Brantley, P S; Martos, J N
2011-03-02
We describe a parallel benchmark procedure and numerical results for a three-dimensional binary stochastic medium particle transport benchmark problem. The binary stochastic medium is composed of optically thick spherical inclusions distributed in an optically thin background matrix material. We investigate three sphere mean chord lengths, three distributions for the sphere radii (constant, uniform, and exponential), and six sphere volume fractions ranging from 0.05 to 0.3. For each sampled independent material realization, we solve the associated transport problem using the Mercury Monte Carlo particle transport code. We compare the ensemble-averaged benchmark fiducial tallies of reflection from and transmission through the spatial domain as well as absorption in the spherical inclusion and background matrix materials. For the parameter values investigated, we find a significant dependence of the ensemble-averaged fiducial tallies on both sphere mean chord length and sphere volume fraction, with the most dramatic variation occurring for the transmission through the spatial domain. We find a weaker dependence of most benchmark tally quantities on the distribution describing the sphere radii, provided the sphere mean chord length used is the same in the different distributions. The exponential distribution produces larger differences from the constant distribution than the uniform distribution produces. The transmission through the spatial domain does exhibit a significant variation when an exponential radius distribution is used.
Stochastic mirage phenomenon in a random medium.
McDaniel, Austin; Mahalov, Alex
2017-05-15
In the framework of geometric optics, we consider the problem of characterizing the ray trajectory in a random medium with a mean refractive index gradient. Such a gradient results in the mirage phenomenon where an object's observed location is displaced from its actual location. We derive formulas for the mean ray path in both the situation of isotropic stochastic fluctuations and an important anisotropic case. For the isotropic model, the mean squared displacement is also given by a simple formula. Our results could be useful for applications involving the propagation of electromagnetic waves through the atmosphere, where larger-scale mean gradients and smaller-scale stochastic fluctuations are both present.
Stochastic learning in oxide binary synaptic device for neuromorphic computing
Yu, Shimeng; Gao, Bin; Fang, Zheng; Yu, Hongyu; Kang, Jinfeng; Wong, H.-S. Philip
2013-01-01
Hardware implementation of neuromorphic computing is attractive as a computing paradigm beyond the conventional digital computing. In this work, we show that the SET (off-to-on) transition of metal oxide resistive switching memory becomes probabilistic under a weak programming condition. The switching variability of the binary synaptic device implements a stochastic learning rule. Such stochastic SET transition was statistically measured and modeled for a simulation of a winner-take-all network for competitive learning. The simulation illustrates that with such stochastic learning, the orientation classification function of input patterns can be effectively realized. The system performance metrics were compared between the conventional approach using the analog synapse and the approach in this work that employs the binary synapse utilizing the stochastic learning. The feasibility of using binary synapse in the neurormorphic computing may relax the constraints to engineer continuous multilevel intermediate states and widens the material choice for the synaptic device design. PMID:24198752
Stochastic learning in oxide binary synaptic device for neuromorphic computing.
Yu, Shimeng; Gao, Bin; Fang, Zheng; Yu, Hongyu; Kang, Jinfeng; Wong, H-S Philip
2013-01-01
Hardware implementation of neuromorphic computing is attractive as a computing paradigm beyond the conventional digital computing. In this work, we show that the SET (off-to-on) transition of metal oxide resistive switching memory becomes probabilistic under a weak programming condition. The switching variability of the binary synaptic device implements a stochastic learning rule. Such stochastic SET transition was statistically measured and modeled for a simulation of a winner-take-all network for competitive learning. The simulation illustrates that with such stochastic learning, the orientation classification function of input patterns can be effectively realized. The system performance metrics were compared between the conventional approach using the analog synapse and the approach in this work that employs the binary synapse utilizing the stochastic learning. The feasibility of using binary synapse in the neurormorphic computing may relax the constraints to engineer continuous multilevel intermediate states and widens the material choice for the synaptic device design.
Stochastic processes in the interstellar medium
NASA Astrophysics Data System (ADS)
Bron, Emeric
2014-11-01
In this thesis, I have tackled two seemingly unrelated problems in the modeling of the neutral interstellar medium (ISM). The first is the description of H2 formation on interstellar dust grains under realistic conditions. The precise determination of the H2 formation rate and abundance is crucial, as it controls most of the subsequent development of the chemical complexity in the ISM, as well as part of its physics. The temperature of small grains (less than 10 nm) fluctuates constantly as those grains are sensitive to the energy of individual UV photons, and the surface mechanisms of H2 formation, which are sensitive to the grain temperature, are kept out of equilibrium by the fluctuations. I have developed an exact resolution formalism for the statistical equilibrium of this system, and implemented its numerical resolution. Among other results, taking the fluctuations into account leads to large differences for the Langmuir-Hinshelwood mechanism, whose efficiency is increased in atomic gas and decreased inside molecular gas. The second problem is related to the ubiquitous presence of molecules such as CH+, whose formation is highly endothermic, in the diffuse ISM where the observed gas temperature (less than 100 K) is insufficient to trigger their formation. It has been proposed that the intermittent dissipation of turbulence could inject the necessary energy, creating hot spots, which could also explain the observed rotational excitation of H2 in such regions. At small scales, the gas is thus perturbed by strong fluctuations of the energy injection rate. I propose a model for the Lagrangian evolution of the local physico-chemical state of the gas based on stochastic processes, and apply it to derive the distribution of the gas temperature in the diffuse atomic medium, and the average excitation of H2 in the diffuse molecular gas. Both problems are thus similar and can be described in a more abstract way as systems whose state is perturbed by strong fluctuations
Convergence of stochastic learning in perceptrons with binary synapses.
Senn, Walter; Fusi, Stefano
2005-06-01
The efficacy of a biological synapse is naturally bounded, and at some resolution, and is discrete at the latest level of single vesicles. The finite number of synaptic states dramatically reduce the storage capacity of a network when online learning is considered (i.e., the synapses are immediately modified by each pattern): the trace of old memories decays exponentially with the number of new memories (palimpsest property). Moreover, finding the discrete synaptic strengths which enable the classification of linearly separable patterns is a combinatorially hard problem known to be NP complete. In this paper we show that learning with discrete (binary) synapses is nevertheless possible with high probability if a randomly selected fraction of synapses is modified following each stimulus presentation (slow stochastic learning). As an additional constraint, the synapses are only changed if the output neuron does not give the desired response, as in the case of classical perceptron learning. We prove that for linearly separable classes of patterns the stochastic learning algorithm converges with arbitrary high probability in a finite number of presentations, provided that the number of neurons encoding the patterns is large enough. The stochastic learning algorithm is successfully applied to a standard classification problem of nonlinearly separable patterns by using multiple, stochastically independent output units, with an achieved performance which is comparable to the maximal ones reached for the task.
Analytic framework for a stochastic binary biological switch
NASA Astrophysics Data System (ADS)
Innocentini, Guilherme C. P.; Guiziou, Sarah; Bonnet, Jerome; Radulescu, Ovidiu
2016-12-01
We propose and solve analytically a stochastic model for the dynamics of a binary biological switch, defined as a DNA unit with two mutually exclusive configurations, each one triggering the expression of a different gene. Such a device has the potential to be used as a memory unit for biological computing systems designed to operate in noisy environments. We discuss a recent implementation of this switch in living cells, the recombinase addressable data (RAD) module. In order to understand the behavior of a RAD module we compute the exact time-dependent joint distribution of the two expressed genes starting in one state and evolving to another asymptotic state. We consider two operating regimes of the RAD module, a fast and a slow stochastic switching regime. The fast regime is aggregative and produces unimodal distributions, whereas the slow regime is separative and produces bimodal distributions. Both regimes can serve to prepare pure memory states when all cells are expressing the same gene. The slow regime can also separate mixed states by producing two subpopulations, each one expressing a different gene. Compared to the genetic toggle switch based on positive feedback, the RAD module ensures more rapid memory operations for the same quality of the separation between binary states. Our model provides a simplified phenomenological framework for studying RAD memory devices and our analytic solution can be further used to clarify theoretical concepts in biocomputation and for optimal design in synthetic biology.
STOCHASTIC GRAVITATIONAL WAVE BACKGROUND FROM COALESCING BINARY BLACK HOLES
Zhu Xingjiang; Zhu Zonghong; Howell, E.; Blair, D.; Regimbau, T.
2011-10-01
We estimate the stochastic gravitational wave (GW) background signal from the field population of coalescing binary stellar mass black holes (BHs) throughout the universe. This study is motivated by recent observations of BH-Wolf-Rayet (WR) star systems and by new estimates in the metallicity abundances of star-forming galaxies that imply BH-BH systems are more common than previously assumed. Using recent analytical results of the inspiral-merger-ringdown waveforms for coalescing binary BH systems, we estimate the resulting stochastic GW background signal. Assuming average quantities for the single source energy emissions, we explore the parameter space of chirp mass and local rate density required for detection by advanced and third-generation interferometric GW detectors. For an average chirp mass of 8.7 M{sub sun}, we find that detection through 3 years of cross-correlation by two advanced detectors will require a rate density, r{sub 0} {>=} 0.5 Mpc{sup -3} Myr{sup -1}. Combining data from multiple pairs of detectors can reduce this limit by up to 40%. Investigating the full parameter space we find that detection could be achieved at rates r{sub 0} {approx} 0.1 Mpc{sup -3} Myr{sup -1} for populations of coalescing binary BH systems with average chirp masses of {approx}15 M{sub sun} which are predicted by recent studies of BH-WR star systems. While this scenario is at the high end of theoretical estimates, cross-correlation of data by two Einstein Telescopes could detect this signal under the condition r{sub 0} {>=} 10{sup -3}Mpc{sup -3} Myr{sup -1}. Such a signal could potentially mask a primordial GW background signal of dimensionless energy density, {Omega}{sub GW} {approx} 10{sup -10}, around the (1-500) Hz frequency range.
Stochastic Gravitational Wave Background from Coalescing Binary Black Holes
NASA Astrophysics Data System (ADS)
Zhu, Xing-Jiang; Howell, E.; Regimbau, T.; Blair, D.; Zhu, Zong-Hong
2011-10-01
We estimate the stochastic gravitational wave (GW) background signal from the field population of coalescing binary stellar mass black holes (BHs) throughout the universe. This study is motivated by recent observations of BH-Wolf-Rayet (WR) star systems and by new estimates in the metallicity abundances of star-forming galaxies that imply BH-BH systems are more common than previously assumed. Using recent analytical results of the inspiral-merger-ringdown waveforms for coalescing binary BH systems, we estimate the resulting stochastic GW background signal. Assuming average quantities for the single source energy emissions, we explore the parameter space of chirp mass and local rate density required for detection by advanced and third-generation interferometric GW detectors. For an average chirp mass of 8.7 M sun, we find that detection through 3 years of cross-correlation by two advanced detectors will require a rate density, r 0 >= 0.5 Mpc-3 Myr-1. Combining data from multiple pairs of detectors can reduce this limit by up to 40%. Investigating the full parameter space we find that detection could be achieved at rates r 0 ~ 0.1 Mpc-3 Myr-1 for populations of coalescing binary BH systems with average chirp masses of ~15 M sun which are predicted by recent studies of BH-WR star systems. While this scenario is at the high end of theoretical estimates, cross-correlation of data by two Einstein Telescopes could detect this signal under the condition r 0 >= 10-3Mpc-3 Myr-1. Such a signal could potentially mask a primordial GW background signal of dimensionless energy density, ΩGW ~ 10-10, around the (1-500) Hz frequency range.
Ground Movement Analysis Based on Stochastic Medium Theory
Fei, Meng; Li-chun, Wu; Jia-sheng, Zhang; Guo-dong, Deng; Zhi-hui, Ni
2014-01-01
In order to calculate the ground movement induced by displacement piles driven into horizontal layered strata, an axisymmetric model was built and then the vertical and horizontal ground movement functions were deduced using stochastic medium theory. Results show that the vertical ground movement obeys normal distribution function, while the horizontal ground movement is an exponential function. Utilizing field measured data, parameters of these functions can be obtained by back analysis, and an example was employed to verify this model. Result shows that stochastic medium theory is suitable for calculating the ground movement in pile driving, and there is no need to consider the constitutive model of soil or contact between pile and soil. This method is applicable in practice. PMID:24701184
Stochastic pulse switching in a degenerate resonant optical medium
NASA Astrophysics Data System (ADS)
Atkins, Ethan P.; Kramer, Peter R.; Kovačič, Gregor; Gabitov, Ildar R.
2012-04-01
Using the idealized integrable Maxwell-Bloch model, we describe random optical-pulse polarization switching along an active optical medium in the Λ configuration with disordered occupation numbers of its lower-energy sublevel pair. The description combines complete integrability and stochastic dynamics. For the single-soliton pulse, we derive the statistics of the electric-field polarization ellipse at a given point along the medium in closed form. If the average initial population difference of the two lower sublevels vanishes, we show that the pulse polarization will switch intermittently between the two circular polarizations as it travels along the medium. If this difference does not vanish, the pulse will eventually forever remain in the circular polarization determined by which sublevel is more occupied on average. We also derive the exact expressions for the statistics of the polarization-switching dynamics, such as the probability distribution of the distance between two consecutive switches and the percentage of the distance along the medium the pulse spends in the elliptical polarization of a given orientation in the case of vanishing average initial population difference. We find that the latter distribution is given in terms of the well-known arc sine law.
NASA Astrophysics Data System (ADS)
Vigeland, Sarah; Siemens, Xavier
2017-01-01
Pulsar timing arrays (PTAs) are sensitive to the gravitational wave (GW) stochastic background produced by supermassive black hole binaries (SMBHBs). Environmental effects such as gas and stars accelerate the evolution of SMBHBs and may deplete the stochastic background at low frequencies. How much this effects the sensitivity of PTAs to the stochastic background depends on the astrophysical mechanism and where the binary's evolution transitions from being driven by environmental effects to driven by GW emission. We will discuss how these issues impact our observing strategy and estimated time-to-detection. National Science Foundation PIRE program.
NASA Astrophysics Data System (ADS)
Vigeland, Sarah; Siemens, Xavier
2017-01-01
Pulsar timing arrays (PTAs) are sensitive to the gravitational wave (GW) stochastic background produced by supermassive black hole binaries (SMBHBs). Environmental effects such as gas and stars accelerate the evolution of SMBHBs and may deplete the stochastic background at low frequencies. How much this effects the sensitivity of PTAs to the stochastic background depends on the astrophysical mechanism and where the binary's evolution transitions from being driven by environmental effects to driven by GW emission. We will discuss how these issues impact our observing strategy and estimated time-to-detection.
Stochastic study of solute transport in a nonstationary medium.
Hu, Bill X
2006-01-01
A Lagrangian stochastic approach is applied to develop a method of moment for solute transport in a physically and chemically nonstationary medium. Stochastic governing equations for mean solute flux and solute covariance are analytically obtained in the first-order accuracy of log conductivity and/or chemical sorption variances and solved numerically using the finite-difference method. The developed method, the numerical method of moments (NMM), is used to predict radionuclide solute transport processes in the saturated zone below the Yucca Mountain project area. The mean, variance, and upper bound of the radionuclide mass flux through a control plane 5 km downstream of the footprint of the repository are calculated. According to their chemical sorption capacities, the various radionuclear chemicals are grouped as nonreactive, weakly sorbing, and strongly sorbing chemicals. The NMM method is used to study their transport processes and influence factors. To verify the method of moments, a Monte Carlo simulation is conducted for nonreactive chemical transport. Results indicate the results from the two methods are consistent, but the NMM method is computationally more efficient than the Monte Carlo method. This study adds to the ongoing debate in the literature on the effect of heterogeneity on solute transport prediction, especially on prediction uncertainty, by showing that the standard derivation of solute flux is larger than the mean solute flux even when the hydraulic conductivity within each geological layer is mild. This study provides a method that may become an efficient calculation tool for many environmental projects.
Stochastic Gravitational-Wave Background due to Primordial Binary Black Hole Mergers.
Mandic, Vuk; Bird, Simeon; Cholis, Ilias
2016-11-11
Recent Advanced LIGO detections of binary black hole mergers have prompted multiple studies investigating the possibility that the heavy GW150914 binary system was of primordial origin, and hence could be evidence for dark matter in the form of black holes. We compute the stochastic background arising from the incoherent superposition of such primordial binary black hole systems in the Universe and compare it to the similar background spectrum due to binary black hole systems of stellar origin. We investigate the possibility of detecting this background with future gravitational-wave detectors, and conclude that constraining the dark matter component in the form of black holes using stochastic gravitational-wave background measurements will be very challenging.
Stochastic Gravitational-Wave Background due to Primordial Binary Black Hole Mergers
NASA Astrophysics Data System (ADS)
Mandic, Vuk; Bird, Simeon; Cholis, Ilias
2016-11-01
Recent Advanced LIGO detections of binary black hole mergers have prompted multiple studies investigating the possibility that the heavy GW150914 binary system was of primordial origin, and hence could be evidence for dark matter in the form of black holes. We compute the stochastic background arising from the incoherent superposition of such primordial binary black hole systems in the Universe and compare it to the similar background spectrum due to binary black hole systems of stellar origin. We investigate the possibility of detecting this background with future gravitational-wave detectors, and conclude that constraining the dark matter component in the form of black holes using stochastic gravitational-wave background measurements will be very challenging.
Stochastic reacceleration of cosmic rays in the interstellar medium
NASA Technical Reports Server (NTRS)
Seo, E. S.; Ptuskin, V. S.
1994-01-01
The effects of reacceleration on cosmic rays have been studied over a wide charge and energy range using a model of reacceleration by the interstellar turbulence. We take into account only inevitable stochastic reacceleration of cosmic rays by the random hydrodynamic waves, which supposedly exist in the interstellar medium and provide a means for cosmic-ray scattering and spatial diffusion in the Galaxy. Our calculations reproduce not only the B/C ratio but also the H and He data over the entire energy range where the measurements are available. However, the sub-Fe to Fe ratio is not fitted as well as the B/C ratio, and the reacceleration effect does not seem to remove the need for truncation of short path lengths, which is apparently required by the standard leaky box model. This work demonstrates that the cosmic-ray data can be represented at least as well by a reacceleration model with a simple rigidity power-law escape length, which agrees with the Kolmogorov-type spectrum of hydromagnetic turbulence, as they can by the standard leaky box model with its ad hoc escape lengths.
Stochastic reacceleration of cosmic rays in the interstellar medium
NASA Technical Reports Server (NTRS)
Seo, E. S.; Ptuskin, V. S.
1994-01-01
The effects of reacceleration on cosmic rays have been studied over a wide charge and energy range using a model of reacceleration by the interstellar turbulence. We take into account only inevitable stochastic reacceleration of cosmic rays by the random hydrodynamic waves, which supposedly exist in the interstellar medium and provide a means for cosmic-ray scattering and spatial diffusion in the Galaxy. Our calculations reproduce not only the B/C ratio but also the H and He data over the entire energy range where the measurements are available. However, the sub-Fe to Fe ratio is not fitted as well as the B/C ratio, and the reacceleration effect does not seem to remove the need for truncation of short path lengths, which is apparently required by the standard leaky box model. This work demonstrates that the cosmic-ray data can be represented at least as well by a reacceleration model with a simple rigidity power-law escape length, which agrees with the Kolmogorov-type spectrum of hydromagnetic turbulence, as they can by the standard leaky box model with its ad hoc escape lengths.
Irradiation effects in close binaries in an electron scattering medium
NASA Astrophysics Data System (ADS)
Varghese, B. A.; Srinivasa Rao, M.
2016-03-01
In a close binary system, the effects of irradiation are studied from an extended surface of the secondary component on the atmosphere of the primary. Primary and the secondary components are assumed to have equal radii and the thickness of the atmosphere is assumed to be twice that of the stellar radius of the primary component. Self radiation of the primary component (Ss) is calculated through a numerical solution of line transfer equation in the comoving frame with Compton broadening due to electron scattering. The solution is developed through discrete space theory to deal with different velocities in a spherically expanding medium. The irradiation from the secondary (SI) is calculated using one dimensional rod model. It is assumed to be one, five and ten times the self radiation. The total source function (S=Ss+SI) is the sum of the source functions due to self radiation and that due to irradiation. The line fluxes are computed along the line of sight by using the above source functions. Line profiles are also computed for different line center optical depths along the line of sight of the observer at infinity.
NASA Astrophysics Data System (ADS)
Banerjee, Sambaran; Ghosh, Pranab
2008-06-01
We continue the exploration that we began in Paper I of using the Boltzmann scheme to study the evolution of compact binary populations of globular clusters, introducing in this paper our method of handling the stochasticity inherent in the dynamical processes of binary formation, destruction, and hardening in globular clusters. We describe these stochastic processes as "Wiener processes," whereupon the Boltzmann equation becomes a stochastic partial differential equation, the solution of which involves the use of "Itō calculus" (this use being the first, to our knowledge, in this subject), in addition to ordinary calculus. As in Paper I, we focus on the evolution of (1) the number of X-ray binaries NXB in globular clusters and (2) the orbital period distribution of these binaries. We show that, although the details of the fluctuations in the above quantities differ from one "realization" to another of the stochastic processes, the general trends follow those found in the continuous-limit study of Paper I, and the average result over many such realizations is very close to the continuous-limit result. We investigate the dependence of NXB found by these calculations on two essential globular cluster properties, namely, the star-star and star-binary encounter rate parameters Γ and γ, for which we coined the name "Verbunt parameters" in Paper I. We compare our computed results with those from Chandra observations of Galactic globular clusters, showing that the expected scalings of NXB with the Verbunt parameters are in good agreement with those observed. We indicate additional features that can be incorporated into the scheme in the future, as well as how more elaborate problems can be tackled.
Regimbau, T; Evans, M; Christensen, N; Katsavounidis, E; Sathyaprakash, B; Vitale, S
2017-04-14
The merger rate of black hole binaries inferred from the detections in the first Advanced LIGO science run implies that a stochastic background produced by a cosmological population of mergers will likely mask the primordial gravitational wave background. Here we demonstrate that the next generation of ground-based detectors, such as the Einstein Telescope and Cosmic Explorer, will be able to observe binary black hole mergers throughout the Universe with sufficient efficiency that the confusion background can potentially be subtracted to observe the primordial background at the level of Ω_{GW}≃10^{-13} after 5 years of observation.
NASA Astrophysics Data System (ADS)
Regimbau, T.; Evans, M.; Christensen, N.; Katsavounidis, E.; Sathyaprakash, B.; Vitale, S.
2017-04-01
The merger rate of black hole binaries inferred from the detections in the first Advanced LIGO science run implies that a stochastic background produced by a cosmological population of mergers will likely mask the primordial gravitational wave background. Here we demonstrate that the next generation of ground-based detectors, such as the Einstein Telescope and Cosmic Explorer, will be able to observe binary black hole mergers throughout the Universe with sufficient efficiency that the confusion background can potentially be subtracted to observe the primordial background at the level of ΩGW≃10-13 after 5 years of observation.
GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Canton, T. Dal; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2016-04-01
The LIGO detection of the gravitational wave transient GW150914, from the inspiral and merger of two black holes with masses ≳30 M⊙, suggests a population of binary black holes with relatively high mass. This observation implies that the stochastic gravitational-wave background from binary black holes, created from the incoherent superposition of all the merging binaries in the Universe, could be higher than previously expected. Using the properties of GW150914, we estimate the energy density of such a background from binary black holes. In the most sensitive part of the Advanced LIGO and Advanced Virgo band for stochastic backgrounds (near 25 Hz), we predict ΩGW(f =25 Hz )=1. 1-0.9+2.7×10-9 with 90% confidence. This prediction is robustly demonstrated for a variety of formation scenarios with different parameters. The differences between models are small compared to the statistical uncertainty arising from the currently poorly constrained local coalescence rate. We conclude that this background is potentially measurable by the Advanced LIGO and Advanced Virgo detectors operating at their projected final sensitivity.
GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes.
Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cahillane, C; Bustillo, J Calderón; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Baiardi, L Cerboni; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R T; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Castro, J M Gonzalez; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Haris, K; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Phelps, M; Piccinni, O; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J
2016-04-01
The LIGO detection of the gravitational wave transient GW150914, from the inspiral and merger of two black holes with masses ≳30M_{⊙}, suggests a population of binary black holes with relatively high mass. This observation implies that the stochastic gravitational-wave background from binary black holes, created from the incoherent superposition of all the merging binaries in the Universe, could be higher than previously expected. Using the properties of GW150914, we estimate the energy density of such a background from binary black holes. In the most sensitive part of the Advanced LIGO and Advanced Virgo band for stochastic backgrounds (near 25 Hz), we predict Ω_{GW}(f=25 Hz)=1.1_{-0.9}^{+2.7}×10^{-9} with 90% confidence. This prediction is robustly demonstrated for a variety of formation scenarios with different parameters. The differences between models are small compared to the statistical uncertainty arising from the currently poorly constrained local coalescence rate. We conclude that this background is potentially measurable by the Advanced LIGO and Advanced Virgo detectors operating at their projected final sensitivity.
Bit corruption correlation and autocorrelation in a stochastic binary nano-bit system
NASA Astrophysics Data System (ADS)
Sa-nguansin, Suchittra
2014-10-01
The corruption process of a binary nano-bit model resulting from an interaction with N stochastically-independent Brownian agents (BAs) is studied with the help of Monte-Carlo simulations and analytic continuum theory to investigate the data corruption process through the measurement of the spatial two-point correlation and the autocorrelation of bit corruption at the origin. By taking into account a more realistic correlation between bits, this work will contribute to the understanding of the soft error or the corruption of data stored in nano-scale devices.
Stochastic histories of dust grains in the interstellar medium
NASA Technical Reports Server (NTRS)
Liffman, Kurt; Clayton, D. D.
1989-01-01
The purpose is to study an evolving system of refractory dust grains within the Interstellar Medium (ISM). This is done via a combination of Monte Carlo processes and a system of partial differential equations, where refractory dust grains formed within supernova remnants and ejecta from high mass loss stars are subjected to the processes of sputtering and collisional fragmentation in the diffuse media and accretion within the cold molecular clouds. In order to record chemical detail, the authors take each new particle to consist of a superrefractory core plus a more massive refractory mantle. The particles are allowed to transfer to and fro between the different phases of the interstellar medium (ISM) - on a time scale of 10(exp 8) years - until either the particles are destroyed or the program finishes at a Galaxy time of 6x10(exp 9) years. The resulting chemical and size spectrum(s) are then applied to various astrophysical problems with the following results. For an ISM which has no collisional fragmentation of the dust grains, roughly 10 percent by mass of the most refractory material survives the rigors of the ISM intact, which leaves open the possibility that fossilized isotopically anomalous material may have been present within the primordial solar nebula. Stuctured or layered refractory dust grains within the model cannot explain the observed interstellar depletions of refractory material. Fragmentation due to grain-grain collisions in the diffuse phase plus the accretion of material in the molecular cloud phase can under certain circumstances cause a bimodal distribution in grain size.
Optimal sensor selection for noisy binary detection in stochastic pooling networks
NASA Astrophysics Data System (ADS)
McDonnell, Mark D.; Li, Feng; Amblard, P.-O.; Grant, Alex J.
2013-08-01
Stochastic Pooling Networks (SPNs) are a useful model for understanding and explaining how naturally occurring encoding of stochastic processes can occur in sensor systems ranging from macroscopic social networks to neuron populations and nanoscale electronics. Due to the interaction of nonlinearity, random noise, and redundancy, SPNs support various unexpected emergent features, such as suprathreshold stochastic resonance, but most existing mathematical results are restricted to the simplest case where all sensors in a network are identical. Nevertheless, numerical results on information transmission have shown that in the presence of independent noise, the optimal configuration of a SPN is such that there should be partial heterogeneity in sensor parameters, such that the optimal solution includes clusters of identical sensors, where each cluster has different parameter values. In this paper, we consider a SPN model of a binary hypothesis detection task and show mathematically that the optimal solution for a specific bound on detection performance is also given by clustered heterogeneity, such that measurements made by sensors with identical parameters either should all be excluded from the detection decision or all included. We also derive an algorithm for numerically finding the optimal solution and illustrate its utility with several examples, including a model of parallel sensory neurons with Poisson firing characteristics.
A model of a discrete stochastic medium for the problems of loose material flow
NASA Astrophysics Data System (ADS)
Osinov, V. A.
1994-03-01
A kinematic scheme of deformation and flow of loose materials based on the model of a discrete stochastic medium is put forward. The scheme is constructed as applied to the problems of gravitational discharge of loose materials from silos, bunkers etc. and may also be used in the problems of the motion of a support wall and the introduction of solids into a loose medium. A modification of the scheme enables us to account for the effect of loosening (decrease in density) of material at discharge. The algorithms are implemented on an IBM PC using Turbo-Pascal tools. The process of flow is modelled directly on the display monitor.
Olson, Gordon L.
2015-09-24
One-dimensional models for the transport of radiation through binary stochastic media do not work in multi-dimensions. In addition, authors have attempted to modify or extend the 1D models to work in multidimensions without success. Analytic one-dimensional models are successful in 1D only when assuming greatly simplified physics. State of the art theories for stochastic media radiation transport do not address multi-dimensions and temperature-dependent physics coefficients. Here, the concept of effective opacities and effective heat capacities is found to well represent the ensemble averaged transport solutions in cases with gray or multigroup temperature-dependent opacities and constant or temperature-dependent heat capacities. Inmore » every case analyzed here, effective physics coefficients fit the transport solutions over a useful range of parameter space. The transport equation is solved with the spherical harmonics method with angle orders of n=1 and 5. Although the details depend on what order of solution is used, the general results are similar, independent of angular order.« less
Olson, Gordon L.
2015-09-24
One-dimensional models for the transport of radiation through binary stochastic media do not work in multi-dimensions. In addition, authors have attempted to modify or extend the 1D models to work in multidimensions without success. Analytic one-dimensional models are successful in 1D only when assuming greatly simplified physics. State of the art theories for stochastic media radiation transport do not address multi-dimensions and temperature-dependent physics coefficients. Here, the concept of effective opacities and effective heat capacities is found to well represent the ensemble averaged transport solutions in cases with gray or multigroup temperature-dependent opacities and constant or temperature-dependent heat capacities. In every case analyzed here, effective physics coefficients fit the transport solutions over a useful range of parameter space. The transport equation is solved with the spherical harmonics method with angle orders of n=1 and 5. Although the details depend on what order of solution is used, the general results are similar, independent of angular order.
NASA Astrophysics Data System (ADS)
Dvorkin, Irina; Barausse, Enrico
2017-10-01
Massive black hole binaries, formed when galaxies merge, are among the primary sources of gravitational waves targeted by ongoing pulsar timing array (PTA) experiments and the upcoming space-based Laser Interferometer Space Antenna (LISA) interferometer. However, their formation and merger rates are still highly uncertain. Recent upper limits on the stochastic gravitational wave background obtained by PTAs are starting to be in marginal tension with theoretical models for the pairing and orbital evolution of these systems. This tension can be resolved by assuming that these binaries are more eccentric or interact more strongly with the environment (gas and stars) than expected, or by accounting for possible selection biases in the construction of the theoretical models. However, another (pessimistic) possibility is that these binaries do not merge at all, but stall at large (˜pc) separations. We explore this extreme scenario by using a semi-analytic galaxy formation model including massive black holes (isolated and in binaries), and show that future generations of PTAs will detect the stochastic gravitational wave background from the massive black hole binary population within 10-15 yr of observations, even in the `nightmare scenario' in which all binaries stall at the hardening radius. Moreover, we argue that this scenario is too pessimistic, because our model predicts the existence of a subpopulation of binaries with small mass ratios (q ≲ 10-3) that should merge within a Hubble time simply as a result of gravitational wave emission. This subpopulation will be observable with large signal-to-noise ratios by future PTAs thanks to next-generation radio telescopes such as Square Kilometre Array or Five-hundred-meter Aperture Spherical Telescope, and possibly by LISA.
Stochastic Background from Coalescences of Neutron Star-Neutron Star Binaries
NASA Astrophysics Data System (ADS)
Regimbau, T.; de Freitas Pacheco, J. A.
2006-05-01
In this work, numerical simulations were used to investigate the gravitational stochastic background produced by coalescences of double neutron star systems occurring up to z~5. The cosmic coalescence rate was derived from Monte Carlo methods using the probability distributions for massive binaries to form and for a coalescence to occur in a given redshift. A truly continuous background is produced by events located only beyond the critical redshift z*=0.23. Events occurring in the redshift interval 0.027
Interstellar medium perturbations on transport-dominated debris discs in binary star systems
NASA Astrophysics Data System (ADS)
Marzari, F.
2012-04-01
I explore the dynamics of small dust particles in transport-dominated circumstellar debris discs in binary star systems. In these tenuous discs the effects of mutual collisions are negligible and their morphology is determined by Poynting-Robertson drag and, possibly, by the strong perturbations induced by the interaction with the interstellar medium (ISM) flux of neutral atoms. The force due to the ISM flux can significantly affect the dynamical behaviour of the dust grains, causing a fast inward drift and a large periodic oscillation of both eccentricity and inclination. If the disc is around a star in a binary system, the gravity of the companion star competes with the ISM force and the dynamics is complex. The balance between the two forces depends strongly on the binary semimajor axis aB and eccentricity eB. In a scenario with an ISM flux similar to that observed in the Solar system neighbourhood, the binary secular perturbations, assuming a mass ratio of 0.5, dominate over the ISM force when aB < 600 au and eB= 0.2. This occurs when the dust disc is generated by a parent body ring encompassed between 50 and 60 aufrom the primary star. For a larger binary eccentricity eB= 0.6, the limit moves to aB < 700 au. Within these values of aB, the time-scale of the binary secular perturbations is much shorter than the period of the ISM-induced orbital variations, and the disc shape and density distribution are dominated by the companion gravity. It appears slightly eccentric and, if the binary is coplanar with the disc, only a limited warping due to the ISM perturbations is observed. In this scenario, the strong ISM perturbations, which may significantly affect debris discs around single stars embedded in strong ISM winds, are almost completely silenced. For larger semimajor axes, the scenario is reversed with the ISM perturbations ruling the dynamics of the dust. The disc develops a large clump oriented at 90° with respect to the direction of the ISM flux and it
Robustness of the Critical Behaviour in a Discrete Stochastic Reaction-Diffusion Medium
NASA Astrophysics Data System (ADS)
Fatès, Nazim; Berry, Hugues
We study the steady states of a reaction-diffusion medium modelled by a stochastic 2D cellular automaton. We consider the Greenberg-Hastings model where noise and topological irregularities of the grid are taken into account. The decrease of the probability of excitation changes qualitatively the behaviour of the system from an "active" to an "extinct" steady state. Simulations show that this change occurs near a critical threshold; it is identified as a nonequilibrium phase transition which belongs to the directed percolation universality class. We test the robustness of the phenomenon by introducing persistent defects in the topology : directed percolation behaviour is conserved. Using experimental and analytical tools, we suggest that the critical threshold varies as the inverse of the average number of neighbours per cell.
NASA Astrophysics Data System (ADS)
Vigeland, S. J.; Siemens, X.
2016-12-01
One of the primary gravitational wave (GW) sources for pulsar timing arrays (PTAs) is the stochastic background formed by supermassive black holes binaries (SMBHBs). In this paper, we investigate how the environments of SMBHBs effect the sensitivity of PTAs by deriving scaling laws for the signal-to-noise ratio (SNR) of the optimal cross-correlation statistic. The presence of gas and stars around SMBHBs accelerates the merger at large distances, depleting the GW stochastic background at low frequencies. We show that environmental interactions may delay detection by a few years or more, depending on the PTA configuration and the frequency at which the dynamical evolution transitions from being dominated by environmental effects to GW dominated.
NASA Astrophysics Data System (ADS)
Zwitter, T.; Kos, J.; Žerjal, M.; Traven, G.
2016-10-01
Current ongoing stellar spectroscopic surveys (RAVE, GALAH, Gaia-ESO, LAMOST, APOGEE, Gaia) are mostly devoted to studying Galactic archaeology and the structure of the Galaxy. But they allow also for important auxiliary science: (i) the Galactic interstellar medium can be studied in four dimensions (position in space plus radial velocity) through weak but numerous diffuse interstellar bands and atomic absorptions seen in spectra of background stars, (ii) emission spectra which are quite frequent even in field stars can serve as a good indicator of their youth, pointing e.g. to stars recently ejected from young stellar environments, (iii) an astrometric solution of the photocenter of a binary to be obtained by Gaia can yield accurate masses when joined by spectroscopic information obtained serendipitously during a survey. These points are illustrated by first results from the first three surveys mentioned above. These hint at the near future: spectroscopic studies of the dynamics of the interstellar medium can identify and quantify Galactic fountains which may sustain star formation in the disk by entraining fresh gas from the halo; RAVE already provided a list of ˜ 14,000 field stars with chromospheric emission in Ca II lines, to be supplemented by many more observations by Gaia in the same band, and by GALAH and Gaia-ESO observations of Balmer lines; several millions of astrometric binaries with periods up to a few years which are being observed by Gaia can yield accurate masses when supplemented with measurements from only a few high-quality ground based spectra.
Towards constructing one-bit binary adder in excitable chemical medium
NASA Astrophysics Data System (ADS)
Lacy Costello, Ben De; Adamatzky, Andy; Jahan, Ishrat; Zhang, Liang
2011-03-01
The light-sensitive modification (ruthenium catalysed) of the Belousov-Zhabotinsky reaction exhibits various excitability regimes depending on the level of illumination. Within a narrow range of applied illumination levels the medium is in a sub-excitable state. When in this state an asymmetric perturbation of the medium leads to formation of a travelling localized excitation (wave-fragment) which moves along a predetermined trajectory, ideally preserving its shape and velocity over an extended time period. Collision-based computing can be implemented with these wave-fragments whereby values of Boolean variables are represented as the presence/absence of a wave-fragment at specific sites. When two wave-fragments collide they either annihilate, or form new wave-fragments. The trajectories of the wave-fragments after the collision represent the result of a computation, e.g. construction of a simple logical gate. However, wave-fragments in sub-excitable chemical media are difficult to control. Therefore, we adopted a hybrid procedure in order to construct collision-based logical gates. We used channels of low light intensity projected onto the excitable media in order to subtly tune and stabilise the propagating wave-fragments allowing them to collide at the junctions between channels. Using this methodology we were able to implement both in theoretical models (using the Oregonator) and in experiment two interaction-based logical gates and assemble the gates into a basic one-bit binary adder. We present the first ever experimental approach towards constructing arithmetic circuits in spatially-extended excitable chemical systems where light is used to impart functionality.
Binaries Traveling through a Gaseous Medium: Dynamical Drag Forces and Internal Torques
NASA Astrophysics Data System (ADS)
Sánchez-Salcedo, F. J.; Chametla, Raul O.
2014-10-01
Using time-dependent linear theory, we investigate the morphology of the gravitational wake induced by a binary, whose center of mass moves at velocity {\\boldsymbol {V}}_cm against a uniform background of gas. For simplicity, we assume that the components of the binary are on circular orbits about their common center of mass. The consequences of dynamical friction is twofold. First, gas dynamical friction may drag the center of mass of the binary and cause the binary to migrate. Second, drag forces also induce a braking torque, which causes the orbits of the components of the binary to shrink. We compute the drag forces acting on one component of the binary due to the gravitational interaction with its own wake. We show that the dynamical friction force responsible for decelerating the center of mass of the binary is smaller than it is in the point-mass case because of the loss of gravitational focusing. We show that the braking internal torque depends on the Mach numbers of each binary component about their center of mass, and also on the Mach number of the center of mass of the binary. In general, the internal torque decreases with increasing the velocity of the binary relative to the ambient gas cloud. However, this is not always the case. We also mention the relevance of our results to the period distribution of binaries.
Binaries traveling through a gaseous medium: dynamical drag forces and internal torques
Sánchez-Salcedo, F. J.; Chametla, Raul O.
2014-10-20
Using time-dependent linear theory, we investigate the morphology of the gravitational wake induced by a binary, whose center of mass moves at velocity V{sub cm} against a uniform background of gas. For simplicity, we assume that the components of the binary are on circular orbits about their common center of mass. The consequences of dynamical friction is twofold. First, gas dynamical friction may drag the center of mass of the binary and cause the binary to migrate. Second, drag forces also induce a braking torque, which causes the orbits of the components of the binary to shrink. We compute the drag forces acting on one component of the binary due to the gravitational interaction with its own wake. We show that the dynamical friction force responsible for decelerating the center of mass of the binary is smaller than it is in the point-mass case because of the loss of gravitational focusing. We show that the braking internal torque depends on the Mach numbers of each binary component about their center of mass, and also on the Mach number of the center of mass of the binary. In general, the internal torque decreases with increasing the velocity of the binary relative to the ambient gas cloud. However, this is not always the case. We also mention the relevance of our results to the period distribution of binaries.
Separation of fine binary mixtures under vibration in a gas-solid fluidized bed with dense medium.
Jin, Haibo; Tong, Zemin; Schlaberg, H Inaki; Zhang, Jiyu
2005-12-01
The coke-slag mixture discharged from water-air generators not only causes a serious environmental problem, but also is a potential resource. In order to obtain a high economic return, separation of fine binary mixtures in a vibrating fluidized bed with dense media was experimentally investigated. The effects of volume ratio (mono-component volume to dense medium volume or binary mixture volume to dense medium volume), the fluidization velocity and vibration parameters on separation efficiency are discussed. The experimental results show that vibration can prevent the coalescence and growth of bubbles and improve fluidization properties of particles and the stability of bed density. The major factors associated with separating efficiency are discussed. Based on the experiments, the ratio of the volume of particles to bed volume and the vibration conditions are also reported. It was found that the separation efficiency for a fine coke-slag mixture was greater than 70% and close to 80% under optimal conditions.
Interstellar medium composition through X-ray spectroscopy of low-mass X-ray binaries
NASA Astrophysics Data System (ADS)
Pinto, C.; Kaastra, J. S.; Costantini, E.; de Vries, C.
2013-03-01
Context. The diffuse interstellar medium (ISM) is an integral part of the evolution of the entire Galaxy. Metals are produced by stars and their abundances are the direct testimony of the history of stellar evolution. However, the interstellar dust composition is not well known and the total abundances are yet to be accurately determined. Aims: We probe ISM dust composition, total abundances, and abundance gradients through the study of interstellar absorption features in the high-resolution X-ray spectra of Galactic low-mass X-ray binaries (LMXBs). Methods: We used high-quality grating spectra of nine LMXBs taken with XMM-Newton. We measured the column densities of O, Ne, Mg, and Fe with an empirical model and estimated the Galactic abundance gradients. Results: The column densities of the neutral gas species are in agreement with those found in the literature. Solids are a significant reservoir of metals like oxygen and iron. Respectively, 15-25% and 65-90% of the total amount of O i and Fe i is found in dust. The dust amount and mixture seem to be consistent along all the lines-of-sight (LOS). Our estimates of abundance gradients and predictions of local interstellar abundances are in agreement with those measured at longer wavelengths. Conclusions: Our work shows that X-ray spectroscopy is a very powerful method to probe the ISM. For instance, on a large scale the ISM appears to be chemically homogeneous showing similar gas ionization ratios and dust mixtures. The agreement between the abundances of the ISM and the stellar objects suggests that the local Galaxy is also chemically homogeneous.
NASA Astrophysics Data System (ADS)
Eckersall, A. J.; Vaughan, S.; Wynn, G. A.
2017-10-01
All observations of Galactic X-ray binaries are affected by absorption from gas and dust in the interstellar medium (ISM) which imprints narrow (line) and broad (photoelectric edges) features on the continuum emission spectrum of the binary. Any spectral model used to fit data from a Galactic X-ray binary must therefore take account of these features; when the absorption is strong (as for most Galactic sources) it becomes important to accurately model the ISM absorption in order to obtain unbiased estimates of the parameters of the (emission) spectrum of the binary system. In this paper, we present analysis of some of the best spectroscopic data from the XMM-Newton RGS instrument using the most up-to-date photoabsorption model of the gaseous ISM ISMabs. We calculate column densities for H, O, Ne and Fe for seven transient black hole X-ray binary systems. We find that the hydrogen column densities in particular can vary greatly from those presented elsewhere in the literature. We assess the impact of using inaccurate column densities and older X-ray absorption models on spectral analysis using simulated data. We find that poor treatment of absorption can lead to large biases in inferred disc properties and that an independent analysis of absorption parameters can be used to alleviate such issues.
STOCHASTIC VARIABILITY IN X-RAY EMISSION FROM THE BLACK HOLE BINARY GRS 1915+105
Polyakov, Yuriy S.; Neilsen, Joseph; Timashev, Serge F.
2012-06-15
We examine stochastic variability in the dynamics of X-ray emission from the black hole system GRS 1915+105, a strongly variable microquasar commonly used for studying relativistic jets and the physics of black hole accretion. The analysis of sample observations for 13 different states in both soft (low) and hard (high) energy bands is performed by flicker-noise spectroscopy (FNS), a phenomenological time series analysis method operating on structure functions and power spectrum estimates. We find the values of FNS parameters, including the Hurst exponent, flicker-noise parameter, and characteristic timescales, for each observation based on multiple 2500 s continuous data segments. We identify four modes of stochastic variability driven by dissipative processes that may be related to viscosity fluctuations in the accretion disk around the black hole: random (RN), power-law (1F), one-scale (1S), and two-scale (2S). The variability modes are generally the same in soft and hard energy bands of the same observation. We discuss the potential for future FNS studies of accreting black holes.
NASA Astrophysics Data System (ADS)
Moglia, Belén; Albano, Ezequiel V.; Guisoni, Nara
2016-11-01
We study a stochastic lattice model for cell colony growth, which takes into account proliferation, diffusion, and rotation of cells, in a culture medium with quenched disorder. The medium is composed of sites that inhibit any possible change in the internal state of the cells, representing the disorder, as well as by active medium sites that do not interfere with the cell dynamics. By means of Monte Carlo simulations we find that the velocity of the growing interface, which is taken as the order parameter of the model, strongly depends on the density of active medium sites (ρA). In fact, the model presents a (continuous) second-order pinning-depinning transition at a certain critical value of ρAcrit, such as, for ρA>ρAcrit , the interface moves freely across the disordered medium, but for ρA<ρAcrit the interface becomes irreversible pinned by the disorder. By determining the relevant critical exponents, our study reveals that within the depinned phase the interface can be rationalized in terms of the Kardar-Parisi-Zhang universality class, but when approaching the critical threshold, the nonlinear term of the Kardar-Parisi-Zhang equation tends to vanish and then the pinned interface belongs to the quenched Edwards-Wilkinson universality class.
Moglia, Belén; Albano, Ezequiel V; Guisoni, Nara
2016-11-01
We study a stochastic lattice model for cell colony growth, which takes into account proliferation, diffusion, and rotation of cells, in a culture medium with quenched disorder. The medium is composed of sites that inhibit any possible change in the internal state of the cells, representing the disorder, as well as by active medium sites that do not interfere with the cell dynamics. By means of Monte Carlo simulations we find that the velocity of the growing interface, which is taken as the order parameter of the model, strongly depends on the density of active medium sites (ρ_{A}). In fact, the model presents a (continuous) second-order pinning-depinning transition at a certain critical value of ρ_{A}^{crit}, such as, for ρ_{A}>ρ_{A}^{crit}, the interface moves freely across the disordered medium, but for ρ_{A}<ρ_{A}^{crit} the interface becomes irreversible pinned by the disorder. By determining the relevant critical exponents, our study reveals that within the depinned phase the interface can be rationalized in terms of the Kardar-Parisi-Zhang universality class, but when approaching the critical threshold, the nonlinear term of the Kardar-Parisi-Zhang equation tends to vanish and then the pinned interface belongs to the quenched Edwards-Wilkinson universality class.
Botet, Robert; Kuratsuji, Hiroshi
2010-03-01
We present a framework for the stochastic features of the polarization state of an electromagnetic wave propagating through the optical medium with both deterministic (controlled) and disordered birefringence. In this case, the Stokes parameters obey a Langevin-type equation on the Poincaré sphere. The functional integral method provides for a natural tool to derive the Fokker-Planck equation for the probability distribution of the Stokes parameters. We solve the Fokker-Planck equation in the case of a random anisotropic active medium submitted to a homogeneous electromagnetic field. The possible dissipation and relaxation phenomena are studied in general and in various cases, and we give hints about how to validate experimentally the corresponding phenomenological equations.
NASA Astrophysics Data System (ADS)
Lobachev, V. V.; Strakhov, S. Yu
2006-02-01
The specific features of operation of the unstable optical resonator of a large gas laser with an active medium containing stochastic phase inhomogeneities are considered. The output power of the laser, the Strehl number, the angular divergence and average far-field radiation intensity are studied as functions of the spatial scale and structure of random inhomogeneities of the refractive index of the active medium. Physical effects related to the deformation of the radiation pattern caused by a change in the spatial frequency of stochastic perturbations are analysed.
Improving enzymatic production of diglycerides by engineering binary ionic liquid medium system.
Guo, Zheng; Kahveci, Derya; Ozçelik, Beraat; Xu, Xuebing
2009-10-01
The tunable property of ionic liquids (ILs) offers tremendous opportunity to rethink the strategy of current efforts to resolve technical challenges that occurred in many production approaches. To establish an efficient glycerolysis approach for enzymatic production of diglycerides (DG), this work reported a novel concept to improve DG yield by applying a binary IL system that consisted of one IL with better DG production selectivity and another IL being able to achieve higher conversion of triglycerides (TG). The candidates for combination were determined by individually examining lipase-catalyzed glycerolysis in different ILs, as a result, promising ones are divided into two groups based on their reaction specificities. The effects of parametric variables were then preliminarily evaluated, following a further investigation of the reaction performance in different binary IL systems from cross-group combinations. The combination of TOMA.Tf(2)N/Ammoeng 102 was employed for optimization by Response Surface Methodology. Eighty to eighty-five percent (mol%) of oil conversion and up to 90% (mol%) of total DG yield (73%, wt%) were obtained, which are markedly higher than those previously reported. This work demonstrated the practical feasibility to couple the technical advantage (high TG conversion and high DG production selective in this work) of individual ILs into a binary system to over-perform the reaction. It is believed that binary IL system could be also applicable to other enzymatic reaction systems for establishment of more efficient reaction protocols.
NASA Astrophysics Data System (ADS)
Suková, Petra; Grzedzielski, Mikolaj; Janiuk, Agnieszka
2016-02-01
Aims: Both the well known microquasar GRS 1915+105, as well as its recently discovered analogue, IGR J17091-3624, exhibit variability that is characteristic of a deterministic chaotic system. Their specific kind of quasi-periodic flares that are observed in some states is intrinsically connected with the global structure of the accretion flow, which are governed by the nonlinear hydrodynamics. One plausible mechanism that is proposed to explain this kind of variability is the thermal-viscous instability that operates in the accretion disk. The purely stochastic variability that occurs because of turbulent conditions in the plasma, is quantified by the power density spectra and appears in practically all types of sources and their spectral states. Methods: We pose a question as to whether these two microquasars are one of a kind, or if the traces of deterministic chaos, and hence the accretion disk instability, may also be hidden in the observed variability of other sources. We focus on the black hole X-ray binaries that accrete at a high rate and are, therefore, theoretically prone to the development of radiation pressure-induced instability. To study the nonlinear behaviour of the X-ray sources and distinguish between the chaotic and stochastic nature of their emission, we propose a novel method, which is based on recurrence analysis. Widely known in other fields of physics, this powerful method is used here for the first time in an astrophysical context. We estimate the indications of deterministic chaos quantitatively, such as the Rényi's entropy for the observed time series, and we compare them with surrogate data. Results: Using the observational data collected by the RXTE satellite, we reveal the oscillations pattern and the observable properties of six black hole systems. For five of them, we confirm the signatures of deterministic chaos being the driver of their observed variability. Conclusions: We test the method and confirm the deterministic nature of
Mason, Tom; King, Lisa; Dulson, Julie
2009-06-01
The aim of this study was to identify if differences in perceptions of the role of forensic psychiatric nurses exist across the three levels of secure psychiatric provision: high, medium, and low. Any differences may reflect the type of clinical conditions found in different levels of security provision. An information-gathering schedule containing a validated 7-point Likert scale was distributed to 1200 forensic psychiatric nurses across the UK in 2005. A response rate of 34.6 was achieved, with 122 from high-security, 159 from medium-security, and 135 from low-security services. Differences in perceptions regarding role constructs were found across all three levels, with numerous differences being statistically significant using analysis of variance. The main implications are in relation to the development of skills and competencies, which should target specific clinical conditions in relation to effective interventions, the development of a specialist education and training curriculum focused on treatment outcomes, and the need for further research to draw together theory and practice. Finally, creative policy initiatives should be developed to cross-fertilize the levels of security provision in order that staff may acquire and deliver experiences in high-, medium-, and low-security psychiatric services.
Rätz, H-J; Charef, A; Abella, A J; Colloca, F; Ligas, A; Mannini, A; Lloret, J
2013-10-01
A medium-term (10 year) stochastic forecast model is developed and presented for mixed fisheries that can provide estimations of age-specific parameters for a maximum of 10 stocks and 10 fisheries. Designed to support fishery managers dealing with complex, multi-annual management plans, the model can be used to quantitatively test the consequences of various stock-specific and fishery-specific decisions, using non-equilibrium stock dynamics. Such decisions include fishing restrictions and other strategies aimed at achieving sustainable mixed fisheries consistent with the concept of maximum sustainable yield (MSY). In order to test the model, recently gathered data on seven stocks and four fisheries operating in the Ligurian and North Tyrrhenian Seas are used to generate quantitative, 10 year predictions of biomass and catch trends under four different management scenarios. The results show that using the fishing mortality at MSY as the biological reference point for the management of all stocks would be a strong incentive to reduce the technical interactions among concurrent fishing strategies. This would optimize the stock-specific exploitation and be consistent with sustainability criteria. © 2013 The Fisheries Society of the British Isles.
Macroscopic Model for Head-On Binary Droplet Collisions in a Gaseous Medium
NASA Astrophysics Data System (ADS)
Li, Jie
2016-11-01
In this Letter, coalescence-bouncing transitions of head-on binary droplet collisions are predicted by a novel macroscopic model based entirely on fundamental laws of physics. By making use of the lubrication theory of Zhang and Law [Phys. Fluids 23, 042102 (2011)], we have modified the Navier-Stokes equations to accurately account for the rarefied nature of the interdroplet gas film. Through the disjoint pressure model, we have incorporated the intermolecular van der Waals forces. Our model does not use any adjustable (empirical) parameters. It therefore encompasses an extreme range of length scales (more than 5 orders of magnitude): from those of the external flow in excess of the droplet size (a few hundred μ m ) to the effective range of the van der Waals force around 10 nm. A state of the art moving adaptive mesh method, capable of resolving all the relevant length scales, has been employed. Our numerical simulations are able to capture the coalescence-bouncing and bouncing-coalescence transitions that are observed as the collision intensity increases. The predicted transition Weber numbers for tetradecane and water droplet collisions at different pressures show good agreement with published experimental values. Our study also sheds new light on the roles of gas density, droplet size, and mean free path in the rupture of the gas film.
Heating the Intergalactic Medium by X-Rays from Population III Binaries in High-redshift Galaxies
NASA Astrophysics Data System (ADS)
Xu, Hao; Ahn, Kyungjin; Wise, John H.; Norman, Michael L.; O'Shea, Brian W.
2014-08-01
Due to their long mean free path, X-rays are expected to have an important impact on cosmic reionization by heating and ionizing the intergalactic medium (IGM) on large scales, especially after simulations have suggested that Population III (Pop III) stars may form in pairs at redshifts as high as 20-30. We use the Pop III distribution and evolution from a self-consistent cosmological radiation hydrodynamic simulation of the formation of the first galaxies and a simple Pop III X-ray binary model to estimate their X-ray output in a high-density region larger than 100 comoving (Mpc)3. We then combine three different methods—ray tracing, a one-zone model, and X-ray background modeling—to investigate the X-ray propagation, intensity distribution, and long-term effects on the IGM thermal and ionization state. The efficiency and morphology of photoheating and photoionization are dependent on the photon energies. The sub-kiloelectronvolt X-rays only impact the IGM near the sources, while the kiloelectronvolt photons contribute significantly to the X-ray background and heat and ionize the IGM smoothly. The X-rays just below 1 keV are most efficient in heating and ionizing the IGM. We find that the IGM might be heated to over 100 K by z = 10 and the high-density source region might reach 104 K, limited by atomic hydrogen cooling. This may be important for predicting the 21 cm neutral hydrogen signals. On the other hand, the free electrons from X-ray ionizations are not enough to contribute significantly to the optical depth of the cosmic microwave background to the Thomson scattering.
Heating the intergalactic medium by X-rays from population III binaries in high-redshift galaxies
Xu, Hao; Norman, Michael L.; Ahn, Kyungjin; Wise, John H.; O'Shea, Brian W. E-mail: mlnorman@ucsd.edu E-mail: jwise@gatech.edu
2014-08-20
Due to their long mean free path, X-rays are expected to have an important impact on cosmic reionization by heating and ionizing the intergalactic medium (IGM) on large scales, especially after simulations have suggested that Population III (Pop III) stars may form in pairs at redshifts as high as 20-30. We use the Pop III distribution and evolution from a self-consistent cosmological radiation hydrodynamic simulation of the formation of the first galaxies and a simple Pop III X-ray binary model to estimate their X-ray output in a high-density region larger than 100 comoving (Mpc){sup 3}. We then combine three different methods—ray tracing, a one-zone model, and X-ray background modeling—to investigate the X-ray propagation, intensity distribution, and long-term effects on the IGM thermal and ionization state. The efficiency and morphology of photoheating and photoionization are dependent on the photon energies. The sub-kiloelectronvolt X-rays only impact the IGM near the sources, while the kiloelectronvolt photons contribute significantly to the X-ray background and heat and ionize the IGM smoothly. The X-rays just below 1 keV are most efficient in heating and ionizing the IGM. We find that the IGM might be heated to over 100 K by z = 10 and the high-density source region might reach 10{sup 4} K, limited by atomic hydrogen cooling. This may be important for predicting the 21 cm neutral hydrogen signals. On the other hand, the free electrons from X-ray ionizations are not enough to contribute significantly to the optical depth of the cosmic microwave background to the Thomson scattering.
Feenstra, Adam D.; O'Neill, Kelly C.; Yagnik, Gargey B.; Lee, Young Jin
2016-10-13
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a widely adopted, versatile technique, especially in high-throughput analysis and imaging. However, matrix-dependent selectivity of analytes is often a severe limitation. In this work, a mixture of organic 2,5-dihydroxybenzoic acid and inorganic Fe_{3}O_{4} nanoparticles is developed as a binary MALDI matrix to alleviate the well-known issue of triacylglycerol (TG) ion suppression by phosphatidylcholine (PC). In application to lipid standards and maize seed cross-sections, the binary matrix not only dramatically reduced the ion suppression of TG, but also efficiently desorbed and ionized a wide variety of lipids such as cationic PC, anionic phosphatidylethanolamine (PE) and phosphatidylinositol (PI), and neutral digalactosyldiacylglycerol (DGDG). The binary matrix was also very efficient for large polysaccharides, which were not detected by either of the individual matrices. As a result, the usefulness of the binary matrix is demonstrated in MS imaging of maize seed sections, successfully visualizing diverse medium-size molecules and acquiring high-quality MS/MS spectra for these compounds.
Feenstra, Adam D.; Ames Lab., Ames, IA; O'Neill, Kelly C.; ...
2016-10-13
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a widely adopted, versatile technique, especially in high-throughput analysis and imaging. However, matrix-dependent selectivity of analytes is often a severe limitation. In this work, a mixture of organic 2,5-dihydroxybenzoic acid and inorganic Fe3O4 nanoparticles is developed as a binary MALDI matrix to alleviate the well-known issue of triacylglycerol (TG) ion suppression by phosphatidylcholine (PC). In application to lipid standards and maize seed cross-sections, the binary matrix not only dramatically reduced the ion suppression of TG, but also efficiently desorbed and ionized a wide variety of lipids such as cationic PC, anionic phosphatidylethanolamine (PE)more » and phosphatidylinositol (PI), and neutral digalactosyldiacylglycerol (DGDG). The binary matrix was also very efficient for large polysaccharides, which were not detected by either of the individual matrices. As a result, the usefulness of the binary matrix is demonstrated in MS imaging of maize seed sections, successfully visualizing diverse medium-size molecules and acquiring high-quality MS/MS spectra for these compounds.« less
A Stochastic Employment Problem
ERIC Educational Resources Information Center
Wu, Teng
2013-01-01
The Stochastic Employment Problem(SEP) is a variation of the Stochastic Assignment Problem which analyzes the scenario that one assigns balls into boxes. Balls arrive sequentially with each one having a binary vector X = (X[subscript 1], X[subscript 2],...,X[subscript n]) attached, with the interpretation being that if X[subscript i] = 1 the ball…
A Stochastic Employment Problem
ERIC Educational Resources Information Center
Wu, Teng
2013-01-01
The Stochastic Employment Problem(SEP) is a variation of the Stochastic Assignment Problem which analyzes the scenario that one assigns balls into boxes. Balls arrive sequentially with each one having a binary vector X = (X[subscript 1], X[subscript 2],...,X[subscript n]) attached, with the interpretation being that if X[subscript i] = 1 the ball…
Ghosh; Moulik
1998-12-15
The formation of micelles of Tween-20 and Brij-35 as well as of SDS, Tween-20, and Brij-35 mixed in different proportions in aqueous medium has been physicochemically investigated. The critical micellar concentration (CMC), micellar aggregation number, counterion binding by micelles, micellar polarity, free energies of micellization and interfacial adsorption, and entropy of micellization have been evaluated by conductometric, tensiometric, and fluorimetric measurements. The solution composition has been found to have a complex say on the measured physicochemical parameters. The enthalpies of micellization of both Tween-20 + Brij-35 and SDS + Tween-20 + Brij-35 mixed surfactant systems have been found to be negligibly small. Attempts to understand the properties of mixed micelles (composition, mutual synergism, component activity coefficients, and CMC) have been made with the help of the propositions of Clint, Rubingh, and Rubingh and Holland. The mixed binary and ternary systems can be adequately described by these theories. Copyright 1998 Academic Press.
NASA Astrophysics Data System (ADS)
Dar, Zamiyad
The prices in the electricity market change every five minutes. The prices in peak demand hours can be four or five times more than the prices in normal off peak hours. Renewable energy such as wind power has zero marginal cost and a large percentage of wind energy in a power grid can reduce the price significantly. The variability of wind power prevents it from being constantly available in peak hours. The price differentials between off-peak and on-peak hours due to wind power variations provide an opportunity for a storage device owner to buy energy at a low price and sell it in high price hours. In a large and complex power grid, there are many locations for installation of a storage device. Storage device owners prefer to install their device at locations that allow them to maximize profit. Market participants do not possess much information about the system operator's dispatch, power grid, competing generators and transmission system. The publicly available data from the system operator usually consists of Locational Marginal Prices (LMP), load, reserve prices and regulation prices. In this thesis, we develop a method to find the optimum location of a storage device without using the grid, transmission or generator data. We formulate and solve an optimization problem to find the most profitable location for a storage device using only the publicly available market pricing data such as LMPs, and reserve prices. We consider constraints arising due to storage device operation limitations in our objective function. We use binary optimization and branch and bound method to optimize the operation of a storage device at a given location to earn maximum profit. We use two different versions of our method and optimize the profitability of a storage unit at each location in a 36 bus model of north eastern United States and south eastern Canada for four representative days representing four seasons in a year. Finally, we compare our results from the two versions of our
Research in Stochastic Processes.
1985-09-01
appear. G. Kallianpur, Finitely additive approach to nonlinear filtering, Proc. Bernoulli Soc. Conf. on Stochastic Processes, T. Hida , ed., Springer, to...Nov. 85, in Proc. Bernoulli Soc. Conf. on Stochastic Processes, T. Hida , ed., Springer, to appear. i. Preparation T. Hsing, Extreme value theory for...1507 Carroll, R.J., Spiegelman, C.H., Lan, K.K.G., Bailey , K.T. and Abbott, R.D., Errors in-variables for binary regression models, Aug.82. 1508
Yang, Lei; Ma, Liangong; Huang, Yuanding; Feyerabend, Frank; Blawert, Carsten; Höche, Daniel; Willumeit-Römer, Regine; Zhang, Erlin; Kainer, Karl Ulrich; Hort, Norbert
2017-06-01
Rare earth element Dy is one of the promising alloying elements for magnesium alloy as biodegradable implants. To understand the effect of Dy in solid solution on the degradation of Mg-Dy alloys in simulated physiological conditions, the present work studied the microstructure and degradation behavior of Mg-Dy alloys in cell culture medium. It is found the corrosion resistance enhances with the increase of Dy content in solid solution in Mg. This can be attributed to the formation of a relatively more corrosion resistant Dy-enriched film which decreases the anodic dissolution of Mg. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Magier, Ronen; Bergman, David J.
2008-04-01
The electrical response of a three-dimensional composite medium composed of two isotropic conductors with charge carriers of the same sign is investigated. We consider such mixtures when subject to a strong magnetic field. First, an asymptotic analysis of a self-consistent effective medium approximation (SEMA) is applied for this purpose. A critical point in the behavior of the effective transverse Ohmic resistivity is predicted. At this critical point, occurring when the Hall resistivities of the two constituents are equal, the dependence of the induced magnetoresistance on the externally applied magnetic field changes from nonsaturating to saturating. The crossover between these distinct strong-field behaviors is characterized by a closed-form function of an appropriate scaling variable. An analogy is found between the investigated composite and a parallel-slabs composite. This provides physical insight into some of the results found using SEMA and indicates that their validity transcends that of SEMA. It also leads to some surprising predictions regarding the distributions of the local electric field and current density in the system.
Kumar, S.; Gezari, S.; Heinis, S.; Chornock, R.; Berger, E.; Soderberg, A.; Stubbs, C. W.; Kirshner, R. P.; Rest, A.; Huber, M. E.; Narayan, G.; Marion, G. H.; Burgett, W. S.; Foley, R. J.; Scolnic, D.; Riess, A. G.; Lawrence, A.; Smartt, S. J.; Smith, K.; Wood-Vasey, W. M.; and others
2015-03-20
We present a novel method for the light-curve characterization of Pan-STARRS1 Medium Deep Survey (PS1 MDS) extragalactic sources into stochastic variables (SVs) and burst-like (BL) transients, using multi-band image-differencing time-series data. We select detections in difference images associated with galaxy hosts using a star/galaxy catalog extracted from the deep PS1 MDS stacked images, and adopt a maximum a posteriori formulation to model their difference-flux time-series in four Pan-STARRS1 photometric bands g {sub P1}, r {sub P1}, i {sub P1}, and z {sub P1}. We use three deterministic light-curve models to fit BL transients; a Gaussian, a Gamma distribution, and an analytic supernova (SN) model, and one stochastic light-curve model, the Ornstein-Uhlenbeck process, in order to fit variability that is characteristic of active galactic nuclei (AGNs). We assess the quality of fit of the models band-wise and source-wise, using their estimated leave-out-one cross-validation likelihoods and corrected Akaike information criteria. We then apply a K-means clustering algorithm on these statistics, to determine the source classification in each band. The final source classification is derived as a combination of the individual filter classifications, resulting in two measures of classification quality, from the averages across the photometric filters of (1) the classifications determined from the closest K-means cluster centers, and (2) the square distances from the clustering centers in the K-means clustering spaces. For a verification set of AGNs and SNe, we show that SV and BL occupy distinct regions in the plane constituted by these measures. We use our clustering method to characterize 4361 extragalactic image difference detected sources, in the first 2.5 yr of the PS1 MDS, into 1529 BL, and 2262 SV, with a purity of 95.00% for AGNs, and 90.97% for SN based on our verification sets. We combine our light-curve classifications with their nuclear or off-nuclear host
Silva, Priscilla L; Trassi, Marco A S; Martins, Clarissa T; El Seoud, Omar A
2009-07-16
We have employed UV-vis spectroscopy in order to investigate details of the solvation of six solvatochromicindicators, hereafter designated as "probes", namely, 2,6-diphenyl-4-(2,4,6-triphenylpyridinium-1-yl) phenolate(RB); 4-[(E)-2-(1-methylpyridinium-4-yl)ethenyl] phenolate, MePM; 1-methylquinolinium-8-olate, QB;2-bromo-4-[(E)-2-(1-methylpyridinium-4-yl)ethenyl] phenolate, MePMBr, 2,6-dichloro-4-(2,4,6-triphenylpyridinium-1-yl) phenolate (WB); and 2,6-dibromo-4-[(E)-2-(1-methylpyridinium-4-yl)ethenyl] phenolate,MePMBr2, respectively. These can be divided into three pairs, each includes two probes of similar p kappa(a) in water and different lipophilicity. Solvation has been studied in binary mixtures, BMs, of water, W, with 12protic organic solvents, S, including mono- and bifunctional alcohols (2-alkoxyethanoles, unsaturated and chlorinated alcohols). Each medium was treated as a mixture of S, W, and a complex solvent, S-W, formed by hydrogen bonding. Values of lambda max (of the probe intramolecular charge transfer) were converted into empirical polarity scales, ET(probe) in kcal/mol, whose values were correlated with the effective mole fraction of waterin the medium, chi W(effective). This correlation furnished three equilibrium constants for the exchange of solvents int he probe solvation shell; phi W/S (W substitutes S); phi S-W/W (S-W substitutes W), and phi S-W/S (S-W substitutes S), respectively. The values of these constants depend on the physicochemical properties of the probe and the medium. We tested, for the first time, the applicability of a new solvation free energy relationship: phi =constant + a alpha(BM) + b beta(BM) + s(pi* (BM) + d delta) + p log P (BM), where a, b, s, and p are regression coefficients; RBM,alpha (BM), beta(BM) and pi (BM) are solvatochromic parameters of the BM, delta is a correction term for pi*, and log P is an empirical scale of lipophilicity. Correlations were carried out with two-, three-, and four-medium descriptors
NASA Astrophysics Data System (ADS)
Arnold, Becky; Goodwin, Simon P.; Griffiths, D. W.; Parker, Richard. J.
2017-10-01
Approximately 10 per cent of star clusters are found in pairs, known as binary clusters. We propose a mechanism for binary cluster formation; we use N-body simulations to show that velocity substructure in a single (even fairly smooth) region can cause binary clusters to form. This process is highly stochastic and it is not obvious from a region's initial conditions whether a binary will form and, if it does, which stars will end up in which cluster. We find the probability that a region will divide is mainly determined by its virial ratio, and a virial ratio above 'equilibrium' is generally necessary for binary formation. We also find that the mass ratio of the two clusters is strongly influenced by the initial degree of spatial substructure in the region.
NASA Astrophysics Data System (ADS)
Liu, Tingting; Gezari, Suvi
2015-08-01
Supermassive black hole binaries (SMBHBs) should be an inevitable consequence of the hierarchical growth of massive galaxies through mergers, and the strongest sirens of gravitational waves (GWs) in the cosmos. And yet, their direct detection has remained elusive due to the compact (sub-parsec) orbital separations of gravitationally bound SMBHBs. Here we exploit a theoretically predicted signature of a SMBHB in the time domain: periodic variability caused by a mass accretion rate that is modulated by the binary's orbital motion. We report our first significant periodically varying quasar detection from the systematic search in the Pan-STARRS1 (PS1) Medium Deep Survey, a result recently accepted for publication in The Astrophysical Journal Letters. Our SMBHB candidate, PSO J334.2028+01.4075, is a luminous radio-loud quasar at z = 2.060, with extended baseline photometry from the Catalina Real-Time Transient Survey, as well as archival spectroscopy from the FIRST Bright Quasar Survey. The observed period (542 ± 15 days) and estimated black hole mass (log(MBH/M⊙) = 9.97 ± 0.50), correspond to an orbital separation of 7+8-4 Schwarzschild radii (~ 0.006+0.007-0.003 pc), assuming the rest-frame period of the quasar variability traces the orbital period of the binary. This SMBHB candidate, discovered at the peak redshift for SMBH mergers, is in a physically stable configuration for a circumbinary accretion disk, and within the regime of GW-driven orbital decay. Our search with PS1 is a benchmark study for the exciting capabilities of LSST, which will have orders of magnitude larger survey power, and will potentially pinpoint the locations of thousands of SMBHBs in the variable night sky.
NASA Astrophysics Data System (ADS)
Liu, Tingting; Gezari, Suvi
Supermassive black hole binaries (SMBHBs) should be an inevitable consequence of the hierarchical growth of massive galaxies through mergers and the strongest sirens of gravitational waves (GWs) in the cosmos. Yet, their direct detection has remained elusive due to the compact (sub-parsec) orbital separations of gravitationally bound SMBHBs. Here we exploit a theoretically predicted signature of SMBHBs in the time domain. We have begun a systematic search for SMBHB candidates in the Pan-STARRS1 Medium Deep Survey (MDS) and reported our first significant detection of such a candidate from our pilot study of MD09 in Liu et al. (2015). Our candidate PSO J334.2028+01.4075 has a detected period of 542 days, varying persistently over the available baseline. From its archival spectrum, we estimated the black hole mass of the z = 2.06 quasar to be ~1010 M⊙. The inferred ~7 R s binary separation therefore puts this candidate in the regime of GW-dominated orbital decay, opening up the exciting possibility of finding GW sources detectable by pulsar timing arrays (PTAs) in a wide-field optical synoptic survey.
Solan, Eilon; Vieille, Nicolas
2015-01-01
In 1953, Lloyd Shapley contributed his paper “Stochastic games” to PNAS. In this paper, he defined the model of stochastic games, which were the first general dynamic model of a game to be defined, and proved that it admits a stationary equilibrium. In this Perspective, we summarize the historical context and the impact of Shapley’s contribution. PMID:26556883
NASA Astrophysics Data System (ADS)
Zhuang, Shuxin; Huang, Kelong; Huang, Chenghuan; Huang, Hongxia; Liu, Suqin; Fan, Min
Silver-modified La 0.6Ca 0.4CoO 3 composites for molecular oxygen reduction and evolution reaction are prepared by a chemical reduction process using N 2H 4 as the reducing agent at room temperature. The La 0.6Ca 0.4CoO 3 catalysts are modified with silver content that vary from 0.3 to 30 wt.% without damaging their microstructure. The electrochemical behavior of La 0.6Ca 0.4CoO 3 catalysts with different silver loadings is studied on classical bilayer gas diffusion electrodes. The electrocatalytic properties of these composites are evaluated by polarization curves and electrochemical impedance spectroscopy in alkaline electrolyte. The silver loading is found to have a significant impact on the electrode performances, which facilitate or block the electrochemical processes of the gas diffusion electrodes. The binary catalyst electrodes exhibit higher electrocatalytic activities than that of the electrodes with only La 0.6Ca 0.4CoO 3 as the catalyst. In this paper, the best performance was achieved when the silver loading was 3.0 wt.%.
NASA Astrophysics Data System (ADS)
Liu, Tingting; Gezari, Suvi; Heinis, Sebastien; Magnier, Eugene A.; Burgett, William S.; Chambers, Kenneth; Flewelling, Heather; Huber, Mark; Hodapp, Klaus W.; Kaiser, Nicholas; Kudritzki, Rolf-Peter; Tonry, John L.; Wainscoat, Richard J.; Waters, Christopher
2015-04-01
Supermassive black hole binaries (SMBHBs) should be an inevitable consequence of the hierarchical growth of massive galaxies through mergers and the strongest sirens of gravitational waves (GWs) in the cosmos. Yet, their direct detection has remained elusive due to the compact (sub-parsec) orbital separations of gravitationally bound SMBHBs. Here, we exploit a theoretically predicted signature of an SMBHB in the time domain: periodic variability caused by a mass accretion rate that is modulated by the binary’s orbital motion. We report our first significant periodically varying quasar detection from the systematic search in the Pan-STARRS1 (PS1) Medium Deep Survey. Our SMBHB candidate, PSO J334.2028+01.4075, is a luminous radio-loud quasar at z = 2.060, with extended baseline photometry from the Catalina Real-Time Transient Survey, as well as archival spectroscopy from the FIRST Bright Quasar Survey. The observed period (542 ± 15 days) and estimated black hole mass (log ({{M}BH}/{{M}⊙ })=9.97+/- 0.50) correspond to an orbital separation of 7-4+8 Schwarzschild radii (˜ 0.006-0.003+0.007 pc), assuming the rest-frame period of the quasar variability traces the orbital period of the binary. This SMBHB candidate, discovered at the peak redshift for SMBH mergers, is in a physically stable configuration for a circumbinary accretion disk and within the regime of GW-driven orbital decay. Our search with PS1 is a benchmark study for the exciting capabilities of LSST, which will have orders of magnitude larger survey power and will potentially pinpoint the locations of thousands of SMBHBs in the variable night sky.
NASA Astrophysics Data System (ADS)
Noll, Keith S.
2015-08-01
The Pluto-Charon binary was the first trans-neptunian binary to be identified in 1978. Pluto-Charon is a true binary with both components orbiting a barycenter located between them. The Pluto system is also the first, and to date only, known binary with a satellite system consisting of four small satellites in near-resonant orbits around the common center of mass. Seven other Plutinos, objects in 3:2 mean motion resonance with Neptune, have orbital companions including 2004 KB19 reported here for the first time. Compared to the Cold Classical population, the Plutinos differ in the frequency of binaries, the relative sizes of the components, and their inclination distribution. These differences point to distinct dynamical histories and binary formation processes encountered by Plutinos.
NASA Astrophysics Data System (ADS)
Eichhorn, Ralf; Aurell, Erik
2014-04-01
'Stochastic thermodynamics as a conceptual framework combines the stochastic energetics approach introduced a decade ago by Sekimoto [1] with the idea that entropy can consistently be assigned to a single fluctuating trajectory [2]'. This quote, taken from Udo Seifert's [3] 2008 review, nicely summarizes the basic ideas behind stochastic thermodynamics: for small systems, driven by external forces and in contact with a heat bath at a well-defined temperature, stochastic energetics [4] defines the exchanged work and heat along a single fluctuating trajectory and connects them to changes in the internal (system) energy by an energy balance analogous to the first law of thermodynamics. Additionally, providing a consistent definition of trajectory-wise entropy production gives rise to second-law-like relations and forms the basis for a 'stochastic thermodynamics' along individual fluctuating trajectories. In order to construct meaningful concepts of work, heat and entropy production for single trajectories, their definitions are based on the stochastic equations of motion modeling the physical system of interest. Because of this, they are valid even for systems that are prevented from equilibrating with the thermal environment by external driving forces (or other sources of non-equilibrium). In that way, the central notions of equilibrium thermodynamics, such as heat, work and entropy, are consistently extended to the non-equilibrium realm. In the (non-equilibrium) ensemble, the trajectory-wise quantities acquire distributions. General statements derived within stochastic thermodynamics typically refer to properties of these distributions, and are valid in the non-equilibrium regime even beyond the linear response. The extension of statistical mechanics and of exact thermodynamic statements to the non-equilibrium realm has been discussed from the early days of statistical mechanics more than 100 years ago. This debate culminated in the development of linear response
Paczynacuteski, B
1984-07-20
Most stars in the solar neighborhood are either double or multiple systems. They provide a unique opportunity to measure stellar masses and radii and to study many interesting and important phenomena. The best candidates for black holes are compact massive components of two x-ray binaries: Cygnus X-1 and LMC X-3. The binary radio pulsar PSR 1913 + 16 provides the best available evidence for gravitational radiation. Accretion disks and jets observed in close binaries offer a very good testing ground for models of active galactic nuclei and quasars.
Stochastic phase segregation on surfaces.
Gera, Prerna; Salac, David
2017-08-01
Phase separation and coarsening is a phenomenon commonly seen in binary physical and chemical systems that occur in nature. Often, thermal fluctuations, modelled as stochastic noise, are present in the system and the phase segregation process occurs on a surface. In this work, the segregation process is modelled via the Cahn-Hilliard-Cook model, which is a fourth-order parabolic stochastic system. Coarsening is analysed on two sample surfaces: a unit sphere and a dumbbell. On both surfaces, a statistical analysis of the growth rate is performed, and the influence of noise level and mobility is also investigated. For the spherical interface, it is also shown that a lognormal distribution fits the growth rate well.
Propagation of ultra-short solitons in stochastic Maxwell's equations
Kurt, Levent; Schäfer, Tobias
2014-01-15
We study the propagation of ultra-short short solitons in a cubic nonlinear medium modeled by nonlinear Maxwell's equations with stochastic variations of media. We consider three cases: variations of (a) the dispersion, (b) the phase velocity, (c) the nonlinear coefficient. Using a modified multi-scale expansion for stochastic systems, we derive new stochastic generalizations of the short pulse equation that approximate the solutions of stochastic nonlinear Maxwell's equations. Numerical simulations show that soliton solutions of the short pulse equation propagate stably in stochastic nonlinear Maxwell's equations and that the generalized stochastic short pulse equations approximate the solutions to the stochastic Maxwell's equations over the distances under consideration. This holds for both a pathwise comparison of the stochastic equations as well as for a comparison of the resulting probability densities.
NASA Astrophysics Data System (ADS)
Ross, D. K.; Moreau, William
1995-08-01
We investigate stochastic gravity as a potentially fruitful avenue for studying quantum effects in gravity. Following the approach of stochastic electrodynamics ( sed), as a representation of the quantum gravity vacuum we construct a classical state of isotropic random gravitational radiation, expressed as a spin-2 field,h µυ (x), composed of plane waves of random phase on a flat spacetime manifold. Requiring Lorentz invariance leads to the result that the spectral composition function of the gravitational radiation,h(ω), must be proportional to 1/ω 2. The proportionality constant is determined by the Planck condition that the energy density consist ofħω/2 per normal mode, and this condition sets the amplitude scale of the random gravitational radiation at the order of the Planck length, giving a spectral composition functionh(ω) =√16πc 2Lp/ω2. As an application of stochastic gravity, we investigate the Davies-Unruh effect. We calculate the two-point correlation function (R iojo(Oτ-δτ/2)R kolo(O,τ+δτ/2)) of the measureable geodesic deviation tensor field,R iojo, for two situations: (i) at a point detector uniformly accelerating through the random gravitational radiation, and (ii) at an inertial detector in a heat bath of the random radiation at a finite temperature. We find that the two correlation functions agree to first order inaδτ/c provided that the temperature and acceleration satisfy the relationkT=ħa/2πc.
The Formation of Contact and Very Close Binaries
Kisseleva-Eggleton, L; Eggleton, P P
2007-08-10
We explore the possibility that all close binaries, i.e. those with periods {approx}< 3 d, including contact (W UMa) binaries, are produced from initially wider binaries (periods of say 10's of days) by the action of a triple companion through the medium of Kozai Cycles with Tidal Friction (KCTF).
NASA Astrophysics Data System (ADS)
Ryan, Keegan; Nakajima, Miki; Stevenson, David J.
2014-11-01
Can a bound pair of similar mass terrestrial planets exist? We are interested here in bodies with a mass ratio of ~ 3:1 or less (so Pluto/Charon or Earth/Moon do not qualify) and we do not regard the absence of any such discoveries in the Kepler data set to be significant since the tidal decay and merger of a close binary is prohibitively fast well inside of 1AU. SPH simulations of equal mass “Earths” were carried out to seek an answer to this question, assuming encounters that were only slightly more energetic than parabolic (zero energy). We were interested in whether the collision or near collision of two similar mass bodies would lead to a binary in which the two bodies remain largely intact, effectively a tidal capture hypothesis though with the tidal distortion being very large. Necessarily, the angular momentum of such an encounter will lead to bodies separated by only a few planetary radii if capture occurs. Consistent with previous work, mostly by Canup, we find that most impacts are disruptive, leading to a dominant mass body surrounded by a disk from which a secondary forms whose mass is small compared to the primary, hence not a binary planet by our adopted definition. However, larger impact parameter “kissing” collisions were found to produce binaries because the dissipation upon first encounter was sufficient to provide a bound orbit that was then rung down by tides to an end state where the planets are only a few planetary radii apart. The long computational times for these simulation make it difficult to fully map the phase space of encounters for which this outcome is likely but the indications are that the probability is not vanishingly small and since planetary encounters are a plausible part of planet formation, we expect binary planets to exist and be a non-negligible fraction of the larger orbital radius exoplanets awaiting discovery.
Blaskiewicz, M.
2011-01-01
Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.
Scattering theory of stochastic electromagnetic light waves.
Wang, Tao; Zhao, Daomu
2010-07-15
We generalize scattering theory to stochastic electromagnetic light waves. It is shown that when a stochastic electromagnetic light wave is scattered from a medium, the properties of the scattered field can be characterized by a 3 x 3 cross-spectral density matrix. An example of scattering of a spatially coherent electromagnetic light wave from a deterministic medium is discussed. Some interesting phenomena emerge, including the changes of the spectral degree of coherence and of the spectral degree of polarization of the scattered field.
PAGB stars in binary stellar population synthesis model
NASA Astrophysics Data System (ADS)
Hernández-Pérez, F. C.; Bruzual, G.; Magris, G.
2017-07-01
Post Asymptotic Giant Branch (PAGB) stars are luminous objects (103 - 104L⊙) in final stages of their evolution before reaching the white dwarf cooling sequence. They are an important key to understand galaxy evolution since they are hot enough to contribute to the UV excess in old stellar systems. Binary interactions may change the evolutionary path over the HR diagram and the total number of PAGB stars may also change. In this contribution we remark that rare Yellow PAGB stars are formed through mass transfer in a binary system, however the probability of formation is low. We use a recent implementation of the BC03 stellar population synthesis model that allows a stochastic sampling of the initial mass function to evolve single stars. We select, assemble and evolve binary systems using our binary code. We run ten realizations of simulated clusters for a Z=0.0005, M=106M_⊙, BF=0.9. One evolved stars formed in a binary system appears near the region of observed yellow PAGB stars. To demonstrate that these rare stars may be form through binary interaction, we select binary pairs with period less than critical to ensure mass transfer. The yellow PAGB star is formed by binary interaction. Binary and stochastic effects on the formation of yellow PAGB and the influence on spectral and photometric properties of the stellar systems will be studied in future work.
Rényi entropy measure of noise-aided information transmission in a binary channel.
Chapeau-Blondeau, François; Rousseau, David; Delahaies, Agnès
2010-05-01
This paper analyzes a binary channel by means of information measures based on the Rényi entropy. The analysis extends, and contains as a special case, the classic reference model of binary information transmission based on the Shannon entropy measure. The extended model is used to investigate further possibilities and properties of stochastic resonance or noise-aided information transmission. The results demonstrate that stochastic resonance occurs in the information channel and is registered by the Rényi entropy measures at any finite order, including the Shannon order. Furthermore, in definite conditions, when seeking the Rényi information measures that best exploit stochastic resonance, then nontrivial orders differing from the Shannon case usually emerge. In this way, through binary information transmission, stochastic resonance identifies optimal Rényi measures of information differing from the classic Shannon measure. A confrontation of the quantitative information measures with visual perception is also proposed in an experiment of noise-aided binary image transmission.
Evolution of X-ray Binary Populations of Globular Clusters: A Boltzmann study
NASA Astrophysics Data System (ADS)
Ghosh, Pranab; Banerjee, S.
2008-03-01
We present a Boltzmann scheme for studying evolution of compact-binary populations of globular clusters, including dynamical formation and destruction processes, and binary hardening processes. For those processes which are stochastic (e.g., tidal formation, collisional destruction, and collisional hardening), we study the continuous limit first. We then introduce our stochastic model, showing that the continuous limit is an excellent representation of the average of many "realizations" of stochastic processes. We explore the scaling of the number of X-ray binaries in a globular cluster with two essential cluster parameters measuring star-star and star-binary encounter rates, which we call Verbunt parameters. We show that our computed scalings are in good agreement with CHANDRA data on Galactic globular cluster X-ray binaries. We discuss ways of extending our scheme, and of handling evolution of the cluster background.
Gravitational wave background from binary systems
Rosado, Pablo A.
2011-10-15
Basic aspects of the background of gravitational waves and its mathematical characterization are reviewed. The spectral energy density parameter {Omega}(f), commonly used as a quantifier of the background, is derived for an ensemble of many identical sources emitting at different times and locations. For such an ensemble, {Omega}(f) is generalized to account for the duration of the signals and of the observation, so that one can distinguish the resolvable and unresolvable parts of the background. The unresolvable part, often called confusion noise or stochastic background, is made by signals that cannot be either individually identified or subtracted out of the data. To account for the resolvability of the background, the overlap function is introduced. This function is a generalization of the duty cycle, which has been commonly used in the literature, in some cases leading to incorrect results. The spectra produced by binary systems (stellar binaries and massive black hole binaries) are presented over the frequencies of all existing and planned detectors. A semi-analytical formula for {Omega}(f) is derived in the case of stellar binaries (containing white dwarfs, neutron stars or stellar-mass black holes). Besides a realistic expectation of the level of background, upper and lower limits are given, to account for the uncertainties in some astrophysical parameters such as binary coalescence rates. One interesting result concerns all current and planned ground-based detectors (including the Einstein Telescope). In their frequency range, the background of binaries is resolvable and only sporadically present. In other words, there is no stochastic background of binaries for ground-based detectors.
Brennan,J.M.; Blaskiewicz, M. M.; Severino, F.
2009-05-04
After the success of longitudinal stochastic cooling of bunched heavy ion beam in RHIC, transverse stochastic cooling in the vertical plane of Yellow ring was installed and is being commissioned with proton beam. This report presents the status of the effort and gives an estimate, based on simulation, of the RHIC luminosity with stochastic cooling in all planes.
Stochastic differential equations
Sobczyk, K. )
1990-01-01
This book provides a unified treatment of both regular (or random) and Ito stochastic differential equations. It focuses on solution methods, including some developed only recently. Applications are discussed, in particular an insight is given into both the mathematical structure, and the most efficient solution methods (analytical as well as numerical). Starting from basic notions and results of the theory of stochastic processes and stochastic calculus (including Ito's stochastic integral), many principal mathematical problems and results related to stochastic differential equations are expounded here for the first time. Applications treated include those relating to road vehicles, earthquake excitations and offshore structures.
Stochastic symmetries of Wick type stochastic ordinary differential equations
NASA Astrophysics Data System (ADS)
Ünal, Gazanfer
2015-04-01
We consider Wick type stochastic ordinary differential equations with Gaussian white noise. We define the stochastic symmetry transformations and Lie equations in Kondratiev space (S)-1N. We derive the determining system of Wick type stochastic partial differential equations with Gaussian white noise. Stochastic symmetries for stochastic Bernoulli, Riccati and general stochastic linear equation in (S)-1N are obtained. A stochastic version of canonical variables is also introduced.
Lenormand, Thomas; Roze, Denis; Rousset, François
2009-03-01
The debate over the role of stochasticity is central in evolutionary biology, often summarised by whether or not evolution is predictable or repeatable. Here we distinguish three types of stochasticity: stochasticity of mutation and variation, of individual life histories and of environmental change. We then explain when stochasticity matters in evolution, distinguishing four broad situations: stochasticity contributes to maladaptation or limits adaptation; it drives evolution on flat fitness landscapes (evolutionary freedom); it might promote jumps from one fitness peak to another (evolutionary revolutions); and it might shape the selection pressures themselves. We show that stochasticity, by directly steering evolution, has become an essential ingredient of evolutionary theory beyond the classical Wright-Fisher or neutralist-selectionist debates.
Papadakis, Raffaello
2016-09-08
In this work, the preferential solvation of an intensely solvatochromic ferrocyanide(II) dye involving a 4,4'-bipyridine-based ligand was examined in various binary solvent mixtures. Its solvatochromic behavior was rationalized in terms of specific and nonspecific solute-solvent interactions. An exceptional case of solvatochromic inversion was observed when going from alcohol/water to amide/water mixtures. These effects were quantified using Onsager's solvent polarity function. Furthermore, the sensitivity of the solvatochromism of the dye was determined using various solvatochromic parameters such as π* expressing the dipolarity/polarizability of solvents and α expressing the hydrogen-bond-donor acidity of solvents. This analysis was useful for the rationalization of the selective solvation phenomena occurring in the three types of alcohol/water and amide/water mixtures studied. Furthermore, two preferential solvation models were employed for the interpretation of the experimental spectral results in binary solvent mixtures, namely, the model of Suppan on dielectric enrichment [J. Chem. Soc. Faraday Trans. 1 1987, 83, 495-509] and the model of Bosch, Rosés, and co-workers [J. Chem. Soc., Perkin Trans. 2, 1995, 8, 1607-1615]. The first model successfully predicted the charge transfer energies of the dye in formamide/water and N-methylformamide/water mixtures, but in the case of MeOH/water mixtures, the prediction was less accurate because of the significant contribution of specific solute-solvent interactions in that case. The second model gave more insights for both specific solute-solvent as well as solvent-solvent interactions in the cybotactic region. The role of dielectric enrichment and specific interactions was discussed based on the findings.
Stochastic longshore current dynamics
NASA Astrophysics Data System (ADS)
Restrepo, Juan M.; Venkataramani, Shankar
2016-12-01
We develop a stochastic parametrization, based on a 'simple' deterministic model for the dynamics of steady longshore currents, that produces ensembles that are statistically consistent with field observations of these currents. Unlike deterministic models, stochastic parameterization incorporates randomness and hence can only match the observations in a statistical sense. Unlike statistical emulators, in which the model is tuned to the statistical structure of the observation, stochastic parametrization are not directly tuned to match the statistics of the observations. Rather, stochastic parameterization combines deterministic, i.e physics based models with stochastic models for the "missing physics" to create hybrid models, that are stochastic, but yet can be used for making predictions, especially in the context of data assimilation. We introduce a novel measure of the utility of stochastic models of complex processes, that we call consistency of sensitivity. A model with poor consistency of sensitivity requires a great deal of tuning of parameters and has a very narrow range of realistic parameters leading to outcomes consistent with a reasonable spectrum of physical outcomes. We apply this metric to our stochastic parametrization and show that, the loss of certainty inherent in model due to its stochastic nature is offset by the model's resulting consistency of sensitivity. In particular, the stochastic model still retains the forward sensitivity of the deterministic model and hence respects important structural/physical constraints, yet has a broader range of parameters capable of producing outcomes consistent with the field data used in evaluating the model. This leads to an expanded range of model applicability. We show, in the context of data assimilation, the stochastic parametrization of longshore currents achieves good results in capturing the statistics of observation that were not used in tuning the model.
Research in Stochastic Processes
1988-10-10
26 L. Gorostiza ................................................. 25 G. Hardy...Technical Report No. 219, Dec. 1987. Sequential Anat., 7. 1988, 111-126 25 DONALD DAWSON and LUIS G. GOROSTIZA The work of Professors Dawson and Gorostiza ... Gorostiza , Generalized solutions of a class of nuclear space valued stochastic evolution equations. University of North Carolina Center for Stochastic
Stochastic Convection Parameterizations
NASA Technical Reports Server (NTRS)
Teixeira, Joao; Reynolds, Carolyn; Suselj, Kay; Matheou, Georgios
2012-01-01
computational fluid dynamics, radiation, clouds, turbulence, convection, gravity waves, surface interaction, radiation interaction, cloud and aerosol microphysics, complexity (vegetation, biogeochemistry, radiation versus turbulence/convection stochastic approach, non-linearities, Monte Carlo, high resolutions, large-Eddy Simulations, cloud structure, plumes, saturation in tropics, forecasting, parameterizations, stochastic, radiation-clod interaction, hurricane forecasts
Evolution with Stochastic Fitness and Stochastic Migration
Rice, Sean H.; Papadopoulos, Anthony
2009-01-01
Background Migration between local populations plays an important role in evolution - influencing local adaptation, speciation, extinction, and the maintenance of genetic variation. Like other evolutionary mechanisms, migration is a stochastic process, involving both random and deterministic elements. Many models of evolution have incorporated migration, but these have all been based on simplifying assumptions, such as low migration rate, weak selection, or large population size. We thus have no truly general and exact mathematical description of evolution that incorporates migration. Methodology/Principal Findings We derive an exact equation for directional evolution, essentially a stochastic Price equation with migration, that encompasses all processes, both deterministic and stochastic, contributing to directional change in an open population. Using this result, we show that increasing the variance in migration rates reduces the impact of migration relative to selection. This means that models that treat migration as a single parameter tend to be biassed - overestimating the relative impact of immigration. We further show that selection and migration interact in complex ways, one result being that a strategy for which fitness is negatively correlated with migration rates (high fitness when migration is low) will tend to increase in frequency, even if it has lower mean fitness than do other strategies. Finally, we derive an equation for the effective migration rate, which allows some of the complex stochastic processes that we identify to be incorporated into models with a single migration parameter. Conclusions/Significance As has previously been shown with selection, the role of migration in evolution is determined by the entire distributions of immigration and emigration rates, not just by the mean values. The interactions of stochastic migration with stochastic selection produce evolutionary processes that are invisible to deterministic evolutionary theory
Evolution with stochastic fitness and stochastic migration.
Rice, Sean H; Papadopoulos, Anthony
2009-10-09
Migration between local populations plays an important role in evolution - influencing local adaptation, speciation, extinction, and the maintenance of genetic variation. Like other evolutionary mechanisms, migration is a stochastic process, involving both random and deterministic elements. Many models of evolution have incorporated migration, but these have all been based on simplifying assumptions, such as low migration rate, weak selection, or large population size. We thus have no truly general and exact mathematical description of evolution that incorporates migration. We derive an exact equation for directional evolution, essentially a stochastic Price equation with migration, that encompasses all processes, both deterministic and stochastic, contributing to directional change in an open population. Using this result, we show that increasing the variance in migration rates reduces the impact of migration relative to selection. This means that models that treat migration as a single parameter tend to be biassed - overestimating the relative impact of immigration. We further show that selection and migration interact in complex ways, one result being that a strategy for which fitness is negatively correlated with migration rates (high fitness when migration is low) will tend to increase in frequency, even if it has lower mean fitness than do other strategies. Finally, we derive an equation for the effective migration rate, which allows some of the complex stochastic processes that we identify to be incorporated into models with a single migration parameter. As has previously been shown with selection, the role of migration in evolution is determined by the entire distributions of immigration and emigration rates, not just by the mean values. The interactions of stochastic migration with stochastic selection produce evolutionary processes that are invisible to deterministic evolutionary theory.
Collisionally induced stochastic dynamics of fast ions in solids
Burgdoerfer, J.
1989-01-01
Recent developments in the theory of excited state formation in collisions of fast highly charged ions with solids are reviewed. We discuss a classical transport theory employing Monte-Carlo sampling of solutions of a microscopic Langevin equation. Dynamical screening by the dielectric medium as well as multiple collisions are incorporated through the drift and stochastic forces in the Langevin equation. The close relationship between the extrinsically stochastic dynamics described by the Langevin and the intrinsic stochasticity in chaotic nonlinear dynamical systems is stressed. Comparison with experimental data and possible modification by quantum corrections are discussed. 49 refs., 11 figs.
NASA Astrophysics Data System (ADS)
Noll, Keith S.; Grundy, W. M.; Ryan, E. L.; Benecchi, S. D.
2015-11-01
We have reexamined 41 Trojan asteroids observed with the Hubble Space Telescope (HST) to search for unresolved binaries. We have identified one candidate binary with a separation of 53 milliarcsec, about the width of the diffraction limited point-spread function (PSF). Sub-resolution-element detection of binaries is possible with HST because of the high signal-to-noise ratio of the observations and the stability of the PSF. Identification and confirmation of binary Trojans is important because a Trojan Tour is one of five possible New Frontiers missions. A binary could constitute a potentially high value target because of the opportunity to study two objects and to test models of the primordial nature of binaries. The potential to derive mass-based physical information from the binary orbit could yield more clues to the origin of Trojans.
Robust stochastic mine production scheduling
NASA Astrophysics Data System (ADS)
Kumral, Mustafa
2010-06-01
The production scheduling of open pit mines aims to determine the extraction sequence of blocks such that the net present value (NPV) of a mining project is maximized under capacity and access constraints. This sequencing has significant effect on the profitability of the mining venture. However, given that the values of coefficients in the optimization procedure are obtained in a medium of sparse data and unknown future events, implementations based on deterministic models may lead to destructive consequences to the company. In this article, a robust stochastic optimization (RSO) approach is used to deal with mine production scheduling in a manner such that the solution is insensitive to changes in input data. The approach seeks a trade off between optimality and feasibility. The model is demonstrated on a case study. The findings showed that the approach can be used in mine production scheduling problems efficiently.
PHOEBE: PHysics Of Eclipsing BinariEs
NASA Astrophysics Data System (ADS)
Prsa, Andrej; Matijevic, Gal; Latkovic, Olivera; Vilardell, Francesc; Wils, Patrick
2011-06-01
PHOEBE (PHysics Of Eclipsing BinariEs) is a modeling package for eclipsing binary stars, built on top of the widely used WD program (Wilson & Devinney 1971). This introductory paper overviews most important scientific extensions (incorporating observational spectra of eclipsing binaries into the solution-seeking process, extracting individual temperatures from observed color indices, main-sequence constraining and proper treatment of the reddening), numerical innovations (suggested improvements to WD's Differential Corrections method, the new Nelder & Mead's downhill Simplex method) and technical aspects (back-end scripter structure, graphical user interface). While PHOEBE retains 100% WD compatibility, its add-ons are a powerful way to enhance WD by encompassing even more physics and solution reliability.
Stochastic Pseudo-Boolean Optimization
2011-07-31
analysis of two-stage stochastic minimum s-t cut problems; (iv) exact solution algorithm for a class of stochastic bilevel knapsack problems; (v) exact...57 5 Bilevel Knapsack Problems with Stochastic Right-Hand Sides 58 6 Two-Stage Stochastic Assignment Problems 59 6.1 Introduction...programming formulations and related computational complexity issues. • Section 5 considers a specific stochastic extension of the bilevel knapsack
Modeling stochasticity and robustness in gene regulatory networks
Garg, Abhishek; Mohanram, Kartik; Di Cara, Alessandro; De Micheli, Giovanni; Xenarios, Ioannis
2009-01-01
Motivation: Understanding gene regulation in biological processes and modeling the robustness of underlying regulatory networks is an important problem that is currently being addressed by computational systems biologists. Lately, there has been a renewed interest in Boolean modeling techniques for gene regulatory networks (GRNs). However, due to their deterministic nature, it is often difficult to identify whether these modeling approaches are robust to the addition of stochastic noise that is widespread in gene regulatory processes. Stochasticity in Boolean models of GRNs has been addressed relatively sparingly in the past, mainly by flipping the expression of genes between different expression levels with a predefined probability. This stochasticity in nodes (SIN) model leads to over representation of noise in GRNs and hence non-correspondence with biological observations. Results: In this article, we introduce the stochasticity in functions (SIF) model for simulating stochasticity in Boolean models of GRNs. By providing biological motivation behind the use of the SIF model and applying it to the T-helper and T-cell activation networks, we show that the SIF model provides more biologically robust results than the existing SIN model of stochasticity in GRNs. Availability: Algorithms are made available under our Boolean modeling toolbox, GenYsis. The software binaries can be downloaded from http://si2.epfl.ch/∼garg/genysis.html. Contact: abhishek.garg@epfl.ch PMID:19477975
Modeling stochasticity and robustness in gene regulatory networks.
Garg, Abhishek; Mohanram, Kartik; Di Cara, Alessandro; De Micheli, Giovanni; Xenarios, Ioannis
2009-06-15
Understanding gene regulation in biological processes and modeling the robustness of underlying regulatory networks is an important problem that is currently being addressed by computational systems biologists. Lately, there has been a renewed interest in Boolean modeling techniques for gene regulatory networks (GRNs). However, due to their deterministic nature, it is often difficult to identify whether these modeling approaches are robust to the addition of stochastic noise that is widespread in gene regulatory processes. Stochasticity in Boolean models of GRNs has been addressed relatively sparingly in the past, mainly by flipping the expression of genes between different expression levels with a predefined probability. This stochasticity in nodes (SIN) model leads to over representation of noise in GRNs and hence non-correspondence with biological observations. In this article, we introduce the stochasticity in functions (SIF) model for simulating stochasticity in Boolean models of GRNs. By providing biological motivation behind the use of the SIF model and applying it to the T-helper and T-cell activation networks, we show that the SIF model provides more biologically robust results than the existing SIN model of stochasticity in GRNs. Algorithms are made available under our Boolean modeling toolbox, GenYsis. The software binaries can be downloaded from http://si2.epfl.ch/ approximately garg/genysis.html.
Spring, William Joseph
2009-04-13
We consider quantum analogues of n-parameter stochastic processes, associated integrals and martingale properties extending classical results obtained in [1, 2, 3], and quantum results in [4, 5, 6, 7, 8, 9, 10].
NASA Astrophysics Data System (ADS)
Lewin, Walter H. G.; van Paradijs, Jan; van den Heuvel, Edward Peter Jacobus
1997-01-01
Preface; 1. The properties of X-ray binaries, N. E. White, F. Nagase and A. N. Parmar; 2. Optical and ultraviolet observations of X-ray binaries J. van Paradijs and J. E. McClintock; 3. Black-hole binaries Y. Tanaka and W. H. G. Lewin; 4. X-ray bursts Walter H. G. Lewin, Jan Van Paradijs and Ronald E. Taam; 5. Millisecond pulsars D. Bhattacharya; 6. Rapid aperiodic variability in binaries M. van der Klis; 7. Radio properties of X-ray binaries R. M. Hjellming and X. Han; 8. Cataclysmic variable stars France Anne-Dominic Córdova; 9. Normal galaxies and their X-ray binary populations G. Fabbiano; 10. Accretion in close binaries Andrew King; 11. Formation and evolution of neutron stars and black holes in binaries F. Verbunt and E. P. J. van den Heuvel; 12. The magnetic fields of neutron stars and their evolution D. Bhattacharya and G. Srinivasan; 13. Cosmic gamma-ray bursts K. Hurley; 14. A catalogue of X-ray binaries Jan van Paradijs; 15. A compilation of cataclysmic binaries with known or suspected orbital periods Hans Ritter and Ulrich Kolb; References; Index.
Stochastic Langevin Model for Flow and Transport in Porous Media
Tartakovsky, Alexandre M.; Tartakovsky, Daniel M.; Meakin, Paul
2008-07-25
A new stochastic Lagrangian model for fluid flow and transport in porous media is described. The fluid is represented by particles whose flow and dispersion in a continuous porous medium is governed by a Langevin equation. Changes in the properties of the fluid particles (e.g. the solute concentration) due to molecular diffusion is governed by the advection-diffusion equation. The separate treatment of advective and diffusive mixing in the stochastic model has an advantage over the classical advection-dispersion theory, which uses a single effective diffusion coefficient (the dispersion coefficient) to describe both types of mixing leading to over-prediction of mixing induced effective reaction rates. The stochastic model predicts much lower reaction product concentrations in mixing induced reactions. In addition the dispersion theory predicts more stable fronts (with a higher effective fractal dimension) than the stochastic model during the growth of Rayleigh-Taylor instabilities.
Ding, Chaoliang; Cai, Yangjian; Zhang, Yongtao; Pan, Liuzhan
2012-06-01
The scattering of a stochastic electromagnetic plane-wave pulse on a deterministic spherical medium is investigated. An analytical formula for the degree of polarization (DOP) of the scattered field in the far zone is derived. Letting pulse duration T(0) → ∞, our formula can be applied to study the scattering of a stationary stochastic electromagnetic light wave. Numerical results show that the DOP of the far zone field is closely determined by the size of the spherical medium when the incident field is a stochastic electromagnetic plane-wave pulse. This is much different from the case when the incident field is a stationary stochastic electromagnetic light wave, where the DOP of the far zone field is independent of the size of the medium. One may obtain the information of the spherical medium by measuring the scattering-induced changes in the DOP of a stochastic electromagnetic plane-wave pulse.
Nelson, C A; Eggleton, P P
2001-03-28
We undertake a comparison of observed Algol-type binaries with a library of computed Case A binary evolution tracks. The library consists of 5500 binary tracks with various values of initial primary mass M{sub 10}, mass ratio q{sub 0}, and period P{sub 0}, designed to sample the phase-space of Case A binaries in the range -0.10 {le} log M{sub 10} {le} 1.7. Each binary is evolved using a standard code with the assumption that both total mass and orbital angular momentum are conserved. This code follows the evolution of both stars until the point where contact or reverse mass transfer occurs. The resulting binary tracks show a rich variety of behavior which we sort into several subclasses of Case A and Case B. We present the results of this classification, the final mass ratio and the fraction of time spent in Roche Lobe overflow for each binary system. The conservative assumption under which we created this library is expected to hold for a broad range of binaries, where both components have spectra in the range G0 to B1 and luminosity class III - V. We gather a list of relatively well-determined observed hot Algol-type binaries meeting this criterion, as well as a list of cooler Algol-type binaries where we expect significant dynamo-driven mass loss and angular momentum loss. We fit each observed binary to our library of tracks using a {chi}{sup 2}-minimizing procedure. We find that the hot Algols display overall acceptable {chi}{sup 2}, confirming the conservative assumption, while the cool Algols show much less acceptable {chi}{sup 2} suggesting the need for more free parameters, such as mass and angular momentum loss.
Losick, Richard; Desplan, Claude
2008-01-01
Summary Fundamental to living cells is the capacity to differentiate into subtypes with specialized attributes. Understanding the way cells acquire their fates is a major challenge in developmental biology. How cells adopt a particular fate is usually thought of as being deterministic, and in the large majority of cases it is. That is, cells acquire their fate by virtue of their lineage or their proximity to an inductive signal from another cell. In some cases, however, and in organisms ranging from bacteria to humans, cells choose one or another pathway of differentiation stochastically without apparent regard to environment or history. Stochasticity has important mechanistic requirements as we discuss. We will also speculate on why stochasticity is advantageous, and even critical in some circumstances, to the individual, the colony, or the species. PMID:18388284
Stochastic cooling at Fermilab
Marriner, J.
1986-08-01
The topics discussed are the stochastic cooling systems in use at Fermilab and some of the techniques that have been employed to meet the particular requirements of the anti-proton source. Stochastic cooling at Fermilab became of paramount importance about 5 years ago when the anti-proton source group at Fermilab abandoned the electron cooling ring in favor of a high flux anti-proton source which relied solely on stochastic cooling to achieve the phase space densities necessary for colliding proton and anti-proton beams. The Fermilab systems have constituted a substantial advance in the techniques of cooling including: large pickup arrays operating at microwave frequencies, extensive use of cryogenic techniques to reduce thermal noise, super-conducting notch filters, and the development of tools for controlling and for accurately phasing the system.
Evolution of weak disturbances in inert binary mixtures
NASA Technical Reports Server (NTRS)
Rasmussen, M. L.
1977-01-01
The evolution of weak disturbances in inert binary mixtures is determined for the one-dimensional piston problem. The interaction of the dissipative and nonlinear mechanisms is described by Burgers' equation. The binary mixture diffusion mechanisms enter as an additive term in an effective diffusivity. Results for the impulsive motion of a piston moving into an ambient medium and the sinusoidally oscillating piston are used to illustrate the results and elucidate the incorrect behavior pertaining to the associated linear theory.
STOCHASTIC COOLING FOR BUNCHED BEAMS.
BLASKIEWICZ, M.
2005-05-16
Problems associated with bunched beam stochastic cooling are reviewed. A longitudinal stochastic cooling system for RHIC is under construction and has been partially commissioned. The state of the system and future plans are discussed.
Stochastic demographic forecasting.
Lee, R D
1992-11-01
"This paper describes a particular approach to stochastic population forecasting, which is implemented for the U.S.A. through 2065. Statistical time series methods are combined with demographic models to produce plausible long run forecasts of vital rates, with probability distributions. The resulting mortality forecasts imply gains in future life expectancy that are roughly twice as large as those forecast by the Office of the Social Security Actuary.... Resulting stochastic forecasts of the elderly population, elderly dependency ratios, and payroll tax rates for health, education and pensions are presented."
Stochastic modeling of rainfall
Guttorp, P.
1996-12-31
We review several approaches in the literature for stochastic modeling of rainfall, and discuss some of their advantages and disadvantages. While stochastic precipitation models have been around at least since the 1850`s, the last two decades have seen an increased development of models based (more or less) on the physical processes involved in precipitation. There are interesting questions of scale and measurement that pertain to these modeling efforts. Recent modeling efforts aim at including meteorological variables, and may be useful for regional down-scaling of general circulation models.
Markov stochasticity coordinates
NASA Astrophysics Data System (ADS)
Eliazar, Iddo
2017-01-01
Markov dynamics constitute one of the most fundamental models of random motion between the states of a system of interest. Markov dynamics have diverse applications in many fields of science and engineering, and are particularly applicable in the context of random motion in networks. In this paper we present a two-dimensional gauging method of the randomness of Markov dynamics. The method-termed Markov Stochasticity Coordinates-is established, discussed, and exemplified. Also, the method is tweaked to quantify the stochasticity of the first-passage-times of Markov dynamics, and the socioeconomic equality and mobility in human societies.
NASA Astrophysics Data System (ADS)
Ip, Peter Shun Sang
1994-01-01
CCD images of the binary-rich clusters of galaxies A373, A408, A667, A890, and A1250 taken at the Canada-France-Hawaii telescope show that about half the binary galaxies' are actually star-galaxy or star-star pairs. These clusters are not binary-rich. N-body simulations are used to study the effect of static cluster potentials on binary and single galaxies. The softening procedure is discussed in detail. Since Plummer softening is not self-consistent, and since the force laws for various other density models are similar to each other, uniform-density softening is used. The choice of the theoretical galaxy model in terms of the potential at various locations. A fixed cluster potential cannot stabilize binary galaxies against merger, but can disrupt even quite tightly bound binaries. A moderately good predictor of whether a binary merges or disrupts is the mean torque over a quarter of the initial binary period. But the dynamics of the situation is quite complicated, and depends on an interplay between the motion of the binary through the cluster and the absorption of orbital energy by the galaxies. There is also a substantial amount of mass loss. Simulations of single galaxies in cluster show that this mass loss is due mainly to the cluster potential, and not to an interplay between the merging binary and the cluster. This mass loss is driven partially by virial equilibrium responding to the initial tidal truncation by the cluster. Besides verifying some general results of mass loss from satellite systems in the tidal field of larger bodies, it was found that the galaxy loses mass at an exponential rate.
Analysis of bilinear stochastic systems
NASA Technical Reports Server (NTRS)
Willsky, A. S.; Martin, D. N.; Marcus, S. I.
1975-01-01
Analysis of stochastic dynamical systems that involve multiplicative (bilinear) noise processes. After defining the systems of interest, consideration is given to the evolution of the moments of such systems, the question of stochastic stability, and estimation for bilinear stochastic systems. Both exact and approximate methods of analysis are introduced, and, in particular, the uses of Lie-theoretic concepts and harmonic analysis are discussed.
Capacity Bounds and Stochastic Resonance for Binary Input Binary Output Channels
2012-01-01
21] R. Schroer. Electronic warfare. Aerospace and Electronic Systems Magazine, IEEE, 18(7):49 – 54, July 2003. [22] Claude E. Shannon . A mathematical... Shannon channel. We do not analyze the physical reality of such output thresholding [10], [3]; rather we concentrate on the information theoretic...capacity expression that approximations and bounds were derived in [16], [17]. A (2, n) channel is a discrete memoryless Shannon commu- nication channel with
Algebraic Information Theory and Stochastic Resonance for Binary-Input Binary-Output Channels
2012-03-01
Transactions on Neural Networks, 19(12):71–89, 2009. [15] Claude E. Shannon . A mathematical theory of communication. Bell Systems Technical Journal, 27:379...Thus, a (2,2) channel is uniquely identified with a point in the unit square [0, 1]× [0, 1]. Using standard Shannon information theory [15] we have...ND . (7) which is now thresholded resulting in Y Y = { o1, if R ≤ θ; o2 if R > θ. (8) II-A. Shannon Model of the (0, 1|2 ; θ;N (µ,σ2)) threshold
NASA Astrophysics Data System (ADS)
Pourbaix, D.
2008-07-01
Astrometric binaries are both a gold mine and a nightmare. They are a gold mine because they are sometimes the unique source of orbital inclination for spectroscopic binaries, thus making it possible for astrophysicists to get some clues about the mass of the often invisible secondary. However, this is an ideal situation in the sense that one benefits from the additional knowledge that it is a binary for which some orbital parameters are somehow secured (e.g. the orbital period). On the other hand, binaries are a nightmare, especially when their binary nature is not established yet. Indeed, in such cases, depending on the time interval covered by the observations compared to the orbital period, either the parallax or the proper motion can be severely biased if the successive positions of the binary are modelled assuming it is a single star. With large survey campaigns sometimes monitoring some stars for the first time ever, it is therefore crucial to design robust reduction pipelines in which such troublesome objects are quickly identified and either removed or processed accordingly. Finally, even if an object is known not to be a single star, the binary model might turn out not to be the most appropriate for describing the observations. These different situations will be covered.
VQ-based model for binary error process
NASA Astrophysics Data System (ADS)
Csóka, Tibor; Polec, Jaroslav; Csóka, Filip; Kotuliaková, Kvetoslava
2017-05-01
A variety of complex techniques, such as forward error correction (FEC), automatic repeat request (ARQ), hybrid ARQ or cross-layer optimization, require in their design and optimization phase a realistic model of binary error process present in a specific digital channel. Past and more recent modeling approaches focus on capturing one or more stochastic characteristics with precision sufficient for the desired model application, thereby applying concepts and methods severely limiting the model applicability (eg in the form of modeled process prerequisite expectations). The proposed novel concept utilizing a Vector Quantization (VQ)-based approach to binary process modeling offers a viable alternative capable of superior modeling of most commonly observed small- and large-scale stochastic characteristics of a binary error process on the digital channel. Precision of the proposed model was verified using multiple statistical distances against the data captured in a wireless sensor network logical channel trace. Furthermore, the Pearson's goodness of fit test of all model variants' output was performed to conclusively demonstrate usability of the model for realistic captured binary error process. Finally, the presented results prove the proposed model applicability and its ability to far surpass the capabilities of the reference Elliot's model.
Research in Stochastic Processes.
1982-10-31
locally convex spaces is studied. We obtain a general form of convergent p-cylindrical martingales in barrelled spaces. Using the locally convex space...topology of certain Orlicz and Lorentz spaces. References 1. Z. Suchanecki and A. Weron, Decomposability of p-cylindrical martingales, Center for Stochastic
Stochastic Local Distinguishability
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Somshubhro; Roy, Anirban; Walgate, Jonathan
2007-03-01
We pose the question, ``when is globally available information is also locally available?'', formally as the problem of local state discrimination, and show that the deep qualitative link between local distinguishability and entanglement lies at the level of stochastic rather than deterministic local protocols. We restrict our attention to sets of mutually orthogonal pure quantum states. We define a set of states |ψi> as beingstochastically locally distinguishable if and only if there is a LOCC protocol whereby the parties can conclusively identify a member of the set with some nonzero probability. If a set is stochastically locally distinguishable, then the complete global information is potentially locally available. If not, the physical information encoded by the system can never be completely locally exposed. Our results are proved true for all orthogonal quantum states regardless of their dimensionality or multipartiality. First, we prove that entanglement is a necessary property of any system whose total global information can never be locally accessed. Second, entangled states that form part of an orthogonal basis can never be locally singled out. Completely entangled bases are, always stochastically locally indistinguishable. Third, we prove that any set of three orthogonal states, is stochastically locally distinguishable.
ERIC Educational Resources Information Center
Wolff, Hans
This paper deals with a stochastic process for the approximation of the root of a regression equation. This process was first suggested by Robbins and Monro. The main result here is a necessary and sufficient condition on the iteration coefficients for convergence of the process (convergence with probability one and convergence in the quadratic…
Research in Stochastic Processes
1988-08-31
25 L. de Haan ................................................... 26 L. Gorostiza ...DAISON and LUIS C. COROSTIZA The work of Professors Dawson and Gorostiza is concerned with obtaining a Langevin equation for the fluctuation limit of a...its uniqueness established. Reference 1. D.A. Dawson and L.G. Gorostiza , Generalized solutions of a class of nuclear space valued stochastic
Stochastic decentralized systems
NASA Astrophysics Data System (ADS)
Barfoot, Timothy David
Fundamental aspects of decentralized systems are considered from a control perspective. The stochastic framework afforded by Markov systems is presented as a formal setting in which to study decentralized systems. A stochastic algebra is introduced which allows Markov systems to be considered in matrix format but also strikes an important connection to the classic linear system originally studied by Kalman [1960]. The process of decentralization is shown to impose constraints on observability and controllability of a system. However, it is argued that communicating decentralized controllers can implement any control law possible with a centralized controller. Communication is shown to serve a dual role, both enabling sensor data to be shared and actions to be coordinated. The viabilities of these two types of communication are tested on a real network of mobile robots where they are found to be successful at a variety of tasks. Action coordination is reframed as a decentralized decision making process whereupon stochastic cellular automata (SCA) are introduced as a model. Through studies of SCA it is found that coordination in a group of arbitrarily and sparsely connected agents is possible using simple rules. The resulting stochastic mechanism may be immediately used as a practical decentralized decision making tool (it is tested on a group of mobile robots) but, it furthermore provides insight into the general features of self-organizing systems.
Controlled Stochastic Dynamical Systems
2007-04-18
the existence of value functions of two-player zero-sum stochastic differential games Indiana Univ. Math. Journal, 38 (1989), pp 293-314. [6] George ...control problems, Adv. Appl. Prob., 15, (1983) pp 225-254. [10] Karatzas, I. Ocone, D., Wang, H. and Zervos , M., Finite fuel singular control with
Tollestrup, A.V.; Dugan, G
1983-12-01
Major headings in this review include: proton sources; antiproton production; antiproton sources and Liouville, the role of the Debuncher; transverse stochastic cooling, time domain; the accumulator; frequency domain; pickups and kickers; Fokker-Planck equation; calculation of constants in the Fokker-Planck equation; and beam feedback. (GHT)
ON NONSTATIONARY STOCHASTIC MODELS FOR EARTHQUAKES.
Safak, Erdal; Boore, David M.
1986-01-01
A seismological stochastic model for earthquake ground-motion description is presented. Seismological models are based on the physical properties of the source and the medium and have significant advantages over the widely used empirical models. The model discussed here provides a convenient form for estimating structural response by using random vibration theory. A commonly used random process for ground acceleration, filtered white-noise multiplied by an envelope function, introduces some errors in response calculations for structures whose periods are longer than the faulting duration. An alternate random process, filtered shot-noise process, eliminates these errors.
Searching for Signals of Merging Primordial Black Hole Binaries
NASA Astrophysics Data System (ADS)
Cholis, Ilias; Ali-Haimoud, Yacine; Bird, Simeon; Kamionkowski, Marc; Kovetz, Ely; Mandic, Vuk; Munoz, Julian; Raccanelli, Alvise
2017-01-01
It was recently advocated that the interactions of 30 solar masses primordial black holes composing the dark matter could explain the first ever observed coalescence event of BHs by the LIGO interferometers. We will discuss potential probes for such a scenario. One probe is the measurement of the eccentricities of the inspiralling binary black holes. We will show that PBH binaries are formed on highly eccentric orbits and can then merge on timescales that in some cases are years or less, retaining some eccentricity in the last seconds before the merger, which can be detected by LIGO or future Einstein Telescope by the observation of high frequency gravitational wave modes. In contrast, in massive-stellar-binaries, globular-clusters, or other astrophysical environment of binary black holes, the orbits have very effectively circularized by the time the binary enters the observable LIGO window.Finally we will discuss the possibility of detecting a signal of PBH binaries in the stochastic gravitational wave background with future gravitational wave detectors.
Numerical study of N = 4 binary-binary scatterings in a background potential
NASA Astrophysics Data System (ADS)
Ryu, Taeho; Leigh, Nathan W. C.; Perna, Rosalba
2017-06-01
We perform a large suite of (N = 4) numerical scattering experiments between two identical binaries consisting of identical point particles in a (continuous) background potential. For investigative purposes, we assume a uniform (natal or star-forming) gas medium. We explore a range of constant gas densities, from n = 10 cm-3 to 105 cm-3. These densities are relevant for various astrophysical environments, including star-forming molecular clouds and denser, fragmented cores within these clouds. Our primary goal is to characterize the effects of the background potential on the subsequent stellar dynamics. We consider the outcome probabilities and the properties of any binaries formed during the binary-binary encounters, such as the distributions of binary binding energies and eccentricities. We also present the final velocity distributions of the ejected single stars. The background potential has two important effects on the stellar dynamics: (1) the potential acts to reset the zero-point of the total system energy, which affects the types and properties of the products of the encounter; (2) for higher n and weakly bound systems (i.e. large semimajor axes), the stellar dynamics are significantly affected when stars are trapped in the potential, oscillating around the system centre of mass (CM). This, in turn, increases the number of scattering events between stars (single, binary or triple) near the CM and makes it harder for single stars to escape to infinity. This ultimately leads to the preferential ionization of triples and wide binaries and the survival of compact binaries, with the single stars escaping at very high ejection velocities.
Reliable binary cell-fate decisions based on oscillations
NASA Astrophysics Data System (ADS)
Pfeuty, B.; Kaneko, K.
2014-02-01
Biological systems have often to perform binary decisions under highly dynamic and noisy environments, such as during cell-fate determination. These decisions can be implemented by two main bifurcation mechanisms based on the transitions from either monostability or oscillation to bistability. We compare these two mechanisms by using stochastic models with time-varying fields and by establishing asymptotic formulas for the choice probabilities. Different scaling laws for decision sensitivity with respect to noise strength and signal timescale are obtained, supporting a role for oscillatory dynamics in performing noise-robust and temporally tunable binary decision-making. This result provides a rationale for recent experimental evidences showing that oscillatory expression of proteins often precedes binary cell-fate decisions.
Origin of the computational hardness for learning with binary synapses
NASA Astrophysics Data System (ADS)
Huang, Haiping; Kabashima, Yoshiyuki
2014-11-01
Through supervised learning in a binary perceptron one is able to classify an extensive number of random patterns by a proper assignment of binary synaptic weights. However, to find such assignments in practice is quite a nontrivial task. The relation between the weight space structure and the algorithmic hardness has not yet been fully understood. To this end, we analytically derive the Franz-Parisi potential for the binary perceptron problem by starting from an equilibrium solution of weights and exploring the weight space structure around it. Our result reveals the geometrical organization of the weight space; the weight space is composed of isolated solutions, rather than clusters of exponentially many close-by solutions. The pointlike clusters far apart from each other in the weight space explain the previously observed glassy behavior of stochastic local search heuristics.
Stochastic monotony signature and biomedical applications.
Demongeot, Jacques; Galli Carminati, Giuliana; Carminati, Federico; Rachdi, Mustapha
2015-12-01
We introduce a new concept, the stochastic monotony signature of a function, made of the sequence of the signs that indicate if the function is increasing or constant (sign +), or decreasing (sign -). If the function results from the averaging of successive observations with errors, the monotony sign is a random binary variable, whose density is studied under two hypotheses for the distribution of errors: uniform and Gaussian. Then, we describe a simple statistical test allowing the comparison between the monotony signatures of two functions (e.g., one observed and the other as reference) and we apply the test to four biomedical examples, coming from genetics, psychology, gerontology, and morphogenesis. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Stochastic computing with biomolecular automata.
Adar, Rivka; Benenson, Yaakov; Linshiz, Gregory; Rosner, Amit; Tishby, Naftali; Shapiro, Ehud
2004-07-06
Stochastic computing has a broad range of applications, yet electronic computers realize its basic step, stochastic choice between alternative computation paths, in a cumbersome way. Biomolecular computers use a different computational paradigm and hence afford novel designs. We constructed a stochastic molecular automaton in which stochastic choice is realized by means of competition between alternative biochemical pathways, and choice probabilities are programmed by the relative molar concentrations of the software molecules coding for the alternatives. Programmable and autonomous stochastic molecular automata have been shown to perform direct analysis of disease-related molecular indicators in vitro and may have the potential to provide in situ medical diagnosis and cure.
Binary fish passage models for uniform and nonuniform flows
Neary, Vincent S
2011-01-01
Binary fish passage models are considered by many fisheries managers to be the best 21 available practice for culvert inventory assessments and for fishway and barrier design. 22 Misunderstandings between different binary passage modeling approaches often arise, 23 however, due to differences in terminology, application and presentation. In this paper 24 one-dimensional binary fish passage models are reviewed and refined to clarify their 25 origins and applications. For uniform flow, a simple exhaustion-threshold (ET) model 26 equation is derived that predicts the flow speed threshold in a fishway or velocity barrier 27 that causes exhaustion at a given maximum distance of ascent. Flow speeds at or above 28 the threshold predict failure to pass (exclusion). Flow speeds below the threshold predict 29 passage. The binary ET model is therefore intuitive and easily applied to predict passage 30 or exclusion. It is also shown to be consistent with the distance-maximizing model. The 31 ET model s limitation to uniform flow is addressed by deriving a passage model that 32 accounts for nonuniform flow conditions more commonly found in the field, including 33 backwater profiles and drawdown curves. Comparison of these models with 34 experimental observations of volitional passage for Gambusia affinis in uniform and 35 nonuniform flows indicates reasonable prediction of binary outcomes (passage or 36 exclusion) if the flow speed is not near the threshold flow velocity. More research is 37 needed on fish behavior, passage strategies under nonuniform flow regimes and 38 stochastic methods that account for individual differences in swimming performance at or 39 near the threshold flow speed. Future experiments should track and measure ground 40 speeds of ascending fish to test nonuniform flow passage strategies and to improve model 41 predictions. Stochastic models, such as Monte-Carlo techniques, that account for 42 different passage performance among individuals and allow
Massive Stars in Interactive Binaries
NASA Astrophysics Data System (ADS)
St.-Louis, Nicole; Moffat, Anthony F. J.
Massive stars start their lives above a mass of ~8 time solar, finally exploding after a few million years as core-collapse or pair-production supernovae. Above ~15 solar masses, they also spend most of their lives driving especially strong, hot winds due to their extreme luminosities. All of these aspects dominate the ecology of the Universe, from element enrichment to stirring up and ionizing the interstellar medium. But when they occur in close pairs or groups separated by less than a parsec, the interaction of massive stars can lead to various exotic phenomena which would not be seen if there were no binaries. These depend on the actual separation, and going from wie to close including colliding winds (with non-thermal radio emission and Wolf-Rayet dust spirals), cluster dynamics, X-ray binaries, Roche-lobe overflow (with inverse mass-ratios and rapid spin up), collisions, merging, rejuventation and massive blue stragglers, black-hole formation, runaways and gamma-ray bursts. Also, one wonders whether the fact that a massive star is in a binary affects its parameters compared to its isolated equivalent. These proceedings deal with all of these phenomena, plus binary statistics and determination of general physical properties of massive stars, that would not be possible with their single cousins. The 77 articles published in these proceedings, all based on oral talks, vary from broad revies to the lates developments in the field. About a third of the time was spent in open discussion of all participants, both for ~5 minutes after each talk and 8 half-hour long general dialogues, all audio-recorded, transcribed and only moderately edited to yield a real flavour of the meeting. The candid information in these discussions is sometimes more revealing than the article(s) that preceded them and also provide entertaining reading. The book is suitable for researchers and graduate students interested in stellar astrophysics and in various physical processes involved when
NASA Astrophysics Data System (ADS)
Richardson, Derek C.; Walsh, Kevin J.
2006-05-01
A review of observations and theories regarding binary asteroids and binary trans-Neptunian objects [collectively, binary minor planets (BMPs)] is presented. To date, these objects have been discovered using a combination of direct imaging, lightcurve analysis, and radar. They are found throughout the Solar System, and present a challenge for theorists modeling their formation in the context of Solar System evolution. The most promising models invoke rotational disruption for the smallest, shortest-lived objects (the asteroids nearest to Earth), consistent with the observed fast rotation of these bodies; impacts for the larger, longer-lived asteroids in the main belt, consistent with the range of size ratios of their components and slower rotation rates; and mutual capture for the distant, icy, trans-Neptunian objects, consistent with their large component separations and near-equal sizes. Numerical simulations have successfully reproduced key features of the binaries in the first two categories; the third remains to be investigated in detail.
NASA Technical Reports Server (NTRS)
Hut, Piet; Mcmillan, Steve; Goodman, Jeremy; Mateo, Mario; Phinney, E. S.; Pryor, Carlton; Richer, Harvey B.; Verbunt, Frank; Weinberg, Martin
1992-01-01
Recent observations have shown that globular clusters contain a substantial number of binaries most of which are believed to be primordial. We discuss different successful optical search techniques, based on radial-velocity variables, photometric variables, and the positions of stars in the color-magnitude diagram. In addition, we review searches in other wavelengths, which have turned up low-mass X-ray binaries and more recently a variety of radio pulsars. On the theoretical side, we give an overview of the different physical mechanisms through which individual binaries evolve. We discuss the various simulation techniques which recently have been employed to study the effects of a primordial binary population, and the fascinating interplay between stellar evolution and stellar dynamics which drives globular-cluster evolution.
Double Degenerate Binary Systems
Yakut, K.
2011-09-21
In this study, angular momentum loss via gravitational radiation in double degenerate binary (DDB)systems (NS + NS, NS + WD, WD + WD, and AM CVn) is studied. Energy loss by gravitational waves has been estimated for each type of systems.
NASA Astrophysics Data System (ADS)
Freismuth, T.; Tokovinin, A.
2002-12-01
About 10% of all binary systems are close binaries (P<1000 days). Among those with P<10d, over 40% are known to belong to higher-multiplicity systems (triples, quadruples, etc.). Do ALL close systems have tertiary companions? For a selection of 12 nearby, and apparently "single" close binaries with solar-mass dwarf primary components from the 8-th catalogue of spectroscopic binary orbits, images in the B and R filters were taken at the CTIO 0.9m telescope and suitable tertiary candidates were be identified on color-magnitude diagrams (CMDs). Of the 12 SBs, four were found to have tertiary candidates: HD 67084, HD 120734, HD 93486, and VV Mon. However, none of these candidates were found to be common proper motion companions. Follow up observations using adaptive optics reveal a companion to HD 148704. Future observations are planned.
NASA Astrophysics Data System (ADS)
Johnstone, Erik Vaughan
In this work, the synthetic and coordination chemistry as well as the physico-chemical properties of binary technetium (Tc) chlorides, bromides, and iodides were investigated. Resulting from these studies was the discovery of five new binary Tc halide phases: alpha/beta-TcCl3, alpha/beta-TcCl 2, and TcI3, and the reinvestigation of the chemistries of TcBr3 and TcX4 (X = Cl, Br). Prior to 2009, the chemistry of binary Tc halides was poorly studied and defined by only three compounds, i.e., TcF6, TcF5, and TcCl4. Today, ten phases are known (i.e., TcF6, TcF5, TcCl4, TcBr 4, TcBr3, TcI3, alpha/beta-TcCl3 and alpha/beta-TcCl2) making the binary halide system of Tc comparable to those of its neighboring elements. Technetium binary halides were synthesized using three methods: reactions of the elements in sealed tubes, reactions of flowing HX(g) (X = Cl, Br, and I) with Tc2(O2CCH3)4Cl2, and thermal decompositions of TcX4 (X = Cl, Br) and alpha-TcCl 3 in sealed tubes under vacuum. Binary Tc halides can be found in various dimensionalities such as molecular solids (TcF6), extended chains (TcF5, TcCl4, alpha/beta-TcCl2, TcBr 3, TcI3), infinite layers (beta-TcCl3), and bidimensional networks of clusters (alpha-TcCl3); eight structure-types with varying degrees of metal-metal interactions are now known. The coordination chemistry of Tc binary halides can resemble that of the adjacent elements: molybdenum and ruthenium (beta-TcCl3, TcBr3, TcI 3), rhenium (TcF5, alpha-TcCl3), platinum (TcCl 4, TcBr4), or can be unique (alpha-TcCl2 and beta-TcCl 2) in respect to other known transition metal binary halides. Technetium binary halides display a range of interesting physical properties that are manifested from their electronic and structural configurations. The thermochemistry of binary Tc halides is extensive. These compounds can selectively volatilize, decompose, disproportionate, or convert to other phases. Ultimately, binary Tc halides may find application in the nuclear fuel
A stochastic approach to model validation
NASA Astrophysics Data System (ADS)
Luis, Steven J.; McLaughlin, Dennis
This paper describes a stochastic approach for assessing the validity of environmental models. In order to illustrate basic concepts we focus on the problem of modeling moisture movement through an unsaturated porous medium. We assume that the modeling objective is to predict the mean distribution of moisture content over time and space. The mean moisture content describes the large-scale flow behavior of most interest in many practical applications. The model validation process attempts to determine whether the model's predictions are acceptably close to the mean. This can be accomplished by comparing small-scale measurements of moisture content to the model's predictions. Differences between these two quantities can be attributed to three distinct 'error sources': (1) measurement error, (2) spatial heterogeneity, and (3) model error. If we adopt appropriate stochastic descriptions for the first two sources of error we can view model validation as a hypothesis testing problem where the null hypothesis states that model error is negligible. We illustrate this concept by comparing the predictions of a simple two-dimensional deterministic model to measurements collected during a field experiment carried out near Las Cruces, New Mexico. Preliminary results from this field test indicate that a stochastic approach to validation can identify model deficiencies and provide objective standards for model performance.
Electromagnetic Propagationg of Waves in Helical Stochastic
NASA Astrophysics Data System (ADS)
Adrian, Reyes; Mendez, David
2012-02-01
We develop a model for studying the axial propagation of elliptically polarized electromagnetic waves in a spatially random helical media. We start by writing Maxwell equations for a structurally chiral medium whose helical angle contains both a stochastic contribution and a deterministic one, this latter corresponding to an uniform rotation. We write the electromagnetic equations into Marcuvitz Schwigner representation to transform them afterward by using the Oseen transformation. We exhibit that in the Oseen frame, Marcuvitz Schwigner equations turns out to be a linear vectorial stochastic system of equations with multiplicative noise. From this result and utilizing a well known formalism for treating stochastic differential equations, we find the governing equations for the first and second moments of the field amplitudes for a general correlation model for the slope angles, and calculate their corresponding band structure for a particular spectral noise density. We show that the average resulting electromagnetic fields exhibit dissipation and the appearance of a new reflection band whose chirality is the opposite of the one obtained for a simple cholesteric liquid crystals.
Rapid Realization of the Stochastic Gravitational Wave Signal due to Galactic Mergers
NASA Astrophysics Data System (ADS)
McNeely, Trey; McWilliams, Sean
2017-01-01
Mergers of massive galaxies often result in a merger between their central supermassive black holes. These merging binaries will generate gravitational waves, all of which add up to create a stochastic gravitational-wave background in the nanohertz range. Full realization of this signal requires generation of a large population of binaries (N =1011) . Each of these binaries must be assigned a number of relevant parameters, including individual masses. By manipulating the distributions from which individual black holes are drawn, we demonstrate a method which allows generation of the full population in minutes rather than weeks. This forms the basis for analysis requiring multiple realizations of the background, such as constraining the variance of the stochastic signal.
NASA Technical Reports Server (NTRS)
1976-01-01
Satellite X-ray experiments and ground-based programs aimed at observation of X-ray binaries are discussed. Experiments aboard OAO-3, OSO-8, Ariel 5, Uhuru, and Skylab are included along with rocket and ground-based observations. Major topics covered are: Her X-1, Cyg X-3, Cen X-3, Cyg X-1, the transient source A0620-00, other possible X-ray binaries, and plans and prospects for future observational programs.
Coullard, C.; Hellerstein, L.
1994-12-31
Given a binary matroid M specified by a port oracle, we can in polynomial number of calls to the oracle construct a binary representation for M. For general matroids, we can in polynomial number of calls to a port oracle determine whether a given subset is independent (that is, we can simulate an independence oracle with a port oracle). The work is related to a theorem of Lehman on matroid ports, and is motivated by issues in computational learning theory.
NASA Technical Reports Server (NTRS)
Lopez, Hiram
1987-01-01
Transmission errors for zeros and ones tabulated separately. Binary-symmetry detector employs psuedo-random data pattern used as test message coming through channel. Message then modulo-2 added to locally generated and synchronized version of test data pattern in same manner found in manufactured test sets of today. Binary symmetrical channel shows nearly 50-percent ones to 50-percent zeroes correspondence. Degree of asymmetry represents imbalances due to either modulation, transmission, or demodulation processes of system when perturbed by noise.
NASA Astrophysics Data System (ADS)
Batten, A.; Murdin, P.
2000-11-01
Historically, spectroscopic binary stars were binary systems whose nature was discovered by the changing DOPPLER EFFECT or shift of the spectral lines of one or both of the component stars. The observed Doppler shift is a combination of that produced by the constant RADIAL VELOCITY (i.e. line-of-sight velocity) of the center of mass of the whole system, and the variable shift resulting from the o...
NASA Technical Reports Server (NTRS)
Ricks, Douglas W.
1993-01-01
There are a number of sources of scattering in binary optics: etch depth errors, line edge errors, quantization errors, roughness, and the binary approximation to the ideal surface. These sources of scattering can be systematic (deterministic) or random. In this paper, scattering formulas for both systematic and random errors are derived using Fourier optics. These formulas can be used to explain the results of scattering measurements and computer simulations.
Cosmological Impact of Population III Binaries
NASA Astrophysics Data System (ADS)
Chen, Ke-Jung; Bromm, Volker; Heger, Alexander; Jeon, Myoungwon; Woosley, Stan
2015-03-01
We present the results of the stellar feedback from Population III (Pop III) binaries by employing improved, more realistic Pop III evolutionary stellar models. To facilitate a meaningful comparison, we consider a fixed mass of 60 {{M}⊙ } incorporated in Pop III stars, either contained in a single star, or split up in binary stars of 30 {{M}⊙ } each or an asymmetric case of one 45 and one 15 {{M}⊙ } star. Whereas the sizes of the resulting H ii regions are comparable across all cases, the He iii regions around binary stars are significantly smaller than that of the single star. Consequently, the He+ 1640 \\overset{\\circ}A recombination line is expected to become much weaker. Supernova (SN) feedback exhibits great variety due to the uncertainty in possible explosion pathways. If at least one of the component stars dies as a hypernova about 10 times more energetic than conventional core-collapse SNe, the gas inside the host minihalo is effectively blown out, chemically enriching the intergalactic medium (IGM) to an average metallicity of {{10}-4}-{{10}-3} {{Z}⊙ }, out to ˜ 2 kpc. The single star, however, is more likely to collapse into a black hole, accompanied by at most very weak explosions. The effectiveness of early chemical enrichment would thus be significantly reduced, in contrast to the lower mass binary stars, where at least one component is likely to contribute to heavy element production and dispersal. Important new feedback physics is also introduced if close binaries can form high-mass X-ray binaries, leading to the pre-heating and -ionization of the IGM beyond the extent of the stellar H ii regions.
Accreting binary population synthesis and feedback prescriptions
NASA Astrophysics Data System (ADS)
Fragos, Tassos
2016-04-01
Studies of extagalactic X-ray binary populations have shown that the characteristics of these populations depend strongly on the characteristics of the host galaxy's parent stellar population (e.g. star-formation history and metallicity). These dependencies not only make X-ray binaries promising for aiding in the measurement of galaxy properties themselves, but they also have important astrophysical and cosmological implications. For example, due to the relatively young stellar ages and primordial metallicities in the early Universe (z > 3), it is predicted that X-ray binaries were more luminous than today. The more energetic X-ray photons, because of their long mean-free paths, can escape the galaxies where they are produced, and interact at long distances with the intergalactic medium. This could result in a smoother spatial distribution of ionized regions, and more importantly in an overall warmer intergalactic medium. The energetic X-ray photons emitted from X-ray binaries dominate the X-ray radiation field over active galactic nuclei at z > 6 - 8, and hence Χ-ray binary feedback can be a non-negligible contributor to the heating and reionization of the inter-galactic medium in the early universe. The spectral energy distribution shape of the XRB emission does not change significantly with redshift, suggesting that the same XRB subpopulation, namely black-hole XRBs in the high-soft state, dominates the cumulative emission at all times. On the contrary, the normalization of the spectral energy distribution does evolve with redshift. To zeroth order, this evolution is driven by the cosmic star-formation rate evolution. However, the metallicity evolution of the universe and the mean stellar population age are two important factors that affect the X-ray emission from high-mass and low-mass XRBs, respectively. In this talk, I will review recent studies on the potential feedback from accreting binary populations in galactic and cosmological scales. Furthermore, I
Influence of binary fraction on the fragmentation of young massive clusters—a Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Chattopadhyay, Tanuka; Sinha, Abisa; Chattopadhyay, Asis Kumar
2016-04-01
A stochastic model has been developed to study the hierarchical fragmentation process of young massive clusters in external galaxies considering close binary components along with individual ones. Stellar masses for individual ones have been generated from truncated Pareto distribution and stellar masses for close binary components have been generated from a truncated Bi-variate Gumbel Exponential distribution. The above distribution is identified by fitting the observed bi-variate distribution of masses of eclipsing binary stars computed from the light curves catalogued in the package Binary Maker 3.0. The resulting mass spectra computed at different projected distances, show signature of mass segregation. Degree of mass segregation becomes reduced due to the inclusion of binary fraction. This might be due to the reduction of massive stars and inclusion of less massive stars rather than inclusion of single massive stars and the effect of line of sight length projected to an observer.
Stochastic ice stream dynamics
Bertagni, Matteo Bernard; Ridolfi, Luca
2016-01-01
Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution. PMID:27457960
BLASKIEWICZ,M.BRENNAN,J.M.CAMERON,P.WEI,J.
2003-05-12
Emittance growth due to Intra-Beam Scattering significantly reduces the heavy ion luminosity lifetime in RHIC. Stochastic cooling of the stored beam could improve things considerably by counteracting IBS and preventing particles from escaping the rf bucket [1]. High frequency bunched-beam stochastic cooling is especially challenging but observations of Schottky signals in the 4-8 GHz band indicate that conditions are favorable in RHIC [2]. We report here on measurements of the longitudinal beam transfer function carried out with a pickup kicker pair on loan from FNAL TEVATRON. Results imply that for ions a coasting beam description is applicable and we outline some general features of a viable momentum cooling system for RHIC.
Stochastic ice stream dynamics.
Mantelli, Elisa; Bertagni, Matteo Bernard; Ridolfi, Luca
2016-08-09
Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution.
Stochastic ice stream dynamics
NASA Astrophysics Data System (ADS)
Mantelli, Elisa; Bertagni, Matteo Bernard; Ridolfi, Luca
2016-08-01
Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution.
Holmes-Cerfon, Miranda
2016-11-01
We study a model of rolling particles subject to stochastic fluctuations, which may be relevant in systems of nano- or microscale particles where rolling is an approximation for strong static friction. We consider the simplest possible nontrivial system: a linear polymer of three disks constrained to remain in contact and immersed in an equilibrium heat bath so the internal angle of the polymer changes due to stochastic fluctuations. We compare two cases: one where the disks can slide relative to each other and the other where they are constrained to roll, like gears. Starting from the Langevin equations with arbitrary linear velocity constraints, we use formal homogenization theory to derive the overdamped equations that describe the process in configuration space only. The resulting dynamics have the formal structure of a Brownian motion on a Riemannian or sub-Riemannian manifold, depending on if the velocity constraints are holonomic or nonholonomic. We use this to compute the trimer's equilibrium distribution with and without the rolling constraints. Surprisingly, the two distributions are different. We suggest two possible interpretations of this result: either (i) dry friction (or other dissipative, nonequilibrium forces) changes basic thermodynamic quantities like the free energy of a system, a statement that could be tested experimentally, or (ii) as a lesson in modeling rolling or friction more generally as a velocity constraint when stochastic fluctuations are present. In the latter case, we speculate there could be a "roughness" entropy whose inclusion as an effective force could compensate the constraint and preserve classical Boltzmann statistics. Regardless of the interpretation, our calculation shows the word "rolling" must be used with care when stochastic fluctuations are present.
Stochastic Thermodynamics of Learning
NASA Astrophysics Data System (ADS)
Goldt, Sebastian; Seifert, Udo
2017-01-01
Virtually every organism gathers information about its noisy environment and builds models from those data, mostly using neural networks. Here, we use stochastic thermodynamics to analyze the learning of a classification rule by a neural network. We show that the information acquired by the network is bounded by the thermodynamic cost of learning and introduce a learning efficiency η ≤1 . We discuss the conditions for optimal learning and analyze Hebbian learning in the thermodynamic limit.
Dorogovtsev, Andrei A
2010-06-29
For sets in a Hilbert space the concept of quadratic entropy is introduced. It is shown that this entropy is finite for the range of a stochastic flow of Brownian particles on R. This implies, in particular, the fact that the total time of the free travel in the Arratia flow of all particles that started from a bounded interval is finite. Bibliography: 10 titles.
Methodology for Stochastic Modeling.
1985-01-01
AD-AISS 851 METHODOLOGY FOR STOCHASTIC MODELING(U) ARMY MATERIEL 11 SYSTEMS ANALYSIS ACTIYITY ABERDEEN PROVING GROUND MD H E COHEN JAN 95 RNSAA-TR-41...FORM T REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT’$ CATALOG NUMBER 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED Methodology for...autoregression models, moving average models, ARMA, adaptive modeling, covariance methods , singular value decom- position, order determination rational
NASA Astrophysics Data System (ADS)
Holmes-Cerfon, Miranda
2016-11-01
We study a model of rolling particles subject to stochastic fluctuations, which may be relevant in systems of nano- or microscale particles where rolling is an approximation for strong static friction. We consider the simplest possible nontrivial system: a linear polymer of three disks constrained to remain in contact and immersed in an equilibrium heat bath so the internal angle of the polymer changes due to stochastic fluctuations. We compare two cases: one where the disks can slide relative to each other and the other where they are constrained to roll, like gears. Starting from the Langevin equations with arbitrary linear velocity constraints, we use formal homogenization theory to derive the overdamped equations that describe the process in configuration space only. The resulting dynamics have the formal structure of a Brownian motion on a Riemannian or sub-Riemannian manifold, depending on if the velocity constraints are holonomic or nonholonomic. We use this to compute the trimer's equilibrium distribution with and without the rolling constraints. Surprisingly, the two distributions are different. We suggest two possible interpretations of this result: either (i) dry friction (or other dissipative, nonequilibrium forces) changes basic thermodynamic quantities like the free energy of a system, a statement that could be tested experimentally, or (ii) as a lesson in modeling rolling or friction more generally as a velocity constraint when stochastic fluctuations are present. In the latter case, we speculate there could be a "roughness" entropy whose inclusion as an effective force could compensate the constraint and preserve classical Boltzmann statistics. Regardless of the interpretation, our calculation shows the word "rolling" must be used with care when stochastic fluctuations are present.
Stochastic Quantization of Instantons
NASA Astrophysics Data System (ADS)
Grandati, Y.; Bérard, A.; Grangé, P.
1996-03-01
The method of Parisi and Wu to quantize classical fields is applied to instanton solutionsϕIof euclidian non-linear theory in one dimension. The solutionϕεof the corresponding Langevin equation is built through a singular perturbative expansion inε=ℏ1/2in the frame of the center of mass of the instanton, where the differenceϕε-ϕIcarries only fluctuations of the instanton form. The relevance of the method is shown for the stochasticK dVequation with uniform noise in space: the exact solution usually obtained by the inverse scattering method is retrieved easily by the singular expansion. A general diagrammatic representation of the solution is then established which makes a thorough use of regrouping properties of stochastic diagrams derived in scalar field theory. Averaging over the noise and in the limit of infinite stochastic time, we obtain explicit expressions for the first two orders inεof the perturbed instanton and of its Green function. Specializing to the Sine-Gordon andϕ4models, the first anharmonic correction is obtained analytically. The calculation is carried to second order for theϕ4model, showing good convergence.
NASA Astrophysics Data System (ADS)
Almog, Assaf; Garlaschelli, Diego
2014-09-01
The dynamics of complex systems, from financial markets to the brain, can be monitored in terms of multiple time series of activity of the constituent units, such as stocks or neurons, respectively. While the main focus of time series analysis is on the magnitude of temporal increments, a significant piece of information is encoded into the binary projection (i.e. the sign) of such increments. In this paper we provide further evidence of this by showing strong nonlinear relations between binary and non-binary properties of financial time series. These relations are a novel quantification of the fact that extreme price increments occur more often when most stocks move in the same direction. We then introduce an information-theoretic approach to the analysis of the binary signature of single and multiple time series. Through the definition of maximum-entropy ensembles of binary matrices and their mapping to spin models in statistical physics, we quantify the information encoded into the simplest binary properties of real time series and identify the most informative property given a set of measurements. Our formalism is able to accurately replicate, and mathematically characterize, the observed binary/non-binary relations. We also obtain a phase diagram allowing us to identify, based only on the instantaneous aggregate return of a set of multiple time series, a regime where the so-called ‘market mode’ has an optimal interpretation in terms of collective (endogenous) effects, a regime where it is parsimoniously explained by pure noise, and a regime where it can be regarded as a combination of endogenous and exogenous factors. Our approach allows us to connect spin models, simple stochastic processes, and ensembles of time series inferred from partial information.
NASA Astrophysics Data System (ADS)
Noll, Keith S.
The discovery of binaries in each of the major populations of minor bodies in the solar system is propelling a rapid growth of heretofore unattainable physical information. The availability of mass and density constraints for minor bodies opens the door to studies of internal structure, comparisons with meteorite samples, and correlations between bulk-physical and surface-spectral properties. The number of known binaries is now more than 70 and is growing rapidly. A smaller number have had the extensive followup observations needed to derive mass and albedo information, but this list is growing as well. It will soon be the case that we will know more about the physical parameters of objects in the Kuiper Belt than has been known about asteroids in the Main Belt for the last 200 years. Another important aspect of binaries is understanding the mechanisms that lead to their formation and survival. The relative sizes and separations of binaries in the different minor body populations point to more than one mechanism for forming bound pairs. Collisions appear to play a major role in the Main Belt. Rotational and/or tidal fission may be important in the Near Earth population. For the Kuiper Belt, capture in multi-body interactions may be the preferred formation mechanism. However, all of these conclusions remain tentative and limited by observational and theoretical incompleteness. Observational techniques for identifying binaries are equally varied. High angular resolution observations from space and from the ground are critical for detection of the relatively distant binaries in the Main Belt and the Kuiper Belt. Radar has been the most productive method for detection of Near Earth binaries. Lightcurve analysis is an independent technique that is capable of exploring phase space inaccessible to direct observations. Finally, spacecraft flybys have played a crucial paradigm-changing role with discoveries that unlocked this now-burgeoning field.
A retrodictive stochastic simulation algorithm
Vaughan, T.G. Drummond, P.D.; Drummond, A.J.
2010-05-20
In this paper we describe a simple method for inferring the initial states of systems evolving stochastically according to master equations, given knowledge of the final states. This is achieved through the use of a retrodictive stochastic simulation algorithm which complements the usual predictive stochastic simulation approach. We demonstrate the utility of this new algorithm by applying it to example problems, including the derivation of likely ancestral states of a gene sequence given a Markovian model of genetic mutation.
Stochastic electrotransport selectively enhances the transport of highly electromobile molecules
Kim, Sung-Yon; Cho, Jae Hun; Murray, Evan; Bakh, Naveed; Choi, Heejin; Ohn, Kimberly; Ruelas, Luzdary; Hubbert, Austin; McCue, Meg; Vassallo, Sara L.; Keller, Philipp J.; Chung, Kwanghun
2015-01-01
Nondestructive chemical processing of porous samples such as fixed biological tissues typically relies on molecular diffusion. Diffusion into a porous structure is a slow process that significantly delays completion of chemical processing. Here, we present a novel electrokinetic method termed stochastic electrotransport for rapid nondestructive processing of porous samples. This method uses a rotational electric field to selectively disperse highly electromobile molecules throughout a porous sample without displacing the low-electromobility molecules that constitute the sample. Using computational models, we show that stochastic electrotransport can rapidly disperse electromobile molecules in a porous medium. We apply this method to completely clear mouse organs within 1–3 days and to stain them with nuclear dyes, proteins, and antibodies within 1 day. Our results demonstrate the potential of stochastic electrotransport to process large and dense tissue samples that were previously infeasible in time when relying on diffusion. PMID:26578787
Low cost paths to binary optics
NASA Technical Reports Server (NTRS)
Nelson, Arthur; Domash, Lawrence
1993-01-01
Application of binary optics has been limited to a few major laboratories because of the limited availability of fabrication facilities such as e-beam machines and the lack of standardized design software. Foster-Miller has attempted to identify low cost approaches to medium-resolution binary optics using readily available computer and fabrication tools, primarily for the use of students and experimenters in optical computing. An early version of our system, MacBEEP, made use of an optimized laser film recorder from the commercial typesetting industry with 10 micron resolution. This report is an update on our current efforts to design and build a second generation MacBEEP, which aims at 1 micron resolution and multiple phase levels. Trails included a low cost scanning electron microscope in microlithography mode, and alternative laser inscribers or photomask generators. Our current software approach is based on Mathematica and PostScript compatibility.
X-Ray Background from Early Binaries
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-11-01
What impact did X-rays from the first binary star systems have on the universe around them? A new study suggests this radiation may have played an important role during the reionization of our universe.Ionizing the UniverseDuring the period of reionization, the universe reverted from being neutral (as it was during recombination, the previous period)to once again being ionized plasma a state it has remained in since then. This transition, which occurred between 150 million and one billion years after the Big Bang (redshift of 6 z 20), was caused by the formation of the first objects energetic enough to reionize the universes neutral hydrogen.ROSAT image of the soft X-ray background throughout the universe. The different colors represent different energy bands: 0.25 keV (red), 0.75 keV (green), 1.5 keV (blue). [NASA/ROSAT Project]Understanding this time period in particular, determining what sources caused the reionization, and what the properties were of the gas strewn throughout the universe during this time is necessary for us to be able to correctly interpret cosmological observations.Conveniently, the universe has provided us with an interesting clue: the large-scale, diffuse X-ray background we observe all around us. What produced these X-rays, and what impact did this radiation have on the intergalactic medium long ago?The First BinariesA team of scientists led by Hao Xu (UC San Diego) has suggested that the very first generation of stars might be an important contributor to these X-rays.This hypothetical first generation, Population III stars, are thought to have formed before and during reionization from large clouds of gas containing virtually no metals. Studies suggest that a large fraction of Pop III stars formed in binaries and when those stars ended their lives as black holes, ensuing accretion from their companions could produceX-ray radiation.The evolution with redshift of the mean X-ray background intensities. Each curve represents a different
Gene regulation and noise reduction by coupling of stochastic processes
NASA Astrophysics Data System (ADS)
Ramos, Alexandre F.; Hornos, José Eduardo M.; Reinitz, John
2015-02-01
Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.
Gene regulation and noise reduction by coupling of stochastic processes
Hornos, José Eduardo M.; Reinitz, John
2015-01-01
Here we characterize the low noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the the two gene states depends on protein number. This fact has a very important implication: there exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction. PMID:25768447
Gene regulation and noise reduction by coupling of stochastic processes.
Ramos, Alexandre F; Hornos, José Eduardo M; Reinitz, John
2015-02-01
Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.
Huffman, G.P.; Zhao, J.; Feng, Z.
1996-12-03
A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered. 3 figs.
Binary and Millisecond Pulsars.
Lorimer, Duncan R
2008-01-01
We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5 M⊙, a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric (e = 0.44) orbit around an unevolved companion.
Huffman, Gerald P.; Zhao, Jianmin; Feng, Zhen
1996-01-01
A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered.
Binary catalogue of exoplanets
NASA Astrophysics Data System (ADS)
Schwarz, Richard; Bazso, Akos; Zechner, Renate; Funk, Barbara
2016-02-01
Since 1995 there is a database which list most of the known exoplanets (The Extrasolar Planets Encyclopaedia at http://exoplanet.eu/). With the growing number of detected exoplanets in binary and multiple star systems it became more important to mark and to separate them into a new database, which is not available in the Extrasolar Planets Encyclopaedia. Therefore we established an online database (which can be found at: http://www.univie.ac.at/adg/schwarz/multiple.html) for all known exoplanets in binary star systems and in addition for multiple star systems, which will be updated regularly and linked to the Extrasolar Planets Encyclopaedia. The binary catalogue of exoplanets is available online as data file and can be used for statistical purposes. Our database is divided into two parts: the data of the stars and the planets, given in a separate list. We describe also the different parameters of the exoplanetary systems and present some applications.
Eclipsing binary stars with a δ Scuti component
NASA Astrophysics Data System (ADS)
Kahraman Aliçavuş, F.; Soydugan, E.; Smalley, B.; Kubát, J.
2017-09-01
Eclipsing binaries with a δ Sct component are powerful tools to derive the fundamental parameters and probe the internal structure of stars. In this study, spectral analysis of six primary δ Sct components in eclipsing binaries has been performed. Values of Teff, v sin i, and metallicity for the stars have been derived from medium-resolution spectroscopy. Additionally, a revised list of δ Sct stars in eclipsing binaries is presented. In this list, we have only given the δ Sct stars in eclipsing binaries to show the effects of the secondary components and tidal-locking on the pulsations of primary δ Sct components. The stellar pulsation, atmospheric and fundamental parameters (e.g. mass, radius) of 92 δ Sct stars in eclipsing binaries have been gathered. Comparison of the properties of single and eclipsing binary member δ Sct stars has been made. We find that single δ Sct stars pulsate in longer periods and with higher amplitudes than the primary δ Sct components in eclipsing binaries. The v sin i of δ Sct components is found to be significantly lower than that of single δ Sct stars. Relationships between the pulsation periods, amplitudes and stellar parameters in our list have been examined. Significant correlations between the pulsation periods and the orbital periods, Teff, log g, radius, mass ratio, v sin i and the filling factor have been found.
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, A. S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Campbell, W.; Canepa, M.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, E.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGrath, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schlassa, S.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tao, D.; Tápai, M.; Taracchini, A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2017-03-01
A wide variety of astrophysical and cosmological sources are expected to contribute to a stochastic gravitational-wave background. Following the observations of GW150914 and GW151226, the rate and mass of coalescing binary black holes appear to be greater than many previous expectations. As a result, the stochastic background from unresolved compact binary coalescences is expected to be particularly loud. We perform a search for the isotropic stochastic gravitational-wave background using data from Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run. The data display no evidence of a stochastic gravitational-wave signal. We constrain the dimensionless energy density of gravitational waves to be Ω0<1.7 ×10-7 with 95% confidence, assuming a flat energy density spectrum in the most sensitive part of the LIGO band (20-86 Hz). This is a factor of ˜33 times more sensitive than previous measurements. We also constrain arbitrary power-law spectra. Finally, we investigate the implications of this search for the background of binary black holes using an astrophysical model for the background.
Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Ananyeva, A; Anderson, S B; Anderson, W G; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Avila-Alvarez, A; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Beer, C; Bejger, M; Belahcene, I; Belgin, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Biscoveanu, A S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T A; Calloni, E; Camp, J B; Campbell, W; Canepa, M; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, H-P; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conti, L; Cooper, S J; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, E; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davies, G S; Davis, D; Daw, E J; Day, B; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devenson, J; Devine, R C; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Doctor, Z; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Essick, R C; Etienne, Z; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fernández Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kéfélian, F; Keitel, D; Kelley, D B; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chunglee; Kim, J C; Kim, Whansun; Kim, W; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kirchhoff, R; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koch, P; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Krämer, C; Kringel, V; Królak, A; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lehmann, J; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Libson, A; Littenberg, T B; Liu, J; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lovelace, G; Lück, H; Lundgren, A P; Lynch, R; Ma, Y; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matas, A; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGrath, C; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muniz, E A M; Murray, P G; Mytidis, A; Napier, K; Nardecchia, I; Naticchioni, L; Nelemans, G; Nelson, T J N; Neri, M; Nery, M; Neunzert, A; Newport, J M; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Pratt, J W W; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Rhoades, E; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheuer, J; Schlassa, S; Schmidt, E; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T J; Shahriar, M S; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strigin, S E; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tao, D; Tápai, M; Taracchini, A; Taylor, R; Theeg, T; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tippens, T; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Trinastic, J; Tringali, M C; Trozzo, L; Tse, M; Tso, R; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vasúth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Viceré, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, Y; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Whittle, C; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, Hang; Yu, Haocun; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, S J; Zhu, X J; Zucker, M E; Zweizig, J
2017-03-24
A wide variety of astrophysical and cosmological sources are expected to contribute to a stochastic gravitational-wave background. Following the observations of GW150914 and GW151226, the rate and mass of coalescing binary black holes appear to be greater than many previous expectations. As a result, the stochastic background from unresolved compact binary coalescences is expected to be particularly loud. We perform a search for the isotropic stochastic gravitational-wave background using data from Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run. The data display no evidence of a stochastic gravitational-wave signal. We constrain the dimensionless energy density of gravitational waves to be Ω_{0}<1.7×10^{-7} with 95% confidence, assuming a flat energy density spectrum in the most sensitive part of the LIGO band (20-86 Hz). This is a factor of ∼33 times more sensitive than previous measurements. We also constrain arbitrary power-law spectra. Finally, we investigate the implications of this search for the background of binary black holes using an astrophysical model for the background.
Binary and Millisecond Pulsars.
Lorimer, Duncan R
2005-01-01
We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1700. There are now 80 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 103 pulsars in 24 of the Galactic globular clusters. Recent highlights have been the discovery of the first ever double pulsar system and a recent flurry of discoveries in globular clusters, in particular Terzan 5.
Binary Oscillatory Crossflow Electrophoresis
NASA Technical Reports Server (NTRS)
Molloy, Richard F.; Gallagher, Christopher T.; Leighton, David T., Jr.
1996-01-01
We present preliminary results of our implementation of a novel electrophoresis separation technique: Binary Oscillatory Cross flow Electrophoresis (BOCE). The technique utilizes the interaction of two driving forces, an oscillatory electric field and an oscillatory shear flow, to create an active binary filter for the separation of charged species. Analytical and numerical studies have indicated that this technique is capable of separating proteins with electrophoretic mobilities differing by less than 10%. With an experimental device containing a separation chamber 20 cm long, 5 cm wide, and 1 mm thick, an order of magnitude increase in throughput over commercially available electrophoresis devices is theoretically possible.
Identification list of binaries
NASA Astrophysics Data System (ADS)
Malkov,, O.; Karchevsky,, A.; Kaygorodov, P.; Kovaleva, D.
The Identification List of Binaries (ILB) is a star catalogue constructed to facilitate cross-referencing between different catalogues of binary stars. As of 2015, it comprises designations for approximately 120,000 double/multiple systems. ILB contains star coordinates and cross-references to the Bayer/Flemsteed, DM (BD/CD/CPD), HD, HIP, ADS, WDS, CCDM, TDSC, GCVS, SBC9, IGR (and some other X-ray catalogues), PSR designations, as well as identifications in the recently developed BSDB system. ILB eventually became a part of the BDB stellar database.
NASA Astrophysics Data System (ADS)
Itoh, Hideo; Mukai, Seiji; Watanabe, Masanobu; Mori, Masahiko; Yajima, Hiroyoshi
1990-07-01
A beam-scanning laser diode (BSLD) is presently applied to a novel optoelectronic logic operation, designated 'beam-scanning binary logic' (BSBL), that covers the implementation of both the basic logic gates and a spatial code encoder for photodetection, while allowing a greater reduction of the number of active devices than ordinary binary logic operations. BSBL executes multifunctional logic operations simultaneously. The data connections between logic gates in BSLD are flexible, due to the ability to electrically control both output power and laser-beam direction.
T Tauri Spectroscopic Binaries
NASA Astrophysics Data System (ADS)
Dudorov, A. E.; Eretnova, O. V.
2017-06-01
The Hertzsprung-Russell diagram, the excess radius-age, and the eccentricity-period relations are constructed for double-lined spectroscopic T Tauri binaries. The masses and the ages of the classical T Tauri and the weak-line T Tauri stars are compared. All components of T Tauri stars have the excess radius in comparison with initial Main Sequence stars of corresponding mass. The younger the star the more excess radius it has. The overwhelming majority of close binaries (P<10d) have eccentricity near to zero. The fraction of quadruple systems in our sample are higher than for Main Sequence stars.
Portfolio Optimization with Stochastic Dividends and Stochastic Volatility
ERIC Educational Resources Information Center
Varga, Katherine Yvonne
2015-01-01
We consider an optimal investment-consumption portfolio optimization model in which an investor receives stochastic dividends. As a first problem, we allow the drift of stock price to be a bounded function. Next, we consider a stochastic volatility model. In each problem, we use the dynamic programming method to derive the Hamilton-Jacobi-Bellman…
Portfolio Optimization with Stochastic Dividends and Stochastic Volatility
ERIC Educational Resources Information Center
Varga, Katherine Yvonne
2015-01-01
We consider an optimal investment-consumption portfolio optimization model in which an investor receives stochastic dividends. As a first problem, we allow the drift of stock price to be a bounded function. Next, we consider a stochastic volatility model. In each problem, we use the dynamic programming method to derive the Hamilton-Jacobi-Bellman…
Limits on Anisotropy in the Nanohertz Stochastic Gravitational Wave Background.
Taylor, S R; Mingarelli, C M F; Gair, J R; Sesana, A; Theureau, G; Babak, S; Bassa, C G; Brem, P; Burgay, M; Caballero, R N; Champion, D J; Cognard, I; Desvignes, G; Guillemot, L; Hessels, J W T; Janssen, G H; Karuppusamy, R; Kramer, M; Lassus, A; Lazarus, P; Lentati, L; Liu, K; Osłowski, S; Perrodin, D; Petiteau, A; Possenti, A; Purver, M B; Rosado, P A; Sanidas, S A; Smits, R; Stappers, B; Tiburzi, C; van Haasteren, R; Vecchio, A; Verbiest, J P W
2015-07-24
The paucity of observed supermassive black hole binaries (SMBHBs) may imply that the gravitational wave background (GWB) from this population is anisotropic, rendering existing analyses suboptimal. We present the first constraints on the angular distribution of a nanohertz stochastic GWB from circular, inspiral-driven SMBHBs using the 2015 European Pulsar Timing Array data. Our analysis of the GWB in the ~2-90 nHz band shows consistency with isotropy, with the strain amplitude in l>0 spherical harmonic multipoles ≲40% of the monopole value. We expect that these more general techniques will become standard tools to probe the angular distribution of source populations.
NASA Astrophysics Data System (ADS)
Potapov, V. A.; Ilyasov, Yu. P.; Oreshko, V. V.; Rodin, A. E.
2003-04-01
We present the timing results for the binary millisecond pulsar J1640+2224 obtained with the RT-64 radio telescope (TNA-1500, Special Design Bureau, Moscow Power Engineering Institute) at the Kalyazin Observatory (Astrospace Center of the Lebedev Institute of Physics) in 1997-2002. We obtained Keplerian and post-Keplerian parameters of the binary system, which allowed us to estimate an upper limit for the energy density of the stochastic gravitational-wave background radiation at very low frequencies.
Binary AGB stars observed with Herschel
NASA Astrophysics Data System (ADS)
Kornfeld, Klaus
2012-03-01
Asymptotic Giant Branch stars are stars at the end of their lifetime with low to intermediate masses. They are important in the Galactic context, since they contribute a lot of dust to the interstellar medium (ISM) and influence the chemical evolution of the Galaxy. Many AGB stars show peculiar outflow morphologies depending on their mass-loss rates. The outflowing wind of these stars collides with the surrounding interstellar medium (ISM). The collisions with the ISM result in the formation of bow shocks or rings, well visible in the latest Herschel Space Observatory images made with the on-board PACS instrument. Kelvin-Helmholtz and Rayleight-Taylor instabilities were found in the bow shock regions. With the help of Herschel and within the framework of the MESS (Mass loss of Evolved StarS) Guaranteed Time Key Program it was tried to distinguish between the different morphologies. The outflow morphologies were categorized in 4 main classes: "fermata", "eye", "ring", and "irregular"; also point sources showing no resolved circumstellar envelopes (CSEs) were found. Some of the AGB stars in the MESS sample are known binary stars and the binary state of some other objects is still in discussion. A new attempt to clarify the binarity of the objects can be made by checking their outflow morphology and to compare the results with known morphological (a-)symmetries in binary systems. This Thesis discusses 14 binary AGB candidates from the MESS sample, the previous findings and the Herschel results. Herschel observes at infrared wavelengths. Light at this wavelengths can be seen through the dust, which is formed in the surrounding environment of these stars. For the unknown cases it is difficult to determine the binary state, because AGB stars can have very strong wind outflows, making the detection of a companion difficult. Photo- and spectroscopy, CO line outflow measurements or composite spectra can be used to identify features caused directly o! r indirectly by the
Stochastic ontogenetic growth model
NASA Astrophysics Data System (ADS)
West, B. J.; West, D.
2012-02-01
An ontogenetic growth model (OGM) for a thermodynamically closed system is generalized to satisfy both the first and second law of thermodynamics. The hypothesized stochastic ontogenetic growth model (SOGM) is shown to entail the interspecies allometry relation by explicitly averaging the basal metabolic rate and the total body mass over the steady-state probability density for the total body mass (TBM). This is the first derivation of the interspecies metabolic allometric relation from a dynamical model and the asymptotic steady-state distribution of the TBM is fit to data and shown to be inverse power law.
Stochastic processes in cosmology
NASA Astrophysics Data System (ADS)
Cáceres, Manuel O.; Diaz, Mario C.; Pullin, Jorge A.
1987-08-01
The behavior of a radiation filled de Sitter universe in which the equation of state is perturbed by a stochastic term is studied. The corresponding two-dimensional Fokker-Planck equation is solved. The finiteness of the cosmological constant appears to be a necessary condition for the stability of the model which undergoes an exponentially expanding state. Present address: Facultad de Matemática Astronomía y Física, Universidad Nacional de Córdoba, Laprida 854, 5000 Códoba, Argentina.
Stochastic Coupled Cluster Theory
NASA Astrophysics Data System (ADS)
Thom, Alex J. W.
2010-12-01
We describe a stochastic coupled cluster theory which represents excitation amplitudes as discrete excitors in the space of excitation amplitudes. Reexpressing the coupled cluster (CC) equations as the dynamics of excitors in this space, we show that a simple set of rules suffices to evolve a distribution of excitors to sample the CC solution and correctly evaluate the CC energy. These rules are not truncation specific and this method can calculate CC solutions to an arbitrary level of truncation. We present results of calculation on the neon atom, and nitrogen and water molecules showing the ability to recover both truncated and full CC results.
Stochastic thermodynamics of resetting
NASA Astrophysics Data System (ADS)
Fuchs, Jaco; Goldt, Sebastian; Seifert, Udo
2016-03-01
Stochastic dynamics with random resetting leads to a non-equilibrium steady state. Here, we consider the thermodynamics of resetting by deriving the first and second law for resetting processes far from equilibrium. We identify the contributions to the entropy production of the system which arise due to resetting and show that they correspond to the rate with which information is either erased or created. Using Landauer's principle, we derive a bound on the amount of work that is required to maintain a resetting process. We discuss different regimes of resetting, including a Maxwell demon scenario where heat is extracted from a bath at constant temperature.
NASA Astrophysics Data System (ADS)
Hairer, Martin
2006-03-01
We consider a class of parabolic stochastic PDEs driven by white noise in time, and we are interested in showing ergodicity for some cases where the noise is degenerate, i.e., acts only on part of the equation. In some cases where the standard Strong Feller / Irreducibility argument fails, one can nevertheless implement a coupling construction that ensures uniqueness of the invariant measure. We focus on the example of the complex Ginzburg-Landau equation driven by real space-time white noise.
NASA Astrophysics Data System (ADS)
Wang, Ning; Li, Haiqin; Grell, Georg
2017-04-01
The stochastic physics parameterizations can be useful to account for model uncertainties in the global NWP models to improve ensemble predictability. In this presentation, we introduce a study in which an icosahedral grid global model, developed at NOAA/ESRL, is used to evaluate the effectiveness of using stochastic physics parameterizations in medium-range forecast. The stochastic perturbation to the closures, vertical mass flux and momentum transport is performed and analyzed to assess the impact of stochastic perturbation of the physics parameterization to the predictability of precipitation. We will present the results from the analysis of deterministic and probabilistic predictability of precipitation from the numerical experiments of ensemble forecasting.
Binary coding for hyperspectral imagery
NASA Astrophysics Data System (ADS)
Wang, Jing; Chang, Chein-I.; Chang, Chein-Chi; Lin, Chinsu
2004-10-01
Binary coding is one of simplest ways to characterize spectral features. One commonly used method is a binary coding-based image software system, called Spectral Analysis Manager (SPAM) for remotely sensed imagery developed by Mazer et al. For a given spectral signature, the SPAM calculates its spectral mean and inter-band spectral difference and uses them as thresholds to generate a binary code word for this particular spectral signature. Such coding scheme is generally effective and also very simple to implement. This paper revisits the SPAM and further develops three new SPAM-based binary coding methods, called equal probability partition (EPP) binary coding, halfway partition (HP) binary coding and median partition (MP) binary coding. These three binary coding methods along with the SPAM well be evaluated for spectral discrimination and identification. In doing so, a new criterion, called a posteriori discrimination probability (APDP) is also introduced for performance measure.
Eclipsing Binary Update, No. 2.
NASA Astrophysics Data System (ADS)
Williams, D. B.
1996-01-01
Contents: 1. Wrong again! The elusive period of DHK 41. 2. Stars observed and not observed. 3. Eclipsing binary chart information. 4. Eclipsing binary news and notes. 5. A note on SS Arietis. 6. Featured star: TX Ursae Majoris.
Reconstruction of pulse noisy images via stochastic resonance
Han, Jing; Liu, Hongjun; Sun, Qibing; Huang, Nan
2015-01-01
We investigate a practical technology for reconstructing nanosecond pulse noisy images via stochastic resonance, which is based on the modulation instability. A theoretical model of this method for optical pulse signal is built to effectively recover the pulse image. The nanosecond noise-hidden images grow at the expense of noise during the stochastic resonance process in a photorefractive medium. The properties of output images are mainly determined by the input signal-to-noise intensity ratio, the applied voltage across the medium, and the correlation length of noise background. A high cross-correlation gain is obtained by optimizing these parameters. This provides a potential method for detecting low-level or hidden pulse images in various imaging applications. PMID:26067911
NASA Technical Reports Server (NTRS)
Frazier, D. O.; Facemire, B. R.; Kaukler, W. F.; Witherow, W. K.; Fanning, U.
1986-01-01
Studies of monotectic alloys and alloy analogs reviewed. Report surveys research on liquid/liquid and solid/liquid separation in binary monotectic alloys. Emphasizes separation processes in low gravity, such as in outer space or in free fall in drop towers. Advances in methods of controlling separation in experiments highlighted.
NASA Astrophysics Data System (ADS)
Cvetkovic, Z.; Novakovic, B.
2006-12-01
In this paper orbits for 13 binaries are recalculated and presented. The reason is that recent observations show higher residuals than the corresponding ephemerides calculated by using the orbital elements given in the Sixth Catalog of Orbits of Visual Binary Stars. The binaries studied were: WDS 00182+7257 = A 803, WDS 00335+4006 = HO 3, WDS 00583+2124 = BU 302, WDS 01011+6022 = A 926, WDS 01014+1155 = BU 867, WDS 01112+4113 = A 655, WDS 01361-2954 + HJ 3447, WDS 02333+5219 = STT 42 AB, WDS 04362+0814 = A 1840 AB, WDS 08017-0836 = A 1580, WDS 08277-0425 = A 550, WDS 17471+1742 = STF 2215 and WDS 18025+4414 = BU 1127 Aa-B. In addition, for three binaries - WDS 01532+1526 = BU 260, WDS 02563+7253 =STF 312 AB and WDS 05003+3924 = STT 92 AB - the orbital elements are calculated for the first time. In this paper the authors present not only the orbital elements, but the masses, dynamical parallaxes, absolute magnitudes and ephemerides for the next five years, as well.
Schilstra, Maria J; Martin, Stephen R
2009-01-01
Stochastic simulations may be used to describe changes with time of a reaction system in a way that explicitly accounts for the fact that molecules show a significant degree of randomness in their dynamic behavior. The stochastic approach is almost invariably used when small numbers of molecules or molecular assemblies are involved because this randomness leads to significant deviations from the predictions of the conventional deterministic (or continuous) approach to the simulation of biochemical kinetics. Advances in computational methods over the three decades that have elapsed since the publication of Daniel Gillespie's seminal paper in 1977 (J. Phys. Chem. 81, 2340-2361) have allowed researchers to produce highly sophisticated models of complex biological systems. However, these models are frequently highly specific for the particular application and their description often involves mathematical treatments inaccessible to the nonspecialist. For anyone completely new to the field to apply such techniques in their own work might seem at first sight to be a rather intimidating prospect. However, the fundamental principles underlying the approach are in essence rather simple, and the aim of this article is to provide an entry point to the field for a newcomer. It focuses mainly on these general principles, both kinetic and computational, which tend to be not particularly well covered in specialist literature, and shows that interesting information may even be obtained using very simple operations in a conventional spreadsheet.
Stochastic power flow modeling
Not Available
1980-06-01
The stochastic nature of customer demand and equipment failure on large interconnected electric power networks has produced a keen interest in the accurate modeling and analysis of the effects of probabilistic behavior on steady state power system operation. The principle avenue of approach has been to obtain a solution to the steady state network flow equations which adhere both to Kirchhoff's Laws and probabilistic laws, using either combinatorial or functional approximation techniques. Clearly the need of the present is to develop sound techniques for producing meaningful data to serve as input. This research has addressed this end and serves to bridge the gap between electric demand modeling, equipment failure analysis, etc., and the area of algorithm development. Therefore, the scope of this work lies squarely on developing an efficient means of producing sensible input information in the form of probability distributions for the many types of solution algorithms that have been developed. Two major areas of development are described in detail: a decomposition of stochastic processes which gives hope of stationarity, ergodicity, and perhaps even normality; and a powerful surrogate probability approach using proportions of time which allows the calculation of joint events from one dimensional probability spaces.
NASA Astrophysics Data System (ADS)
Takeda, Genya
In this thesis we investigate the orbital evolution of planets in binaries. Unlike our own Solar System, at least one out of five planetary systems known to date is associated with additional stellar companions. Despite their large distances from the planetary systems, these stellar companions play an important role in significantly altering the planetary architecture over very long timescales. Most of the planets in binaries are found in hierarchical configurations in which a planet orbits around a component of a wide stellar binary. The evolution of such hierarchical triples has been analytically understood through the framework of the Kozai mechanism, in which the orbital eccentricity of a planet secularly grows through angular momentum exchange with the stellar companion. The aim of our first study is to investigate the global effect of stellar companions in exciting planetary eccentricities through the Kozai mechanism, using synthetic eccentricity distributions computed numerically from various initial assumptions motivated by observational studies. As inferred from observations and theoretical planet formation simulations, newly formed planetary systems are more likely to be oligarchic, containing multiple giant planets. However, the long-term evolution of gravitationally coupled planets perturbed by a stellar companion has been little understood in the previous studies. From a large ensemble of numerical integrations of double-planet systems in binaries, we have found that there are various evolutionary classes of multiple planets in binaries compared to simple hierarchical triple systems containing only one planet. Using the Kozai mechanism and the Laplace-Lagrange secular theory, we also provide analytic criteria that can readily predict the secular evolutionary behavior of a pair of planetary orbits in binaries. In the last part of this thesis we discuss an alternative channel of planetary migration induced by a combined effect of dissipative tidal forces
Stochastic switching in biology: from genotype to phenotype
NASA Astrophysics Data System (ADS)
Bressloff, Paul C.
2017-03-01
There has been a resurgence of interest in non-equilibrium stochastic processes in recent years, driven in part by the observation that the number of molecules (genes, mRNA, proteins) involved in gene expression are often of order 1–1000. This means that deterministic mass-action kinetics tends to break down, and one needs to take into account the discrete, stochastic nature of biochemical reactions. One of the major consequences of molecular noise is the occurrence of stochastic biological switching at both the genotypic and phenotypic levels. For example, individual gene regulatory networks can switch between graded and binary responses, exhibit translational/transcriptional bursting, and support metastability (noise-induced switching between states that are stable in the deterministic limit). If random switching persists at the phenotypic level then this can confer certain advantages to cell populations growing in a changing environment, as exemplified by bacterial persistence in response to antibiotics. Gene expression at the single-cell level can also be regulated by changes in cell density at the population level, a process known as quorum sensing. In contrast to noise-driven phenotypic switching, the switching mechanism in quorum sensing is stimulus-driven and thus noise tends to have a detrimental effect. A common approach to modeling stochastic gene expression is to assume a large but finite system and to approximate the discrete processes by continuous processes using a system-size expansion. However, there is a growing need to have some familiarity with the theory of stochastic processes that goes beyond the standard topics of chemical master equations, the system-size expansion, Langevin equations and the Fokker–Planck equation. Examples include stochastic hybrid systems (piecewise deterministic Markov processes), large deviations and the Wentzel–Kramers–Brillouin (WKB) method, adiabatic reductions, and queuing/renewal theory. The major aim of
Test of Optical Stochastic Cooling in the IOTA Ring
Lebedev, V. A.; Tokpanov, Yu.; Zolotorev, M. S.
2013-09-26
A new 150 MeV electron storage ring is being built at Fermilab. The construction of a new machine pursues two goals a test of highly non-linear integrable optics and a test of optical stochastic cooling. This paper discusses details of OSC arrangements, choice of major parameters of the cooling scheme and incoming experimental tests of the optical amplifier prototype which uses highly doped Ti-sapphire crystal as amplification medium.
Correlated binary regression with covariates specific to each binary observation.
Prentice, R L
1988-12-01
Regression methods are considered for the analysis of correlated binary data when each binary observation may have its own covariates. It is argued that binary response models that condition on some or all binary responses in a given "block" are useful for studying certain types of dependencies, but not for the estimation of marginal response probabilities or pairwise correlations. Fully parametric approaches to these latter problems appear to be unduly complicated except in such special cases as the analysis of paired binary data. Hence, a generalized estimating equation approach is advocated for inference on response probabilities and correlations. Illustrations involving both small and large block sizes are provided.
Variance decomposition in stochastic simulators
Le Maître, O. P.; Knio, O. M.; Moraes, A.
2015-06-28
This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.
Richard V. Field, Jr.; Emery, John M.; Grigoriu, Mircea Dan
2015-05-19
The stochastic collocation (SC) and stochastic Galerkin (SG) methods are two well-established and successful approaches for solving general stochastic problems. A recently developed method based on stochastic reduced order models (SROMs) can also be used. Herein we provide a comparison of the three methods for some numerical examples; our evaluation only holds for the examples considered in the paper. The purpose of the comparisons is not to criticize the SC or SG methods, which have proven very useful for a broad range of applications, nor is it to provide overall ratings of these methods as compared to the SROM method.more » Furthermore, our objectives are to present the SROM method as an alternative approach to solving stochastic problems and provide information on the computational effort required by the implementation of each method, while simultaneously assessing their performance for a collection of specific problems.« less
Richard V. Field, Jr.; Emery, John M.; Grigoriu, Mircea Dan
2015-05-19
The stochastic collocation (SC) and stochastic Galerkin (SG) methods are two well-established and successful approaches for solving general stochastic problems. A recently developed method based on stochastic reduced order models (SROMs) can also be used. Herein we provide a comparison of the three methods for some numerical examples; our evaluation only holds for the examples considered in the paper. The purpose of the comparisons is not to criticize the SC or SG methods, which have proven very useful for a broad range of applications, nor is it to provide overall ratings of these methods as compared to the SROM method. Furthermore, our objectives are to present the SROM method as an alternative approach to solving stochastic problems and provide information on the computational effort required by the implementation of each method, while simultaneously assessing their performance for a collection of specific problems.
Stochastic simulation of transport phenomena
Wedgewood, L.E.; Geurts, K.R.
1995-10-01
In this paper, four examples are given to demonstrate how stochastic simulations can be used as a method to obtain numerical solutions to transport problems. The problems considered are two-dimensional heat conduction, mass diffusion with reaction, the start-up of Poiseuille flow, and Couette flow of a suspension of Hookean dumbbells. The first three examples are standard problems with well-known analytic solutions which can be used to verify the results of the stochastic simulation. The fourth example combines a Brownian dynamics simulation for Hookean dumbbells, a crude model of a dilute polymer suspension, and a stochastic simulation for the suspending, Newtonian fluid. These examples illustrate appropriate methods for handling source/sink terms and initial and boundary conditions. The stochastic simulation results compare well with the analytic solutions and other numerical solutions. The goal of this paper is to demonstrate the wide applicability of stochastic simulation as a numerical method for transport problems.
Harnack inequality and strong Feller property for stochastic fast-diffusion equations
NASA Astrophysics Data System (ADS)
Liu, Wei; Wang, Feng-Yu
2008-06-01
As a continuation to [F.-Y. Wang, Harnack inequality and applications for stochastic generalized porous media equations, Ann. Probab. 35 (2007) 1333-1350], where the Harnack inequality and the strong Feller property are studied for a class of stochastic generalized porous media equations, this paper presents analogous results for stochastic fast-diffusion equations. Since the fast-diffusion equation possesses weaker dissipativity than the porous medium one does, some technical difficulties appear in the study. As a compensation to the weaker dissipativity condition, a Sobolev-Nash inequality is assumed for the underlying self-adjoint operator in applications. Some concrete examples are constructed to illustrate the main results.
Astrometric Binaries: White Dwarfs?
NASA Astrophysics Data System (ADS)
Oliversen, Nancy A.
We propose to observe a selection of astrometric or spectroscopicastrometric binaries nearer than about 20 pc with unseen low mass companions. Systems of this type are important for determining the luminosity function of low mass stars (white dwarfs and very late main sequence M stars), and their contribution to the total mass of the galaxy. Systems of this type are also important because the low mass, invisible companions are potential candidates in the search for planets. Our target list is selected primarily from the list of 31 astrometric binaries near the sun by Lippincott (1978, Space Sci. Rev., 22, 153), with additional candidates from recent observations by Kamper. The elimination of stars with previous IUE observations, red companions resolved by infrared speckle interferometry, or primaries later than M1 (because if white dwarf companions are present they should have been detected in the visible region) reduces the list to 5 targets which need further information. IUE SWP low dispersion observations of these targets will show clearly whether the remaining unseen companions are white dwarfs, thus eliminating very cool main sequence stars or planets. This is also important in providing complete statistical information about the nearest stars. The discovery of a white dwarf in such a nearby system would provide important additional information about the masses of white dwarfs. Recent results by Greenstein (1986, A. J., 92, 859) from binary systems containing white dwarfs imply that 80% of such systems are as yet undetected. The preference of binaries for companions of approximately equal mass makes the Lippincott-Kamper list of A through K primaries with unseen companions a good one to use to search for white dwarfs. The mass and light dominance of the current primary over the white dwarf in the visible makes ultraviolet observations essential to obtain an accurate census of white dwarf binaries.
Constraining Supermassive Black Hole Binary Dynamics Using Pulsar Timing Data
NASA Astrophysics Data System (ADS)
Ellis, Justin
2015-08-01
Pulsar timing arrays (PTAs) offer a unique opportunity to detect low frequency gravitational waves (GWs) in the near future. In this frequency band, the expected source of GWs are Supermassive Black Hole Binaries (SMBHBs) and they will most likely form in an ensemble creating a stochastic GW background with the possibility of a few nearby/massive sources that will be individually resolvable. In this talk we present upper limits on the strength of the isotropic stochastic background of gravitational waves using the new 9-year North American NanoHertz Observatory for Gravitational Waves (NANOGrav) data release. Using several published models for merger rate of SMBHBs we place meaningful constraints on the transition frequency at which environmental factors such as stellar hardening and circumbinary interactions become comparable to the energy loss due to GW emission.
Learning to assign binary weights to binary descriptor
NASA Astrophysics Data System (ADS)
Huang, Zhoudi; Wei, Zhenzhong; Zhang, Guangjun
2016-10-01
Constructing robust binary local feature descriptors are receiving increasing interest due to their binary nature, which can enable fast processing while requiring significantly less memory than their floating-point competitors. To bridge the performance gap between the binary and floating-point descriptors without increasing the computational cost of computing and matching, optimal binary weights are learning to assign to binary descriptor for considering each bit might contribute differently to the distinctiveness and robustness. Technically, a large-scale regularized optimization method is applied to learn float weights for each bit of the binary descriptor. Furthermore, binary approximation for the float weights is performed by utilizing an efficient alternatively greedy strategy, which can significantly improve the discriminative power while preserve fast matching advantage. Extensive experimental results on two challenging datasets (Brown dataset and Oxford dataset) demonstrate the effectiveness and efficiency of the proposed method.
Stochastic and delayed stochastic models of gene expression and regulation.
Ribeiro, Andre S
2010-01-01
Gene expression and gene regulatory networks dynamics are stochastic. The noise in the temporal amounts of proteins and RNA molecules in cells arises from the stochasticity of transcription initiation and elongation (e.g., due to RNA polymerase pausing), translation, and post-transcriptional regulation mechanisms, such as reversible phosphorylation and splicing. This is further enhanced by the fact that most RNA molecules and proteins exist in cells in very small amounts. Recently, the time needed for transcription and translation to be completed once initiated were shown to affect the stochasticity in gene networks. This observation stressed the need of either introducing explicit delays in models of transcription and translation or to model processes such as elongation at the single nucleotide level. Here we review stochastic and delayed stochastic models of gene expression and gene regulatory networks. We first present stochastic non-delayed and delayed models of transcription, followed by models at the single nucleotide level. Next, we present models of gene regulatory networks, describe the dynamics of specific stochastic gene networks and available simulators to implement these models. Copyright 2009 Elsevier Inc. All rights reserved.
Fast approximate stochastic tractography.
Iglesias, Juan Eugenio; Thompson, Paul M; Liu, Cheng-Yi; Tu, Zhuowen
2012-01-01
Many different probabilistic tractography methods have been proposed in the literature to overcome the limitations of classical deterministic tractography: (i) lack of quantitative connectivity information; and (ii) robustness to noise, partial volume effects and selection of seed region. However, these methods rely on Monte Carlo sampling techniques that are computationally very demanding. This study presents an approximate stochastic tractography algorithm (FAST) that can be used interactively, as opposed to having to wait several minutes to obtain the output after marking a seed region. In FAST, tractography is formulated as a Markov chain that relies on a transition tensor. The tensor is designed to mimic the features of a well-known probabilistic tractography method based on a random walk model and Monte-Carlo sampling, but can also accommodate other propagation rules. Compared to the baseline algorithm, our method circumvents the sampling process and provides a deterministic solution at the expense of partially sacrificing sub-voxel accuracy. Therefore, the method is strictly speaking not stochastic, but provides a probabilistic output in the spirit of stochastic tractography methods. FAST was compared with the random walk model using real data from 10 patients in two different ways: 1. the probability maps produced by the two methods on five well-known fiber tracts were directly compared using metrics from the image registration literature; and 2. the connectivity measurements between different regions of the brain given by the two methods were compared using the correlation coefficient ρ. The results show that the connectivity measures provided by the two algorithms are well-correlated (ρ = 0.83), and so are the probability maps (normalized cross correlation 0.818 ± 0.081). The maps are also qualitatively (i.e., visually) very similar. The proposed method achieves a 60x speed-up (7 s vs. 7 min) over the Monte Carlo sampling scheme, therefore
DOES A ''STOCHASTIC'' BACKGROUND OF GRAVITATIONAL WAVES EXIST IN THE PULSAR TIMING BAND?
Ravi, V.; Wyithe, J. S. B.; Hobbs, G.; Shannon, R. M.; Manchester, R. N.; Yardley, D. R. B.; Keith, M. J.
2012-12-20
We investigate the effects of gravitational waves (GWs) from a simulated population of binary supermassive black holes (SMBHs) on pulsar timing array data sets. We construct a distribution describing the binary SMBH population from an existing semi-analytic galaxy formation model. Using realizations of the binary SMBH population generated from this distribution, we simulate pulsar timing data sets with GW-induced variations. We find that the statistics of these variations do not correspond to an isotropic, stochastic GW background. The ''Hellings and Downs'' correlations between simulated data sets for different pulsars are recovered on average, though the scatter of the correlation estimates is greater than expected for an isotropic, stochastic GW background. These results are attributable to the fact that just a few GW sources dominate the GW-induced variations in every Fourier frequency bin of a five-year data set. Current constraints on the amplitude of the GW signal from binary SMBHs will be biased. Individual binary systems are likely to be detectable in five-year pulsar timing array data sets where the noise is dominated by GW-induced variations. Searches for GWs in pulsar timing array data therefore need to account for the effects of individual sources of GWs.
NASA Astrophysics Data System (ADS)
Pravec, Petr; Harris, A. W.; Warner, B. D.
2007-05-01
Of nearly 3900 near-Earth asteroids known in June 2006, 325 have got estimated rotation periods. NEAs with sizes down to 10 meters have been sampled. Observed spin distribution shows a major changing point around D=200 m. Larger NEAs show a barrier against spin rates >11 d-1 (period P~2.2 h) that shifts to slower rates with increasing equatorial elongation. The spin barrier is interpreted as a critical spin rate for bodies held together by self-gravitation only, suggesting that NEAs larger than 200 m are mostly strenghtless bodies (i.e., with zero tensile strength), so called `rubble piles'. The barrier disappears at D<200 m where most objects rotate too fast to be held together by self-gravitation only, so a non-zero cohesion is implied in the smaller NEAs. The distribution of NEA spin rates in the `rubble pile' range (D>0.2 km) is non-Maxwellian, suggesting that other mechanisms than just collisions worked there. There is a pile up in front of the barrier (P of 2-3 h). It may be related to a spin up mechanism crowding asteroids to the barrier. An excess of slow rotators is seen at P>30 h. The spin-down mechanism has no clear lower limit on spin rate; periods as long as tens of days occur. Most NEAs appear to be in basic spin states with rotation around the principal axis. Excited rotations are present among and actually dominate in slow rotators with damping timescales >4.5 byr. A few tumblers observed among fast rotating coherent objects consistently appear to be more rigid or younger than the larger, rubble-pile tumblers. An abundant population of binary systems among NEAs has been found. The fraction of binaries among NEAs larger than 0.3 km has been estimated to be 15 +/-4%. Primaries of the binary systems concentrate at fast spin rates (periods 2-3 h) and low amplitudes, i.e., they lie just below the spin barrier. The total angular momentum content in the binary systems suggests that they formed at the critical spin rate, and that little or no angular
2012-08-01
AFRL-RX-WP-TP-2012-0397 INVERSE PROBLEM FOR ELECTROMAGNETIC PROPAGATION IN A DIELECTRIC MEDIUM USING MARKOV CHAIN MONTE CARLO METHOD ...SUBTITLE INVERSE PROBLEM FOR ELECTROMAGNETIC PROPAGATION IN A DIELECTRIC MEDIUM USING MARKOV CHAIN MONTE CARLO METHOD (PREPRINT) 5a. CONTRACT...a stochastic inverse methodology arising in electromagnetic imaging. Nondestructive testing using guided microwaves covers a wide range of
Stochastization in gravitating systems
NASA Astrophysics Data System (ADS)
Ovod, D. V.; Ossipkov, L. P.
2013-10-01
We discuss the effective stochastization time τ_e for gravitating systems in terms of the Krylov and Gurzadyan-Savvidi paradigm. The truncated Holtsmark distribution for a random force proposed by Rastorguev and Sementsov implies {τ_e/τ_c ∝ N0.20}, where τ_c is the crossing time. We find in the case of the Petrovskaya distribution for a random force {τ_e/τ_c ∝ Nk}, where {k=0.27}-0.31, depending on the oblateness and rotation of the system, and {τ_e/τ_c ∝ N1/3/(ln N)1/2} when N≫ 1. The latter result agrees with those of Genkin (1969) and Gurzadyan & Kocharyan (2009) (k=1/3). Dedicated to Igor L'vovich Genkin (1931-2011)
Bunched beam stochastic cooling
Wei, Jie.
1992-01-01
The scaling laws for bunched-beam stochastic cooling has been derived in terms of the optimum cooling rate and the mixing condition. In the case that particles occupy the entire sinusoidal rf bucket, the optimum cooling rate of the bunched beam is shown to be similar to that predicted from the coasting-beam theory using a beam of the same average density and mixing factor. However, in the case that particles occupy only the center of the bucket, the optimum rate decrease in proportion to the ratio of the bunch area to the bucket area. The cooling efficiency can be significantly improved if the synchrotron side-band spectrum is effectively broadened, e.g. by the transverse tune spread or by using a double rf system.
Bunched beam stochastic cooling
Wei, Jie
1992-09-01
The scaling laws for bunched-beam stochastic cooling has been derived in terms of the optimum cooling rate and the mixing condition. In the case that particles occupy the entire sinusoidal rf bucket, the optimum cooling rate of the bunched beam is shown to be similar to that predicted from the coasting-beam theory using a beam of the same average density and mixing factor. However, in the case that particles occupy only the center of the bucket, the optimum rate decrease in proportion to the ratio of the bunch area to the bucket area. The cooling efficiency can be significantly improved if the synchrotron side-band spectrum is effectively broadened, e.g. by the transverse tune spread or by using a double rf system.
Stochastic modeling of triple-frequency BeiDou signals: estimation, assessment and impact analysis
NASA Astrophysics Data System (ADS)
Li, Bofeng
2016-07-01
Stochastic models are important in global navigation satellite systems (GNSS) estimation problems. One can achieve reliable ambiguity resolution and precise positioning only by use of a suitable stochastic model. The BeiDou system has received increased research focus, but based only on empirical stochastic models from the knowledge of GPS. In this paper, we will systematically study the estimation, assessment and impacts of a triple-frequency BeiDou stochastic model. In our estimation problem, a single-difference, geometry-free functional model is used to extract pure random noise. A very sophisticated structure of unknown variance matrix is designed to allow the estimation of satellite-specific variances, cross correlations between two arbitrary frequencies, as well as the time correlations for phase and code observations per frequency. In assessing the stochastic models, six data sets with four brands of BeiDou receivers on short and zero-length baselines are processed, and the results are compared. In impact analysis of stochastic model, the performance of integer ambiguity resolution and positioning are numerically demonstrated using a realistic stochastic model. The results from ultrashort (shorter than 10 m) and zero-length baselines indicate that BeiDou stochastic models are affected by both observation and receiver brands. The observation variances have been modeled by an elevation-dependent function, but the modeling errors for geostationary earth orbit (GEO) satellites are larger than for inclined geosynchronous satellite orbit (IGSO) and medium earth orbit (MEO) satellites. The stochastic model is governed by both the internal errors of the receiver and external errors at the site. Different receivers have different capabilities for resisting external errors. A realistic stochastic model is very important for achieving ambiguity resolution with a high success rate and small false alarm and for determining realistic variances for position estimates. To
Stochastic thermodynamics of chemical reaction networks.
Schmiedl, Tim; Seifert, Udo
2007-01-28
For chemical reaction networks in a dilute solution described by a master equation, the authors define energy and entropy on a stochastic trajectory and develop a consistent nonequilibrium thermodynamic description along a single stochastic trajectory of reaction events. A first-law like energy balance relates internal energy, applied (chemical) work, and dissipated heat for every single reaction. Entropy production along a single trajectory involves a sum over changes in the entropy of the network itself and the entropy of the medium. The latter is given by the exchanged heat identified through the first law. Total entropy production is constrained by an integral fluctuation theorem for networks arbitrarily driven by time-dependent rates and a detailed fluctuation theorem for networks in the steady state. Further exact relations such as a generalized Jarzynski relation and a generalized Clausius inequality are discussed. The authors illustrate these results for a three-species cyclic reaction network which exhibits nonequilibrium steady states as well as transitions between different steady states.
A Stochastic Cratering Model for Asteroid Surfaces
NASA Technical Reports Server (NTRS)
Richardson, J. E.; Melosh, H. J.; Greenberg, R. J.
2005-01-01
The observed cratering records on asteroid surfaces (four so far: Gaspra, Ida, Mathilde, and Eros [1-4]) provide us with important clues to their past bombardment histories. Previous efforts toward interpreting these records have led to two basic modeling styles for reproducing the statistics of the observed crater populations. The first, and most direct, method is to use Monte Carlo techniques [5] to stochastically populate a matrix-model test surface with craters as a function of time [6,7]. The second method is to use a more general, parameterized approach to duplicate the statistics of the observed crater population [8,9]. In both methods, several factors must be included beyond the simple superposing of circular features: (1) crater erosion by subsequent impacts, (2) infilling of craters by impact ejecta, and (3) crater degradation and era- sure due to the seismic effects of subsequent impacts. Here we present an updated Monte Carlo (stochastic) modeling approach, designed specifically with small- to medium-sized asteroids in mind.
Microfluidic binary phase flow
NASA Astrophysics Data System (ADS)
Angelescu, Dan; Menetrier, Laure; Wong, Joyce; Tabeling, Patrick; Salamitou, Philippe
2004-03-01
We present a novel binary phase flow regime where the two phases differ substantially in both their wetting and viscous properties. Optical tracking particles are used in order to investigate the details of such multiphase flow inside capillary channels. We also describe microfluidic filters we have developed, capable of separating the two phases based on capillary pressure. The performance of the filters in separating oil-water emulsions is discussed. Binary phase flow has been previously used in microchannels in applications such as emulsion generation, enhancement of mixing and assembly of custom colloidal paticles. Such microfluidic systems are increasingly used in a number of applications spanning a diverse range of industries, such as biotech, pharmaceuticals and more recently the oil industry.
NASA Astrophysics Data System (ADS)
Yagi, Kent; Yunes, Nicolás
2016-07-01
When in a tight binary, the mutual tidal deformations of neutron stars get imprinted onto observables, encoding information about their internal structure at supranuclear densities and gravity in the extreme-gravity regime. Gravitational wave (GW) observations of their late binary inspiral may serve as a tool to extract the individual tidal deformabilities, but this is made difficult by degeneracies between them in the GW model. We here resolve this problem by discovering approximately equation-of-state (EoS)-insensitive relations between dimensionless combinations of the individual tidal deformabilities. We show that these relations break degeneracies in the GW model, allowing for the accurate extraction of both deformabilities. Such measurements can be used to better differentiate between EoS models, and improve tests of general relativity and cosmology.
RS CVn binaries: Testing the solar-stellar dynamo connection
NASA Technical Reports Server (NTRS)
Dempsey, R.
1995-01-01
We have used the Extreme Ultraviolet Explorer satellite to study the coronal emission from the EUV-bright RS CVn binaries Sigma2 CrB, observed February 10-21, 1994, and II Peg, observed October 1-5, 1993. We present time-resolved and integrated EUV short-, medium-, and long-wavelength spectra for these binaries. Sigma2 CrB shows significant first-order emission features in the long-wavelength region. The coronal emission distributions and electron densities are estimated for those active coronae dominated by high temperature plasma.
Design of binary subwavelength multiphase level computer generated holograms.
Freese, Wiebke; Kämpfe, Thomas; Kley, Ernst-Bernhard; Tünnermann, Andreas
2010-03-01
The ability of subwavelength structures to create an artificial effective index opens up new perspectives in designing highly efficient diffractive optical elements. We demonstrate a design approach for binary multi-phase level computer generated holograms based on the effective medium approach. The phase pattern is formed by various subwavelength structures that cause a certain phase delay to an incident light wave. This binary structure approach leads to a significant cost reduction by simplifying the fabrication process. For demonstration, a three-phase level element, operating in the visible range, is fabricated and experimentally evaluated.
Stochastic reinforcement benefits skill acquisition.
Dayan, Eran; Averbeck, Bruno B; Richmond, Barry J; Cohen, Leonardo G
2014-02-14
Learning complex skills is driven by reinforcement, which facilitates both online within-session gains and retention of the acquired skills. Yet, in ecologically relevant situations, skills are often acquired when mapping between actions and rewarding outcomes is unknown to the learning agent, resulting in reinforcement schedules of a stochastic nature. Here we trained subjects on a visuomotor learning task, comparing reinforcement schedules with higher, lower, or no stochasticity. Training under higher levels of stochastic reinforcement benefited skill acquisition, enhancing both online gains and long-term retention. These findings indicate that the enhancing effects of reinforcement on skill acquisition depend on reinforcement schedules.
NASA Technical Reports Server (NTRS)
Bokhari, Shahid H.; Crockett, Thomas W.; Nicol, David M.
1993-01-01
Binary dissection is widely used to partition non-uniform domains over parallel computers. This algorithm does not consider the perimeter, surface area, or aspect ratio of the regions being generated and can yield decompositions that have poor communication to computation ratio. Parametric Binary Dissection (PBD) is a new algorithm in which each cut is chosen to minimize load + lambda x(shape). In a 2 (or 3) dimensional problem, load is the amount of computation to be performed in a subregion and shape could refer to the perimeter (respectively surface) of that subregion. Shape is a measure of communication overhead and the parameter permits us to trade off load imbalance against communication overhead. When A is zero, the algorithm reduces to plain binary dissection. This algorithm can be used to partition graphs embedded in 2 or 3-d. Load is the number of nodes in a subregion, shape the number of edges that leave that subregion, and lambda the ratio of time to communicate over an edge to the time to compute at a node. An algorithm is presented that finds the depth d parametric dissection of an embedded graph with n vertices and e edges in O(max(n log n, de)) time, which is an improvement over the O(dn log n) time of plain binary dissection. Parallel versions of this algorithm are also presented; the best of these requires O((n/p) log(sup 3)p) time on a p processor hypercube, assuming graphs of bounded degree. How PBD is applied to 3-d unstructured meshes and yields partitions that are better than those obtained by plain dissection is described. Its application to the color image quantization problem is also discussed, in which samples in a high-resolution color space are mapped onto a lower resolution space in a way that minimizes the color error.
Neal, Daniel
1996-04-02
This software is a set of tools for the design and analysis of binary optics. It consists of a series of stand-alone programs written in C and some scripts written in an application-specific language interpreted by a CAD program called DW2000. This software can be used to optimize the design and placement of a complex lens array from input to output and produce contours, mask designs, and data exported for diffractive optic analysis.
NASA Astrophysics Data System (ADS)
Hou, H. S.
1985-07-01
An overview of the recent progress in the area of digital processing of binary images in the context of document processing is presented here. The topics covered include input scan, adaptive thresholding, halftoning, scaling and resolution conversion, data compression, character recognition, electronic mail, digital typography, and output scan. Emphasis has been placed on illustrating the basic principles rather than descriptions of a particular system. Recent technology advances and research in this field are also mentioned.
Medium-Frequency Pseudonoise Georadar
NASA Technical Reports Server (NTRS)
Arendt, G. Dickey; Carl, J. R.; Byerly, Kent A.; Amini, B. Jon
2005-01-01
Ground-probing radar systems featuring medium-frequency carrier signals phase-modulated by binary pseudonoise codes have been proposed. These systems would be used to locate and detect movements of subterranean surfaces; the primary intended application is in warning of the movement of underground water toward oil-well intake ports in time to shut down those ports to avoid pumping of water. Other potential applications include oil-well logging and monitoring of underground reservoirs. A typical prior georadar system operates at a carrier frequency of at least 50 MHz in order to provide useable range resolution. This frequency is too high for adequate penetration of many underground layers of interest. On the other hand, if the carrier frequency were to be reduced greatly to increase penetration, then bandwidth and thus range resolution would also have to be reduced, thereby rendering the system less useful. The proposed medium-frequency pseudonoise georadar systems would offer the advantage of greater penetration at lower carrier frequencies, but without the loss of resolution that would be incurred by operating typical prior georadar systems at lower frequencies.
Massive black hole binary mergers in dynamical galactic environments
NASA Astrophysics Data System (ADS)
Kelley, Luke Zoltan; Blecha, Laura; Hernquist, Lars
2017-01-01
Gravitational waves (GWs) have now been detected from stellar-mass black hole binaries, and the first observations of GWs from massive black hole (MBH) binaries are expected within the next decade. Pulsar timing arrays (PTA), which can measure the years long periods of GWs from MBH binaries (MBHBs), have excluded many standard predictions for the amplitude of a stochastic GW background (GWB). We use coevolved populations of MBHs and galaxies from hydrodynamic, cosmological simulations (`Illustris') to calculate a predicted GWB. The most advanced predictions so far have included binary hardening mechanisms from individual environmental processes. We present the first calculation including all of the environmental mechanisms expected to be involved: dynamical friction, stellar `loss-cone' scattering, and viscous drag from a circumbinary disc. We find that MBH binary lifetimes are generally multiple gigayears, and only a fraction coalesce by redshift zero. For a variety of parameters, we find all GWB amplitudes to be below the most stringent PTA upper limit of A_{yr^{-1}} ≈ 10^{-15}. Our fairly conservative fiducial model predicts an amplitude of A_{yr^{-1}} ≈ 0.4× 10^{-15}. At lower frequencies, we find A_{0.1 yr^{-1}} ≈ 1.5× 10^{-15} with spectral indices between -0.4 and -0.6 - significantly flatter than the canonical value of -2/3 due to purely GW-driven evolution. Typical MBHBs driving the GWB signal come from redshifts around 0.3, with total masses of a few times 109 M⊙, and in host galaxies with very large stellar masses. Even without GWB detections, our results can be connected to observations of dual active galactic nuclei to constrain binary evolution.
Comparison of Two Statistical Approaches to a Solution of the Stochastic Radiative Transfer Equation
NASA Astrophysics Data System (ADS)
Kirnos, I. V.; Tarasenkov, M. V.; Belov, V. V.
2016-04-01
The method of direct simulation of photon trajectories in a stochastic medium is compared with the method of closed equations suggested by G. A. Titov. A comparison is performed for the model of the stochastic medium in the form of a cloudy field of constant thickness comprising rectangular clouds whose boundaries are determined by a stationary Poisson flow of points. It is demonstrated that the difference between the calculated results can reach 20-30%; however, in some cases (for some sets of initial data) the difference is limited by 5% irrespective of the cloud cover index.
Gravitational waves from binary supermassive black holes in galactic nuclei
NASA Astrophysics Data System (ADS)
Merritt, David
2017-01-01
Pulsar timing arrays (PTAs) will eventually detect the gravitational wave (GW) background produced by a cosmological population of binary supermassive black hole (SBHs). In this talk, I review the ways in which the formation and evolution of the binary population determine the amplitude and form of the GW spectrum. A major source of systematic uncertainty is the mass function of SBHs; in the past, SBH masses have often been overestimated, and the number of SBHs with trustworthy mass estimates is still very small. The presence of gas and stars around the binaries accelerates the evolution at large separations, reducing the amplitude of the GW spectrum at low frequencies. I will highlight two recent developments in our theoretical understanding of binary evolution. (1) Slight departures from axi-symmetry in a galaxy imply a sustained supply of stars to the very center, thus overcoming the “final-parsec problem”. (2) In the generic case of a rotating nucleus, the plane of the binary’s orbit evolves predictably toward alignment with the symmetry plane of the nucleus; the binary’s eccentricity also evolves in tandem with the orientation, sometimes reaching values close to one. These processes should leave distinct imprints on the stochastic GW spectrum, and have important implications for the likelihood of GW detection in the near future.
Double Eclipsing Binary Fitting
NASA Astrophysics Data System (ADS)
Cagas, P.; Pejcha, O.
2012-06-01
The parameters of the mutual orbit of eclipsing binaries that are physically connected can be obtained by precision timing of minima over time through light travel time effect, apsidal motion or orbital precession. This, however, requires joint analysis of data from different sources obtained through various techniques and with insufficiently quantified uncertainties. In particular, photometric uncertainties are often underestimated, which yields too small uncertainties in minima timings if determined through analysis of a χ2 surface. The task is even more difficult for double eclipsing binaries, especially those with periods close to a resonance such as CzeV344, where minima get often blended with each other. This code solves the double binary parameters simultaneously and then uses these parameters to determine minima timings (or more specifically O-C values) for individual datasets. In both cases, the uncertainties (or more precisely confidence intervals) are determined through bootstrap resampling of the original data. This procedure to a large extent alleviates the common problem with underestimated photometric uncertainties and provides a check on possible degeneracies in the parameters and the stability of the results. While there are shortcomings to this method as well when compared to Markov Chain Monte Carlo methods, the ease of the implementation of bootstrapping is a significant advantage.
Stochastic Physicochemical Dynamics
NASA Astrophysics Data System (ADS)
Tsekov, R.
2001-02-01
Thermodynamic Relaxation in Quantum Systems: A new approach to quantum Markov processes is developed and the corresponding Fokker-Planck equation is derived. The latter is examined to reproduce known results from classical and quantum physics. It was also applied to the phase-space description of a mechanical system thus leading to a new treatment of this problem different from the Wigner presentation. The equilibrium probability density obtained in the mixed coordinate-momentum space is a reasonable extension of the Gibbs canonical distribution. The validity of the Einstein fluctuation-dissipation relation is discussed in respect to the type of relaxation in an isothermal system. The first model, presuming isothermic fluctuations, leads to the Einstein formula. The second model supposes adiabatic fluctuations and yields another relation between the diffusion coefficient and mobility of a Brownian particle. A new approach to relaxations in quantum systems is also proposed that demonstrates applicability only of the adiabatic model for description of the quantum Brownian dynamics. Stochastic Dynamics of Gas Molecules: A stochastic Langevin equation is derived, describing the thermal motion of a molecule immersed in a rested fluid of identical molecules. The fluctuation-dissipation theorem is proved and a number of correlation characteristics of the molecular Brownian motion are obtained. A short review of the classical theory of Brownian motion is presented. A new method is proposed for derivation of the Fokker-Planck equations, describing the probability density evolution, from stochastic differential equations. It is also proven via the central limit theorem that the white noise is only Gaussian. The applicability of stochastic differential equations to thermodynamics is considered and a new form, different from the classical Ito and Stratonovich forms, is introduced. It is shown that the new presentation is more appropriate for the description of thermodynamic
NASA Technical Reports Server (NTRS)
Griebeler, Elmer L.
2011-01-01
Binary communication through long cables, opto-isolators, isolating transformers, or repeaters can become distorted in characteristic ways. The usual solution is to slow the communication rate, change to a different method, or improve the communication media. It would help if the characteristic distortions could be accommodated at the receiving end to ease the communication problem. The distortions come from loss of the high-frequency content, which adds slopes to the transitions from ones to zeroes and zeroes to ones. This weakens the definition of the ones and zeroes in the time domain. The other major distortion is the reduction of low frequency, which causes the voltage that defines the ones or zeroes to drift out of recognizable range. This development describes a method for recovering a binary data stream from a signal that has been subjected to a loss of both higher-frequency content and low-frequency content that is essential to define the difference between ones and zeroes. The method makes use of the frequency structure of the waveform created by the data stream, and then enhances the characteristics related to the data to reconstruct the binary switching pattern. A major issue is simplicity. The approach taken here is to take the first derivative of the signal and then feed it to a hysteresis switch. This is equivalent in practice to using a non-resonant band pass filter feeding a Schmitt trigger. Obviously, the derivative signal needs to be offset to halfway between the thresholds of the hysteresis switch, and amplified so that the derivatives reliably exceed the thresholds. A transition from a zero to a one is the most substantial, fastest plus movement of voltage, and therefore will create the largest plus first derivative pulse. Since the quiet state of the derivative is sitting between the hysteresis thresholds, the plus pulse exceeds the plus threshold, switching the hysteresis switch plus, which re-establishes the data zero to one transition
Multiscale Hy3S: hybrid stochastic simulation for supercomputers.
Salis, Howard; Sotiropoulos, Vassilios; Kaznessis, Yiannis N
2006-02-24
Stochastic simulation has become a useful tool to both study natural biological systems and design new synthetic ones. By capturing the intrinsic molecular fluctuations of "small" systems, these simulations produce a more accurate picture of single cell dynamics, including interesting phenomena missed by deterministic methods, such as noise-induced oscillations and transitions between stable states. However, the computational cost of the original stochastic simulation algorithm can be high, motivating the use of hybrid stochastic methods. Hybrid stochastic methods partition the system into multiple subsets and describe each subset as a different representation, such as a jump Markov, Poisson, continuous Markov, or deterministic process. By applying valid approximations and self-consistently merging disparate descriptions, a method can be considerably faster, while retaining accuracy. In this paper, we describe Hy3S, a collection of multiscale simulation programs. Building on our previous work on developing novel hybrid stochastic algorithms, we have created the Hy3S software package to enable scientists and engineers to both study and design extremely large well-mixed biological systems with many thousands of reactions and chemical species. We have added adaptive stochastic numerical integrators to permit the robust simulation of dynamically stiff biological systems. In addition, Hy3S has many useful features, including embarrassingly parallelized simulations with MPI; special discrete events, such as transcriptional and translation elongation and cell division; mid-simulation perturbations in both the number of molecules of species and reaction kinetic parameters; combinatorial variation of both initial conditions and kinetic parameters to enable sensitivity analysis; use of NetCDF optimized binary format to quickly read and write large datasets; and a simple graphical user interface, written in Matlab, to help users create biological systems and analyze data. We
Multiscale Hy3S: Hybrid stochastic simulation for supercomputers
Salis, Howard; Sotiropoulos, Vassilios; Kaznessis, Yiannis N
2006-01-01
Background Stochastic simulation has become a useful tool to both study natural biological systems and design new synthetic ones. By capturing the intrinsic molecular fluctuations of "small" systems, these simulations produce a more accurate picture of single cell dynamics, including interesting phenomena missed by deterministic methods, such as noise-induced oscillations and transitions between stable states. However, the computational cost of the original stochastic simulation algorithm can be high, motivating the use of hybrid stochastic methods. Hybrid stochastic methods partition the system into multiple subsets and describe each subset as a different representation, such as a jump Markov, Poisson, continuous Markov, or deterministic process. By applying valid approximations and self-consistently merging disparate descriptions, a method can be considerably faster, while retaining accuracy. In this paper, we describe Hy3S, a collection of multiscale simulation programs. Results Building on our previous work on developing novel hybrid stochastic algorithms, we have created the Hy3S software package to enable scientists and engineers to both study and design extremely large well-mixed biological systems with many thousands of reactions and chemical species. We have added adaptive stochastic numerical integrators to permit the robust simulation of dynamically stiff biological systems. In addition, Hy3S has many useful features, including embarrassingly parallelized simulations with MPI; special discrete events, such as transcriptional and translation elongation and cell division; mid-simulation perturbations in both the number of molecules of species and reaction kinetic parameters; combinatorial variation of both initial conditions and kinetic parameters to enable sensitivity analysis; use of NetCDF optimized binary format to quickly read and write large datasets; and a simple graphical user interface, written in Matlab, to help users create biological systems
Nonlinear Stochastic PDEs: Analysis and Approximations
2016-05-23
3.4.1 Nonlinear Stochastic PDEs: Analysis and Approximations We compare Wiener chaos and stochastic collocation methods for linear advection-reaction...ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 nonlinear stochastic PDEs (SPDEs), nonlocal SPDEs, Navier...3.4.1 Nonlinear Stochastic PDEs: Analysis and Approximations Report Title We compare Wiener chaos and stochastic collocation methods for linear
Statistical validation of stochastic models
Hunter, N.F.; Barney, P.; Paez, T.L.; Ferregut, C.; Perez, L.
1996-12-31
It is common practice in structural dynamics to develop mathematical models for system behavior, and the authors are now capable of developing stochastic models, i.e., models whose parameters are random variables. Such models have random characteristics that are meant to simulate the randomness in characteristics of experimentally observed systems. This paper suggests a formal statistical procedure for the validation of mathematical models of stochastic systems when data taken during operation of the stochastic system are available. The statistical characteristics of the experimental system are obtained using the bootstrap, a technique for the statistical analysis of non-Gaussian data. The authors propose a procedure to determine whether or not a mathematical model is an acceptable model of a stochastic system with regard to user-specified measures of system behavior. A numerical example is presented to demonstrate the application of the technique.
Adaptive and Optimal Control of Stochastic Dynamical Systems
2015-09-14
control and stochastic differential games . Stochastic linear-quadratic, continuous time, stochastic control problems are solved for systems with noise...control problems for systems with arbitrary correlated n 15. SUBJECT TERMS Adaptive control, optimal control, stochastic differential games 16. SECURITY...explicit results have been obtained for problems of stochastic control and stochastic differential games . Stochastic linear- quadratic, continuous time
Detecting compact galactic binaries using a hybrid swarm-based algorithm
NASA Astrophysics Data System (ADS)
Bouffanais, Yann; Porter, Edward K.
2016-03-01
Compact binaries in our galaxy are expected to be one of the main sources of gravitational waves for the future eLISA mission. During the mission lifetime, many thousands of galactic binaries should be individually resolved. However, the identification of the sources and the extraction of the signal parameters in a noisy environment are real challenges for data analysis. So far, stochastic searches have proven to be the most successful for this problem. In this work, we present the first application of a swarm-based algorithm combining Particle Swarm Optimization and Differential Evolution. These algorithms have been shown to converge faster to global solutions on complicated likelihood surfaces than other stochastic methods. We first demonstrate the effectiveness of the algorithm for the case of a single binary in a 1-mHz search bandwidth. This interesting problem gave the algorithm plenty of opportunity to fail, as it can be easier to find a strong noise peak rather than the signal itself. After a successful detection of a fictitious low-frequency source, as well as the verification binary RXJ 0806.3 +1527 , we then applied the algorithm to the detection of multiple binaries, over different search bandwidths, in the cases of low and mild source confusion. In all cases, we show that we can successfully identify the sources and recover the true parameters within a 99% credible interval.
Visual binary stars: data to investigate formation of binaries
NASA Astrophysics Data System (ADS)
Kovaleva,, D.; Malkov,, O.; Yungelson, L.; Chulkov, D.
Statistics of orbital parameters of binary stars as well as statistics of their physical characteristics bear traces of star formation history. However, statistical investigations of binaries are complicated by incomplete or missing observational data and by a number of observational selection effects. Visual binaries are the most common type of observed binary stars, with the number of pairs exceeding 130 000. The most complete list of presently known visual binary stars was compiled by cross-matching objects and combining data of the three largest catalogues of visual binaries. This list was supplemented by the data on parallaxes, multicolor photometry, and spectral characteristics taken from other catalogues. This allowed us to compensate partly for the lack of observational data for these objects. The combined data allowed us to check the validity of observational values and to investigate statistics of the orbital and physical parameters of visual binaries. Corrections for incompleteness of observational data are discussed. The datasets obtained, together with modern distributions of binary parameters, will be used to reconstruct the initial distributions and parameters of the function of star formation for binary systems.
Network Analysis with Stochastic Grammars
2015-09-17
a variety of ways on a lower level. For a grammar , each phase is essentially a Task and a network attack is, at the highest level, a five Task...NETIVORK ANALYSIS \\\\’ITH STOCHASTIC GRAMMARS DISSERTATION Alan C. Lin, Maj , USAF AFIT-ENG-DS-15-S-014 DEPARTMENT OF THE AIR FORCE AIR...subject to copyright protection in the United States. AFIT-ENG-DS-15-S-014 NETWORK ANALYSIS WITH STOCHASTIC GRAMMARS DISSERTATION Presented
Stochastic roots of growth phenomena
NASA Astrophysics Data System (ADS)
De Lauro, E.; De Martino, S.; De Siena, S.; Giorno, V.
2014-05-01
We show that the Gompertz equation describes the evolution in time of the median of a geometric stochastic process. Therefore, we induce that the process itself generates the growth. This result allows us further to exploit a stochastic variational principle to take account of self-regulation of growth through feedback of relative density variations. The conceptually well defined framework so introduced shows its usefulness by suggesting a form of control of growth by exploiting external actions.
Some Topics in Stochastic Control
2010-10-14
Flows of Diffeomorphisms , (viii)Feller and Stability Properties of the Nonlinear Filter, (ix) Particle filter methods for Atmospheric and Oceanic data... Diffeomorphisms , Bernoulli, 16 (2010), no. 1, 91- -113. 5. A. Budhiraja, P. Dupuis and V. Maroulas. Variational Representations for Continuous Time...treat a setting with state dependent rates. 16 C.III. Large Deviations for Stochastic Flows of Diffeomorphisms [11]. Stochastic flows of diffeomorphisms
Stochastic Models of Polymer Systems
2016-01-01
Distribution Unlimited Final Report: Stochastic Models of Polymer Systems The views, opinions and/or findings contained in this report are those of the...peer-reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: Stochastic Models of Polymer Systems Report Title...field limit of a dynamical model for polymer systems, Science China Mathematics, (11 2012): 0. doi: TOTAL: 1 Number of Non Peer-Reviewed Conference
Stochastic superparameterization in quasigeostrophic turbulence
Grooms, Ian; Majda, Andrew J.
2014-08-15
In this article we expand and develop the authors' recent proposed methodology for efficient stochastic superparameterization algorithms for geophysical turbulence. Geophysical turbulence is characterized by significant intermittent cascades of energy from the unresolved to the resolved scales resulting in complex patterns of waves, jets, and vortices. Conventional superparameterization simulates large scale dynamics on a coarse grid in a physical domain, and couples these dynamics to high-resolution simulations on periodic domains embedded in the coarse grid. Stochastic superparameterization replaces the nonlinear, deterministic eddy equations on periodic embedded domains by quasilinear stochastic approximations on formally infinite embedded domains. The result is a seamless algorithm which never uses a small scale grid and is far cheaper than conventional SP, but with significant success in difficult test problems. Various design choices in the algorithm are investigated in detail here, including decoupling the timescale of evolution on the embedded domains from the length of the time step used on the coarse grid, and sensitivity to certain assumed properties of the eddies (e.g. the shape of the assumed eddy energy spectrum). We present four closures based on stochastic superparameterization which elucidate the properties of the underlying framework: a ‘null hypothesis’ stochastic closure that uncouples the eddies from the mean, a stochastic closure with nonlinearly coupled eddies and mean, a nonlinear deterministic closure, and a stochastic closure based on energy conservation. The different algorithms are compared and contrasted on a stringent test suite for quasigeostrophic turbulence involving two-layer dynamics on a β-plane forced by an imposed background shear. The success of the algorithms developed here suggests that they may be fruitfully applied to more realistic situations. They are expected to be particularly useful in providing accurate and
Phenomenology of stochastic exponential growth
NASA Astrophysics Data System (ADS)
Pirjol, Dan; Jafarpour, Farshid; Iyer-Biswas, Srividya
2017-06-01
Stochastic exponential growth is observed in a variety of contexts, including molecular autocatalysis, nuclear fission, population growth, inflation of the universe, viral social media posts, and financial markets. Yet literature on modeling the phenomenology of these stochastic dynamics has predominantly focused on one model, geometric Brownian motion (GBM), which can be described as the solution of a Langevin equation with linear drift and linear multiplicative noise. Using recent experimental results on stochastic exponential growth of individual bacterial cell sizes, we motivate the need for a more general class of phenomenological models of stochastic exponential growth, which are consistent with the observation that the mean-rescaled distributions are approximately stationary at long times. We show that this behavior is not consistent with GBM, instead it is consistent with power-law multiplicative noise with positive fractional powers. Therefore, we consider this general class of phenomenological models for stochastic exponential growth, provide analytical solutions, and identify the important dimensionless combination of model parameters, which determines the shape of the mean-rescaled distribution. We also provide a prescription for robustly inferring model parameters from experimentally observed stochastic growth trajectories.
Binary optics: Trends and limitations
NASA Astrophysics Data System (ADS)
Farn, Michael W.; Veldkamp, Wilfrid B.
1993-08-01
We describe the current state of binary optics, addressing both the technology and the industry (i.e., marketplace). With respect to the technology, the two dominant aspects are optical design methods and fabrication capabilities, with the optical design problem being limited by human innovation in the search for new applications and the fabrication issue being limited by the availability of resources required to improve fabrication capabilities. With respect to the industry, the current marketplace does not favor binary optics as a separate product line and so we expect that companies whose primary purpose is the production of binary optics will not represent the bulk of binary optics production. Rather, binary optics' more natural role is as an enabling technology - a technology which will directly result in a competitive advantage in a company's other business areas - and so we expect that the majority of binary optics will be produced for internal use.
Binary optics: Trends and limitations
NASA Technical Reports Server (NTRS)
Farn, Michael W.; Veldkamp, Wilfrid B.
1993-01-01
We describe the current state of binary optics, addressing both the technology and the industry (i.e., marketplace). With respect to the technology, the two dominant aspects are optical design methods and fabrication capabilities, with the optical design problem being limited by human innovation in the search for new applications and the fabrication issue being limited by the availability of resources required to improve fabrication capabilities. With respect to the industry, the current marketplace does not favor binary optics as a separate product line and so we expect that companies whose primary purpose is the production of binary optics will not represent the bulk of binary optics production. Rather, binary optics' more natural role is as an enabling technology - a technology which will directly result in a competitive advantage in a company's other business areas - and so we expect that the majority of binary optics will be produced for internal use.
Modeling Excitable Systems Coupled Through External Medium
NASA Astrophysics Data System (ADS)
Noorbakhsh, Javad; Mehta, Pankaj
2013-03-01
Excitable systems are stable dynamical systems in which any input beyond a threshold results in a significant output. This behavior is ubiquitous in nature and is seen in biological systems such as Dictyostelium discoideum amoeba and neurons to oscillatory chemical reactions. In this work we will focus on transition to oscillation in populations of excitable systems coupled through an external medium and will study their synchronization. We will describe a mechanism to tune the frequency of oscillations using an external input and will study the effects of stochasticity and inhomogeneity on the collective behavior of the system. Furthermore we will include diffusion into the dynamics of the external medium and will study formation of spatial patterns, their characteristics and their robustness to different factors.
The Search for Trojan Binaries
NASA Astrophysics Data System (ADS)
Merline, William J.; Tamblyn, P. M.; Dumas, C.; Close, L. M.; Chapman, C. R.; Durda, D. D.; Levison, H. F.; Hamilton, D. P.; Nesvorny, D.; Storrs, A.; Enke, B.; Menard, F.
2007-10-01
We report on observations of Jupiter Trojan asteroids in search of binaries. We made observations using HST/ACS of 35 small (V = 17.5-19.5) objects in Cycle 14, without detecting any binaires. We have also observed a few dozen Trojans in our ground-based study of larger Trojans, discovering only one binary. The result is that the frequency of moderately-separated binaries among the Trojans seem rather low, likely less than 5%. Although we have only statistics of small numbers, it appears that the binary frequencies are more akin to the larger Main-Belt asteroids, than to the frequency in the TNO region, which probably exceeds 10%. The low frequency is inconsistent with the projections based on Trojan contact binaries by Mann et al. (2006, BAAS 38, 6509), although our work cannot detect very close or contact binaries. We discovered and characterized the orbit and density of the first Trojan binary, (617) Patroclus using the Gemini AO system (Merline et al. 2001 IAUC 7741). A second binary, (624) Hecktor, has now been reported by Marchis et al. (2006, IAUC 8732). In a broad survey of Main Belt asteroids, we found that, among the larger objects, the binary fraction is about 2%, while we are finding that the fraction is significantly higher among smaller asteroids (and this is even more apparent from lightcurve discoveries). Further, characteristics of these smaller systems indicate a distinctly different formation mechanism the the larger MB binaries. Because the Trojans have compositions that are more like the KBOs, while they live in a collisional environment much more like the Main Belt than the KBOs, these objects should hold vital clues to binary formation mechanics. And because there seems to be a distinct difference in larger and smaller main-belt binaries, we sought to detect such differences among the Trojans as well.
Radio emission from binary stars
NASA Technical Reports Server (NTRS)
Dulk, G. A.
1986-01-01
This paper reviews the radio emission from binary star systems - the emission processes that occur, the characteristics of the binary systems inferred from the radio observations, and the reasons for the activity. Several classes of binary stars are described including those with two main sequence stars, those with one normal star and a white dwarf, and those containing a neutron star or a black hole.
Jumper, Peter H.; Fisher, Robert T.
2013-05-20
The formation of brown dwarfs (BDs) poses a key challenge to star formation theory. The observed dearth of nearby ({<=}5 AU) BD companions to solar mass stars, known as the BD desert, as well as the tendency for low-mass binary systems to be more tightly bound than stellar binaries, has been cited as evidence for distinct formation mechanisms for BDs and stars. In this paper, we explore the implications of the minimal hypothesis that BDs in binary systems originate via the same fundamental fragmentation mechanism as stars, within isolated, turbulent giant molecular cloud cores. We demonstrate analytically that the scaling of specific angular momentum with turbulent core mass naturally gives rise to the BD desert, as well as wide BD binary systems. Further, we show that the turbulent core fragmentation model also naturally predicts that very low mass binary and BD/BD systems are more tightly bound than stellar systems. In addition, in order to capture the stochastic variation intrinsic to turbulence, we generate 10{sup 4} model turbulent cores with synthetic turbulent velocity fields to show that the turbulent fragmentation model accommodates a small fraction of binary BDs with wide separations, similar to observations. Indeed, the picture which emerges from the turbulent fragmentation model is that a single fragmentation mechanism may largely shape both stellar and BD binary distributions during formation.
Brennan J. M.; Blaskiewicz, M.; Mernick, K.
2012-05-20
The full 6-dimensional [x,x'; y,y'; z,z'] stochastic cooling system for RHIC was completed and operational for the FY12 Uranium-Uranium collider run. Cooling enhances the integrated luminosity of the Uranium collisions by a factor of 5, primarily by reducing the transverse emittances but also by cooling in the longitudinal plane to preserve the bunch length. The components have been deployed incrementally over the past several runs, beginning with longitudinal cooling, then cooling in the vertical planes but multiplexed between the Yellow and Blue rings, next cooling both rings simultaneously in vertical (the horizontal plane was cooled by betatron coupling), and now simultaneous horizontal cooling has been commissioned. The system operated between 5 and 9 GHz and with 3 x 10{sup 8} Uranium ions per bunch and produces a cooling half-time of approximately 20 minutes. The ultimate emittance is determined by the balance between cooling and emittance growth from Intra-Beam Scattering. Specific details of the apparatus and mathematical techniques for calculating its performance have been published elsewhere. Here we report on: the method of operation, results with beam, and comparison of results to simulations.
NASA Astrophysics Data System (ADS)
McDonnell, Mark D.; Amblard, Pierre-Olivier; Stocks, Nigel G.
2009-01-01
We introduce and define the concept of a stochastic pooling network (SPN), as a model for sensor systems where redundancy and two forms of 'noise'—lossy compression and randomness—interact in surprising ways. Our approach to analysing SPNs is information theoretic. We define an SPN as a network with multiple nodes that each produce noisy and compressed measurements of the same information. An SPN must combine all these measurements into a single further compressed network output, in a way dictated solely by naturally occurring physical properties—i.e. pooling—and yet cause no (or negligible) reduction in mutual information. This means that SPNs exhibit redundancy reduction as an emergent property of pooling. The SPN concept is applicable to examples in biological neural coding, nanoelectronics, distributed sensor networks, digital beamforming arrays, image processing, multiaccess communication networks and social networks. In most cases the randomness is assumed to be unavoidably present rather than deliberately introduced. We illustrate the central properties of SPNs for several case studies, where pooling occurs by summation, including nodes that are noisy scalar quantizers, and nodes with conditionally Poisson statistics. Other emergent properties of SPNs and some unsolved problems are also briefly discussed.
Stochastic processes in gravitropism.
Meroz, Yasmine; Bastien, Renaud
2014-01-01
In this short review we focus on the role of noise in gravitropism of plants - the reorientation of plants according to the direction of gravity. We briefly introduce the conventional picture of static gravisensing in cells specialized in sensing. This model hinges on the sedimentation of statoliths (high in density and mass relative to other organelles) to the lowest part of the sensing cell. We then present experimental observations that cannot currently be understood within this framework. Lastly we introduce some current alternative models and directions that attempt to incorporate and interpret these experimental observations, including: (i) dynamic sensing, where gravisensing is suggested to be enhanced by stochastic events due to thermal and mechanical noise. These events both effectively lower the threshold of response, and lead to small-distance sedimentation, allowing amplification, and integration of the signal. (ii) The role of the cytoskeleton in signal-to-noise modulation and (iii) in signal transduction. In closing, we discuss directions that seem to either not have been explored, or that are still poorly understood.
Stochastic Optics: A Scattering Mitigation Framework for Radio Interferometric Imaging
NASA Astrophysics Data System (ADS)
Johnson, Michael D.
2016-12-01
Just as turbulence in the Earth’s atmosphere can severely limit the angular resolution of optical telescopes, turbulence in the ionized interstellar medium fundamentally limits the resolution of radio telescopes. We present a scattering mitigation framework for radio imaging with very long baseline interferometry (VLBI) that partially overcomes this limitation. Our framework, “stochastic optics,” derives from a simplification of strong interstellar scattering to separate small-scale (“diffractive”) effects from large-scale (“refractive”) effects, thereby separating deterministic and random contributions to the scattering. Stochastic optics extends traditional synthesis imaging by simultaneously reconstructing an unscattered image and its refractive perturbations. Its advantages over direct imaging come from utilizing the many deterministic properties of the scattering—such as the time-averaged “blurring,” polarization independence, and the deterministic evolution in frequency and time—while still accounting for the stochastic image distortions on large scales. These distortions are identified in the image reconstructions through regularization by their time-averaged power spectrum. Using synthetic data, we show that this framework effectively removes the blurring from diffractive scattering while reducing the spurious image features from refractive scattering. Stochastic optics can provide significant improvements over existing scattering mitigation strategies and is especially promising for imaging the Galactic Center supermassive black hole, Sagittarius A*, with the Global mm-VLBI Array and with the Event Horizon Telescope.
Searching for the stochastic gravitational-wave background in Advanced LIGO's first observing run
NASA Astrophysics Data System (ADS)
Meyers, Patrick
2017-01-01
One of the most exciting prospects of gravitational-wave astrophysics and cosmology is the measurement of the stochastic gravitational-wave background. In this talk, we discuss the most recent searches for a stochastic background with Advanced LIGO--the first performed with advanced interferometric detectors. We search for an isotropic as well as an anisotropic background, and perform a directed search for persistent gravitational waves in three promising directions. Additionally, with the accumulation of more Advanced LIGO data and the anticipated addition of Advanced Virgo to the network in 2017, we can also start to consider what the recent gravitational-wave detections--GW150914 and GW151226--tell us about when we can expect a detection of the stochastic background from binary black hole coalescences. For the LIGO Scientific Collaboration and the Virgo Collaboration.
Particle acceleration in binaries
NASA Astrophysics Data System (ADS)
Sinitsyna, V. G.; Sinitsyna, V. Y.
2017-06-01
Cygnus X-3 massive binary system is one of the powerful sources of radio and X-ray emission consisting of an accreting compact object, probably a black hole, with a Wolf-Rayet star companion. Based on the detections of ultra high energy gamma-rays by Kiel and Havera Park, Cygnus X-3 has been proposed to be one of the most powerful sources of charged cosmic ray particles in the Galaxy. The results of long-term observations of the Cyg X-3 binary at energies 800 GeV-85 TeV detected by SHALON in 1995 are presented with images, integral spectra and spectral energy distribution. The identification of source with Cygnus X-3 detected by SHALON was secured by the detection of its 4.8 hour orbital period in TeV gamma-rays. During the whole observation period of Cyg X-3 with SHALON significant flux increases were detected at energies above 0.8 TeV. These TeV flux increases are correlated with flaring activity at a lower energy range of X-ray and/or at observations of Fermi LAT as well as with radio emission from the relativistic jets of Cygnus X-3. The variability of very high-energy gamma-radiation and correlation of radiation activity in the wide energy range can provide essential information on particle mechanism production up to very high energies. Whereas, modulation of very high energy emission connected to the orbital motion of the binary system, provides an understanding of the emission processes, nature and location of particle acceleration.
NASA Astrophysics Data System (ADS)
Olling, Robert; Shaya, E.
2011-01-01
We develop Bayesian statistical methods for discovering and assigning probabilities to physical stellar companions. The probabilities depend on similarities in "corrected" proper motion, parallax, and the phase-space density of field stars. Very wide binaries with separations over 10,000 AU have recently been predicted to form during the dissolution process of low-mass star clusters. In this case, these wide systems would still carry information about the density and size of the star cluster in which they formed. Alternatively, Galactic tides and weak interactions with passing stars peel off stars from such very wide binaries in less than 1/2 of a Hubble time. In the past, these systems have been used to rule in/out MACHOs or less compact dark (matter) objects. Ours is the first all-sky survey to locate escaped companions that are still drifting along with each other, long after their binary bond has been broken. We test stars for companionship up to an apparent separation of 8 parsec: 10 to 100 times wider than previous searches. Among Hipparcos stars within 100 pc, we find about 260 systems with separations between 0.01 and 1 pc, and another 190 with separation from 1 to 8 parsec. We find a number of previously unnoticed naked-eye companions, among which: Capella & 50 Per; Alioth, Megrez & Alcor; gamma & tau Cen; phi Eri & eta Hor; 62 & 63 Cnc; gamma & tau Per; zeta & delta Hya; beta01, beta02 & beta03 Tuc; 44 & 58 Oph and pi & rho Cep. At least 15 of our candidates are exoplanet host stars.
Evolution of Close Binary Systems
Yakut, K; Eggleton, P
2005-01-24
We collected data on the masses, radii, etc. of three classes of close binary stars: low-temperature contact binaries (LTCBs), near-contact binaries (NCBs), and detached close binaries (DCBs). They restrict themselves to systems where (1) both components are, at least arguably, near the Main Sequence, (2) the periods are less than a day, and (3) there is both spectroscopic and photometric analysis leading to reasonably reliable data. They discuss the possible evolutionary connections between these three classes, emphasizing the roles played by mass loss and angular momentum loss in rapidly-rotating cool stars.
Ecospheres around binary stars
NASA Astrophysics Data System (ADS)
Deka, B.
2011-01-01
Scientific investigations concerning ecospheres of other stars are very important for understanding the posibilities of existence and evolution of extraterrestrial life. In several last years astronomers discovered hundreds of extrasolar planets. Identification of stars with ecospheres is the first step in selecting those planets which could be inhabited. Usually an ecosphere of a single star is considered but it may also exist in planetary systems with two suns. This possibility is very promising in search for life on other planets as more that 60 % of stars reside in binary or multiple systems.
Low autocorrelation binary sequences
NASA Astrophysics Data System (ADS)
Packebusch, Tom; Mertens, Stephan
2016-04-01
Binary sequences with minimal autocorrelations have applications in communication engineering, mathematics and computer science. In statistical physics they appear as groundstates of the Bernasconi model. Finding these sequences is a notoriously hard problem, that so far can be solved only by exhaustive search. We review recent algorithms and present a new algorithm that finds optimal sequences of length N in time O(N {1.73}N). We computed all optimal sequences for N≤slant 66 and all optimal skewsymmetric sequences for N≤slant 119.
Chu, J.C.
1958-06-10
A binary storage device is described comprising a toggle provided with associsted improved driver circuits adapted to produce reliable action of the toggle during clearing of the toggle to one of its two states. or transferring information into and out of the toggle. The invention resides in the development of a self-regulating driver circuit to minimize the fluctuation of the driving voltages for the toggle. The disclosed driver circuit produces two pulses in response to an input pulse: a first or ''clear'' pulse beginning nt substantially the same time but endlrg slightly sooner than the second or ''transfer'' output pulse.
Segmentation of stochastic images with a stochastic random walker method.
Pätz, Torben; Preusser, Tobias
2012-05-01
We present an extension of the random walker segmentation to images with uncertain gray values. Such gray-value uncertainty may result from noise or other imaging artifacts or more general from measurement errors in the image acquisition process. The purpose is to quantify the influence of the gray-value uncertainty onto the result when using random walker segmentation. In random walker segmentation, a weighted graph is built from the image, where the edge weights depend on the image gradient between the pixels. For given seed regions, the probability is evaluated for a random walk on this graph starting at a pixel to end in one of the seed regions. Here, we extend this method to images with uncertain gray values. To this end, we consider the pixel values to be random variables (RVs), thus introducing the notion of stochastic images. We end up with stochastic weights for the graph in random walker segmentation and a stochastic partial differential equation (PDE) that has to be solved. We discretize the RVs and the stochastic PDE by the method of generalized polynomial chaos, combining the recent developments in numerical methods for the discretization of stochastic PDEs and an interactive segmentation algorithm. The resulting algorithm allows for the detection of regions where the segmentation result is highly influenced by the uncertain pixel values. Thus, it gives a reliability estimate for the resulting segmentation, and it furthermore allows determining the probability density function of the segmented object volume.
Observational Types of Binaries in the Binary Star Database
NASA Astrophysics Data System (ADS)
Malkov, O.; Kovaleva, D.; Kaygorodov, P.
2017-06-01
In the present paper we describe observational types of binaries, included in BDB, the Binary star database, which presently contains data on physical and positional parameters for about 260 000 components of 120 000 stellar systems of multiplicity 2 to more than 20, taken from a large variety of published catalogues and databases.
NASA Astrophysics Data System (ADS)
Remage Evans, Nancy
Blue main sequence companions of binary Cepheids can be used to determine Clio luminosity of the Cepheids. By matching the composite spectrum of the companion and the Cepheid with those of standard stars, the spectral type of the companion and the magnitude difference between the two stars can be determined. The main sequence absolute magnitude calibration of the companion then leads to the absolute magnitude of the Cepheid. The aim of this project is to obtain low dispersion SWP spectra of three Cepheids (T Vul, Y Lac, and RS Ori) for which the LWP spectra show excess flux at 2500 from the companion. In addition, we request LWP low dispersion spectra of five Cepheids to complete the survey of all Cepheids brighter than 8" magnitude to look for companions. Archival IUE spectra are non-existant or inadequate (no LWP or overexposed). The purpose of this survey is to accurately determine the percentage of Cepheids which are binaries, to compare with evolutionary predictions. This IUE survey will identify definitively Cepheids with blue companions, about which there is come confusion from groundbased photometric techniques, and hence prevent distortions to such parameters as luminosity, color and reddening. In addition, the distribution of mass ratios (from the spectral type of the main sequence mass and the evolutionary mass of the Cepheid (Evans and Bolton, 1989)), is basic information about star formation.
Stacking with stochastic cooling
NASA Astrophysics Data System (ADS)
Caspers, Fritz; Möhl, Dieter
2004-10-01
Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles 'seen' by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly 'protected' from the Schottky noise of the stack. Vice versa the stack has to be efficiently 'shielded' against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 105 the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters). In the 'old AA', where the antiproton collection and stacking was done in one single ring, the injected beam was further shielded during cooling by means of a movable shutter. The complexity of these systems is very high. For more modest stacking ratios, one might use azimuthal rather than radial separation of stack and injected beam. Schematically half of the circumference would be used to accept and cool new beam and the remainder to house the stack. Fast gating is then required between the high gain cooling of the injected beam and the low gain stack cooling. RF-gymnastics are used to merge the pre-cooled batch with the stack, to re-create free space for the next injection, and to capture the new batch. This scheme is less demanding for the storage ring lattice, but at the expense of some reduction in stacking rate. The talk reviews the 'radial' separation schemes and also gives some considerations to the 'azimuthal' schemes.
A Stochastic Collocation Algorithm for Uncertainty Analysis
NASA Technical Reports Server (NTRS)
Mathelin, Lionel; Hussaini, M. Yousuff; Zang, Thomas A. (Technical Monitor)
2003-01-01
This report describes a stochastic collocation method to adequately handle a physically intrinsic uncertainty in the variables of a numerical simulation. For instance, while the standard Galerkin approach to Polynomial Chaos requires multi-dimensional summations over the stochastic basis functions, the stochastic collocation method enables to collapse those summations to a one-dimensional summation only. This report furnishes the essential algorithmic details of the new stochastic collocation method and provides as a numerical example the solution of the Riemann problem with the stochastic collocation method used for the discretization of the stochastic parameters.
Binary descriptor-based dense line-scan stereo matching
NASA Astrophysics Data System (ADS)
Valentín, Kristián; Huber-Mörk, Reinhold; Štolc, Svorad
2017-01-01
We present a line-scan stereo system and descriptor-based dense stereo matching for high-performance vision applications. The stochastic binary local descriptor (STABLE) descriptor is a local binary descriptor that builds upon the principles of compressed sensing theory. The most important properties of STABLE are the independence of the descriptor length from the matching window size and the possibility that more than one pair of pixels contributes to a single-descriptor bit. Individual descriptor bits are computed by comparing image intensities over pairs of balanced random subsets of pixels chosen from the whole described area. On a synthetic as well as real-world examples, we demonstrate that STABLE provides competitive or superior performance than other state-of-the-art local binary descriptors in the task of dense stereo matching. The real-world example is derived from line-scan binocular stereo imaging, i.e., two line-scan cameras are observing the same object line and 2-D images are generated due to relative motion. We show that STABLE performs significantly better than the census transform and local binary patterns (LBP) in all considered geometric and radiometric distortion categories to be expected in practical applications of stereo vision. Moreover, we show as well that STABLE provides comparable or better matching quality than the binary robust-independent elementary features descriptor. The low computational complexity and flexible memory footprint make STABLE well suited for most hardware architectures. We present quantitative results based on the Middlebury stereo dataset as well as illustrative results for road surface reconstruction.
Stochastic models: theory and simulation.
Field, Richard V., Jr.
2008-03-01
Many problems in applied science and engineering involve physical phenomena that behave randomly in time and/or space. Examples are diverse and include turbulent flow over an aircraft wing, Earth climatology, material microstructure, and the financial markets. Mathematical models for these random phenomena are referred to as stochastic processes and/or random fields, and Monte Carlo simulation is the only general-purpose tool for solving problems of this type. The use of Monte Carlo simulation requires methods and algorithms to generate samples of the appropriate stochastic model; these samples then become inputs and/or boundary conditions to established deterministic simulation codes. While numerous algorithms and tools currently exist to generate samples of simple random variables and vectors, no cohesive simulation tool yet exists for generating samples of stochastic processes and/or random fields. There are two objectives of this report. First, we provide some theoretical background on stochastic processes and random fields that can be used to model phenomena that are random in space and/or time. Second, we provide simple algorithms that can be used to generate independent samples of general stochastic models. The theory and simulation of random variables and vectors is also reviewed for completeness.
Enhanced algorithms for stochastic programming
Krishna, A.S.
1993-09-01
In this dissertation, we present some of the recent advances made in solving two-stage stochastic linear programming problems of large size and complexity. Decomposition and sampling are two fundamental components of techniques to solve stochastic optimization problems. We describe improvements to the current techniques in both these areas. We studied different ways of using importance sampling techniques in the context of Stochastic programming, by varying the choice of approximation functions used in this method. We have concluded that approximating the recourse function by a computationally inexpensive piecewise-linear function is highly efficient. This reduced the problem from finding the mean of a computationally expensive functions to finding that of a computationally inexpensive function. Then we implemented various variance reduction techniques to estimate the mean of a piecewise-linear function. This method achieved similar variance reductions in orders of magnitude less time than, when we directly applied variance-reduction techniques directly on the given problem. In solving a stochastic linear program, the expected value problem is usually solved before a stochastic solution and also to speed-up the algorithm by making use of the information obtained from the solution of the expected value problem. We have devised a new decomposition scheme to improve the convergence of this algorithm.
Stochastic simulation in systems biology.
Székely, Tamás; Burrage, Kevin
2014-11-01
Natural systems are, almost by definition, heterogeneous: this can be either a boon or an obstacle to be overcome, depending on the situation. Traditionally, when constructing mathematical models of these systems, heterogeneity has typically been ignored, despite its critical role. However, in recent years, stochastic computational methods have become commonplace in science. They are able to appropriately account for heterogeneity; indeed, they are based around the premise that systems inherently contain at least one source of heterogeneity (namely, intrinsic heterogeneity). In this mini-review, we give a brief introduction to theoretical modelling and simulation in systems biology and discuss the three different sources of heterogeneity in natural systems. Our main topic is an overview of stochastic simulation methods in systems biology. There are many different types of stochastic methods. We focus on one group that has become especially popular in systems biology, biochemistry, chemistry and physics. These discrete-state stochastic methods do not follow individuals over time; rather they track only total populations. They also assume that the volume of interest is spatially homogeneous. We give an overview of these methods, with a discussion of the advantages and disadvantages of each, and suggest when each is more appropriate to use. We also include references to software implementations of them, so that beginners can quickly start using stochastic methods for practical problems of interest.
Stochastic simulation in systems biology
Székely, Tamás; Burrage, Kevin
2014-01-01
Natural systems are, almost by definition, heterogeneous: this can be either a boon or an obstacle to be overcome, depending on the situation. Traditionally, when constructing mathematical models of these systems, heterogeneity has typically been ignored, despite its critical role. However, in recent years, stochastic computational methods have become commonplace in science. They are able to appropriately account for heterogeneity; indeed, they are based around the premise that systems inherently contain at least one source of heterogeneity (namely, intrinsic heterogeneity). In this mini-review, we give a brief introduction to theoretical modelling and simulation in systems biology and discuss the three different sources of heterogeneity in natural systems. Our main topic is an overview of stochastic simulation methods in systems biology. There are many different types of stochastic methods. We focus on one group that has become especially popular in systems biology, biochemistry, chemistry and physics. These discrete-state stochastic methods do not follow individuals over time; rather they track only total populations. They also assume that the volume of interest is spatially homogeneous. We give an overview of these methods, with a discussion of the advantages and disadvantages of each, and suggest when each is more appropriate to use. We also include references to software implementations of them, so that beginners can quickly start using stochastic methods for practical problems of interest. PMID:25505503
Stochastic inverse problem in the radiation of noise
NASA Technical Reports Server (NTRS)
Chow, P. L.; Maestrello, L.
1978-01-01
The reported investigation is concerned with a stochastic inverse radiation problem in a uniform medium. The problem is illustrated with the aid of a simple model consisting of an array of point sources. The entropy functional is chosen to be the structural functional in determining the source distribution. A general theory for the stochastic inverse problem is introduced. It is shown that the general procedure yields the methods of the Lagrangian multiplier, when the structural and residual functionals are specialized. Tihonov's regularization and a method related to generalized or pseudoinverses are also obtained. Examples considered for purposes of illustration are related to a continuous source with the least noise intensity, a continuous source with a potential, and an axisymmetric line source.
Some variance reduction methods for numerical stochastic homogenization.
Blanc, X; Le Bris, C; Legoll, F
2016-04-28
We give an overview of a series of recent studies devoted to variance reduction techniques for numerical stochastic homogenization. Numerical homogenization requires that a set of problems is solved at the microscale, the so-called corrector problems. In a random environment, these problems are stochastic and therefore need to be repeatedly solved, for several configurations of the medium considered. An empirical average over all configurations is then performed using the Monte Carlo approach, so as to approximate the effective coefficients necessary to determine the macroscopic behaviour. Variance severely affects the accuracy and the cost of such computations. Variance reduction approaches, borrowed from other contexts in the engineering sciences, can be useful. Some of these variance reduction techniques are presented, studied and tested here.
A nonparametric stochastic optimizer for TDMA-based neuronal signaling.
Suzuki, Junichi; Phan, Dũng H; Budiman, Harry
2014-09-01
This paper considers neurons as a physical communication medium for intrabody networks of nano/micro-scale machines and formulates a noisy multiobjective optimization problem for a Time Division Multiple Access (TDMA) communication protocol atop the physical layer. The problem is to find the Pareto-optimal TDMA configurations that maximize communication performance (e.g., latency) by multiplexing a given neuronal network to parallelize signal transmissions while maximizing communication robustness (i.e., unlikeliness of signal interference) against noise in neuronal signaling. Using a nonparametric significance test, the proposed stochastic optimizer is designed to statistically determine the superior-inferior relationship between given two solution candidates and seek the optimal trade-offs among communication performance and robustness objectives. Simulation results show that the proposed optimizer efficiently obtains quality TDMA configurations in noisy environments and outperforms existing noise-aware stochastic optimizers.
NASA Astrophysics Data System (ADS)
Manset, N.; Bastien, P.
2003-06-01
We present polarimetric observations of seven pre-main-sequence (PMS) spectroscopic binaries located in the ρ Ophiuchus and Upper Scorpius star-forming regions (SFRs). The average observed polarizations at 7660 Å are between 0.5% and 3.5%. After estimates of the interstellar polarization are removed, all binaries have an intrinsic polarization above 0.4%, even though most of them do not present other evidences for circumstellar dust. Two binaries, NTTS 162814-2427 and NTTS 162819-2423S, present high levels of intrinsic polarization between 1.5% and 2.1%, in agreement with the fact that other observations (photometry, spectroscopy) indicate the presence of circumstellar dust. Tests reveal that all seven PMS binaries have a statistically variable or possibly variable polarization. Combining these results with our previous sample of binaries located in the Taurus, Auriga, and Orion SFRs, 68% of the binaries have an intrinsic polarization above 0.5%, and 90% of the binaries are polarimetrically variable or possibly variable. NTTS 160814-1857, 162814-2427, and 162819-2423S are clearly polarimetrically variable. The first two also exhibit phase-locked variations over ~10 and ~40 orbits, respectively. Statistically, NTTS 160905-1859 is possibly variable, but it shows periodic variations not detected by the statistical tests; those variations are not phased locked and only present for short intervals of time. The amplitudes of the variations reach a few tenths of a percent, greater than for the previously studied PMS binaries located in the Taurus, Orion, and Auriga SFRs. The high-eccentricity system NTTS 162814-2427 shows single-periodic variations, in agreement with our previous numerical simulations. We compare the observations with some of our numerical simulations and also show that an analysis of the periodic polarimetric variations with the Brown, McLean, & Emslie (BME) formalism to find the orbital inclination is for the moment premature: nonperiodic events
Relativistic Binaries in Globular Clusters.
Benacquista, Matthew J; Downing, Jonathan M B
2013-01-01
Galactic globular clusters are old, dense star systems typically containing 10(4)-10(6) stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker-Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.
Multilevel Models for Binary Data
ERIC Educational Resources Information Center
Powers, Daniel A.
2012-01-01
The methods and models for categorical data analysis cover considerable ground, ranging from regression-type models for binary and binomial data, count data, to ordered and unordered polytomous variables, as well as regression models that mix qualitative and continuous data. This article focuses on methods for binary or binomial data, which are…
Multilevel Models for Binary Data
ERIC Educational Resources Information Center
Powers, Daniel A.
2012-01-01
The methods and models for categorical data analysis cover considerable ground, ranging from regression-type models for binary and binomial data, count data, to ordered and unordered polytomous variables, as well as regression models that mix qualitative and continuous data. This article focuses on methods for binary or binomial data, which are…
Binary stars can provide the `missing photons' needed for reionization
NASA Astrophysics Data System (ADS)
Ma, Xiangcheng; Hopkins, Philip F.; Kasen, Daniel; Quataert, Eliot; Faucher-Giguère, Claude-André; Kereš, Dušan; Murray, Norman; Strom, Allison
2016-07-01
Empirical constraints on reionization require galactic ionizing photon escape fractions fesc ≳ 20 per cent, but recent high-resolution radiation-hydrodynamic calculations have consistently found much lower values ˜1-5 per cent. While these models include strong stellar feedback and additional processes such as runaway stars, they almost exclusively consider stellar evolution models based on single (isolated) stars, despite the fact that most massive stars are in binaries. We re-visit these calculations, combining radiative transfer and high-resolution cosmological simulations with detailed models for stellar feedback from the Feedback in Realistic Environments project. For the first time, we use a stellar evolution model that includes a physically and observationally motivated treatment of binaries (the Binary Population and Spectral Synthesis model). Binary mass transfer and mergers enhance the population of massive stars at late times (≳3 Myr) after star formation, which in turn strongly enhances the late-time ionizing photon production (especially at low metallicities). These photons are produced after feedback from massive stars has carved escape channels in the interstellar medium, and so efficiently leak out of galaxies. As a result, the time-averaged `effective' escape fraction (ratio of escaped ionizing photons to observed 1500 Å photons) increases by factors ˜4-10, sufficient to explain reionization. While important uncertainties remain, we conclude that binary evolution may be critical for understanding the ionization of the Universe.
Signature Visualization of Software Binaries
Panas, T
2008-07-01
In this paper we present work on the visualization of software binaries. In particular, we utilize ROSE, an open source compiler infrastructure, to pre-process software binaries, and we apply a landscape metaphor to visualize the signature of each binary (malware). We define the signature of a binary as a metric-based layout of the functions contained in the binary. In our initial experiment, we visualize the signatures of a series of computer worms that all originate from the same line. These visualizations are useful for a number of reasons. First, the images reveal how the archetype has evolved over a series of versions of one worm. Second, one can see the distinct changes between version. This allows the viewer to form conclusions about the development cycle of a particular worm.
Magnetic activity of interacting binaries
NASA Astrophysics Data System (ADS)
Hill, Colin A.
2017-10-01
Interacting binaries provide unique parameter regimes, both rapid rotation and tidal distortion, in which to test stellar dynamo theories and study the resulting magnetic activity. Close binaries such as cataclysmic variables (CVs) have been found to differentially rotate, and so can provide testbeds for tidal dissipation efficiency in stellar convective envelopes, with implications for both CV and planet-star evolution. Furthermore, CVs show evidence of preferential emergence of magnetic flux tubes towards the companion star, as well as large, long-lived prominences that form preferentially within the binary geometry. Moreover, RS CVn binaries also show clear magnetic interactions between the two components in the form of coronal X-ray emission. Here, we review several examples of magnetic interactions in different types of close binaries.
BINARY ASTROMETRIC MICROLENSING WITH GAIA
Sajadian, Sedighe
2015-04-15
We investigate whether or not Gaia can specify the binary fractions of massive stellar populations in the Galactic disk through astrometric microlensing. Furthermore, we study whether or not some information about their mass distributions can be inferred via this method. In this regard, we simulate the binary astrometric microlensing events due to massive stellar populations according to the Gaia observing strategy by considering (i) stellar-mass black holes, (ii) neutron stars, (iii) white dwarfs, and (iv) main-sequence stars as microlenses. The Gaia efficiency for detecting the binary signatures in binary astrometric microlensing events is ∼10%–20%. By calculating the optical depth due to the mentioned stellar populations, the numbers of the binary astrometric microlensing events being observed with Gaia with detectable binary signatures, for the binary fraction of about 0.1, are estimated to be 6, 11, 77, and 1316, respectively. Consequently, Gaia can potentially specify the binary fractions of these massive stellar populations. However, the binary fraction of black holes measured with this method has a large uncertainty owing to a low number of the estimated events. Knowing the binary fractions in massive stellar populations helps with studying the gravitational waves. Moreover, we investigate the number of massive microlenses for which Gaia specifies masses through astrometric microlensing of single lenses toward the Galactic bulge. The resulting efficiencies of measuring the mass of mentioned populations are 9.8%, 2.9%, 1.2%, and 0.8%, respectively. The numbers of their astrometric microlensing events being observed in the Gaia era in which the lens mass can be inferred with the relative error less than 0.5 toward the Galactic bulge are estimated as 45, 34, 76, and 786, respectively. Hence, Gaia potentially gives us some information about the mass distribution of these massive stellar populations.
Stochastic determination of matrix determinants.
Dorn, Sebastian; Ensslin, Torsten A
2015-07-01
Matrix determinants play an important role in data analysis, in particular when Gaussian processes are involved. Due to currently exploding data volumes, linear operations-matrices-acting on the data are often not accessible directly but are only represented indirectly in form of a computer routine. Such a routine implements the transformation a data vector undergoes under matrix multiplication. While efficient probing routines to estimate a matrix's diagonal or trace, based solely on such computationally affordable matrix-vector multiplications, are well known and frequently used in signal inference, there is no stochastic estimate for its determinant. We introduce a probing method for the logarithm of a determinant of a linear operator. Our method rests upon a reformulation of the log-determinant by an integral representation and the transformation of the involved terms into stochastic expressions. This stochastic determinant determination enables large-size applications in Bayesian inference, in particular evidence calculations, model comparison, and posterior determination.
Intrinsic optimization using stochastic nanomagnets
NASA Astrophysics Data System (ADS)
Sutton, Brian; Camsari, Kerem Yunus; Behin-Aein, Behtash; Datta, Supriyo
2017-03-01
This paper draws attention to a hardware system which can be engineered so that its intrinsic physics is described by the generalized Ising model and can encode the solution to many important NP-hard problems as its ground state. The basic constituents are stochastic nanomagnets which switch randomly between the ±1 Ising states and can be monitored continuously with standard electronics. Their mutual interactions can be short or long range, and their strengths can be reconfigured as needed to solve specific problems and to anneal the system at room temperature. The natural laws of statistical mechanics guide the network of stochastic nanomagnets at GHz speeds through the collective states with an emphasis on the low energy states that represent optimal solutions. As proof-of-concept, we present simulation results for standard NP-complete examples including a 16-city traveling salesman problem using experimentally benchmarked models for spin-transfer torque driven stochastic nanomagnets.
Nonlinear optimization for stochastic simulations.
Johnson, Michael M.; Yoshimura, Ann S.; Hough, Patricia Diane; Ammerlahn, Heidi R.
2003-12-01
This report describes research targeting development of stochastic optimization algorithms and their application to mission-critical optimization problems in which uncertainty arises. The first section of this report covers the enhancement of the Trust Region Parallel Direct Search (TRPDS) algorithm to address stochastic responses and the incorporation of the algorithm into the OPT++ optimization library. The second section describes the Weapons of Mass Destruction Decision Analysis Center (WMD-DAC) suite of systems analysis tools and motivates the use of stochastic optimization techniques in such non-deterministic simulations. The third section details a batch programming interface designed to facilitate criteria-based or algorithm-driven execution of system-of-system simulations. The fourth section outlines the use of the enhanced OPT++ library and batch execution mechanism to perform systems analysis and technology trade-off studies in the WMD detection and response problem domain.
Intrinsic optimization using stochastic nanomagnets
Sutton, Brian; Camsari, Kerem Yunus; Behin-Aein, Behtash; Datta, Supriyo
2017-01-01
This paper draws attention to a hardware system which can be engineered so that its intrinsic physics is described by the generalized Ising model and can encode the solution to many important NP-hard problems as its ground state. The basic constituents are stochastic nanomagnets which switch randomly between the ±1 Ising states and can be monitored continuously with standard electronics. Their mutual interactions can be short or long range, and their strengths can be reconfigured as needed to solve specific problems and to anneal the system at room temperature. The natural laws of statistical mechanics guide the network of stochastic nanomagnets at GHz speeds through the collective states with an emphasis on the low energy states that represent optimal solutions. As proof-of-concept, we present simulation results for standard NP-complete examples including a 16-city traveling salesman problem using experimentally benchmarked models for spin-transfer torque driven stochastic nanomagnets. PMID:28295053
Stochastic excitation of stellar oscillations
NASA Astrophysics Data System (ADS)
Samadi, Reza
2001-05-01
Since more than about thirty years, solar oscillations are thought to be excited stochastically by the turbulent motions in the solar convective zone. It is currently believed that oscillations of stars lower than 2 solar masses - which possess an upper convective zone - are excited stochastically by turbulent convection in their outer layers. Providing that accurate measurements of the oscillation amplitudes and damping rates are available it is possible to evaluate the power injected into the modes and thus - by comparison with the observations - to constrain current theories. A recent theoretical work (Samadi & Goupil, 2001; Samadi et al., 2001) supplements and reinforces the theory of stochastic excitation of star vibrations. This process was generalized to a global description of the turbulent state of their convective zone. The comparison between observation and theory, thus generalized, will allow to better know the turbulent spectrum of stars, and this in particular thanks to the COROT mission.
Principal axes for stochastic dynamics
NASA Astrophysics Data System (ADS)
Vasconcelos, V. V.; Raischel, F.; Haase, M.; Peinke, J.; Wächter, M.; Lind, P. G.; Kleinhans, D.
2011-09-01
We introduce a general procedure for directly ascertaining how many independent stochastic sources exist in a complex system modeled through a set of coupled Langevin equations of arbitrary dimension. The procedure is based on the computation of the eigenvalues and the corresponding eigenvectors of local diffusion matrices. We demonstrate our algorithm by applying it to two examples of systems showing Hopf bifurcation. We argue that computing the eigenvectors associated to the eigenvalues of the diffusion matrix at local mesh points in the phase space enables one to define vector fields of stochastic eigendirections. In particular, the eigenvector associated to the lowest eigenvalue defines the path of minimum stochastic forcing in phase space, and a transform to a new coordinate system aligned with the eigenvectors can increase the predictability of the system.
NASA Technical Reports Server (NTRS)
Lacksonen, Thomas A.
1994-01-01
Small space flight project design at NASA Langley Research Center goes through a multi-phase process from preliminary analysis to flight operations. The process insures that each system achieves its technical objectives with demonstrated quality and within planned budgets and schedules. A key technical component of early phases is decision analysis, which is a structure procedure for determining the best of a number of feasible concepts based upon project objectives. Feasible system concepts are generated by the designers and analyzed for schedule, cost, risk, and technical measures. Each performance measure value is normalized between the best and worst values and a weighted average score of all measures is calculated for each concept. The concept(s) with the highest scores are retained, while others are eliminated from further analysis. This project automated and enhanced the decision analysis process. Automation of the decision analysis process was done by creating a user-friendly, menu-driven, spreadsheet macro based decision analysis software program. The program contains data entry dialog boxes, automated data and output report generation, and automated output chart generation. The enhancements to the decision analysis process permit stochastic data entry and analysis. Rather than enter single measure values, the designers enter the range and most likely value for each measure and concept. The data can be entered at the system or subsystem level. System level data can be calculated as either sum, maximum, or product functions of the subsystem data. For each concept, the probability distributions are approximated for each measure and the total score for each concept as either constant, triangular, normal, or log-normal distributions. Based on these distributions, formulas are derived for the probability that the concept meets any given constraint, the probability that the concept meets all constraints, and the probability that the concept is within a given
Partial ASL extensions for stochastic programming.
Gay, David
2010-03-31
partially completed extensions for stochastic programming to the AMPL/solver interface library (ASL).modeling and experimenting with stochastic recourse problems. This software is not primarily for military applications
NASA Technical Reports Server (NTRS)
Truong, Trieu-Kie (Inventor); Hsu, In-Shek (Inventor); Reed, Irving S. (Inventor)
1989-01-01
A pipeline binary updown counter is comprised of simple stages that may be readily replicated. Each stage is defined by the Boolean logic equation: A(sub n)(t) = A(sub n)(t - 1) exclusive OR (U AND P(sub n)) inclusive OR (D AND Q(sub n)), where A(sub n)(t) denotes the value of the nth bit at time t. The input to the counter has three values represented by two binary signals U and D such that if both are zero, the input is zero, if U = 0 and D = 1, the input is -1 and if U = 1 and D = 0, the input is +1. P(sub n) represents a product of A(sub k)'s for 1 is less than or equal to k is less than or equal to -1, while Q(sub n) represents the product of bar A's for 1 is less than or equal to K is less than or equal to n - 1, where bar A(sub k) is the complement of A(sub k) and P(sub n) and Q(sub n) are expressed as the following two equations: P(sub n) = A(sub n - 1) A(sub n - 2)...A(sub 1) and Q(sub n) = bar A(sub n - 1) bar A(sub n - 2)...bar A(sub 1), which can be written in recursive form as P(sub n) = P(sub n - 1) AND bar A(sub n - 1) and Q(sub n) = Q(sub n - 1) AND bar A(sub n - 1) with the initial values P(sub 1) = 1 and Q(sub 1) = 1.
Stochastic thermodynamics for delayed Langevin systems.
Jiang, Huijun; Xiao, Tiejun; Hou, Zhonghuai
2011-06-01
We discuss stochastic thermodynamics (ST) for delayed Langevin systems in this paper. By using the general principles of ST, the first-law-like energy balance and trajectory-dependent entropy s(t) can be well defined in a way that is similar to that in a system without delay. Because the presence of time delay brings an additional entropy flux into the system, the conventional second law (Δs(tot))≥0 no longer holds true, where Δs(tot) denotes the total entropy change along a stochastic path and (·) stands for the average over the path ensemble. With the help of a Fokker-Planck description, we introduce a delay-averaged trajectory-dependent dissipation functional η[χ(t)] which involves the work done by a delay-averaged force F(x,t) along the path χ(t) and equals the medium entropy change Δs(m)[x(t)] in the absence of delay. We show that the total dissipation functional R=Δs+η, where Δs denotes the system entropy change along a path, obeys (R)≥0, which could be viewed as the second law in the delayed system. In addition, the integral fluctuation theorem (e(-R))=1 also holds true. We apply these concepts to a linear Langevin system with time delay and periodic external force. Numerical results demonstrate that the total entropy change (Δs(tot)) could indeed be negative when the delay feedback is positive. By using an inversing-mapping approach, we are able to obtain the delay-averaged force F(x,t) from the stationary distribution and then calculate the functional R as well as its distribution. The second law (R)≥0 and the fluctuation theorem are successfully validated.
Comments on optical stochastic cooling
K.Y. Ng, S.Y. Lee and Y.K. Zhang
2002-10-08
An important necessary condition for transverse phase space damping in the optical stochastic cooling with transit-time method is derived. The longitudinal and transverse damping dynamics for the optical stochastic cooling is studied. The authors also obtain an optimal laser focusing condition for laser-beam interaction in the correction undulator. The amplification factor and the output peak power of the laser amplifier are found to differ substantially from earlier publications. The required power is large for hadron colliders at very high energy.
Stochastic Kinetics of Nascent RNA
NASA Astrophysics Data System (ADS)
Xu, Heng; Skinner, Samuel O.; Sokac, Anna Marie; Golding, Ido
2016-09-01
The stochastic kinetics of transcription is typically inferred from the distribution of RNA numbers in individual cells. However, cellular RNA reflects additional processes downstream of transcription, hampering this analysis. In contrast, nascent (actively transcribed) RNA closely reflects the kinetics of transcription. We present a theoretical model for the stochastic kinetics of nascent RNA, which we solve to obtain the probability distribution of nascent RNA per gene. The model allows us to evaluate the kinetic parameters of transcription from single-cell measurements of nascent RNA. The model also predicts surprising discontinuities in the distribution of nascent RNA, a feature which we verify experimentally.
Stochastic Optimization of Complex Systems
Birge, John R.
2014-03-20
This project focused on methodologies for the solution of stochastic optimization problems based on relaxation and penalty methods, Monte Carlo simulation, parallel processing, and inverse optimization. The main results of the project were the development of a convergent method for the solution of models that include expectation constraints as in equilibrium models, improvement of Monte Carlo convergence through the use of a new method of sample batch optimization, the development of new parallel processing methods for stochastic unit commitment models, and the development of improved methods in combination with parallel processing for incorporating automatic differentiation methods into optimization.
Bar shapes and orbital stochasticity
Athanassoula, E. )
1990-06-01
Several independent lines of evidence suggest that the isophotes or isodensities of bars in barred galaxies are not really elliptical in shape but more rectangular. The effect this might have on the orbits in two different types of bar potentials is studied, and it is found that in both cases the percentage of stochastic orbits is much larger when the shapes are more rectangularlike or, equivalently, when the m = 4 components are more important. This can be understood with the help of the Chirikov criterion, which can predict the limit for the onset of global stochasticity. 9 refs.
QB1 - Stochastic Gene Regulation
Munsky, Brian
2012-07-23
Summaries of this presentation are: (1) Stochastic fluctuations or 'noise' is present in the cell - Random motion and competition between reactants, Low copy, quantization of reactants, Upstream processes; (2) Fluctuations may be very important - Cell-to-cell variability, Cell fate decisions (switches), Signal amplification or damping, stochastic resonances; and (3) Some tools are available to mode these - Kinetic Monte Carlo simulations (SSA and variants), Moment approximation methods, Finite State Projection. We will see how modeling these reactions can tell us more about the underlying processes of gene regulation.
The Hamiltonian Mechanics of Stochastic Acceleration
Burby, J. W.
2013-07-17
We show how to nd the physical Langevin equation describing the trajectories of particles un- dergoing collisionless stochastic acceleration. These stochastic di erential equations retain not only one-, but two-particle statistics, and inherit the Hamiltonian nature of the underlying microscopic equations. This opens the door to using stochastic variational integrators to perform simulations of stochastic interactions such as Fermi acceleration. We illustrate the theory by applying it to two example problems.
NASA Astrophysics Data System (ADS)
Michta, Mariusz
2017-02-01
In the paper we study properties of solutions to stochastic differential inclusions and set-valued stochastic differential equations with respect to semimartingale integrators. We present new connections between their solutions. In particular, we show that attainable sets of solutions to stochastic inclusions are subsets of values of multivalued solutions of certain set-valued stochastic equations. We also show that every solution to stochastic inclusion is a continuous selection of a multivalued solution of an associated set-valued stochastic equation. The results obtained in the paper generalize results dealing with this topic known both in deterministic and stochastic cases.
EDITORIAL: Stochasticity in fusion plasmas Stochasticity in fusion plasmas
NASA Astrophysics Data System (ADS)
Unterberg, Bernhard
2010-03-01
Structure formation and transport in stochastic plasmas is a topic of growing importance in many fields of plasma physics from astrophysics to fusion research. In particular, the possibility to control transport in the boundary of confined fusion plasmas by resonant magnetic perturbations has been investigated extensively during recent years. A major research achievement was finding that the intense transient particle and heat fluxes associated with edge localized modes (here type-I ELMs) in magnetically confined fusion plasmas can be mitigated or even suppressed by resonant magnetic perturbation fields. This observation opened up a possible scheme to avoid too large erosion and material damage by such transients in future fusion devices such as ITER. However, it is widely recognized that a more basic understanding is needed to extrapolate the results obtained in present experiments to future fusion devices. The 4th workshop on Stochasticity in Fusion Plasmas was held in Jülich, Germany, from 2 to 4 March 2009. This series of workshops aims at gathering fusion experts from various plasma configurations such as tokamaks, stellarators and reversed field pinches to exchange knowledge on structure formation and transport in stochastic fusion plasmas. The workshops have attracted colleagues from both experiment and theory and stimulated fruitful discussions about the basics of stochastic fusion plasmas. Important papers from the first three workshops in 2003, 2005 and 2007 have been published in previous special issues of Nuclear Fusion (stacks.iop.org/NF/44/i=6, stacks.iop.org/NF/46/i=4 and stacks.iop.org/NF/48/i=2). This special issue comprises contributions presented at the 4th SFP workshop, dealing with the main subjects such as formation of stochastic magnetic layers, energy and particle transport in stochastic magnetic fields, plasma response to external, non-axis-symmetric perturbations and last but not least application of resonant magnetic perturbations for
Stochastic p -Bits for Invertible Logic
NASA Astrophysics Data System (ADS)
Camsari, Kerem Yunus; Faria, Rafatul; Sutton, Brian M.; Datta, Supriyo
2017-07-01
Conventional semiconductor-based logic and nanomagnet-based memory devices are built out of stable, deterministic units such as standard metal-oxide semiconductor transistors, or nanomagnets with energy barriers in excess of ≈40 - 60 kT . In this paper, we show that unstable, stochastic units, which we call "p -bits," can be interconnected to create robust correlations that implement precise Boolean functions with impressive accuracy, comparable to standard digital circuits. At the same time, they are invertible, a unique property that is absent in standard digital circuits. When operated in the direct mode, the input is clamped, and the network provides the correct output. In the inverted mode, the output is clamped, and the network fluctuates among all possible inputs that are consistent with that output. First, we present a detailed implementation of an invertible gate to bring out the key role of a single three-terminal transistorlike building block to enable the construction of correlated p -bit networks. The results for this specific, CMOS-assisted nanomagnet-based hardware implementation agree well with those from a universal model for p -bits, showing that p -bits need not be magnet based: any three-terminal tunable random bit generator should be suitable. We present a general algorithm for designing a Boltzmann machine (BM) with a symmetric connection matrix [J ] (Ji j=Jj i) that implements a given truth table with p -bits. The [J ] matrices are relatively sparse with a few unique weights for convenient hardware implementation. We then show how BM full adders can be interconnected in a partially directed manner (Ji j≠Jj i) to implement large logic operations such as 32-bit binary addition. Hundreds of stochastic p -bits get precisely correlated such that the correct answer out of 233 (≈8 ×1 09) possibilities can be extracted by looking at the statistical mode or majority vote of a number of time samples. With perfect directivity (Jj i=0 ) a small
Variational principles for stochastic soliton dynamics
Holm, Darryl D.; Tyranowski, Tomasz M.
2016-01-01
We develop a variational method of deriving stochastic partial differential equations whose solutions follow the flow of a stochastic vector field. As an example in one spatial dimension, we numerically simulate singular solutions (peakons) of the stochastically perturbed Camassa–Holm (CH) equation derived using this method. These numerical simulations show that peakon soliton solutions of the stochastically perturbed CH equation persist and provide an interesting laboratory for investigating the sensitivity and accuracy of adding stochasticity to finite dimensional solutions of stochastic partial differential equations. In particular, some choices of stochastic perturbations of the peakon dynamics by Wiener noise (canonical Hamiltonian stochastic deformations, CH-SD) allow peakons to interpenetrate and exchange order on the real line in overtaking collisions, although this behaviour does not occur for other choices of stochastic perturbations which preserve the Euler–Poincaré structure of the CH equation (parametric stochastic deformations, P-SD), and it also does not occur for peakon solutions of the unperturbed deterministic CH equation. The discussion raises issues about the science of stochastic deformations of finite-dimensional approximations of evolutionary partial differential equation and the sensitivity of the resulting solutions to the choices made in stochastic modelling. PMID:27118922
Variational principles for stochastic soliton dynamics.
Holm, Darryl D; Tyranowski, Tomasz M
2016-03-01
We develop a variational method of deriving stochastic partial differential equations whose solutions follow the flow of a stochastic vector field. As an example in one spatial dimension, we numerically simulate singular solutions (peakons) of the stochastically perturbed Camassa-Holm (CH) equation derived using this method. These numerical simulations show that peakon soliton solutions of the stochastically perturbed CH equation persist and provide an interesting laboratory for investigating the sensitivity and accuracy of adding stochasticity to finite dimensional solutions of stochastic partial differential equations. In particular, some choices of stochastic perturbations of the peakon dynamics by Wiener noise (canonical Hamiltonian stochastic deformations, CH-SD) allow peakons to interpenetrate and exchange order on the real line in overtaking collisions, although this behaviour does not occur for other choices of stochastic perturbations which preserve the Euler-Poincaré structure of the CH equation (parametric stochastic deformations, P-SD), and it also does not occur for peakon solutions of the unperturbed deterministic CH equation. The discussion raises issues about the science of stochastic deformations of finite-dimensional approximations of evolutionary partial differential equation and the sensitivity of the resulting solutions to the choices made in stochastic modelling.
Forward Stochastic Nonlinear Adaptive Control Method
NASA Technical Reports Server (NTRS)
Bayard, David S.
1990-01-01
New method of computation for optimal stochastic nonlinear and adaptive control undergoing development. Solves systematically stochastic dynamic programming equations forward in time, using nested-stochastic-approximation technique. Main advantage, simplicity of programming and reduced complexity with clear performance/computation trade-offs.
NASA Astrophysics Data System (ADS)
Pham, T. M.; Virchenko, Yu. P.
2016-08-01
We completely investigate the stationary distribution density in the space of relative concentrations for the three-parameter stochastic Horsthemke-Lefever model of a binary self-catalyzed cyclic chemical reaction with perturbations produced by thermal fluctuations of reagents taken into account. This model is a stationary diffusion random process generated by a stochastic equation with the Stratonovich differential, whose marginal distribution density admits a bifurcation restructuring from the unimodal to the bimodal phase with increasing noise intensity, which is interpreted physically as a dynamical phase transition induced by fluctuations in the system.
BINARIES AMONG DEBRIS DISK STARS
Rodriguez, David R.; Zuckerman, B.
2012-02-01
We have gathered a sample of 112 main-sequence stars with known debris disks. We collected published information and performed adaptive optics observations at Lick Observatory to determine if these debris disks are associated with binary or multiple stars. We discovered a previously unknown M-star companion to HD 1051 at a projected separation of 628 AU. We found that 25% {+-} 4% of our debris disk systems are binary or triple star systems, substantially less than the expected {approx}50%. The period distribution for these suggests a relative lack of systems with 1-100 AU separations. Only a few systems have blackbody disk radii comparable to the binary/triple separation. Together, these two characteristics suggest that binaries with intermediate separations of 1-100 AU readily clear out their disks. We find that the fractional disk luminosity, as a proxy for disk mass, is generally lower for multiple systems than for single stars at any given age. Hence, for a binary to possess a disk (or form planets) it must either be a very widely separated binary with disk particles orbiting a single star or it must be a small separation binary with a circumbinary disk.
ERIC Educational Resources Information Center
Higginbotham-Wheat, Nancy L.
This paper addresses one area of conflict in decisionmaking in computer-based instruction (CBI) research: the relationship between the researcher's definition of CBI either as a medium or as an integrated system and the design of meaningful research questions. (A medium is defined here as a device for the delivery of instruction, while an…
Synthetic model of the gravitational wave background from evolving binary compact objects
NASA Astrophysics Data System (ADS)
Dvorkin, Irina; Uzan, Jean-Philippe; Vangioni, Elisabeth; Silk, Joseph
2016-11-01
Modeling the stochastic gravitational wave background from various astrophysical sources is a key objective in view of upcoming observations with ground- and space-based gravitational wave observatories such as Advanced LIGO, VIRGO, eLISA, and the pulsar timing array. We develop a synthetic model framework that follows the evolution of single and binary compact objects in an astrophysical context. We describe the formation and merger rates of binaries, the evolution of their orbital parameters with time, and the spectrum of emitted gravitational waves at different stages of binary evolution. Our approach is modular and allows us to test and constrain different ingredients of the model, including stellar evolution, black hole formation scenarios, and the properties of binary systems. We use this framework in the context of a particularly well-motivated astrophysical setup to calculate the gravitational wave background from several types of sources, including inspiraling stellar-mass binary black holes that have not merged during a Hubble time. We find that this signal, albeit weak, has a characteristic shape that can help constrain the properties of binary black holes in a way complementary to observations of the background from merger events. We discuss possible applications of our framework in the context of other gravitational wave sources, such as supermassive black holes.
Binaries and Multiple Stellar Systems
NASA Astrophysics Data System (ADS)
Horch, Elliott
Binary and multiple stellar systems have importance in three main areas of astronomy and astrophysics. First, because of the relatively simple gravitational interaction at work in the case of binary stars, these systems provide a basic check on stellar structure and evolution theory since the masses may be determined through observation. When these masses can be linked to other properties of the two stars, such as luminosity, color, and radius, they can provide very stringent constraints on stellar models. Second, the statistics of binary and multiple star systems provide clues to star formation mechanisms and environmental effects in the galactic gravitational potential and in clusters. Although a number of good results have been obtained in nearby star clusters and associations, knowledge of the field population has been somewhat limited until recently by a lack of large, complete samples of binaries. However, there appears to be a great deal of promise in this area for the coming decade in part due to astrometric satellites such as Hipparcos and Gaia. Third, the binary scenario is invoked to explain several important types of astrophysical phenomena such as Type Ia supernovae, cataclysmic variables, and stellar x-ray sources. Since the first of these mentioned is a standard candle for the extragalactic distance scale, it may even be said binary stars play a minor role in field of cosmology. However, in this chapter, the focus will mainly be on normal stars in binary and multiple-stellar systems. The basic physics of binaries will be reviewed, and the observational methods in use today will be discussed together with their limitations and prospects for the future. Finally, an overview of the current science in the three main areas mentioned where binaries have a significant impact will be given.
Gravitational waves from binary supermassive black holes missing in pulsar observations.
Shannon, R M; Ravi, V; Lentati, L T; Lasky, P D; Hobbs, G; Kerr, M; Manchester, R N; Coles, W A; Levin, Y; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Dai, S; Keith, M J; Osłowski, S; Reardon, D J; van Straten, W; Toomey, L; Wang, J-B; Wen, L; Wyithe, J S B; Zhu, X-J
2015-09-25
Gravitational waves are expected to be radiated by supermassive black hole binaries formed during galaxy mergers. A stochastic superposition of gravitational waves from all such binary systems would modulate the arrival times of pulses from radio pulsars. Using observations of millisecond pulsars obtained with the Parkes radio telescope, we constrained the characteristic amplitude of this background, A(c,yr), to be <1.0 × 10(-15) with 95% confidence. This limit excludes predicted ranges for A(c,yr) from current models with 91 to 99.7% probability. We conclude that binary evolution is either stalled or dramatically accelerated by galactic-center environments and that higher-cadence and shorter-wavelength observations would be more sensitive to gravitational waves.
Testing general relativity with black-hole binary observations: results and prospects
NASA Astrophysics Data System (ADS)
Vallisneri, Michele
2017-01-01
The first two LIGO-Virgo detections of gravitational waves from binary black-hole inspirals offered the first opportunity to test gravitation in its strong-field, relativistic-motion, and radiative sector. The initial tests reported in PRL 116 (2016) probed consistency with the predictions of general relativity, to moderate precision. The space-based observatory LISA will observe black-hole binary signals with much larger SNRs, allowing for even more precise tests. Last, the detection of a binary black-hole stochastic background with pulsar-timing arrays will offer more constraints on the speed and polarizations of gravitational waves. I review these results and examine synergies across the gravitational-wave spectrum. I discuss the main challenges and opportunities from the viewpoint of data analysis, and outline prospects for making contact with current alternative theories of gravitation, in particular those motivated by models of dark energy.
Stokowski, S.E.
1987-10-20
A laser medium is particularly useful in high average power solid state lasers. The laser medium includes a chromium dopant and preferably neodymium ions as codopant, and is primarily a gadolinium scandium gallium garnet, or an analog thereof. Divalent cations inhibit spiral morphology as large boules from which the laser medium is derived are grown, and a source of ions convertible between a trivalent state and a tetravalent state at a low ionization energy are in the laser medium to reduce an absorption coefficient at about one micron wavelength otherwise caused by the divalent cations. These divalent cations and convertible ions are dispersed in the laser medium. Preferred convertible ions are provided from titanium or cerium sources.
Stokowski, Stanley E.
1989-01-01
A laser medium is particularly useful in high average power solid state lasers. The laser medium includes a chormium dopant and preferably neodymium ions as codopant, and is primarily a gadolinium scandium gallium garnet, or an analog thereof. Divalent cations inhibit spiral morphology as large boules from which the laser medium is derived are grown, and a source of ions convertible between a trivalent state and a tetravalent state at a low ionization energy are in the laser medium to reduce an absorption coefficient at about one micron wavelength otherwise caused by the divalent cations. These divalent cations and convertible ions are dispersed in the laser medium. Preferred convertible ions are provided from titanium or cerium sources.
NASA Astrophysics Data System (ADS)
Kochoska, A.; Mowlavi, N.; Prša, A.; Lecoeur-Taïbi, I.; Holl, B.; Rimoldini, L.; Süveges, M.; Eyer, L.
2017-06-01
Context. In the new era of large-scale astronomical surveys, automated methods of analysis and classification of bulk data are a fundamental tool for fast and efficient production of deliverables. This becomes ever more important as we enter the Gaia era. Aims: We investigate the potential detectability of eclipsing binaries with Gaia using a data set of all Kepler eclipsing binaries sampled with Gaia cadence and folded with the Kepler period. The performance of fitting methods is evaluated in comparison to real Kepler data parameters and a classification scheme is proposed for the potentially detectable sources based on the geometry of the light curve fits. Methods: The polynomial chain (polyfit) and two-Gaussian models are used for light curve fitting of the data set. Classification is performed with a combination of the t-distributed stochastic neighbor embedding (t-SNE) and density-based spatial clustering of applications with noise (DBSCAN) algorithms. Results: We find that 68% of the Kepler Eclipsing Binary Catalog sources are potentially detectable by Gaia when folded with the Kepler period; we propose a classification scheme of the detectable sources based on the morphological type indicative of the light curve with subclasses that reflect the properties of the fitted model (presence and visibility of eclipses, their width, depth, etc.).
Stochastically forced zonal flows
NASA Astrophysics Data System (ADS)
Srinivasan, Kaushik
an approximate equation for the vorticity correlation function that is then solved perturbatively. The Reynolds stress of the pertubative solution can then be expressed as a function of the mean-flow and its y-derivatives. In particular, it is shown that as long as the forcing breaks mirror-symmetry, the Reynolds stress has a wave-like term, as a result of which the mean-flow is governed by a dispersive wave equation. In a separate study, Reynolds stress induced by an anisotropically forced unbounded Couette flow with uniform shear gamma, on a beta-plane, is calculated in conjunction with the eddy diffusivity of a co-evolving passive tracer. The flow is damped by linear drag on a time scale mu--1. The stochastic forcing is controlled by a parameter alpha, that characterizes whether eddies are elongated along the zonal direction (alpha < 0), the meridional direction (alpha > 0) or are isotropic (alpha = 0). The Reynolds stress varies linearly with alpha and non-linearly and non-monotonically with gamma; but the Reynolds stress is independent of beta. For positive values of alpha, the Reynolds stress displays an "anti-frictional" effect (energy is transferred from the eddies to the mean flow) and a frictional effect for negative values of alpha. With gamma = beta =0, the meridional tracer eddy diffusivity is v'2/(2mu), where v' is the meridional eddy velocity. In general, beta and gamma suppress the diffusivity below v'2/(2mu).
Universality in Stochastic Exponential Growth
NASA Astrophysics Data System (ADS)
Iyer-Biswas, Srividya; Crooks, Gavin E.; Scherer, Norbert F.; Dinner, Aaron R.
2014-07-01
Recent imaging data for single bacterial cells reveal that their mean sizes grow exponentially in time and that their size distributions collapse to a single curve when rescaled by their means. An analogous result holds for the division-time distributions. A model is needed to delineate the minimal requirements for these scaling behaviors. We formulate a microscopic theory of stochastic exponential growth as a Master Equation that accounts for these observations, in contrast to existing quantitative models of stochastic exponential growth (e.g., the Black-Scholes equation or geometric Brownian motion). Our model, the stochastic Hinshelwood cycle (SHC), is an autocatalytic reaction cycle in which each molecular species catalyzes the production of the next. By finding exact analytical solutions to the SHC and the corresponding first passage time problem, we uncover universal signatures of fluctuations in exponential growth and division. The model makes minimal assumptions, and we describe how more complex reaction networks can reduce to such a cycle. We thus expect similar scalings to be discovered in stochastic processes resulting in exponential growth that appear in diverse contexts such as cosmology, finance, technology, and population growth.
Stochastic-field cavitation model
Dumond, J.; Magagnato, F.; Class, A.
2013-07-15
Nonlinear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally, the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian “particles” or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and, in particular, to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. First, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations.
Universality in stochastic exponential growth.
Iyer-Biswas, Srividya; Crooks, Gavin E; Scherer, Norbert F; Dinner, Aaron R
2014-07-11
Recent imaging data for single bacterial cells reveal that their mean sizes grow exponentially in time and that their size distributions collapse to a single curve when rescaled by their means. An analogous result holds for the division-time distributions. A model is needed to delineate the minimal requirements for these scaling behaviors. We formulate a microscopic theory of stochastic exponential growth as a Master Equation that accounts for these observations, in contrast to existing quantitative models of stochastic exponential growth (e.g., the Black-Scholes equation or geometric Brownian motion). Our model, the stochastic Hinshelwood cycle (SHC), is an autocatalytic reaction cycle in which each molecular species catalyzes the production of the next. By finding exact analytical solutions to the SHC and the corresponding first passage time problem, we uncover universal signatures of fluctuations in exponential growth and division. The model makes minimal assumptions, and we describe how more complex reaction networks can reduce to such a cycle. We thus expect similar scalings to be discovered in stochastic processes resulting in exponential growth that appear in diverse contexts such as cosmology, finance, technology, and population growth.
STOCHASTIC POINT PROCESSES: LIMIT THEOREMS.
A stochastic point process in R(n) is a triple (M,B,P) where M is the class of all countable sets in R(n) having no limit points, B is the smallest...converge to a mixture of Poisson processes. These results are established via a generalization of a classical limit theorem for Bernoulli trials. (Author)
Birch regeneration: a stochastic model
William B. Leak
1968-01-01
The regeneration of a clearcutting with paper or yellow birch is expressed as an elementary stochastic (probabalistic) model that is computationally similar to an absorbing Markov chain. In the general case, the model contains 29 states beginning with the development of a flower (ament) and terminating with the abortion of a flower or seed, or the development of an...
Stochastic cooling: recent theoretical directions
Bisognano, J.
1983-03-01
A kinetic-equation derivation of the stochastic-cooling Fokker-Planck equation of correlation is introduced to describe both the Schottky spectrum and signal suppression. Generalizations to nonlinear gain and coupling between degrees of freedom are presented. Analysis of bunch beam cooling is included.
Stochastic resonance on a circle
Wiesenfeld, K. ); Pierson, D.; Pantazelou, E.; Dames, C.; Moss, F. )
1994-04-04
We describe a new realization of stochastic resonance, applicable to a broad class of systems, based on an underlying excitable dynamics with deterministic reinjection. A simple but general theory of such single-trigger'' systems is compared with analog simulations of the Fitzhugh-Nagumo model, as well as experimental data obtained from stimulated sensory neurons in the crayfish.
Brownian motors and stochastic resonance.
Mateos, José L; Alatriste, Fernando R
2011-12-01
We study the transport properties for a walker on a ratchet potential. The walker consists of two particles coupled by a bistable potential that allow the interchange of the order of the particles while moving through a one-dimensional asymmetric periodic ratchet potential. We consider the stochastic dynamics of the walker on a ratchet with an external periodic forcing, in the overdamped case. The coupling of the two particles corresponds to a single effective particle, describing the internal degree of freedom, in a bistable potential. This double-well potential is subjected to both a periodic forcing and noise and therefore is able to provide a realization of the phenomenon of stochastic resonance. The main result is that there is an optimal amount of noise where the amplitude of the periodic response of the system is maximum, a signal of stochastic resonance, and that precisely for this optimal noise, the average velocity of the walker is maximal, implying a strong link between stochastic resonance and the ratchet effect.
Modified evolution of stellar binaries from supermassive black hole binaries
NASA Astrophysics Data System (ADS)
Liu, Bin; Wang, Yi-Han; Yuan, Ye-Fei
2017-04-01
The evolution of main-sequence binaries resided in the galactic centre is influenced a lot by the central supermassive black hole (SMBH). Due to this perturbation, the stars in a dense environment are likely to experience mergers or collisions through secular or non-secular interactions. In this work, we study the dynamics of the stellar binaries at galactic centre, perturbed by another distant SMBH. Geometrically, such a four-body system is supposed to be decomposed into the inner triple (SMBH-star-star) and the outer triple (SMBH-stellar binary-SMBH). We survey the parameter space and determine the criteria analytically for the stellar mergers and the tidal disruption events (TDEs). For a relative distant and equal masses SMBH binary, the stars have more opportunities to merge as a result from the Lidov-Kozai (LK) oscillations in the inner triple. With a sample of tight stellar binaries, our numerical experiments reveal that a significant fraction of the binaries, ˜70 per cent, experience merger eventually. Whereas the majority of the stellar TDEs are likely to occur at a close periapses to the SMBH, induced by the outer Kozai effect. The tidal disruptions are found numerically as many as ˜10 per cent for a close SMBH binary that is enhanced significantly than the one without the external SMBH. These effects require the outer perturber to have an inclined orbit (≥40°) relatively to the inner orbital plane and may lead to a burst of the extremely astronomical events associated with the detection of the SMBH binary.
Binary Oscillatory Crossflow Electrophoresis
NASA Technical Reports Server (NTRS)
Molloy, Richard F.; Gallagher, Christopher T.; Leighton, David T., Jr.
1997-01-01
Electrophoresis has long been recognized as an effective analytic technique for the separation of proteins and other charged species, however attempts at scaling up to accommodate commercial volumes have met with limited success. In this report we describe a novel electrophoretic separation technique - Binary Oscillatory Crossflow Electrophoresis (BOCE). Numerical simulations indicate that the technique has the potential for preparative scale throughputs with high resolution, while simultaneously avoiding many problems common to conventional electrophoresis. The technique utilizes the interaction of an oscillatory electric field and a transverse oscillatory shear flow to create an active binary filter for the separation of charged protein species. An oscillatory electric field is applied across the narrow gap of a rectangular channel inducing a periodic motion of charged protein species. The amplitude of this motion depends on the dimensionless electrophoretic mobility, alpha = E(sub o)mu/(omega)d, where E(sub o) is the amplitude of the electric field oscillations, mu is the dimensional mobility, omega is the angular frequency of oscillation and d is the channel gap width. An oscillatory shear flow is induced along the length of the channel resulting in the separation of species with different mobilities. We present a model that predicts the oscillatory behavior of charged species and allows estimation of both the magnitude of the induced convective velocity and the effective diffusivity as a function of a in infinitely long channels. Numerical results indicate that in addition to the mobility dependence, the steady state behavior of solute species may be strongly affected by oscillating fluid into and out of the active electric field region at the ends of the cell. The effect is most pronounced using time dependent shear flows of the same frequency (cos((omega)t)) flow mode) as the electric field oscillations. Under such conditions, experiments indicate that
Stability of binaries. Part II: Rubble-pile binaries
NASA Astrophysics Data System (ADS)
Sharma, Ishan
2016-10-01
We consider the stability of the binary asteroids whose members are granular aggregates held together by self-gravity alone. A binary is said to be stable whenever both its members are orbitally and structurally stable to both orbital and structural perturbations. To this end, we extend the stability analysis of Sharma (Sharma [2015] Icarus, 258, 438-453), that is applicable to binaries with rigid members, to the case of binary systems with rubble members. We employ volume averaging (Sharma et al. [2009] Icarus, 200, 304-322), which was inspired by past work on elastic/fluid, rotating and gravitating ellipsoids. This technique has shown promise when applied to rubble-pile ellipsoids, but requires further work to settle some of its underlying assumptions. The stability test is finally applied to some suspected binary systems, viz., 216 Kleopatra, 624 Hektor and 90 Antiope. We also see that equilibrated binaries that are close to mobilizing their maximum friction can sustain only a narrow range of shapes and, generally, congruent shapes are preferred.
Binary star database: binaries discovered in non-optical bands
NASA Astrophysics Data System (ADS)
Malkov, Oleg Yu.; Tessema, Solomon B.; Kniazev, Alexei Yu.
The Binary star Database (BDB) is the world's principal database of binary and multiple systems of all observational types. In particular, it should contain data on binaries discovered in non-optical bands, X-ray binaries (XRBs) and radio pulsars in binaries. The goal of the present study was to compile complete lists of such objects. Due to the lack of a unified identification system for XRBs, we had to select them from five principal catalogues of X-ray sources. After cross-identification and positional cross-matching, a general catalogue of 373 XRBs was constructed for the first time. It contains coordinates, indication of photometric and spectroscopic binarity, and extensive cross-identification. In the preparation of the catalogue, a number of XRB classification disagreements were resolved, some catalogued identifiers and coordinates were corrected, and duplicated entries in the original catalogues were found. We have also compiled a general list of 239 radio pulsars in binary systems. The list is supplied with indication of photometric, spectroscopic or X-ray binarity, and with cross-identification data.
Binary black hole spectroscopy
NASA Astrophysics Data System (ADS)
Van Den Broeck, Chris; Sengupta, Anand S.
2007-03-01
We study parameter estimation with post-Newtonian (PN) gravitational waveforms for the quasi-circular, adiabatic inspiral of spinning binary compact objects. In particular, the performance of amplitude-corrected waveforms is compared with that of the more commonly used restricted waveforms, in Advanced LIGO and EGO. With restricted waveforms, the properties of the source can only be extracted from the phasing. In the case of amplitude-corrected waveforms, the spectrum encodes a wealth of additional information, which leads to dramatic improvements in parameter estimation. At distances of ~100 Mpc, the full PN waveforms allow for high-accuracy parameter extraction for total mass up to several hundred solar masses, while with the restricted ones the errors are steep functions of mass, and accurate parameter estimation is only possible for relatively light stellar mass binaries. At the low-mass end, the inclusion of amplitude corrections reduces the error on the time of coalescence by an order of magnitude in Advanced LIGO and a factor of 5 in EGO compared to the restricted waveforms; at higher masses these differences are much larger. The individual component masses, which are very poorly determined with restricted waveforms, become measurable with high accuracy if amplitude-corrected waveforms are used, with errors as low as a few per cent in Advanced LIGO and a few tenths of a per cent in EGO. The usual spin orbit parameter β is also poorly determined with restricted waveforms (except for low-mass systems in EGO), but the full waveforms give errors that are small compared to the largest possible value consistent with the Kerr bound. This suggests a way of finding out if one or both of the component objects violate this bound. On the other hand, we find that the spin spin parameter σ remains poorly determined even when the full waveform is used. Generally, all errors have but a weak dependence on the magnitudes and orientations of the spins. We also briefly
Stochastic effects in a discretized kinetic model of economic exchange
NASA Astrophysics Data System (ADS)
Bertotti, M. L.; Chattopadhyay, A. K.; Modanese, G.
2017-04-01
Linear stochastic models and discretized kinetic theory are two complementary analytical techniques used for the investigation of complex systems of economic interactions. The former employ Langevin equations, with an emphasis on stock trade; the latter is based on systems of ordinary differential equations and is better suited for the description of binary interactions, taxation and welfare redistribution. We propose a new framework which establishes a connection between the two approaches by introducing random fluctuations into the kinetic model based on Langevin and Fokker-Planck formalisms. Numerical simulations of the resulting model indicate positive correlations between the Gini index and the total wealth, that suggest a growing inequality with increasing income. Further analysis shows, in the presence of a conserved total wealth, a simultaneous decrease in inequality as social mobility increases, in conformity with economic data.
Modeling Langmuir isotherms with the Gillespie stochastic algorithm.
Epstein, J; Michael, J; Mandona, C; Marques, F; Dias-Cabral, A C; Thrash, M
2015-02-06
The overall goal of this work is to develop a robust modeling approach that is capable of simulating single and multicomponent isotherms for biological molecules interacting with a variety of adsorbents. Provided the ratio between the forward and reverse adsorption/desorption constants is known, the Gillespie stochastic algorithm has been shown to be effective in modeling isotherms consistent with the Langmuir theory and uptake curves that fall outside this traditional approach. We have used this method to model protein adsorption on ion-exchange adsorbents, hydrophobic interactive adsorbents and ice crystals. In our latest efforts we have applied the Gillespie approach to simulate binary and ternary isotherms from the literature involving gas-solid adsorption applications. In each case the model is consistent with the experimental results presented.
Detecting stochastic backgrounds of gravitational waves with pulsar timing arrays
NASA Astrophysics Data System (ADS)
Siemens, Xavier
2016-03-01
For the past decade the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has been using the Green Bank Telescope and the Arecibo Observatory to monitor millisecond pulsars. NANOGrav, along with two other international collaborations, the European Pulsar Timing Array and the Parkes Pulsar Timing Array in Australia, form a consortium of consortia: the International Pulsar Timing Array (IPTA). The goal of the IPTA is to directly detect low-frequency gravitational waves which cause small changes to the times of arrival of radio pulses from millisecond pulsars. In this talk I will discuss the work of NANOGrav and the IPTA, as well as our sensitivity to stochastic backgrounds of gravitational waves. I will show that a detection of the background produced by supermassive black hole binaries is possible by the end of the decade. Supported by the NANOGrav Physics Frontiers Center.
Algorithmic advances in stochastic programming
Morton, D.P.
1993-07-01
Practical planning problems with deterministic forecasts of inherently uncertain parameters often yield unsatisfactory solutions. Stochastic programming formulations allow uncertain parameters to be modeled as random variables with known distributions, but the size of the resulting mathematical programs can be formidable. Decomposition-based algorithms take advantage of special structure and provide an attractive approach to such problems. We consider two classes of decomposition-based stochastic programming algorithms. The first type of algorithm addresses problems with a ``manageable`` number of scenarios. The second class incorporates Monte Carlo sampling within a decomposition algorithm. We develop and empirically study an enhanced Benders decomposition algorithm for solving multistage stochastic linear programs within a prespecified tolerance. The enhancements include warm start basis selection, preliminary cut generation, the multicut procedure, and decision tree traversing strategies. Computational results are presented for a collection of ``real-world`` multistage stochastic hydroelectric scheduling problems. Recently, there has been an increased focus on decomposition-based algorithms that use sampling within the optimization framework. These approaches hold much promise for solving stochastic programs with many scenarios. A critical component of such algorithms is a stopping criterion to ensure the quality of the solution. With this as motivation, we develop a stopping rule theory for algorithms in which bounds on the optimal objective function value are estimated by sampling. Rules are provided for selecting sample sizes and terminating the algorithm under which asymptotic validity of confidence interval statements for the quality of the proposed solution can be verified. Issues associated with the application of this theory to two sampling-based algorithms are considered, and preliminary empirical coverage results are presented.
Molecular logic behind the three-way stochastic choices that expand butterfly colour vision.
Perry, Michael; Kinoshita, Michiyo; Saldi, Giuseppe; Huo, Lucy; Arikawa, Kentaro; Desplan, Claude
2016-07-14
Butterflies rely extensively on colour vision to adapt to the natural world. Most species express a broad range of colour-sensitive Rhodopsin proteins in three types of ommatidia (unit eyes), which are distributed stochastically across the retina. The retinas of Drosophila melanogaster use just two main types, in which fate is controlled by the binary stochastic decision to express the transcription factor Spineless in R7 photoreceptors. We investigated how butterflies instead generate three stochastically distributed ommatidial types, resulting in a more diverse retinal mosaic that provides the basis for additional colour comparisons and an expanded range of colour vision. We show that the Japanese yellow swallowtail (Papilio xuthus, Papilionidae) and the painted lady (Vanessa cardui, Nymphalidae) butterflies have a second R7-like photoreceptor in each ommatidium. Independent stochastic expression of Spineless in each R7-like cell results in expression of a blue-sensitive (Spineless(ON)) or an ultraviolet (UV)-sensitive (Spineless(OFF)) Rhodopsin. In P. xuthus these choices of blue/blue, blue/UV or UV/UV sensitivity in the two R7 cells are coordinated with expression of additional Rhodopsin proteins in the remaining photoreceptors, and together define the three types of ommatidia. Knocking out spineless using CRISPR/Cas9 (refs 5, 6) leads to the loss of the blue-sensitive fate in R7-like cells and transforms retinas into homogeneous fields of UV/UV-type ommatidia, with corresponding changes in other coordinated features of ommatidial type. Hence, the three possible outcomes of Spineless expression define the three ommatidial types in butterflies. This developmental strategy allowed the deployment of an additional red-sensitive Rhodopsin in P. xuthus, allowing for the evolution of expanded colour vision with a greater variety of receptors. This surprisingly simple mechanism that makes use of two binary stochastic decisions coupled with local coordination may prove
Expanded color vision in butterflies: molecular logic behind three way stochastic choices
Perry, Michael; Kinoshita, Michiyo; Saldi, Giuseppe; Huo, Lucy; Arikawa, Kentaro; Desplan, Claude
2016-01-01
Butterflies rely on color vision extensively to adapt to the natural world. Most species express a broad range of color sensitive Rhodopsins in three stochastically distributed types of ommatidia (unit eyes)1–3. The retinas of Drosophila deploy just two main types, where fate is controlled by the binary stochastic decision to express the transcription factor Spineless (Ss) in R7 photoreceptors4. We investigated how butterflies instead generate three stochastically distributed ommatidial types, resulting in a more diverse retinal mosaic that provides the basis for additional color comparisons and an expanded range of color vision. We show that the Japanese Yellow Swallowtail (Papilio xuthus, Papilionidae) and the Painted Lady (Vanessa cardui, Nymphalidae) have a second R7-like photoreceptor in each ommatidium. Independent stochastic expression of Ss in each R7-like cell results in expression of a Blue (Ss-ON) or a UV (Ss-OFF) Rhodopsin. In Papilio, these choices of Blue/Blue, Blue/UV, or UV/UV in the two R7s are coordinated with expression of additional Rhodopsins in the remaining photoreceptors, and together define the three types of ommatidia. Knocking out ss using CRISPR/Cas95,6 leads to the loss of the Blue fate in R7-like cells and transforms retinas into homogeneous fields of UV/UV-type ommatidia, with all corresponding features. Hence, the three possible outcomes of Ss expression define the three ommatidial types in butterflies. This developmental strategy allowed the deployment of an additional red-sensitive Rhodopsin in Papilio, allowing for the evolution of expanded color vision with a richer variety of receptors7,8. This surprisingly simple mechanism that makes use of two binary stochastic decisions coupled with local coordination may prove to be a general means of generating an increased diversity of developmental outcomes. PMID:27383790
Dynamic option pricing with endogenous stochastic arbitrage
NASA Astrophysics Data System (ADS)
Contreras, Mauricio; Montalva, Rodrigo; Pellicer, Rely; Villena, Marcelo
2010-09-01
Only few efforts have been made in order to relax one of the key assumptions of the Black-Scholes model: the no-arbitrage assumption. This is despite the fact that arbitrage processes usually exist in the real world, even though they tend to be short-lived. The purpose of this paper is to develop an option pricing model with endogenous stochastic arbitrage, capable of modelling in a general fashion any future and underlying asset that deviate itself from its market equilibrium. Thus, this investigation calibrates empirically the arbitrage on the futures on the S&P 500 index using transaction data from September 1997 to June 2009, from here a specific type of arbitrage called “arbitrage bubble”, based on a t-step function, is identified and hence used in our model. The theoretical results obtained for Binary and European call options, for this kind of arbitrage, show that an investment strategy that takes advantage of the identified arbitrage possibility can be defined, whenever it is possible to anticipate in relative terms the amplitude and timespan of the process. Finally, the new trajectory of the stock price is analytically estimated for a specific case of arbitrage and some numerical illustrations are developed. We find that the consequences of a finite and small endogenous arbitrage not only change the trajectory of the asset price during the period when it started, but also after the arbitrage bubble has already gone. In this context, our model will allow us to calibrate the B-S model to that new trajectory even when the arbitrage already started.
Stochastic modeling of sunshine number data
Brabec, Marek; Paulescu, Marius; Badescu, Viorel
2013-11-13
In this paper, we will present a unified statistical modeling framework for estimation and forecasting sunshine number (SSN) data. Sunshine number has been proposed earlier to describe sunshine time series in qualitative terms (Theor Appl Climatol 72 (2002) 127-136) and since then, it was shown to be useful not only for theoretical purposes but also for practical considerations, e.g. those related to the development of photovoltaic energy production. Statistical modeling and prediction of SSN as a binary time series has been challenging problem, however. Our statistical model for SSN time series is based on an underlying stochastic process formulation of Markov chain type. We will show how its transition probabilities can be efficiently estimated within logistic regression framework. In fact, our logistic Markovian model can be relatively easily fitted via maximum likelihood approach. This is optimal in many respects and it also enables us to use formalized statistical inference theory to obtain not only the point estimates of transition probabilities and their functions of interest, but also related uncertainties, as well as to test of various hypotheses of practical interest, etc. It is straightforward to deal with non-homogeneous transition probabilities in this framework. Very importantly from both physical and practical points of view, logistic Markov model class allows us to test hypotheses about how SSN dependents on various external covariates (e.g. elevation angle, solar time, etc.) and about details of the dynamic model (order and functional shape of the Markov kernel, etc.). Therefore, using generalized additive model approach (GAM), we can fit and compare models of various complexity which insist on keeping physical interpretation of the statistical model and its parts. After introducing the Markovian model and general approach for identification of its parameters, we will illustrate its use and performance on high resolution SSN data from the Solar
Mesoscopic model for binary fluids
NASA Astrophysics Data System (ADS)
Echeverria, C.; Tucci, K.; Alvarez-Llamoza, O.; Orozco-Guillén, E. E.; Morales, M.; Cosenza, M. G.
2017-10-01
We propose a model for studying binary fluids based on the mesoscopic molecular simulation technique known as multiparticle collision, where the space and state variables are continuous, and time is discrete. We include a repulsion rule to simulate segregation processes that does not require calculation of the interaction forces between particles, so binary fluids can be described on a mesoscopic scale. The model is conceptually simple and computationally efficient; it maintains Galilean invariance and conserves the mass and energy in the system at the micro- and macro-scale, whereas momentum is conserved globally. For a wide range of temperatures and densities, the model yields results in good agreement with the known properties of binary fluids, such as the density profile, interface width, phase separation, and phase growth. We also apply the model to the study of binary fluids in crowded environments with consistent results.
An adaptable binary entropy coder
NASA Technical Reports Server (NTRS)
Kiely, A.; Klimesh, M.
2001-01-01
We present a novel entropy coding technique which is based on recursive interleaving of variable-to-variable length binary source codes. We discuss code design and performance estimation methods, as well as practical encoding and decoding algorithms.
Cryptography with DNA binary strands.
Leier, A; Richter, C; Banzhaf, W; Rauhe, H
2000-06-01
Biotechnological methods can be used for cryptography. Here two different cryptographic approaches based on DNA binary strands are shown. The first approach shows how DNA binary strands can be used for steganography, a technique of encryption by information hiding, to provide rapid encryption and decryption. It is shown that DNA steganography based on DNA binary strands is secure under the assumption that an interceptor has the same technological capabilities as sender and receiver of encrypted messages. The second approach shown here is based on steganography and a method of graphical subtraction of binary gel-images. It can be used to constitute a molecular checksum and can be combined with the first approach to support encryption. DNA cryptography might become of practical relevance in the context of labelling organic and inorganic materials with DNA 'barcodes'.
CHAOTIC ZONES AROUND GRAVITATING BINARIES
Shevchenko, Ivan I.
2015-01-20
The extent of the continuous zone of chaotic orbits of a small-mass tertiary around a system of two gravitationally bound primaries of comparable masses (a binary star, a binary black hole, a binary asteroid, etc.) is estimated analytically, as a function of the tertiary's orbital eccentricity. The separatrix map theory is used to demonstrate that the central continuous chaos zone emerges (above a threshold in the primaries' mass ratio) due to overlapping of the orbital resonances corresponding to the integer ratios p:1 between the tertiary and the central binary periods. In this zone, the unlimited chaotic orbital diffusion of the tertiary takes place, up to its ejection from the system. The primaries' mass ratio, above which such a chaotic zone is universally present at all initial eccentricities of the tertiary, is estimated. The diversity of the observed orbital configurations of biplanetary and circumbinary exosystems is shown to be in accord with the existence of the primaries' mass parameter threshold.
NASA Astrophysics Data System (ADS)
Azulay, R.; Guirado, J. C.; Marcaide, J. M.; Martí-Vidal, I.; Ros, E.
Precise determination of dynamical masses of pre-main-sequence (PMS) stars is necessary to calibrate PMS stellar evolutionary models, whose predictions are in disagreement with measurements for masses below 1.2 M_sun. Binary stars in young, nearby loose associations are particularly good candidates, since all members share a common age. We present phase-reference EVN observations of the binary system HD 160934 A/c, that belongs to the AB Doradus moving group, from which we have measured both the relative and absolute orbital motion. Accordingly, we obtained precise estimates of the mass of the components of this binary. Also we report on other PMS binary systems as EK Dra and AB Dor B.
NASA Astrophysics Data System (ADS)
Evans, Nancy R.; Bond, H. E.; Schaefer, G.; Mason, B. D.; Karovska, M.; Tingle, E.
2013-01-01
Cepheids (5 Msun stars) provide an excellent sample for determining the binary properties of fairly massive stars. International Ultraviolet Explorer (IUE) observations of Cepheids brighter than 8th magnitude resulted in a list of ALL companions more massive than 2.0 Msun uniformly sensitive to all separations. Hubble Space Telescope Wide Field Camera 3 (WFC3) has resolved three of these binaries (Eta Aql, S Nor, and V659 Cen). Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations for a sample of 18 Cepheids, and also a distribution of mass ratios. The distribution of orbital periods shows that the 5 Msun binaries prefer shorter periods than 1 Msun stars, reflecting differences in star formation processes.
Radio emission from binary stars
NASA Technical Reports Server (NTRS)
Dulk, George A.
1986-01-01
Radio emission from binary star systems; characteristics of the binary systems inferred from the radio observations; and the reasons for the activity are reviewed. Binary stars with two main sequence stars, with one normal star and a white dwarf, and those containing a neutron star or a black hole are described. Energy may be directly available as matter falls into the potential well of a compact object. Electromagnetic induction effects may occur due to relative motions of magnetic fields and matter. By enforcing rapid rotation, binaries can induce strong dynamo action and hence generate free energy in the form of intense, complex, evolving magnetic fields. Whatever the source of energy, the observations at radio and X-ray wavelengths demonstrate that electrons are accelerated to high energies (mildly relativistic and, ultrarelativistic). Observed or inferred radio brightness temperatures range up to 10 to the 15th power K or more, implying coherent emission for sources brighter than 10 billion K.
Two-state approach to stochastic hair bundle dynamics
NASA Astrophysics Data System (ADS)
Clausznitzer, Diana; Lindner, Benjamin; Jülicher, Frank; Martin, Pascal
2008-04-01
Hair cells perform the mechanoelectrical transduction of sound signals in the auditory and vestibular systems of vertebrates. The part of the hair cell essential for this transduction is the so-called hair bundle. In vitro experiments on hair cells from the sacculus of the American bullfrog have shown that the hair bundle comprises active elements capable of producing periodic deflections like a relaxation oscillator. Recently, a continuous nonlinear stochastic model of the hair bundle motion [Nadrowski , Proc. Natl. Acad. Sci. U.S.A. 101, 12195 (2004)] has been shown to reproduce the experimental data in stochastic simulations faithfully. Here, we demonstrate that a binary filtering of the hair bundle's deflection (experimental data and continuous hair bundle model) does not change significantly the spectral statistics of the spontaneous as well as the periodically driven hair bundle motion. We map the continuous hair bundle model to the FitzHugh-Nagumo model of neural excitability and discuss the bifurcations between different regimes of the system in terms of the latter model. Linearizing the nullclines and assuming perfect time-scale separation between the variables we can map the FitzHugh-Nagumo system to a simple two-state model in which each of the states corresponds to the two possible values of the binary-filtered hair bundle trajectory. For the two-state model, analytical expressions for the power spectrum and the susceptibility can be calculated [Lindner and Schimansky-Geier, Phys. Rev. E 61, 6103 (2000)] and show the same features as seen in the experimental data as well as in simulations of the continuous hair bundle model.
Stochastic interference of fluorescence radiation in random media with large inhomogeneities
NASA Astrophysics Data System (ADS)
Zimnyakov, D. A.; Asharchuk, I. A.; Yuvchenko, S. A.; Sviridov, A. P.
2017-03-01
Stochastic interference of fluorescence light outgoing from a dye-doped coarse-grained random medium, which was pumped by the continuous-wave laser radiation, was experimentally studied. It was found that the contrast of random interference patterns highly correlates with the wavelength-dependent fluorescence intensity and reaches its minimum in the vicinity of the cusp of emission spectrum. The decay in the contrast of spectrally selected speckle patterns was interpreted in terms of the pathlength distribution broadening for fluorescence radiation propagating in the medium. This broadening is presumably caused by the wavelength-dependent negative absorption of the medium.
A comparison of two- and three-dimensional stochastic models of regional solute movement
Shapiro, A.M.; Cvetkovic, V.D.
1990-01-01
Recent models of solute movement in porous media that are based on a stochastic description of the porous medium properties have been dedicated primarily to a three-dimensional interpretation of solute movement. In many practical problems, however, it is more convenient and consistent with measuring techniques to consider flow and solute transport as an areal, two-dimensional phenomenon. The physics of solute movement, however, is dependent on the three-dimensional heterogeneity in the formation. A comparison of two- and three-dimensional stochastic interpretations of solute movement in a porous medium having a statistically isotropic hydraulic conductivity field is investigated. To provide an equitable comparison between the two- and three-dimensional analyses, the stochastic properties of the transmissivity are defined in terms of the stochastic properties of the hydraulic conductivity. The variance of the transmissivity is shown to be significantly reduced in comparison to that of the hydraulic conductivity, and the transmissivity is spatially correlated over larger distances. These factors influence the two-dimensional interpretations of solute movement by underestimating the longitudinal and transverse growth of the solute plume in comparison to its description as a three-dimensional phenomenon. Although this analysis is based on small perturbation approximations and the special case of a statistically isotropic hydraulic conductivity field, it casts doubt on the use of a stochastic interpretation of the transmissivity in describing regional scale movement. However, by assuming the transmissivity to be the vertical integration of the hydraulic conductivity field at a given position, the stochastic properties of the hydraulic conductivity can be estimated from the stochastic properties of the transmissivity and applied to obtain a more accurate interpretation of solute movement. ?? 1990 Kluwer Academic Publishers.
Medium energy heavy ion operations at RHIC
Drees, K.A.; Ahrens, L.; Bai, M.; Beebe-Wang, J.; Blackler, I.M.C.; Blaskiewicz, M.; Brown, K.A.; Brennan, M.; Bruno, D.; Butler, J.; Carlson, C.; Connolly, R.; D'Ottavio, T.; Fischer, W.; Fu, W.; Gassner, D.; Harvey, M.; Hayes, T.; Huang, H.; Hulsart, R.; Ingrassia, P.; Kling, N.; Lafky, M.; Laster, J.; Lee, R.C.; Litvinenko, V.; Luo, Y.; MacKay, W.W.; Marr, G.; Mapes. M.; Marusic, A.; Mernick, K.; Michnoff, R.; Minty, M.; Montag, C.; Morris, J.; Naylor, C.; Nemesure, S.; Pilat, F.; Ptitsyn, V.; Robert-Demolaize, G.; Roser, T.; Sampson, P.; Satogata, T.; Schoefer, V.; Schultheiss, C.; Severino, F.; Shrey, T.; Smith, K.S.; Tepikian, S.; Thieberger, P.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; van Kuik, B.; Wilinski, M.; Zaltsman, A.; Zeno, K.; Zhang, S.Y.
2011-03-28
As part of the search for a phase transition or critical point on the QCD phase diagram, an energy scan including 5 different energy settings was performed during the 2010 RHIC heavy ion run. While the top beam energy for heavy ions is at 100 GeV/n and the lowest achieved energy setpoint was significantly below RHICs injection energy of approximately 10 GeV/n, we also provided beams for data taking in a medium energy range above injection energy and below top beam energy. This paper reviews RHIC experience and challenges for RHIC medium energy operations that produced full experimental data sets at beam energies of 31.2 GeV/n and 19.5 GeV/n. The medium energy AuAu run covered two beam energies, both above the RHIC injection energy of 9.8 GeV but well below the standard store energy of 100 GeV (see table 1). The low energy and full energy runs with heavy ions in FY10 are summarized in [1] and [2]. Stochastic Cooling ([3]) was only used for 100 GeV beams and not used in the medium energy run. The efficiency of the transition from 100 GeV operation to 31.2 GeV and then to 19.5 GeV was remarkable. Setup took 32 h and 19 h respectively for the two energy settings. The time in store, defined to be the percentage of time RHIC provides beams in physics conditions versus calendar time, was approximately 52% for the entire FY10 heavy ion run. In both medium energy runs it was well above this average, 68% for 31.5 GeV and 82% for 19.5 GeV. For both energies RHIC was filled with 111 bunches with 1.2 10{sup 9} and 1.3 10{sup 9} ions per bunch respectively.
MCdevelop - a universal framework for Stochastic Simulations
NASA Astrophysics Data System (ADS)
Slawinska, M.; Jadach, S.
2011-03-01
We present MCdevelop, a universal computer framework for developing and exploiting the wide class of Stochastic Simulations (SS) software. This powerful universal SS software development tool has been derived from a series of scientific projects for precision calculations in high energy physics (HEP), which feature a wide range of functionality in the SS software needed for advanced precision Quantum Field Theory calculations for the past LEP experiments and for the ongoing LHC experiments at CERN, Geneva. MCdevelop is a "spin-off" product of HEP to be exploited in other areas, while it will still serve to develop new SS software for HEP experiments. Typically SS involve independent generation of large sets of random "events", often requiring considerable CPU power. Since SS jobs usually do not share memory it makes them easy to parallelize. The efficient development, testing and running in parallel SS software requires a convenient framework to develop software source code, deploy and monitor batch jobs, merge and analyse results from multiple parallel jobs, even before the production runs are terminated. Throughout the years of development of stochastic simulations for HEP, a sophisticated framework featuring all the above mentioned functionality has been implemented. MCdevelop represents its latest version, written mostly in C++ (GNU compiler gcc). It uses Autotools to build binaries (optionally managed within the KDevelop 3.5.3 Integrated Development Environment (IDE)). It uses the open-source ROOT package for histogramming, graphics and the mechanism of persistency for the C++ objects. MCdevelop helps to run multiple parallel jobs on any computer cluster with NQS-type batch system. Program summaryProgram title:MCdevelop Catalogue identifier: AEHW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http
Quick matching of binary images
NASA Astrophysics Data System (ADS)
Mustafa, Adnan A. Y.
2015-09-01
Matching images is a fundamental problem in image processing. The most common technique used to compare binary images is to calculate the correlation between two images or simply to subtract them. Both of these methods -as well as other matching methods- require some type of similarity operation to be applied to the whole image, and hence they are image size dependent. This implies that as image size increases, more processing time is required. However, with image sizes already exceeding 20 mega-pixels and standard image sizes doubling approximately every five years, the need to find a size invariant image matching method is becoming crucial. In this paper, we present a quick way to compare and match binary images based on the Probabilistic Matching Model (PMM). We present two simple image size invariant methods based on PMM: one for fast detection of dissimilar binary images and another for matching binary images. For detecting dissimilar binary images we introduce the Dissimilar Detection via Mapping method (DDM). We compare DDM to other popular matching methods used in the image processing arena and show that DDM is magnitudes faster than any other method. For binary image matching, we use DDM as a preprocessor for other popular methods to speed up their matching speed. In particular, we use DDM with cross correlation to speed it up. Test results are presented for real images varying in size from 16 kilo-pixel images to 10 mega-pixel images to show the method's size invariance.
Stochastic neural network model for spontaneous bursting in hippocampal slices.
Biswal, B; Dasgupta, C
2002-11-01
A biologically plausible, stochastic, neural network model that exhibits spontaneous transitions between a low-activity (normal) state and a high-activity (epileptic) state is studied by computer simulation. Brief excursions of the network to the high-activity state lead to spontaneous population bursting similar to the behavior observed in hippocampal slices bathed in a high-potassium medium. Although the variability of interburst intervals in this model is due to stochasticity, first return maps of successive interburst intervals show trajectories that resemble the behavior expected near unstable periodic orbits (UPOs) of systems exhibiting deterministic chaos. Simulations of the effects of the application of chaos control, periodic pacing, and anticontrol to the network model yield results that are qualitatively similar to those obtained in experiments on hippocampal slices. Estimation of the statistical significance of UPOs through surrogate data analysis also leads to results that resemble those of similar analysis of data obtained from slice experiments and human epileptic activity. These results suggest that spontaneous population bursting in hippocampal slices may be a manifestation of stochastic bistable dynamics, rather than of deterministic chaos. Our results also question the reliability of some of the recently proposed, UPO-based, statistical methods for detecting determinism and chaos in experimental time-series data.
Stochastic daily precipitation model with a heavy-tailed component
NASA Astrophysics Data System (ADS)
Neykov, N. M.; Neytchev, P. N.; Zucchini, W.
2014-09-01
Stochastic daily precipitation models are commonly used to generate scenarios of climate variability or change on a daily timescale. The standard models consist of two components describing the occurrence and intensity series, respectively. Binary logistic regression is used to fit the occurrence data, and the intensity series is modeled using a continuous-valued right-skewed distribution, such as gamma, Weibull or lognormal. The precipitation series is then modeled using the joint density, and standard software for generalized linear models can be used to perform the computations. A drawback of these precipitation models is that they do not produce a sufficiently heavy upper tail for the distribution of daily precipitation amounts; they tend to underestimate the frequency of large storms. In this study, we adapted the approach of Furrer and Katz (2008) based on hybrid distributions in order to correct for this shortcoming. In particular, we applied hybrid gamma-generalized Pareto (GP) and hybrid Weibull-GP distributions to develop a stochastic precipitation model for daily rainfall at Ihtiman in western Bulgaria. We report the results of simulations designed to compare the models based on the hybrid distributions and those based on the standard distributions. Some potential difficulties are outlined.
Stochastic daily precipitation model with a heavy-tailed component
NASA Astrophysics Data System (ADS)
Neykov, N. M.; Neytchev, P. N.; Zucchini, W.
2014-02-01
Stochastic daily precipitation models are commonly used to generate scenarios of climate variability or change on a daily time scale. The standard models consist of two components describing the occurrence and intensity series, respectively. Binary logistic regression is used to fit the occurrence data, and the intensity series is modeled by a continuous-valued right-skewed distribution, such as gamma, Weibull or lognormal. The precipitation series is then modeled using the joint density and standard software for generalized linear models can be used to perform the computations. A drawback of these precipitation models is that they do not produce a sufficiently heavy upper tail for the distribution of daily precipitation amounts; they tend to underestimate the frequency of large storms. In this study we adapted the approach of Furrer and Katz (2008) based on hybrid distributions in order to correct for this shortcoming. In particular we applied hybrid gamma - generalized Pareto (GP) and hybrid Weibull-GP distributions to develop a stochastic precipitation model for daily rainfall at Ihtiman in western Bulgaria. We report the results of simulations designed to compare the models based on the hybrid distributions and those based on the standard distributions. Some potential difficulties are outlined.
Image-based histologic grade estimation using stochastic geometry analysis
NASA Astrophysics Data System (ADS)
Petushi, Sokol; Zhang, Jasper; Milutinovic, Aladin; Breen, David E.; Garcia, Fernando U.
2011-03-01
Background: Low reproducibility of histologic grading of breast carcinoma due to its subjectivity has traditionally diminished the prognostic value of histologic breast cancer grading. The objective of this study is to assess the effectiveness and reproducibility of grading breast carcinomas with automated computer-based image processing that utilizes stochastic geometry shape analysis. Methods: We used histology images stained with Hematoxylin & Eosin (H&E) from invasive mammary carcinoma, no special type cases as a source domain and study environment. We developed a customized hybrid semi-automated segmentation algorithm to cluster the raw image data and reduce the image domain complexity to a binary representation with the foreground representing regions of high density of malignant cells. A second algorithm was developed to apply stochastic geometry and texture analysis measurements to the segmented images and to produce shape distributions, transforming the original color images into a histogram representation that captures their distinguishing properties between various histological grades. Results: Computational results were compared against known histological grades assigned by the pathologist. The Earth Mover's Distance (EMD) similarity metric and the K-Nearest Neighbors (KNN) classification algorithm provided correlations between the high-dimensional set of shape distributions and a priori known histological grades. Conclusion: Computational pattern analysis of histology shows promise as an effective software tool in breast cancer histological grading.
Stochastic resonance in nanomechanical systems
NASA Astrophysics Data System (ADS)
Badzey, Robert L.
The phenomenon of stochastic resonance is a counter-intuitive one: adding noise to a noisy nonlinear system under the influence of a modulation results in coherent behavior. The signature of the effect is a resonance in the signal-to-noise ratio of the response over a certain range of noise power; this behavior is absent if either the modulation or the noise are absent. Stochastic resonance has attracted considerable interest over the past several decades, having been seen in a great number of physical and biological systems. Here, observation of stochastic resonance is reported for nanomechanical systems consisting of a doubly-clamped beam resonators fabricated from single-crystal silicon. Such oscillators have been found to display nonlinear and bistable behavior under the influence of large driving forces. This bistability is exploited to produce a controllable nanomechanical switch, a device that may be used as the basis for a new generation of computational memory elements. These oscillators possess large intrinsic resonance frequencies (MHz range or higher) due to their small size and relatively high stiffness; thus they have the potential to rival the current state-of-the-art of electronic and magnetic storage technologies. This small size also allows them to be packed in densities which meet or exceed the superparamagnetic limit for magnetic storage media of 100 GB/in2. Two different doubly-clamped beams were cooled to low temperatures (300 mK--4 K), and excited with a magnetomotive technique. They were driven into the nonlinear response regime, and then modulated to induce switching between their bistable states. When the modulation was reduced, the switching died out. Application of noise, either with an external broadband source or via an increase in temperature, resulted in a distinct resonance in the signal-to-noise ratio. Aside from establishing the phenomenon of stochastic resonance in yet another physical system, the observation of this effect has
Posterior predictive modeling using multi-scale stochastic inverse parameter estimates.
Waanders, Bart Van Bloemen; Marzouk, Youssef M.; Ray, Jaideep; McKenna, Sean Andrew
2010-12-01
Multi-scale binary permeability field estimation from static and dynamic data is completed using Markov Chain Monte Carlo (MCMC) sampling. The binary permeability field is defined as high permeability inclusions within a lower permeability matrix. Static data are obtained as measurements of permeability with support consistent to the coarse scale discretization. Dynamic data are advective travel times along streamlines calculated through a fine-scale field and averaged for each observation point at the coarse scale. Parameters estimated at the coarse scale (30 x 20 grid) are the spatially varying proportion of the high permeability phase and the inclusion length and aspect ratio of the high permeability inclusions. From the non-parametric, posterior distributions estimated for these parameters, a recently developed sub-grid algorithm is employed to create an ensemble of realizations representing the fine-scale (3000 x 2000), binary permeability field. Each fine-scale ensemble member is instantiated by convolution of an uncorrelated multiGaussian random field with a Gaussian kernel defined by the estimated inclusion length and aspect ratio. Since the multiGaussian random field is itself a realization of a stochastic process, the procedure for generating fine-scale binary permeability field realizations is also stochastic. Two different methods are hypothesized to perform posterior predictive tests. Different mechanisms for combining multi Gaussian random fields with kernels defined from the MCMC sampling are examined. Posterior predictive accuracy of the estimated parameters is assessed against a simulated ground truth for predictions at both the coarse scale (effective permeabilities) and at the fine scale (advective travel time distributions). The two techniques for conducting posterior predictive tests are compared by their ability to recover the static and dynamic data. The skill of the inference and the method for generating fine-scale binary permeability
PULSAR STATE SWITCHING FROM MARKOV TRANSITIONS AND STOCHASTIC RESONANCE
Cordes, J. M.
2013-09-20
Markov processes are shown to be consistent with metastable states seen in pulsar phenomena, including intensity nulling, pulse-shape mode changes, subpulse drift rates, spin-down rates, and X-ray emission, based on the typically broad and monotonic distributions of state lifetimes. Markovianity implies a nonlinear magnetospheric system in which state changes occur stochastically, corresponding to transitions between local minima in an effective potential. State durations (though not transition times) are thus largely decoupled from the characteristic timescales of various magnetospheric processes. Dyadic states are common but some objects show at least four states with some transitions forbidden. Another case is the long-term intermittent pulsar B1931+24 that has binary radio-emission and torque states with wide, but non-monotonic duration distributions. It also shows a quasi-period of 38 ± 5 days in a 13 yr time sequence, suggesting stochastic resonance in a Markov system with a forcing function that could be strictly periodic or quasi-periodic. Nonlinear phenomena are associated with time-dependent activity in the acceleration region near each magnetic polar cap. The polar-cap diode is altered by feedback from the outer magnetosphere and by return currents from the equatorial region outside the light cylinder that may also cause the neutron star to episodically charge and discharge. Orbital perturbations of a disk or current sheet provide a natural periodicity for the forcing function in the stochastic-resonance interpretation of B1931+24. Disk dynamics may introduce additional timescales in observed phenomena. Future work can test the Markov interpretation, identify which pulsar types have a propensity for state changes, and clarify the role of selection effects.
Granular Medium Impacted by a Projectile: Experiment and Model
NASA Astrophysics Data System (ADS)
Crassous, J.; Valance, A.
2009-06-01
We present an experiment and a simple model of a granular projectile on a granular medium. Experiment consists in impacting an half space of PVC beads with a single bead. Numerous beads are then ejected around the impact point. The loci of ejection and velocities of the ejecta were measured. The experimental data were compared with the predictions of a simple discrete model. In this model, the energy is transferred from grain to grain on a frozen disordered medium following the law of binary collisions. This theoretical description is in remarkable agreement with the experimental observations. Besides, the present model provides a clear picture of the mechanism of energy propagation.
Stochastic representations of seismic anisotropy: transversely isotropic effective media models
NASA Astrophysics Data System (ADS)
Song, Xin; Jordan, Thomas H.
2017-06-01
We apply Jordan's self-consistent, second-order Born theory to compute the effective stiffness tensor for spatially stationary, stochastic models of 3-D elastic heterogeneity. The effects of local anisotropy can be separated from spatially extended geometric anisotropy by factoring the covariance of the moduli into a one-point variance tensor and a two-point correlation function. The latter is incorporated into the rescaled Kneer tensor, which is contracted against the one-point variance tensor to yield a second-order perturbation to the Voigt average. The theory can handle heterogeneity with orthotropic stochastic symmetry, but the calculations presented here are restricted to media with transversely isotropic (TI) statistics. We thoroughly investigate TI stochastic media that are locally isotropic. If the heterogeneity aspect ratio η is unity, the effective medium is isotropic, and the main effect of the scattering is to reduce the moduli. The two limiting regimes are a 2-D vertical stochastic bundle (η → 0), where the P and S anisotropy ratios are negative, and a 1-D horizontal stochastic laminate (η → ∞), where they are positive. The effective-medium equations for the latter yield the second-order approximation to Backus's exact solution, demonstrating the connection between Backus theory and self-consistent effective-media theory. Comparisons of the exact and second-order results for non-Gaussian laminates indicate that the approximation should be adequate for moduli heterogeneities less than about 30 per cent and thus valid for most seismological purposes. We apply the locally isotropic theory to data from the Los Angeles Basin to illustrate how it can be used to explain shallow seismic anisotropy. To assess the relative contributions of geometric and local anisotropy to the effective anisotropy, we consider a rotational model for stochastic anisotropic variability proposed by Jordan. In this model, the axis of a hexagonally symmetric stiffness
Stochastic dynamics of cholera epidemics
NASA Astrophysics Data System (ADS)
Azaele, Sandro; Maritan, Amos; Bertuzzo, Enrico; Rodriguez-Iturbe, Ignacio; Rinaldo, Andrea
2010-05-01
We describe the predictions of an analytically tractable stochastic model for cholera epidemics following a single initial outbreak. The exact model relies on a set of assumptions that may restrict the generality of the approach and yet provides a realm of powerful tools and results. Without resorting to the depletion of susceptible individuals, as usually assumed in deterministic susceptible-infected-recovered models, we show that a simple stochastic equation for the number of ill individuals provides a mechanism for the decay of the epidemics occurring on the typical time scale of seasonality. The model is shown to provide a reasonably accurate description of the empirical data of the 2000/2001 cholera epidemic which took place in the Kwa Zulu-Natal Province, South Africa, with possibly notable epidemiological implications.
Stochastic thermodynamics with information reservoirs
NASA Astrophysics Data System (ADS)
Barato, Andre C.; Seifert, Udo
2014-10-01
We generalize stochastic thermodynamics to include information reservoirs. Such information reservoirs, which can be modeled as a sequence of bits, modify the second law. For example, work extraction from a system in contact with a single heat bath becomes possible if the system also interacts with an information reservoir. We obtain an inequality, and the corresponding fluctuation theorem, generalizing the standard entropy production of stochastic thermodynamics. From this inequality we can derive an information processing entropy production, which gives the second law in the presence of information reservoirs. We also develop a systematic linear response theory for information processing machines. For a unicyclic machine powered by an information reservoir, the efficiency at maximum power can deviate from the standard value of 1 /2 . For the case where energy is consumed to erase the tape, the efficiency at maximum erasure rate is found to be 1 /2 .
Wavelet entropy of stochastic processes
NASA Astrophysics Data System (ADS)
Zunino, L.; Pérez, D. G.; Garavaglia, M.; Rosso, O. A.
2007-06-01
We compare two different definitions for the wavelet entropy associated to stochastic processes. The first one, the normalized total wavelet entropy (NTWS) family [S. Blanco, A. Figliola, R.Q. Quiroga, O.A. Rosso, E. Serrano, Time-frequency analysis of electroencephalogram series, III. Wavelet packets and information cost function, Phys. Rev. E 57 (1998) 932-940; O.A. Rosso, S. Blanco, J. Yordanova, V. Kolev, A. Figliola, M. Schürmann, E. Başar, Wavelet entropy: a new tool for analysis of short duration brain electrical signals, J. Neurosci. Method 105 (2001) 65-75] and a second introduced by Tavares and Lucena [Physica A 357(1) (2005) 71-78]. In order to understand their advantages and disadvantages, exact results obtained for fractional Gaussian noise ( -1<α< 1) and fractional Brownian motion ( 1<α< 3) are assessed. We find out that the NTWS family performs better as a characterization method for these stochastic processes.
Stochastic dynamics of cholera epidemics.
Azaele, Sandro; Maritan, Amos; Bertuzzo, Enrico; Rodriguez-Iturbe, Ignacio; Rinaldo, Andrea
2010-05-01
We describe the predictions of an analytically tractable stochastic model for cholera epidemics following a single initial outbreak. The exact model relies on a set of assumptions that may restrict the generality of the approach and yet provides a realm of powerful tools and results. Without resorting to the depletion of susceptible individuals, as usually assumed in deterministic susceptible-infected-recovered models, we show that a simple stochastic equation for the number of ill individuals provides a mechanism for the decay of the epidemics occurring on the typical time scale of seasonality. The model is shown to provide a reasonably accurate description of the empirical data of the 2000/2001 cholera epidemic which took place in the Kwa Zulu-Natal Province, South Africa, with possibly notable epidemiological implications.
Stochastic kinetic mean field model
NASA Astrophysics Data System (ADS)
Erdélyi, Zoltán; Pasichnyy, Mykola; Bezpalchuk, Volodymyr; Tomán, János J.; Gajdics, Bence; Gusak, Andriy M.
2016-07-01
This paper introduces a new model for calculating the change in time of three-dimensional atomic configurations. The model is based on the kinetic mean field (KMF) approach, however we have transformed that model into a stochastic approach by introducing dynamic Langevin noise. The result is a stochastic kinetic mean field model (SKMF) which produces results similar to the lattice kinetic Monte Carlo (KMC). SKMF is, however, far more cost-effective and easier to implement the algorithm (open source program code is provided on http://skmf.eu website). We will show that the result of one SKMF run may correspond to the average of several KMC runs. The number of KMC runs is inversely proportional to the amplitude square of the noise in SKMF. This makes SKMF an ideal tool also for statistical purposes.
Fukushima, S; Ogawa, H; Nishikawa, T; Sasagawa, S
1990-06-01
The unicellular ciliate, paramecium, reproduces by binary fission, but can not continue to divide unlimitedly without sexual reproduction. We examined the clonal life span of Paramecium octaurelia stock 299 cultured in conventional bacterized medium (BM) and a chemically defined medium (DM). The cells that lived in BM divided 300 times. Although the cells in DM divided more slowly, some cells continued to divide more than 100 times. The mean life span of 90 cell lines cultured in BM was 151 +/- 49 fissions and that of 84 cell lines in DM was 68 +/- 28. When some older cells, which had been cultured in DM, were transferred to BM, most of them showed much longer life spans than those remaining in DM. The results showed that the life spans of cell clones were affected by the culture conditions.
Stochastic cooling technology at Fermilab
NASA Astrophysics Data System (ADS)
Pasquinelli, Ralph J.
2004-10-01
The first antiproton cooling systems were installed and commissioned at Fermilab in 1984-1985. In the interim period, there have been several major upgrades, system improvements, and complete reincarnation of cooling systems. This paper will present some of the technology that was pioneered at Fermilab to implement stochastic cooling systems in both the Antiproton Source and Recycler accelerators. Current performance data will also be presented.
Stochastic resonance across bifurcation cascades
NASA Astrophysics Data System (ADS)
Nicolis, C.; Nicolis, G.
2017-03-01
The classical setting of stochastic resonance is extended to account for parameter variations leading to transitions between a unique stable state, bistability, and multistability regimes, across singularities of various kinds. Analytic expressions for the amplitude and the phase of the response in terms of key parameters are obtained. The conditions for optimal responses are derived in terms of the bifurcation parameter, the driving frequency, and the noise strength.
Optimality Functions in Stochastic Programming
2009-12-02
nonconvex. Non - convex stochastic optimization problems arise in such diverse applications as estimation of mixed logit models [2], engineering design...first- order necessary optimality conditions ; see for example Propositions 3.3.1 and 3.3.5 in [7] or Theorem 2.2.4 in [25]. If the evaluation of f j...procedures for validation analysis of a candidate point x ∈ IRn. Since P may be nonconvex, we focus on first-order necessary optimality conditions as
Cosmological stochastic Higgs field stabilization
NASA Astrophysics Data System (ADS)
Gong, Jinn-Ouk; Kitajima, Naoya
2017-09-01
We show that the stochastic evolution of an interacting system of the Higgs field and a spectator scalar field naturally gives rise to an enhanced probability of settling down at the electroweak vacuum at the end of inflation. Subsequent destabilization due to parametric resonance between the Higgs field and the spectator field can be avoided in a wide parameter range. We further argue that the spectator field can play the role of dark matter.
Stochastic background of atmospheric cascades
Wilk, G. ); Wlodarczyk, Z. )
1993-06-15
Fluctuations in the atmospheric cascades developing during the propagation of very high energy cosmic rays through the atmosphere are investigated using stochastic branching model of pure birth process with immigration. In particular, we show that the multiplicity distributions of secondaries emerging from gamma families are much narrower than those resulting from hadronic families. We argue that the strong intermittent like behaviour found recently in atmospheric families results from the fluctuations in the cascades themselves and are insensitive to the details of elementary interactions.
Stochastic Fluctuations in Gene Regulation
2005-04-01
AFRL-IF- RS -TR-2005-126 Final Technical Report April 2005 STOCHASTIC FLUCTUATIONS IN GENE REGULATION Boston University...be releasable to the general public, including foreign nations. AFRL-IF- RS -TR-2005-126 has been reviewed and is approved for publication...AGENCY REPORT NUMBER AFRL-IF- RS -TR-2005-126 11. SUPPLEMENTARY NOTES AFRL Project Engineer: Peter J. Costianes/IFED/(315) 330-4030
Stochastic Modeling Of Biochemical Reactions
2006-11-01
chemical reactions. Often for these reactions, the dynamics of the first M-order statistical moments of the species populations do not form a closed...results a stochastic model for gene expression is investigated. We show that in gene expression mechanisms , in which a protein inhibits its own...chemical reactions [7, 8, 4, 9, 10]. Since one is often interested in only the first and second order statistical moments for the number of molecules of
Mechanical Autonomous Stochastic Heat Engine.
Serra-Garcia, Marc; Foehr, André; Molerón, Miguel; Lydon, Joseph; Chong, Christopher; Daraio, Chiara
2016-07-01
Stochastic heat engines are devices that generate work from random thermal motion using a small number of highly fluctuating degrees of freedom. Proposals for such devices have existed for more than a century and include the Maxwell demon and the Feynman ratchet. Only recently have they been demonstrated experimentally, using, e.g., thermal cycles implemented in optical traps. However, recent experimental demonstrations of classical stochastic heat engines are nonautonomous, since they require an external control system that prescribes a heating and cooling cycle and consume more energy than they produce. We present a heat engine consisting of three coupled mechanical resonators (two ribbons and a cantilever) subject to a stochastic drive. The engine uses geometric nonlinearities in the resonating ribbons to autonomously convert a random excitation into a low-entropy, nonpassive oscillation of the cantilever. The engine presents the anomalous heat transport property of negative thermal conductivity, consisting in the ability to passively transfer energy from a cold reservoir to a hot reservoir.
Turbulence, Spontaneous Stochasticity and Climate
NASA Astrophysics Data System (ADS)
Eyink, Gregory
Turbulence is well-recognized as important in the physics of climate. Turbulent mixing plays a crucial role in the global ocean circulation. Turbulence also provides a natural source of variability, which bedevils our ability to predict climate. I shall review here a recently discovered turbulence phenomenon, called ``spontaneous stochasticity'', which makes classical dynamical systems as intrinsically random as quantum mechanics. Turbulent dissipation and mixing of scalars (passive or active) is now understood to require Lagrangian spontaneous stochasticity, which can be expressed by an exact ``fluctuation-dissipation relation'' for scalar turbulence (joint work with Theo Drivas). Path-integral methods such as developed for quantum mechanics become necessary to the description. There can also be Eulerian spontaneous stochasticity of the flow fields themselves, which is intimately related to the work of Kraichnan and Leith on unpredictability of turbulent flows. This leads to problems similar to those encountered in quantum field theory. To quantify uncertainty in forecasts (or hindcasts), we can borrow from quantum field-theory the concept of ``effective actions'', which characterize climate averages by a variational principle and variances by functional derivatives. I discuss some work with Tom Haine (JHU) and Santha Akella (NASA-Goddard) to make this a practical predictive tool. More ambitious application of the effective action is possible using Rayleigh-Ritz schemes.
Stochastic processes, slaves and supersymmetry
NASA Astrophysics Data System (ADS)
Drummond, I. T.; Horgan, R. R.
2012-03-01
We extend the work of Tănase-Nicola and Kurchan on the structure of diffusion processes and the associated supersymmetry algebra by examining the responses of a simple statistical system to external disturbances of various kinds. We consider both the stochastic differential equations (SDEs) for the process and the associated diffusion equation. The influence of the disturbances can be understood by augmenting the original SDE with an equation for slave variables. The evolution of the slave variables describes the behaviour of line elements carried along in the stochastic flow. These line elements, together with the associated surface and volume elements constructed from them, provide the basis of the supersymmetry properties of the theory. For ease of visualization, and in order to emphasize a helpful electromagnetic analogy, we work in three dimensions. The results are all generalizable to higher dimensions and can be specialized to one and two dimensions. The electromagnetic analogy is a useful starting point for calculating asymptotic results at low temperature that can be compared with direct numerical evaluations. We also examine the problems that arise in a direct numerical simulation of the stochastic equation together with the slave equations. We pay special attention to the dependence of the slave variable statistics on temperature. We identify in specific models the critical temperature below which the slave variable distribution ceases to have a variance and consider the effect on estimates of susceptibilities.
Multiple fields in stochastic inflation
Assadullahi, Hooshyar; Firouzjahi, Hassan; Noorbala, Mahdiyar; Vennin, Vincent; Wands, David
2016-06-24
Stochastic effects in multi-field inflationary scenarios are investigated. A hierarchy of diffusion equations is derived, the solutions of which yield moments of the numbers of inflationary e-folds. Solving the resulting partial differential equations in multi-dimensional field space is more challenging than the single-field case. A few tractable examples are discussed, which show that the number of fields is, in general, a critical parameter. When more than two fields are present for instance, the probability to explore arbitrarily large-field regions of the potential, otherwise inaccessible to single-field dynamics, becomes non-zero. In some configurations, this gives rise to an infinite mean number of e-folds, regardless of the initial conditions. Another difference with respect to single-field scenarios is that multi-field stochastic effects can be large even at sub-Planckian energy. This opens interesting new possibilities for probing quantum effects in inflationary dynamics, since the moments of the numbers of e-folds can be used to calculate the distribution of primordial density perturbations in the stochastic-δN formalism.
Stochastic modeling of carbon oxidation
Chen, W.Y,; Kulkarni, A.; Milum, J.L.; Fan, L.T.
1999-12-01
Recent studies of carbon oxidation by scanning tunneling microscopy indicate that measured rates of carbon oxidation can be affected by randomly distributed defects in the carbon structure, which vary in size. Nevertheless, the impact of this observation on the analysis or modeling of the oxidation rate has not been critically assessed. This work focuses on the stochastic analysis of the dynamics of carbon clusters' conversions during the oxidation of a carbon sheet. According to the classic model of Nagle and Strickland-Constable (NSC), two classes of carbon clusters are involved in three types of reactions: gasification of basal-carbon clusters, gasification of edge-carbon clusters, and conversion of the edge-carbon clusters to the basal-carbon clusters due to the thermal annealing. To accommodate the dilution of basal clusters, however, the NSC model is modified for the later stage of oxidation in this work. Master equations governing the numbers of three classes of carbon clusters, basal, edge and gasified, are formulated from stochastic population balance. The stochastic pathways of three different classes of carbon during oxidation, that is, their means and the fluctuations around these means, have been numerically simulated independently by the algorithm derived from the master equations, as well as by an event-driven Monte Carlo algorithm. Both algorithms have given rise to identical results.
Stochastic analysis of dimerization systems.
Barzel, Baruch; Biham, Ofer
2009-09-01
The process of dimerization, in which two monomers bind to each other and form a dimer, is common in nature. This process can be modeled using rate equations, from which the average copy numbers of the reacting monomers and of the product dimers can then be obtained. However, the rate equations apply only when these copy numbers are large. In the limit of small copy numbers the system becomes dominated by fluctuations, which are not accounted for by the rate equations. In this limit one must use stochastic methods such as direct integration of the master equation or Monte Carlo simulations. These methods are computationally intensive and rarely succumb to analytical solutions. Here we use the recently introduced moment equations which provide a highly simplified stochastic treatment of the dimerization process. Using this approach, we obtain an analytical solution for the copy numbers and reaction rates both under steady-state conditions and in the time-dependent case. We analyze three different dimerization processes: dimerization without dissociation, dimerization with dissociation, and heterodimer formation. To validate the results we compare them with the results obtained from the master equation in the stochastic limit and with those obtained from the rate equations in the deterministic limit. Potential applications of the results in different physical contexts are discussed.
Mechanical Autonomous Stochastic Heat Engine
NASA Astrophysics Data System (ADS)
Serra-Garcia, Marc; Foehr, André; Molerón, Miguel; Lydon, Joseph; Chong, Christopher; Daraio, Chiara
2016-07-01
Stochastic heat engines are devices that generate work from random thermal motion using a small number of highly fluctuating degrees of freedom. Proposals for such devices have existed for more than a century and include the Maxwell demon and the Feynman ratchet. Only recently have they been demonstrated experimentally, using, e.g., thermal cycles implemented in optical traps. However, recent experimental demonstrations of classical stochastic heat engines are nonautonomous, since they require an external control system that prescribes a heating and cooling cycle and consume more energy than they produce. We present a heat engine consisting of three coupled mechanical resonators (two ribbons and a cantilever) subject to a stochastic drive. The engine uses geometric nonlinearities in the resonating ribbons to autonomously convert a random excitation into a low-entropy, nonpassive oscillation of the cantilever. The engine presents the anomalous heat transport property of negative thermal conductivity, consisting in the ability to passively transfer energy from a cold reservoir to a hot reservoir.
Anomalous diffusion in stochastic systems with nonhomogeneously distributed traps.
Srokowski, Tomasz
2015-05-01
The stochastic motion in a nonhomogeneous medium with traps is studied and diffusion properties of that system are discussed. The particle is subjected to a stochastic stimulation obeying a general Lévy stable statistics and experiences long rests due to nonhomogeneously distributed traps. The memory is taken into account by subordination of that process to a random time; then the subordination equation is position dependent. The problem is approximated by a decoupling of the medium structure and memory and exactly solved for a power-law position dependence of the memory. In the case of the Gaussian statistics, the density distribution and moments are derived: depending on geometry and memory parameters, the system may reveal both the subdiffusion and enhanced diffusion. The similar analysis is performed for the Lévy flights where the finiteness of the variance follows from a variable noise intensity near a boundary. Two diffusion regimes are found: in the bulk and near the surface. The anomalous diffusion exponent as a function of the system parameters is derived.
Lattice-Boltzmann-Langevin simulations of binary mixtures.
Thampi, Sumesh P; Pagonabarraga, Ignacio; Adhikari, R
2011-10-01
We report a hybrid numerical method for the solution of the Model H fluctuating hydrodynamic equations for binary mixtures. The momentum conservation equations with Landau-Lifshitz stresses are solved using the fluctuating lattice Boltzmann equation while the order parameter conservation equation with Langevin fluxes is solved using stochastic method of lines. Two methods, based on finite difference and finite volume, are proposed for spatial discretization of the order parameter equation. Special care is taken to ensure that the fluctuation-dissipation theorem is maintained at the lattice level in both cases. The methods are benchmarked by comparing static and dynamic correlations and excellent agreement is found between analytical and numerical results. The Galilean invariance of the model is tested and found to be satisfactory. Thermally induced capillary fluctuations of the interface are captured accurately, indicating that the model can be used to study nonlinear fluctuations.
The chemically peculiar double-lined spectroscopic binary HD 90264
NASA Astrophysics Data System (ADS)
Quiroga, C.; Torres, A. F.; Cidale, L. S.
2010-10-01
Context. HD 90264 is a chemically peculiar (CP) double-lined spectroscopic binary system of the type He-weak. Double-lined binaries are unique sources of data for stellar masses, physical properties, and evolutionary aspects of stars. Therefore, the determination of orbital elements is of great importance to study how the physical characteristics of CP stars are affected by a companion. Aims: We carried out a detailed spectral and polarimetric study of the spectroscopic binary system HD 90264 to characterize its orbit, determine the stellar masses, and investigate the spectral variability and possible polarization of the binary components. Methods: We employed medium-resolution échelle spectra and polarimetric data obtained at the 2.15-m telescope at CASLEO Observatory, Argentina. We measured radial velocities and line equivalent widths with IRAF packages. The radial velocity curves of both binary components were obtained combining radial velocity data derived from the single line of Hg II λ3984 Åand the double lines of Mg II λ4481 Å. Polarimetric data were studied by means of the statistical method of Clarke & Stewart and the Welch test. Results: We found that both components of the binary system are chemically peculiar stars, deficient in helium, where the primary is a He variable and the secondary is a Hg-Mn star. We derived for the first time the orbital parameters of the binary system. We found that the system has a quasi-circular orbit (e ~ 0.04) with an orbital period of 15.727 days. Taking into account the circular orbit solution, we derived a mass ratio of q = MHe-w/MHg-Mn = 1.22. We also found a rotational period of around 15-16 days, suggesting a spin-orbit synchronization. Possible signs of intrinsic polarization have also been detected. Conclusions: HD 90264 is the first known binary system comprised of a He variable star as the primary component and a Hg-Mn star as the secondary one. Based on observations taken at Complejo Astronómico El
NASA Astrophysics Data System (ADS)
Llopis-Albert, C.; Capilla, J. E.
2010-09-01
SummaryMajor factors affecting groundwater flow through fractured rocks include the geometry of each fracture, its properties and the fracture-network connectivity together with the porosity and conductivity of the rock matrix. When modelling fractured rocks this is translated into attaining a characterization of the hydraulic conductivity ( K) as adequately as possible, despite its high heterogeneity. This links with the main goal of this paper, which is to present an improvement of a stochastic inverse model, named as Gradual Conditioning (GC) method, to better characterise K in a fractured rock medium by considering different K stochastic structures, belonging to independent K statistical populations (SP) of fracture families and the rock matrix, each one with its own statistical properties. The new methodology is carried out by applying independent deformations to each SP during the conditioning process for constraining stochastic simulations to data. This allows that the statistical properties of each SPs tend to be preserved during the iterative optimization process. It is worthwhile mentioning that so far, no other stochastic inverse modelling technique, with the whole capabilities implemented in the GC method, is able to work with a domain covered by several different stochastic structures taking into account the independence of different populations. The GC method is based on a procedure that gradually changes an initial K field, which is conditioned only to K data, to approximate the reproduction of other types of information, i.e., piezometric head and solute concentration data. The approach is applied to the Äspö Hard Rock Laboratory (HRL) in Sweden, where, since the middle nineties, many experiments have been carried out to increase confidence in alternative radionuclide transport modelling approaches. Because the description of fracture locations and the distribution of hydrodynamic parameters within them are not accurate enough, we address the
The Michigan Binary Star Program
NASA Astrophysics Data System (ADS)
Lindner, Rudi P.
2007-07-01
At the end of the nineteenth century, William J. Hussey and Robert G. Aitken, both at Lick Observatory, began a systematic search for unrecorded binary stars with the aid of the 12" and 36" refracting telescopes at Lick Observatory. Aitken's work (and book on binary stars) are well known, Hussey's contributions less so. In 1905 Hussey, a Michigan engineering graduate, returned to direct the Ann Arbor astronomy program, and immediately he began to design new instrumentation for the study of binary stars and to train potential observers. For a time, he spent six months a year at the La Plata Observatory, where he discovered a number of new pairs and decided upon a major southern hemisphere campaign. He spent a decade obtaining the lenses for a large refractor, through the vicissitudes of war and depression. Finally, he obtained a site in South Africa, a 26" refractor, and a small corps of observers, but he died in London en route to fulfill his dream. His right hand man, Richard Rossiter, established the observatory and spent the next thirty years discovering and measuring binary stars: his personal total is a record for the field. This talk is an account of the methods, results, and utility of the extraordinary binary star factory in the veldt.
Commission 42: Close Binary Stars
NASA Astrophysics Data System (ADS)
Ribas, Ignasi; Richards, Mercedes T.; Rucinski, Slavek; Bradstreet, David H.; Harmanec, Petr; Kaluzny, Janusz; Mikolajewska, Joanna; Munari, Ulisse; Niarchos, Panagiotis; Olah, Katalin; Pribulla, Theodor; Scarfe, Colin D.; Torres, Guillermo
2012-04-01
The present report covers the main developments in the field of close binaries during the triennium 2009-2012. In addition to scientific publications, there have been several opportunities for direct interaction of researchers working on close binaries. A number of meetings focused on more or less specific topics have taken place during this past years but the highlight for Commission 42 is arguably IAU Symposium 282 held in 2011 in Slovakia. The meeting exploited a strong connection in the methodology and tools used by close binary studies and the rapidly advancing field of exoplanet research. After all, exoplanetary systems are mostly discovered and studied using techniques employed by analyses of close binaries for decades. Modelling of exoplanet radial velocity curves and transiting planet light curves are just particular cases of single-lined and eclipsing binary systems, respectively, with very unequal component properties. As shown by IAU Symposium 282, the synergies between the two fields are strong and potentially very useful. Found below is a summary of the main scientific topics and conclusions from this very successful Symposium.
AESS: Accelerated Exact Stochastic Simulation
NASA Astrophysics Data System (ADS)
Jenkins, David D.; Peterson, Gregory D.
2011-12-01
The Stochastic Simulation Algorithm (SSA) developed by Gillespie provides a powerful mechanism for exploring the behavior of chemical systems with small species populations or with important noise contributions. Gene circuit simulations for systems biology commonly employ the SSA method, as do ecological applications. This algorithm tends to be computationally expensive, so researchers seek an efficient implementation of SSA. In this program package, the Accelerated Exact Stochastic Simulation Algorithm (AESS) contains optimized implementations of Gillespie's SSA that improve the performance of individual simulation runs or ensembles of simulations used for sweeping parameters or to provide statistically significant results. Program summaryProgram title: AESS Catalogue identifier: AEJW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: University of Tennessee copyright agreement No. of lines in distributed program, including test data, etc.: 10 861 No. of bytes in distributed program, including test data, etc.: 394 631 Distribution format: tar.gz Programming language: C for processors, CUDA for NVIDIA GPUs Computer: Developed and tested on various x86 computers and NVIDIA C1060 Tesla and GTX 480 Fermi GPUs. The system targets x86 workstations, optionally with multicore processors or NVIDIA GPUs as accelerators. Operating system: Tested under Ubuntu Linux OS and CentOS 5.5 Linux OS Classification: 3, 16.12 Nature of problem: Simulation of chemical systems, particularly with low species populations, can be accurately performed using Gillespie's method of stochastic simulation. Numerous variations on the original stochastic simulation algorithm have been developed, including approaches that produce results with statistics that exactly match the chemical master equation (CME) as well as other approaches that approximate the CME. Solution
Circumstellar material around the massive close binary DH Cephei
NASA Technical Reports Server (NTRS)
Corcoran, M. F.
1991-01-01
The expanding atmosphere of the massive close binary DH Cephei is analyzed on the basis of data from ground-based polarimetry and spaceborne UV observations obtained with the IUE satellite. The mass loss from the system is estimated to be about 2 x 10 to the -6th solar mass/yr. This material can be divided into three classes: (1) wind material, which is hot gas driven from the stars via radiation pressure and reaching terminal velocity at a distance of 5a or greater; (2) scattering material, which may be the result of colliding winds or instabilities in the wind flow; and (3) small (0.1 micron) dust grains. The latter may originate in the cold high-density boundary formed as the wind from the binary plows into the ambient interstellar medium or, alternatively, may be the residue of the formation of stellar components.
Long time behaviour of a stochastic nanoparticle
NASA Astrophysics Data System (ADS)
Étoré, Pierre; Labbé, Stéphane; Lelong, Jérôme
2014-09-01
In this article, we are interested in the behaviour of a single ferromagnetic mono-domain particle submitted to an external field with a stochastic perturbation. This model is the first step toward the mathematical understanding of thermal effects on a ferromagnet. In a first part, we present the stochastic model and prove that the associated stochastic differential equation is well defined. The second part is dedicated to the study of the long time behaviour of the magnetic moment and in the third part we prove that the stochastic perturbation induces a non-reversibility phenomenon. Last, we illustrate these results through numerical simulations of our stochastic model. The main results presented in this article are on the one hand the rate of convergence of the magnetization toward the unique stable equilibrium of the deterministic model and on the other hand a sharp estimate of the hysteresis phenomenon induced by the stochastic perturbation (remember that with no perturbation, the magnetic moment remains constant).
Network motif identification in stochastic networks
NASA Astrophysics Data System (ADS)
Jiang, Rui; Tu, Zhidong; Chen, Ting; Sun, Fengzhu
2006-06-01
Network motifs have been identified in a wide range of networks across many scientific disciplines and are suggested to be the basic building blocks of most complex networks. Nonetheless, many networks come with intrinsic and/or experimental uncertainties and should be treated as stochastic networks. The building blocks in these networks thus may also have stochastic properties. In this article, we study stochastic network motifs derived from families of mutually similar but not necessarily identical patterns of interconnections. We establish a finite mixture model for stochastic networks and develop an expectation-maximization algorithm for identifying stochastic network motifs. We apply this approach to the transcriptional regulatory networks of Escherichia coli and Saccharomyces cerevisiae, as well as the protein-protein interaction networks of seven species, and identify several stochastic network motifs that are consistent with current biological knowledge. expectation-maximization algorithm | mixture model | transcriptional regulatory network | protein-protein interaction network
Universal data-based method for reconstructing complex networks with binary-state dynamics
NASA Astrophysics Data System (ADS)
Li, Jingwen; Shen, Zhesi; Wang, Wen-Xu; Grebogi, Celso; Lai, Ying-Cheng
2017-03-01
To understand, predict, and control complex networked systems, a prerequisite is to reconstruct the network structure from observable data. Despite recent progress in network reconstruction, binary-state dynamics that are ubiquitous in nature, technology, and society still present an outstanding challenge in this field. Here we offer a framework for reconstructing complex networks with binary-state dynamics by developing a universal data-based linearization approach that is applicable to systems with linear, nonlinear, discontinuous, or stochastic dynamics governed by monotonic functions. The linearization procedure enables us to convert the network reconstruction into a sparse signal reconstruction problem that can be resolved through convex optimization. We demonstrate generally high reconstruction accuracy for a number of complex networks associated with distinct binary-state dynamics from using binary data contaminated by noise and missing data. Our framework is completely data driven, efficient, and robust, and does not require any a priori knowledge about the detailed dynamical process on the network. The framework represents a general paradigm for reconstructing, understanding, and exploiting complex networked systems with binary-state dynamics.
Universal data-based method for reconstructing complex networks with binary-state dynamics.
Li, Jingwen; Shen, Zhesi; Wang, Wen-Xu; Grebogi, Celso; Lai, Ying-Cheng
2017-03-01
To understand, predict, and control complex networked systems, a prerequisite is to reconstruct the network structure from observable data. Despite recent progress in network reconstruction, binary-state dynamics that are ubiquitous in nature, technology, and society still present an outstanding challenge in this field. Here we offer a framework for reconstructing complex networks with binary-state dynamics by developing a universal data-based linearization approach that is applicable to systems with linear, nonlinear, discontinuous, or stochastic dynamics governed by monotonic functions. The linearization procedure enables us to convert the network reconstruction into a sparse signal reconstruction problem that can be resolved through convex optimization. We demonstrate generally high reconstruction accuracy for a number of complex networks associated with distinct binary-state dynamics from using binary data contaminated by noise and missing data. Our framework is completely data driven, efficient, and robust, and does not require any a priori knowledge about the detailed dynamical process on the network. The framework represents a general paradigm for reconstructing, understanding, and exploiting complex networked systems with binary-state dynamics.
On wave propagation in a random micropolar generalized thermoelastic medium
NASA Astrophysics Data System (ADS)
Mitra, Manindra; Bhattacharyya, Rabindra Kumar
2017-06-01
This paper endeavours to study aspects of wave propagation in a random generalized-thermal micropolar elastic medium. The smooth perturbation technique conformable to stochastic differential equations has been employed. Six different types of waves propagate in the random medium. The dispersion equations have been derived. The effects due to random variations of micropolar elastic and generalized thermal parameters have been computed. Randomness causes change of phase speed and attenuation of waves. Attenuation coefficients for high frequency waves have been computed. Second moment properties have been briefly discussed with application to wave propagation in the random micropolar elastic medium. Integrals involving correlation functions have been transformed to radial forms. A special type of generalized thermo-mechanical auto-correlation functions has been used to approximately compute effects of random variations of parameters. Uncoupled problem has been briefly outlined.
Titration of selected bases in benzene-acetonitrile binary solvent system.
Amirjahed, K; al-Khamis, K I
1980-10-01
The benzene-acetonitrile binary solvent system was used in the determination of the half-neutralization potentials (hnp) of selected bases varying widely in basicity (pKb). The solvent mixtures had specific dielectric constants (Dm). The hnp values of the bases determined in a solvent of a specific Dm value were related to the corresponding pKb values. The slopes of these linear relationships were related to Dm values. A certain mixture of the binary solvent system was selected, and successful differentiating titration of various base mixtures was demonstrated in this medium. The delta hnp/delta pK versus Dm data for acids were compared with those of bases in the benzene-acetonitrile binary solvent system. The resulting data on bases were compared with previously published data on acids, and the present report describes the behavior of acids and bases in the entire composition spectrum of the benzene-acetonitrile binary solvent system.
NASA Astrophysics Data System (ADS)
Roy, Soumen; Sengupta, Anand S.; Thakor, Nilay
2017-05-01
Astrophysical compact binary systems consisting of neutron stars and black holes are an important class of gravitational wave (GW) sources for advanced LIGO detectors. Accurate theoretical waveform models from the inspiral, merger, and ringdown phases of such systems are used to filter detector data under the template-based matched-filtering paradigm. An efficient grid over the parameter space at a fixed minimal match has a direct impact on the overall time taken by these searches. We present a new hybrid geometric-random template placement algorithm for signals described by parameters of two masses and one spin magnitude. Such template banks could potentially be used in GW searches from binary neutron stars and neutron star-black hole systems. The template placement is robust and is able to automatically accommodate curvature and boundary effects with no fine-tuning. We also compare these banks against vanilla stochastic template banks and show that while both are equally efficient in the fitting-factor sense, the bank sizes are ˜25 % larger in the stochastic method. Further, we show that the generation of the proposed hybrid banks can be sped up by nearly an order of magnitude over the stochastic bank. Generic issues related to optimal implementation are discussed in detail. These improvements are expected to directly reduce the computational cost of gravitational wave searches.
Extended local equilibrium approach to stochastic thermodynamics
NASA Astrophysics Data System (ADS)
De Decker, Y.; Garcia Cantú Ros, A.; Nicolis, G.
2015-07-01
A new approach to stochastic thermodynamics is developed, in which the local equilibrium hypothesis is extended to incorporate the effect of fluctuations. A fluctuating entropy in the form of a random functional of the fluctuating state variables is introduced, whose balance equation allows to identify the stochastic entropy flux and stochastic entropy production. The statistical properties of these quantities are analyzed and illustrated on representative examples.
Stochastic Evolution Equations Driven by Fractional Noises
2016-11-28
Stochastic Evolution Equations Driven by Fractional Noises We have introduced a modification of the classical Euler numerical scheme for stochastic...of Papers published in peer-reviewed journals: Final Report: Stochastic Evolution Equations Driven by Fractional Noises Report Title We have introduced...case the evolution form of the equation will involve a Stratonovich integral (or path-wise Young integral). The product can also be interpreted as a
Stochastic Vorticity and Associated Filtering Theory
Amirdjanova, A.; Kallianpur, G.
2002-12-19
The focus of this work is on a two-dimensional stochastic vorticity equation for an incompressible homogeneous viscous fluid. We consider a signed measure-valued stochastic partial differential equation for a vorticity process based on the Skorohod-Ito evolution of a system of N randomly moving point vortices. A nonlinear filtering problem associated with the evolution of the vorticity is considered and a corresponding Fujisaki-Kallianpur-Kunita stochastic differential equation for the optimal filter is derived.
Applications of stochastic optimization, Task 4
1994-12-01
This report illustrates the power of the new stochastic optimization and stochastic programming capabilities developed around the ASPEN simulator in solving various types of design and analysis problems for advanced energy systems. A case study is presented for the Lurgi air-blown dry ash gasifier IGCC system. In addition the stochastic optimization capability can also be used for off-line quality control. The methodology is presented in the context of a simple gas turbine combustor flowsheet.
Stochastic Linear Quadratic Optimal Control Problems
Chen, S.; Yong, J.
2001-07-01
This paper is concerned with the stochastic linear quadratic optimal control problem (LQ problem, for short) for which the coefficients are allowed to be random and the cost functional is allowed to have a negative weight on the square of the control variable. Some intrinsic relations among the LQ problem, the stochastic maximum principle, and the (linear) forward-backward stochastic differential equations are established. Some results involving Riccati equation are discussed as well.
On some electrodynamic properties of binary pulsars
NASA Astrophysics Data System (ADS)
Sironi, Lorenzo
2006-07-01
those ions, and I will examine three possibilities, comparing their respective predictions with the flux and power-law of the observed spectrum: they could come from the mass loss induced by the tidal heating caused by the strong gravitational fields of the two orbiting stars, or maybe they could fill the Goldreich-Julian magnetosphere as well as positrons and electrons, or they could even be extracted from the pulsar atmosphere which is continuously replenished by the evaporation of nuclei from the stellar surface, since the star is being heated by the flux of high energy leptons discussed above. The last hypothesis seems to be well confirmed by the observational constraints, even if we are not able to fully explain how to free the accelerated cosmic rays from the binary system and inject them in the interstellar medium; anyway, our qualitative approach could pave the way for further and more quantitative work on the electrodynamics of binary pulsars, in order to explain the details of the acceleration and escape of ions from such fascinating systems.
Stochastic investigation of two-dimensional cross sections of rocks based on the climacogram
NASA Astrophysics Data System (ADS)
Kalamioti, Anna; Dimitriadis, Panayiotis; Tzouka, Katerina; Lerias, Eleutherios; Koutsoyiannis, Demetris
2016-04-01
The statistical properties of soil and rock formations are essential for the characterization of the porous medium geological structure as well as for the prediction of its transport properties in groundwater modelling. We investigate two-dimensional cross sections of rocks in terms of stochastic structure of its morphology quantified by the climacogram (i.e., variance of the averaged process vs. scale). The analysis is based both in microscale and macroscale data, specifically from Scanning Electron Microscope (SEM) pictures and from field photos, respectively. We identify and quantify the stochastic properties with emphasis on the large scale type of decay (exponentially or power type, else known as Hurst-Kolmogorov behaviour). Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.
The stochastic modeling of the short-time variations of the galactic cosmic rays
NASA Astrophysics Data System (ADS)
Wawrzynczak, A.; Modzelewska, R.
2016-08-01
We present the stochastic model of the galactic cosmic ray (GCR) particles transport in the heliosphere. The model is created based on the numerical solution of the Parker transport equation (PTE) describing the non-stationary transport of charged particles in the turbulent medium. We present the numerical schemes for the strong order integration of the set of the stochastic differential equations (SDEs) corresponding to the non-stationary PTE. Among the employed methods are the strong order Euler-Maruyama, Milstein and stochastic Runge- Kutta methods. We perform the selection of the method resulting in the highest agreement of the model of the 27-day variation of the GCR intensity with the experimental observations.
Black Hole Binaries in Quiescence
NASA Astrophysics Data System (ADS)
Bailyn, Charles D.
I discuss some of what is known and unknown about the behavior of black hole binary systems in the quiescent accretion state. Quiescence is important for several reasons: 1) the dominance of the companion star in optical and IR wavelengths allows the binary parameters to be robustly determined - as an example, we argue that the longer proposed distance to the X-ray source GRO J1655-40 is correct; 2) quiescence represents the limiting case of an extremely low accretion rate, in which both accretion and jets can be observed; 3) understanding the evolution and duration of the quiescent state is a key factor in determining the overall demographics of X-ray binaries, which has taken on a new importance in the era of gravitational wave astronomy.
Experience with parametric binary dissection
NASA Technical Reports Server (NTRS)
Bokhari, Shahid H.
1993-01-01
Parametric Binary Dissection (PBD) is a new algorithm that can be used for partitioning graphs embedded in 2- or 3-dimensional space. It partitions explicitly on the basis of nodes + (lambda)x(edges cut), where lambda is the ratio of time to communicate over an edge to the time to compute at a node. The new algorithm is faster than the original binary dissection algorithm and attempts to obtain better partitions than the older algorithm, which only takes nodes into account. The performance of parametric dissection with plain binary dissection on 3 large unstructured 3-d meshes obtained from computational fluid dynamics and on 2 random graphs were compared. It was showm that the new algorithm can usually yield partitions that are substantially superior, but that its performance is heavily dependent on the input data.
Jiménez-Hernández, Hugo; González-Barbosa, Jose-Joel; Garcia-Ramírez, Teresa
2010-01-01
This investigation demonstrates an unsupervised approach for modeling traffic flow and detecting abnormal vehicle behaviors at intersections. In the first stage, the approach reveals and records the different states of the system. These states are the result of coding and grouping the historical motion of vehicles as long binary strings. In the second stage, using sequences of the recorded states, a stochastic graph model based on a Markovian approach is built. A behavior is labeled abnormal when current motion pattern cannot be recognized as any state of the system or a particular sequence of states cannot be parsed with the stochastic model. The approach is tested with several sequences of images acquired from a vehicular intersection where the traffic flow and duration used in connection with the traffic lights are continuously changed throughout the day. Finally, the low complexity and the flexibility of the approach make it reliable for use in real time systems. PMID:22163616
NASA Astrophysics Data System (ADS)
Maiti, Sumit Kumar; Roy, Sankar Kumar
2016-05-01
In this paper, a Multi-Choice Stochastic Bi-Level Programming Problem (MCSBLPP) is considered where all the parameters of constraints are followed by normal distribution. The cost coefficients of the objective functions are multi-choice types. At first, all the probabilistic constraints are transformed into deterministic constraints using stochastic programming approach. Further, a general transformation technique with the help of binary variables is used to transform the multi-choice type cost coefficients of the objective functions of Decision Makers(DMs). Then the transformed problem is considered as a deterministic multi-choice bi-level programming problem. Finally, a numerical example is presented to illustrate the usefulness of the paper.
Continuous Variable Teleportation Within Stochastic Electrodynamics
NASA Astrophysics Data System (ADS)
Carmichael, H. J.; Nha, Hyunchul
2004-12-01
Stochastic electrodynamics provides a local realistic interpretation of the continuous variable teleportation of coherent light. Time-domain simulations illustrate broadband features of the teleportation process.
Optical Variability Signatures from Massive Black Hole Binaries
NASA Astrophysics Data System (ADS)
Kasliwal, Vishal P.; Frank, Koby Alexander; Lidz, Adam
2017-01-01
The hierarchical merging of dark matter halos and their associated galaxies should lead to a population of supermassive black hole binaries (MBHBs). We consider plausible optical variability signatures from MBHBs at sub-parsec separations and search for these using data from the Catalina Real-Time Transient Survey (CRTS). Specifically, we model the impact of relativistic Doppler beaming on the accretion disk emission from the less massive, secondary black hole. We explore whether this Doppler modulation may be separated from other sources of stochastic variability in the accretion flow around the MBHBs, which we describe as a damped random walk (DRW). In the simple case of a circular orbit, relativistic beaming leads to a series of broad peaks — located at multiples of the orbital frequency — in the fluctuation power spectrum. We extend our analysis to the case of elliptical orbits and discuss the effect of beaming on the flux power spectrum and auto-correlation function using simulations. We present a code to model an observed light curve as a stochastic DRW-type time series modulated by relativistic beaming and apply the code to CRTS data.
Statistical study of visual binaries
NASA Astrophysics Data System (ADS)
Abdel-Rahman, H. I.; Nouh, M. I.; Elsanhoury, W. H.
2017-04-01
In this paper, some statistical distributions of wide pairs included in Double Star Catalogue are investigated. Frequency distributions and testing hypothesis are derived for some basic parameters of visual binaries. The results reached indicate that, it was found that the magnitude difference is distributed exponentially, which means that the majority of the component of the selected systems is of the same spectral type. The distribution of the mass ratios is concentrated about 0.7 which agree with Salpeter mass function. The distribution of the linear separation appears to be exponentially, which contradict with previous studies for close binaries.
Protocols for quantum binary voting
NASA Astrophysics Data System (ADS)
Thapliyal, Kishore; Sharma, Rishi Dutt; Pathak, Anirban
Two new protocols for quantum binary voting are proposed. One of the proposed protocols is designed using a standard scheme for controlled deterministic secure quantum communication (CDSQC), and the other one is designed using the idea of quantum cryptographic switch, which uses a technique known as permutation of particles. A few possible alternative approaches to accomplish the same task (quantum binary voting) have also been discussed. Security of the proposed protocols is analyzed. Further, the efficiencies of the proposed protocols are computed, and are compared with that of the existing protocols. The comparison has established that the proposed protocols are more efficient than the existing protocols.
Medium and small-scale analysis of financial data
NASA Astrophysics Data System (ADS)
Nawroth, Andreas P.; Peinke, Joachim
2007-08-01
A stochastic analysis of financial data is presented. In particular we investigate how the statistics of log returns change with different time delays τ. The scale-dependent behaviour of financial data can be divided into two regions. The first time range, the small-timescale region (in the range of seconds) seems to be characterised by universal features. The second time range, the medium-timescale range from several minutes upwards can be characterised by a cascade process, which is given by a stochastic Markov process in the scale τ. A corresponding Fokker-Planck equation can be extracted from given data and provides a non-equilibrium thermodynamical description of the complexity of financial data.
Dynamical Tides in Highly Eccentric Binaries: Chaos, Dissipation and Quasi-Steady State
NASA Astrophysics Data System (ADS)
Vick, Michelle; Lai, Dong
2017-06-01
Highly eccentric binary systems appear in a variety of astrophysical contexts, ranging from tidal capture in dense star clusters, precursors of tidal disruption events, to high-eccentricity planet migration. In a highly eccentric binary, the tidal potential of one body can excite oscillatory modes in the other during a pericenter passage, resulting in energy exchange between the modes and the binary orbit. The energy in these modes exhibits one of three behaviors over multiple passages: low-amplitude oscillations, large amplitude oscillations corresponding to a resonance between the orbital frequency and the mode frequency, and stochastic growth. We extend previous studies of these phenomena by fully exploring how mode energy evolution depends on the pericenter distance and other parameters. In addition, we consider the effect of linear mode damping on the long-term evolution of the system. We find that the inclusion of damping results in a quasi-steady-state mode energy, even in systems where the mode amplitude would grow stochastically in the absence of dissipation. Lastly, we use MESA-generated stellar models to determine the combination of orbital and stellar parameters that would lead to the three types of mode evolution in a moderately massive star and characterize the magnitude of tidal heating for each regime.
Mental Effort in Binary Categorization Aided by Binary Cues
ERIC Educational Resources Information Center
Botzer, Assaf; Meyer, Joachim; Parmet, Yisrael
2013-01-01
Binary cueing systems assist in many tasks, often alerting people about potential hazards (such as alarms and alerts). We investigate whether cues, besides possibly improving decision accuracy, also affect the effort users invest in tasks and whether the required effort in tasks affects the responses to cues. We developed a novel experimental tool…
Longterm lightcurves of X-ray binaries
NASA Astrophysics Data System (ADS)
Clarkson, William
The X-ray Binaries (XRB) consist of a compact object and a stellar companion, which undergoes large-scale mass-loss to the compact object by virtue of the tight ( P orb usually hours-days) orbit, producing an accretion disk surrounding the compact object. The liberation of gravitational potential energy powers exotic high-energy phenomena, indeed the resulting accretion/ outflow process is among the most efficient energy-conversion machines in the universe. The Burst And Transient Source Experiment (BATSE) and RXTE All Sky Monitor (ASM) have provided remarkable X-ray lightcurves above 1.3keV for the entire sky, at near-continuous coverage, for intervals of 9 and 7 years respectively (with ~3 years' overlap). With an order of magnitude increase in sensitivity compared to previous survey instruments, these instruments have provided new insight into the high-energy behaviour of XRBs on timescales of tens to thousands of binary orbits. This thesis describes detailed examination of the long-term X-ray lightcurves of the neutron star XRB X2127+119, SMC X-1, Her X- 1, LMC X-4, Cyg X-2 and the as yet unclassified Circinus X-1, and for Cir X-1, complementary observations in the IR band. Chapters 1 & 2 introduce X-ray Binaries in general and longterm periodicities in particular. Chapter 3 introduces the longterm datasets around which this work is based, and the chosen methods of analysis of these datasets. Chapter 4 examines the burst history of the XRB X2127+119, suggesting three possible interpretations of the apparently contradictory X-ray emission from this system, including a possible confusion of two spatially distinct sources (which was later vindicated by high-resolution imaging). Chapters 5 and 6 describe the characterisation of accretion disk warping, providing observational verification of the prevailing theoretical framework for such disk-warps. Chapters 7 & 8 examine the enigmatic XRB Circinus X-1 with high-resolution IR spectroscopy (chapter 7) and the RXTE
NASA Technical Reports Server (NTRS)
Dede, Christopher J.
1990-01-01
Claims and rebuttals that hypermedia (the associative, nonlinear interconnection of multimedia materials) is a fundamentally innovative means of thinking and communicating are described. This representational architecture has many advantages that make it a major advance over other media; however, it also has several intrinsic problems that severly limits its effectiveness as a medium. These advantages and limits in applications are discussed.
NASA Technical Reports Server (NTRS)
Gange, Robert Allen (Inventor)
1977-01-01
A holographic recording medium comprising a conductive substrate, a photoconductive layer and an electrically alterable layer of a linear, low molecular weight hydrocarbon polymer has improved fatigue resistance. An acrylic barrier layer can be interposed between the photoconductive and electrically alterable layers.
X-Shooter Medium Resolution Brown Dwarfs Library
NASA Astrophysics Data System (ADS)
Manjavacas, E.; Goldman, B.; Alcala, J. M.; Bonnefoy, Mickael; Allard, F.; Smart, R. L.; Bejar, V. J. S.; Zapatero-Osorio, M. R.; Henning, T.; Bouy, H.
2015-01-01
} We obtain medium-resolution spectra in the optical (550-1000 nm, R˜5400) and the near-infrared (1000-2500 nm, R˜3300) using the Wideband ultraviolet-infrared single target spectrograph (X-Shooter) at the Very Large Telescope (VLT). Our sample is compound of 22 brown dwarfs binary candidates with spectral types between L1 and T7. We aim to empirically confirm or refute the binarity of our candidates, comparing them to spectral templates and to other brown dwarfs in a color-magnitude diagram, for targets that have published parallaxes. } We use X-shooter at the VLT to obtain medium resolution spectra of the targets. We develop a slightly different analysis depending of the type of binaries we search for. To find L plus T brown dwarf binaries candidates, we comput spectral indices to select L-brown dwarfs plus T-brown dwarf binaries, and then we compare them to single and composite template spectra. To find potential L plus L or T plus T brown dwarf binaries, we first simulate their spectra creating synthetic binaries using combination of single template spectra. Then we compare them to our set of spectral libraries and composite of them to test if our method is able to find these binaries. } Using spectral indices, we select four possible candidates to be combination of L plus T brown dwarfs: SIMP 0136 662+0933473, 2MASSI J0423485-041403 (T0, known binary), DENIS-P J0255.0-4700 and 2MASS J13411160-3052505 We compare these candidates to single brown dwarf template spectra and combinations of them, and we select the best matches. All candidates beside SIMP 0136 662+0933473 have decent matches to composite of two single template spectra. DENIS-P J0255.0-4700 have also good agreements to several late L and early T single template spectra. To find L plus L or T plus T brown dwarfs candidates, test the comparison to templates method use before to find L plus T brown dwarf binaries. The test consist on finding synthetic L plus L and T plus T binaries by comparing with
Binary YORP Effect and Evolution of Binary Asteroids
NASA Astrophysics Data System (ADS)
Steinberg, Elad; Sari, Re'em
2011-02-01
The rotation states of kilometer-sized near-Earth asteroids are known to be affected by the Yarkevsky O'Keefe-Radzievskii-Paddack (YORP) effect. In a related effect, binary YORP (BYORP), the orbital properties of a binary asteroid evolve under a radiation effect mostly acting on a tidally locked secondary. The BYORP effect can alter the orbital elements over ~104-105 years for a Dp = 2 km primary with a Ds = 0.4 km secondary at 1 AU. It can either separate the binary components or cause them to collide. In this paper, we devise a simple approach to calculate the YORP effect on asteroids and the BYORP effect on binaries including J 2 effects due to primary oblateness and the Sun. We apply this to asteroids with known shapes as well as a set of randomly generated bodies with various degrees of smoothness. We find a strong correlation between the strengths of an asteroid's YORP and BYORP effects. Therefore, statistical knowledge of one could be used to estimate the effect of the other. We show that the action of BYORP preferentially shrinks rather than expands the binary orbit and that YORP preferentially slows down asteroids. This conclusion holds for the two extremes of thermal conductivities studied in this work and the assumption that the asteroid reaches a stable point, but may break down for moderate thermal conductivity. The YORP and BYORP effects are shown to be smaller than could be naively expected due to near cancellation of the effects at small scales. Taking this near cancellation into account, a simple order-of-magnitude estimate of the YORP and BYORP effects as a function of the sizes and smoothness of the bodies is calculated. Finally, we provide a simple proof showing that there is no secular effect due to absorption of radiation in BYORP.
BINARY YORP EFFECT AND EVOLUTION OF BINARY ASTEROIDS
Steinberg, Elad; Sari, Re'em
2011-02-15
The rotation states of kilometer-sized near-Earth asteroids are known to be affected by the Yarkevsky O'Keefe-Radzievskii-Paddack (YORP) effect. In a related effect, binary YORP (BYORP), the orbital properties of a binary asteroid evolve under a radiation effect mostly acting on a tidally locked secondary. The BYORP effect can alter the orbital elements over {approx}10{sup 4}-10{sup 5} years for a D{sub p} = 2 km primary with a D{sub s} = 0.4 km secondary at 1 AU. It can either separate the binary components or cause them to collide. In this paper, we devise a simple approach to calculate the YORP effect on asteroids and the BYORP effect on binaries including J{sub 2} effects due to primary oblateness and the Sun. We apply this to asteroids with known shapes as well as a set of randomly generated bodies with various degrees of smoothness. We find a strong correlation between the strengths of an asteroid's YORP and BYORP effects. Therefore, statistical knowledge of one could be used to estimate the effect of the other. We show that the action of BYORP preferentially shrinks rather than expands the binary orbit and that YORP preferentially slows down asteroids. This conclusion holds for the two extremes of thermal conductivities studied in this work and the assumption that the asteroid reaches a stable point, but may break down for moderate thermal conductivity. The YORP and BYORP effects are shown to be smaller than could be naively expected due to near cancellation of the effects at small scales. Taking this near cancellation into account, a simple order-of-magnitude estimate of the YORP and BYORP effects as a function of the sizes and smoothness of the bodies is calculated. Finally, we provide a simple proof showing that there is no secular effect due to absorption of radiation in BYORP.
NASA Astrophysics Data System (ADS)
Cheng, Chaojun; Zhou, Bingchang; Gao, Xiao; McDonnell, Mark D.
2017-08-01
We investigate multilevel threshold systems with signal-dependent noise that transmit a common random input signal. We demonstrate the occurrence of M-ary suprathreshold stochastic resonance caused by the signal-dependent noise, and quantify the information enhancement that results relative to the absence of noise. We also find that in the case of M-ary threshold systems, the values of mutual information and signal-to-quantization-noise ratio are larger than the corresponding values in the case of binary threshold systems. These results are potentially useful for understanding the encoding mechanism of inner-ear hair cells and other biological sensory systems.
KEPLER ECLIPSING BINARIES WITH STELLAR COMPANIONS
Gies, D. R.; Matson, R. A.; Guo, Z.; Lester, K. V.; Orosz, J. A.; Peters, G. J. E-mail: rmatson@chara.gsu.edu E-mail: lester@chara.gsu.edu E-mail: gjpeters@mucen.usc.edu
2015-12-15
Many short-period binary stars have distant orbiting companions that have played a role in driving the binary components into close separation. Indirect detection of a tertiary star is possible by measuring apparent changes in eclipse times of eclipsing binaries as the binary orbits the common center of mass. Here we present an analysis of the eclipse timings of 41 eclipsing binaries observed throughout the NASA Kepler mission of long duration and precise photometry. This subset of binaries is characterized by relatively deep and frequent eclipses of both stellar components. We present preliminary orbital elements for seven probable triple stars among this sample, and we discuss apparent period changes in seven additional eclipsing binaries that may be related to motion about a tertiary in a long period orbit. The results will be used in ongoing investigations of the spectra and light curves of these binaries for further evidence of the presence of third stars.
Constraining Modified Theories of Gravity with Gravitational-Wave Stochastic Backgrounds.
Maselli, Andrea; Marassi, Stefania; Ferrari, Valeria; Kokkotas, Kostas; Schneider, Raffaella
2016-08-26
The direct discovery of gravitational waves has finally opened a new observational window on our Universe, suggesting that the population of coalescing binary black holes is larger than previously expected. These sources produce an unresolved background of gravitational waves, potentially observable by ground-based interferometers. In this Letter we investigate how modified theories of gravity, modeled using the parametrized post-Einsteinian formalism, affect the expected signal, and analyze the detectability of the resulting stochastic background by current and future ground-based interferometers. We find the constraints that Advanced LIGO would be able to set on modified theories, showing that they may significantly improve the current bounds obtained from astrophysical observations of binary pulsars.
Molecular Motors and Stochastic Models
NASA Astrophysics Data System (ADS)
Lipowsky, Reinhard
The behavior of single molecular motors such as kinesin or myosin V, which move on linear filaments, involves a nontrivial coupling between the biochemical motor cycle and the stochastic movement. This coupling can be studied in the framework of nonuniform ratchet models which are characterized by spatially localized transition rates between the different internal states of the motor. These models can be classified according to their functional relationships between the motor velocity and the concentration of the fuel molecules. The simplest such relationship applies to two subclasses of models for dimeric kinesin and agrees with experimental observations on this molecular motor.
Bifurcation and Optimal Stochastic Control.
1982-03-01
as soon as luX InW w’(0) n L nis boundeI. To sir.iplity the notations, we denote by u = 1 . Without loss of n generality we may assume that c l...Stochastic Control. F O R M I II I • Il I i ,iii i, DD I JAP7 1473 EDITION OF I NOV S IS OSOLE’TE UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE i(,en bot. EntereJ) DAT FILMEI DIC
Constrained Stochastic Extended Redundancy Analysis.
DeSarbo, Wayne S; Hwang, Heungsun; Stadler Blank, Ashley; Kappe, Eelco
2015-06-01
We devise a new statistical methodology called constrained stochastic extended redundancy analysis (CSERA) to examine the comparative impact of various conceptual factors, or drivers, as well as the specific predictor variables that contribute to each driver on designated dependent variable(s). The technical details of the proposed methodology, the maximum likelihood estimation algorithm, and model selection heuristics are discussed. A sports marketing consumer psychology application is provided in a Major League Baseball (MLB) context where the effects of six conceptual drivers of game attendance and their defining predictor variables are estimated. Results compare favorably to those obtained using traditional extended redundancy analysis (ERA).
Stochastic Model of Microtubule Dynamics
NASA Astrophysics Data System (ADS)
Hryniv, Ostap; Martínez Esteban, Antonio
2017-10-01
We introduce a continuous time stochastic process on strings made of two types of particle, whose dynamics mimics that of microtubules in a living cell. The long term behaviour of the system is described in terms of the velocity v of the string end. We show that v is an analytic function of its parameters and study its monotonicity properties. We give a complete characterisation of the phase diagram of the model and derive several criteria of the growth (v>0) and the shrinking (v<0) regimes of the dynamics.
Resolution for Stochastic Boolean Satisfiability
NASA Astrophysics Data System (ADS)
Teige, Tino; Fränzle, Martin
The stochastic Boolean satisfiability (SSAT) problem was introduced by Papadimitriou in 1985 by adding a probabilistic model of uncertainty to propositional satisfiability through randomized quantification. SSAT has many applications, e.g., in probabilistic planning and, more recently by integrating arithmetic, in probabilistic model checking. In this paper, we first present a new result on the computational complexity of SSAT: SSAT remains PSPACE-complete even for its restriction to 2CNF. Second, we propose a sound and complete resolution calculus for SSAT complementing the classical backtracking search algorithms.
Stochastic thermodynamics of information processing
NASA Astrophysics Data System (ADS)
Cardoso Barato, Andre
2015-03-01
We consider two recent advancements on theoretical aspects of thermodynamics of information processing. First we show that the theory of stochastic thermodynamics can be generalized to include information reservoirs. These reservoirs can be seen as a sequence of bits which has its Shannon entropy changed due to the interaction with the system. Second we discuss bipartite systems, which provide a convenient description of Maxwell's demon. Analyzing a special class of bipartite systems we show that they can be used to study cellular information processing, allowing for the definition of an entropic rate that quantifies how much a cell learns about a fluctuating external environment and that is bounded by the thermodynamic entropy production.
Stochastic elimination of cancer cells.
Michor, Franziska; Nowak, Martin A; Frank, Steven A; Iwasa, Yoh
2003-01-01
Tissues of multicellular organisms consist of stem cells and differentiated cells. Stem cells divide to produce new stem cells or differentiated cells. Differentiated cells divide to produce new differentiated cells. We show that such a tissue design can reduce the rate of fixation of mutations that increase the net proliferation rate of cells. It has, however, no consequence for the rate of fixation of neutral mutations. We calculate the optimum relative abundance of stem cells that minimizes the rate of generating cancer cells. There is a critical fraction of stem cell divisions that is required for a stochastic elimination ('wash out') of cancer cells. PMID:14561289
Stochastic Models of Human Errors
NASA Technical Reports Server (NTRS)
Elshamy, Maged; Elliott, Dawn M. (Technical Monitor)
2002-01-01
Humans play an important role in the overall reliability of engineering systems. More often accidents and systems failure are traced to human errors. Therefore, in order to have meaningful system risk analysis, the reliability of the human element must be taken into consideration. Describing the human error process by mathematical models is a key to analyzing contributing factors. Therefore, the objective of this research effort is to establish stochastic models substantiated by sound theoretic foundation to address the occurrence of human errors in the processing of the space shuttle.
Hamilton's principle in stochastic mechanics
NASA Astrophysics Data System (ADS)
Pavon, Michele
1995-12-01
In this paper we establish three variational principles that provide new foundations for Nelson's stochastic mechanics in the case of nonrelativistic particles without spin. The resulting variational picture is much richer and of a different nature with respect to the one previously considered in the literature. We first develop two stochastic variational principles whose Hamilton-Jacobi-like equations are precisely the two coupled partial differential equations that are obtained from the Schrödinger equation (Madelung equations). The two problems are zero-sum, noncooperative, stochastic differential games that are familiar in the control theory literature. They are solved here by means of a new, absolutely elementary method based on Lagrange functionals. For both games the saddle-point equilibrium solution is given by the Nelson's process and the optimal controls for the two competing players are precisely Nelson's current velocity v and osmotic velocity u, respectively. The first variational principle includes as special cases both the Guerra-Morato variational principle [Phys. Rev. D 27, 1774 (1983)] and Schrödinger original variational derivation of the time-independent equation. It also reduces to the classical least action principle when the intensity of the underlying noise tends to zero. It appears as a saddle-point action principle. In the second variational principle the action is simply the difference between the initial and final configurational entropy. It is therefore a saddle-point entropy production principle. From the variational principles it follows, in particular, that both v(x,t) and u(x,t) are gradients of appropriate principal functions. In the variational principles, the role of the background noise has the intuitive meaning of attempting to contrast the more classical mechanical features of the system by trying to maximize the action in the first principle and by trying to increase the entropy in the second. Combining the two variational
Stochastic solution to quantum dynamics
NASA Technical Reports Server (NTRS)
John, Sarah; Wilson, John W.
1994-01-01
The quantum Liouville equation in the Wigner representation is solved numerically by using Monte Carlo methods. For incremental time steps, the propagation is implemented as a classical evolution in phase space modified by a quantum correction. The correction, which is a momentum jump function, is simulated in the quasi-classical approximation via a stochastic process. The technique, which is developed and validated in two- and three- dimensional momentum space, extends an earlier one-dimensional work. Also, by developing a new algorithm, the application to bound state motion in an anharmonic quartic potential shows better agreement with exact solutions in two-dimensional phase space.
Stochastic Gain in Population Dynamics
NASA Astrophysics Data System (ADS)
Traulsen, Arne; Röhl, Torsten; Schuster, Heinz Georg
2004-07-01
We introduce an extension of the usual replicator dynamics to adaptive learning rates. We show that a population with a dynamic learning rate can gain an increased average payoff in transient phases and can also exploit external noise, leading the system away from the Nash equilibrium, in a resonancelike fashion. The payoff versus noise curve resembles the signal to noise ratio curve in stochastic resonance. Seen in this broad context, we introduce another mechanism that exploits fluctuations in order to improve properties of the system. Such a mechanism could be of particular interest in economic systems.
NASA Astrophysics Data System (ADS)
Zhang, Ming
2015-10-01
A theory of 2-stage acceleration of Galactic cosmic rays in supernova remnants is proposed. The first stage is accomplished by the supernova shock front, where a power-law spectrum is established up to a certain cutoff energy. It is followed by stochastic acceleration with compressible waves/turbulence in the downstream medium. With a broad \\propto {k}-2 spectrum for the compressible plasma fluctuations, the rate of stochastic acceleration is constant over a wide range of particle momentum. In this case, the stochastic acceleration process extends the power-law spectrum cutoff energy of Galactic cosmic rays to the knee without changing the spectral slope. This situation happens as long as the rate of stochastic acceleration is faster than 1/5 of the adiabatic cooling rate. A steeper spectrum of compressible plasma fluctuations that concentrate their power in long wavelengths will accelerate cosmic rays to the knee with a small bump before its cutoff in the comic-ray energy spectrum. This theory does not require a strong amplification of the magnetic field in the upstream interstellar medium in order to accelerate cosmic rays to the knee energy.
Elongated optical bottle beams generated by composite binary axicons
NASA Astrophysics Data System (ADS)
Porfirev, A. P.; Skidanov, R. V.
2016-04-01
We provide analytical, numerical and experimental study of the possibility of forming elongated optical bottle beams (OBBs) using composite binary phase axicons. In this case, the OBB is generated by the superposition of Bessel beams in the near-field region on the axicon. To generate the OBB experimentally, we utilized a spatial light modulator. The experimental results are qualitatively consistent with the results of numerical simulations performed using Fresnel transform. Such type of optical trap can be applied in many applications of microbiology, micromechanics and meteorology to manipulate micro- and nanoobjects in liquid or gaseous medium.
Generating Constant Weight Binary Codes
ERIC Educational Resources Information Center
Knight, D.G.
2008-01-01
The determination of bounds for A(n, d, w), the maximum possible number of binary vectors of length n, weight w, and pairwise Hamming distance no less than d, is a classic problem in coding theory. Such sets of vectors have many applications. A description is given of how the problem can be used in a first-year undergraduate computational…
Generating Constant Weight Binary Codes
ERIC Educational Resources Information Center
Knight, D.G.
2008-01-01
The determination of bounds for A(n, d, w), the maximum possible number of binary vectors of length n, weight w, and pairwise Hamming distance no less than d, is a classic problem in coding theory. Such sets of vectors have many applications. A description is given of how the problem can be used in a first-year undergraduate computational…
Clostridium difficile binary toxin CDT
Gerding, Dale N; Johnson, Stuart; Rupnik, Maja; Aktories, Klaus
2014-01-01
Binary toxin (CDT) is frequently observed in Clostridium difficile strains associated with increased severity of C. difficile infection (CDI). CDT belongs to the family of binary ADP-ribosylating toxins consisting of two separate toxin components: CDTa, the enzymatic ADP-ribosyltransferase which modifies actin, and CDTb which binds to host cells and translocates CDTa into the cytosol. CDTb is activated by serine proteases and binds to lipolysis stimulated lipoprotein receptor. ADP-ribosylation induces depolymerization of the actin cytoskeleton. Toxin-induced actin depolymerization also produces microtubule-based membrane protrusions which form a network on epithelial cells and increase bacterial adherence. Multiple clinical studies indicate an association between binary toxin genes in C. difficile and increased 30-d CDI mortality independent of PCR ribotype. Further studies including measures of binary toxin in stool, analyses of CDI mortality caused by CDT-producing strains, and examination of the relationship of CDT expression to TcdA and TcdB toxin variants and PCR ribotypes are needed. PMID:24253566
A Galactic Binary Detection Pipeline
NASA Technical Reports Server (NTRS)
Littenberg, Tyson B.
2011-01-01
The Galaxy is suspected to contain hundreds of millions of binary white dwarf systems, a large fraction of which will have sufficiently small orbital period to emit gravitational radiation in band for space-based gravitational wave detectors such as the Laser Interferometer Space Antenna (LISA). LISA's main science goal is the detection of cosmological events (supermassive black hole mergers, etc.) however the gravitational signal from the galaxy will be the dominant contribution to the data - including instrumental noise over approximately two decades in frequency. The catalogue of detectable binary systems will serve as an unparalleled means of studying the Galaxy. Furthermore, to maximize the scientific return from the mission, the data must be "cleansed" of the galactic foreground. We will present an algorithm that can accurately resolve and subtract 2:: 10000 of these sources from simulated data supplied by the Mock LISA Data Challenge Task Force. Using the time evolution of the gravitational wave frequency, we will reconstruct the position of the recovered binaries and show how LISA will sample the entire compact binary population in the Galaxy.
Eclipsing binaries - selection of targets
NASA Astrophysics Data System (ADS)
Zasche, P.
2017-04-01
Are the ground-based observations still needed in the era of robotic all-sky surveys? There were highlighted several fields in the eclipsing binary research, where also the amateur photometry would be very fruitful with also a few suitable systems where the monitoring is needed also using the smaller telescopes.
Sequential binary collision ionization mechanisms
NASA Astrophysics Data System (ADS)
van Boeyen, R. W.; Watanabe, N.; Doering, J. P.; Moore, J. H.; Coplan, M. A.; Cooper, J. W.
2004-03-01
Fully differential cross sections for the electron-impact ionization of the magnesium 3s orbital have been measured in a high-momentum-transfer regime wherein the ionization mechanisms can be accurately described by simple binary collision models. Measurements where performed at incident-electron energies from 400 to 3000 eV, ejected-electron energies of 62 eV, scattering angle of 20 °, and momentum transfers of 2 to 5 a.u. In the out-of-plane geometry of the experiment the cross section is observed far off the Bethe ridge. Both first- and second-order processes can be clearly distinguished as previously observed by Murray et al [Ref. 1] and Schulz et al [Ref. 2]. Owing to the relatively large momentum of the ejected electron, the second order processes can be modeled as sequential binary collisions involving a binary elastic collision between the incident electron and ionic core and a binary knock-out collision between the incident electron and target electron. At low incident-electron energies the cross section for both first and second order processes are comparable, while at high incident energies second-order processes dominate. *Supported by NSF under grant PHY-99-87870. [1] A. J. Murray, M. B. J. Woolf, and F. H. Read J. Phys. B 25, 3021 (1992). [2] M. Schulz, R. Moshammer, D. Fischer, H. Kollmus, D. H. Madison. S. Jones and J. Ullrich, Nature 422, 48 (2003).
Zapatrin, R.R.
1992-02-01
Given a finite ortholattice L, the *-semigroup is explicitly built whose annihilator ortholattice is isomorphic to L. Thus, it is shown that any finite quantum logic is the additive part of a binary logic. Some areas of possible applications are outlined. 7 refs.
Stochastic Parameterization: Toward a New View of Weather and Climate Models
Berner, Judith; Achatz, Ulrich; Batté, Lauriane; ...
2017-03-31
The last decade has seen the success of stochastic parameterizations in short-term, medium-range, and seasonal forecasts: operational weather centers now routinely use stochastic parameterization schemes to represent model inadequacy better and to improve the quantification of forecast uncertainty. Developed initially for numerical weather prediction, the inclusion of stochastic parameterizations not only provides better estimates of uncertainty, but it is also extremely promising for reducing long-standing climate biases and is relevant for determining the climate response to external forcing. This article highlights recent developments from different research groups that show that the stochastic representation of unresolved processes in the atmosphere, oceans,more » land surface, and cryosphere of comprehensive weather and climate models 1) gives rise to more reliable probabilistic forecasts of weather and climate and 2) reduces systematic model bias. We make a case that the use of mathematically stringent methods for the derivation of stochastic dynamic equations will lead to substantial improvements in our ability to accurately simulate weather and climate at all scales. Recent work in mathematics, statistical mechanics, and turbulence is reviewed; its relevance for the climate problem is demonstrated; and future research directions are outlined« less
A non-stochastic iterative computational method to model light propagation in turbid media
NASA Astrophysics Data System (ADS)
McIntyre, Thomas J.; Zemp, Roger J.
2015-03-01
Monte Carlo models are widely used to model light transport in turbid media, however their results implicitly contain stochastic variations. These fluctuations are not ideal, especially for inverse problems where Jacobian matrix errors can lead to large uncertainties upon matrix inversion. Yet Monte Carlo approaches are more computationally favorable than solving the full Radiative Transport Equation. Here, a non-stochastic computational method of estimating fluence distributions in turbid media is proposed, which is called the Non-Stochastic Propagation by Iterative Radiance Evaluation method (NSPIRE). Rather than using stochastic means to determine a random walk for each photon packet, the propagation of light from any element to all other elements in a grid is modelled simultaneously. For locally homogeneous anisotropic turbid media, the matrices used to represent scattering and projection are shown to be block Toeplitz, which leads to computational simplifications via convolution operators. To evaluate the accuracy of the algorithm, 2D simulations were done and compared against Monte Carlo models for the cases of an isotropic point source and a pencil beam incident on a semi-infinite turbid medium. The model was shown to have a mean percent error less than 2%. The algorithm represents a new paradigm in radiative transport modelling and may offer a non-stochastic alternative to modeling light transport in anisotropic scattering media for applications where the diffusion approximation is insufficient.
Nonlinear Phase Distortion in a Ti:Sapphire Optical Amplifier for Optical Stochastic Cooling
Andorf, Matthew; Lebedev, Valeri; Piot, Philippe; Ruan, Jinhao
2016-06-01
Optical Stochastic Cooling (OSC) has been considered for future high-luminosity colliders as it offers much faster cooling time in comparison to the micro-wave stochastic cooling. The OSC technique relies on collecting and amplifying a broadband optical signal from a pickup undulator and feeding the amplified signal back to the beam. It creates a corrective kick in a kicker undulator. Owing to its superb gain qualities and broadband amplification features, Titanium:Sapphire medium has been considered as a gain medium for the optical amplifier (OA) needed in the OSC*. A limiting factor for any OA used in OSC is the possibility of nonlinear phase distortions. In this paper we experimentally measure phase distortions by inserting a single-pass OA into one leg of a Mach-Zehnder interferometer. The measurement results are used to estimate the reduction of the corrective kick a particle would receive due to these phase distortions in the kicker undulator.
Zhu, Yingbin; Zhao, Daomu
2008-08-01
On the basis of the generalized diffraction integral formula for an ABCD optical system in the spatial domain, a propagation law for the generalized Stokes parameters of a stochastic electromagnetic beam passing through an ABCD optical system is obtained. We describe the Stokes parameters of the source as linear combinations of the elements of the cross-spectral density matrix, and study the changes in the spectral degree of polarization and in the state of the polarization ellipse of a stochastic electromagnetic Gaussian Schell-model beam propagating through a gradient-index fiber with the help of generalized Stokes parameters and the cross-spectral density matrix. The medium has significant effect on the change of the spectral degree of polarization. However, when the correlation coefficients of the source satisfy the relation delta(xx)=delta(yy)=delta(xy)=delta(yx), the medium does not influence the spectral degree of polarization.
Coevolution of binaries and circumbinary gaseous discs
NASA Astrophysics Data System (ADS)
Fleming, David P.; Quinn, Thomas R.
2017-01-01
The recent discoveries of circumbinary planets by Kepler raise questions for contemporary planet formation models. Understanding how these planets form requires characterizing their formation environment, the circumbinary protoplanetary disc and how the disc and binary interact and change as a result. The central binary excites resonances in the surrounding protoplanetary disc which drive evolution in both the binary orbital elements and in the disc. To probe how these interactions impact binary eccentricity and disc structure evolution, N-body smooth particle hydrodynamics simulations of gaseous protoplanetary discs surrounding binaries based on Kepler 38 were run for 104 binary periods for several initial binary eccentricities. We find that nearly circular binaries weakly couple to the disc via a parametric instability and excite disc eccentricity growth. Eccentric binaries strongly couple to the disc causing eccentricity growth for both the disc and binary. Discs around sufficiently eccentric binaries which strongly couple to the disc develop an m = 1 spiral wave launched from the 1:3 eccentric outer Lindblad resonance which corresponds to an alignment of gas particle longitude of periastrons. All systems display binary semimajor axis decay due to dissipation from the viscous disc.
Learning Rotation-Invariant Local Binary Descriptor.
Duan, Yueqi; Lu, Jiwen; Feng, Jianjiang; Zhou, Jie
2017-08-01
In this paper, we propose a rotation-invariant local binary descriptor (RI-LBD) learning method for visual recognition. Compared with hand-crafted local binary descriptors, such as local binary pattern and its variants, which require strong prior knowledge, local binary feature learning methods are more efficient and data-adaptive. Unlike existing learning-based local binary descriptors, such as compact binary face descriptor and simultaneous local binary feature learning and encoding, which are susceptible to rotations, our RI-LBD first categorizes each local patch into a rotational binary pattern (RBP), and then jointly learns the orientation for each pattern and the projection matrix to obtain RI-LBDs. As all the rotation variants of a patch belong to the same RBP, they are rotated into the same orientation and projected into the same binary descriptor. Then, we construct a codebook by a clustering method on the learned binary codes, and obtain a histogram feature for each image as the final representation. In order to exploit higher order statistical information, we extend our RI-LBD to the triple rotation-invariant co-occurrence local binary descriptor (TRICo-LBD) learning method, which learns a triple co-occurrence binary code for each local patch. Extensive experimental results on four different visual recognition tasks, including image patch matching, texture classification, face recognition, and scene classification, show that our RI-LBD and TRICo-LBD outperform most existing local descriptors.
Bayesian data assimilation for stochastic multiscale models of transport in porous media.
Marzouk, Youssef M.; van Bloemen Waanders, Bart Gustaaf; Parno, Matthew; Ray, Jaideep; Lefantzi, Sophia; Salazar, Luke; McKenna, Sean Andrew; Klise, Katherine A.
2011-10-01
We investigate Bayesian techniques that can be used to reconstruct field variables from partial observations. In particular, we target fields that exhibit spatial structures with a large spectrum of lengthscales. Contemporary methods typically describe the field on a grid and estimate structures which can be resolved by it. In contrast, we address the reconstruction of grid-resolved structures as well as estimation of statistical summaries of subgrid structures, which are smaller than the grid resolution. We perform this in two different ways (a) via a physical (phenomenological), parameterized subgrid model that summarizes the impact of the unresolved scales at the coarse level and (b) via multiscale finite elements, where specially designed prolongation and restriction operators establish the interscale link between the same problem defined on a coarse and fine mesh. The estimation problem is posed as a Bayesian inverse problem. Dimensionality reduction is performed by projecting the field to be inferred on a suitable orthogonal basis set, viz. the Karhunen-Loeve expansion of a multiGaussian. We first demonstrate our techniques on the reconstruction of a binary medium consisting of a matrix with embedded inclusions, which are too small to be grid-resolved. The reconstruction is performed using an adaptive Markov chain Monte Carlo method. We find that the posterior distributions of the inferred parameters are approximately Gaussian. We exploit this finding to reconstruct a permeability field with long, but narrow embedded fractures (which are too fine to be grid-resolved) using scalable ensemble Kalman filters; this also allows us to address larger grids. Ensemble Kalman filtering is then used to estimate the values of hydraulic conductivity and specific yield in a model of the High Plains Aquifer in Kansas. Strong conditioning of the spatial structure of the parameters and the non-linear aspects of the water table aquifer create difficulty for the ensemble Kalman
Optimal Control for Stochastic Delay Evolution Equations
Meng, Qingxin; Shen, Yang
2016-08-15
In this paper, we investigate a class of infinite-dimensional optimal control problems, where the state equation is given by a stochastic delay evolution equation with random coefficients, and the corresponding adjoint equation is given by an anticipated backward stochastic evolution equation. We first prove the continuous dependence theorems for stochastic delay evolution equations and anticipated backward stochastic evolution equations, and show the existence and uniqueness of solutions to anticipated backward stochastic evolution equations. Then we establish necessary and sufficient conditions for optimality of the control problem in the form of Pontryagin’s maximum principles. To illustrate the theoretical results, we apply stochastic maximum principles to study two examples, an infinite-dimensional linear-quadratic control problem with delay and an optimal control of a Dirichlet problem for a stochastic partial differential equation with delay. Further applications of the two examples to a Cauchy problem for a controlled linear stochastic partial differential equation and an optimal harvesting problem are also considered.
Variational principles for stochastic fluid dynamics
Holm, Darryl D.
2015-01-01
This paper derives stochastic partial differential equations (SPDEs) for fluid dynamics from a stochastic variational principle (SVP). The paper proceeds by taking variations in the SVP to derive stochastic Stratonovich fluid equations; writing their Itô representation; and then investigating the properties of these stochastic fluid models in comparison with each other, and with the corresponding deterministic fluid models. The circulation properties of the stochastic Stratonovich fluid equations are found to closely mimic those of the deterministic ideal fluid models. As with deterministic ideal flows, motion along the stochastic Stratonovich paths also preserves the helicity of the vortex field lines in incompressible stochastic flows. However, these Stratonovich properties are not apparent in the equivalent Itô representation, because they are disguised by the quadratic covariation drift term arising in the Stratonovich to Itô transformation. This term is a geometric generalization of the quadratic covariation drift term already found for scalar densities in Stratonovich's famous 1966 paper. The paper also derives motion equations for two examples of stochastic geophysical fluid dynamics; namely, the Euler–Boussinesq and quasi-geostropic approximations. PMID:27547083
Variational principles for stochastic fluid dynamics.
Holm, Darryl D
2015-04-08
This paper derives stochastic partial differential equations (SPDEs) for fluid dynamics from a stochastic variational principle (SVP). The paper proceeds by taking variations in the SVP to derive stochastic Stratonovich fluid equations; writing their Itô representation; and then investigating the properties of these stochastic fluid models in comparison with each other, and with the corresponding deterministic fluid models. The circulation properties of the stochastic Stratonovich fluid equations are found to closely mimic those of the deterministic ideal fluid models. As with deterministic ideal flows, motion along the stochastic Stratonovich paths also preserves the helicity of the vortex field lines in incompressible stochastic flows. However, these Stratonovich properties are not apparent in the equivalent Itô representation, because they are disguised by the quadratic covariation drift term arising in the Stratonovich to Itô transformation. This term is a geometric generalization of the quadratic covariation drift term already found for scalar densities in Stratonovich's famous 1966 paper. The paper also derives motion equations for two examples of stochastic geophysical fluid dynamics; namely, the Euler-Boussinesq and quasi-geostropic approximations.
Stochastic and Coherence Resonance in Hippocampal Neurons
2007-11-02
decreases the signal to noise ratio of subthreshold synaptic inputs. Keywords - Hippocampus , neurons, stochastic resonance I. INTRODUCTION... subthreshold signals in the hippocampus ,” J. Neurophysiology , in press. [3] J. Collins C.C. Chow and T.T. Imboff, “Stochastic resonance without...nonlinear systems whereby the introduction of noise enhances the detection of subthreshold signals. Both computer simulations and experimental
From Complex to Simple: Interdisciplinary Stochastic Models
ERIC Educational Resources Information Center
Mazilu, D. A.; Zamora, G.; Mazilu, I.
2012-01-01
We present two simple, one-dimensional, stochastic models that lead to a qualitative understanding of very complex systems from biology, nanoscience and social sciences. The first model explains the complicated dynamics of microtubules, stochastic cellular highways. Using the theory of random walks in one dimension, we find analytical expressions…
From Complex to Simple: Interdisciplinary Stochastic Models
ERIC Educational Resources Information Center
Mazilu, D. A.; Zamora, G.; Mazilu, I.
2012-01-01
We present two simple, one-dimensional, stochastic models that lead to a qualitative understanding of very complex systems from biology, nanoscience and social sciences. The first model explains the complicated dynamics of microtubules, stochastic cellular highways. Using the theory of random walks in one dimension, we find analytical expressions…
Stochastic Modeling of Laminar-Turbulent Transition
NASA Technical Reports Server (NTRS)
Rubinstein, Robert; Choudhari, Meelan
2002-01-01
Stochastic versions of stability equations are developed in order to develop integrated models of transition and turbulence and to understand the effects of uncertain initial conditions on disturbance growth. Stochastic forms of the resonant triad equations, a high Reynolds number asymptotic theory, and the parabolized stability equations are developed.
Research of Stochastic Robustness: Results and conclusions
NASA Technical Reports Server (NTRS)
Marrison, Chris
1995-01-01
With stochastic robustness we are creating tools to design robust compensators for practical systems. During this year, the stochastic robustness research achieved the following results: refined the search tools needed for synthesis; successfully designed robust compensators for the American Controls Conference benchmark problem; and successfully designed robust compensators for a nonlinear hypersonic aircraft model with uncertainties in 28 parameters.
Hunting for brown dwarf binaries and testing atmospheric models with X-Shooter
NASA Astrophysics Data System (ADS)
Manjavacas, E.; Goldman, B.; Alcalá, J. M.; Zapatero-Osorio, M. R.; Béjar, V. J. S.; Homeier, D.; Bonnefoy, M.; Smart, R. L.; Henning, T.; Allard, F.
2016-01-01
The determination of the brown dwarf binary fraction may contribute to the understanding of the substellar formation mechanisms. Unresolved brown dwarf binaries may be revealed through their peculiar spectra or the discrepancy between optical and near-infrared spectral-type classification. We obtained medium-resolution spectra of 22 brown dwarfs with these characteristics using the X-Shooter spectrograph at the Very Large Telescope. We aimed to identify brown dwarf binary candidates, and to test if the BT-Settl 2014 atmospheric models reproduce their observed spectra. To find binaries spanning the L-T boundary, we used spectral indices and compared the spectra of the selected candidates to single spectra and synthetic binary spectra. We used synthetic binary spectra with components of same spectral type to determine as well the sensitivity of the method to this class of binaries. We identified three candidates to be combination of L plus T brown dwarfs. We are not able to identify binaries with components of similar spectral type. In our sample, we measured minimum binary fraction of 9.1^{+9.9}_{-3.0} per cent. From the best fit of the BT-Settl models 2014 to the observed spectra, we derived the atmospheric parameters for the single objects. The BT-Settl models were able to reproduce the majority of the spectral energy distributions from our objects, and the variation of the equivalent width of the Rb I (794.8 nm) and Cs I (852.0 nm) lines with the spectral type. None the less, these models did not reproduce the evolution of the equivalent widths of the Na I (818.3 and 819.5 nm) and K I (1253 nm) lines with the spectral type.
Stochastic Methods for Aircraft Design
NASA Technical Reports Server (NTRS)
Pelz, Richard B.; Ogot, Madara
1998-01-01
The global stochastic optimization method, simulated annealing (SA), was adapted and applied to various problems in aircraft design. The research was aimed at overcoming the problem of finding an optimal design in a space with multiple minima and roughness ubiquitous to numerically generated nonlinear objective functions. SA was modified to reduce the number of objective function evaluations for an optimal design, historically the main criticism of stochastic methods. SA was applied to many CFD/MDO problems including: low sonic-boom bodies, minimum drag on supersonic fore-bodies, minimum drag on supersonic aeroelastic fore-bodies, minimum drag on HSCT aeroelastic wings, FLOPS preliminary design code, another preliminary aircraft design study with vortex lattice aerodynamics, HSR complete aircraft aerodynamics. In every case, SA provided a simple, robust and reliable optimization method which found optimal designs in order 100 objective function evaluations. Perhaps most importantly, from this academic/industrial project, technology has been successfully transferred; this method is the method of choice for optimization problems at Northrop Grumman.
Extinction of metastable stochastic populations
NASA Astrophysics Data System (ADS)
Assaf, Michael; Meerson, Baruch
2010-02-01
We investigate the phenomenon of extinction of a long-lived self-regulating stochastic population, caused by intrinsic (demographic) noise. Extinction typically occurs via one of two scenarios depending on whether the absorbing state n=0 is a repelling (scenario A) or attracting (scenario B) point of the deterministic rate equation. In scenario A the metastable stochastic population resides in the vicinity of an attracting fixed point next to the repelling point n=0 . In scenario B there is an intermediate repelling point n=n1 between the attracting point n=0 and another attracting point n=n2 in the vicinity of which the metastable population resides. The crux of the theory is a dissipative variant of WKB (Wentzel-Kramers-Brillouin) approximation which assumes that the typical population size in the metastable state is large. Starting from the master equation, we calculate the quasistationary probability distribution of the population sizes and the (exponentially long) mean time to extinction for each of the two scenarios. When necessary, the WKB approximation is complemented (i) by a recursive solution of the quasistationary master equation at small n and (ii) by the van Kampen system-size expansion, valid near the fixed points of the deterministic rate equation. The theory yields both entropic barriers to extinction and pre-exponential factors, and holds for a general set of multistep processes when detailed balance is broken. The results simplify considerably for single-step processes and near the characteristic bifurcations of scenarios A and B.
RHIC stochastic cooling motion control
Gassner, D.; DeSanto, L.; Olsen, R.H.; Fu, W.; Brennan, J.M.; Liaw, CJ; Bellavia, S.; Brodowski, J.
2011-03-28
Relativistic Heavy Ion Collider (RHIC) beams are subject to Intra-Beam Scattering (IBS) that causes an emittance growth in all three-phase space planes. The only way to increase integrated luminosity is to counteract IBS with cooling during RHIC stores. A stochastic cooling system for this purpose has been developed, it includes moveable pick-ups and kickers in the collider that require precise motion control mechanics, drives and controllers. Since these moving parts can limit the beam path aperture, accuracy and reliability is important. Servo, stepper, and DC motors are used to provide actuation solutions for position control. The choice of motion stage, drive motor type, and controls are based on needs defined by the variety of mechanical specifications, the unique performance requirements, and the special needs required for remote operations in an accelerator environment. In this report we will describe the remote motion control related beam line hardware, position transducers, rack electronics, and software developed for the RHIC stochastic cooling pick-ups and kickers.
NASA Astrophysics Data System (ADS)
Kim, Donggyu; Choi, Wonjun; Kim, Moonseok; Moon, Jungho; Seo, Keumyoung; Ju, Sanghyun; Choi, Wonshik
2014-11-01
We report a method for measuring the transmission matrix of a disordered medium using a binary-control of a digital micromirror device (DMD). With knowledge of the measured transmission matrix, we identified the transmission eigenchannels of the medium. We then used binary control of the DMD to shape the wavefront of incident waves and to experimentally couple light to individual eigenchannels. When the wave was coupled to the eigenchannel with the largest eigenvalue, in particular, we were able to achieve about two times more energy transmission than the mean transmittance of the medium. Our study provides an elaborated use of the DMD as a high-speed wavefront shaping device for controlling the multiple scattering of waves in highly scattering media.
Liquid chromatographic extraction medium
Horwitz, E. Philip; Dietz, Mark L.
1994-01-01
A method and apparatus for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column is described. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water.
Liquid chromatographic extraction medium
Horwitz, E.P.; Dietz, M.L.
1994-09-13
A method and apparatus are disclosed for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water. 1 fig.
Entropy production along a stochastic trajectory and an integral fluctuation theorem.
Seifert, Udo
2005-07-22
For stochastic nonequilibrium dynamics like a Langevin equation for a colloidal particle or a master equation for discrete states, entropy production along a single trajectory is studied. It involves both genuine particle entropy and entropy production in the surrounding medium. The integrated sum of both Delatas(tot) is shown to obey a fluctuation theorem (exp([-Deltas(tot) = 1 for arbitrary initial conditions and arbitrary time-dependent driving over a finite time interval.
Stochastic ion acceleration by beating electrostatic waves.
Jorns, B; Choueiri, E Y
2013-01-01
A study is presented of the stochasticity in the orbit of a single, magnetized ion produced by the particle's interaction with two beating electrostatic waves whose frequencies differ by the ion cyclotron frequency. A second-order Lie transform perturbation theory is employed in conjunction with a numerical analysis of the maximum Lyapunov exponent to determine the velocity conditions under which stochasticity occurs in this dynamical system. Upper and lower bounds in ion velocity are found for stochastic orbits with the lower bound approximately equal to the phase velocity of the slower wave. A threshold condition for the onset of stochasticity that is linear with respect to the wave amplitudes is also derived. It is shown that the onset of stochasticity occurs for beating electrostatic waves at lower total wave energy densities than for the case of a single electrostatic wave or two nonbeating electrostatic waves.
Culture Medium for Enterobacteria
Neidhardt, Frederick C.; Bloch, Philip L.; Smith, David F.
1974-01-01
A new minimal medium for enterobacteria has been developed. It supports growth of Escherichia coli and Salmonella typhimurium at rates comparable to those of any of the traditional media that have high phosphate concentrations, but each of the macronutrients (phosphate, sulfate, and nitrogen) is present at a sufficiently low level to permit isotopic labeling. Buffering capacity is provided by an organic dipolar ion, morpholinopropane sulfonate, which has a desirable pK (7.2) and no apparent inhibitory effect on growth. The medium has been developed with the objectives of (i) providing reproducibility of chemical composition, (ii) meeting the experimentally determined nutritional needs of the cell, (iii) avoiding an unnecessary excess of the major ionic species, (iv) facilitating the adjustment of the levels of individual ionic species, both for isotopic labeling and for nutritional studies, (v) supplying a complete array of micronutrients, (vi) setting a particular ion as the crop-limiting factor when the carbon and energy source is in excess, and (vii) providing maximal convenience in the manufacture and storage of the medium. PMID:4604283
NASA Astrophysics Data System (ADS)
Huerta, E. A.; McWilliams, Sean T.; Gair, Jonathan R.; Taylor, Stephen R.
2015-09-01
We present a detailed analysis of the expected signal-to-noise ratios of supermassive black hole binaries on eccentric orbits observed by pulsar timing arrays. We derive several analytical relations that extend the results of Peters and Mathews [Phys. Rev. D 131, 435 (1963)] to quantify the impact of eccentricity in the detection of single resolvable binaries in the pulsar timing array band. We present ready-to-use expressions to compute the increase/loss in signal-to-noise ratio of eccentric single resolvable sources whose dominant harmonic is located in the low/high frequency sensitivity regime of pulsar timing arrays. Building upon the work of Phinney (arXiv:astro-ph/0108028) and Enoki and Nagashima [Prog. Theor. Phys. 117, 241 (2007)], we present an analytical framework that enables the construction of rapid spectra for a stochastic gravitational-wave background generated by a cosmological population of eccentric sources. We confirm previous findings which indicate that, relative to a population of quasicircular binaries, the strain of a stochastic, isotropic gravitational-wave background generated by a cosmological population of eccentric binaries will be suppressed in the frequency band of pulsar timing arrays. We quantify this effect in terms of signal-to-noise ratios in a pulsar timing array.
NASA Astrophysics Data System (ADS)
Taylor, Stephen; Sampson, Laura; Simon, Joseph
2016-03-01
There has recently been significant interest in how the galactic environments of supermassive black-hole binaries influences the stochastic gravitational-wave background signal from a population of these systems, and in how the resulting detection prospects for pulsar-timing arrays are effected. Tackling these problems requires us to have robust and computationally-efficient models for the strain spectrum as a function of different environment influences or the binary orbital eccentricity. In this talk we describe a new method of constructing these models from a small number of synthesized black-hole binary populations which have varying input physics. We use these populations to train an interpolant via Gaussian-process regression, allowing us to carry real physics into our subsequent pulsar-timing array inferences, and to also correctly propagate forward uncertainties from our interpolation.
The White Dwarf Mass in Interacting Binaries
NASA Astrophysics Data System (ADS)
Mukai, Koji
surveys. We have begun a comparison study of a medium energy (2-10 keV) X-ray selected sample, which will most likely include many systems with lower-mass white dwarfs. Finally, we have been conducting a survey of hard and medium energy X-ray emitting symbiotic stars, including some individual cases of special interest. We include a particular case which may allow us to measure the birth mass of a white dwarf in a symbiotic binary. These projects make use of data to be obtained through 2 approved Suzaku AO-7 proposals led by the PI, as well as archival XMM-Newton and Swift data that are already in the public domain.
Taylor, Stephen R; Simon, Joseph; Sampson, Laura
2017-05-05
We introduce a technique for gravitational-wave analysis, where Gaussian process regression is used to emulate the strain spectrum of a stochastic background by training on population-synthesis simulations. This leads to direct Bayesian inference on astrophysical parameters. For pulsar timing arrays specifically, we interpolate over the parameter space of supermassive black-hole binary environments, including three-body stellar scattering, and evolving orbital eccentricity. We illustrate our approach on mock data, and assess the prospects for inference with data similar to the NANOGrav 9-yr data release.
Thomas, Philipp; Matuschek, Hannes; Grima, Ramon
2012-01-01
The accepted stochastic descriptions of biochemical dynamics under well-mixed conditions are given by the Chemical Master Equation and the Stochastic Simulation Algorithm, which are equivalent. The latter is a Monte-Carlo method, which, despite enjoying broad availability in a large number of existing software packages, is computationally expensive due to the huge amounts of ensemble averaging required for obtaining accurate statistical information. The former is a set of coupled differential-difference equations for the probability of the system being in any one of the possible mesoscopic states; these equations are typically computationally intractable because of the inherently large state space. Here we introduce the software package intrinsic Noise Analyzer (iNA), which allows for systematic analysis of stochastic biochemical kinetics by means of van Kampen's system size expansion of the Chemical Master Equation. iNA is platform independent and supports the popular SBML format natively. The present implementation is the first to adopt a complementary approach that combines state-of-the-art analysis tools using the computer algebra system Ginac with traditional methods of stochastic simulation. iNA integrates two approximation methods based on the system size expansion, the Linear Noise Approximation and effective mesoscopic rate equations, which to-date have not been available to non-expert users, into an easy-to-use graphical user interface. In particular, the present methods allow for quick approximate analysis of time-dependent mean concentrations, variances, covariances and correlations coefficients, which typically outperforms stochastic simulations. These analytical tools are complemented by automated multi-core stochastic simulations with direct statistical evaluation and visualization. We showcase iNA's performance by using it to explore the stochastic properties of cooperative and non-cooperative enzyme kinetics and a gene network associated with
Stationary Size Distributions of Growing Cells with Binary and Multiple Cell Division
NASA Astrophysics Data System (ADS)
Rading, M. M.; Engel, T. A.; Lipowsky, R.; Valleriani, A.
2011-10-01
Populations of unicellular organisms that grow under constant environmental conditions are considered theoretically. The size distribution of these cells is calculated analytically, both for the usual process of binary division, in which one mother cell produces always two daughter cells, and for the more complex process of multiple division, in which one mother cell can produce 2 n daughter cells with n=1,2,3,… . The latter mode of division is inspired by the unicellular algae Chlamydomonas reinhardtii. The uniform response of the whole population to different environmental conditions is encoded in the individual rates of growth and division of the cells. The analytical treatment of the problem is based on size-dependent rules for cell growth and stochastic transition processes for cell division. The comparison between binary and multiple division shows that these different division processes lead to qualitatively different results for the size distribution and the population growth rates.
Butts, Carter T
Stochastic models for finite binary vectors are widely used in sociology, with examples ranging from social influence models on dichotomous behaviors or attitudes to models for random graphs. Exact sampling for such models is difficult in the presence of dependence, leading to the use of Markov chain Monte Carlo (MCMC) as an approximation technique. While often effective, MCMC methods have variable execution time, and the quality of the resulting draws can be difficult to assess. Here, we present a novel alternative method for approximate sampling from binary discrete exponential families having fixed execution time and well-defined quality guarantees. We demonstrate the use of this sampling procedure in the context of random graph generation, with an application to the simulation of a large-scale social network using both geographical covariates and dyadic dependence mechanisms.
A Monte Carlo model for determination of binary diffusion coefficients in gases
Panarese, A.; Bruno, D.; Colonna, G.; Diomede, P.; Laricchiuta, A.; Longo, S.; Capitelli, M.
2011-06-20
A Monte Carlo method has been developed for the calculation of binary diffusion coefficients in gas mixtures. The method is based on the stochastic solution of the linear Boltzmann equation obtained for the transport of one component in a thermal bath of the second one. Anisotropic scattering is included by calculating the classical deflection angle in binary collisions under isotropic potential. Model results are compared to accurate solutions of the Chapman-Enskog equation in the first and higher orders. We have selected two different cases, H{sub 2} in H{sub 2} and O in O{sub 2}, assuming rigid spheres or using a model phenomenological potential. Diffusion coefficients, calculated in the proposed approach, are found in close agreement with Chapman-Enskog results in all the cases considered, the deviations being reduced using higher order approximations.
Butts, Carter T.
2015-01-01
Stochastic models for finite binary vectors are widely used in sociology, with examples ranging from social influence models on dichotomous behaviors or attitudes to models for random graphs. Exact sampling for such models is difficult in the presence of dependence, leading to the use of Markov chain Monte Carlo (MCMC) as an approximation technique. While often effective, MCMC methods have variable execution time, and the quality of the resulting draws can be difficult to assess. Here, we present a novel alternative method for approximate sampling from binary discrete exponential families having fixed execution time and well-defined quality guarantees. We demonstrate the use of this sampling procedure in the context of random graph generation, with an application to the simulation of a large-scale social network using both geographical covariates and dyadic dependence mechanisms. PMID:26586920
Stochastic dual-plane on-axis digital holographic imaging on irregular surfaces.
Wang, Fengpeng; Wang, Dayong; Rong, Lu; Wang, Yunxin; Zhao, Jie
2016-05-10
An imaging method based on dual-plane on-axis digital holography is proposed for the situation in which an object is on the irregular surface of a transparent medium. Light propagation of the object on the uneven surface of the medium is analyzed and simulated. The diffracted pattern of the object is deformed or destroyed by the refracted light of the medium. Dual-plane on-axis digital holography is used to eliminate the twin image. In order to retrieve the information lost in the reconstructed image due to destructive interference, the object is illuminated by a stochastic beam that is a speckle wave produced by a ground glass. Simulated and experimental results are presented, to demonstrate that the proposed method can be used for imaging on the irregular surface of a transparent medium.
Models for 60 double-lined binaries containing giants
NASA Astrophysics Data System (ADS)
Eggleton, Peter P.; Yakut, Kadri
2017-07-01
The observed masses, radii and temperatures of 60 medium- to long-period binaries, most of which contain a cool, evolved star and a hotter less evolved one, are compared with theoretical models which include (a) core convective overshooting, (b) mass-loss, possibly driven by dynamo action as in RS CVn binaries, and (c) tidal friction, including its effect on orbital period through magnetic braking. A reasonable fit is found in about 42 cases, but in 11 other cases the primaries appear to have lost either more mass or less mass than the models predict, and in 4 others the orbit is predicted to be either more or less circular than observed. Of the remaining three systems, two (γ Per and HR 8242) have a markedly 'overevolved' secondary, our explanation being that the primary component is the merged remnant of a former short-period sub-binary in a former triple system. The last system (V695 Cyg) defies any agreement at present. Mention is also made of three other systems (V643 Ori, OW Gem and V453 Cep), which are relevant to our discussion.
Binary nucleation at low temperatures
NASA Technical Reports Server (NTRS)
Zahoransky, R. A.; Peters, F.
1985-01-01
The onset of homogeneous condensation of binary vapors in the supersaturated state is studied in ethanol/n-propanol and water/ethanol via their unsteady expansion in a shock tube at temperatures below 273 K. Ethanol/n-propanol forms a nearly ideal solution, whereas water/ethanol is an example of a strongly nonideal mixture. Vapor mixtures of various compositions are diluted in dry air at small mole fractions and expanded in the driver section from room temperature. The onset of homogeneous condensation is detected optically and the corresponding thermodynamic state is evaluated. The experimental results are compared with the binary nucleation theory, and the particular problems of theoretical evaluation at low temperatures are discussed.
Mass transfer between binary stars
NASA Technical Reports Server (NTRS)
Modisette, J. L.; Kondo, Y.
1980-01-01
The transfer of mass from one component of a binary system to another by mass ejection is analyzed through a stellar wind mechanism, using a model which integrates the equations of motion, including the energy equation, with an initial static atmosphere and various temperature fluctuations imposed at the base of the star's corona. The model is applied to several situations and the energy flow is calculated along the line of centers between the two binary components, in the rotating frame of the system, thereby incorporating the centrifugal force. It is shown that relatively small disturbances in the lower chromosphere or photosphere can produce mass loss through a stellar wind mechanism, due to the amplification of the disturbance propagating into the thinner atmosphere. Since there are many possible sources of the disturbance, the model can be used to explain many mass ejection phenomena.
NASA Astrophysics Data System (ADS)
Erastova, L. K.
2016-06-01
Thirty spectroscopic binary stars were found in the Second Byurakan Survey (SBS). They show composite spectra - WD(DA)+dM or dC (for example Liebert et al. 1994). They may have red color, if the radiation of the red star dominates, and blue one, if the blue star is brighter and have peculiar spectrum in our survey plate. We obtained slit spectra for most of such objects. But we often see the spectrum of one component, because our slit spectra did not cover all optical range. We examine by eye the slit spectra of all SBS stellar objects (˜700) in SDSS DR7, DR8 or DR9 independent on our observations. We confirmed or discovered the duplicity of 30 stars. Usually they are spectroscopic binaries, where one component is WD (DA) and the second one is a red star with or without emission. There also are other components combinations. Sometimes there are emission lines, probably, indicating variable ones.
Binary Inspiral in Quadratic Gravity
NASA Astrophysics Data System (ADS)
Yagi, Kent
2015-01-01
Quadratic gravity is a general class of quantum-gravity-inspired theories, where the Einstein-Hilbert action is extended through the addition of all terms quadratic in the curvature tensor coupled to a scalar field. In this article, we focus on the scalar Gauss- Bonnet (sGB) theory and consider the black hole binary inspiral in this theory. By applying the post-Newtonian (PN) formalism, we found that there is a scalar dipole radiation which leads to -1PN correction in the energy flux relative to gravitational radiation in general relativity. From the orbital decay rate of a low-mass X-ray binary A0600-20, we obtain the bound that is six orders of magnitude stronger than the current solar system bound. Furthermore, we show that the excess in the orbital decay rate of XTE J1118+480 can be explained by the scalar radiation in sGB theory.
Close supermassive binary black holes.
Gaskell, C Martin
2010-01-07
It has been proposed that when the peaks of the broad emission lines in active galactic nuclei (AGNs) are significantly blueshifted or redshifted from the systemic velocity of the host galaxy, this could be a consequence of orbital motion of a supermassive black-hole binary (SMBB). The AGN J1536+0441 ( = SDSS J153636.22+044127.0) has recently been proposed as an example of this phenomenon. It is proposed here instead that J1536+0441 is an example of line emission from a disk. If this is correct, the lack of clear optical spectral evidence for close SMBBs is significant, and argues either that the merging of close SMBBs is much faster than has generally been hitherto thought, or if the approach is slow, that when the separation of the binary is comparable to the size of the torus and broad-line region, the feeding of the black holes is disrupted.
Information graphs for binary predictors.
Hughes, G; McRoberts, N; Burnett, F J
2015-01-01
Binary predictors are used in a wide range of crop protection decision-making applications. Such predictors provide a simple analytical apparatus for the formulation of evidence related to risk factors, for use in the process of Bayesian updating of probabilities of crop disease. For diagrammatic interpretation of diagnostic probabilities, the receiver operating characteristic is available. Here, we view binary predictors from the perspective of diagnostic information. After a brief introduction to the basic information theoretic concepts of entropy and expected mutual information, we use an example data set to provide diagrammatic interpretations of expected mutual information, relative entropy, information inaccuracy, information updating, and specific information. Our information graphs also illustrate correspondences between diagnostic information and diagnostic probabilities.
Floral Morphogenesis: Stochastic Explorations of a Gene Network Epigenetic Landscape
Aldana, Maximino; Benítez, Mariana; Cortes-Poza, Yuriria; Espinosa-Soto, Carlos; Hartasánchez, Diego A.; Lotto, R. Beau; Malkin, David; Escalera Santos, Gerardo J.; Padilla-Longoria, Pablo
2008-01-01
In contrast to the classical view of development as a preprogrammed and deterministic process, recent studies have demonstrated that stochastic perturbations of highly non-linear systems may underlie the emergence and stability of biological patterns. Herein, we address the question of whether noise contributes to the generation of the stereotypical temporal pattern in gene expression during flower development. We modeled the regulatory network of organ identity genes in the Arabidopsis thaliana flower as a stochastic system. This network has previously been shown to converge to ten fixed-point attractors, each with gene expression arrays that characterize inflorescence cells and primordial cells of sepals, petals, stamens, and carpels. The network used is binary, and the logical rules that govern its dynamics are grounded in experimental evidence. We introduced different levels of uncertainty in the updating rules of the network. Interestingly, for a level of noise of around 0.5–10%, the system exhibited a sequence of transitions among attractors that mimics the sequence of gene activation configurations observed in real flowers. We also implemented the gene regulatory network as a continuous system using the Glass model of differential equations, that can be considered as a first approximation of kinetic-reaction equations, but which are not necessarily equivalent to the Boolean model. Interestingly, the Glass dynamics recover a temporal sequence of attractors, that is qualitatively similar, although not identical, to that obtained using the Boolean model. Thus, time ordering in the emergence of cell-fate patterns is not an artifact of synchronous updating in the Boolean model. Therefore, our model provides a novel explanation for the emergence and robustness of the ubiquitous temporal pattern of floral organ specification. It also constitutes a new approach to understanding morphogenesis, providing predictions on the population dynamics of cells with different
A semiempirical method for analysis of the reflectance spectra of binary mineral mixtures
NASA Technical Reports Server (NTRS)
Johnson, P. E.; Smith, M. O.; Taylor-George, S.; Adams, J. B.
1983-01-01
A simple semiempirical method is presented for determination of the spectral reflectance of a powdered binary mineral mixture. This technique uses a two-stream radiative transfer model (a modified Kubelka-Munk model) on a particulate medium of isotroic scatterers The particles are assumed to be much larger than the wavelength of light under consideration. This same method can be used to determine the relative proportion of components in a mixture for which the spectral reflectance is known. Binary mixtures of olivine, two pyroxenes, and magnetite are used to test this model. The theoretical and empirical results agree approximately within experimental errors.
NASA Astrophysics Data System (ADS)
Ferlet, Roger
Substantial progress in the field of the Local Interstellar Medium has been largely due to recent launches of space missions, mostly in the UV and X-ray domains, but also to ground-based observations, mainly in high resolution spectroscopy. However, a clear gap seems to remain between the wealth of new data and the theoretical understanding. This paper gives an overview of some observational aspects, with no attempt of completeness or doing justice to all the people involved in the field. As progress rarely evolves in straight paths, we can expect that our present picture of the solar system surroundings is not definitive.
Stochastic sensing through covalent interactions
Bayley, Hagan; Shin, Seong-Ho; Luchian, Tudor; Cheley, Stephen
2013-03-26
A system and method for stochastic sensing in which the analyte covalently bonds to the sensor element or an adaptor element. If such bonding is irreversible, the bond may be broken by a chemical reagent. The sensor element may be a protein, such as the engineered P.sub.SH type or .alpha.HL protein pore. The analyte may be any reactive analyte, including chemical weapons, environmental toxins and pharmaceuticals. The analyte covalently bonds to the sensor element to produce a detectable signal. Possible signals include change in electrical current, change in force, and change in fluorescence. Detection of the signal allows identification of the analyte and determination of its concentration in a sample solution. Multiple analytes present in the same solution may be detected.
Heuristic-biased stochastic sampling
Bresina, J.L.
1996-12-31
This paper presents a search technique for scheduling problems, called Heuristic-Biased Stochastic Sampling (HBSS). The underlying assumption behind the HBSS approach is that strictly adhering to a search heuristic often does not yield the best solution and, therefore, exploration off the heuristic path can prove fruitful. Within the HBSS approach, the balance between heuristic adherence and exploration can be controlled according to the confidence one has in the heuristic. By varying this balance, encoded as a bias function, the HBSS approach encompasses a family of search algorithms of which greedy search and completely random search are extreme members. We present empirical results from an application of HBSS to the realworld problem of observation scheduling. These results show that with the proper bias function, it can be easy to outperform greedy search.
Stochastic hyperfine interactions modeling library
NASA Astrophysics Data System (ADS)
Zacate, Matthew O.; Evenson, William E.
2011-04-01
The stochastic hyperfine interactions modeling library (SHIML) provides a set of routines to assist in the development and application of stochastic models of hyperfine interactions. The library provides routines written in the C programming language that (1) read a text description of a model for fluctuating hyperfine fields, (2) set up the Blume matrix, upon which the evolution operator of the system depends, and (3) find the eigenvalues and eigenvectors of the Blume matrix so that theoretical spectra of experimental techniques that measure hyperfine interactions can be calculated. The optimized vector and matrix operations of the BLAS and LAPACK libraries are utilized; however, there was a need to develop supplementary code to find an orthonormal set of (left and right) eigenvectors of complex, non-Hermitian matrices. In addition, example code is provided to illustrate the use of SHIML to generate perturbed angular correlation spectra for the special case of polycrystalline samples when anisotropy terms of higher order than A can be neglected. Program summaryProgram title: SHIML Catalogue identifier: AEIF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL 3 No. of lines in distributed program, including test data, etc.: 8224 No. of bytes in distributed program, including test data, etc.: 312 348 Distribution format: tar.gz Programming language: C Computer: Any Operating system: LINUX, OS X RAM: Varies Classification: 7.4 External routines: TAPP [1], BLAS [2], a C-interface to BLAS [3], and LAPACK [4] Nature of problem: In condensed matter systems, hyperfine methods such as nuclear magnetic resonance (NMR), Mössbauer effect (ME), muon spin rotation (μSR), and perturbed angular correlation spectroscopy (PAC) measure electronic and magnetic structure within Angstroms of nuclear probes through the hyperfine interaction. When
Thermodynamics of stochastic Turing machines.
Strasberg, Philipp; Cerrillo, Javier; Schaller, Gernot; Brandes, Tobias
2015-10-01
In analogy to Brownian computers we explicitly show how to construct stochastic models which mimic the behavior of a general-purpose computer (a Turing machine). Our models are discrete state systems obeying a Markovian master equation, which are logically reversible and have a well-defined and consistent thermodynamic interpretation. The resulting master equation, which describes a simple one-step process on an enormously large state space, allows us to thoroughly investigate the thermodynamics of computation for this situation. Especially in the stationary regime we can well approximate the master equation by a simple Fokker-Planck equation in one dimension. We then show that the entropy production rate at steady state can be made arbitrarily small, but the total (integrated) entropy production is finite and grows logarithmically with the number of computational steps.
Stochastic evolution of staying together.
Ghang, Whan; Nowak, Martin A
2014-11-07
Staying together means that replicating units do not separate after reproduction, but remain attached to each other or in close proximity. Staying together is a driving force for evolution of complexity, including the evolution of multi-cellularity and eusociality. We analyze the fixation probability of a mutant that has the ability to stay together. We assume that the size of the complex affects the reproductive rate of its units and the probability of staying together. We examine the combined effect of natural selection and random drift on the emergence of staying together in a finite sized population. The number of states in the underlying stochastic process is an exponential function of population size. We develop a framework for any intensity of selection and give closed form solutions for special cases. We derive general results for the limit of weak selection. Copyright © 2014 Elsevier Ltd. All rights reserved.
Stochastic thermodynamics for active matter
NASA Astrophysics Data System (ADS)
Speck, Thomas
2016-05-01
The theoretical understanding of active matter, which is driven out of equilibrium by directed motion, is still fragmental and model oriented. Stochastic thermodynamics, on the other hand, is a comprehensive theoretical framework for driven systems that allows to define fluctuating work and heat. We apply these definitions to active matter, assuming that dissipation can be modelled by effective non-conservative forces. We show that, through the work, conjugate extensive and intensive observables can be defined even in non-equilibrium steady states lacking a free energy. As an illustration, we derive the expressions for the pressure and interfacial tension of active Brownian particles. The latter becomes negative despite the observed stable phase separation. We discuss this apparent contradiction, highlighting the role of fluctuations, and we offer a tentative explanation.