —orange trees and rubber trees— the poor producers are searched out and eliminated. Indeed, individual variability is a normal condition in all groups of organisms. Yet forest trees are...
Stochastic model search with binary outcomes for genome-wide association studies
Malovini, Alberto; Puca, Annibale A; Bellazzi, Riccardo
2012-01-01
Objective The spread of case–control genome-wide association studies (GWASs) has stimulated the development of new variable selection methods and predictive models. We introduce a novel Bayesian model search algorithm, Binary Outcome Stochastic Search (BOSS), which addresses the model selection problem when the number of predictors far exceeds the number of binary responses. Materials and methods Our method is based on a latent variable model that links the observed outcomes to the underlying genetic variables. A Markov Chain Monte Carlo approach is used for model search and to evaluate the posterior probability of each predictor. Results BOSS is compared with three established methods (stepwise regression, logistic lasso, and elastic net) in a simulated benchmark. Two real case studies are also investigated: a GWAS on the genetic bases of longevity, and the type 2 diabetes study from the Wellcome Trust Case Control Consortium. Simulations show that BOSS achieves higher precisions than the reference methods while preserving good recall rates. In both experimental studies, BOSS successfully detects genetic polymorphisms previously reported to be associated with the analyzed phenotypes. Discussion BOSS outperforms the other methods in terms of F-measure on simulated data. In the two real studies, BOSS successfully detects biologically relevant features, some of which are missed by univariate analysis and the three reference techniques. Conclusion The proposed algorithm is an advance in the methodology for model selection with a large number of features. Our simulated and experimental results showed that BOSS proves effective in detecting relevant markers while providing a parsimonious model. PMID:22534080
Precision ephemerides for gravitational-wave searches. I. Sco X-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galloway, Duncan K.; Premachandra, Sammanani; Steeghs, Danny
2014-01-20
Rapidly rotating neutron stars are the only candidates for persistent high-frequency gravitational wave emission, for which a targeted search can be performed based on the spin period measured from electromagnetic (e.g., radio and X-ray) observations. The principal factor determining the sensitivity of such searches is the measurement precision of the physical parameters of the system. Neutron stars in X-ray binaries present additional computational demands for searches due to the uncertainty in the binary parameters. We present the results of a pilot study with the goal of improving the measurement precision of binary orbital parameters for candidate gravitational wave sources. Wemore » observed the optical counterpart of Sco X-1 in 2011 June with the William Herschel Telescope and also made use of Very Large Telescope observations in 2011 to provide an additional epoch of radial-velocity measurements to earlier measurements in 1999. From a circular orbit fit to the combined data set, we obtained an improvement of a factor of 2 in the orbital period precision and a factor of 2.5 in the epoch of inferior conjunction T {sub 0}. While the new orbital period is consistent with the previous value of Gottlieb et al., the new T {sub 0} (and the amplitude of variation of the Bowen line velocities) exhibited a significant shift, which we attribute to variations in the emission geometry with epoch. We propagate the uncertainties on these parameters through to the expected Advanced LIGO-Virgo detector network observation epochs and quantify the improvement obtained with additional optical observations.« less
Shaffer, Franklin D.
2013-03-12
The application relates to particle trajectory recognition from a Centroid Population comprised of Centroids having an (x, y, t) or (x, y, f) coordinate. The method is applicable to visualization and measurement of particle flow fields of high particle. In one embodiment, the centroids are generated from particle images recorded on camera frames. The application encompasses digital computer systems and distribution mediums implementing the method disclosed and is particularly applicable to recognizing trajectories of particles in particle flows of high particle concentration. The method accomplishes trajectory recognition by forming Candidate Trajectory Trees and repeated searches at varying Search Velocities, such that initial search areas are set to a minimum size in order to recognize only the slowest, least accelerating particles which produce higher local concentrations. When a trajectory is recognized, the centroids in that trajectory are removed from consideration in future searches.
NASA Astrophysics Data System (ADS)
Ng, C.; Champion, D. J.; Bailes, M.; Barr, E. D.; Bates, S. D.; Bhat, N. D. R.; Burgay, M.; Burke-Spolaor, S.; Flynn, C. M. L.; Jameson, A.; Johnston, S.; Keith, M. J.; Kramer, M.; Levin, L.; Petroff, E.; Possenti, A.; Stappers, B. W.; van Straten, W.; Tiburzi, C.; Eatough, R. P.; Lyne, A. G.
2015-07-01
We present initial results from the low-latitude Galactic plane region of the High Time Resolution Universe pulsar survey conducted at the Parkes 64-m radio telescope. We discuss the computational challenges arising from the processing of the terabyte-sized survey data. Two new radio interference mitigation techniques are introduced, as well as a partially coherent segmented acceleration search algorithm which aims to increase our chances of discovering highly relativistic short-orbit binary systems, covering a parameter space including potential pulsar-black hole binaries. We show that under a constant acceleration approximation, a ratio of data length over orbital period of ≈0.1 results in the highest effectiveness for this search algorithm. From the 50 per cent of data processed thus far, we have redetected 435 previously known pulsars and discovered a further 60 pulsars, two of which are fast-spinning pulsars with periods less than 30 ms. PSR J1101-6424 is a millisecond pulsar whose heavy white dwarf (WD) companion and short spin period of 5.1 ms indicate a rare example of full-recycling via Case A Roche lobe overflow. PSR J1757-27 appears to be an isolated recycled pulsar with a relatively long spin period of 17 ms. In addition, PSR J1244-6359 is a mildly recycled binary system with a heavy WD companion, PSR J1755-25 has a significant orbital eccentricity of 0.09 and PSR J1759-24 is likely to be a long-orbit eclipsing binary with orbital period of the order of tens of years. Comparison of our newly discovered pulsar sample to the known population suggests that they belong to an older population. Furthermore, we demonstrate that our current pulsar detection yield is as expected from population synthesis.
NASA Astrophysics Data System (ADS)
Kelley, Luke Zoltan; Mandel, Ilya; Ramirez-Ruiz, Enrico
2013-06-01
The detection of an electromagnetic transient which may originate from a binary neutron star merger can increase the probability that a given segment of data from the LIGO-Virgo ground-based gravitational-wave detector network contains a signal from a binary coalescence. Additional information contained in the electromagnetic signal, such as the sky location or distance to the source, can help rule out false alarms and thus lower the necessary threshold for a detection. Here, we develop a framework for determining how much sensitivity is added to a gravitational-wave search by triggering on an electromagnetic transient. We apply this framework to a variety of relevant electromagnetic transients, from short gamma-ray bursts (GRBs) to signatures of r-process heating to optical and radio orphan afterglows. We compute the expected rates of multimessenger observations in the advanced detector era and find that searches triggered on short GRBs—with current high-energy instruments, such as Fermi—and nucleosynthetic “kilonovae”—with future optical surveys, like the Large Synoptic Survey Telescope—can boost the number of multimessenger detections by 15% and 40%, respectively, for a binary neutron star progenitor model. Short GRB triggers offer precise merger timing but suffer from detection rates decreased by beaming and the high a priori probability that the source is outside the LIGO-Virgo sensitive volume. Isotropic kilonovae, on the other hand, could be commonly observed within the LIGO-Virgo sensitive volume with an instrument roughly an order of magnitude more sensitive than current optical surveys. We propose that the most productive strategy for making multimessenger gravitational-wave observations is using triggers from future deep, optical all-sky surveys, with characteristics comparable to the Large Synoptic Survey Telescope, which could make as many as ten such coincident observations a year.
High statistical heterogeneity is more frequent in meta-analysis of continuous than binary outcomes.
Alba, Ana C; Alexander, Paul E; Chang, Joanne; MacIsaac, John; DeFry, Samantha; Guyatt, Gordon H
2016-02-01
We compared the distribution of heterogeneity in meta-analyses of binary and continuous outcomes. We searched citations in MEDLINE and Cochrane databases for meta-analyses of randomized trials published in 2012 that reported a measure of heterogeneity of either binary or continuous outcomes. Two reviewers independently performed eligibility screening and data abstraction. We evaluated the distribution of I(2) in meta-analyses of binary and continuous outcomes and explored hypotheses explaining the difference in distributions. After full-text screening, we selected 671 meta-analyses evaluating 557 binary and 352 continuous outcomes. Heterogeneity as assessed by I(2) proved higher in continuous than in binary outcomes: the proportion of continuous and binary outcomes reporting an I(2) of 0% was 34% vs. 52%, respectively, and reporting an I(2) of 60-100% was 39% vs. 14%. In continuous but not binary outcomes, I(2) increased with larger number of studies included in a meta-analysis. Increased precision and sample size do not explain the larger I(2) found in meta-analyses of continuous outcomes with a larger number of studies. Meta-analyses evaluating continuous outcomes showed substantially higher I(2) than meta-analyses of binary outcomes. Results suggest differing standards for interpreting I(2) in continuous vs. binary outcomes may be appropriate. Copyright © 2016 Elsevier Inc. All rights reserved.
Gravitational microlensing by double stars and planetary systems
NASA Technical Reports Server (NTRS)
Mao, Shunde; Paczynski, Bohdan
1991-01-01
Almost all stars are in binary systems. When the separation between the two components is comparable to the Einstein ring radius corresponding to the combined mass of the binary acting as a gravitational lens, then an extra pair of images can be created, and the light curve of a lensed source becomes complicated. It is estimated that about 10 percent of all lensing episodes of the Galactic bulge stars will strongly display the binary nature of the lens. The effect is strong even if the companion is a planet. A massive search for microlensing of the Galactic bulge stars may lead to a discovery of the first extrasolar planetary systems.
An improved catalog of halo wide binary candidates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, Christine; Monroy-Rodríguez, Miguel A., E-mail: chris@astro.unam.mx
2014-08-01
We present an improved catalog of halo wide binaries compiled from an extensive literature search. Most of our binaries stem from the common proper motion binary catalogs by Allen et al. and Chanamé and Gould, but we have also included binaries from the lists of Ryan and Zapatero-Osorio and Martín. All binaries were carefully checked and their distances and systemic radial velocities are included when available. Probable membership to the halo population was tested by means of reduced proper motion diagrams for 251 candidate halo binaries. After eliminating obvious disk binaries, we ended up with 211 probable halo binaries, 150more » of which have radial velocities available. We compute galactic orbits for these 150 binaries and calculate the time they spend within the galactic disk. Considering the full sample of 251 candidate halo binaries as well as several subsamples, we find that the distribution of angular separations (or expected major semiaxes) follows a power law f(a) ∼ a {sup –1} (Oepik's relation) up to different limits. For the 50 most disk-like binaries, those that spend their entire lives within z = ±500 pc, this limit is found to be 19,000 AU (0.09 pc), while for the 50 most halo-like binaries, those that spend on average only 18% of their lives within z = ±500 pc, the limit is 63,000 AU (0.31 pc). In a companion paper, we employ this catalog to establish limits on the masses of the halo massive perturbers (massive compact halo objects).« less
On the Integration of Logic Programming and Functional Programming.
1985-06-01
be performed with simple handtools and devices. However, if the problem is more complex, say involving the cylinders, camshaft , or drive train, then...f(x,x) with f(y, g(y)), and would bind x to g(x) (Ref. 7]. The problem, of course, is that the attempt to prune the search tree allows circularity...combinatorial-explosion, since the search trees generated can grow very unpredictably (Re£. 19: p. 2293. Somewhat akin to the halting problem, it means that a
Finding paths in tree graphs with a quantum walk
NASA Astrophysics Data System (ADS)
Koch, Daniel; Hillery, Mark
2018-01-01
We analyze the potential for different types of searches using the formalism of scattering random walks on quantum computers. Given a particular type of graph consisting of nodes and connections, a "tree maze," we would like to find a selected final node as quickly as possible, faster than any classical search algorithm. We show that this can be done using a quantum random walk, both through numerical calculations as well as by using the eigenvectors and eigenvalues of the quantum system.
Computer search for binary cyclic UEP codes of odd length up to 65
NASA Technical Reports Server (NTRS)
Lin, Mao-Chao; Lin, Chi-Chang; Lin, Shu
1990-01-01
Using an exhaustive computation, the unequal error protection capabilities of all binary cyclic codes of odd length up to 65 that have minimum distances at least 3 are found. For those codes that can only have upper bounds on their unequal error protection capabilities computed, an analytic method developed by Dynkin and Togonidze (1976) is used to show that the upper bounds meet the exact unequal error protection capabilities.
Search for cosmic ray sources using muons detected by the MACRO experiment
NASA Astrophysics Data System (ADS)
Ambrosio, M.; Antolini, R.; Auriemma, G.; Bakari, D.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Becherini, Y.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bloise, C.; Bower, C.; Brigida, M.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Caruso, R.; Cecchini, S.; Cei, F.; Chiarella, V.; Choudhary, B. C.; Coutu, S.; Cozzi, M.; de Cataldo, G.; Dekhissi, H.; de Marzo, C.; de Mitri, I.; Derkaoui, J.; de Vincenzi, M.; di Credico, A.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Grillo, A.; Guarino, F.; Gustavino, C.; Habig, A.; Hanson, K.; Heinz, R.; Iarocci, E.; Katsavounidis, E.; Katsavounidis, I.; Kearns, E.; Kim, H.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D. S.; Lipari, P.; Longley, N. P.; Longo, M. J.; Loparco, F.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Margiotta, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Michael, D. G.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolò, D.; Nolty, R.; Orth, C.; Osteria, G.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Perrone, L.; Petrera, S.; Pistilli, P.; Popa, V.; Rainò, A.; Reynoldson, J.; Ronga, F.; Rrhioua, A.; Satriano, C.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra, P.; Sioli, M.; Sirri, G.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarlè, G.; Togo, V.; Vakili, M.; Walter, C. W.; Webb, R.
2003-03-01
The MACRO underground detector at Gran Sasso Laboratory recorded 60 million secondary cosmic ray muons from February 1989 until December 2000. Different techniques were used to analyze this sample in search for density excesses from astrophysical point-like sources. No evidence for DC excesses for any source in an all-sky survey is reported. In addition, searches for muon excess correlated with the known binary periods of Cygnus X-3 and Hercules X-1, and searches for statistically significant bursting episodes from known γ-ray sources are also proved negative.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yue; Liu, Xin; Loeb, Abraham
We perform a systematic search for sub-parsec binary supermassive black holes (BHs) in normal broad-line quasars at z < 0.8, using multi-epoch Sloan Digital Sky Survey (SDSS) spectroscopy of the broad Hβ line. Our working model is that (1) one and only one of the two BHs in the binary is active; (2) the active BH dynamically dominates its own broad-line region (BLR) in the binary system, so that the mean velocity of the BLR reflects the mean velocity of its host BH; (3) the inactive companion BH is orbiting at a distance of a few R{sub BLR}, where R{submore » BLR} ∼ 0.01-0.1 pc is the BLR size. We search for the expected line-of-sight acceleration of the broad-line velocity from binary orbital motion by cross-correlating SDSS spectra from two epochs separated by up to several years in the quasar rest frame. Out of ∼700 pairs of spectra for which we have good measurements of the velocity shift between two epochs (1σ error ∼40 km s{sup –1}), we detect 28 systems with significant velocity shifts in broad Hβ, among which 7 are the best candidates for the hypothesized binaries, 4 are most likely due to broad-line variability in single BHs, and the rest are ambiguous. Continued spectroscopic observations of these candidates will easily strengthen or disprove these claims. We use the distribution of the observed accelerations (mostly non-detections) to place constraints on the abundance of such binary systems among the general quasar population. Excess variance in the velocity shift is inferred for observations separated by longer than 0.4 yr (quasar rest frame). Attributing all the excess to binary motion would imply that most of the quasars in this sample must be in binaries, that the inactive BH must be on average more massive than the active one, and that the binary separation is at most a few times the size of the BLR. However, if this excess variance is partly or largely due to long-term broad-line variability, the requirement of a large population of close binaries is much weakened or even disfavored for massive companions. Future time-domain spectroscopic surveys of normal quasars can provide vital prior information on the structure function of stochastic velocity shifts induced by broad-line variability in single BHs. Such surveys with improved spectral quality, increased time baseline, and more epochs can greatly improve the statistical constraints of this method on the general binary population in broad-line quasars, further shrink the allowed binary parameter space, and detect true sub-parsec binaries.« less
Searching for Partners of Cool Senior Citizens
NASA Astrophysics Data System (ADS)
Jao, Wei-Chun; Henry, T. J.
2012-01-01
Mass is one of the most fundamental parameters in stellar astronomy. In order to measure dynamical masses, one needs to find nearby binary systems that can be resolved and monitored, ideally with orbital periods that completely wrap in a reasonable amount of time. Many surveys have been made of nearby main sequence dwarfs, and their mass-luminosity relation is well established. As part of our Cool Subdwarf Investigations (CSI) program, we are searching for subdwarf binaries of spectral types K and M within 60 parsecs to measure their multiplicity rate and to reveal binaries appropriate for mass determinations. Here we present results of our CSI work using HST's Fine Guidance Sensors. When combined with previous CSI work and results in the literature, we find the multiplicity rate of subdwarfs, 21%, to be surprisingly low compared to that of similar main sequence K and M stars, 37%. This work has several implications, including that the star formation and/or evolution history of subdwarfs is different than for dwarfs, and that ideal systems for subdwarf mass determinations are difficult to find. This work is supported by HST grant GO-11943.
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, A. S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Campbell, W.; Canepa, M.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, E.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGrath, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schlassa, S.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tao, D.; Tápai, M.; Taracchini, A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2017-03-01
A wide variety of astrophysical and cosmological sources are expected to contribute to a stochastic gravitational-wave background. Following the observations of GW150914 and GW151226, the rate and mass of coalescing binary black holes appear to be greater than many previous expectations. As a result, the stochastic background from unresolved compact binary coalescences is expected to be particularly loud. We perform a search for the isotropic stochastic gravitational-wave background using data from Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run. The data display no evidence of a stochastic gravitational-wave signal. We constrain the dimensionless energy density of gravitational waves to be Ω0<1.7 ×10-7 with 95% confidence, assuming a flat energy density spectrum in the most sensitive part of the LIGO band (20-86 Hz). This is a factor of ˜33 times more sensitive than previous measurements. We also constrain arbitrary power-law spectra. Finally, we investigate the implications of this search for the background of binary black holes using an astrophysical model for the background.
Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Ananyeva, A; Anderson, S B; Anderson, W G; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Avila-Alvarez, A; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Beer, C; Bejger, M; Belahcene, I; Belgin, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Biscoveanu, A S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T A; Calloni, E; Camp, J B; Campbell, W; Canepa, M; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, H-P; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conti, L; Cooper, S J; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, E; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davies, G S; Davis, D; Daw, E J; Day, B; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devenson, J; Devine, R C; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Doctor, Z; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Essick, R C; Etienne, Z; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fernández Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kéfélian, F; Keitel, D; Kelley, D B; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chunglee; Kim, J C; Kim, Whansun; Kim, W; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kirchhoff, R; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koch, P; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Krämer, C; Kringel, V; Królak, A; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lehmann, J; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Libson, A; Littenberg, T B; Liu, J; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lovelace, G; Lück, H; Lundgren, A P; Lynch, R; Ma, Y; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matas, A; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGrath, C; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muniz, E A M; Murray, P G; Mytidis, A; Napier, K; Nardecchia, I; Naticchioni, L; Nelemans, G; Nelson, T J N; Neri, M; Nery, M; Neunzert, A; Newport, J M; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Pratt, J W W; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Rhoades, E; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheuer, J; Schlassa, S; Schmidt, E; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T J; Shahriar, M S; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strigin, S E; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tao, D; Tápai, M; Taracchini, A; Taylor, R; Theeg, T; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tippens, T; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Trinastic, J; Tringali, M C; Trozzo, L; Tse, M; Tso, R; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vasúth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Viceré, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, Y; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Whittle, C; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, Hang; Yu, Haocun; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, S J; Zhu, X J; Zucker, M E; Zweizig, J
2017-03-24
A wide variety of astrophysical and cosmological sources are expected to contribute to a stochastic gravitational-wave background. Following the observations of GW150914 and GW151226, the rate and mass of coalescing binary black holes appear to be greater than many previous expectations. As a result, the stochastic background from unresolved compact binary coalescences is expected to be particularly loud. We perform a search for the isotropic stochastic gravitational-wave background using data from Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run. The data display no evidence of a stochastic gravitational-wave signal. We constrain the dimensionless energy density of gravitational waves to be Ω_{0}<1.7×10^{-7} with 95% confidence, assuming a flat energy density spectrum in the most sensitive part of the LIGO band (20-86 Hz). This is a factor of ∼33 times more sensitive than previous measurements. We also constrain arbitrary power-law spectra. Finally, we investigate the implications of this search for the background of binary black holes using an astrophysical model for the background.
Wang, Gai-Ge; Feng, Qingjiang; Zhao, Xiang-Jun
2014-01-01
An effective hybrid cuckoo search algorithm (CS) with improved shuffled frog-leaping algorithm (ISFLA) is put forward for solving 0-1 knapsack problem. First of all, with the framework of SFLA, an improved frog-leap operator is designed with the effect of the global optimal information on the frog leaping and information exchange between frog individuals combined with genetic mutation with a small probability. Subsequently, in order to improve the convergence speed and enhance the exploitation ability, a novel CS model is proposed with considering the specific advantages of Lévy flights and frog-leap operator. Furthermore, the greedy transform method is used to repair the infeasible solution and optimize the feasible solution. Finally, numerical simulations are carried out on six different types of 0-1 knapsack instances, and the comparative results have shown the effectiveness of the proposed algorithm and its ability to achieve good quality solutions, which outperforms the binary cuckoo search, the binary differential evolution, and the genetic algorithm. PMID:25404940
DLRS: gene tree evolution in light of a species tree.
Sjöstrand, Joel; Sennblad, Bengt; Arvestad, Lars; Lagergren, Jens
2012-11-15
PrIME-DLRS (or colloquially: 'Delirious') is a phylogenetic software tool to simultaneously infer and reconcile a gene tree given a species tree. It accounts for duplication and loss events, a relaxed molecular clock and is intended for the study of homologous gene families, for example in a comparative genomics setting involving multiple species. PrIME-DLRS uses a Bayesian MCMC framework, where the input is a known species tree with divergence times and a multiple sequence alignment, and the output is a posterior distribution over gene trees and model parameters. PrIME-DLRS is available for Java SE 6+ under the New BSD License, and JAR files and source code can be downloaded from http://code.google.com/p/jprime/. There is also a slightly older C++ version available as a binary package for Ubuntu, with download instructions at http://prime.sbc.su.se. The C++ source code is available upon request. joel.sjostrand@scilifelab.se or jens.lagergren@scilifelab.se. PrIME-DLRS is based on a sound probabilistic model (Åkerborg et al., 2009) and has been thoroughly validated on synthetic and biological datasets (Supplementary Material online).
iNJclust: Iterative Neighbor-Joining Tree Clustering Framework for Inferring Population Structure.
Limpiti, Tulaya; Amornbunchornvej, Chainarong; Intarapanich, Apichart; Assawamakin, Anunchai; Tongsima, Sissades
2014-01-01
Understanding genetic differences among populations is one of the most important issues in population genetics. Genetic variations, e.g., single nucleotide polymorphisms, are used to characterize commonality and difference of individuals from various populations. This paper presents an efficient graph-based clustering framework which operates iteratively on the Neighbor-Joining (NJ) tree called the iNJclust algorithm. The framework uses well-known genetic measurements, namely the allele-sharing distance, the neighbor-joining tree, and the fixation index. The behavior of the fixation index is utilized in the algorithm's stopping criterion. The algorithm provides an estimated number of populations, individual assignments, and relationships between populations as outputs. The clustering result is reported in the form of a binary tree, whose terminal nodes represent the final inferred populations and the tree structure preserves the genetic relationships among them. The clustering performance and the robustness of the proposed algorithm are tested extensively using simulated and real data sets from bovine, sheep, and human populations. The result indicates that the number of populations within each data set is reasonably estimated, the individual assignment is robust, and the structure of the inferred population tree corresponds to the intrinsic relationships among populations within the data.
Wu, Zheyang; Zhao, Hongyu
2012-01-01
For more fruitful discoveries of genetic variants associated with diseases in genome-wide association studies, it is important to know whether joint analysis of multiple markers is more powerful than the commonly used single-marker analysis, especially in the presence of gene-gene interactions. This article provides a statistical framework to rigorously address this question through analytical power calculations for common model search strategies to detect binary trait loci: marginal search, exhaustive search, forward search, and two-stage screening search. Our approach incorporates linkage disequilibrium, random genotypes, and correlations among score test statistics of logistic regressions. We derive analytical results under two power definitions: the power of finding all the associated markers and the power of finding at least one associated marker. We also consider two types of error controls: the discovery number control and the Bonferroni type I error rate control. After demonstrating the accuracy of our analytical results by simulations, we apply them to consider a broad genetic model space to investigate the relative performances of different model search strategies. Our analytical study provides rapid computation as well as insights into the statistical mechanism of capturing genetic signals under different genetic models including gene-gene interactions. Even though we focus on genetic association analysis, our results on the power of model selection procedures are clearly very general and applicable to other studies.
Wu, Zheyang; Zhao, Hongyu
2013-01-01
For more fruitful discoveries of genetic variants associated with diseases in genome-wide association studies, it is important to know whether joint analysis of multiple markers is more powerful than the commonly used single-marker analysis, especially in the presence of gene-gene interactions. This article provides a statistical framework to rigorously address this question through analytical power calculations for common model search strategies to detect binary trait loci: marginal search, exhaustive search, forward search, and two-stage screening search. Our approach incorporates linkage disequilibrium, random genotypes, and correlations among score test statistics of logistic regressions. We derive analytical results under two power definitions: the power of finding all the associated markers and the power of finding at least one associated marker. We also consider two types of error controls: the discovery number control and the Bonferroni type I error rate control. After demonstrating the accuracy of our analytical results by simulations, we apply them to consider a broad genetic model space to investigate the relative performances of different model search strategies. Our analytical study provides rapid computation as well as insights into the statistical mechanism of capturing genetic signals under different genetic models including gene-gene interactions. Even though we focus on genetic association analysis, our results on the power of model selection procedures are clearly very general and applicable to other studies. PMID:23956610
Automated Classification of ROSAT Sources Using Heterogeneous Multiwavelength Source Catalogs
NASA Technical Reports Server (NTRS)
McGlynn, Thomas; Suchkov, A. A.; Winter, E. L.; Hanisch, R. J.; White, R. L.; Ochsenbein, F.; Derriere, S.; Voges, W.; Corcoran, M. F.
2004-01-01
We describe an on-line system for automated classification of X-ray sources, ClassX, and present preliminary results of classification of the three major catalogs of ROSAT sources, RASS BSC, RASS FSC, and WGACAT, into six class categories: stars, white dwarfs, X-ray binaries, galaxies, AGNs, and clusters of galaxies. ClassX is based on a machine learning technology. It represents a system of classifiers, each classifier consisting of a considerable number of oblique decision trees. These trees are built as the classifier is 'trained' to recognize various classes of objects using a training sample of sources of known object types. Each source is characterized by a preselected set of parameters, or attributes; the same set is then used as the classifier conducts classification of sources of unknown identity. The ClassX pipeline features an automatic search for X-ray source counterparts among heterogeneous data sets in on-line data archives using Virtual Observatory protocols; it retrieves from those archives all the attributes required by the selected classifier and inputs them to the classifier. The user input to ClassX is typically a file with target coordinates, optionally complemented with target IDs. The output contains the class name, attributes, and class probabilities for all classified targets. We discuss ways to characterize and assess the classifier quality and performance and present the respective validation procedures. Based on both internal and external validation, we conclude that the ClassX classifiers yield reasonable and reliable classifications for ROSAT sources and have the potential to broaden class representation significantly for rare object types.
1997-01-01
create a dependency tree containing an optimum set of n-1 first-order dependencies. To do this, first, we select an arbitrary bit Xroot to place at the...the root to an arbitrary bit Xroot -For all other bits Xi, set bestMatchingBitInTree[Xi] to Xroot . -While not all bits have been
Simmons, Mark P; Goloboff, Pablo A
2013-10-01
Empirical and simulated examples are used to demonstrate an artifact caused by undersampling optimal trees in data matrices that consist mostly or entirely of locally sampled (as opposed to globally, for most or all terminals) characters. The artifact is that unsupported clades consisting entirely of terminals scored for the same locally sampled partition may be resolved and assigned high resampling support-despite their being properly unsupported (i.e., not resolved in the strict consensus of all optimal trees). This artifact occurs despite application of random-addition sequences for stepwise terminal addition. The artifact is not necessarily obviated with thorough conventional branch swapping methods (even tree-bisection-reconnection) when just a single tree is held, as is sometimes implemented in parsimony bootstrap pseudoreplicates, and in every GARLI, PhyML, and RAxML pseudoreplicate and search for the most likely tree for the matrix as a whole. Hence GARLI, RAxML, and PhyML-based likelihood results require extra scrutiny, particularly when they provide high resolution and support for clades that are entirely unsupported by methods that perform more thorough searches, as in most parsimony analyses. Copyright © 2013 Elsevier Inc. All rights reserved.
The True Ultracool Binary Fraction Using Spectral Binaries
NASA Astrophysics Data System (ADS)
Bardalez Gagliuffi, Daniella; Burgasser, Adam J.; Schmidt, Sarah J.; Gagné, Jonathan; Faherty, Jacqueline K.; Cruz, Kelle; Gelino, Chris
2018-01-01
Brown dwarfs bridge the gap between stars and giant planets. While the essential mechanisms governing their formation are not well constrained, binary statistics are a direct outcome of the formation process, and thus provide a means to test formation theories. Observational constraints on the brown dwarf binary fraction place it at 10 ‑ 20%, dominated by imaging studies (85% of systems) with the most common separation at 4 AU. This coincides with the resolution limit of state-of-the-art imaging techniques, suggesting that the binary fraction is underestimated. We have developed a separation-independent method to identify and characterize tightly-separated (< 5 AU) binary systems of brown dwarfs as spectral binaries by identifying traces of methane in the spectra of late-M and early-L dwarfs. Imaging follow-up of 17 spectral binaries yielded 3 (18%) resolved systems, corroborating the observed binary fraction, but 5 (29%) known binaries were missed, reinforcing the hypothesis that the short-separation systems are undercounted. In order to find the true binary fraction of brown dwarfs, we have compiled a volume-limited, spectroscopic sample of M7-L5 dwarfs and searched for T dwarf companions. In the 25 pc volume, 4 candidates were found, three of which are already confirmed, leading to a spectral binary fraction of 0.95 ± 0.50%, albeit for a specific combination of spectral types. To extract the true binary fraction and determine the biases of the spectral binary method, we have produced a binary population simulation based on different assumptions of the mass function, age distribution, evolutionary models and mass ratio distribution. Applying the correction fraction resulting from this method to the observed spectral binary fraction yields a true binary fraction of 27 ± 4%, which is roughly within 1σ of the binary fraction obtained from high resolution imaging studies, radial velocity and astrometric monitoring. This method can be extended to identify giant planet companions to young brown dwarfs.
Texture Classification by Texton: Statistical versus Binary
Guo, Zhenhua; Zhang, Zhongcheng; Li, Xiu; Li, Qin; You, Jane
2014-01-01
Using statistical textons for texture classification has shown great success recently. The maximal response 8 (Statistical_MR8), image patch (Statistical_Joint) and locally invariant fractal (Statistical_Fractal) are typical statistical texton algorithms and state-of-the-art texture classification methods. However, there are two limitations when using these methods. First, it needs a training stage to build a texton library, thus the recognition accuracy will be highly depended on the training samples; second, during feature extraction, local feature is assigned to a texton by searching for the nearest texton in the whole library, which is time consuming when the library size is big and the dimension of feature is high. To address the above two issues, in this paper, three binary texton counterpart methods were proposed, Binary_MR8, Binary_Joint, and Binary_Fractal. These methods do not require any training step but encode local feature into binary representation directly. The experimental results on the CUReT, UIUC and KTH-TIPS databases show that binary texton could get sound results with fast feature extraction, especially when the image size is not big and the quality of image is not poor. PMID:24520346
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Khai; Bogdanović, Tamara
Motivated by advances in observational searches for sub-parsec supermassive black hole binaries (SBHBs) made in the past few years, we develop a semi-analytic model to describe spectral emission-line signatures of these systems. The goal of this study is to aid the interpretation of spectroscopic searches for binaries and to help test one of the leading models of binary accretion flows in the literature: SBHB in a circumbinary disk. In this work, we present the methodology and a comparison of the preliminary model with the data. We model SBHB accretion flows as a set of three accretion disks: two mini-disks thatmore » are gravitationally bound to the individual black holes and a circumbinary disk. Given a physically motivated parameter space occupied by sub-parsec SBHBs, we calculate a synthetic database of nearly 15 million broad optical emission-line profiles and explore the dependence of the profile shapes on characteristic properties of SBHBs. We find that the modeled profiles show distinct statistical properties as a function of the semimajor axis, mass ratio, eccentricity of the binary, and the degree of alignment of the triple disk system. This suggests that the broad emission-line profiles from SBHB systems can in principle be used to infer the distribution of these parameters and as such merit further investigation. Calculated profiles are more morphologically heterogeneous than the broad emission lines in observed SBHB candidates and we discuss improved treatment of radiative transfer effects, which will allow a direct statistical comparison of the two groups.« less
On the use of cartographic projections in visualizing phylo-genetic tree space
2010-01-01
Phylogenetic analysis is becoming an increasingly important tool for biological research. Applications include epidemiological studies, drug development, and evolutionary analysis. Phylogenetic search is a known NP-Hard problem. The size of the data sets which can be analyzed is limited by the exponential growth in the number of trees that must be considered as the problem size increases. A better understanding of the problem space could lead to better methods, which in turn could lead to the feasible analysis of more data sets. We present a definition of phylogenetic tree space and a visualization of this space that shows significant exploitable structure. This structure can be used to develop search methods capable of handling much larger data sets. PMID:20529355
Model-based color halftoning using direct binary search.
Agar, A Ufuk; Allebach, Jan P
2005-12-01
In this paper, we develop a model-based color halftoning method using the direct binary search (DBS) algorithm. Our method strives to minimize the perceived error between the continuous tone original color image and the color halftone image. We exploit the differences in how the human viewers respond to luminance and chrominance information and use the total squared error in a luminance/chrominance based space as our metric. Starting with an initial halftone, we minimize this error metric using the DBS algorithm. Our method also incorporates a measurement based color printer dot interaction model to prevent the artifacts due to dot overlap and to improve color texture quality. We calibrate our halftoning algorithm to ensure accurate colorant distributions in resulting halftones. We present the color halftones which demonstrate the efficacy of our method.
The Gamma-ray Universe through Fermi
NASA Technical Reports Server (NTRS)
Thompson, David J.
2012-01-01
Gamma rays, the most powerful form of light, reveal extreme conditions in the Universe. The Fermi Gamma-ray Space Telescope and its smaller cousin AGILE have been exploring the gamma-ray sky for several years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge ga.nuna-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.
An information-based network approach for protein classification
Wan, Xiaogeng; Zhao, Xin; Yau, Stephen S. T.
2017-01-01
Protein classification is one of the critical problems in bioinformatics. Early studies used geometric distances and polygenetic-tree to classify proteins. These methods use binary trees to present protein classification. In this paper, we propose a new protein classification method, whereby theories of information and networks are used to classify the multivariate relationships of proteins. In this study, protein universe is modeled as an undirected network, where proteins are classified according to their connections. Our method is unsupervised, multivariate, and alignment-free. It can be applied to the classification of both protein sequences and structures. Nine examples are used to demonstrate the efficiency of our new method. PMID:28350835
TreSpEx—Detection of Misleading Signal in Phylogenetic Reconstructions Based on Tree Information
Struck, Torsten H
2014-01-01
Phylogenies of species or genes are commonplace nowadays in many areas of comparative biological studies. However, for phylogenetic reconstructions one must refer to artificial signals such as paralogy, long-branch attraction, saturation, or conflict between different datasets. These signals might eventually mislead the reconstruction even in phylogenomic studies employing hundreds of genes. Unfortunately, there has been no program allowing the detection of such effects in combination with an implementation into automatic process pipelines. TreSpEx (Tree Space Explorer) now combines different approaches (including statistical tests), which utilize tree-based information like nodal support or patristic distances (PDs) to identify misleading signals. The program enables the parallel analysis of hundreds of trees and/or predefined gene partitions, and being command-line driven, it can be integrated into automatic process pipelines. TreSpEx is implemented in Perl and supported on Linux, Mac OS X, and MS Windows. Source code, binaries, and additional material are freely available at http://www.annelida.de/research/bioinformatics/software.html. PMID:24701118
Method for indexing and retrieving manufacturing-specific digital imagery based on image content
Ferrell, Regina K.; Karnowski, Thomas P.; Tobin, Jr., Kenneth W.
2004-06-15
A method for indexing and retrieving manufacturing-specific digital images based on image content comprises three steps. First, at least one feature vector can be extracted from a manufacturing-specific digital image stored in an image database. In particular, each extracted feature vector corresponds to a particular characteristic of the manufacturing-specific digital image, for instance, a digital image modality and overall characteristic, a substrate/background characteristic, and an anomaly/defect characteristic. Notably, the extracting step includes generating a defect mask using a detection process. Second, using an unsupervised clustering method, each extracted feature vector can be indexed in a hierarchical search tree. Third, a manufacturing-specific digital image associated with a feature vector stored in the hierarchicial search tree can be retrieved, wherein the manufacturing-specific digital image has image content comparably related to the image content of the query image. More particularly, can include two data reductions, the first performed based upon a query vector extracted from a query image. Subsequently, a user can select relevant images resulting from the first data reduction. From the selection, a prototype vector can be calculated, from which a second-level data reduction can be performed. The second-level data reduction can result in a subset of feature vectors comparable to the prototype vector, and further comparable to the query vector. An additional fourth step can include managing the hierarchical search tree by substituting a vector average for several redundant feature vectors encapsulated by nodes in the hierarchical search tree.
Origin of the computational hardness for learning with binary synapses.
Huang, Haiping; Kabashima, Yoshiyuki
2014-11-01
Through supervised learning in a binary perceptron one is able to classify an extensive number of random patterns by a proper assignment of binary synaptic weights. However, to find such assignments in practice is quite a nontrivial task. The relation between the weight space structure and the algorithmic hardness has not yet been fully understood. To this end, we analytically derive the Franz-Parisi potential for the binary perceptron problem by starting from an equilibrium solution of weights and exploring the weight space structure around it. Our result reveals the geometrical organization of the weight space; the weight space is composed of isolated solutions, rather than clusters of exponentially many close-by solutions. The pointlike clusters far apart from each other in the weight space explain the previously observed glassy behavior of stochastic local search heuristics.
The Clusters AgeS Experiment (CASE). Variable stars in the field of the globular cluster NGC 362
NASA Astrophysics Data System (ADS)
Rozyczka, M.; Thompson, I. B.; Narloch, W.; Pych, W.; Schwarzenberg-Czerny, A.
2016-09-01
The field of the globular cluster NGC 362 was monitored between 1997 and 2015 in a search for variable stars. BV light curves were obtained for 151 periodic or likely periodic variable stars, over a hundred of which are new detections. Twelve newly detected variable stars are proper-motion members of the cluster: two SX Phe and two RR Lyr pulsators, one contact binary, three detached or semi-detached eclipsing binaries, and four spotted variable stars. The most interesting objects among these are the binary blue straggler V20 with an asymmetric light curve, and the 8.1 d semidetached binary V24 located on the red giant branch of NGC 362, which is a Chandra X-ray source. We also provide substantial new data for 24 previously known variable stars.
A Novel Partial Sequence Alignment Tool for Finding Large Deletions
Aruk, Taner; Ustek, Duran; Kursun, Olcay
2012-01-01
Finding large deletions in genome sequences has become increasingly more useful in bioinformatics, such as in clinical research and diagnosis. Although there are a number of publically available next generation sequencing mapping and sequence alignment programs, these software packages do not correctly align fragments containing deletions larger than one kb. We present a fast alignment software package, BinaryPartialAlign, that can be used by wet lab scientists to find long structural variations in their experiments. For BinaryPartialAlign, we make use of the Smith-Waterman (SW) algorithm with a binary-search-based approach for alignment with large gaps that we called partial alignment. BinaryPartialAlign implementation is compared with other straight-forward applications of SW. Simulation results on mtDNA fragments demonstrate the effectiveness (runtime and accuracy) of the proposed method. PMID:22566777
Soft-Decision Decoding of Binary Linear Block Codes Based on an Iterative Search Algorithm
NASA Technical Reports Server (NTRS)
Lin, Shu; Kasami, Tadao; Moorthy, H. T.
1997-01-01
This correspondence presents a suboptimum soft-decision decoding scheme for binary linear block codes based on an iterative search algorithm. The scheme uses an algebraic decoder to iteratively generate a sequence of candidate codewords one at a time using a set of test error patterns that are constructed based on the reliability information of the received symbols. When a candidate codeword is generated, it is tested based on an optimality condition. If it satisfies the optimality condition, then it is the most likely (ML) codeword and the decoding stops. If it fails the optimality test, a search for the ML codeword is conducted in a region which contains the ML codeword. The search region is determined by the current candidate codeword and the reliability of the received symbols. The search is conducted through a purged trellis diagram for the given code using the Viterbi algorithm. If the search fails to find the ML codeword, a new candidate is generated using a new test error pattern, and the optimality test and search are renewed. The process of testing and search continues until either the MEL codeword is found or all the test error patterns are exhausted and the decoding process is terminated. Numerical results show that the proposed decoding scheme achieves either practically optimal performance or a performance only a fraction of a decibel away from the optimal maximum-likelihood decoding with a significant reduction in decoding complexity compared with the Viterbi decoding based on the full trellis diagram of the codes.
An object-based approach for tree species extraction from digital orthophoto maps
NASA Astrophysics Data System (ADS)
Jamil, Akhtar; Bayram, Bulent
2018-05-01
Tree segmentation is an active and ongoing research area in the field of photogrammetry and remote sensing. It is more challenging due to both intra-class and inter-class similarities among various tree species. In this study, we exploited various statistical features for extraction of hazelnut trees from 1 : 5000 scaled digital orthophoto maps. Initially, the non-vegetation areas were eliminated using traditional normalized difference vegetation index (NDVI) followed by application of mean shift segmentation for transforming the pixels into meaningful homogeneous objects. In order to eliminate false positives, morphological opening and closing was employed on candidate objects. A number of heuristics were also derived to eliminate unwanted effects such as shadow and bounding box aspect ratios, before passing them into the classification stage. Finally, a knowledge based decision tree was constructed to distinguish the hazelnut trees from rest of objects which include manmade objects and other type of vegetation. We evaluated the proposed methodology on 10 sample orthophoto maps obtained from Giresun province in Turkey. The manually digitized hazelnut tree boundaries were taken as reference data for accuracy assessment. Both manually digitized and segmented tree borders were converted into binary images and the differences were calculated. According to the obtained results, the proposed methodology obtained an overall accuracy of more than 85 % for all sample images.
GBM Observations of Be X-Ray Binary Outbursts
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.; Finger, M. H.; Jenke, P. A.
2014-01-01
Since 2008 we have been monitoring accreting pulsars using the Gamma ray Burst Monitor (GBM) on Fermi. This monitoring program includes daily blind full sky searches for previously unknown or previously quiescent pulsars and source specific analysis to track the frequency evolution of all detected pulsars. To date we have detected outbursts from 23 transient accreting pulsars, including 21 confirmed or likely Be/X-ray binaries. I will describe our techniques and highlight results for selected pulsars.
Heuristics in Problem Solving: The Role of Direction in Controlling Search Space
ERIC Educational Resources Information Center
Chu, Yun; Li, Zheng; Su, Yong; Pizlo, Zygmunt
2010-01-01
Isomorphs of a puzzle called m+m resulted in faster solution times and an easily reproduced solution path in a labeled version of the problem compared to a more difficult binary version. We conjecture that performance is related to a type of heuristic called direction that not only constrains search space in the labeled version, but also…
Wang, Shuaiqun; Aorigele; Kong, Wei; Zeng, Weiming; Hong, Xiaomin
2016-01-01
Gene expression data composed of thousands of genes play an important role in classification platforms and disease diagnosis. Hence, it is vital to select a small subset of salient features over a large number of gene expression data. Lately, many researchers devote themselves to feature selection using diverse computational intelligence methods. However, in the progress of selecting informative genes, many computational methods face difficulties in selecting small subsets for cancer classification due to the huge number of genes (high dimension) compared to the small number of samples, noisy genes, and irrelevant genes. In this paper, we propose a new hybrid algorithm HICATS incorporating imperialist competition algorithm (ICA) which performs global search and tabu search (TS) that conducts fine-tuned search. In order to verify the performance of the proposed algorithm HICATS, we have tested it on 10 well-known benchmark gene expression classification datasets with dimensions varying from 2308 to 12600. The performance of our proposed method proved to be superior to other related works including the conventional version of binary optimization algorithm in terms of classification accuracy and the number of selected genes.
Aorigele; Zeng, Weiming; Hong, Xiaomin
2016-01-01
Gene expression data composed of thousands of genes play an important role in classification platforms and disease diagnosis. Hence, it is vital to select a small subset of salient features over a large number of gene expression data. Lately, many researchers devote themselves to feature selection using diverse computational intelligence methods. However, in the progress of selecting informative genes, many computational methods face difficulties in selecting small subsets for cancer classification due to the huge number of genes (high dimension) compared to the small number of samples, noisy genes, and irrelevant genes. In this paper, we propose a new hybrid algorithm HICATS incorporating imperialist competition algorithm (ICA) which performs global search and tabu search (TS) that conducts fine-tuned search. In order to verify the performance of the proposed algorithm HICATS, we have tested it on 10 well-known benchmark gene expression classification datasets with dimensions varying from 2308 to 12600. The performance of our proposed method proved to be superior to other related works including the conventional version of binary optimization algorithm in terms of classification accuracy and the number of selected genes. PMID:27579323
Li, Jinyan; Fong, Simon; Wong, Raymond K; Millham, Richard; Wong, Kelvin K L
2017-06-28
Due to the high-dimensional characteristics of dataset, we propose a new method based on the Wolf Search Algorithm (WSA) for optimising the feature selection problem. The proposed approach uses the natural strategy established by Charles Darwin; that is, 'It is not the strongest of the species that survives, but the most adaptable'. This means that in the evolution of a swarm, the elitists are motivated to quickly obtain more and better resources. The memory function helps the proposed method to avoid repeat searches for the worst position in order to enhance the effectiveness of the search, while the binary strategy simplifies the feature selection problem into a similar problem of function optimisation. Furthermore, the wrapper strategy gathers these strengthened wolves with the classifier of extreme learning machine to find a sub-dataset with a reasonable number of features that offers the maximum correctness of global classification models. The experimental results from the six public high-dimensional bioinformatics datasets tested demonstrate that the proposed method can best some of the conventional feature selection methods up to 29% in classification accuracy, and outperform previous WSAs by up to 99.81% in computational time.
Gong, Yunchao; Lazebnik, Svetlana; Gordo, Albert; Perronnin, Florent
2013-12-01
This paper addresses the problem of learning similarity-preserving binary codes for efficient similarity search in large-scale image collections. We formulate this problem in terms of finding a rotation of zero-centered data so as to minimize the quantization error of mapping this data to the vertices of a zero-centered binary hypercube, and propose a simple and efficient alternating minimization algorithm to accomplish this task. This algorithm, dubbed iterative quantization (ITQ), has connections to multiclass spectral clustering and to the orthogonal Procrustes problem, and it can be used both with unsupervised data embeddings such as PCA and supervised embeddings such as canonical correlation analysis (CCA). The resulting binary codes significantly outperform several other state-of-the-art methods. We also show that further performance improvements can result from transforming the data with a nonlinear kernel mapping prior to PCA or CCA. Finally, we demonstrate an application of ITQ to learning binary attributes or "classemes" on the ImageNet data set.
Species tree inference by minimizing deep coalescences.
Than, Cuong; Nakhleh, Luay
2009-09-01
In a 1997 seminal paper, W. Maddison proposed minimizing deep coalescences, or MDC, as an optimization criterion for inferring the species tree from a set of incongruent gene trees, assuming the incongruence is exclusively due to lineage sorting. In a subsequent paper, Maddison and Knowles provided and implemented a search heuristic for optimizing the MDC criterion, given a set of gene trees. However, the heuristic is not guaranteed to compute optimal solutions, and its hill-climbing search makes it slow in practice. In this paper, we provide two exact solutions to the problem of inferring the species tree from a set of gene trees under the MDC criterion. In other words, our solutions are guaranteed to find the tree that minimizes the total number of deep coalescences from a set of gene trees. One solution is based on a novel integer linear programming (ILP) formulation, and another is based on a simple dynamic programming (DP) approach. Powerful ILP solvers, such as CPLEX, make the first solution appealing, particularly for very large-scale instances of the problem, whereas the DP-based solution eliminates dependence on proprietary tools, and its simplicity makes it easy to integrate with other genomic events that may cause gene tree incongruence. Using the exact solutions, we analyze a data set of 106 loci from eight yeast species, a data set of 268 loci from eight Apicomplexan species, and several simulated data sets. We show that the MDC criterion provides very accurate estimates of the species tree topologies, and that our solutions are very fast, thus allowing for the accurate analysis of genome-scale data sets. Further, the efficiency of the solutions allow for quick exploration of sub-optimal solutions, which is important for a parsimony-based criterion such as MDC, as we show. We show that searching for the species tree in the compatibility graph of the clusters induced by the gene trees may be sufficient in practice, a finding that helps ameliorate the computational requirements of optimization solutions. Further, we study the statistical consistency and convergence rate of the MDC criterion, as well as its optimality in inferring the species tree. Finally, we show how our solutions can be used to identify potential horizontal gene transfer events that may have caused some of the incongruence in the data, thus augmenting Maddison's original framework. We have implemented our solutions in the PhyloNet software package, which is freely available at: http://bioinfo.cs.rice.edu/phylonet.
Massive binaries in R136 using Hubble
NASA Astrophysics Data System (ADS)
Caballero-Nieves, Saida; Crowther, Paul; Bostroem, K. Azalee; Maíz Apellániz, Jesus
2014-09-01
We have undertaken a complete HST/STIS spectroscopic survey of R136, the young, central dense starburst cluster of the LMC 30 Doradus nebula, which hosts the most massive stars currently known. Our CCD datasets, comprising 17 adjacent 0.2"×52" long slits, were split across Cycles 19 and 20 to allow us to search for spectroscopic binaries. We will present the results of our survey, including a comparison with the massive-star population in the wider 30 Doradus region from the VLT Flames Tarantula survey. We will also describe upcoming HST/FGS observations, which will probe intermediate-separation binaries in R136, and discuss this cluster in the context of unresolved young extragalactic star clusters.
Precision Ephemerides for Gravitational-wave Searches. I. Sco X-1
NASA Astrophysics Data System (ADS)
Galloway, Duncan K.; Premachandra, Sammanani; Steeghs, Danny; Marsh, Tom; Casares, Jorge; Cornelisse, Rémon
2014-01-01
Rapidly rotating neutron stars are the only candidates for persistent high-frequency gravitational wave emission, for which a targeted search can be performed based on the spin period measured from electromagnetic (e.g., radio and X-ray) observations. The principal factor determining the sensitivity of such searches is the measurement precision of the physical parameters of the system. Neutron stars in X-ray binaries present additional computational demands for searches due to the uncertainty in the binary parameters. We present the results of a pilot study with the goal of improving the measurement precision of binary orbital parameters for candidate gravitational wave sources. We observed the optical counterpart of Sco X-1 in 2011 June with the William Herschel Telescope and also made use of Very Large Telescope observations in 2011 to provide an additional epoch of radial-velocity measurements to earlier measurements in 1999. From a circular orbit fit to the combined data set, we obtained an improvement of a factor of 2 in the orbital period precision and a factor of 2.5 in the epoch of inferior conjunction T 0. While the new orbital period is consistent with the previous value of Gottlieb et al., the new T 0 (and the amplitude of variation of the Bowen line velocities) exhibited a significant shift, which we attribute to variations in the emission geometry with epoch. We propagate the uncertainties on these parameters through to the expected Advanced LIGO-Virgo detector network observation epochs and quantify the improvement obtained with additional optical observations. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 087.D-0278.
Search for companions in visual binary systems using precise radial-velocity measurements
NASA Astrophysics Data System (ADS)
Katoh, Noriyuki; Itoh, Yoichi; Sato, Bun'ei
2018-05-01
The frequency of triple and quadruple systems is considered to be high in the early phase of star formation. Some multiple systems decay in the pre-main-sequence phase. The multiplicity of main-sequence stars provides clues about the evolution of binary systems. This work searched for companions of five components of visual binary systems using precise radial-velocity measurements. Their radial velocities were monitored from 2007 to 2012 using the HIgh Dispersion Echelle Spectrograph (HIDES) installed on the Okayama Astrophysical Observatory (OAO) 1.88 m reflector. In combination with previous work, this work searched for companions with an orbital period of less than 9 yr for the five bodies. We found periodic variations in the radial velocities for ADS 6190 A and BDS 10966A. The radial velocities of ADS 7311 A, 31 Dra A, and 31 Dra B show significant trends. ADS 6190 A is an SB1 binary with an orbital period of 366.2 d. The minimum mass of the secondary star is 0.5^{+0.7}_{-0.2} M_{⊙}. The radial velocity of ADS 7311 A was monitored for an observational span of 3200 d. We rejected a planetary-mass companion as the cause of a decreasing trend in the radial velocity of ADS 7311 A. This work confirmed that the periodic variation in the radial velocity of BDS 10966 A is 771.1 d. Bisector analysis did not reveal a correlation between the asymmetry of a spectral line and the radial velocity of BDS 10966 A. We rejected nonradial oscillation of the photosphere as the source of the radial velocity variation. The variation may be caused by the rotational modulation owing to surface inhomogeneity. The orbital elements of 31 Dra A derived in this paper are consistent with those in a previous paper. 31 Dra A system is an SB1 binary with a minimum mass ratio of 0.30 ± 0.08. 31 Dra B exhibits a periodic variation in radial velocity. The orbital elements derived in this work are consistent with those reported previously by others. The variation is caused by a circumstellar planet.
The U. S. Geological Survey, Digital Spectral Library: Version 1 (0.2 to 3.0um)
Clark, Roger N.; Swayze, Gregg A.; Gallagher, Andrea J.; King, Trude V.V.; Calvin, Wendy M.
1993-01-01
We have developed a digital reflectance spectral library, with management and spectral analysis software. The library includes 498 spectra of 444 samples (some samples include a series of grain sizes) measured from approximately 0.2 to 3.0 um . The spectral resolution (Full Width Half Maximum) of the reflectance data is <= 4 nm in the visible (0.2-0.8 um) and <= 10 nm in the NIR (0.8-2.35 um). All spectra were corrected to absolute reflectance using an NIST Halon standard. Library management software lets users search on parameters (e.g. chemical formulae, chemical analyses, purity of samples, mineral groups, etc.) as well as spectral features. Minerals from borate, carbonate, chloride, element, halide, hydroxide, nitrate, oxide, phosphate, sulfate, sulfide, sulfosalt, and the silicate (cyclosilicate, inosilicate, nesosilicate, phyllosilicate, sorosilicate, and tectosilicate) classes are represented. X-Ray and chemical analyses are tabulated for many of the entries, and all samples have been evaluated for spectral purity. The library also contains end and intermediate members for the olivine, garnet, scapolite, montmorillonite, muscovite, jarosite, and alunite solid-solution series. We have included representative spectra of H2O ice, kerogen, ammonium-bearing minerals, rare-earth oxides, desert varnish coatings, kaolinite crystallinity series, kaolinite-smectite series, zeolite series, and an extensive evaporite series. Because of the importance of vegetation to climate-change studies we have include 17 spectra of tree leaves, bushes, and grasses. The library and software are available as a series of U.S.G.S. Open File reports. PC user software is available to convert the binary data to ascii files (a separate U.S.G.S. open file report). Additionally, a binary data files are on line at the U.S.G.S. in Denver for anonymous ftp to users on the Internet. The library search software enables a user to search on documentation parameters as well as spectral features. The analysis system includes general spectral analysis routines, plotting packages, radiative transfer software for computing intimate mixtures, routines to derive optical constants from reflectance spectra, tools to analyze spectral features, and the capability to access imaging spectrometer data cubes for spectral analysis. Users may build customized libraries (at specific wavelengths and spectral resolution) for their own instruments using the library software. We are currently extending spectral coverage to 150 um. The libraries (original and convolved) will be made available in the future on a CD-ROM.
The Solar-Type Hard-Binary Frequency and Distributions of Orbital Parameters in the Open Cluster M37
NASA Astrophysics Data System (ADS)
Geller, Aaron M.; Meibom, Soren; Barnes, Sydney A.; Mathieu, Robert D.
2014-02-01
Binary stars, and particularly the short-period ``hard'' binaries, govern the dynamical evolution of star clusters and determine the formation rates and mechanisms for exotic stars like blue stragglers and X-ray sources. Understanding the near-primordial hard-binary population of star clusters is of primary importance for dynamical models of star clusters, which have the potential to greatly advance our understanding of star cluster evolution. Yet the binary frequencies and distributions of binary orbital parameters (period, eccentricity, etc.) for young coeval stellar populations are poorly known, due to a lack of necessary observations. The young (~540 Myr) open cluster M37 hosts a rich binary population that can be used to empirically define these initial conditions. Importantly, this cluster has been the target of a comprehensive WIYN/Hydra radial-velocity (RV) survey, from which we have already identified a nearly complete sample of 329 solar-type (1.5 <=M [M_⊙] <=1.0) members in M37. Of these stars, 82 show significant RV variability, indicative of a binary companion. We propose to build upon these data with a multi-epoch RV survey using WIYN/Hydra to derive kinematic orbital solutions for these 82 binaries in M37. This project was granted time in 2013B and scheduled for later this year. We anticipate that about half of the detected binaries in M37 will acquire enough RV measurements (>=10) in 2013B to begin searching for orbital solutions. With this proposal and perhaps one additional semester we should achieve >=10 RV measurements for the remaining binaries.
NASA Astrophysics Data System (ADS)
Coupon, Jean; Leauthaud, Alexie; Kilbinger, Martin; Medezinski, Elinor
2017-07-01
SWOT (Super W Of Theta) computes two-point statistics for very large data sets, based on “divide and conquer” algorithms, mainly, but not limited to data storage in binary trees, approximation at large scale, parellelization (open MPI), and bootstrap and jackknife resampling methods “on the fly”. It currently supports projected and 3D galaxy auto and cross correlations, galaxy-galaxy lensing, and weighted histograms.
Jiulong Xie; Chung-Yun Hse; Todd F. Shupe; Tingxing Hu
2015-01-01
Lignocellulosic biomass (Moso Bamboo, Chinese tallow tree wood, switchgrass, and pine wood) was subjected to a novel delignification process using microwave energy in a binary glycerol/methanol solvent. The physicochemical properties of the recovered lignin were analyzed prior to its application in the fabrication of polylactic acid (PLA)âlignin composites. The results...
Extracting the information of coastline shape and its multiple representations
NASA Astrophysics Data System (ADS)
Liu, Ying; Li, Shujun; Tian, Zhen; Chen, Huirong
2007-06-01
According to studying the coastline, a new way of multiple representations is put forward in the paper. That is stimulating human thinking way when they generalized, building the appropriate math model and describing the coastline with graphics, extracting all kinds of the coastline shape information. The coastline automatic generalization will be finished based on the knowledge rules and arithmetic operators. Showing the information of coastline shape by building the curve Douglas binary tree, it can reveal the shape character of coastline not only microcosmically but also macroscopically. Extracting the information of coastline concludes the local characteristic point and its orientation, the curve structure and the topology trait. The curve structure can be divided the single curve and the curve cluster. By confirming the knowledge rules of the coastline generalization, the generalized scale and its shape parameter, the coastline automatic generalization model is established finally. The method of the multiple scale representation of coastline in this paper has some strong points. It is human's thinking mode and can keep the nature character of the curve prototype. The binary tree structure can control the coastline comparability, avoid the self-intersect phenomenon and hold the unanimous topology relationship.
NASA Astrophysics Data System (ADS)
Ferrando, N.; Gosálvez, M. A.; Cerdá, J.; Gadea, R.; Sato, K.
2011-02-01
The current success of the continuous cellular automata for the simulation of anisotropic wet chemical etching of silicon in microengineering applications is based on a relatively fast, approximate, constant time stepping implementation (CTS), whose accuracy against the exact algorithm—a computationally slow, variable time stepping implementation (VTS)—has not been previously analyzed in detail. In this study we show that the CTS implementation can generate moderately wrong etch rates and overall etching fronts, thus justifying the presentation of a novel, exact reformulation of the VTS implementation based on a new state variable, referred to as the predicted removal time (PRT), and the use of a self-balanced binary search tree that enables storage and efficient access to the PRT values in each time step in order to quickly remove the corresponding surface atom/s. The proposed PRT method reduces the simulation cost of the exact implementation from {O}(N^{5/3}) to {O}(N^{3/2} log N) without introducing any model simplifications. This enables more precise simulations (only limited by numerical precision errors) with affordable computational times that are similar to the less precise CTS implementation and even faster for low reactivity systems.
An Asymptotically-Optimal Sampling-Based Algorithm for Bi-directional Motion Planning
Starek, Joseph A.; Gomez, Javier V.; Schmerling, Edward; Janson, Lucas; Moreno, Luis; Pavone, Marco
2015-01-01
Bi-directional search is a widely used strategy to increase the success and convergence rates of sampling-based motion planning algorithms. Yet, few results are available that merge both bi-directional search and asymptotic optimality into existing optimal planners, such as PRM*, RRT*, and FMT*. The objective of this paper is to fill this gap. Specifically, this paper presents a bi-directional, sampling-based, asymptotically-optimal algorithm named Bi-directional FMT* (BFMT*) that extends the Fast Marching Tree (FMT*) algorithm to bidirectional search while preserving its key properties, chiefly lazy search and asymptotic optimality through convergence in probability. BFMT* performs a two-source, lazy dynamic programming recursion over a set of randomly-drawn samples, correspondingly generating two search trees: one in cost-to-come space from the initial configuration and another in cost-to-go space from the goal configuration. Numerical experiments illustrate the advantages of BFMT* over its unidirectional counterpart, as well as a number of other state-of-the-art planners. PMID:27004130
Improving multivariate Horner schemes with Monte Carlo tree search
NASA Astrophysics Data System (ADS)
Kuipers, J.; Plaat, A.; Vermaseren, J. A. M.; van den Herik, H. J.
2013-11-01
Optimizing the cost of evaluating a polynomial is a classic problem in computer science. For polynomials in one variable, Horner's method provides a scheme for producing a computationally efficient form. For multivariate polynomials it is possible to generalize Horner's method, but this leaves freedom in the order of the variables. Traditionally, greedy schemes like most-occurring variable first are used. This simple textbook algorithm has given remarkably efficient results. Finding better algorithms has proved difficult. In trying to improve upon the greedy scheme we have implemented Monte Carlo tree search, a recent search method from the field of artificial intelligence. This results in better Horner schemes and reduces the cost of evaluating polynomials, sometimes by factors up to two.
Bounding the Resource Availability of Partially Ordered Events with Constant Resource Impact
NASA Technical Reports Server (NTRS)
Frank, Jeremy
2004-01-01
We compare existing techniques to bound the resource availability of partially ordered events. We first show that, contrary to intuition, two existing techniques, one due to Laborie and one due to Muscettola, are not strictly comparable in terms of the size of the search trees generated under chronological search with a fixed heuristic. We describe a generalization of these techniques called the Flow Balance Constraint to tightly bound the amount of available resource for a set of partially ordered events with piecewise constant resource impact We prove that the new technique generates smaller proof trees under chronological search with a fixed heuristic, at little increase in computational expense. We then show how to construct tighter resource bounds but at increased computational cost.
Searching molecular structure databases with tandem mass spectra using CSI:FingerID
Dührkop, Kai; Shen, Huibin; Meusel, Marvin; Rousu, Juho; Böcker, Sebastian
2015-01-01
Metabolites provide a direct functional signature of cellular state. Untargeted metabolomics experiments usually rely on tandem MS to identify the thousands of compounds in a biological sample. Today, the vast majority of metabolites remain unknown. We present a method for searching molecular structure databases using tandem MS data of small molecules. Our method computes a fragmentation tree that best explains the fragmentation spectrum of an unknown molecule. We use the fragmentation tree to predict the molecular structure fingerprint of the unknown compound using machine learning. This fingerprint is then used to search a molecular structure database such as PubChem. Our method is shown to improve on the competing methods for computational metabolite identification by a considerable margin. PMID:26392543
NASA Astrophysics Data System (ADS)
Astakhov, Sergey A.; Lee, Ernestine A.; Farrelly, David
2005-06-01
The discovery that many trans-Neptunian objects exist in pairs, or binaries, is proving invaluable for shedding light on the formation, evolution and structure of the outer Solar system. Based on recent systematic searches it has been estimated that up to 10 per cent of Kuiper-belt objects might be binaries. However, all examples discovered to date are unusual, as compared with near-Earth and main-belt asteroid binaries, for their mass ratios of the order of unity and their large, eccentric orbits. In this article we propose a common dynamical origin for these compositional and orbital properties based on four-body simulations in the Hill approximation. Our calculations suggest that binaries are produced through the following chain of events. Initially, long-lived quasi-bound binaries form by two bodies getting entangled in thin layers of dynamical chaos produced by solar tides within the Hill sphere. Next, energy transfer through gravitational scattering with a low-mass intruder nudges the binary into a nearby non-chaotic, stable zone of phase space. Finally, the binary hardens (loses energy) through a series of relatively gentle gravitational scattering encounters with further intruders. This produces binary orbits that are well fitted by Kepler ellipses. Dynamically, the overall process is strongly favoured if the original quasi-bound binary contains comparable masses. We propose a simplified model of chaotic scattering to explain these results. Our findings suggest that the observed preference for roughly equal-mass ratio binaries is probably a real effect; that is, it is not primarily due to an observational bias for widely separated, comparably bright objects. Nevertheless, we predict that a sizeable population of very unequal-mass Kuiper-belt binaries is probably awaiting discovery.
NASA Technical Reports Server (NTRS)
Mengshoel, Ole J.; Wilkins, David C.; Roth, Dan
2010-01-01
For hard computational problems, stochastic local search has proven to be a competitive approach to finding optimal or approximately optimal problem solutions. Two key research questions for stochastic local search algorithms are: Which algorithms are effective for initialization? When should the search process be restarted? In the present work we investigate these research questions in the context of approximate computation of most probable explanations (MPEs) in Bayesian networks (BNs). We introduce a novel approach, based on the Viterbi algorithm, to explanation initialization in BNs. While the Viterbi algorithm works on sequences and trees, our approach works on BNs with arbitrary topologies. We also give a novel formalization of stochastic local search, with focus on initialization and restart, using probability theory and mixture models. Experimentally, we apply our methods to the problem of MPE computation, using a stochastic local search algorithm known as Stochastic Greedy Search. By carefully optimizing both initialization and restart, we reduce the MPE search time for application BNs by several orders of magnitude compared to using uniform at random initialization without restart. On several BNs from applications, the performance of Stochastic Greedy Search is competitive with clique tree clustering, a state-of-the-art exact algorithm used for MPE computation in BNs.
VC-dimension of univariate decision trees.
Yildiz, Olcay Taner
2015-02-01
In this paper, we give and prove the lower bounds of the Vapnik-Chervonenkis (VC)-dimension of the univariate decision tree hypothesis class. The VC-dimension of the univariate decision tree depends on the VC-dimension values of its subtrees and the number of inputs. Via a search algorithm that calculates the VC-dimension of univariate decision trees exhaustively, we show that our VC-dimension bounds are tight for simple trees. To verify that the VC-dimension bounds are useful, we also use them to get VC-generalization bounds for complexity control using structural risk minimization in decision trees, i.e., pruning. Our simulation results show that structural risk minimization pruning using the VC-dimension bounds finds trees that are more accurate as those pruned using cross validation.
Planning chemical syntheses with deep neural networks and symbolic AI
NASA Astrophysics Data System (ADS)
Segler, Marwin H. S.; Preuss, Mike; Waller, Mark P.
2018-03-01
To plan the syntheses of small organic molecules, chemists use retrosynthesis, a problem-solving technique in which target molecules are recursively transformed into increasingly simpler precursors. Computer-aided retrosynthesis would be a valuable tool but at present it is slow and provides results of unsatisfactory quality. Here we use Monte Carlo tree search and symbolic artificial intelligence (AI) to discover retrosynthetic routes. We combined Monte Carlo tree search with an expansion policy network that guides the search, and a filter network to pre-select the most promising retrosynthetic steps. These deep neural networks were trained on essentially all reactions ever published in organic chemistry. Our system solves for almost twice as many molecules, thirty times faster than the traditional computer-aided search method, which is based on extracted rules and hand-designed heuristics. In a double-blind AB test, chemists on average considered our computer-generated routes to be equivalent to reported literature routes.
A VLSI chip set for real time vector quantization of image sequences
NASA Technical Reports Server (NTRS)
Baker, Richard L.
1989-01-01
The architecture and implementation of a VLSI chip set that vector quantizes (VQ) image sequences in real time is described. The chip set forms a programmable Single-Instruction, Multiple-Data (SIMD) machine which can implement various vector quantization encoding structures. Its VQ codebook may contain unlimited number of codevectors, N, having dimension up to K = 64. Under a weighted least squared error criterion, the engine locates at video rates the best code vector in full-searched or large tree searched VQ codebooks. The ability to manipulate tree structured codebooks, coupled with parallelism and pipelining, permits searches in as short as O (log N) cycles. A full codebook search results in O(N) performance, compared to O(KN) for a Single-Instruction, Single-Data (SISD) machine. With this VLSI chip set, an entire video code can be built on a single board that permits realtime experimentation with very large codebooks.
SAGE III L2 Monthly Cloud Presence Data (Binary)
Atmospheric Science Data Center
2016-06-14
... degrees South Spatial Resolution: 1 km vertical Temporal Coverage: 02/27/2002 - 12/31/2005 ... Parameters: Cloud Amount/Frequency Cloud Height Cloud Vertical Distribution Order Data: Search and ...
IMPROVED SEARCH OF PRINCIPAL COMPONENT ANALYSIS DATABASES FOR SPECTRO-POLARIMETRIC INVERSION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casini, R.; Lites, B. W.; Ramos, A. Asensio
2013-08-20
We describe a simple technique for the acceleration of spectro-polarimetric inversions based on principal component analysis (PCA) of Stokes profiles. This technique involves the indexing of the database models based on the sign of the projections (PCA coefficients) of the first few relevant orders of principal components of the four Stokes parameters. In this way, each model in the database can be attributed a distinctive binary number of 2{sup 4n} bits, where n is the number of PCA orders used for the indexing. Each of these binary numbers (indices) identifies a group of ''compatible'' models for the inversion of amore » given set of observed Stokes profiles sharing the same index. The complete set of the binary numbers so constructed evidently determines a partition of the database. The search of the database for the PCA inversion of spectro-polarimetric data can profit greatly from this indexing. In practical cases it becomes possible to approach the ideal acceleration factor of 2{sup 4n} as compared to the systematic search of a non-indexed database for a traditional PCA inversion. This indexing method relies on the existence of a physical meaning in the sign of the PCA coefficients of a model. For this reason, the presence of model ambiguities and of spectro-polarimetric noise in the observations limits in practice the number n of relevant PCA orders that can be used for the indexing.« less
Getting Astrophysical Information from LISA Data
NASA Technical Reports Server (NTRS)
Stebbins, R. T.; Bender, P. L.; Folkner, W. M.
1997-01-01
Gravitational wave signals from a large number of astrophysical sources will be present in the LISA data. Information about as many sources as possible must be estimated from time series of strain measurements. Several types of signals are expected to be present: simple periodic signals from relatively stable binary systems, chirped signals from coalescing binary systems, complex waveforms from highly relativistic binary systems, stochastic backgrounds from galactic and extragalactic binary systems and possibly stochastic backgrounds from the early Universe. The orbital motion of the LISA antenna will modulate the phase and amplitude of all these signals, except the isotropic backgrounds and thereby give information on the directions of sources. Here we describe a candidate process for disentangling the gravitational wave signals and estimating the relevant astrophysical parameters from one year of LISA data. Nearly all of the sources will be identified by searching with templates based on source parameters and directions.
Asymmetric distances for binary embeddings.
Gordo, Albert; Perronnin, Florent; Gong, Yunchao; Lazebnik, Svetlana
2014-01-01
In large-scale query-by-example retrieval, embedding image signatures in a binary space offers two benefits: data compression and search efficiency. While most embedding algorithms binarize both query and database signatures, it has been noted that this is not strictly a requirement. Indeed, asymmetric schemes that binarize the database signatures but not the query still enjoy the same two benefits but may provide superior accuracy. In this work, we propose two general asymmetric distances that are applicable to a wide variety of embedding techniques including locality sensitive hashing (LSH), locality sensitive binary codes (LSBC), spectral hashing (SH), PCA embedding (PCAE), PCAE with random rotations (PCAE-RR), and PCAE with iterative quantization (PCAE-ITQ). We experiment on four public benchmarks containing up to 1M images and show that the proposed asymmetric distances consistently lead to large improvements over the symmetric Hamming distance for all binary embedding techniques.
Exoplanet detection. A terrestrial planet in a ~1-AU orbit around one member of a ~15-AU binary.
Gould, A; Udalski, A; Shin, I-G; Porritt, I; Skowron, J; Han, C; Yee, J C; Kozłowski, S; Choi, J-Y; Poleski, R; Wyrzykowski, Ł; Ulaczyk, K; Pietrukowicz, P; Mróz, P; Szymański, M K; Kubiak, M; Soszyński, I; Pietrzyński, G; Gaudi, B S; Christie, G W; Drummond, J; McCormick, J; Natusch, T; Ngan, H; Tan, T-G; Albrow, M; DePoy, D L; Hwang, K-H; Jung, Y K; Lee, C-U; Park, H; Pogge, R W; Abe, F; Bennett, D P; Bond, I A; Botzler, C S; Freeman, M; Fukui, A; Fukunaga, D; Itow, Y; Koshimoto, N; Larsen, P; Ling, C H; Masuda, K; Matsubara, Y; Muraki, Y; Namba, S; Ohnishi, K; Philpott, L; Rattenbury, N J; Saito, To; Sullivan, D J; Sumi, T; Suzuki, D; Tristram, P J; Tsurumi, N; Wada, K; Yamai, N; Yock, P C M; Yonehara, A; Shvartzvald, Y; Maoz, D; Kaspi, S; Friedmann, M
2014-07-04
Using gravitational microlensing, we detected a cold terrestrial planet orbiting one member of a binary star system. The planet has low mass (twice Earth's) and lies projected at ~0.8 astronomical units (AU) from its host star, about the distance between Earth and the Sun. However, the planet's temperature is much lower, <60 Kelvin, because the host star is only 0.10 to 0.15 solar masses and therefore more than 400 times less luminous than the Sun. The host itself orbits a slightly more massive companion with projected separation of 10 to 15 AU. This detection is consistent with such systems being very common. Straightforward modification of current microlensing search strategies could increase sensitivity to planets in binary systems. With more detections, such binary-star planetary systems could constrain models of planet formation and evolution. Copyright © 2014, American Association for the Advancement of Science.
Observations of hot stars and eclipsing binaries with FRESIP
NASA Technical Reports Server (NTRS)
Gies, Douglas R.
1994-01-01
The FRESIP project offers an unprecedented opportunity to study pulsations in hot stars (which vary on time scales of a day) over a several year period. The photometric data will determine what frequencies are present, how or if the amplitudes change with time, and whether there is a connection between pulsation and mass loss episodes. It would initiate a new field of asteroseismology studies of hot star interiors. A search should be made for selected hot stars for inclusion in the list of project targets. Many of the primary solar mass targets will be eclipsing binaries, and I present estimates of their frequency and typical light curves. The photometric data combined with follow up spectroscopy and interferometric observations will provide fundamental data on these stars. The data will provide definitive information on the mass ratio distribution of solar-mass binaries (including the incidence of brown dwarf companions) and on the incidence of planets in binary systems.
Multiplicity of the Galactic Senior Citizens: A high-resolution search for cool subdwarf companions
NASA Astrophysics Data System (ADS)
Ziegler, Carl; Law, Nicholas M.
2015-01-01
Cool subdwarfs, with spectral types late K and M, are the oldest members of the low-mass stellar population. Mostly present in the galactic halo, subdwarfs are characterized by their low metallicity and high proper-motions. Understanding their binary fraction could give key insights into the star formation process early in the Milky Way's history. However, because of their low luminosity and relative rarity in the solar neighborhood, binary surveys of cool subdwarfs have suffered from small sample sizes and large incompleteness gaps. It appears, however, that the binary fraction of red subdwarfs is much lower than for their main-sequence cousins. Using the highly efficient Robo-AO system, we present the largest high-resolution survey of subdwarfs yet. We find from 349 target cool subdwarfs, 39 are in multiple systems, 13 newly discovered, for a binary fraction of 11 ± 1.8%.
Compact binary hashing for music retrieval
NASA Astrophysics Data System (ADS)
Seo, Jin S.
2014-03-01
With the huge volume of music clips available for protection, browsing, and indexing, there is an increased attention to retrieve the information contents of the music archives. Music-similarity computation is an essential building block for browsing, retrieval, and indexing of digital music archives. In practice, as the number of songs available for searching and indexing is increased, so the storage cost in retrieval systems is becoming a serious problem. This paper deals with the storage problem by extending the supervector concept with the binary hashing. We utilize the similarity-preserving binary embedding in generating a hash code from the supervector of each music clip. Especially we compare the performance of the various binary hashing methods for music retrieval tasks on the widely-used genre dataset and the in-house singer dataset. Through the evaluation, we find an effective way of generating hash codes for music similarity estimation which improves the retrieval performance.
NASA Astrophysics Data System (ADS)
Samec, Ronald G.; Smith, Paul M.; Robb, Russell; Faulkner, Danny R.; Van Hamme, W.
2012-07-01
We present a spectrum and a photometric analysis of the newly discovered, high-amplitude, solar-type, eclipsing binary HO Piscium. A spectroscopic identification, a period study, q-search, and a simultaneous UBVRc Ic light-curve solution are presented. The spectra and our photometric solution indicate that HO Psc is a W-type W UMa shallow-contact (fill-out ˜8%) binary system. The primary component has a G6V spectral type with an apparently precontact spectral type of M2V for the secondary component. The small fill-out indicates that the system has not yet achieved thermal contact and thus has recently come into physical contact. This may mean that this solar-type binary system has not attained its ˜0.4 mass ratio via a long period of magnetic braking, as would normally be assumed.
Non-unique key B-Tree implementation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ries, D.R.
1980-12-23
The B-Trees are an indexed method to allow fast retrieval and order preserving updates to a FRAMIS relation based on a designated set of keys in the relation. A B-Tree access method is being implemented to provide indexed and sequential (in index order) access to FRAMIS relations. The implementation modifies the basic B-Tree structure to correctly allow multiple key values and still maintain the balanced page fill property of B-Trees. The data structures of the B-Tree are presented first, including the FRAMIS solution to the duplicate key value problem. Then the access level routines and utilities are presented. These routinesmore » include the original B-Tree creation; searching the B-Tree; and inserting, deleting, and replacing tuples on the B-Tree. In conclusion, the uses of the B-Tree access structures at the semantic level to enhance the FRAMIS performance are discussed. 10 figures.« less
HST Observations of a Large-Amplitude, Long-Period Trojan: (11351) Leucus
NASA Astrophysics Data System (ADS)
Noll, Keith S.; Levison, Harold F.; Buie, Marc W.; Grundy, William M.
2016-10-01
(11351) Leucus (1997 TS25) is a Trojan that is notable for having one of the longest known rotation periods of any small body, T=514 h. A possible cause for this long period would be the existence of a tidally locked binary similar to the already-known long period binary Trojan, (617) Patroclus. If this were the case, the system would become tidally circularized in a time short compared to the age of the solar system. In such a case, the components would be separated by ~0.18 arcsec at lightcurve maximum, resolvable by WFC3. We carried out observations in June 2016, coordinated with groundbased observations to schedule near a maximum to test whether (11351) Leucus is binary. We describe the results of these observations.Observations of (11351) Leucus are of particular interest because it is a target of the Lucy mission, a Discovery mission currently in phase A and one of five that may be selected in early 2017. Searches for binary Trojans also offer multiple scientific benefits independent of mission status. Orbit-derived mass and density can be used to constrain planetary migration models. Low density is characteristic of bodies found in the dynamically cold Kuiper Belt, a remnant of the solar system's protoplanetary disk. Only one undisputed density has been measured in the Trojans, that of the binary (617) Patroclus, which has a low density of 0.8 g/cm3, similar to the low densities found in the Kuiper Belt. Slow rotators offer a set of targets that are tidally evolved systems and therefore are among the most attractive potential targets for an HST search.
The close binary frequency of Wolf-Rayet stars as a function of metallicity in M31 and M33
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neugent, Kathryn F.; Massey, Philip, E-mail: kneugent@lowell.edu, E-mail: phil.massey@lowell.edu
Massive star evolutionary models generally predict the correct ratio of WC-type and WN-type Wolf-Rayet stars at low metallicities, but underestimate the ratio at higher (solar and above) metallicities. One possible explanation for this failure is perhaps single-star models are not sufficient and Roche-lobe overflow in close binaries is necessary to produce the 'extra' WC stars at higher metallicities. However, this would require the frequency of close massive binaries to be metallicity dependent. Here we test this hypothesis by searching for close Wolf-Rayet binaries in the high metallicity environments of M31 and the center of M33 as well as in themore » lower metallicity environments of the middle and outer regions of M33. After identifying ∼100 Wolf-Rayet binaries based on radial velocity variations, we conclude that the close binary frequency of Wolf-Rayets is not metallicity dependent and thus other factors must be responsible for the overabundance of WC stars at high metallicities. However, our initial identifications and observations of these close binaries have already been put to good use as we are currently observing additional epochs for eventual orbit and mass determinations.« less
Kleinhans, Sonja; Herrmann, Eva; Kohnen, Thomas; Bühren, Jens
2017-08-15
Background Iatrogenic keratectasia is one of the most dreaded complications of refractive surgery. In most cases, keratectasia develops after refractive surgery of eyes suffering from subclinical stages of keratoconus with few or no signs. Unfortunately, there has been no reliable procedure for the early detection of keratoconus. In this study, we used binary decision trees (recursive partitioning) to assess their suitability for discrimination between normal eyes and eyes with subclinical keratoconus. Patients and Methods The method of decision tree analysis was compared with discriminant analysis which has shown good results in previous studies. Input data were 32 eyes of 32 patients with newly diagnosed keratoconus in the contralateral eye and preoperative data of 10 eyes of 5 patients with keratectasia after laser in-situ keratomileusis (LASIK). The control group was made up of 245 normal eyes after LASIK and 12-month follow-up without any signs of iatrogenic keratectasia. Results Decision trees gave better accuracy and specificity than did discriminant analysis. The sensitivity of decision trees was lower than the sensitivity of discriminant analysis. Conclusion On the basis of the patient population of this study, decision trees did not prove to be superior to linear discriminant analysis for the detection of subclinical keratoconus. Georg Thieme Verlag KG Stuttgart · New York.
Austin, Peter C; Lee, Douglas S; Steyerberg, Ewout W; Tu, Jack V
2012-01-01
In biomedical research, the logistic regression model is the most commonly used method for predicting the probability of a binary outcome. While many clinical researchers have expressed an enthusiasm for regression trees, this method may have limited accuracy for predicting health outcomes. We aimed to evaluate the improvement that is achieved by using ensemble-based methods, including bootstrap aggregation (bagging) of regression trees, random forests, and boosted regression trees. We analyzed 30-day mortality in two large cohorts of patients hospitalized with either acute myocardial infarction (N = 16,230) or congestive heart failure (N = 15,848) in two distinct eras (1999–2001 and 2004–2005). We found that both the in-sample and out-of-sample prediction of ensemble methods offered substantial improvement in predicting cardiovascular mortality compared to conventional regression trees. However, conventional logistic regression models that incorporated restricted cubic smoothing splines had even better performance. We conclude that ensemble methods from the data mining and machine learning literature increase the predictive performance of regression trees, but may not lead to clear advantages over conventional logistic regression models for predicting short-term mortality in population-based samples of subjects with cardiovascular disease. PMID:22777999
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio., M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2016-12-01
We report here the non-detection of gravitational waves from the merger of binary-neutron star systems and neutron star-black hole systems during the first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO). In particular, we searched for gravitational-wave signals from binary-neutron star systems with component masses \\in [1,3] {M}⊙ and component dimensionless spins <0.05. We also searched for neutron star-black hole systems with the same neutron star parameters, black hole mass \\in [2,99] {M}⊙ , and no restriction on the black hole spin magnitude. We assess the sensitivity of the two LIGO detectors to these systems and find that they could have detected the merger of binary-neutron star systems with component mass distributions of 1.35 ± 0.13 M ⊙ at a volume-weighted average distance of ˜70 Mpc, and for neutron star-black hole systems with neutron star masses of 1.4 M ⊙ and black hole masses of at least 5 M ⊙, a volume-weighted average distance of at least ˜110 Mpc. From this we constrain with 90% confidence the merger rate to be less than 12,600 Gpc-3 yr-1 for binary-neutron star systems and less than 3600 Gpc-3 yr-1 for neutron star-black hole systems. We discuss the astrophysical implications of these results, which we find to be in conflict with only the most optimistic predictions. However, we find that if no detection of neutron star-binary mergers is made in the next two Advanced LIGO and Advanced Virgo observing runs we would place significant constraints on the merger rates. Finally, assuming a rate of {10}-7+20 Gpc-3 yr-1, short gamma-ray bursts beamed toward the Earth, and assuming that all short gamma-ray bursts have binary-neutron star (neutron star-black hole) progenitors, we can use our 90% confidence rate upper limits to constrain the beaming angle of the gamma-ray burst to be greater than 2\\buildrel{\\circ}\\over{.} {3}-1.1+1.7 (4\\buildrel{\\circ}\\over{.} {3}-1.9+3.1).
SEARCHING FOR BINARY Y DWARFS WITH THE GEMINI MULTI-CONJUGATE ADAPTIVE OPTICS SYSTEM (GeMS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Opitz, Daniela; Tinney, C. G.; Faherty, Jacqueline K.
The NASA Wide-field Infrared Survey Explorer (WISE) has discovered almost all the known members of the new class of Y-type brown dwarfs. Most of these Y dwarfs have been identified as isolated objects in the field. It is known that binaries with L- and T-type brown dwarf primaries are less prevalent than either M-dwarf or solar-type primaries, they tend to have smaller separations and are more frequently detected in near-equal mass configurations. The binary statistics for Y-type brown dwarfs, however, are sparse, and so it is unclear if the same trends that hold for L- and T-type brown dwarfs alsomore » hold for Y-type ones. In addition, the detection of binary companions to very cool Y dwarfs may well be the best means available for discovering even colder objects. We present results for binary properties of a sample of five WISE Y dwarfs with the Gemini Multi-Conjugate Adaptive Optics System. We find no evidence for binary companions in these data, which suggests these systems are not equal-luminosity (or equal-mass) binaries with separations larger than ∼0.5–1.9 AU. For equal-mass binaries at an age of 5 Gyr, we find that the binary binding energies ruled out by our observations (i.e., 10{sup 42} erg) are consistent with those observed in previous studies of hotter ultra-cool dwarfs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konacki, Maciej; Helminiak, Krzysztof G.; Muterspaugh, Matthew W.
2009-10-10
We present preliminary results of the first and on-going radial velocity survey for circumbinary planets. With a novel radial velocity technique employing an iodine absorption cell, we achieve an unprecedented radial velocity (RV) precision of up to 2 m s{sup -1} for double-lined binary stars. The high-resolution spectra collected with the Keck I/Hires, TNG/Sarg, and Shane/CAT/Hamspec telescopes/spectrographs over the years 2003-2008 allow us to derive RVs and compute planet detection limits for 10 double-lined binary stars. For this initial sample of targets, we can rule out planets on dynamically stable orbits with masses as small as approx0.3 to 3 Mmore » {sub Jup} for the orbital periods of up to approx5.3 years. Even though the presented sample of stars is too small to make any strong conclusions, it is clear that the search for circumbinary planets is now technique-wise possible and eventually will provide new constraints for the planet formation theories.« less
Length requirements for numerical-relativity waveforms
NASA Astrophysics Data System (ADS)
Hannam, Mark; Husa, Sascha; Ohme, Frank; Ajith, P.
2010-12-01
One way to produce complete inspiral-merger-ringdown gravitational waveforms from black-hole-binary systems is to connect post-Newtonian (PN) and numerical-relativity (NR) results to create “hybrid” waveforms. Hybrid waveforms are central to the construction of some phenomenological models for gravitational-wave (GW) search templates, and for tests of GW search pipelines. The dominant error source in hybrid waveforms arises from the PN contribution, and can be reduced by increasing the number of NR GW cycles that are included in the hybrid. Hybrid waveforms are considered sufficiently accurate for GW detection if their mismatch error is below 3% (i.e., a fitting factor above 0.97). We address the question of the length requirements of NR waveforms such that the final hybrid waveforms meet this requirement, considering nonspinning binaries with q=M2/M1∈[1,4] and equal-mass binaries with χ=Si/Mi2∈[-0.5,0.5]. We conclude that, for the cases we study, simulations must contain between three (in the equal-mass nonspinning case) and ten (the χ=0.5 case) orbits before merger, but there is also evidence that these are the regions of parameter space for which the least number of cycles will be needed.
Speiser, Daniel I; Pankey, M Sabrina; Zaharoff, Alexander K; Battelle, Barbara A; Bracken-Grissom, Heather D; Breinholt, Jesse W; Bybee, Seth M; Cronin, Thomas W; Garm, Anders; Lindgren, Annie R; Patel, Nipam H; Porter, Megan L; Protas, Meredith E; Rivera, Ajna S; Serb, Jeanne M; Zigler, Kirk S; Crandall, Keith A; Oakley, Todd H
2014-11-19
Tools for high throughput sequencing and de novo assembly make the analysis of transcriptomes (i.e. the suite of genes expressed in a tissue) feasible for almost any organism. Yet a challenge for biologists is that it can be difficult to assign identities to gene sequences, especially from non-model organisms. Phylogenetic analyses are one useful method for assigning identities to these sequences, but such methods tend to be time-consuming because of the need to re-calculate trees for every gene of interest and each time a new data set is analyzed. In response, we employed existing tools for phylogenetic analysis to produce a computationally efficient, tree-based approach for annotating transcriptomes or new genomes that we term Phylogenetically-Informed Annotation (PIA), which places uncharacterized genes into pre-calculated phylogenies of gene families. We generated maximum likelihood trees for 109 genes from a Light Interaction Toolkit (LIT), a collection of genes that underlie the function or development of light-interacting structures in metazoans. To do so, we searched protein sequences predicted from 29 fully-sequenced genomes and built trees using tools for phylogenetic analysis in the Osiris package of Galaxy (an open-source workflow management system). Next, to rapidly annotate transcriptomes from organisms that lack sequenced genomes, we repurposed a maximum likelihood-based Evolutionary Placement Algorithm (implemented in RAxML) to place sequences of potential LIT genes on to our pre-calculated gene trees. Finally, we implemented PIA in Galaxy and used it to search for LIT genes in 28 newly-sequenced transcriptomes from the light-interacting tissues of a range of cephalopod mollusks, arthropods, and cubozoan cnidarians. Our new trees for LIT genes are available on the Bitbucket public repository ( http://bitbucket.org/osiris_phylogenetics/pia/ ) and we demonstrate PIA on a publicly-accessible web server ( http://galaxy-dev.cnsi.ucsb.edu/pia/ ). Our new trees for LIT genes will be a valuable resource for researchers studying the evolution of eyes or other light-interacting structures. We also introduce PIA, a high throughput method for using phylogenetic relationships to identify LIT genes in transcriptomes from non-model organisms. With simple modifications, our methods may be used to search for different sets of genes or to annotate data sets from taxa outside of Metazoa.
Peña, Carlos; Espeland, Marianne
2015-01-01
The species rich butterfly family Nymphalidae has been used to study evolutionary interactions between plants and insects. Theories of insect-hostplant dynamics predict accelerated diversification due to key innovations. In evolutionary biology, analysis of maximum credibility trees in the software MEDUSA (modelling evolutionary diversity using stepwise AIC) is a popular method for estimation of shifts in diversification rates. We investigated whether phylogenetic uncertainty can produce different results by extending the method across a random sample of trees from the posterior distribution of a Bayesian run. Using the MultiMEDUSA approach, we found that phylogenetic uncertainty greatly affects diversification rate estimates. Different trees produced diversification rates ranging from high values to almost zero for the same clade, and both significant rate increase and decrease in some clades. Only four out of 18 significant shifts found on the maximum clade credibility tree were consistent across most of the sampled trees. Among these, we found accelerated diversification for Ithomiini butterflies. We used the binary speciation and extinction model (BiSSE) and found that a hostplant shift to Solanaceae is correlated with increased net diversification rates in Ithomiini, congruent with the diffuse cospeciation hypothesis. Our results show that taking phylogenetic uncertainty into account when estimating net diversification rate shifts is of great importance, as very different results can be obtained when using the maximum clade credibility tree and other trees from the posterior distribution. PMID:25830910
Peña, Carlos; Espeland, Marianne
2015-01-01
The species rich butterfly family Nymphalidae has been used to study evolutionary interactions between plants and insects. Theories of insect-hostplant dynamics predict accelerated diversification due to key innovations. In evolutionary biology, analysis of maximum credibility trees in the software MEDUSA (modelling evolutionary diversity using stepwise AIC) is a popular method for estimation of shifts in diversification rates. We investigated whether phylogenetic uncertainty can produce different results by extending the method across a random sample of trees from the posterior distribution of a Bayesian run. Using the MultiMEDUSA approach, we found that phylogenetic uncertainty greatly affects diversification rate estimates. Different trees produced diversification rates ranging from high values to almost zero for the same clade, and both significant rate increase and decrease in some clades. Only four out of 18 significant shifts found on the maximum clade credibility tree were consistent across most of the sampled trees. Among these, we found accelerated diversification for Ithomiini butterflies. We used the binary speciation and extinction model (BiSSE) and found that a hostplant shift to Solanaceae is correlated with increased net diversification rates in Ithomiini, congruent with the diffuse cospeciation hypothesis. Our results show that taking phylogenetic uncertainty into account when estimating net diversification rate shifts is of great importance, as very different results can be obtained when using the maximum clade credibility tree and other trees from the posterior distribution.
Search for Gravitational Waves Associated with γ-ray Bursts Detected by the Interplanetary Network
NASA Astrophysics Data System (ADS)
Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Andersen, M.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J. S.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Augustus, H.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauchrowitz, J.; Bauer, Th. S.; Baune, C.; Bavigadda, V.; Behnke, B.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bell, A. S.; Bell, C.; Bergmann, G.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bosi, L.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Buchman, S.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burman, R.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castaldi, G.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Croce, R. P.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, C.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Dickson, J.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fazi, D.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C. J.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Ha, J.; Hall, E. D.; Hamilton, W.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Holt, K.; Hopkins, P.; Horrom, T.; Hoske, D.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Ingram, D. R.; Inta, R.; Islas, G.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; Jang, H.; Jaranowski, P.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karlen, J.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, S.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, A.; Kumar, D. Nanda; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lam, P. K.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, J.; Lee, P. J.; Leonardi, M.; Leong, J. R.; Leonor, I.; Le Roux, A.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lopez, E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Ma, Y.; Macdonald, E. P.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R.; Mageswaran, M.; Maglione, C.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mangini, N. M.; Mansell, G.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Mavalvala, N.; May, G.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nielsen, A. B.; Nissanke, S.; Nitz, A. H.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Oh, J. J.; Oh, S. H.; Ohme, F.; Omar, S.; Oppermann, P.; Oram, R.; O'Reilly, B.; Ortega, W.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palashov, O.; Palomba, C.; Pan, H.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poteomkin, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qin, J.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Ramirez, K.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Recchia, S.; Reed, C. M.; Regimbau, T.; Reid, S.; Reitze, D. H.; Reula, O.; Rhoades, E.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Roddy, S. B.; Rolland, L.; Rollins, J. G.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sankar, S.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Scheuer, J.; Schilling, R.; Schilman, M.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Staley, A.; Stebbins, J.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Stops, D.; Strain, K. A.; Straniero, N.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tao, J.; Tarabrin, S. P.; Taylor, R.; Tellez, G.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Tshilumba, D.; Tuennermann, H.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyachanin, S. P.; Wade, A. R.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, M.; Wang, X.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Williams, K.; Williams, L.; Williams, R.; Williams, T. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wolovick, N.; Worden, J.; Wu, Y.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yoshida, S.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, Fan; Zhang, L.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.; Aptekar, R. L.; Atteia, J. L.; Cline, T.; Connaughton, V.; Frederiks, D. D.; Golenetskii, S. V.; Hurley, K.; Krimm, H. A.; Marisaldi, M.; Pal'shin, V. D.; Palmer, D.; Svinkin, D. S.; Terada, Y.; von Kienlin, A.; LIGO Scientific Collaboration; Virgo Collaboration; IPN Collaboration
2014-07-01
We present the results of a search for gravitational waves associated with 223 γ-ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGO's fifth and sixth science runs and Virgo's first, second, and third science runs. The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational wave search sensitivity as compared to corresponding all-time, all-sky searches. We find no evidence of a gravitational wave signal associated with any of the IPN GRBs in the sample, nor do we find evidence for a population of weak gravitational wave signals associated with the GRBs. For all IPN-detected GRBs, for which a sufficient duration of quality gravitational wave data are available, we place lower bounds on the distance to the source in accordance with an optimistic assumption of gravitational wave emission energy of 10-2M⊙c2 at 150 Hz, and find a median of 13 Mpc. For the 27 short-hard GRBs we place 90% confidence exclusion distances to two source models: a binary neutron star coalescence, with a median distance of 12 Mpc, or the coalescence of a neutron star and black hole, with a median distance of 22 Mpc. Finally, we combine this search with previously published results to provide a population statement for GRB searches in first-generation LIGO and Virgo gravitational wave detectors and a resulting examination of prospects for the advanced gravitational wave detectors.
NASA Technical Reports Server (NTRS)
Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Blackbum, L.; Camp, J. B.; Gehrels, N.; Graff, P. B.;
2014-01-01
We present the results of a search for gravitational waves associated with 223 gamma ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGO's fifth and sixth science runs and Virgo's first, second, and third science runs. The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational wave search sensitivity as compared to corresponding all-time, all-sky searches. We find no evidence of a gravitational wave signal associated with any of the IPN GRBs in the sample, nor do we find evidence for a population of weak gravitational wave signals associated with the GRBs. For all IPN-detected GRBs, for which a sufficient duration of quality gravitational wave data are available, we place lower bounds on the distance to the source in accordance with an optimistic assumption of gravitational wave emission energy of 10(exp-2) solar mass c(exp 2) at 150 Hz, and find a median of 13 Mpc. For the 27 short-hard GRBs we place 90% confidence exclusion distances to two source models: a binary neutron star coalescence, with a median distance of 12 Mpc, or the coalescence of a neutron star and black hole, with a median distance of 22 Mpc. Finally, we combine this search with previously published results to provide a population statement for GRB searches in first-generation LIGO and Virgo gravitational wave detectors and a resulting examination of prospects for the advanced gravitational wave detectors.
Search for gravitational waves associated with γ-ray bursts detected by the interplanetary network.
Aasi, J; Abbott, B P; Abbott, R; Abbott, T; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ajith, P; Alemic, A; Allen, B; Allocca, A; Amariutei, D; Andersen, M; Anderson, R A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J S; Ast, S; Aston, S M; Astone, P; Aufmuth, P; Augustus, H; Aulbert, C; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barbet, M; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bauchrowitz, J; Bauer, Th S; Baune, C; Bavigadda, V; Behnke, B; Bejger, M; Beker, M G; Belczynski, C; Bell, A S; Bell, C; Bergmann, G; Bersanetti, D; Bertolini, A; Betzwieser, J; Bilenko, I A; Billingsley, G; Birch, J; Biscans, S; Bitossi, M; Biwer, C; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, Sukanta; Bosi, L; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Brooks, A F; Brown, D A; Brown, D D; Brückner, F; Buchman, S; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Burman, R; Buskulic, D; Buy, C; Cadonati, L; Cagnoli, G; Calderón Bustillo, J; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castaldi, G; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Celerier, C; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, D E; Clark, J A; Clayton, J H; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C; Colombini, M; Cominsky, L; Constancio, M; Conte, A; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Costa, C A; Coughlin, M W; Coulon, J-P; Countryman, S; Couvares, P; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Croce, R P; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Cutler, C; Dahl, K; Dal Canton, T; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; DeBra, D; Debreczeni, G; Degallaix, J; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; Díaz, M; Dickson, J; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Dolique, V; Dominguez, E; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S; Eberle, T; Edo, T; Edwards, M; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Endrőczi, G; Essick, R; Etzel, T; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fazi, D; Fehrmann, H; Fejer, M M; Feldbaum, D; Feroz, F; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gair, J R; Gammaitoni, L; Gaonkar, S; Garufi, F; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gleason, J; Goetz, E; Goetz, R; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goßler, S; Gouaty, R; Gräf, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C J; Gushwa, K; Gustafson, E K; Gustafson, R; Ha, J; Hall, E D; Hamilton, W; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hart, M; Hartman, M T; Haster, C-J; Haughian, K; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Holt, K; Hopkins, P; Horrom, T; Hoske, D; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Huerta, E; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Idrisy, A; Ingram, D R; Inta, R; Islas, G; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; Jang, H; Jaranowski, P; Ji, Y; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Haris, K; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karlen, J; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, H; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Keiser, G M; Keitel, D; Kelley, D B; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, C; Kim, K; Kim, N G; Kim, N; Kim, S; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, A; Kumar, D Nanda; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lam, P K; Landry, M; Lantz, B; Larson, S; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, J; Lee, P J; Leonardi, M; Leong, J R; Leonor, I; Le Roux, A; Leroy, N; Letendre, N; Levin, Y; Levine, B; Lewis, J; Li, T G F; Libbrecht, K; Libson, A; Lin, A C; Littenberg, T B; Lockerbie, N A; Lockett, V; Lodhia, D; Loew, K; Logue, J; Lombardi, A L; Lopez, E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J; Lubinski, M J; Lück, H; Lundgren, A P; Ma, Y; Macdonald, E P; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R; Mageswaran, M; Maglione, C; Mailand, K; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Manca, G M; Mandel, I; Mandic, V; Mangano, V; Mangini, N M; Mansell, G; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Martinelli, L; Martynov, D; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Matichard, F; Matone, L; Mavalvala, N; May, G; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIver, J; McLin, K; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Meinders, M; Melatos, A; Mendell, G; Mercer, R A; Meshkov, S; Messenger, C; Meyer, M S; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Mikhailov, E E; Milano, L; Miller, J; Minenkov, Y; Mingarelli, C M F; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Moggi, A; Mohan, M; Mohapatra, S R P; Moraru, D; Moreno, G; Morgado, N; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D; Murray, P G; Mytidis, A; Nagy, M F; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nelemans, G; Neri, I; Neri, M; Newton, G; Nguyen, T; Nielsen, A B; Nissanke, S; Nitz, A H; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Ochsner, E; O'Dell, J; Oelker, E; Oh, J J; Oh, S H; Ohme, F; Omar, S; Oppermann, P; Oram, R; O'Reilly, B; Ortega, W; O'Shaughnessy, R; Osthelder, C; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Padilla, C; Pai, A; Palashov, O; Palomba, C; Pan, H; Pan, Y; Pankow, C; Paoletti, F; Papa, M A; Paris, H; Pasqualetti, A; Passaquieti, R; Passuello, D; Pedraza, M; Pele, A; Penn, S; Perreca, A; Phelps, M; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J; Poggiani, R; Poteomkin, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S; Prestegard, T; Price, L R; Prijatelj, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qin, J; Quetschke, V; Quintero, E; Quitzow-James, R; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Raja, S; Rajalakshmi, G; Rakhmanov, M; Ramet, C; Ramirez, K; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Recchia, S; Reed, C M; Regimbau, T; Reid, S; Reitze, D H; Reula, O; Rhoades, E; Ricci, F; Riesen, R; Riles, K; Robertson, N A; Robinet, F; Rocchi, A; Roddy, S B; Rolland, L; Rollins, J G; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Salemi, F; Sammut, L; Sandberg, V; Sanders, J R; Sankar, S; Sannibale, V; Santiago-Prieto, I; Saracco, E; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Savage, R; Scheuer, J; Schilling, R; Schilman, M; Schmidt, P; Schnabel, R; Schofield, R M S; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Shoemaker, D H; Sidery, T L; Siellez, K; Siemens, X; Sigg, D; Simakov, D; Singer, A; Singer, L; Singh, R; Sintes, A M; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Smith, R J E; Smith-Lefebvre, N D; Son, E J; Sorazu, B; Souradeep, T; Staley, A; Stebbins, J; Steinke, M; Steinlechner, J; Steinlechner, S; Stephens, B C; Steplewski, S; Stevenson, S; Stone, R; Stops, D; Strain, K A; Straniero, N; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Susmithan, S; Sutton, P J; Swinkels, B; Tacca, M; Talukder, D; Tanner, D B; Tao, J; Tarabrin, S P; Taylor, R; Tellez, G; Thirugnanasambandam, M P; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Travasso, F; Traylor, G; Tse, M; Tshilumba, D; Tuennermann, H; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; van der Sluys, M V; van Heijningen, J; van Veggel, A A; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vincent-Finley, R; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vyachanin, S P; Wade, A R; Wade, L; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, M; Wang, X; Ward, R L; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Williams, K; Williams, L; Williams, R; Williams, T D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Wolovick, N; Worden, J; Wu, Y; Yablon, J; Yakushin, I; Yam, W; Yamamoto, H; Yancey, C C; Yang, H; Yoshida, S; Yvert, M; Zadrożny, A; Zanolin, M; Zendri, J-P; Zhang, Fan; Zhang, L; Zhao, C; Zhu, H; Zhu, X J; Zucker, M E; Zuraw, S; Zweizig, J; Aptekar, R L; Atteia, J L; Cline, T; Connaughton, V; Frederiks, D D; Golenetskii, S V; Hurley, K; Krimm, H A; Marisaldi, M; Pal'shin, V D; Palmer, D; Svinkin, D S; Terada, Y; von Kienlin, A
2014-07-04
We present the results of a search for gravitational waves associated with 223 γ-ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGO's fifth and sixth science runs and Virgo's first, second, and third science runs. The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational wave search sensitivity as compared to corresponding all-time, all-sky searches. We find no evidence of a gravitational wave signal associated with any of the IPN GRBs in the sample, nor do we find evidence for a population of weak gravitational wave signals associated with the GRBs. For all IPN-detected GRBs, for which a sufficient duration of quality gravitational wave data are available, we place lower bounds on the distance to the source in accordance with an optimistic assumption of gravitational wave emission energy of 10(-2)M⊙c(2) at 150 Hz, and find a median of 13 Mpc. For the 27 short-hard GRBs we place 90% confidence exclusion distances to two source models: a binary neutron star coalescence, with a median distance of 12 Mpc, or the coalescence of a neutron star and black hole, with a median distance of 22 Mpc. Finally, we combine this search with previously published results to provide a population statement for GRB searches in first-generation LIGO and Virgo gravitational wave detectors and a resulting examination of prospects for the advanced gravitational wave detectors.
Adaptive segmentation of cerebrovascular tree in time-of-flight magnetic resonance angiography.
Hao, J T; Li, M L; Tang, F L
2008-01-01
Accurate segmentation of the human vasculature is an important prerequisite for a number of clinical procedures, such as diagnosis, image-guided neurosurgery and pre-surgical planning. In this paper, an improved statistical approach to extracting whole cerebrovascular tree in time-of-flight magnetic resonance angiography is proposed. Firstly, in order to get a more accurate segmentation result, a localized observation model is proposed instead of defining the observation model over the entire dataset. Secondly, for the binary segmentation, an improved Iterative Conditional Model (ICM) algorithm is presented to accelerate the segmentation process. The experimental results showed that the proposed algorithm can obtain more satisfactory segmentation results and save more processing time than conventional approaches, simultaneously.
Satisfiability modulo theory and binary puzzle
NASA Astrophysics Data System (ADS)
Utomo, Putranto
2017-06-01
The binary puzzle is a sudoku-like puzzle with values in each cell taken from the set {0, 1}. We look at the mathematical theory behind it. A solved binary puzzle is an n × n binary array where n is even that satisfies the following conditions: (1) No three consecutive ones and no three consecutive zeros in each row and each column, (2) Every row and column is balanced, that is the number of ones and zeros must be equal in each row and in each column, (3) Every two rows and every two columns must be distinct. The binary puzzle had been proven to be an NP-complete problem [5]. Research concerning the satisfiability of formulas with respect to some background theory is called satisfiability modulo theory (SMT). An SMT solver is an extension of a satisfiability (SAT) solver. The notion of SMT can be used for solving various problem in mathematics and industries such as formula verification and operation research [1, 7]. In this paper we apply SMT to solve binary puzzles. In addition, we do an experiment in solving different sizes and different number of blanks. We also made comparison with two other approaches, namely by a SAT solver and exhaustive search.
On the gravitational wave background from black hole binaries after the first LIGO detections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cholis, Ilias, E-mail: icholis1@jhu.edu
The detection of gravitational waves from the merger of binary black holes by the LIGO Collaboration has opened a new window to astrophysics. With the sensitivities of ground based detectors in the coming years, we will principally detect local binary black hole mergers. The integrated merger rate can instead be probed by the gravitational-wave background, the incoherent superposition of the released energy in gravitational waves during binary-black-hole coalescence. Through that, the properties of the binary black holes can be studied. In this work we show that by measuring the energy density Ω{sub GW} (in units of the cosmic critical density)more » of the gravitational-wave background, we can search for the rare ∼ 100 M {sub ⊙} massive black holes formed in the Universe. In addition, we can answer how often the least massive BHs of mass ≳ 3 M {sub ⊙} form. Finally, if there are multiple channels for the formation of binary black holes and if any of them predicts a narrow mass range for the black holes, then the total Ω{sub GW} spectrum may have features that with the future Einstein Telescope can be detected.« less
Using Boosting Decision Trees in Gravitational Wave Searches triggered by Gamma-ray Bursts
NASA Astrophysics Data System (ADS)
Zuraw, Sarah; LIGO Collaboration
2015-04-01
The search for gravitational wave bursts requires the ability to distinguish weak signals from background detector noise. Gravitational wave bursts are characterized by their transient nature, making them particularly difficult to detect as they are similar to non-Gaussian noise fluctuations in the detector. The Boosted Decision Tree method is a powerful machine learning algorithm which uses Multivariate Analysis techniques to explore high-dimensional data sets in order to distinguish between gravitational wave signal and background detector noise. It does so by training with known noise events and simulated gravitational wave events. The method is tested using waveform models and compared with the performance of the standard gravitational wave burst search pipeline for Gamma-ray Bursts. It is shown that the method is able to effectively distinguish between signal and background events under a variety of conditions and over multiple Gamma-ray Burst events. This example demonstrates the usefulness and robustness of the Boosted Decision Tree and Multivariate Analysis techniques as a detection method for gravitational wave bursts. LIGO, UMass, PREP, NEGAP.
NASA Astrophysics Data System (ADS)
Gong, Yan-Xiang; Ji, Jianghui
2018-05-01
Although several S-type and P-type planets in binary systems were discovered in past years, S-type planets have not yet been found in close binaries with an orbital separation not more than 5 au. Recent studies suggest that S-type planets in close binaries may be detected through high-accuracy observations. However, nowadays planet formation theories imply that it is difficult for S-type planets in close binaries systems to form in situ. In this work, we extensively perform numerical simulations to explore scenarios of planet-planet scattering among circumbinary planets and subsequent tidal capture in various binary configurations, to examine whether the mechanism can play a part in producing such kind of planets. Our results show that this mechanism is robust. The maximum capture probability is ˜10%, which can be comparable to the tidal capture probability of hot Jupiters in single star systems. The capture probability is related to binary configurations, where a smaller eccentricity or a low mass ratio of the binary will lead to a larger probability of capture, and vice versa. Furthermore, we find that S-type planets with retrograde orbits can be naturally produced via capture process. These planets on retrograde orbits can help us distinguish in situ formation and post-capture origin for S-type planet in close binaries systems. The forthcoming missions (PLATO) will provide the opportunity and feasibility to detect such planets. Our work provides several suggestions for selecting target binaries in search for S-type planets in the near future.
BD -22 5866: A Low-Mass, Quadruple-lined Spectroscopic and Eclipsing Binary
NASA Astrophysics Data System (ADS)
Shkolnik, Evgenya; Liu, Michael C.; Reid, I. Neill; Hebb, Leslie; Cameron, Andrew C.; Torres, Carlos A.; Wilson, David M.
2008-08-01
We report our discovery of an extremely rare, low-mass, quadruple-lined spectroscopic binary BD -22 5866 (=NLTT 53279, integrated spectral type = M0 V), found during an ongoing search for the youngest M dwarfs in the solar neighborhood. From the cross-correlation function, we are able to measure relative flux levels, estimate the spectral types of the components, and set upper limits on the orbital periods and separations. The resulting system is hierarchical, composed of a K7 + K7 binary and an M1 + M2 binary with semimajor axes of aAsin iA <= 0.06 and aBsin iB <= 0.30 AU. A subsequent search of the SuperWASP photometric database revealed that the K7 + K7 binary is eclipsing with a period of 2.21 days and at an inclination angle of 85°. Within uncertainties of 5%, the masses and radii of both components appear to be equal (0.59 M⊙, 0.61 R⊙). These two tightly orbiting stars (a = 0.035 AU) are in synchronous rotation, causing the observed excess Ca II, Hα, X-ray, and UV emission. The fact that the system was unresolved with published adaptive optics imaging, limits the projected physical separation of the two binaries at the time of the observation to dABlesssim 4.1 AU at the photometric distance of 51 pc. The maximum observed radial velocity difference between the A and B binaries limits the orbit to aABsin iAB <= 6.1 AU. As this tight configuration is difficult to reproduce with current formation models of multiple systems, we speculate that an early dynamical process reduced the size of the system, such as the interaction of the two binaries with a circumquadruple disk. Intensive photometric, spectroscopic, and interferometric monitoring, as well as a parallax measurement of this rare quadruple system, is certainly warranted. Based on observations collected at the W. M. Keck Observatory and the Canada-France-Hawaii Telescope (CFHT). The Keck Observatory is operated as a scientific partnership between the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation. The CFHT is operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique of France, and the University of Hawaii.
A Search for Binary Systems in the Magellanic Clouds
NASA Astrophysics Data System (ADS)
Brown, Cody; Nidever, David L.
2018-06-01
The Large and Small Magellanic Clouds are two of the closest dwarf galaxies to our Milky Way and offer an excellent laboratory to study the evolution of galaxies. The close proximity of these galaxies provide a chance to study individual stars in detail and learn about stellar properties and galactic formation of the Clouds. The Apache Point Observatory Galactic Evolution Experiment (APOGEE), part of the SDSS-IV, has gathered high quality, multi-epoch, spectroscopic data on a multitude of stars in the Magellanic Clouds. The time-series data can be used to detect and characterize binary stars and make the first spectroscopic measurements of the field binary fraction of the Clouds. I will present preliminary results from this project.
On the Possibility of Habitable Trojan Planets in Binary Star Systems.
Schwarz, Richard; Funk, Barbara; Bazsó, Ákos
2015-12-01
Approximately 60% of all stars in the solar neighbourhood (up to 80% in our Milky Way) are members of binary or multiple star systems. This fact led to the speculations that many more planets may exist in binary systems than are currently known. To estimate the habitability of exoplanetary systems, we have to define the so-called habitable zone (HZ). The HZ is defined as a region around a star where a planet would receive enough radiation to maintain liquid water on its surface and to be able to build a stable atmosphere. We search for new dynamical configurations-where planets may stay in stable orbits-to increase the probability to find a planet like the Earth.
Contact binaries in the Trans-neptunian Belt
NASA Astrophysics Data System (ADS)
Thirouin, Audrey; Sheppard, Scott S.
2017-10-01
A contact binary is made up of two objects that are almost touching or in contact with each other. These systems have been found in the Near-Earth Object population, the main belt of asteroids, the Jupiter Trojans, the comet population and even in the Trans-neptunian belt.Several studies suggest that up to 30% of the Trans-Neptunian Objects (TNOs) could be contact binaries (Sheppard & Jewitt 2004, Lacerda 2011). Contact binaries are not resolvable with the Hubble Space Telescope because of the small separation between the system's components (Noll et al. 2008). Only lightcurves with a characteristic V-/U-shape at the minimum/maximum of brightness and a large amplitude can identify these contact binaries. Despite an expected high fraction of contact binaries, 2001 QG298 is the only confirmed contact binary in the Trans-Neptunian belt, and 2003 SQ317 is a candidate to this class of systems (Sheppard & Jewitt 2004, Lacerda et al. 2014).Recently, using the Lowell’s 4.3m Discovery Channel Telescope and the 6.5m Magellan Telescope, we started a search for contact binaries at the edge of our Solar System. So far, our survey focused on about 40 objects in different dynamical groups of the Trans-Neptunian belt for sparse or complete lightcurves. We report the discovery of 5 new potential contact binaries converting the current estimate of potential/confirmed contact binaries to 7 objects. With one epoch of observations per object, we are not able to model in detail the systems, but we derive estimate for basic information such as shape, size, density of both objects as well as the separation between the system’s components. In this work, we will present these new systems, their basic characteristics, and we will discuss the potential main reservoir of contact binaries in the Trans-neptunian belt.
K2 Variable Catalogue: Variable stars and eclipsing binaries in K2 campaigns 1 and 0
NASA Astrophysics Data System (ADS)
Armstrong, D. J.; Kirk, J.; Lam, K. W. F.; McCormac, J.; Walker, S. R.; Brown, D. J. A.; Osborn, H. P.; Pollacco, D. L.; Spake, J.
2015-07-01
Aims: We have created a catalogue of variable stars found from a search of the publicly available K2 mission data from Campaigns 1 and 0. This catalogue provides the identifiers of 8395 variable stars, including 199 candidate eclipsing binaries with periods up to 60 d and 3871 periodic or quasi-periodic objects, with periods up to 20 d for Campaign 1 and 15 d for Campaign 0. Methods: Lightcurves are extracted and detrended from the available data. These are searched using a combination of algorithmic and human classification, leading to a classifier for each object as an eclipsing binary, sinusoidal periodic, quasi periodic, or aperiodic variable. The source of the variability is not identified, but could arise in the non-eclipsing binary cases from pulsation or stellar activity. Each object is cross-matched against variable star related guest observer proposals to the K2 mission, which specifies the variable type in some cases. The detrended lightcurves are also compared to lightcurves currently publicly available. Results: The resulting catalogue gives the ID, type, period, semi-amplitude, and range of the variation seen. We also make available the detrended lightcurves for each object. The catalogue is available at http://deneb.astro.warwick.ac.uk/phrlbj/k2varcat/ and at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/579/A19
Imaging accretion sources and circumbinary disks in young brown dwarfs
NASA Astrophysics Data System (ADS)
Reiners, Ansgar
2010-09-01
We propose to obtain deep WFC3/UVIS imaging observations of two accreting, nearby, young brown dwarf binaries. The first, 2M1207, is a brown dwarf with a planetary mass companion that became a benchmark in low-mass star formation and low-mass evolutionary models. The second, 2M0041, is a nearby young brown dwarf with clear evidence for accretion, but its space motion suggests a slightly higher age than the canonical accretion lifetime of 5-10 Myr. It has recently been discovered to be a binary and is likely to become a second benchmark object in this field. With narrow band images centered on the Halpha line that is indicative of accretion, we aim to determine the accretion ratio between the two components in each system. Halpha was observed in both systems but so far not spatially resolved. In particular, we want to search for accretion in the planetary mass companion of 2M1207. The evidence for accretion in 2M0041 and the possibility that it is in fact older than 10Myr suggests that the accretion lifetime is longer in brown dwarfs than in stars, and in particular that it is longer in brown dwarf binaries. Accretion could be sustained for a longer time if the accreting material is replenished by a circumbinary disk that might exist in both systems. We propose deep WFC/UVIS observations in the optical to search for circumbinary disks, similar to the famous disk around the binary TTauri system GG Tau.
Rough Set Based Splitting Criterion for Binary Decision Tree Classifiers
2006-09-26
Alata O. Fernandez-Maloigne C., and Ferrie J.C. (2001). Unsupervised Algorithm for the Segmentation of Three-Dimensional Magnetic Resonance Brain ...instinctual and learned responses in the brain , causing it to make decisions based on patterns in the stimuli. Using this deceptively simple process...2001. [2] Bohn C. (1997). An Incremental Unsupervised Learning Scheme for Function Approximation. In: Proceedings of the 1997 IEEE International
Hollemeyer, Klaus; Altmeyer, Wolfgang; Heinzle, Elmar; Pitra, Christian
2012-08-30
The identification of fur origins from the 5300-year-old Tyrolean Iceman's accoutrement is not yet complete, although definite identification is essential for the socio-cultural context of his epoch. Neither have all potential samples been identified so far, nor there has a consensus been reached on the species identified using the classical methods. Archaeological hair often lacks analyzable hair scale patterns in microscopic analyses and polymer chain reaction (PCR)-based techniques are often inapplicable due to the lack of amplifiable ancient DNA. To overcome these drawbacks, a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) method was used exclusively based on hair keratins. Thirteen fur specimens from his accoutrement were analyzed after tryptic digest of native hair. Peptide mass fingerprints (pmfs) from ancient samples and from reference species mostly occurring in the Alpine surroundings at his lifetime were compared to each other using multidimensional scaling and binary hierarchical cluster tree analysis. Both statistical methods highly reflect spectral similarities among pmfs as close zoological relationships. While multidimensional scaling was useful to discriminate specimens on the zoological order level, binary hierarchical cluster tree reached the family or subfamily level. Additionally, the presence and/or absence of order, family and/or species-specific diagnostic masses in their pmfs allowed the identification of mammals mostly down to single species level. Red deer was found in his shoe vamp, goat in the leggings, cattle in his shoe sole and at his quiver's closing flap as well as sheep and chamois in his coat. Canid species, like grey wolf, domestic dog or European red fox, were discovered in his leggings for the first time, but could not be differentiated to species level. This is widening the spectrum of processed fur-bearing species to at least one member of the Canidae family. His fur cap was allocated to a carnivore species, but differentiation between brown bear and a canid species could not be made with certainty. Copyright © 2012 John Wiley & Sons, Ltd.
2008-08-01
Mason et al. (1998) survey. 3.3. 2MASS Data Mining Confirmations Searches were made for Two Micron All Sky Survey ( 2MASS ) (Cutri et al. 2003...the separation/m limits of 2MASS , the point-source catalog was searched for sources in the magnitude range 5.5 J 8.0, corresponding to the...approximate 2MASS J -magnitude range for the AO targets in this project. This yielded 99,656 sources. All sources within 10′′ of these “primaries” were then
A squirrel searches for food at KSC
NASA Technical Reports Server (NTRS)
1999-01-01
An Eastern gray squirrel pauses in its daily search for food in the Merritt Island National Wildlife Refuge, which shares a boundary with Kennedy Space Center. The Eastern gray squirrel is found in wooded, suburban, and urban areas statewide. It nests in tree hollows or leaf nests in treetops. It forages during the day, mainly early morning and late afternoon, both on the ground and in trees, living on a diet of acorns, nuts, fruits, berries, insects, and bird eggs. Food plants include cypress, buckeyes, elms, grapes, tulip trees, mulberries, and tupelo. It breeds in late winter or early spring and again in late spring or summer, bearing two to six young. The eastern gray squirrel chatters when disturbed. The 92,000-acre wildlife refuge is a habitat for more than 310 species of birds, 25 mammals, 117 fishes and 65 amphibians and reptiles.
Eucalyptus as a landscape tree
W. Douglas Hamilton
1983-01-01
Ninety-two species of Eucalyptus were evaluated at the University of California re- search station in San Jose. The purpose: to find acceptable new street and park trees. Growth rates and horticultural characteristics were noted. Forty-three species were studied in locations statewide to evaluate site adaptation and landscape usefulness; flooded, cold, dry, saline....
Precision ephemerides for gravitational-wave searches - III. Revised system parameters of Sco X-1
NASA Astrophysics Data System (ADS)
Wang, L.; Steeghs, D.; Galloway, D. K.; Marsh, T.; Casares, J.
2018-06-01
Neutron stars in low-mass X-ray binaries are considered promising candidate sources of continuous gravitational-waves. These neutron stars are typically rotating many hundreds of times a second. The process of accretion can potentially generate and support non-axisymmetric distortions to the compact object, resulting in persistent emission of gravitational-waves. We present a study of existing optical spectroscopic data for Sco X-1, a prime target for continuous gravitational-wave searches, with the aim of providing revised constraints on key orbital parameters required for a directed search with advanced-LIGO data. From a circular orbit fit to an improved radial velocity curve of the Bowen emission components, we derived an updated orbital period and ephemeris. Centre of symmetry measurements from the Bowen Doppler tomogram yield a centre of the disc component of 90 km s-1, which we interpret as a revised upper limit to the projected orbital velocity of the NS K1. By implementing Monte Carlo binary parameter calculations, and imposing new limits on K1 and the rotational broadening, we obtained a complete set of dynamical system parameter constraints including a new range for K1 of 40-90 km s-1. Finally, we discussed the implications of the updated orbital parameters for future continuous-waves searches.
Georgia tech catalog of gravitational waveforms
NASA Astrophysics Data System (ADS)
Jani, Karan; Healy, James; Clark, James A.; London, Lionel; Laguna, Pablo; Shoemaker, Deirdre
2016-10-01
This paper introduces a catalog of gravitational waveforms from the bank of simulations by the numerical relativity effort at Georgia Tech. Currently, the catalog consists of 452 distinct waveforms from more than 600 binary black hole simulations: 128 of the waveforms are from binaries with black hole spins aligned with the orbital angular momentum, and 324 are from precessing binary black hole systems. The waveforms from binaries with non-spinning black holes have mass-ratios q = m 1/m 2 ≤ 15, and those with precessing, spinning black holes have q ≤ 8. The waveforms expand a moderate number of orbits in the late inspiral, the burst during coalescence, and the ring-down of the final black hole. Examples of waveforms in the catalog matched against the widely used approximate models are presented. In addition, predictions of the mass and spin of the final black hole by phenomenological fits are tested against the results from the simulation bank. The role of the catalog in interpreting the GW150914 event and future massive binary black-hole search in LIGO is discussed. The Georgia Tech catalog is publicly available at einstein.gatech.edu/catalog.
On local search for bi-objective knapsack problems.
Liefooghe, Arnaud; Paquete, Luís; Figueira, José Rui
2013-01-01
In this article, a local search approach is proposed for three variants of the bi-objective binary knapsack problem, with the aim of maximizing the total profit and minimizing the total weight. First, an experimental study on a given structural property of connectedness of the efficient set is conducted. Based on this property, a local search algorithm is proposed and its performance is compared to exact algorithms in terms of runtime and quality metrics. The experimental results indicate that this simple local search algorithm is able to find a representative set of optimal solutions in most of the cases, and in much less time than exact algorithms.
Guindon, Stéphane; Dufayard, Jean-François; Lefort, Vincent; Anisimova, Maria; Hordijk, Wim; Gascuel, Olivier
2010-05-01
PhyML is a phylogeny software based on the maximum-likelihood principle. Early PhyML versions used a fast algorithm performing nearest neighbor interchanges to improve a reasonable starting tree topology. Since the original publication (Guindon S., Gascuel O. 2003. A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52:696-704), PhyML has been widely used (>2500 citations in ISI Web of Science) because of its simplicity and a fair compromise between accuracy and speed. In the meantime, research around PhyML has continued, and this article describes the new algorithms and methods implemented in the program. First, we introduce a new algorithm to search the tree space with user-defined intensity using subtree pruning and regrafting topological moves. The parsimony criterion is used here to filter out the least promising topology modifications with respect to the likelihood function. The analysis of a large collection of real nucleotide and amino acid data sets of various sizes demonstrates the good performance of this method. Second, we describe a new test to assess the support of the data for internal branches of a phylogeny. This approach extends the recently proposed approximate likelihood-ratio test and relies on a nonparametric, Shimodaira-Hasegawa-like procedure. A detailed analysis of real alignments sheds light on the links between this new approach and the more classical nonparametric bootstrap method. Overall, our tests show that the last version (3.0) of PhyML is fast, accurate, stable, and ready to use. A Web server and binary files are available from http://www.atgc-montpellier.fr/phyml/.
NASA Astrophysics Data System (ADS)
Bode, F.; Nowak, W.; Reed, P. M.; Reuschen, S.
2016-12-01
Drinking-water well catchments need effective early-warning monitoring networks. Groundwater water supply wells in complex urban environments are in close proximity to a myriad of potential industrial pollutant sources that could irreversibly damage their source aquifers. These urban environments pose fiscal and physical challenges to designing monitoring networks. Ideal early-warning monitoring networks would satisfy three objectives: to detect (1) all potential contaminations within the catchment (2) as early as possible before they reach the pumping wells, (3) while minimizing costs. Obviously, the ideal case is nonexistent, so we search for tradeoffs using multiobjective optimization. The challenge of this optimization problem is the high number of potential monitoring-well positions (the search space) and the non-linearity of the underlying groundwater flow-and-transport problem. This study evaluates (1) different ways to effectively restrict the search space in an efficient way, with and without expert knowledge, (2) different methods to represent the search space during the optimization and (3) the influence of incremental increases in uncertainty in the system. Conductivity, regional flow direction and potential source locations are explored as key uncertainties. We show the need and the benefit of our methods by comparing optimized monitoring networks for different uncertainty levels with networks that seek to effectively exploit expert knowledge. The study's main contributions are the different approaches restricting and representing the search space. The restriction algorithms are based on a point-wise comparison of decision elements of the search space. The representation of the search space can be either binary or continuous. For both cases, the search space must be adjusted properly. Our results show the benefits and drawbacks of binary versus continuous search space representations and the high potential of automated search space restriction algorithms for high-dimensional, highly non-linear optimization problems.
Oriented modulation for watermarking in direct binary search halftone images.
Guo, Jing-Ming; Su, Chang-Cheng; Liu, Yun-Fu; Lee, Hua; Lee, Jiann-Der
2012-09-01
In this paper, a halftoning-based watermarking method is presented. This method enables high pixel-depth watermark embedding, while maintaining high image quality. This technique is capable of embedding watermarks with pixel depths up to 3 bits without causing prominent degradation to the image quality. To achieve high image quality, the parallel oriented high-efficient direct binary search (DBS) halftoning is selected to be integrated with the proposed orientation modulation (OM) method. The OM method utilizes different halftone texture orientations to carry different watermark data. In the decoder, the least-mean-square-trained filters are applied for feature extraction from watermarked images in the frequency domain, and the naïve Bayes classifier is used to analyze the extracted features and ultimately to decode the watermark data. Experimental results show that the DBS-based OM encoding method maintains a high degree of image quality and realizes the processing efficiency and robustness to be adapted in printing applications.
DESGW: Optical Follow-up of BBH LIGO-Virgo Events with DECam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, Robert E.; Soares-Santos, M.; Annis, j.
2017-12-14
The DESGW program is a collaboration between members of the Dark Energy Survey, the wider astronomical community, and the LIGO-Virgo Collaboration to search for optical counterparts of gravitational wave events, such as those expected from binary neutron star mergers or neutron star-black hole mergers. While binary black hole (BBH) events are not expected to produce an electromagnetic (EM) signature, emission is certainly not impossible. The DESGW program has performed follow-up observations of four BBH events detected by LIGO in order to search for any possible EM counterpart. Failure to nd such counterparts is still relevant in that it produces limitsmore » on optical emission from such events. This is a review of follow-up results from O1 BBH events and a discussion of the status of ongoing uniform re-analysis of all BBH events that DESGW has followed up to date.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Yan; Mohanty, Soumya D.; Center for Gravitational Wave Astronomy, Department of Physics and Astronomy, University of Texas at Brownsville, 80 Fort Brown, Brownsville, Texas 78520
2010-03-15
The detection and estimation of gravitational wave signals belonging to a parameterized family of waveforms requires, in general, the numerical maximization of a data-dependent function of the signal parameters. Because of noise in the data, the function to be maximized is often highly multimodal with numerous local maxima. Searching for the global maximum then becomes computationally expensive, which in turn can limit the scientific scope of the search. Stochastic optimization is one possible approach to reducing computational costs in such applications. We report results from a first investigation of the particle swarm optimization method in this context. The method ismore » applied to a test bed motivated by the problem of detection and estimation of a binary inspiral signal. Our results show that particle swarm optimization works well in the presence of high multimodality, making it a viable candidate method for further applications in gravitational wave data analysis.« less
NASA Astrophysics Data System (ADS)
Knispel, Benjamin
2011-07-01
Neutron stars are the endpoints of stellar evolution and one of the most compact forms of matter in the universe. They can be observed as radio pulsars and are promising sources for the emission of continuous gravitational waves. Discovering new radio pulsars in tight binary orbits offers the opportunity to conduct very high precision tests of General Relativity and to further our understanding of neutron star structure and matter at super-nuclear densities. The direct detection of gravitational waves would validate Einstein's theory of Relativity and open a new window to the universe by offering a novel astronomical tool. This thesis addresses both of these scientific fields: the first fully coherent search for radio pulsars in tight, circular orbits has been planned, set up and conducted in the course of this thesis. Two unusual radio pulsars, one of them in a binary system, have been discovered. The other half of this thesis is concerned with the simulation of the Galactic neutron star population to predict their emission of continuous gravitational waves. First realistic statistical upper limits on the strongest continuous gravitational-wave signal and detection predictions for realistic all-sky blind searches have been obtained. The data from a large-scale pulsar survey with the 305-m Arecibo radio telescope were searched for signals from radio pulsars in binary orbits. The massive amount of computational work was done on hundreds of thousands of computers volunteered by members of the general public through the distributed computing project Einstein@Home. The newly developed analysis pipeline searched for pulsar spin frequencies below 250 Hz and for orbital periods as short as 11 min. The structure of the search pipeline consisting of data preparation, data analysis, result post-processing, and set-up of the pipeline components is presented in detail. The first radio pulsar, discovered with this search, PSR J2007+2722, is an isolated radio pulsar, likely from a double neutron star system disrupted by the second supernova. We present discovery and initial characterisation using observations from five of the largest radio telescopes worldwide. Only a dozen similar systems were previously known. The second discovered radio pulsar, PSR J1952+2630, is in a 9.4-hr orbit with most likely a massive white dwarf of at least 0.95 M⊙. We characterise its orbit by analysis of the apparent spin period changes. This pulsar most likely belongs to the very rare class of intermediate-mass binary pulsars, from which only five systems were previously known. It is a promising target for the future measurement of relativistic effects. In the second half of this thesis, the emission of continuous gravitational waves from a Galactic population of neutron stars is studied. For the first time, realistic estimates of the statistical upper limit of the expected gravitational wave signal are obtained, improving previous estimates by about a factor of six. The simulation is used to obtain for the first time detectability predictions for these objects with ground based gravitational wave detectors and realistic blind searches. It is also shown how to improve possible searches by maximising the number of detections for a fixed amount of computation cycles.
Spatial and spatiotemporal pattern analysis of coconut lethal yellowing in Mozambique.
Bonnot, F; de Franqueville, H; Lourenço, E
2010-04-01
Coconut lethal yellowing (LY) is caused by a phytoplasma and is a major threat for coconut production throughout its growing area. Incidence of LY was monitored visually on every coconut tree in six fields in Mozambique for 34 months. Disease progress curves were plotted and average monthly disease incidence was estimated. Spatial patterns of disease incidence were analyzed at six assessment times. Aggregation was tested by the coefficient of spatial autocorrelation of the beta-binomial distribution of diseased trees in quadrats. The binary power law was used as an assessment of overdispersion across the six fields. Spatial autocorrelation between symptomatic trees was measured by the BB join count statistic based on the number of pairs of diseased trees separated by a specific distance and orientation, and tested using permutation methods. Aggregation of symptomatic trees was detected in every field in both cumulative and new cases. Spatiotemporal patterns were analyzed with two methods. The proximity of symptomatic trees at two assessment times was investigated using the spatiotemporal BB join count statistic based on the number of pairs of trees separated by a specific distance and orientation and exhibiting the first symptoms of LY at the two times. The semivariogram of times of appearance of LY was calculated to characterize how the lag between times of appearance of LY was related to the distance between symptomatic trees. Both statistics were tested using permutation methods. A tendency for new cases to appear in the proximity of previously diseased trees and a spatially structured pattern of times of appearance of LY within clusters of diseased trees were detected, suggesting secondary spread of the disease.
Comprehensive decision tree models in bioinformatics.
Stiglic, Gregor; Kocbek, Simon; Pernek, Igor; Kokol, Peter
2012-01-01
Classification is an important and widely used machine learning technique in bioinformatics. Researchers and other end-users of machine learning software often prefer to work with comprehensible models where knowledge extraction and explanation of reasoning behind the classification model are possible. This paper presents an extension to an existing machine learning environment and a study on visual tuning of decision tree classifiers. The motivation for this research comes from the need to build effective and easily interpretable decision tree models by so called one-button data mining approach where no parameter tuning is needed. To avoid bias in classification, no classification performance measure is used during the tuning of the model that is constrained exclusively by the dimensions of the produced decision tree. The proposed visual tuning of decision trees was evaluated on 40 datasets containing classical machine learning problems and 31 datasets from the field of bioinformatics. Although we did not expected significant differences in classification performance, the results demonstrate a significant increase of accuracy in less complex visually tuned decision trees. In contrast to classical machine learning benchmarking datasets, we observe higher accuracy gains in bioinformatics datasets. Additionally, a user study was carried out to confirm the assumption that the tree tuning times are significantly lower for the proposed method in comparison to manual tuning of the decision tree. The empirical results demonstrate that by building simple models constrained by predefined visual boundaries, one not only achieves good comprehensibility, but also very good classification performance that does not differ from usually more complex models built using default settings of the classical decision tree algorithm. In addition, our study demonstrates the suitability of visually tuned decision trees for datasets with binary class attributes and a high number of possibly redundant attributes that are very common in bioinformatics.
Comprehensive Decision Tree Models in Bioinformatics
Stiglic, Gregor; Kocbek, Simon; Pernek, Igor; Kokol, Peter
2012-01-01
Purpose Classification is an important and widely used machine learning technique in bioinformatics. Researchers and other end-users of machine learning software often prefer to work with comprehensible models where knowledge extraction and explanation of reasoning behind the classification model are possible. Methods This paper presents an extension to an existing machine learning environment and a study on visual tuning of decision tree classifiers. The motivation for this research comes from the need to build effective and easily interpretable decision tree models by so called one-button data mining approach where no parameter tuning is needed. To avoid bias in classification, no classification performance measure is used during the tuning of the model that is constrained exclusively by the dimensions of the produced decision tree. Results The proposed visual tuning of decision trees was evaluated on 40 datasets containing classical machine learning problems and 31 datasets from the field of bioinformatics. Although we did not expected significant differences in classification performance, the results demonstrate a significant increase of accuracy in less complex visually tuned decision trees. In contrast to classical machine learning benchmarking datasets, we observe higher accuracy gains in bioinformatics datasets. Additionally, a user study was carried out to confirm the assumption that the tree tuning times are significantly lower for the proposed method in comparison to manual tuning of the decision tree. Conclusions The empirical results demonstrate that by building simple models constrained by predefined visual boundaries, one not only achieves good comprehensibility, but also very good classification performance that does not differ from usually more complex models built using default settings of the classical decision tree algorithm. In addition, our study demonstrates the suitability of visually tuned decision trees for datasets with binary class attributes and a high number of possibly redundant attributes that are very common in bioinformatics. PMID:22479449
Hegazi, E M; Khafagi, W E; Konstantopoulou, M A; Schlyter, F; Raptopoulos, D; Shweil, S; Abd El-Rahman, S; Atwa, A; Ali, S E; Tawfik, H
2010-10-01
The leopard moth, Zeuzera pyrina (L.) (Lepidoptera: Cossidae), is a damaging pest for many fruit trees (e.g., apple [Malus spp.], pear [Pyrus spp.] peach [Prunus spp.], and olive [Olea]). Recently, it caused serious yield losses in newly established olive orchards in Egypt, including the death of young trees. Chemical and biological control have shown limited efficiency against this pest. Field tests were conducted in 2005 and 2006 to evaluate mating disruption (MD) for the control of the leopard moth, on heavily infested, densely planted olive plots (336 trees per ha). The binary blend of the pheromone components (E,Z)-2,13-octadecenyl acetate and (E,Z)-3,13-octadecenyl acetate (95:5) was dispensed from polyethylene vials. Efficacy was measured considering reduction of catches in pheromone traps, reduction of active galleries of leopard moth per tree and fruit yield in the pheromone-treated plots (MD) compared with control plots (CO). Male captures in MD plots were reduced by 89.3% in 2005 and 82.9% in 2006, during a trapping period of 14 and 13 wk, respectively. Application of MD over two consecutive years progressively reduced the number of active galleries per tree in the third year where no sex pheromone was applied. In all years, larval galleries outnumbered moth captures. Fruit yield from trees where sex pheromone had been applied in 2005 and 2006 increased significantly in 2006 (98.8 +/- 2.9 kg per tree) and 2007 (23 +/- 1.3 kg per tree) compared with control ones (61.0 +/- 3.9 and 10.0 +/- 0.6 kg per tree, respectively). Mating disruption shows promising for suppressing leopard moth infestation in olives.
Franklin, Oskar; Palmroth, Sari; Näsholm, Torgny
2014-11-01
Tree breeding and biotechnology can enhance forest productivity and help alleviate the rising pressure on forests from climate change and human exploitation. While many physiological processes and genes are targeted in search of genetically improved tree productivity, an overarching principle to guide this search is missing. Here, we propose a method to identify the traits that can be modified to enhance productivity, based on the differences between trees shaped by natural selection and 'improved' trees with traits optimized for productivity. We developed a tractable model of plant growth and survival to explore such potential modifications under a range of environmental conditions, from non-water limited to severely drought-limited sites. We show how key traits are controlled by a trade-off between productivity and survival, and that productivity can be increased at the expense of long-term survival by reducing isohydric behavior (stomatal regulation of leaf water potential) and allocation to defense against pests compared with native trees. In contrast, at dry sites occupied by naturally drought-resistant trees, the model suggests a better strategy may be to select trees with slightly lower wood density than the native trees and to augment isohydric behavior and allocation to defense. Thus, which traits to modify, and in which direction, depend on the original tree species or genotype, the growth environment and wood-quality versus volume production preferences. In contrast to this need for customization of drought and pest resistances, consistent large gains in productivity for all genotypes can be obtained if root traits can be altered to reduce competition for water and nutrients. Our approach illustrates the potential of using eco-evolutionary theory and modeling to guide plant breeding and genetic technology in selecting target traits in the quest for higher forest productivity. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
a Gsa-Svm Hybrid System for Classification of Binary Problems
NASA Astrophysics Data System (ADS)
Sarafrazi, Soroor; Nezamabadi-pour, Hossein; Barahman, Mojgan
2011-06-01
This paperhybridizesgravitational search algorithm (GSA) with support vector machine (SVM) and made a novel GSA-SVM hybrid system to improve the classification accuracy in binary problems. GSA is an optimization heuristic toolused to optimize the value of SVM kernel parameter (in this paper, radial basis function (RBF) is chosen as the kernel function). The experimental results show that this newapproach can achieve high classification accuracy and is comparable to or better than the particle swarm optimization (PSO)-SVM and genetic algorithm (GA)-SVM, which are two hybrid systems for classification.
Hunting For Wild Brown Dwarf Companions To White Dwarfs In UKIDSS And SDSS
NASA Astrophysics Data System (ADS)
Day-Jones, Avril; Pinfield, D. J.; Jones, H. R. A.; Napiwotzki, R.; Burningham, B.; Jenkins, J. S.; UKIDSS Cool Dwarf Science Working Group
2008-03-01
We present findings from our search of the latest releases of SDSS and UKIDSS LAS for very widely separated white dwarf - ultracool dwarf binaries. Ultracool dwarfs found in such binary systems could be used as benchmark objects, whose properties, such as age and distance can be inferred indirectly from the white dwarf primary (with no need to refer to atmospheric models) and can provide a test bed for theoretical models, they can therefore be used observationally pin down how physical properties affect ultracool dwarf spectra.
A Catalog of Eclipsing Binaries and Variable Stars Observed with ASTEP 400 from Dome C, Antarctica
NASA Astrophysics Data System (ADS)
Chapellier, E.; Mékarnia, D.; Abe, L.; Guillot, T.; Agabi, K.; Rivet, J.-P.; Schmider, F.-X.; Crouzet, N.; Aristidi, E.
2016-10-01
We used the large photometric database of the ASTEP program, whose primary goal was to detect exoplanets in the southern hemisphere from Antarctica, to search for eclipsing binaries (EcBs) and variable stars. 673 EcBs and 1166 variable stars were detected, including 31 previously known stars. The resulting online catalogs give the identification, the classification, the period, and the depth or semi-amplitude of each star. Data and light curves for each object are available at http://astep-vo.oca.eu.
Mastering the game of Go with deep neural networks and tree search
NASA Astrophysics Data System (ADS)
Silver, David; Huang, Aja; Maddison, Chris J.; Guez, Arthur; Sifre, Laurent; van den Driessche, George; Schrittwieser, Julian; Antonoglou, Ioannis; Panneershelvam, Veda; Lanctot, Marc; Dieleman, Sander; Grewe, Dominik; Nham, John; Kalchbrenner, Nal; Sutskever, Ilya; Lillicrap, Timothy; Leach, Madeleine; Kavukcuoglu, Koray; Graepel, Thore; Hassabis, Demis
2016-01-01
The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach to computer Go that uses ‘value networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of state-of-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm, our program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the full-sized game of Go, a feat previously thought to be at least a decade away.
Mastering the game of Go with deep neural networks and tree search.
Silver, David; Huang, Aja; Maddison, Chris J; Guez, Arthur; Sifre, Laurent; van den Driessche, George; Schrittwieser, Julian; Antonoglou, Ioannis; Panneershelvam, Veda; Lanctot, Marc; Dieleman, Sander; Grewe, Dominik; Nham, John; Kalchbrenner, Nal; Sutskever, Ilya; Lillicrap, Timothy; Leach, Madeleine; Kavukcuoglu, Koray; Graepel, Thore; Hassabis, Demis
2016-01-28
The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach to computer Go that uses 'value networks' to evaluate board positions and 'policy networks' to select moves. These deep neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of state-of-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm, our program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the full-sized game of Go, a feat previously thought to be at least a decade away.
Choice of optimal working fluid for binary power plants at extremely low temperature brine
NASA Astrophysics Data System (ADS)
Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.
2016-12-01
The geothermal energy development problems based on using binary power plants utilizing lowpotential geothermal resources are considered. It is shown that one of the possible ways of increasing the efficiency of heat utilization of geothermal brine in a wide temperature range is the use of multistage power systems with series-connected binary power plants based on incremental primary energy conversion. Some practically significant results of design-analytical investigations of physicochemical properties of various organic substances and their influence on the main parameters of the flowsheet and the technical and operational characteristics of heat-mechanical and heat-exchange equipment for binary power plant operating on extremely-low temperature geothermal brine (70°C) are presented. The calculation results of geothermal brine specific flow rate, capacity (net), and other operation characteristics of binary power plants with the capacity of 2.5 MW at using various organic substances are a practical interest. It is shown that the working fluid selection significantly influences on the parameters of the flowsheet and the operational characteristics of the binary power plant, and the problem of selection of working fluid is in the search for compromise based on the priorities in the field of efficiency, safety, and ecology criteria of a binary power plant. It is proposed in the investigations on the working fluid selection of the binary plant to use the plotting method of multiaxis complex diagrams of relative parameters and characteristic of binary power plants. Some examples of plotting and analyzing these diagrams intended to choose the working fluid provided that the efficiency of geothermal brine is taken as main priority.
Eclipsing Binaries From the CSTAR Project at Dome A, Antarctica
NASA Astrophysics Data System (ADS)
Yang, Ming; Zhang, Hui; Wang, Songhu; Zhou, Ji-Lin; Zhou, Xu; Wang, Lingzhi; Wang, Lifan; Wittenmyer, R. A.; Liu, Hui-Gen; Meng, Zeyang; Ashley, M. C. B.; Storey, J. W. V.; Bayliss, D.; Tinney, Chris; Wang, Ying; Wu, Donghong; Liang, Ensi; Yu, Zhouyi; Fan, Zhou; Feng, Long-Long; Gong, Xuefei; Lawrence, J. S.; Liu, Qiang; Luong-Van, D. M.; Ma, Jun; Wu, Zhenyu; Yan, Jun; Yang, Huigen; Yang, Ji; Yuan, Xiangyan; Zhang, Tianmeng; Zhu, Zhenxi; Zou, Hu
2015-04-01
The Chinese Small Telescope ARray (CSTAR) has observed an area around the Celestial South Pole at Dome A since 2008. About 20,000 light curves in the i band were obtained during the observation season lasting from 2008 March to July. The photometric precision achieves about 4 mmag at i = 7.5 and 20 mmag at i = 12 within a 30 s exposure time. These light curves are analyzed using Lomb-Scargle, Phase Dispersion Minimization, and Box Least Squares methods to search for periodic signals. False positives may appear as a variable signature caused by contaminating stars and the observation mode of CSTAR. Therefore, the period and position of each variable candidate are checked to eliminate false positives. Eclipsing binaries are removed by visual inspection, frequency spectrum analysis, and a locally linear embedding technique. We identify 53 eclipsing binaries in the field of view of CSTAR, containing 24 detached binaries, 8 semi-detached binaries, 18 contact binaries, and 3 ellipsoidal variables. To derive the parameters of these binaries, we use the Eclipsing Binaries via Artificial Intelligence method. The primary and secondary eclipse timing variations (ETVs) for semi-detached and contact systems are analyzed. Correlated primary and secondary ETVs confirmed by false alarm tests may indicate an unseen perturbing companion. Through ETV analysis, we identify two triple systems (CSTAR J084612.64-883342.9 and CSTAR J220502.55-895206.7). The orbital parameters of the third body in CSTAR J220502.55-895206.7 are derived using a simple dynamical model.