Sample records for binary solvent systems

  1. Solvent effects on infrared spectra of progesterone in CHCl 3/ cyclo-C 6H 12 binary solvent systems

    NASA Astrophysics Data System (ADS)

    Liu, Qing; Wang, Xiao-yan; Zhang, Hui

    2007-01-01

    The infrared spectroscopy studies of the C 3 and C 20 carbonyl stretching vibrations ( υ(C dbnd O)) of progesterone in CHCl 3/ cyclo-C 6H 12 binary solvent systems were undertaken to investigate the solute-solvent interactions. With the mole fraction of CHC1 3 in the binary solvent mixtures increase, three types of C 3 and C 20 carbonyl stretching vibration band of progesterone are observed, respectively. The assignments of υ(C dbnd O) of progesterone are discussed in detail. In the CHCl 3-rich binary solvent systems or pure CHCl 3 solvent, two kinds of solute-solvent hydrogen bonding interactions coexist for C 20 C dbnd O. Comparisons are drawn for the solvent sensitivities of υ(C dbnd O) for acetophenone and 5α-androstan-3,17-dione, respectively.

  2. A thermodynamic study of complexation process between N, N'-dipyridoxylidene(1,4-butanediamine) and Cd2+ in some binary mixed solvents using conductometry

    NASA Astrophysics Data System (ADS)

    Ebrahimpoor, Sonia; Khoshnood, Razieh Sanavi; Beyramabadi, S. Ali

    2016-12-01

    Complexation of the Cd2+ ion with N, N'-dipyridoxylidene(1,4-butanediamine) Schiff base was studied in pure solvents including acetonitrile (AN), ethanol (EtOH), methanol (MeOH), tetrahydrofuran (THF), dimethylformamide (DMF), water (H2O), and various binary solvent mixtures of acetonitrile-ethanol (AN-EtOH), acetonitrile-methanol (AN-MeOH), acetonitrile-tetrahydrofuran (AN-THF), acetonitrile-dimethylformamide (AN-DMF), and acetonitrile-water (AN-H2O) systems at different temperatures using the conductometric method. The conductance data show that the stoichiometry of complex is 1: 1 [ML] in all solvent systems. A non-linear behavior was observed for changes of log K f of [Cd( N, N'-dipyridoxylidene(1,4-butanediamine)] complex versus the composition of the binary mixed solvents, which was explained in terms of solvent-solvent interactions. The results show that the thermodynamics of complexation reaction is affected by the nature and composition of the mixed solvents.

  3. Mesoscale Polymer Dissolution Probed by Raman Spectroscopy and Molecular Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Tsun-Mei; Xantheas, Sotiris S.; Vasdekis, Andreas E.

    2016-10-13

    The diffusion of various solvents into a polystyrene (PS) matrix was probed experimentally by monitoring the temporal profiles of the Raman spectra and theoretically from molecular dynamics (MD) simulations of the binary system. The simulation results assist in providing a fundamental, molecular level connection between the mixing/dissolution processes and the difference = solvent – PS in the values of the Hildebrand parameter () between the two components of the binary systems: solvents having similar values of with PS (small ) exhibit fast diffusion into the polymer matrix, whereas the diffusion slows down considerably when the ’s are different (large ).more » To this end, the Hildebrand parameter was identified as a useful descriptor that governs the process of mixing in polymer – solvent binary systems. The experiments also provide insight into further refinements of the models specific to non-Fickian diffusion phenomena that need to be used in the simulations.« less

  4. Preferential solvation of Brooker's merocyanine in binary solvent mixtures composed of formamides and hydroxylic solvents.

    PubMed

    Bevilaqua, Tharly; da Silva, Domingas C; Machado, Vanderlei G

    2004-03-01

    The ET polarity values of 4-[(1-methyl-4(1H)-pyridinylidene)-ethylidene]-2,5-cyclohexadien-1-one (Brooker's merocyanine) were collected in mixed-solvent systems comprising a formamide [N,N-dimethylformamide (DMF), N-methylformamide (NMF) or formamide (FA)] and a hydroxylic (water, methanol, ethanol, propan-2-ol or butan-1-ol) solvent. Binary mixtures involving DMF and the other formamides (NMF and FA) as well as NMF and FA were also studied. These data were employed in the investigation of the preferential solvation (PS) of the probe. Each solvent system was analyzed in terms of both solute-solvent and solvent-solvent interactions. These latter interactions were responsible for the synergism observed in many binary mixtures. This synergistic behaviour was observed for DMF-propan-2-ol, DMF-butan-1-ol, FA-methanol, FA-ethanol and for the mixtures of the alcohols with NMF. All data were successfully fitted to a model based on solvent-exchange equilibria, which allowed the separation of the different contributions of the solvent species in the solvation shell of the dye. The results suggest that both hydrogen bonding and solvophobic interactions contribute to the formation of the solvent complexes responsible for the observed synergistic effects in the PS of the dye.

  5. Radiation-induced polymerization of glass-forming systems. V. Initial polymerization rate in binary glass-forming systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaetsu, Isao; Okubo, Hiroshi; Ito, Akihiko

    1973-06-01

    The radiation-induced polymerization of binary systems consisting of glass-forming monomer and glass-forming solvent in supercooled phase was studied. The initial polymerization rates were markedly affected by T/sub g/ (glass transition temperature) and T/sub v/ of the system (30-50 deg C higher than T/sub g/), which are functions of the composition. The composition and temperature dependence of initial polymerization rate in binary glass-forming systems were much affected by homogeneity of the polymerization system and the T of the glass- forming solvent. The composition and temperature dependences in the glycidyl methacrylate --triacetin system as a typical homogeneous polymerization system were studied inmore » detail, and the polymerizations of hydroxyethyl methacrylate triacetln and hydroxyethyl methacrylate --isoamyl acetate systems were studied for the heterogeneous polymerization systems; the former illustrates the combination of lower T/sub g/ monomer and higher T/sub g/ solvent and the latter typifies a system consisting of higher T/sub g/ monomer and lower T/sub g/ solvent. All experimental results for the composition and temperature dependence of initial polymerization rate in binary glass-forming systems could be explained by considering the product of the effect of the physical effect relating to T/sub v/ and T/sub g/ of the system and the effect of composition in normal solution polymerization at higher temperature, which was also the product of a dilution effect and a chemical or physical acceleration effect. (auth)« less

  6. UV-Vis spectroscopic study and DFT calculation on the solvent effect of trimethoprim in neat solvents and aqueous mixtures.

    PubMed

    Almandoz, M C; Sancho, M I; Duchowicz, P R; Blanco, S E

    2014-08-14

    The solvatochromic behavior of trimethoprim (TMP) was analyzed using UV-Vis spectroscopy and DFT methods in neat and binary aqueous solvent mixtures. The effects of solvent dipolarity/polarizability and solvent-solute hydrogen bonding interactions on the absorption maxima were evaluated by means of the linear solvation energy relationship concept of Kamlet and Taft. This analysis indicated that both interactions play an important role in the position of the absorption maxima in neat solvents. The simulated absorption spectra of TMP and TMP:(solvent)n complexes in ACN and H2O using TD-DFT methods were in agreement with the experimental ones. Binary aqueous mixtures containing as co-solvents DMSO, ACN and EtOH were studied. Preferential solvation was detected as a nonideal behavior of the wavenumber curve respective to the analytical mole fraction of co-solvent in all binary systems. TMP molecules were preferentially solvated by the organic solvent over the whole composition range. Index of preferential solvation, as well as the influence of solvent parameters were calculated as a function of solvent composition. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Influence of solvent on micellar morphologies of semifluorinated block copolymers.

    PubMed

    Lee, Min Young; Kim, Sang Jae; Jeong, Yeon Tae; Kim, Joo Hyun; Gal, Yeong-Soon; Lim, Kwon Taek

    2009-12-01

    The influence of solvents on micellar architectures of block copolymers composed of poly(1H,1H-dihydroperfluorooctyl methacrylate) and poly(ethylene oxide) was investigated. In this study, binary solvents with desired proportions were chosen, which had remarkable influence on the morphology of the resulting micelles. With simple adjusting the composition of the binary solvent of chloroform and trichlorofluoromethane, interesting shapes of micelle-like aggregates, such as core-shell, cylinder, worm-like and inverted micelles were formed with sizes of 15, 70, 30 and 250 nm, respectively. In the case of methanol/water system, core-shell spheres and vesicles were produced by varying the proportion of the contents. The morphologies were also tuned to honeycomb-like and bowl-shaped micelles as well as large planar lamellae with holes in DMF and water binary solvent.

  8. Effect of binary organic solvents together with emulsifier on particle size and in vitro behavior of paclitaxel-encapsulated polymeric lipid nanoparticles.

    PubMed

    Qin, Shuzhi; Sun, Xiangshi; Li, Feng; Yu, Kongtong; Zhou, Yulin; Liu, Na; Zhao, Chengguo; Teng, Lesheng; Li, Youxin

    2017-12-21

    Biodegradable nanoparticles with diameters between 100 nm and 500 nm are of great interest in the contexts of targeted delivery. The present work provides a review concerning the effect of binary organic solvents together with emulsifier on particle size as well as the influence of particle size on the in vitro drug release and uptake behavior. The polymeric lipid nanoparticles (PLNs) with different particle sizes were prepared by using binary solvent dispersion method. Various formulation parameters such as binary organic solvent composition and emulsifier types were evaluated on the basis of their effects on particle size and size distribution. PLNs had a strong dependency on the surface tension, intrinsic viscosity and volatilization rate of binary organic solvents and the hydrophilicity/hydrophobicity of emulsifiers. Acetone-methanol system together with pluronic F68 as emulsifier was proved to obtain the smallest particle size. Then the PLNs with different particle sizes were used to investigate how particle size at nanoscale affects interacted with tumor cells. As particle size got smaller, cellular uptake increased in tumor cells and PLNs with particle size of ~120 nm had the highest cellular uptake and fastest release rate. The paclitaxel (PTX)-loaded PLNs showed a size-dependent inhibition of tumor cell growth, which was commonly influenced by cellular uptake and PTX release. The PLNs would provide a useful means to further elucidate roles of particle size on delivery system of hydrophobic drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Study of complexation process between 4'-nitrobenzo-15-crown-5 and yttrium(III) cation in binary mixed non-aqueous solvents using conductometric method

    NASA Astrophysics Data System (ADS)

    Habibi, N.; Rounaghi, G. H.; Mohajeri, M.

    2012-12-01

    The complexation reaction of macrocyclic ligand (4'-nitrobenzo-15C5) with Y3+ cation was studied in acetonitrile-methanol (AN-MeOH), acetonitrile-ethanol (AN-EtOH), acetonitrile-dimethylformamide (AN-DMF) and ethylacetate-methanol (EtOAc-MeOH) binary mixtures at different temperatures using conductometry method. The conductivity data show that in all solvent systems, the stoichiometry of the complex formed between 4'-nitrobenzo-15C5 and Y3+ cation is 1: 1 (ML). The stability order of (4'-nitrobenzo-15C5). Y3+ complex in pure non-aqueous solvents at 25°C was found to be: EtOAc > EtOH > AN ≈ DMF > MeOH, and in the case of most compositions of the binary mixed solvents at 25°C it was: AN≈MeOH ≈ AN-EtOH > AN-DMF > EtOAc-MeOH. But the results indicate that the sequence of the stability of the complex in the binary mixed solutions changes with temperature. A non-linear behavior was observed for changes of log K f of (4'-nitrobenzo-15C5 · Y3+) complex versus the composition of the binary mixed solvents, which was explained in terms of solvent-solvent interactions and also the hetero-selective solvation of the species involved in the complexation reaction. The values of thermodynamic parameters (Δ H {c/ℴ} and Δ S {c/ℴ}) for formation of the complex were obtained from temperature dependent of the stability constant using the van't Hoff plots. The results represent that in most cases, the complex is both enthalpy and entropy stabilized and the values and also the sign of thermodynamic parameters are influenced by the nature and composition of the mixed solvents.

  10. Thermodynamic study of complex formation between Ce3+ and cryptand 222 in some binary mixed nonaqueous solvents

    NASA Astrophysics Data System (ADS)

    Rounaghi, G. H.; Dolatshahi, S.; Tarahomi, S.

    2014-12-01

    The stoichiometry, stability and the thermodynamic parameters of complex formation between cerium(III) cation and cryptand 222 (4,7,13,16,21,24-hexaoxa-1,10-diazabycyclo[8.8.8]-hexacosane) were studied by conductometric titration method in some binary solvent mixtures of dimethylformamide (DMF), 1,2-dichloroethane (DCE), ethyl acetate (EtOAc) and methyl acetate (MeOAc) with methanol (MeOH), at 288, 298, 308, and 318 K. A model based on 1: 1 stoichiometry has been used to analyze the conductivity data. The data have been fitted according to a non-linear least-squares analysis that provide the stability constant, K f, for the cation-ligand inclusion complex. The results revealed that the stability order of [Ce(cryptand 222)]3+ complex changes with the nature and composition of the solvent system. A non-linear relationship was observed between the stability constant (log K f) of [Ce(cryptand 222)]3+ complex versus the composition of the binary mixed solvent. Standard thermodynamic values were obtained from temperature dependence of the stability constant of the complex, show that the studied complexation process is mainly entropy governed and are influenced by the nature and composition of the binary mixed solvent solutions.

  11. Sol-gel type synthesis of Bi.sub.2 (Sr,Ta.sub.2)O.sub.9 using an acetate based system

    DOEpatents

    Boyle, Timothy J.

    1997-01-01

    A method of forming a layered-perovskite bismuth-strontium-tantalum oxide (SBT) ferroelectric material is performed by dissolving a bismuth compound in a first solvent to form a first solution, mixing a strontium compound and a tantalum compound to form a binary mixture, dissolving the binary mixture in a second solvent to form a second solution, mixing the first solution with the second solution to form a SBT precursor solution, evaporating the first and second solvents to form a SBT precursor material and subsequently sintering said SBT precursor material in the presence of oxygen.

  12. Sol-gel type synthesis of Bi{sub 2}(Sr,Ta{sub 2})O{sub 9} using an acetate based system

    DOEpatents

    Boyle, T.J.

    1997-11-04

    A method of forming a layered-perovskite bismuth-strontium-tantalum oxide (SBT) ferroelectric material is performed by dissolving a bismuth compound in a first solvent to form a first solution, mixing a strontium compound and a tantalum compound to form a binary mixture, dissolving the binary mixture in a second solvent to form a second solution, mixing the first solution with the second solution to form a SBT precursor solution, evaporating the first and second solvents to form a SBT precursor material and subsequently sintering said SBT precursor material in the presence of oxygen. 6 figs.

  13. Study of polymorphic control in an ethanol-water binary solvent

    NASA Astrophysics Data System (ADS)

    Kitano, Hiroshi; Tanaka, Takayuki; Hirasawa, Izumi

    2017-07-01

    Three polymorphs of L-Citrulline crystals, anhydrate (Form α, γ and δ) and pseudo polymorph (dihydrate), were confirmed. In this study, polymorphic control of L-Citrulline was attempted by changing the ethanol concentration in ethanol-water binary solvents. First, each polymorph of L-Citrulline crystals was added to the prepared ethanol-water binary solvents and samples which were obtained chronologically were measured by XRD. Also, the crystal sizes and shapes in transformation were observed by microscope. Then, polymorphs of the crystals after transformation were determined by XRD pattern. As a result, the transformation from dihydrate to anhydrate was observed by adding dihydrate crystals to the ethanol-water binary solvent. Similarly, the transformation from anhydrate to another anhydrate was observed. Especially in the case of adding dihydrate, the existences of all polymorphs were confirmed by adjusting ethanol-water binary solvent. According to the results, it was revealed that polymorphic transformation was affected by the trace amount of water contained in ethanol-water binary solvent. Moreover, transformation from dihydrate to anhydrate was constructed with three phases, dissolution of dihydrate, nucleation and growth of anhydrate. Therefore, the solution-mediated polymorphic transformation was supposed to be a key mechanism for this transformation.

  14. Solvent influence on complex formation between Cd2+ and 2-hydroxy-1,4-naphthoquinone in binary mixed nonaqueous solvents at 15-45°C

    NASA Astrophysics Data System (ADS)

    Farazandeh, R.; Rounaghi, G. H.; Ebrahimi, M.; Basafa, S.

    2017-04-01

    The complexation reaction of Cd2+ cation with 2-hydroxy-1,4-naphthoquinone (HNQ) was studied in acetonitrile (AN), 2-PrOH, ethyl acetate (EtOAc), EtOH, dimethylformamide (DMF) and in binary solutions AN-2-PrOH, AN-DMF, AN-EtOH, and AN-EtOAc using conductometric method at 15-45°C. The conductance data show that the stoichiometry of the Cd2+ complex with HNQ in all solvent systems is 1 : 1. In the pure solvents the stability of the complex changes in the order AN > 2-PrOH > EtOH > DMF. The stability of the complex at 25°C in the studied mixtures changes in the following order : AN-EtOAc > AN-2-PrOH > AN-EtOH > AN-DMF. These orders are affected by the nature and composition of the solvent systems and by the temperature. From the temperature dependence data, the thermodynamic functions values (Δ H° and Δ S°) for the complex formation were calculated.

  15. High-yield exfoliation of tungsten disulphide nanosheets by rational mixing of low-boiling-point solvents

    NASA Astrophysics Data System (ADS)

    Sajedi-Moghaddam, Ali; Saievar-Iranizad, Esmaiel

    2018-01-01

    Developing high-throughput, reliable, and facile approaches for producing atomically thin sheets of transition metal dichalcogenides is of great importance to pave the way for their use in real applications. Here, we report a highly promising route for exfoliating two-dimensional tungsten disulphide sheets by using binary combination of low-boiling-point solvents. Experimental results show significant dependence of exfoliation yield on the type of solvents as well as relative volume fraction of each solvent. The highest yield was found for appropriate combination of isopropanol/water (20 vol% isopropanol and 80 vol% water) which is approximately 7 times higher than that in pure isopropanol and 4 times higher than that in pure water. The dramatic increase in exfoliation yield can be attributed to perfect match between the surface tension of tungsten disulphide and binary solvent system. Furthermore, solvent molecular size also has a profound impact on the exfoliation efficiency, due to the steric repulsion.

  16. Solvatochromism and preferential solvation of 1,4-dihydroxy-2,3-dimethyl-9,10-anthraquinone by UV-vis absorption and laser-induced fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Sasirekha, V.; Vanelle, P.; Terme, T.; Ramakrishnan, V.

    2008-12-01

    Solvation characteristics of 1,4-dihydroxy-2,3-dimethyl-9,10-anthraquinone ( 1) in pure and binary solvent mixtures have been studied by UV-vis absorption spectroscopy and laser-induced fluorescence techniques. The binary solvent mixtures used as CCl 4 (tetrachloromethane)-DMF ( N, N-dimethylformamide), AN (acetonitrile)-DMSO (dimethylsulfoxide), CHCl 3 (chloroform)-DMSO, CHCl 3-MeOH (methanol), and MeOH-DMSO. The longest wavelength band of 1 has been studied in pure solvents as well as in binary solvent mixtures as a function of the bulk mole fraction. The Vis absorption band maxima show an unusual blue shift with increasing solvent polarity. The emission maxima of 1 show changes with varying the pure solvents and the composition in the case of binary solvent mixtures. Non-ideal solvation characteristics are observed in all binary solvent mixtures. It has been observed that the quantity [ ν-(Xν+Xν)] serves as a measure of the extent of preferential solvation, where ν˜ and X are the position of band maximum in wavenumbers (cm -1) and the bulk mole fraction values, respectively. The preferential solvation parameters local mole fraction ( X2L), solvation index ( δs2), and exchange constant ( k12) are evaluated.

  17. Solvent Dependent Dynamics of Salicylidene Aniline in Binary Mixtures of Supercritical CO2 with 1-Propanol or Cyclohexane.

    PubMed

    Kieda, Ryan D; Dunkelberger, Adam D; Case, Amanda S; Crim, F Fleming

    2017-02-02

    The role of different solvent environments in determining the behavior of molecules in solution is a fundamental aspect of chemical reactivity. We present an approach for exploring the influence of solvent properties on condensed-phase dynamics using ultrafast transient absorption spectroscopy in supercritical CO 2 . Using supercritical CO 2 permits adjustment of the density, by varying the temperature and pressure, whereas varying the concentration or identity of a second solvent, the cosolvent, in a binary mixture allows for adjustments of the degree of interaction between the solute and the solvent. Salicylidene aniline, a prototypical excited-state intramolecular proton-transfer system, is the subject of this study. In this system, the decay rate of the transient absorption signal decreases as the fraction of the cosolvent (for both 1-propanol and cyclohexane) increases. The decay rate also decreases with an increase in the viscosity of the mixture, but the effect is much larger for the 1-propanol cosolvent than for cyclohexane. These observations illustrate that the decay rate of the photoexcited salicylidene aniline depends on more than just the solvent viscosity, suggesting that properties such as polarity also play a role in the dynamics.

  18. Spectroscopic and DFT study of solvent effects on the electronic absorption spectra of sulfamethoxazole in neat and binary solvent mixtures

    NASA Astrophysics Data System (ADS)

    Almandoz, M. C.; Sancho, M. I.; Blanco, S. E.

    2014-01-01

    The solvatochromic behavior of sulfamethoxazole (SMX) was investigated using UV-vis spectroscopy and DFT methods in neat and binary solvent mixtures. The spectral shifts of this solute were correlated with the Kamlet and Taft parameters (α, β and π*). Multiple lineal regression analysis indicates that both specific hydrogen-bond interaction and non specific dipolar interaction play an important role in the position of the absorption maxima in neat solvents. The simulated absorption spectra using TD-DFT methods were in good agreement with the experimental ones. Binary mixtures consist of cyclohexane (Cy)-ethanol (EtOH), acetonitrile (ACN)-dimethylsulfoxide (DMSO), ACN-dimethylformamide (DMF), and aqueous mixtures containing as co-solvents DMSO, ACN, EtOH and MeOH. Index of preferential solvation was calculated as a function of solvent composition and non-ideal characteristics are observed in all binary mixtures. In ACN-DMSO and ACN-DMF mixtures, the results show that the solvents with higher polarity and hydrogen bond donor ability interact preferentially with the solute. In binary mixtures containing water, the SMX molecules are solvated by the organic co-solvent (DMSO or EtOH) over the whole composition range. Synergistic effect is observed in the case of ACN-H2O and MeOH-H2O, indicating that at certain concentrations solvents interact to form association complexes, which should be more polar than the individual solvents of the mixture.

  19. Solubility of Naproxen in Polyethylene Glycol 200 + Water Mixtures at Various Temperatures

    PubMed Central

    Panahi-Azar, Vahid; Soltanpour, Shahla; Martinez, Fleming; Jouyban, Abolghasem

    2015-01-01

    The solubility of naproxen in binary mixtures of polyethylene glycol 200 (PEG 200) + water at the temperature range from 298.0 K to 318.0 K were reported. The combinations of Jouyban-Acree model + van’t Hoff and Jouyban-Acree model + partial solubility parameters were used to predict the solubility of naproxen in PEG 200 + water mixtures at different temperatures. Combination of Jouyban-Acree model with van’t Hoff equation can be used to predict solubility in PEG 200 + water with only four solubility data in mono-solvents. The obtained solubility calculation errors vary from ~ 17 % up to 35 % depend on the number of required input data. Non-linear enthalpy-entropy compensation was found for naproxen in the investigated solvent system and the Jouyban−Acree model provides reasonably accurate mathematical descriptions of the thermodynamic data of naproxen in the investigated binary solvent systems. PMID:26664370

  20. Effect of solvent evaporation and coagulation on morphology development of asymmetric membranes

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Neelakandan; Kyu, Thein

    2008-03-01

    Miscibility behavior of blends of amorphous polyamide (PA) and polyvinylpyrrolidone (PVP) was studied in relation to membrane formation. Dimethylsulfoxide (DMSO) and water were used as solvent and non-solvent, respectively. Differential scanning calorimetry and cloud point measurements revealed that the binary PA/PVP blends as well as the ternary PA/PVP/DMSO system were completely miscible at all compositions. However, the addition of non-solvent (water) to this ternary system has led to phase separation. Visual turbidity study was used to establish a ternary liquid-liquid phase diagram of the PA-PVP/DMSO/water system. Scanning Electron Microscopy (SEM) showed the development of finger-like and sponge-like cross sectional morphologies during coagulation. Effects of polymer concentration, PA/PVP blend ratio, solvent/non-solvent quality, and evaporation time on the resulting membrane morphology will be discussed.

  1. Enzymatic synthesis of 6-O-glucosyl-poly(3-hydroxyalkanoate) in organic solvents and their binary mixture.

    PubMed

    Gumel, A M; Annuar, M S M; Heidelberg, T

    2013-04-01

    The effects of organic solvents and their binary mixture in the glucose functionalization of bacterial poly-3-hydroxyalkanoates catalyzed by Lecitase™ Ultra were studied. Equal volume binary mixture of DMSO and chloroform with moderate polarity was more effective for the enzyme catalyzed synthesis of the carbohydrate polymer at ≈38.2 (±0.8)% reactant conversion as compared to the mono-phasic and other binary solvents studied. The apparent reaction rate constant as a function of medium water activity (aw) was observed to increase with increasing solvent polarity, with optimum aw of 0.2, 0.4 and 0.7 (±0.1) observed in hydrophilic DMSO, binary mixture DMSO:isooctane and hydrophobic isooctane, respectively. Molecular sieve loading between 13 to 15gL(-1) (±0.2) and reaction temperature between 40 to 50°C were found optimal. Functionalized PHA polymer showed potential characteristics and biodegradability. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Preferential solvation bromophenol blue in water-alcohol binary mixture.

    PubMed

    Dangui, Anayana Z; Santos, Vanessa M S; Gomes, Benhur S; de Castilho, Taiane S; Nicolini, Keller P; Nicolini, Jaqueline

    2018-05-29

    In this study, the perichromic behavior of bromophenol blue (BPB) in various binary solvent mixtures was investigated. The binary mixtures considered were comprised of water and methanol (MeOH), ethanol (EtOH), n-propanol (n-PrOH), isopropanol (iso-PrOH) or t-butanol (t-BuOH). The investigation of a preferential solvation model that considers the addition of small quantities of alcohol to water in the presence of bromophenol blue (BPB) is described in this paper. The data obtained were employed to study the preferential solvation (PS) of the probe. It was observed that with increases in the molar fraction of water the spontaneity of the system decreases. This can be explained by the high solubility of BPB in ethanol, with ∆G>0 at higher wavelengths (region rich in water with violet solution) and ∆G<0 at lower wavelengths (region rich in alcohol with yellow solution). The pK of the binary mixture changed in all solvents and for all ratios, and the higher the water ratio is the lower the pK In will be. In binary mixture, an increase in the hydrogen bond acceptor (HBA) nature of the solvents tested resulted in a bathochromic effect on the absorption band of BPB (Δλ=12nm). All of the data obtained showed a good nonlinear fit with the mathematical model (SD≤6.6×10 -3 ), suggesting that BPB has other potential applications besides its use as a pH indicator. Copyright © 2017. Published by Elsevier B.V.

  3. An investigation into dispersion upon switching between solvents within a microfluidic system using a chemically resistant integrated optical refractive index sensor.

    PubMed

    Parker, Richard M; Gates, James C; Wales, Dominic J; Smith, Peter G R; Grossel, Martin C

    2013-02-07

    A planar Bragg grating device has been developed that is capable of detecting changes in the refractive index of a wide range of fluids including solvents, acids and bases. The integration of this high precision refractive index sensor within a chemically resistant microfluidic flow system has enabled the investigation of diverse fluid interactions. By cycling between different solvents, both miscible and immiscible, within the microfluidic system it is shown that the previous solvent determines the nature of the refractive index profile across the transition in composition. This solvent dispersion effect is investigated with particular attention to the methanol-water transition, where transients in refractive index are observed that are an order of magnitude larger in amplitude than the difference between the bulk fluids. The potential complications of such phenomenon are discussed together with an example of a device that exploits this effect for the unambiguous composition measurement of a binary solvent system.

  4. Coal liquefaction process using pretreatment with a binary solvent mixture

    DOEpatents

    Miller, R.N.

    1986-10-14

    An improved process for thermal solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprises pretreating the coal with a binary mixture of an aromatic hydrocarbon and an aliphatic alcohol at a temperature below 300 C before the hydroliquefaction step. This treatment generally increases both conversion of coal and yields of oil. 1 fig.

  5. Coal liquefaction process using pretreatment with a binary solvent mixture

    DOEpatents

    Miller, Robert N.

    1986-01-01

    An improved process for thermal solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprises pretreating the coal with a binary mixture of an aromatic hydrocarbon and an aliphatic alcohol at a temperature below 300.degree. C. before the hydroliquefaction step. This treatment generally increases both conversion of coal and yields of oil.

  6. Mesoscopic electrohydrodynamic simulations of binary colloidal suspensions.

    PubMed

    Rivas, Nicolas; Frijters, Stefan; Pagonabarraga, Ignacio; Harting, Jens

    2018-04-14

    A model is presented for the solution of electrokinetic phenomena of colloidal suspensions in fluid mixtures. We solve the discrete Boltzmann equation with a Bhatnagar-Gross-Krook collision operator using the lattice Boltzmann method to simulate binary fluid flows. Solvent-solvent and solvent-solute interactions are implemented using a pseudopotential model. The Nernst-Planck equation, describing the kinetics of dissolved ion species, is solved using a finite difference discretization based on the link-flux method. The colloids are resolved on the lattice and coupled to the hydrodynamics and electrokinetics through appropriate boundary conditions. We present the first full integration of these three elements. The model is validated by comparing with known analytic solutions of ionic distributions at fluid interfaces, dielectric droplet deformations, and the electrophoretic mobility of colloidal suspensions. Its possibilities are explored by considering various physical systems, such as breakup of charged and neutral droplets and colloidal dynamics at either planar or spherical fluid interfaces.

  7. Mesoscopic electrohydrodynamic simulations of binary colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Rivas, Nicolas; Frijters, Stefan; Pagonabarraga, Ignacio; Harting, Jens

    2018-04-01

    A model is presented for the solution of electrokinetic phenomena of colloidal suspensions in fluid mixtures. We solve the discrete Boltzmann equation with a Bhatnagar-Gross-Krook collision operator using the lattice Boltzmann method to simulate binary fluid flows. Solvent-solvent and solvent-solute interactions are implemented using a pseudopotential model. The Nernst-Planck equation, describing the kinetics of dissolved ion species, is solved using a finite difference discretization based on the link-flux method. The colloids are resolved on the lattice and coupled to the hydrodynamics and electrokinetics through appropriate boundary conditions. We present the first full integration of these three elements. The model is validated by comparing with known analytic solutions of ionic distributions at fluid interfaces, dielectric droplet deformations, and the electrophoretic mobility of colloidal suspensions. Its possibilities are explored by considering various physical systems, such as breakup of charged and neutral droplets and colloidal dynamics at either planar or spherical fluid interfaces.

  8. Communication: Cosolvency and cononsolvency explained in terms of a Flory-Huggins type theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudowicz, Jacek, E-mail: dudowicz@jfi.uchicago.edu; Freed, Karl F.; Douglas, Jack F.

    2015-10-07

    Standard Flory-Huggins (FH) theory is utilized to describe the enigmatic cosolvency and cononsolvency phenomena for systems of polymers dissolved in mixed solvents. In particular, phase boundaries (specifically upper critical solution temperature spinodals) are calculated for solutions of homopolymers B in pure solvents and in binary mixtures of small molecule liquids A and C. The miscibility (or immiscibility) patterns for the ternary systems are classified in terms of the FH binary interaction parameters (χ{sub αβ}) and the ratio r = ϕ{sub A}/ϕ{sub C} of the concentrations ϕ{sub A} and ϕ{sub C} of the two solvents. The trends in miscibility are comparedmore » to those observed for blends of random copolymers (A{sub x}C{sub 1−x}) with homopolymers (B) and to those deduced for A/B/C solutions of polymers B in liquid mixtures of small molecules A and C that associate into polymeric clusters (A{sub p}C{sub q}){sub i}, (i = 1, 2, …, ∞). Although the classic FH theory is able to explain cosolvency and cononsolvency phenomena, the theory does not include a consideration of the mutual association of the solvent molecules and the competitive association between the solvent molecules and the polymer. These interactions can be incorporated in refinements of the FH theory, and the present paper provides a foundation for such extensions for modeling the rich thermodynamics of polymers in mixed solvents.« less

  9. Ultrasonic studies of intermolecular interactions in binary mixtures of 4-methoxy benzoin with various solvents: Excess molar functions of ultrasonic parameters at different concentrations and in different solvents.

    PubMed

    Thanuja, B; Nithya, G; Kanagam, Charles C

    2012-11-01

    Density (ρ), ultrasonic velocity (U), for the binary mixtures of 4-methoxy benzoin (4MB) with ethanol, chloroform, acetonitrile, benzene, and di-oxane were measured at 298K. The solute-solvent interactions and the effect of the polarity of the solvent on the type of intermolecular interactions are discussed here. From the above data, adiabatic compressibility (β), intermolecular free length (L(f)), acoustic impedance (Z), apparent molar volume (Ø), relative association (RA) have been calculated. Other useful parameters such as excess density, excess velocity and excess adiabatic compressibility have also been calculated. These parameters were used to study the nature and extent of intermolecular interactions between component molecules in the binary mixtures. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Journal of Chemical Education: Software.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1988

    1988-01-01

    Describes a chemistry software program that emulates a modern binary gradient HPLC system with reversed phase column behavior. Allows for solvent selection, adjustment of gradient program, column selection, detectory selection, handling of computer sample data, and sample preparation. (MVL)

  11. Raman bandshape analysis on CH and CSC stretching modes of dimethyl sulfoxide in liquid binary mixture: comparative study with quantum-chemical calculations.

    PubMed

    Upadhyay, Ganesh; Gomti Devi, Th

    2014-12-10

    The interacting nature of dimethyl sulfoxide (DMSO) in binary mixtures has been carried out on CH and CSC stretching modes of vibration using chloroform (CLF), chloroform-d (CLFd), acetonitrile (ACN) and acetonitrile-d3 (ACNd) solvents. Peak frequencies of both the stretching modes show blue shift with the increase in solvent concentration. Variation of Raman bandwidth with the solvent concentration was discussed using different mechanisms. Ab initio calculation for geometry optimization and vibrational wavenumber calculation have been performed on monomer and dimer structures of DMSO to explain the experimentally observed Raman spectra. Theoretically calculated values are found in good agreement with the experimental results. Vibrational and reorientational relaxation times have been studied corresponding to solvent concentrations to elucidate the interacting mechanisms of binary mixtures. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Application of mass spectrometer-inverse gas chromatography to study polymer-solvent diffusivity and solubility.

    PubMed

    Galdámez, J Román; Danner, Ronald P; Duda, J Larry

    2007-07-20

    The application of a mass spectrometer detector in capillary column inverse gas chromatography is shown to be a valuable tool in the measurement of diffusion and solubility in polymer-solvent systems. The component specific detector provides excellent results for binary polymer-solvent systems, but it is particularly valuable because it can be readily applied to multicomponent systems. Results for a number of infinitely dilute solvents in poly(vinyl acetate) (PVAc) are reported over a range of temperature from 60 to 150 degrees C. Results are also reported for finite concentrations of toluene and methanol in PVAc from 60 to 110 degrees C. Finally, the technique was applied to study the effect of finite concentrations of toluene on the diffusion coefficients of THF and cyclohexane in PVAc. The experimental data compare well with literature values for both infinite and finite concentrations, indicating that the experimental protocol described in this work is sound.

  13. Predicting the excess solubility of acetanilide, acetaminophen, phenacetin, benzocaine, and caffeine in binary water/ethanol mixtures via molecular simulation.

    PubMed

    Paluch, Andrew S; Parameswaran, Sreeja; Liu, Shuai; Kolavennu, Anasuya; Mobley, David L

    2015-01-28

    We present a general framework to predict the excess solubility of small molecular solids (such as pharmaceutical solids) in binary solvents via molecular simulation free energy calculations at infinite dilution with conventional molecular models. The present study used molecular dynamics with the General AMBER Force Field to predict the excess solubility of acetanilide, acetaminophen, phenacetin, benzocaine, and caffeine in binary water/ethanol solvents. The simulations are able to predict the existence of solubility enhancement and the results are in good agreement with available experimental data. The accuracy of the predictions in addition to the generality of the method suggests that molecular simulations may be a valuable design tool for solvent selection in drug development processes.

  14. Predicting the excess solubility of acetanilide, acetaminophen, phenacetin, benzocaine, and caffeine in binary water/ethanol mixtures via molecular simulation

    NASA Astrophysics Data System (ADS)

    Paluch, Andrew S.; Parameswaran, Sreeja; Liu, Shuai; Kolavennu, Anasuya; Mobley, David L.

    2015-01-01

    We present a general framework to predict the excess solubility of small molecular solids (such as pharmaceutical solids) in binary solvents via molecular simulation free energy calculations at infinite dilution with conventional molecular models. The present study used molecular dynamics with the General AMBER Force Field to predict the excess solubility of acetanilide, acetaminophen, phenacetin, benzocaine, and caffeine in binary water/ethanol solvents. The simulations are able to predict the existence of solubility enhancement and the results are in good agreement with available experimental data. The accuracy of the predictions in addition to the generality of the method suggests that molecular simulations may be a valuable design tool for solvent selection in drug development processes.

  15. Preferential solvation and solvation shell composition of free base and protonated 5, 10, 15, 20-tetrakis(4-sulfonatophenyl)porphyrin in aqueous organic mixed solvents

    NASA Astrophysics Data System (ADS)

    Farajtabar, Ali; Jaberi, Fatemeh; Gharib, Farrokh

    2011-12-01

    The solvatochromic properties of the free base and the protonated 5, 10, 15, 20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) were studied in pure water, methanol, ethanol (protic solvents), dimethylsulfoxide, DMSO, (non-protic solvent), and their corresponding aqueous-organic binary mixed solvents. The correlation of the empirical solvent polarity scale ( ET) values of TPPS with composition of the solvents was analyzed by the solvent exchange model of Bosch and Roses to clarify the preferential solvation of the probe dyes in the binary mixed solvents. The solvation shell composition and the synergistic effects in preferential solvation of the solute dyes were investigated in terms of both solvent-solvent and solute-solvent interactions and also, the local mole fraction of each solvent composition was calculated in cybotactic region of the probe. The effective mole fraction variation may provide significant physico-chemical insights in the microscopic and molecular level of interactions between TPPS species and the solvent components and therefore, can be used to interpret the solvent effect on kinetics and thermodynamics of TPPS. The obtained results from the preferential solvation and solvent-solvent interactions have been successfully applied to explain the variation of equilibrium behavior of protonation of TPPS occurring in aqueous organic mixed solvents of methanol, ethanol and DMSO.

  16. A deeper insight into an intriguing acetonitrile-water binary mixture: synergistic effect, dynamic Stokes shift, fluorescence correlation spectroscopy, and NMR studies.

    PubMed

    Koley, Somnath; Ghosh, Subhadip

    2016-11-30

    An insight study reveals the strong synergistic solvation behaviours from reporter dye molecules within the acetonitrile (ACN)-water (WT) binary mixture. Synergism of a binary mixture refers to some unique changes of the physical and thermodynamic properties of the solvent mixture, originating from the interactions among its cosolvents, which are absent within the pure cosolvents. Synergistic solvation of a binary mixture is likely to be fundamental for greater stabilization of an excited state solute dipole; at least to some extent greater as compared to one stabilized by any of its cosolvents alone. A dynamic Stokes shift due to the solvation of an excited dipole in the ACN-WT binary mixture is found to be highly relevant to the ground state physical properties of the solute molecule (polarity, hydrophilicity, acidity, etc.). Largely different solvation times in the ACN-WT mixture are observed from different dye molecules with widely varying polarities. However, earlier study shows that dye molecules, irrespective of their varying polarities, exhibit very similar solvation times within a pure solvent (J. Phys. Chem. B, 2014, 118, 7577-7785). On further study with fluorescence correlation spectroscopy (FCS) we observed that, unlike the translational diffusion coefficient (D t ) of a dye molecule within a pure solvent, which remains the same irrespective of the location of the dye molecule inside the solvent, a broad distribution among the D t values of a dye molecule is obtained from different locations within the ACN-WT binary mixture. Lastly our 1 H NMR study in the ACN-WT binary mixture shows the existence of strong hydrogen bond interactions among the cosolvents in the ACN-WT mixture.

  17. Predicting the excess solubility of acetanilide, acetaminophen, phenacetin, benzocaine, and caffeine in binary water/ethanol mixtures via molecular simulation

    PubMed Central

    Paluch, Andrew S.; Parameswaran, Sreeja; Liu, Shuai; Kolavennu, Anasuya; Mobley, David L.

    2015-01-01

    We present a general framework to predict the excess solubility of small molecular solids (such as pharmaceutical solids) in binary solvents via molecular simulation free energy calculations at infinite dilution with conventional molecular models. The present study used molecular dynamics with the General AMBER Force Field to predict the excess solubility of acetanilide, acetaminophen, phenacetin, benzocaine, and caffeine in binary water/ethanol solvents. The simulations are able to predict the existence of solubility enhancement and the results are in good agreement with available experimental data. The accuracy of the predictions in addition to the generality of the method suggests that molecular simulations may be a valuable design tool for solvent selection in drug development processes. PMID:25637996

  18. Study of molecular interactions in binary mixtures of 2-chloro-4'methoxy benzoin with various solvents through ultrasonic speed measurements

    NASA Astrophysics Data System (ADS)

    Thanuja, B.; Kanakam, C.; Nithya, G.

    2013-12-01

    Density ( ρ) and ultrasonic velocity ( U), for binary mixtures of 2-chloro-4'-methoxy benzoin with ethanol, chloroform, acetonitrile, benzene and 1,4-dioxane of different compositions have been measured at 298 K and explanation of solute solvent interactions and effect of polarity of the solvent on type of interactions are presented in this paper. From the above data, adiabatic compressibility ( β), intermolecular free length ( L f ) and relative association ( R A ) have been calculated. Other useful parameters such as excess density, excess velocity, excess intermolecular freelength and excess adiabatic compressibility have also been calculated. These parameters have been used to study the nature and extent of intermolecular interactions between component molecules in present binary mixtures.

  19. Synergic effects in the extraction of paracetamol from aqueous NaCl solution by the binary mixtures of diethyl ether and low molecular weight primary alcohols

    NASA Astrophysics Data System (ADS)

    Nikolić, G. M.; Živković, J. V.; Atanasković, D. S.; Nikolić, M. G.

    2013-12-01

    Liquid-liquid extraction of paracetamol from aqueous NaCl solutions was performed with diethyl ether, 1-propanol, 1-butanol, isobutanol, 1-pentanol, and binary mixtures diethyl ether/1-propanol, diethyl ether/1-butanol, and diethyl ether/isobutanol. Among the pure solvents investigated in this study best extraction efficacy was obtained with 1-butanol. Synergic effects in the extraction with binary mixtures was investigated and compared with some other systems used for the extraction of poorly extractable compounds. Results obtained in this study may be of both fundamental and practical importance.

  20. Pairing Heterocyclic Cations with closo-Icosahedral Borane and Carborane Anions, II: Benchtop Alternative Synthetic Methodologies for Binary Triazolium and Tetrazolium Salts with Significant Water Solubility (POSTPRINT)

    DTIC Science & Technology

    2012-01-01

    interesting property, eutectic melting-point depression. Recrystallization of ternary salts 12–14 was not attempted because of a concern that a cation... recrystallization solvent mixture for these powders, and while some individual successes resulted, a general efficient solvent system for all salt...product recrystallizations could not be found. So, rather than recrystallizing each individual adduct, spectroscopic examination of the amorphous solids was

  1. Thermodynamic Parameters of the Dissolution of 4-Hydroxy-L-Proline and L-Phenylalanine in Mixed Aqueous Solvents at 298 K

    NASA Astrophysics Data System (ADS)

    Smirnov, V. I.; Badelin, V. G.

    2018-01-01

    The enthalpies of solution of 4-hydroxy-L-proline and L-phenylalanine in binary mixed aqueous solvents containing acetonitrile (AN), 1,4-dioxane (1,4-DO), or acetone (AC) at mole fractions of 0 to 0.25 are determined at T = 298.15 K via isothermal calorimetry. The standard enthalpies of solution (Δsol H°) and transfer (Δtr H°) of 4-hydroxy-L-proline and L-phenylalanine from water to mixed aqueous solvents are calculated using the experimental calorimetric data, as are the enthalpy coefficients of paired interactions ( h xy ) between the molecules of the investigated amino acids and the organic solvents. The effects the mixed aqueous solvent composition and the structure of the organic solvent molecules have on the enthalpies of solution and transfer for the investigated amino acids are considered. The correlation between the enthalpy of solution of the amino acids and the electron-donating properties of the organic solvents in the mixed aqueous solvent systems is established.

  2. Differentiation of Chemical Components in a Binary Solvent Vapor Mixture Using Carbon/Polymer Composite-Based Chemiresistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Sanjay V.; Jenkins, Mark W.; Hughes, Robert C.

    1999-07-19

    We demonstrate a ''universal solvent sensor'' constructed from a small array of carbon/polymer composite chemiresistors that respond to solvents spanning a wide range of Hildebrand volubility parameters. Conductive carbon particles provide electrical continuity in these composite films. When the polymer matrix absorbs solvent vapors, the composite film swells, the average separation between carbon particles increases, and an increase in film resistance results, as some of the conduction pathways are broken. The adverse effects of contact resistance at high solvent concentrations are reported. Solvent vapors including isooctane, ethanol, dlisopropyhnethylphosphonate (DIMP), and water are correctly identified (''classified'') using three chemiresistors, their compositemore » coatings chosen to span the full range of volubility parameters. With the same three sensors, binary mixtures of solvent vapor and water vapor are correctly classified, following classification, two sensors suffice to determine the concentrations of both vapor components. Polyethylene vinylacetate and polyvinyl alcohol (PVA) are two such polymers that are used to classify binary mixtures of DIMP with water vapor; the PVA/carbon-particle-composite films are sensitive to less than 0.25{degree}A relative humidity. The Sandia-developed VERI (Visual-Empirical Region of Influence) technique is used as a method of pattern recognition to classify the solvents and mixtures and to distinguish them from water vapor. In many cases, the response of a given composite sensing film to a binary mixture deviates significantly from the sum of the responses to the isolated vapor components at the same concentrations. While these nonlinearities pose significant difficulty for (primarily) linear methods such as principal components analysis, VERI handles both linear and nonlinear data with equal ease. In the present study the maximum speciation accuracy is achieved by an array containing three or four sensor elements, with the addition of more sensors resulting in a measurable accuracy decrease.« less

  3. Separating Iso-Propanol-Toluene mixture by azeotropic distillation

    NASA Astrophysics Data System (ADS)

    Iqbal, Asma; Ahmad, Syed Akhlaq

    2018-05-01

    The separation of Iso-Propanol-Toluene azeotropic mixture using Acetone as an entrainer has been simulated on Aspen Plus software package using rigorous methods. Calculations of the vapor-liquid equilibrium for the binary system are done using UNIQUAC-RK model which gives a good agreement with the experimental data reported in literature. The effects of the Reflux ratio (RR), distillate-to-feed molar ratio (D/F), feed stage, solvent feed stage, Total no. of stages and solvent feed temperature on the product purities and recoveries are studied to obtain their optimum values that give the maximum purity and recovery of products. The configuration consists of 20 theoretical stages with an equimolar feed of binary mixture. The desired separation of binary mixture has been achieved at the feed stage and an entrainer feeding stage of 15 and 12 respectively with the reflux ratios of 2.5 and 4.0, and D/F ratio of 0.75 and 0.54 respectively in the two columns. The simulation results thus obtained are useful to setup the optimal column configuration of the azeotropic distillation process.

  4. Phase behaviour, interactions, and structural studies of (amines+ionic liquids) binary mixtures.

    PubMed

    Jacquemin, Johan; Bendová, Magdalena; Sedláková, Zuzana; Blesic, Marijana; Holbrey, John D; Mullan, Claire L; Youngs, Tristan G A; Pison, Laure; Wagner, Zdeněk; Aim, Karel; Costa Gomes, Margarida F; Hardacre, Christopher

    2012-05-14

    We present a study on the phase equilibrium behaviour of binary mixtures containing two 1-alkyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide-based ionic liquids, [C(n)mim] [NTf(2)] (n=2 and 4), mixed with diethylamine or triethylamine as a function of temperature and composition using different experimental techniques. Based on this work, two systems showing an LCST and one system with a possible hourglass shape are measured. Their phase behaviours are then correlated and predicted by using Flory-Huggins equations and the UNIQUAC method implemented in Aspen. The potential of the COSMO-RS methodology to predict the phase equilibria was also tested for the binary systems studied. However, this methodology is unable to predict the trends obtained experimentally, limiting its use for systems involving amines in ionic liquids. The liquid-state structure of the binary mixture ([C(2)mim] [NTf(2)]+diethylamine) is also investigated by molecular dynamics simulation and neutron diffraction. Finally, the absorption of gaseous ethane by the ([C(2)mim][NTf(2)]+diethylamine) binary mixture is determined and compared with that observed in the pure solvents. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components.

    PubMed

    Timasheff, Serge N

    2002-07-23

    Solvent additives (cosolvents, osmolytes) modulate biochemical reactions if, during the course of the reaction, there is a change in preferential interactions of solvent components with the reacting system. Preferential interactions can be expressed in terms of preferential binding of the cosolvent or its preferential exclusion (preferential hydration). The driving force is the perturbation by the protein of the chemical potential of the cosolvent. It is shown that the measured change of the amount of water in contact with protein during the course of the reaction modulated by an osmolyte is a change in preferential hydration that is strictly a measure of the cosolvent chemical potential perturbation by the protein in the ternary water-protein-cosolvent system. It is not equal to the change in water of hydration, because water of hydration is a reflection strictly of protein-water forces in a binary system. There is no direct relation between water of preferential hydration and water of hydration.

  6. Physical Identification of Binary System of Gliclazide-Hydrophilic Polymers Using X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Rachmawati, H.; Yatinasari, Faizatun, Syarie, S. A.

    2008-03-01

    The formation of binary system in pharmaceutical solid state is aimed to improve the physicochemical characteristics of active compound, such as its solubility. To identify the physical change of the binary system including crystallinity or particle morphology, there are many methods can be applied. In present report, we study the physical interaction of the binary system of gliclazide and hydrophilic polymers. In this binary system, gliclazide was either dispersed or mixed with polyvinyl pirrolidone (PVP K30) or polyethylene glycol (PEG 6000). The dispersion system of gliclazide in the polymeric carriers was prepared by solvation-evaporation method, using dichloromethane/methylene chloride as an organic solvent. The physical characterization of both dispersed and mixed of gliclazide was studied using X-ray diffraction at interval 6-50 °/2θ. As a comparison, the same procedure was performed for pure gliclazide. To confirm the diffractogram of this binary system, Fourier Transform Infrared (FT-IR) spectroscopy was carried out as well. Both diffarctogram and FT-IR spectra revealed that there was no new compound formed in the solid dispersion system of gliclazide:PEG 6000 and gliclazide:PVP K30. In contrast, the solubility as well as the dissolution rate of gliclazide in the presence of both hydrophilic polymers was increased as compared to pure gliclazide. We conclude therefore that solvatation followed by evaporation of gliclazide in the presence of either PEG 6000 or PVP K30 did not alter its crystalline characteristic. The improved of gliclazide solubility in the binary system might due to other mechanism such as increased in the wettability and the hydrophylicity effect of the polymers.

  7. An ellipsoid-chain model for conjugated polymer solutions

    NASA Astrophysics Data System (ADS)

    Lee, Cheng K.; Hua, Chi C.; Chen, Show A.

    2012-02-01

    We propose an ellipsoid-chain model which may be routinely parameterized to capture large-scale properties of semiflexible, amphiphilic conjugated polymers in various solvent media. The model naturally utilizes the defect locations as pivotal centers connecting adjacent ellipsoids (each currently representing ten monomer units), and a variant umbrella-sampling scheme is employed to construct the potentials of mean force (PMF) for specific solvent media using atomistic dynamics data and simplex optimization. The performances, both efficacy and efficiency, of the model are thoroughly evaluated by comparing the simulation results on long, single-chain (i.e., 300-mer) structures with those from two existing, finer-grained models for a standard conjugated polymer (i.e., poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene) or MEH-PPV) in two distinct solvents (i.e., chloroform or toluene) as well as a hybrid, binary-solvent medium (i.e., chloroform/toluene = 1:1 in number density). The coarse-grained Monte Carlo (CGMC) simulation of the ellipsoid-chain model is shown to be the most efficient—about 300 times faster than the coarse-grained molecular dynamics (CGMD) simulation of the finest CG model that employs explicit solvents—in capturing elementary single-chain structures for both single-solvent media, and is a few times faster than the coarse-grained Langevin dynamics (CGLD) simulation of another implicit-solvent polymer model with a slightly greater coarse-graining level than in the CGMD simulation. For the binary-solvent system considered, however, both of the two implicit-solvent schemes (i.e., CGMC and CGLD) fail to capture the effects of conspicuous concentration fluctuations near the polymer-solvent interface, arising from a pronounced coupling between the solvent molecules and different parts of the polymer. Essential physical implications are elaborated on the success as well as the failure of the two implicit-solvent CG schemes under varying solvent conditions. Within the ellipsoid-chain model, the impact of synthesized defects on local segmental ordering as well as bulk chain conformation is also scrutinized, and essential consequences in practical applications discussed. In future perspectives, we remark on strategy that takes advantage of the coordination among various CG models and simulation schemes to warrant computational efficiency and accuracy, with the anticipated capability of simulating larger-scale, many-chain aggregate systems.

  8. Theory of Metastable State Relaxation in a Gravitational Field for Non-Critical Binary Systems with Non-Conserved Order Parameter

    NASA Technical Reports Server (NTRS)

    Izmailov, Alexander F.; Myerson, Allan S.

    1993-01-01

    A new mathematical ansatz is developed for solution of the time-dependent Ginzburg-Landau nonlinear partial differential equation describing metastable state relaxation in binary (solute+solvent) non-critical solutions with non-conserved scalar order parameter in presence of a gravitational field. It has been demonstrated analytically that in such systems metastability initiates heterogeneous solute redistribution which results in the formation of a non-equilibrium singly-periodic spatial solute structure in the new solute-rich phase. The critical radius of nucleation and the induction time in these systems are gravity-dependent. It has also been proved that metastable state relaxation in vertical columns of supersaturated non-critical binary solutions leads to formation of the solute concentration gradient. Analytical expression for this concentration gradient is found and analysed. It is concluded that gravity can initiate phase separation (nucleation or spinodal decomposition).

  9. Theory of Metastable State Relaxation for Non-Critical Binary Systems with Non-Conserved Order Parameter

    NASA Technical Reports Server (NTRS)

    Izmailov, Alexander; Myerson, Allan S.

    1993-01-01

    A new mathematical ansatz for a solution of the time-dependent Ginzburg-Landau non-linear partial differential equation is developed for non-critical systems such as non-critical binary solutions (solute + solvent) described by the non-conserved scalar order parameter. It is demonstrated that in such systems metastability initiates heterogeneous solute redistribution which results in formation of the non-equilibrium singly-periodic spatial solute structure. It is found how the time-dependent period of this structure evolves in time. In addition, the critical radius r(sub c) for solute embryo of the new solute rich phase together with the metastable state lifetime t(sub c) are determined analytically and analyzed.

  10. Molecular interactions and structures in ethylene glycol-ethanol and ethylene glycol-water solutions at 303 K on densities, viscosities, and refractive indices data

    NASA Astrophysics Data System (ADS)

    Deosarkar, S. D.; Ghatbandhe, A. S.

    2014-01-01

    Molecular interactions and structural fittings in binary ethylene glycol + ethanol (EGE, x EG = 0.4111-0.0418) and ethylene glycol + water (EGW, x EG = 0.1771-0.0133) mixtures were studied through the measurement of densities (ρ), viscosities (η), and refractive indices ( n D ) at 303.15 K. Excess viscosities (η E ), molar volumes ( V m ), excess molar volumes ( V {/m E }), and molar retractions ( R M ) of the both binary systems were computed from measured properties. The measured and computed properties have been used to understand the molecular interactions in unlike solvents and structural fittings in these binary mixtures.

  11. Molecular dynamics study of polysaccharides in binary solvent mixtures of an ionic liquid and water.

    PubMed

    Liu, Hanbin; Sale, Kenneth L; Simmons, Blake A; Singh, Seema

    2011-09-01

    Some ionic liquids (ILs) have great promise as effective solvents for biomass pretreatment, and there are several that have been reported that can dissolve large amounts of cellulose. The solubilized cellulose can then be recovered by addition of antisolvents, such as water or ethanol, and this regeneration process plays an important role in the subsequent enzymatic saccharification reactions and in the recovery of the ionic liquid. To date, little is known about the fundamental intermolecular interactions that drive the dissolution and subsequent regeneration of cellulose in complex mixtures of ionic liquids, water, and cellulose. To investigate these interactions, in this work, molecular dynamics (MD) simulations were carried out to study binary and ternary mixtures of the ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) with water and a cellulose oligomer. Simulations of a cellulose oligomer dissolved in three concentrations of binary mixtures of [C2mim][OAc] and water were used to represent the ternary system in the dissolution phase (high [C2mim][OAc] concentration) and present during the initial phase of the regeneration step (intermediate and low [C2mim][OAc] concentrations). The MD analysis of the structure and dynamics that exist in these binary and ternary mixtures provides information on the key intermolecular interactions between cellulose and [C2mim][OAc] that lead to dissolution of cellulose and the key intermolecular interactions in the intermediate states of cellulose precipitation as a function of water content in the cellulose/IL/water system. The analysis of this intermediate state provides new insight into the molecular driving forces present in this ternary system. © 2011 American Chemical Society

  12. Enhanced fluidity liquid chromatography of inulin fructans using ternary solvent strength and selectivity gradients.

    PubMed

    Bennett, Raffeal; Olesik, Susan V

    2018-01-25

    The value of exploring selectivity and solvent strength ternary gradients in enhanced fluidity liquid chromatography (EFLC) is demonstrated for the separation of inulin-type fructans from chicory. Commercial binary pump systems for supercritical fluid chromatography only allow for the implementation of ternary solvent strength gradients which can be restrictive for the separation of polar polymeric analytes. In this work, a custom system was designed to extend the capability of EFLC to allow tuning of selectivity or solvent strength in ternary gradients. Gradient profiles were evaluated using the Berridge function (RF 1 ), normalized resolution product (NRP), and gradient peak capacity (P c ). Selectivity gradients provided the separation of more analytes over time. The RF 1 function showed favor to selectivity gradients with comparable P c to that of solvent strength gradients. NRP did not strongly correlate with P c or RF 1 score. EFLC with the hydrophilic interaction chromatography, HILIC, separation mode was successfully employed to separate up to 47 fructan analytes in less than 25 min using a selectivity gradient. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Design of spray dried insulin microparticles to bypass deposition in the extrathoracic region and maximize total lung dose.

    PubMed

    Ung, Keith T; Rao, Nagaraja; Weers, Jeffry G; Huang, Daniel; Chan, Hak-Kim

    2016-09-25

    Inhaled drugs all too often deliver only a fraction of the emitted dose to the target lung site due to deposition in the extrathoracic region (i.e., mouth and throat), which can lead to increased variation in lung exposure, and in some instances increases in local and systemic side effects. For aerosol medications, improved targeting to the lungs may be achieved by tailoring the micromeritic properties of the particles (e.g., size, density, rugosity) to minimize deposition in the mouth-throat and maximize the total lung dose. This study evaluated a co-solvent spray drying approach to modulate particle morphology and dose delivery characteristics of engineered powder formulations of insulin microparticles. The binary co-solvent system studied included water as the primary solvent mixed with an organic co-solvent, e.g., ethanol. Factors such as the relative rate of evaporation of each component of a binary co-solvent mixture, and insulin solubility in each component were considered in selecting feedstock compositions. A water-ethanol co-solvent mixture with a composition range considered suitable for modulating particle shell formation during drying was selected for experimental investigation. An Alberta Idealized Throat model was used to evaluate the in vitro total lung dose of a series of spray dried insulin formulations engineered with different bulk powder properties and delivered with two prototype inhalers that fluidize and disperse powder using different principles. The in vitro total lung dose of insulin microparticles was improved and favored for powders with low bulk density and small primary particle size, with reduction of deposition in the extrathoracic region. The results demonstrated that a total lung dose >95% of the delivered dose can be achieved with engineered particles, indicating a high degree of lung targeting, almost completely bypassing deposition in the mouth-throat. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Mutual influence between triel bond and cation-π interactions: an ab initio study

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Mousavian, Parisasadat

    2017-12-01

    Using ab initio calculations, the cooperative and solvent effects on cation-π and B...N interactions are studied in some model ternary complexes, where these interactions coexist. The nature of the interactions and the mechanism of cooperativity are investigated by means of quantum theory of atoms in molecules (QTAIM), noncovalent interaction (NCI) index and natural bond orbital analysis. The results indicate that all cation-π and B...N binding distances in the ternary complexes are shorter than those of corresponding binary systems. The QTAIM analysis reveals that ternary complexes have higher electron density at their bond critical points relative to the corresponding binary complexes. In addition, according to the QTAIM analysis, the formation of cation-π interaction increases covalency of B...N bonds. The NCI analysis indicates that the cooperative effects in the ternary complexes make a shift in the location of the spike associated with each interaction, which can be regarded as an evidence for the reinforcement of both cation-π and B...N interactions in these systems. Solvent effects on the cooperativity of cation-π and B...N interactions are also investigated.

  15. Physico-chemical properties of binary mixtures of aliphatic and aromatic solvents at 313 K on acoustical data

    NASA Astrophysics Data System (ADS)

    Dahire, S. L.; Morey, Y. C.; Agrawal, P. S.

    2015-12-01

    Density (ρ), viscosity (η), and ultrasonic velocity ( U) of binary mixtures of aliphatic solvents like dimethylformamide (DMF) and dimethylsulfoxide (DMSO) with aromatic solvents viz. chlorobenzene (CB), bromobenzene (BB), and nitrobenzene (NB) have been determined at 313 K. These parameters were used to calculate the adiabatic compressibility (β), intermolecular free length ( L f), molar volume ( V m), and acoustic impedance ( Z). From the experimental data excess molar volume ( V m E ), excess intermolecular free length ( L f E )), excess adiabatic compressibility (βE), and excess acoustic impedance ( Z E) have been computed. The excess values were correlated using Redlich-Kister polynomial equation to obtain their coefficients and standard deviations (σ).

  16. Gels and lyotropic liquid crystals: using an imidazolium-based catanionic surfactant in binary solvents.

    PubMed

    Cheng, Ni; Hu, Qiongzheng; Bi, Yanhui; Xu, Wenwen; Gong, Yanjun; Yu, Li

    2014-08-05

    The self-assembly behavior of an imidazolium-based catanionic surfactant, 1-butyl-3-methylimidazolium dodecylsulfate ([C4mim][C12H25SO4]), was investigated in water-ethylammonium nitrate (EAN) mixed solvents with different volume ratios. It is particular interesting that this simple surfactant could not only form lyotropic liquid crystals (LLC) with multimesophases, i.e., normal hexagonal (H1), lamellar liquid crystal (Lα), and reverse bicontinuous cubic phase (V2), in the water-rich environment but also act as an efficient low-molecular-weight gelator (LMWG) which gelated EAN-abundant binary media in a broad concentration range. The peculiar nanodisk cluster morphology of gels composed of similar bilayer units was first observed. FT-IR spectra and density functional theory (DFT) calculations reveal that strong H bonding and electrostatic interactions between EAN and the headgroups of [C4mim][C12H25SO4] are primarily responsible for gelation. The self-assembled gels displayed excellent mechanical strength and a thermoreversible sol-gel transition. It is for the first time that a rich variety of controllable ordered aggregates could be observed only by simply modulating the concentration of a single imidazolium-based catanionic surfactant or the ratio of mixed solvents. This environmentally friendly system is expected to have broad applications in various fields, such as materials science, drug delivery systems, and supramolecular chemistry.

  17. Binary nanoparticle superlattices of soft-particle systems

    DOE PAGES

    Travesset, Alex

    2015-08-04

    The solid-phase diagram of binary systems consisting of particles of diameter σ A=σ and σ B=γσ (γ≤1) interacting with an inverse p = 12 power law is investigated as a paradigm of a soft potential. In addition to the diameter ratio γ that characterizes hard-sphere models, the phase diagram is a function of an additional parameter that controls the relative interaction strength between the different particle types. Phase diagrams are determined from extremes of thermodynamic functions by considering 15 candidate lattices. In general, it is shown that the phase diagram of a soft repulsive potential leads to the morphological diversitymore » observed in experiments with binary nanoparticles, thus providing a general framework to understand their phase diagrams. In addition, particular emphasis is shown to the two most successful crystallization strategies so far: evaporation of solvent from nanoparticles with grafted hydrocarbon ligands and DNA programmable self-assembly.« less

  18. Solubility behavior of lamivudine crystal forms in recrystallization solvents.

    PubMed

    Jozwiakowski, M J; Nguyen, N A; Sisco, J M; Spancake, C W

    1996-02-01

    Lamivudine can be obtained as acicular crystals (form I, 0.2 hydrate) from water or methanol and as bipyramidal crystals (form II, nonsolvated) from many nonaqueous solvents. Form II is thermodynamically favored in the solid state (higher melting point and greater density than form I) at ambient relative humidities. Solubility measurements on both forms versus solvent and temperature was used to determine whether entropy or enthalpy was the driving force for solubility. Solution calorimetry data indicated that form I is favored (less soluble) in all solvents studied on the basis of enthalpy alone. In higher alcohols and other organic solvents, form I has a larger entropy of solution than form II, which compensates for the enthalpic factors and results in physical stability for form II in these systems. The metastable crystal form solubility at 25 degrees C was estimated to be 1.2-2.3 times as high as the equilibrium solubility of the stable form, depending on the temperature, solvent, and crystal form. Binary solvent studies showed that > 18-20% water must be present in ethanol to convert the excess solid to form I at equilibrium.

  19. Synthesis and characterization of binary titania-silica mixed oxides

    NASA Astrophysics Data System (ADS)

    Budhi, Sridhar

    A series of binary titania-silica mixed oxides were synthesized by the sol-gel method at room temperature. The mixed oxides were prepared that involved the hydrolysis of titanium isopropoxide and tetraethylorthosilicate (TEOS) by co-solvent induced gelation usually in acidic media. The resulting gels were dried, calcined and then characterized by powder X-ray diffractometric studies, nitrogen sorption studies (at 77K), diffuse reflectance spectroscopy, Raman microscopy and transmission electron microscopic studies. The nitrogen sorption studies indicate that the specific surface areas, pore volume, pore diameter and pore size distribution of the mixed oxides were substantially enhanced when non-polar solvents such as toluene, p-xylene or mesitylene were added as co-solvents to the synthesis gel. Transmission electron microscopic (TEM) studies confirm the results obtained from the nitrogen sorption studies. Our results indicate that we can obtain binary metal oxides possessing high surface area and large pore volumes with tunable pore size distribution at room temperature. Photocatalytic evaluation of the mixed oxides is currently in progress.

  20. Flash-point prediction for binary partially miscible mixtures of flammable solvents.

    PubMed

    Liaw, Horng-Jang; Lu, Wen-Hung; Gerbaud, Vincent; Chen, Chan-Cheng

    2008-05-30

    Flash point is the most important variable used to characterize fire and explosion hazard of liquids. Herein, partially miscible mixtures are presented within the context of liquid-liquid extraction processes. This paper describes development of a model for predicting the flash point of binary partially miscible mixtures of flammable solvents. To confirm the predictive efficacy of the derived flash points, the model was verified by comparing the predicted values with the experimental data for the studied mixtures: methanol+octane; methanol+decane; acetone+decane; methanol+2,2,4-trimethylpentane; and, ethanol+tetradecane. Our results reveal that immiscibility in the two liquid phases should not be ignored in the prediction of flash point. Overall, the predictive results of this proposed model describe the experimental data well. Based on this evidence, therefore, it appears reasonable to suggest potential application for our model in assessment of fire and explosion hazards, and development of inherently safer designs for chemical processes containing binary partially miscible mixtures of flammable solvents.

  1. Effects of water-alcohol binary solvents on the thermochemical characteristics of L-tryptophane dissolution at 298.15 K

    NASA Astrophysics Data System (ADS)

    Badelin, V. G.; Smirnov, V. I.

    2013-01-01

    The enthalpies of L-tryptophane solution in water-methanol, water-ethanol, water-1-propanol, and water-2-propanol mixtures at alcohol concentrations of x 2 = 0-0.4 mole fractions were measured by calorimetry. The standard enthalpies of L-tryptophane solution (Δsol H ∘) and transfer (Δtr H ∘) from water to the binary solvent were calculated. The influence of the composition of the water-alcohol mixture and the structure and properties of L-tryptophane on the enthalpy characteristics of the latter was considered. The enthalpy coefficients of pair interactions ( h xy ) of L-tryptophane with alcohol molecules were calculated. The coefficients were positive and increased in the series: methanol (MeOH), ethanol (EtOH), 1-propanol (1-PrOH), and 2-propanol (2-PrOH). The solution and transfer enthalpies of L-tryptophane were compared with those of aliphatic amino acids (glycine, L-threonine, DL-alanine, L-valine, and L-phenylalanine) in similar binary solvents.

  2. Solvent coarsening around colloids driven by temperature gradients

    NASA Astrophysics Data System (ADS)

    Roy, Sutapa; Dietrich, Siegfried; Maciolek, Anna

    2018-04-01

    Using mesoscopic numerical simulations and analytical theory, we investigate the coarsening of the solvent structure around a colloidal particle emerging after a temperature quench of the colloid surface. Qualitative differences in the coarsening mechanisms are found, depending on the composition of the binary liquid mixture forming the solvent and on the adsorption preferences of the colloid. For an adsorptionwise neutral colloid, the phase next to its surface alternates as a function of time. This behavior sets in on the scale of the relaxation time of the solvent and is absent for colloids with strong adsorption preferences. A Janus colloid, with a small temperature difference between its two hemispheres, reveals an asymmetric structure formation and surface enrichment around it, even if the solvent is within its one-phase region and if the temperature of the colloid is above the critical demixing temperature Tc of the solvent. Our phenomenological model turns out to capture recent experimental findings according to which, upon laser illumination of a Janus colloid and due to the ensuing temperature gradient between its two hemispheres, the surrounding binary liquid mixture develops a concentration gradient.

  3. Dielectric Studies on Binary Mixtures of Diethyl Ether (DEE) in Polar Solvents

    NASA Astrophysics Data System (ADS)

    Pradhan, S. K.; Dash, S. K.; Swain, M. D.; Swain, B. B.

    2011-11-01

    Dielectric constant (ɛ) of diethylether (DEE) in binary mixtures with four polar solvents such as n-butanl, i-butanol, t-butanol and tolune has been measured at 455 kHz and at a temperature 303.15 K. The refractive indices were measured at a regulated temperature by Pulfrich refractometer at sodium D-line. The data is used to evaluate mutual correlation factor gab, excess molar polarization and excess free energy of mixing ΔGab by using Winkelmann-Quitzsch equation for binary mixtures to asses the suitability of the polar solvents as modifiers. The trend of variation for these parameters exhibit marked dependence on the nature of alcohols. Diethylether is one of the solvent extractant used for the extraction and separation of zirconium and hafnium in reactor technology. The extractant is blended with appropriate polar modifiers for greater dispersal and more rapid phase disengagement. This facilitates in the elimination of the third organo-aqueous phase containing some of the metal ions. As such the study of molecular interaction among the component molecules has been undertaken in these binary mixtures using the dielectric route. The interaction parameters such as mutual correlation factor gab is found to be less than one in all alcohols, while it is negative in toluene upto 0.7 DEE molefraction and thereafter becoming positive. The nature of variation of the excess miolar polarization ΔP and excess free energy of mixing Gab tends to support the assessment of gab to choose a suitable polar modifier.

  4. Effects of concentration, temperature and solvent composition on density and apparent molar volume of the binary mixtures of cationic-anionic surfactants in methanol-water mixed solvent media.

    PubMed

    Bhattarai, Ajaya; Chatterjee, Sujeet Kumar; Niraula, Tulasi Prasad

    2013-01-01

    The accurate measurements on density of the binary mixtures of cetyltrimethylammonium bromide and sodium dodecyl sulphate in pure water and in methanol(1) + water (2) mixed solvent media containing (0.10, 0.20, and 0.30) volume fractions of methanol at 308.15, 318.15, and 323.15 K are reported. The concentrations are varied from (0.03 to 0.12) mol.l(-1) of sodium dodecyl sulphate in presence of ~ 5.0×10(-4) mol.l(-1) cetyltrimethylammonium bromide. The results showed almost increase in the densities with increasing surfactant mixture concentration, also the densities are found to decrease with increasing temperature over the entire concentration range, investigated in a given mixed solvent medium and these values are found to decrease with increasing methanol content in the solvent composition. The concentration dependence of the apparent molar volumes appear to be negligible over the entire concentration range, investigated in a given mixed solvent medium and the apparent molar volumes increase with increasing temperature and are found to decrease with increasing methanol content in the solvent composition.

  5. Vibrational relaxation of I2 in complexing solvents: The role of solvent-solute attractive forces

    NASA Astrophysics Data System (ADS)

    Shiang, Joseph J.; Liu, Hongjun; Sension, Roseanne J.

    1998-12-01

    Femtosecond transient absorption studies of I2-arene complexes, with arene=hexamethylbenzene (HMB), mesitylene (MST), or m-xylene (mX), are used to investigate the effect of solvent-solute attractive forces upon the rate of vibrational relaxation in solution. Comparison of measurements on I2-MST complexes in neat mesitylene and I2-MST complexes diluted in carbontetrachloride demonstrate that binary solvent-solute attractive forces control the rate of vibrational relaxation in this prototypical model of diatomic vibrational relaxation. The data obtained for different arenes demonstrate that the rate of I2 relaxation increases with the magnitude of the I2-arene attractive interaction. I2-HMB relaxes much faster than I2 in MST or mX. The results of these experiments are discussed in terms of both isolated binary collision and instantaneous normal mode models for vibrational relaxation.

  6. Conformational Changes of the Alanine Dipeptide in Water-Ethanol Binary Mixtures.

    PubMed

    Almeida, Glauco G; Cordeiro, João M M; Martín, M Elena; Aguilar, Manuel A

    2016-04-12

    Experimental work developed in the last years has evidenced the capacity of alcohols and polyalcohols to modify the energy landscape of peptides and proteins. However, the mechanism underlying this effect is not clear. Taking as a model system the alanine dipeptide (AD) we perform a QM/MM study in water, ethanol, and a 40-60% in volume water-ethanol mixture. The AD molecule was described at the MP2/aug-cc-pVDZ level. In polar solution, only αR and PPII conformers contribute in an appreciable way to the conformational equilibrium. The final in solution αR-PPII free energy difference is determined from the interplay between the internal energy of the dipeptide and the solute-solvent interaction free energy. Internal energy favors the formation of PPII, whereas, on the contrary, solute-solvent interaction is favorable to αR, so any factor that decreases the solute-solvent interaction free energy will increase the PPII population. The addition of ethanol increases the stability of the PPII conformer. Our results point to the presence of preferential solvation in this system, the composition of the first solvation shell in the binary mixture being dominated by water molecules. Remarkably, this fact does not affect the differential conformational stability that is controlled by long-range interactions. From the analysis of solvent density maps it is concluded that, in the water-ethanol mixture, ethanol molecules are more likely found around the alanine side chain and the carbonyl group, but while in PPII ethanol molecules interact mainly with the carbonyl group of the N-terminal end, in C5 the interaction is with the carbonyl group of the C-terminal end. In αR, ethanol interacts with both carbonyl groups.

  7. High-repetition-rate, narrow-band dye lasers with water as a solvent for dyes

    NASA Astrophysics Data System (ADS)

    Ray, Alok K.; Sinha, Sucharita; Kundu, Soumitra; Kumar, Sasi; Nair, Sivagiriyal Karunakaran Sreenivasan; Pal, Tamal; Dasgupta, Kamalesh

    2002-03-01

    The performance of a copper vapor laser-pumped narrow-band dye laser in oscillator-amplifier configuration with water-based binary mixture solvents is described. Although oscillator efficiency in water-surfactant (sodium lauryl sulfate) solvent was comparable with that that employed pure ethanolic solvent, amplifier efficiency was found to be lower. Experiments that were carried out with vertically polarized pump beams and either horizontally or vertically polarized signal beams show that, in case of both the pump and signal having orthogonal polarization (horizontal) and same polarization (vertical), the extraction efficiency for both ethanolic and water-micelle media increased substantially from 15.7% to 18.5% and from 10% to 12.5%, respectively. However, the relative difference remained nearly the same, indicating that a slower orientational diffusion of excited dye molecules in a micellar medium is not responsible for a decrease in amplifier efficiency. Amplifier efficiency comparable with that containing ethanolic dye solutions could be obtained with a binary solvent that comprises a mixture of water and about 30% n-propanol. The performances of two efficient dyes, Rhodamine-6G and Kiton Red S, using water-based solvents were studied.

  8. Counteraction of Trehalose on N, N-Dimethylformamide-Induced Candida rugosa Lipase Denaturation: Spectroscopic Insight and Molecular Dynamic Simulation

    PubMed Central

    Yang, Xin; Jia, Yigang; Hu, Yi; Xu, Qing; Xu, Xian

    2016-01-01

    Candida rugosa lipase (CRL) has been widely used as a biocatalyst for non-aqueous synthesis in biotechnological applications, which, however, often suffers significant loss of activity in organic solvent. Experimental results show that trehalose could actively counteract the organic-solvent-induced protein denaturation, while the molecular mechanisms still don’t unclear. Herein, CRL was used as a model enzyme to explore the effects of trehalose on the retention of enzymatic activity upon incubation in N,N-dimethylformamide (DMF). Results showed that both catalytic activity and conformation changes of CRL influenced by DMF solvent were inhibited by trehalose in a dose-dependent fashion. The simulations further indicated that the CRL protein unfolded in binary DMF solution, but retained the native state in the ternary DMF/trehalose system. Trehalose as the second osmolyte added into binary DMF solution decreased DMF-CRL hydrogen bonds efficiently, whereas increased the intermolecular hydrogen bondings between DMF and trehalose. Thus, the origin of its denaturing effects of DMF on protein is thought to be due to the preferential exclusion of trehalose as well as the intermolecular hydrogen bondings between trehalose and DMF. These findings suggest that trehalose protect the CRL protein from DMF-induced unfolding via both indirect and direct interactions. PMID:27031946

  9. Counteraction of Trehalose on N, N-Dimethylformamide-Induced Candida rugosa Lipase Denaturation: Spectroscopic Insight and Molecular Dynamic Simulation.

    PubMed

    Yang, Xin; Jiang, Ling; Jia, Yigang; Hu, Yi; Xu, Qing; Xu, Xian; Huang, He

    2016-01-01

    Candida rugosa lipase (CRL) has been widely used as a biocatalyst for non-aqueous synthesis in biotechnological applications, which, however, often suffers significant loss of activity in organic solvent. Experimental results show that trehalose could actively counteract the organic-solvent-induced protein denaturation, while the molecular mechanisms still don't unclear. Herein, CRL was used as a model enzyme to explore the effects of trehalose on the retention of enzymatic activity upon incubation in N,N-dimethylformamide (DMF). Results showed that both catalytic activity and conformation changes of CRL influenced by DMF solvent were inhibited by trehalose in a dose-dependent fashion. The simulations further indicated that the CRL protein unfolded in binary DMF solution, but retained the native state in the ternary DMF/trehalose system. Trehalose as the second osmolyte added into binary DMF solution decreased DMF-CRL hydrogen bonds efficiently, whereas increased the intermolecular hydrogen bondings between DMF and trehalose. Thus, the origin of its denaturing effects of DMF on protein is thought to be due to the preferential exclusion of trehalose as well as the intermolecular hydrogen bondings between trehalose and DMF. These findings suggest that trehalose protect the CRL protein from DMF-induced unfolding via both indirect and direct interactions.

  10. Enthalpies of solvation for dopamine hydrochloride in water-ethanol solutions

    NASA Astrophysics Data System (ADS)

    Vandyshev, V. N.; Ledenkov, S. F.; Molchanov, A. S.

    2012-10-01

    The enthalpies of dissolution of dopamine hydrochloride (H2Dop · HCl) in water-ethanol solvents containing from 0 to 0.8 mole fraction of ethanol are measured by calorimetry at 298.15 K. Standard enthalpies of transfer (Δtr H ∘) for the molecular (H2Dop) and cationic (H3Dop+) forms of dopamine from water into binary solvents are calculated from the obtained data. The enthalpies of transfer of H3Dop+ cation are determined from the enthalpies of dissolution of H2Dop · HCl using the familiar method of separating the molar quantities into ionic contributions (Ph4P+ = BPh{4/-}), and by an original alternative procedure. The effect of the composition of the binary solvent on the solvation of dopamine is considered.

  11. Lipase-catalyzed synthesis of xylitol monoesters: solvent engineering approach.

    PubMed

    Castillo, E; Pezzotti, F; Navarro, A; López-Munguía, A

    2003-05-08

    A solvent engineering strategy was applied to the lipase-catalyzed synthesis of xylitol-oleic acid monoesters. The different esterification degrees for this polyhydroxylated molecule were examined in different organic solvent mixtures. In this context, conditions for high selectivity towards monooleoyl xylitol synthesis were enhanced from 6 mol% in pure n-hexane to 73 mol% in 2-methyl-2-propanol/dimethylsulfoxide (DMSO) 80:20 (v/v). On the contrary, the highest production of di- and trioleoyl xylitol, corresponding to 94 mol%, was achieved in n-hexane. Changes in polarity of the reaction medium and in the molecular interactions between solvents and reactants were correlated with the activity coefficients of products. Based on experimental results and calculated thermodynamic activities, the effect of different binary mixtures of solvents on the selective production of xylitol esters is reported. From this analysis, it is concluded that in the more polar conditions (100% dimethylsulfoxide (DMSO)), the synthesis of xylitol monoesters is favored. However, these conditions are unfavorable in terms of enzyme stability. As an alternative, binary mixtures of solvents were proposed. Each mixture of solvents was characterized in terms of the quantitative polarity parameter E(T)(30) and related with the activity coefficients of xylitol esters. To our knowledge, the characterization of solvent mixtures in terms of this polarity parameter and its relationship with the selectivity of the process has not been previously reported.

  12. Improvement in bioavailability of transdermally applied flurbiprofen using tulsi (Ocimum sanctum) and turpentine oil.

    PubMed

    Charoo, Naseem Ahmad; Shamsher, Areeg Anwer Ali; Kohli, Kanchan; Pillai, Krishna; Rahman, Ziyaur

    2008-09-01

    Penetration enhancing potential of tulsi and turpentine oil on transdermal delivery of flurbiprofen, a potent non-steroidal anti-inflammatory agent, was investigated. The transdermal permeation rate of flurbiprofen across the rat abdominal skin from binary solvent mixture composition of propylene glycol (PG):isopropyl alcohol (IPA) (30:70%, v/v) was 98.88 microg/cm(2)/h, significantly higher than other binary solvent mixtures. The corresponding steady state plasma concentration, 0.71 microg/ml, was much lower than required steady state plasma concentration of 3-5 microg/ml. Hence influence of tulsi and turpentine oil in the optimized binary solvent mixture along with the increased drug load on the flurbiprofen permeation was evaluated. The magnitude of the flux enhancement factor with turpentine oil and tulsi oil was 2.4 and 2.0 respectively at 5% (v/v) concentration beyond which there was no significant increase in the flux. Addition of 2% (w/v) hydroxypropyl methylcellulose (HPMC), as a thickening agent, resulted in desired consistency for the fabrication of patch with insignificant effect on permeation rate of flurbiprofen. The reservoir type of transdermal patch formulation, fabricated by encapsulating the flurbiprofen reservoir solution within a shallow compartment moulded from polyester backing film and microporous ethyl vinyl acetate membrane, did not modulate the skin permeation of flurbiprofen through rat skin in case of turpentine formulations whereas flux of formulations with tulsi oil was significantly altered. The influence of penetration enhancer and solvents on the anatomical structure of the rat skin was studied. Enhancement properties exhibited by turpentine oil and tulsi oil in optimized binary solvent mixture were superior as compared to solvent treated and normal control groups with negligible skin irritation. The fabricated transdermal patches were found to be stable. The bioavailability of flurbiprofen with reference to orally administered flurbiprofen in albino rats was found to increase by 2.97, 3.80 and 5.56 times with transdermal patch formulation without enhancer, tulsi and turpentine oil formulations, respectively. The results were confirmed by pharmacodynamic studies in rat edema inflammation model.

  13. A Mechanistic Understanding of a Binary Additive System to Synergistically Boost Efficiency in All-Polymer Solar Cells

    PubMed Central

    Kim, Yu Jin; Ahn, Sunyong; Wang, Dong Hwan; Park, Chan Eon

    2015-01-01

    All-polymer solar cells are herein presented utilizing the PBDTTT-CT donor and the P(NDI2OD-T2) acceptor with 1,8-diiodooctane (DIO) and 1-chloronaphthalene (CN) binary solvent additives. A systematic study of the polymer/polymer bulk heterojunction photovoltaic cells processed from the binary additives revealed that the microstructures and photophysics were quite different from those of a pristine system. The combination of DIO and CN with a DIO/CN ratio of 3:1 (3 vol% DIO, 1 vol% CN and 96 vol% o-DCB) led to suitable penetrating polymer networks, efficient charge generation and balanced charge transport, which were all beneficial to improving the efficiency. This improvement is attributed to increase in power conversion efficiency from 2.81% for a device without additives to 4.39% for a device with the binary processing additives. A detailed investigation indicates that the changes in the polymer:polymer interactions resulted in the formation of a percolating nasnoscale morphology upon processing with the binary additives. Depth profile measurements with a two-dimensional grazing incidence wide-angle X-ray scattering confirm this optimum phase feature. Furthermore impedance spectroscopy also finds evidence for synergistically boosting the device performance. PMID:26658472

  14. Alcohol based-deep eutectic solvent (DES) as an alternative green additive to increase rotenone yield

    NASA Astrophysics Data System (ADS)

    Othman, Zetty Shafiqa; Hassan, Nur Hasyareeda; Zubairi, Saiful Irwan

    2015-09-01

    Deep eutectic solvents (DESs) are basically molten salts that interact by forming hydrogen bonds between two added components at a ratio where eutectic point reaches a melting point lower than that of each individual component. Their remarkable physicochemical properties (similar to ionic liquids) with remarkable green properties, low cost and easy handling make them a growing interest in many fields of research. Therefore, the objective of pursuing this study is to analyze the potential of alcohol-based DES as an extraction medium for rotenone extraction from Derris elliptica roots. DES was prepared by a combination of choline chloride, ChCl and 1, 4-butanediol at a ratio of 1/5. The structure of elucidation of DES was analyzed using FTIR, 1H-NMR and 13C-NMR. Normal soaking extraction (NSE) method was carried out for 14 hours using seven different types of solvent systems of (1) acetone; (2) methanol; (3) acetonitrile; (4) DES; (5) DES + methanol; (6) DES + acetonitrile; and (7) [BMIM] OTf + acetone. Next, the yield of rotenone, % (w/w), and its concentration (mg/ml) in dried roots were quantitatively determined by means of RP-HPLC. The results showed that a binary solvent system of [BMIM] OTf + acetone and DES + acetonitrile was the best solvent system combination as compared to other solvent systems. It contributed to the highest rotenone content of 0.84 ± 0.05% (w/w) (1.09 ± 0.06 mg/ml) and 0.84 ± 0.02% (w/w) (1.03 ± 0.01 mg/ml) after 14 hours of exhaustive extraction time. In conclusion, a combination of the DES with a selective organic solvent has been proven to have a similar potential and efficiency as of ILs in extracting bioactive constituents in the phytochemical extraction process.

  15. Molecular insights into early stage aggregation of di-Fmoc-L-lysine in binary mixture of organic solvent and water

    NASA Astrophysics Data System (ADS)

    Huda, Md Masrul; Rai, Neeraj

    Molecular gels are relatively new class of soft materials, which are formed by the supramolecular aggregation of low molecular weight gelators (LMWGs) in organic solvents and/or water. Hierarchical self-assembly of small gelator molecules lead to three-dimensional complex fibrillar networks, which restricts the flow of solvents and results in viscous solid like materials or gels. These gels have drawn significant attentions for their potential applications for drug delivery, tissue engineering, materials for sensors etc. As of now, self-assembly of gelator molecules into one-dimensional fibers is not well understood, although that is very important to design new gelators for desired applications. Here, we present molecular dynamics study that provides molecular level insight into early stage aggregation of selected gelator, di-Fmoc-L-lysine in binary mixture of organic solvent and water. We will present the role of different functional groups of gelator molecule such as aromatic ring, amide, and carboxylic group on aggregation. We will also present the effect of concentrations of gelator and solvent on self-assembly of gelators. This study has captured helical fiber growth and branching of fiber, which is in good agreement with experimental observations.

  16. Dielectric and conformational studies of hydrogen bonded 2-ethoxyethanol and ethyl methyl ketone system

    NASA Astrophysics Data System (ADS)

    Pattebahadur, Kanchan. L.; Deshmukh, S. D.; Mohod, A. G.; Undre, P. B.; Patil, S. S.; Khirade, P. W.

    2018-05-01

    The Dielectric constant, density and refractive index of binary mixture of 2-ethoxy ethanol (2-EE) with ethyl methyl ketone (EMK) including those of the pure liquids were measured for 11 concentrations at 25°C temperature. The experimental data is used to calculate the Excess molar volume, Excess dielectric constant, Kirkwood correlation factor and Bruggemann factor. The excess parameters results were fitted to the Redlich-Kister type polynomial equation to derive its fitting coefficient. The Kirkwood correlation factor of the mixture has been discussed to yield information about solute solvent interaction. The Bruggeman plot shows a deviation from linearity. The FT-IR spectra of pure and their binary mixtures are also studied.

  17. Viscosity minima in binary mixtures of ionic liquids + molecular solvents.

    PubMed

    Tariq, M; Shimizu, K; Esperança, J M S S; Canongia Lopes, J N; Rebelo, L P N

    2015-05-28

    The viscosity (η) of four binary mixtures (ionic liquids plus molecular solvents, ILs+MSs) was measured in the 283.15 < T/K < 363.15 temperature range. Different IL/MS combinations were selected in such a way that the corresponding η(T) functions exhibit crossover temperatures at which both pure components present identical viscosity values. Consequently, most of the obtained mixture isotherms, η(x), exhibit clear viscosity minima in the studied T-x range. The results are interpreted using auxiliary molecular dynamics (MD) simulation data in order to correlate the observed η(T,x) trends with the interactions in each mixture, including the balance between electrostatic forces and hydrogen bonding.

  18. A model of the evaporation of binary-fuel clusters of drops

    NASA Technical Reports Server (NTRS)

    Harstad, K.; Bellan, J.

    1991-01-01

    A formulation has been developed to describe the evaporation of dense or dilute clusters of binary-fuel drops. The binary fuel is assumed to be made of a solute and a solvent whose volatility is much lower than that of the solute. Convective flow effects, inducing a circulatory motion inside the drops, are taken into account, as well as turbulence external to the cluster volume. Results obtained with this model show that, similar to the conclusions for single isolated drops, the evaporation of the volatile is controlled by liquid mass diffusion when the cluster is dilute. In contrast, when the cluster is dense, the evaporation of the volatile is controlled by surface layer stripping, that is, by the regression rate of the drop, which is in fact controlled by the evaporation rate of the solvent. These conclusions are in agreement with existing experimental observations. Parametric studies show that these conclusions remain valid with changes in ambient temperature, initial slip velocity between drops and gas, initial drop size, initial cluster size, initial liquid mass fraction of the solute, and various combinations of solvent and solute. The implications of these results for computationally intensive combustor calculations are discussed.

  19. Multicomponent ionic liquid CMC prediction.

    PubMed

    Kłosowska-Chomiczewska, I E; Artichowicz, W; Preiss, U; Jungnickel, C

    2017-09-27

    We created a model to predict CMC of ILs based on 704 experimental values published in 43 publications since 2000. Our model was able to predict CMC of variety of ILs in binary or ternary system in a presence of salt or alcohol. The molecular volume of IL (V m ), solvent-accessible surface (Ŝ), solvation enthalpy (Δ solv G ∞ ), concentration of salt (C s ) or alcohol (C a ) and their molecular volumes (V ms and V ma , respectively) were chosen as descriptors, and Kernel Support Vector Machine (KSVM) and Evolutionary Algorithm (EA) as regression methodologies to create the models. Data was split into training and validation set (80/20) and subjected to bootstrap aggregation. KSVM provided better fit with average R 2 of 0.843, and MSE of 0.608, whereas EA resulted in R 2 of 0.794 and MSE of 0.973. From the sensitivity analysis it was shown that V m and Ŝ have the highest impact on ILs micellization in both binary and ternary systems, however surprisingly in the presence of alcohol the V m becomes insignificant/irrelevant. Micelle stabilizing or destabilizing influence of the descriptors depends upon the additives. Previous attempts at modelling the CMC of ILs was generally limited to small number of ILs in simplified (binary) systems. We however showed successful prediction of the CMC over a range of different systems (binary and ternary).

  20. Study of intermolecular interactions in binary mixtures of 2'-chloro-4-methoxy-3-nitro benzil in various solvents and at different concentrations by the measurement of acoustic properties.

    PubMed

    Nithya, G; Thanuja, B; Kanagam, Charles C

    2013-01-01

    Density (ρ), ultrasonic velocity (u), adiabatic compressibility (β), apparent molar volume (Ø), acoustic impedance (Z), intermolecular free length (L(f)), relative association (RA) of binary mixtures of 2'-chloro-4-methoxy-3-nitro benzil (abbreviated as 2CBe) in ethanol, acetonitrile, chloroform, dioxane and benzene were measured at different concentrations at 298 K. Several useful parameters such as excess density, excess ultrasonic velocity, excess adiabatic compressibility, excess apparent molar volume, excess acoustic impedance and excess intermolecular free length have been calculated. These parameters are used to explain the nature of intermolecular interactions taking place in the binary mixture. The above study is useful in understanding the solute--solvent interactions occurring in different concentrations at room temperature. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. A Phase Separation Route to Synthesize α-Fe2O3 Porous Nanofibers via Electrospinning for Ultrafast Ethanol Sensing

    NASA Astrophysics Data System (ADS)

    Dong, Shuwen; Yan, Shuang; Gao, Wenyuan; Liu, Guishan; Hao, Hongshun

    2018-07-01

    A facile and economic procedure was provided to synthesize α-Fe2O3 nanofibers. In this procedure, porous α-Fe2O3 nanofibers were obtained by a single-polymer/binary-solvent system, while solid α-Fe2O3 nanofibers were prepared by a single-polymer/single-solvent system. The crystal structure and morphology of both samples were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption/desorption isotherms. The formation mechanism of porous structure was based on solvent evaporation-induced phase separation by the use of mixed solvents with different volatility. Furthermore, ethanol-sensing performance of the porous α-Fe2O3 nanofibers was evaluated and compared with solid α-Fe2O3 nanofibers. Results from gas-sensing measurements reveal that porous α-Fe2O3 nanofibers exhibit higher sensitivity and slightly longer recovery time than solid α-Fe2O3 nanofibers. Over all, the gas sensor based on porous α-Fe2O3 nanofibers shows excellent ethanol-sensing capability with high sensitivity and ultrafast response/recovery behaviors, indicating its potential application as a real-time monitoring gas sensor.

  2. A Phase Separation Route to Synthesize α-Fe2O3 Porous Nanofibers via Electrospinning for Ultrafast Ethanol Sensing

    NASA Astrophysics Data System (ADS)

    Dong, Shuwen; Yan, Shuang; Gao, Wenyuan; Liu, Guishan; Hao, Hongshun

    2018-04-01

    A facile and economic procedure was provided to synthesize α-Fe2O3 nanofibers. In this procedure, porous α-Fe2O3 nanofibers were obtained by a single-polymer/binary-solvent system, while solid α-Fe2O3 nanofibers were prepared by a single-polymer/single-solvent system. The crystal structure and morphology of both samples were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption/desorption isotherms. The formation mechanism of porous structure was based on solvent evaporation-induced phase separation by the use of mixed solvents with different volatility. Furthermore, ethanol-sensing performance of the porous α-Fe2O3 nanofibers was evaluated and compared with solid α-Fe2O3 nanofibers. Results from gas-sensing measurements reveal that porous α-Fe2O3 nanofibers exhibit higher sensitivity and slightly longer recovery time than solid α-Fe2O3 nanofibers. Over all, the gas sensor based on porous α-Fe2O3 nanofibers shows excellent ethanol-sensing capability with high sensitivity and ultrafast response/recovery behaviors, indicating its potential application as a real-time monitoring gas sensor.

  3. Conversion of Nitrocellulose to Smokeless Powder

    DTIC Science & Technology

    1941-01-17

    for Various Cellulose Esters. The Correlation of Solvent Power and the Vis- cosity of Cellulose Ester Solutions fi number of binary and ternary...Kon.Akad.WetenSch.Amsterdam The Osmotic Pressure and the Vlscosity3of671ඕ(l933) Nitrocellulose Solutions 6. J.DuClaux and J.Barblere. Bull Soc nbim /k^ ^c...solvents are added to nitrocellulose, swelling oc- curs and if enough solvent is present, the gelatinized mass then passes into a liquid solution

  4. Correlation Analysis of Reactivity in the Photo- and Electro-Reduction of Cobalt(III) Complexes in Binary Organic Solvent/Water Mixtures

    NASA Astrophysics Data System (ADS)

    Sivaraj, Kumarasamy; Elango, Kuppanagounder P.

    2008-08-01

    The photo- and electro-reduction of a series of cobalt(III) complexes of the type cis-β - [Co(trien)(RC6H4NH2)Cl]Cl2 with R = H, p-OMe, p-OEt, p-Me, p-Et, p-F, and m-Me has been studied in binary propan-2-ol/water mixtures. The redox potential (E1/2) and photo-reduction quantum yield (ΦCo(II)) data were correlated with solvent and structural parameters with the aim to shed some light on the mechanism of these reactions. The correlation of E1/2 and ΦCo(II) with macroscopic solvent parameters, viz. relative permittivity, indicated that the reactivity is influenced by both specific and non-specific solute-solvent interactions. The Kamlet-Taft solvatochromic comparison method was used to separate and quantify these effects: An increase in the percentage of organic cosolvent in the medium enhances both reduction processes, and there exists a good linear correlation between E1/2 and ΦCo(II), suggesting a similar solvation of the participants in these redox processes.

  5. Binary Solvents Dispersive Liquid-Liquid Microextraction (BS-DLLME) Method for Determination of Tramadol in Urine Using High-Performance Liquid Chromatography.

    PubMed

    Kiarostami, Vahid; Rouini, Mohamad-Reza; Mohammadian, Razieh; Lavasani, Hoda; Ghazaghi, Mehri

    2014-02-03

    Tramadol is an opioid, synthetic analog of codeine and has been used for the treatment of acute or chronic pain may be abused. In this work, a developed Dispersive liquid liquid microextraction (DLLME) as binary solvents-based dispersive liquid-liquid microextraction (BS-DLLME) combined with high performance liquid chromatography (HPLC) with fluorescence detection (FD) was employed for determination of tramadol in the urine samples. This procedure involves the use of an appropriate mixture of binary extraction solvents (70 μL CHCl3 and 30 μL ethyl acetate) and disperser solvent (600 μL acetone) for the formation of cloudy solution in 5 ml urine sample comprising tramadol and NaCl (7.5%, w/v). After centrifuging, the small droplets of extraction solvents were precipitated. In the final step, the HPLC with fluorescence detection was used for determination of tramadol in the precipitated phase. Various factors on the efficiency of the proposed procedure were investigated and optimized. The detection limit (S/N = 3) and quantification limit (S/N = 10) were found 0.2 and 0.9 μg/L, respectively. The relative standard deviations (RSD) for the extraction of 30 μg L of tramadol was found 4.1% (n = 6). The relative recoveries of tramadol from urine samples at spiking levels of 10, 30 and 60 μg/L were in the range of 95.6 - 99.6%. Compared with other methods, this method provides good figures of merit such as good repeatability, high extraction efficiency, short analysis time, simple procedure and can be used as microextraction technique for routine analysis in clinical laboratories.

  6. Binary Solvents Dispersive Liquid—Liquid Microextraction (BS-DLLME) Method for Determination of Tramadol in Urine Using High-Performance Liquid Chromatography

    PubMed Central

    2014-01-01

    Background Tramadol is an opioid, synthetic analog of codeine and has been used for the treatment of acute or chronic pain may be abused. In this work, a developed Dispersive liquid liquid microextraction (DLLME) as binary solvents-based dispersive liquid-liquid microextraction (BS-DLLME) combined with high performance liquid chromatography (HPLC) with fluorescence detection (FD) was employed for determination of tramadol in the urine samples. This procedure involves the use of an appropriate mixture of binary extraction solvents (70 μL CHCl3 and 30 μL ethyl acetate) and disperser solvent (600 μL acetone) for the formation of cloudy solution in 5 ml urine sample comprising tramadol and NaCl (7.5%, w/v). After centrifuging, the small droplets of extraction solvents were precipitated. In the final step, the HPLC with fluorescence detection was used for determination of tramadol in the precipitated phase. Results Various factors on the efficiency of the proposed procedure were investigated and optimized. The detection limit (S/N = 3) and quantification limit (S/N = 10) were found 0.2 and 0.9 μg/L, respectively. The relative standard deviations (RSD) for the extraction of 30 μg L of tramadol was found 4.1% (n = 6). The relative recoveries of tramadol from urine samples at spiking levels of 10, 30 and 60 μg/L were in the range of 95.6 – 99.6%. Conclusions Compared with other methods, this method provides good figures of merit such as good repeatability, high extraction efficiency, short analysis time, simple procedure and can be used as microextraction technique for routine analysis in clinical laboratories. PMID:24495475

  7. Binary breath figures for straightforward and controllable self-assembly of microspherical caps.

    PubMed

    Gong, Jianliang; Xu, Bingang; Tao, Xiaoming; Li, Lei

    2016-05-11

    The intense interest surrounding asymmetrical microparticles originates from their unique anisotropic properties and promising applications. In this work, direct self-assembly of polymeric microspherical caps without the assistance of any additives has been achieved by using low-surface-tension methanol (MeOH) and high-surface-tension water as binary breath figures (BFs). With the evaporation of polystyrene (PS) solution containing low-boiling-point solvent in the binary vapors, the formed MeOH BFs could quickly diffuse into solution, while water BFs tended to remain at the solution surface. This led to the formation of a gradient nonsolvent layer at the vapor/solution interface, which induced the formation of nuclei and guided further asymmetrical growth of polymer particles. After the spontaneous removal of MeOH, water and residual solvent by evaporation, polymeric microspherical caps were left on the substrate. Through controlling the proportion of water introduced by adjusting the ratios of MeOH and water, polymeric microspherical caps with a range of controllable shapes (divided at different positions of a sphere) were successfully obtained. The formation mechanism was explained based on the difference of vapor pressure, surface tension and miscibility between the employed solvents and nonsolvents. A solvent possessing a high vapor pressure, low surface tension and good miscibility with MeOH contributed to the formation of microspherical caps. This flexible, green and straightforward technique is a nondestructive strategy, and avoids complicated work on design, preparation and removal of hard templates and additives.

  8. Disaggregation induced solvatochromic switch: A study of dansylated polyglycerol dendrons in binary solvent mixture

    NASA Astrophysics Data System (ADS)

    Subuddhi, Usharani; Vuram, Prasanna K.; Chadha, Anju; Mishra, Ashok K.

    2014-07-01

    A reversal in solvatochromic behaviour was observed in second and third generation glycerol based dansylated polyether dendrons in water on addition of a second solvent like methanol or acetonitrile. Below a certain percentage of the nonaqueous solvent there is a negative-solvatochromism observed and above that there is a switch to positive-solvatochromism. The negative-solvatochromism is attributed to the progressive disaggregation of the dendron aggregates by the nonaqueous solvent component. Once the disaggregation process is complete, positive-solvatochromism is exhibited by the dendron monomers. Higher the hydrophobicity of the dendron more is the amount of the second solvent required for disaggregation.

  9. Radiation-induced polymerization of glass forming systems. VI. Polymerization rate at higher conversion in binary systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaetsu, I.; Ito, A.; Hayashi, K.

    1973-08-01

    The effect of temperature and composition on the inflection point in the time-conversion curve and the saturated conversion was investigated in the gamma -radio-induced radical polymerization of binary systems consisting of a glass- forming monomer and a solvent. In the polymerization of completely homogeneous systems such as glycidyl methacrylate (GMA) -triacetin and hydroxyethyl methacrylate (HEMA) --propylene glycol systems, the time-conversion curve has an inflection point at polymerization temperatures between T/sub vm/(T/sub v/ of monomer system) and T/sub vp/ (T/sub v/ of polymer system). Such conversions at the inflection point changed monotonically between 0 and 100% in this temperature range. T/submore » v/ was found to be 30 to 50 deg C higher than T/sub g/ (glass transition temperature) and a monotonic function of composition (monomer -- polymer -- solvent). The acceleration effect continued to 100% conversion above T/sub vp/, and no acceleration effect was observed below T/sub vm/. The saturated conversion in homogeneous systems changed monotonically between 0 and 100% for polymerization temperatures between T/sub gm/ (T/sub g/ of monomer system) and T/sub gp/(T of polymer system). T/sub g/ was also a monotonic function of composition. No saturation in conversion was observed above T/sub gp/ , and no polymerization occurred below T/sub gm/. In the polymerization of completely heterogeneous systems such as HEMA-dioctyl phthalate, no acceleration effect was observed at any temperature and composition. The saturated conversion was 100% sbove T/sub g/ of pure HEMA, and no polymerization occurred below this temperature in this system. (auth)« less

  10. The role of the attractive and the repulsive interactions in the nonpolar solvation dynamics in simple fluids from the gas-like to the liquid-like densities

    NASA Astrophysics Data System (ADS)

    Yamaguchi, T.; Kimura, Y.; Hirota, N.

    1999-09-01

    We have performed molecular dynamics (MD) simulations of the nonpolar solvation dynamics in simple fluids composed of particles interacting through the Lennard-Jones (LJ) 12-6 potential or its repulsive part. The attractive or the repulsive part of the solute-solvent interaction is assumed to change on the excitation of a solute. We have followed the transition energy fluctuation of the solute by the equilibrium simulation. The division of the LJ potential followed the method of WCA [J. W. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54, 5237 (1971)]. We have surveyed over a wide solvent density region from gas-like to liquid-like densities at the constant temperature. When the attractive part changes, the relaxation becomes faster with an increase of the solvent density. This result contradicts with previous theories that treat the nonpolar solvation dynamics in terms of the diffusion of solvent particles. The time scale of the initial part of the relaxation is well correlated with the static fluctuation divided by the static average, which suggests the importance of the curvature of the free energy surface in the initial part of the solvation. When the repulsive part changes, the initial part of the relaxation is almost density independent, determined by the binary motion between solute and solvent. It is consistent with the result that the static fluctuation is almost proportional to the static average, which indicates the absence of the static correlation between solvent particles. On the other hand, the solvation correlation function shows rather complicated density dependence at the longer time scale. In the case of the binary mixture solvent, the relaxation time is inversely proportional to the diffusion coefficient. On the basis of the nonpolar solvation dynamics, the validity of the isolated binary collision model for the vibrational energy relaxation is also discussed, and the recent hydrodynamic theory on the vibrational energy relaxation [B. J. Cherayil and M. D. Feyer, J. Chem. Phys. 107, 7642 (1997)] is critically examined.

  11. Ammonothermal Growth of Chalcogenide Single Crystal Materials

    DTIC Science & Technology

    1997-11-05

    chalcogenide with an acidic mineraiizer 15 in presence of liquid ammonia solvent at high pressures and at temperatures in the range of about 300 to 550°C...demonstrates growth of binary CaS single crystals in a medium consisting of CaS powder and NH4I acid mineraiizer in ammonia solvent in a fused quartz

  12. Advanced dielectric continuum model of preferential solvation

    NASA Astrophysics Data System (ADS)

    Basilevsky, Mikhail; Odinokov, Alexey; Nikitina, Ekaterina; Grigoriev, Fedor; Petrov, Nikolai; Alfimov, Mikhail

    2009-01-01

    A continuum model for solvation effects in binary solvent mixtures is formulated in terms of the density functional theory. The presence of two variables, namely, the dimensionless solvent composition y and the dimensionless total solvent density z, is an essential feature of binary systems. Their coupling, hidden in the structure of the local dielectric permittivity function, is postulated at the phenomenological level. Local equilibrium conditions are derived by a variation in the free energy functional expressed in terms of the composition and density variables. They appear as a pair of coupled equations defining y and z as spatial distributions. We consider the simplest spherically symmetric case of the Born-type ion immersed in the benzene/dimethylsulfoxide (DMSO) solvent mixture. The profiles of y(R ) and z(R ) along the radius R, which measures the distance from the ion center, are found in molecular dynamics (MD) simulations. It is shown that for a given solute ion z(R ) does not depend significantly on the composition variable y. A simplified solution is then obtained by inserting z(R ), found in the MD simulation for the pure DMSO, in the single equation which defines y(R ). In this way composition dependences of the main solvation effects are investigated. The local density augmentation appears as a peak of z(R ) at the ion boundary. It is responsible for the fine solvation effects missing when the ordinary solvation theories, in which z =1, are applied. These phenomena, studied for negative ions, reproduce consistently the simulation results. For positive ions the simulation shows that z ≫1 (z =5-6 at the maximum of the z peak), which means that an extremely dense solvation shell is formed. In such a situation the continuum description fails to be valid within a consistent parametrization.

  13. Application of finite inverse gas chromatography in hypromellose acetate succinate-water-acetone systems.

    PubMed

    Chiu, Sheng-Wei; Sturm, Derek R; Moser, Justin D; Danner, Ronald P

    2016-09-30

    A modification of a GC was developed to investigate both infinitely dilute and finite concentrations of solvents in polymers. Thermodynamic properties of hypromellose acetate succinate (HPMCAS-L)-acetone-water systems are important for the optimization of spray-drying processes used in pharmaceutical manufacturing of solid dispersion formulations. These properties, at temperatures below the glass transition temperature, were investigated using capillary column inverse gas chromatography (CCIGC). Water was much less soluble in the HPMCAS-L than acetone. Experiments were also conducted at infinitely dilute concentrations of one of the solvents in HPMCAS-L that was already saturated with the other solvent. Overall the partitioning of the water was not significantly affected by the presence of either water or acetone in the polymer. The acetone partition coefficient decreased as either acetone or water was added to the HPMCAS-L. A representation of the HPMCAS-L structure in terms of UNIFAC groups has been developed. With these groups, the UNIFAC-vdw-FV model did a reasonable job of predicting the phase equilibria in the binary and ternary systems. The Flory-Huggins correlation with fitted interaction parameters represented the data well. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Unravelling the Composition Dependent Anomalies of Pair Hydrophobicity in Water-Ethanol Binary Mixtures.

    PubMed

    Halder, Ritaban; Jana, Biman

    2018-06-05

    Aqueous binary mixtures have received immense attention in recent years because of their extensive application in several biological and industrial processes. Water-ethanol binary mixture serves as a unique system because it exhibits composition dependent alteration of dynamic and thermodynamic properties. Our present work demonstrates how different compositions of water-ethanol binary mixtures affect the pair hydrophobicity of different hydrophobes. Pair hydrophobicity is measured by the depth of the first minimum (contact minima) of potential of mean force (PMF) profile between two hydrophobes. The pair hydrophobicity is found to be increased with addition of ethanol to water up to mole fraction of 0.10 and decreased with further addition of ethanol. This observation is shown to be true for three different pairs of hydrophobes. Decomposition of PMF into enthalpic and entropic contribution indicates a switch from entropic to enthalpic stabilization of the contact minimum upon addition of ethanol to water. The gain in mixing enthalpy of the binary solvent system upon association of two hydrophobes is found to be the determining factor for the stabilization of contact minimum. Several static/dynamics quantities (average composition fluctuations, diffusion coefficients, fluctuations in total dipole moment, propensity of ethyl-ethyl association, etc) of the ethanol-water binary mixture also show irregularities around xEtOH =0.10-0.15. We have also discovered that the hydrogen bonding pattern of ethanol rather than water reveals a change in trend near the similar composition range. As the anomalous behaviour of the physical/dynamical properties along with the pair hydrophobicity in aqueous binary mixture of amphiphilic solutes is common phenomena, our results may provide a general viewpoint on these aspects.

  15. Alcohol based-deep eutectic solvent (DES) as an alternative green additive to increase rotenone yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Othman, Zetty Shafiqa; Hassan, Nur Hasyareeda; Zubairi, Saiful Irwan

    Deep eutectic solvents (DESs) are basically molten salts that interact by forming hydrogen bonds between two added components at a ratio where eutectic point reaches a melting point lower than that of each individual component. Their remarkable physicochemical properties (similar to ionic liquids) with remarkable green properties, low cost and easy handling make them a growing interest in many fields of research. Therefore, the objective of pursuing this study is to analyze the potential of alcohol-based DES as an extraction medium for rotenone extraction from Derris elliptica roots. DES was prepared by a combination of choline chloride, ChCl and 1,more » 4-butanediol at a ratio of 1/5. The structure of elucidation of DES was analyzed using FTIR, {sup 1}H-NMR and {sup 13}C-NMR. Normal soaking extraction (NSE) method was carried out for 14 hours using seven different types of solvent systems of (1) acetone; (2) methanol; (3) acetonitrile; (4) DES; (5) DES + methanol; (6) DES + acetonitrile; and (7) [BMIM] OTf + acetone. Next, the yield of rotenone, % (w/w), and its concentration (mg/ml) in dried roots were quantitatively determined by means of RP-HPLC. The results showed that a binary solvent system of [BMIM] OTf + acetone and DES + acetonitrile was the best solvent system combination as compared to other solvent systems. It contributed to the highest rotenone content of 0.84 ± 0.05% (w/w) (1.09 ± 0.06 mg/ml) and 0.84 ± 0.02% (w/w) (1.03 ± 0.01 mg/ml) after 14 hours of exhaustive extraction time. In conclusion, a combination of the DES with a selective organic solvent has been proven to have a similar potential and efficiency as of ILs in extracting bioactive constituents in the phytochemical extraction process.« less

  16. Studies on a new class of organogelator containing 2-anthracenecarboxylic acid: influence of gelator and solvent on stereochemistry of the photodimers.

    PubMed

    Dawn, Arnab; Fujita, Norifumi; Haraguchi, Shuichi; Sada, Kazuki; Tamaru, Shun-ichi; Shinkai, Seiji

    2009-11-07

    A new class of binary organogelator (G1, G2 and G3) based on 2-anthracenecarboxylic acid (2Ac), attached noncovalently with the gelator counterpart containing a 3,4,5-tris(n-dodecyloxy)benzoylamide backbone has been developed. Among the three gelators, two (G2 and G3) are chiral containing D-alanine or L-2-phenylglycine moieties, respectively. They can act as efficient gelators of organic solvents with varying polarity depending upon the gelator systems. Gelator G1 even gelates chiral solvents. The photoirradiation of the gel samples produces photocyclodimers having different degrees of stereoselectivity for different systems. Gels with G1 and G2 produce head-to-head (h-h) photodimers as major products, whereas the stereoselectivity is reversed for the gels with G3 producing head-to-tail (h-t) photodimers as major products. Among those, G2/cyclohexane gel shows the highest degree of stereoselectivity, producing only h-h photodimers with some significant amount of chiral induction. Other chiral systems exhibit low to moderate chiral inductions. The gelator G1 can differentiate between the racemic and enantiomerically pure varieties of a solvent by exhibiting different gel melting temperatures (T(gel)). For different gel systems, T(gel) increases in all the cases as a consequence of photoreaction, except for the G2/cyclohexane gel, where a prominent gel-to-sol phase transition can be observed during the photoreaction. Hydrogen-bonding and pi-pi stacking interactions play the principal roles in constructing the gel structure. The morphologies of the gel systems vary between one-dimensional fibrils and a fibrillar network structure. In addition, the influences of the gelator and solvent polarity on the rate of photoreactions, photoproduct distributions as well as gel structures are investigated.

  17. CdS/C60 binary nanocomposite films prepared via phase transition of PS-b-P2VP block copolymer.

    PubMed

    Lee, Jung-Pil; Koh, Haeng-Deog; Shin, Won-Jeong; Kang, Nam-Goo; Park, Soojin; Lee, Jae-Suk

    2014-03-01

    We demonstrate the well-defined control of phase transition of a polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer from spherical micelles to lamellar structures, in which CdS and C60 nanoparticles (NPs) are selectively positioned at the P2VP domains. The CdS NPs are in situ synthesized using PS-b-P2VP block copolymer templates that are self-assembled in PS-selective solvents. The CdS-PS-b-P2VP micellar structures are transformed to lamellar phase by adjusting a solvent selectivity for both blocks. In addition, a binary system of CdS/C60 embedded in PS-b-P2VP lamellar structures (CdS/C60-PS-b-P2VP) is fabricated by embedding C60 molecules into P2VP domain though charge-transfer complexation between pyridine units of PS-b-P2VP and C60 molecules. The CdS/C60-PS-b-P2VP nanostructured films are characterized by transmission electron microscopy (TEM) and UV-Vis spectrometer. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Supercapacitor Electrolyte Solvents with Liquid Range Below -80 C

    NASA Technical Reports Server (NTRS)

    Brandon, Erik; Smart, Marshall; West, William

    2010-01-01

    A previous NASA Tech Brief ["Low-Temperature Supercapacitors" (NPO-44386) NASA Tech Briefs, Vol. 32, No 7 (July 2008), page 32] detailed ongoing efforts to develop non-aqueous supercapacitor electrolytes capable of supporting operation at temperatures below commercially available cells (which are typically limited to charging and discharging at > or equal to -40 C). These electrolyte systems may enable energy storage and power delivery for systems operating in extreme environments, such as those encountered in the Polar regions on Earth or in the exploration of space. Supercapacitors using these electrolytes may also offer improved power delivery performance at moderately low temperatures (e.g. -40 to 0 C) relative to currently available cells, offering improved cold-cranking and cold-weather acceleration capabilities for electrical or hybrid vehicles. Supercapacitors store charge at the electrochemical double-layer, formed at the interface between a high surface area electrode material and a liquid electrolyte. The current approach to extending the low-temperature limit of the electrolyte focuses on using binary solvent systems comprising a high-dielectric-constant component (such as acetonitrile) in conjunction with a low-melting-point co-solvent (such as organic formates, esters, and ethers) to depress the freezing point of the system, while maintaining sufficient solubility of the salt. Recent efforts in this area have led to the identification of an electrolyte solvent formulation with a freezing point of -85.7 C, which is achieved by using a 1:1 by volume ratio of acetonitrile to 1,3-dioxolane

  19. Rheological Predictions of Network Systems Swollen with Entangled Solvent

    DTIC Science & Technology

    2014-04-01

    represent binary entanglements and the crosses represent cross-links. Both of which are fixed in space for Green– Kubo calculations or moved affinely for...Two types of calculations can be performed, equilibrium (or Green– Kubo ) calculations in which the rate of deformation tensor21,22 is set to zero and the...autocorrelation function of stress at equilibrium is followed; or flow calculations in which a specific flow field is applied and the stress as a

  20. Nucleation in Polymers and Soft Matter

    NASA Astrophysics Data System (ADS)

    Xu, Xiaofei; Ting, Christina L.; Kusaka, Isamu; Wang, Zhen-Gang

    2014-04-01

    Nucleation is a ubiquitous phenomenon in many physical, chemical, and biological processes. In this review, we describe recent progress on the theoretical study of nucleation in polymeric fluids and soft matter, including binary mixtures (polymer blends, polymers in poor solvents, compressible polymer-small molecule mixtures), block copolymer melts, and lipid membranes. We discuss the methodological development for studying nucleation as well as novel insights and new physics obtained in the study of the nucleation behavior in these systems.

  1. Isolation and purification of diastereoisomeric flavonolignans from silymarin by binary-column recycling preparative high-performance liquid chromatography.

    PubMed

    Zhao, Weiquan; Yang, Guang; Zhong, Fanyi; Yang, Nan; Zhao, Xin; Qi, Yunpeng; Fan, Guorong

    2014-09-01

    Silymarin extracted from Silybum marianum (L.) Gaertn consists of a large number of flavonolignans, of which diastereoisomeric flavonolignans including silybin A and silybin B, and isosilybin A and isosilybin B are the main bioactive components, whose preparation from the crude extracts is still a difficult task. In this work, binary-column recycling preparative high-performance liquid chromatography systems without sample loop trapping, where two columns were switched alternately via one or two six-port switching valves, were established and successfully applied to the isolation and purification of the four diastereoisomeric flavonolignans from silymarin. The proposed system showed significant advantages over conventional preparative high-performance liquid chromatography with a single column in increasing efficiency and reducing the cost. To obtain the same amounts of products, the proposed system spends only one tenth of the time that the conventional system spends, and needs only one eleventh of the solvent that the conventional system consumes. Using the proposed system, the four diastereoisomers were successfully isolated from silymarin with purities over 98%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Estimation of Solvation Quantities from Experimental Thermodynamic Data: Development of the Comprehensive CompSol Databank for Pure and Mixed Solutes

    NASA Astrophysics Data System (ADS)

    Moine, Edouard; Privat, Romain; Sirjean, Baptiste; Jaubert, Jean-Noël

    2017-09-01

    The Gibbs energy of solvation measures the affinity of a solute for its solvent and is thus a key property for the selection of an appropriate solvent for a chemical synthesis or a separation process. More fundamentally, Gibbs energies of solvation are choice data for developing and benchmarking molecular models predicting solvation effects. The Comprehensive Solvation—CompSol—database was developed with the ambition to propose very large sets of new experimental solvation chemical-potential, solvation entropy, and solvation enthalpy data of pure and mixed components, covering extended temperature ranges. For mixed compounds, the solvation quantities were generated in infinite-dilution conditions by combining experimental values of pure-component and binary-mixture thermodynamic properties. Three types of binary-mixture properties were considered: partition coefficients, activity coefficients at infinite dilution, and Henry's-law constants. A rigorous methodology was implemented with the aim to select data at appropriate conditions of temperature, pressure, and concentration for the estimation of solvation data. Finally, our comprehensive CompSol database contains 21 671 data associated with 1969 pure species and 70 062 data associated with 14 102 binary mixtures (including 760 solvation data related to the ionic-liquid class of solvents). On the basis of the very large amount of experimental data contained in the CompSol database, it is finally discussed how solvation energies are influenced by hydrogen-bonding association effects.

  3. Thermal casting process for the preparation of anisotropic membranes and the resultant membrane

    DOEpatents

    Caneba, Gerard T. M.; Soong, David S.

    1987-01-01

    A method for providing anisotropic polymer membranes from a binary polymer/solvent solution using a thermal inversion process. A homogeneous binary solution is cast onto a support and cooled in such a way as to provide a differential in cooling rate across the thickness of the resulting membrane sheet. Isotropic or anisotropic structures of selected porosities can be produced, depending on the initial concentration of polymer in the selected solvent and on the extent of the differential in cooling rate. This differential results in a corresponding gradation in pore size. The method may be modified to provide a working skin by applying a rapid, high-temperature pulse to redissolve a predetermined thickness of the membrane at one of its faces and then freezing the entire structure.

  4. Thermal casting process for the preparation of membranes

    DOEpatents

    Caneba, G.T.M.; Soong, D.S.

    1985-07-10

    Disclosed is a method for providing anisotropic polymer membrane from a binary polymer/solvent solution using a thermal inversion process. A homogeneous binary solution is cast onto a support and cooled in such a way as to provide a differential in cooling rate across the thickness of the resulting membrane sheet. Isotropic or anisotropic structures of selected porosities can be produced, depending on the initial concentration of polymer in the selected solvent and on the extent of the differential in cooling rate. This differential results in a corresponding gradation in pore size. The method may be modified to provide a working skin by applying a rapid, high-temperature pulse to redissolve a predetermined thickness of the membrane at one of its faces and then freezing the entire structure.

  5. Effects of Preferential Solvation Revealed by Time-Resolved Magnetic Field Effects

    PubMed Central

    2017-01-01

    External magnetic fields can impact recombination yields of photoinduced electron transfer reactions by affecting the spin dynamics in transient, spin-correlated radical pair intermediates. For exciplex-forming donor–acceptor systems, this magnetic field effect (MFE) can be investigated sensitively by studying the delayed recombination fluorescence. Here, we investigate the effect of preferential solvation in microheterogeneous solvent mixtures on the radical pair dynamics of the system 9,10-dimethylanthracene (fluorophore)/N,N-dimethylaniline (quencher) by means of time-resolved magnetic field effect (TR-MFE) measurements, wherein the exciplex emission is recorded in the absence and the presence of an external magnetic field using time-correlated single photon counting (TCSPC). In microheterogeneous environments, the MFE of the exciplex emission occurs on a faster time scale than in iso-dielectric homogeneous solvents. In addition, the local polarity reported by the exciplex is enhanced compared to homogeneous solvent mixtures of the same macroscopic permittivity. Detailed analyses of the TR-MFE reveal that the quenching reaction directly yielding the radical ion pair is favored in microheterogeneous environments. This is in stark contrast to homogeneous media, for which the MFE predominantly involves direct formation of the exciplex, its subsequent dissociation to the magneto-sensitive radical pair, and re-encounters. These observations provide evidence for polar microdomains and enhanced caging, which are shown to have a significant impact on the reaction dynamics in microheterogeneous binary solvents. PMID:28263599

  6. Effects of Preferential Solvation Revealed by Time-Resolved Magnetic Field Effects.

    PubMed

    Pham, Van Thi Bich; Hoang, Hao Minh; Grampp, Günter; Kattnig, Daniel R

    2017-03-30

    External magnetic fields can impact recombination yields of photoinduced electron transfer reactions by affecting the spin dynamics in transient, spin-correlated radical pair intermediates. For exciplex-forming donor-acceptor systems, this magnetic field effect (MFE) can be investigated sensitively by studying the delayed recombination fluorescence. Here, we investigate the effect of preferential solvation in microheterogeneous solvent mixtures on the radical pair dynamics of the system 9,10-dimethylanthracene (fluorophore)/N,N-dimethylaniline (quencher) by means of time-resolved magnetic field effect (TR-MFE) measurements, wherein the exciplex emission is recorded in the absence and the presence of an external magnetic field using time-correlated single photon counting (TCSPC). In microheterogeneous environments, the MFE of the exciplex emission occurs on a faster time scale than in iso-dielectric homogeneous solvents. In addition, the local polarity reported by the exciplex is enhanced compared to homogeneous solvent mixtures of the same macroscopic permittivity. Detailed analyses of the TR-MFE reveal that the quenching reaction directly yielding the radical ion pair is favored in microheterogeneous environments. This is in stark contrast to homogeneous media, for which the MFE predominantly involves direct formation of the exciplex, its subsequent dissociation to the magneto-sensitive radical pair, and re-encounters. These observations provide evidence for polar microdomains and enhanced caging, which are shown to have a significant impact on the reaction dynamics in microheterogeneous binary solvents.

  7. Sequential Processing for Organic Photovoltaics: Design Rules for Morphology Control by Tailored Semi-Orthogonal Solvent Blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguirre, Jordan C.; Hawks, Steven A.; Ferreira, Amy S.

    2015-03-18

    Design rules are presented for significantly expanding sequential processing (SqP) into previously inaccessible polymer:fullerene systems by tailoring binary solvent blends for fullerene deposition. Starting with a base solvent that has high fullerene solubility, 2-chlorophenol (2-CP), ellipsometry-based swelling experiments are used to investigate different co-solvents for the fullerene-casting solution. By tuning the Flory-Huggins χ parameter of the 2-CP/co-solvent blend, it is possible to optimally swell the polymer of interest for fullerene interdiffusion without dissolution of the polymer underlayer. In this way solar cell power conversion efficiencies are obtained for the PTB7 (poly[(4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)(3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl)]) and PC61BM (phenyl-C61-butyric acid methyl ester) materials combination thatmore » match those of blend-cast films. Both semicrystalline (e.g., P3HT (poly(3-hexylthiophene-2,5-diyl)) and entirely amorphous (e.g., PSDTTT (poly[(4,8-di(2-butyloxy)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)-alt-(2,5-bis(4,4'-bis(2-octyl)dithieno[3,2-b:2'3'-d]silole-2,6-diyl)thiazolo[5,4-d]thiazole)]) conjugated polymers can be processed into highly efficient photovoltaic devices using the solvent-blend SqP design rules. Grazing-incidence wide-angle x-ray diffraction experiments confirm that proper choice of the fullerene casting co-solvent yields well-ordered interdispersed bulk heterojunction (BHJ) morphologies without the need for subsequent thermal annealing or the use of trace solvent additives (e.g., diiodooctane). The results open SqP to polymer/fullerene systems that are currently incompatible with traditional methods of device fabrication, and make BHJ morphology control a more tractable problem.« less

  8. Preferential melting of secondary structures during protein unfolding in different solvents: Competition between hydrophobic solvation and hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Bagchi, Biman; Roy, Susmita; Ghosh, Rikhia

    2014-03-01

    Aqueous binary mixtures such as water-DMSO, water-urea, and water-ethanol are known to serve as denaturants of a host of proteins, although the detailed mechanism is often not known. Here we combine studies on several proteins in multiple binary mixtures to obtain a unified understanding of the phenomenon. We compare with experiments to support the simulation findings. The proteins considered include (i) chicken villin head piece (HP-36), (ii) immunoglobulin binding protein G (GB1), (iii) myoglobin and (iv) lysozyme. We find that for amphiphilic solvents like DMSO, the hydrophobic groups and the strong hydrogen bonding ability of the >S =O oxygen atom act together to facilitate the unfolding. However, the hydrophilic solvents like urea, due to the presence of more hydrophilic ends (C =O and two NH2) has a high propensity of forming hydrogen bonds with the side-chain residues and backbone of beta-sheet than the same of alpha helix. Such diversity among the unfolding pathways of a given protein in different chemical environments is especially characterized by the preferential solvation of a particular secondary structure.

  9. Solubility Limits in Lennard-Jones Mixtures: Effects of Disparate Molecule Geometries.

    PubMed

    Dyer, Kippi M; Perkyns, John S; Pettitt, B Montgomery

    2015-07-23

    In order to better understand general effects of the size and energy disparities between macromolecules and solvent molecules in solution, especially for macromolecular constructs self-assembled from smaller molecules, we use the first- and second-order exact bridge diagram extensions of the HNC integral equation theory to investigate single-component, binary, ternary, and quaternary mixtures of Lennard-Jones fluids. For pure fluids, we find that the HNCH3 bridge function integral equation (i.e., exact to third order in density) is necessary to quantitatively predict the pure gas and pure liquid sides of the coexistence region of the phase diagram of the Lennard-Jones fluid. For the mixtures, we find that the HNCH2 bridge function integral equation is sufficient to qualitatively predict solubility in the binary, ternary, and quaternary mixtures, up to the nominal solubility limit. The results, as limiting cases, should be useful to several problems, including accurate phase diagram predictions for complex mixtures, design of self-assembling nanostructures via solvent controls, and the solvent contributions to the conformational behavior of macromolecules in complex fluids.

  10. The effect of solvent polarity on the accumulation of leachables from pharmaceutical product containers.

    PubMed

    Jenke, Dennis; Odufu, Alex; Poss, Mitchell

    2006-02-01

    Material/water equilibrium interaction constants (E(b)) were determined for 12 organic model solutes and a plastic material used in pharmaceutical product containers (non-PVC polyolefin). An excellent correlation was obtained between the measured interaction constants and the organic solute's octanol/water partition coefficient. The effect of solvent polarity on E(b) was assessed by examining the interaction between the plastic and selected model solutes in binary ethanol/water mixtures. In general, logE(b) could be linearily related to the polarity of the ethanol/water mixture. This information, coupled with the interaction model, was used to estimate the levels to which container leachables could accumulate in contacted solutions. Such estimates were made for six known leachables of the polyolefin material and compared to the leachable's measured accumulation levels in binary ethanol/water systems. In general, the accumulation level of the leachables increased with increasing solution polarity. For most of the leachables, the measured accumulation level was less than the calculated levels, suggesting that equilibrium was not achieved in the leaching portion of this study. This lack of equilibrium is attributable to the layered structure of the material studied, as such layering retards the migration of the leachables that are derived from the material's non-solution contact layers.

  11. Membrane formation in liquids by adding an antagonistic salt

    NASA Astrophysics Data System (ADS)

    Sadakane, Koichiro; Seto, Hideki

    2018-03-01

    Antagonistic salts are composed of hydrophilic and hydrophobic ions. In a binary mixture, such as water and organic solvent, these ion pairs preferentially dissolve to those phases, respectively, and there is a coupling between the charge density and the composition. The heterogeneous distribution of ions forms a large electric double layer at the interface between these solvents. This reduces the interfacial tension between water and organic solvent, and stabilizes an ordered structure, such as a membrane. These phenomena have been extensively studied from both theoretical and experimental point of view. In addition, the numerical simulations can reproduce such ordered structures.

  12. Corrrelation of the Specific Rates of Solvolysis of Ethyl Fluoroformate Using the Extended Grunwald-Winstein Equation

    PubMed Central

    Seong, Mi Hye; Kyong, Jin Burm; Lee, Young Hoon; Kevill, Dennis N.

    2009-01-01

    The specific rates of solvolysis of ethyl fluoroformate have been measured at 24.2 °C in 21 pure and binary solvents. These give a satisfactory correlation over the full range of solvents when the extended Grunwald-Winstein equation is applied. The sensitivities to changes in the NT solvent nucleophilicity scale and the YCl solvent ionizing power scale, and the kF/kCl values are very similar to those for solvolyses of n-octyl fluoroformate, consistent with the addition step of an addition-elimination pathway being rate-determining. For methanolysis, a solvent deuterium isotope effect of 3.10 is compatible with the incorporation of general-base catalysis into the substitution process. For five representative solvents, studies were made at several temperatures and activation parameters determined. The results are also compared with those reported earlier for ethyl chloroformate and mechanistic conclusions are drawn. PMID:19399229

  13. Dielectric and physiochemical study of binary mixture of nitrobenzene with toluene

    NASA Astrophysics Data System (ADS)

    Mohod, Ajay G.; Deshmukh, S. D.; Pattebahadur, K. L.; Undre, P. B.; Patil, S. S.; Khirade, P. W.

    2018-05-01

    This paper presents the study of binary mixture of Nitrobenzene (NB) with Toluene (TOL) for eleven different concentrations at room temperature. The determined Dielectric Constant (ɛ0) Density (ρ) and Refractive index (nD) values of binary mixture are used to calculate the excess properties i.e. Excess Dielectric Constant (ɛ0E), Excess Molar Volume (VmE), Excess Refractive Index (nDE) and Excess Molar Refraction (RmE) of mixture over the entire composition range and fitted to the Redlich-Kister equation. The Kirkwood Correlation Factor (geff) and other parameters were used to discuss the information about the orientation of dipoles and the solute-solvent interaction of binary mixture at molecular level over the entire range of concentration.

  14. Lyotropic liquid crystal engineering moving beyond binary compositional space - ordered nanostructured amphiphile self-assembly materials by design.

    PubMed

    van 't Hag, Leonie; Gras, Sally L; Conn, Charlotte E; Drummond, Calum J

    2017-05-22

    Ordered amphiphile self-assembly materials with a tunable three-dimensional (3D) nanostructure are of fundamental interest, and crucial for progressing several biological and biomedical applications, including in meso membrane protein crystallization, as drug and medical contrast agent delivery vehicles, and as biosensors and biofuel cells. In binary systems consisting of an amphiphile and a solvent, the ability to tune the 3D cubic phase nanostructure, lipid bilayer properties and the lipid mesophase is limited. A move beyond the binary compositional space is therefore required for efficient engineering of the required material properties. In this critical review, the phase transitions upon encapsulation of more than 130 amphiphilic and soluble additives into the bicontinuous lipidic cubic phase under excess hydration are summarized. The data are interpreted using geometric considerations, interfacial curvature, electrostatic interactions, partition coefficients and miscibility of the alkyl chains. The obtained lyotropic liquid crystal engineering design rules can be used to enhance the formulation of self-assembly materials and provides a large library of these materials for use in biomedical applications (242 references).

  15. Solvent dependent frequency shift and Raman noncoincidence effect of S=O stretching mode of Dimethyl sulfoxide in liquid binary mixtures.

    PubMed

    Upadhyay, Ganesh; Devi, Th Gomti; Singh, Ranjan K; Singh, A; Alapati, P R

    2013-05-15

    The isotropic and anisotropic Raman peak frequencies of S=O stretching mode of Dimethyl sulfoxide (DMSO) have been discussed in different chemical and isotopic solvent molecules using different mechanisms. The shifting of peak frequency in further dilution of DMSO with solvent molecule is observed for all solvents. Transition dipole - transition dipole interaction and hydrogen bonding may play a major role in shifting of peak frequencies. The non-coincidence effect (NCE) of DMSO was determined for all the solvents and compared with four theoretical models such as McHale's model, Mirone's modification of McHale's model, Logan's model and Onsager-Fröhlich dielectric continuum model respectively. Most of the theoretical models are largely consistent with our experimental data. Copyright © 2013. Published by Elsevier B.V.

  16. Study of thermodynamic and acoustic behaviour of nicotinic acid in binary aqueous mixtures of D-lactose

    NASA Astrophysics Data System (ADS)

    Sharma, Ravi; Thakur, R. C.

    2017-07-01

    In the present study, the thermodynamic properties such as partial molar volumes, partial molar expansibilities, partial molar compressibilities, partial molar heat capacities and isobaric thermal expansion coefficient of different solutions of nicotinic acid in binary aqueous mixtures of D-lactose have been determined at different temperatures (298.15, 303.15, 308.15, 313.15) K. Masson's equation is used to interpret the data in terms of solute-solute and solute-solvent interactions. In the present study it has been found that nicotinic acid behaves as structure maker in aqueous and binary aqueous mixtures of D-lactose.

  17. Benzoic Acid and Chlorobenzoic Acids: Thermodynamic Study of the Pure Compounds and Binary Mixtures With Water.

    PubMed

    Reschke, Thomas; Zherikova, Kseniya V; Verevkin, Sergey P; Held, Christoph

    2016-03-01

    Benzoic acid is a model compound for drug substances in pharmaceutical research. Process design requires information about thermodynamic phase behavior of benzoic acid and its mixtures with water and organic solvents. This work addresses phase equilibria that determine stability and solubility. In this work, Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) was used to model the phase behavior of aqueous and organic solutions containing benzoic acid and chlorobenzoic acids. Absolute vapor pressures of benzoic acid and 2-, 3-, and 4-chlorobenzoic acid from literature and from our own measurements were used to determine pure-component PC-SAFT parameters. Two binary interaction parameters between water and/or benzoic acid were used to model vapor-liquid and liquid-liquid equilibria of water and/or benzoic acid between 280 and 413 K. The PC-SAFT parameters and 1 binary interaction parameter were used to model aqueous solubility of the chlorobenzoic acids. Additionally, solubility of benzoic acid in organic solvents was predicted without using binary parameters. All results showed that pure-component parameters for benzoic acid and for the chlorobenzoic acids allowed for satisfying modeling phase equilibria. The modeling approach established in this work is a further step to screen solubility and to predict the whole phase region of mixtures containing pharmaceuticals. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. A modified spontaneous emulsification solvent diffusion method for the preparation of curcumin-loaded PLGA nanoparticles with enhanced in vitro anti-tumor activity

    NASA Astrophysics Data System (ADS)

    Chen, Cen; Yang, Wei; Wang, Dan-Tong; Chen, Chao-Long; Zhuang, Qing-Ye; Kong, Xiang-Dong

    2014-12-01

    To improve the anti-tumor activity of hydrophobic drug curcumin, we prepared curcumin-loaded PLGA nanoparticles (PLGA-Cur NPs) through a modified spontaneous emulsification solvent diffusion (modified-SESD) method. The influence of main preparation parameters was investigated, such as the volume ratio of binary organic solvents and the concentration of surfactant. Results indicated that the synthesized regular spherical PLGA NPs with the average diameter of 189.7 nm exhibited relatively higher yield (58.9%), drug loading (11.0% (w/w)) and encapsulation efficiency (33.5%), and also a controllable drug release profile. In order to evaluate the in vitro cytotoxicity of the prepared NPs, MTT assay was conducted, and results showed that the NPs could effectively inhibit HL60 and HepG2 cells with lower IC50 values compared with free curcumin. Furthermore, confocal microscopy together with flow cytometry analysis proved the enhanced apoptosis-inducing ability of PLGA-Cur NPs. Polymeric NP formulations are potential to be used for hydrophobic drug delivery systems in cancer therapy.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suo, Tongchuan, E-mail: suotc@physics.umanitoba.ca; Whitmore, Mark D., E-mail: mark-whitmore@umanitoba.ca

    We examine end-tethered polymers in good solvents, using one- and three-dimensional self-consistent field theory, and strong stretching theories. We also discuss different tethering scenarios, namely, mobile tethers, fixed but random ones, and fixed but ordered ones, and the effects and important limitations of including only binary interactions (excluded volume terms). We find that there is a “mushroom” regime in which the layer thickness is independent of the tethering density, σ, for systems with ordered tethers, but we argue that there is no such plateau for mobile or disordered anchors, nor is there one in the 1D theory. In the othermore » limit of brushes, all approaches predict that the layer thickness scales linearly with N. However, the σ{sup 1/3} scaling is a result of keeping only excluded volume interactions: when the full potential is included, the dependence is faster and more complicated than σ{sup 1/3}. In fact, there does not appear to be any regime in which the layer thickness scales in the combination Nσ{sup 1/3}. We also compare the results for two different solvents with each other, and with earlier Θ solvent results.« less

  20. Magneto-optical contrast in liquid-state optically detected NMR spectroscopy

    PubMed Central

    Pagliero, Daniela; Meriles, Carlos A.

    2011-01-01

    We use optical Faraday rotation (OFR) to probe nuclear spins in real time at high-magnetic field in a range of diamagnetic sample fluids. Comparison of OFR-detected NMR spectra reveals a correlation between the relative signal amplitude and the fluid Verdet constant, which we interpret as a manifestation of the variable detuning between the probe beam and the sample optical transitions. The analysis of chemical-shift-resolved, optically detected spectra allows us to set constraints on the relative amplitudes of hyperfine coupling constants, both for protons at chemically distinct sites and other lower-gyromagnetic-ratio nuclei including carbon, fluorine, and phosphorous. By considering a model binary mixture we observe a complex dependence of the optical response on the relative concentration, suggesting that the present approach is sensitive to the solvent-solute dynamics in ways complementary to those known in inductive NMR. Extension of these experiments may find application in solvent suppression protocols, sensitivity-enhanced NMR of metalloproteins in solution, the investigation of solvent-solute interactions, or the characterization of molecular orbitals in diamagnetic systems. PMID:22100736

  1. Amorphous stabilization and dissolution enhancement of amorphous ternary solid dispersions: combination of polymers showing drug-polymer interaction for synergistic effects.

    PubMed

    Prasad, Dev; Chauhan, Harsh; Atef, Eman

    2014-11-01

    The purpose of this study was to understand the combined effect of two polymers showing drug-polymer interactions on amorphous stabilization and dissolution enhancement of indomethacin (IND) in amorphous ternary solid dispersions. The mechanism responsible for the enhanced stability and dissolution of IND in amorphous ternary systems was studied by exploring the miscibility and intermolecular interactions between IND and polymers through thermal and spectroscopic analysis. Eudragit E100 and PVP K90 at low concentrations (2.5%-40%, w/w) were used to prepare amorphous binary and ternary solid dispersions by solvent evaporation. Stability results showed that amorphous ternary solid dispersions have better stability compared with amorphous binary solid dispersions. The dissolution of IND from the ternary dispersion was substantially higher than the binary dispersions as well as amorphous drug. Melting point depression of physical mixtures reveals that the drug was miscible in both the polymers; however, greater miscibility was observed in ternary physical mixtures. The IR analysis confirmed intermolecular interactions between IND and individual polymers. These interactions were found to be intact in ternary systems. These results suggest that the combination of two polymers showing drug-polymer interaction offers synergistic enhancement in amorphous stability and dissolution in ternary solid dispersions. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  2. Association effects in the {methanol + inert solvent} system via Monte Carlo simulations. II. Thermodynamics

    NASA Astrophysics Data System (ADS)

    Gómez-Álvarez, Paula; Romaní, Luis; González-Salgado, Diego

    2013-05-01

    Mixtures containing associated substances show a singular thermodynamic behaviour that has attracted to scientific community during the last century. Particularly, binary systems composed of an associating fluid and an inert solvent, where association occurs only between molecules of the same kind, have been extensively studied. A number of theoretical approaches were used in order to gain insights into the effect of the association on the macroscopic behaviour, especially on the second-order thermodynamic derivatives (or response functions). Curiously, to our knowledge, molecular simulations have not been used to that end despite describing the molecules and their interactions in a more complete and realistic way than theoretical models. With this in mind, a simple methodology developed in the framework of Monte Carlo molecular simulation is used in this work to quantify the association contribution to a wide set of thermodynamic properties for the {methanol + Lennard Jones} specific system under room conditions and throughout the composition range. Special attention was paid to the response functions and their respective excess properties, for which a detailed comparison with selected previous works in the field has been established.

  3. Retention mechanism of hypercrosslinked polystyrene silica hybrid phase in normal phase chromatography.

    PubMed

    Wu, Di; Nedev, Georgi K; Lucy, Charles A

    2014-11-28

    Hypercrosslinked polystyrene phases have been described as quasi-normal phase because they lack discrete polar sites. Retention on the HC-Tol column is investigated using the Snyder-Soczewinski model. Solvent strength of different hexane-solvent binary mobile phase compositions can be predicted with solvent strength of pure dichloromethane (DCM, 0.159), tetrahydrofuran (THF, 0.22), and benzene (0.127). The HC-Tol column is shown to be a localizing adsorptive phase. Also, site-competition delocalization on HC-Tol demonstrates that whatever its adsorption groups are, they are able to participate in lateral interactions. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. The effect of structural properties on rheological behaviour of starches in binary dimethyl sulfoxide-water solutions.

    PubMed

    Ptaszek, Anna; Ptaszek, Paweł; Dziubiński, Marek; Grzesik, N Mirosław; Liszka-Skoczylas, Marta

    2017-01-01

    This research study analysed the rheological properties of potato amylose and potato amylopectin in binary solutions of the following water and dimethyl sulfoxide concentrations: 90% DMSO (1), 80% DMSO (2) and 50% DMSO (3), with preparation methodology involving the dissolution at the temperature of 98°C. The studies of dynamic light scattering on the biopolymer coils and the determination of main relaxation times of the solutions were carried out. For the amylose solutions, the fast relaxation phenomena are predominant. The results of the quality tests of the hysteresis loop showed, that the amylose solutions in the solvents (1) and (2) are rheologically stable and shear-thickened. The amylose solutions in solvents (3) reveal oscillatory alterations of viscosity in the time. Amylopectin solutions are characterized by 80% share of slow relaxation phenomena, very low diffusion coefficients and hydrodynamic radii in the range of 2000 nm. The amylopectin solutions are rheologically unstable.

  5. Determination of thermodynamic properties of isotactic poly(1-butene) at infinite dilution using density and inverse gas chromatography.

    PubMed

    Kozłowska, Marta Karolina; Domańska, Urszula; Lempert, Małgorzata; Rogalski, Marek

    2005-03-18

    The partial molar volumes, V1(M), and the molar volume of isotactic crystalline low-molecular-weight poly(1-butene), iPBu-1, V1, have been calculated from the measured density of {iPBu-1 + solvent (n-hexane, n-heptane, n-nonane, n-decane, p-xylene, cyclohexane and chloroform)} systems. Some of the thermodynamic quantities were also obtained for the iPBu-1 with eight hydrocarbons (n-octane, n-decane, n-undecane, n-dodecane, n-tridecane, o-xylene, m-xylene, p-xylene) by the method of inverse gas chromatography at various temperatures. The weight fraction activity coefficients of the solvent at infinite dilution, omega2(infinity) and the Flory-Huggins thermodynamic interaction parameters, chi21(infinity), between polymer and solvents were determined. The partial molar free energy, deltaG2(infinity), the partial molar heat of mixing, deltaH2(infinity), at infinite dilution and the polymer solubility parameter, delta1, were calculated. Additionally, the (solid + liquid) binary mixtures equilibria, SLE, of iPBu-1 with three hydrocarbons (n-octane, n-decane and m-xylene) were studied by a dynamic method. By performing these experiments over a large concentration range, the T-x phase diagrams of the polymer-solvent systems were constructed. The excess Gibbs energy models were used to describe the nonideal behaviour of the liquid phase. The omega2(infinity) were determined from the solubility measurements and were predicted by using the UNIFAC FV model.

  6. Solution-grown small-molecule organic semiconductor with enhanced crystal alignment and areal coverage for organic thin film transistors

    DOE PAGES

    Bi, Sheng; He, Zhengran; Chen, Jihua; ...

    2015-07-24

    Drop casting of small-molecule organic semiconductors typically forms crystals with random orientation and poor areal coverage, which leads to significant performance variations of organic thin-film transistors (OTFTs). In this study, we utilize the controlled evaporative self-assembly (CESA) method combined with binary solvent system to control the crystal growth. A small-molecule organic semiconductor,2,5-Di-(2-ethylhexyl)-3,6-bis(5"-n-hexyl-2,2',5',2"]terthiophen-5-yl)-pyrrolo[3,4-c]pyrrole-1,4-dione (SMDPPEH), is used as an example to demonstrate the effectiveness of our approach. By optimizing the double solvent ratios, well-aligned SMDPPEH crystals with significantly improved areal coverage were achieved. As a result, the SMDPPEH based OTFTs exhibit a mobility of 1.6 × 10 -2 cm 2/V s, whichmore » is the highest mobility from SMDPPEH ever reported.« less

  7. Design guidelines for adapting scientific research articles: An example from an introductory level, interdisciplinary program on soft matter

    NASA Astrophysics Data System (ADS)

    Langbeheim, Elon; Safran, Samuel A.; Yerushalmi, Edit

    2013-01-01

    We present design guidelines for using Adapted Primary Literature (APL) as part of current interdisciplinary topics to introductory physics students. APL is a text genre that allows students to comprehend a scientific article, while maintaining the core features of the communication among scientists, thus representing an authentic scientific discourse. We describe the adaptation of a research paper by Nobel Laureate Paul Flory on phase equilibrium in polymer-solvent mixtures that was presented to high school students in a project-based unit on soft matter. The adaptation followed two design strategies: a) Making explicit the interplay between the theory and experiment. b) Re-structuring the text to map the theory onto the students' prior knowledge. Specifically, we map the theory of polymer-solvent systems onto a model for binary mixtures of small molecules of equal size that was already studied in class.

  8. Wet scrubbing of biomass producer gas tars using vegetable oil

    NASA Astrophysics Data System (ADS)

    Bhoi, Prakashbhai Ramabhai

    The overall aims of this research study were to generate novel design data and to develop an equilibrium stage-based thermodynamic model of a vegetable oil based wet scrubbing system for the removal of model tar compounds (benzene, toluene and ethylbenzene) found in biomass producer gas. The specific objectives were to design, fabricate and evaluate a vegetable oil based wet scrubbing system and to optimize the design and operating variables; i.e., packed bed height, vegetable oil type, solvent temperature, and solvent flow rate. The experimental wet packed bed scrubbing system includes a liquid distributor specifically designed to distribute a high viscous vegetable oil uniformly and a mixing section, which was designed to generate a desired concentration of tar compounds in a simulated air stream. A method and calibration protocol of gas chromatography/mass spectroscopy was developed to quantify tar compounds. Experimental data were analyzed statistically using analysis of variance (ANOVA) procedure. Statistical analysis showed that both soybean and canola oils are potential solvents, providing comparable removal efficiency of tar compounds. The experimental height equivalent to a theoretical plate (HETP) was determined as 0.11 m for vegetable oil based scrubbing system. Packed bed height and solvent temperature had highly significant effect (p0.05) effect on the removal of model tar compounds. The packing specific constants, Ch and CP,0, for the Billet and Schultes pressure drop correlation were determined as 2.52 and 2.93, respectively. The equilibrium stage based thermodynamic model predicted the removal efficiency of model tar compounds in the range of 1-6%, 1-4% and 1-2% of experimental data for benzene, toluene and ethylbenzene, respectively, for the solvent temperature of 30° C. The NRTL-PR property model and UNIFAC for estimating binary interaction parameters are recommended for modeling absorption of tar compounds in vegetable oils. Bench scale experimental data from the wet scrubbing system would be useful in the design and operation of a pilot scale vegetable oil based system. The process model, validated using experimental data, would be a key design tool for the design and optimization of a pilot scale vegetable oil based system.

  9. Applications of ionic liquids in biphasic separation: Aqueous biphasic systems and liquid-liquid equilibria.

    PubMed

    Shukla, Shashi Kant; Pandey, Shubha; Pandey, Siddharth

    2018-07-20

    Ionic liquids (ILs) have been receiving much attention in many fields of analytical chemistry because of their various interesting properties which distinguish them from volatile organic compounds. They offer both directional and non-directional forces towards a solute molecule and therefore act as excellent solvents for a wide range of polar and non-polar compounds. Because of the presence of various possible interactions, ILs easily undergo biphasic separation with water and other less polar/non-polar organic solvents. Their ability to create biphasic splitting makes them a promising candidate for liquid-liquid separation processes, such as aqueous biphasic systems and liquid-liquid equilibria. Various aspects of ILs in these separation methods are discussed in view of the origin of physical forces responsible for the biphasic interactions, the effect of structural components, temperature, pressure, pH and additives. The specific advantages of using ILs in aqueous biphasic systems and liquid-liquid equilibria in binary and ternary systems are discussed with a view to defining their future role in separation processes by giving major emphasis on developing non-toxic ILs with physical and solution properties tailored to the needs of specific sample preparation techniques. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Vapor condensation onto a non-volatile liquid drop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inci, Levent; Bowles, Richard K., E-mail: richard.bowles@usask.ca

    2013-12-07

    Molecular dynamics simulations of miscible and partially miscible binary Lennard–Jones mixtures are used to study the dynamics and thermodynamics of vapor condensation onto a non-volatile liquid drop in the canonical ensemble. When the system volume is large, the driving force for condensation is low and only a submonolayer of the solvent is adsorbed onto the liquid drop. A small degree of mixing of the solvent phase into the core of the particles occurs for the miscible system. At smaller volumes, complete film formation is observed and the dynamics of film growth are dominated by cluster-cluster coalescence. Mixing into the coremore » of the droplet is also observed for partially miscible systems below an onset volume suggesting the presence of a solubility transition. We also develop a non-volatile liquid drop model, based on the capillarity approximations, that exhibits a solubility transition between small and large drops for partially miscible mixtures and has a hysteresis loop similar to the one observed in the deliquescence of small soluble salt particles. The properties of the model are compared to our simulation results and the model is used to study the formulation of classical nucleation theory for systems with low free energy barriers.« less

  11. VISUALIZATION-BASED ANALYSIS FOR A MIXED-INHIBITION BINARY PBPK MODEL: DETERMINATION OF INHIBITION MECHANISM

    EPA Science Inventory

    A physiologically-based pharmacokinetic (PBPK) model incorporating mixed enzyme inhibition was used to determine mechanism of the metabolic interactions occurring during simultaneous inhalation exposures to the organic solvents chloroform and trichloroethylene (TCE).

    V...

  12. VISUALIZATION-BASED ANALYSIS FOR A MIXED-INHIBITION BINARY PBPK MODEL: DETERMINATION OF INHIBITION MECHANISM

    EPA Science Inventory

    A physiologically-based pharmacokinetic (PBPK) model incorporating mixed enzyme inhibition was used to determine the mechanism of metabolic interactions occurring during simultaneous exposures to the organic solvents chloroform and trichloroethylene (TCE). Visualization-based se...

  13. Modelling of ceramide interactions with porous graphite carbon in non-aqueous liquid chromatography.

    PubMed

    West, C; Cilpa, G; Gaudin, K; Chaminade, P; Lesellier, E

    2005-09-16

    Interactions of solutes on porous graphitic carbon (PGC) with non-aqueous mobile phases are studied by the linear solvation energy relationship (LSER). Studies have been carried out with eight binary mixtures composed of a weak solvent (acetonitrile or methanol) and a strong solvent (tetrahydrofuran, n-butanol, CH2Cl2, 1,1,2-trichloro-2,2,1-trifluoroethane). The systematic analysis of a set of test compounds was performed for each solvent mixture in isocratic mode (50:50). The results were compared to those obtained on PGC with hydro-organic liquids and supercritical fluids. They were then correlated with the observed retention behaviour of lipid compounds, more particularly ceramides.

  14. Effect of the composition of a solution on the enthalpies of solvation of piperidine in methanol-acetonitrile and dimethylsulfoxide-acetonitrile mixed solvents

    NASA Astrophysics Data System (ADS)

    Kuz'mina, I. A.; Volkova, M. A.; Sitnikova, K. A.; Sharnin, V. A.

    2014-01-01

    Heat effects of dissolution of piperidine (ppd) are measured by calorimetry at 298.15 K over the range of composition of acetonitrile-methanol (AN-MeOH) mixed solvents. Based on the Δsol H ○(ppd)AN-MeOH values obtained using the literature data on Δsol H ○ (ppd) in acetonitrile-dimethylsulfoxide (AN-DMSO) mixed solvents and the vaporization enthalpy of ppd, the enthalpies of solvation of amine in AN-MeOH and AN-DMSO binary mixtures are calculated. A rise in the exothermicity of solvation of piperidine is observed upon the transition from AN to DMSO and MeOH, due mainly to the enhanced solvation of the amino group of ppd as a result of changes in the acid-base properties of the mixed solvent.

  15. Enhanced CO2 capture in binary mixtures of 1-alkyl-3-methylimidazolium tricyanomethanide ionic liquids with water.

    PubMed

    Romanos, George E; Zubeir, Lawien F; Likodimos, Vlassis; Falaras, Polycarpos; Kroon, Maaike C; Iliev, Boyan; Adamova, Gabriela; Schubert, Thomas J S

    2013-10-10

    Absorption of carbon dioxide and water in 1-butyl-3-methylimidazoliun tricyanomethanide ([C4C1im][TCM]) and 1-octyl-3-methylimidazolium tricyanomethanide ([C8C1im][TCM]) ionic liquids (ILs) was systematically investigated for the first time as a function of the H2O content by means of a gravimetric system together with in-situ Raman spectroscopy, excess molar volume (V(E)), and viscosity deviation measurements. Although CO2 absorption was marginally affected by water at low H2O molar fractions for both ILs, an increase of the H2O content resulted in a marked enhancement of both the CO2 solubility (ca. 4-fold) and diffusivity (ca. 10-fold) in the binary [C(n)C1im][TCM]/H2O systems, in contrast to the weak and/or detrimental influence of water in most physically and chemically CO2-absorbing ILs. In-situ Raman spectroscopy on the IL/CO2 systems verified that CO2 is physically absorbed in the dry ILs with no significant effect on their structural organization. A pronounced variation of distinct tricyanomethanide Raman modes was disclosed in the [C(n)C1im][TCM]/H2O mixtures, attesting to the gradual disruption of the anion-cation coupling by the hydrogen-bonded water molecules to the [TCM](-) anions, in accordance with the positive excess molar volumes and negative viscosity deviations for the binary systems. Most importantly, CO2 absorption in the ILs/H2O mixtures at high water concentrations revealed that the [TCM](-) Raman modes tend to restore their original state for the heavily hydrated ILs, in qualitative agreement with the intriguing nonmonotonous transients of CO2 absorption kinetics unveiled by the gravimetric measurements for the hybrid solvents. A molecular exchange mechanism between CO2 in the gas phase and H2O in the liquid phase was thereby proposed to explain the enhanced CO2 absorption in the hybrid [C(n)C1im][TCM]//H2O solvents based on the subtle competition between the TCM-H2O and TCM-CO2 interactions, which renders these ILs very promising for CO2 separation applications.

  16. Interaction and formation mechanism of binary complex between zein and propylene glycol alginate.

    PubMed

    Sun, Cuixia; Dai, Lei; Gao, Yanxiang

    2017-02-10

    The anti-solvent co-precipitation method was used to fabricate the zein-propylene glycol alginate (PGA) binary complex with different mass ratios of zein to PGA (20:1, 10:1, 5:1, 2:1 and 1:1) at pH 4.0. Results showed that attractive electrostatic interaction between zein and PGA occurred and negatively charged binary complex with large size and high turbidity was formed due to the charge neutralization. Hydrogen bonding and hydrophobic effects were involved in the interactions between zein and PGA, leading to the changed secondary structure and improved thermal stability of zein. Aggregates in the irregular shape with large size were obviously observed in the AFM images. PGA alone exhibited a fine filamentous network structure, while zein-PGA binary complex showed a rough branch-like pattern and the surface of "branch" was closely adsorbed by lots of spherical zein particles. Q in zein-PGA binary complex dispersions presented the improved photochemical and thermal stability. The potential mechanism of a two-step process was proposed to explain the formation of zein-PGA binary complexes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Factors Affecting the Dissolution of Indomethacin Solid Dispersions.

    PubMed

    Zhang, Wei; Zhang, Chen-Ning; He, Yue; Duan, Ban-Yan; Yang, Guang-Yi; Ma, Wei-Dong; Zhang, Yong-Hong

    2017-11-01

    The aim of this study was to investigate the influence of factors such as carrier type, drug/carrier ratio, binary carriers, and preparation method on the dissolution of an insoluble drug, indomethacin (IM), under supersaturation conditions. Using a solvent evaporation (SE) method, poloxamer 188 and PVP K30 showed better dissolution among the selected carriers. Furthermore, as the ratio of carriers increased (drug/carrier ratio from 1:0.5 to 1:2), the dissolution rate increased especially in almost two times poloxamer 188 solid dispersions (SDs), while the reverse results were observed for PVP K30 SDs. For the binary carrier SD, a lower dissolution was found. Under hot melt extrusion (HME), the dissolution of poloxamer 188 SD and PVP K30 SD was 0.83- and 0.94-folds lower than that using SE, respectively, while the binary carrier SD showed the best dissolution. For poloxamer 188 SDs, the drug's crystal form changed when using SE, while no crystal form change was observed using HME. IM was amorphous in PVP K30 SDs prepared by both methods. For binary carrier systems, amorphous and crystalline drugs coexisted in SD using SE, and negligible amorphous IM was in SD using HME. This study indicated that a higher amorphous proportion in SD did not correlate with higher dissolution rate, and other factors, such as carrier type, particle size, and density, were also critical.

  18. Fluorophore Metal-Organic Complexes: High-Throughput Optical Screening for Aprotic Electrochemical Systems.

    PubMed

    Park, Sung Hyeon; Choi, Chang Hyuck; Lee, Seung Yong; Woo, Seong Ihl

    2017-02-13

    Combinatorial optical screening of aprotic electrocatalysts has not yet been achieved primarily due to H + -associated mechanisms of fluorophore modulation. We have overcome this problem by using fluorophore metal-organic complexes. In particular, eosin Y and quinine can be coordinated with various metallic cations (e.g., Li + , Na + , Mg 2+ , Zn 2+ , and Al 3+ ) in aprotic solvents, triggering changes in their fluorescent properties. These interactions have been used in a reliable screening method to determine oxygen reduction/evolution reaction activities of 100 Mn-based binary catalysts for the aprotic Li-air battery.

  19. Solvent-molecule-mediated manipulation of crystalline grains for efficient planar binary lead and tin triiodide perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Zhu, Leize; Yuh, Brian; Schoen, Stefan; Li, Xinpei; Aldighaithir, Mohammed; Richardson, Beau J.; Alamer, Ahmed; Yu, Qiuming

    2016-03-01

    Binary lead and tin perovskites offer the benefits of narrower band gaps for broader adsorption of solar spectrum and better charge transport for higher photocurrent density. Here, we report the growth of large, smooth crystalline grains of bianry lead and tin triiodide perovskite films via a two-step solution process with thermal plus solvent vapor-assisted thermal annealing. The crystalline SnxPb1-xI2 films formed in the first step served as the templates for the formation of crystalline CH3NH3SnxPb1-xI3 films during the second step interdiffusion of methylammonium iodide (MAI). Followed by dimethylsulfoxide (DMSO) vapor-assisted thermal annealing, small, faceted perovskite grains grew into large, smooth grains via the possible mechanism involving bond breaking and reforming mediated by DMSO solvent molecules. The absorption onset was extended to 950 and 1010 nm for the CH3NH3SnxPb1-xI3 perovskites with x = 0.1 and 0.25, respectively. The highest PCE of 10.25% was achieved from the planar perovskite solar cell with the CH3NH3Sn0.1Pb0.9I3 layer prepared via the thermal plus DMSO vapor-assisted thermal annealing. This research provides a way to control and manipulate film morphology, grain size, and especially the distribution of metal cations in binary metal perovskite layers, which opens an avenue to grow perovskite materials with desired properties to enhance device performance.Binary lead and tin perovskites offer the benefits of narrower band gaps for broader adsorption of solar spectrum and better charge transport for higher photocurrent density. Here, we report the growth of large, smooth crystalline grains of bianry lead and tin triiodide perovskite films via a two-step solution process with thermal plus solvent vapor-assisted thermal annealing. The crystalline SnxPb1-xI2 films formed in the first step served as the templates for the formation of crystalline CH3NH3SnxPb1-xI3 films during the second step interdiffusion of methylammonium iodide (MAI). Followed by dimethylsulfoxide (DMSO) vapor-assisted thermal annealing, small, faceted perovskite grains grew into large, smooth grains via the possible mechanism involving bond breaking and reforming mediated by DMSO solvent molecules. The absorption onset was extended to 950 and 1010 nm for the CH3NH3SnxPb1-xI3 perovskites with x = 0.1 and 0.25, respectively. The highest PCE of 10.25% was achieved from the planar perovskite solar cell with the CH3NH3Sn0.1Pb0.9I3 layer prepared via the thermal plus DMSO vapor-assisted thermal annealing. This research provides a way to control and manipulate film morphology, grain size, and especially the distribution of metal cations in binary metal perovskite layers, which opens an avenue to grow perovskite materials with desired properties to enhance device performance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00301j

  20. Dielectric relaxation in ionic liquid/dipolar solvent binary mixtures: A semi-molecular theory.

    PubMed

    Daschakraborty, Snehasis; Biswas, Ranjit

    2016-03-14

    A semi-molecular theory is developed here for studying dielectric relaxation (DR) in binary mixtures of ionic liquids (ILs) with common dipolar solvents. Effects of ion translation on DR time scale, and those of ion rotation on conductivity relaxation time scale are explored. Two different models for the theoretical calculations have been considered: (i) separate medium approach, where molecularities of both the IL and dipolar solvent molecules are retained, and (ii) effective medium approach, where the added dipolar solvent molecules are assumed to combine with the dipolar ions of the IL, producing a fictitious effective medium characterized via effective dipole moment, density, and diameter. Semi-molecular expressions for the diffusive DR times have been derived which incorporates the effects of wavenumber dependent orientational static correlations, ion dynamic structure factors, and ion translation. Subsequently, the theory has been applied to the binary mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) with water (H2O), and acetonitrile (CH3CN) for which experimental DR data are available. On comparison, predicted DR time scales show close agreement with the measured DR times at low IL mole fractions (x(IL)). At higher IL concentrations (x(IL) > 0.05), the theory over-estimates the relaxation times and increasingly deviates from the measurements with x(IL), deviation being the maximum for the neat IL by almost two orders of magnitude. The theory predicts negligible contributions to this deviation from the x(IL) dependent collective orientational static correlations. The drastic difference between DR time scales for IL/solvent mixtures from theory and experiments arises primarily due to the use of the actual molecular volume (V(mol)(dip)) for the rotating dipolar moiety in the present theory and suggests that only a fraction of V(mol)(dip) is involved at high x(IL). Expectedly, nice agreement between theory and experiments appears when experimental estimates for the effective rotational volume (V(eff)(dip)) are used as inputs. The fraction, V(eff)(dip)/V(mol)(dip), sharply decreases from ∼1 at pure dipolar solvent to ∼0.01 at neat IL, reflecting a dramatic crossover from viscosity-coupled hydrodynamic angular diffusion at low IL mole fractions to orientational relaxation predominantly via large angle jumps at high x(IL). Similar results are obtained on applying the present theory to the aqueous solution of an electrolyte guanidinium chloride (GdmCl) having a permanent dipole moment associated with the cation, Gdm(+).

  1. Enhancing Performance of Large-Area Organic Solar Cells with Thick Film via Ternary Strategy.

    PubMed

    Zhang, Jianqi; Zhao, Yifan; Fang, Jin; Yuan, Liu; Xia, Benzheng; Wang, Guodong; Wang, Zaiyu; Zhang, Yajie; Ma, Wei; Yan, Wei; Su, Wenming; Wei, Zhixiang

    2017-06-01

    Large-scale fabrication of organic solar cells requires an active layer with high thickness tolerability and the use of environment-friendly solvents. Thick films with high-performance can be achieved via a ternary strategy studied herein. The ternary system consists of one polymer donor, one small molecule donor, and one fullerene acceptor. The small molecule enhances the crystallinity and face-on orientation of the active layer, leading to improved thickness tolerability compared with that of a polymer-fullerene binary system. An active layer with 270 nm thickness exhibits an average power conversion efficiency (PCE) of 10.78%, while the PCE is less than 8% with such thick film for binary system. Furthermore, large-area devices are successfully fabricated using polyethylene terephthalate (PET)/Silver gride or indium tin oxide (ITO)-based transparent flexible substrates. The product shows a high PCE of 8.28% with an area of 1.25 cm 2 for a single cell and 5.18% for a 20 cm 2 module. This study demonstrates that ternary organic solar cells exhibit great potential for large-scale fabrication and future applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Solvent sensitivity of protein unfolding: dynamical study of chicken villin headpiece subdomain in water-ethanol binary mixture.

    PubMed

    Ghosh, Rikhia; Roy, Susmita; Bagchi, Biman

    2013-12-12

    We carry out a series of long atomistic molecular dynamics simulations to study the unfolding of a small protein, chicken villin headpiece (HP-36), in water-ethanol (EtOH) binary mixture. The prime objective of this work is to explore the sensitivity of protein unfolding dynamics toward increasing concentration of the cosolvent and unravel essential features of intermediates formed in search of a dynamical pathway toward unfolding. In water-ethanol binary mixtures, HP-36 is found to unfold partially, under ambient conditions, that otherwise requires temperature as high as ∼600 K to denature in pure aqueous solvent. However, an interesting course of pathway is observed to be followed in the process, guided by the formation of unique intermediates. The first step of unfolding is essentially the separation of the cluster formed by three hydrophobic (phenylalanine) residues, namely, Phe-7, Phe-11, and Phe-18, which constitute the hydrophobic core, thereby initiating melting of helix-2 of the protein. The initial steps are similar to temperature-induced unfolding as well as chemical unfolding using DMSO as cosolvent. Subsequent unfolding steps follow a unique path. As water-ethanol shows composition-dependent anomalies, so do the details of unfolding dynamics. With an increase in cosolvent concentration, different partially unfolded intermediates are found to be formed. This is reflected in a remarkable nonmonotonic composition dependence of several order parameters, including fraction of native contacts and protein-solvent interaction energy. The emergence of such partially unfolded states can be attributed to the preferential solvation of the hydrophobic residues by the ethyl groups of ethanol. We further quantify the local dynamics of unfolding by using a Marcus-type theory.

  3. Chemical association in simple models of molecular and ionic fluids. III. The cavity function

    NASA Astrophysics Data System (ADS)

    Zhou, Yaoqi; Stell, George

    1992-01-01

    Exact equations which relate the cavity function to excess solvation free energies and equilibrium association constants are rederived by using a thermodynamic cycle. A zeroth-order approximation, derived previously by us as a simple interpolation scheme, is found to be very accurate if the associative bonding occurs on or near the surface of the repulsive core of the interaction potential. If the bonding radius is substantially less than the core radius, the approximation overestimates the association degree and the association constant. For binary association, the zeroth-order approximation is equivalent to the first-order thermodynamic perturbation theory (TPT) of Wertheim. For n-particle association, the combination of the zeroth-order approximation with a ``linear'' approximation (for n-particle distribution functions in terms of the two-particle function) yields the first-order TPT result. Using our exact equations to go beyond TPT, near-exact analytic results for binary hard-sphere association are obtained. Solvent effects on binary hard-sphere association and ionic association are also investigated. A new rule which generalizes Le Chatelier's principle is used to describe the three distinct forms of behaviors involving solvent effects that we find. The replacement of the dielectric-continuum solvent model by a dipolar hard-sphere model leads to improved agreement with an experimental observation. Finally, equation of state for an n-particle flexible linear-chain fluid is derived on the basis of a one-parameter approximation that interpolates between the generalized Kirkwood superposition approximation and the linear approximation. A value of the parameter that appears to be near optimal in the context of this application is obtained from comparison with computer-simulation data.

  4. Self-consistent field theory of tethered polymers: one dimensional, three dimensional, strong stretching theories and the effects of excluded-volume-only interactions.

    PubMed

    Suo, Tongchuan; Whitmore, Mark D

    2014-11-28

    We examine end-tethered polymers in good solvents, using one- and three-dimensional self-consistent field theory, and strong stretching theories. We also discuss different tethering scenarios, namely, mobile tethers, fixed but random ones, and fixed but ordered ones, and the effects and important limitations of including only binary interactions (excluded volume terms). We find that there is a "mushroom" regime in which the layer thickness is independent of the tethering density, σ, for systems with ordered tethers, but we argue that there is no such plateau for mobile or disordered anchors, nor is there one in the 1D theory. In the other limit of brushes, all approaches predict that the layer thickness scales linearly with N. However, the σ(1/3) scaling is a result of keeping only excluded volume interactions: when the full potential is included, the dependence is faster and more complicated than σ(1/3). In fact, there does not appear to be any regime in which the layer thickness scales in the combination Nσ(1/3). We also compare the results for two different solvents with each other, and with earlier Θ solvent results.

  5. Thermodynamics of the complex formation of copper(II) with L-phenylalanine in aqueous ethanol solutions

    NASA Astrophysics Data System (ADS)

    Burov, D. M.; Ledenkov, S. F.; Vandyshev, V. N.

    2013-05-01

    Constants of the acid dissociation and complexation of L-phenylalanine (HPhe) with copper(II) ions are determined by potentiometry in aqueous ethanol solutions containing 0 to 0.7 molar fraction of alcohol. Changes in the Gibbs energy for the transfer from water to a binary solvent of L-phenylalanine, Phe- anion, and [CuPhe]+ complex are calculated. It is found that the weakening of solvation of the ligand donor groups in solvents with high ethanol contents is accompanied by an increase in the stability of [CuPhe]+ complex.

  6. Solvent empirical scales and their importance for the study of intermolecular interactions

    NASA Astrophysics Data System (ADS)

    Babusca, Daniela; Benchea, Andreea Celia; Morosanu, Ana Cezarina; Dimitriu, Dan Gheorghe; Dorohoi, Dana Ortansa

    2017-01-01

    The solvent empirical scales were developed in order to classify the solvents regarding their influence on the absorption or fluorescence spectra of different spectrally active molecules. The intermolecular interactions in binary solutions of three molecule having an intramolecular charge transfer visible absorption band are studied in this paper: 5-[2-(1,2,2,4-tetramethyl-1,2,3,4-tetrahydroquinolin-6-yl)-vinyl]-thiophene-2-carbaldehyde (QTC), 1-cyano-2-{5-[2-(1,2,2,4-tetramethyl-1,2,3,4-tetrahydroquinolin-6-yl)-vinyl]-thiophen-2-yl}-vinyl)-phosphonic acid diethyl ester (QTCP) and p-phenyl pyridazinium-p-nitro-phenacylid (PPNP). The solvent empirical scales with a single parameter (Z scale of Kosower, ET (30) or ETN scale of Reichardt and Dimroth) can be used to describe the strength of intermolecular interactions. The contributions of each type of interactions to the total spectral shift are evaluated using the solvent multiple parameters empirical scales defined by Kamlet and Taft and by Catalan et al.

  7. Wet in situ transesterification of microalgae using ethyl acetate as a co-solvent and reactant.

    PubMed

    Park, Jeongseok; Kim, Bora; Chang, Yong Keun; Lee, Jae W

    2017-04-01

    This study addresses wet in situ transesterification of microalgae for the production of biodiesel by introducing ethyl acetate as both reactant and co-solvent. Ethyl acetate and acid catalyst are mixed with wet microalgae in one pot and the mixture is heated for simultaneous lipid extraction and transesterification. As a single reactant and co-solvent, ethyl acetate can provide higher FAEE yield and more saccharification of carbohydrates than the case of binary ethanol and chloroform as a reactant and a co-solvent. The optimal yield was 97.8wt% at 114°C and 4.06M catalyst with 6.67mlEtOAC/g dried algae based on experimental results and response surface methodology (RSM). This wet in situ transesterification of microalgae using ethyl acetate doesn't require an additional co-solvent and it also promises more economic benefit as combining extraction and transesterification in a single process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Solvatochromic fluorescence characteristics of cinnamoyl pyrone derivatives

    NASA Astrophysics Data System (ADS)

    Benosmane, Nadjib; Boutemeur, Baya; Hamdi, Safouane M.; Hamdi, Maamar; Silva, Artur S. M.

    2017-12-01

    The solvatochromic fluorescence behavior of cinnamoyl pyrone derivatives has been studied in several polar and non-polar solvents. The fluorescence spectra of these compounds exhibit red shift from its absorption spectra and present an excellent correlation with solvent polarity. Cinnamoyl pyrones show a significant spectral shift in fluorescence emission as a function of water composition in binary aqueous solutions mixture. This change is due to the specific intermolecular hydrogen bonding of cinnamoyl pyrones with a molecules of water, due to the deactivation of the lowest excited singlet state of these compounds. The relative quantum yields are calculated. It is found that the quantum yields of the cinnamoyl pyrones vary with the change in the solvent polarity indicating the dependency of fluorescence properties on the solvent nature. It has been observed that the addition of water and pH medium can affect the fluorescence properties of cinnamoyl pyrones in ethanol. This study exhibited that due to the solvent sensitive emission, cinnamoyl pyrone derivatives are a good compound to be used as fluorescence probes.

  9. The effect of structural properties on rheological behaviour of starches in binary dimethyl sulfoxide-water solutions

    PubMed Central

    Ptaszek, Paweł; Dziubiński, Marek; Grzesik, N. Mirosław; Liszka-Skoczylas, Marta

    2017-01-01

    This research study analysed the rheological properties of potato amylose and potato amylopectin in binary solutions of the following water and dimethyl sulfoxide concentrations: 90% DMSO (1), 80% DMSO (2) and 50% DMSO (3), with preparation methodology involving the dissolution at the temperature of 98°C. The studies of dynamic light scattering on the biopolymer coils and the determination of main relaxation times of the solutions were carried out. For the amylose solutions, the fast relaxation phenomena are predominant. The results of the quality tests of the hysteresis loop showed, that the amylose solutions in the solvents (1) and (2) are rheologically stable and shear-thickened. The amylose solutions in solvents (3) reveal oscillatory alterations of viscosity in the time. Amylopectin solutions are characterized by 80% share of slow relaxation phenomena, very low diffusion coefficients and hydrodynamic radii in the range of 2000 nm. The amylopectin solutions are rheologically unstable. PMID:28152071

  10. Correlation of the Rates of Solvolysis of i-Butyl Fluoroformate and a Consideration of Leaving-Group Effects

    PubMed Central

    Lee, Yelin; Park, Kyoung-Ho; Seong, Mi Hye; Kyong, Jin Burm; Kevill, Dennis N.

    2011-01-01

    The specific rates of solvolysis of isobutyl fluoroformate (1) have been measured at 40.0 °C in 22 pure and binary solvents. These results correlated well with the extended Grunwald-Winstein (G-W) equation, which incorporated the NT solvent nucleophilicity scale and the YCl solvent ionizing power scale. The sensitivities (l and m-values) to changes in solvent nucleophilicity and solvent ionizing power, and the kF/kCl values are very similar to those observed previously for solvolyses of n-octyl fluoroformate, consistent with the additional step of an addition-elimination pathway being rate-determining. The solvent deuterium isotope effect value (kMeOH/kMeOD) for methanolysis of 1 was determined, and for solvolyses in ethanol, methanol, 80% ethanol, and 70% TFE, the values of the enthalpy and the entropy of activation for the solvolysis of 1 were also determined. The results are compared with those reported earlier for isobutyl chloroformate (2) and other alkyl haloformate esters and mechanistic conclusions are drawn. PMID:22174633

  11. The ultrasound-assisted oxidative scission of monoenic fatty acids by ruthenium tetroxide catalysis: influence of the mixture of solvents.

    PubMed

    Rup, Sandrine; Zimmermann, François; Meux, Eric; Schneider, Michel; Sindt, Michele; Oget, Nicolas

    2009-02-01

    Carboxylic acids and diacids were synthesized from monoenic fatty acids by using RuO4 catalysis, under ultrasonic irradiation, in various mixtures of solvents. Ultrasound associated with Aliquat 336 have promoted in water, the quantitative oxidative cleavage of the CH=CH bond of oleic acid. A design of experiment (DOE) shows that the optimal mixture of solvents (H2O/MeCN, ratio 1/1, 2.2% RuCl3/4.1 eq. NaIO4) gives 81% azelaic acid and 97% pelargonic acid. With the binary heterogeneous mixture H2O/AcOEt, the oxidation of the oleic acid leads to a third product, the alpha-dione 9,10-dioxostearic acid.

  12. Correlation of the rates of solvolysis of neopentyl chloroformate-a recommended protecting agent.

    PubMed

    D'Souza, Malcolm J; Carter, Shannon E; Kevill, Dennis N

    2011-02-15

    The specific rates of solvolysis of neopentyl chloroformate (1) have been determined in 21 pure and binary solvents at 45.0 °C. In most solvents the values are essentially identical to those for ethyl and n-propyl chloroformates. However, in aqueous-1,1,1,3,3,3-hexafluoro-2-propanol mixtures (HFIP) rich in fluoroalcohol, 1 solvolyses appreciably faster than the other two substrates. Linear free energy relationship (LFER) comparison of the specific rates of solvolysis of 1 with those for phenyl chloroformate and those for n-propyl chloroformate are helpful in the mechanistic considerations, as is also the treatment in terms of the Extended Grunwald-Winstein equation. It is proposed that the faster reaction for 1 in HFIP rich solvents is due to the influence of a 1,2-methyl shift, leading to a tertiary alkyl cation, outweighing the only weak nucleophilic solvation of the cation possible in these low nucleophilicity solvents.

  13. Molecular Dynamics Simulations of the Initial-State Predict Product Distributions of Dediazoniation of Aryldiazonium in Binary Solvents.

    PubMed

    Cruz, Gustavo N; Lima, Filipe S; Dias, Luís G; El Seoud, Omar A; Horinek, Dominik; Chaimovich, Hernan; Cuccovia, Iolanda M

    2015-09-04

    The dediazoniation of aryldiazonium salts in mixed solvents proceeds by a borderline SN1 and SN2 pathway, and product distribution should be proportional to the composition of the solvation shell of the carbon attached to the -N2 group (ipso carbon). The rates of dediazoniation of 2,4,6-trimethylbenzenediazonium in water, methanol, ethanol, propanol, and acetonitrile were similar, but measured product distributions were noticeably dependent on the nature of the water/cosolvent mixture. Here we demonstrated that solvent distribution in the first solvation shell of the ipso carbon, calculated from classical molecular dynamics simulations, is equal to the measured product distribution. Furthermore, we showed that regardless of the charge distribution of the initial state, i.e., whether the positive charge is smeared over the molecule or localized on phenyl moiety, the solvent distribution around the reaction center is nearly the same.

  14. Columnar to nematic mesophase transition in mixtures of rhodium or copper soaps with hydrocarbon solvents

    NASA Astrophysics Data System (ADS)

    Ibn-Elhaj, M.; Guillon, D.; Skoulios, A.; Giroud-Godquin, A. M.; Marchon, J.-C.

    1992-12-01

    This paper describes observations of the mesomorphic behaviour of mixtures of rhodium eicosanoate or copper dodecanoate with solvents such as toluene, decahydronaphthalene, and (+) camphene. The mesophase found with these compounds at high temperatures turns from columnar to nematic when the weight fraction of the solvent (toluene, decahydronaphthalene is increased beyond a value of about 50%. The binary phase diagram of the copper compound with toluene was experimentally determined using polarizing optical microscopy, differential scanning calorimetry and X-ray diffraction. The novel feature of the nematic phase is that the basic physical object which align parallel to the nematic director are not individual molecules, but columns of molecules (one-dimensional supramolecular assemblies) which have lost the long-range lateral positional order characteristic of the columnar mesophase. These observations are discussed on the grounds of recent theoretical calculations. Cholesteric-like textures are observed for mixtures of rhodium eicosanoate with the chiral solvent (+) camphene.

  15. Density functional theory of gas-liquid phase separation in dilute binary mixtures

    NASA Astrophysics Data System (ADS)

    Okamoto, Ryuichi; Onuki, Akira

    2016-06-01

    We examine statics and dynamics of phase-separated states of dilute binary mixtures using density functional theory. In our systems, the difference of the solvation chemical potential between liquid and gas Δ {μ\\text{s}} (the Gibbs energy of transfer) is considerably larger than the thermal energy {{k}\\text{B}}T for each solute particle and the attractive interaction among the solute particles is weaker than that among the solvent particles. In these conditions, the saturated vapor pressure increases by {{k}\\text{B}}Tn2\\ell\\exp ≤ft(Δ {μ\\text{s}}/{{k}\\text{B}}T\\right) , where n2\\ell is the solute density added in liquid. For \\exp ≤ft(Δ {μ\\text{s}}/{{k}\\text{B}}T\\right)\\gg 1 , phase separation is induced at low solute densities in liquid and the new phase remains in gaseous states, even when the liquid pressure is outside the coexistence curve of the solvent. This explains the widely observed formation of stable nanobubbles in ambient water with a dissolved gas. We calculate the density and stress profiles across planar and spherical interfaces, where the surface tension decreases with increasing interfacial solute adsorption. We realize stable solute-rich bubbles with radius about 30 nm, which minimize the free energy functional. We then study dynamics around such a bubble after a decompression of the surrounding liquid, where the bubble undergoes a damped oscillation. In addition, we present some exact and approximate expressions for the surface tension and the interfacial stress tensor.

  16. New analytical technique for carbon dioxide absorption solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pouryousefi, F.; Idem, R.O.

    2008-02-15

    The densities and refractive indices of two binary systems (water + MEA and water + MDEA) and three ternary systems (water + MEA + CO{sub 2}, water + MDEA + CO{sub 2}, and water + MEA + MDEA) used for carbon dioxide (CO{sub 2}) capture were measured over the range of compositions of the aqueous alkanolamine(s) used for CO{sub 2} absorption at temperatures from 295 to 338 K. Experimental densities were modeled empirically, while the experimental refractive indices were modeled using well-established models from the known values of their pure-component densities and refractive indices. The density and Gladstone-Dale refractive indexmore » models were then used to obtain the compositions of unknown samples of the binary and ternary systems by simultaneous solution of the density and refractive index equations. The results from this technique have been compared with HPLC (high-performance liquid chromatography) results, while a third independent technique (acid-base titration) was used to verify the results. The results show that the systems' compositions obtained from the simple and easy-to-use refractive index/density technique were very comparable to the expensive and laborious HPLC/titration techniques, suggesting that the refractive index/density technique can be used to replace existing methods for analysis of fresh or nondegraded, CO{sub 2}-loaded, single and mixed alkanolamine solutions.« less

  17. Fully automated multifunctional ultrahigh pressure liquid chromatography system for advanced proteome analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jung Hwa; Hyung, Seok-Won; Mun, Dong-Gi

    2012-08-03

    A multi-functional liquid chromatography system that performs 1-dimensional, 2-dimensional (strong cation exchange/reverse phase liquid chromatography, or SCX/RPLC) separations, and online phosphopeptides enrichment using a single binary nano-flow pump has been developed. With a simple operation of a function selection valve, which is equipped with a SCX column and a TiO2 (titanium dioxide) column, a fully automated selection of three different experiment modes was achieved. Because the current system uses essentially the same solvent flow paths, the same trap column, and the same separation column for reverse-phase separation of 1D, 2D, and online phosphopeptides enrichment experiments, the elution time information obtainedmore » from these experiments is in excellent agreement, which facilitates correlating peptide information from different experiments.« less

  18. High drug loading self-microemulsifying/micelle formulation: design by high-throughput formulation screening system and in vivo evaluation.

    PubMed

    Sakai, Kenichi; Obata, Kouki; Yoshikawa, Mayumi; Takano, Ryusuke; Shibata, Masaki; Maeda, Hiroyuki; Mizutani, Akihiko; Terada, Katsuhide

    2012-10-01

    To design a high drug loading formulation of self-microemulsifying/micelle system. A poorly-soluble model drug (CH5137291), 8 hydrophilic surfactants (HS), 10 lipophilic surfactants (LS), 5 oils, and PEG400 were used. A high loading formulation was designed by a following stepwise approach using a high-throughput formulation screening (HTFS) system: (1) an oil/solvent was selected by solubility of the drug; (2) a suitable HS for highly loading was selected by the screenings of emulsion/micelle size and phase stability in binary systems (HS, oil/solvent) with increasing loading levels; (3) a LS that formed a broad SMEDDS/micelle area on a phase diagram containing the HS and oil/solvent was selected by the same screenings; (4) an optimized formulation was selected by evaluating the loading capacity of the crystalline drug. Aqueous solubility behavior and oral absorption (Beagle dog) of the optimized formulation were compared with conventional formulations (jet-milled, PEG400). As an optimized formulation, d-α-tocopheryl polyoxyethylene 1000 succinic ester: PEG400 = 8:2 was selected, and achieved the target loading level (200 mg/mL). The formulation formed fine emulsion/micelle (49.1 nm), and generated and maintained a supersaturated state at a higher level compared with the conventional formulations. In the oral absorption test, the area under the plasma concentration-time curve of the optimized formulation was 16.5-fold higher than that of the jet-milled formulation. The high loading formulation designed by the stepwise approach using the HTFS system improved the oral absorption of the poorly-soluble model drug.

  19. A simple dual online ultra-high pressure liquid chromatography system (sDO-UHPLC) for high throughput proteome analysis.

    PubMed

    Lee, Hangyeore; Mun, Dong-Gi; Bae, Jingi; Kim, Hokeun; Oh, Se Yeon; Park, Young Soo; Lee, Jae-Hyuk; Lee, Sang-Won

    2015-08-21

    We report a new and simple design of a fully automated dual-online ultra-high pressure liquid chromatography system. The system employs only two nano-volume switching valves (a two-position four port valve and a two-position ten port valve) that direct solvent flows from two binary nano-pumps for parallel operation of two analytical columns and two solid phase extraction (SPE) columns. Despite the simple design, the sDO-UHPLC offers many advantageous features that include high duty cycle, back flushing sample injection for fast and narrow zone sample injection, online desalting, high separation resolution and high intra/inter-column reproducibility. This system was applied to analyze proteome samples not only in high throughput deep proteome profiling experiments but also in high throughput MRM experiments.

  20. Properties of L-ascorbic acid in water and binary aqueous mixtures of D-glucose and D-fructose at different temperatures

    NASA Astrophysics Data System (ADS)

    Sharma, Ravi; Thakur, R. C.; Sani, Balwinder; Kumar, Harsh

    2017-12-01

    Using density and sound velocity partial molar volumes, partial molar adiabatic compressibilities, partial molar expansibilities and structure of L-ascorbic acid have been determined in water and aqueous mixtures of D-glucose and D-fructose at different concentrations and temperatures. Masson's equation was used to analyze the measured data. The obtained parameters have been interpreted in terms of solute-solute and solute-solvent interactions. It is found that the L-ascorbic acid acts as structure breaker in water as well in binary studied mixtures.

  1. Physicochemical properties of binary solutions of propylene carbonate-acetonitrile in the range of 253.15-313.15 K

    NASA Astrophysics Data System (ADS)

    Tyunina, E. Yu.; Chekunova, M. D.

    2017-05-01

    The density, dynamic viscosity, and dielectric constant of propylene carbonate solutions with acetonitrile are measured over the composition of a mixed solvent at temperatures of 253.15, 273.15, 293.15, and 313.15 K. The molar volume, molar viscosity, and molar capacity of a mixture of propylene carbonate-acetonitrile and an excess amount of it are calculated. The effect the temperature and composition of the mixture have on the excess molar properties is discussed. A linear correlation is observed between the values of the molar fluidity, capacity, polarization, and molar volume of the studied system.

  2. Effect of stirring on the safety of flammable liquid mixtures.

    PubMed

    Liaw, Horng-Jang; Gerbaud, Vincent; Chen, Chan-Cheng; Shu, Chi-Min

    2010-05-15

    Flash point is the most important variable employed to characterize fire and explosion hazard of liquids. The models developed for predicting the flash point of partially miscible mixtures in the literature to date are all based on the assumption of liquid-liquid equilibrium. In real-world environments, however, the liquid-liquid equilibrium assumption does not always hold, such as the collection or accumulation of waste solvents without stirring, where complete stirring for a period of time is usually used to ensure the liquid phases being in equilibrium. This study investigated the effect of stirring on the flash-point behavior of binary partially miscible mixtures. Two series of partially miscible binary mixtures were employed to elucidate the effect of stirring. The first series was aqueous-organic mixtures, including water+1-butanol, water+2-butanol, water+isobutanol, water+1-pentanol, and water+octane; the second series was the mixtures of two flammable solvents, which included methanol+decane, methanol+2,2,4-trimethylpentane, and methanol+octane. Results reveal that for binary aqueous-organic solutions the flash-point values of unstirred mixtures were located between those of the completely stirred mixtures and those of the flammable component. Therefore, risk assessment could be done based on the flammable component flash-point value. However, for the assurance of safety, it is suggested to completely stir those mixtures before handling to reduce the risk. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  3. Kinetics of hydrogen peroxide decomposition by catalase: hydroxylic solvent effects.

    PubMed

    Raducan, Adina; Cantemir, Anca Ruxandra; Puiu, Mihaela; Oancea, Dumitru

    2012-11-01

    The effect of water-alcohol (methanol, ethanol, propan-1-ol, propan-2-ol, ethane-1,2-diol and propane-1,2,3-triol) binary mixtures on the kinetics of hydrogen peroxide decomposition in the presence of bovine liver catalase is investigated. In all solvents, the activity of catalase is smaller than in water. The results are discussed on the basis of a simple kinetic model. The kinetic constants for product formation through enzyme-substrate complex decomposition and for inactivation of catalase are estimated. The organic solvents are characterized by several physical properties: dielectric constant (D), hydrophobicity (log P), concentration of hydroxyl groups ([OH]), polarizability (α), Kamlet-Taft parameter (β) and Kosower parameter (Z). The relationships between the initial rate, kinetic constants and medium properties are analyzed by linear and multiple linear regression.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stagg, Alan K; Yoon, Su-Jong

    This report describes the Consortium for Advanced Simulation of Light Water Reactors (CASL) work conducted for completion of the Thermal Hydraulics Methods (THM) Level 3 Milestone THM.CFD.P11.02: Hydra-TH Extensions for Multispecies and Thermosolutal Convection. A critical requirement for modeling reactor thermal hydraulics is to account for species transport within the fluid. In particular, this capability is needed for modeling transport and diffusion of boric acid within water for emergency, reactivity-control scenarios. To support this need, a species transport capability has been implemented in Hydra-TH for binary systems (for example, solute within a solvent). A species transport equation is solved formore » the species (solute) mass fraction, and both thermal and solutal buoyancy effects are handled with specification of a Boussinesq body force. Species boundary conditions can be specified with a Dirichlet condition on mass fraction or a Neumann condition on diffusion flux. To enable enhanced species/fluid mixing in turbulent flow, the molecular diffusivity for the binary system is augmented with a turbulent diffusivity in the species transport calculation. The new capabilities are demonstrated by comparison of Hydra-TH calculations to the analytic solution for a thermosolutal convection problem, and excellent agreement is obtained.« less

  5. Separation of Pr and Nd from La in chloride solution by extraction with a mixture of Cyanex 272 and Alamine 336

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Jeon, Ho Seok; Lee, Man Seung

    2015-09-01

    The possibility of separation of Pr and Nd from La in a chloride leaching solution of monazite sand has been investigated by using a binary mixture of Cyanex 272 (bis(2,4,4-trimethylpentyl) phosphinic acid) and Alamine 336 (tri-octyl/decyl amine). The binary mixture showed synergism on the extraction of the three metals and led to an increase in the separation factor between Pr/Nd and La compared to Cyanex 272 alone. Although the addition of chloride ion into aqueous increased the extraction of the metals, this addition had negative effect on the separation of Nd/Pr and La. McCabe-Thiele diagrams for the extraction of Pr and Nd with the binary mixture were constructed. Stripping of metals from the loaded organic phase was achieved with 0.7 M HCl. The difference in the solvent extraction of the rare earth elements from chloride solution between the binary mixture and saponified extractants was also discussed.

  6. Green synthesis of mesoporous molecular sieve incorporated monoliths using room temperature ionic liquid and deep eutectic solvents.

    PubMed

    Zhang, Li-Shun; Zhao, Qing-Li; Li, Xin-Xin; Li, Xi-Xi; Huang, Yan-Ping; Liu, Zhao-Sheng

    2016-12-01

    A hybrid monolith incorporated with mesoporous molecular sieve MCM-41 of uniform pore structure and high surface area was prepared with binary green porogens in the first time. With a mixture of room temperature ionic liquids and deep eutectic solvents as porogens, MCM-41 was modified with 3-(trimethoxysilyl) propyl methacrylate (γ-MPS) and the resulting MCM-41-MPS was incorporated into poly (BMA-co-EDMA) monoliths covalently. Because of good dispersibility of MCM-41-MPS in the green solvent-based polymerization system, high permeability and homogeneity for the resultant hybrid monolithic columns was achieved. The MCM-41-MPS grafted monolith was characterized by scanning electron microscopy, energy dispersive spectrometer area scanning, transmission electron microscopy, FT-IR spectra and nitrogen adsorption tests. Chromatographic performance of MCM-41-MPS grafted monolith was characterized by separating small molecules in capillary electrochromatography, including phenol series, naphthyl substitutes, aniline series and alkyl benzenes. The maximum column efficiency of MCM-41-MPS grafted monolith reached 209,000 plates/m, which was twice higher than the corresponding MCM-41-MPS free monolith. Moreover, successful separation of non-steroidal anti-inflammatory drugs and polycyclic aromatic hydrocarbons demonstrated the capacity in broad-spectrum application of the MCM-41-MPS incorporated monolith. The results indicated that green synthesis using room temperature ionic liquid and deep eutectic solvents is an effective method to prepare molecular sieve-incorporated monolithic column. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Determination of solvents permeating through chemical protective clothing with a microsensor array.

    PubMed

    Park, J; Zellers, E T

    2000-08-01

    The performance of a novel prototype instrument in determining solvents and solvent mixtures permeating through samples of chemical protective clothing (CPC) materials was evaluated. The instrument contains a mini-preconcentrator and an array of three polymer-coated surface-acoustic-wave (SAW) microsensors whose collective response patterns are used to discriminate among multiple permeants. Permeation tests were performed with a 2.54 cm diameter test cell in an open-loop configuration on samples of common glove materials challenged with four individual solvents, three binary mixtures, and two ternary mixtures. Breakthrough times, defined as the times required for the permeation rate to reach a value of 1 microg cm(-2) min(-1), determined by the instrument were within 3 min of those determined in parallel by manual sampling and gas chromatographic analysis. Permeating solvents were recognized (identified) from their response patterns in 59 out of 64 measurements (92%) and their vapor concentrations were quantified to an accuracy of +/- 31% (typically +/- 10%). These results demonstrate the potential for such instrumentation to provide semi-automated field or bench-top screening of CPC permeation resistance.

  8. The impact of mixed solvents on the complexation thermodynamics of Eu(III) by simple carboxylate and amino carboxylate ligands

    DOE PAGES

    Felmy, Heather M.; Bennett, Kevin T.; Clark, Sue B.

    2017-05-12

    To gain insight on the role of mixed solvents on the thermodynamic driving forces for the complexation between trivalent f-elements and organic ligands, solution phase thermodynamic parameters were determined for Eu(III) complexation with 2-hydroxyisobutyric acid (HIBA) and 2-aminoisobutyric acid (AIBA) in mixed methanol (MeOH)-water and N,N-dimethylformamide (DMF)-water solvents. Included in this study were the determination of mixed solvent autoprotolysis constants (pK α) as well as the thermodynamic formation constants: log β, ΔG, ΔH, and ΔS, for ligand protonation and Eu(III)-ligand complexation utilizing potentiometry and calorimetry techniques. The results presented are conditional thermodynamic values determined at an ionic strength of 1.0more » M NaClO 4 and a temperature of 298 K. It was found that moving from an aqueous solution to a binary aqueous-organic solvent affected all solution equilibria to some degree and that the extent of change depended on both the type of mixed solvent and the ligand in each study. Here, the ability to understand and predict these changes in thermodynamic values as a function of solvent composition provides important information about the chemistry of the trivalent f-elements.« less

  9. The impact of mixed solvents on the complexation thermodynamics of Eu(III) by simple carboxylate and amino carboxylate ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felmy, Heather M.; Bennett, Kevin T.; Clark, Sue B.

    To gain insight on the role of mixed solvents on the thermodynamic driving forces for the complexation between trivalent f-elements and organic ligands, solution phase thermodynamic parameters were determined for Eu(III) complexation with 2-hydroxyisobutyric acid (HIBA) and 2-aminoisobutyric acid (AIBA) in mixed methanol (MeOH)-water and N,N-dimethylformamide (DMF)-water solvents. Included in this study were the determination of mixed solvent autoprotolysis constants (pK α) as well as the thermodynamic formation constants: log β, ΔG, ΔH, and ΔS, for ligand protonation and Eu(III)-ligand complexation utilizing potentiometry and calorimetry techniques. The results presented are conditional thermodynamic values determined at an ionic strength of 1.0more » M NaClO 4 and a temperature of 298 K. It was found that moving from an aqueous solution to a binary aqueous-organic solvent affected all solution equilibria to some degree and that the extent of change depended on both the type of mixed solvent and the ligand in each study. Here, the ability to understand and predict these changes in thermodynamic values as a function of solvent composition provides important information about the chemistry of the trivalent f-elements.« less

  10. [Studies on development of pharmaceutical preparation with the purpose of improving controlled-release and bioavailability].

    PubMed

    Goto, S

    1995-11-01

    During the past fifteen years, the experiments based on three main propositions were proceeded to carry out in our laboratory, that is, (1) Microencapsulation: The method of solvent evaporation in water or oily phases was adopted because of its comparative simplicity in the procedure and its high reproducibility. The application of pharmacokinetic consideration to in vivo evaluation of microencapsulated drugs using beagle dogs intended for obtaining controlled-release by oral administration. The pullulan acetate phthalate microcapsules containing cefadroxil were prepared by the solvent evaporation method in liquid paraffin and showed a zero-order dissolution pattern in pH 6-7.4. (2) Rectal gel preparation: The hydrogels and xerogels were prepared by Eudispert hv. These gels have excellent staying properties in the lower part of the rectum, over a fairly long period. Eudispert hv hydrogels or xerogels containing propentfylline were tested for avoidance of the first-pass metabolism. The absolute bioavailability of propentofylline from gel preparations was almost 100%. (3) Binary vehicle for transdermal delivery: The effects of glycerides, short-chain alcohols and their binary vehicles as donor components on the skin permeation of ketoprofen across the excised hairless mouse skin were evaluated with the diffusion cell. Among single vehicles, Panasate 800 as lipophilic vehicle and ethanol as hydrophilic vehicle showed the effective permeation flux of ketoprofen. The greatest enhancement was observed in an ethanol/Panasate 800 (40/60) binary vehicle. The relationship between lipophilicity and skin permeability of 16 drugs from the ethanol/Panasate 800 (40/60) binary vehicle showed a parabolic shape with a peak at a more hydrophilic range compared with other past references.

  11. Elementary kinematical model of thermal diffusion in liquids and gases.

    PubMed

    Brenner, Howard

    2006-09-01

    An elementary hydrodynamic and Brownian motion model of the thermal diffusivity D(T) of a restricted class of binary liquid mixtures, previously proposed by the author, is given a more transparent derivation than originally, exposing thereby the strictly kinematic-hydrodynamic nature of an important class of thermodiffusion separation phenomena. Moreover, it is argued that the solvent's thermometric diffusivity alpha appearing in that theory as one of the two fundamental parameters governing D(T) should be replaced by the solvent's (isothermal) self-diffusivity D(S). In addition, a corrective multiplier of O(1) is inserted to reflect the general physicochemical noninertness of the solute relative to the solvent, thus enhancing the applicability of the resulting formula D(T)=lambdaD(S)beta to "nonideal" solutions. Here, beta is the solvent's thermal expansivity and lambda is a term of O(1), insensitive to the physicochemical nature of the solute (thus rendering D(T) primarily dependent upon only the properties of the solvent). This formula is, on the basis of its derivation, presumably valid only under certain idealized, albeit well-defined, circumstances. This occurs when the solute molecules are: (i) large compared with those of the solvent; and (ii) present only in small proportions relative to those of the solvent. When the solute is physicochemically inert, it is expected that lambda=1. When these conditions are met, the resulting thermal diffusivity of the mixture is, in theory, independent of any and all properties of the solute. Moreover, because beta is algebraically signed, the thermal diffusivity can either by positive or negative, according as the solvent expands or contracts upon being heated. This formula for D(T) is compared with available experimental data for selected binary liquid mixtures. Reasonable agreement is found in almost all circumstances with lambda near unity, the more so the higher the temperature, especially when the solute-solvent mixture properties closely approximate those where agreement would be expected and conversely. Finally, it is pointed out that for the restricted circumstances described, the formula D(T)=lambdaD(S)beta is equally credible for gases. Here, based on gas-kinetic theory, it is possible to furnish the theoretical value of lambda. Overall, while spanning a range of about five orders of magnitude, the D(T) values given by this elementary formula are shown to apply with reasonable accuracy to: (i) liquids (including circumstances for which D(T) is negative) as well as gases; (ii) all combinations of solvents and solutes tested (the latter including, for example, polymer molecules and metallic colloidal particles); and (iii) all sizes of solute molecules, from angstroms to submicron.

  12. Correlation of the Rates of Solvolysis of Neopentyl Chloroformate—A Recommended Protecting Agent

    PubMed Central

    D’Souza, Malcolm J.; Carter, Shannon E.; Kevill, Dennis N.

    2011-01-01

    The specific rates of solvolysis of neopentyl chloroformate (1) have been determined in 21 pure and binary solvents at 45.0 °C. In most solvents the values are essentially identical to those for ethyl and n-propyl chloroformates. However, in aqueous-1,1,1,3,3,3-hexafluoro-2-propanol mixtures (HFIP) rich in fluoroalcohol, 1 solvolyses appreciably faster than the other two substrates. Linear free energy relationship (LFER) comparison of the specific rates of solvolysis of 1 with those for phenyl chloroformate and those for n-propyl chloroformate are helpful in the mechanistic considerations, as is also the treatment in terms of the Extended Grunwald-Winstein equation. It is proposed that the faster reaction for 1 in HFIP rich solvents is due to the influence of a 1,2-methyl shift, leading to a tertiary alkyl cation, outweighing the only weak nucleophilic solvation of the cation possible in these low nucleophilicity solvents. PMID:21541050

  13. On the microenvironment of polymers in solution. Pt. 2. Polarity of the polymer microenvironment in binary solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strop, P.; Mikes, F.; Kalal, J.

    1976-03-25

    In Pt. 1 of this work, solvatochromic compounds embedded in polymer chains were used for measuring the polarity of their microenvironment. The semiempirical expression of the polarity of solvents by means of the energy of the charge-transfer (C-T) absorption band of 1-ethyl-4-carbomethylpyridinium iodide, as proposed by Kosower, was shown to be applicable in principle for measuring the polarity of the polymer microenvironment. In this present work, this approach was employed to measure the polarity of microenvironments of the synthetic polymers polymethacrylamide (PMA), poly(2-hydroxethyl methacrylate) (PHEMA), poly(2-vinylpyridine) (P-2VP), poly(4-vinylpyridine) (P-4VP), poly(methyl methacrylate) (PMMA), poly(butyl methacrylate) (PBMA), and polystyrene (PS) in binarymore » solvents and to compare them with the polarities of these solvents. It is concluded that comparisons with a solution with the same polarity expressed by the semi-empirical scale represents only the first approximation for characterizing the polymer microenvironment. (12 refs.)« less

  14. Photoinduced electron transfer in an imidazolium ionic liquid and in its binary mixtures with water, methanol, and 2-propanol: appearance of Marcus-type of inversion.

    PubMed

    Sarkar, Souravi; Mandal, Sarthak; Ghatak, Chiranjib; Rao, Vishal Govind; Ghosh, Surajit; Sarkar, Nilmoni

    2012-02-02

    The photoinduced electron transfer (PET) reaction has been investigated in a room temperature imidazolium ionic liquid (RTIL), 1-ethyl-3-methylimidazolium ethyl sulfate ([Emim][EtSO(4)]) and also in [Emim][EtSO(4)]-co-solvents mixtures from N,N-dimethyl aniline (DMA) to different Coumarin dyes using steady state and time-resolved fluorescence quenching measurements. We have used water and methanol and 2-propanol as the cosolvents of RTILs for the PET study. On going from neat ionic liquid to the RTIL-co-solvents mixtures the electron transfer rate has been largely enhanced. In neat RTIL as well as in [Emim][EtSO(4)]-co-solvents mixtures, a Marcus type of inversion in the PET rate have been observed.

  15. Quantitative determination of limonin in citrus juices by HPLC using computerized solvent optimization.

    PubMed

    Shaw, P E; Wilson, C W

    1988-09-01

    The commercially available computer program, Drylab, for optimization of separations by high-performance liquid chromatography (HPLC) using binary solvent mixtures is used to improve an HPLC method for separation of the bitter principle, limonin, in grapefruit and navel orange juices. Best conditions for separation of limonin in a reasonable time are 30 to 32% acetonitrile in water at 0.9 mL/min using a 5-micron C18 column 10 cm long. These conditions are used to analyze grapefruit and navel orange juice samples, and these HPLC results are compared with values determined by enzyme immunoassay or thin-layer chromatography (TLC) on the same samples.

  16. Coefficients of interphase distribution and Gibbs energy of the transfer of nicotinic acid from water into aqueous solutions of ethanol and dimethylsulfoxide

    NASA Astrophysics Data System (ADS)

    Grazhdan, K. V.; Gamov, G. A.; Dushina, S. V.; Sharnin, V. A.

    2012-11-01

    Coefficients of the interphase distribution of nicotinic acid are determined in aqueous solution systems of ethanol-hexane and DMSO-hexane at 25.0 ± 0.1°C. They are used to calculate the Gibbs energy of the transfer of nicotinic acid from water into aqueous solutions of ethanol and dimethylsulfoxide. The Gibbs energy values for the transfer of the molecular and zwitterionic forms of nicotinic acid are obtained by means of UV spectroscopy. The diametrically opposite effect of the composition of binary solvents on the transfer of the molecular and zwitterionic forms of nicotinic acid is noted.

  17. Structure and tunneling dynamics in a model system of peptide co-solvents: rotational spectroscopy of the 2,2,2-trifluoroethanol⋯water complex.

    PubMed

    Thomas, Javix; Xu, Yunjie

    2014-06-21

    The hydrogen-bonding topology and tunneling dynamics of the binary adduct, 2,2,2-trifluoroethanol (TFE)⋯water, were investigated using chirped pulse and cavity based Fourier transform microwave spectroscopy with the aid of high level ab initio calculations. Rotational spectra of the most stable binary TFE⋯water conformer and five of its deuterium isotopologues were assigned. A strong preference for the insertion binding topology where water is inserted into the existing intramolecular hydrogen-bonded ring of TFE was observed. Tunneling splittings were detected in all of the measured rotational transitions of TFE⋯water. Based on the relative intensity of the two tunneling components and additional isotopic data, the splitting can be unambiguously attributed to the tunneling motion of the water subunit, i.e., the interchange of the bonded and nonbonded hydrogen atoms of water. The absence of any other splitting in the rotational transitions of all isotopologues observed indicates that the tunneling between g+ and g- TFE is quenched in the TFE⋯H2O complex.

  18. Binary Polymer Brushes of Strongly Immiscible Polymers.

    PubMed

    Chu, Elza; Babar, Tashnia; Bruist, Michael F; Sidorenko, Alexander

    2015-06-17

    The phenomenon of microphase separation is an example of self-assembly in soft matter and has been observed in block copolymers (BCPs) and similar materials (i.e., supramolecular assemblies (SMAs) and homo/block copolymer blends (HBCs)). In this study, we use microphase separation to construct responsive polymer brushes that collapse to generate periodic surfaces. This is achieved by a chemical reaction between the minor block (10%, poly(4-vinylpyridine)) of the block copolymer and a substrate. The major block of polystyrene (PS) forms mosaic-like arrays of grafted patches that are 10-20 nm in size. Depending on the nature of the assembly (SMA, HBC, or neat BCP) and annealing method (exposure to vapors of different solvents or heating above the glass transition temperature), a range of "mosaic" brushes with different parameters can be obtained. Successive grafting of a secondary polymer (polyacrylamide, PAAm) results in the fabrication of binary polymer brushes (BPBs). Upon being exposed to specific selective solvents, BPBs may adopt different conformations. The surface tension and adhesion of the binary brush are governed by the polymer occupying the top stratum. The "mosaic" brush approach allows for a combination of strongly immiscible polymers in one brush. This facilitates substantial contrast in the surface properties upon switching, previously only possible for substrates composed of predetermined nanostructures. We also demonstrate a possible application of such PS/PAAm brushes in a tunable bioadhesion-bioadhesive (PS on top) or nonbioadhesive (PAAm on top) surface as revealed by Escherichia coli bacterial seeding.

  19. Quantifying the loss of methane through secondary gas mass transport (or 'slip') from a micro-porous membrane contactor applied to biogas upgrading.

    PubMed

    McLeod, Andrew; Jefferson, Bruce; McAdam, Ewan J

    2013-07-01

    Secondary gas transport during the separation of a binary gas with a micro-porous hollow fibre membrane contactor (HMFC) has been studied for biogas upgrading. In this application, the loss or 'slip' of the secondary gas (methane) during separation is a known concern, specifically since methane possesses the intrinsic calorific value. Deionised (DI) water was initially used as the physical solvent. Under these conditions, carbon dioxide (CO2) and methane (CH4) absorption were dependent upon liquid velocity (V(L)). Whilst the highest CO2 flux was recorded at high V(L), selectivity towards CO2 declined due to low residence times and a diminished gas-side partial pressure, and resulted in slip of approximately 5.2% of the inlet methane. Sodium hydroxide was subsequently used as a comparative chemical absorption solvent. Under these conditions, CO2 mass transfer increased by increasing gas velocity (VG) which is attributed to the excess of reactive hydroxide ions present in the solvent, and the fast conversion of dissolved CO2 to carbonate species reinitiating the concentration gradient at the gas-liquid interface. At high gas velocities, CH4 slip was reduced to 0.1% under chemical conditions. Methane slip is therefore dependent upon whether the process is gas phase or liquid phase controlled, since methane mass transport can be adequately described by Henry's law within both physical and chemical solvents. The addition of an electrolyte was found to further retard CH4 absorption via the salting out effect. However, their applicability to physical solvents is limited since electrolytic concentration similarly impinges upon the solvents' capacity for CO2. This study illustrates the significance of secondary gas mass transport, and furthermore demonstrates that gas-phase controlled systems are recommended where greater selectivity is required. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Role of solvent-mediated carbodiimide cross-linking in fabrication of electrospun gelatin nanofibrous membranes as ophthalmic biomaterials.

    PubMed

    Chou, Shih-Feng; Luo, Li-Jyuan; Lai, Jui-Yang; Ma, David Hui-Kang

    2017-02-01

    Due to their ability to mimic the structure of extracellular matrix, electrospun gelatin nanofibers are promising cell scaffolding materials for tissue engineering applications. However, the hydrophilic gelatin molecules usually need stabilization before use in aqueous physiological environment. Considering that biomaterials cross-linked via film immersion technique may have a more homogeneous cross-linked structure than vapor phase cross-linking, this work aims to investigate the chemical modification of electrospun gelatin nanofibrous membranes by liquid phase carbodiimide in the presence of ethanol/water co-solvents with varying ethanol concentrations ranging from 80 to 99.5vol%. The results of characterization showed that increasing water content in the binary reaction solvent system increases the extent of cross-linking of gelatin nanofibers, but simultaneously promotes the effect of biopolymer swelling and distortion in fiber mat structure. As compared to non-cross-linked counterparts, carbodiimide treated gelatin nanofibrous mats exhibited better thermal and biological stability where the shrinkage temperature and resistance to enzymatic degradation varied in response to ethanol/water solvent composition-mediated generation of cross-links. Irrespective of their cross-linking density, all studied membrane samples did not induce any responses in ocular epithelial cell cultures derived from cornea, lens, and retina. Unlike many other cross-linking agents and/or methods (e.g., excessive vapor phase cross-linking) that may pose a risk of toxicity, our study demonstrated that these nanofibrous materials are well tolerated by anterior segment tissues. These findings also indicate the safety of using ethanol/water co-solvents for chemical cross-linking of gelatin to engineer nanofibrous materials with negligible biological effects. In summary, the present results suggest the importance of solvent-mediated carbodiimide cross-linking in modulating structure-property relationship without compromising in vitro and in vivo biocompatibility of electrospun gelatin nanofibers for future ophthalmic applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Complexation and phase evolution at dimethylformamide-Ag(111) interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Wentao; Leung, Kevin; Shao, Qian

    The interaction of solvent molecules with metallic surfaces impacts many interfacial chemical processes. We investigate the chemical and structure evolution that follows adsorption of the polar solvent dimethylformamide (DMF) on Ag(111). An Ag(DMF) 2 coordination complex forms spontaneously by DMF etching of Ag(111), yielding mixed films of the complexes and DMF. Utilizing ultrahigh vacuum scanning tunneling microscopy (UHV-STM), in combination with X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) computations, we map monolayer phases from the 2-D gas regime, consisting of a binary mixture of DMF and Ag(DMF) 2, through the saturation monolayer limit, in which these two chemicalmore » species phase separate into ordered islands. Structural models for the near-square DMF phase and the chain-like Ag(DMF) 2 phase are presented and supported by DFT computation. Interface evolution is summarized in a surface pressure-composition phase diagram, which allows structure prediction over arbitrary experimental conditions. In conclusion, this work reveals new surface coordination chemistry for an important electrolyte-electrode system, and illustrates how surface pressure can be used to tune monolayer phases.« less

  2. Complexation and phase evolution at dimethylformamide-Ag(111) interfaces

    DOE PAGES

    Song, Wentao; Leung, Kevin; Shao, Qian; ...

    2016-09-15

    The interaction of solvent molecules with metallic surfaces impacts many interfacial chemical processes. We investigate the chemical and structure evolution that follows adsorption of the polar solvent dimethylformamide (DMF) on Ag(111). An Ag(DMF) 2 coordination complex forms spontaneously by DMF etching of Ag(111), yielding mixed films of the complexes and DMF. Utilizing ultrahigh vacuum scanning tunneling microscopy (UHV-STM), in combination with X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) computations, we map monolayer phases from the 2-D gas regime, consisting of a binary mixture of DMF and Ag(DMF) 2, through the saturation monolayer limit, in which these two chemicalmore » species phase separate into ordered islands. Structural models for the near-square DMF phase and the chain-like Ag(DMF) 2 phase are presented and supported by DFT computation. Interface evolution is summarized in a surface pressure-composition phase diagram, which allows structure prediction over arbitrary experimental conditions. In conclusion, this work reveals new surface coordination chemistry for an important electrolyte-electrode system, and illustrates how surface pressure can be used to tune monolayer phases.« less

  3. First-Principles Prediction of Liquid/Liquid Interfacial Tension.

    PubMed

    Andersson, M P; Bennetzen, M V; Klamt, A; Stipp, S L S

    2014-08-12

    The interfacial tension between two liquids is the free energy per unit surface area required to create that interface. Interfacial tension is a determining factor for two-phase liquid behavior in a wide variety of systems ranging from water flooding in oil recovery processes and remediation of groundwater aquifers contaminated by chlorinated solvents to drug delivery and a host of industrial processes. Here, we present a model for predicting interfacial tension from first principles using density functional theory calculations. Our model requires no experimental input and is applicable to liquid/liquid systems of arbitrary compositions. The consistency of the predictions with experimental data is significant for binary, ternary, and multicomponent water/organic compound systems, which offers confidence in using the model to predict behavior where no data exists. The method is fast and can be used as a screening technique as well as to extend experimental data into conditions where measurements are technically too difficult, time consuming, or impossible.

  4. New nanoparticles obtained by co-assembly of amphiphilic cyclodextrins and nonlamellar single-chain lipids: Preparation and characterization.

    PubMed

    Nguyễn, Cảnh Hưng; Putaux, Jean-Luc; Santoni, Gianluca; Tfaili, Sana; Fourmentin, Sophie; Coty, Jean-Baptiste; Choisnard, Luc; Gèze, Annabelle; Wouessidjewe, Denis; Barratt, Gillian; Lesieur, Sylviane; Legrand, François-Xavier

    2017-10-15

    This work aimed at preparing new nanoscale assemblies based on an amphiphilic bio-esterified β-cyclodextrin (β-CD), substituted at the secondary face with n-decanoic fatty acid chains (β-CD-C 10 ), and monoolein (MO) as new carriers for parenteral drug delivery. Stable binary (β-CD-C 10 /MO) and ternary (β-CD-C 10 /MO/stabilizer) nanoscale assemblies close to 100nm in size were successfully prepared in water by the solvent displacement method. The generated nanoparticles were fully characterized by dynamic light scattering, transmission electron microscopy, small-angle X-ray scattering, residual solvent analysis, complement activation and the contribution of each formulation parameter was determined by principal component analysis. The β-CD-C 10 units were shown to self-organize into nanoparticles with a hexagonal supramolecular packing that was significantly modulated by the molar ratio of the constituents and the presence of a steric or electrostatic stabilizer (DOPE-PEG 2000 or DOPA/POPA, respectively). Indeed, nanoparticles differing in morphology and in hexagonal lattice parameters were obtained while the co-existence of multiple mesophases was observed in some formulations, in particular for the β-CD-C 10 /MO/DOPA and β-CD-C 10 /MO/POPA systems. The mixed β-CD-C 10 /MO/DOPE-PEG 2000 nanoparticles (49:49:2 in mol%) appeared to be the most suitable for use as a drug delivery system since they contained a very low amount of residual solvent and showed a low level of complement C3 activation. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Study of complex formation of 5,5'-(2 E, 2' E)-2,2'-(ethane-1,2-diylidene)bis(hydrazine-1-yl-2-ylidene)bis(4-amino-4H-1,2,4-triazole-3-thiol) (HYT) macrocyclic ligand with Cd2+ cation in non-aqueous solution by spectroscopic and conductometric methods

    NASA Astrophysics Data System (ADS)

    Mallaekeh, Hassan; Shams, Alireza; Shaker, Mohammad; Bahramzadeh, Ehsan; Arefi, Donya

    2014-12-01

    In this paper the complexation reaction of the 5,5'-(2 E,2' E)-2,2'-(ethane-1,2-diylidene)bis(hydrazine-1-yl-2-ylidene)bis(4-amino-4H-1,2,4-triazole-3-thiol) ligand (HYT) with Cd2+ education was studied in some binary mixtures of methanol (MeOH), n-propanol (PrOH) and dimethyl-formamide (DMF) at different temperatures using the conductometry and spectrophotometry. The stability constants of the complex was determined using a GENPLOT computer program. The conductance data and absorbance-mole ratio plots show that in all solvent systems, the stoichiometry of the complex formed between (HYT) and Cd2+ cation is 1: 1. The obtained results show that the stability of (HYT)-Cd complex is sensitive to the mixed solvents composition. The values of thermodynamic parameters (Δ G ∘, Δ H ∘, and Δ S ∘) for formation of (HYT)-Cd complex were obtained from temperature dependence of the stability constant using the van't Hoff plots. The results show that in most cases, the complex are enthalpy destabilized but entropy stabilized and the complex formation is affected by pH, time, temperature and the nature of the solvent.

  6. Dynamical studies of confined fluids and polymers

    NASA Astrophysics Data System (ADS)

    Grabowski, Christopher A.

    Soft matter, a class of materials including polymers, colloids, and surfactant molecules, are ubiquitous in our everyday lives. Plastics, soaps, foods and living organisms are mostly comprised of soft materials. Research conducted to understand soft matter behavior at the molecular level is essential to create new materials with unique properties. Self-healing plastics, targeted drug delivery, and nanowire assemblies have all been further advanced by soft matter research. The author of this dissertation investigates fundamental soft matter systems, including polymer solutions and melts, colloid dispersions in polymer melts, and interfacial fluids. The dynamics of polymers and confined fluids were studied using the single-molecule sensitive technique of fluorescence correlation spectroscopy (FCS). Here, fluorescent dyes are attached to polymer coils or by introducing free dyes directly into the solution/film. Complementary experiments were also performed, utilizing atomic force microscopy (AFM) and ellipsometry. FCS and AFM experiments demonstrated the significant difference in properties of thin fluid films of the nearly spherical, nonpolar molecule TEHOS (tetrakis(2-ethylhexoxy)silane) when compared to its bulk counterpart. AFM experiments confirmed TEHOS orders in layers near a solid substrate. FCS experiments show that free dyes introduced in these thin films do not have a single diffusion coefficient, indicating that these films have heterogeneity at the molecular level. FCS experiments have been applied to study the diffusion of gold colloids. The diffusion of gold colloids in polymer melts was found to dramatically depart from the Stokes-Einstein prediction when colloid size was smaller than the surrounding polymer mesh size. This effect is explained by noting the viscosity experienced by the colloid is not equivalent to the overall bulk viscosity of the polymer melt. The conformational change of polymers immersed in a binary solvent was measured via FCS. This experiment was conducted to test a theory proposed by Brochard and de Gennes, who postulated a polymer chain undergoes a collapse and a dramatic re-swelling as the critical point of the binary mixture is approached. Measuring polymer chain diffusion as a function of temperature, this theory was confirmed. To my knowledge, this was the first experimental evidence of contraction/re-swelling for polymers in critical binary solvents.

  7. Physicochemical characterization of lignin recovered from microwave-assisted delignified lignocellulosic biomass for use in biobased materials

    Treesearch

    Jiulong Xie; Chung-Yun Hse; Todd F. Shupe; Tingxing Hu

    2015-01-01

    Lignocellulosic biomass (Moso Bamboo, Chinese tallow tree wood, switchgrass, and pine wood) was subjected to a novel delignification process using microwave energy in a binary glycerol/methanol solvent. The physicochemical properties of the recovered lignin were analyzed prior to its application in the fabrication of polylactic acid (PLA)–lignin composites. The results...

  8. The Solubility Parameters of Ionic Liquids

    PubMed Central

    Marciniak, Andrzej

    2010-01-01

    The Hildebrand’s solubility parameters have been calculated for 18 ionic liquids from the inverse gas chromatography measurements of the activity coefficients at infinite dilution. Retention data were used for the calculation. The solubility parameters are helpful for the prediction of the solubility in the binary solvent mixtures. From the solubility parameters, the standard enthalpies of vaporization of ionic liquids were estimated. PMID:20559495

  9. Fluid extraction

    DOEpatents

    Wai, Chien M.; Laintz, Kenneth E.

    1999-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakurada, I.; Okada, T.; Hutakeyama, S.

    Experiments on radioinduced graft copolymerization of binary mixtures such as butadiene -- styrene, butadiene-acrylonitrile, styrene-- acrylonitrile and some other systems onto cellulose and PVA (polyvinyl alcohol) fibers were carried out with the use of methanol as a solvent. A very marked maximum of graft was observed in every case at a certain composition of the comonomer mixture. It seemed that such a marked maximum was closely connected with popcorn polymerization for the case of butadiene-- styrene, but popcorn polymerization was not a necessary condition for the appearance of the maximum. Only a combined effect of swelling of the gel, formationmore » of radicals in the gel, homocopolymerization, and some other unknown factors is considered likely to lead to a very high degree of grafting. (auth)« less

  11. Dynamics and yielding of binary self-suspended nanoparticle fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Akanksha; Yu, Hsiu-Yu; Srivastava, Samanvaya

    Yielding and flow transitions in bi-disperse suspensions of particles are studied using a model system comprised of self-suspended spherical nanoparticles. An important feature of the materials is that the nanoparticles are uniformly dispersed in the absence of a solvent. Addition of larger particles to a suspension of smaller ones is found to soften the suspensions, and in the limit of large size disparities, completely fluidizes the material. We show that these behaviors coincide with a speeding-up of de-correlation dynamics of all particles in the suspensions and are accompanied by a reduction in the energy dissipated at the yielding transition. Wemore » discuss our findings in terms of ligand-mediated jamming and un-jamming of hairy particle suspensions.« less

  12. Sub-Tg process of tert-nitrobutane in o-terphenyl glassy matrix

    NASA Astrophysics Data System (ADS)

    Chandra, Girish

    2017-05-01

    Dielectric spectroscopy (20 Hz - 2 MHz) and Differential Scanning Calorimetry measurement have been done of the o-terphenyl (OTP) - tert-nitrobutane (TNB), Xw=0.15 binary system, down to liquid nitrogen temperature. During measurement a clear dispersion of one primary α- process and two secondary β- (or sub-Tg) processes (β1 & β2) are observed. The β1- process is due to solvent OTP molecules whereas the β2- process is due to solute TNB molecules. Spectral behavior of α- process follows the Havariliak-Negami equation. The Sub-Tg processes are symmetric in nature and follow the Cole-Cole equation. The activation energy of the β2-process is found to be 11.3 kJ/mole.

  13. Facile fabrication of plate-shaped hydrohausmannite as electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Liang, Jun; Chai, Yao; Li, Deli; Li, Meng; Lu, Jiaxue; Li, Li; Luo, Min

    2017-08-01

    A simple and one-step solvothermal synthesis method has been developed to prepare two-dimensional (2-D) hydrohausmannite ((Mn4-2xMnx)Mn8O16-x(OH)x) nanoplates with radial length of 300 nm and thickness of about 25 nm in a binary ethanediamine/water solvent system. The formation mechanism of hydrohausmannite is suggested. As an anode material for electrochemical capacitors, the plate-shaped hydrohausmannite not only displays a high specific capacity (215 at 0.1 A g-1) and good rate capability, but also shows good stable performance along with 94% specific capacity retained after 3000 cycle tests. The method can be easily controlled and expected to be applicable for the large-scale preparation of the 2-D hydrohausmannite.

  14. Simultaneous determination of citrus limonoid aglycones and glucosides by high performance liquid chromatography.

    PubMed

    Vikram, Amit; Jayaprakasha, G K; Patil, Bhimanagouda S

    2007-05-08

    High performance liquid chromatography (HPLC) method has been developed for simultaneous quantification of limonoid aglycones and glucosides on a reversed phase C18 column using a binary solvent system, coupled with diode array detector. Seven limonoids such as limonin, nomilin, isolimonic acid, ichangin, isoobacunoic acid, limonin 17-beta-D glucopyranoside and deacetyl nomilinic acid 17-beta-D glucopyranoside were separated and detected at 210 nm. Furthermore, limonoids were separated, identified and quantified in four varieties of citrus fruits and seeds using developed method. Limonin and limonin glucoside were found to be the predominant limonoid aglycone and glucoside, respectively, in all tested samples. The sensitivity of the method was found to be 0.25-0.50 microg for tested limonoids.

  15. Efficient encapsulation of chloroform with cryptophane-M and the formation of exciplex studied by fluorescence spectroscopy.

    PubMed

    Shi, Yanqi; Li, Xueming; Yang, Jianchun; Gao, Fang; Tao, Chuanyi

    2011-03-01

    Efficient encapsulation of small molecules with supermolecules is one of significantly important subjects due to strong application potentials. This article presents the interaction between cryptophane-M and chloroform by fluorescence spectroscopy. The sonicated cryptophane-M solution exhibits light green color in chloroform, and the solid obtained from the evaporation of chloroform also has different color from that of cryptophane-M. In contrast, the sonicated cryptophane-M solutions in other solvents are colorless, and the solid obtained from the evaporation of these solvents has the same color as that of cryptophane-M. Furthermore, the freshly prepared cryptophane-M solution in different solvents is almost colorless, and the solid obtained from the evaporation of these solvents displays the same color as that of cryptophane-M. Although the sonicated cryptophane-M solutions in different solvents have very similar absorption spectra, they exhibit quite different emission spectra in chloroform. In contrast, the freshly-prepared cryptophane-M solutions show similar absorption and emission spectroscopy in various solvents. The variation of the fluorescence spectroscopy in binary solvents with the increasing chloroform ratio suggests that cryptophane-M and chloroform form a 1:1 exciplex, and the binding constant is estimated to be 292.95 M(-1). Although all solvents are able to enter into the cavity of cryptophane-M, only chloroform can stay in the cavity of cryptophane-M for a while, which is mostly due to the strong intermolecular interaction between cryptophane-M and chloroform, and this results in the formation of the exciplex between them. © Springer Science+Business Media, LLC 2010

  16. Process analysis and modeling of a single-step lutein extraction method for wet microalgae.

    PubMed

    Gong, Mengyue; Wang, Yuruihan; Bassi, Amarjeet

    2017-11-01

    Lutein is a commercial carotenoid with potential health benefits. Microalgae are alternative sources for the lutein production in comparison to conventional approaches using marigold flowers. In this study, a process analysis of a single-step simultaneous extraction, saponification, and primary purification process for free lutein production from wet microalgae biomass was carried out. The feasibility of binary solvent mixtures for wet biomass extraction was successfully demonstrated, and the extraction kinetics of lutein from chloroplast in microalgae were first evaluated. The effects of types of organic solvent, solvent polarity, cell disruption method, and alkali and solvent usage on lutein yields were examined. A mathematical model based on Fick's second law of diffusion was applied to model the experimental data. The mass transfer coefficients were used to estimate the extraction rates. The extraction rate was found more significantly related with alkali ratio to solvent than to biomass. The best conditions for extraction efficiency were found to be pre-treatment with ultrasonication at 0.5 s working cycle per second, react 0.5 h in 0.27 L/g solvent to biomass ratio, and 1:3 ether/ethanol (v/v) with 1.25 g KOH/L. The entire process can be controlled within 1 h and yield over 8 mg/g lutein, which is more economical for scale-up.

  17. Morphology of molecular soy protein fractions in binary composite gels.

    PubMed

    Kasapis, Stefan; Tay, Sok Li

    2009-08-04

    We investigate the structural properties of gels of binary mixtures of the three major soy protein fractions: 11S, 7S, and 2S. Gels are formed at 25 degrees C in the presence of glucono-delta-lactone and studied using a combination of dynamic rheology and scanning electron microscopy. The theological data was then modeled using a blending-law approach that yields insights into the solvent distribution between the gelled protein fractions and first-order reaction kinetics that follow the gelation process of the single fractions and their mixtures. Gelled mixtures of 11S and 7S yielded enhanced network strength with increasing solid content; in these gels, 50% more solvent partitioned into the 11S phase as compared to that in the 7S phase. In contrast, the addition of small-molecular-weight counterpart 2S to either 11S or 7S results in a catastrophic drop in the values of the overall strength of the mixture. The unexpected phase behavior has been rationalized on the basis of the high water-holding capacity of 2S; 450% more solvent partitions preferentially into the 2S phase as compared to that in the 11S phase. As the concentration of 2S is increased relative to that of 11S or 7S, it becomes the dominant phase and entraps the polymeric segments of 11S (or 7S), thus preventing them from becoming the structural knots of the gel. In addition to the solvent distribution in the gel, the rates of gelation differ markedly between 11S and 2S (with the 11S rate of gelation being up to 2 orders of magnitude greater); a fixed 11S concentration, the rate of gelation decreases with increasing amounts of 2S, further confirming that the latter essentially becomes the dominant phase in the composite gel.

  18. Toxicity of two imidazolium ionic liquids, [bmim][BF4] and [omim][BF4], to standard aquatic test organisms: Role of acetone in the induced toxicity.

    PubMed

    Tsarpali, Vasiliki; Dailianis, Stefanos

    2015-07-01

    The main goal of this study was to investigate the toxicity of the imidazolium-based ionic liquids (ILs), [bmim][BF4] (1-butyl-3-methylimidazolium tetrafluoroborate) and [omim][BF4] (1-octyl-3-methylimidazolium tetrafluoroborate), in battery of standard aquatic toxicity test organisms. Specifically, exposure of the algae Scenedesmus rubescens, crustaceans Thamnocephalus platyurus and Artemia franciscana, rotifers Brachionus calyciflorus and Brachionus plicatilis and bivalve Mytilus galloprovincialis to different concentrations of [bmim][BF4], [omim][BF4] and/or a binary mixture of [bmim][BF4]-[omim][BF4] (1:1) with or without acetone (carrier solvent), revealed that solvent can differentially mediate ILs' toxic profile. Acetone's ability to differentially affect ILs' cation's alkyl chain length, as well as the hydrolysis of [BF4(-)] anions was evident. Given that the toxic potency of the tested ILs seemed to be equal or even higher (in some cases) than those of conventional organic solvents, the present study revealed that the characterization of imidazolium-based ILs as "green solvents" should not be generalized, at least in case of their natural occurrence in mixtures with organic solvents, such as acetone. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Effect of Glycerol Water Binary Mixtures on the Structure and Dynamics of Protein Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghattyvenkatakrishna, Pavan K; Carri, Gustavo A.

    We have performed 20ns of fully atomistic molecular dynamics simulations of Hen Egg-White Lysozyme in 0, 10, 20, 30 and 100% by weight of glycerol in water to better understand the microscopic physics behind the bioprotection offered by glycerol to naturally occuring biological systems. The sovlent exposure of protein surface residues changes when glycerol is introduced. The dynamic behavior of the protein, as quantified by the Incoherent Intermediate Scattering Function, shows a non-monotonic dependence on glycerol content. The fluctuations of the protein residues with respect to each other were found to be similar in all water containing solvents; but differentmore » from the pure glycerol case. The increase in the number of protein glycerol hydrogen bonds in glycerol water binary mixtures explains the slowing down of protein dynamics as the glycerol content increases. We also explored the dynamic behavior of the hydration layer. We show that the short-length scale dynamics of this layer are insenstive to glycerol concentration. However, the long-length scale behavior shows a significant dependence on glycerol content. We also provide insights into the behavior of bound and mobile water molecules.« less

  20. Applicability of effective fragment potential version 2 - Molecular dynamics (EFP2-MD) simulations for predicting excess properties of mixed solvents

    NASA Astrophysics Data System (ADS)

    Kuroki, Nahoko; Mori, Hirotoshi

    2018-02-01

    Effective fragment potential version 2 - molecular dynamics (EFP2-MD) simulations, where the EFP2 is a polarizable force field based on ab initio electronic structure calculations were applied to water-methanol binary mixture. Comparing EFP2s defined with (aug-)cc-pVXZ (X = D,T) basis sets, it was found that large sets are necessary to generate sufficiently accurate EFP2 for predicting mixture properties. It was shown that EFP2-MD could predict the excess molar volume. Since the computational cost of EFP2-MD are far less than ab initio MD, the results presented herein demonstrate that EFP2-MD is promising for predicting physicochemical properties of novel mixed solvents.

  1. Non-Ideality in Solvent Extraction Systems: PNNL FY 2014 Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levitskaia, Tatiana G.; Chatterjee, Sayandev; Pence, Natasha K.

    The overall objective of this project is to develop predictive modeling capabilities for advanced fuel cycle separation processes by gaining a fundamental quantitative understanding of non-ideality effects and speciation in relevant aqueous and organic solutions. Aqueous solutions containing actinides and lanthanides encountered during nuclear fuel reprocessing have high ionic strength and do not behave as ideal solutions. Activity coefficients must be calculated to take into account the deviation from ideality and predict their behavior. In FY 2012-2013, a convenient method for determining activity effects in aqueous electrolyte solutions was developed. Our initial experiments demonstrated that water activity and osmotic coefficientsmore » of the electrolyte solutions can be accurately measured by the combination of two techniques, a Water Activity Meter and Vapor Pressure Osmometry (VPO). The water activity measurements have been conducted for binary lanthanide solutions in wide concentration range for all lanthanides (La-Lu with the exception of Pm). The osmotic coefficients and Pitzer parameters for each binary system were obtained by the least squares fitting of the water activity data. However, application of Pitzer model for the quantitative evaluation of the activity effects in the multicomponent mixtures is difficult due to the large number of the required interaction parameters. In FY 2014, the applicability of the Bromley model for the determination of the Ln(NO 3) 3 activity coefficients was evaluated. The new Bromley parameters for the binary Ln(NO 3) 3 electrolytes were obtained based on the available literature and our experimental data. This allowed for the accurate prediction of the Ln(NO 3) 3 activity coefficients for the binary Ln(NO 3) 3 electrolytes. This model was then successfully implemented for the determination of the Ln(NO 3) 3 activity coefficients in the ternary Nd(NO 3) 3/HNO 3/H2O, Eu(NO 3) 3/HNO 3/H 2O, and Eu(NO 3) 3/NaNO 3/H 2O systems. The main achievement of this work is the verified pathway for the estimation of the activity coefficients in the multicomponent aqueous electrolyte systems. The accurate Bromley electrolytes contributions obtained in this work for the entire series of lanthanide(III) nitrates (except Pm) can be applied for predicting activity coefficients and non-ideality effects for multi-component systems containing these species. This work also provides the proof-of-principle of extending the model to more complex multicomponent systems. Moreover, this approach can also be applied to actinide-containing electrolyte systems, for determination of the activity coefficients in concentrated radioactive solutions.« less

  2. Self-association of short-chain nonionic amphiphiles in binary and ternary systems: comparison between the cleavable ethylene glycol monobutyrate and its ether counterparts.

    PubMed

    Zhu, Ying; Fournial, Anne-Gaëlle; Molinier, Valérie; Azaroual, Nathalie; Vermeersch, Gaston; Aubry, Jean-Marie

    2009-01-20

    In the context of environmental concerns for the production of surface active species, the introduction of a carbonyl function into the skeleton of ethyleneglycol-derived solvo-surfactants is a way to access cleavable compounds with presumed enhanced biodegradability. Ethylene glycol monobutyrate (C(3)COE(1)) was synthesized and compared to its ether counterparts, ethylene glycol monopropyl (C(3)E(1)) and monobutyl ethers (C(4)E(1)), to assess the effect of the insertion of a carbonyl function in the skeleton of short-chain ethoxylated amphiphilic compounds. In aqueous solutions, the ester has intermediate behavior between that of the two ethers with regard to surface tension, solubilization of Me-naphtalene in water, and self-diffusion by PGSE NMR. In ternary systems, C(3)COE(1) and C(3)E(1) have the same optimal oil (EACN = 2.8), which is much more polar than that of C(4)E(1) (EACN = 8.5). With regard to the ability to form structured systems, the behavior in water does not differ significantly for the three compounds, and the transition between nonassociating solvents and amphiphilic solvents, sometimes called solvo-surfactants, is gradual. In ternary systems, however, only C(4)E(1) and C(3)COE(1) form a third phase near the optimal formulation, which tends to show that C(3)COE(1) possesses the minimum amphiphilicity to get a structuration. Self-diffusion NMR studies of the one-phase domains do not, however, allow us to distinguish between different degrees of organization in the three systems.

  3. Specific and Non-Specific Protein Association in Solution: Computation of Solvent Effects and Prediction of First-Encounter Modes for Efficient Configurational Bias Monte Carlo Simulations

    PubMed Central

    Cardone, Antonio; Pant, Harish; Hassan, Sergio A.

    2013-01-01

    Weak and ultra-weak protein-protein association play a role in molecular recognition, and can drive spontaneous self-assembly and aggregation. Such interactions are difficult to detect experimentally, and are a challenge to the force field and sampling technique. A method is proposed to identify low-population protein-protein binding modes in aqueous solution. The method is designed to identify preferential first-encounter complexes from which the final complex(es) at equilibrium evolves. A continuum model is used to represent the effects of the solvent, which accounts for short- and long-range effects of water exclusion and for liquid-structure forces at protein/liquid interfaces. These effects control the behavior of proteins in close proximity and are optimized based on binding enthalpy data and simulations. An algorithm is described to construct a biasing function for self-adaptive configurational-bias Monte Carlo of a set of interacting proteins. The function allows mixing large and local changes in the spatial distribution of proteins, thereby enhancing sampling of relevant microstates. The method is applied to three binary systems. Generalization to multiprotein complexes is discussed. PMID:24044772

  4. Simultaneous Transformation of Commingled Trichloroethylene, Tetrachloroethylene, and 1,4-Dioxane by a Microbially Driven Fenton Reaction in Batch Liquid Cultures.

    PubMed

    Sekar, Ramanan; Taillefert, Martial; DiChristina, Thomas J

    2016-11-01

    Improper disposal of 1,4-dioxane and the chlorinated organic solvents trichloroethylene (TCE) and tetrachloroethylene (also known as perchloroethylene [PCE]) has resulted in widespread contamination of soil and groundwater. In the present study, a previously designed microbially driven Fenton reaction system was reconfigured to generate hydroxyl (HO˙) radicals for simultaneous transformation of source zone levels of single, binary, and ternary mixtures of TCE, PCE, and 1,4-dioxane. The reconfigured Fenton reaction system was driven by fed batch cultures of the Fe(III)-reducing facultative anaerobe Shewanella oneidensis amended with lactate, Fe(III), and contaminants and exposed to alternating anaerobic and aerobic conditions. To avoid contaminant loss due to volatility, the Fe(II)-generating, hydrogen peroxide-generating, and contaminant transformation phases of the microbially driven Fenton reaction system were separated. The reconfigured Fenton reaction system transformed TCE, PCE, and 1,4-dioxane either as single contaminants or as binary and ternary mixtures. In the presence of equimolar concentrations of PCE and TCE, the ratio of the experimentally derived rates of PCE and TCE transformation was nearly identical to the ratio of the corresponding HO˙ radical reaction rate constants. The reconfigured Fenton reaction system may be applied as an ex situ platform for simultaneous degradation of commingled TCE, PCE, and 1,4-dioxane and provides valuable information for future development of in situ remediation technologies. A microbially driven Fenton reaction system [driven by the Fe(III)-reducing facultative anaerobe S. oneidensis] was reconfigured to transform source zone levels of TCE, PCE, and 1,4-dioxane as single contaminants or as binary and ternary mixtures. The microbially driven Fenton reaction may thus be applied as an ex situ platform for simultaneous degradation of at least three (and potentially more) commingled contaminants. Additional targets for ex situ and in situ degradation by the microbially driven Fenton reaction developed in the present study include multiple combinations of environmental contaminants susceptible to attack by Fenton reaction-generated HO˙ radicals, including commingled plumes of 1,4-dioxane, pentachlorophenol (PCP), PCE, TCE, 1,1,2-trichloroethane (TCA), and perfluoroalkylated substances (PFAS). Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Simultaneous Transformation of Commingled Trichloroethylene, Tetrachloroethylene, and 1,4-Dioxane by a Microbially Driven Fenton Reaction in Batch Liquid Cultures

    PubMed Central

    Sekar, Ramanan; Taillefert, Martial

    2016-01-01

    ABSTRACT Improper disposal of 1,4-dioxane and the chlorinated organic solvents trichloroethylene (TCE) and tetrachloroethylene (also known as perchloroethylene [PCE]) has resulted in widespread contamination of soil and groundwater. In the present study, a previously designed microbially driven Fenton reaction system was reconfigured to generate hydroxyl (HO˙) radicals for simultaneous transformation of source zone levels of single, binary, and ternary mixtures of TCE, PCE, and 1,4-dioxane. The reconfigured Fenton reaction system was driven by fed batch cultures of the Fe(III)-reducing facultative anaerobe Shewanella oneidensis amended with lactate, Fe(III), and contaminants and exposed to alternating anaerobic and aerobic conditions. To avoid contaminant loss due to volatility, the Fe(II)-generating, hydrogen peroxide-generating, and contaminant transformation phases of the microbially driven Fenton reaction system were separated. The reconfigured Fenton reaction system transformed TCE, PCE, and 1,4-dioxane either as single contaminants or as binary and ternary mixtures. In the presence of equimolar concentrations of PCE and TCE, the ratio of the experimentally derived rates of PCE and TCE transformation was nearly identical to the ratio of the corresponding HO˙ radical reaction rate constants. The reconfigured Fenton reaction system may be applied as an ex situ platform for simultaneous degradation of commingled TCE, PCE, and 1,4-dioxane and provides valuable information for future development of in situ remediation technologies. IMPORTANCE A microbially driven Fenton reaction system [driven by the Fe(III)-reducing facultative anaerobe S. oneidensis] was reconfigured to transform source zone levels of TCE, PCE, and 1,4-dioxane as single contaminants or as binary and ternary mixtures. The microbially driven Fenton reaction may thus be applied as an ex situ platform for simultaneous degradation of at least three (and potentially more) commingled contaminants. Additional targets for ex situ and in situ degradation by the microbially driven Fenton reaction developed in the present study include multiple combinations of environmental contaminants susceptible to attack by Fenton reaction-generated HO˙ radicals, including commingled plumes of 1,4-dioxane, pentachlorophenol (PCP), PCE, TCE, 1,1,2-trichloroethane (TCA), and perfluoroalkylated substances (PFAS). PMID:27542932

  6. Deep eutectic solvent-based valorization of spent coffee grounds.

    PubMed

    Yoo, Da Eun; Jeong, Kyung Min; Han, Se Young; Kim, Eun Mi; Jin, Yan; Lee, Jeongmi

    2018-07-30

    Spent coffee grounds (SCGs) are viewed as a valuable resource for useful bioactive compounds, such as chlorogenic acids and flavonoids, and we suggest an eco-friendly and efficient valorization method. A series of choline chloride-based deep eutectic solvents (DESs) were tested as green extraction solvents for use with ultrasound-assisted extraction. Extraction efficiency was evaluated based on total phenolic content (TPC), total flavonoid content, total chlorogenic acids, and/or anti-oxidant activity. A binary DES named HC-6, which was composed of 1,6-hexanediol:choline chloride (molar ratio 7:1) was designed to produce the highest efficiency. Experimental conditions were screened and optimized for maximized efficiency using a two-level fractional factorial design and a central composite design, respectively. As a result, the proposed method presented significantly enhanced TPC and anti-oxidant activity. In addition, phenolic compounds could be easily recovered from extracts at high recovery yields (>90%) by adsorption chromatography. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Dissolution thermodynamics and solubility of silymarin in PEG 400-water mixtures at different temperatures.

    PubMed

    Shakeel, Faiyaz; Anwer, Md Khalid

    2015-01-01

    An isothermal method was used to measure the solubility of silymarin in binary polyethylene glycol 400 (PEG 400) + water co-solvent mixtures at temperatures T = 298.15-333.15 K and pressure p = 0.1 MPa. Apelblat and Yalkowsky models were used to correlate experimental solubility data. The mole fraction solubility of silymarin was found to increase with increasing the temperature and mass fraction of PEG 400 in co-solvent mixtures. The root mean square deviations were observed in the range of 0.48-5.32% and 1.50-9.65% for the Apelblat equation and Yalkowsky model, respectively. The highest and lowest mole fraction solubility of silymarin was observed in pure PEG 400 (0.243 at 298.15 K) and water (1.46 × 10(-5) at 298.15 K). Finally, thermodynamic parameters were determined by Van't Hoff and Krug analysis, which indicated an endothermic and spontaneous dissolution of silymarin in all co-solvent mixtures.

  8. Microwave-assisted liquefaction of wood with polyhydric alcohols and its application in preparation of polyurethane (PU) foams

    Treesearch

    Hui Pan; Zhifeng Zheng; Chung Y. Hse

    2011-01-01

    Microwave radiation was used as the heating source in southern pine wood liquefaction with PEG/glycerin binary solvent. It was found that microwave heating was more efficient than conventional oil bath heating for wood liquefaction. The wood residue content of the H2SO4 catalyzed liquefied wood dropped to zero within 5 min with microwave heating. The resulting...

  9. Microwave-assisted liquefaction of wood with polyhydric alcohols and its application in preparation of polyurethane (PU) foams

    Treesearch

    Hui Pan; Zhifeng Zheng; Chung-Yun Hse

    2012-01-01

    Microwave radiation was used as the heating source in southern pine wood liquefaction with PEG/ glycerin binary solvent. It was found that microwave heating was more efficient than conventional oil bath heating for wood liquefaction. The wood residue content of the H2SO4 catalyzed liquefied wood dropped to zero within 5 min with microwave heating. The resulting...

  10. Extraction of metals using supercritical fluid and chelate forming legand

    DOEpatents

    Wai, Chien M.; Laintz, Kenneth E.

    1998-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  11. Extraction of metals using supercritical fluid and chelate forming ligand

    DOEpatents

    Wai, C.M.; Laintz, K.E.

    1998-03-24

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated {beta}-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated {beta}-diketone and a trialkyl phosphate, or a fluorinated {beta}-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated {beta}-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process. 7 figs.

  12. Solid-state flurbiprofen and methyl-β-cyclodextrin inclusion complexes prepared using a single-step, organic solvent-free supercritical fluid process.

    PubMed

    Rudrangi, Shashi Ravi Suman; Kaialy, Waseem; Ghori, Muhammad U; Trivedi, Vivek; Snowden, Martin J; Alexander, Bruce David

    2016-07-01

    The aim of this study was to enhance the apparent solubility and dissolution properties of flurbiprofen through inclusion complexation with cyclodextrins. Especially, the efficacy of supercritical fluid technology as a preparative technique for the preparation of flurbiprofen-methyl-β-cyclodextrin inclusion complexes was evaluated. The complexes were prepared by supercritical carbon dioxide processing and were evaluated by solubility, differential scanning calorimetry, X-ray powder diffraction, scanning electron microscopy, practical yield, drug content estimation and in vitro dissolution studies. Computational molecular docking studies were conducted to study the possibility of molecular arrangement of inclusion complexes between flurbiprofen and methyl-β-cyclodextrin. The studies support the formation of stable molecular inclusion complexes between the drug and cyclodextrin in a 1:1 stoichiometry. In vitro dissolution studies showed that the dissolution properties of flurbiprofen were significantly enhanced by the binary mixtures prepared by supercritical carbon dioxide processing. The amount of flurbiprofen dissolved into solution alone was very low with 1.11±0.09% dissolving at the end of 60min, while the binary mixtures processed by supercritical carbon dioxide at 45°C and 200bar released 99.39±2.34% of the drug at the end of 30min. All the binary mixtures processed by supercritical carbon dioxide at 45°C exhibited a drug release of more than 80% within the first 10min irrespective of the pressure employed. The study demonstrated the single step, organic solvent-free supercritical carbon dioxide process as a promising approach for the preparation of inclusion complexes between flurbiprofen and methyl-β-cyclodextrin in solid-state. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Extensive Evaluation of the Conductor-like Screening Model for Real Solvents Method in Predicting Liquid-Liquid Equilibria in Ternary Systems of Ionic Liquids with Molecular Compounds.

    PubMed

    Paduszyński, Kamil

    2018-04-12

    A conductor-like screening model for real solvents (COSMO-RS) is nowadays one of the most popular and commonly applied tools for the estimation of thermodynamic properties of complex fluids. The goal of this work is to provide a comprehensive review and analysis of the performance of this approach in calculating liquid-liquid equilibrium (LLE) phase diagrams in ternary systems composed of ionic liquid and two molecular compounds belonging to diverse families of chemicals (alkanes, aromatics, S/N-compounds, alcohols, ketones, ethers, carboxylic acid, esters, and water). The predictions are presented for extensive experimental database, including 930 LLE data sets and more than 9000 data points (LLE tie lines) reported for 779 unique ternary mixtures. An impact of the type of molecular binary subsystem on the accuracy of predictions is demonstrated and discussed on the basis of representative examples. The model's capability of capturing qualitative trends in the LLE distribution ratio and selectivity is also checked for a number of structural effects. Comparative analysis of two levels of quantum chemical theory (BP-TZVP-COSMO vs BP-TZVPD-FINE) for the input molecular data for COSMO-RS is presented. Finally, some general recommendations for the applicability of the model are indicated based on the analysis of the global performance as well as on the results obtained for systems relevant from the point of view of important separation problems.

  14. Interfacial free energy governs single polystyrene chain collapse in water and aqueous solutions.

    PubMed

    Li, Isaac T S; Walker, Gilbert C

    2010-05-12

    The hydrophobic interaction is significantly responsible for driving protein folding and self-assembly. To understand it, the thermodynamics, the role of water structure, the dewetting process surrounding hydrophobes, and related aspects have undergone extensive investigations. Here, we examine the hypothesis that polymer-solvent interfacial free energy is adequate to describe the energetics of the collapse of a hydrophobic homopolymer chain at fixed temperature, which serves as a much simplified model for studying the hydrophobic collapse of a protein. This implies that changes in polymer-solvent interfacial free energy should be directly proportional to the force to extend a collapsed polymer into a bad solvent. To test this hypothesis, we undertook single-molecule force spectroscopy on a collapsed, single, polystyrene chain in water-ethanol and water-salt mixtures where we measured the monomer solvation free energy from an ensemble average conformations. Different proportions within the binary mixture were used to create solvents with different interfacial free energies with polystyrene. In these mixed solvents, we observed a linear correlation between the interfacial free energy and the force required to extend the chain into solution, which is a direct measure of the solvation free energy per monomer on a single chain at room temperature. A simple analytical model compares favorably with the experimental results. This knowledge supports a common assumption that explicit water solvent may not be necessary for cases whose primary concerns are hydrophobic interactions and hydrophobic hydration.

  15. Measurement of diffusion in fluid systems: Applications to the supercritical fluid region

    NASA Astrophysics Data System (ADS)

    Bruno, Thomas J.

    1994-04-01

    The experimental procedures that are applicable to the measurement of diffusion in supercritical fluid solutions are reviewed. This topic is of great importance to the proper design of advanced aircraft and turbine fuels, since the fuels on these aircraft may sometimes operate under supercritical fluid conditions. More specifically, we will consider measurements of the binary interaction diffusion coefficient D exp 12 of a solute (species 1) and the solvent (species 2). In this discussion, the supercritical fluid is species 2, and the solute, species 1, will be at a relatively low concentration, sometimes approaching infinite dilution. After a brief introduction to the concept of diffusion, we will discuss in detail the use of chromatographic methods, and then briefly treat light scattering, nuclear magnetic resonance spectra, and physical methods.

  16. The dynamics of solvation dictates the conformation of polyethylene oxide in aqueous, isobutyric acid and binary solutions.

    PubMed

    Dahal, Udaya R; Dormidontova, Elena E

    2017-04-12

    Polymers hydrogen-bonding with solvent represent an important broad class of polymers, properties of which depend on solvation. Using atomistic molecular dynamics simulations with the OPLS/AA force field we investigate the effect of hydrogen bonding on PEO conformation and chain mobility by comparing its behavior in isobutyric acid and aqueous solutions. In agreement with experimental data, we found that in isobutyric acid PEO forms a rather rigid extended helical structure, while in water it assumes a highly flexible coil conformation. We show that the difference in PEO conformation and flexibility is the result of the hydrogen bond stability and overall solvent dynamics near PEO. Isobutyric acid forms up to one hydrogen bond per repeat unit of PEO and interacts with PEO for a prolonged period of time, thereby stabilizing the helical structure of the polymer and reducing its segmental mobility. In contrast, water forms on average 1.2 hydrogen bonds per repeat unit of PEO (with 60% of water forming a single hydrogen bond and 40% of water forming two hydrogen bonds) and resides near PEO for a noticeably shorter time than isobutyric acid, leading to the well-documented high segmental mobility of PEO in water. We also analyze PEO conformation, hydrogen bonding and segmental mobility in binary water/isobutyric acid solutions and find that in the phase separated region PEO resides in the isobutyric-rich phase forming about 25% of its hydrogen bonds with isobutyric acid and 75% with water. We show that the dynamics of solvation affects the equilibrium properties of macromolecules, such as conformation, and by mixing of hydrogen bond-donating solvents one can significantly alter both polymer conformation and its local dynamics.

  17. Nanofiltration properties of PTMSP in binary organic solvents mixtures

    NASA Astrophysics Data System (ADS)

    Yushkin, A. A.; Kossov, A. A.; Volkov, V. V.

    2016-09-01

    In this study, the stability and nanofiltration performance of poly[1-(trimethylsilyl)- 1-propyne] (PTMSP) in ethanol solutions of butylaldehyde, 1-decanal, 1-hexene, 1-decene was evaluated. It was found that PTMSP was insoluble in all aldehyde solutions, but it was soluble at olefin concentration of 80% or higher. Nanofiltration experiments demonstrate that binary mixtures of 1-decanal and ethanol viscosity are not the parameter affecting on membrane permeability and rejection of solute as well as swelling degree. In the case of decanol/ethanol solutions both solution viscosity and molar volume demonstrate the best fit of experimental data. It was shown that with the decrease of ethanol content in the feed, the rejection of anionic solute Remazol Brilliant Blue R (MW 626) increases from 94 up to 97%.

  18. Study on Solution Properties of Binary Mixtures of Some Industrially Important Solvents with Cyclohexylamine and Cyclohexanone at 298.15 K

    NASA Astrophysics Data System (ADS)

    Roy, Mahendra Nath; Das, Rajesh Kumar; Chanda, Riju

    2010-03-01

    Densities and viscosities were measured for the binary mixtures of cyclohexylamine and cyclohexanone with butyl acetate, butanone, butylamine, tert-butylamine, and 2-butoxyethanol at 298.15 K over the entire composition range. From density data, the values of the excess molar volume ( V E) have been calculated. The experimental viscosity data were correlated by means of the equation of Grunberg-Nissan. The density and viscosity data have been analyzed in terms of some semiempirical viscosity models. The results are discussed in terms of molecular interactions and structural effects. The excess molar volume is found to be either negative or positive depending on the molecular interactions and the nature of the liquid mixtures and is discussed in terms of molecular interactions and structural changes.

  19. Optimization of flavanones extraction by modulating differential solvent densities and centrifuge temperatures.

    PubMed

    Chebrolu, Kranthi K; Jayaprakasha, G K; Jifon, J; Patil, Bhimanagouda S

    2011-07-15

    Understanding the factors influencing flavonone extraction is critical for the knowledge in sample preparation. The present study was focused on the extraction parameters such as solvent, heat, centrifugal speed, centrifuge temperature, sample to solvent ratio, extraction cycles, sonication time, microwave time and their interactions on sample preparation. Flavanones were analyzed in a high performance liquid chromatography (HPLC) and later identified by liquid chromatography and mass spectrometry (LC-MS). The five flavanones were eluted by a binary mobile phase with 0.03% phosphoric acid and acetonitrile in 20 min and detected at 280 nm, and later identified by mass spectral analysis. Dimethylsulfoxide (DMSO) and dimethyl formamide (DMF) had optimum extraction levels of narirutin, naringin, neohesperidin, didymin and poncirin compared to methanol (MeOH), ethanol (EtOH) and acetonitrile (ACN). Centrifuge temperature had a significant effect on flavanone distribution in the extracts. The DMSO and DMF extracts had homogeneous distribution of flavanones compared to MeOH, EtOH and ACN after centrifugation. Furthermore, ACN showed clear phase separation due to differential densities in the extracts after centrifugation. The number of extraction cycles significantly increased the flavanone levels during extraction. Modulating the sample to solvent ratio increased naringin quantity in the extracts. Current research provides critical information on the role of centrifuge temperature, extraction solvent and their interactions on flavanone distribution in extracts. Published by Elsevier B.V.

  20. Protein Solvent-Accessibility Prediction by a Stacked Deep Bidirectional Recurrent Neural Network.

    PubMed

    Zhang, Buzhong; Li, Linqing; Lü, Qiang

    2018-05-25

    Residue solvent accessibility is closely related to the spatial arrangement and packing of residues. Predicting the solvent accessibility of a protein is an important step to understand its structure and function. In this work, we present a deep learning method to predict residue solvent accessibility, which is based on a stacked deep bidirectional recurrent neural network applied to sequence profiles. To capture more long-range sequence information, a merging operator was proposed when bidirectional information from hidden nodes was merged for outputs. Three types of merging operators were used in our improved model, with a long short-term memory network performing as a hidden computing node. The trained database was constructed from 7361 proteins extracted from the PISCES server using a cut-off of 25% sequence identity. Sequence-derived features including position-specific scoring matrix, physical properties, physicochemical characteristics, conservation score and protein coding were used to represent a residue. Using this method, predictive values of continuous relative solvent-accessible area were obtained, and then, these values were transformed into binary states with predefined thresholds. Our experimental results showed that our deep learning method improved prediction quality relative to current methods, with mean absolute error and Pearson's correlation coefficient values of 8.8% and 74.8%, respectively, on the CB502 dataset and 8.2% and 78%, respectively, on the Manesh215 dataset.

  1. Solubility enhancement of miconazole nitrate: binary and ternary mixture approach.

    PubMed

    Rai, Vineet Kumar; Dwivedi, Harinath; Yadav, Narayan Prasad; Chanotiya, Chandan Singh; Saraf, Shubhini A

    2014-08-01

    Enhancement of aqueous solubility of very slightly soluble Miconazole Nitrate (MN) is required to widen its application from topical formulation to oral/mucoadhesive formulations. Aim of the present investigation was to enhance the aqueous solubility of MN using binary and ternary mixture approach. Binary mixtures such as solvent deposition, inclusion complexation and solid dispersion were adopted to enhance solubility using different polymers like lactose, beta-cyclodextrin (β-CD) and polyethylene-glycol 6000 (PEG 6000), respectively. Batches of binary mixtures with highest solubility enhancement potentials were further mixed to form ternary mixture by a simple kneading method. Drug polymer interaction and mixture morphology was studied using the Fourier transform infrared spectroscopy and the scanning electron microscopy, respectively along with their saturation solubility studies and drug release. An excellent solubility enhancement, i.e. up to 72 folds and 316 folds of MN was seen by binary and ternary mixture, respectively. Up to 99.5% drug was released in 2 h from the mixtures of MN and polymers. RESULTS revealed that solubility enhancement by binary mixtures is achieved due to surface modification and by increasing wettability of MN. Tremendous increase in solubility of MN by ternary mixture could possibly be due to blending of water soluble polymers, i.e. lactose and PEG 6000 with β-CD which was found to enhance the solubilizing nature of β-CD. Owing to the excellent solubility enhancement potential of ternary mixtures in enhancing MN solubility from 110.4 μg/ml to 57640.0 μg/ml, ternary mixture approach could prove to be promising in the development of oral/mucoadhesive formulations.

  2. Enhanced selectivity for the hydrolysis of block copoly(2-oxazoline)s in ethanol-water resulting in linear poly(ethylene imine) copolymers.

    PubMed

    van Kuringen, Huub P C; de la Rosa, Victor R; Fijten, Martin W M; Heuts, Johan P A; Hoogenboom, Richard

    2012-05-14

    The ability of merging the properties of poly(2-oxazoline)s and poly(ethylene imine) is of high interest for various biomedical applications, including gene delivery, biosensors, and switchable surfaces and nanoparticles. In the present research, a methodology for the controlled and selective hydrolysis of (co)poly(2-oxazoline)s is developed in an ethanol-water solvent mixture, opening the path toward a wide range of block poly(2-oxazoline-co-ethylene imine) (POx-PEI) copolymers with tunable properties. The unexpected influence of the selected ethanol-water binary solvent mixture on the hydrolysis kinetics and selectivity is highlighted in the pursue of well-defined POx-PEI block copolymers. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Kinetic Theories for Biofilms (Preprint)

    DTIC Science & Technology

    2011-01-01

    2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Kinetic Theories for Biofilms 5a. CONTRACT NUMBER 5b...binary complex fluids to develop a set of hydrodynamic models for the two-phase mixture of biofilms and solvent (water). It is aimed to model...kinetics along with the intrinsic molecular elasticity of the EPS network strand modeled as an elastic dumbbell. This theory is valid in both the biofilm

  4. Ion-water wires in imidazolium-based ionic liquid/water solutions induce unique trends in density.

    PubMed

    Ghoshdastidar, Debostuti; Senapati, Sanjib

    2016-03-28

    Ionic liquid/water binary mixtures are rapidly gaining popularity as solvents for dissolution of cellulose, nucleobases, and other poorly water-soluble biomolecules. Hence, several studies have focused on measuring the thermophysical properties of these versatile mixtures. Among these, 1-ethyl-3-methylimidazolium ([emim]) cation-based ILs containing different anions exhibit unique density behaviours upon addition of water. While [emim][acetate]/water binary mixtures display an unusual rise in density with the addition of low-to-moderate amounts of water, those containing the [trifluoroacetate] ([Tfa]) anion display a sluggish decrease in density. The density of [emim][tetrafluoroborate] ([emim][BF4])/water mixtures, on the other hand, declines rapidly in close accordance with the experimental reports. Here, we unravel the structural basis underlying this unique density behavior of [emim]-based IL/water mixtures using all-atom molecular dynamics (MD) simulations. The results revealed that the distinct nature of anion-water hydrogen bonded networks in the three systems was a key in modulating the observed unique density behaviour. Vast expanses of uninterrupted anion-water-anion H-bonded stretches, denoted here as anion-water wires, induced significant structuring in [emim][Ac]/water mixtures that resulted in the density rise. Conversely, the presence of intermittent large water clusters disintegrated the anion-water wires in [emim][Tfa]/water and [emim][BF4]/water mixtures to cause a monotonic density decrease. The differential nanostructuring affected the dynamics of the solutions proportionately, with the H-bond making and breaking dynamics found to be greatly retarded in [emim][Ac]/water mixtures, while it exhibited a faster relaxation in the other two binary solutions.

  5. The Ruinous Influence of Close Binary Companions on Planetary Systems

    NASA Astrophysics Data System (ADS)

    Kraus, Adam L.; Ireland, Michael; Mann, Andrew; Huber, Daniel; Dupuy, Trent J.

    2017-01-01

    The majority of solar-type stars are found in binary systems, and the dynamical influence of binary companions is expected to profoundly influence planetary systems. However, the difficulty of identifying planets in binary systems has left the magnitude of this effect uncertain; despite numerous theoretical hurdles to their formation and survival, at least some binary systems clearly host planets. We present high-resolution imaging of nearly 500 Kepler Objects of Interest (KOIs) obtained using adaptive-optics imaging and nonredundant aperture-mask interferometry on the Keck II telescope. We super-resolve some binary systems to projected separations of under 5 AU, showing that planets might form in these dynamically active environments. However, the full distribution of projected separations for our planet-host sample more broadly reveals a deep paucity of binary companions at solar-system scales. When the binary population is parametrized with a semimajor axis cutoff a cut and a suppression factor inside that cutoff S bin, we find with correlated uncertainties that inside acut = 47 +59/-23 AU, the planet occurrence rate in binary systems is only Sbin = 0.34 +0.14/-0.15 times that of wider binaries or single stars. Our results demonstrate that a fifth of all solar-type stars in the Milky Way are disallowed from hosting planetary systems due to the influence of a binary companion.

  6. The Ruinous Influence of Close Binary Companions on Planetary Systems

    NASA Astrophysics Data System (ADS)

    Kraus, Adam L.; Ireland, Michael; Mann, Andrew; Huber, Daniel; Dupuy, Trent J.

    2017-06-01

    The majority of solar-type stars are found in binary systems, and the dynamical influence of binary companions is expected to profoundly influence planetary systems. However, the difficulty of identifying planets in binary systems has left the magnitude of this effect uncertain; despite numerous theoretical hurdles to their formation and survival, at least some binary systems clearly host planets. We present high-resolution imaging of nearly 500 Kepler Objects of Interest (KOIs) obtained using adaptive-optics imaging and nonredundant aperture-mask interferometry on the Keck II telescope. We super-resolve some binary systems to projected separations of under 5 AU, showing that planets might form in these dynamically active environments. However, the full distribution of projected separations for our planet-host sample more broadly reveals a deep paucity of binary companions at solar-system scales. When the binary population is parametrized with a semimajor axis cutoff a cut and a suppression factor inside that cutoff S bin, we find with correlated uncertainties that inside acut = 47 +59/-23 AU, the planet occurrence rate in binary systems is only Sbin = 0.34+0.14/-0.15 times that of wider binaries or single stars. Our results demonstrate that a fifth of all solar-type stars in the Milky Way are disallowed from hosting planetary systems due to the influence of a binary companion.

  7. Morphological transformations of diblock copolymers in binary solvents: A simulation study

    NASA Astrophysics Data System (ADS)

    Wang, Zheng; Yin, Yuhua; Jiang, Run; Li, Baohui

    2017-12-01

    Morphological transformations of amphiphilic AB diblock copolymers in mixtures of a common solvent (S1) and a selective solvent (S2) for the B block are studied using the simulated annealing method. We focus on the morphological transformation depending on the fraction of the selective solvent C S2, the concentration of the polymer C p , and the polymer-solvent interactions ɛ ij ( i = A, B; j = S1, S2). Morphology diagrams are constructed as functions of C p , C S2, and/or ɛ AS2. The copolymer morphological sequence from dissolved → sphere → rod → ring/cage → vesicle is obtained upon increasing C S2 at a fixed C p . This morphology sequence is consistent with previous experimental observations. It is found that the selectivity of the selective solvent affects the self-assembled microstructure significantly. In particular, when the interaction ɛ BS2 is negative, aggregates of stacked lamellae dominate the diagram. The mechanisms of aggregate transformation and the formation of stacked lamellar aggregates are discussed by analyzing variations of the average contact numbers of the A or B monomers with monomers and with molecules of the two types of solvent, as well as the mean square end-to-end distances of chains. It is found that the basic morphological sequence of spheres to rods to vesicles and the stacked lamellar aggregates result from competition between the interfacial energy and the chain conformational entropy. Analysis of the vesicle structure reveals that the vesicle size increases with increasing C p or with decreasing C S2, but remains almost unchanged with variations in ɛ AS2.

  8. The disruption of multiplanet systems through resonance with a binary orbit.

    PubMed

    Touma, Jihad R; Sridhar, S

    2015-08-27

    Most exoplanetary systems in binary stars are of S-type, and consist of one or more planets orbiting a primary star with a wide binary stellar companion. Planetary eccentricities and mutual inclinations can be large, perhaps forced gravitationally by the binary companion. Earlier work on single planet systems appealed to the Kozai-Lidov instability wherein a sufficiently inclined binary orbit excites large-amplitude oscillations in the planet's eccentricity and inclination. The instability, however, can be quenched by many agents that induce fast orbital precession, including mutual gravitational forces in a multiplanet system. Here we report that orbital precession, which inhibits Kozai-Lidov cycling in a multiplanet system, can become fast enough to resonate with the orbital motion of a distant binary companion. Resonant binary forcing results in dramatic outcomes ranging from the excitation of large planetary eccentricities and mutual inclinations to total disruption. Processes such as planetary migration can bring an initially non-resonant system into resonance. As it does not require special physical or initial conditions, binary resonant driving is generic and may have altered the architecture of many multiplanet systems. It can also weaken the multiplanet occurrence rate in wide binaries, and affect planet formation in close binaries.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basha, Omar M.; Keller, Murphy J.; Luebke, David R.

    The Ionic Liquid (IL) [hmim][Tf 2N] was used as a physical solvent in an Aspen Plus simulation, employing the Peng-Robinson Equation of State (P-R EOS) with Boston-Mathias (BM) alpha function and standard mixing rules, to develop a conceptual process for CO 2 capture from a shifted warm fuel gas stream produced from Pittsburgh # 8 coal for a 400 MWe power plant. The physical properties of the IL, including density, viscosity, surface tension, vapor pressure and heat capacity were obtained from literature and modeled as a function of temperature. Also, available experimental solubility values for CO 2, H 2, Hmore » 2S, CO, and CH 4 in this IL were compiled and their binary interaction parameters (Δ ij and l ij) were optimized and correlated as functions of temperature. The Span-Wager Equation-of-State EOS was also employed to generate CO 2 solubilities in [hmim][Tf 2N] at high pressures (up to 10 MPa) and temperatures (up to 510 K). The conceptual process developed consisted of 4 adiabatic absorbers (2.4 m ID, 30 m high) arranged in parallel and packed with Plastic Pall Rings of 0.025 m for CO 2 capture; 3 flash drums arranged in series for solvent (IL) regeneration with the pressure-swing option; and a pressure-intercooling system for separating and pumping CO 2 up to 153 bar to the sequestration sites. The compositions of all process streams, CO 2 capture efficiency, and net power were calculated using Aspen Plus simulator. The results showed that, based on the composition of the inlet gas stream to the absorbers, 95.67 mol% of CO 2 was captured and sent to sequestration sites; 99.5 mol% of H 2 was separated and sent to turbines; the solvent exhibited a minimum loss of 0.31 mol%; and the net power balance of the entire system was 30.81 MW. These results indicated that [hmim][Tf 2N] IL could be used as a physical solvent for CO 2 capture from warm shifted fuel gas streams with high efficiency.« less

  10. Terrestrial Planet Formation in Binary Star Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Quintana, Elisa V.; Chambers, John; Duncan, Martin J.; Adams, Fred

    2003-01-01

    Most stars reside in multiple star systems; however, virtually all models of planetary growth have assumed an isolated single star. Numerical simulations of the collapse of molecular cloud cores to form binary stars suggest that disks will form within such systems. Observations indirectly suggest disk material around one or both components within young binary star systems. If planets form at the right places within such circumstellar disks, they can remain in stable orbits within the binary star systems for eons. We are simulating the late stages of growth of terrestrial planets within binary star systems, using a new, ultrafast, symplectic integrator that we have developed for this purpose. We show that the late stages of terrestrial planet formation can indeed take place in a wide variety of binary systems and we have begun to delineate the range of parameter space for which this statement is true. Results of our initial simulations of planetary growth around each star in the alpha Centauri system and other 'wide' binary systems, as well as around both stars in very close binary systems, will be presented.

  11. Shapes and dynamics of miscible liquid/liquid interfaces in horizontal capillary tubes.

    PubMed

    Stevar, M S P; Vorobev, A

    2012-10-01

    We report optical observations of the dissolution behaviour of glycerol/water, soybean oil/hexane, and isobutyric acid (IBA)/water binary mixtures within horizontal capillary tubes. Tubes with diameters as small as 0.2mm were initially filled with one component of the binary mixture (solute) and then immersed into a solvent-filled thermostatic bath. Both ends of the tubes were open, and no pressure difference was applied between the ends. In the case of glycerol/water and soybean oil/hexane mixtures, we managed to isolate the dissolution (the interfacial mass transfer) from the hydrodynamic motion. Two phase boundaries moving from the ends into the middle section of the tube with the speeds v∼D(1/3)t(-2/3)d(2) (D,t and d are the coefficient of diffusion, time and the diameter of the tube, respectively) were observed. The boundaries slowly smeared but their smearing occurred considerably slower than their motion. The motion of the phase boundaries cannot be explained by the dependency of the diffusion coefficient on concentration, and should be explained by the effect of barodiffusion. The shapes of the solute/solvent boundaries are defined by the balance between gravity and surface tension effects. The contact line moved together with the bulk interface: no visible solute remained on the walls after the interface passage. Changes in temperature and in the ratio between gravity and capillary forces altered the apparent contact angles. The IBA/water system had different behaviour. Below the critical (consolute) point, no dissolution was observed: IBA and water behaved like two immiscible liquids, with the IBA phase being displaced from the tube by capillary pressure (the spontaneous imbibition process). Above the critical point, two IBA/water interfaces could be identified, however the interfaces did not penetrate much into the tube. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Combined NMR and molecular dynamics modeling study of transport properties in sulfonamide based deep eutectic lithium electrolytes: LiTFSI based binary systems.

    PubMed

    Pauric, Allen D; Halalay, Ion C; Goward, Gillian R

    2016-03-07

    The trend toward Li-ion batteries operating at increased (>4.3 V vs. Li/Li(+)) voltages requires the development of novel classes of lithium electrolytes with electrochemical stability windows exceeding those of LiPF6/carbonate electrolyte solutions. Several new classes of electrolytes have been synthesized and investigated over the past decade, in the search for LIB electrolytes with improved properties (increased hydrolytic stability, improved thermal abuse tolerance, higher oxidation voltages, etc.) compared with the present state-of-the-art LiPF6 and organic carbonates-based formulations. Among these are deep eutectic electrolytes (DEEs), which share many beneficial characteristics with ionic liquids, such as low vapor pressure and large electrochemical stability windows, with the added advantage of a significantly higher lithium transference number. The present work presents the pulsed field gradient NMR characterization of the transport properties (diffusion coefficients and cation transport numbers) of binary DEEs consisting of a sulfonamide solvent and lithium bis(trifluoromethanesulfonyl)imide salt. Insights into the structural and dynamical properties, which enable one to rationalize the observed ionic conductivity behavior were obtained from a combination of NMR data and MD simulations. The insights thus gained should assist the formulation of novel DEEs with improved properties for LIB applications.

  13. In vitro characterization of a novel polymeric system for preparation of amorphous solid drug dispersions.

    PubMed

    Mahmoudi, Zahra N; Upadhye, Sampada B; Ferrizzi, David; Rajabi-Siahboomi, Ali R

    2014-07-01

    Preparation of amorphous solid dispersions using polymers is a commonly used formulation strategy for enhancing the solubility of poorly water-soluble drugs. However, often a single polymer may not bring about a significant enhancement in solubility or amorphous stability of a poorly water-soluble drug. This study describes application of a unique and novel binary polymeric blend in preparation of solid dispersions. The objective of this study was to investigate amorphous solid dispersions of glipizide, a BCS class II model drug, in a binary polymeric system of polyvinyl acetate phthalate (PVAP) and hypromellose (hydroxypropyl methylcellulose, HPMC). The solid dispersions were prepared using two different solvent methods: rotary evaporation (rotavap) and fluid bed drug layering on sugar spheres. The performance and physical stability of the dispersions were evaluated with non-sink dissolution testing, powder X-ray diffraction (PXRD), and modulated differential scanning calorimetry (mDSC). PXRD analysis demonstrated an amorphous state for glipizide, and mDSC showed no evidence of phase separation. Non-sink dissolution testing in pH 7.5 phosphate buffer indicated more than twofold increase in apparent solubility of the drug with PVAP-HPMC system. The glipizide solid dispersions demonstrated a high glass transition temperature (Tg) and acceptable chemical and physical stability during the stability period irrespective of the manufacturing process. In conclusion, the polymeric blend of PVAP-HPMC offers a unique formulation approach for developing amorphous solid dispersions with the flexibility towards the use of these polymers in different ratios and combined quantities depending on drug properties.

  14. Equilibrium points and associated periodic orbits in the gravity of binary asteroid systems: (66391) 1999 KW4 as an example

    NASA Astrophysics Data System (ADS)

    Shi, Yu; Wang, Yue; Xu, Shijie

    2018-04-01

    The motion of a massless particle in the gravity of a binary asteroid system, referred as the restricted full three-body problem (RF3BP), is fundamental, not only for the evolution of the binary system, but also for the design of relevant space missions. In this paper, equilibrium points and associated periodic orbit families in the gravity of a binary system are investigated, with the binary (66391) 1999 KW4 as an example. The polyhedron shape model is used to describe irregular shapes and corresponding gravity fields of the primary and secondary of (66391) 1999 KW4, which is more accurate than the ellipsoid shape model in previous studies and provides a high-fidelity representation of the gravitational environment. Both of the synchronous and non-synchronous states of the binary system are considered. For the synchronous binary system, the equilibrium points and their stability are determined, and periodic orbit families emanating from each equilibrium point are generated by using the shooting (multiple shooting) method and the homotopy method, where the homotopy function connects the circular restricted three-body problem and RF3BP. In the non-synchronous binary system, trajectories of equivalent equilibrium points are calculated, and the associated periodic orbits are obtained by using the homotopy method, where the homotopy function connects the synchronous and non-synchronous systems. Although only the binary (66391) 1999 KW4 is considered, our methods will also be well applicable to other binary systems with polyhedron shape data. Our results on equilibrium points and associated periodic orbits provide general insights into the dynamical environment and orbital behaviors in proximity of small binary asteroids and enable the trajectory design and mission operations in future binary system explorations.

  15. Electric Double-Layer Structure in Primitive Model Electrolytes. Comparing Molecular Dynamics with Local-Density Approximations

    DOE PAGES

    Giera, Brian; Lawrence Livermore National Lab.; Henson, Neil; ...

    2015-02-27

    We evaluate the accuracy of local-density approximations (LDAs) using explicit molecular dynamics simulations of binary electrolytes comprised of equisized ions in an implicit solvent. The Bikerman LDA, which considers ions to occupy a lattice, poorly captures excluded volume interactions between primitive model ions. Instead, LDAs based on the Carnahan–Starling (CS) hard-sphere equation of state capture simulated values of ideal and excess chemical potential profiles extremely well, as is the relationship between surface charge density and electrostatic potential. Excellent agreement between the EDL capacitances predicted by CS-LDAs and computed in molecular simulations is found even in systems where ion correlations drivemore » strong density and free charge oscillations within the EDL, despite the inability of LDAs to capture the oscillations in the detailed EDL profiles.« less

  16. Extraction and Determination of Trace Amounts of p-Coumaric Acid in Vinegar, Carrot Juice, and Seed Extract from Silybum marianum (L.) Gaertn.

    PubMed

    Khani, Rouhollah; Rostami, Zeinab; Bagherzade, Ghodsieh; Khojeh, Vahid

    2018-03-01

    In this study, for the monitoring and quantification of p-coumaric acid (p-CA) in vinegar, carrot juice, and seed extract from the plant species Silybum marianum (L.) Gaertn, an efficient and low-cost analytical method has been applied. For this purpose, a dispersive liquid-liquid microextraction (DLLME) method, followed by UV-Vis spectrophotometric detection, was used. To form a cloudy solution, a binary mixture containing ethanol as a disperser solvent and chloroform as an extraction solvent was rapidly injected by syringe into a sample solution containing p-CA. After centrifugation, dilution of the obtained organic phase was done with the proper amount of ethanol, and the phase was transferred into a micro cell for subsequent measurement. Some effective parameters for the DLLME method, such as the volume of disperser solvent and extraction solvent, pH, and salt concentration were inspected by a 24 full factorial central composite design using design Export Software. Under the optimized conditions, linearity was between 10 and 150 ng/mL, and the LOD was 2.3 ng/mL. The results of the proposed method were similar to the obtained results using a GC with flame-ionization detection method.

  17. Potential of mean force for ion pairs in non-aqueous solvents. Comparison of polarizable and non-polarizable MD simulations

    NASA Astrophysics Data System (ADS)

    Odinokov, A. V.; Leontyev, I. V.; Basilevsky, M. V.; Petrov, N. Ch.

    2011-01-01

    Potentials of mean force (PMF) are calculated for two model ion pairs in two non-aqueous solvents. Standard non-polarizable molecular dynamics simulation (NPMD) and approximate polarizable simulation (PMD) are implemented and compared as tools for monitoring PMF profiles. For the polar solvent (dimethylsulfoxide, DMSO) the PMF generated in terms of the NPMD reproduces fairly well the refined PMD-PMF profile. For the non-polar solvent (benzene) the conventional NPMD computation proves to be deficient. The validity of the correction found in terms of the approximate PMD approach is verified by its comparison with the result of the explicit PMD computation in benzene. The shapes of the PMF profiles in DMSO and in benzene are quite different. In DMSO, owing to dielectric screening, the PMF presents a flat plot with a shallow minimum positioned in the vicinity of the van der Waals contact of the ion pair. For the benzene case, the observed minimum proves to be unexpectedly deep, which manifests the formation of a tightly-binded contact ion pair. This remarkable effect arises owing to the strong electrostatic interaction that is incompletely screened by a non-polar medium. The PMFs for the binary benzene/DMSO mixtures display intermediate behaviour depending on the DMSO content.

  18. Benzyl alcohol and block copolymer micellar lithography: a versatile route to assembling gold and in situ generated titania nanoparticles into uniform binary nanoarrays.

    PubMed

    Polleux, Julien; Rasp, Matthias; Louban, Ilia; Plath, Nicole; Feldhoff, Armin; Spatz, Joachim P

    2011-08-23

    Simultaneous synthesis and assembly of nanoparticles that exhibit unique physicochemical properties are critically important for designing new functional devices at the macroscopic scale. In the present study, we report a simple version of block copolymer micellar lithography (BCML) to synthesize gold and titanium dioxide (TiO(2)) nanoarrays by using benzyl alcohol (BnOH) as a solvent. In contrast to toluene, BnOH can lead to the formation of various gold nanopatterns via salt-induced micellization of polystyrene-block-poly(vinylpyridine) (PS-b-P2VP). In the case of titania, the use of BCML with a nonaqueous sol-gel method, the "benzyl alcohol route", enables the fabrication of nanopatterns made of quasi-hexagonally organized particles or parallel wires upon aging a (BnOH-TiCl(4)-PS(846)-b-P2VP(171))-containing solution for four weeks to grow TiO(2) building blocks in situ. This approach was found to depend mainly on the relative lengths of the polymer blocks, which allows nanoparticle-induced micellization and self-assembly during solvent evaporation. Moreover, this versatile route enables the design of uniform and quasi-ordered gold-TiO(2) binary nanoarrays with a precise particle density due to the absence of graphoepitaxy during the deposition of TiO(2) onto gold nanopatterns. © 2011 American Chemical Society

  19. The Impact of Binary Companions on Planetary Systems

    NASA Astrophysics Data System (ADS)

    Kraus, Adam L.; Ireland, Michael; Dupuy, Trent; Mann, Andrew; Huber, Daniel

    2018-01-01

    The majority of solar-type stars are found in binary systems, and the dynamical influence of binary companions is expected to profoundly influence planetary systems. However, the difficulty of identifying planets in binary systems has left the magnitude of this effect uncertain; despite numerous theoretical hurdles to their formation and survival, at least some binary systems clearly host planets. We present high-resolution imaging of nearly 500 Kepler Objects of Interest (KOIs) obtained using adaptive-optics imaging and nonredundant aperture-mask interferometry on the Keck II telescope. We super-resolve some binary systems to projected separations of under 5 AU, showing that planets might form in these dynamically active environments. However, the full distribution of projected separations for our planet-host sample more broadly reveals a deep paucity of binary companions at solar-system scales. Our results demonstrate that a fifth of all solar-type stars in the Milky Way are disallowed from hosting planetary systems due to the influence of a binary companion. We now update these results with multi-epoch imaging to reject non-comoving background stars and securely identify even the least massive stellar companions, as well as tracing out the orbital motion of stellar companions. These results are beginning to reveal not just the fraction of binaries that do not host planets, but also potential explanations for planet survival even in some very close, dynamically active binary systems.

  20. Accelerated solvent extraction of carotenoids from: Tunisian Kaki (Diospyros kaki L.), peach (Prunus persica L.) and apricot (Prunus armeniaca L.).

    PubMed

    Zaghdoudi, Khalil; Pontvianne, Steve; Framboisier, Xavier; Achard, Mathilde; Kudaibergenova, Rabiga; Ayadi-Trabelsi, Malika; Kalthoum-Cherif, Jamila; Vanderesse, Régis; Frochot, Céline; Guiavarc'h, Yann

    2015-10-01

    Extraction of carotenoids from biological matrices and quantifications remains a difficult task. Accelerated solvent extraction was used as an efficient extraction process for carotenoids extraction from three fruits cultivated in Tunisia: kaki (Diospyros kaki L.), peach (Prunus persica L.) and apricot (Prunus armeniaca L.). Based on a design of experiment (DoE) approach, and using a binary solvent consisting of methanol and tetrahydrofuran, we could identify the best extraction conditions as being 40°C, 20:80 (v:v) methanol/tetrahydrofuran and 5 min of extraction time. Surprisingly and likely due to the high extraction pressure used (103 bars), these conditions appeared to be the best ones both for extracting xanthophylls such as lutein, zeaxanthin or β-cryptoxanthin and carotenes such as β-carotene, which present quite different polarities. Twelve surface responses were generated for lutein, zeaxanthin, β-cryptoxanthin and β-carotene in kaki, peach and apricot. Further LC-MS analysis allowed comparisons in carotenoids profiles between the fruits. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Apparatus and method for removing solvent from carbon dioxide in resin recycling system

    DOEpatents

    Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; DeLaurentiis, Gary M [Jamestown, CA

    2009-01-06

    A two-step resin recycling system and method solvent that produces essentially contaminant-free synthetic resin material. The system and method includes one or more solvent wash vessels to expose resin particles to a solvent, the solvent contacting the resin particles in the one or more solvent wash vessels to substantially remove contaminants on the resin particles. A separator is provided to separate the solvent from the resin particles after removal from the one or more solvent wash vessels. The resin particles are next exposed to carbon dioxide in a closed loop carbon dioxide system. The closed loop system includes a carbon dioxide vessel where the carbon dioxide is exposed to the resin, substantially removing any residual solvent remaining on the resin particles after separation. A separation vessel is also provided to separate the solvent from the solvent laden carbon dioxide. Both the carbon dioxide and the solvent are reused after separation in the separation vessel.

  2. Pulsars in binary systems: probing binary stellar evolution and general relativity.

    PubMed

    Stairs, Ingrid H

    2004-04-23

    Radio pulsars in binary orbits often have short millisecond spin periods as a result of mass transfer from their companion stars. They therefore act as very precise, stable, moving clocks that allow us to investigate a large set of otherwise inaccessible astrophysical problems. The orbital parameters derived from high-precision binary pulsar timing provide constraints on binary evolution, characteristics of the binary pulsar population, and the masses of neutron stars with different mass-transfer histories. These binary systems also test gravitational theories, setting strong limits on deviations from general relativity. Surveys for new pulsars yield new binary systems that increase our understanding of all these fields and may open up whole new areas of physics, as most spectacularly evidenced by the recent discovery of an extremely relativistic double-pulsar system.

  3. Float processing of high-temperature complex silicate glasses and float baths used for same

    NASA Technical Reports Server (NTRS)

    Cooper, Reid Franklin (Inventor); Cook, Glen Bennett (Inventor)

    2000-01-01

    A float glass process for production of high melting temperature glasses utilizes a binary metal alloy bath having the combined properties of a low melting point, low reactivity with oxygen, low vapor pressure, and minimal reactivity with the silicate glasses being formed. The metal alloy of the float medium is exothermic with a solvent metal that does not readily form an oxide. The vapor pressure of both components in the alloy is low enough to prevent deleterious vapor deposition, and there is minimal chemical and interdiffusive interaction of either component with silicate glasses under the float processing conditions. Alloys having the desired combination of properties include compositions in which gold, silver or copper is the solvent metal and silicon, germanium or tin is the solute, preferably in eutectic or near-eutectic compositions.

  4. Effect of ionic strength on the thermodynamic characteristics of complexation between Fe(III) ion and nicotinamide in water-ethanol and water-dimethyl sulfoxide mixtures

    NASA Astrophysics Data System (ADS)

    Gamov, G. A.; Grazhdan, K. V.; Gavrilova, M. A.; Dushina, S. V.; Sharnin, V. A.; Baranski, A.

    2013-06-01

    Solutions of iron(III) perchlorate in water, water-ethanol, and water-dimethyl sulfoxide solvents (x_{H_2 O} = 0.7 and 0.25 mole fractions) at ionic strength values I = 0.1, 0.25, and 0.5 are studied by IR spectroscopy. Analysis of the absorption bands of perchlorate ion shows that it does not participate in association processes. It is demonstrated that in the range of ionic strength values between 0 and 0.5 (NaClO4), it affects neither the results from potentiometric titration to determine the stability constants of the iron(III)-nicotinamide complex nor the thermal effects of complexation determined via direct calorimetry in a binary solvent containing 0.3 mole fractions (m.f.) of a non-aqueous component.

  5. Tuning of "antenna effect" of Eu(III) in ternary systems in aqueous medium through binding with protein.

    PubMed

    Ghorai, Shyamal Kr; Samanta, Swarna Kamal; Mukherjee, Manini; Saha Sardar, Pinki; Ghosh, Sanjib

    2013-02-04

    A simple ternary system containing a protein [human serum albumin (HSA)/bovine serum albumin (BSA)], tetracycline hydrochloride (TC), and Eu(III) in suitable aqueous buffer medium at physiological pH (= 7.2) has been shown to exhibit highly efficient "antenna effect" compared to the binary complex of TC with Eu(III) (Eu(3)TC). The ternary system containing E. coli alkaline phosphatase (AP), TC, and Eu(III), however, shows a slight enhancement of Eu(III) emission, although the binding constant of AP with TC is 2 orders of magnitude greater than with BSA/HSA. The enhanced emission of bound TC in the binary systems containing proteins and TC gets quenched in the ternary systems containing HSA/BSA, showing the efficient energy transfer (ET) from TC to Eu(III). Steady state and time-resolved emission studies of each component in all the ternary systems in H(2)O and in D(2)O medium reveal that Eu(III) is very well protected from the O-H oscillator in the ternary system containing HSA/BSA compared to that containing AP. The docking studies locating the binding site of TC in the proteins suggest that TC binds near the surface of AP. In the case of HSA/BSA, TC resides in the interior of the protein resulting in a large shielding effect of Eu(III). The rotational correlation time (θ(c)) determined from the anisotropy decay of bound TC in the complexes and the accessible surface area (ASA) of the ligand in the complexes obtained from the docking studies also support the contention that Eu(3)TC is more exposed to solvent in the case of the ternary system consisting of AP, TC, and Eu(III). The calculated radiative lifetime and the sensitization efficiency ratio of Eu(III) in all the systems clearly demonstrate the protein mediated tuning of "antenna effect" in Eu(III).

  6. Evaluation of Data on Solubility of Simple Apolar Gases in Light and Heavy Water at High Temperature

    NASA Astrophysics Data System (ADS)

    Prini, Roberto Fernández; Crovetto, Rosa

    1989-07-01

    The solubility data of apolar gases in light and heavy water over the temperature range covered experimentally have been evaluated, laying particular emphasis to the region above the normal boiling points of the solvents. The systems that have been included in this work are the inert gases and CH4 in light water and heavy water, H2, O2, N2, and C2H6 in light water and D2 in heavy water. Data in the original sources have been brought to the same footing by calculating from the raw experimental data P, T, and x when they were not reported by the author. This step is considered necessary to assess critically the available sets of data. The temperature dependence of Henry's constants for all the binary systems have been expressed in terms of two different polynomial equations. The formulations presented are discussed and the limits of application given.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uzun, Suzan; Ilavsky, Jan; Padua, Graciela Wild

    Zein, a protein of corn, has an amphiphilic molecule capable of self-assembly into distinctly different structures. In this work, ultra-small-angle X-ray scattering (USAXS) was applied to investigate the formation of self-assembled zein structures in binary solvent systems of ethanol and water. Our study included observing structural changes due to aging. Three hierarchical structures were identified in zein-solvent systems, molecular zein 2D films, believed to be formed by zein rods assembled first into one-dimensional fibers and then into two-dimensional films, and 3D spherical aggregates. Aging did not change the size or shape of primary units, but promoted their self-assembly into intermediatemore » 2D structures and shaped 3D structures into well19 defined spheres. We found that the rheological parameters, consistency index (K) and behavior index (n), storage and loss moduli (G’ and G”) were also measured. K and n, changed markedly with aging, from nearly Newtonian low consistency fresh samples to highly viscous pseudoplastic aged samples. G’ and G” increased with aging for all samples reflecting increased interactions among zein self-assembled structures. Furthermore, viscoelastic parameters indicated that zein dispersions formed gels upon aging. It was observed that USAX reported on molecular scale self-assembly processes, while rheological measurements reported on the macroscale interaction between self-assembled particles. Raman spectra suggested that α-helix to β-sheet transformations prompted zein self-assembly, which influenced the size and morphology of molecular assemblies and ultimately the rheological properties of zein dispersions.« less

  8. Continuous countercurrent membrane column for the separation of solute/solvent and solvent/solvent systems

    DOEpatents

    Nerad, Bruce A.; Krantz, William B.

    1988-01-01

    A reverse osmosis membrane process or hybrid membrane - complementary separator process for producing enriched product or waste streams from concentrated and dilute feed streams for both solvent/solvent and solute/solvent systems is described.

  9. Phase Equilibrium Investigation on 2-Phenylethanol in Binary and Ternary Systems: Influence of High Pressure on Density and Solid-Liquid Phase Equilibrium.

    PubMed

    Domańska, Urszula; Królikowski, Marek; Wlazło, Michał; Więckowski, Mikołaj

    2018-05-30

    Ionic liquids (ILs) are important new solvents proposed for applications in different separation processes. Herein, an idea of possible use of high pressure in a general strategy of production of 2-phenylethanol (PEA) is discussed. In this work, we present the influence of pressure on the density in binary systems of {1-hexyl-1-methylpyrrolidynium bis{(trifluoromethyl)sulfonyl}imide, [HMPYR][NTf 2 ], or 1-dodecyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide, [DoMIM][NTf 2 ] + PEA} in a wide range of temperatures (298.15-348.15 K) and pressures (0.1-40 MPa). The densities at ambient and high pressures are measured to present the physicochemical properties of the ILs used in the process of separation of PEA from aqueous phase. The Tait equation was used for the correlation of density of one-component and two-component systems as a function of mole fraction, temperature, and pressure. The influence of pressure is not significant. These systems exhibit mainly negative molar excess volumes, V E . The solid-liquid phase equilibrium (SLE) of [DoMIM][NTf 2 ] in PEA at atmospheric pressure was measured and compared to the SLE high-pressure results. Additionally, the ternary liquid-liquid phase equilibrium (LLE) at ambient pressure in the {[DoMIM][NTf 2 ] (1) + PEA (2) + water (3)} at temperature T = 308.15 K was investigated. The solubility of water in the [DoMIM][NTf 2 ] is quite high in comparison with that measured by us earlier for ILs ( x 3 = 0.403) at T = 308.15 K, which results in not very successful average selectivity of extraction of PEA from the aqueous phase. The [DoMIM][NTf 2 ] has shown strong interaction with PEA without the immiscibility region. The ternary system revealed Treybal's type phase equilibrium in which two partially miscible binaries ([DoMIM][NTf 2 ] + water) and (PEA + water) exist. From the results of LLE in the ternary system, the selectivity and the solute distribution ratio of separation of water/PEA were calculated and compared to the results obtained for the ILs measured earlier by us. The popular NRTL model was used to correlate the experimental tie-lines in ternary LLE. These results may help in a new technological project of "in situ" extraction of PEA from aqueous phase during the biosynthesis.

  10. Solvent cleaning system and method for removing contaminants from solvent used in resin recycling

    DOEpatents

    Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; DeLaurentiis, Gary M [Jamestown, CA

    2009-01-06

    A two step solvent and carbon dioxide based system that produces essentially contaminant-free synthetic resin material and which further includes a solvent cleaning system for periodically removing the contaminants from the solvent so that the solvent can be reused and the contaminants can be collected and safely discarded in an environmentally safe manner.

  11. R144: a very massive binary likely ejected from R136 through a binary-binary encounter

    NASA Astrophysics Data System (ADS)

    Oh, Seungkyung; Kroupa, Pavel; Banerjee, Sambaran

    2014-02-01

    R144 is a recently confirmed very massive, spectroscopic binary which appears isolated from the core of the massive young star cluster R136. The dynamical ejection hypothesis as an origin for its location is claimed improbable by Sana et al. due to its binary nature and high mass. We demonstrate here by means of direct N-body calculations that a very massive binary system can be readily dynamically ejected from an R136-like cluster, through a close encounter with a very massive system. One out of four N-body cluster models produces a dynamically ejected very massive binary system with a mass comparable to R144. The system has a system mass of ≈355 M⊙ and is located at 36.8 pc from the centre of its parent cluster, moving away from the cluster with a velocity of 57 km s-1 at 2 Myr as a result of a binary-binary interaction. This implies that R144 could have been ejected from R136 through a strong encounter with another massive binary or single star. In addition, we discuss all massive binaries and single stars which are ejected dynamically from their parent cluster in the N-body models.

  12. The OGLE Collection of Variable Stars. Over 450 000 Eclipsing and Ellipsoidal Binary Systems Toward the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Soszyński, I.; Pawlak, M.; Pietrukowicz, P.; Udalski, A.; Szymański, M. K.; Wyrzykowski, Ł.; Ulaczyk, K.; Poleski, R.; Kozłowski, S.; Skowron, D. M.; Skowron, J.; Mróz, P.; Hamanowicz, A.

    2016-12-01

    We present a collection of 450 598 eclipsing and ellipsoidal binary systems detected in the OGLE fields toward the Galactic bulge. The collection consists of binary systems of all types: detached, semi-detached, and contact eclipsing binaries, RS CVn stars, cataclysmic variables, HW Vir binaries, double periodic variables, and even planetary transits. For all stars we provide the I- and V-band time-series photometry obtained during the OGLE-II, OGLE-III, and OGLE-IV surveys. We discuss methods used to identify binary systems in the OGLE data and present several objects of particular interest.

  13. A novel 9 × 9 map-based solvent selection strategy for targeted counter-current chromatography isolation of natural products.

    PubMed

    Liang, Junling; Meng, Jie; Wu, Dingfang; Guo, Mengzhe; Wu, Shihua

    2015-06-26

    Counter-current chromatography (CCC) is an efficient liquid-liquid chromatography technique for separation and purification of complex mixtures like natural products extracts and synthetic chemicals. However, CCC is still a challenging process requiring some special technical knowledge especially in the selection of appropriated solvent systems. In this work, we introduced a new 9 × 9 map-based solvent selection strategy for CCC isolation of targets, which permit more than 60 hexane-ethyl acetate-methanol-water (HEMWat) solvent systems as the start candidates for the selection of solvent systems. Among these solvent systems, there are clear linear correlations between partition coefficient (K) and the system numbers. Thus, an appropriate CCC solvent system (i.e., sweet spot for K = 1) may be hit by measurement of k values of the target only in two random solvent systems. Besides this, surprisingly, we found that through two sweet spots, we could get a line ("Sweet line") where there are infinite sweet solvent systems being suitable for CCC separation. In these sweet solvent systems, the target has the same partition coefficient (K) but different solubilities. Thus, the better sweet solvent system with higher sample solubility can be obtained for high capacity CCC preparation. Furthermore, we found that there is a zone ("Sweet zone") where all solvent systems have their own sweet partition coefficients values for the target in range of 0.4 < K< 2.5 or extended range of 0.25 < K < 16. All results were validated by using 14 pure GUESSmix mimic natural products as standards and further confirmed by isolation of several targets including honokiol and magnolol from the extracts of Magnolia officinalis Rehd. Et Wils and tanshinone IIA from Salvia miltiorrhiza Bunge. In practice, it is much easier to get a suitable solvent system only by making a simple screening two to four HEMWat two-phase solvent systems to obtain the sweet line or sweet zone without special knowledge or comprehensive standards as references. This is an important advancement for solvent system selection and also will be very useful for isolation of current natural products including Traditional Chinese Medicines. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Improving geothermal power plants with a binary cycle

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2015-12-01

    The recent development of binary geothermal technology is analyzed. General trends in the introduction of low-temperature geothermal sources are summarized. The use of single-phase low-temperature geothermal fluids in binary power plants proves possible and expedient. The benefits of power plants with a binary cycle in comparison with traditional systems are shown. The selection of the working fluid is considered, and the influence of the fluid's physicochemical properties on the design of the binary power plant is discussed. The design of binary power plants is based on the chemical composition and energy potential of the geothermal fluids and on the landscape and climatic conditions at the intended location. Experience in developing a prototype 2.5 MW Russian binary power unit at Pauzhetka geothermal power plant (Kamchatka) is outlined. Most binary systems are designed individually for a specific location. Means of improving the technology and equipment at binary geothermal power plants are identified. One option is the development of modular systems based on several binary systems that employ the heat from the working fluid at different temperatures.

  15. Contact Binaries on Their Way Towards Merging

    NASA Astrophysics Data System (ADS)

    Gazeas, K.

    2015-07-01

    Contact binaries are the most frequently observed type of eclipsing star system. They are small, cool, low-mass binaries belonging to a relatively old stellar population. They follow certain empirical relationships that closely connect a number of physical parameters with each other, largely because of constraints coming from the Roche geometry. As a result, contact binaries provide an excellent test of stellar evolution, specifically for stellar merger scenarios. Observing campaigns by many authors have led to the cataloging of thousands of contact binaries and enabled statistical studies of many of their properties. A large number of contact binaries have been found to exhibit extraordinary behavior, requiring follow-up observations to study their peculiarities in detail. For example, a doubly-eclipsing quadruple system consisting of a contact binary and a detached binary is a highly constrained system offering an excellent laboratory to test evolutionary theories for binaries. A new observing project was initiated at the University of Athens in 2012 in order to investigate the possible lower limit for the orbital period of binary systems before coalescence, prior to merging.

  16. Dynamics of rotationally fissioned asteroids: Source of observed small asteroid systems

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth A.; Scheeres, Daniel J.

    2011-07-01

    We present a model of near-Earth asteroid (NEA) rotational fission and ensuing dynamics that describes the creation of synchronous binaries and all other observed NEA systems including: doubly synchronous binaries, high- e binaries, ternary systems, and contact binaries. Our model only presupposes the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect, "rubble pile" asteroid geophysics, and gravitational interactions. The YORP effect torques a "rubble pile" asteroid until the asteroid reaches its fission spin limit and the components enter orbit about each other (Scheeres, D.J. [2007]. Icarus 189, 370-385). Non-spherical gravitational potentials couple the spin states to the orbit state and chaotically drive the system towards the observed asteroid classes along two evolutionary tracks primarily distinguished by mass ratio. Related to this is a new binary process termed secondary fission - the secondary asteroid of the binary system is rotationally accelerated via gravitational torques until it fissions, thus creating a chaotic ternary system. The initially chaotic binary can be stabilized to create a synchronous binary by components of the fissioned secondary asteroid impacting the primary asteroid, solar gravitational perturbations, and mutual body tides. These results emphasize the importance of the initial component size distribution and configuration within the parent asteroid. NEAs may go through multiple binary cycles and many YORP-induced rotational fissions during their approximately 10 Myr lifetime in the inner Solar System. Rotational fission and the ensuing dynamics are responsible for all NEA systems including the most commonly observed synchronous binaries.

  17. Close binary systems among very low-mass stars and brown dwarfs

    NASA Astrophysics Data System (ADS)

    Jeffries, R. D.; Maxted, P. F. L.

    2005-12-01

    Using Monte Carlo simulations and published radial velocity surveys we have constrained the frequency and separation (a) distribution of very low-mass star (VLM) and brown dwarf (BD) binary systems. We find that simple Gaussian extensions of the observed wide binary distribution, with a peak at 4 AU and 0.6<\\sigma_{\\log(a/AU)}<1.0, correctly reproduce the observed number of close binary systems, implying a close (a<2.6 AU) binary frequency of 17-30 % and overall frequency of 32-45 %. N-body models of the dynamical decay of unstable protostellar multiple systems are excluded with high confidence because they do not produce enough close binary VLMs/BDs. The large number of close binaries and high overall binary frequency are also completely inconsistent with published smoothed particle hydrodynamical modelling and argue against a dynamical origin for VLMs/BDs.

  18. SIM Lite Detection of Habitable Planets in P-Type Binary-Planetary Systems

    NASA Technical Reports Server (NTRS)

    Pan, Xiaopei; Shao, Michael; Shaklan, Stuart; Goullioud, Renaud

    2010-01-01

    Close binary stars like spectroscopic binaries create a completely different environment than single stars for the evolution of a protoplanetary disk. Dynamical interactions between one star and protoplanets in such systems provide more challenges for theorists to model giant planet migration and formation of multiple planets. For habitable planets the majority of host stars are in binary star systems. So far only a small amount of Jupiter-size planets have been discovered in binary stars, whose minimum separations are 20 AU and the median value is about 1000 AU (because of difficulties in radial velocity measurements). The SIM Lite mission, a space-based astrometric observatory, has a unique capability to detect habitable planets in binary star systems. This work analyzed responses of the optical system to the field stop for companion stars and demonstrated that SIM Lite can observe exoplanets in visual binaries with small angular separations. In particular we investigated the issues for the search for terrestrial planets in P-type binary-planetary systems, where the planets move around both stars in a relatively distant orbit.

  19. Hydrogen bonded binary molecular adducts derived from exobidentate N-donor ligand with dicarboxylic acids: Acid⋯imidazole hydrogen-bonding interactions in neutral and ionic heterosynthons

    NASA Astrophysics Data System (ADS)

    Kathalikkattil, Amal Cherian; Damodaran, Subin; Bisht, Kamal Kumar; Suresh, Eringathodi

    2011-01-01

    Four new binary molecular compounds between a flexible exobidentate N-heterocycle and a series of dicarboxylic acids have been synthesized. The N-donor 1,4-bis(imidazol-1-ylmethyl)benzene (bix) was reacted with flexible and rigid dicarboxylic acids viz., cyclohexane-1,4-dicarboxylic acid (H 2chdc), naphthalene-1,4-dicarboxylic acid (H 2npdc) and 1H-pyrazole-3,5-dicarboxylic acid (H 2pzdc), generating four binary molecular complexes. X-ray crystallographic investigation of the molecular adducts revealed the primary intermolecular interactions carboxylic acid⋯amine (via O-H⋯N) as well as carboxylate⋯protonated amine (via N-H +⋯O -) within the binary compounds, generating layered and two-dimensional sheet type H-bonded networks involving secondary weak interactions (C-H⋯O) including the solvent of crystallization. Depending on the differences in p Ka values of the selected base/acid (Δp Ka), diverse H-bonded supramolecular assemblies could be premeditated. This study demonstrates the H-bonding interactions between imidazole/imidazolium cation and carboxylic acid/carboxylate anion in providing sufficient driving force for the directed assembly of binary molecular complexes. In the two-component solid form of hetero synthons involving bix and dicarboxylic acid, only H 2chdc exist as cocrystal with bix, while all the other three compounds crystallized exclusively as salt, in agreement with the Δp Ka values predicted for the formation of salts/cocrystals from the base and acid used in the synthesis of supramolecular solids.

  20. Qualitative and quantitative evaluation of solvent systems for countercurrent separation.

    PubMed

    Friesen, J Brent; Ahmed, Sana; Pauli, Guido F

    2015-01-16

    Rational solvent system selection for countercurrent chromatography and centrifugal partition chromatography technology (collectively known as countercurrent separation) studies continues to be a scientific challenge as the fundamental questions of comparing polarity range and selectivity within a solvent system family and between putative orthogonal solvent systems remain unanswered. The current emphasis on metabolomic investigations and analysis of complex mixtures necessitates the use of successive orthogonal countercurrent separation (CS) steps as part of complex fractionation protocols. Addressing the broad range of metabolite polarities demands development of new CS solvent systems with appropriate composition, polarity (π), selectivity (σ), and suitability. In this study, a mixture of twenty commercially available natural products, called the GUESSmix, was utilized to evaluate both solvent system polarity and selectively characteristics. Comparisons of GUESSmix analyte partition coefficient (K) values give rise to a measure of solvent system polarity range called the GUESSmix polarity index (GUPI). Solvatochromic dye and electrical permittivity measurements were also evaluated in quantitatively assessing solvent system polarity. The relative selectivity of solvent systems were evaluated with the GUESSmix by calculating the pairwise resolution (αip), the number of analytes found in the sweet spot (Nsw), and the pairwise resolution of those sweet spot analytes (αsw). The combination of these parameters allowed for both intra- and inter-family comparison of solvent system selectivity. Finally, 2-dimensional reciprocal shifted symmetry plots (ReSS(2)) were created to visually compare both the polarities and selectivities of solvent system pairs. This study helps to pave the way to the development of new solvent systems that are amenable to successive orthogonal CS protocols employed in metabolomic studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. The extraneous eclipses on binary light curves: KIC 5255552, KIC 10091110, and KIC 11495766

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Qian, S. B.; Wang, S. M.; Sun, L. L.; Wu, Y.; Jiang, L. Q.

    2018-03-01

    Aims: We aim to find more eclipsing multiple systems and obtain their parameters, thus increasing our understanding of multiple systems. Methods: The extraneous eclipses on the Kepler binary light curves indicating extraneous bodies were searched. The binary light curves were analyzed using the binary model, and the extraneous eclipses were studied on their periodicity and shape changes. Results: Three binaries with extraneous eclipses on the binary light curves were found and studied based on the Kepler observations. The object KIC 5255552 is an eclipsing triple system with a fast changing inner binary and an outer companion uncovered by three groups of extraneous eclipses of 862.1(±0.1) d period. The KIC 10091110 is suggested to be a double eclipsing binary system with several possible extraordinary coincidences: the two binaries share similar extremely small mass ratios (0.060(13) and 0.0564(18)), similar mean primary densities (0.3264(42) ρ⊙ and 0.3019(28) ρ⊙), and, most notably, the ratio of the two binaries' periods is very close to integer 2 (8.5303353/4.2185174 = 2.022). The KIC 11495766 is a probable triple system with a 120.73 d period binary and (at least) one non-eclipse companion. Furthermore, very close to it in the celestial sphere, there is a blended background stellar binary of 8.3404432 d period. A first list of 25 eclipsing multiple candidates is presented, with the hope that it will be beneficial for study of eclipsing multiples.

  2. Solvent effects on the Raman spectra of the isolated carbon-hydrogen stretches of cyclohexane-d11: A molecular dynamics simulation study of liquid and supercritical solvation

    NASA Astrophysics Data System (ADS)

    Frankland, Sarah-Jane Victoria

    Molecular dynamics simulations of solvent effects on the Raman spectra of isotopically isolated C-H stretches of cyclohexane-d11 were performed in liquids and supercritical CO2. The red spectral shifts from the gas phase origin were derived three different ways: (1) from the Lennard-Jones force on the normal coordinate of the vibration; (2) from this force with an additional term to account for the polarizabilily change on excitation, and (3) as an empirical difference potential between the v = 0 and v = 1 state of the hydrogen atom involved in the vibration. Model 3 was successfully parametrized to reproduce the experimental spectral shifts and linewidths. The simulated lineshapes from these models were homogeneously broadened from gas to liquid densities primarily by collisions of nearby solvent molecules with the solute. Both the simulations and isolated binary collision theory showed the density dependence of the linewidth to be related to that of the collision rate. Two additional projects were done which use Monte-Carlo algorithms involving two molecules. In the first project 1:1 complexes of solute and solvent were formed at the potential surface minima such that the geometries of conformers, energies of formation, and electronic spectral shifts could be studied. Complexes between 7- azaindole, indole, carbazole, and 1-azacarbazole and hydrogen-bonding solvents were most stable when the solvent was hydrogen-bonded at the solute N-H site. The energies of formation compared well with values obtained from ab initio calculations. Complexes of coumarins 102 and 153 and fluorinated alcohols showed the more stable conformers to have the alcohols bound at the coumarin carbonyl group. In the second project, one solvent molecule was randomly placed around the solute molecule in order to simplify bulk liquid simulation to only two molecules. This approximation was rised to show that the dynamic Stokes shift of coumarin 153 in over 30 solvents correlates with the permanent charge distribution of the solvent.

  3. Radial Velocities of 41 Kepler Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Matson, Rachel A.; Gies, Douglas R.; Guo, Zhao; Williams, Stephen J.

    2017-12-01

    Eclipsing binaries are vital for directly determining stellar parameters without reliance on models or scaling relations. Spectroscopically derived parameters of detached and semi-detached binaries allow us to determine component masses that can inform theories of stellar and binary evolution. Here we present moderate resolution ground-based spectra of stars in close binary systems with and without (detected) tertiary companions observed by NASA’s Kepler mission and analyzed for eclipse timing variations. We obtain radial velocities and spectroscopic orbits for five single-lined and 35 double-lined systems, and confirm one false positive eclipsing binary. For the double-lined spectroscopic binaries, we also determine individual component masses and examine the mass ratio {M}2/{M}1 distribution, which is dominated by binaries with like-mass pairs and semi-detached classical Algol systems that have undergone mass transfer. Finally, we constrain the mass of the tertiary component for five double-lined binaries with previously detected companions.

  4. Structure and component dynamics in binary mixtures of poly(2-(dimethylamino)ethyl methacrylate) with water and tetrahydrofuran: A diffraction, calorimetric, and dielectric spectroscopy study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goracci, G., E-mail: sckgorag@ehu.es; Arbe, A.; Alegría, A.

    2016-04-21

    We have combined X-ray diffraction, neutron diffraction with polarization analysis, small angle neutron scattering, differential scanning calorimetry, and broad band dielectric spectroscopy to investigate the structure and dynamics of binary mixtures of poly (2-(dimethylamino)ethyl methacrylate) with either water or tetrahydrofuran (THF) at different concentrations. Aqueous mixtures are characterized by a highly heterogeneous structure where water clusters coexist with an underlying nano-segregation of main chains and side groups of the polymeric matrix. THF molecules are homogeneously distributed among the polymeric nano-domains for concentrations of one THF molecule/monomer or lower. A more heterogeneous situation is found for higher THF amounts, but withoutmore » evidences for solvent clusters. In THF-mixtures, we observe a remarkable reduction of the glass-transition temperature which is enhanced with increasing amount of solvent but seems to reach saturation at high THF concentrations. Adding THF markedly reduces the activation energy of the polymer β-relaxation. The presence of THF molecules seemingly hinders a slow component of this process which is active in the dry state. The aqueous mixtures present a strikingly broad glass-transition feature, revealing a highly heterogeneous behavior in agreement with the structural study. Regarding the solvent dynamics, deep in the glassy state all data can be described by an Arrhenius temperature dependence with a rather similar activation energy. However, the values of the characteristic times are about three orders of magnitude smaller for THF than for water. Water dynamics display a crossover toward increasingly higher apparent activation energies in the region of the onset of the glass transition, supporting its interpretation as a consequence of the freezing of the structural relaxation of the surrounding matrix. The absence of such a crossover (at least in the wide dynamic window here accessed) in THF is attributed to the lack of cooperativity effects in the relaxation of these molecules within the polymeric matrix.« less

  5. Lipophilicity Assessment of Ruthenium(II)-Arene Complexes by the Means of Reversed-Phase Thin-Layer Chromatography and DFT Calculations

    PubMed Central

    Shweshein, Khalil Salem A. M.; Andrić, Filip; Radoičić, Aleksandra; Gruden-Pavlović, Maja; Tešić, Živoslav; Milojković-Opsenica, Dušanka

    2014-01-01

    The lipophilicity of ten ruthenium(II)-arene complexes was assessed by reversed-phase thin-layer chromatography (RP-TLC) on octadecyl silica stationary phase. The binary solvent systems composed of water and acetonitrile were used as mobile phase in order to determine chromatographic descriptors for lipophilicity estimation. Octanol-water partition coefficient, logK OW, of tested complexes was experimentally determined using twenty-eight standard solutes which were analyzed under the same chromatographic conditions as target substances. In addition, ab initio density functional theory (DFT) computational approach was employed to calculate logK OW values from the differences in Gibbs' free solvation energies of the solute transfer from n-octanol to water. A good overall agreement between DFT calculated and experimentally determined logK OW values was established (R 2 = 0.8024–0.9658). PMID:24587761

  6. Binary PVA bio-nanocomposites containing cellulose nanocrystals extracted from different natural sources: part I.

    PubMed

    Fortunati, E; Puglia, D; Luzi, F; Santulli, C; Kenny, J M; Torre, L

    2013-09-12

    PVA bio-nanocomposites reinforced with cellulose nanocrystals (CNC) extracted from commercial microcrystalline cellulose (MCC) and from two types of natural fibres, Phormium tenax and Flax of the Belinka variety, were produced by solvent casting in water. Morphological, thermal, mechanical and transparency properties were studied while the respective efficiency of the extraction process of CNC from the three sources was evaluated. The effect of CNC types and content on PVA properties and water absorption capacity were also evaluated. Natural fibres offered higher levels of extraction efficiency when compared with MCC hydrolysis yield. Thermal analysis proved that CNC promotes the crystallization of the PVA matrix, while improving its plastic response. It was also clarified that all PVA/CNC systems remain transparent due to CNC dispersion at the nanoscale, while being all saturated after the first 18-24h of water absorption. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Morphology, directed self-assembly and pattern transfer from a high molecular weight polystyrene-block-poly(dimethylsiloxane) block copolymer film

    NASA Astrophysics Data System (ADS)

    Cheng, Li-Chen; Bai, Wubin; Fernandez Martin, Eduardo; Tu, Kun-Hua; Ntetsikas, Konstantinos; Liontos, George; Avgeropoulos, Apostolos; Ross, C. A.

    2017-04-01

    The self-assembly of block copolymers with large feature sizes is inherently challenging as the large kinetic barrier arising from chain entanglement of high molecular weight (MW) polymers limits the extent over which long-range ordered microdomains can be achieved. Here, we illustrate the evolution of thin film morphology from a diblock copolymer of polystyrene-block-poly(dimethylsiloxane) exhibiting total number average MW of 123 kg mol-1, and demonstrate the formation of layers of well-ordered cylindrical microdomains under appropriate conditions of binary solvent mix ratio, commensurate film thickness, and solvent vapor annealing time. Directed self-assembly of the block copolymer within lithographically patterned trenches occurs with alignment of cylinders parallel to the sidewalls. Fabrication of ordered cobalt nanowire arrays by pattern transfer was also implemented, and their magnetic properties and domain wall behavior were characterized.

  8. Terrestrial Planet Formation in Binary Star Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, J. J.; Quintana, E. V.; Adams, F. C.; Chambers, J. E.

    2006-01-01

    Most stars reside in binary/multiple star systems; however, previous models of planet formation have studied growth of bodies orbiting an isolated single star. Disk material has been observed around one or both components of various young close binary star systems. If planets form at the right places within such disks, they can remain dynamically stable for very long times. We have simulated the late stages of growth of terrestrial planets in both circumbinary disks around 'close' binary star systems with stellar separations ($a_B$) in the range 0.05 AU $\\le a_B \\le$ 0.4 AU and binary eccentricities in the range $0 \\le e \\le 0.8$ and circumstellar disks around individual stars with binary separations of tens of AU. The initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet growth within our Solar System and around individual stars in the Alpha Centauri system (Quintana et al. 2002, A.J., 576, 982); giant planets analogous to Jupiter and Saturn are included if their orbits are stable. The planetary systems formed around close binaries with stellar apastron distances less than or equal to 0.2 AU with small stellar eccentricities are very similar to those formed in the Sun-Jupiter-Saturn, whereas planetary systems formed around binaries with larger maximum separations tend to be sparser, with fewer planets, especially interior to 1 AU. Likewise, when the binary periastron exceeds 10 AU, terrestrial planets can form over essentially the entire range of orbits allowed for single stars with Jupiter-like planets, although fewer terrestrial planets tend to form within high eccentricity binary systems. As the binary periastron decreases, the radial extent of the terrestrial planet systems is reduced accordingly. When the periastron is 5 AU, the formation of Earth-like planets near 1 AU is compromised.

  9. Unusual solvatochromic absorbance probe behaviour within mixtures of poly(ethylene glycol)-400 + ionic liquid, [bmim][Tf2N

    NASA Astrophysics Data System (ADS)

    Ali, Anwar; Ali, Maroof; Malik, Nisar Ahmad; Uzair, Sahar

    2014-03-01

    The potentially green solvents made up of ionic liquids (ILs) and poly(ethylene glycols) may have wide range of the applications in many chemical and biochemical fields. In the present work, solvatochromic absorbance probe behaviour is used to assess the physicochemical properties of the mixtures composed of PEG-400 + IL, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [bmim][Tf2N]. Lowest energy intramolecular charge-transfer absorbance maxima of a betaine dye, i.e., ETN , indicates the dipolarity/polarizability and/or hydrogen-bond donating (HBD) acidity of the [bmim][Tf2N] + PEG-400 mixtures to be even higher than that of neat [bmim][Tf2N], the solution component with higher dipolarity/polarizability and/or HBD acidity. Dipolarity/polarizability (π∗) obtained separately from the electronic absorbance response of probe N,N-diethyl-4-nitroaniline, and the HBD acidity (α) of PEG-400 + [bmim][Tf2N] mixtures are also observed to be anomalously high. A comparative study of the PEG + IL mixtures has also been done with PEG-400 + molecular organic solvents (protic polar [methanol], aprotic polar [N,N-dimethylformamide], and non polar, [benzene]) mixtures, but these mixtures do not show this type of unusual behaviour. A four-parameter simplified combined nearly ideal binary solvent/Redlich-Kister (CNIBS/R-K) equation is shown to satisfactorily predict the solvatochromic parameters within PEG-400 + different solvent mixtures.

  10. The True Ultracool Binary Fraction Using Spectral Binaries

    NASA Astrophysics Data System (ADS)

    Bardalez Gagliuffi, Daniella; Burgasser, Adam J.; Schmidt, Sarah J.; Gagné, Jonathan; Faherty, Jacqueline K.; Cruz, Kelle; Gelino, Chris

    2018-01-01

    Brown dwarfs bridge the gap between stars and giant planets. While the essential mechanisms governing their formation are not well constrained, binary statistics are a direct outcome of the formation process, and thus provide a means to test formation theories. Observational constraints on the brown dwarf binary fraction place it at 10 ‑ 20%, dominated by imaging studies (85% of systems) with the most common separation at 4 AU. This coincides with the resolution limit of state-of-the-art imaging techniques, suggesting that the binary fraction is underestimated. We have developed a separation-independent method to identify and characterize tightly-separated (< 5 AU) binary systems of brown dwarfs as spectral binaries by identifying traces of methane in the spectra of late-M and early-L dwarfs. Imaging follow-up of 17 spectral binaries yielded 3 (18%) resolved systems, corroborating the observed binary fraction, but 5 (29%) known binaries were missed, reinforcing the hypothesis that the short-separation systems are undercounted. In order to find the true binary fraction of brown dwarfs, we have compiled a volume-limited, spectroscopic sample of M7-L5 dwarfs and searched for T dwarf companions. In the 25 pc volume, 4 candidates were found, three of which are already confirmed, leading to a spectral binary fraction of 0.95 ± 0.50%, albeit for a specific combination of spectral types. To extract the true binary fraction and determine the biases of the spectral binary method, we have produced a binary population simulation based on different assumptions of the mass function, age distribution, evolutionary models and mass ratio distribution. Applying the correction fraction resulting from this method to the observed spectral binary fraction yields a true binary fraction of 27 ± 4%, which is roughly within 1σ of the binary fraction obtained from high resolution imaging studies, radial velocity and astrometric monitoring. This method can be extended to identify giant planet companions to young brown dwarfs.

  11. Influence of solvent composition on the performance of carbodiimide cross-linked gelatin carriers for retinal sheet delivery.

    PubMed

    Lai, Jui-Yang

    2013-09-01

    Gelatin is a protein molecule that displays bioaffinity and provides a template to guide retinal pigment epithelial (RPE) cell organization and growth. We have recently demonstrated that the carbodiimide cross-linked gelatin membranes can be used as retinal sheet carriers. The purpose of this work was to further determine the role of solvent composition in the tissue delivery performance of chemically modified biopolymer matrices. The gelatin molecules were treated with 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) in the presence of binary ethanol/water mixtures with varying ethanol concentrations (70-95 vol%) to obtain the carriers with different cross-linking efficiencies and mechanical properties. Results of melting point measurements and in vitro degradation tests showed that when the cross-linking index reached a high level of around 45 %, the EDC cross-linked gelatin materials have sufficient thermal stability and resistance to enzymatic degradation, indicating their suitability for the development of carriers for retinal sheet delivery. Irrespective of the solvent composition, the chemically modified gelatin samples are compatible toward human RPE cells without causing toxicity and inflammation. In particular, the membrane carriers prepared by the cross-linking in the presence of solvent mixtures containing 80-90 vol% of ethanol have no impact on the proliferative capacity of ARPE-19 cultures and possess good efficiency in transferring and encapsulating the retinal tissues. It is concluded that, except for cell viability and pro-inflammatory cytokine expression, the retinal sheet delivery performance strongly depends on the solvent composition for EDC cross-linking of gelatin molecules.

  12. Pretreatment of Lignocellulosic Biomass with Ionic Liquids and Ionic Liquid-Based Solvent Systems.

    PubMed

    Hou, Qidong; Ju, Meiting; Li, Weizun; Liu, Le; Chen, Yu; Yang, Qian

    2017-03-20

    Pretreatment is very important for the efficient production of value-added products from lignocellulosic biomass. However, traditional pretreatment methods have several disadvantages, including low efficiency and high pollution. This article gives an overview on the applications of ionic liquids (ILs) and IL-based solvent systems in the pretreatment of lignocellulosic biomass. It is divided into three parts: the first deals with the dissolution of biomass in ILs and IL-based solvent systems; the second focuses on the fractionation of biomass using ILs and IL-based solvent systems as solvents; the third emphasizes the enzymatic saccharification of biomass after pretreatment with ILs and IL-based solvent systems.

  13. Multi-wavelength spectrophotometric determination of acidity constant of some newly synthesized Schiff bases and their QSPR study

    NASA Astrophysics Data System (ADS)

    Hemmateenejad, Bahram; Emami, Leila; Sharghi, Hashem

    2010-01-01

    The acidity constants of some newly synthesized Schiff base derivatives were determined by hard-model based multivariate data analysis of the spectrophotometric data in the course of pH-metric titration in 50% (v/v) methanol-water binary solvent. The employed data analysis method was also able to extract the pure spectra and pH-dependent concentration profiles of the acid-base species. The molecules that possess different substituents (both electron donating and withdrawing) on the ortho-, meta- and para-positions of one of the phenyl ring showed variable acidity constants ranging from 8.77 to 11.07 whereas the parent molecule had an acidity constant of 10.25. To investigate the quantitative effects of changing of substitution pattern on the acidity constant, a quantitative structure-property relation analysis was conducted using substituent constants and molecular descriptor. Some models with high statistical quality (measured by cross-validation Q2) were obtained. It was found that the acidity constant of the studied molecules in the methanol-water mixed solvent not only is affected by electronic features of the solutes but also by the lipophilic interaction between methanol part of solvent and the deprotonated solutes.

  14. New spectroscopic binary companions of giant stars and updated metallicity distribution for binary systems

    NASA Astrophysics Data System (ADS)

    Bluhm, P.; Jones, M. I.; Vanzi, L.; Soto, M. G.; Vos, J.; Wittenmyer, R. A.; Drass, H.; Jenkins, J. S.; Olivares, F.; Mennickent, R. E.; Vučković, M.; Rojo, P.; Melo, C. H. F.

    2016-10-01

    We report the discovery of 24 spectroscopic binary companions to giant stars. We fully constrain the orbital solution for 6 of these systems. We cannot unambiguously derive the orbital elements for the remaining stars because the phase coverage is incomplete. Of these stars, 6 present radial velocity trends that are compatible with long-period brown dwarf companions. The orbital solutions of the 24 binary systems indicate that these giant binary systems have a wide range in orbital periods, eccentricities, and companion masses. For the binaries with restricted orbital solutions, we find a range of orbital periods of between ~97-1600 days and eccentricities of between ~0.1-0.4. In addition, we studied the metallicity distribution of single and binary giant stars. We computed the metallicity of a total of 395 evolved stars, 59 of wich are in binary systems. We find a flat distribution for these binary stars and therefore conclude that stellar binary systems, and potentially brown dwarfs, have a different formation mechanism than planets. This result is confirmed by recent works showing that extrasolar planets orbiting giants are more frequent around metal-rich stars. Finally, we investigate the eccentricity as a function of the orbital period. We analyzed a total of 130 spectroscopic binaries, including those presented here and systems from the literature. We find that most of the binary stars with periods ≲30 days have circular orbits, while at longer orbital periods we observe a wide spread in their eccentricities. Based on observations collected at La Silla - Paranal Observatory under programs IDs IDs 085.C-0557, 087.C.0476, 089.C-0524, 090.C-0345, 096.A-9020 and through the Chilean Telescope Time under programs IDs CN2012A-73, CN2012B-47, CN2013A-111, CN2013B-51, CN2014A-52 and CN2015A-48.

  15. On the frequency of close binary systems among very low-mass stars and brown dwarfs

    NASA Astrophysics Data System (ADS)

    Maxted, P. F. L.; Jeffries, R. D.

    2005-09-01

    We have used Monte Carlo simulation techniques and published radial velocity surveys to constrain the frequency of very low-mass star (VLMS) and brown dwarf (BD) binary systems and their separation (a) distribution. Gaussian models for the separation distribution with a peak at a= 4au and 0.6 <=σlog(a/au)<= 1.0, correctly predict the number of observed binaries, yielding a close (a < 2.6au) binary frequency of 17-30 per cent and an overall VLMS/BD binary frequency of 32-45 per cent. We find that the available N-body models of VLMS/BD formation from dynamically decaying protostellar multiple systems are excluded at >99 per cent confidence because they predict too few close binary VLMS/BDs. The large number of close binaries and high overall binary frequency are also very inconsistent with recent smoothed particle hydrodynamical modelling and argue against a dynamical origin for VLMS/BDs.

  16. Search for Gravitational Waves from Low Mass Compact Binary Coalescence in LIGO's Sixth Science Run and Virgo's Science Runs 2 and 3

    NASA Technical Reports Server (NTRS)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; hide

    2012-01-01

    We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009, and October 20. 2010. We searched for signals from binaries with total mass between 2 and 25 Stellar Mass; this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass. including the results from previous LIGO and Virgo observations. The cumulative 90% confidence rate upper limits of the binary coalescence of binary neutron star, neutron star-black hole, and binary black hole systems are 1.3 x 10(exp -4), 3.1 x 10(exp -5), and 6.4 x 10(exp -6)/cu Mpc/yr, respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge.

  17. Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3

    NASA Astrophysics Data System (ADS)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Agathos, M.; Ajith, P.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amariutei, D.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barker, D.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Beker, M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet–Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; del Prete, M.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.; Dietz, A.; DiGuglielmo, J.; Donovan, F.; Dooley, K. L.; Dorsher, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Farr, W.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Flanigan, M.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P. J.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Ganija, M. R.; Garcia, J.; Garofoli, J. A.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Geng, R.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Gray, N.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Ha, T.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Hardt, A.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; Jang, H.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kamaretsos, I.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B.; Kim, C.; Kim, D.; Kim, H.; Kim, K.; Kim, N.; Kim, Y.-M.; King, P. J.; Kinsey, M.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Leaci, P.; Lee, C. H.; Lee, H. M.; Leindecker, N.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Luan, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marandi, A.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menendez, D.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Moesta, P.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Mosca, S.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Nawrodt, R.; Necula, V.; Nelson, J.; Newton, G.; Nishizawa, A.; Nocera, F.; Nolting, D.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pedraza, M.; Peiris, P.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Persichetti, G.; Phelps, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Prato, M.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C. R.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Redwine, K.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Ryll, H.; Sainathan, P.; Sakosky, M.; Salemi, F.; Samblowski, A.; Sammut, L.; Sancho de la Jordana, L.; Sandberg, V.; Sankar, S.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schlamminger, S.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Smith, R. J. E.; Somiya, K.; Sorazu, B.; Soto, J.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Stein, A. J.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Tseng, K.; Tucker, E.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vitale, S.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, X.; Wang, Z.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.; Zadroźny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhang, W.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.

    2012-04-01

    We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009, and October 20, 2010. We searched for signals from binaries with total mass between 2 and 25M⊙; this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass, including the results from previous LIGO and Virgo observations. The cumulative 90% confidence rate upper limits of the binary coalescence of binary neutron star, neutron star-black hole, and binary black hole systems are 1.3×10-4, 3.1×10-5, and 6.4×10-6Mpc-3yr-1, respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge.

  18. Contact binaries in the Trans-neptunian Belt

    NASA Astrophysics Data System (ADS)

    Thirouin, Audrey; Sheppard, Scott S.

    2017-10-01

    A contact binary is made up of two objects that are almost touching or in contact with each other. These systems have been found in the Near-Earth Object population, the main belt of asteroids, the Jupiter Trojans, the comet population and even in the Trans-neptunian belt.Several studies suggest that up to 30% of the Trans-Neptunian Objects (TNOs) could be contact binaries (Sheppard & Jewitt 2004, Lacerda 2011). Contact binaries are not resolvable with the Hubble Space Telescope because of the small separation between the system's components (Noll et al. 2008). Only lightcurves with a characteristic V-/U-shape at the minimum/maximum of brightness and a large amplitude can identify these contact binaries. Despite an expected high fraction of contact binaries, 2001 QG298 is the only confirmed contact binary in the Trans-Neptunian belt, and 2003 SQ317 is a candidate to this class of systems (Sheppard & Jewitt 2004, Lacerda et al. 2014).Recently, using the Lowell’s 4.3m Discovery Channel Telescope and the 6.5m Magellan Telescope, we started a search for contact binaries at the edge of our Solar System. So far, our survey focused on about 40 objects in different dynamical groups of the Trans-Neptunian belt for sparse or complete lightcurves. We report the discovery of 5 new potential contact binaries converting the current estimate of potential/confirmed contact binaries to 7 objects. With one epoch of observations per object, we are not able to model in detail the systems, but we derive estimate for basic information such as shape, size, density of both objects as well as the separation between the system’s components. In this work, we will present these new systems, their basic characteristics, and we will discuss the potential main reservoir of contact binaries in the Trans-neptunian belt.

  19. Photometric binary stars in Praesepe and the search for globular cluster binaries

    NASA Technical Reports Server (NTRS)

    Bolte, Michael

    1991-01-01

    A radial velocity study of the stars which are located on a second sequence above the single-star zero-age main sequence at a given color in the color-magnitude diagram of the open cluster Praesepe, (NGC 2632) shows that 10, and possibly 11, of 17 are binary systems. Of the binary systems, five have full amplitudes for their velocity variations that are greater than 50 km/s. To the extent that they can be applied to globular clusters, these results suggests that (1) observations of 'second-sequence' stars in globular clusters would be an efficient way of finding main-sequence binary systems in globulars, and (2) current instrumentation on large telescopes is sufficient for establishing unambiguously the existence of main-sequence binary systems in nearby globular clusters.

  20. Unraveling the cytotoxicity and metabolic pathways of binary natural deep eutectic solvent systems

    PubMed Central

    Mbous, Yves Paul; Hayyan, Maan; Wong, Won Fen; Looi, Chung Yeng; Hashim, Mohd Ali

    2017-01-01

    In this study, the anticancer potential and cytotoxicity of natural deep eutectic solvents (NADESs) were assessed using HelaS3, PC3, A375, AGS, MCF-7, and WRL-68 hepatic cell lines. NADESs were prepared from choline chloride, fructose, or glucose and compared with an N,N-diethyl ethanolammonium chloride:triethylene glycol DES. The NADESs (98 ≤ EC50 ≥ 516 mM) were less toxic than the DES (34 ≤ EC50 ≥ 120 mM). The EC50 values of the NADESs were significantly higher than those of the aqueous solutions of their individual components but were similar to those of the aqueous solutions of combinations of their chief elements. Due to the uniqueness of these results, the possibility that NADESs could be synthesized intracellularly to counterbalance the cytotoxicity of their excess principal constituents must be entertained. However, further research is needed to explore this avenue. NADESs exerted cytotoxicity by increasing membrane porosity and redox stress. In vivo, they were more destructive than the DES and induced liver failure. The potential of these mixtures was evidenced by their anticancer activity and intracellular processing. This infers that they can serve as tools for increasing our understanding of cell physiology and metabolism. It is likely that we only have begun to comprehend the nature of NADESs. PMID:28145498

  1. Unraveling the cytotoxicity and metabolic pathways of binary natural deep eutectic solvent systems

    NASA Astrophysics Data System (ADS)

    Mbous, Yves Paul; Hayyan, Maan; Wong, Won Fen; Looi, Chung Yeng; Hashim, Mohd Ali

    2017-02-01

    In this study, the anticancer potential and cytotoxicity of natural deep eutectic solvents (NADESs) were assessed using HelaS3, PC3, A375, AGS, MCF-7, and WRL-68 hepatic cell lines. NADESs were prepared from choline chloride, fructose, or glucose and compared with an N,N-diethyl ethanolammonium chloride:triethylene glycol DES. The NADESs (98 ≤ EC50 ≥ 516 mM) were less toxic than the DES (34 ≤ EC50 ≥ 120 mM). The EC50 values of the NADESs were significantly higher than those of the aqueous solutions of their individual components but were similar to those of the aqueous solutions of combinations of their chief elements. Due to the uniqueness of these results, the possibility that NADESs could be synthesized intracellularly to counterbalance the cytotoxicity of their excess principal constituents must be entertained. However, further research is needed to explore this avenue. NADESs exerted cytotoxicity by increasing membrane porosity and redox stress. In vivo, they were more destructive than the DES and induced liver failure. The potential of these mixtures was evidenced by their anticancer activity and intracellular processing. This infers that they can serve as tools for increasing our understanding of cell physiology and metabolism. It is likely that we only have begun to comprehend the nature of NADESs.

  2. Adsorption of Cr(VI) on cerium immobilized cross-linked chitosan composite in single system and coexisted with Orange II in binary system.

    PubMed

    Zhu, Tianyi; Huang, Wei; Zhang, Lingfan; Gao, Jie; Zhang, Wenqing

    2017-10-01

    In this work, cerium immobilized cross-linked chitosan (CTS-Ce) composite, employed as an efficient adsorbent for Cr(VI) in single system and coexisted with Orange II (OII) in binary system, was prepared by co-precipitation method. The as-obtained adsorbent was characterized by FTIR, SEM, EDS and XPS before and after adsorption. The adsorption behaviors of Cr(VI) in single and binary system were systematically studied. The maximum adsorption capacity of Cr(VI) on CTS-Ce (202.8mg/g) was calculated by Langmuir equation in single metal system, but it decreased to 112.9mg/g with initial concentration of 100mg/L OII in binary system at pH 2 and 293K. The adsorption data for Cr(VI) followed the Langmuir model in single system, while fitted Temkin model well in binary system. In both single and binary system, the kinetics of adsorption exhibited pseudo-second order behavior and adsorption capacity increased with increasing temperature. Moreover, the data of thermodynamic parameters (ΔG°<0, ΔH°>0) indicated that the adsorption was a spontaneous and endothermic process. Besides, |ΔG Cr |>|ΔG Cr-OII | at the same temperature further suggested that Cr(VI) was adsorbed on the CTS-Ce composite faster in binary system than in single system. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Characterization of zein assemblies by ultra-small-angle X-ray scattering

    DOE PAGES

    Uzun, Suzan; Ilavsky, Jan; Padua, Graciela Wild

    2017-03-23

    Zein, a protein of corn, has an amphiphilic molecule capable of self-assembly into distinctly different structures. In this work, ultra-small-angle X-ray scattering (USAXS) was applied to investigate the formation of self-assembled zein structures in binary solvent systems of ethanol and water. Our study included observing structural changes due to aging. Three hierarchical structures were identified in zein-solvent systems, molecular zein 2D films, believed to be formed by zein rods assembled first into one-dimensional fibers and then into two-dimensional films, and 3D spherical aggregates. Aging did not change the size or shape of primary units, but promoted their self-assembly into intermediatemore » 2D structures and shaped 3D structures into well19 defined spheres. We found that the rheological parameters, consistency index (K) and behavior index (n), storage and loss moduli (G’ and G”) were also measured. K and n, changed markedly with aging, from nearly Newtonian low consistency fresh samples to highly viscous pseudoplastic aged samples. G’ and G” increased with aging for all samples reflecting increased interactions among zein self-assembled structures. Furthermore, viscoelastic parameters indicated that zein dispersions formed gels upon aging. It was observed that USAX reported on molecular scale self-assembly processes, while rheological measurements reported on the macroscale interaction between self-assembled particles. Raman spectra suggested that α-helix to β-sheet transformations prompted zein self-assembly, which influenced the size and morphology of molecular assemblies and ultimately the rheological properties of zein dispersions.« less

  4. International Ultraviolet Explorer observations of the peculiar variable spectrum of the eclipsing binary R Arae

    NASA Technical Reports Server (NTRS)

    Mccluskey, G. E.; Kondo, Y.

    1983-01-01

    The eclipsing binary system R Arae = HD 149730 is a relatively bright southern system with an orbital period of about 4.4 days. It is a single-lined spectroscopic binary. The spectral class of the primary component is B9 Vp. The system was included in a study of mass flow and evolution in close binary systems using the International Ultraviolet Explorer satellite (IUE). Four spectra in the wavelength range from 1150 to 1900 A were obtained with the far-ultraviolet SWP camera, and six spectra in the range from 1900 to 3200 range were obtained with the mid-ultraviolet LWR camera. The close binary R Arae exhibits very unusual ultraviolet spectra. It appears that no other close binary system, observed with any of the orbiting satellites, shows outside-eclipse ultraviolet continuum flux variations of this nature.

  5. On the Induced Gravitational Collapse

    NASA Astrophysics Data System (ADS)

    Becerra, Laura M.; Bianco, Carlo; Fryer, Chris; Rueda, Jorge; Ruffini, Remo

    2018-01-01

    The induced gravitational collapse (IGC) paradigm has been applied to explain the long gamma ray burst (GRB) associated with type Ic supernova, and recently the Xray flashes (XRFs). The progenitor is a binary systems of a carbon-oxygen core (CO) and a neutron star (NS). The CO core collapses and undergoes a supernova explosion which triggers the hypercritical accretion onto the NS companion (up to 10-2 M⊙s-1). For the binary driven hypernova (BdHNe), the binary system is enough bound, the NS reach its critical mass, and collapse to a black hole (BH) with a GRB emission characterized by an isotropic energy Eiso > 1052 erg. Otherwise, for binary systems with larger binary separations, the hypercritical accretion onto the NS is not sufficient to induced its gravitational collapse, a X-ray flash is produced with Eiso < 1052 erg. We're going to focus in identify the binary parameters that limits the BdHNe systems with the XRFs systems.

  6. Effect of hydroxypropylcellulose and Tween 80 on physicochemical properties and bioavailability of ezetimibe-loaded solid dispersion.

    PubMed

    Rashid, Rehmana; Kim, Dong Wuk; Din, Fakhar Ud; Mustapha, Omer; Yousaf, Abid Mehmood; Park, Jong Hyuck; Kim, Jong Oh; Yong, Chul Soon; Choi, Han-Gon

    2015-10-05

    The purpose of this research was to evaluate the effect of the HPC (hydroxypropylcellulose) and Tween 80 on the physicochemical properties and oral bioavailability of ezetimibe-loaded solid dispersions. The binary solid dispersions were prepared with drug and various amounts of HPC. Likewise, ternary solid dispersions were prepared with different ratios of drug, HPC and Tween 80. Both types of solid dispersions were prepared using the solvent evaporation method. Their aqueous solubility, physicochemical properties, dissolution and oral bioavailability were investigated in comparison with the drug powder. All the solid dispersions significantly improved the drug solubility and dissolution. As the amount of HPC increased in the binary solid dispersions to 10-fold, the drug solubility and dissolution were increased accordingly. However, further increase in HPC did not result in significant differences among them. Similarly, up to 0.1-fold, Tween 80 increased the drug solubility in the ternary solid dispersions followed by no significant change. However, Tween 80 hardly affected the drug dissolution. The physicochemical analysis proved that the drug in binary and ternary solid dispersion was existed in the amorphous form. The particle-size measurements of these formulations were also not significantly different from each other, which showed that Tween 80 had no impact on physicochemical properties. The ezetimibe-loaded binary and ternary solid dispersions gave 1.6- and 1.8-fold increased oral bioavailability in rats, respectively, as compared to the drug powder; however, these values were not significantly different from each other. Thus, HPC greatly affected the solubility, dissolution and oral bioavailability of drug, but Tween 80 hardly did. Furthermore, this ezetimibe-loaded binary solid dispersion prepared only with HPC would be suggested as a potential formulation for oral administration of ezetimibe. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. System for removing contaminants from plastic resin

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2010-11-23

    A resin recycling system that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The system includes receiving the resin in container form. A grinder grinds the containers into resin particles. The particles are exposed to a solvent in one or more solvent wash vessels, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. A separator is used to separate the resin particles and the solvent. The resin particles are then placed in solvent removing element where they are exposed to a solvent removing agent which removes any residual solvent remaining on the resin particles after separation.

  8. The incidence of stellar mergers and mass gainers among massive stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Mink, S. E.; Sana, H.; Langer, N.

    2014-02-10

    Because the majority of massive stars are born as members of close binary systems, populations of massive main-sequence stars contain stellar mergers and products of binary mass transfer. We simulate populations of massive stars accounting for all major binary evolution effects based on the most recent binary parameter statistics and extensively evaluate the effect of model uncertainties. Assuming constant star formation, we find that 8{sub −4}{sup +9}% of a sample of early-type stars are the products of a merger resulting from a close binary system. In total we find that 30{sub −15}{sup +10}% of massive main-sequence stars are the productsmore » of binary interaction. We show that the commonly adopted approach to minimize the effects of binaries on an observed sample by excluding systems detected as binaries through radial velocity campaigns can be counterproductive. Systems with significant radial velocity variations are mostly pre-interaction systems. Excluding them substantially enhances the relative incidence of mergers and binary products in the non-radial velocity variable sample. This poses a challenge for testing single stellar evolutionary models. It also raises the question of whether certain peculiar classes of stars, such as magnetic O stars, are the result of binary interaction and it emphasizes the need to further study the effect of binarity on the diagnostics that are used to derive the fundamental properties (star-formation history, initial mass function, mass-to-light ratio) of stellar populations nearby and at high redshift.« less

  9. Top-down approach for nanophase reconstruction in bulk heterojunction solar cells.

    PubMed

    Kong, Jaemin; Hwang, In-Wook; Lee, Kwanghee

    2014-09-01

    "Top-Down" nanophase reconstruction via a post-additive soaking process is first presented with various BHJ binary composites. By simply rinsing as-cast BHJ films with a solvent mixture containing a few traces of a nanophase-control reagent such as 1,8-diiodooctane, oversized fullerene-rich clusters (>100 nm in dia-meter) in the BHJ film are instataneously disassembled and entirely reorganized into finely intermixed donor/acceptor nanophases (ca. 10 nm) with a 3D compositional homogeneity, without surface segregation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Crystallization of pure anhydrous polymorphs of carbamazepine by solution enhanced dispersion with supercritical fluids (SEDS).

    PubMed

    Edwards, A D; Shekunov, B Y; Kordikowski, A; Forbes, R T; York, P

    2001-08-01

    Pure anhydrous polymorphs of carbamazepine were prepared by solution-enhanced dispersion with supercritical fluids (SEDS). Crystallization of the polymorphs was studied. Mechanisms are proposed that consider the thermodynamics of carbamazepine, supersaturation in the SEDS process, and the binary phase equilibria of organic solvents and the carbon dioxide antisolvent. alpha-Carbamazepine was crystallized at high supersaturations and low temperatures, beta-carbamazepine crystallized from a methanol-carbon dioxide phase split, and gamma-carbamazepine crystallized via nucleation at high temperatures and low supersaturation. Copyright 2001 Wiley-Liss, Inc.

  11. Picosecond solvation dynamics—A potential viewer of DMSO—Water binary mixtures

    NASA Astrophysics Data System (ADS)

    Banik, Debasis; Kundu, Niloy; Kuchlyan, Jagannath; Roy, Arpita; Banerjee, Chiranjib; Ghosh, Surajit; Sarkar, Nilmoni

    2015-02-01

    In this work, we have investigated the composition dependent anomalous behavior of dimethyl sulfoxide (DMSO)-water binary mixture by collecting the ultrafast solvent relaxation response around a well known solvation probe Coumarin 480 (C480) by using a femtosecond fluorescence up-conversion spectrometer. Recent molecular dynamics simulations have predicted two anomalous regions of DMSO-water binary mixture. Particularly, these studies encourage us to investigate the anomalies from experimental background. DMSO-water binary mixture has repeatedly given evidences of its dual anomalous nature in front of our systematic investigation through steady-state and time-resolved measurements. We have calculated average solvation times of C480 by two individual well-known methods, among them first one is spectral-reconstruction method and another one is single-wavelength measurement method. The results of both the methods roughly indicate that solvation time of C480 reaches maxima in the mole fraction of DMSO XD = 0.12-0.17 and XD = 0.27-0.35, respectively. Among them, the second region (XD = 0.27-0.35) is very common as most of the thermodynamic properties exhibit deviation in this range. Most probably, the anomalous solvation trend in this region is fully guided by the shear viscosity of the medium. However, the first region is the most interesting one. In this region due to formation of strongly hydrogen bonded 1DMSO:2H2O complexes, hydration around the probe C480 decreases, as a result of which solvation time increases.

  12. BINARY CENTRAL STARS OF PLANETARY NEBULAE DISCOVERED THROUGH PHOTOMETRIC VARIABILITY. IV. THE CENTRAL STARS OF HaTr 4 AND Hf 2-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillwig, Todd C.; Schaub, S. C.; Bond, Howard E.

    We explore the photometrically variable central stars of the planetary nebulae HaTr 4 and Hf 2-2. Both have been classified as close binary star systems previously based on their light curves alone. Here, we present additional arguments and data confirming the identification of both as close binaries with an irradiated cool companion to the hot central star. We include updated light curves, orbital periods, and preliminary binary modeling for both systems. We also identify for the first time the central star of HaTr 4 as an eclipsing binary. Neither system has been well studied in the past, but we utilizemore » the small amount of existing data to limit possible binary parameters, including system inclination. These parameters are then compared to nebular parameters to further our knowledge of the relationship between binary central stars of planetary nebulae and nebular shaping and ejection.« less

  13. Controlling Actinide Hydration in Mixed Solvent Systems: Towards Tunable Solvent Systems to Close the Fuel Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Sue B.

    2016-10-31

    The goal of this project has been to define the extent of hydration the f-elements and other cations in mixed solvent electrolyte systems. Methanol-water and other mixed solvent systems have been studied, where the solvent dielectric constant was varied systematically. Thermodynamic and spectroscopic studies provide details concerning the energetics of complexation and other reactions of these cations. This information has also been used to advance new understanding of the behavior of these cations in a variety of systems, ranging from environmental studies, chromatographic approaches, and ionization processes for mass spectrometry.

  14. Dynamical evolution of young binaries and multiple systems

    NASA Astrophysics Data System (ADS)

    Reipurth, B.

    Most stars, and perhaps all, are born in small multiple systems whose components interact, leading to chaotic dynamic behavior. Some components are ejected, either into distant orbits or into outright escapes, while the remaining components form temporary and eventually permanent binary systems. More than half of all such breakups of multiple systems occur during the protostellar phase, leading to the occasional ejection of protostars outside their nascent cloud cores. Such orphaned protostars are observed as wide companions to embedded protostars, and thus allow the direct study of protostellar objects. Dynamic interactions during early stellar evolution explain the shape and enormous width of the separation distribution function of binaries, from close spectroscopic binaries to the widest binaries.

  15. Photometric Analysis and Modeling of Five Mass-Transferring Binary Systems

    NASA Astrophysics Data System (ADS)

    Geist, Emily; Beaky, Matthew; Jamison, Kate

    2018-01-01

    In overcontact eclipsing binary systems, both stellar components have overfilled their Roche lobes, resulting in a dumbbell-shaped shared envelope. Mass transfer is common in overcontact binaries, which can be observed as a slow change on the rotation period of the system.We studied five overcontact eclipsing binary systems with evidence of period change, and thus likely mass transfer between the components, identified by Nelson (2014): V0579 Lyr, KN Vul, V0406 Lyr, V2240 Cyg, and MS Her. We used the 31-inch NURO telescope at Lowell Observatory in Flagstaff, Arizona to obtain images in B,V,R, and I filters for V0579 Lyr, and the 16-inch Meade LX200GPS telescope with attached SBIG ST-8XME CCD camera at Juniata College in Huntingdon, Pennsylvania to image KN Vul, V0406 Lyr, V2240 Cyg, and MS Her, also in B,V,R, and I.After data reduction, we created light curves for each of the systems and modeled the eclipsing binaries using the BinaryMaker3 and PHOEBE programs to determine their fundamental physical parameters for the first time. Complete light curves and preliminary models for each of these neglected eclipsing binary systems will be presented.

  16. What we learn from eclipsing binaries in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Guinan, Edward F.

    1990-01-01

    Recent results on stars and stellar physics from IUE (International Ultraviolet Explorer) observations of eclipsing binaries are discussed. Several case studies are presented, including V 444 Cyg, Aur stars, V 471 Tau and AR Lac. Topics include stellar winds and mass loss, stellar atmospheres, stellar dynamos, and surface activity. Studies of binary star dynamics and evolution are discussed. The progress made with IUE in understanding the complex dynamical and evolutionary processes taking place in W UMa-type binaries and Algol systems is highlighted. The initial results of intensive studies of the W UMa star VW Cep and three representative Algol-type binaries (in different stages of evolution) focused on gas flows and accretion, are included. The future prospects of eclipsing binary research are explored. Remaining problems are surveyed and the next challenges are presented. The roles that eclipsing binaries could play in studies of stellar evolution, cluster dynamics, galactic structure, mass luminosity relations for extra galactic systems, cosmology, and even possible detection of extra solar system planets using eclipsing binaries are discussed.

  17. Searches for all types of binary mergers in the first Advanced LIGO observing run

    NASA Astrophysics Data System (ADS)

    Read, Jocelyn

    2017-01-01

    The first observational run of the Advanced LIGO detectors covered September 12, 2015 to January 19, 2016. In that time, two definitive observations of merging binary black hole systems were made. In particular, the second observation, GW151226, relied on matched-filter searches targeting merging binaries. These searches were also capable of detecting binary mergers from binary neutron stars and from black-hole/neutron-star binaries. In this talk, I will give an overview of LIGO compact binary coalescence searches, in particular focusing on systems that contain neutron stars. I will discuss the sensitive volumes of the first observing run, the astrophysical implications of detections and non-detections, and prospects for future observations

  18. Binary Plutinos

    NASA Astrophysics Data System (ADS)

    Noll, Keith S.

    2015-08-01

    The Pluto-Charon binary was the first trans-neptunian binary to be identified in 1978. Pluto-Charon is a true binary with both components orbiting a barycenter located between them. The Pluto system is also the first, and to date only, known binary with a satellite system consisting of four small satellites in near-resonant orbits around the common center of mass. Seven other Plutinos, objects in 3:2 mean motion resonance with Neptune, have orbital companions including 2004 KB19 reported here for the first time. Compared to the Cold Classical population, the Plutinos differ in the frequency of binaries, the relative sizes of the components, and their inclination distribution. These differences point to distinct dynamical histories and binary formation processes encountered by Plutinos.

  19. Life and light: exotic photosynthesis in binary and multiple-star systems.

    PubMed

    O'Malley-James, J T; Raven, J A; Cockell, C S; Greaves, J S

    2012-02-01

    The potential for Earth-like planets within binary/multiple-star systems to host photosynthetic life was evaluated by modeling the levels of photosynthetically active radiation (PAR) such planets receive. Combinations of M and G stars in (i) close-binary systems; (ii) wide-binary systems, and (iii) three-star systems were investigated, and a range of stable radiation environments were found to be possible. These environmental conditions allow for the possibility of familiar, but also more exotic, forms of photosynthetic life, such as IR photosynthesizers and organisms that are specialized for specific spectral niches.

  20. Anisotropic Brownian motion in ordered phases of DNA fragments.

    PubMed

    Dobrindt, J; Rodrigo Teixeira da Silva, E; Alves, C; Oliveira, C L P; Nallet, F; Andreoli de Oliveira, E; Navailles, L

    2012-01-01

    Using Fluorescence Recovery After Photobleaching, we investigate the Brownian motion of DNA rod-like fragments in two distinct anisotropic phases with a local nematic symmetry. The height of the measurement volume ensures the averaging of the anisotropy of the in-plane diffusive motion parallel or perpendicular to the local nematic director in aligned domains. Still, as shown in using a model specifically designed to handle such a situation and predicting a non-Gaussian shape for the bleached spot as fluorescence recovery proceeds, the two distinct diffusion coefficients of the DNA particles can be retrieved from data analysis. In the first system investigated (a ternary DNA-lipid lamellar complex), the magnitude and anisotropy of the diffusion coefficient of the DNA fragments confined by the lipid bilayers are obtained for the first time. In the second, binary DNA-solvent system, the magnitude of the diffusion coefficient is found to decrease markedly as DNA concentration is increased from isotropic to cholesteric phase. In addition, the diffusion coefficient anisotropy measured within cholesteric domains in the phase coexistence region increases with concentration, and eventually reaches a high value in the cholesteric phase.

  1. High Resolution Imaging of Very Low Mass Spectral Binaries: Three Resolved Systems and Detection of Orbital Motion in an L/T Transition Binary

    NASA Astrophysics Data System (ADS)

    Bardalez Gagliuffi, Daniella C.; Gelino, Christopher R.; Burgasser, Adam J.

    2015-11-01

    We present high resolution Laser Guide Star Adaptive Optics imaging of 43 late-M, L and T dwarf systems with Keck/NIRC2. These include 17 spectral binary candidates, systems whose spectra suggest the presence of a T dwarf secondary. We resolve three systems: 2MASS J1341-3052, SDSS J1511+0607 and SDSS J2052-1609 the first two are resolved for the first time. All three have projected separations <8 AU and estimated periods of 14-80 years. We also report a preliminary orbit determination for SDSS J2052-1609 based on six epochs of resolved astrometry between 2005 and 2010. Among the 14 unresolved spectral binaries, 5 systems were confirmed binaries but remained unresolved, implying a minimum binary fraction of {47}-11+12% for this sample. Our inability to resolve most of the spectral binaries, including the confirmed binaries, supports the hypothesis that a large fraction of very low mass systems have relatively small separations and are missed with direct imaging. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  2. Equilibrium, stability, and orbital evolution of close binary systems

    NASA Technical Reports Server (NTRS)

    Lai, Dong; Rasio, Frederic A.; Shapiro, Stuart L.

    1994-01-01

    We present a new analytic study of the equilibrium and stability properties of close binary systems containing polytropic components. Our method is based on the use of ellipsoidal trial functions in an energy variational principle. We consider both synchronized and nonsynchronized systems, constructing the compressible generalizations of the classical Darwin and Darwin-Riemann configurations. Our method can be applied to a wide variety of binary models where the stellar masses, radii, spins, entropies, and polytropic indices are all allowed to vary over wide ranges and independently for each component. We find that both secular and dynamical instabilities can develop before a Roche limit or contact is reached along a sequence of models with decreasing binary separation. High incompressibility always makes a given binary system more susceptible to these instabilities, but the dependence on the mass ratio is more complicated. As simple applications, we construct models of double degenerate systems and of low-mass main-sequence star binaries. We also discuss the orbital evoltuion of close binary systems under the combined influence of fluid viscosity and secular angular momentum losses from processes like gravitational radiation. We show that the existence of global fluid instabilities can have a profound effect on the terminal evolution of coalescing binaries. The validity of our analytic solutions is examined by means of detailed comparisons with the results of recent numerical fluid calculations in three dimensions.

  3. LISA verification binaries with updated distances from Gaia Data Release 2

    NASA Astrophysics Data System (ADS)

    Kupfer, T.; Korol, V.; Shah, S.; Nelemans, G.; Marsh, T. R.; Ramsay, G.; Groot, P. J.; Steeghs, D. T. H.; Rossi, E. M.

    2018-06-01

    Ultracompact binaries with orbital periods less than a few hours will dominate the gravitational wave signal in the mHz regime. Until recently, 10 systems were expected have a predicted gravitational wave signal strong enough to be detectable by the Laser Interferometer Space Antenna (LISA), the so-called `verification binaries'. System parameters, including distances, are needed to provide an accurate prediction of the expected gravitational wave strength to be measured by LISA. Using parallaxes from Gaia Data Release 2 we calculate signal-to-noise ratios (SNR) for ≈50 verification binary candidates. We find that 11 binaries reach a SNR≥20, two further binaries reaching a SNR≥5 and three more systems are expected to have a SNR≈5 after four years integration with LISA. For these 16 systems we present predictions of the gravitational wave amplitude (A) and parameter uncertainties from Fisher information matrix on the amplitude (A) and inclination (ι).

  4. Combination pulsed electric field with ethanol solvent for Nannochloropsis sp. extraction

    NASA Astrophysics Data System (ADS)

    Nafis, Ghazy Ammar; Mumpuni, Perwitasari Yekti; Indarto, Budiman, Arief

    2015-12-01

    Nowadays, energy is one of human basic needs. As the human population increased, energy consumption also increased. This condition causes energy depletion. In case of the situation, alternative energy is needed to replace existing energy. Microalgae is chosen to become one of renewable energy resource, especially biodiesel, because it contains high amount of lipid instead of other feedstock which usually used. Fortunately, Indonesia has large area of water and high intensity of sunlight so microalgae cultivation becomes easier. Nannochloropsis sp., one of microalgae species, becomes the main focus because of its high lipid content. Many ways to break the cell wall of microalgae so the lipid content inside the microalgae will be released, for example conventional extraction, ultrasonic wave extraction, pressing, and electrical method. The most effective way for extraction is electrical method such as pulsed electric field method (PEF). The principal work of this method is by draining the electrical current into parallel plate. Parallel plate will generate the electrical field to break microalgae cell wall and the lipid will be released. The aim of this work is to evaluate two-stage procedure for extraction of useful components from microalgae Nannochloropsis sp. The first stage of this procedure includes pre-treatment of microalgae by ethanol solvent extraction and the second stage applies the PEF extraction using a binary mixture of water and ethanol solvent. Ethanol is chosen as solvent because it's safer to be used and easier to be handled than other solvent. Some variables that used to study the most effective operation conditions are frequency and duty cycle for microalgae. The optimum condition based on this research are at frequency 1 Hz and duty cycle 13%.

  5. Planet Formation in Binary Star Systems

    NASA Astrophysics Data System (ADS)

    Martin, Rebecca

    About half of observed exoplanets are estimated to be in binary systems. Understanding planet formation and evolution in binaries is therefore essential for explaining observed exoplanet properties. Recently, we discovered that a highly misaligned circumstellar disk in a binary system can undergo global Kozai-Lidov (KL) oscillations of the disk inclination and eccentricity. These oscillations likely have a significant impact on the formation and orbital evolution of planets in binary star systems. Planet formation by core accretion cannot operate during KL oscillations of the disk. First, we propose to consider the process of disk mass transfer between the binary members. Secondly, we will investigate the possibility of planet formation by disk fragmentation. Disk self gravity can weaken or suppress the oscillations during the early disk evolution when the disk mass is relatively high for a narrow range of parameters. Thirdly, we will investigate the evolution of a planet whose orbit is initially aligned with respect to the disk, but misaligned with respect to the orbit of the binary. We will study how these processes relate to observations of star-spin and planet orbit misalignment and to observations of planets that appear to be undergoing KL oscillations. Finally, we will analyze the evolution of misaligned multi-planet systems. This theoretical work will involve a combination of analytic and numerical techniques. The aim of this research is to shed some light on the formation of planets in binary star systems and to contribute to NASA's goal of understanding of the origins of exoplanetary systems.

  6. Polar alignment of a protoplanetary disc around an eccentric binary II: Effect of binary and disc parameters

    NASA Astrophysics Data System (ADS)

    Martin, Rebecca G.; Lubow, Stephen H.

    2018-06-01

    In a recent paper Martin & Lubow showed that a circumbinary disc around an eccentric binary can undergo damped nodal oscillations that lead to the polar (perpendicular) alignment of the disc relative to the binary orbit. The disc angular momentum vector aligns to the eccentricity vector of the binary. We explore the robustness of this mechanism for a low mass disc (0.001 of the binary mass) and its dependence on system parameters by means of hydrodynamic disc simulations. We describe how the evolution depends upon the disc viscosity, temperature, size, binary mass ratio, orbital eccentricity and inclination. We compare results with predictions of linear theory. We show that polar alignment of a low mass disc may occur over a wide range of binary-disc parameters. We discuss the application of our results to the formation of planetary systems around eccentric binary stars.

  7. RED GIANTS IN ECLIPSING BINARY AND MULTIPLE-STAR SYSTEMS: MODELING AND ASTEROSEISMIC ANALYSIS OF 70 CANDIDATES FROM KEPLER DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaulme, P.; McKeever, J.; Rawls, M. L.

    2013-04-10

    Red giant stars are proving to be an incredible source of information for testing models of stellar evolution, as asteroseismology has opened up a window into their interiors. Such insights are a direct result of the unprecedented data from space missions CoRoT and Kepler as well as recent theoretical advances. Eclipsing binaries are also fundamental astrophysical objects, and when coupled with asteroseismology, binaries provide two independent methods to obtain masses and radii and exciting opportunities to develop highly constrained stellar models. The possibility of discovering pulsating red giants in eclipsing binary systems is therefore an important goal that could potentiallymore » offer very robust characterization of these systems. Until recently, only one case has been discovered with Kepler. We cross-correlate the detected red giant and eclipsing-binary catalogs from Kepler data to find possible candidate systems. Light-curve modeling and mean properties measured from asteroseismology are combined to yield specific measurements of periods, masses, radii, temperatures, eclipse timing variations, core rotation rates, and red giant evolutionary state. After using three different techniques to eliminate false positives, out of the 70 systems common to the red giant and eclipsing-binary catalogs we find 13 strong candidates (12 previously unknown) to be eclipsing binaries, one to be a non-eclipsing binary with tidally induced oscillations, and 10 more to be hierarchical triple systems, all of which include a pulsating red giant. The systems span a range of orbital eccentricities, periods, and spectral types F, G, K, and M for the companion of the red giant. One case even suggests an eclipsing binary composed of two red giant stars and another of a red giant with a {delta}-Scuti star. The discovery of multiple pulsating red giants in eclipsing binaries provides an exciting test bed for precise astrophysical modeling, and follow-up spectroscopic observations of many of the candidate systems are encouraged. The resulting highly constrained stellar parameters will allow, for example, the exploration of how binary tidal interactions affect pulsations when compared to the single-star case.« less

  8. From wide to close binaries?

    NASA Astrophysics Data System (ADS)

    Eggleton, Peter P.

    The mechanisms by which the periods of wide binaries (mass 8 solar mass or less and period 10-3000 d) are lengthened or shortened are discussed, synthesizing the results of recent theoretical investigations. A system of nomenclature involving seven evolutionary states, three geometrical states, and 10 types of orbital-period evolution is developed and applied; classifications of 71 binaries are presented in a table along with the basic observational parameters. Evolutionary processes in wide binaries (single-star-type winds, magnetic braking with tidal friction, and companion-reinforced attrition), late case B systems, low-mass X-ray binaries, and triple systems are examined in detail, and possible evolutionary paths are shown in diagrams.

  9. Rational synthesis of low-polydispersity block copolymer vesicles in concentrated solution via polymerization-induced self-assembly.

    PubMed

    Gonzato, Carlo; Semsarilar, Mona; Jones, Elizabeth R; Li, Feng; Krooshof, Gerard J P; Wyman, Paul; Mykhaylyk, Oleksandr O; Tuinier, Remco; Armes, Steven P

    2014-08-06

    Block copolymer self-assembly is normally conducted via post-polymerization processing at high dilution. In the case of block copolymer vesicles (or "polymersomes"), this approach normally leads to relatively broad size distributions, which is problematic for many potential applications. Herein we report the rational synthesis of low-polydispersity diblock copolymer vesicles in concentrated solution via polymerization-induced self-assembly using reversible addition-fragmentation chain transfer (RAFT) polymerization of benzyl methacrylate. Our strategy utilizes a binary mixture of a relatively long and a relatively short poly(methacrylic acid) stabilizer block, which become preferentially expressed at the outer and inner poly(benzyl methacrylate) membrane surface, respectively. Dynamic light scattering was utilized to construct phase diagrams to identify suitable conditions for the synthesis of relatively small, low-polydispersity vesicles. Small-angle X-ray scattering (SAXS) was used to verify that this binary mixture approach produced vesicles with significantly narrower size distributions compared to conventional vesicles prepared using a single (short) stabilizer block. Calculations performed using self-consistent mean field theory (SCMFT) account for the preferred self-assembled structures of the block copolymer binary mixtures and are in reasonable agreement with experiment. Finally, both SAXS and SCMFT indicate a significant degree of solvent plasticization for the membrane-forming poly(benzyl methacrylate) chains.

  10. Formation of black hole x-ray binaries in globular clusters

    NASA Astrophysics Data System (ADS)

    Kremer, Kyle; Chatterjee, Sourav; Rodriguez, Carl; Rasio, Frederic

    2018-01-01

    We explore the formation of mass-transferring binary systems containing black holes within globular clusters. We show that it is possible to form mass-transferring binaries with main sequence, giant, and white dwarf companions with a variety of orbital parameters in globular clusters spanning a large range in present-day properties. We show that the presence of mass-transferring black hole systems has little correlation with the total number of black holes within the cluster at any time. In addition to mass-transferring binaries retained within their host clusters at late times, we also examine the black hole and neutron star binaries that are ejected from their host clusters. These ejected systems may contribute to the low-mass x-ray binary population in the galactic field.

  11. Aminosilicone solvent recovery methods and systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spiry, Irina Pavlovna; Perry, Robert James; Wood, Benjamin Rue

    The present invention is directed to aminosilicone solvent recovery methods and systems. The methods and systems disclosed herein may be used to recover aminosilicone solvent from a carbon dioxide containing vapor stream, for example, a vapor stream that leaves an aminosilicone solvent desorber apparatus. The methods and systems of the invention utilize a first condensation process at a temperature from about 80.degree. C. to about 150.degree. C. and a second condensation process at a temperature from about 5.degree. C. to about 75.degree. C. The first condensation process yields recovered aminosilicone solvent. The second condensation process yields water.

  12. Efficacy of two rotary retreatment systems in removing Gutta-percha and sealer during endodontic retreatment with or without solvent: A comparative in vitro study.

    PubMed

    Bhagavaldas, Moushmi Chalakkarayil; Diwan, Abhinav; Kusumvalli, S; Pasha, Shiraz; Devale, Madhuri; Chava, Deepak Chowdary

    2017-01-01

    The aim of this in vitro study was to compare the efficacy of two retreatment rotary systems in the removal of Gutta-percha (GP) and sealer from the root canal walls with or without solvent. Forty-eight extracted human mandibular first premolars were prepared and obturated with GP and AH Plus sealer. Samples were then randomly divided into four groups. Group I was retreated with MtwoR rotary system without solvent, Group II was retreated with MtwoR rotary system with Endosolv R as the solvent, Group III with D-RaCe rotary system without solvent, and Group IV with D-RaCe rotary system and Endosolv R solvent. The cleanliness of canal walls was determined by stereomicroscope (×20) and AutoCAD software. Kruskal-Wallis test and Mann-Whitney U-test were used to compare the data. Results showed that none of the retreatment systems used in this study was able to completely remove the root canal filling material. D-RaCe with or without solvent showed significantly ( P > 0.05) less filling material at all levels compared to MtwoR with/without solvent. Within the limitation of the current study, D-RaCe rotary retreatment system is more effective in removing filling material from root canal walls when compared to MtwoR rotary retreatment system.

  13. Structural diversity in binary superlattices self-assembled from polymer-grafted nanocrystals

    DOE PAGES

    Ye, Xingchen; Zhu, Chenhui; Ercius, Peter; ...

    2015-12-02

    Multicomponent nanocrystal superlattices represent an interesting class of material that derives emergent properties from mesoscale structure, yet their programmability can be limited by the alkyl-chain-based ligands decorating the surfaces of the constituent nanocrystals. Polymeric ligands offer distinct advantages, as they allow for more precise tuning of the effective size and ‘interaction softness’ through changes to the polymer’s molecular weight, chemical nature, architecture, persistence length and surrounding solvent. Here we show the formation of 10 different binary nanocrystal superlattices (BNSLs) with both two- and three-dimensional order through independent adjustment of the core size of spherical nanocrystals and the molecular weight ofmore » densely grafted polystyrene ligands. These polymer-brush-based ligands introduce new energetic contributions to the interparticle potential that stabilizes various BNSL phases across a range of length scales and interparticle spacings. In conclusion, our study opens the door for nanocrystals to become modular elements in the design of functional particle brush solids with controlled nanoscale interfaces and mesostructures.« less

  14. Can an ammonium-based room temperature ionic liquid counteract the urea-induced denaturation of a small peptide?

    PubMed

    Ghosh, Soumadwip; Dey, Souvik; Patel, Mahendra; Chakrabarti, Rajarshi

    2017-03-15

    The folding/unfolding equilibrium of proteins in aqueous medium can be altered by adding small organic molecules generally termed as co-solvents. Denaturants such as urea are instrumental in the unfolding of proteins while protecting osmolytes favour the folded ensemble. Recently, room temperature ionic liquids (ILs) have been shown to counteract the deleterious effect of urea on proteins. In this paper, using atomistic molecular dynamics we show that a ternary mixture containing a particular ammonium-based IL, triethylammonium acetate (TEAA), and urea (in 1 : 5 molar ratio) helps a small 15-residue S-peptide analogue regain most of its native structure, whereas a binary aqueous mixture containing a large amount of urea alone completely distorts it. Our simulations show that the denaturant urea directly interacts with the peptide backbone in the binary mixture while for the ternary mixture both urea as well as the IL are preferentially excluded from the peptide surface.

  15. Zeolitic Imidazolate Framework-8 Membrane for H2/CO2 Separation: Experimental and Modeling

    NASA Astrophysics Data System (ADS)

    Lai, L. S.; Yeong, Y. F.; Lau, K. K.; Azmi, M. S.; Chew, T. L.

    2018-03-01

    In this work, ZIF-8 membrane synthesized through solvent evaporation secondary seeded growth was tested for single gas permeation and binary gases separation of H2 and CO2. Subsequently, a modified mathematical modeling combining the effects of membrane and support layers was applied to represent the gas transport properties of ZIF-8 membrane. Results showed that, the membrane has exhibited H2/CO2 ideal selectivity of 5.83 and separation factor of 3.28 at 100 kPa and 303 K. Besides, the experimental results were fitted well with the simulated results by demonstrating means absolute error (MAE) values ranged from 1.13 % to 3.88 % for single gas permeation and 10.81 % to 21.22 % for binary gases separation. Based on the simulated data, most of the H2 and CO2 gas molecules have transported through the molecular pores of membrane layer, which was up to 70 %. Thus, the gas transport of the gases is mainly dominated by adsorption and diffusion across the membrane.

  16. Activity and conformation of lysozyme in molecular solvents, protic ionic liquids (PILs) and salt-water systems.

    PubMed

    Wijaya, Emmy C; Separovic, Frances; Drummond, Calum J; Greaves, Tamar L

    2016-09-21

    Improving protein stabilisation is important for the further development of many applications in the pharmaceutical, specialty chemical, consumer product and agricultural sectors. However, protein stabilization is highly dependent on the solvent environment and, hence, it is very complex to tailor protein-solvent combinations for stable protein maintenance. Understanding solvent features that govern protein stabilization will enable selection or design of suitable media with favourable solution environments to retain protein native conformation. In this work the structural conformation and activity of lysozyme in 29 solvent systems were investigated to determine the role of various solvent features on the stability of the enzyme. The solvent systems consisted of 19 low molecular weight polar solvents and 4 protic ionic liquids (PILs), both at different water content levels, and 6 aqueous salt solutions. Small angle X-ray scattering, Fourier transform infrared spectroscopy and UV-vis spectroscopy were used to investigate the tertiary and secondary structure of lysozyme along with the corresponding activity in various solvation systems. At low non-aqueous solvent concentrations (high water content), the presence of solvents and salts generally maintained lysozyme in its native structure and enhanced its activity. Due to the presence of a net surface charge on lysozyme, electrostatic interactions in PIL-water systems and salt solutions enhanced lysozyme activity more than the specific hydrogen-bond interactions present in non-ionic molecular solvents. At higher solvent concentrations (lower water content), solvents with a propensity to exhibit the solvophobic effect, analogous to the hydrophobic effect in water, retained lysozyme native conformation and activity. This solvophobic effect was observed particularly for solvents which contained hydroxyl moieties. Preferential solvophobic effects along with bulky chemical structures were postulated to result in less competition with water at the specific hydration layer around the protein, thus reducing protein-solvent interactions and retaining lysozyme's native conformation. The structure-property links established in this study are considered to be applicable to other proteins.

  17. Dielectric properties of grain-grainboundary binary system

    NASA Astrophysics Data System (ADS)

    Cheng, Peng-Fei; Li, Sheng-Tao; Wang, Hui

    2014-09-01

    Dielectric properties of grain-grainboundary binary system are analyzed theoretically and compared with unary system and classical Maxwell-Wagner (MW) polarization in binary system. It is found that MW polarization appears at higher frequency compared with intrinsic polarization for grain-grainboundary binary system, which is abnormal compared with classical dielectric theory. This dielectric anomaly is premised on the existence of electronic relaxation at grainboundary. The origin of giant dielectric constant of CaCu3Ti4O12 (CCTO) ceramics is also investigated on the basis of the theoretical results. It is proposed that low frequency relaxation originates from electronic relaxation of oxygen vacancy at depletion layer, while high frequency relaxation comes from MW polarization. The results of this paper offer a quantitative identification of MW polarization from intrinsic polarization at grainboundary and a judgment of the mechanism and location of a certain polarization in grain-grainboundary binary system.

  18. WIYN OPEN CLUSTER STUDY. XXXVI. SPECTROSCOPIC BINARY ORBITS IN NGC 188

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geller, Aaron M.; Mathieu, Robert D.; Harris, Hugh C.

    2009-04-15

    We present 98 spectroscopic binary orbits resulting from our ongoing radial velocity survey of the old (7 Gyr) open cluster NGC 188. All but 13 are high-probability cluster members based on both radial velocity and proper motion membership analyses. Fifteen of these member binaries are double lined. Our stellar sample spans a magnitude range of 10.8 {<=}V{<=} 16.5 (1.14-0.92 M {sub sun}) and extends spatially to 17 pc ({approx}13 core radii). All of our binary orbits have periods ranging from a few days to on the order of 10{sup 3} days, and thus are hard binaries that dynamically power themore » cluster. For each binary, we present the orbital solutions and place constraints on the component masses. Additionally, we discuss a few binaries of note from our sample, identifying a likely blue straggler-blue straggler binary system (7782), a double-lined binary with a secondary star which is underluminous for its mass (5080), two potential eclipsing binaries (4705 and 5762), and two binaries which are likely members of a quadruple system (5015a and 5015b)« less

  19. Modeling the binary circumstellar medium of Type IIb/L/n supernova progenitors

    NASA Astrophysics Data System (ADS)

    Kolb, Christopher; Blondin, John; Borkowski, Kazik; Reynolds, Stephen

    2018-01-01

    Circumstellar interaction in close binary systems can produce a highly asymmetric environment, particularly for systems with a mass outflow velocity comparable to the binary orbital speed. This asymmetric circumstellar medium (CSM) becomes visible after a supernova explosion, when SN radiation illuminates the gas and when SN ejecta collide with the CSM. We aim to better understand the development of this asymmetric CSM, particularly for binary systems containing a red supergiant progenitor, and to study its impact on supernova morphology. To achieve this, we model the asymmetric wind and subsequent supernova explosion in full 3D hydrodynamics using the shock-capturing hydro code VH-1 on a spherical yin-yang grid. Wind interaction is computed in a frame co-rotating with the binary system, and gas is accelerated using a radiation pressure-driven wind model where optical depth of the radiative force is dependent on azimuthally-averaged gas density. We present characterization of our asymmetric wind density distribution model by fitting a polar-to-equatorial density contrast function to free parameters such as binary separation distance, primary mass loss rate, and binary mass ratio.

  20. Structure, thermodynamics, and solubility in tetromino fluids.

    PubMed

    Barnes, Brian C; Siderius, Daniel W; Gelb, Lev D

    2009-06-16

    To better understand the self-assembly of small molecules and nanoparticles adsorbed at interfaces, we have performed extensive Monte Carlo simulations of a simple lattice model based on the seven hard "tetrominoes", connected shapes that occupy four lattice sites. The equations of state of the pure fluids and all of the binary mixtures are determined over a wide range of density, and a large selection of multicomponent mixtures are also studied at selected conditions. Calculations are performed in the grand canonical ensemble and are analogous to real systems in which molecules or nanoparticles reversibly adsorb to a surface or interface from a bulk reservoir. The model studied is athermal; objects in these simulations avoid overlap but otherwise do not interact. As a result, all of the behavior observed is entropically driven. The one-component fluids all exhibit marked self-ordering tendencies at higher densities, with quite complex structures formed in some cases. Significant clustering of objects with the same rotational state (orientation) is also observed in some of the pure fluids. In all of the binary mixtures, the two species are fully miscible at large scales, but exhibit strong species-specific clustering (segregation) at small scales. This behavior persists in multicomponent mixtures; even in seven-component mixtures of all the shapes there is significant association between objects of the same shape. To better understand these phenomena, we calculate the second virial coefficients of the tetrominoes and related quantities, extract thermodynamic volume of mixing data from the simulations of binary mixtures, and determine Henry's law solubilities for each shape in a variety of solvents. The overall picture obtained is one in which complementarity of both the shapes of individual objects and the characteristic structures of different fluids are important in determining the overall behavior of a fluid of a given composition, with sometimes counterintuitive results. Finally, we note that no sharp phase transitions are observed but that this appears to be due to the small size of the objects considered. It is likely that complex phase behavior may be found in systems of larger polyominoes.

  1. KOI-3278: a self-lensing binary star system.

    PubMed

    Kruse, Ethan; Agol, Eric

    2014-04-18

    Over 40% of Sun-like stars are bound in binary or multistar systems. Stellar remnants in edge-on binary systems can gravitationally magnify their companions, as predicted 40 years ago. By using data from the Kepler spacecraft, we report the detection of such a "self-lensing" system, in which a 5-hour pulse of 0.1% amplitude occurs every orbital period. The white dwarf stellar remnant and its Sun-like companion orbit one another every 88.18 days, a long period for a white dwarf-eclipsing binary. By modeling the pulse as gravitational magnification (microlensing) along with Kepler's laws and stellar models, we constrain the mass of the white dwarf to be ~63% of the mass of our Sun. Further study of this system, and any others discovered like it, will help to constrain the physics of white dwarfs and binary star evolution.

  2. Gravitational radiation, inspiraling binaries, and cosmology

    NASA Technical Reports Server (NTRS)

    Chernoff, David F.; Finn, Lee S.

    1993-01-01

    We show how to measure cosmological parameters using observations of inspiraling binary neutron star or black hole systems in one or more gravitational wave detectors. To illustrate, we focus on the case of fixed mass binary systems observed in a single Laser Interferometer Gravitational-wave Observatory (LIGO)-like detector. Using realistic detector noise estimates, we characterize the rate of detections as a function of a threshold SNR Rho(0), H0, and the binary 'chirp' mass. For Rho(0) = 8, H0 = 100 km/s/Mpc, and 1.4 solar mass neutron star binaries, the sample has a median redshift of 0.22. Under the same assumptions but independent of H0, a conservative rate density of coalescing binaries implies LIGO will observe about 50/yr binary inspiral events. The precision with which H0 and the deceleration parameter q0 may be determined depends on the number of observed inspirals. For fixed mass binary systems, about 100 observations with Rho(0) = 10 in the LIGO will give H0 to 10 percent in an Einstein-DeSitter cosmology, and 3000 will give q0 to 20 percent. For the conservative rate density of coalescing binaries, 100 detections with Rho(0) = 10 will require about 4 yrs.

  3. A New Orbit for the Eclipsing Binary V577 Oph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffery, Elizabeth J.; Barnes, Thomas G. III; Montemayor, Thomas J.

    Pulsating stars in eclipsing binary systems are unique objects for providing constraints on stellar models. To fully leverage the information available from the binary system, full orbital radial velocity curves must be obtained. We report 23 radial velocities for components of the eclipsing binary V577 Oph, whose primary star is a δ Sct variable. The velocities cover a nearly complete orbit and a time base of 20 years. We computed orbital elements for the binary and compared them to the ephemeris computed by Creevey et al. The comparison shows marginally different results. In particular, a change in the systemic velocitymore » by −2 km s{sup −1} is suggested by our results. We compare this systemic velocity difference to that expected due to reflex motion of the binary in response to the third body in the system. The systemic velocity difference is consistent with reflex motion, given our mass determination for the eclipsing binary and the orbital parameters determined by Volkov and Volkova for the three-body orbit. We see no evidence for the third body in our spectra, but we do see strong interstellar Na D lines that are consistent in strength with the direction and expected distance of V577 Oph.« less

  4. FTIR Imaging Coupled with Multivariate Analysis for Study of Initial Diffusion of Different Solvents in Cellulose Acetate Butyrate Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindblad, M.S.; Keyes, B.; Gedvilas, L.

    Fourier transform infrared (FTIR) spectroscopic imaging was used to study the initial diffusion of different solvents in cellulose acetate butyrate (CAB) films containing different amounts of acetyl and butyryl substituents. Different solvents and solvent/non-solvent mixtures were also studied. The FTIR imaging system allowed acquisition of sequential images of the CAB films as solvent penetration proceeded without disturbing the system. The interface between the non-swollen polymer and the initial swelling front could be identified using multivariate data analysis tools. For a series of ketone solvents the initial diffusion coefficients and diffusion rates could be quantified and were found to be relatedmore » to the polar and hydrogen interaction parameters in the Hansen solubility parameters of the solvents. For the solvent/non-solvent system the initial diffusion rate decreased less than linearly with the weight-percent of non-solvent present in the solution, which probably was due to the swelling characteristic of the non-solvent. For a given solvent, increasing the butyryl content of the CAB increased the initial diffusion rate. Increasing the butyryl content from 17 wt.% butyryl to 37 wt.% butyryl produced a considerably larger increase in initial diffusion rate compared to an increase in butyryl content from 37 wt.% to 50 wt.% butyryl.« less

  5. Computational solvent system screening for the separation of tocopherols with centrifugal partition chromatography using deep eutectic solvent-based biphasic systems.

    PubMed

    Bezold, Franziska; Weinberger, Maria E; Minceva, Mirjana

    2017-03-31

    Tocopherols are a class of molecules with vitamin E activity. Among those, α-tocopherol is the most important vitamin E source in the human diet. The purification of tocopherols involving biphasic liquid systems can be challenging since these vitamins are poorly soluble in water. Deep eutectic solvents (DES) can be used to form water-free biphasic systems and have already proven applicable for centrifugal partition chromatography separations. In this work, a computational solvent system screening was performed using the predictive thermodynamic model COSMO-RS. Liquid-liquid equilibria of solvent systems composed of alkanes, alcohols and DES, as well as partition coefficients of α-tocopherol, β-tocopherol, γ-tocopherol, and σ-tocopherol in these biphasic solvent systems were calculated. From the results the best suited biphasic solvent system, namely heptane/ethanol/choline chloride-1,4-butanediol, was chosen and a batch injection of a tocopherol mixture, mainly consisting of α- and γ-tocopherol, was performed using a centrifugal partition chromatography set up (SCPE 250-BIO). A separation factor of 1.74 was achieved for α- and γ-tocopherol. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Doubled-lined eclipsing binary system KIC~2306740 with pulsating component discovered from Kepler space photometry

    NASA Astrophysics Data System (ADS)

    Yakut, Kadri

    2015-08-01

    We present a detailed study of KIC 2306740, an eccentric double-lined eclipsing binary system with a pulsating component.Archive Kepler satellite data were combined with newly obtained spectroscopic data with 4.2\\,m William Herschel Telescope(WHT). This allowed us to determine rather precise orbital and physical parameters of this long period, slightly eccentric, pulsating binary system. Duplicity effects are extracted from the light curve in order to estimate pulsation frequencies from the residuals.We modelled the detached binary system assuming non-conservative evolution models with the Cambridge STARS(TWIN) code.

  7. Formation of wide binaries by turbulent fragmentation

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-Eun; Lee, Seokho; Dunham, Michael M.; Tatematsu, Ken'ichi; Choi, Minho; Bergin, Edwin A.; Evans, Neal J.

    2017-08-01

    Understanding the formation of wide-binary systems of very low-mass stars (M ≤ 0.1 solar masses, M⊙) is challenging 1,2,3 . The most obvious route is through widely separated low-mass collapsing fragments produced by turbulent fragmentation of a molecular core4,5. However, close binaries or multiples from disk fragmentation can also evolve to wide binaries over a few initial crossing times of the stellar cluster through tidal evolution6. Finding an isolated low-mass wide-binary system in the earliest stage of formation, before tidal evolution could occur, would prove that turbulent fragmentation is a viable mechanism for (very) low-mass wide binaries. Here we report high-resolution ALMA observations of a known wide-separation protostellar binary, showing that each component has a circumstellar disk. The system is too young7 to have evolved from a close binary, and the disk axes are misaligned, providing strong support for the turbulent fragmentation model. Masses of both stars are derived from the Keplerian rotation of the disks; both are very low-mass stars.

  8. Anisotropic distribution of orbit poles of binary asteroids

    NASA Astrophysics Data System (ADS)

    Pravec, P.; Scheirich, P.; Vokrouhlický, D.; Harris, A. W.; Kusnirak, P.; Hornoch, K.; Pray, D. P.; Higgins, D.; Galád, A.; Világi, J.; Gajdos, S.; Kornos, L.; Oey, J.; Husárik, M.; Cooney, W. R.; Gross, J.; Terrell, D.; Durkee, R.; Pollock, J.; Reichart, D.; Ivarsen, K.; Haislip, J.; Lacluyze, A.; Krugly, Y. N.; Gaftonyuk, N.; Dyvig, R.; Reddy, V.; Stephens, R. D.; Chiorny, V.; Vaduvescu, O.; Longa, P.; Tudorica, A.; Warner, B. D.; Masi, G.; Brinsfield, J.; Gonçalves, R.; Brown, P.; Krzeminski, Z.; Gerashchenko, O.; Marchis, F.

    2011-10-01

    Our photometric observations of 18 mainbelt binary systems in more than one apparition revealed a strikingly high number of 15 having positively re-observed mutual events in the return apparitions. Our simulations of the survey showed that the data strongly suggest that poles of mutual orbits between components of binary asteroids are not distributed randomly: The null hypothesis of the isotropic distribution of orbit poles is rejected at a confidence level greater than 99.99%. Binary orbit poles concentrate at high ecliptic latitudes, within 30° of the poles of the ecliptic. We propose that the binary orbit poles oriented preferentially up/down-right are due to formation of small binary systems by rotational fission of critically spinning parent bodies with poles near the YORP asymptotic states with obliquities near 0 and 180°. An alternative process of elimination of binaries with poles closer to the ecliptic by the Kozai dynamics of gravitational perturbations from the sun does not explain the observed orbit pole concentration as in the close asteroid binary systems the J2 perturbation due to the primary dominates the solar-tide effect.

  9. A comparative study using WHO and binary oral epithelial dysplasia grading systems in actinic cheilitis.

    PubMed

    Câmara, P R; Dutra, S N; Takahama Júnior, A; Fontes, Kbfc; Azevedo, R S

    2016-09-01

    To evaluate comparatively the influence of histopathological features on epithelial dysplasia (ED) and the effectiveness in usage of WHO and binary grading systems in actinic cheilitis (AC). Cytological and architectural alterations established by WHO for ED were evaluated in 107 cases of AC. Epithelial dysplasia was graded using WHO and binary systems. The comparisons were performed using kappa, chi-square, and phi coefficient tests (P < 0.05). Most cases were classified as mild ED (44.5%) in the WHO system and as low risk for malignant transformation (64.5%) in the binary system. There was a positive correlation between WHO and binary systems (k = 0.33; P < 0.0002). Loss of basal cell polarity (P < 0.001) was associated with severity of ED grade in the WHO system. Anisonucleosis (P < 0.0001), nuclear pleomorphism (P < 0.0001), anisocytosis (P = 0.03), cell pleomorphism (P = 0.002) increased nuclear/cytoplasm ratio (P < 0.0001), increased nuclear size (P < 0.0001), increased number of mitotic figures (P = 0.0006), and dyskeratosis (P = 0.008) were associated with severity of ED grade in the binary system. It seems that usage of binary ED grading system in AC may be more precise because there is correlation between many of cytological and some of architectural microscopic alterations with increased grade of ED. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Terrestrial Planet Formation Around Close Binary Stars

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Quintana, Elisa V.

    2003-01-01

    Most stars reside in multiple star systems; however, virtually all models of planetary growth have assumed an isolated single star. Numerical simulations of the collapse of molecular cloud cores to form binary stars suggest that disks will form within such systems. Observations indirectly suggest disk material around one or both components within young binary star systems. If planets form at the right places within such circumstellar disks, they can remain in stable orbits within the binary star systems for eons. We are simulating the late stages of growth of terrestrial planets around close binary stars, using a new, ultrafast, symplectic integrator that we have developed for this purpose. The sum of the masses of the two stars is one solar mass, and the initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet growth within our Solar System and in the Alpha Centauri wide binary star system. Giant planets &are included in the simulations, as they are in most simulations of the late stages of terrestrial planet accumulation in our Solar System. When the stars travel on a circular orbit with semimajor axis of up to 0.1 AU about their mutual center of mass, the planetary embryos grow into a system of terrestrial planets that is statistically identical to those formed about single stars, but a larger semimajor axis and/or a significantly eccentric binary orbit can lead to significantly more dynamically hot terrestrial planet systems.

  11. SHAPING THE BROWN DWARF DESERT: PREDICTING THE PRIMORDIAL BROWN DWARF BINARY DISTRIBUTIONS FROM TURBULENT FRAGMENTATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jumper, Peter H.; Fisher, Robert T., E-mail: robert.fisher@umassd.edu

    2013-05-20

    The formation of brown dwarfs (BDs) poses a key challenge to star formation theory. The observed dearth of nearby ({<=}5 AU) BD companions to solar mass stars, known as the BD desert, as well as the tendency for low-mass binary systems to be more tightly bound than stellar binaries, has been cited as evidence for distinct formation mechanisms for BDs and stars. In this paper, we explore the implications of the minimal hypothesis that BDs in binary systems originate via the same fundamental fragmentation mechanism as stars, within isolated, turbulent giant molecular cloud cores. We demonstrate analytically that the scalingmore » of specific angular momentum with turbulent core mass naturally gives rise to the BD desert, as well as wide BD binary systems. Further, we show that the turbulent core fragmentation model also naturally predicts that very low mass binary and BD/BD systems are more tightly bound than stellar systems. In addition, in order to capture the stochastic variation intrinsic to turbulence, we generate 10{sup 4} model turbulent cores with synthetic turbulent velocity fields to show that the turbulent fragmentation model accommodates a small fraction of binary BDs with wide separations, similar to observations. Indeed, the picture which emerges from the turbulent fragmentation model is that a single fragmentation mechanism may largely shape both stellar and BD binary distributions during formation.« less

  12. Effect of Tunable Surface Potential on the Structure of Spin-Cast Polymeric Blend Films

    NASA Astrophysics Data System (ADS)

    Hawker, C.; Huang, E.; Russell, T. P.

    1998-03-01

    The demixing of binary polymeric mixtures has been studied with various surface potentials. This was performed by spin casting polystyrene/poly(methyl methacrylate) mixtures on to silicon substrates that had been modified with an end-grafted random copolymer brush layer. The composition of the random copolymer brush, containing the same monomeric components as the homopolymers can be varied in a precise manner over the entire concentration range. Atomic force and optical microscopy were used to study the morphology formed during spin casting and after annealing. Further insight into the structure was gained by rinsing these films with preferential solvents to remove one of the constituents and by performing the microscopy measurements. Finally, x-ray photoelectron spectroscopy, XPS, was used to elucidate the composition of the film near the air/polymer interface. Our data show that the resulting thin film structure depends strongly on the composition of the end grafted random copolymer film. Furthermore, the effect of thickness, solvent used in casting, and annealing conditions will be addressed.

  13. Novel and economic acid-base indicator based on (p-toluidine) oligomer: Synthesis; characterization and solvatochromism applications

    NASA Astrophysics Data System (ADS)

    Zoromba, M. Sh.

    2017-12-01

    A new (p-toluidine) oligomer (PTO) was facile synthesized and economically routed via chemical oxidative polymerization by potassium dichromate as an initiator in an acidic aqueous medium at room temperature. The characterization of (p-toluidine) oligomer (PTO) has been described by various techniques including Fourier transform infra-red (FTIR), UV-Visible measurements, Mass spectra, H NMR, and thermal gravimetric analysis (TGA). Solvatochromism of PTO was studied in different polaritiy solvents such as acetic acid, acetone, dimethyl formamide, ethanol, isopropanol, chloroform, p-xylene, dichloromethane and carbon teterachloride. The absorption bands were bathochromically shifted with increased polarity of the solvent (positive solvatochromism). PTO shows three isosbestic points at 333, 388 and 472 nm in a binary mixture of acetone and chloroform. The deprotonation constants of PTO were found to be 3.1 and 5.8, based on spectrophotometric calculations. PTO was successfully used as an acid-base indicator; the acid solution color sharply turned from pink (acidic medium) to yellow (basic medium) at the end point.

  14. Kinetic evaluation of the solvolysis of isobutyl chloro- and chlorothioformate esters

    PubMed Central

    McAneny, Matthew J; Choi, Song Hee

    2011-01-01

    Summary The specific rates of solvolysis of isobutyl chloroformate (1) are reported at 40.0 °C and those for isobutyl chlorothioformate (2) are reported at 25.0 °C, in a variety of pure and binary aqueous organic mixtures with wide ranging nucleophilicity and ionizing power. For 1, we also report the first-order rate constants determined at different temperatures in pure ethanol (EtOH), methanol (MeOH), 80% EtOH, and in both 97% and 70% 2,2,2-trifluoroethanol (TFE). The enthalpy (ΔH≠) and entropy (ΔS≠) of activation values obtained from Arrhenius plots for 1 in these five solvents are reported. The specific rates of solvolysis were analyzed using the extended Grunwald–Winstein equation. Results obtained from correlation analysis using this linear free energy relationship (LFER) reinforce our previous suggestion that side-by-side addition–elimination and ionization mechanisms operate, and the relative importance is dependent on the type of chloro- or chlorothioformate substrate and the solvent. PMID:21647255

  15. ``Smart'' Surfaces of Polymer Brushes

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Meng, Dong

    2009-03-01

    ``Smart'' surfaces, also known as stimuli-responsive surfaces, can change their properties (e.g., wettability, adhesion, friction, elasticity, and biocompatibility) in response to external stimuli (e.g., temperature, pressure, light, solvent selectivity, ionic strength, type of salt, pH, applied electric field, etc.). In this work, we use numerical self-consistent field calculations to study in detail the structure and stimuli- responses of various polymer brushes, including (1) the thermo- response of PNIPAM brushes in water, (2) solvent-response of uncharged diblock copolymer brushes, and (3) the stimuli- response of charged two-component polymer brushes (including both the binary A/B brushes and diblock copolymer A-B brushes) to ionic strength, pH, and applied electric field. Among the many design parameters (e.g., chain lengths, grafting densities, A-B incompatibility, degree of ionization of charged polymers, etc.) we identify those that strongly affect the surface switchability. Such knowledge is useful to the experimental design of these smart polymer brushes for their applications.

  16. Consideration of some dilute-solution phenomena based on an expression for the Gibbs free energy

    NASA Astrophysics Data System (ADS)

    Jonah, D. A.

    1986-07-01

    Rigorous expressions based on the Lennard-Jones (6 12) potential, are presented for the Gibbs and Helmholtz free energy of a dilute mixture. These expressions give the free energy of the mixture in terms of the thermodynamic properties of the pure solvent, thereby providing a convenient means of correlating dilute mixture behavior with that of the pure solvent. Expressions for the following dilute binary solution properties are derived: Henry's constant, limiting activity coefficients with their derivatives, solid solubilities in supercritical gases, and mixed second virial coefficients. The Henry's constant expression suggests a linear temperature dependence; application to solubility data for various gases in methane and water shows a good agreement between theory and experiment. In the thermodynamic modeling of supercritical fluid extraction, we have demonstrated how to predict new solubility-pressure isotherms from a given isotherm, with encouraging results. The mixed second virial coefficient expression has also been applied to experimental data; the agreement with theory is good.

  17. Central composite design with the help of multivariate curve resolution in loadability optimization of RP-HPLC to scale-up a binary mixture.

    PubMed

    Taheri, Mohammadreza; Moazeni-Pourasil, Roudabeh Sadat; Sheikh-Olia-Lavasani, Majid; Karami, Ahmad; Ghassempour, Alireza

    2016-03-01

    Chromatographic method development for preparative targets is a time-consuming and subjective process. This can be particularly problematic because of the use of valuable samples for isolation and the large consumption of solvents in preparative scale. These processes could be improved by using statistical computations to save time, solvent and experimental efforts. Thus, contributed by ESI-MS, after applying DryLab software to gain an overview of the most effective parameters in separation of synthesized celecoxib and its co-eluted compounds, design of experiment software that relies on multivariate modeling as a chemometric approach was used to predict the optimized touching-band overloading conditions by objective functions according to the relationship between selectivity and stationary phase properties. The loadability of the method was investigated on the analytical and semi-preparative scales, and the performance of this chemometric approach was approved by peak shapes beside recovery and purity of products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Modeling water partition in composite gels of BSA with gelatin following high pressure treatment.

    PubMed

    Semasaka, Carine; Mhaske, Pranita; Buckow, Roman; Kasapis, Stefan

    2018-11-01

    Changes in the structural properties of hydrogels made with gelatin and bovine serum albumin mixtures were recorded following exposure to high pressure at 300 MPa for 15 min at 10 and 80 °C. Dynamic oscillation, SEM, FTIR and blending law modelling were utilised to rationalise results. Pressurization at the low temperature end yielded continuous gelatin networks supporting discontinuous BSA inclusions, whereas an inverted dispersion was formed at the high temperature end with the continuous BSA network suspending the discontinuous gelatin inclusions. Lewis and Nielsen equations followed the mechanical properties of the composites thus arguing that solvent partition between the two phases was always in favour of the polymer forming the continuous network. As far as we are aware, this is the first attempt to elucidate the solvent partition in pressurised hydrogel composites using blending law theory. Outcomes were contrasted with earlier work where binary mixtures were subjected only to thermal treatment. Copyright © 2018. Published by Elsevier Ltd.

  19. Extraction study on uranyl nitrate for energy applications

    NASA Astrophysics Data System (ADS)

    Giri, R.; Nath, G.

    2017-07-01

    Due to the ever-growing demand of energy nuclear reactor materials and the nuclear energy are now considered to be the most critical materials and source of energy for future era. Deposition of nuclear wastes in different industry, nuclear power sector are very much toxic in open environment which are hazardous to living being. There are different methods for extraction and reprocessing of these materials which are cost effective and tedious process. Ultrasonic assisted solvent extraction process is a most efficient and economical way for extraction of such type materials. The presence of third phase in mixing of extractants-diluent pair with aqueous phase imposes the problems in extraction of nuclear reactor materials. The appropriate solvent mixture in proper concentration is an important step in the solvent extraction process. Study of thermo-physical properties helps in selecting an optimum blend for extraction process. In the present work, the extraction of uranium with the binary mixture of Methyl Ethyl Ketone (MEK) and Kerosene was investigated and discussed with the variation of ultrasonic frequency for different temperatures. The result shows that the low frequency and low temperature is suitable environment for extraction. The extraction of uranium by this method is found to be a better result for extraction study in laboratory scale as well as industrial sector.

  20. Are Binary Separations related to their System Mass?

    NASA Astrophysics Data System (ADS)

    Sterzik, M. F.; Durisen, R. H.

    2004-08-01

    We compile most recent multiplicity fractions and binary separation distributions for different primary masses, including very low-mass and brown dwarf primaries, and compare them with dynamical decay models of small-N clusters. The model predictions are based on detailed numerical calculations of the internal cluster dynamics, as well as on Monte-Carlo methods. Both observations and models reflect the same trends: (1) The multiplicity fraction is an increasing function of the primary mass. (2) The mean binary separations are increasing with the system mass in the sense that very low-mass binaries have average separations around ≈ 4AU, while the binary separation distribution for solar-type primaries peaks at ≈ 40AU. M-type binary systems apparently preferentially populate intermediate separations. Similar specific energy at the time of cluster formation for all cluster masses can possibly explain this trend.

  1. Stochastic Gravitational-Wave Background due to Primordial Binary Black Hole Mergers.

    PubMed

    Mandic, Vuk; Bird, Simeon; Cholis, Ilias

    2016-11-11

    Recent Advanced LIGO detections of binary black hole mergers have prompted multiple studies investigating the possibility that the heavy GW150914 binary system was of primordial origin, and hence could be evidence for dark matter in the form of black holes. We compute the stochastic background arising from the incoherent superposition of such primordial binary black hole systems in the Universe and compare it to the similar background spectrum due to binary black hole systems of stellar origin. We investigate the possibility of detecting this background with future gravitational-wave detectors, and conclude that constraining the dark matter component in the form of black holes using stochastic gravitational-wave background measurements will be very challenging.

  2. Crystal morphology optimization of thiamine hydrochloride in solvent system: Experimental and molecular dynamics simulation studies

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Han, Dandan; Du, Shichao; Wu, Songgu; Gong, Junbo

    2018-01-01

    Thiamine hydrochloride (THCL) was produced in methanol accompanied with agglomeration in industry, the plate like morphology of THCL in methanol was not deserve to have a good quality. Selecting a suitable solvent should be considered because solvent could be one of the essential factors to impact morphology. Methanol and methanol/ethyl acetate solvent (0.2 vol fraction of methanol) was selected as the solvent system in reactive crystallization of THCL. The experiment results show the THCL crystal morphology in methanol/ethyl acetate solvent system was granular and more regular than that in methanol. In order to explicate the different crystal morphology in different solvents, molecular dynamics (MD) simulation was introduced to simulate crystal morphology in different solvents. The attachment energy (AE) model was employed to investigate the morphology of THCL under vacuum conditions, methanol and methanol/ethyl acetate solvent conditions, respectively. The simulation crystal morphology was in a good agreement with that of experimented. The particle of THCL in methanol/ethyl acetate solvent has less tendency to agglomeration, and then it is favorable to the downstream process, such as filtration, storage and transportation.

  3. Planetary nebula progenitors that swallow binary systems

    NASA Astrophysics Data System (ADS)

    Soker, Noam

    2016-01-01

    I propose that some irregular messy planetary nebulae (PNe) owe their morphologies to triple-stellar evolution where tight binary systems evolve inside and/or on the outskirts of the envelope of asymptotic giant branch (AGB) stars. In some cases, the tight binary system can survive, in others, it is destroyed. The tight binary system might break up with one star leaving the system. In an alternative evolution, one of the stars of the broken-up tight binary system falls towards the AGB envelope with low specific angular momentum, and drowns in the envelope. In a different type of destruction process, the drag inside the AGB envelope causes the tight binary system to merge. This releases gravitational energy within the AGB envelope, leading to a very asymmetrical envelope ejection, with an irregular and messy PN as a descendant. The evolution of the triple-stellar system can be in a full common envelope evolution or in a grazing envelope evolution. Both before and after destruction (if destruction takes place), the system might launch pairs of opposite jets. One pronounced signature of triple-stellar evolution might be a large departure from axisymmetrical morphology of the descendant PN. I estimate that about one in eight non-spherical PNe is shaped by one of these triple-stellar evolutionary routes.

  4. The binary complex of poly(PEGMA-co-MAA) hydrogel and PLGA nanoparticles as a novel oral drug delivery system for ibuprofen delivery.

    PubMed

    Shang, Qing; Huang, Sijin; Zhang, Aixin; Feng, Jia; Yang, Song

    2017-11-01

    To improve the bioavailability of ibuprofen (IBU), we developed a novel binary complex of poly(PEGMA-co-MAA) hydrogel and IBU-loaded PLGA nanoparticles (IBU-PLGA NPs@hydrogels) as an oral intestinal targeting drug delivery system (OIDDS). The IBU-loaded PLGA NPs and pH-sensitive hydrogels were obtained via the solvent evaporation method and radical polymerization, respectively. The final OIDDS was obtained by immersing the hydrogel chips in the IBU-loaded PLGA NPs solutions (pH 7.4) for 3 d. The size distribution and morphology of cargo-free NPs were studied by laser granularity analyzer and transmission electron microscope (TEM). The inner structures of the pH-sensitive hydrogel chips were observed with an S-4800 scanning electron microscope (SEM). The distribution states of IBU in the OIDDS were also studied with X-ray diffraction (XRD) and differential scanning calorimetry (DSC). TEM photographs illustrated that the PLGA NPs had a round shape with an average diameter about 100 nm. Fourier transform infrared spectrum (FTIR) confirmed the synthesis of poly(PEGMA-co-MAA) hydrogel. The SEM picture showed that the final hydrogel had 3D net-work structures. Moreover, the poly(PEGMA-co-MAA) hydrogel showed an excellent pH-sensitivity. The XRD and DSC curves suggested that IBU distributed in the OIDDS with an amorphous state. The cumulated release profiles indicated that the final OIDDS could release IBU in alkaline environment (e.g. intestinal tract) at a sustained manner. Therefore, the novel OIDDS could improve the oral bioavailability of IBU, and had a potential application in drug delivery.

  5. An intact eight-membered water chain in drosophilid alcohol dehydrogenases is essential for optimal enzyme activity.

    PubMed

    Wuxiuer, Yimingjiang; Morgunova, Ekaterina; Cols, Neus; Popov, Alexander; Karshikoff, Andrey; Sylte, Ingebrigt; Gonzàlez-Duarte, Roser; Ladenstein, Rudolf; Winberg, Jan-Olof

    2012-08-01

    All drosophilid alcohol dehydrogenases contain an eight-member water chain connecting the active site with the solvent at the dimer interface. A similar water chain has also been shown to exist in other short-chain dehydrogenase/reductase (SDR) enzymes, including therapeutically important SDRs. The role of this water chain in the enzymatic reaction is unknown, but it has been proposed to be involved in a proton relay system. In the present study, a connecting link in the water chain was removed by mutating Thr114 to Val114 in Scaptodrosophila lebanonensis alcohol dehydrogenase (SlADH). This threonine is conserved in all drosophilid alcohol dehydrogenases but not in other SDRs. X-ray crystallography of the SlADH(T114V) mutant revealed a broken water chain, the overall 3D structure of the binary enzyme-NAD(+) complex was almost identical to the wild-type enzyme (SlADH(wt) ). As for the SlADH(wt) , steady-state kinetic studies revealed that catalysis by the SlADH(T114V) mutant was consistent with a compulsory ordered reaction mechanism where the co-enzyme binds to the free enzyme. The mutation caused a reduction of the k(on) velocity for NAD(+) and its binding strength to the enzyme, as well as the rate of hydride transfer (k) in the ternary enzyme-NAD(+) -alcohol complex. Furthermore, it increased the pK(a) value of the group in the binary enzyme-NAD(+) complex that regulates the k(on) velocity of alcohol and alcohol-competitive inhibitors. Overall, the results indicate that an intact water chain is essential for optimal enzyme activity and participates in a proton relay system during catalysis. © 2012 The Authors Journal compilation © 2012 FEBS.

  6. Late type close binary system CM Dra

    NASA Astrophysics Data System (ADS)

    Kalomeni, Belinda

    2015-08-01

    In this study, we present new observations of the close binary system CM Dra. We analyzed all the available data of the system and estimated the physical parameters of the system stars highly accurately. Using the newly obtained parameters the distance of the system is determined to be 11.6 pc. A possible giant planet orbiting the close binary system has been detected. This orbital period would likely make it one of the longest known orbital period planet.

  7. Self-organization in a system of binary strings with spatial interactions

    NASA Astrophysics Data System (ADS)

    Banzhaf, W.; Dittrich, P.; Eller, B.

    1999-01-01

    We consider an artificial reaction system whose components are binary strings. Upon encounter, two binary strings produce a third string which competes for storage space with the originators. String types or species can only survive when produced in sufficient numbers. Spatial interactions through introduction of a topology and rules for distance-dependent reactions are discussed. We observe various kinds of survival strategies of binary strings.

  8. The formation of high-mass binary star systems

    NASA Astrophysics Data System (ADS)

    Lund, Kristin; Bonnell, Ian A.

    2018-06-01

    We develop a semi-analytic model to investigate how accretion onto wide low-mass binary stars can result in a close high-mass binary system. The key ingredient is to allow mass accretion while limiting the gain in angular momentum. We envision this process as being regulated by an external magnetic field during infall. Molecular clouds are made to collapse spherically with material either accreting onto the stars or settling in a disk. Our aim is to determine what initial conditions are needed for the resulting binary to be both massive and close. Whether material accretes, and what happens to the binary separation as a result, depends on the relative size of its specific angular momentum, compared to the specific angular momentum of the binary. When we add a magnetic field we are introducing a torque to the system which is capable of stripping the molecular cloud of some of its angular momentum, and consequently easing the formation of high-mass binaries. Our results suggest that clouds in excess of 1000 M⊙ and radii of 0.5 pc or larger, can easily form binary systems with masses in excess of 25 M⊙ and separations of order 10 R⊙ with magnetic fields of order 100 μG (mass-to-flux ratios of order 5).

  9. Building an Unusual White-Dwarf Duo

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    A new study has examined how the puzzling wide binary system HS 2220+2146 which consists of two white dwarfs orbiting each other might have formed. This system may be an example of a new evolutionary pathway for wide white-dwarf binaries.Evolution of a BinaryMore than 100 stellar systems have been discovered consisting of two white dwarfs in a wide orbit around each other. How do these binaries form? In the traditional picture, the system begins as a binary consisting of two main-sequence stars. Due to the large separation between the stars, the stars evolve independently, each passing through the main-sequence and giant branches and ending their lives as white dwarfs.An illustration of a hierarchical triple star system, in which two stars orbit each other, and a third star orbits the pair. [NASA/JPL-Caltech]Because more massive stars evolve more quickly, the most massive of the two stars in a binary pair should be the first to evolve into a white dwarf. Consequently, when we observe a double-white-dwarf binary, its usually a safe bet that the more massive of the two white dwarfs will also be the older and cooler of the pair, since it should have formed first.But in the case of the double-white-dwarf binary HS 2220+2146, the opposite is true: the more massive of the two white dwarfs appears to be the younger and hotter of the pair. If it wasnt created in the traditional way, then how did this system form?Two From Three?Led by Jeff Andrews (Foundation for Research and Technology-Hellas, Greece and Columbia University), a team of scientists recently examined this system more carefully, analyzing its spectra to confirm our understanding of the white dwarfs temperatures and masses.Based on their observations, Andrews and collaborators determined that there are no hidden additional companions that could have caused the unusual evolution of this system. Instead, the team proposed that this unusual binary might be an example of an evolutionary channel that involves three stars.The authors proposed formation scenario for H220+2146. In this picture, the inner binary merges to form a blue straggler. This star and the remaining main-sequence star then evolve independently into white dwarfs, forming the system observed today. [Andrews et al. 2016]An Early MergerIn the model the authors propose for HS 2220+2146, the binary system began as a hierarchical triple system of main-sequence stars. The innermost binary then merged to form a large star known as a blue straggler a star that, due to the merger, will evolve more slowly than its larger mass implies it should.The blue straggler and the remaining main-sequence star, still in a wide orbit, then continued to evolve independently of each other. The smaller star ended its main-sequence lifetime and became a white dwarf first, followed by the more massive but slowly evolving blue straggler thus forming the system we observe today.If the authors model is correct, then HS 2220+2146 would be the first binary double white dwarf known to have formed through this channel. ESAs Gaia mission, currently underway, is expected to discover up to a million new white dwarfs, many of which will likely be in wide binary systems. Among these, we may well find many other systems like HS 2220+2146 that formed in the same way.CitationJeff J. Andrews et al 2016 ApJ 828 38. doi:10.3847/0004-637X/828/1/38

  10. Stability of binaries. Part 1: Rigid binaries

    NASA Astrophysics Data System (ADS)

    Sharma, Ishan

    2015-09-01

    We consider the stability of binary asteroids whose members are possibly granular aggregates held together by self-gravity alone. A binary is said to be stable whenever each member is orbitally and structurally stable to both orbital and structural perturbations. To this end, we extend the stability test for rotating granular aggregates introduced by Sharma (Sharma, I. [2012]. J. Fluid Mech., 708, 71-99; Sharma, I. [2013]. Icarus, 223, 367-382; Sharma, I. [2014]. Icarus, 229, 278-294) to the case of binary systems comprised of rubble members. In part I, we specialize to the case of a binary with rigid members subjected to full three-dimensional perturbations. Finally, we employ the stability test to critically appraise shape models of four suspected binary systems, viz., 216 Kleopatra, 25143 Itokawa, 624 Hektor and 90 Antiope.

  11. White dwarf-main sequence binaries from LAMOST: the DR5 catalogue

    NASA Astrophysics Data System (ADS)

    Ren, J.-J.; Rebassa-Mansergas, A.; Parsons, S. G.; Liu, X.-W.; Luo, A.-L.; Kong, X.; Zhang, H.-T.

    2018-07-01

    We present the data release (DR) 5 catalogue of white dwarf-main sequence (WDMS) binaries from the Large sky Area Multi-Object fibre Spectroscopic Telescope (LAMOST). The catalogue contains 876 WDMS binaries, of which 757 are additions to our previous LAMOST DR1 sample and 357 are systems that have not been published before. We also describe a LAMOST-dedicated survey that aims at obtaining spectra of photometrically selected WDMS binaries from the Sloan Digital Sky Survey (SDSS) that are expected to contain cool white dwarfs and/or early-type M dwarf companions. This is a population under-represented in previous SDSS WDMS binary catalogues. We determine the stellar parameters (white dwarf effective temperatures, surface gravities and masses, and M dwarf spectral types) of the LAMOST DR5 WDMS binaries and make use of the parameter distributions to analyse the properties of the sample. We find that, despite our efforts, systems containing cool white dwarfs remain under-represented. Moreover, we make use of LAMOST DR5 and SDSS DR14 (when available) spectra to measure the Na I λλ 8183.27, 8194.81 absorption doublet and/or Hα emission radial velocities of our systems. This allows identifying 128 binaries displaying significant radial velocity variations, 76 of which are new. Finally, we cross-match our catalogue with the Catalina Surveys and identify 57 systems displaying light-curve variations. These include 16 eclipsing systems, two of which are new, and nine binaries that are new eclipsing candidates. We calculate periodograms from the photometric data and measure (estimate) the orbital periods of 30 (15) WDMS binaries.

  12. Flare Activity of Wide Binary Stars with Kepler

    NASA Astrophysics Data System (ADS)

    Clarke, Riley W.; Davenport, James R. A.; Covey, Kevin R.; Baranec, Christoph

    2018-01-01

    We present an analysis of flare activity in wide binary stars using a combination of value-added data sets from the NASA Kepler mission. The target list contains a set of previously discovered wide binary star systems identified by proper motions in the Kepler field. We cross-matched these systems with estimates of flare activity for ∼200,000 stars in the Kepler field, allowing us to compare relative flare luminosity between stars in coeval binaries. From a sample of 184 previously known wide binaries in the Kepler field, we find 58 with detectable flare activity in at least 1 component, 33 of which are similar in mass (q > 0.8). Of these 33 equal-mass binaries, the majority display similar (±1 dex) flare luminosity between both stars, as expected for stars of equal mass and age. However, we find two equal-mass pairs where the secondary (lower mass) star is more active than its counterpart, and two equal-mass pairs where the primary star is more active. The stellar rotation periods are also anomalously fast for stars with elevated flare activity. Pairs with discrepant rotation and activity qualitatively seem to have lower mass ratios. These outliers may be due to tidal spin-up, indicating these wide binaries could be hierarchical triple systems. We additionally present high-resolution adaptive optics images for two wide binary systems to test this hypothesis. The demographics of stellar rotation and magnetic activity between stars in wide binaries may be useful indicators for discerning the formation scenarios of these systems.

  13. White dwarf-main sequence binaries from LAMOST: the DR5 catalogue

    NASA Astrophysics Data System (ADS)

    Ren, J.-J.; Rebassa-Mansergas, A.; Parsons, S. G.; Liu, X.-W.; Luo, A.-L.; Kong, X.; Zhang, H.-T.

    2018-03-01

    We present the data release (DR) 5 catalogue of white dwarf-main sequence (WDMS) binaries from the Large Area Multi-Object fiber Spectroscopic Telescope (LAMOST). The catalogue contains 876 WDMS binaries, of which 757 are additions to our previous LAMOST DR1 sample and 357 are systems that have not been published before. We also describe a LAMOST-dedicated survey that aims at obtaining spectra of photometrically-selected WDMS binaries from the Sloan Digital Sky Survey (SDSS) that are expected to contain cool white dwarfs and/or early type M dwarf companions. This is a population under-represented in previous SDSS WDMS binary catalogues. We determine the stellar parameters (white dwarf effective temperatures, surface gravities and masses, and M dwarf spectral types) of the LAMOST DR5 WDMS binaries and make use of the parameter distributions to analyse the properties of the sample. We find that, despite our efforts, systems containing cool white dwarfs remain under-represented. Moreover, we make use of LAMOST DR5 and SDSS DR14 (when available) spectra to measure the Na I λλ 8183.27, 8194.81 absorption doublet and/or Hα emission radial velocities of our systems. This allows identifying 128 binaries displaying significant radial velocity variations, 76 of which are new. Finally, we cross-match our catalogue with the Catalina Surveys and identify 57 systems displaying light curve variations. These include 16 eclipsing systems, two of which are new, and nine binaries that are new eclipsing candidates. We calculate periodograms from the photometric data and measure (estimate) the orbital periods of 30 (15) WDMS binaries.

  14. An interesting two-phase solvent system and its use in preparative isolation of aconitines from aconite roots by counter-current chromatography.

    PubMed

    Han, Quan-Bin; Tang, Wai-Lun; Dong, Cai-Xia; Xu, Hong-Xi; Jiang, Zhi-Hong

    2013-04-01

    Two-phase solvent system plays crucial role in successful separation of organic compounds using counter-current chromatography (CCC). An interesting two-phase solvent system, composed of chloroform/ethyl acetate/methanol/water, is reported here, in which both phases contain sufficient organic solvents to balance their dissolving capacities. Adjusting the solvent system to get satisfactory partition coefficients (K values) for target compounds becomes relatively simple. This solvent system succeeded in sample preparation of aconitine (8.07 mg, 93.69%), hypaconitine (7.74 mg, 93.17%), mesaconitine (1.95 mg, 94.52%) from raw aconite roots (102.24 mg, crude extract), benzoylmesaconine (34.79 mg, 98.67%) from processed aconite roots (400.01 mg, crude extract), and yunaconitine (253.59 mg, 98.65%) from a crude extract of Aconitum forrestii (326.69 mg, crude extract). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Enzymatic synthesis of esculin ester in ionic liquids buffered with organic solvents.

    PubMed

    Hu, Yifan; Guo, Zheng; Lue, Bena-Marie; Xu, Xuebing

    2009-05-13

    The enzymatic esterification of esculin catalyzed by Candida antarctica lipase B (Novozym 435) was carried out in ionic liquid (IL)-organic solvent mixed systems in comparison with individual systems. The reaction behaviors in IL-organic solvents were systemically evaluated using acetone as a model solvent. With organic solvents as media, the esterification rates of esculin depended mainly on its solubility in solvents; for the reactions in ILs, the reaction rates were generally low, and the anion part of the IL played a critical role in enzyme activity. Therefore, the esterification of esculin in IL-acetone mixtures made it possible to improve the solubility of esculin while the effects of ILs on lipase activity were minimized. Following the benignity of ILs to lipase activity, the anions of ILs were ranked in the order as [Tf(2)N](-) > [PF(6)](-) > [BF(4)](-) > [CF(3)SO(3)](-) > [C(4)F(9)SO(3)](-) > [TAF](-) > [MDEGSO(4)](-) > [OctSO(4)](-) > [ES](-) = [DMP](-) = [OTs](- )= Cl(-). The reaction behaviors differed in different systems and largely depended on the properties of the ILs and organic solvents. In general, improvements were observed in terms of both solubility and reaction efficiency. The knowledge acquired in this work gives a better understanding of multiple interactions in IL-organic solvent systems, which provide guidance for system design and optimization.

  16. Efficacy of two rotary retreatment systems in removing Gutta-percha and sealer during endodontic retreatment with or without solvent: A comparative in vitro study

    PubMed Central

    Bhagavaldas, Moushmi Chalakkarayil; Diwan, Abhinav; Kusumvalli, S.; Pasha, Shiraz; Devale, Madhuri; Chava, Deepak Chowdary

    2017-01-01

    Objectives: The aim of this in vitro study was to compare the efficacy of two retreatment rotary systems in the removal of Gutta-percha (GP) and sealer from the root canal walls with or without solvent. Materials and Methods: Forty-eight extracted human mandibular first premolars were prepared and obturated with GP and AH Plus sealer. Samples were then randomly divided into four groups. Group I was retreated with MtwoR rotary system without solvent, Group II was retreated with MtwoR rotary system with Endosolv R as the solvent, Group III with D-RaCe rotary system without solvent, and Group IV with D-RaCe rotary system and Endosolv R solvent. The cleanliness of canal walls was determined by stereomicroscope (×20) and AutoCAD software. Kruskal–Wallis test and Mann–Whitney U-test were used to compare the data. Results: Results showed that none of the retreatment systems used in this study was able to completely remove the root canal filling material. D-RaCe with or without solvent showed significantly (P > 0.05) less filling material at all levels compared to MtwoR with/without solvent. Conclusion: Within the limitation of the current study, D-RaCe rotary retreatment system is more effective in removing filling material from root canal walls when compared to MtwoR rotary retreatment system. PMID:28761246

  17. Formation of close binary black holes merging due to gravitational-wave radiation

    NASA Astrophysics Data System (ADS)

    Tutukov, A. V.; Cherepashchuk, A. M.

    2017-10-01

    The conditions for the formation of close-binary black-hole systems merging over the Hubble time due to gravitational-wave radiation are considered in the framework of current ideas about the evolution of massive close-binary systems. The original systems whose mergers were detected by LIGO consisted of main-sequence stars with masses of 30-100 M ⊙. The preservation of the compactness of a binary black hole during the evolution of its components requires either the formation of a common envelope, probably also with a low initial abundance of metals, or the presence of a "kick"—a velocity obtained during a supernova explosion accompanied by the formation of a black hole. In principle, such a kick can explain the relatively low frequency of mergers of the components of close-binary stellar black holes, if the characteristic speed of the kick exceeds the orbital velocities of the system components during the supernova explosion. Another opportunity for the components of close-binary systems to approach each other is related to their possible motion in a dense molecular cloud.

  18. The Biodegradation of TNT in Enhanced Soil and Compost Systems

    DTIC Science & Technology

    1978-01-01

    dimethylsulfoxide ( DMSO ) Is substituted for EDA because EDA tends to clog the sprayei . Dr. Chandler’s solvent system No. 1 is used for non-polar separa...material was converted to non- solvent -extractable, water-soluble materials of unknown Identity. These materials may represent the contents of dead... solvent system No. 1 54 2A TLC separation of TNT and derivatives using ChandlerIs solvent system No. 2 55 3A TLC separation of TNT and derivatives using

  19. Formation of S-type planets in close binaries: scattering induced tidal capture of circumbinary planets

    NASA Astrophysics Data System (ADS)

    Gong, Yan-Xiang; Ji, Jianghui

    2018-05-01

    Although several S-type and P-type planets in binary systems were discovered in past years, S-type planets have not yet been found in close binaries with an orbital separation not more than 5 au. Recent studies suggest that S-type planets in close binaries may be detected through high-accuracy observations. However, nowadays planet formation theories imply that it is difficult for S-type planets in close binaries systems to form in situ. In this work, we extensively perform numerical simulations to explore scenarios of planet-planet scattering among circumbinary planets and subsequent tidal capture in various binary configurations, to examine whether the mechanism can play a part in producing such kind of planets. Our results show that this mechanism is robust. The maximum capture probability is ˜10%, which can be comparable to the tidal capture probability of hot Jupiters in single star systems. The capture probability is related to binary configurations, where a smaller eccentricity or a low mass ratio of the binary will lead to a larger probability of capture, and vice versa. Furthermore, we find that S-type planets with retrograde orbits can be naturally produced via capture process. These planets on retrograde orbits can help us distinguish in situ formation and post-capture origin for S-type planet in close binaries systems. The forthcoming missions (PLATO) will provide the opportunity and feasibility to detect such planets. Our work provides several suggestions for selecting target binaries in search for S-type planets in the near future.

  20. Binary Lenses in OGLE-III EWS Database. Seasons 2002-2003

    NASA Astrophysics Data System (ADS)

    Jaroszynski, M.; Udalski, A.; Kubiak, M.; Szymanski, M.; Pietrzynski, G.; Soszynski, I.; Zebrun, K.; Szewczyk, O.; Wyrzykowski, L.

    2004-06-01

    We present 15 binary lens candidates from OGLE-III Early Warning System database for seasons 2002-2003. We also found 15 events interpreted as single mass lensing of double sources. The candidates were selected by visual light curves inspection. Examining the models of binary lenses of this and our previous study (10 caustic crossing events of OGLE-II seasons 1997--1999) we find one case of extreme mass ratio binary (q approx 0.005) and the rest in the range 0.1

  1. Waveform model for an eccentric binary black hole based on the effective-one-body-numerical-relativity formalism

    NASA Astrophysics Data System (ADS)

    Cao, Zhoujian; Han, Wen-Biao

    2017-08-01

    Binary black hole systems are among the most important sources for gravitational wave detection. They are also good objects for theoretical research for general relativity. A gravitational waveform template is important to data analysis. An effective-one-body-numerical-relativity (EOBNR) model has played an essential role in the LIGO data analysis. For future space-based gravitational wave detection, many binary systems will admit a somewhat orbit eccentricity. At the same time, the eccentric binary is also an interesting topic for theoretical study in general relativity. In this paper, we construct the first eccentric binary waveform model based on an effective-one-body-numerical-relativity framework. Our basic assumption in the model construction is that the involved eccentricity is small. We have compared our eccentric EOBNR model to the circular one used in the LIGO data analysis. We have also tested our eccentric EOBNR model against another recently proposed eccentric binary waveform model; against numerical relativity simulation results; and against perturbation approximation results for extreme mass ratio binary systems. Compared to numerical relativity simulations with an eccentricity as large as about 0.2, the overlap factor for our eccentric EOBNR model is better than 0.98 for all tested cases, including spinless binary and spinning binary, equal mass binary, and unequal mass binary. Hopefully, our eccentric model can be the starting point to develop a faithful template for future space-based gravitational wave detectors.

  2. Metal–metal chalcogenide molecular precursors to binary, ternary, and quaternary metal chalcogenide thin films for electronic devices

    DOE PAGES

    Zhang, Ruihong; Cho, Seonghyuk; Lim, Daw Gen; ...

    2016-03-15

    We found that bulk metals and metal chalcogenides dissolve in primary amine–dithiol solvent mixtures at ambient conditions. Thin-films of CuS, SnS, ZnS, Cu 2Sn(Sx,Se 1-x) 3, and Cu 2ZnSn(SxSe 1-x) 4 (0 ≤ x ≤ 1) were deposited using the as-dissolved solutions. Furthermore, Cu 2ZnSn(SxSe 1-x) 4 solar cells with efficiencies of 6.84% and 7.02% under AM1.5 illumination were fabricated from two example solution precursors, respectively.

  3. How do accretion discs break?

    NASA Astrophysics Data System (ADS)

    Dogan, Suzan

    2016-07-01

    Accretion discs are common in binary systems, and they are often found to be misaligned with respect to the binary orbit. The gravitational torque from a companion induces nodal precession in misaligned disc orbits. In this study, we first calculate whether this precession is strong enough to overcome the internal disc torques communicating angular momentum. We compare the disc precession torque with the disc viscous torque to determine whether the disc should warp or break. For typical parameters precession wins: the disc breaks into distinct planes that precess effectively independently. To check our analytical findings, we perform 3D hydrodynamical numerical simulations using the PHANTOM smoothed particle hydrodynamics code, and confirm that disc breaking is widespread and enhances accretion on to the central object. For some inclinations, the disc goes through strong Kozai cycles. Disc breaking promotes markedly enhanced and variable accretion and potentially produces high-energy particles or radiation through shocks. This would have significant implications for all binary systems: e.g. accretion outbursts in X-ray binaries and fuelling supermassive black hole (SMBH) binaries. The behaviour we have discussed in this work is relevant to a variety of astrophysical systems, for example X-ray binaries, where the disc plane may be tilted by radiation warping, SMBH binaries, where accretion of misaligned gas can create effectively random inclinations and protostellar binaries, where a disc may be misaligned by a variety of effects such as binary capture/exchange, accretion after binary formation.

  4. Synthesis, crystal growth, structural and physicochemical studies of novel binary organic complex: 4-chloroaniline-3-hydroxy-4-methoxybenzaldehyde

    NASA Astrophysics Data System (ADS)

    Sharma, K. P.; Reddi, R. S. B.; Bhattacharya, S.; Rai, R. N.

    2012-06-01

    The solid-state reaction, which is solvent free and green synthesis, has been adopted to explore the novel compound. The phase diagram of 4-chloroaniline (CA) and 3-hydroxy-4-methoxybenzaldehyde (HMB) system shows the formation of a novel 1:1 molecular complex, and two eutectics on either sides of complex. Thermochemical studies of complex and eutectics have been carried out for various properties such as heat of fusion, entropy of fusion, Jackson's parameters, interfacial energy and excess thermodynamic functions. The formation of molecular complex was also studied by IR, NMR, elemental analysis and UV-Vis absorption spectra. The single crystal of molecular complex was grown and its XRD study confirms the formation of complex and identifies the crystal structure and atomic packing of crystal of complex. Transmission spectra of grown crystal of the complex show 70% transmittance efficiency with cut off wavelength 412 nm. The band gap and refractive index of the crystal of complex have also been studied.

  5. Comparison of adsorption coefficient (K[sub oc]) for soils and HPLC retention factors of aromatic hydrocarbons using a chemically immobilized humic acid column in RP-HPLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szabo, G.; Bulman, R.A.

    The determination of soil adsorption coefficients (K[sub oc]) via HPLC capacity factors (k[prime]) has been studied, including the effect of column type and mobile phase composition on the correlation between log K[sub oc] and log k[prime]. K[sub oc] values obtained by procedures other than HPLC correlate well with HPLC capacity factors determined on a chemically immobilized humic acid stationary phase, and it is suggested that this phase is a better model for the sorption onto soil or sediment than the octadecyl-, phenyl- and ethylsilica phases. By using log k[prime][sub w] a theoretical capacity factor has been obtained by extrapolation ofmore » the retention data in a binary solvent system to pure aqueous eluent. There is a better correlation between log K[sub oc] and log k[prime][sub w] than the correlation between log K[sub oc] and log k[prime].« less

  6. Antisolvent Recrystallization Strategy to Screen Appropriate Carriers to Stabilize Filgotinib Amorphous Solid Dispersions.

    PubMed

    Ren, Fuzheng; Sun, Hanjing; Cui, Lin; Si, Yike; Chen, Ning; Ren, Guobin; Jing, Qiufang

    2018-06-01

    Drugs in amorphous solid dispersions (ASDs) are highly dispersed in hydrophilic polymeric carriers, which also help to restrain recrystallization and stabilize the ASDs. In this study, microscopic observation after antisolvent recrystallization was developed as a rapid screening method to select appropriate polymers for the initial design filgotinib (FTN) ASDs. Using solvent evaporation, FTN ASDs with the polymers were prepared, and accelerated experimentation validated this screening method. Fourier-transform infrared spectroscopy, Raman scattering, and nuclear magnetic resonance revealed hydrogen-bonding formation in the drug-polymer binary system, which was critical for ASDs stabilization. A Flory-Huggins interaction parameter and water sorption isotherms were applied to evaluate the strength of the interaction between FTN and the polymers. The dissolution rate was also significantly improved by ASDs formulation, and the presence of the polymers exerted solubilization effects. These results suggested the efficacy of this screening method as a preliminary tool for polymer selection in ASDs design. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  7. Effects of Disk Warping on the Inclination Evolution of Star-Disk-Binary Systems

    NASA Astrophysics Data System (ADS)

    Zanazzi, J. J.; Lai, Dong

    2018-04-01

    Several recent studies have suggested that circumstellar disks in young stellar binaries may be driven into misalignement with their host stars due to secular gravitational interactions between the star, disk and the binary companion. The disk in such systems is twisted/warped due to the gravitational torques from the oblate central star and the external companion. We calculate the disk warp profile, taking into account of bending wave propagation and viscosity in the disk. We show that for typical protostellar disk parameters, the disk warp is small, thereby justifying the "flat-disk" approximation adopted in previous theoretical studies. However, the viscous dissipation associated with the small disk warp/twist tends to drive the disk toward alignment with the binary or the central star. We calculate the relevant timescales for the alignment. We find the alignment is effective for sufficiently cold disks with strong external torques, especially for systems with rapidly rotating stars, but is ineffective for the majority of star-disk-binary systems. Viscous warp driven alignment may be necessary to account for the observed spin-orbit alignment in multi-planet systems if these systems are accompanied by an inclined binary companion.

  8. Effects of disc warping on the inclination evolution of star-disc-binary systems

    NASA Astrophysics Data System (ADS)

    Zanazzi, J. J.; Lai, Dong

    2018-07-01

    Several recent studies have suggested that circumstellar discs in young stellar binaries may be driven into misalignement with their host stars due to the secular gravitational interactions between the star, disc, and the binary companion. The disc in such systems is twisted/warped due to the gravitational torques from the oblate central star and the external companion. We calculate the disc warp profile, taking into account the bending wave propagation and viscosity in the disc. We show that for typical protostellar disc parameters, the disc warp is small, thereby justifying the `flat-disc' approximation adopted in previous theoretical studies. However, the viscous dissipation associated with the small disc warp/twist tends to drive the disc towards alignment with the binary or the central star. We calculate the relevant time-scales for the alignment. We find that the alignment is effective for sufficiently cold discs with strong external torques, especially for systems with rapidly rotating stars, but is ineffective for the majority of the star-disc-binary systems. Viscous warp-driven alignment may be necessary to account for the observed spin-orbit alignment in multiplanet systems if these systems are accompanied by an inclined binary companion.

  9. Bondi-Hoyle-Lyttleton Accretion onto Binaries

    NASA Astrophysics Data System (ADS)

    Antoni, Andrea; MacLeod, Morgan; Ramírez-Ruiz, Enrico

    2018-01-01

    Binary stars are not rare. While only close binary stars will eventually interact with one another, even the widest binary systems interact with their gaseous surroundings. The rates of accretion and the gaseous drag forces arising in these interactions are the key to understanding how these systems evolve. This poster examines accretion flows around a binary system moving supersonically through a background gas. We perform three-dimensional hydrodynamic simulations of Bondi-Hoyle-Lyttleton accretion using the adaptive mesh refinement code FLASH. We simulate a range of values of semi-major axis of the orbit relative to the gravitational focusing impact parameter of the pair. On large scales, gas is gravitationally focused by the center-of-mass of the binary, leading to dynamical friction drag and to the accretion of mass and momentum. On smaller scales, the orbital motion imprints itself on the gas. Notably, the magnitude and direction of the forces acting on the binary inherit this orbital dependence. The long-term evolution of the binary is determined by the timescales for accretion, slow down of the center-of-mass, and decay of the orbit. We use our simulations to measure these timescales and to establish a hierarchy between them. In general, our simulations indicate that binaries moving through gaseous media will slow down before the orbit decays.

  10. The Eclipsing Central Stars of the Planetary Nebulae Lo 16 and PHR J1040-5417

    NASA Astrophysics Data System (ADS)

    Hillwig, Todd C.; Frew, David; Jones, David; Crispo, Danielle

    2017-01-01

    Binary central stars of planetary nebula are a valuable tool in understanding common envelope evolution. In these cases both the resulting close binary system and the expanding envelope (the planetary nebula) can be studied directly. In order to compare observed systems with common envelope evolution models we need to determine precise physical parameters of the binaries and the nebulae. Eclipsing central stars provide us with the best opportunity to determine high precision values for mass, radius, and temperature of the component stars in these close binaries. We present photometry and spectroscopy for two of these eclipsing systems; the central stars of Lo 16 and PHR 1040-5417. Using light curves and radial velocity curves along with binary modeling we provide physical parameters for the stars in both of these systems.

  11. Dynamical effects of stellar companions

    NASA Astrophysics Data System (ADS)

    Naoz, Smadar

    2015-08-01

    The fraction of stellar binaries in the field is extremely high (about 40% - 70% for > 1 Msun stars), and thus, given this frequency, a large fraction of all exoplanetary systems may reside in binaries. While close-in giant planets tend to be found preferentially in binary stellar systems it seems that the frequency of giant planets in close binaries (<100 AU) is significantly lower than in the overall population. Stellar companions’ gravitational perturbations may significantly alter the planetary orbits around their partner on secular timescales. They can drive planets to large eccentric orbits which can either result in plunging these planets into the star or shrinking their orbits and forming short period planets. I will review the dynamical effects stellar binaries have on a planetary systems. I will also present new results on the influence that stellar evolution has on the dynamical processes in these systems.

  12. Binaries and triples among asteroid pairs

    NASA Astrophysics Data System (ADS)

    Pravec, Petr; Scheirich, Peter; Kušnirák, Peter; Hornoch, Kamil; Galád, Adrián

    2015-08-01

    Despite major achievements obtained during the past two decades, our knowledge of the population and properties of small binary and multiple asteroid systems is still far from advanced. There is a numerous indirect evidence for that most small asteroid systems were formed by rotational fission of cohesionless parent asteroids that were spun up to the critical frequency presumably by YORP, but details of the process are lacking. Furthermore, as we proceed with observations of more and more binary and paired asteroids, we reveal new facts that substantially refine and sometimes change our understanding of the asteroid systems. One significant new finding we have recently obtained is that primaries of many asteroid pairs are actually binary or triple systems. The first such case found is (3749) Balam (Vokrouhlický, ApJL 706, L37, 2009). We have found 9 more binary systems among asteroid pairs within our ongoing NEOSource photometric project since October 2012. They are (6369) 1983 UC, (8306) Shoko, (9783) Tensho-kan, (10123) Fideoja, (21436) Chaoyichi, (43008) 1999 UD31, (44620) 1999 RS43, (46829) 1998 OS14 and (80218) 1999 VO123. We will review their characteristics. These paired binaries as we call them are mostly similar to binaries in the general ("background") population (of unpaired asteroids), but there are a few trends. The paired binaries tend to have larger secondaries with D_2/D_1 = 0.3 to 0.5 and they also tend to be wider systems with 8 of the 10 having orbital periods between 30 and 81 hours, than average among binaries in the general population. There may be also a larger fraction of triples; (3749) Balam is a confirmed triple, having a larger close and a smaller distant satellite, and (8306) Shoko and (10123) Fideoja are suspect triples as they show additional rotational lightcurve components with periods of 61 and 38.8 h that differ from the orbital period of 36.2 and 56.5 h, respectively. The unbound secondaries tend to be of the same size or smaller (with one exception) than the bound orbiting secondaries. I will compare the observed properties of the paired binaries to predictions from theories of formation of asteroid binaries and pairs.

  13. Hierarchically self-assembled hexagonal honeycomb and kagome superlattices of binary 1D colloids.

    PubMed

    Lim, Sung-Hwan; Lee, Taehoon; Oh, Younghoon; Narayanan, Theyencheri; Sung, Bong June; Choi, Sung-Min

    2017-08-25

    Synthesis of binary nanoparticle superlattices has attracted attention for a broad spectrum of potential applications. However, this has remained challenging for one-dimensional nanoparticle systems. In this study, we investigate the packing behavior of one-dimensional nanoparticles of different diameters into a hexagonally packed cylindrical micellar system and demonstrate that binary one-dimensional nanoparticle superlattices of two different symmetries can be obtained by tuning particle diameter and mixing ratios. The hexagonal arrays of one-dimensional nanoparticles are embedded in the honeycomb lattices (for AB 2 type) or kagome lattices (for AB 3 type) of micellar cylinders. The maximization of free volume entropy is considered as the main driving force for the formation of superlattices, which is well supported by our theoretical free energy calculations. Our approach provides a route for fabricating binary one-dimensional nanoparticle superlattices and may be applicable for inorganic one-dimensional nanoparticle systems.Binary mixtures of 1D particles are rarely observed to cooperatively self-assemble into binary superlattices, as the particle types separate into phases. Here, the authors design a system that avoids phase separation, obtaining binary superlattices with different symmetries by simply tuning the particle diameter and mixture composition.

  14. Development of solvent systems with room temperature ionic liquids for the countercurrent chromatographic separation of very nonpolar lipid compounds.

    PubMed

    Müller, Marco; Englert, Michael; Earle, Martyn J; Vetter, Walter

    2017-03-10

    Solvent systems are not readily available for the separation of very nonpolar compounds by countercurrent chromatography (CCC). In this study we therefore evaluated the suitability of room temperature ionic liquids (IL) in organic solvents for the CCC separation of the extremely nonpolar lipid compounds tripalmitin (PPP) and cholesteryl stearate (CS). The four IL tested were [C 10 mim][OTf], [C 2 mim][NTf 2 ], [P66614][NTf 2 ], and [P66614][Cl]. Search for a CCC-suited solvent system started with solubility studies with fourteen organic solvents. Following this, combinations were made with one organic solvent miscible and one organic solvent immiscible with IL (147 combinations). Twenty-four initially monophasic mixtures of two organic solvents became biphasic by adding IL. Several unexpected results could be observed. For instance, n-hexane and n-heptane became biphasic with [P66614][Cl]. Further nine systems became biphasic although the IL was not miscible in any of the two components. These 33 solvent systems were investigated with regard to phase ratio, settling time, share of IL in the upper phase and last not least the K U/L values of PPP and CS, which were 8.1 and 7.7 respectively. The most promising system, n-heptane/chloroform/[C 10 mim][OTf] (3:3:1, v/v/v) allowed a partial separation of PPP and CS by CCC which was not achieved beforehand. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Enantioseparation of Racemic Flurbiprofen by Aqueous Two-Phase Extraction With Binary Chiral Selectors of L-dioctyl Tartrate and L-tryptophan.

    PubMed

    Chen, Zhi; Zhang, Wei; Wang, Liping; Fan, Huajun; Wan, Qiang; Wu, Xuehao; Tang, Xunyou; Tang, James Z

    2015-09-01

    A novel method for chiral separation of flurbiprofen enantiomers was developed using aqueous two-phase extraction (ATPE) coupled with biphasic recognition chiral extraction (BRCE). An aqueous two-phase system (ATPS) was used as an extracting solvent which was composed of ethanol (35.0% w/w) and ammonium sulfate (18.0% w/w). The chiral selectors in ATPS for BRCE consideration were L-dioctyl tartrate and L-tryptophan, which were screened from amino acids, β-cyclodextrin derivatives, and L-tartrate esters. Factors such as the amounts of L-dioctyl tartrate and L-tryptophan, pH, flurbiprofen concentration, and the operation temperature were investigated in terms of chiral separation of flurbiprofen enantiomers. The optimum conditions were as follows: L-dioctyl tartrate, 80 mg; L-tryptophan, 40 mg; pH, 4.0; flurbiprofen concentration, 0.10 mmol/L; and temperature, 25 °C. The maximum separation factor α for flurbiprofen enantiomers could reach 2.34. The mechanism of chiral separation of flurbiprofen enantiomers is discussed and studied. The results showed that synergistic extraction has been established by L-dioctyl tartrate and L-tryptophan, which enantioselectively recognized R- and S-enantiomers in top and bottom phases, respectively. Compared to conventional liquid-liquid extraction, ATPE coupled with BRCE possessed higher separation efficiency and enantioselectivity without the use of any other organic solvents. The proposed method is a potential and powerful alternative to conventional extraction for separation of various enantiomers. © 2015 Wiley Periodicals, Inc.

  16. A Pulsar and White Dwarf in an Unexpected Orbit

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    Astronomers have discovered a binary system consisting of a low-mass white dwarf and a millisecond pulsar but its eccentric orbit defies all expectations of how such binaries form.Observed orbital periods and binary eccentricities for binary millisecond pulsars. PSR J2234+0511 is the furthest right of the green stars that mark the five known eccentric systems. [Antoniadis et al. 2016]Unusual EccentricityIt would take a low-mass (0.4 solar masses) white dwarf over 100 billion years to form from the evolution of a single star. Since this is longer than the age of the universe, we believe that these lightweights are instead products of binary-star evolution and indeed, we observe many of these stars to still be in binary systems.But the binary evolution that can create a low-mass white dwarf includes a period of mass transfer, in which efficient tidal dissipation damps the systems orbital eccentricity. Because of this, we would expect all systems containing low-mass white dwarfs to have circular orbits.In the past, our observations of low-mass white dwarfmillisecond pulsar binaries have all been consistent with this expectation. But a new detection has thrown a wrench in the works: the unambiguous identification of a low-mass white dwarf thats in an eccentric (e=0.13) orbit with the millisecond pulsar PSR J2234+0511. How could this system have formed?Eliminating Formation ModelsLed by John Antoniadis (Dunlap Institute at University of Toronto), a team of scientists has used newly obtained optical photometry (from the Sloan Digital Sky Survey) and spectroscopy (from the Very Large Telescope in Chile) of the white dwarf to confirm the identification of this system.Antoniadis and collaborators then use measurements of the bodies masses (0.28 and 1.4 solar masses for the white dwarf and pulsar, respectively) and velocities, and constraints on the white dwarfs temperature, radius and surface gravity, to address three proposed models for the formation of this system.The 3D motion of the pulsar (black solid lines; current position marked with diamond) in our galaxy over the past 1.5 Gyr. This motion is typical for low-mass X-ray binary descendants, favoring a binary-evolution model over a 3-body-interaction model. [Antoniadis et al. 2016]In the first model, the eccentric binary was created via adynamic three-body formation channel. This possibility is deemed unlikely, as the white-dwarf properties and all the kinematic properties of the system point to normal binary evolution.In the secondmodel, the binary system gains its high eccentricity after mass transfer ends, when the pulsar progenitor experiences a spontaneous phase transition. The authors explore two options for this: one in which the neutron star implodes into a strange-quark star, and the other in which an over-massive white dwarf suffers a delayed collapse into a neutron star. Both cases are deemed unlikely, because the mass inferred for the pulsar progenitor is not consistent with either model.In the third model, the system forms a circumbinary disk fueled by material escaping the proto-white dwarf. After mass transfer has ended, interactions between the binary and its disk gradually increase the eccentricity of the system, pumping it up to what we observe today. All of the properties of the system measured by Antoniadis and collaborators are thus far consistent with this model.Further observations of this system and systems like it (several others have been detected, though not yet confirmed) will help determine whether binary evolution combined with interactions with a disk can indeed explain the formation of this unexpectedly eccentricsystem.CitationJohn Antoniadis et al 2016 ApJ 830 36. doi:10.3847/0004-637X/830/1/36

  17. Structural anomaly and dynamic heterogeneity in cycloether/water binary mixtures: Signatures from composition dependent dynamic fluorescence measurements and computer simulations

    NASA Astrophysics Data System (ADS)

    Indra, Sandipa; Guchhait, Biswajit; Biswas, Ranjit

    2016-03-01

    We have performed steady state UV-visible absorption and time-resolved fluorescence measurements and computer simulations to explore the cosolvent mole fraction induced changes in structural and dynamical properties of water/dioxane (Diox) and water/tetrahydrofuran (THF) binary mixtures. Diox is a quadrupolar solvent whereas THF is a dipolar one although both are cyclic molecules and represent cycloethers. The focus here is on whether these cycloethers can induce stiffening and transition of water H-bond network structure and, if they do, whether such structural modification differentiates the chemical nature (dipolar or quadrupolar) of the cosolvent molecules. Composition dependent measured fluorescence lifetimes and rotation times of a dissolved dipolar solute (Coumarin 153, C153) suggest cycloether mole-fraction (XTHF/Diox) induced structural transition for both of these aqueous binary mixtures in the 0.1 ≤ XTHF/Diox ≤ 0.2 regime with no specific dependence on the chemical nature. Interestingly, absorption measurements reveal stiffening of water H-bond structure in the presence of both the cycloethers at a nearly equal mole-fraction, XTHF/Diox ˜ 0.05. Measurements near the critical solution temperature or concentration indicate no role for the solution criticality on the anomalous structural changes. Evidences for cycloether aggregation at very dilute concentrations have been found. Simulated radial distribution functions reflect abrupt changes in respective peak heights at those mixture compositions around which fluorescence measurements revealed structural transition. Simulated water coordination numbers (for a dissolved C153) and number of H-bonds also exhibit minima around these cosolvent concentrations. In addition, several dynamic heterogeneity parameters have been simulated for both the mixtures to explore the effects of structural transition and chemical nature of cosolvent on heterogeneous dynamics of these systems. Simulated four-point dynamic susceptibility suggests formation of clusters inducing local heterogeneity in the solution structure.

  18. Inferences about binary stellar populations using gravitational wave observations

    NASA Astrophysics Data System (ADS)

    Wysocki, Daniel; Gerosa, Davide; O'Shaughnessy, Richard; Belczynski, Krzysztof; Gladysz, Wojciech; Berti, Emanuele; Kesden, Michael; Holz, Daniel

    2018-01-01

    With the dawn of gravitational wave astronomy, enabled by the LIGO and Virgo interferometers, we now have a new window into the Universe. In the short time these detectors have been in use, multiple confirmed detections of gravitational waves from compact binary coalescences have been made. Stellar binary systems are one of the likely progenitors of the observed compact binary sources. If this is indeed the case, then we can use measured properties of these binary systems to learn about their progenitors. We will discuss the Bayesian framework in which we make these inferences, and results which include mass and spin distributions.

  19. Isobaric vapor-liquid equilibria for binary systems α-phenylethylamine + toluene and α-phenylethylamine + cyclohexane at 100 kPa

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoru; Gao, Yingyu; Ban, Chunlan; Huang, Qiang

    2016-09-01

    In this paper the results of the vapor-liquid equilibria study at 100 kPa are presented for two binary systems: α-phenylethylamine(1) + toluene (2) and (α-phenylethylamine(1) + cyclohexane(2)). The binary VLE data of the two systems were correlated by the Wilson, NRTL, and UNIQUAC models. For each binary system the deviations between the results of the correlations and the experimental data have been calculated. For the both binary systems the average relative deviations in temperature for the three models were lower than 0.99%. The average absolute deviations in vapour phase composition (mole fractions) and in temperature T were lower than 0.0271 and 1.93 K, respectively. Thermodynamic consistency has been tested for all vapor-liquid equilibrium data by the Herrington method. The values calculated by Wilson and NRTL equations satisfied the thermodynamics consistency test for the both two systems, while the values calculated by UNIQUAC equation didn't.

  20. An Improved Approach for Analyzing the Oxygen Compatibility of Solvents and other Oxygen-Flammable Materials for Use in Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Harper, Susan A.; Juarez, Alfredo; Peralta, Stephen F.; Stoltzfus, Joel; Arpin, Christina Pina; Beeson, Harold D.

    2016-01-01

    Solvents used to clean oxygen system components must be assessed for oxygen compatibility, as incompatible residue or fluid inadvertently left behind within an oxygen system can pose a flammability risk. The most recent approach focused on solvent ignition susceptibility to assess the flammability risk associated with these materials. Previous evaluations included Ambient Pressure Liquid Oxygen (LOX) Mechanical Impact Testing (ASTM G86) and Autogenous Ignition Temperature (AIT) Testing (ASTM G72). The goal in this approach was to identify a solvent material that was not flammable in oxygen. As environmental policies restrict the available options of acceptable solvents, it has proven difficult to identify one that is not flammable in oxygen. A more rigorous oxygen compatibility approach is needed in an effort to select a new solvent for NASA applications. NASA White Sands Test Facility proposed an approach that acknowledges oxygen flammability, yet selects solvent materials based on their relative oxygen compatibility ranking, similar to that described in ASTM G63-99. Solvents are selected based on their ranking with respect to minimal ignition susceptibility, damage and propagation potential, as well as their relative ranking when compared with other solvent materials that are successfully used in oxygen systems. Test methods used in this approach included ASTM G86 (Ambient Pressure LOX Mechanical Impact Testing and Pressurized Gaseous Oxygen (GOX) Mechanical Impact Testing), ASTM G72 (AIT Testing), and ASTM D240 (Heat of Combustion (HOC) Testing). Only four solvents were tested through the full battery of tests for evaluation of oxygen compatibility: AK-225G as a baseline comparison, Solstice PF, L-14780, and Vertrel MCA. Baseline solvent AK-225G exhibited the lowest HOC and highest AIT of solvents tested. Nonetheless, Solstice PF, L-14780, and Vertrel MCA HOCs all fell well within the range of properties that are associated with proven oxygen system materials. Tested AITs for these solvents fell only slightly lower than the AIT for the proven AK-225G solvent. Based on these comparisons in which solvents exhibited properties within those ranges seen with proven oxygen system materials, it is believed that Solstice PF, L-14780, and Vertrel MCA would perform well with respect to oxygen compatibility.

  1. Ionic association and solvation of the ionic liquid 1-hexyl-3-methylimidazolium chloride in molecular solvents revealed by vapor pressure osmometry, conductometry, volumetry, and acoustic measurements.

    PubMed

    Sadeghi, Rahmat; Ebrahimi, Nosaibah

    2011-11-17

    A systematic study of osmotic coefficient, conductivity, volumetric and acoustic properties of solutions of ionic liquid 1-hexyl-3-methylimidazolium chloride ([C(6)mim][Cl]) in various molecular solvents has been made at different temperatures in order to study of ionic association and solvation behavior of [C(6)mim][Cl] in different solutions. Precise measurements on electrical conductances of solutions of [C(6)mim][Cl] in water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, and acetonitrile at 293.15, 298.15, and 303.15 K are reported and analyzed with Barthel's low-concentration chemical model (lcCM) to obtain the limiting molar conductivities and association constants of this ionic liquid in the investigated solvents. Strong ion pairing was found for the ionic liquid in 2-propanol, 1-butanol, and 1-propanol, whereas ion association in acetonitrile, methanol and ethanol is rather weak and in water the ionic liquid is fully dissociated. In the second part of this work, the apparent molar volumes and isentropic compressibilities of [C(6)mim][Cl] in water, methanol, ethanol, acetonitrile, 1-propanol, 2-propanol, and 1-butanol are obtained at the 288.15-313.15 K temperature range at 5 K intervals at atmospheric pressure from the precise measurements of density and sound velocity. The infinite dilution apparent molar volume and isentropic compressibility values of the free ions and ion pairs of [C(6)mim][Cl] in the investigated solvents as well as the excess molar volume of the investigated solutions are determined and their variations with temperature and type of solvents are also studied. Finally, the experimental measurements of osmotic coefficient at 318.15 K for binary solutions of [C(6)mim][Cl] in water, methanol, ethanol, 2-propanol, and acetonitrile are taken using the vapor pressure osmometry (VPO) method and from which the values of the solvent activity, vapor pressure, activity coefficients, and Gibbs free energies are calculated. The results are interpreted in terms of ion association, ion-dipole interactions, and structural factors of the ionic liquid and investigated organic solvents. The ionic liquid is solvated to a different extent by the molecular solvents, and ionic association is affected significantly by ionic solvation.

  2. KIC 7177553: A QUADRUPLE SYSTEM OF TWO CLOSE BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, H.; Borkovits, T.; Rappaport, S. A.

    2016-03-01

    KIC 7177553 was observed by the Kepler satellite to be an eclipsing eccentric binary star system with an 18-day orbital period. Recently, an eclipse timing study of the Kepler binaries has revealed eclipse timing variations (ETVs) in this object with an amplitude of ∼100 s and an outer period of 529 days. The implied mass of the third body is that of a super-Jupiter, but below the mass of a brown dwarf. We therefore embarked on a radial velocity (RV) study of this binary to determine its system configuration and to check the hypothesis that it hosts a giant planet. Frommore » the RV measurements, it became immediately obvious that the same Kepler target contains another eccentric binary, this one with a 16.5-day orbital period. Direct imaging using adaptive optics reveals that the two binaries are separated by 0.″4 (∼167 AU) and have nearly the same magnitude (to within 2%). The close angular proximity of the two binaries and very similar γ velocities strongly suggest that KIC 7177553 is one of the rare SB4 systems consisting of two eccentric binaries where at least one system is eclipsing. Both systems consist of slowly rotating, nonevolved, solar-like stars of comparable masses. From the orbital separation and the small difference in γ velocity, we infer that the period of the outer orbit most likely lies in the range of 1000–3000 yr. New images taken over the next few years, as well as the high-precision astrometry of the Gaia satellite mission, will allow us to set much narrower constraints on the system geometry. Finally, we note that the observed ETVs in the Kepler data cannot be produced by the second binary. Further spectroscopic observations on a longer timescale will be required to prove the existence of the massive planet.« less

  3. Wind-accelerated orbital evolution in binary systems with giant stars

    NASA Astrophysics Data System (ADS)

    Chen, Zhuo; Blackman, Eric G.; Nordhaus, Jason; Frank, Adam; Carroll-Nellenback, Jonathan

    2018-01-01

    Using 3D radiation-hydrodynamic simulations and analytic theory, we study the orbital evolution of asymptotic giant branch (AGB) binary systems for various initial orbital separations and mass ratios, and thus different initial accretion modes. The time evolution of binary separations and orbital periods are calculated directly from the averaged mass-loss rate, accretion rate and angular momentum loss rate. We separately consider spin-orbit synchronized and zero-spin AGB cases. We find that the angular momentum carried away by the mass loss together with the mass transfer can effectively shrink the orbit when accretion occurs via wind-Roche lobe overflow. In contrast, the larger fraction of mass lost in Bondi-Hoyle-Lyttleton accreting systems acts to enlarge the orbit. Synchronized binaries tend to experience stronger orbital period decay in close binaries. We also find that orbital period decay is faster when we account for the non-linear evolution of the accretion mode as the binary starts to tighten. This can increase the fraction of binaries that result in common envelope, luminous red novae, Type Ia supernovae and planetary nebulae with tight central binaries. The results also imply that planets in the habitable zone around white dwarfs are unlikely to be found.

  4. Constraining Binary Asteroid Mass Distributions Based On Mutual Motion

    NASA Astrophysics Data System (ADS)

    Davis, Alex B.; Scheeres, Daniel J.

    2017-06-01

    The mutual gravitational potential and torques of binary asteroid systems results in a complex coupling of attitude and orbital motion based on the mass distribution of each body. For a doubly-synchronous binary system observations of the mutual motion can be leveraged to identify and measure the unique mass distributions of each body. By implementing arbitrary shape and order computation of the full two-body problem (F2BP) equilibria we study the influence of asteroid asymmetries on separation and orientation of a doubly-synchronous system. Additionally, simulations of binary systems perturbed from doubly-synchronous behavior are studied to understand the effects of mass distribution perturbations on precession and nutation rates such that unique behaviors can be isolated and used to measure asteroid mass distributions. We apply our investigation to the Trojan binary asteroid system 617 Patroclus and Menoetius (1906 VY), which will be the final flyby target of the recently announced LUCY Discovery mission in March 2033. This binary asteroid system is of particular interest due to the results of a recent stellar occultation study (DPS 46, id.506.09) that suggests the system to be doubly-synchronous and consisting of two-similarly sized oblate ellipsoids, in addition to suggesting the presence mass asymmetries resulting from an impact crater on the southern limb of Menoetius.

  5. Processing Solvent Dependent Morphology of Diketopyrrolopyrrole (DPP) based Low Band Gap Polymer and PCBM Blends

    NASA Astrophysics Data System (ADS)

    Ferdous, Sunzida; Liu, Feng; Russell, Thomas

    2013-03-01

    Solution processing of polymer semiconductors is widely used for fabrication of low cost organic solar cells. Recently, mixed solvent systems or additive based systems for fabricating polymer solar cells have proven to be beneficial for obtaining high performance devices with multi-length scale morphologies. To control the morphology during the processing step, one needs to understand the effect of solvent as it evaporates to form the final thin film structure. In this study, we used diketopyrrolopyrrole (DPP) based low band gap polymer and phenyl-C71-butyric acid methyl ester (PCBM) blend in a series of mixed solvent systems consisting of a good solvent for both of the active material components, as well as different solvents that are good solvents for PCBM, but poor solvents for the polymer. Different evaporation times of the poor solvents during the drying process, and different solubility of the polymer in these poor solvents as well as their interaction with the substrate play an important role in the final morphology. In-situ GIWAXS studies were performed to observe the evolution of the structure as the solvent evaporates. The final morphologies of the thin film devices were also characterized by AFM, TEM, and various x-ray scattering techniques to correlate the morphology with the obtained device performances.

  6. Polarized light curves illuminate wind geometries in Wolf-Rayet binary stars

    NASA Astrophysics Data System (ADS)

    Hoffman, Jennifer L.; Fullard, Andrew G.; Nordsieck, Kenneth H.

    2018-01-01

    Although the majority of massive stars are affected by a companion during the course of their evolution, the role of binary systems in creating supernova and GRB progenitors is not well understood. Binaries containing Wolf-Rayet stars are particularly interesting because they may provide a mechanism for producing the rapid rotation necessary for GRB formation. However, constraining the evolutionary fate of a Wolf-Rayet binary system requires characterizing its mass loss and mass transfer, a difficult prospect in systems whose colliding winds obscure the stars and produce complicated spectral signatures.The technique of spectropolarimetry is ideally suited to studying WR binary systems because it can disentangle spectral components that take different scattering paths through a complex distribution of circumstellar material. In particular, comparing the polarization behavior as a function of orbital phase of the continuum (which arises from the stars) with that of the emission lines (which arise from the interaction region) can provide a detailed view of the wind structures in a WR+O binary and constrain the system’s mass loss and mass transfer properties.We present new continuum and line polarization curves for three WR+O binaries (WR 30, WR 47, and WR 113) obtained with the RSS spectropolarimeter at the Southern African Large Telescope. We use radiative transfer simulations to analyze the polarization curves, and discuss our interpretations in light of current models for V444 Cygni, a well-studied related binary system. Accurately characterizing the structures of the wind collision regions in these massive binaries is key to understanding their evolution and properly accounting for their contribution to the supernova (and possible GRB) progenitor population.

  7. Uncovering the identities of compact objects in high-mass X-ray binaries and gamma-ray binaries by astrometric measurements

    NASA Astrophysics Data System (ADS)

    Yamaguchi, M. S.; Yano, T.; Gouda, N.

    2018-03-01

    We develop a method for identifying a compact object in binary systems with astrometric measurements and apply it to some binaries. Compact objects in some high-mass X-ray binaries and gamma-ray binaries are unknown, which is responsible for the fact that emission mechanisms in such systems have not yet confirmed. The accurate estimate of the mass of the compact object allows us to identify the compact object in such systems. Astrometric measurements are expected to enable us to estimate the masses of the compact objects in the binary systems via a determination of a binary orbit. We aim to evaluate the possibility of the identification of the compact objects for some binary systems. We then calculate probabilities that the compact object is correctly identified with astrometric observation (= confidence level) by taking into account a dependence of the orbital shape on orbital parameters and distributions of masses of white dwarfs, neutron stars and black holes. We find that the astrometric measurements with the precision of 70 μas for γ Cas allow us to identify the compact object at 99 per cent confidence level if the compact object is a white dwarf with 0.6 M⊙. In addition, we can identify the compact object with the precision of 10 μas at 97 per cent or larger confidence level for LS I +61° 303 and 99 per cent or larger for HESS J0632+057. These results imply that the astrometric measurements with the 10 μas precision level can realize the identification of compact objects for γ Cas, LS I +61° 303, and HESS J0632+057.

  8. Spectral properties of binary asteroids

    NASA Astrophysics Data System (ADS)

    Pajuelo, Myriam; Birlan, Mirel; Carry, Benoît; DeMeo, Francesca E.; Binzel, Richard P.; Berthier, Jérôme

    2018-04-01

    We present the first attempt to characterize the distribution of taxonomic class among the population of binary asteroids (15% of all small asteroids). For that, an analysis of 0.8-2.5{μ m} near-infrared spectra obtained with the SpeX instrument on the NASA/IRTF is presented. Taxonomic class and meteorite analog is determined for each target, increasing the sample of binary asteroids with known taxonomy by 21%. Most binary systems are bound in the S-, X-, and C- classes, followed by Q and V-types. The rate of binary systems in each taxonomic class agrees within uncertainty with the background population of small near-Earth objects and inner main belt asteroids, but for the C-types which are under-represented among binaries.

  9. Accretion dynamics in pre-main sequence binaries

    NASA Astrophysics Data System (ADS)

    Tofflemire, B.; Mathieu, R.; Herczeg, G.; Ardila, D.; Akeson, R.; Ciardi, D.; Johns-Krull, C.

    Binary stars are a common outcome of star formation. Orbital resonances, especially in short-period systems, are capable of reshaping the distribution and flows of circumstellar material. Simulations of the binary-disk interaction predict a dynamically cleared gap around the central binary, accompanied by periodic ``pulsed'' accretion events that are driven by orbital motion. To place observational constraints on the binary-disk interaction, we have conducted a long-term monitoring program tracing the time-variable accretion behavior of 9 short-period binaries. In this proceeding we present two results from our campaign: 1) the detection of periodic pulsed accretion events in DQ Tau and TWA 3A, and 2) evidence that the TWA 3A primary is the dominant accretor in the system.

  10. Group extraction of organic compounds present in liquid samples

    NASA Technical Reports Server (NTRS)

    Jahnsen, Vilhelm J. (Inventor)

    1976-01-01

    An extraction device is disclosed comprising a tube containing a substantially inert, chemically non-reactive packing material with a large surface area to volume ratio. A sample which consists of organic compounds dissolved in a liquid, is introduced into the tube. As the sample passes through the packing material it spreads over the material's large surface area to form a thin liquid film which is held on the packing material in a stationary state. A particular group or family of compounds is extractable from the sample by passing a particular solvent system consisting of a solvent and selected reagents through the packing material. The reagents cause optimum conditions to exist for the compounds of the particular family to pass through the phase boundary between the sample liquid and the solvent of the solvent system. Thus, the compounds of the particular family are separated from the sample liquid and become dissolved in the solvent of the solvent system. The particular family of compounds dissolved in the solvent, representing an extract, exits the tube together with the solvent through the tube's nozzle, while the rest of the sample remains on the packing material in a stationary state. Subsequently, a different solvent system may be passed through the packing material to extract another family of compounds from the remaining sample on the packing material.

  11. Ion conducting fluoropolymer carbonates for alkali metal ion batteries

    DOEpatents

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Balsara, Nitash P.; Thelen, Jacob; Devaux, Didier

    2017-09-05

    Liquid or solid electrolyte compositions are described that comprise a homogeneous solvent system and an alkali metal salt dissolved in said solvent system. The solvent system may comprise a fluoropolymer, having one or two terminal carbonate groups covalently coupled thereto. Batteries containing such electrolyte compositions are also described.

  12. Control of Chemical Equilibrium by Solvent: A Basis for Teaching Physical Chemistry of Solutions

    ERIC Educational Resources Information Center

    Prezhdo, Oleg V.; Craig, Colleen F.; Fialkov, Yuriy; Prezhdo, Victor V.

    2007-01-01

    The study demonstrates that the solvent present in a system can highly alter and control the chemical equilibrium of a system. The results show that the dipole moment and polarizibility of a system can be highly altered by using different mixed solvents.

  13. The Eclipsing Binary On-Line Atlas (EBOLA)

    NASA Astrophysics Data System (ADS)

    Bradstreet, D. H.; Steelman, D. P.; Sanders, S. J.; Hargis, J. R.

    2004-05-01

    In conjunction with the upcoming release of \\it Binary Maker 3.0, an extensive on-line database of eclipsing binaries is being made available. The purposes of the atlas are: \\begin {enumerate} Allow quick and easy access to information on published eclipsing binaries. Amass a consistent database of light and radial velocity curve solutions to aid in solving new systems. Provide invaluable querying capabilities on all of the parameters of the systems so that informative research can be quickly accomplished on a multitude of published results. Aid observers in establishing new observing programs based upon stars needing new light and/or radial velocity curves. Encourage workers to submit their published results so that others may have easy access to their work. Provide a vast but easily accessible storehouse of information on eclipsing binaries to accelerate the process of understanding analysis techniques and current work in the field. \\end {enumerate} The database will eventually consist of all published eclipsing binaries with light curve solutions. The following information and data will be supplied whenever available for each binary: original light curves in all bandpasses, original radial velocity observations, light curve parameters, RA and Dec, V-magnitudes, spectral types, color indices, periods, binary type, 3D representation of the system near quadrature, plots of the original light curves and synthetic models, plots of the radial velocity observations with theoretical models, and \\it Binary Maker 3.0 data files (parameter, light curve, radial velocity). The pertinent references for each star are also given with hyperlinks directly to the papers via the NASA Abstract website for downloading, if available. In addition the Atlas has extensive searching options so that workers can specifically search for binaries with specific characteristics. The website has more than 150 systems already uploaded. The URL for the site is http://ebola.eastern.edu/.

  14. Binary Systems and the Initial Mass Function

    NASA Astrophysics Data System (ADS)

    Malkov, O. Yu.

    2017-07-01

    In the present paper we discuss advantages and disadvantages of binary stars, which are important for star formation history determination. We show that to make definite conclusions of the initial mass function shape, it is necessary to study binary population well enough to correct the luminosity function for unresolved binaries; to construct the mass-luminosity relation based on wide binaries data, and to separate observational mass functions of primaries, of secondaries, and of unresolved binaries.

  15. Treatment System for Removing Halogenated Compounds from Contaminated Sources

    NASA Technical Reports Server (NTRS)

    Clausen, Christian A. (Inventor); Yestrebsky, Cherie L. (Inventor); Quinn, Jacqueline W. (Inventor)

    2015-01-01

    A treatment system and a method for removal of at least one halogenated compound, such as PCBs, found in contaminated systems are provided. The treatment system includes a polymer blanket for receiving at least one non-polar solvent. The halogenated compound permeates into or through a wall of the polymer blanket where it is solubilized with at least one non-polar solvent received by said polymer blanket forming a halogenated solvent mixture. This treatment system and method provides for the in situ removal of halogenated compounds from the contaminated system. In one embodiment, the halogenated solvent mixture is subjected to subsequent processes which destroy and/or degrade the halogenated compound.

  16. Comparison of two gas chromatograph models and analysis of binary data

    NASA Technical Reports Server (NTRS)

    Keba, P. S.; Woodrow, P. T.

    1972-01-01

    The overall objective of the gas chromatograph system studies is to generate fundamental design criteria and techniques to be used in the optimum design of the system. The particular tasks currently being undertaken are the comparison of two mathematical models of the chromatograph and the analysis of binary system data. The predictions of two mathematical models, an equilibrium absorption model and a non-equilibrium absorption model exhibit the same weaknesses in their inability to predict chromatogram spreading for certain systems. The analysis of binary data using the equilibrium absorption model confirms that, for the systems considered, superposition of predicted single component behaviors is a first order representation of actual binary data. Composition effects produce non-idealities which limit the rigorous validity of superposition.

  17. Using Model Point Spread Functions to Identifying Binary Brown Dwarf Systems

    NASA Astrophysics Data System (ADS)

    Matt, Kyle; Stephens, Denise C.; Lunsford, Leanne T.

    2017-01-01

    A Brown Dwarf (BD) is a celestial object that is not massive enough to undergo hydrogen fusion in its core. BDs can form in pairs called binaries. Due to the great distances between Earth and these BDs, they act as point sources of light and the angular separation between binary BDs can be small enough to appear as a single, unresolved object in images, according to Rayleigh Criterion. It is not currently possible to resolve some of these objects into separate light sources. Stephens and Noll (2006) developed a method that used model point spread functions (PSFs) to identify binary Trans-Neptunian Objects, we will use this method to identify binary BD systems in the Hubble Space Telescope archive. This method works by comparing model PSFs of single and binary sources to the observed PSFs. We also use a method to compare model spectral data for single and binary fits to determine the best parameter values for each component of the system. We describe these methods, its challenges and other possible uses in this poster.

  18. Hydrodynamical processes in coalescing binary stars

    NASA Astrophysics Data System (ADS)

    Lai, Dong

    1994-01-01

    Coalescing neutron star binaries are considered to be the most promising sources of gravitational waves that could be detected by the planned laser-interferometer LIGO/VIRGO detectors. Extracting gravity wave signals from noisy data requires accurate theoretical waveforms in the frequency range 10-1000 Hz end detailed understanding of the dynamics of the binary orbits. We investigate the quasi-equilibrium and dynamical tidal interactions in coalescing binary stars, with particular focus on binary neutron stars. We develop a new formalism to study the equilibrium and dynamics of fluid stars in binary systems. The stars are modeled as compressible ellipsoids, and satisfy polytropic equation of state. The hydrodynamic equations are reduced to a set of ordinary differential equations for the evolution of the principal axes and other global quantities. The equilibrium binary structure is determined by a set of algebraic equations. We consider both synchronized and nonsynchronized systems, obtaining the generalizations to compressible fluid of the classical results for the ellipsoidal binary configurations. Our method can be applied to a wide variety of astrophysical binary systems containing neutron stars, white dwarfs, main-sequence stars and planets. We find that both secular and dynamical instabilities can develop in close binaries. The quasi-static (secular) orbital evolution, as well as the dynamical evolution of binaries driven by viscous dissipation and gravitational radiation reaction are studied. The development of the dynamical instability accelerates the binary coalescence at small separation, leading to appreciable radial infall velocity near contact. We also study resonant excitations of g-mode oscillations in coalescing binary neutron stars. A resonance occurs when the frequency of the tidal driving force equals one of the intrinsic g-mode frequencies. Using realistic microscopic nuclear equations of state, we determine the g-modes in a cold neutron atar. Resonant excitations of these g-modes during the last few minutes of the binary coalescence result in energy transfer and angular momentum transfer from the binary orbit to the neutron star. Because of the weak coupling between the g-modes and the tidal potential, the induced orbital phase errors due to resonances are small. However, resonant excitations of the g-modes play an important role in the tidal heating of binary neutron stars.

  19. Mass loss from interacting close binary systems

    NASA Technical Reports Server (NTRS)

    Plavec, M. J.

    1981-01-01

    The three well-defined classes of evolved binary systems that show evidence of present and/or past mass loss are the cataclysmic variables, the Algols, and Wolf-Rayet stars. It is thought that the transformation of supergiant binary systems into the very short-period cataclysmic variables must have been a complex process. The new evidence that has recently been obtained from the far ultraviolet spectra that a certain subclass of the Algols (the Serpentids) are undergoing fairly rapid evolution is discussed. It is thought probable that the remarkable mass outflow observed in them is connected with a strong wind powered by accretion. The origin of the circumbinary clouds or flat disks that probably surround many strongly interacting binaries is not clear. Attention is also given to binary systems with hot white dwarf or subdwarf components, such as the symbiotic objects and the BQ stars; it is noted that in them both components may be prone to an enhanced stellar wind.

  20. A New Equilibrium State for Singly Synchronous Binary Asteroids

    NASA Astrophysics Data System (ADS)

    Golubov, Oleksiy; Unukovych, Vladyslav; Scheeres, Daniel J.

    2018-04-01

    The evolution of rotation states of small asteroids is governed by the Yarkovsky–O’Keefe–Radzievskii–Paddack (YORP) effect, nonetheless some asteroids can stop their YORP evolution by attaining a stable equilibrium. The same is true for binary asteroids subjected to the binary YORP (BYORP) effect. Here we discuss a new type of equilibrium that combines these two, which is possible in a singly synchronous binary system. This equilibrium occurs when the normal YORP, the tangential YORP, and the BYORP compensate each other, and tidal torques distribute the angular momentum between the components of the system and dissipate energy. If unperturbed, such a system would remain singly synchronous in perpetuity with constant spin and orbit rates, as the tidal torques dissipate the incoming energy from impinging sunlight at the same rate. The probability of the existence of this kind of equilibrium in a binary system is found to be on the order of a few percent.

  1. The Evolution of Compact Binary Star Systems.

    PubMed

    Postnov, Konstantin A; Yungelson, Lev R

    2014-01-01

    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Mergings of compact-star binaries are expected to be the most important sources for forthcoming gravitational-wave (GW) astronomy. In the first part of the review, we discuss observational manifestations of close binaries with NS and/or BH components and their merger rate, crucial points in the formation and evolution of compact stars in binary systems, including the treatment of the natal kicks, which NSs and BHs acquire during the core collapse of massive stars and the common envelope phase of binary evolution, which are most relevant to the merging rates of NS-NS, NS-BH and BH-BH binaries. The second part of the review is devoted mainly to the formation and evolution of binary WDs and their observational manifestations, including their role as progenitors of cosmologically-important thermonuclear SN Ia. We also consider AM CVn-stars, which are thought to be the best verification binary GW sources for future low-frequency GW space interferometers.

  2. Stability of binaries. Part II: Rubble-pile binaries

    NASA Astrophysics Data System (ADS)

    Sharma, Ishan

    2016-10-01

    We consider the stability of the binary asteroids whose members are granular aggregates held together by self-gravity alone. A binary is said to be stable whenever both its members are orbitally and structurally stable to both orbital and structural perturbations. To this end, we extend the stability analysis of Sharma (Sharma [2015] Icarus, 258, 438-453), that is applicable to binaries with rigid members, to the case of binary systems with rubble members. We employ volume averaging (Sharma et al. [2009] Icarus, 200, 304-322), which was inspired by past work on elastic/fluid, rotating and gravitating ellipsoids. This technique has shown promise when applied to rubble-pile ellipsoids, but requires further work to settle some of its underlying assumptions. The stability test is finally applied to some suspected binary systems, viz., 216 Kleopatra, 624 Hektor and 90 Antiope. We also see that equilibrated binaries that are close to mobilizing their maximum friction can sustain only a narrow range of shapes and, generally, congruent shapes are preferred.

  3. 1E 1048.5 + 5421 - A new 114 minute AM Herculis binary

    NASA Technical Reports Server (NTRS)

    Morris, Simon L.; Schmidt, Gary D.; Liebert, James; Gioia, Isabella M.; Maccacaro, Tommaso

    1987-01-01

    The discovery of a new AM Herculis binary system, found as a serendipitous Einstein X-ray source, is described. Like the previously discovered mass-transfer binaries involving synchronously rotating magnetic white-dwarf primaries, the system exhibits strong circular polarization, X-ray and optical continuum variations, and optical emission lines, all of which seem to be modulated with these binary periods of 114.5 + or - 0.2 minutes. Although all data are not concurrent, the new system appears to possess the highest ratio of F(x)/F(opt) yet found for an AM Her system. The surprising accumulation of AM Her variables with periods near 114 minute is commented on.

  4. Characterisation of nimesulide-betacyclodextrins systems prepared by supercritical fluid impregnation.

    PubMed

    Moneghini, M; Kikic, I; Perissutti, B; Franceschinis, E; Cortesi, A

    2004-11-01

    The purpose of this study was to apply the supercritical CO(2) impregnation process for preparing solvent-free nimesulide (NMS)-betacyclodextrins (BCD) association systems with enhanced drug dissolution rate. Several drug-to-carrier molar ratios were tested (1:1; 1:2.5; 1:3.5) at different conditions of temperatures (40, 100, and 130 degrees C) and pressures (140, 190 or 220 bar). The physical and morphological characterisation of the systems using powder X-ray diffraction, thermal analysis, diffuse reflectance Fourier transform-infrared spectroscopy and scanning electron microscopy was carried out to understand the influence of this technological process on the physical status of single components and binary systems and to detect possible interactions between drug and carrier. These analyses provided no evidence of a complete inclusion of NMS in the carrier but the existence of interactions between drug and carrier together with a partial dehydration of the BCD and the formation of drug crystallites with lower melting point and heat of fusion than the native NMS. These phenomena were more intense when severe conditions of pressure and temperature (220 bar and 130 degrees C) were used during impregnation trials and when the amount of BCD augmented in the systems. These activated solid state of the impregnated systems promoted an enhancement of drug dissolution rate that, in keeping with the results of the physical characterisation, was function of the process conditions and BCD content.

  5. A photometric analysis of the neglected EW-type binary V336 TrA

    NASA Astrophysics Data System (ADS)

    Kriwattanawong, W.; Sarotsakulchai, T.; Maungkorn, S.; Reichart, D. E.; Haislip, J. B.; Kouprianov, V. V.; LaCluyze, A. P.; Moore, J. P.

    2018-05-01

    This study presents an analysis of photometric light curves and absolute parameters for the EW-type binary V336 TrA. VRI imaging observations were taken in 2013 by using the robotic telescopes PROMPT 4 and PROMPT 5 at Cerro Tololo Inter-American Observatory (CTIO), Chile. The observed light curves were fitted by using the Wilson-Devinney method. The results showed that V336 TrA is a W-type contact binary with a mass ratio of q = 1.396. The binary is a weak contact system with a fill-out factor of f = 15.69%. The system contains components with masses of 0.653 M⊙ and 0.912 M⊙ for the hotter and the cooler, respectively. The location of the secondary (less massive) component on the log M - log L diagram was found to be near the TAMS. The component has evolved to be oversize and overluminous. The orbital angular momentum of the binary was found to be log Jo = 51.61 cgs, less than all detached systems for same mass. The system has undergone angular momentum and/or mass loss, during the binary evolution from the detached to contact system.

  6. Binary Number System Training for Graduate Foreign Students at New York Institute of Technology.

    ERIC Educational Resources Information Center

    Sudsataya, Nuntawun

    This thesis describes the design, development, implementation, and evaluation of a training module to instruct graduate foreign students to learn the representation of the binary system and the method of decimal-binary conversion. The designer selected programmed instruction as the method of instruction and used the "lean" approach to…

  7. Experimental consideration of capillary chromatography based on tube radial distribution of ternary mixture carrier solvents under laminar flow conditions.

    PubMed

    Jinno, Naoya; Hashimoto, Masahiko; Tsukagoshi, Kazuhiko

    2011-01-01

    A capillary chromatography system has been developed based on the tube radial distribution of the carrier solvents using an open capillary tube and a water-acetonitrile-ethyl acetate mixture carrier solution. This tube radial distribution chromatography (TRDC) system works under laminar flow conditions. In this study, a phase diagram for the ternary mixture carrier solvents of water, acetonitrile, and ethyl acetate was constructed. The phase diagram that included a boundary curve between homogeneous and heterogeneous solutions was considered together with the component ratios of the solvents in the homogeneous carrier solutions required for the TRDC system. It was found that the TRDC system performed well with homogeneous solutions having component ratios of the solvents that were positioned near the homogeneous-heterogeneous solution boundary of the phase diagram. For preparing the carrier solutions of water-hydrophilic/hydrophobic organic solvents for the TRDC system, we used for the first time methanol, ethanol, 1,4-dioxane, and 1-propanol, instead of acetonitrile (hydrophilic organic solvent), as well as chloroform and 1-butanol, instead of ethyl acetate (hydrophobic organic solvent). The homogeneous ternary mixture carrier solutions were prepared near the homogeneous-heterogeneous solution boundary. Analyte mixtures of 2,6-naphthalenedisulfonic acid and 1-naphthol were separated with the TRDC system using these homogeneous ternary mixture carrier solutions. The pressure change in the capillary tube under laminar flow conditions might alter the carrier solution from homogeneous in the batch vessel to heterogeneous, thus affecting the tube radial distribution of the solvents in the capillary tube.

  8. New prospects for observing and cataloguing exoplanets in well-detached binaries

    NASA Astrophysics Data System (ADS)

    Schwarz, R.; Funk, B.; Zechner, R.; Bazsó, Á.

    2016-08-01

    This paper is devoted to study the circumstances favourable to detect circumstellar and circumbinary planets in well-detached binary-star systems using eclipse timing variations (ETVs). We investigated the dynamics of well-detached binary star systems with a star separation from 0.5 to 3 au, to determine the probability of the detection of such variations with ground-based telescopes and space telescopes (like former missions CoRoT and Kepler and future space missions Plato, Tess and Cheops). For the chosen star separations both dynamical configurations (circumstellar and circumbinary) may be observable. We performed numerical simulations by using the full three-body problem as dynamical model. The dynamical stability and the ETVs are investigated by computing ETV maps for different masses of the secondary star and the exoplanet (Earth, Neptune and Jupiter size). In addition we changed the planet's and binary's eccentricities. We conclude that many amplitudes of ETVs are large enough to detect exoplanets in binary-star systems. As an application, we prepared statistics of the catalogue of exoplanets in binary star systems which we introduce in this article and compared the statistics with our parameter-space which we used for our calculations. In addition to these statistics of the catalogue we enlarged them by the investigation of well-detached binary star systems from several catalogues and discussed the possibility of further candidates.

  9. Lipase mediated synthesis of rutin fatty ester: Study of its process parameters and solvent polarity.

    PubMed

    Vaisali, C; Belur, Prasanna D; Regupathi, Iyyaswami

    2017-10-01

    Lipophilization of antioxidants is recognized as an effective strategy to enhance solubility and thus effectiveness in lipid based food. In this study, an effort was made to optimize rutin fatty ester synthesis in two different solvent systems to understand the influence of reaction system hydrophobicity on the optimum conditions using immobilised Candida antartica lipase. Under unoptimized conditions, 52.14% and 13.02% conversion was achieved in acetone and tert-butanol solvent systems, respectively. Among all the process parameters, water activity of the system was found to show highest influence on the conversion in each reaction system. In the presence of molecular sieves, the ester production increased to 62.9% in tert-butanol system, unlike acetone system. Under optimal conditions, conversion increased to 60.74% and 65.73% in acetone and tert-butanol system, respectively. This study shows, maintaining optimal water activity is crucial in reaction systems having polar solvents compared to more non-polar solvents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. ODC-Free Solvent Implementation Issues for Vulcanized Rubber and Bond Systems

    NASA Technical Reports Server (NTRS)

    Hodgson, James R.; McCool, Alex (Technical Monitor)

    2001-01-01

    Thiokol Propulsion has worked extensively to replace 1,1,1-trichloroethane (TCA) with ozone depleting chemicals (ODC)-free solvents for use in the manufacture of the Reusable Solid Rocket Motor (RSRM) for the Space Shuttle Program. As Thiokol has transitioned from sub-scale to full-scale testing and implementation of these new solvents, issues have been discovered which have required special attention. The original intent of Thiokol's solvent replacement strategy was to replace TCA with a single drop-in solvent for all equivalent applications. We have learned that a single candidate does not exist for replacing TCA. Solvent incompatibility with process materials has caused us to seek for niche solvents and/or processing changes that provide an ODC-free solution for special applications. This paper addresses some of the solvent incompatibilities, which have lead to processes changes and possible niche solvent usage. These incompatibilities were discovered during full-scale testing of ODC-free solvents and relate to vulcanized rubber and bond systems in the RSRM. Specifically, the following items are presented: (1) Cure effects of d-limonene based solvents on Silica Filled Ethylene Propylene Diene Monomer (SF-EPDM) rubber. During full-scale test operations, Thiokol discovered that d-limonene (terpene) based solvents inhibit the cure of EPDM rubber. Subsequent testing showed the same issue with Nitrile Butadiene Rubber (NBR). Also discussed are efforts to minimize uncured rubber exposure to solvents; and (2) Cured bond system sensitivity to ODC-free solvents. During full scale testing it was discovered that a natural rubber to steel vulcanized bond could degrade after prolonged exposure to ODC-free solvents. Follow on testing showed that low vapor pressure and residence time seemed to be most likely cause for failure.

  11. Population trends of binary near-Earth asteroids based on radar and lightcurves observations

    NASA Astrophysics Data System (ADS)

    Brozovic, Marina; Benner, Lance A. M.; Naidu, Shantanu P.; Taylor, Patrick A.; Busch, Michael W.; Margot, Jean-Luc; Nolan, Michael C.; Howell, Ellen S.; Springmann, Alessondra; Giorgini, Jon D.; Shepard, Michael K.; Magri, Christopher; Richardson, James E.; Rivera-Valentin, Edgard G.; Rodriguez-Ford, Linda A.; Zambrano Marin, Luisa Fernanda

    2016-10-01

    The Arecibo and Goldstone planetary radars are invaluable instruments for the discovery and characterization of binary and triple asteroids in the near-Earth asteroid (NEA) population. To date, 41 out of 56 known binaries and triples (~73% of the objects) have been discovered by radar and 49 of these multiple systems have been detected by radar. Their absolute magnitudes range from 12.4 for (1866) Sisyphus to 22.6 for 2015 TD144 and have a mean and rms dispersion of 18.1+-2.0. There is a pronounced decrease in the abundance of binaries for absolute magnitudes H>20. One of the smallest binaries, 1994 CJ1, with an absolute magnitude H=21.4, is also the most accessible binary for a spacecraft rendezvous. Among 365 NEAs with H<22 (corresponding to diameters larger than ~ 140 m) detected by radar since 1999, ~13% have at least one companion. Two triple systems are known, (15391) 2001 SN263 and (136617) 1994 CC, but this is probably an underestimate due to low signal to noise ratios (SNRs) for many of the binary radar detections. Taxonomic classes have been reported for 41 out of 56 currently known multiple systems and some trends are starting to emerge: at least 50% of multiple asteroid systems are S, Sq, Q, or Sk, and at least 20% are optically dark (C, B, P, or U). Thirteen V-class NEAs have been observed by radar and six of them are binaries. Curiously, a comparable number of E-class objects have been detected by radar, but none is known to be a binary.

  12. Interactions of Organic Solvents at Graphene/α-Al 2 O 3 and Graphene Oxide/α-Al 2 O 3 Interfaces Studied by Sum Frequency Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achtyl, Jennifer L.; Vlassiouk, Ivan V.; Dai, Sheng

    2014-07-17

    The adsorption of 1-hexanol from cyclohexane-d12 at single-layer graphene/α-Al2O3 interfaces was probed at mole percent values as low as 0.05 in the C–H stretching region using vibrational sum frequency generation (SFG). The SFG spectra are indiscernible from those obtained in the absence of graphene, and from those obtained in the presence of graphene oxide films prepared via oxygen plasma treatment of pristine single-layer graphene. A Langmuir adsorption model yields observed free adsorption energies of -19.9(5) to -20.9(3) kJ/mol for the three interfaces. The results indicate that the molecular structure of the hexanol alkyl chain is subject to the same orientationmore » distribution when graphene, oxidized or not, is present or absent at the α-Al2O3/cyclohexane-d12 interface. Moreover, it appears that the adsorption of 1-hexanol in this binary mixture is driven by hexanol interactions with the underlying oxide support, and that a single layer of graphene does not influence the extent of this interaction, even when defects are introduced to it. Finally, our structural and quantitative thermodynamic data provide important benchmarks for theoretical calculations and atomistic simulations of liquid/graphene interfaces. We hypothesize that defects emerging in graphene during operation of any device application that relies on layered solvent/graphene/oxide interfaces have little impact on the interfacial structure or thermodynamics, at least for the binary mixture and over the range of defect densities probed in our studies.« less

  13. Self-thermophoresis and thermal self-diffusion in liquids and gases.

    PubMed

    Brenner, Howard

    2010-09-01

    This paper demonstrates the existence of self-thermophoresis, a phenomenon whereby a virtual thermophoretic force arising from a temperature gradient in a quiescent single-component liquid or gas acts upon an individual molecule of that fluid in much the same manner as a "real" thermophoretic force acts upon a macroscopic, non-Brownian body immersed in that same fluid. In turn, self-thermophoresis acting in concert with Brownian self-diffusion gives rise to the phenomenon of thermal self-diffusion in single-component fluids. The latter furnishes quantitative explanations of both thermophoresis in pure fluids and thermal diffusion in binary mixtures (the latter composed of a dilute solution of a physicochemically inert solute whose molecules are large compared with those of the solvent continuum). Explicitly, the self-thermophoretic theory furnishes a simple expression for both the thermophoretic velocity U of a macroscopic body in a single-component fluid subjected to a temperature gradient ∇T , and the intimately related binary thermal diffusion coefficient D{T} for a two-component colloidal or macromolecular mixture. The predicted expressions U=-D{T}∇T≡-βD{S}∇T and D{T}=βD{S} (with β and D{S} the pure solvent's respective thermal expansion and isothermal self-diffusion coefficients) are each noted to accord reasonably well with experimental data for both liquids and gases. The likely source of systematic deviations of the predicted values of D{T} from these data is discussed. This appears to be the first successful thermodiffusion theory applicable to both liquids and gases, a not insignificant achievement considering that the respective thermal diffusivities and thermophoretic velocities of these two classes of fluids differ by as much as six orders of magnitude.

  14. A massive binary black-hole system in OJ 287 and a test of general relativity.

    PubMed

    Valtonen, M J; Lehto, H J; Nilsson, K; Heidt, J; Takalo, L O; Sillanpää, A; Villforth, C; Kidger, M; Poyner, G; Pursimo, T; Zola, S; Wu, J-H; Zhou, X; Sadakane, K; Drozdz, M; Koziel, D; Marchev, D; Ogloza, W; Porowski, C; Siwak, M; Stachowski, G; Winiarski, M; Hentunen, V-P; Nissinen, M; Liakos, A; Dogru, S

    2008-04-17

    Tests of Einstein's general theory of relativity have mostly been carried out in weak gravitational fields where the space-time curvature effects are first-order deviations from Newton's theory. Binary pulsars provide a means of probing the strong gravitational field around a neutron star, but strong-field effects may be best tested in systems containing black holes. Here we report such a test in a close binary system of two candidate black holes in the quasar OJ 287. This quasar shows quasi-periodic optical outbursts at 12-year intervals, with two outburst peaks per interval. The latest outburst occurred in September 2007, within a day of the time predicted by the binary black-hole model and general relativity. The observations confirm the binary nature of the system and also provide evidence for the loss of orbital energy in agreement (within 10 per cent) with the emission of gravitational waves from the system. In the absence of gravitational wave emission the outburst would have happened 20 days later.

  15. Synergies in Astrometry: Predicting Navigational Error of Visual Binary Stars

    NASA Astrophysics Data System (ADS)

    Gessner Stewart, Susan

    2015-08-01

    Celestial navigation can employ a number of bright stars which are in binary systems. Often these are unresolved, appearing as a single, center-of-light object. A number of these systems are, however, in wide systems which could introduce a margin of error in the navigation solution if not handled properly. To illustrate the importance of good orbital solutions for binary systems - as well as good astrometry in general - the relationship between the center-of-light versus individual catalog position of celestial bodies and the error in terrestrial position derived via celestial navigation is demonstrated. From the list of navigational binary stars, fourteen such binary systems with at least 3.0 arcseconds apparent separation are explored. Maximum navigational error is estimated under the assumption that the bright star in the pair is observed at maximum separation, but the center-of-light is employed in the navigational solution. The relationships between navigational error and separation, orbital periods, and observers' latitude are discussed.

  16. Numerical Simulations of Close and Contact Binary Systems Having Bipolytropic Equation of State

    NASA Astrophysics Data System (ADS)

    Kadam, Kundan; Clayton, Geoffrey C.; Motl, Patrick M.; Marcello, Dominic; Frank, Juhan

    2017-01-01

    I present the results of the numerical simulations of the mass transfer in close and contact binary systems with both stars having a bipolytropic (composite polytropic) equation of state. The initial binary systems are obtained by a modifying Hachisu’s self-consistent field technique. Both the stars have fully resolved cores with a molecular weight jump at the core-envelope interface. The initial properties of these simulations are chosen such that they satisfy the mass-radius relation, composition and period of a late W-type contact binary system. The simulations are carried out using two different Eulerian hydrocodes, Flow-ER with a fixed cylindrical grid, and Octo-tiger with an AMR capable cartesian grid. The detailed comparison of the simulations suggests an agreement between the results obtained from the two codes at different resolutions. The set of simulations can be treated as a benchmark, enabling us to reliably simulate mass transfer and merger scenarios of binary systems involving bipolytropic components.

  17. Mass flow in interacting binaries observed in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji

    1989-01-01

    Recent satellite observations of close binary systems show that practically all binaries exhibit evidence of mass flow and that, where the observations are sufficiently detailed, a fraction of the matter flowing out of the mass-losing component is accreted by the companion and the remainder is lost from the binary system. The mass flow is not conservative. During the phase of dynamic mass flow, the companion star becomes immersed in optically-thick plasma and the physical properties of that star elude close scrutiny.

  18. In what sense a neutron star-black hole binary is the holy grail for testing gravity?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagchi, Manjari; Torres, Diego F., E-mail: manjari.bagchi@icts.res.in, E-mail: dtorres@ieec.uab.es

    2014-08-01

    Pulsars in binary systems have been very successful to test the validity of general relativity in the strong field regime [1-4]. So far, such binaries include neutron star-white dwarf (NS-WD) and neutron star-neutron star (NS-NS) systems. It is commonly believed that a neutron star-black hole (NS-BH) binary will be much superior for this purpose. But in what sense is this true? Does it apply to all possible deviations?.

  19. Evolutionary Pathways for Asteroid Satellites

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth Andrew

    2015-08-01

    The YORP-induced rotational fission hypothesis is a proposed mechanism for the creation of small asteroid binaries, which make up approximately 1/6-th of the near-Earth asteroid and small Main Belt asteroid populations. The YORP effect is a radiative torque that rotationally accelerates asteroids on timescales of thousands to millions of years. As asteroids rotationally accelerate, centrifugal accelerations on material within the body can match gravitational accelerations holding that material in place. When this occurs, that material goes into orbit. Once in orbit that material coalesces into a companion that undergoes continued dynamical evolution.Observations with radar, photometric and direct imaging techniques reveal a diverse array of small asteroid satellites. These systems can be sorted into a number of morphologies according to size, multiplicity of members, dynamical orbit and spin states, and member shapes. For instance, singly synchronous binaries have short separation distances between the two members, rapidly rotating oblate primary members, and tidally locked prolate secondary members. Other confirmed binary morphologies include doubly synchronous, tight asynchronous and wide asynchronous binaries. Related to these binary morphologies are unbound paired asteroid systems and bi-lobate contact binaries.A critical test for the YORP-induced rotational fission hypothesis is whether the binary asteroids produced evolve to the observed binary and related systems. In this talk I will review how this evolution is believed to occur according to gravitational dynamics, mutual body tides and the binary YORP effect.

  20. Binary statistics among population II stars

    NASA Astrophysics Data System (ADS)

    Zinnecker, H.; Köhler, R.; Jahreiß, H.

    2004-08-01

    Population II stars are old, metal-poor, Galactic halo stars with high proper motion. We have carried out a visual binary survey of 164 halo stars in the solar neighborhood (median distance 100 pc), using infrared speckle interferometry, adaptive optics, and wide field direct imaging. The sample is based on the lists of Population II stars of Carney et al. (1994) and Norris (1986), with reliable distances from HIPPARCOS measurements. At face value, we found 33 binaries, 6 triples, and 1 quadruple system. When we limit ourselves to K-band flux ratios larger than 0.1 (to avoid background contamination), the numbers drop to 9 binaries and 1 triple, corresponding to a binary frequency of 6 - 7 % above our angular resolution limit of about 0.1 arcsec. If we count all systems with K-band flux ratios greater than 0.01, we obtain 15 more binaries and 3 more triples, corresponding to a binary frequency for projected separations in excess of 10 AU of around 20 %. This is to be compared with the frequency of spectroscopic binaries (up to a period of 3000 days) of Population II stars of about 15 % (Latham et al. 2002). We also determined a semi-major axis distribution for our visual Population II binary and triple systems, which appears to be remarkably different from that of Population I stars. Second epoch-observations must help confirm the reality of our results.

  1. Optimization of binary thermodynamic and phase diagram data

    NASA Astrophysics Data System (ADS)

    Bale, Christopher W.; Pelton, A. D.

    1983-03-01

    An optimization technique based upon least squares regression is presented to permit the simultaneous analysis of diverse experimental binary thermodynamic and phase diagram data. Coefficients of polynomial expansions for the enthalpy and excess entropy of binary solutions are obtained which can subsequently be used to calculate the thermodynamic properties or the phase diagram. In an interactive computer-assisted analysis employing this technique, one can critically analyze a large number of diverse data in a binary system rapidly, in a manner which is fully self-consistent thermodynamically. Examples of applications to the Bi-Zn, Cd-Pb, PbCl2-KCl, LiCl-FeCl2, and Au-Ni binary systems are given.

  2. Synthesis and characterization of binary (CuO)0.6(CeO2)0.4 nanoparticles via a simple heat treatment method

    NASA Astrophysics Data System (ADS)

    Baqer, Anwar Ali; Matori, Khamirul Amin; Al-Hada, Naif Mohammed; Shaari, Abdul Halim; Kamari, Halimah Mohamed; Saion, Elias; Chyi, Josephine Liew Ying; Abdullah, Che Azurahanim Che

    2018-06-01

    A binary (CuO)0.6 (CeO2)0.4 nanoparticles were prepared via thermal treatment method, using copper nitrate, cerium nitrate as precursors, PVP as capping agent and de-ionized water as a solvent. The structures, morphology, composition of the element and optical properties of these nanoparticles have been studied under different temperatures using various techniques. The XRD spectrum of the samples at 500 °C and above confirmed the existence of both monoclinic (CuO) and cubic fluorite (CeO2) structures. The findings of FESEM and TEM exhibited the average practical size and agglomeration increment with an elevation in the calcination temperature. The synthesized nanoparticles were also characterized by FTIR, which indicated the formation of binary Cu-O and Ce-O bonds. The EDX analysis was performed to indicate the chemical composition of the sample. The double energy band gaps of (CuO)0.6(CeO2)0.4 reduction with rising calcination temperature, can be referred to the enhancement of the crystallinity of the samples. PL intensity of (CuO)0.6(CeO2)0.4 nanoparticles peaks, which increased with the elevation of the calcination temperature to 800 °C was observed from the PL spectrum; this was due to the increment of the particle size that occurred.

  3. Extraction of organic compounds with room temperature ionic liquids.

    PubMed

    Poole, Colin F; Poole, Salwa K

    2010-04-16

    Room temperature ionic liquids are novel solvents with a rather specific blend of physical and solution properties that makes them of interest for applications in separation science. They are good solvents for a wide range of compounds in which they behave as polar solvents. Their physical properties of note that distinguish them from conventional organic solvents are a negligible vapor pressure, high thermal stability, and relatively high viscosity. They can form biphasic systems with water or low polarity organic solvents and gases suitable for use in liquid-liquid and gas-liquid partition systems. An analysis of partition coefficients for varied compounds in these systems allows characterization of solvent selectivity using the solvation parameter model, which together with spectroscopic studies of solvent effects on probe substances, results in a detailed picture of solvent behavior. These studies indicate that the solution properties of ionic liquids are similar to those of polar organic solvents. Practical applications of ionic liquids in sample preparation include extractive distillation, aqueous biphasic systems, liquid-liquid extraction, liquid-phase microextraction, supported liquid membrane extraction, matrix solvents for headspace analysis, and micellar extraction. The specific advantages and limitations of ionic liquids in these studies is discussed with a view to defining future uses and the need not to neglect the identification of new room temperature ionic liquids with physical and solution properties tailored to the needs of specific sample preparation techniques. The defining feature of the special nature of ionic liquids is not their solution or physical properties viewed separately but their unique combinations when taken together compared with traditional organic solvents. Copyright 2009 Elsevier B.V. All rights reserved.

  4. Application of the Double-Tangent Construction of Coexisting Phases to Any Type of Phase Equilibrium for Binary Systems Modeled with the Gamma-Phi Approach

    ERIC Educational Resources Information Center

    Jaubert, Jean-Noël; Privat, Romain

    2014-01-01

    The double-tangent construction of coexisting phases is an elegant approach to visualize all the multiphase binary systems that satisfy the equality of chemical potentials and to select the stable state. In this paper, we show how to perform the double-tangent construction of coexisting phases for binary systems modeled with the gamma-phi…

  5. Radial Velocity Studies of Close Binary Stars. XI.

    NASA Astrophysics Data System (ADS)

    Pribulla, Theodor; Rucinski, Slavek M.; Lu, Wenxian; Mochnacki, Stefan W.; Conidis, George; Blake, R. M.; DeBond, Heide; Thomson, J. R.; Pych, Wojtek; Ogłoza, Waldemar; Siwak, Michal

    2006-08-01

    Radial-velocity measurements and sine-curve fits to orbital radial velocity variations are presented for 10 close binary systems: DU Boo, ET Boo, TX Cnc, V1073 Cyg, HL Dra, AK Her, VW LMi, V566 Oph, TV UMi, and AG Vir. With this contribution, the David Dunlap Observatory program has reached the point of 100 published radial velocity orbits. The radial velocities have been determined using an improved fitting technique that uses rotational profiles to approximate individual peaks in broadening functions. Three systems, ET Boo, VW LMi, and TV UMi, are found to be quadruple, while AG Vir appears to be a spectroscopic triple. ET Boo, a member of a close visual binary with Pvis=113 yr, was previously known to be a multiple system, but we show that the second component is actually a close, noneclipsing binary. The new observations have enabled us to determine the spectroscopic orbits of the companion, noneclipsing pairs in ET Boo and VW LMi. A particularly interesting case is VW LMi, for which the period of the mutual revolution of the two spectroscopic binaries is only 355 days. While most of the studied eclipsing pairs are contact binaries, ET Boo is composed of two double-lined detached binaries, and HL Dra is a single-lined detached or semidetached system. Five systems of this group have been observed spectroscopically before: TX Cnc, V1073 Cyg, AK Her (as a single-lined binary), V566 Oph, and AG Vir, but our new data are of much higher quality than in the previous studies. Based on data obtained at the David Dunlap Observatory, University of Toronto, Canada.

  6. Candidate Binary Microlensing Events from the MACHO Project

    NASA Astrophysics Data System (ADS)

    Becker, A. C.; Alcock, C.; Allsman, R. A.; Alves, D. R.; Axelrod, T. S.; Bennett, D. P.; Cook, K. H.; Drake, A. J.; Freeman, K. C.; Griest, K.; King, L. J.; Lehner, M. J.; Marshall, S. L.; Minniti, D.; Peterson, B. A.; Popowski, P.; Pratt, M. R.; Quinn, P. J.; Rodgers, A. W.; Stubbs, C. W.; Sutherland, W.; Tomaney, A.; Vandehei, T.; Welch, D. L.; Baines, D.; Brakel, A.; Crook, B.; Howard, J.; Leach, T.; McDowell, D.; McKeown, S.; Mitchell, J.; Moreland, J.; Pozza, E.; Purcell, P.; Ring, S.; Salmon, A.; Ward, K.; Wyper, G.; Heller, A.; Kaspi, S.; Kovo, O.; Maoz, D.; Retter, A.; Rhie, S. H.; Stetson, P.; Walker, A.; MACHO Collaboration

    1998-12-01

    We present the lightcurves of 22 gravitational microlensing events from the first six years of the MACHO Project gravitational microlensing survey which are likely examples of lensing by binary systems. These events were selected from a total sample of ~ 300 events which were either detected by the MACHO Alert System or discovered through retrospective analyses of the MACHO database. Many of these events appear to have undergone a caustic or cusp crossing, and 2 of the events are well fit with lensing by binary systems with large mass ratios, indicating secondary companions of approximately planetary mass. The event rate is roughly consistent with predictions based upon our knowledge of the properties of binary stars. The utility of binary lensing in helping to solve the Galactic dark matter problem is demonstrated with analyses of 3 binary microlensing events seen towards the Magellanic Clouds. Source star resolution during caustic crossings in 2 of these events allows us to estimate the location of the lensing systems, assuming each source is a single star and not a short period binary. * MACHO LMC-9 appears to be a binary lensing event with a caustic crossing partially resolved in 2 observations. The resulting lens proper motion appears too small for a single source and LMC disk lens. However, it is considerably less likely to be a single source star and Galactic halo lens. We estimate the a priori probability of a short period binary source with a detectable binary character to be ~ 10 %. If the source is also a binary, then we currently have no constraints on the lens location. * The most recent of these events, MACHO 98-SMC-1, was detected in real-time. Follow-up observations by the MACHO/GMAN, PLANET, MPS, EROS and OGLE microlensing collaborations lead to the robust conclusion that the lens likely resides in the SMC.

  7. Shaping planetary nebulae with jets in inclined triple stellar systems

    NASA Astrophysics Data System (ADS)

    Akashi, Muhammad; Soker, Noam

    2017-08-01

    We conduct three-dimensional hydrodynamical simulations of two opposite jets launched obliquely to the orbital plane around an asymptotic giant branch (AGB) star and within its dense wind, and demonstrate the formation of a 'messy' planetary nebula (PN), namely a PN lacking any type of symmetry (I.e. highly irregular). In building the initial conditions, we assume that a tight binary system orbits the AGB star and that the orbital plane of the tight binary system is inclined to the orbital plane of the binary system and the AGB star (the triple system plane). We further assume that the accreted mass on to the tight binary system forms an accretion disc around one of the stars and that the plane of the disc is tilted to the orbital plane of the triple system. The highly asymmetrical and filamentary structures that we obtain support the notion that messy PNe might be shaped by triple stellar systems.

  8. Photometric detection of a candidate low-mass giant binary system at the Milky Way Galactic Center

    NASA Astrophysics Data System (ADS)

    Krishna Gautam, Abhimat; Do, Tuan; Ghez, Andrea; Sakai, Shoko; Morris, Mark; Lu, Jessica; Witzel, Gunther; Jia, Siyao; Becklin, Eric Eric; Matthews, Keith

    2018-01-01

    We present the discovery of a new periodic variable star at the Milky Way Galactic Center (GC). This study uses laser guide-star adaptive optics data collected with the W. M. Keck 10 m telescope in the K‧-band (2.2 µm) over 35 nights spanning an 11 year time baseline, and 5 nights of additional H-band (1.6 µm) data. We implemented an iterative photometric calibration and local correction technique, resulting in a photometric uncertainty of Δm_K‧ ∼ 0.03 to a magnitude of m_K‧ ∼ 16.The periodically variable star has a 39.42 day period. We find that the star is not consistent with known periodically variable star classes in this period range with its observed color and luminosity, nor with an eclipsing binary system. The star's color and luminosity are however consistent with an ellipsoidal binary system at the GC, consisting of a K-giant and a dwarf component with an orbital period of 78.84 days. If a binary system, it represents the first detection of a low-mass giant binary system in the central half parsec of the GC. Such long-period binary systems can easily evaporate in the dense environment of the GC due to interactions with other stars. The existence and properties of a low-mass, long-period binary system can thus place valuable constraints on dynamical models of the GC environment and probe the density of the hypothesized dark cusp of stellar remnants at the GC.

  9. Spectral properties of binary asteroids

    NASA Astrophysics Data System (ADS)

    Pajuelo, Myriam; Birlan, Mirel; Carry, Benoît; DeMeo, Francesca E.; Binzel, Richard P.; Berthier, Jérôme

    2018-07-01

    We present the first attempt to characterize the distribution of taxonomic class among the population of binary asteroids (15 per cent of all small asteroids). For that, an analysis of 0.8-2.5 µm near-infrared spectra obtained with the SpeX instrument on the NASA/IRTF (Infrared Telescope Facility) is presented. Taxonomic class and meteorite analogue is determined for each target, increasing the sample of binary asteroids with known taxonomy by 21 per cent. Most binary systems are bound in the S, X, and C classes, followed by Q and V types. The rate of binary systems in each taxonomic class agrees within uncertainty with the background population of small near-Earth objects and inner main belt asteroids, but for the C types which are under-represented among binaries.

  10. The architecture of the hierarchical triple star KOI 928 from eclipse timing variations seen in Kepler photometry

    DOE PAGES

    Steffen, J. H.; Quinn, S. N.; Borucki, W. J.; ...

    2011-10-01

    We present a hierarchical triple star system (KIC 9140402) where a low mass eclipsing binary orbits a more massive third star. The orbital period of the binary (4.98829 Days) is determined by the eclipse times seen in photometry from NASA's Kepler spacecraft. The periodically changing tidal field, due to the eccentric orbit of the binary about the tertiary, causes a change in the orbital period of the binary. The resulting eclipse timing variations provide insight into the dynamics and architecture of this system and allow the inference of the total mass of the binary (0.424±0.017M circle-dot) and the orbital parametersmore » of the binary about the central star.« less

  11. Orbital period changes of OB-type contact binaries and their implications for the triplicity, formation and evolution of this type of binary stars

    NASA Astrophysics Data System (ADS)

    Qian, S.-B.; Kreiner, J. M.; Liu, L.; He, J.-J.; Zhu, L.-Y.; Yuan, J.-Z.; Dai, Z.-B.

    2007-08-01

    Orbital period variations of NINE well-observed OB-type contact binary stars, LY Aur, BH Cen, V382 CYg, V729 Cyg, AW Lac, TU Mus, RZ Pyx, V701 Sco and CT Tau, are investigated in detail. Of the nine systems, V701 Sco and CT Tau are two contact binaries containing twin components with a mass ratio of unit, LY Aur and V729 Cyg have the longest period among contact binary stars (P=4.0 and 6.6 days, respectively), and BH Cen and V701 Sco are the members of two extremely young galactic cluster IC 2994 and NGC 6383. It is discovered that, apart from the two systems with twin components (V701 Sco and CT Tau), the orbital periods of the rest SEVEN binary stars show a long-term increase. This is different from the situations of the late-type (W UMa-type) contact binaries where both secular period increase and decrease are usually encountered, indicating that magnetic field may play an important role in causing the long-term period decrease of W UMa-type contact binary stars. The fact that no long-term continuous period variations were found for V701 Sco and CT Tau may suggest that contact binary with twin components can be in an equilibrium. Based on the rates of period changes (dP/dt) of the SEVEN sample binary stars, statistical relations between dP/dt and orbital period (P) and the mean density of the secondary component were found. Our results suggest that the period increases of the short-period systems (P<2 days) may be mainly caused by a mass transfer from the less massive component to the more massive one, while for the long-period ones (P>2 days), LY Aur and V729 Cyg, their period increases may be resulted from a combination of stellar wind and mass transfer from the secondary to the primary. Meanwhile, cyclic period changes are found for all of the nine binary systems. Those periodic variations can be plausibly explained as the results of light-travel time effects suggesting that they are triple systems. The astrophysical parameters of the tertiary components in the nine systems have been determined. The tertiary components in the seven binaries, BH Cen, V382 Cyg, AW Lac, TU Mus, RZ Pyx, V701 Sco and CT Tau, may be invisible, while those in LY Aur and V729 Cyg may be the fainter visual companions in the two systems. It is possible that the tertiary components in those binaries played an important role for the formations and evolutions of the contact configurations by bringing angular momentum out from the central systems. Thus they have initial short period and can evolve into a contact configuration in a short timescale.

  12. Accreting Black Hole Binaries in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Kremer, Kyle; Chatterjee, Sourav; Rodriguez, Carl L.; Rasio, Frederic A.

    2018-01-01

    We explore the formation of mass-transferring binary systems containing black holes (BHs) within globular clusters (GC). We show that it is possible to form mass-transferring BH binaries with main sequence, giant, and white dwarf companions with a variety of orbital parameters in GCs spanning a large range in present-day properties. All mass-transferring BH binaries found in our models at late times are dynamically created. The BHs in these systems experienced a median of ∼30 dynamical encounters within the cluster before and after acquiring the donor. Furthermore, we show that the presence of mass-transferring BH systems has little correlation with the total number of BHs within the cluster at any time. This is because the net rate of formation of BH–non-BH binaries in a cluster is largely independent of the total number of retained BHs. Our results suggest that the detection of a mass-transferring BH binary in a GC does not necessarily indicate that the host cluster contains a large BH population.

  13. The iron complex in high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Giménez-García, A.; Torrejón, J. M.; Martínez-Núñez, S.; Rodes-Rocas, J. J.; Bernabéu, G.

    2013-05-01

    An X-ray binary system consists of a compact object (a white dwarf, a neutron star or a black hole) accreting material from an optical companion star. The spectral type of the optical component strongly affects the mass transfer to the compact object. This is the reason why X-ray binary systems are usually divided in High Mass X-ray Binaries (companion O or B type, denoted HMXB) and Low Mass X-ray Binaries (companion type A or later). The HMXB are divided depending on the partner's luminosity class in two main groups: the Supergiant X-ray Binaries (SGXB) and Be X-ray Binaries (BeXB). We introduce the spectral characterization of a sample of 9 High Mass X-ray Binaries in the iron complex (˜ 6-7 keV). This spectral range is a fundamental tool in the study of the surrounding material of these systems. The sources have been divided into three main groups according to their current standard classification: SGXB, BeXB and γ Cassiopeae-like. The purpose of this work is to look for qualitative patterns in the iron complex, around 6-7 keV, in order to discern between current different classes that make up the group of HMXB. We find significant spectral patterns for each of the sets, reflecting differences in accretion physics thereof.

  14. Gaia Assorted Mass Binaries Long Excluded from SLoWPoKES (GAMBLES): Identifying Ultra-wide Binary Pairs with Components of Diverse Mass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oelkers, Ryan J.; Stassun, Keivan G.; Dhital, Saurav, E-mail: ryan.j.oelkers@vanderbilt.edu

    The formation and evolution of binary star systems are some of the remaining key questions in modern astronomy. Wide binary pairs (separations >10{sup 3} au) are particularly intriguing because their low binding energies make it difficult for the stars to stay gravitationally bound over extended timescales, and thus to probe the dynamics of binary formation and dissolution. Our previous SLoWPoKES catalogs, I and II, provided the largest and most complete sample of wide-binary pairs of low masses. Here we present an extension of these catalogs to a broad range of stellar masses: the Gaia Assorted Mass Binaries Long Excluded frommore » SloWPoKES (GAMBLES), comprising 8660 statistically significant wide pairs that we make available in a living online database. Within this catalog we identify a subset of 543 long-lived (dissipation timescale >1.5 Gyr) candidate binary pairs, of assorted mass, with typical separations between 10{sup 3} and 10{sup 5.5} au (0.002–1.5 pc), using the published distances and proper motions from the Tycho -Gaia Astrometric Solution and Sloan Digital Sky Survey photometry. Each pair has at most a false positive probability of 0.05; the total expectation is 2.44 false binaries in our sample. Among these, we find 22 systems with 3 components, 1 system with 4 components, and 15 pairs consisting of at least 1 possible red giant. We find the largest long-lived binary separation to be nearly 3.2 pc; even so, >76% of GAMBLES long-lived binaries have large binding energies and dissipation lifetimes longer than 1.5 Gyr. Finally, we find that the distribution of binary separations is clearly bimodal, corroborating the findings from SloWPoKES and suggesting multiple pathways for the formation and dissipation of the widest binaries in the Galaxy.« less

  15. Gaia Assorted Mass Binaries Long Excluded from SLoWPoKES (GAMBLES): Identifying Ultra-wide Binary Pairs with Components of Diverse Mass

    NASA Astrophysics Data System (ADS)

    Oelkers, Ryan J.; Stassun, Keivan G.; Dhital, Saurav

    2017-06-01

    The formation and evolution of binary star systems are some of the remaining key questions in modern astronomy. Wide binary pairs (separations >103 au) are particularly intriguing because their low binding energies make it difficult for the stars to stay gravitationally bound over extended timescales, and thus to probe the dynamics of binary formation and dissolution. Our previous SLoWPoKES catalogs, I and II, provided the largest and most complete sample of wide-binary pairs of low masses. Here we present an extension of these catalogs to a broad range of stellar masses: the Gaia Assorted Mass Binaries Long Excluded from SloWPoKES (GAMBLES), comprising 8660 statistically significant wide pairs that we make available in a living online database. Within this catalog we identify a subset of 543 long-lived (dissipation timescale >1.5 Gyr) candidate binary pairs, of assorted mass, with typical separations between 103 and 105.5 au (0.002-1.5 pc), using the published distances and proper motions from the Tycho-Gaia Astrometric Solution and Sloan Digital Sky Survey photometry. Each pair has at most a false positive probability of 0.05; the total expectation is 2.44 false binaries in our sample. Among these, we find 22 systems with 3 components, 1 system with 4 components, and 15 pairs consisting of at least 1 possible red giant. We find the largest long-lived binary separation to be nearly 3.2 pc even so, >76% of GAMBLES long-lived binaries have large binding energies and dissipation lifetimes longer than 1.5 Gyr. Finally, we find that the distribution of binary separations is clearly bimodal, corroborating the findings from SloWPoKES and suggesting multiple pathways for the formation and dissipation of the widest binaries in the Galaxy.

  16. Entry into and Release of Solvents by Escherichia coli in an Organic-Aqueous Two-Liquid-Phase System and Substrate Specificity of the AcrAB-TolC Solvent-Extruding Pump

    PubMed Central

    Tsukagoshi, Norihiko; Aono, Rikizo

    2000-01-01

    Growth of Escherichia coli is inhibited upon exposure to a large volume of a harmful solvent, and there is an inverse correlation between the degree of inhibition and the log POW of the solvent, where POW is the partition coefficient measured for the partition equilibrium established between the n-octanol and water phases. The AcrAB-TolC efflux pump system is involved in maintaining intrinsic solvent resistance. We inspected the solvent resistance of ΔacrAB and/or ΔtolC mutants in the presence of a large volume of solvent. Both mutants were hypersensitive to weakly harmful solvents, such as nonane (log POW = 5.5). The ΔtolC mutant was more sensitive to nonane than the ΔacrAB mutant. The solvent entered the E. coli cells rapidly. Entry of solvents with a log POW higher than 4.4 was retarded in the parent cells, and the intracellular levels of these solvents were maintained at low levels. The ΔtolC mutant accumulated n-nonane or decane (log POW = 6.0) more abundantly than the parent or the ΔacrAB mutant. The AcrAB-TolC complex likely extrudes solvents with a log POW in the range of 3.4 to 6.0 through a first-order reaction. The most favorable substrates for the efflux system were considered to be octane, heptane, and n-hexane. PMID:10940021

  17. COSMIC probes into compact binary formation and evolution

    NASA Astrophysics Data System (ADS)

    Breivik, Katelyn

    2018-01-01

    The population of compact binaries in the galaxy represents the final state of all binaries that have lived up to the present epoch. Compact binaries present a unique opportunity to probe binary evolution since many of the interactions binaries experience can be imprinted on the compact binary population. By combining binary evolution simulations with catalogs of observable compact binary systems, we can distill the dominant physical processes that govern binary star evolution, as well as predict the abundance and variety of their end products.The next decades herald a previously unseen opportunity to study compact binaries. Multi-messenger observations from telescopes across all wavelengths and gravitational-wave observatories spanning several decades of frequency will give an unprecedented view into the structure of these systems and the composition of their components. Observations will not always be coincident and in some cases may be separated by several years, providing an avenue for simulations to better constrain binary evolution models in preparation for future observations.I will present the results of three population synthesis studies of compact binary populations carried out with the Compact Object Synthesis and Monte Carlo Investigation Code (COSMIC). I will first show how binary-black-hole formation channels can be understood with LISA observations. I will then show how the population of double white dwarfs observed with LISA and Gaia could provide a detailed view of mass transfer and accretion. Finally, I will show that Gaia could discover thousands black holes in the Milky Way through astrometric observations, yielding view into black-hole astrophysics that is complementary to and independent from both X-ray and gravitational-wave astronomy.

  18. Identification of binary and multiple systems in TGAS using the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Jiménez-Esteban, F.; Solano, E.

    2018-04-01

    Binary and multiple stars have long provided an effective method of testing stellar formation and evolution theories. In particular, wide binary systems with separations > 20,000 au are particularly challenging as their physical separations are beyond the typical size of a collapsing cloud core (5,000 - 10,000 au). We present here a preliminary work in which we make use of the TGAS catalogue and Virtual Observatory tools and services (Aladin, TOPCAT, STILTS, VOSA, VizieR) to identify binary and multiple star candidate systems. The catalogue will be available from the Spanish VO portal (http://svo.cab.inta-csic.es) in the coming months.

  19. The massive multiple system HD 64315

    NASA Astrophysics Data System (ADS)

    Lorenzo, J.; Simón-Díaz, S.; Negueruela, I.; Vilardell, F.; Garcia, M.; Evans, C. J.; Montes, D.

    2017-10-01

    Context. The O6 Vn star HD 64315 is believed to belong to the star-forming region known as NGC 2467, but previous distance estimates do not support this association. Moreover, it has been identified as a spectroscopic binary, but existing data support contradictory values for its orbital period. Aims: We explore the multiple nature of this star with the aim of determining its distance, and understanding its connection to NGC 2467. Methods: A total of 52 high-resolution spectra have been gathered over a decade. We use their analysis, in combination with the photometric data from All Sky Automated Survey and Hipparcos catalogues, to conclude that HD 64315 is composed of at least two spectroscopic binaries, one of which is an eclipsing binary. We have developed our own program to fit four components to the combined line shapes. Once the four radial velocities were derived, we obtained a model to fit the radial-velocity curves using the Spectroscopic Binary Orbit Program (SBOP). We then implemented the radial velocities of the eclipsing binary and the light curves in the Wilson-Devinney code iteratively to derive stellar parameters for its components. We were also able to analyse the non-eclipsing binary, and to derive minimum masses for its components which dominate the system flux. Results: HD 64315 contains two binary systems, one of which is an eclipsing binary. The two binaries are separated by 0.09 arcsec (or 500 AU) if the most likely distance to the system, 5 kpc, is considered. The presence of fainter companions is not excluded by current observations. The non-eclipsing binary (HD 64315 AaAb) has a period of 2.70962901 ± 0.00000021 d. Its components are hotter than those of the eclipsing binary, and dominate the appearance of the system. The eclipsing binary (HD 64315 BaBb) has a shorter period of 1.0189569 ± 0.0000008 d. We derive masses of 14.6 ± 2.3 M⊙ for both components of the BaBb system. They are almost identical; both stars are overfilling their respective Roche lobes, and share a common envelope in an overcontact configuration. The non-eclipsing binary is a detached system composed of two stars with spectral types around O6 V with minimum masses of 10.8 M⊙ and 10.2 M⊙, and likely masses ≈ 30 M⊙. Conclusions: HD 64315 provides a cautionary tale about high-mass star isolation and multiplicity. Its total mass is likely above 90M⊙, but it seems to have formed without an accompanying cluster. It contains one the most massive overcontact binaries known, a likely merger progenitor in a very wide multiple system. Based on observations obtained at the European Southern Observatory under programmes 078.D-0665(A), 082-D.0136 and 093.A-9001(A). Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  20. Binary Microlensing Events from the MACHO Project

    NASA Astrophysics Data System (ADS)

    Alcock, C.; Allsman, R. A.; Alves, D.; Axelrod, T. S.; Baines, D.; Becker, A. C.; Bennett, D. P.; Bourke, A.; Brakel, A.; Cook, K. H.; Crook, B.; Crouch, A.; Dan, J.; Drake, A. J.; Fragile, P. C.; Freeman, K. C.; Gal-Yam, A.; Geha, M.; Gray, J.; Griest, K.; Gurtierrez, A.; Heller, A.; Howard, J.; Johnson, B. R.; Kaspi, S.; Keane, M.; Kovo, O.; Leach, C.; Leach, T.; Leibowitz, E. M.; Lehner, M. J.; Lipkin, Y.; Maoz, D.; Marshall, S. L.; McDowell, D.; McKeown, S.; Mendelson, H.; Messenger, B.; Minniti, D.; Nelson, C.; Peterson, B. A.; Popowski, P.; Pozza, E.; Purcell, P.; Pratt, M. R.; Quinn, J.; Quinn, P. J.; Rhie, S. H.; Rodgers, A. W.; Salmon, A.; Shemmer, O.; Stetson, P.; Stubbs, C. W.; Sutherland, W.; Thomson, S.; Tomaney, A.; Vandehei, T.; Walker, A.; Ward, K.; Wyper, G.

    2000-09-01

    We present the light curves of 21 gravitational microlensing events from the first six years of the MACHO Project gravitational microlensing survey that are likely examples of lensing by binary systems. These events were manually selected from a total sample of ~350 candidate microlensing events that were either detected by the MACHO Alert System or discovered through retrospective analyses of the MACHO database. At least 14 of these 21 events exhibit strong (caustic) features, and four of the events are well fit with lensing by large mass ratio (brown dwarf or planetary) systems, although these fits are not necessarily unique. The total binary event rate is roughly consistent with predictions based upon our knowledge of the properties of binary stars, but a precise comparison cannot be made without a determination of our binary lens event detection efficiency. Toward the Galactic bulge, we find a ratio of caustic crossing to noncaustic crossing binary lensing events of 12:4, excluding one event for which we present two fits. This suggests significant incompleteness in our ability to detect and characterize noncaustic crossing binary lensing. The distribution of mass ratios, N(q), for these binary lenses appears relatively flat. We are also able to reliably measure source-face crossing times in four of the bulge caustic crossing events, and recover from them a distribution of lens proper motions, masses, and distances consistent with a population of Galactic bulge lenses at a distance of 7+/-1 kpc. This analysis yields two systems with companions of ~0.05 Msolar.

  1. A contact binary asteroid evolutionary cycle driven by BYORP & the classical Laplace plane

    NASA Astrophysics Data System (ADS)

    Rieger, Samantha; Scheeres, Daniel J.

    2017-10-01

    Several contact binaries have been observed to have high obliquities distributed around 90°. With this information, we explore the possibility of these high obliquities being a key characteristic that causes an evolutionary cycle of contact binary formation and separation.The contact binary cycle begins with a single asteroid that is spinning up due to the YORP effect. For the binary cycle we assume YORP will drive the obliquity to 90°. Eventually, the asteroid will reach a critical spin frequency that will cause the asteroid to fission into a binary. We assume that the mass-ratio, q, of the system is greater than 0.2. With a high q, the secondary will not escape/impact the primary but will evolve through tides into a stable circular double-synchronous orbit. The binary being synchronous will cause the forces from BYORP to have secular effects on the system. For this cycle, BYORP will need to expand the secondary away from the primary.As the system expands, we have found that the secondary will follow the classical Laplace plane. Therefore, the secondary’s orbit will increase in inclination with respect to the equator as the secondary’s orbit expands. The Laplace plane is a stable orbit to perturbations from J2 & Sun tides except for an instability region that exists for primaries with obliquities above 68.875° & a secondary orbital radius of 13.5-19.5 primary radii. Once BYORP expands the secondary into this instability region, the eccentricity of the secondary’s orbit will increase until the orbit intersects with the primary & causes an impact. This impact will create a contact binary with a new obliquity that will randomly range from 23°-150°. The cycle will begin again with YORP driving the contact binary to an obliquity of 90°.Our contribution will discuss the proposed contact binary cycle in more detail, including the mechanics of the system that drives the events given above. We will include investigations into how losing synchronous lock will disrupt the eccentricity growth in the Laplace plane instability region. We will also discuss the time scales of each event to help predict which part of the cycle we will most likely to be observing when discovering new contact binaries & binary systems.

  2. High-resolution spectroscopy of extremely metal-poor stars from SDSS/Segue. II. Binary fraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoki, Wako; Suda, Takuma; Beers, Timothy C.

    2015-02-01

    The fraction of binary systems in various stellar populations of the Galaxy and the distribution of their orbital parameters are important but not well-determined factors in studies of star formation, stellar evolution, and Galactic chemical evolution. While observational studies have been carried out for a large sample of nearby stars, including some metal-poor Population II stars, almost no constraints on the binary nature for extremely metal-poor (EMP; [Fe/H] <−3.0) stars have yet been obtained. Here we investigate the fraction of double-lined spectroscopic binaries and carbon-enhanced metal-poor (CEMP) stars, many of which could have formed as pairs of low-mass and intermediate-massmore » stars, to estimate the lower limit of the fraction of binary systems having short periods. The estimate is based on a sample of very metal-poor stars selected from the Sloan Digital Sky Survey and observed at high spectral resolution in a previous study by Aoki et al. That survey reported 3 double-lined spectroscopic binaries and 11 CEMP stars, which we consider along with a sample of EMP stars from the literature compiled in the SAGA database. We have conducted measurements of the velocity components for stacked absorption features of different spectral lines for each double-lined spectroscopic binary. Our estimate indicates that the fraction of binary stars having orbital periods shorter than 1000 days is at least 10%, and possibly as high as 20% if the majority of CEMP stars are formed in such short-period binaries. This result suggests that the period distribution of EMP binary systems is biased toward short periods, unless the binary fraction of low-mass EMP stars is significantly higher than that of other nearby stars.« less

  3. EPR Evidence of Liquid Water in Ice: An Intrinsic Property of Water or a Self-Confinement Effect?

    PubMed

    Thangswamy, Muthulakshmi; Maheshwari, Priya; Dutta, Dhanadeep; Rane, Vinayak; Pujari, Pradeep K

    2018-06-01

    Liquid water (LW) existence in pure ice below 273 K has been a controversial aspect primarily because of the lack of experimental evidence. Recently, electron paramagnetic resonance (EPR) has been used to study deeply supercooled water in a rapidly frozen polycrystalline ice. The same technique can also be used to probe the presence of LW in polycrystalline ice that has formed through a more conventional, slow cooling one. In this context, the present study aims to emphasize that in case of an external probe involving techniques such as EPR, the results are influenced by the binary phase (BP) diagram of the probe-water system, which also predicts the existence of LW domains in ice, up to the eutectic point. Here we report the results of our such EPR spin-probe studies on water, which demonstrate that smaller the concentration of the probe stronger is the EPR evidence of liquid domains in polycrystalline ice. We used computer simulations based on stochastic Liouville theory to analyze the lineshapes of the EPR spectra. We show that the presence of the spin probe modifies the BP diagram of water, at very low concentrations of the spin probe. The spin probe thus acts, not like a passive reporter of the behavior of the solvent and its environment, but as an active impurity to influence the solvent. We show that there exists a lower critical concentration, below which BP diagram needs to be modified, by incorporating the effect of confinement of the spin probe. With this approach, we demonstrate that the observed EPR evidence of LW domains in ice can be accounted for by the modified BP diagram of the probe-water system. The present work highlights the importance of taking cognizance of the possibility of spin probes affecting the host systems, when interpreting the EPR (or any other probe based spectroscopic) results of phase transitions of host, as its ignorance may lead to serious misinterpretations.

  4. SAGE 2.0 SOLVENT ALTERNATIVES GUIDE - USER'S GUIDE

    EPA Science Inventory

    The guide provides instruction for using the SAGE (Solvent Alternatives Guide) software system, version 2.O. It assumes that the user is familiar with the fundamentals of operating a personal computer under the Microsoft disk operating system (MS-DOS). AGE recommends solvent repl...

  5. SAGE 2.1: SOLVENT ALTERNATIVES GUIDE: USER'S GUIDE

    EPA Science Inventory

    The guide provides instruction for using the SAGE (Solvent Alternatives GuidE) software system, version 2.1. SAGE recommends solvent replacements in cleaning and degreasing operations. It leads the user through a question-and-answer session. The user's responses allow the system ...

  6. Effects of solvation on partition and dimerization of benzoic acid in mixed solvent systems.

    PubMed

    Yamada, H; Yajima, K; Wada, H; Nakagawa, G

    1995-06-01

    The partition of benzoic acid between 0.1M perchloric acid solution and two kinds of mixed solvents has been carried out at 25 degrees C. The partition and dimerization constants of benzoic acid have been determined in the 1-octanol-benzene and 2-octanone-benzene systems. In both the mixed solvent systems, with increasing content of 1-octanol and 2-octanone in each mixed solvent, the partition constant of benzoic acid has been found to increase, and the dimerization constant of benzoic acid in each organic phase to decrease. These phenomena are attributable to solvation of monomeric benzoic acid by 1-octanol and 2-octanone molecules in each mixed solvent.

  7. Embedded binaries and their dense cores

    NASA Astrophysics Data System (ADS)

    Sadavoy, Sarah I.; Stahler, Steven W.

    2017-08-01

    We explore the relationship between young, embedded binaries and their parent cores, using observations within the Perseus Molecular Cloud. We combine recently published Very Large Array observations of young stars with core properties obtained from Submillimetre Common-User Bolometer Array 2 observations at 850 μm. Most embedded binary systems are found towards the centres of their parent cores, although several systems have components closer to the core edge. Wide binaries, defined as those systems with physical separations greater than 500 au, show a tendency to be aligned with the long axes of their parent cores, whereas tight binaries show no preferred orientation. We test a number of simple, evolutionary models to account for the observed populations of Class 0 and I sources, both single and binary. In the model that best explains the observations, all stars form initially as wide binaries. These binaries either break up into separate stars or else shrink into tighter orbits. Under the assumption that both stars remain embedded following binary break-up, we find a total star formation rate of 168 Myr-1. Alternatively, one star may be ejected from the dense core due to binary break-up. This latter assumption results in a star formation rate of 247 Myr-1. Both production rates are in satisfactory agreement with current estimates from other studies of Perseus. Future observations should be able to distinguish between these two possibilities. If our model continues to provide a good fit to other star-forming regions, then the mass fraction of dense cores that becomes stars is double what is currently believed.

  8. Homogeneous Liquid–Liquid Extraction of Rare Earths with the Betaine—Betainium Bis(trifluoromethylsulfonyl)imide Ionic Liquid System

    PubMed Central

    Hoogerstraete, Tom Vander; Onghena, Bieke; Binnemans, Koen

    2013-01-01

    Several fundamental extraction parameters such as the kinetics and loading were studied for a new type of metal solvent extraction system with ionic liquids. The binary mixture of the ionic liquid betainium bis(trifluoromethylsulfonyl)imide and water shows thermomorphic behavior with an upper critical solution temperature (UCST), which can be used to avoid the slower mass transfer due to the generally higher viscosity of ionic liquids. A less viscous homogeneous phase and mixing on a molecular scale are obtained when the mixture is heated up above 55 °C. The influence of the temperature, the heating and cooling times, were studied for the extraction of neodymium(III) with betaine. A plausible and equal extraction mechanism is proposed in bis(trifluoromethylsulfonyl)imide, nitrate, and chloride media. After stripping of the metals from the ionic liquid phase, a higher recovery of the ionic liquid was obtained by salting-out of the ionic liquid fraction lost by dissolution in the aqueous phase. The change of the upper critical solution temperature by the addition of HCl or betaine was investigated. In addition, the viscosity was measured below and above the UCST as a function of the temperature. PMID:24169434

  9. P-V-T Properties of Polyimides and Model Imide Compounds

    NASA Technical Reports Server (NTRS)

    Orwoll, Robert A.

    1997-01-01

    Aromatic polyimides are used as matrix resins in advanced composites, as high strength films, and as high-temperature adhesives, owing in part to their unusual thermal and chemical stability. The polyimides' desirable qualities of very high softening temperatures and negligibly small solubilities in and low permeabilities by most solvents have limited the kinds of fundamental studies that can be performed on these systems. Consequently, relationships between the molecular structure of polyimides and their bulk properties are not as well understood as might be expected given their widespread applications. In particular, the intermolecular forces in polyimides that play a critical role determining their densities, solubilities, viscosities, moduli, glass transitions, etc. are less well characterized for polyimides than for other widely used polymeric materials. The purpose of the present study is to obtain experimental data for establishing parameters that characterize the intermolecular forces in polyimides. We report here our studies on tractable low molecular-weight imides that contain the same structural features that are present in polyimide materials. We have measured equation-of-state properties and dipole moments for a variety of such systems in the liquid state. Both pure compounds and binary mixtures have been studied.

  10. Multiphase, multicomponent phase behavior prediction

    NASA Astrophysics Data System (ADS)

    Dadmohammadi, Younas

    Accurate prediction of phase behavior of fluid mixtures in the chemical industry is essential for designing and operating a multitude of processes. Reliable generalized predictions of phase equilibrium properties, such as pressure, temperature, and phase compositions offer an attractive alternative to costly and time consuming experimental measurements. The main purpose of this work was to assess the efficacy of recently generalized activity coefficient models based on binary experimental data to (a) predict binary and ternary vapor-liquid equilibrium systems, and (b) characterize liquid-liquid equilibrium systems. These studies were completed using a diverse binary VLE database consisting of 916 binary and 86 ternary systems involving 140 compounds belonging to 31 chemical classes. Specifically the following tasks were undertaken: First, a comprehensive assessment of the two common approaches (gamma-phi (gamma-ϕ) and phi-phi (ϕ-ϕ)) used for determining the phase behavior of vapor-liquid equilibrium systems is presented. Both the representation and predictive capabilities of these two approaches were examined, as delineated form internal and external consistency tests of 916 binary systems. For the purpose, the universal quasi-chemical (UNIQUAC) model and the Peng-Robinson (PR) equation of state (EOS) were used in this assessment. Second, the efficacy of recently developed generalized UNIQUAC and the nonrandom two-liquid (NRTL) for predicting multicomponent VLE systems were investigated. Third, the abilities of recently modified NRTL model (mNRTL2 and mNRTL1) to characterize liquid-liquid equilibria (LLE) phase conditions and attributes, including phase stability, miscibility, and consolute point coordinates, were assessed. The results of this work indicate that the ϕ-ϕ approach represents the binary VLE systems considered within three times the error of the gamma-ϕ approach. A similar trend was observed for the for the generalized model predictions using quantitative structure-property parameter generalizations (QSPR). For ternary systems, where all three constituent binary systems were available, the NRTL-QSPR, UNIQUAC-QSPR, and UNIFAC-6 models produce comparable accuracy. For systems where at least one constituent binary is missing, the UNIFAC-6 model produces larger errors than the QSPR generalized models. In general, the LLE characterization results indicate the accuracy of the modified models in reproducing the findings of the original NRTL model.

  11. Electrolyte Suitable for Use in a Lithium Ion Cell or Battery

    NASA Technical Reports Server (NTRS)

    McDonald, Robert C. (Inventor)

    2014-01-01

    Electrolyte suitable for use in a lithium ion cell or battery. According to one embodiment, the electrolyte includes a fluorinated lithium ion salt and a solvent system that solvates lithium ions and that yields a high dielectric constant, a low viscosity and a high flashpoint. In one embodiment, the solvent system includes a mixture of an aprotic lithium ion solvating solvent and an aprotic fluorinated solvent.

  12. Preferential Solvation of an Asymmetric Redox Molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Kee Sung; Rajput, Nav Nidhi; Vijayakumar, M.

    2016-12-15

    The fundamental correlations between inter-molecular interactions, solvation structure and functionality of electrolytes are in many cases unknown, particularly for multi-component liquid systems. In this work, we explore such correlations by investigating the complex interplay between solubility and solvation structure for the electrolyte system comprising N-(ferrocenylmethyl)-N,N-dimethyl-N-ethylammonium bistrifluoromethylsulfonimide (Fc1N112-TFSI) dissolved in a ternary carbonate solvent mixture using combined NMR relaxation and computational analyses. Probing the evolution of the solvent-solvent, ion-solvent and ion-ion interactions with an increase in solute concentration provides a molecular level understanding of the solubility limit of the Fc1N112-TFSI system. An increase in solute con-centration leads to pronounced Fc1N112-TFSI contact-ionmore » pair formation by diminishing solvent-solvent and ion-solvent type interactions. At the solubility limit, the precipitation of solute is initiated through agglomeration of contact-ion pairs due to overlapping solvation shells.« less

  13. Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems.

    PubMed

    An, Jiwoo; Trujillo-Rodríguez, María J; Pino, Verónica; Anderson, Jared L

    2017-06-02

    The development of rapid, convenient, and high throughput sample preparation approaches such as liquid phase microextraction techniques have been continuously developed over the last decade. More recently, significant attention has been given to the replacement of conventional organic solvents used in liquid phase microextraction techniques in order to reduce toxic waste and to improve selectivity and/or extraction efficiency. With these objectives, non-conventional solvents have been explored in liquid phase microextraction and aqueous biphasic systems. The utilized non-conventional solvents include ionic liquids, magnetic ionic liquids, and deep eutectic solvents. They have been widely used as extraction solvents or additives in various liquid phase microextraction modes including dispersive liquid-liquid microextraction, single-drop microextraction, hollow fiber-liquid phase microextraction, as well as in aqueous biphasic systems. This review provides an overview into the use of non-conventional solvents in these microextraction techniques in the past 5 years (2012-2016). Analytical applications of the techniques are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. How do binary separations depend on cloud initial conditions?

    NASA Astrophysics Data System (ADS)

    Sterzik, M. F.; Durisen, R. H.; Zinnecker, H.

    2003-11-01

    We explore the consequences of a star formation scenario in which the isothermal collapse of a rotating, star-forming core is followed by prompt fragmentation into a cluster containing a small number (N <~ 10) of protostars and/or substellar objects. The subsequent evolution of the cluster is assumed to be dominated by dynamical interactions among cluster members, and this establishes the final properties of the binary and multiple systems. The characteristic scale of the fragmenting core is determined by the cloud initial conditions (such as temperature, angular momentum and mass), and we are able to relate the separation distributions of the final binary population to the properties of the star-forming core. Because the fragmentation scale immediately after the isothermal collapse is typically a factor of 3-10 too large, we conjecture that fragmentation into small clusters followed by dynamical evolution is required to account for the observed binary separation distributions. Differences in the environmental properties of the cores are expected to imprint differences on the characteristic dimensions of the binary systems they form. Recent observations of hierarchical systems, differences in binary characteristics among star forming regions and systematic variations in binary properties with primary mass can be interpreted in the context of this scenario.

  15. Dynamical evolution of a fictitious population of binary Neptune Trojans

    NASA Astrophysics Data System (ADS)

    Brunini, Adrián

    2018-03-01

    We present numerical simulations of the evolution of a synthetic population of Binary Neptune Trojans, under the influence of the solar perturbations and tidal friction (the so-called Kozai cycles and tidal friction evolution). Our model includes the dynamical influence of the four giant planets on the heliocentric orbit of the binary centre of mass. In this paper, we explore the evolution of initially tight binaries around the Neptune L4 Lagrange point. We found that the variation of the heliocentric orbital elements due to the libration around the Lagrange point introduces significant changes in the orbital evolution of the binaries. Collisional processes would not play a significant role in the dynamical evolution of Neptune Trojans. After 4.5 × 109 yr of evolution, ˜50 per cent of the synthetic systems end up separated as single objects, most of them with slow diurnal rotation rate. The final orbital distribution of the surviving binary systems is statistically similar to the one found for Kuiper Belt Binaries when collisional evolution is not included in the model. Systems composed by a primary and a small satellite are more fragile than the ones composed by components of similar sizes.

  16. An accessible echelle pipeline and its application to a binary star

    NASA Astrophysics Data System (ADS)

    Carmichael, Theron; Johnson, John Asher

    2018-01-01

    Nearly every star observed in the Galaxy has one or more companions that play an integral role in the evolution of the star. Whether it is a planet or another star, a companion opens up opportunities for unique forms of analysis to be done on a system. Some 2400 lightyears away, there is a 3-10 Myr old binary system called KH 15D, which not only includes two T Tauri K-type stars in a close orbit of 48 days, but also a truncated, coherently precessing warped disk in a circumbinary orbit.In binary systems, a double-lined spectroscopic binary may be observable in spectra. This is a spectrum that contains a mixture of each star's properties and manifests as two sets of spectral emission and absorption lines that correspond to each star. Slightly different is a single-lined spectroscopic binary, where only one set of spectral lines from one star is visible. The data of KH 15D are studied in the form of a double single-lined spectroscopic binary. This means that at two separate observing times, a single-lined spectroscopic binary is obtained from one of the stars of KH 15D. This is possible because of the circumbinary disk that blocks one star at a time from view.Here, we study this binary system with a combination of archival echelle data from the Keck Observatory and new echelle data from Las Campanas Observatory. This optical data is reduced with a new Python-based pipeline available on GitHub. The objective is to measure the mass function of the binary star and refine the current values of each star's properties.

  17. Research on the Orbital Period of Massive Binaries

    NASA Astrophysics Data System (ADS)

    Zhao, E.; Qain, S.

    2011-12-01

    Massive binary is the kind of binary, whose spectral type is earlier than B5. Research on massive binary plays an important role in the mass and angular momentum transfer or loss between the components, and the evolution of binary. Some massive binaries are observed and analyzed, including O-type binary LY Aur, B-type contact binary RZ Pyx and B-type semi-detached binary AI Cru. It is found that all of their periods have a long-term increasing, which indicates that the system is undergoing a Case A slow mass transfer stage on the nuclear time-scale of the secondary. Moreover, analysis show a cyclic change of orbital period, which can be explained by the light-travel effect time of the third body.

  18. Effects of solvent on solution prepregging of the resin system LaRC{trademark}-IAX-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cano, R.J.; Massey, C.P.; St. Clair, T.L.

    1996-12-31

    This work assesses the feasibility of using an alternative solvent for the production of composites from polyimide resin systems via solution prepregging. Previous work on solution prepregging of polyimide systems at NASA Langley Research Center has concentrated on the use of the solvent N-methylpyrrolidinone. An alternative solvent with a similar boiling point, -{gamma}-Butyrolactone, was used to prepare the poly(amide acid) version of LaRC{trademark}-IAX-2. These solutions were subsequently used to prepare prepreg and graphite-reinforced composites. Mechanical properties are presented for the resin system LaRC{trademark}-IAX-2 (4% and 5% offset in stoichiometry and endcapped with phthalic anhydride) impregnated onto Hercules IM7 carbon fiber.more » Results from this work were compared to data obtained on the same resin system which had been solution prepregged with the solvent N-methylpyrrolidinone.« less

  19. Optimisation of cosolvent concentration for topical drug delivery III--influence of lipophilic vehicles on ibuprofen permeation.

    PubMed

    Watkinson, R M; Guy, R H; Oliveira, G; Hadgraft, J; Lane, M E

    2011-01-01

    Previously, we have reported the effects of water, ethanol, propylene glycol and various binary and ternary mixtures of these solvents on the permeation of ibuprofen in model membranes and in skin. The present study investigates the influence of lipophilic vehicles on the transport of ibuprofen in silicone membrane and in human skin. The permeation of ibuprofen was measured from mineral oil (MO), Miglyol® 812 (MG) and binary mixtures of MO and MG. The solubility of ibuprofen was 5-fold higher in MG than in MO, however, the permeation of ibuprofen from the pure vehicles and combinations of both was comparable in silicone membrane. Additionally, there were no significant differences in skin permeation for MO and MG vehicles. When the permeation of various hydrophilic and lipophilic vehicles is considered, a trend between flux values for the model membrane and skin is evident (r(2) = 0.71). The findings suggest that silicone membrane may provide information on qualitative trends in skin permeation for vehicles of diverse solubility and partition characteristics. Copyright © 2010 S. Karger AG, Basel.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fei; He, Yadong; Huang, Jingsong

    Porous liquids are a promising new class of materials featuring nanoscale cavity units dispersed in liquids that are suitable for applications such as gas storage and separation. In this work, we use molecular dynamics simulations to examine the multicomponent gas storage in a porous liquid consisting of crown-ether-substituted cage molecules dissolved in a 15-crown-5 solvent. We compute the storage of three prototypical small molecules including CO 2, CH 4, and N 2 and their binary mixtures in individual cage molecules. For porous liquids in equilibrium with a binary 1:1 gas mixture bath with partial gas pressure of 27.5 bar, amore » cage molecule shows a selectivity of 4.3 and 13.1 for the CO 2/CH 4 and CO 2/N 2 pairs, respectively. We provide a molecular perspective of how gas molecules are stored in the cage molecule and how the storage of one type of gas molecule is affected by other types of gas molecules. Finally, our results clarify the molecular mechanisms behind the selectivity of such cage molecules toward different gases.« less

  1. Multicomponent Gas Storage in Organic Cage Molecules

    DOE PAGES

    Zhang, Fei; He, Yadong; Huang, Jingsong; ...

    2017-05-18

    Porous liquids are a promising new class of materials featuring nanoscale cavity units dispersed in liquids that are suitable for applications such as gas storage and separation. In this work, we use molecular dynamics simulations to examine the multicomponent gas storage in a porous liquid consisting of crown-ether-substituted cage molecules dissolved in a 15-crown-5 solvent. We compute the storage of three prototypical small molecules including CO 2, CH 4, and N 2 and their binary mixtures in individual cage molecules. For porous liquids in equilibrium with a binary 1:1 gas mixture bath with partial gas pressure of 27.5 bar, amore » cage molecule shows a selectivity of 4.3 and 13.1 for the CO 2/CH 4 and CO 2/N 2 pairs, respectively. We provide a molecular perspective of how gas molecules are stored in the cage molecule and how the storage of one type of gas molecule is affected by other types of gas molecules. Finally, our results clarify the molecular mechanisms behind the selectivity of such cage molecules toward different gases.« less

  2. Periodic Emission from the Gamma-ray Binary 1FGL J1018.6-5856

    NASA Technical Reports Server (NTRS)

    Celic, O.; Corbet, R. H. D.; Donato, D.; Ferrara, E. C.; Gehrels, N.; Harding, A. K.; Hays, E.; McEnery, J. E.; Thompson, D. J.; Troja, E.

    2012-01-01

    Gamma-ray binaries are stellar systems containing a neutron star or black hole with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that IFGL JI018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable X-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an 06V f) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. IFGL J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.

  3. The Großschwabhausen binary survey

    NASA Astrophysics Data System (ADS)

    Mugrauer, M.; Buder, S.; Reum, F.; Birth, A.

    2017-01-01

    Background: Since 2009, the Großschwabhausen binary survey is being carried out at the University Observatory Jena. This new imaging survey uses available time slots during photometric monitoring campaigns, caused by nonphotometric weather conditions, which often exhibit good atmospheric seeing. The goal of the project is to obtain current relative astrometric measurements of the binary systems that are listed in the Washington Visual Double Star Catalog. Materials and Methods: For the survey we use the Refraktor-Teleskop-Kamera at the University Observatory Jena to take imaging data of selected visual binary systems. Results: In this paper, we characterize the target sample of the survey, describe the imaging observations and the astrometric measurements including the astrometric calibration, and present the relative astrometric measures of 352 binaries that could be obtained during the course of the Großschwabhausen binary survey, so far.

  4. Periodic emission from the gamma-ray binary 1FGL J1018.6-5856.

    PubMed

    Fermi LAT Collaboration; Ackermann, M; Ajello, M; Ballet, J; Barbiellini, G; Bastieri, D; Belfiore, A; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Cavazzuti, E; Cecchi, C; Çelik, Ö; Charles, E; Chaty, S; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Corbel, S; Corbet, R H D; Cutini, S; de Luca, A; den Hartog, P R; de Palma, F; Dermer, C D; Digel, S W; do Couto e Silva, E; Donato, D; Drell, P S; Drlica-Wagner, A; Dubois, R; Dubus, G; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hill, A B; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, T J; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ozaki, M; Paneque, D; Parent, D; Pesce-Rollins, M; Pierbattista, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Ritz, S; Romani, R W; Roth, M; Saz Parkinson, P M; Sgrò, C; Siskind, E J; Spandre, G; Spinelli, P; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Tinivella, M; Torres, D F; Tosti, G; Troja, E; Uchiyama, Y; Usher, T L; Vandenbroucke, J; Vianello, G; Vitale, V; Waite, A P; Winer, B L; Wood, K S; Wood, M; Yang, Z; Zimmer, S; Coe, M J; Di Mille, F; Edwards, P G; Filipović, M D; Payne, J L; Stevens, J; Torres, M A P

    2012-01-13

    Gamma-ray binaries are stellar systems containing a neutron star or black hole, with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL J1018.6-5856 exhibits intensity and spectral modulation with a 16.6-day period. We identified a variable x-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGL J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.

  5. Periodic Emission from the Gamma-Ray Binary 1FGL J1018.6-5856

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Gamma-ray binaries are stellar systems containing a neutron star or black hole, with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy, A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL ]1018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable x-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGL ]1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.

  6. Brown Dwarf Binaries from Disintegrating Triple Systems

    NASA Astrophysics Data System (ADS)

    Reipurth, Bo; Mikkola, Seppo

    2015-04-01

    Binaries in which both components are brown dwarfs (BDs) are being discovered at an increasing rate, and their properties may hold clues to their origin. We have carried out 200,000 N-body simulations of three identical stellar embryos with masses drawn from a Chabrier IMF and embedded in a molecular core. The bodies are initially non-hierarchical and undergo chaotic motions within the cloud core, while accreting using Bondi-Hoyle accretion. The coupling of dynamics and accretion often leads to one or two dominant bodies controlling the center of the cloud core, while banishing the other(s) to the lower-density outskirts, leading to stunted growth. Eventually each system transforms either to a bound hierarchical configuration or breaks apart into separate single and binary components. The orbital motion is followed for 100 Myr. In order to illustrate 200,000 end-states of such dynamical evolution with accretion, we introduce the “triple diagnostic diagram,” which plots two dimensionless numbers against each other, representing the binary mass ratio and the mass ratio of the third body to the total system mass. Numerous freefloating BD binaries are formed in these simulations, and statistical properties are derived. The separation distribution function is in good correspondence with observations, showing a steep rise at close separations, peaking around 13 AU and declining more gently, reaching zero at separations greater than 200 AU. Unresolved BD triple systems may appear as wider BD binaries. Mass ratios are strongly peaked toward unity, as observed, but this is partially due to the initial assumptions. Eccentricities gradually increase toward higher values, due to the lack of viscous interactions in the simulations, which would both shrink the orbits and decrease their eccentricities. Most newborn triple systems are unstable and while there are 9209 ejected BD binaries at 1 Myr, corresponding to about 4% of the 200,000 simulations, this number has grown to 15,894 at 100 Myr (˜8%). The total binary fraction among freefloating BDs is 0.43, higher than indicated by current observations, which, however, are still incomplete. Also, the gradual breakup of higher-order multiples leads to many more singles, thus lowering the binary fraction. The main threat to newly born triple systems is internal instabilities, not external perturbations. At 1 Myr there are 1325 BD binaries still bound to a star, corresponding to 0.66% of the simulations, but only 253 (0.13%) are stable on timescales >100 Myr. These simulations indicate that dynamical interactions in newborn triple systems of stellar embryos embedded in and accreting from a cloud core naturally form a population of freefloating BD binaries, and this mechanism may constitute a significant pathway for the formation of BD binaries.

  7. The PyCBC search for binary black hole coalescences in Advanced LIGO's first observing run

    NASA Astrophysics Data System (ADS)

    Willis, Joshua; LIGO Scientific Collaboration

    2017-01-01

    Advanced LIGO's first observing run saw the first detections of binary black hole coalescences. We describe the PyCBC matched filter analysis, and the results of that search for binary systems with total mass up to 100 solar masses. This is a matched filter search for general-relativistic signals from binary black hole systems. Two signals, GW150914 and GW151226, were identified with very high significance, and a third possible signal, LVT151012, was found, though at much lower significance. Supported by NSF award PHY-1506254.

  8. SEARCHING FOR BINARY Y DWARFS WITH THE GEMINI MULTI-CONJUGATE ADAPTIVE OPTICS SYSTEM (GeMS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Opitz, Daniela; Tinney, C. G.; Faherty, Jacqueline K.

    The NASA Wide-field Infrared Survey Explorer (WISE) has discovered almost all the known members of the new class of Y-type brown dwarfs. Most of these Y dwarfs have been identified as isolated objects in the field. It is known that binaries with L- and T-type brown dwarf primaries are less prevalent than either M-dwarf or solar-type primaries, they tend to have smaller separations and are more frequently detected in near-equal mass configurations. The binary statistics for Y-type brown dwarfs, however, are sparse, and so it is unclear if the same trends that hold for L- and T-type brown dwarfs alsomore » hold for Y-type ones. In addition, the detection of binary companions to very cool Y dwarfs may well be the best means available for discovering even colder objects. We present results for binary properties of a sample of five WISE Y dwarfs with the Gemini Multi-Conjugate Adaptive Optics System. We find no evidence for binary companions in these data, which suggests these systems are not equal-luminosity (or equal-mass) binaries with separations larger than ∼0.5–1.9 AU. For equal-mass binaries at an age of 5 Gyr, we find that the binary binding energies ruled out by our observations (i.e., 10{sup 42} erg) are consistent with those observed in previous studies of hotter ultra-cool dwarfs.« less

  9. Binary asteroid population. 2. Anisotropic distribution of orbit poles of small, inner main-belt binaries

    NASA Astrophysics Data System (ADS)

    Pravec, P.; Scheirich, P.; Vokrouhlický, D.; Harris, A. W.; Kušnirák, P.; Hornoch, K.; Pray, D. P.; Higgins, D.; Galád, A.; Világi, J.; Gajdoš, Š.; Kornoš, L.; Oey, J.; Husárik, M.; Cooney, W. R.; Gross, J.; Terrell, D.; Durkee, R.; Pollock, J.; Reichart, D. E.; Ivarsen, K.; Haislip, J.; LaCluyze, A.; Krugly, Yu. N.; Gaftonyuk, N.; Stephens, R. D.; Dyvig, R.; Reddy, V.; Chiorny, V.; Vaduvescu, O.; Longa-Peña, P.; Tudorica, A.; Warner, B. D.; Masi, G.; Brinsfield, J.; Gonçalves, R.; Brown, P.; Krzeminski, Z.; Gerashchenko, O.; Shevchenko, V.; Molotov, I.; Marchis, F.

    2012-03-01

    Our photometric observations of 18 main-belt binary systems in more than one apparition revealed a strikingly high number of 15 having positively re-observed mutual events in the return apparitions. Our simulations of the survey showed that it cannot be due to an observational selection effect and that the data strongly suggest that poles of mutual orbits between components of binary asteroids in the primary size range 3-8 km are not distributed randomly: The null hypothesis of an isotropic distribution of the orbit poles is rejected at a confidence level greater than 99.99%. Binary orbit poles concentrate at high ecliptic latitudes, within 30° of the poles of the ecliptic. We propose that the binary orbit poles oriented preferentially up/down-right are due to either of the two processes: (i) the YORP tilt of spin axes of their parent bodies toward the asymptotic states near obliquities 0° and 180° (pre-formation mechanism) or (ii) the YORP tilt of spin axes of the primary components of already formed binary systems toward the asymptotic states near obliquities 0° and 180° (post-formation mechanism). The alternative process of elimination of binaries with poles closer to the ecliptic by dynamical instability, such as the Kozai effect due to gravitational perturbations from the Sun, does not explain the observed orbit pole concentration. This is because for close binary asteroid systems, the gravitational effects of primary’s irregular shape dominate the solar-tide effect.

  10. Trans*versing the DMZ: A Non-Binary Autoethnographic Exploration of Gender and Masculinity

    ERIC Educational Resources Information Center

    Stewart, Dafina-Lazarus

    2017-01-01

    Using an abductive, critical-poststructuralist autoethnographic approach, I consider the ways in which masculine of centre, non-binary/genderqueer trans* identities transverse the poles of socializing binary gender systems, structures, and norms which inform higher education. In this paper, I assert that non-binary genderqueer identities are…

  11. Binary Star Fractions from the LAMOST DR4

    NASA Astrophysics Data System (ADS)

    Tian, Zhi-Jia; Liu, Xiao-Wei; Yuan, Hai-Bo; Chen, Bing-Qiu; Xiang, Mao-Sheng; Huang, Yang; Wang, Chun; Zhang, Hua-Wei; Guo, Jin-Cheng; Ren, Juan-Juan; Huo, Zhi-Ying; Yang, Yong; Zhang, Meng; Bi, Shao-Lan; Yang, Wu-Ming; Liu, Kang; Zhang, Xian-Fei; Li, Tan-Da; Wu, Ya-Qian; Zhang, Jing-Hua

    2018-05-01

    Stellar systems composed of single, double, triple or higher-order systems are rightfully regarded as the fundamental building blocks of the Milky Way. Binary stars play an important role in formation and evolution of the Galaxy. Through comparing the radial velocity variations from multi-epoch observations, we analyze the binary fraction of dwarf stars observed with LAMOST. Effects of different model assumptions, such as orbital period distributions on the estimate of binary fractions, are investigated. The results based on log-normal distribution of orbital periods reproduce the previous complete analyses better than the power-law distribution. We find that the binary fraction increases with T eff and decreases with [Fe/H]. We first investigate the relation between α-elements and binary fraction in such a large sample as provided by LAMOST. The old stars with high [α/Fe] dominate with a higher binary fraction than young stars with low [α/Fe]. At the same mass, earlier forming stars possess a higher binary fraction than newly forming ones, which may be related with evolution of the Galaxy.

  12. Candidates of eclipsing multiples based on extraneous eclipses on binary light curves: KIC 7622486, KIC 7668648, KIC 7670485 and KIC 8938628

    NASA Astrophysics Data System (ADS)

    Zhang, Jia; Qian, Sheng-Bang; He, Jian-Duo

    2017-02-01

    Four candidates of eclipsing multiples, based on new extraneous eclipses found on Kepler binary light curves, are presented and studied. KIC 7622486 is a double eclipsing binary candidate with orbital periods of 2.2799960 d and 40.246503 d. The two binary systems do not eclipse each other in the line of sight, but there is mutual gravitational influence between them which leads to the small but definite eccentricity of 0.0035(0.0022) associated with the short 2.2799960 d period orbit. KIC 7668648 is a hierarchical quadruple system candidate, with two sets of solid 203 ± 5 d period extraneous eclipses and another independent set of extraneous eclipses. A clear and credible extraneous eclipse is found on the binary light curve of KIC 7670485 which makes it a triple system candidate. Two sets of extraneous eclipses with periods of about 390 d and 220 d are found on KIC 8938628 binary curves, which not only confirm the previous conclusion of the 388.5 ± 0.3 triple system, but also indicate new additional objects that make KIC 8938628 a hierarchical quadruple system candidate. The results from these four candidates will contribute to the field of eclipsing multiples.

  13. Colliding Winds in Massive Binaries

    NASA Astrophysics Data System (ADS)

    Thaller, M. L.

    1998-12-01

    In close binary systems of massive stars, the individual stellar winds will collide and form a bow shock between the stars, which may have significant impact on the mass-loss and evolution of the system. The existence of such a shock can be established through orbital-phase related variations in the UV resonance lines and optical emission lines. High density regions near the shock will produce Hα and Helium I emission which can be used to map the mass-flow structure of the system. The shock front between the stars may influence the balance of mass-loss versus mass-transfer in massive binary evolution, as matter lost to one star due to Roche lobe overflow may hit the shock and be deflected before it can accrete onto the surface of the other star. I have completed a high-resolution spectroscopic survey of 37 massive binaries, and compared the incidence and strength of emission to an independent survey of single massive stars. Binary stars show a statistically significant overabundance of optical emission, especially when one of the binary stars is in either a giant or supergiant phase of evolution. Seven systems in my survey exhibited clear signs of orbital phase related emission, and for three of the stars (HD 149404, HD 152248, and HD 163181), I present qualitative models of the mass-flow dynamics of the systems.

  14. Superstructures with diverse morphologies and highly ordered fullerene C60 arrays from 1 : 1 and 2 : 1 adamantane-C60 hybrid molecules.

    PubMed

    Zhou, Shengju; Wang, Lin; Chen, Mengjun; Liu, Baoyong; Sun, Xiaofeng; Cai, Meirong; Li, Hongguang

    2017-11-02

    Superstructures from fullerene C 60 -containing compounds, especially those tethered to rigid functional groups with defined shapes, remain largely unexplored. Being the smallest diamondoid, adamantane (Ad) can be viewed as a promising building block for the construction of well-defined superstructures. Here, we report the syntheses of 1 : 1 (4a) and 2 : 1 (4b) Ad-C 60 hybrid molecules, which were then used to construct superstructures in binary solvent mixtures via a modified liquid/liquid interfacial precipitation (LLIP) method using CHCl 3 as a good solvent. Typically in the combination of DMSO/CHCl 3 with a final concentration (c f ) of 1.0 mmol L -1 , 4a successively forms spheres, plates, nanoflowers and plicated particles with increasing content of DMSO while 4b forms cuboid blocks and microparticles with hierarchically organized surfaces. Changing from DMSO to other poor solvents including acetone, MeOH and EtOAc leads to variations of the morphology of the superstructures for both 4a and 4b. At the nanometer length scale, 4a and 4b adopt different organizations within the superstructures. While 4a tends to self-organize into lamellae with highly ordered C 60 layers, the hexagonal phase is dominant in the superstructures formed by 4b. Wettability tests indicate that films formed by the superstructures of 4a and 4b show anti-wetting properties. Besides the solvent effect, the morphology of the superstructures can be also tuned by concentration. For example, when c f is lowered to 0.5 mmol L -1 , a new form of superstructure, i.e., fibers, was detected for 4a. Our results also indicate that besides the solvent-induced aggregate transition, gravity-induced sedimentation and subsequent structure ripening can have a significant influence on the final morphology of the superstructures and the aggregate transition pathways.

  15. Impact of Water-Dilution on the Solvation Properties of the Ionic Liquid 1-Methyltriethoxy-3-ethylimidazolium Acetate for Model Biomass Molecules.

    PubMed

    Schutt, Timothy C; Hegde, Govind A; Bharadwaj, Vivek S; Johns, Adam J; Maupin, C Mark

    2017-02-02

    Many studies have suggested that the processing of lignocellulosic biomass could provide a renewable feedstock to supplant much of the current demand on petroleum sources. Currently, alkyl imidazolium-based ionic liquids (ILs) have shown considerable promise in the pretreatment, solvation, and hydrolysis of lignocellulosic materials although their high cost and unfavorable viscosity has limited their widespread use. Functionalizing these ILs with an oligo(ethoxy) tail has previously been shown through experiment to decrease the IL's viscosity resulting in enhanced mass transport characteristics, in addition to other favorable traits including decreased inhibition of some enzymes. Additionally, the use of cosolvents to mitigate the cost and unfavorable traits of ILs is an area of growing interest with particular attention on water as the presence of water in biomass processes is inevitable. Through the use of biased and unbiased molecular dynamics (MD) simulations, this study provides a molecular-level perspective of the various solvent-solvent and solvent-solute interactions in binary mixtures of water and 1-methyltriethoxy-3-ethylimidazolium acetate ([Me-(OEt) 3 -Et-IM + ] [OAc - ]) in the presence of model cellulose compounds (i.e., glucose and cellobiose). It is observed that at ∼75% w/w IL and water a transition in the nanostructure of the solvent occurs between water-like and IL-like solvation characteristics. It is shown that H-bonding interactions between the anion and water are a major driving force that significantly impacts the solvent properties of the IL as well as conformational preferences of the cellulosic model compound. In addition, it is found that the oligo(ethoxy) cation tail is responsible for the reduction in the propensity for tail aggregation as compared to alkyl tails of similar length, which, combined with increased ionic shielding, results in increased diffusion and enhanced water-like solvation characteristics.

  16. Case-control study of leatherwork and male infertility

    PubMed Central

    Kurinczuk, J; Clarke, M

    2001-01-01

    OBJECTIVES—To test the hypothesis that leatherwork is associated with male infertility mediated through the development of oligozoospermia. The basis of any association was postulated, at the outset, to be with exposure to the solvents used in leatherwork.
METHODS—All new referrals with infertility presenting in Leicestershire hospital clinics between November 1988 and September 1992 and Kettering District General Hospital from August 1990 were eligible to participate; 88.5% agreed to be interviewed. Exposure to leatherwork and work with solvents was defined by job title. Comparisons were made with fertile controls and in an analysis within men from infertile couples with oligozoospermia as the primary outcome. Effects on sperm motility and deformity were investigated secondarily. Analyses used logistic regression for binary outcomes and multilevel modelling for continuous outcomes.
RESULTS—1906 men were interviewed. Compared with the fertile controls the men from infertile couples were 1.10 times (95% confidence interval (95% CI) 0.46 to 2.63; p=0.99) more likely to be leatherworkers and 1.73 times (95% CI 1.26 to 2.38; p<0.001) more likely to work with solvents. Compared with other men, leatherworkers were 1.20 times (95% CI 0.43 to 3.33; p=0.73) more likely to present with oligozoospermia and 1.65 times (95% CI 0.37 to 7.30; p=0.51) more likely to present with teratozoospermia. Being a leatherworker was associated with only a 6% reduction in sperm concentration; motility and deformity were similarly unaffected by this exposure. Work with solvents did not statistically, nor clinically, increase the risk of oligozoospermia, teratozoospermia, or asthenozoospermia.
CONCLUSIONS—There was little evidence to support the hypothesis that leatherwork is associated with an increased risk of presenting with infertility or oligozoospermia. There was limited evidence that leatherwork is a risk factor for teratozoospermia. Workers with solvents were at an increased risk of presenting with infertility, although this was not mediated through effects on standard measures of semen quality; this finding merits further investigation.


Keywords: leatherwork; solvents; male infertility PMID:11245737

  17. Vulcan Identification of Eclipsing Binaries in the Kepler Field of View

    NASA Astrophysics Data System (ADS)

    Mjaseth, Kimberly; Batalha, N.; Borucki, W.; Caldwell, D.; Latham, D.; Martin, K. R.; Rabbette, M.; Witteborn, F.

    2007-05-01

    We report the discovery of 236 new eclipsing binary stars located in and around the field of view of the Kepler Mission. The binaries were identified from photometric light curves from the Vulcan exoplanet transit survey. The Vulcan camera is comprised of a modest aperture (10cm) f/2.8 Canon lens focusing a 7° x 7° field of view onto a 4096 x 4096 Kodak CCD. The system yields an hour-to-hour relative precision of 0.003 on 12th magnitude stars and saturates at 9th magnitude. The binaries have magnitudes in the range of 9.5 < V < 13.5 and periods ranging from 0.5 to 13 days. The milli-magnitude photometric precision allows detection of transits as shallow as 1%. The catalog contains a total of 273 eclipsing binary stars, including detached systems (high and low mass ratio), contact binaries, and triple systems. We present the derived orbital/transit properties, light curves, and stellar properties for selected targets. In addition, we summarize the results of radial velocity follow-up work. Support for this work came from NASA's Discovery Program and NASA's Origins of the Solar System Program.

  18. VX Her: Eclipsing Binary System or Single Variable Star

    NASA Astrophysics Data System (ADS)

    Perry, Kathleen; Castelaz, Michael; Henson, Gary; Boghozian, Andrew

    2015-01-01

    VX Her is a pulsating variable star with a period of .4556504 days. It is believed to be part of an eclipsing binary system (Fitch et al. 1966). This hypothesis originated from Fitch seeing VX Her's minimum point on its light curve reaching a 0.7 magnitude fainter than normal and remaining that way for nearly two hours. If VX Her were indeed a binary system, I would expect to see similar results with a fainter minimum and a broader, more horizontal dip. Having reduced and analyzed images from the Southeastern Association for Research in Astronomy Observatory in Chile and Kitt Peak, as well as images from a 0.15m reflector at East Tennessee State University, I found that VX Her has the standard light curve of the prototype variable star, RR Lyrae. Using photometry, I found no differing features in its light curve to suggest that it is indeed a binary system. However, more observations are needed in case VX Her is a wide binary.

  19. Estimating gravitational radiation from super-emitting compact binary systems

    NASA Astrophysics Data System (ADS)

    Hanna, Chad; Johnson, Matthew C.; Lehner, Luis

    2017-06-01

    Binary black hole mergers are among the most violent events in the Universe, leading to extreme warping of spacetime and copious emission of gravitational radiation. Even though black holes are the most compact objects they are not necessarily the most efficient emitters of gravitational radiation in binary systems. The final black hole resulting from a binary black hole merger retains a significant fraction of the premerger orbital energy and angular momentum. A nonvacuum system can in principle shed more of this energy than a black hole merger of equivalent mass. We study these super-emitters through a toy model that accounts for the possibility that the merger creates a compact object that retains a long-lived time-varying quadrupole moment. This toy model may capture the merger of (low mass) neutron stars, but it may also be used to consider more exotic compact binaries. We hope that this toy model can serve as a guide to more rigorous numerical investigations into these systems.

  20. Collapsing Binary Asteroids With YORP And BYORP

    NASA Astrophysics Data System (ADS)

    Taylor, Patrick A.

    2012-05-01

    A separated binary system may be collapsed to contact via the removal of angular momentum from the system until a viable tidal end state no longer exists. The thermal YORP and BYORP effects are both capable of removing angular momentum from the system, by spin-down of the components and shrinking the mutual orbit, respectively. The YORP effect, with strength of order that measured for (1862) Apollo [1], can collapse a binary system with equal-mass components in as little as tens of thousands of years (depending on the initial angular momentum), while smaller secondaries require two or more orders of magnitude longer to collapse. BYORP, with a BYORP coefficent of 0.001 [2], is less efficient, especially for smaller secondaries. By these methods, only near-Earth binaries with large mass ratios can collapse within a dynamical lifetime, a population of which is observed by radar with a frequency comparable to separated binaries. [1] Kaasalainen et al., 2007, Nature 446, 420-422. [2] McMahon and Scheeres, 2010, Icarus 209, 494-509.

  1. The critical binary star separation for a planetary system origin of white dwarf pollution

    NASA Astrophysics Data System (ADS)

    Veras, Dimitri; Xu, Siyi; Rebassa-Mansergas, Alberto

    2018-01-01

    The atmospheres of between one quarter and one half of observed single white dwarfs in the Milky Way contain heavy element pollution from planetary debris. The pollution observed in white dwarfs in binary star systems is, however, less clear, because companion star winds can generate a stream of matter which is accreted by the white dwarf. Here, we (i) discuss the necessity or lack thereof of a major planet in order to pollute a white dwarf with orbiting minor planets in both single and binary systems, and (ii) determine the critical binary separation beyond which the accretion source is from a planetary system. We hence obtain user-friendly functions relating this distance to the masses and radii of both stars, the companion wind, and the accretion rate on to the white dwarf, for a wide variety of published accretion prescriptions. We find that for the majority of white dwarfs in known binaries, if pollution is detected, then that pollution should originate from planetary material.

  2. Shaping planetary nebulae with jets in inclined triple stellar systems

    NASA Astrophysics Data System (ADS)

    Akashi, Muhammad; Soker, Noam

    2017-10-01

    We conduct three-dimensional hydrodynamical simulations of two opposite jets launched obliquely to the orbital plane around an asymptotic giant branch (AGB) star and within its dense wind, and demonstrate the formation of a `messy' planetary nebula (PN), namely, a PN lacking any type of symmetry (highly irregular). In building the initial conditions we assume that a tight binary system orbits the AGB star, and that the orbital plane of the tight binary system is inclined to the orbital plane of binary system and the AGB star. We further assume that the accreted mass onto the tight binary system forms an accretion disk around one of the stars, and that the plane of the disk is in between the two orbital planes. The highly asymmetrical lobes that we obtain support the notion that messy PNe might be shaped by triple stellar systems.

  3. Binary interaction dominates the evolution of massive stars.

    PubMed

    Sana, H; de Mink, S E; de Koter, A; Langer, N; Evans, C J; Gieles, M; Gosset, E; Izzard, R G; Le Bouquin, J-B; Schneider, F R N

    2012-07-27

    The presence of a nearby companion alters the evolution of massive stars in binary systems, leading to phenomena such as stellar mergers, x-ray binaries, and gamma-ray bursts. Unambiguous constraints on the fraction of massive stars affected by binary interaction were lacking. We simultaneously measured all relevant binary characteristics in a sample of Galactic massive O stars and quantified the frequency and nature of binary interactions. More than 70% of all massive stars will exchange mass with a companion, leading to a binary merger in one-third of the cases. These numbers greatly exceed previous estimates and imply that binary interaction dominates the evolution of massive stars, with implications for populations of massive stars and their supernovae.

  4. The most plausible explanation of the cyclic period changes in close binaries: the case of the RS CVn-type binary WW Dra

    NASA Astrophysics Data System (ADS)

    Liao, W.-P.; Qian, S.-B.

    2010-07-01

    Cyclic period changes are a fairly common phenomenon in close binary systems and are usually explained as being caused either by the magnetic activity of one or both components or by the light travel time effect (LTTE) of a third body. We searched the orbital period changes in 182 EA-type (including the 101 Algol systems used by Hall), 43 EB-type and 53 EW-type binaries with known mass ratio and spectral type of the secondary component. We reproduced and improved the diagram in Hall according to the new collected data. Our plots do not support the conclusion derived by Hall that cyclic period changes are restricted to binaries having a secondary component with spectral type later than F5. The presence of period changes among systems with a secondary component of early type indicates that magnetic activity is one, but not the only, cause of the period variation. It is discovered that cyclic period changes, probably resulting from the presence of a third body, are more frequent in EW-type binaries among close systems. Therefore, the most plausible explanation of the cyclic period changes is the LTTE through the presence of a third body. Using the century-long historical record of the times of light minimum, we analysed the cyclic period change in the Algol binary WW Dra. It is found that the orbital period of the binary shows a ~112.2-yr cyclic variation with an amplitude of ~0.1977d. The cyclic oscillation can be attributed to the LTTE by means of a third body with a mass no less than 6.43Msolar. However, no spectral lines of the third body were discovered, indicating that it may be a candidate black hole. The third body is orbiting the binary at a distance closer than 14.4 au and may play an important role in the evolution of this system.

  5. High-field superconductivity in the Nb-Ti-Zr ternary system

    NASA Astrophysics Data System (ADS)

    Ralls, K. M.; Rose, R. M.; Wulff, J.

    1980-06-01

    Resistive critical current densities, critical fields, and normal-state electrical resistivities were obtained at 4.2 °K for 55 alloys in the Nb-Ti-Zr ternary alloy system, excepting Ti-Zr binary compositions. The resistive critical field as a function of ternary composition has a saddle point between the Nb-Ti and Nb-Zr binaries, so that ternary alloying in this system is not expected to result in higher critical fields than the binary alloys.

  6. Planetary Systems Dynamics Eccentric patterns in debris disks & Planetary migration in binary systems

    NASA Astrophysics Data System (ADS)

    Faramaz, V.; Beust, H.; Augereau, J.-C.; Bonsor, A.; Thébault, P.; Wu, Y.; Marshall, J. P.; del Burgo, C.; Ertel, S.; Eiroa, C.; Montesinos, B.; Mora, A.

    2014-01-01

    We present some highlights of two ongoing investigations that deal with the dynamics of planetary systems. Firstly, until recently, observed eccentric patterns in debris disks were found in young systems. However recent observations of Gyr-old eccentric debris disks leads to question the survival timescale of this type of asymmetry. One such disk was recently observed in the far-IR by the Herschel Space Observatory around ζ2 Reticuli. Secondly, as a binary companion orbits a circumprimary disk, it creates regions where planet formation is strongly handicapped. However, some planets were detected in this zone in tight binary systems (γ Cep, HD 196885). We aim to determine whether a binary companion can affect migration such that planets are brought in these regions and focus in particular on the planetesimal-driven migration mechanism.

  7. Spin Evolution of Stellar Progenitors in Compact Binaries

    NASA Astrophysics Data System (ADS)

    Steinle, Nathan; Kesden, Michael

    2018-01-01

    Understanding the effects of various processes on the spins of stellar progenitors in compact binary systems is important for modeling the binary’s evolution and thus for interpreting the gravitational radiation emitted during inspiral and merger. Tides, winds, and natal kicks can drastically modify the binary parameters: tidal interactions increase the spin magnitudes, align the spins with the orbital angular momentum, and circularize the orbit; stellar winds decrease the spin magnitudes and cause mass loss; and natal kicks can misalign the spins and orbital angular momentum or even disrupt the binary. Also, during Roche lobe overflow, the binary may experience either stable mass transfer or common envelope evolution. The former can lead to a mass ratio reversal and alter the component spins, while the latter can dramatically shrink the binary separation. For a wide range of physically reasonable stellar-evolution scenarios, we compare the timescales of these processes to assess their relative contributions in determining the initial spins of compact binary systems.

  8. Innovative polymeric system (IPS) for solvent-free lipophilic drug transdermal delivery via dissolving microneedles.

    PubMed

    Dangol, Manita; Yang, Huisuk; Li, Cheng Guo; Lahiji, Shayan Fakhraei; Kim, Suyong; Ma, Yonghao; Jung, Hyungil

    2016-02-10

    Lipophilic drugs are potential drug candidates during drug development. However, due to the need for hazardous organic solvents for their solubilization, these drugs often fail to reach the pharmaceutical market, and in doing so highlight the importance of solvent free systems. Although transdermal drug delivery systems (TDDSs) are considered prospective safe drug delivery routes, a system involving lipophilic drugs in solvent free or powder form has not yet been described. Here, we report, for the first time, a novel approach for the delivery of every kind of lipophilic drug in powder form based on an innovative polymeric system (IPS). The phase transition of powder form of lipophilic drugs due to interior chemical bonds between drugs and biodegradable polymers and formation of nano-sized colloidal structures allowed the fabrication of dissolving microneedles (DMNs) to generate a powerful TDDS. We showed that IPS based DMN with powder capsaicin enhances the therapeutic effect for treatment of the rheumatic arthritis in a DBA/1 mouse model compared to a solvent-based system, indicating the promising potential of this new solvent-free platform for lipophilic drug delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. 40 CFR 60.434 - Monitoring of operations and recordkeeping.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... affected facility using waterborne ink systems or solvent-borne ink systems with solvent recovery systems...) If affected facilities share the same raw ink storage/handling system with existing facilities...

  10. 40 CFR 60.434 - Monitoring of operations and recordkeeping.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... affected facility using waterborne ink systems or solvent-borne ink systems with solvent recovery systems...) If affected facilities share the same raw ink storage/handling system with existing facilities...

  11. 40 CFR 60.434 - Monitoring of operations and recordkeeping.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... affected facility using waterborne ink systems or solvent-borne ink systems with solvent recovery systems...) If affected facilities share the same raw ink storage/handling system with existing facilities...

  12. Modeling of the phase equilibria of polystyrene in methylcyclohexane with semi-empirical quantum mechanical methods I.

    PubMed

    Wilczura-Wachnik, Hanna; Jónsdóttir, Svava Osk

    2003-04-01

    A method for calculating interaction parameters traditionally used in phase-equilibrium computations in low-molecular systems has been extended for the prediction of solvent activities of aromatic polymer solutions (polystyrene+methylcyclohexane). Using ethylbenzene as a model compound for the repeating unit of the polymer, the intermolecular interaction energies between the solvent molecule and the polymer were simulated. The semiempirical quantum chemical method AM1, and a method for sampling relevant internal orientations for a pair of molecules developed previously were used. Interaction energies are determined for three molecular pairs, the solvent and the model molecule, two solvent molecules and two model molecules, and used to calculated UNIQUAC interaction parameters, a(ij) and a(ji). Using these parameters, the solvent activities of the polystyrene 90,000 amu+methylcyclohexane system, and the total vapor pressures of the methylcyclohexane+ethylbenzene system were calculated. The latter system was compared to experimental data, giving qualitative agreement. Figure Solvent activities for the methylcylcohexane(1)+polystyrene(2) system at 316 K. Parameters aij (blue line) obtained with the AM1 method; parameters aij (pink line) from VLE data for the ethylbenzene+methylcyclohexane system. The abscissa is the polymer weight fraction defined as y2(x1)=(1mx1)M2/[x1M1+(1mx1)M2], where x1 is the solvent mole fraction and Mi are the molecular weights of the components.

  13. On the Lack of Circumbinary Planets Orbiting Isolated Binary Stars

    NASA Astrophysics Data System (ADS)

    Fleming, David; Barnes, Rory; Graham, David E.; Luger, Rodrigo; Quinn, Thomas R.

    2018-04-01

    To date, no binary star system with an orbital period less than 7.5 days has been observed to host a circumbinary planet (CBP), a puzzling observation given the thousands of binary stars with orbital periods < 10 days discovered by the Kepler mission (Kirk et al., 2016) and the observational biases that favor their detection (Munoz & Lai, 2015). We outline a mechanism that explains the observed lack of CBPs via coupled stellar-tidal evolution of isolated binary stars. Tidal forces between low-mass, short-period binary stars on the pre-main sequence slow the stellar rotations, transferring rotational angular momentum to the orbit as the stars approach the tidally locked state. This transfer increases the binary orbital period, expanding the region of dynamical instability around the binary, and destabilizing CBPs that tend to preferentially orbit just beyond the initial dynamical stability limit. After the stars tidally lock, we find that angular momentum loss due to magnetic braking can significantly shrink the binary orbit, and hence the region of dynamical stability, over time impacting where surviving CBPs are observed relative to the boundary. We perform simulations over a wide range of parameter space and find that the expansion of the instability region occurs for most plausible initial conditions and that in some cases, the stability semi-major axis doubles from its initial value. We examine the dynamical and observable consequences of a CBP falling within the dynamical instability limit by running N-body simulations of circumbinary planetary systems and find that typically, at least one planet is ejected from the system. We apply our theory to the shortest period Kepler binary that possesses a CBP, Kepler-47, and find that its existence is consistent with our model. Under conservative assumptions, we find that coupled stellar-tidal evolution of pre-main sequence binary stars removes at least one close-in CBP in 87% of multi-planet circumbinary systems.

  14. Primary Surface Particle Motion as a Mechanism for YORP-Driven Binary Asteroid Evolution

    NASA Astrophysics Data System (ADS)

    Fahnestock, Eugene G.; Scheeres, D. J.

    2008-09-01

    Within the largest class of binary asteroid systems -- asynchronous binaries typified by 1999 KW4 -- we hypothesize continued YORP spin-up of the rapidly rotating primary leads to recurring episodic lofting motion of primary equator regolith. We theorize this is a mechanism for transporting YORP-injected angular momentum from primary spin into the mutual orbit. This both enables binary primaries to continue to spin at near surface fission rates and produces continued orbit expansion on time scales several times faster than expansion predicted by tidal dissipation alone. This is distinct from the Binary Yorp (BYORP) phenomenon, not studied in this work but to be added to it later. We evaluate our hypotheses using a combination of techniques for an example binary system. First high-fidelity dynamic simulation of surface-originating particles in the full-detail gravity field of the binary components, themselves propagated according to the full two body problem, gives particle final disposition (return impact, transfer impact, escape). Trajectory end states found for regolith lofted at different initial primary spin rates and relative poses are collected into probability matrices, allowing probabilistic propagation of surface particles for long durations at low computational cost. We track changes to mass, inertia dyad, rotation state, and centroid position and velocity for each component in response to this mapped particle motion. This allows tracking of primary, secondary, and mutual orbit angular momenta over time, clearly demonstrating the angular momentum transfer mechanism and validating our hypotheses. We present current orbit expansion rates and estimated orbit size doubling times consistent with this mechanism, for a few binary systems. We also discuss ramifications of this type of rapid binary evolution towards separation, including the frequency with which "divorced binaries" on similar heliocentric orbits are produced, formation of triple systems such as 2001 SN263, and separation timescale dependence on heliocentric distance.

  15. Generation of two-dimensional binary mixtures in complex plasmas

    NASA Astrophysics Data System (ADS)

    Wieben, Frank; Block, Dietmar

    2016-10-01

    Complex plasmas are an excellent model system for strong coupling phenomena. Under certain conditions the dust particles immersed into the plasma form crystals which can be analyzed in terms of structure and dynamics. Previous experiments focussed mostly on monodisperse particle systems whereas dusty plasmas in nature and technology are polydisperse. Thus, a first and important step towards experiments in polydisperse systems are binary mixtures. Recent experiments on binary mixtures under microgravity conditions observed a phase separation of particle species with different radii even for small size disparities. This contradicts several numerical studies of 2D binary mixtures. Therefore, dedicated experiments are required to gain more insight into the physics of polydisperse systems. In this contribution first ground based experiments on two-dimensional binary mixtures are presented. Particular attention is paid to the requirements for the generation of such systems which involve the consideration of the temporal evolution of the particle properties. Furthermore, the structure of these two-component crystals is analyzed and compared to simulations. This work was supported by the Deutsche Forschungsgemeinschaft DFG in the framework of the SFB TR24 Greifswald Kiel, Project A3b.

  16. Experimental observations of the hydrodynamic behavior of solvent systems in high-speed counter-current chromatography. I. Hydrodynamic distribution of two solvent phases in a helical column subjected to two types of synchronous planetary motion.

    PubMed

    Ito, Y

    1984-10-05

    Hydrodynamic distribution of two-phase solvent systems in a rotating helical column subjected to centrifugal fields produced by two different types of synchronous planetary motion has been studied by the use of the combined horizontal flow-through coil planet centrifuge. With continuous elution of the mobile phase, the simpler type of motion resulted in low retention of the stationary phase in the column whereas a more complex motion, which produces a quasi-radial centrifugal field varying in both intensity and direction, yielded high stationary phase retention for commonly used solvent systems having a wide range of hydrophobicity. These solvent systems display highly complex modes of hydrodynamic interaction in the coil according to their particular physical properties.

  17. Effects of monohydric alcohols and polyols on the thermal stability of a protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murakami, Shota; Kinoshita, Masahiro, E-mail: kinoshit@iae.kyoto-u.ac.jp

    2016-03-28

    The thermal stability of a protein is lowered by the addition of a monohydric alcohol, and this effect becomes larger as the size of hydrophobic group in an alcohol molecule increases. By contrast, it is enhanced by the addition of a polyol possessing two or more hydroxyl groups per molecule, and this effect becomes larger as the number of hydroxyl groups increases. Here, we show that all of these experimental observations can be reproduced even in a quantitative sense by rigid-body models focused on the entropic effect originating from the translational displacement of solvent molecules. The solvent is either puremore » water or water-cosolvent solution. Three monohydric alcohols and five polyols are considered as cosolvents. In the rigid-body models, a protein is a fused hard spheres accounting for the polyatomic structure in the atomic detail, and the solvent is formed by hard spheres or a binary mixture of hard spheres with different diameters. The effective diameter of cosolvent molecules and the packing fractions of water and cosolvent, which are crucially important parameters, are carefully estimated using the experimental data of properties such as the density of solid crystal of cosolvent, parameters in the pertinent cosolvent-cosolvent interaction potential, and density of water-cosolvent solution. We employ the morphometric approach combined with the integral equation theory, which is best suited to the physical interpretation of the calculation result. It is argued that the degree of solvent crowding in the bulk is the key factor. When it is made more serious by the cosolvent addition, the solvent-entropy gain upon protein folding is magnified, leading to the enhanced thermal stability. When it is made less serious, the opposite is true. The mechanism of the effects of monohydric alcohols and polyols is physically the same as that of sugars. However, when the rigid-body models are employed for the effect of urea, its addition is predicted to enhance the thermal stability, which conflicts with the experimental fact. We then propose, as two essential factors, not only the solvent-entropy gain but also the loss of protein-solvent interaction energy upon protein folding. The competition of changes in these two factors induced by the cosolvent addition determines the thermal-stability change.« less

  18. Effects of monohydric alcohols and polyols on the thermal stability of a protein

    NASA Astrophysics Data System (ADS)

    Murakami, Shota; Kinoshita, Masahiro

    2016-03-01

    The thermal stability of a protein is lowered by the addition of a monohydric alcohol, and this effect becomes larger as the size of hydrophobic group in an alcohol molecule increases. By contrast, it is enhanced by the addition of a polyol possessing two or more hydroxyl groups per molecule, and this effect becomes larger as the number of hydroxyl groups increases. Here, we show that all of these experimental observations can be reproduced even in a quantitative sense by rigid-body models focused on the entropic effect originating from the translational displacement of solvent molecules. The solvent is either pure water or water-cosolvent solution. Three monohydric alcohols and five polyols are considered as cosolvents. In the rigid-body models, a protein is a fused hard spheres accounting for the polyatomic structure in the atomic detail, and the solvent is formed by hard spheres or a binary mixture of hard spheres with different diameters. The effective diameter of cosolvent molecules and the packing fractions of water and cosolvent, which are crucially important parameters, are carefully estimated using the experimental data of properties such as the density of solid crystal of cosolvent, parameters in the pertinent cosolvent-cosolvent interaction potential, and density of water-cosolvent solution. We employ the morphometric approach combined with the integral equation theory, which is best suited to the physical interpretation of the calculation result. It is argued that the degree of solvent crowding in the bulk is the key factor. When it is made more serious by the cosolvent addition, the solvent-entropy gain upon protein folding is magnified, leading to the enhanced thermal stability. When it is made less serious, the opposite is true. The mechanism of the effects of monohydric alcohols and polyols is physically the same as that of sugars. However, when the rigid-body models are employed for the effect of urea, its addition is predicted to enhance the thermal stability, which conflicts with the experimental fact. We then propose, as two essential factors, not only the solvent-entropy gain but also the loss of protein-solvent interaction energy upon protein folding. The competition of changes in these two factors induced by the cosolvent addition determines the thermal-stability change.

  19. Interference modelling, experimental design and pre-concentration steps in validation of the Fenton's reagent for pesticides determination.

    PubMed

    Ostra, Miren; Ubide, Carlos; Zuriarrain, Juan

    2007-02-12

    The determination of atrazine in real samples (commercial pesticide preparations and water matrices) shows how the Fenton's reagent can be used with analytical purposes when kinetic methodology and multivariate calibration methods are applied. Also, binary mixtures of atrazine-alachlor and atrazine-bentazone in pesticide preparations have been resolved. The work shows the way in which interferences and the matrix effect can be modelled. Experimental design has been used to optimize experimental conditions, including the effect of solvent (methanol) used for extraction of atrazine from the sample. The determination of pesticides in commercial preparations was accomplished without any pre-treatment of sample apart from evaporation of solvent; the calibration model was developed for concentration ranges between 0.46 and 11.6 x 10(-5) mol L(-1) with mean relative errors under 4%. Solid-phase extraction is used for pre-concentration of atrazine in water samples through C(18) disks, and the concentration range for determination was established between 4 and 115 microg L(-1) approximately. Satisfactory results for recuperation of atrazine were always obtained.

  20. Raman and infrared spectroscopic study of the molecular dynamics of N2O in inert solvents

    NASA Astrophysics Data System (ADS)

    Ouillon, R.

    The influence of the rotational motion of the N2O molecule on its own vibrational motion does not noticeably affect the widths of v1 and v3 isotropic spectra of this molecule in inert solvents (SF6 and CCl4). The pure vibrational dephasing plays a predominant role on this band broadening as shown by comparing the experimental vibrational relaxation time with the calculated vibrational dephasing time deduced from either the binary collision (Fischer-Laubereau) or hydrodynamic model (Metiu-Oxtoby), provided the anharmonicity of the intermolecular potential, as regards the former, and the quadratic coupling terms between vibrator and bath, as regards the latter, are taken into account. Examination of the vibrational correlation functions in the framework of the Rothschild model allows a better understanding of the influence of the instantaneous distribution of vibrational frequencies and of the decay of the perturbation on the shape of the isotropic spectra and confirms that the modulation of the N2O vibration by its environment is rather rapid.

Top