A Hybrid Monte Carlo-Deterministic Method for Global Binary Stochastic Medium Transport Problems
Keady, K P; Brantley, P
2010-03-04
Global deep-penetration transport problems are difficult to solve using traditional Monte Carlo techniques. In these problems, the scalar flux distribution is desired at all points in the spatial domain (global nature), and the scalar flux typically drops by several orders of magnitude across the problem (deep-penetration nature). As a result, few particle histories may reach certain regions of the domain, producing a relatively large variance in tallies in those regions. Implicit capture (also known as survival biasing or absorption suppression) can be used to increase the efficiency of the Monte Carlo transport algorithm to some degree. A hybrid Monte Carlo-deterministic technique has previously been developed by Cooper and Larsen to reduce variance in global problems by distributing particles more evenly throughout the spatial domain. This hybrid method uses an approximate deterministic estimate of the forward scalar flux distribution to automatically generate weight windows for the Monte Carlo transport simulation, avoiding the necessity for the code user to specify the weight window parameters. In a binary stochastic medium, the material properties at a given spatial location are known only statistically. The most common approach to solving particle transport problems involving binary stochastic media is to use the atomic mix (AM) approximation in which the transport problem is solved using ensemble-averaged material properties. The most ubiquitous deterministic model developed specifically for solving binary stochastic media transport problems is the Levermore-Pomraning (L-P) model. Zimmerman and Adams proposed a Monte Carlo algorithm (Algorithm A) that solves the Levermore-Pomraning equations and another Monte Carlo algorithm (Algorithm B) that is more accurate as a result of improved local material realization modeling. Recent benchmark studies have shown that Algorithm B is often significantly more accurate than Algorithm A (and therefore the L-P model
Levermore-Pomraning Model Results for an Interior Source Binary Stochastic Medium Benchmark Problem
Brantley, P S; Palmer, T S
2009-02-24
The accuracy of the Levermore-Pomraning model for particle transport through a binary stochastic medium is investigated using an interior source benchmark problem. As in previous comparisons of the model for incident angular flux benchmark problems, the model accurately computes the leakage and the scalar flux distributions for optically thin slabs. The model is less accurate for more optically thick slabs but has a maximum relative error in the leakage of approximately 10% for the problems examined. The maximum root-mean-squared relative errors for the total and material scalar flux distributions approach 65% for the more optically thick slabs. Consistent with previous benchmark comparisons, the results of these interior source benchmark comparisons demonstrate that the Levermore-Pomraning model produces qualitatively correct and semi-quantitatively correct results for both leakage values and scalar flux distributions.
Brantley, P S; Martos, J N
2011-03-02
We describe a parallel benchmark procedure and numerical results for a three-dimensional binary stochastic medium particle transport benchmark problem. The binary stochastic medium is composed of optically thick spherical inclusions distributed in an optically thin background matrix material. We investigate three sphere mean chord lengths, three distributions for the sphere radii (constant, uniform, and exponential), and six sphere volume fractions ranging from 0.05 to 0.3. For each sampled independent material realization, we solve the associated transport problem using the Mercury Monte Carlo particle transport code. We compare the ensemble-averaged benchmark fiducial tallies of reflection from and transmission through the spatial domain as well as absorption in the spherical inclusion and background matrix materials. For the parameter values investigated, we find a significant dependence of the ensemble-averaged fiducial tallies on both sphere mean chord length and sphere volume fraction, with the most dramatic variation occurring for the transmission through the spatial domain. We find a weaker dependence of most benchmark tally quantities on the distribution describing the sphere radii, provided the sphere mean chord length used is the same in the different distributions. The exponential distribution produces larger differences from the constant distribution than the uniform distribution produces. The transmission through the spatial domain does exhibit a significant variation when an exponential radius distribution is used.
Langevin equation with stochastic damping - Possible application to critical binary fluid
NASA Technical Reports Server (NTRS)
Jasnow, D.; Gerjuoy, E.
1975-01-01
We solve the familiar Langevin equation with stochastic damping to represent the motion of a Brownian particle in a fluctuating medium. A connection between the damping and the random driving forces is proposed which preserves quite generally the Einstein relation between the diffusion and mobility coefficients. We present an application to the case of a Brownian particle in a critical binary mixture.
Stochastic learning in oxide binary synaptic device for neuromorphic computing
Yu, Shimeng; Gao, Bin; Fang, Zheng; Yu, Hongyu; Kang, Jinfeng; Wong, H.-S. Philip
2013-01-01
Hardware implementation of neuromorphic computing is attractive as a computing paradigm beyond the conventional digital computing. In this work, we show that the SET (off-to-on) transition of metal oxide resistive switching memory becomes probabilistic under a weak programming condition. The switching variability of the binary synaptic device implements a stochastic learning rule. Such stochastic SET transition was statistically measured and modeled for a simulation of a winner-take-all network for competitive learning. The simulation illustrates that with such stochastic learning, the orientation classification function of input patterns can be effectively realized. The system performance metrics were compared between the conventional approach using the analog synapse and the approach in this work that employs the binary synapse utilizing the stochastic learning. The feasibility of using binary synapse in the neurormorphic computing may relax the constraints to engineer continuous multilevel intermediate states and widens the material choice for the synaptic device design. PMID:24198752
Stochastic learning in oxide binary synaptic device for neuromorphic computing.
Yu, Shimeng; Gao, Bin; Fang, Zheng; Yu, Hongyu; Kang, Jinfeng; Wong, H-S Philip
2013-01-01
Hardware implementation of neuromorphic computing is attractive as a computing paradigm beyond the conventional digital computing. In this work, we show that the SET (off-to-on) transition of metal oxide resistive switching memory becomes probabilistic under a weak programming condition. The switching variability of the binary synaptic device implements a stochastic learning rule. Such stochastic SET transition was statistically measured and modeled for a simulation of a winner-take-all network for competitive learning. The simulation illustrates that with such stochastic learning, the orientation classification function of input patterns can be effectively realized. The system performance metrics were compared between the conventional approach using the analog synapse and the approach in this work that employs the binary synapse utilizing the stochastic learning. The feasibility of using binary synapse in the neurormorphic computing may relax the constraints to engineer continuous multilevel intermediate states and widens the material choice for the synaptic device design. PMID:24198752
Memory Capacity of Networks with Stochastic Binary Synapses
Dubreuil, Alexis M.; Amit, Yali; Brunel, Nicolas
2014-01-01
In standard attractor neural network models, specific patterns of activity are stored in the synaptic matrix, so that they become fixed point attractors of the network dynamics. The storage capacity of such networks has been quantified in two ways: the maximal number of patterns that can be stored, and the stored information measured in bits per synapse. In this paper, we compute both quantities in fully connected networks of N binary neurons with binary synapses, storing patterns with coding level , in the large and sparse coding limits (). We also derive finite-size corrections that accurately reproduce the results of simulations in networks of tens of thousands of neurons. These methods are applied to three different scenarios: (1) the classic Willshaw model, (2) networks with stochastic learning in which patterns are shown only once (one shot learning), (3) networks with stochastic learning in which patterns are shown multiple times. The storage capacities are optimized over network parameters, which allows us to compare the performance of the different models. We show that finite-size effects strongly reduce the capacity, even for networks of realistic sizes. We discuss the implications of these results for memory storage in the hippocampus and cerebral cortex. PMID:25101662
Binaries in a medium of fast low-mass objects
NASA Astrophysics Data System (ADS)
Gould, Andrew
1991-09-01
The effect of dynamical friction on binaries in a medium of fast low-mass objects is determined. Results are obtained for an arbitrary particle distribution and for any value of Eb/m(sigma squared). Heggie's Law is confirmed and made more precise. The error in the calculation of Hills (1990) is traced to the very specialized and atypical choice of phase space for performing numerical simulations. The efforts of Bekenstein and Zamir (1990) are traced to inconsistencies in their use of the Vlasov equation. It is found that both the hardening and softening terms are generated by the action of objects with speeds relative to the binary center of mass which are greater than the orbital speed. For binaries at rest with respect to isotropic distribution, this contradicts a standard result, namely, that the viscous effect of fast objects vanishes identically. This paradox is resolved by deriving a more accurate dynamical friction formula. It is shown that a term which is usually dropped is in fact the dominant one.
NASA Astrophysics Data System (ADS)
Banerjee, Sambaran; Ghosh, Pranab
2008-06-01
We continue the exploration that we began in Paper I of using the Boltzmann scheme to study the evolution of compact binary populations of globular clusters, introducing in this paper our method of handling the stochasticity inherent in the dynamical processes of binary formation, destruction, and hardening in globular clusters. We describe these stochastic processes as "Wiener processes," whereupon the Boltzmann equation becomes a stochastic partial differential equation, the solution of which involves the use of "Itō calculus" (this use being the first, to our knowledge, in this subject), in addition to ordinary calculus. As in Paper I, we focus on the evolution of (1) the number of X-ray binaries NXB in globular clusters and (2) the orbital period distribution of these binaries. We show that, although the details of the fluctuations in the above quantities differ from one "realization" to another of the stochastic processes, the general trends follow those found in the continuous-limit study of Paper I, and the average result over many such realizations is very close to the continuous-limit result. We investigate the dependence of NXB found by these calculations on two essential globular cluster properties, namely, the star-star and star-binary encounter rate parameters Γ and γ, for which we coined the name "Verbunt parameters" in Paper I. We compare our computed results with those from Chandra observations of Galactic globular clusters, showing that the expected scalings of NXB with the Verbunt parameters are in good agreement with those observed. We indicate additional features that can be incorporated into the scheme in the future, as well as how more elaborate problems can be tackled.
GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes.
Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cahillane, C; Bustillo, J Calderón; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Baiardi, L Cerboni; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R T; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Castro, J M Gonzalez; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Haris, K; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Phelps, M; Piccinni, O; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J
2016-04-01
The LIGO detection of the gravitational wave transient GW150914, from the inspiral and merger of two black holes with masses ≳30M_{⊙}, suggests a population of binary black holes with relatively high mass. This observation implies that the stochastic gravitational-wave background from binary black holes, created from the incoherent superposition of all the merging binaries in the Universe, could be higher than previously expected. Using the properties of GW150914, we estimate the energy density of such a background from binary black holes. In the most sensitive part of the Advanced LIGO and Advanced Virgo band for stochastic backgrounds (near 25 Hz), we predict Ω_{GW}(f=25 Hz)=1.1_{-0.9}^{+2.7}×10^{-9} with 90% confidence. This prediction is robustly demonstrated for a variety of formation scenarios with different parameters. The differences between models are small compared to the statistical uncertainty arising from the currently poorly constrained local coalescence rate. We conclude that this background is potentially measurable by the Advanced LIGO and Advanced Virgo detectors operating at their projected final sensitivity. PMID:27081965
GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Canton, T. Dal; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2016-04-01
The LIGO detection of the gravitational wave transient GW150914, from the inspiral and merger of two black holes with masses ≳30 M⊙, suggests a population of binary black holes with relatively high mass. This observation implies that the stochastic gravitational-wave background from binary black holes, created from the incoherent superposition of all the merging binaries in the Universe, could be higher than previously expected. Using the properties of GW150914, we estimate the energy density of such a background from binary black holes. In the most sensitive part of the Advanced LIGO and Advanced Virgo band for stochastic backgrounds (near 25 Hz), we predict ΩGW(f =25 Hz )=1. 1-0.9+2.7×10-9 with 90% confidence. This prediction is robustly demonstrated for a variety of formation scenarios with different parameters. The differences between models are small compared to the statistical uncertainty arising from the currently poorly constrained local coalescence rate. We conclude that this background is potentially measurable by the Advanced LIGO and Advanced Virgo detectors operating at their projected final sensitivity.
Implementation of Chord Length Sampling for Transport Through a Binary Stochastic Mixture
T.J. Donovan; T.M. Sutton; Y. Danon
2002-11-18
Neutron transport through a special case stochastic mixture is examined, in which spheres of constant radius are uniformly mixed in a matrix material. A Monte Carlo algorithm previously proposed and examined in 2-D has been implemented in a test version of MCNP. The Limited Chord Length Sampling (LCLS) technique provides a means for modeling a binary stochastic mixture as a cell in MCNP. When inside a matrix cell, LCLS uses chord-length sampling to sample the distance to the next stochastic sphere. After a surface crossing into a stochastic sphere, transport is treated explicitly until the particle exits or is killed. Results were computed for a simple model with two different fixed neutron source distributions and three sets of material number densities. Stochastic spheres were modeled as black absorbers and varying degrees of scattering were introduced in the matrix material. Tallies were computed using the LCLS capability and by averaging results obtained from multiple realizations of the random geometry. Results were compared for accuracy and figures of merit were compared to indicate the efficiency gain of the LCLS method over the benchmark method. Results show that LCLS provides very good accuracy if the scattering optical thickness of the matrix is small ({le} 1). Comparisons of figures of merit show an advantage to LCLS varying between factors of 141 and 5. LCLS efficiency and accuracy relative to the benchmark both decrease as scattering is increased in the matrix.
Artyomov, Maxim N.; Das, Jayajit; Kardar, Mehran; Chakraborty, Arup K.
2007-01-01
Detection of different extracellular stimuli leading to functionally distinct outcomes is ubiquitous in cell biology, and is often mediated by differential regulation of positive and negative feedback loops that are a part of the signaling network. In some instances, these cellular responses are stimulated by small numbers of molecules, and so stochastic effects could be important. Therefore, we studied the influence of stochastic fluctuations on a simple signaling model with dueling positive and negative feedback loops. The class of models we have studied is characterized by single deterministic steady states for all parameter values, but the stochastic response is bimodal; a behavior that is distinctly different from models studied in the context of gene regulation. For example, when positive and negative regulation is roughly balanced, a unique deterministic steady state with an intermediate value for the amount of a downstream signaling product is found. However, for small numbers of signaling molecules, stochastic effects result in a bimodal distribution for this quantity, with neither mode corresponding to the deterministic solution; i.e., cells are in “on” or “off” states, not in some intermediate state. For a large number of molecules, the stochastic solution converges to the mean-field result. When fluctuations are important, we find that signal output scales with control parameters “anomalously” compared with mean-field predictions. The necessary and sufficient conditions for the phenomenon we report are quite common. So, our findings are expected to be of broad relevance, and suggest that stochastic effects can enable binary cellular decisions. PMID:18025473
Bit corruption correlation and autocorrelation in a stochastic binary nano-bit system
NASA Astrophysics Data System (ADS)
Sa-nguansin, Suchittra
2014-10-01
The corruption process of a binary nano-bit model resulting from an interaction with N stochastically-independent Brownian agents (BAs) is studied with the help of Monte-Carlo simulations and analytic continuum theory to investigate the data corruption process through the measurement of the spatial two-point correlation and the autocorrelation of bit corruption at the origin. By taking into account a more realistic correlation between bits, this work will contribute to the understanding of the soft error or the corruption of data stored in nano-scale devices.
Stochastic histories of dust grains in the interstellar medium
NASA Technical Reports Server (NTRS)
Liffman, Kurt; Clayton, D. D.
1989-01-01
The purpose is to study an evolving system of refractory dust grains within the Interstellar Medium (ISM). This is done via a combination of Monte Carlo processes and a system of partial differential equations, where refractory dust grains formed within supernova remnants and ejecta from high mass loss stars are subjected to the processes of sputtering and collisional fragmentation in the diffuse media and accretion within the cold molecular clouds. In order to record chemical detail, the authors take each new particle to consist of a superrefractory core plus a more massive refractory mantle. The particles are allowed to transfer to and fro between the different phases of the interstellar medium (ISM) - on a time scale of 10(exp 8) years - until either the particles are destroyed or the program finishes at a Galaxy time of 6x10(exp 9) years. The resulting chemical and size spectrum(s) are then applied to various astrophysical problems with the following results. For an ISM which has no collisional fragmentation of the dust grains, roughly 10 percent by mass of the most refractory material survives the rigors of the ISM intact, which leaves open the possibility that fossilized isotopically anomalous material may have been present within the primordial solar nebula. Stuctured or layered refractory dust grains within the model cannot explain the observed interstellar depletions of refractory material. Fragmentation due to grain-grain collisions in the diffuse phase plus the accretion of material in the molecular cloud phase can under certain circumstances cause a bimodal distribution in grain size.
The Ising Decision Maker: a binary stochastic network for choice response time.
Verdonck, Stijn; Tuerlinckx, Francis
2014-07-01
The Ising Decision Maker (IDM) is a new formal model for speeded two-choice decision making derived from the stochastic Hopfield network or dynamic Ising model. On a microscopic level, it consists of 2 pools of binary stochastic neurons with pairwise interactions. Inside each pool, neurons excite each other, whereas between pools, neurons inhibit each other. The perceptual input is represented by an external excitatory field. Using methods from statistical mechanics, the high-dimensional network of neurons (microscopic level) is reduced to a two-dimensional stochastic process, describing the evolution of the mean neural activity per pool (macroscopic level). The IDM can be seen as an abstract, analytically tractable multiple attractor network model of information accumulation. In this article, the properties of the IDM are studied, the relations to existing models are discussed, and it is shown that the most important basic aspects of two-choice response time data can be reproduced. In addition, the IDM is shown to predict a variety of observed psychophysical relations such as Piéron's law, the van der Molen-Keuss effect, and Weber's law. Using Bayesian methods, the model is fitted to both simulated and real data, and its performance is compared to the Ratcliff diffusion model. PMID:25090426
Olson, Gordon L.
2015-09-24
One-dimensional models for the transport of radiation through binary stochastic media do not work in multi-dimensions. In addition, authors have attempted to modify or extend the 1D models to work in multidimensions without success. Analytic one-dimensional models are successful in 1D only when assuming greatly simplified physics. State of the art theories for stochastic media radiation transport do not address multi-dimensions and temperature-dependent physics coefficients. Here, the concept of effective opacities and effective heat capacities is found to well represent the ensemble averaged transport solutions in cases with gray or multigroup temperature-dependent opacities and constant or temperature-dependent heat capacities. Inmore » every case analyzed here, effective physics coefficients fit the transport solutions over a useful range of parameter space. The transport equation is solved with the spherical harmonics method with angle orders of n=1 and 5. Although the details depend on what order of solution is used, the general results are similar, independent of angular order.« less
Olson, Gordon L.
2015-09-24
One-dimensional models for the transport of radiation through binary stochastic media do not work in multi-dimensions. In addition, authors have attempted to modify or extend the 1D models to work in multidimensions without success. Analytic one-dimensional models are successful in 1D only when assuming greatly simplified physics. State of the art theories for stochastic media radiation transport do not address multi-dimensions and temperature-dependent physics coefficients. Here, the concept of effective opacities and effective heat capacities is found to well represent the ensemble averaged transport solutions in cases with gray or multigroup temperature-dependent opacities and constant or temperature-dependent heat capacities. In every case analyzed here, effective physics coefficients fit the transport solutions over a useful range of parameter space. The transport equation is solved with the spherical harmonics method with angle orders of n=1 and 5. Although the details depend on what order of solution is used, the general results are similar, independent of angular order.
Stochastic Background from Coalescences of Neutron Star-Neutron Star Binaries
NASA Astrophysics Data System (ADS)
Regimbau, T.; de Freitas Pacheco, J. A.
2006-05-01
In this work, numerical simulations were used to investigate the gravitational stochastic background produced by coalescences of double neutron star systems occurring up to z~5. The cosmic coalescence rate was derived from Monte Carlo methods using the probability distributions for massive binaries to form and for a coalescence to occur in a given redshift. A truly continuous background is produced by events located only beyond the critical redshift z*=0.23. Events occurring in the redshift interval 0.027
NASA Astrophysics Data System (ADS)
Kovalevsky, Valery O.; Lobachev, Vitaly V.
2002-02-01
Detail analysis of active medium flow structure is presented. Schlieren method photography of flow is processed to reconstruct parameters both stochastic and order phase components. Properties of random part including correlation function, spectrum of spatial frequency, scale of turbulence, are determined by digital filtering. It was possible to compare influence of random and regular phase distortions on radiation divergence structure.
NASA Technical Reports Server (NTRS)
Liffman, Kurt; Clayton, Donald D.
1989-01-01
The evolution course of refractoary interstellar dust during the chemical evolution of a two-phase interstellar medium (ISM) is studied using a simple model of the chemical evolution of ISM. It is assumed that, in this medium, the stars are born in molecular clouds, but new nucleosynthesis products and stellar return are entered into a complementary diffuse medium; the well-mixed matter of each interstellar phase is repeatedly cycled stochastically through the complementary phase and back. The dust is studied on a particle-by-particle bases as it is sputtered by shock waves in the diffuse medium, accretes an amorphous mantle of gaseous refractory atoms while its local medium joins the molecular cloud medium, and encounters the possibility of astration within molecular clouds. Results are presented relevant to the size spectrum of accreted mantles, its age spectrum and the distinction among its several lifetimes, depletion factors of refractory atoms in the diffuse gas, and isotopic anomalies.
Effective-medium theory of surfaces and metasurfaces containing two-dimensional binary inclusions.
Alexopoulos, A
2010-04-01
The paper extends one-body effective-medium theory to incorporate the correct second-order interactions in a two-dimensional Maxwell-Garnett theory. The two-body inclusion problem is solved using the averaged dipole moments that are induced by the scattering electromagnetic field on the medium/inclusion system. By incorporating the appropriate polarizability factor in the solutions, conventional right-handed media with binary embeddings are analyzed while a different form for the polarizability term allows the study of the effective properties of a metasurface. In both cases, it is shown that the two-body coefficient to second order in the low area fraction of inclusions is exact, while the corresponding results of the Maxwell-Garnett and Bruggeman theories are incorrect. This is especially true in the superconducting and holes limits, respectively. In the study of metasurfaces, the requirement for electromagnetic screening of the inclusions as well as the requirement needed to achieve the Fröhlich condition are stated. Negative permittivity and permeability are presented for strong-scattering showing negative resonances for a given frequency spectrum. It is shown that these resonances disappear when we derive the weak-scattering limit. The possibility of obtaining doubly negative effective permittivity and permeability is discussed by using an appropriate polarization for the applied electromagnetic field propagating in the metasurface. Finally, the potential difference and hence voltage and capacitance between binary inclusions is determined for surfaces/metasurfaces which allows, in the case of metasurfaces, the behavior of split-ring-type resonators to be investigated. PMID:20481853
NASA Astrophysics Data System (ADS)
Maghrebi, Mohammad F.; Jaffe, Robert L.; Kardar, Mehran
2014-07-01
We study the implications of quantum fluctuations of a dispersive medium, under steady rotation, either in or out of thermal equilibrium with its environment. A rotating object exhibits a quantum instability by dissipating its mechanical motion via spontaneous emission of photons, as well as internal heat generation. Universal relations are derived for the radiated energy and angular momentum as trace formulas involving the object's scattering matrix. We also compute the quantum noise by deriving the full statistics of the radiated photons out of thermal and/or dynamic equilibrium. The (entanglement) entropy generation is quantified and the total entropy is shown to be always increasing. Furthermore, we derive a Fokker-Planck equation governing the stochastic angular motion resulting from the fluctuating backreaction frictional torque. As a result, we find a quantum limit on the uncertainty of the object's angular velocity in steady rotation. Finally, we show in some detail that a rotating object drags nearby objects, making them spin parallel to its axis of rotation. A scalar toy model is introduced to simplify the technicalities and ease the conceptual complexities and then a detailed discussion of quantum electrodynamics is presented.
NASA Astrophysics Data System (ADS)
Artyomov, Maxim N.; Das, Jayajit; Kardar, Mehran; Chakraborty, Arup
2009-03-01
Detection of different extra-cellular stimuli leading to functionally distinct outcomes is common in cell biology, and is often mediated by differential regulation of positive and negative feedback loops that are a part of the signaling network. For cellular responses stimulated by small numbers of molecules, the stochastic effects are important. Therefore, we studied the influence of stochastic fluctuations on a simple signaling model with dueling positive and negative feedback loops. The class of models we have studied is characterized by single deterministic steady states for all parameter values, but the stochastic response is bimodal; a behavior that is distinctly different from models studied in the context of gene regulation. For small numbers of signaling molecules, stochastic effects result in a bimodal distribution for this quantity, with neither mode corresponding to the deterministic solution; i.e., cells are in ``on'' or ``off'' states, not in some intermediate state. For a large number of molecules, the stochastic solution converges to the mean-field result. When fluctuations are important, we find that signal output scales with control parameters ``anomalously'' compared to mean-field predictions.
Towards constructing one-bit binary adder in excitable chemical medium
NASA Astrophysics Data System (ADS)
Lacy Costello, Ben De; Adamatzky, Andy; Jahan, Ishrat; Zhang, Liang
2011-03-01
The light-sensitive modification (ruthenium catalysed) of the Belousov-Zhabotinsky reaction exhibits various excitability regimes depending on the level of illumination. Within a narrow range of applied illumination levels the medium is in a sub-excitable state. When in this state an asymmetric perturbation of the medium leads to formation of a travelling localized excitation (wave-fragment) which moves along a predetermined trajectory, ideally preserving its shape and velocity over an extended time period. Collision-based computing can be implemented with these wave-fragments whereby values of Boolean variables are represented as the presence/absence of a wave-fragment at specific sites. When two wave-fragments collide they either annihilate, or form new wave-fragments. The trajectories of the wave-fragments after the collision represent the result of a computation, e.g. construction of a simple logical gate. However, wave-fragments in sub-excitable chemical media are difficult to control. Therefore, we adopted a hybrid procedure in order to construct collision-based logical gates. We used channels of low light intensity projected onto the excitable media in order to subtly tune and stabilise the propagating wave-fragments allowing them to collide at the junctions between channels. Using this methodology we were able to implement both in theoretical models (using the Oregonator) and in experiment two interaction-based logical gates and assemble the gates into a basic one-bit binary adder. We present the first ever experimental approach towards constructing arithmetic circuits in spatially-extended excitable chemical systems where light is used to impart functionality.
Binaries Traveling through a Gaseous Medium: Dynamical Drag Forces and Internal Torques
NASA Astrophysics Data System (ADS)
Sánchez-Salcedo, F. J.; Chametla, Raul O.
2014-10-01
Using time-dependent linear theory, we investigate the morphology of the gravitational wake induced by a binary, whose center of mass moves at velocity {\\boldsymbol {V}}_cm against a uniform background of gas. For simplicity, we assume that the components of the binary are on circular orbits about their common center of mass. The consequences of dynamical friction is twofold. First, gas dynamical friction may drag the center of mass of the binary and cause the binary to migrate. Second, drag forces also induce a braking torque, which causes the orbits of the components of the binary to shrink. We compute the drag forces acting on one component of the binary due to the gravitational interaction with its own wake. We show that the dynamical friction force responsible for decelerating the center of mass of the binary is smaller than it is in the point-mass case because of the loss of gravitational focusing. We show that the braking internal torque depends on the Mach numbers of each binary component about their center of mass, and also on the Mach number of the center of mass of the binary. In general, the internal torque decreases with increasing the velocity of the binary relative to the ambient gas cloud. However, this is not always the case. We also mention the relevance of our results to the period distribution of binaries.
Binaries traveling through a gaseous medium: dynamical drag forces and internal torques
Sánchez-Salcedo, F. J.; Chametla, Raul O.
2014-10-20
Using time-dependent linear theory, we investigate the morphology of the gravitational wake induced by a binary, whose center of mass moves at velocity V{sub cm} against a uniform background of gas. For simplicity, we assume that the components of the binary are on circular orbits about their common center of mass. The consequences of dynamical friction is twofold. First, gas dynamical friction may drag the center of mass of the binary and cause the binary to migrate. Second, drag forces also induce a braking torque, which causes the orbits of the components of the binary to shrink. We compute the drag forces acting on one component of the binary due to the gravitational interaction with its own wake. We show that the dynamical friction force responsible for decelerating the center of mass of the binary is smaller than it is in the point-mass case because of the loss of gravitational focusing. We show that the braking internal torque depends on the Mach numbers of each binary component about their center of mass, and also on the Mach number of the center of mass of the binary. In general, the internal torque decreases with increasing the velocity of the binary relative to the ambient gas cloud. However, this is not always the case. We also mention the relevance of our results to the period distribution of binaries.
Louis, H; Tlidi, M; Louvergneaux, E
2016-07-11
We perform a statistical analysis of the optical solitary wave propagation in an ultra-slow stochastic non-local focusing Kerr medium such as liquid crystals. Our experimental results show that the localized beam trajectory presents a dynamical random walk whose beam position versus the propagation distance z depicts two different kind of evolutions A power law is found for the beam position standard deviation during the first stage of propagation. It obeys approximately z^{3}/^{2} up to ten times the power threshold for solitary wave generation. PMID:27410886
Louis, H; Tlidi, M; Louvergneaux, E
2016-07-11
We perform a statistical analysis of the optical solitary wave propagation in an ultra-slow stochastic non-local focusing Kerr medium such as liquid crystals. Our experimental results show that the localized beam trajectory presents a dynamical random walk whose beam position versus the propagation distance z depicts two different kind of evolutions A power law is found for the beam position standard deviation during the first stage of propagation. It obeys approximately z^{3}/^{2} up to ten times the power threshold for solitary wave generation. PMID:27410887
STOCHASTIC VARIABILITY IN X-RAY EMISSION FROM THE BLACK HOLE BINARY GRS 1915+105
Polyakov, Yuriy S.; Neilsen, Joseph; Timashev, Serge F.
2012-06-15
We examine stochastic variability in the dynamics of X-ray emission from the black hole system GRS 1915+105, a strongly variable microquasar commonly used for studying relativistic jets and the physics of black hole accretion. The analysis of sample observations for 13 different states in both soft (low) and hard (high) energy bands is performed by flicker-noise spectroscopy (FNS), a phenomenological time series analysis method operating on structure functions and power spectrum estimates. We find the values of FNS parameters, including the Hurst exponent, flicker-noise parameter, and characteristic timescales, for each observation based on multiple 2500 s continuous data segments. We identify four modes of stochastic variability driven by dissipative processes that may be related to viscosity fluctuations in the accretion disk around the black hole: random (RN), power-law (1F), one-scale (1S), and two-scale (2S). The variability modes are generally the same in soft and hard energy bands of the same observation. We discuss the potential for future FNS studies of accreting black holes.
Botet, Robert; Kuratsuji, Hiroshi
2010-03-15
We present a framework for the stochastic features of the polarization state of an electromagnetic wave propagating through the optical medium with both deterministic (controlled) and disordered birefringence. In this case, the Stokes parameters obey a Langevin-type equation on the Poincare sphere. The functional integral method provides for a natural tool to derive the Fokker-Planck equation for the probability distribution of the Stokes parameters. We solve the Fokker-Planck equation in the case of a random anisotropic active medium submitted to a homogeneous electromagnetic field. The possible dissipation and relaxation phenomena are studied in general and in various cases, and we give hints about how to validate experimentally the corresponding phenomenological equations.
Stochastic growth dynamics and composite defects in quenched immiscible binary condensates
NASA Astrophysics Data System (ADS)
Liu, I.-K.; Pattinson, R. W.; Billam, T. P.; Gardiner, S. A.; Cornish, S. L.; Huang, T.-M.; Lin, W.-W.; Gou, S.-C.; Parker, N. G.; Proukakis, N. P.
2016-02-01
We study the sensitivity of coupled condensate formation dynamics on the history of initial stochastic domain formation in the context of instantaneously quenched elongated harmonically trapped immiscible two-component atomic Bose gases. The spontaneous generation of defects in the fastest condensing component, and subsequent coarse-graining dynamics, can lead to a deep oscillating microtrap into which the other component condenses, thereby establishing a long-lived composite defect in the form of a dark-bright solitary wave. We numerically map out diverse key aspects of these competing growth dynamics, focusing on the role of shot-to-shot fluctuations and global parameter changes (initial state choices, quench parameters, and condensate growth rates), with our findings also qualitatively confirmed by realistic finite-duration quenches. We conclude that phase-separated structures observable on experimental time scales are likely to be metastable states whose form is influenced by the stability and dynamics of the spontaneously emerging dark-bright solitary wave.
Mulder, Willem H
2011-07-01
The stationary birth-only, or Yule-Furry, process for rooted binary trees has been analysed with a view to developing explicit expressions for two fundamental statistical distributions: the probability that a randomly selected leaf is preceded by N nodes, or "ancestors", and the probability that two randomly selected leaves are separated by N nodes. For continuous-time Yule processes, the first of these distributions is presented in closed analytical form as a function of time, with time being measured with respect to the moment of "birth" of the common ancestor (which is essentially inaccessible to phylogenetic analysis), or with respect to the instant at which the first bifurcation occurred. The second distribution is shown to follow in an iterative manner from a hierarchy of second-order ordinary differential equations. For Yule trees of a given number n of tips, expressions have been derived for the mean and variance for each of these distributions as functions of n, as well as for the distributions themselves. In addition, it is shown how the methods developed to obtain these distributions can be employed to find, with minor effort, expressions for the expectation values of two statistics on Yule trees, the Sackin index (sum over all root-to-leaf distances), and the sum over all leaf-to-leaf distances. PMID:21527261
NASA Astrophysics Data System (ADS)
Suková, Petra; Grzedzielski, Mikolaj; Janiuk, Agnieszka
2016-02-01
Aims: Both the well known microquasar GRS 1915+105, as well as its recently discovered analogue, IGR J17091-3624, exhibit variability that is characteristic of a deterministic chaotic system. Their specific kind of quasi-periodic flares that are observed in some states is intrinsically connected with the global structure of the accretion flow, which are governed by the nonlinear hydrodynamics. One plausible mechanism that is proposed to explain this kind of variability is the thermal-viscous instability that operates in the accretion disk. The purely stochastic variability that occurs because of turbulent conditions in the plasma, is quantified by the power density spectra and appears in practically all types of sources and their spectral states. Methods: We pose a question as to whether these two microquasars are one of a kind, or if the traces of deterministic chaos, and hence the accretion disk instability, may also be hidden in the observed variability of other sources. We focus on the black hole X-ray binaries that accrete at a high rate and are, therefore, theoretically prone to the development of radiation pressure-induced instability. To study the nonlinear behaviour of the X-ray sources and distinguish between the chaotic and stochastic nature of their emission, we propose a novel method, which is based on recurrence analysis. Widely known in other fields of physics, this powerful method is used here for the first time in an astrophysical context. We estimate the indications of deterministic chaos quantitatively, such as the Rényi's entropy for the observed time series, and we compare them with surrogate data. Results: Using the observational data collected by the RXTE satellite, we reveal the oscillations pattern and the observable properties of six black hole systems. For five of them, we confirm the signatures of deterministic chaos being the driver of their observed variability. Conclusions: We test the method and confirm the deterministic nature of
Improving enzymatic production of diglycerides by engineering binary ionic liquid medium system.
Guo, Zheng; Kahveci, Derya; Ozçelik, Beraat; Xu, Xuebing
2009-10-01
The tunable property of ionic liquids (ILs) offers tremendous opportunity to rethink the strategy of current efforts to resolve technical challenges that occurred in many production approaches. To establish an efficient glycerolysis approach for enzymatic production of diglycerides (DG), this work reported a novel concept to improve DG yield by applying a binary IL system that consisted of one IL with better DG production selectivity and another IL being able to achieve higher conversion of triglycerides (TG). The candidates for combination were determined by individually examining lipase-catalyzed glycerolysis in different ILs, as a result, promising ones are divided into two groups based on their reaction specificities. The effects of parametric variables were then preliminarily evaluated, following a further investigation of the reaction performance in different binary IL systems from cross-group combinations. The combination of TOMA.Tf(2)N/Ammoeng 102 was employed for optimization by Response Surface Methodology. Eighty to eighty-five percent (mol%) of oil conversion and up to 90% (mol%) of total DG yield (73%, wt%) were obtained, which are markedly higher than those previously reported. This work demonstrated the practical feasibility to couple the technical advantage (high TG conversion and high DG production selective in this work) of individual ILs into a binary system to over-perform the reaction. It is believed that binary IL system could be also applicable to other enzymatic reaction systems for establishment of more efficient reaction protocols. PMID:19426844
DETERMINISTIC AND STOCHASTIC ANALYSES OF DISPERSION IN AN UNBOUNDED STRATIFIED POROUS MEDIUM
The dispersion of a conservative solute released instantaneously from a finite or point source in an unbounded, nonrandom periodically stratified porous medium is examined theoretically by applying the moment method of R. Aris (1956) and P.G. Saffman (1962). The governing moment ...
Rätz, H-J; Charef, A; Abella, A J; Colloca, F; Ligas, A; Mannini, A; Lloret, J
2013-10-01
A medium-term (10 year) stochastic forecast model is developed and presented for mixed fisheries that can provide estimations of age-specific parameters for a maximum of 10 stocks and 10 fisheries. Designed to support fishery managers dealing with complex, multi-annual management plans, the model can be used to quantitatively test the consequences of various stock-specific and fishery-specific decisions, using non-equilibrium stock dynamics. Such decisions include fishing restrictions and other strategies aimed at achieving sustainable mixed fisheries consistent with the concept of maximum sustainable yield (MSY). In order to test the model, recently gathered data on seven stocks and four fisheries operating in the Ligurian and North Tyrrhenian Seas are used to generate quantitative, 10 year predictions of biomass and catch trends under four different management scenarios. The results show that using the fishing mortality at MSY as the biological reference point for the management of all stocks would be a strong incentive to reduce the technical interactions among concurrent fishing strategies. This would optimize the stock-specific exploitation and be consistent with sustainability criteria. PMID:24090555
Heating the intergalactic medium by X-rays from population III binaries in high-redshift galaxies
Xu, Hao; Norman, Michael L.; Ahn, Kyungjin; Wise, John H.; O'Shea, Brian W. E-mail: mlnorman@ucsd.edu E-mail: jwise@gatech.edu
2014-08-20
Due to their long mean free path, X-rays are expected to have an important impact on cosmic reionization by heating and ionizing the intergalactic medium (IGM) on large scales, especially after simulations have suggested that Population III (Pop III) stars may form in pairs at redshifts as high as 20-30. We use the Pop III distribution and evolution from a self-consistent cosmological radiation hydrodynamic simulation of the formation of the first galaxies and a simple Pop III X-ray binary model to estimate their X-ray output in a high-density region larger than 100 comoving (Mpc){sup 3}. We then combine three different methods—ray tracing, a one-zone model, and X-ray background modeling—to investigate the X-ray propagation, intensity distribution, and long-term effects on the IGM thermal and ionization state. The efficiency and morphology of photoheating and photoionization are dependent on the photon energies. The sub-kiloelectronvolt X-rays only impact the IGM near the sources, while the kiloelectronvolt photons contribute significantly to the X-ray background and heat and ionize the IGM smoothly. The X-rays just below 1 keV are most efficient in heating and ionizing the IGM. We find that the IGM might be heated to over 100 K by z = 10 and the high-density source region might reach 10{sup 4} K, limited by atomic hydrogen cooling. This may be important for predicting the 21 cm neutral hydrogen signals. On the other hand, the free electrons from X-ray ionizations are not enough to contribute significantly to the optical depth of the cosmic microwave background to the Thomson scattering.
A Stochastic Employment Problem
ERIC Educational Resources Information Center
Wu, Teng
2013-01-01
The Stochastic Employment Problem(SEP) is a variation of the Stochastic Assignment Problem which analyzes the scenario that one assigns balls into boxes. Balls arrive sequentially with each one having a binary vector X = (X[subscript 1], X[subscript 2],...,X[subscript n]) attached, with the interpretation being that if X[subscript i] = 1 the ball…
NASA Astrophysics Data System (ADS)
Geoffray, H.
1998-10-01
This thesis work provides a complete study of a 1-5 μm infrared camera designed to be used with the adaptive optics system installed at the European Southern Observatory (ESO) 3.6 m telescope, from the laboratory characterization of the IRCCD 128x128 HgCdTe Focal Plane Array, to astronomical results obtained on a sample of Pre-Main-Sequence binaries.
NASA Astrophysics Data System (ADS)
Dar, Zamiyad
The prices in the electricity market change every five minutes. The prices in peak demand hours can be four or five times more than the prices in normal off peak hours. Renewable energy such as wind power has zero marginal cost and a large percentage of wind energy in a power grid can reduce the price significantly. The variability of wind power prevents it from being constantly available in peak hours. The price differentials between off-peak and on-peak hours due to wind power variations provide an opportunity for a storage device owner to buy energy at a low price and sell it in high price hours. In a large and complex power grid, there are many locations for installation of a storage device. Storage device owners prefer to install their device at locations that allow them to maximize profit. Market participants do not possess much information about the system operator's dispatch, power grid, competing generators and transmission system. The publicly available data from the system operator usually consists of Locational Marginal Prices (LMP), load, reserve prices and regulation prices. In this thesis, we develop a method to find the optimum location of a storage device without using the grid, transmission or generator data. We formulate and solve an optimization problem to find the most profitable location for a storage device using only the publicly available market pricing data such as LMPs, and reserve prices. We consider constraints arising due to storage device operation limitations in our objective function. We use binary optimization and branch and bound method to optimize the operation of a storage device at a given location to earn maximum profit. We use two different versions of our method and optimize the profitability of a storage unit at each location in a 36 bus model of north eastern United States and south eastern Canada for four representative days representing four seasons in a year. Finally, we compare our results from the two versions of our
Medium-range icosahedral order in quasicrystal-forming Zr{sub 2}Pd binary metallic glass
Huang Li; Fang, X. W.; Wang, C. Z.; Ho, K. M.; Kramer, M. J.; Ding, Z. J.
2011-06-06
Medium-range order in Zr{sub 2}Pd metallic glass was studied using a combination of x-ray diffraction experiment and atomistic simulations. We show that, in contrast to earlier experimental interpretations, the icosahedral-like polyhedron is centered around Pd, rather than Zr. Furthermore, we find that the ordered icosahedral packing around Pd extends to the third shell in the way similar to that in the Bergman-type clusters. The existence of Bergman-type clusters sheds interesting light into the formation of nanoquasicrystal phase during crystallization process of Zr{sub 2}Pd metallic glass.
FEEDBACK FROM HIGH-MASS X-RAY BINARIES ON THE HIGH-REDSHIFT INTERGALACTIC MEDIUM: MODEL SPECTRA
Power, Chris; James, Gillian; Wynn, Graham; Combet, Celine
2013-02-10
Massive stars at redshifts z {approx}> 6 are predicted to have played a pivotal role in cosmological reionization as luminous sources of ultraviolet (UV) photons. However, the remnants of these massive stars could be equally important as X-ray-luminous (L{sub X} {approx} 10{sup 38} erg s{sup -1}) high-mass X-ray binaries (HMXBs). Because the absorption cross section of neutral hydrogen decreases sharply with photon energy ({sigma}{proportional_to}E {sup -3}), X-rays can escape more freely than UV photons from the star-forming regions in which they are produced, allowing HMXBs to make a potentially significant contribution to the ionizing X-ray background during reionization. In this paper, we explore the ionizing power of HMXBs at redshifts z {approx}> 6 using a Monte Carlo model for a coeval stellar population of main-sequence stars and HMXBs. Using the archetypal Galactic HMXB Cygnus X-1 as our template, we propose a composite HMXB spectral energy distribution consisting of blackbody and power-law components, whose contributions depend on the accretion state of the system. We determine the time-dependent ionizing power of a combined population of UV-luminous stars and X-ray-luminous HMXBs and deduce fitting formulae for the boost in the population's ionizing power arising from HMXBs; these fits allow for simple implementation of HMXB feedback in numerical simulations. Based on this analysis, we estimate the contribution of high-redshift HMXBs to the present-day soft X-ray background, and we show that it is a factor of {approx}100-1000 smaller than the observed limit. Finally, we discuss the implications of our results for the role of HMXBs in reionization and in high-redshift galaxy formation.
Fluctuations as stochastic deformation.
Kazinski, P O
2008-04-01
A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium. PMID:18517590
Fluctuations as stochastic deformation
NASA Astrophysics Data System (ADS)
Kazinski, P. O.
2008-04-01
A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium.
Solan, Eilon; Vieille, Nicolas
2015-01-01
In 1953, Lloyd Shapley contributed his paper “Stochastic games” to PNAS. In this paper, he defined the model of stochastic games, which were the first general dynamic model of a game to be defined, and proved that it admits a stationary equilibrium. In this Perspective, we summarize the historical context and the impact of Shapley’s contribution. PMID:26556883
Stochastic Turing patterns on a network.
Asslani, Malbor; Di Patti, Francesca; Fanelli, Duccio
2012-10-01
The process of stochastic Turing instability on a scale-free network is discussed for a specific case study: the stochastic Brusselator model. The system is shown to spontaneously differentiate into activator-rich and activator-poor nodes outside the region of parameters classically deputed to the deterministic Turing instability. This phenomenon, as revealed by direct stochastic simulations, is explained analytically and eventually traced back to the finite-size corrections stemming from the inherent graininess of the scrutinized medium. PMID:23214650
Stochastic Turing patterns on a network
NASA Astrophysics Data System (ADS)
Asslani, Malbor; Di Patti, Francesca; Fanelli, Duccio
2012-10-01
The process of stochastic Turing instability on a scale-free network is discussed for a specific case study: the stochastic Brusselator model. The system is shown to spontaneously differentiate into activator-rich and activator-poor nodes outside the region of parameters classically deputed to the deterministic Turing instability. This phenomenon, as revealed by direct stochastic simulations, is explained analytically and eventually traced back to the finite-size corrections stemming from the inherent graininess of the scrutinized medium.
NASA Astrophysics Data System (ADS)
Noll, Keith S.
2015-08-01
The Pluto-Charon binary was the first trans-neptunian binary to be identified in 1978. Pluto-Charon is a true binary with both components orbiting a barycenter located between them. The Pluto system is also the first, and to date only, known binary with a satellite system consisting of four small satellites in near-resonant orbits around the common center of mass. Seven other Plutinos, objects in 3:2 mean motion resonance with Neptune, have orbital companions including 2004 KB19 reported here for the first time. Compared to the Cold Classical population, the Plutinos differ in the frequency of binaries, the relative sizes of the components, and their inclination distribution. These differences point to distinct dynamical histories and binary formation processes encountered by Plutinos.
NASA Astrophysics Data System (ADS)
Eichhorn, Ralf; Aurell, Erik
2014-04-01
'Stochastic thermodynamics as a conceptual framework combines the stochastic energetics approach introduced a decade ago by Sekimoto [1] with the idea that entropy can consistently be assigned to a single fluctuating trajectory [2]'. This quote, taken from Udo Seifert's [3] 2008 review, nicely summarizes the basic ideas behind stochastic thermodynamics: for small systems, driven by external forces and in contact with a heat bath at a well-defined temperature, stochastic energetics [4] defines the exchanged work and heat along a single fluctuating trajectory and connects them to changes in the internal (system) energy by an energy balance analogous to the first law of thermodynamics. Additionally, providing a consistent definition of trajectory-wise entropy production gives rise to second-law-like relations and forms the basis for a 'stochastic thermodynamics' along individual fluctuating trajectories. In order to construct meaningful concepts of work, heat and entropy production for single trajectories, their definitions are based on the stochastic equations of motion modeling the physical system of interest. Because of this, they are valid even for systems that are prevented from equilibrating with the thermal environment by external driving forces (or other sources of non-equilibrium). In that way, the central notions of equilibrium thermodynamics, such as heat, work and entropy, are consistently extended to the non-equilibrium realm. In the (non-equilibrium) ensemble, the trajectory-wise quantities acquire distributions. General statements derived within stochastic thermodynamics typically refer to properties of these distributions, and are valid in the non-equilibrium regime even beyond the linear response. The extension of statistical mechanics and of exact thermodynamic statements to the non-equilibrium realm has been discussed from the early days of statistical mechanics more than 100 years ago. This debate culminated in the development of linear response
Bisognano, J.; Leemann, C.
1982-03-01
Stochastic cooling is the damping of betatron oscillations and momentum spread of a particle beam by a feedback system. In its simplest form, a pickup electrode detects the transverse positions or momenta of particles in a storage ring, and the signal produced is amplified and applied downstream to a kicker. The time delay of the cable and electronics is designed to match the transit time of particles along the arc of the storage ring between the pickup and kicker so that an individual particle receives the amplified version of the signal it produced at the pick-up. If there were only a single particle in the ring, it is obvious that betatron oscillations and momentum offset could be damped. However, in addition to its own signal, a particle receives signals from other beam particles. In the limit of an infinite number of particles, no damping could be achieved; we have Liouville's theorem with constant density of the phase space fluid. For a finite, albeit large number of particles, there remains a residue of the single particle damping which is of practical use in accumulating low phase space density beams of particles such as antiprotons. It was the realization of this fact that led to the invention of stochastic cooling by S. van der Meer in 1968. Since its conception, stochastic cooling has been the subject of much theoretical and experimental work. The earliest experiments were performed at the ISR in 1974, with the subsequent ICE studies firmly establishing the stochastic cooling technique. This work directly led to the design and construction of the Antiproton Accumulator at CERN and the beginnings of p anti p colliding beam physics at the SPS. Experiments in stochastic cooling have been performed at Fermilab in collaboration with LBL, and a design is currently under development for a anti p accumulator for the Tevatron.
Paczynacuteski, B
1984-07-20
Most stars in the solar neighborhood are either double or multiple systems. They provide a unique opportunity to measure stellar masses and radii and to study many interesting and important phenomena. The best candidates for black holes are compact massive components of two x-ray binaries: Cygnus X-1 and LMC X-3. The binary radio pulsar PSR 1913 + 16 provides the best available evidence for gravitational radiation. Accretion disks and jets observed in close binaries offer a very good testing ground for models of active galactic nuclei and quasars. PMID:17749544
Propagation of ultra-short solitons in stochastic Maxwell's equations
Kurt, Levent; Schäfer, Tobias
2014-01-15
We study the propagation of ultra-short short solitons in a cubic nonlinear medium modeled by nonlinear Maxwell's equations with stochastic variations of media. We consider three cases: variations of (a) the dispersion, (b) the phase velocity, (c) the nonlinear coefficient. Using a modified multi-scale expansion for stochastic systems, we derive new stochastic generalizations of the short pulse equation that approximate the solutions of stochastic nonlinear Maxwell's equations. Numerical simulations show that soliton solutions of the short pulse equation propagate stably in stochastic nonlinear Maxwell's equations and that the generalized stochastic short pulse equations approximate the solutions to the stochastic Maxwell's equations over the distances under consideration. This holds for both a pathwise comparison of the stochastic equations as well as for a comparison of the resulting probability densities.
NASA Astrophysics Data System (ADS)
Harris, Alan W.; Pravec, P.
2006-06-01
There are now nearly 100 binary asteroids known. In the last year alone, 30 binary asteroids have been discovered, half of them by lightcurves showing eclipse events. Similar to eclipsing binary stars, such observations allow determination of orbit period and sizes and shapes of the primary and secondary relative to the orbital dimension. From these parameters one can estimate the mean density of the system, and a number of dynamical properties such as total specific angular momentum, tidal evolution time scales of spins and orbit, and precession frequencies of the orbit about the primary and of the solar induced "general precession" of the system. We have extracted parameters for all systems with enough observations to allow meaningful determinations. Some preliminary results include: (1) Binaries are roughly as prevalent among small main-belt asteroids as among Near-Earth Asteroids. (2) Most binaries are partially asynchronous, with the secondary synchronized to the orbit period, but the primary still spinning much faster. This is consistent with estimated tidal damping time scales. (3) Most systems have near the critical maximum angular momentum for a single "rubble pile" body, but not much more, and some less. Thus fission appears not to be a viable formation mechanism for all binaries, although near-critical spin rate seems to play a role. (4) Orbits of the secondaries are essentially in the equatorial plane of the primary. Since most primary spins are still fast, the satellites must have been formed into low inclination orbits. (5) Precession frequencies are in the range of the shorter resonance frequencies in the solar system (tens of thousands of years), thus resonance interactions can be expected to have altered spin orientations as systems evolved slowly by tidal friction or other processes. (6) Primaries are unusually spheroidal, which is probably necessary for stability of the binary once formed.
The Formation of Contact and Very Close Binaries
Kisseleva-Eggleton, L; Eggleton, P P
2007-08-10
We explore the possibility that all close binaries, i.e. those with periods {approx}< 3 d, including contact (W UMa) binaries, are produced from initially wider binaries (periods of say 10's of days) by the action of a triple companion through the medium of Kozai Cycles with Tidal Friction (KCTF).
Blaskiewicz, M.
2011-01-01
Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.
Stochastic Quantum Gas Dynamics
NASA Astrophysics Data System (ADS)
Proukakis, Nick P.; Cockburn, Stuart P.
2010-03-01
We study the dynamics of weakly-interacting finite temperature Bose gases via the Stochastic Gross-Pitaevskii equation (SGPE). As a first step, we demonstrate [jointly with A. Negretti (Ulm, Germany) and C. Henkel (Potsdam, Germany)] that the SGPE provides a significantly better method for generating an equilibrium state than the number-conserving Bogoliubov method (except for low temperatures and small atom numbers). We then study [jointly with H. Nistazakis and D.J. Frantzeskakis (University of Athens, Greece), P.G.Kevrekidis (University of Massachusetts) and T.P. Horikis (University of Ioannina, Greece)] the dynamics of dark solitons in elongated finite temperature condensates. We demonstrate numerical shot-to-shot variations in soliton trajectories (S.P. Cockburn et al., arXiv:0909.1660.), finding individual long-lived trajectories as in experiments. In our simulations, these variations arise from fluctuations in the phase and density of the underlying medium. We provide a detailed statistical analysis, proposing regimes for the controlled experimental demonstration of this effect; we also discuss the extent to which simpler models can be used to mimic the features of ensemble-averaged stochastic trajectories.
New binary systems: beaming binaries
NASA Astrophysics Data System (ADS)
Morales, J. C.; Weingrill, J.; Mazeh, T.; Ribas, I.
2011-11-01
Exoplanet missions such as COROT and Kepler are providing precise photometric follow-up data of new kinds of variable stars undetected till now. Beaming binaries are among these objects. On these binary systems, the orbital motion of their components is fast enough to produce a detectable modulation on the received flux due to relativistic effects (Zucker et al. 2007). The great advantage of these systems is that it is possible to reconstruct the radial velocity curve of the system from this photometric modulation and thus, orbital parameters such as the mass ratio and the semi-major axis can be estimated from photometry without the necessity of spectroscopic follow-up. In this poster, we briefly introduce the analysis of this kind of binary systems and in particular, the eclipsing cases.
NASA Astrophysics Data System (ADS)
Ryan, Keegan; Nakajima, Miki; Stevenson, David J.
2014-11-01
Can a bound pair of similar mass terrestrial planets exist? We are interested here in bodies with a mass ratio of ~ 3:1 or less (so Pluto/Charon or Earth/Moon do not qualify) and we do not regard the absence of any such discoveries in the Kepler data set to be significant since the tidal decay and merger of a close binary is prohibitively fast well inside of 1AU. SPH simulations of equal mass “Earths” were carried out to seek an answer to this question, assuming encounters that were only slightly more energetic than parabolic (zero energy). We were interested in whether the collision or near collision of two similar mass bodies would lead to a binary in which the two bodies remain largely intact, effectively a tidal capture hypothesis though with the tidal distortion being very large. Necessarily, the angular momentum of such an encounter will lead to bodies separated by only a few planetary radii if capture occurs. Consistent with previous work, mostly by Canup, we find that most impacts are disruptive, leading to a dominant mass body surrounded by a disk from which a secondary forms whose mass is small compared to the primary, hence not a binary planet by our adopted definition. However, larger impact parameter “kissing” collisions were found to produce binaries because the dissipation upon first encounter was sufficient to provide a bound orbit that was then rung down by tides to an end state where the planets are only a few planetary radii apart. The long computational times for these simulation make it difficult to fully map the phase space of encounters for which this outcome is likely but the indications are that the probability is not vanishingly small and since planetary encounters are a plausible part of planet formation, we expect binary planets to exist and be a non-negligible fraction of the larger orbital radius exoplanets awaiting discovery.
Rényi entropy measure of noise-aided information transmission in a binary channel
NASA Astrophysics Data System (ADS)
Chapeau-Blondeau, François; Rousseau, David; Delahaies, Agnès
2010-05-01
This paper analyzes a binary channel by means of information measures based on the Rényi entropy. The analysis extends, and contains as a special case, the classic reference model of binary information transmission based on the Shannon entropy measure. The extended model is used to investigate further possibilities and properties of stochastic resonance or noise-aided information transmission. The results demonstrate that stochastic resonance occurs in the information channel and is registered by the Rényi entropy measures at any finite order, including the Shannon order. Furthermore, in definite conditions, when seeking the Rényi information measures that best exploit stochastic resonance, then nontrivial orders differing from the Shannon case usually emerge. In this way, through binary information transmission, stochastic resonance identifies optimal Rényi measures of information differing from the classic Shannon measure. A confrontation of the quantitative information measures with visual perception is also proposed in an experiment of noise-aided binary image transmission.
Gravitational wave background from binary systems
Rosado, Pablo A.
2011-10-15
Basic aspects of the background of gravitational waves and its mathematical characterization are reviewed. The spectral energy density parameter {Omega}(f), commonly used as a quantifier of the background, is derived for an ensemble of many identical sources emitting at different times and locations. For such an ensemble, {Omega}(f) is generalized to account for the duration of the signals and of the observation, so that one can distinguish the resolvable and unresolvable parts of the background. The unresolvable part, often called confusion noise or stochastic background, is made by signals that cannot be either individually identified or subtracted out of the data. To account for the resolvability of the background, the overlap function is introduced. This function is a generalization of the duty cycle, which has been commonly used in the literature, in some cases leading to incorrect results. The spectra produced by binary systems (stellar binaries and massive black hole binaries) are presented over the frequencies of all existing and planned detectors. A semi-analytical formula for {Omega}(f) is derived in the case of stellar binaries (containing white dwarfs, neutron stars or stellar-mass black holes). Besides a realistic expectation of the level of background, upper and lower limits are given, to account for the uncertainties in some astrophysical parameters such as binary coalescence rates. One interesting result concerns all current and planned ground-based detectors (including the Einstein Telescope). In their frequency range, the background of binaries is resolvable and only sporadically present. In other words, there is no stochastic background of binaries for ground-based detectors.
Brennan,J.M.; Blaskiewicz, M. M.; Severino, F.
2009-05-04
After the success of longitudinal stochastic cooling of bunched heavy ion beam in RHIC, transverse stochastic cooling in the vertical plane of Yellow ring was installed and is being commissioned with proton beam. This report presents the status of the effort and gives an estimate, based on simulation, of the RHIC luminosity with stochastic cooling in all planes.
Discrete analysis of stochastic NMR.II
NASA Astrophysics Data System (ADS)
Wong, S. T. S.; Rods, M. S.; Newmark, R. D.; Budinger, T. F.
Stochastic NMR is an efficient technique for high-field in vivo imaging and spectroscopic studies where the peak RF power required may be prohibitively high for conventional pulsed NMR techniques. A stochastic NMR experiment excites the spin system with a sequence of RF pulses where the flip angles or the phases of the pulses are samples of a discrete stochastic process. In a previous paper the stochastic experiment was analyzed and analytic expressions for the input-output cross-correlations, average signal power, and signal spectral density were obtained for a general stochastic RF excitation. In this paper specific cases of excitation with random phase, fixed flip angle, and excitation with two random components in quadrature are analyzed. The input-output cross-correlation for these two types of excitations is shown to be Lorentzian. Line broadening is the only spectral distortion as the RF excitation power is increased. The systematic noise power is inversely proportional to the number of data points N used in the spectral reconstruction. The use of a complete maximum length sequence (MLS) may improve the signal-to-systematic-noise ratio by 20 dB relative to random binary excitation, but peculiar features in the higher-order autocorrelations of MLS cause noise-like distortion in the reconstructed spectra when the excitation power is high. The amount of noise-like distortion depends on the choice of the MLS generator.
Tsallis entropy measure of noise-aided information transmission in a binary channel
NASA Astrophysics Data System (ADS)
Chapeau-Blondeau, François; Delahaies, Agnès; Rousseau, David
2011-06-01
Noise-aided information transmission via stochastic resonance is shown and analyzed in a binary channel by means of information measures based on the Tsallis entropy. The analysis extends the classic reference of binary information transmission based on the Shannon entropy, and also parallels a recent study based on the Rényi entropy. The conditions for a maximally pronounced stochastic resonance identify optimal Tsallis measures. The study involves a correspondence between Tsallis and Rényi information measures, specially relevant to the characterization of stochastic resonance, and establishing that for such effects identical properties are shared in common by both Tsallis and Rényi measures.
Stochastic monotony signature and biomedical applications.
Demongeot, Jacques; Galli Carminati, Giuliana; Carminati, Federico; Rachdi, Mustapha
2015-12-01
We introduce a new concept, the stochastic monotony signature of a function, made of the sequence of the signs that indicate if the function is increasing or constant (sign +), or decreasing (sign -). If the function results from the averaging of successive observations with errors, the monotony sign is a random binary variable, whose density is studied under two hypotheses for the distribution of errors: uniform and Gaussian. Then, we describe a simple statistical test allowing the comparison between the monotony signatures of two functions (e.g., one observed and the other as reference) and we apply the test to four biomedical examples, coming from genetics, psychology, gerontology, and morphogenesis. PMID:26563556
Stochastic Convection Parameterizations
NASA Technical Reports Server (NTRS)
Teixeira, Joao; Reynolds, Carolyn; Suselj, Kay; Matheou, Georgios
2012-01-01
computational fluid dynamics, radiation, clouds, turbulence, convection, gravity waves, surface interaction, radiation interaction, cloud and aerosol microphysics, complexity (vegetation, biogeochemistry, radiation versus turbulence/convection stochastic approach, non-linearities, Monte Carlo, high resolutions, large-Eddy Simulations, cloud structure, plumes, saturation in tropics, forecasting, parameterizations, stochastic, radiation-clod interaction, hurricane forecasts
Collisionally induced stochastic dynamics of fast ions in solids
Burgdoerfer, J.
1989-01-01
Recent developments in the theory of excited state formation in collisions of fast highly charged ions with solids are reviewed. We discuss a classical transport theory employing Monte-Carlo sampling of solutions of a microscopic Langevin equation. Dynamical screening by the dielectric medium as well as multiple collisions are incorporated through the drift and stochastic forces in the Langevin equation. The close relationship between the extrinsically stochastic dynamics described by the Langevin and the intrinsic stochasticity in chaotic nonlinear dynamical systems is stressed. Comparison with experimental data and possible modification by quantum corrections are discussed. 49 refs., 11 figs.
Stochastic template placement algorithm for gravitational wave data analysis
Harry, I. W.; Sathyaprakash, B. S.; Allen, B.
2009-11-15
This paper presents an algorithm for constructing matched-filter template banks in an arbitrary parameter space. The method places templates at random, then removes those which are 'too close' together. The properties and optimality of stochastic template banks generated in this manner are investigated for some simple models. The effectiveness of these template banks for gravitational wave searches for binary inspiral waveforms is also examined. The properties of a stochastic template bank are then compared to the deterministically placed template banks that are currently used in gravitational wave data analysis.
Numerical tests of stochastic tomography
NASA Astrophysics Data System (ADS)
Ru-Shan, Wu; Xiao-Bi, Xie
1991-05-01
The method of stochastic tomography proposed by Wu is tested numerically. This method reconstructs the heterospectra (power spectra of heterogeneities) at all depths of a non-uniform random medium using measured joint transverse-angular coherence functions (JTACF) of transmission fluctuations on an array. The inversion method is based on a constrained least-squares inversion implemented via the singular value decomposition. The inversion is also applicable to reconstructions using transverse coherence functions (TCF) or angular coherence functions (ACF); these are merely special cases of JTACF. Through the analysis of sampling functions and singular values, and through numerical examples of reconstruction using theoretically generated coherence functions, we compare the resolution and robustness of reconstructions using TCF, ACF and JTACF. The JTACF can `focus' the coherence analysis at different depths and therefore has a better depth resolution than TCF and ACF. In addition, the JTACF contains much more information than the sum of TCF and ACF, and has much better noise resistance properties than TCF and ACF. Inversion of JTACF can give a reliable reconstruction of heterospectra at different depths even for data with 20% noise contamination. This demonstrates the feasibility of stochastic tomography using JTACF.
Stochastic Processes in Electrochemistry.
Singh, Pradyumna S; Lemay, Serge G
2016-05-17
Stochastic behavior becomes an increasingly dominant characteristic of electrochemical systems as we probe them on the smallest scales. Advances in the tools and techniques of nanoelectrochemistry dictate that stochastic phenomena will become more widely manifest in the future. In this Perspective, we outline the conceptual tools that are required to analyze and understand this behavior. We draw on examples from several specific electrochemical systems where important information is encoded in, and can be derived from, apparently random signals. This Perspective attempts to serve as an accessible introduction to understanding stochastic phenomena in electrochemical systems and outlines why they cannot be understood with conventional macroscopic descriptions. PMID:27120701
Monte Carlo Hybrid Applied to Binary Stochastic Mixtures
2008-08-11
The purpose of this set of codes isto use an inexpensive, approximate deterministic flux distribution to generate weight windows, wihich will then be used to bound particle weights for the Monte Carlo code run. The process is not automated; the user must run the deterministic code and use the output file as a command-line argument for the Monte Carlo code. Two sets of text input files are included as test problems/templates.
NASA Astrophysics Data System (ADS)
Noll, Keith S.; Grundy, W. M.; Ryan, E. L.; Benecchi, S. D.
2015-11-01
We have reexamined 41 Trojan asteroids observed with the Hubble Space Telescope (HST) to search for unresolved binaries. We have identified one candidate binary with a separation of 53 milliarcsec, about the width of the diffraction limited point-spread function (PSF). Sub-resolution-element detection of binaries is possible with HST because of the high signal-to-noise ratio of the observations and the stability of the PSF. Identification and confirmation of binary Trojans is important because a Trojan Tour is one of five possible New Frontiers missions. A binary could constitute a potentially high value target because of the opportunity to study two objects and to test models of the primordial nature of binaries. The potential to derive mass-based physical information from the binary orbit could yield more clues to the origin of Trojans.
Spring, William Joseph
2009-04-13
We consider quantum analogues of n-parameter stochastic processes, associated integrals and martingale properties extending classical results obtained in [1, 2, 3], and quantum results in [4, 5, 6, 7, 8, 9, 10].
Dynamics of Double Stochastic Operators
NASA Astrophysics Data System (ADS)
Saburov, Mansoor
2016-03-01
A double stochastic operator is a generalization of a double stochastic matrix. In this paper, we study the dynamics of double stochastic operators. We give a criterion for a regularity of a double stochastic operator in terms of absences of its periodic points. We provide some examples to insure that, in general, a trajectory of a double stochastic operator may converge to any interior point of the simplex.
PHOEBE: PHysics Of Eclipsing BinariEs
NASA Astrophysics Data System (ADS)
Prsa, Andrej; Matijevic, Gal; Latkovic, Olivera; Vilardell, Francesc; Wils, Patrick
2011-06-01
PHOEBE (PHysics Of Eclipsing BinariEs) is a modeling package for eclipsing binary stars, built on top of the widely used WD program (Wilson & Devinney 1971). This introductory paper overviews most important scientific extensions (incorporating observational spectra of eclipsing binaries into the solution-seeking process, extracting individual temperatures from observed color indices, main-sequence constraining and proper treatment of the reddening), numerical innovations (suggested improvements to WD's Differential Corrections method, the new Nelder & Mead's downhill Simplex method) and technical aspects (back-end scripter structure, graphical user interface). While PHOEBE retains 100% WD compatibility, its add-ons are a powerful way to enhance WD by encompassing even more physics and solution reliability.
DEPTH-AVERAGING EFFECTS ON HYDRAULIC HEAD FOR MEDIA WITH STOCHASTIC HYDRAULIC CONDUCTIVITY.
Naff, R.L.; Vecchia, A.V.
1987-01-01
Hydraulic conductivity of a porous medium frequently is considered to be a single realization of a three-dimensional spatial stochastic process. The most common observation of flow in porous media are hydraulic-head measurements obtained from wells which are screened over extensive sections of the medium. These measurements represent, approximately, a one-dimensional spatial average of the actual three-dimensional head distribution, the actual head distribution being a stochastic process resulting from flow through a random hydraulic-conductivity field. This paper examines, via ensemble averages, the effect of such spatial averages of groundwater flow on the spatial autocovariance function for a simple, yet viable, stochastic model of a bounded medium. The model is taken to be three-dimensional flow in a medium that is bounded above and below and in which the hydraulic conductivity is a second-order stationary stochastic process.
Overview of medium heterogeneity and transport processes
Tsang, Y.; Tsang, C.F.
1993-11-01
Medium heterogeneity can have significant impact on the behavior of solute transport. Tracer breakthrough curves from transport in a heterogeneous medium are distinctly different from that in a homogeneous porous medium. Usually the shape of the breakthrough curves are highly non-symmetrical with a fast rise at early times and very long tail at late times, and often, they consist of multiple peaks. Moreover, unlike transport in a homogeneous medium where the same transport parameters describe the entire medium, transport through heterogeneous media gives rise to breakthrough curves which have strong spatial dependence. These inherent characteristics of transport in heterogeneous medium present special challenge to the performance assessment of a potential high level nuclear waste repository with respect to the possible release of radio nuclides to the accessible environment. Since an inherently desirable site characteristic for a waste repository is that flow and transport should be slow, then transport measurements in site characterization efforts will necessarily be spatially small and temporally short compare to the scales which are of relevance to performance assessment predictions. In this paper we discuss the role of medium heterogeneity in site characterization and performance assessment. Our discussion will be based on a specific example of a 3D heterogeneous stochastic model of a site generally similar to, the Aespoe Island, the site of the Hard Rock Laboratory in Southern Sweden. For our study, alternative 3D stochastic fields of hydraulic conductivities conditioned on ``point`` measurements shall be generated. Results of stochastic flow and transport simulations would be used to address the issues of (1) the relationship of tracer breakthrough with the structure of heterogeneity, and (2) the inference from small scale testing results to large scale and long term predictions.
NASA Astrophysics Data System (ADS)
Venturi, Daniele
2005-11-01
Stochastic bifurcations and stability of natural convective flows in 2d and 3d enclosures are investigated by the multi-element generalized polynomial chaos (ME-gPC) method (Xiu and Karniadakis, SISC, vol. 24, 2002). The Boussinesq approximation for the variation of physical properties is assumed. The stability analysis is first carried out in a deterministic sense, to determine steady state solutions and primary and secondary bifurcations. Stochastic simulations are then conducted around discontinuities and transitional regimes. It is found that these highly non-linear phenomena can be efficiently captured by the ME-gPC method. Finally, the main findings of the stochastic analysis and their implications for heat transfer will be discussed.
Nelson, C A; Eggleton, P P
2001-03-28
We undertake a comparison of observed Algol-type binaries with a library of computed Case A binary evolution tracks. The library consists of 5500 binary tracks with various values of initial primary mass M{sub 10}, mass ratio q{sub 0}, and period P{sub 0}, designed to sample the phase-space of Case A binaries in the range -0.10 {le} log M{sub 10} {le} 1.7. Each binary is evolved using a standard code with the assumption that both total mass and orbital angular momentum are conserved. This code follows the evolution of both stars until the point where contact or reverse mass transfer occurs. The resulting binary tracks show a rich variety of behavior which we sort into several subclasses of Case A and Case B. We present the results of this classification, the final mass ratio and the fraction of time spent in Roche Lobe overflow for each binary system. The conservative assumption under which we created this library is expected to hold for a broad range of binaries, where both components have spectra in the range G0 to B1 and luminosity class III - V. We gather a list of relatively well-determined observed hot Algol-type binaries meeting this criterion, as well as a list of cooler Algol-type binaries where we expect significant dynamo-driven mass loss and angular momentum loss. We fit each observed binary to our library of tracks using a {chi}{sup 2}-minimizing procedure. We find that the hot Algols display overall acceptable {chi}{sup 2}, confirming the conservative assumption, while the cool Algols show much less acceptable {chi}{sup 2} suggesting the need for more free parameters, such as mass and angular momentum loss.
Stochastic Feedforward Control Technique
NASA Technical Reports Server (NTRS)
Halyo, Nesim
1990-01-01
Class of commanded trajectories modeled as stochastic process. Advanced Transport Operating Systems (ATOPS) research and development program conducted by NASA Langley Research Center aimed at developing capabilities for increases in capacities of airports, safe and accurate flight in adverse weather conditions including shear, winds, avoidance of wake vortexes, and reduced consumption of fuel. Advances in techniques for design of modern controls and increased capabilities of digital flight computers coupled with accurate guidance information from Microwave Landing System (MLS). Stochastic feedforward control technique developed within context of ATOPS program.
NASA Astrophysics Data System (ADS)
Pierret, Frédéric
2016-02-01
We derived the equations of Celestial Mechanics governing the variation of the orbital elements under a stochastic perturbation, thereby generalizing the classical Gauss equations. Explicit formulas are given for the semimajor axis, the eccentricity, the inclination, the longitude of the ascending node, the pericenter angle, and the mean anomaly, which are expressed in term of the angular momentum vector H per unit of mass and the energy E per unit of mass. Together, these formulas are called the stochastic Gauss equations, and they are illustrated numerically on an example from satellite dynamics.
Stochastic modeling of rainfall
Guttorp, P.
1996-12-31
We review several approaches in the literature for stochastic modeling of rainfall, and discuss some of their advantages and disadvantages. While stochastic precipitation models have been around at least since the 1850`s, the last two decades have seen an increased development of models based (more or less) on the physical processes involved in precipitation. There are interesting questions of scale and measurement that pertain to these modeling efforts. Recent modeling efforts aim at including meteorological variables, and may be useful for regional down-scaling of general circulation models.
STOCHASTIC COOLING FOR BUNCHED BEAMS.
BLASKIEWICZ, M.
2005-05-16
Problems associated with bunched beam stochastic cooling are reviewed. A longitudinal stochastic cooling system for RHIC is under construction and has been partially commissioned. The state of the system and future plans are discussed.
Stochastic entrainment of a stochastic oscillator.
Wang, Guanyu; Peskin, Charles S
2015-11-01
In this work, we consider a stochastic oscillator described by a discrete-state continuous-time Markov chain, in which the states are arranged in a circle, and there is a constant probability per unit time of jumping from one state to the next in a specified direction around the circle. At each of a sequence of equally spaced times, the oscillator has a specified probability of being reset to a particular state. The focus of this work is the entrainment of the oscillator by this periodic but stochastic stimulus. We consider a distinguished limit, in which (i) the number of states of the oscillator approaches infinity, as does the probability per unit time of jumping from one state to the next, so that the natural mean period of the oscillator remains constant, (ii) the resetting probability approaches zero, and (iii) the period of the resetting signal approaches a multiple, by a ratio of small integers, of the natural mean period of the oscillator. In this distinguished limit, we use analytic and numerical methods to study the extent to which entrainment occurs. PMID:26651734
Evolution of weak disturbances in inert binary mixtures
NASA Technical Reports Server (NTRS)
Rasmussen, M. L.
1977-01-01
The evolution of weak disturbances in inert binary mixtures is determined for the one-dimensional piston problem. The interaction of the dissipative and nonlinear mechanisms is described by Burgers' equation. The binary mixture diffusion mechanisms enter as an additive term in an effective diffusivity. Results for the impulsive motion of a piston moving into an ambient medium and the sinusoidally oscillating piston are used to illustrate the results and elucidate the incorrect behavior pertaining to the associated linear theory.
Stochastic Models of Human Growth.
ERIC Educational Resources Information Center
Goodrich, Robert L.
Stochastic difference equations of the Box-Jenkins form provide an adequate family of models on which to base the stochastic theory of human growth processes, but conventional time series identification methods do not apply to available data sets. A method to identify structure and parameters of stochastic difference equation models of human…
Tollestrup, A.V.; Dugan, G
1983-12-01
Major headings in this review include: proton sources; antiproton production; antiproton sources and Liouville, the role of the Debuncher; transverse stochastic cooling, time domain; the accumulator; frequency domain; pickups and kickers; Fokker-Planck equation; calculation of constants in the Fokker-Planck equation; and beam feedback. (GHT)
Focus on stochastic thermodynamics
NASA Astrophysics Data System (ADS)
Van den Broeck, Christian; Sasa, Shin-ichi; Seifert, Udo
2016-02-01
We introduce the thirty papers collected in this ‘focus on’ issue. The contributions explore conceptual issues within and around stochastic thermodynamics, use this framework for the theoretical modeling and experimental investigation of specific systems, and provide further perspectives on and for this active field.
ON NONSTATIONARY STOCHASTIC MODELS FOR EARTHQUAKES.
Safak, Erdal; Boore, David M.
1986-01-01
A seismological stochastic model for earthquake ground-motion description is presented. Seismological models are based on the physical properties of the source and the medium and have significant advantages over the widely used empirical models. The model discussed here provides a convenient form for estimating structural response by using random vibration theory. A commonly used random process for ground acceleration, filtered white-noise multiplied by an envelope function, introduces some errors in response calculations for structures whose periods are longer than the faulting duration. An alternate random process, filtered shot-noise process, eliminates these errors.
Effects of potential functions on stochastic resonance
NASA Astrophysics Data System (ADS)
Li, Jian-Long; Zeng, Ling-Zao
2011-01-01
In this paper, the effects of a bistable potential function U(x) = —ax2/2 + b|x|2γ/(2γ) on stochastic resonance (SR) is discussed. We investigate the effects of index γ on the performance of the SR system with fixed parameters a and b, and with fixed potential barriers, respectively. To measure the performance of the SR system in the presence of an aperiodic input, the bit error rate is employed, as is commonly used in binary communications. The numerical simulations strongly support the theoretical results. The goal of this investigation is to explore the effects of the shape of potential functions on SR and give a guidance of nonlinear systems in the application of information processing.
Adaptive stochastic cellular automata: Applications
NASA Astrophysics Data System (ADS)
Qian, S.; Lee, Y. C.; Jones, R. D.; Barnes, C. W.; Flake, G. W.; O'Rourke, M. K.; Lee, K.; Chen, H. H.; Sun, G. Z.; Zhang, Y. Q.; Chen, D.; Giles, C. L.
1990-09-01
The stochastic learning cellular automata model has been applied to the problem of controlling unstable systems. Two example unstable systems studied are controlled by an adaptive stochastic cellular automata algorithm with an adaptive critic. The reinforcement learning algorithm and the architecture of the stochastic CA controller are presented. Learning to balance a single pole is discussed in detail. Balancing an inverted double pendulum highlights the power of the stochastic CA approach. The stochastic CA model is compared to conventional adaptive control and artificial neural network approaches.
Stochastic computing with biomolecular automata
NASA Astrophysics Data System (ADS)
Adar, Rivka; Benenson, Yaakov; Linshiz, Gregory; Rosner, Amit; Tishby, Naftali; Shapiro, Ehud
2004-07-01
Stochastic computing has a broad range of applications, yet electronic computers realize its basic step, stochastic choice between alternative computation paths, in a cumbersome way. Biomolecular computers use a different computational paradigm and hence afford novel designs. We constructed a stochastic molecular automaton in which stochastic choice is realized by means of competition between alternative biochemical pathways, and choice probabilities are programmed by the relative molar concentrations of the software molecules coding for the alternatives. Programmable and autonomous stochastic molecular automata have been shown to perform direct analysis of disease-related molecular indicators in vitro and may have the potential to provide in situ medical diagnosis and cure.
Origin of the computational hardness for learning with binary synapses
NASA Astrophysics Data System (ADS)
Huang, Haiping; Kabashima, Yoshiyuki
2014-11-01
Through supervised learning in a binary perceptron one is able to classify an extensive number of random patterns by a proper assignment of binary synaptic weights. However, to find such assignments in practice is quite a nontrivial task. The relation between the weight space structure and the algorithmic hardness has not yet been fully understood. To this end, we analytically derive the Franz-Parisi potential for the binary perceptron problem by starting from an equilibrium solution of weights and exploring the weight space structure around it. Our result reveals the geometrical organization of the weight space; the weight space is composed of isolated solutions, rather than clusters of exponentially many close-by solutions. The pointlike clusters far apart from each other in the weight space explain the previously observed glassy behavior of stochastic local search heuristics.
Binary fish passage models for uniform and nonuniform flows
Neary, Vincent S
2011-01-01
Binary fish passage models are considered by many fisheries managers to be the best 21 available practice for culvert inventory assessments and for fishway and barrier design. 22 Misunderstandings between different binary passage modeling approaches often arise, 23 however, due to differences in terminology, application and presentation. In this paper 24 one-dimensional binary fish passage models are reviewed and refined to clarify their 25 origins and applications. For uniform flow, a simple exhaustion-threshold (ET) model 26 equation is derived that predicts the flow speed threshold in a fishway or velocity barrier 27 that causes exhaustion at a given maximum distance of ascent. Flow speeds at or above 28 the threshold predict failure to pass (exclusion). Flow speeds below the threshold predict 29 passage. The binary ET model is therefore intuitive and easily applied to predict passage 30 or exclusion. It is also shown to be consistent with the distance-maximizing model. The 31 ET model s limitation to uniform flow is addressed by deriving a passage model that 32 accounts for nonuniform flow conditions more commonly found in the field, including 33 backwater profiles and drawdown curves. Comparison of these models with 34 experimental observations of volitional passage for Gambusia affinis in uniform and 35 nonuniform flows indicates reasonable prediction of binary outcomes (passage or 36 exclusion) if the flow speed is not near the threshold flow velocity. More research is 37 needed on fish behavior, passage strategies under nonuniform flow regimes and 38 stochastic methods that account for individual differences in swimming performance at or 39 near the threshold flow speed. Future experiments should track and measure ground 40 speeds of ascending fish to test nonuniform flow passage strategies and to improve model 41 predictions. Stochastic models, such as Monte-Carlo techniques, that account for 42 different passage performance among individuals and allow
Massive Stars in Interactive Binaries
NASA Astrophysics Data System (ADS)
St.-Louis, Nicole; Moffat, Anthony F. J.
Massive stars start their lives above a mass of ~8 time solar, finally exploding after a few million years as core-collapse or pair-production supernovae. Above ~15 solar masses, they also spend most of their lives driving especially strong, hot winds due to their extreme luminosities. All of these aspects dominate the ecology of the Universe, from element enrichment to stirring up and ionizing the interstellar medium. But when they occur in close pairs or groups separated by less than a parsec, the interaction of massive stars can lead to various exotic phenomena which would not be seen if there were no binaries. These depend on the actual separation, and going from wie to close including colliding winds (with non-thermal radio emission and Wolf-Rayet dust spirals), cluster dynamics, X-ray binaries, Roche-lobe overflow (with inverse mass-ratios and rapid spin up), collisions, merging, rejuventation and massive blue stragglers, black-hole formation, runaways and gamma-ray bursts. Also, one wonders whether the fact that a massive star is in a binary affects its parameters compared to its isolated equivalent. These proceedings deal with all of these phenomena, plus binary statistics and determination of general physical properties of massive stars, that would not be possible with their single cousins. The 77 articles published in these proceedings, all based on oral talks, vary from broad revies to the lates developments in the field. About a third of the time was spent in open discussion of all participants, both for ~5 minutes after each talk and 8 half-hour long general dialogues, all audio-recorded, transcribed and only moderately edited to yield a real flavour of the meeting. The candid information in these discussions is sometimes more revealing than the article(s) that preceded them and also provide entertaining reading. The book is suitable for researchers and graduate students interested in stellar astrophysics and in various physical processes involved when
Another thread in the tapestry of stellar feedback: X-ray binaries
NASA Astrophysics Data System (ADS)
Justham, Stephen; Schawinski, Kevin
2012-06-01
We consider X-ray binaries (XBs) as potential sources of stellar feedback. XBs observationally appear able to deposit a high fraction of their power output into their local interstellar medium, which may make them a non-negligible source of energy input. The formation rate of the most luminous XBs rises with decreasing metallicity, which should increase their significance during galaxy formation in the early Universe. We also argue that stochastic effects are important to XB feedback (XBF) and may dominate the systematic changes due to metallicity in many cases. Large stochastic variation in the magnitude of XBF at low absolute star formation rates provides a natural reason for diversity in the evolution of dwarf galaxies which were initially almost identical, with several per cent of such haloes experiencing energy input from XBs roughly two orders of magnitude above the most likely value. These probability distributions suggest that the effect of XBF is most commonly significant for total stellar masses between approximately 107 and 108 M⊙, which might resolve a current problem with modelling populations of such galaxies. We explain how XBs might inject energy before luminous supernovae (SNe) contribute significantly to feedback and how XBs can assist in keeping gas hot long after the last core-collapse SN has exploded. Energy input from XBs produces different behaviour to that from SNe, partly since the peak energy input from a mean XB population continues for ≈100 Myr after the start of a starburst. XBF could be especially important to some dwarf galaxies, potentially heating gas without expelling it; the properties of XBF also match those previously derived as allowing episodic star formation. We also argue that the efficiency of SN feedback (SNF) might be reduced when XBF has had the opportunity to act first. In addition, we note that the effect of SNF is unlikely to be scale-free; galaxies smaller than ≈100 pc might well experience less effective SNF.
NASA Technical Reports Server (NTRS)
Rogers, J. R., III
1980-01-01
Flexible simulator for trouble-shooting data transmission system uses binary synchronous communications protocol to produce error-free transmission of data between two points. Protocol may be used to replace display generator or be directly fed to display generator.
Double Degenerate Binary Systems
Yakut, K.
2011-09-21
In this study, angular momentum loss via gravitational radiation in double degenerate binary (DDB)systems (NS + NS, NS + WD, WD + WD, and AM CVn) is studied. Energy loss by gravitational waves has been estimated for each type of systems.
Butel, Guillaume P; Smith, Greg A; Burge, James H
2014-02-10
Deflectometry is widely used to accurately calculate the slopes of any specular reflective surface, ranging from car bodies to nanometer-level mirrors. This paper presents a new deflectometry technique using binary patterns of increasing frequency to retrieve the surface slopes. Binary Pattern Deflectometry allows almost instant, simple, and accurate slope retrieval, which is required for applications using mobile devices. The paper details the theory of this deflectometry method and the challenges of its implementation. Furthermore, the binary pattern method can also be combined with a classic phase-shifting method to eliminate the need of a complex unwrapping algorithm and retrieve the absolute phase, especially in cases like segmented optics, where spatial algorithms have difficulties. Finally, whether it is used as a stand-alone or combined with phase-shifting, the binary patterns can, within seconds, calculate the slopes of any specular reflective surface. PMID:24663273
Stochastic ice stream dynamics
NASA Astrophysics Data System (ADS)
Mantelli, Elisa; Bertagni, Matteo Bernard; Ridolfi, Luca
2016-08-01
Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution.
VAWT stochastic wind simulator
Strickland, J.H.
1987-04-01
A stochastic wind simulation for VAWTs (VSTOC) has been developed which yields turbulent wind-velocity fluctuations for rotationally sampled points. This allows three-component wind-velocity fluctuations to be simulated at specified nodal points on the wind-turbine rotor. A first-order convection scheme is used which accounts for the decrease in streamwise velocity as the flow passes through the wind-turbine rotor. The VSTOC simulation is independent of the particular analytical technique used to predict the aerodynamic and performance characteristics of the turbine. The VSTOC subroutine may be used simply as a subroutine in a particular VAWT prediction code or it may be used as a subroutine in an independent processor. The independent processor is used to interact with a version of the VAWT prediction code which is segmented into deterministic and stochastic modules. Using VSTOC in this fashion is very efficient with regard to decreasing computer time for the overall calculation process.
BLASKIEWICZ,M.BRENNAN,J.M.CAMERON,P.WEI,J.
2003-05-12
Emittance growth due to Intra-Beam Scattering significantly reduces the heavy ion luminosity lifetime in RHIC. Stochastic cooling of the stored beam could improve things considerably by counteracting IBS and preventing particles from escaping the rf bucket [1]. High frequency bunched-beam stochastic cooling is especially challenging but observations of Schottky signals in the 4-8 GHz band indicate that conditions are favorable in RHIC [2]. We report here on measurements of the longitudinal beam transfer function carried out with a pickup kicker pair on loan from FNAL TEVATRON. Results imply that for ions a coasting beam description is applicable and we outline some general features of a viable momentum cooling system for RHIC.
Samuelson, P A
1971-02-01
Because a commodity like wheat can be carried forward from one period to the next, speculative arbitrage serves to link its prices at different points of time. Since, however, the size of the harvest depends on complicated probability processes impossible to forecast with certainty, the minimal model for understanding market behavior must involve stochastic processes. The present study, on the basis of the axiom that it is the expected rather than the known-for-certain prices which enter into all arbitrage relations and carryover decisions, determines the behavior of price as the solution to a stochastic-dynamic-programming problem. The resulting stationary time series possesses an ergodic state and normative properties like those often observed for real-world bourses. PMID:16591903
Stochastic ice stream dynamics.
Mantelli, Elisa; Bertagni, Matteo Bernard; Ridolfi, Luca
2016-08-01
Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution. PMID:27457960
Dorogovtsev, Andrei A
2010-06-29
For sets in a Hilbert space the concept of quadratic entropy is introduced. It is shown that this entropy is finite for the range of a stochastic flow of Brownian particles on R. This implies, in particular, the fact that the total time of the free travel in the Arratia flow of all particles that started from a bounded interval is finite. Bibliography: 10 titles.
NASA Technical Reports Server (NTRS)
1976-01-01
Satellite X-ray experiments and ground-based programs aimed at observation of X-ray binaries are discussed. Experiments aboard OAO-3, OSO-8, Ariel 5, Uhuru, and Skylab are included along with rocket and ground-based observations. Major topics covered are: Her X-1, Cyg X-3, Cen X-3, Cyg X-1, the transient source A0620-00, other possible X-ray binaries, and plans and prospects for future observational programs.
NASA Astrophysics Data System (ADS)
Batten, A.; Murdin, P.
2000-11-01
Historically, spectroscopic binary stars were binary systems whose nature was discovered by the changing DOPPLER EFFECT or shift of the spectral lines of one or both of the component stars. The observed Doppler shift is a combination of that produced by the constant RADIAL VELOCITY (i.e. line-of-sight velocity) of the center of mass of the whole system, and the variable shift resulting from the o...
NASA Technical Reports Server (NTRS)
Lopez, Hiram
1987-01-01
Transmission errors for zeros and ones tabulated separately. Binary-symmetry detector employs psuedo-random data pattern used as test message coming through channel. Message then modulo-2 added to locally generated and synchronized version of test data pattern in same manner found in manufactured test sets of today. Binary symmetrical channel shows nearly 50-percent ones to 50-percent zeroes correspondence. Degree of asymmetry represents imbalances due to either modulation, transmission, or demodulation processes of system when perturbed by noise.
Ultimate open pit stochastic optimization
NASA Astrophysics Data System (ADS)
Marcotte, Denis; Caron, Josiane
2013-02-01
Classical open pit optimization (maximum closure problem) is made on block estimates, without directly considering the block grades uncertainty. We propose an alternative approach of stochastic optimization. The stochastic optimization is taken as the optimal pit computed on the block expected profits, rather than expected grades, computed from a series of conditional simulations. The stochastic optimization generates, by construction, larger ore and waste tonnages than the classical optimization. Contrary to the classical approach, the stochastic optimization is conditionally unbiased for the realized profit given the predicted profit. A series of simulated deposits with different variograms are used to compare the stochastic approach, the classical approach and the simulated approach that maximizes expected profit among simulated designs. Profits obtained with the stochastic optimization are generally larger than the classical or simulated pit. The main factor controlling the relative gain of stochastic optimization compared to classical approach and simulated pit is shown to be the information level as measured by the boreholes spacing/range ratio. The relative gains of the stochastic approach over the classical approach increase with the treatment costs but decrease with mining costs. The relative gains of the stochastic approach over the simulated pit approach increase both with the treatment and mining costs. At early stages of an open pit project, when uncertainty is large, the stochastic optimization approach appears preferable to the classical approach or the simulated pit approach for fair comparison of the values of alternative projects and for the initial design and planning of the open pit.
Quantum Spontaneous Stochasticity
NASA Astrophysics Data System (ADS)
Drivas, Theodore; Eyink, Gregory
Classical Newtonian dynamics is expected to be deterministic, but recent fluid turbulence theory predicts that a particle advected at high Reynolds-numbers by ''nearly rough'' flows moves nondeterministically. Small stochastic perturbations to the flow velocity or to the initial data lead to persistent randomness, even in the limit where the perturbations vanish! Such ``spontaneous stochasticity'' has profound consequences for astrophysics, geophysics, and our daily lives. We show that a similar effect occurs with a quantum particle in a ''nearly rough'' force, for the semi-classical (large-mass) limit, where spreading of the wave-packet is usually expected to be negligible and dynamics to be deterministic Newtonian. Instead, there are non-zero probabilities to observe multiple, non-unique solutions of the classical equations. Although the quantum wave-function remains split, rapid phase oscillations prevent any coherent superposition of the branches. Classical spontaneous stochasticity has not yet been seen in controlled laboratory experiments of fluid turbulence, but the corresponding quantum effects may be observable by current techniques. We suggest possible experiments with neutral atomic-molecular systems in repulsive electric dipole potentials.
Accreting binary population synthesis and feedback prescriptions
NASA Astrophysics Data System (ADS)
Fragos, Tassos
2016-04-01
Studies of extagalactic X-ray binary populations have shown that the characteristics of these populations depend strongly on the characteristics of the host galaxy's parent stellar population (e.g. star-formation history and metallicity). These dependencies not only make X-ray binaries promising for aiding in the measurement of galaxy properties themselves, but they also have important astrophysical and cosmological implications. For example, due to the relatively young stellar ages and primordial metallicities in the early Universe (z > 3), it is predicted that X-ray binaries were more luminous than today. The more energetic X-ray photons, because of their long mean-free paths, can escape the galaxies where they are produced, and interact at long distances with the intergalactic medium. This could result in a smoother spatial distribution of ionized regions, and more importantly in an overall warmer intergalactic medium. The energetic X-ray photons emitted from X-ray binaries dominate the X-ray radiation field over active galactic nuclei at z > 6 - 8, and hence Χ-ray binary feedback can be a non-negligible contributor to the heating and reionization of the inter-galactic medium in the early universe. The spectral energy distribution shape of the XRB emission does not change significantly with redshift, suggesting that the same XRB subpopulation, namely black-hole XRBs in the high-soft state, dominates the cumulative emission at all times. On the contrary, the normalization of the spectral energy distribution does evolve with redshift. To zeroth order, this evolution is driven by the cosmic star-formation rate evolution. However, the metallicity evolution of the universe and the mean stellar population age are two important factors that affect the X-ray emission from high-mass and low-mass XRBs, respectively. In this talk, I will review recent studies on the potential feedback from accreting binary populations in galactic and cosmological scales. Furthermore, I
Rényi entropy measure of noise-aided information transmission in a binary channel.
Chapeau-Blondeau, François; Rousseau, David; Delahaies, Agnès
2010-05-01
This paper analyzes a binary channel by means of information measures based on the Rényi entropy. The analysis extends, and contains as a special case, the classic reference model of binary information transmission based on the Shannon entropy measure. The extended model is used to investigate further possibilities and properties of stochastic resonance or noise-aided information transmission. The results demonstrate that stochastic resonance occurs in the information channel and is registered by the Rényi entropy measures at any finite order, including the Shannon order. Furthermore, in definite conditions, when seeking the Rényi information measures that best exploit stochastic resonance, then nontrivial orders differing from the Shannon case usually emerge. In this way, through binary information transmission, stochastic resonance identifies optimal Rényi measures of information differing from the classic Shannon measure. A confrontation of the quantitative information measures with visual perception is also proposed in an experiment of noise-aided binary image transmission. PMID:20866190
Influence of binary fraction on the fragmentation of young massive clusters—a Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Chattopadhyay, Tanuka; Sinha, Abisa; Chattopadhyay, Asis Kumar
2016-04-01
A stochastic model has been developed to study the hierarchical fragmentation process of young massive clusters in external galaxies considering close binary components along with individual ones. Stellar masses for individual ones have been generated from truncated Pareto distribution and stellar masses for close binary components have been generated from a truncated Bi-variate Gumbel Exponential distribution. The above distribution is identified by fitting the observed bi-variate distribution of masses of eclipsing binary stars computed from the light curves catalogued in the package Binary Maker 3.0. The resulting mass spectra computed at different projected distances, show signature of mass segregation. Degree of mass segregation becomes reduced due to the inclusion of binary fraction. This might be due to the reduction of massive stars and inclusion of less massive stars rather than inclusion of single massive stars and the effect of line of sight length projected to an observer.
NASA Astrophysics Data System (ADS)
Almog, Assaf; Garlaschelli, Diego
2014-09-01
The dynamics of complex systems, from financial markets to the brain, can be monitored in terms of multiple time series of activity of the constituent units, such as stocks or neurons, respectively. While the main focus of time series analysis is on the magnitude of temporal increments, a significant piece of information is encoded into the binary projection (i.e. the sign) of such increments. In this paper we provide further evidence of this by showing strong nonlinear relations between binary and non-binary properties of financial time series. These relations are a novel quantification of the fact that extreme price increments occur more often when most stocks move in the same direction. We then introduce an information-theoretic approach to the analysis of the binary signature of single and multiple time series. Through the definition of maximum-entropy ensembles of binary matrices and their mapping to spin models in statistical physics, we quantify the information encoded into the simplest binary properties of real time series and identify the most informative property given a set of measurements. Our formalism is able to accurately replicate, and mathematically characterize, the observed binary/non-binary relations. We also obtain a phase diagram allowing us to identify, based only on the instantaneous aggregate return of a set of multiple time series, a regime where the so-called ‘market mode’ has an optimal interpretation in terms of collective (endogenous) effects, a regime where it is parsimoniously explained by pure noise, and a regime where it can be regarded as a combination of endogenous and exogenous factors. Our approach allows us to connect spin models, simple stochastic processes, and ensembles of time series inferred from partial information.
A retrodictive stochastic simulation algorithm
Vaughan, T.G. Drummond, P.D.; Drummond, A.J.
2010-05-20
In this paper we describe a simple method for inferring the initial states of systems evolving stochastically according to master equations, given knowledge of the final states. This is achieved through the use of a retrodictive stochastic simulation algorithm which complements the usual predictive stochastic simulation approach. We demonstrate the utility of this new algorithm by applying it to example problems, including the derivation of likely ancestral states of a gene sequence given a Markovian model of genetic mutation.
Stochastic electrotransport selectively enhances the transport of highly electromobile molecules.
Kim, Sung-Yon; Cho, Jae Hun; Murray, Evan; Bakh, Naveed; Choi, Heejin; Ohn, Kimberly; Ruelas, Luzdary; Hubbert, Austin; McCue, Meg; Vassallo, Sara L; Keller, Philipp J; Chung, Kwanghun
2015-11-17
Nondestructive chemical processing of porous samples such as fixed biological tissues typically relies on molecular diffusion. Diffusion into a porous structure is a slow process that significantly delays completion of chemical processing. Here, we present a novel electrokinetic method termed stochastic electrotransport for rapid nondestructive processing of porous samples. This method uses a rotational electric field to selectively disperse highly electromobile molecules throughout a porous sample without displacing the low-electromobility molecules that constitute the sample. Using computational models, we show that stochastic electrotransport can rapidly disperse electromobile molecules in a porous medium. We apply this method to completely clear mouse organs within 1-3 days and to stain them with nuclear dyes, proteins, and antibodies within 1 day. Our results demonstrate the potential of stochastic electrotransport to process large and dense tissue samples that were previously infeasible in time when relying on diffusion. PMID:26578787
Stochastic electrotransport selectively enhances the transport of highly electromobile molecules
Kim, Sung-Yon; Cho, Jae Hun; Murray, Evan; Bakh, Naveed; Choi, Heejin; Ohn, Kimberly; Ruelas, Luzdary; Hubbert, Austin; McCue, Meg; Vassallo, Sara L.; Keller, Philipp J.; Chung, Kwanghun
2015-01-01
Nondestructive chemical processing of porous samples such as fixed biological tissues typically relies on molecular diffusion. Diffusion into a porous structure is a slow process that significantly delays completion of chemical processing. Here, we present a novel electrokinetic method termed stochastic electrotransport for rapid nondestructive processing of porous samples. This method uses a rotational electric field to selectively disperse highly electromobile molecules throughout a porous sample without displacing the low-electromobility molecules that constitute the sample. Using computational models, we show that stochastic electrotransport can rapidly disperse electromobile molecules in a porous medium. We apply this method to completely clear mouse organs within 1–3 days and to stain them with nuclear dyes, proteins, and antibodies within 1 day. Our results demonstrate the potential of stochastic electrotransport to process large and dense tissue samples that were previously infeasible in time when relying on diffusion. PMID:26578787
Gene regulation and noise reduction by coupling of stochastic processes
Hornos, José Eduardo M.; Reinitz, John
2015-01-01
Here we characterize the low noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the the two gene states depends on protein number. This fact has a very important implication: there exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction. PMID:25768447
Gene regulation and noise reduction by coupling of stochastic processes
NASA Astrophysics Data System (ADS)
Ramos, Alexandre F.; Hornos, José Eduardo M.; Reinitz, John
2015-02-01
Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.
Low cost paths to binary optics
NASA Technical Reports Server (NTRS)
Nelson, Arthur; Domash, Lawrence
1993-01-01
Application of binary optics has been limited to a few major laboratories because of the limited availability of fabrication facilities such as e-beam machines and the lack of standardized design software. Foster-Miller has attempted to identify low cost approaches to medium-resolution binary optics using readily available computer and fabrication tools, primarily for the use of students and experimenters in optical computing. An early version of our system, MacBEEP, made use of an optimized laser film recorder from the commercial typesetting industry with 10 micron resolution. This report is an update on our current efforts to design and build a second generation MacBEEP, which aims at 1 micron resolution and multiple phase levels. Trails included a low cost scanning electron microscope in microlithography mode, and alternative laser inscribers or photomask generators. Our current software approach is based on Mathematica and PostScript compatibility.
NASA Astrophysics Data System (ADS)
Giménez, Alvaro; Rucinski, Slavek; Szkody, P.; Gies, D.; Kang, Y.-W.; Linsky, J.; Livio, M.; Morrell, N.; Hilditch, R.; Nordström, B.; Ribas, I.; Sion, E.; Vrielman, S.
2007-03-01
The triennial report from Commission 42 covers various topics like massive binaries, contact systems, cataclysmic variables and low-mass binary stars. We try in a number of sections to provide an update on the current status of the main research areas in the field of close binaries. It is not a formal review, even complete or comprehensive, but an attempt to bring the main topics on recent research to astronomers working in other fields. References are also not comprehensive and simply added to the text to help the reader looking for deeper information on the subject. For this reason, we have chosen to include references (sometimes incomplete for ongoing work) not in a list at the end but integrated with the main text body. Complete references and additional sources can be easily obtained through web access of ADS or SIMBAD. Furthermore, the summary of papers on close-binary research contained in the Bibliography of Close Binaries (BCB) can be accessed from the web site of Commission 42. I would like to express the gratitude of the commission for the careful work of Colin Scarfe as Editor-in-Chief of BCB and Andras Holl and Attila Sragli for maintaining the web pages of the Commission within the structure of Division V. Finally, K. Olah and J. Jurcsik are gratefully acknowledged for their continued support as editors of the Information Bulletin on Variable Stars (IBVS), also accessible through the commission web page.
Stochastic calculus in physics
Fox, R.F.
1987-03-01
The relationship of Ito-Stratonovich stochastic calculus to studies of weakly colored noise is explained. A functional calculus approach is used to obtain an effective Fokker-Planck equation for the weakly colored noise regime. In a smooth limit, this representation produces the Stratonovich version of the Ito-Stratonovich calculus for white noise. It also provides an approach to steady state behavior for strongly colored noise. Numerical simulation algorithms are explored, and a novel suggestion is made for efficient and accurate simulation of white noise equations.
Stochastic ontogenetic growth model
NASA Astrophysics Data System (ADS)
West, B. J.; West, D.
2012-02-01
An ontogenetic growth model (OGM) for a thermodynamically closed system is generalized to satisfy both the first and second law of thermodynamics. The hypothesized stochastic ontogenetic growth model (SOGM) is shown to entail the interspecies allometry relation by explicitly averaging the basal metabolic rate and the total body mass over the steady-state probability density for the total body mass (TBM). This is the first derivation of the interspecies metabolic allometric relation from a dynamical model and the asymptotic steady-state distribution of the TBM is fit to data and shown to be inverse power law.
Stochastic thermodynamics of resetting
NASA Astrophysics Data System (ADS)
Fuchs, Jaco; Goldt, Sebastian; Seifert, Udo
2016-03-01
Stochastic dynamics with random resetting leads to a non-equilibrium steady state. Here, we consider the thermodynamics of resetting by deriving the first and second law for resetting processes far from equilibrium. We identify the contributions to the entropy production of the system which arise due to resetting and show that they correspond to the rate with which information is either erased or created. Using Landauer's principle, we derive a bound on the amount of work that is required to maintain a resetting process. We discuss different regimes of resetting, including a Maxwell demon scenario where heat is extracted from a bath at constant temperature.
Limits on Anisotropy in the Nanohertz Stochastic Gravitational Wave Background.
Taylor, S R; Mingarelli, C M F; Gair, J R; Sesana, A; Theureau, G; Babak, S; Bassa, C G; Brem, P; Burgay, M; Caballero, R N; Champion, D J; Cognard, I; Desvignes, G; Guillemot, L; Hessels, J W T; Janssen, G H; Karuppusamy, R; Kramer, M; Lassus, A; Lazarus, P; Lentati, L; Liu, K; Osłowski, S; Perrodin, D; Petiteau, A; Possenti, A; Purver, M B; Rosado, P A; Sanidas, S A; Smits, R; Stappers, B; Tiburzi, C; van Haasteren, R; Vecchio, A; Verbiest, J P W
2015-07-24
The paucity of observed supermassive black hole binaries (SMBHBs) may imply that the gravitational wave background (GWB) from this population is anisotropic, rendering existing analyses suboptimal. We present the first constraints on the angular distribution of a nanohertz stochastic GWB from circular, inspiral-driven SMBHBs using the 2015 European Pulsar Timing Array data. Our analysis of the GWB in the ~2-90 nHz band shows consistency with isotropy, with the strain amplitude in l>0 spherical harmonic multipoles ≲40% of the monopole value. We expect that these more general techniques will become standard tools to probe the angular distribution of source populations. PMID:26252674
Limits on Anisotropy in the Nanohertz Stochastic Gravitational Wave Background
NASA Astrophysics Data System (ADS)
Taylor, S. R.; Mingarelli, C. M. F.; Gair, J. R.; Sesana, A.; Theureau, G.; Babak, S.; Bassa, C. G.; Brem, P.; Burgay, M.; Caballero, R. N.; Champion, D. J.; Cognard, I.; Desvignes, G.; Guillemot, L.; Hessels, J. W. T.; Janssen, G. H.; Karuppusamy, R.; Kramer, M.; Lassus, A.; Lazarus, P.; Lentati, L.; Liu, K.; Osłowski, S.; Perrodin, D.; Petiteau, A.; Possenti, A.; Purver, M. B.; Rosado, P. A.; Sanidas, S. A.; Smits, R.; Stappers, B.; Tiburzi, C.; van Haasteren, R.; Vecchio, A.; Verbiest, J. P. W.; EPTA Collaboration
2015-07-01
The paucity of observed supermassive black hole binaries (SMBHBs) may imply that the gravitational wave background (GWB) from this population is anisotropic, rendering existing analyses suboptimal. We present the first constraints on the angular distribution of a nanohertz stochastic GWB from circular, inspiral-driven SMBHBs using the 2015 European Pulsar Timing Array data. Our analysis of the GWB in the ˜2 - 90 nHz band shows consistency with isotropy, with the strain amplitude in l >0 spherical harmonic multipoles ≲40 % of the monopole value. We expect that these more general techniques will become standard tools to probe the angular distribution of source populations.
Huffman, Gerald P.; Zhao, Jianmin; Feng, Zhen
1996-01-01
A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered.
Huffman, G.P.; Zhao, J.; Feng, Z.
1996-12-03
A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered. 3 figs.
NASA Astrophysics Data System (ADS)
Kadam, Kundan; Clayton, Geoffrey C.; Frank, Juhan; Tohline, Joel E.; Staff, Jan E.; Motl, Patrick M.; Marcello, Dominic
2014-06-01
About one in every 150 stars is a contact binary system of WUMa type and it was thought for a long time that such a binary would naturally proceed towards merger, forming a single star. In September 2008 such a merger was observed in the eruption of a “red nova", V1309 Sco. We are developing a hydrodynamics simulation for contact binaries using Self Consistent Field (SCF) techniques, so that their formation, structural, and merger properties could be studied. This model can also be used to probe the stability criteria such as the large-scale equatorial circulations and the minimum mass ratio. We also plan to generate light curves from the simulation data in order to compare with the observed case of V1309 Sco. A comparison between observations and simulations will help us better understand the nova-like phenomena of stellar mergers.
Reconstruction of pulse noisy images via stochastic resonance
Han, Jing; Liu, Hongjun; Sun, Qibing; Huang, Nan
2015-01-01
We investigate a practical technology for reconstructing nanosecond pulse noisy images via stochastic resonance, which is based on the modulation instability. A theoretical model of this method for optical pulse signal is built to effectively recover the pulse image. The nanosecond noise-hidden images grow at the expense of noise during the stochastic resonance process in a photorefractive medium. The properties of output images are mainly determined by the input signal-to-noise intensity ratio, the applied voltage across the medium, and the correlation length of noise background. A high cross-correlation gain is obtained by optimizing these parameters. This provides a potential method for detecting low-level or hidden pulse images in various imaging applications. PMID:26067911
Identification list of binaries
NASA Astrophysics Data System (ADS)
Malkov,, O.; Karchevsky,, A.; Kaygorodov, P.; Kovaleva, D.
The Identification List of Binaries (ILB) is a star catalogue constructed to facilitate cross-referencing between different catalogues of binary stars. As of 2015, it comprises designations for approximately 120,000 double/multiple systems. ILB contains star coordinates and cross-references to the Bayer/Flemsteed, DM (BD/CD/CPD), HD, HIP, ADS, WDS, CCDM, TDSC, GCVS, SBC9, IGR (and some other X-ray catalogues), PSR designations, as well as identifications in the recently developed BSDB system. ILB eventually became a part of the BDB stellar database.
Stochastic power flow modeling
Not Available
1980-06-01
The stochastic nature of customer demand and equipment failure on large interconnected electric power networks has produced a keen interest in the accurate modeling and analysis of the effects of probabilistic behavior on steady state power system operation. The principle avenue of approach has been to obtain a solution to the steady state network flow equations which adhere both to Kirchhoff's Laws and probabilistic laws, using either combinatorial or functional approximation techniques. Clearly the need of the present is to develop sound techniques for producing meaningful data to serve as input. This research has addressed this end and serves to bridge the gap between electric demand modeling, equipment failure analysis, etc., and the area of algorithm development. Therefore, the scope of this work lies squarely on developing an efficient means of producing sensible input information in the form of probability distributions for the many types of solution algorithms that have been developed. Two major areas of development are described in detail: a decomposition of stochastic processes which gives hope of stationarity, ergodicity, and perhaps even normality; and a powerful surrogate probability approach using proportions of time which allows the calculation of joint events from one dimensional probability spaces.
Stochastic blind motion deblurring.
Xiao, Lei; Gregson, James; Heide, Felix; Heidrich, Wolfgang
2015-10-01
Blind motion deblurring from a single image is a highly under-constrained problem with many degenerate solutions. A good approximation of the intrinsic image can, therefore, only be obtained with the help of prior information in the form of (often nonconvex) regularization terms for both the intrinsic image and the kernel. While the best choice of image priors is still a topic of ongoing investigation, this research is made more complicated by the fact that historically each new prior requires the development of a custom optimization method. In this paper, we develop a stochastic optimization method for blind deconvolution. Since this stochastic solver does not require the explicit computation of the gradient of the objective function and uses only efficient local evaluation of the objective, new priors can be implemented and tested very quickly. We demonstrate that this framework, in combination with different image priors produces results with Peak Signal-to-Noise Ratio (PSNR) values that match or exceed the results obtained by much more complex state-of-the-art blind motion deblurring algorithms. PMID:25974941
Test of Optical Stochastic Cooling in the IOTA Ring
Lebedev, V. A.; Tokpanov, Yu.; Zolotorev, M. S.
2013-09-26
A new 150 MeV electron storage ring is being built at Fermilab. The construction of a new machine pursues two goals a test of highly non-linear integrable optics and a test of optical stochastic cooling. This paper discusses details of OSC arrangements, choice of major parameters of the cooling scheme and incoming experimental tests of the optical amplifier prototype which uses highly doped Ti-sapphire crystal as amplification medium.
Variance decomposition in stochastic simulators
Le Maître, O. P.; Knio, O. M.; Moraes, A.
2015-06-28
This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.
Richard V. Field, Jr.; Emery, John M.; Grigoriu, Mircea Dan
2015-05-19
The stochastic collocation (SC) and stochastic Galerkin (SG) methods are two well-established and successful approaches for solving general stochastic problems. A recently developed method based on stochastic reduced order models (SROMs) can also be used. Herein we provide a comparison of the three methods for some numerical examples; our evaluation only holds for the examples considered in the paper. The purpose of the comparisons is not to criticize the SC or SG methods, which have proven very useful for a broad range of applications, nor is it to provide overall ratings of these methods as compared to the SROM method.more » Furthermore, our objectives are to present the SROM method as an alternative approach to solving stochastic problems and provide information on the computational effort required by the implementation of each method, while simultaneously assessing their performance for a collection of specific problems.« less
Richard V. Field, Jr.; Emery, John M.; Grigoriu, Mircea Dan
2015-05-19
The stochastic collocation (SC) and stochastic Galerkin (SG) methods are two well-established and successful approaches for solving general stochastic problems. A recently developed method based on stochastic reduced order models (SROMs) can also be used. Herein we provide a comparison of the three methods for some numerical examples; our evaluation only holds for the examples considered in the paper. The purpose of the comparisons is not to criticize the SC or SG methods, which have proven very useful for a broad range of applications, nor is it to provide overall ratings of these methods as compared to the SROM method. Furthermore, our objectives are to present the SROM method as an alternative approach to solving stochastic problems and provide information on the computational effort required by the implementation of each method, while simultaneously assessing their performance for a collection of specific problems.
Variance decomposition in stochastic simulators
NASA Astrophysics Data System (ADS)
Le Maître, O. P.; Knio, O. M.; Moraes, A.
2015-06-01
This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.
Binary coding for hyperspectral imagery
NASA Astrophysics Data System (ADS)
Wang, Jing; Chang, Chein-I.; Chang, Chein-Chi; Lin, Chinsu
2004-10-01
Binary coding is one of simplest ways to characterize spectral features. One commonly used method is a binary coding-based image software system, called Spectral Analysis Manager (SPAM) for remotely sensed imagery developed by Mazer et al. For a given spectral signature, the SPAM calculates its spectral mean and inter-band spectral difference and uses them as thresholds to generate a binary code word for this particular spectral signature. Such coding scheme is generally effective and also very simple to implement. This paper revisits the SPAM and further develops three new SPAM-based binary coding methods, called equal probability partition (EPP) binary coding, halfway partition (HP) binary coding and median partition (MP) binary coding. These three binary coding methods along with the SPAM well be evaluated for spectral discrimination and identification. In doing so, a new criterion, called a posteriori discrimination probability (APDP) is also introduced for performance measure.
NASA Technical Reports Server (NTRS)
Frazier, D. O.; Facemire, B. R.; Kaukler, W. F.; Witherow, W. K.; Fanning, U.
1986-01-01
Studies of monotectic alloys and alloy analogs reviewed. Report surveys research on liquid/liquid and solid/liquid separation in binary monotectic alloys. Emphasizes separation processes in low gravity, such as in outer space or in free fall in drop towers. Advances in methods of controlling separation in experiments highlighted.
Binary concatenated coding system
NASA Technical Reports Server (NTRS)
Monford, L. G., Jr.
1973-01-01
Coding, using 3-bit binary words, is applicable to any measurement having integer scale up to 100. System using 6-bit data words can be expanded to read from 1 to 10,000, and 9-bit data words can increase range to 1,000,000. Code may be ''read'' directly by observation after memorizing simple listing of 9's and 10's.
Binary primitive alternant codes
NASA Technical Reports Server (NTRS)
Helgert, H. J.
1975-01-01
In this note we investigate the properties of two classes of binary primitive alternant codes that are generalizations of the primitive BCH codes. For these codes we establish certain equivalence and invariance relations and obtain values of d and d*, the minimum distances of the prime and dual codes.
Probing circular polarization in stochastic gravitational wave background with pulsar timing arrays
NASA Astrophysics Data System (ADS)
Kato, Ryo; Soda, Jiro
2016-03-01
We study the detectability of circular polarization in a stochastic gravitational wave background from various sources such as supermassive black hole binaries, cosmic strings, and inflation in the early universe with pulsar timing arrays. We calculate generalized overlap reduction functions for the circularly polarized stochastic gravitational wave background. We find that the circular polarization cannot be detected for an isotropic background. However, there is a chance to observe the circular polarization for an anisotropic gravitational wave background. We also show how to separate polarized gravitational waves from unpolarized gravitational waves.
Interacting binaries. Lecture notes 1992.
NASA Astrophysics Data System (ADS)
Nussbaumer, H.; Orr, A.
These lecture notes represent a unique collection of information and references on current research on interacting binaries: S. N. Shore puts the emphasis on observations and their connection to relevant physics. He also discusses symbiotic stars. Cataclysmic variables are the subject of M. Livio's course, whereas E. P. J. van den Heuvel concentrates on more massive binaries and X-ray binaries.
Hunting for brown dwarf binaries with X-Shooter
NASA Astrophysics Data System (ADS)
Manjavacas, E.; Goldman, B.; Alcalá, J. M.; Zapatero-Osorio, M. R.; Béjar, B. J. S.; Homeier, D.; Bonnefoy, M.; Smart, R. L.; Henning, T.; Allard, F.
2015-05-01
The refinement of the brown dwarf binary fraction may contribute to the understanding of the substellar formation mechanisms. Peculiar brown dwarf spectra or discrepancy between optical and near-infrared spectral type classification of brown dwarfs may indicate unresolved brown dwarf binary systems. We obtained medium-resolution spectra of 22 brown dwarfs of potential binary candidates using X-Shooter at the VLT. We aimed to select brown dwarf binary candidates. We also tested whether BT-Settl 2014 atmospheric models reproduce the physics in the atmospheres of these objects. To find different spectral type spectral binaries, we used spectral indices and we compared the selected candidates to single spectra and composition of two single spectra from libraries, to try to reproduce our X-Shooter spectra. We also created artificial binaries within the same spectral class, and we tried to find them using the same method as for brown dwarf binaries with different spectral types. We compared our spectra to the BT-Settl models 2014. We selected six possible candidates to be combination of L plus T brown dwarfs. All candidates, except one, are better reproduced by a combination of two single brown dwarf spectra than by a single spectrum. The one-sided F-test discarded this object as a binary candidate. We found that we are not able to find the artificial binaries with components of the same spectral type using the same method used for L plus T brown dwarfs. Best matches to models gave a range of effective temperatures between 950 K and 1900 K, a range of gravities between 4.0 and 5.5. Some best matches corresponded to supersolar metallicity.
Biochemical simulations: stochastic, approximate stochastic and hybrid approaches
2009-01-01
Computer simulations have become an invaluable tool to study the sometimes counterintuitive temporal dynamics of (bio-)chemical systems. In particular, stochastic simulation methods have attracted increasing interest recently. In contrast to the well-known deterministic approach based on ordinary differential equations, they can capture effects that occur due to the underlying discreteness of the systems and random fluctuations in molecular numbers. Numerous stochastic, approximate stochastic and hybrid simulation methods have been proposed in the literature. In this article, they are systematically reviewed in order to guide the researcher and help her find the appropriate method for a specific problem. PMID:19151097
Stochastic reconstruction of sandstones
Manwart; Torquato; Hilfer
2000-07-01
A simulated annealing algorithm is employed to generate a stochastic model for a Berea sandstone and a Fontainebleau sandstone, with each a prescribed two-point probability function, lineal-path function, and "pore size" distribution function, respectively. We find that the temperature decrease of the annealing has to be rather quick to yield isotropic and percolating configurations. A comparison of simple morphological quantities indicates good agreement between the reconstructions and the original sandstones. Also, the mean survival time of a random walker in the pore space is reproduced with good accuracy. However, a more detailed investigation by means of local porosity theory shows that there may be significant differences of the geometrical connectivity between the reconstructed and the experimental samples. PMID:11088546
DOES A ''STOCHASTIC'' BACKGROUND OF GRAVITATIONAL WAVES EXIST IN THE PULSAR TIMING BAND?
Ravi, V.; Wyithe, J. S. B.; Hobbs, G.; Shannon, R. M.; Manchester, R. N.; Yardley, D. R. B.; Keith, M. J.
2012-12-20
We investigate the effects of gravitational waves (GWs) from a simulated population of binary supermassive black holes (SMBHs) on pulsar timing array data sets. We construct a distribution describing the binary SMBH population from an existing semi-analytic galaxy formation model. Using realizations of the binary SMBH population generated from this distribution, we simulate pulsar timing data sets with GW-induced variations. We find that the statistics of these variations do not correspond to an isotropic, stochastic GW background. The ''Hellings and Downs'' correlations between simulated data sets for different pulsars are recovered on average, though the scatter of the correlation estimates is greater than expected for an isotropic, stochastic GW background. These results are attributable to the fact that just a few GW sources dominate the GW-induced variations in every Fourier frequency bin of a five-year data set. Current constraints on the amplitude of the GW signal from binary SMBHs will be biased. Individual binary systems are likely to be detectable in five-year pulsar timing array data sets where the noise is dominated by GW-induced variations. Searches for GWs in pulsar timing array data therefore need to account for the effects of individual sources of GWs.
Generalization Learning in a Perceptron with Binary Synapses
NASA Astrophysics Data System (ADS)
Baldassi, Carlo
2009-09-01
We consider the generalization problem for a perceptron with binary synapses, implementing the Stochastic Belief-Propagation-Inspired (SBPI) learning algorithm which we proposed earlier, and perform a mean-field calculation to obtain a differential equation which describes the behaviour of the device in the limit of a large number of synapses N. We show that the solving time of SBPI is of order Nsqrt{log N} , while the similar, well-known clipped perceptron (CP) algorithm does not converge to a solution at all in the time frame we considered. The analysis gives some insight into the ongoing process and shows that, in this context, the SBPI algorithm is equivalent to a new, simpler algorithm, which only differs from the CP algorithm by the addition of a stochastic, unsupervised meta-plastic reinforcement process, whose rate of application must be less than sqrt{2/(π N)} for the learning to be achieved effectively. The analytical results are confirmed by simulations.
RES: Regularized Stochastic BFGS Algorithm
NASA Astrophysics Data System (ADS)
Mokhtari, Aryan; Ribeiro, Alejandro
2014-12-01
RES, a regularized stochastic version of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method is proposed to solve convex optimization problems with stochastic objectives. The use of stochastic gradient descent algorithms is widespread, but the number of iterations required to approximate optimal arguments can be prohibitive in high dimensional problems. Application of second order methods, on the other hand, is impracticable because computation of objective function Hessian inverses incurs excessive computational cost. BFGS modifies gradient descent by introducing a Hessian approximation matrix computed from finite gradient differences. RES utilizes stochastic gradients in lieu of deterministic gradients for both, the determination of descent directions and the approximation of the objective function's curvature. Since stochastic gradients can be computed at manageable computational cost RES is realizable and retains the convergence rate advantages of its deterministic counterparts. Convergence results show that lower and upper bounds on the Hessian egeinvalues of the sample functions are sufficient to guarantee convergence to optimal arguments. Numerical experiments showcase reductions in convergence time relative to stochastic gradient descent algorithms and non-regularized stochastic versions of BFGS. An application of RES to the implementation of support vector machines is developed.
A Stochastic Cratering Model for Asteroid Surfaces
NASA Technical Reports Server (NTRS)
Richardson, J. E.; Melosh, H. J.; Greenberg, R. J.
2005-01-01
The observed cratering records on asteroid surfaces (four so far: Gaspra, Ida, Mathilde, and Eros [1-4]) provide us with important clues to their past bombardment histories. Previous efforts toward interpreting these records have led to two basic modeling styles for reproducing the statistics of the observed crater populations. The first, and most direct, method is to use Monte Carlo techniques [5] to stochastically populate a matrix-model test surface with craters as a function of time [6,7]. The second method is to use a more general, parameterized approach to duplicate the statistics of the observed crater population [8,9]. In both methods, several factors must be included beyond the simple superposing of circular features: (1) crater erosion by subsequent impacts, (2) infilling of craters by impact ejecta, and (3) crater degradation and era- sure due to the seismic effects of subsequent impacts. Here we present an updated Monte Carlo (stochastic) modeling approach, designed specifically with small- to medium-sized asteroids in mind.
Stochastic modeling of triple-frequency BeiDou signals: estimation, assessment and impact analysis
NASA Astrophysics Data System (ADS)
Li, Bofeng
2016-03-01
Stochastic models are important in global navigation satellite systems (GNSS) estimation problems. One can achieve reliable ambiguity resolution and precise positioning only by use of a suitable stochastic model. The BeiDou system has received increased research focus, but based only on empirical stochastic models from the knowledge of GPS. In this paper, we will systematically study the estimation, assessment and impacts of a triple-frequency BeiDou stochastic model. In our estimation problem, a single-difference, geometry-free functional model is used to extract pure random noise. A very sophisticated structure of unknown variance matrix is designed to allow the estimation of satellite-specific variances, cross correlations between two arbitrary frequencies, as well as the time correlations for phase and code observations per frequency. In assessing the stochastic models, six data sets with four brands of BeiDou receivers on short and zero-length baselines are processed, and the results are compared. In impact analysis of stochastic model, the performance of integer ambiguity resolution and positioning are numerically demonstrated using a realistic stochastic model. The results from ultrashort (shorter than 10 m) and zero-length baselines indicate that BeiDou stochastic models are affected by both observation and receiver brands. The observation variances have been modeled by an elevation-dependent function, but the modeling errors for geostationary earth orbit (GEO) satellites are larger than for inclined geosynchronous satellite orbit (IGSO) and medium earth orbit (MEO) satellites. The stochastic model is governed by both the internal errors of the receiver and external errors at the site. Different receivers have different capabilities for resisting external errors. A realistic stochastic model is very important for achieving ambiguity resolution with a high success rate and small false alarm and for determining realistic variances for position estimates. To
Stochastic modeling of triple-frequency BeiDou signals: estimation, assessment and impact analysis
NASA Astrophysics Data System (ADS)
Li, Bofeng
2016-07-01
Stochastic models are important in global navigation satellite systems (GNSS) estimation problems. One can achieve reliable ambiguity resolution and precise positioning only by use of a suitable stochastic model. The BeiDou system has received increased research focus, but based only on empirical stochastic models from the knowledge of GPS. In this paper, we will systematically study the estimation, assessment and impacts of a triple-frequency BeiDou stochastic model. In our estimation problem, a single-difference, geometry-free functional model is used to extract pure random noise. A very sophisticated structure of unknown variance matrix is designed to allow the estimation of satellite-specific variances, cross correlations between two arbitrary frequencies, as well as the time correlations for phase and code observations per frequency. In assessing the stochastic models, six data sets with four brands of BeiDou receivers on short and zero-length baselines are processed, and the results are compared. In impact analysis of stochastic model, the performance of integer ambiguity resolution and positioning are numerically demonstrated using a realistic stochastic model. The results from ultrashort (shorter than 10 m) and zero-length baselines indicate that BeiDou stochastic models are affected by both observation and receiver brands. The observation variances have been modeled by an elevation-dependent function, but the modeling errors for geostationary earth orbit (GEO) satellites are larger than for inclined geosynchronous satellite orbit (IGSO) and medium earth orbit (MEO) satellites. The stochastic model is governed by both the internal errors of the receiver and external errors at the site. Different receivers have different capabilities for resisting external errors. A realistic stochastic model is very important for achieving ambiguity resolution with a high success rate and small false alarm and for determining realistic variances for position estimates. To
A stochastic multi-symplectic scheme for stochastic Maxwell equations with additive noise
Hong, Jialin; Zhang, Liying
2014-07-01
In this paper we investigate a stochastic multi-symplectic method for stochastic Maxwell equations with additive noise. Based on the stochastic version of variational principle, we find a way to obtain the stochastic multi-symplectic structure of three-dimensional (3-D) stochastic Maxwell equations with additive noise. We propose a stochastic multi-symplectic scheme and show that it preserves the stochastic multi-symplectic conservation law and the local and global stochastic energy dissipative properties, which the equations themselves possess. Numerical experiments are performed to verify the numerical behaviors of the stochastic multi-symplectic scheme.
Gravitational radiation from primordial solitons and soliton-star binaries
NASA Technical Reports Server (NTRS)
Gleiser, Marcelo
1989-01-01
The possibility that both the formation of nontopological solitons in a primordial second-order phase transition and binary systems of soliton stars could generate a stochastic gravitational-wave background is examined. The present contribution of gravitational radiation to the energy density of the universe from these processes is estimated for a number of different models. The detectability of such contributions from the timing measurements of the millisecond pulsar and spaceborne laser interferometry is briefly discussed and compared to other cosmological and local sources of background gravitational waves.
The Abelian Sandpile Model on a Random Binary Tree
NASA Astrophysics Data System (ADS)
Redig, F.; Ruszel, W. M.; Saada, E.
2012-06-01
We study the abelian sandpile model on a random binary tree. Using a transfer matrix approach introduced by Dhar and Majumdar, we prove exponential decay of correlations, and in a small supercritical region (i.e., where the branching process survives with positive probability) exponential decay of avalanche sizes. This shows a phase transition phenomenon between exponential decay and power law decay of avalanche sizes. Our main technical tools are: (1) A recursion for the ratio between the numbers of weakly and strongly allowed configurations which is proved to have a well-defined stochastic solution; (2) quenched and annealed estimates of the eigenvalues of a product of n random transfer matrices.
Comparison of Two Statistical Approaches to a Solution of the Stochastic Radiative Transfer Equation
NASA Astrophysics Data System (ADS)
Kirnos, I. V.; Tarasenkov, M. V.; Belov, V. V.
2016-04-01
The method of direct simulation of photon trajectories in a stochastic medium is compared with the method of closed equations suggested by G. A. Titov. A comparison is performed for the model of the stochastic medium in the form of a cloudy field of constant thickness comprising rectangular clouds whose boundaries are determined by a stationary Poisson flow of points. It is demonstrated that the difference between the calculated results can reach 20-30%; however, in some cases (for some sets of initial data) the difference is limited by 5% irrespective of the cloud cover index.
Medium-Frequency Pseudonoise Georadar
NASA Technical Reports Server (NTRS)
Arendt, G. Dickey; Carl, J. R.; Byerly, Kent A.; Amini, B. Jon
2005-01-01
Ground-probing radar systems featuring medium-frequency carrier signals phase-modulated by binary pseudonoise codes have been proposed. These systems would be used to locate and detect movements of subterranean surfaces; the primary intended application is in warning of the movement of underground water toward oil-well intake ports in time to shut down those ports to avoid pumping of water. Other potential applications include oil-well logging and monitoring of underground reservoirs. A typical prior georadar system operates at a carrier frequency of at least 50 MHz in order to provide useable range resolution. This frequency is too high for adequate penetration of many underground layers of interest. On the other hand, if the carrier frequency were to be reduced greatly to increase penetration, then bandwidth and thus range resolution would also have to be reduced, thereby rendering the system less useful. The proposed medium-frequency pseudonoise georadar systems would offer the advantage of greater penetration at lower carrier frequencies, but without the loss of resolution that would be incurred by operating typical prior georadar systems at lower frequencies.
Microfluidic binary phase flow
NASA Astrophysics Data System (ADS)
Angelescu, Dan; Menetrier, Laure; Wong, Joyce; Tabeling, Patrick; Salamitou, Philippe
2004-03-01
We present a novel binary phase flow regime where the two phases differ substantially in both their wetting and viscous properties. Optical tracking particles are used in order to investigate the details of such multiphase flow inside capillary channels. We also describe microfluidic filters we have developed, capable of separating the two phases based on capillary pressure. The performance of the filters in separating oil-water emulsions is discussed. Binary phase flow has been previously used in microchannels in applications such as emulsion generation, enhancement of mixing and assembly of custom colloidal paticles. Such microfluidic systems are increasingly used in a number of applications spanning a diverse range of industries, such as biotech, pharmaceuticals and more recently the oil industry.
NASA Astrophysics Data System (ADS)
Yagi, Kent; Yunes, Nicolás
2016-07-01
When in a tight binary, the mutual tidal deformations of neutron stars get imprinted onto observables, encoding information about their internal structure at supranuclear densities and gravity in the extreme-gravity regime. Gravitational wave (GW) observations of their late binary inspiral may serve as a tool to extract the individual tidal deformabilities, but this is made difficult by degeneracies between them in the GW model. We here resolve this problem by discovering approximately equation-of-state (EoS)-insensitive relations between dimensionless combinations of the individual tidal deformabilities. We show that these relations break degeneracies in the GW model, allowing for the accurate extraction of both deformabilities. Such measurements can be used to better differentiate between EoS models, and improve tests of general relativity and cosmology.
NASA Astrophysics Data System (ADS)
Mochnacki, S. W.
1981-04-01
Densities, corrected primary colors, minimum periods, inferred masses, luminosities, and specific angular momenta are computed from data on 37 W Ursae Majoris systems. A-type systems, having lower densities and angular momenta than the W-type systems, are shown to be evolved, and a new class of contact binary is identified, the OO Aquilae systems, whose members have evolved into contact. Evolutionary grids based on the contact condition agree with observation, except in that the evolved A-type systems have lost more angular momentum than predicted by gravitational radiation alone. This is accounted for by stellar wind magnetic braking, which is shown to be effective on a shorter time scale and to be important in other kinds of binaries containing a cool, tidally coupled component.
1996-04-02
This software is a set of tools for the design and analysis of binary optics. It consists of a series of stand-alone programs written in C and some scripts written in an application-specific language interpreted by a CAD program called DW2000. This software can be used to optimize the design and placement of a complex lens array from input to output and produce contours, mask designs, and data exported for diffractive optic analysis.
NASA Technical Reports Server (NTRS)
Bokhari, Shahid H.; Crockett, Thomas W.; Nicol, David M.
1993-01-01
Binary dissection is widely used to partition non-uniform domains over parallel computers. This algorithm does not consider the perimeter, surface area, or aspect ratio of the regions being generated and can yield decompositions that have poor communication to computation ratio. Parametric Binary Dissection (PBD) is a new algorithm in which each cut is chosen to minimize load + lambda x(shape). In a 2 (or 3) dimensional problem, load is the amount of computation to be performed in a subregion and shape could refer to the perimeter (respectively surface) of that subregion. Shape is a measure of communication overhead and the parameter permits us to trade off load imbalance against communication overhead. When A is zero, the algorithm reduces to plain binary dissection. This algorithm can be used to partition graphs embedded in 2 or 3-d. Load is the number of nodes in a subregion, shape the number of edges that leave that subregion, and lambda the ratio of time to communicate over an edge to the time to compute at a node. An algorithm is presented that finds the depth d parametric dissection of an embedded graph with n vertices and e edges in O(max(n log n, de)) time, which is an improvement over the O(dn log n) time of plain binary dissection. Parallel versions of this algorithm are also presented; the best of these requires O((n/p) log(sup 3)p) time on a p processor hypercube, assuming graphs of bounded degree. How PBD is applied to 3-d unstructured meshes and yields partitions that are better than those obtained by plain dissection is described. Its application to the color image quantization problem is also discussed, in which samples in a high-resolution color space are mapped onto a lower resolution space in a way that minimizes the color error.
Multiscale Hy3S: Hybrid stochastic simulation for supercomputers
Salis, Howard; Sotiropoulos, Vassilios; Kaznessis, Yiannis N
2006-01-01
Background Stochastic simulation has become a useful tool to both study natural biological systems and design new synthetic ones. By capturing the intrinsic molecular fluctuations of "small" systems, these simulations produce a more accurate picture of single cell dynamics, including interesting phenomena missed by deterministic methods, such as noise-induced oscillations and transitions between stable states. However, the computational cost of the original stochastic simulation algorithm can be high, motivating the use of hybrid stochastic methods. Hybrid stochastic methods partition the system into multiple subsets and describe each subset as a different representation, such as a jump Markov, Poisson, continuous Markov, or deterministic process. By applying valid approximations and self-consistently merging disparate descriptions, a method can be considerably faster, while retaining accuracy. In this paper, we describe Hy3S, a collection of multiscale simulation programs. Results Building on our previous work on developing novel hybrid stochastic algorithms, we have created the Hy3S software package to enable scientists and engineers to both study and design extremely large well-mixed biological systems with many thousands of reactions and chemical species. We have added adaptive stochastic numerical integrators to permit the robust simulation of dynamically stiff biological systems. In addition, Hy3S has many useful features, including embarrassingly parallelized simulations with MPI; special discrete events, such as transcriptional and translation elongation and cell division; mid-simulation perturbations in both the number of molecules of species and reaction kinetic parameters; combinatorial variation of both initial conditions and kinetic parameters to enable sensitivity analysis; use of NetCDF optimized binary format to quickly read and write large datasets; and a simple graphical user interface, written in Matlab, to help users create biological systems
Evolutionary models of binaries
NASA Astrophysics Data System (ADS)
van Rensbergen, Walter; Mennekens, Nicki; de Greve, Jean-Pierre; Jansen, Kim; de Loore, Bert
2011-07-01
We have put on CDS a catalog containing 561 evolutionary models of binaries: J/A+A/487/1129 (Van Rensbergen+, 2008). The catalog covers a grid of binaries with a B-type primary at birth, different values for the initial mass ratio and a wide range of initial orbital periods. The evolution was calculated with the Brussels code in which we introduced the spinning up and the creation of a hot spot on the gainer or its accretion disk, caused by impacting mass coming from the donor. When the kinetic energy of fast rotation added to the radiative energy of the hot spot exceeds the binding energy, a fraction of the transferred matter leaves the system: the evolution is liberal during a short lasting era of rapid mass transfer. The spin-up of the gainer was modulated using both strong and weak tides. The catalog shows the results for both types. For comparison, we included the evolutionary tracks calculated with the conservative assumption. Binaries with an initial primary below 6 Msolar show hardly any mass loss from the system and thus evolve conservatively. Above this limit differences between liberal and conservative evolution grow with increasing initial mass of the primary star.
Stochastic superparameterization in quasigeostrophic turbulence
Grooms, Ian; Majda, Andrew J.
2014-08-15
In this article we expand and develop the authors' recent proposed methodology for efficient stochastic superparameterization algorithms for geophysical turbulence. Geophysical turbulence is characterized by significant intermittent cascades of energy from the unresolved to the resolved scales resulting in complex patterns of waves, jets, and vortices. Conventional superparameterization simulates large scale dynamics on a coarse grid in a physical domain, and couples these dynamics to high-resolution simulations on periodic domains embedded in the coarse grid. Stochastic superparameterization replaces the nonlinear, deterministic eddy equations on periodic embedded domains by quasilinear stochastic approximations on formally infinite embedded domains. The result is a seamless algorithm which never uses a small scale grid and is far cheaper than conventional SP, but with significant success in difficult test problems. Various design choices in the algorithm are investigated in detail here, including decoupling the timescale of evolution on the embedded domains from the length of the time step used on the coarse grid, and sensitivity to certain assumed properties of the eddies (e.g. the shape of the assumed eddy energy spectrum). We present four closures based on stochastic superparameterization which elucidate the properties of the underlying framework: a ‘null hypothesis’ stochastic closure that uncouples the eddies from the mean, a stochastic closure with nonlinearly coupled eddies and mean, a nonlinear deterministic closure, and a stochastic closure based on energy conservation. The different algorithms are compared and contrasted on a stringent test suite for quasigeostrophic turbulence involving two-layer dynamics on a β-plane forced by an imposed background shear. The success of the algorithms developed here suggests that they may be fruitfully applied to more realistic situations. They are expected to be particularly useful in providing accurate and
Stochastic roots of growth phenomena
NASA Astrophysics Data System (ADS)
De Lauro, E.; De Martino, S.; De Siena, S.; Giorno, V.
2014-05-01
We show that the Gompertz equation describes the evolution in time of the median of a geometric stochastic process. Therefore, we induce that the process itself generates the growth. This result allows us further to exploit a stochastic variational principle to take account of self-regulation of growth through feedback of relative density variations. The conceptually well defined framework so introduced shows its usefulness by suggesting a form of control of growth by exploiting external actions.
NASA Technical Reports Server (NTRS)
Griebeler, Elmer L.
2011-01-01
Binary communication through long cables, opto-isolators, isolating transformers, or repeaters can become distorted in characteristic ways. The usual solution is to slow the communication rate, change to a different method, or improve the communication media. It would help if the characteristic distortions could be accommodated at the receiving end to ease the communication problem. The distortions come from loss of the high-frequency content, which adds slopes to the transitions from ones to zeroes and zeroes to ones. This weakens the definition of the ones and zeroes in the time domain. The other major distortion is the reduction of low frequency, which causes the voltage that defines the ones or zeroes to drift out of recognizable range. This development describes a method for recovering a binary data stream from a signal that has been subjected to a loss of both higher-frequency content and low-frequency content that is essential to define the difference between ones and zeroes. The method makes use of the frequency structure of the waveform created by the data stream, and then enhances the characteristics related to the data to reconstruct the binary switching pattern. A major issue is simplicity. The approach taken here is to take the first derivative of the signal and then feed it to a hysteresis switch. This is equivalent in practice to using a non-resonant band pass filter feeding a Schmitt trigger. Obviously, the derivative signal needs to be offset to halfway between the thresholds of the hysteresis switch, and amplified so that the derivatives reliably exceed the thresholds. A transition from a zero to a one is the most substantial, fastest plus movement of voltage, and therefore will create the largest plus first derivative pulse. Since the quiet state of the derivative is sitting between the hysteresis thresholds, the plus pulse exceeds the plus threshold, switching the hysteresis switch plus, which re-establishes the data zero to one transition
Brennan J. M.; Blaskiewicz, M.; Mernick, K.
2012-05-20
The full 6-dimensional [x,x'; y,y'; z,z'] stochastic cooling system for RHIC was completed and operational for the FY12 Uranium-Uranium collider run. Cooling enhances the integrated luminosity of the Uranium collisions by a factor of 5, primarily by reducing the transverse emittances but also by cooling in the longitudinal plane to preserve the bunch length. The components have been deployed incrementally over the past several runs, beginning with longitudinal cooling, then cooling in the vertical planes but multiplexed between the Yellow and Blue rings, next cooling both rings simultaneously in vertical (the horizontal plane was cooled by betatron coupling), and now simultaneous horizontal cooling has been commissioned. The system operated between 5 and 9 GHz and with 3 x 10{sup 8} Uranium ions per bunch and produces a cooling half-time of approximately 20 minutes. The ultimate emittance is determined by the balance between cooling and emittance growth from Intra-Beam Scattering. Specific details of the apparatus and mathematical techniques for calculating its performance have been published elsewhere. Here we report on: the method of operation, results with beam, and comparison of results to simulations.
Detecting compact galactic binaries using a hybrid swarm-based algorithm
NASA Astrophysics Data System (ADS)
Bouffanais, Yann; Porter, Edward K.
2016-03-01
Compact binaries in our galaxy are expected to be one of the main sources of gravitational waves for the future eLISA mission. During the mission lifetime, many thousands of galactic binaries should be individually resolved. However, the identification of the sources and the extraction of the signal parameters in a noisy environment are real challenges for data analysis. So far, stochastic searches have proven to be the most successful for this problem. In this work, we present the first application of a swarm-based algorithm combining Particle Swarm Optimization and Differential Evolution. These algorithms have been shown to converge faster to global solutions on complicated likelihood surfaces than other stochastic methods. We first demonstrate the effectiveness of the algorithm for the case of a single binary in a 1-mHz search bandwidth. This interesting problem gave the algorithm plenty of opportunity to fail, as it can be easier to find a strong noise peak rather than the signal itself. After a successful detection of a fictitious low-frequency source, as well as the verification binary RXJ 0806.3 +1527 , we then applied the algorithm to the detection of multiple binaries, over different search bandwidths, in the cases of low and mild source confusion. In all cases, we show that we can successfully identify the sources and recover the true parameters within a 99% credible interval.
Diffusion of test particles in stochastic magnetic fields in the percolative regime
Neuer, Marcus; Spatschek, Karl H.
2006-09-15
For stochastic magnetic flux functions with percolative contours the test particle transport is investigated. The calculations make use of the stochastic Liouville approach. They start from the so-called A-Langevin equations, including stochastic magnetic field components and binary collisions. Using the decorrelation trajectory method, a relation between the Lagrangian velocity correlation function and the Eulerian magnetic field correlation is derived and introduced into the Green-Kubo formalism. Finite Larmor radius effects are included. Interesting results are presented in the percolation regime corresponding to high Kubo numbers. Previous results are found to be limiting cases for small Kubo numbers. For different percolative scenarios the diffusion is analyzed and strong influences of the percolative structures on the transport scaling are found. The finite Larmor radius effects are discussed in detail. Numerical simulations of the A-Langevin equation confirm the semianalytical predictions.
Stochastic bifurcation, slow fluctuations, and bistability as an origin of biochemical complexity.
Qian, Hong; Shi, Pei-Zhe; Xing, Jianhua
2009-06-28
We present a simple, unifying theory for stochastic biochemical systems with multiple time-scale dynamics that exhibit noise-induced bistability in an open-chemical environment, while the corresponding macroscopic reaction is unistable. Nonlinear stochastic biochemical systems like these are fundamentally different from classical systems in equilibrium or near-equilibrium steady state whose fluctuations are unimodal following Einstein-Onsager-Lax-Keizer theory. We show that noise-induced bistability in general arises from slow fluctuations, and a pitchfork bifurcation occurs as the rate of fluctuations decreases. Since an equilibrium distribution, due to detailed balance, has to be independent of changes in time-scale, the bifurcation is necessarily a driven phenomenon. As examples, we analyze three biochemical networks of currently interest: self-regulating gene, stochastic binary decision, and phosphorylation-dephosphorylation cycle with fluctuating kinase. The implications of bistability to biochemical complexity are discussed. PMID:19506761
Binary optics: Trends and limitations
NASA Technical Reports Server (NTRS)
Farn, Michael W.; Veldkamp, Wilfrid B.
1993-01-01
We describe the current state of binary optics, addressing both the technology and the industry (i.e., marketplace). With respect to the technology, the two dominant aspects are optical design methods and fabrication capabilities, with the optical design problem being limited by human innovation in the search for new applications and the fabrication issue being limited by the availability of resources required to improve fabrication capabilities. With respect to the industry, the current marketplace does not favor binary optics as a separate product line and so we expect that companies whose primary purpose is the production of binary optics will not represent the bulk of binary optics production. Rather, binary optics' more natural role is as an enabling technology - a technology which will directly result in a competitive advantage in a company's other business areas - and so we expect that the majority of binary optics will be produced for internal use.
NASA Astrophysics Data System (ADS)
Ajith, P.; Fotopoulos, N.; Privitera, S.; Neunzert, A.; Mazumder, N.; Weinstein, A. J.
2014-04-01
We report the construction of a three-dimensional template bank for the search for gravitational waves from inspiralling binaries consisting of spinning compact objects. The parameter space consists of two dimensions describing the mass parameters and one "reduced-spin" parameter, which describes the secular (nonprecessing) spin effects in the waveform. The template placement is based on an efficient stochastic algorithm and makes use of the semianalytical computation of a metric in the parameter space. We demonstrate that for "low-mass" (m1+m2≲12M⊙) binaries, this template bank achieves effective fitting factors ˜0.92- 0.99 towards signals from generic spinning binaries in the advanced detector era over the entire parameter space of interest (including binary neutron stars, binary black holes, and black-hole neutron-star binaries). This provides a powerful and viable method for searching for gravitational waves from generic spinning low-mass compact binaries. Under the assumption that spin magnitudes of black holes (neutron stars) are uniformly distributed between 0-0.98 [0-0.4] and spin angles are isotropically distributed, the expected improvement in the average detection volume (at a fixed signal-to-noise-ratio threshold) of a search using this reduced-spin bank is ˜20%-52%, as compared to a search using a nonspinning bank.
Jumper, Peter H.; Fisher, Robert T.
2013-05-20
The formation of brown dwarfs (BDs) poses a key challenge to star formation theory. The observed dearth of nearby ({<=}5 AU) BD companions to solar mass stars, known as the BD desert, as well as the tendency for low-mass binary systems to be more tightly bound than stellar binaries, has been cited as evidence for distinct formation mechanisms for BDs and stars. In this paper, we explore the implications of the minimal hypothesis that BDs in binary systems originate via the same fundamental fragmentation mechanism as stars, within isolated, turbulent giant molecular cloud cores. We demonstrate analytically that the scaling of specific angular momentum with turbulent core mass naturally gives rise to the BD desert, as well as wide BD binary systems. Further, we show that the turbulent core fragmentation model also naturally predicts that very low mass binary and BD/BD systems are more tightly bound than stellar systems. In addition, in order to capture the stochastic variation intrinsic to turbulence, we generate 10{sup 4} model turbulent cores with synthetic turbulent velocity fields to show that the turbulent fragmentation model accommodates a small fraction of binary BDs with wide separations, similar to observations. Indeed, the picture which emerges from the turbulent fragmentation model is that a single fragmentation mechanism may largely shape both stellar and BD binary distributions during formation.
The Search for Trojan Binaries
NASA Astrophysics Data System (ADS)
Merline, William J.; Tamblyn, P. M.; Dumas, C.; Close, L. M.; Chapman, C. R.; Durda, D. D.; Levison, H. F.; Hamilton, D. P.; Nesvorny, D.; Storrs, A.; Enke, B.; Menard, F.
2007-10-01
We report on observations of Jupiter Trojan asteroids in search of binaries. We made observations using HST/ACS of 35 small (V = 17.5-19.5) objects in Cycle 14, without detecting any binaires. We have also observed a few dozen Trojans in our ground-based study of larger Trojans, discovering only one binary. The result is that the frequency of moderately-separated binaries among the Trojans seem rather low, likely less than 5%. Although we have only statistics of small numbers, it appears that the binary frequencies are more akin to the larger Main-Belt asteroids, than to the frequency in the TNO region, which probably exceeds 10%. The low frequency is inconsistent with the projections based on Trojan contact binaries by Mann et al. (2006, BAAS 38, 6509), although our work cannot detect very close or contact binaries. We discovered and characterized the orbit and density of the first Trojan binary, (617) Patroclus using the Gemini AO system (Merline et al. 2001 IAUC 7741). A second binary, (624) Hecktor, has now been reported by Marchis et al. (2006, IAUC 8732). In a broad survey of Main Belt asteroids, we found that, among the larger objects, the binary fraction is about 2%, while we are finding that the fraction is significantly higher among smaller asteroids (and this is even more apparent from lightcurve discoveries). Further, characteristics of these smaller systems indicate a distinctly different formation mechanism the the larger MB binaries. Because the Trojans have compositions that are more like the KBOs, while they live in a collisional environment much more like the Main Belt than the KBOs, these objects should hold vital clues to binary formation mechanics. And because there seems to be a distinct difference in larger and smaller main-belt binaries, we sought to detect such differences among the Trojans as well.
Stacking with stochastic cooling
NASA Astrophysics Data System (ADS)
Caspers, Fritz; Möhl, Dieter
2004-10-01
Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles 'seen' by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly 'protected' from the Schottky noise of the stack. Vice versa the stack has to be efficiently 'shielded' against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 105 the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters). In the 'old AA', where the antiproton collection and stacking was done in one single ring, the injected beam was further shielded during cooling by means of a movable shutter. The complexity of these systems is very high. For more modest stacking ratios, one might use azimuthal rather than radial separation of stack and injected beam. Schematically half of the circumference would be used to accept and cool new beam and the remainder to house the stack. Fast gating is then required between the high gain cooling of the injected beam and the low gain stack cooling. RF-gymnastics are used to merge the pre-cooled batch with the stack, to re-create free space for the next injection, and to capture the new batch. This scheme is less demanding for the storage ring lattice, but at the expense of some reduction in stacking rate. The talk reviews the 'radial' separation schemes and also gives some considerations to the 'azimuthal' schemes.
Evolution of Close Binary Systems
Yakut, K; Eggleton, P
2005-01-24
We collected data on the masses, radii, etc. of three classes of close binary stars: low-temperature contact binaries (LTCBs), near-contact binaries (NCBs), and detached close binaries (DCBs). They restrict themselves to systems where (1) both components are, at least arguably, near the Main Sequence, (2) the periods are less than a day, and (3) there is both spectroscopic and photometric analysis leading to reasonably reliable data. They discuss the possible evolutionary connections between these three classes, emphasizing the roles played by mass loss and angular momentum loss in rapidly-rotating cool stars.
Low autocorrelation binary sequences
NASA Astrophysics Data System (ADS)
Packebusch, Tom; Mertens, Stephan
2016-04-01
Binary sequences with minimal autocorrelations have applications in communication engineering, mathematics and computer science. In statistical physics they appear as groundstates of the Bernasconi model. Finding these sequences is a notoriously hard problem, that so far can be solved only by exhaustive search. We review recent algorithms and present a new algorithm that finds optimal sequences of length N in time O(N {1.73}N). We computed all optimal sequences for N≤slant 66 and all optimal skewsymmetric sequences for N≤slant 119.
Chu, J.C.
1958-06-10
A binary storage device is described comprising a toggle provided with associsted improved driver circuits adapted to produce reliable action of the toggle during clearing of the toggle to one of its two states. or transferring information into and out of the toggle. The invention resides in the development of a self-regulating driver circuit to minimize the fluctuation of the driving voltages for the toggle. The disclosed driver circuit produces two pulses in response to an input pulse: a first or ''clear'' pulse beginning nt substantially the same time but endlrg slightly sooner than the second or ''transfer'' output pulse.
NASA Astrophysics Data System (ADS)
Griffin, R. Elizabeth; Ake, Thomas B.
This opening chapter provides a brief historical overview of the ζ Aur stars, with a focus on what K.O. Wright, his predecessors and colleagues at the Dominion Astrophysical Observatory, and his contemporaries further afield, achieved during the era of pre-electronic data. It places the topic within the framework of modern observing, data management and computing, outlines the principal features of the chromospheric-eclipse phenomena which single out the ζ Aur binaries for special study, and describes the considerable potential which this remarkable yet very select group of stars offers for increasing our understanding of stellar physics.
A Stochastic Collocation Algorithm for Uncertainty Analysis
NASA Technical Reports Server (NTRS)
Mathelin, Lionel; Hussaini, M. Yousuff; Zang, Thomas A. (Technical Monitor)
2003-01-01
This report describes a stochastic collocation method to adequately handle a physically intrinsic uncertainty in the variables of a numerical simulation. For instance, while the standard Galerkin approach to Polynomial Chaos requires multi-dimensional summations over the stochastic basis functions, the stochastic collocation method enables to collapse those summations to a one-dimensional summation only. This report furnishes the essential algorithmic details of the new stochastic collocation method and provides as a numerical example the solution of the Riemann problem with the stochastic collocation method used for the discretization of the stochastic parameters.
Enhanced algorithms for stochastic programming
Krishna, A.S.
1993-09-01
In this dissertation, we present some of the recent advances made in solving two-stage stochastic linear programming problems of large size and complexity. Decomposition and sampling are two fundamental components of techniques to solve stochastic optimization problems. We describe improvements to the current techniques in both these areas. We studied different ways of using importance sampling techniques in the context of Stochastic programming, by varying the choice of approximation functions used in this method. We have concluded that approximating the recourse function by a computationally inexpensive piecewise-linear function is highly efficient. This reduced the problem from finding the mean of a computationally expensive functions to finding that of a computationally inexpensive function. Then we implemented various variance reduction techniques to estimate the mean of a piecewise-linear function. This method achieved similar variance reductions in orders of magnitude less time than, when we directly applied variance-reduction techniques directly on the given problem. In solving a stochastic linear program, the expected value problem is usually solved before a stochastic solution and also to speed-up the algorithm by making use of the information obtained from the solution of the expected value problem. We have devised a new decomposition scheme to improve the convergence of this algorithm.
Stochastic simulation in systems biology
Székely, Tamás; Burrage, Kevin
2014-01-01
Natural systems are, almost by definition, heterogeneous: this can be either a boon or an obstacle to be overcome, depending on the situation. Traditionally, when constructing mathematical models of these systems, heterogeneity has typically been ignored, despite its critical role. However, in recent years, stochastic computational methods have become commonplace in science. They are able to appropriately account for heterogeneity; indeed, they are based around the premise that systems inherently contain at least one source of heterogeneity (namely, intrinsic heterogeneity). In this mini-review, we give a brief introduction to theoretical modelling and simulation in systems biology and discuss the three different sources of heterogeneity in natural systems. Our main topic is an overview of stochastic simulation methods in systems biology. There are many different types of stochastic methods. We focus on one group that has become especially popular in systems biology, biochemistry, chemistry and physics. These discrete-state stochastic methods do not follow individuals over time; rather they track only total populations. They also assume that the volume of interest is spatially homogeneous. We give an overview of these methods, with a discussion of the advantages and disadvantages of each, and suggest when each is more appropriate to use. We also include references to software implementations of them, so that beginners can quickly start using stochastic methods for practical problems of interest. PMID:25505503
Stochastic models: theory and simulation.
Field, Richard V., Jr.
2008-03-01
Many problems in applied science and engineering involve physical phenomena that behave randomly in time and/or space. Examples are diverse and include turbulent flow over an aircraft wing, Earth climatology, material microstructure, and the financial markets. Mathematical models for these random phenomena are referred to as stochastic processes and/or random fields, and Monte Carlo simulation is the only general-purpose tool for solving problems of this type. The use of Monte Carlo simulation requires methods and algorithms to generate samples of the appropriate stochastic model; these samples then become inputs and/or boundary conditions to established deterministic simulation codes. While numerous algorithms and tools currently exist to generate samples of simple random variables and vectors, no cohesive simulation tool yet exists for generating samples of stochastic processes and/or random fields. There are two objectives of this report. First, we provide some theoretical background on stochastic processes and random fields that can be used to model phenomena that are random in space and/or time. Second, we provide simple algorithms that can be used to generate independent samples of general stochastic models. The theory and simulation of random variables and vectors is also reviewed for completeness.
Variance decomposition in stochastic simulators.
Le Maître, O P; Knio, O M; Moraes, A
2015-06-28
This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models. PMID:26133418
Optimization of Monte Carlo transport simulations in stochastic media
Liang, C.; Ji, W.
2012-07-01
This paper presents an accurate and efficient approach to optimize radiation transport simulations in a stochastic medium of high heterogeneity, like the Very High Temperature Gas-cooled Reactor (VHTR) configurations packed with TRISO fuel particles. Based on a fast nearest neighbor search algorithm, a modified fast Random Sequential Addition (RSA) method is first developed to speed up the generation of the stochastic media systems packed with both mono-sized and poly-sized spheres. A fast neutron tracking method is then developed to optimize the next sphere boundary search in the radiation transport procedure. In order to investigate their accuracy and efficiency, the developed sphere packing and neutron tracking methods are implemented into an in-house continuous energy Monte Carlo code to solve an eigenvalue problem in VHTR unit cells. Comparison with the MCNP benchmark calculations for the same problem indicates that the new methods show considerably higher computational efficiency. (authors)
Some variance reduction methods for numerical stochastic homogenization.
Blanc, X; Le Bris, C; Legoll, F
2016-04-28
We give an overview of a series of recent studies devoted to variance reduction techniques for numerical stochastic homogenization. Numerical homogenization requires that a set of problems is solved at the microscale, the so-called corrector problems. In a random environment, these problems are stochastic and therefore need to be repeatedly solved, for several configurations of the medium considered. An empirical average over all configurations is then performed using the Monte Carlo approach, so as to approximate the effective coefficients necessary to determine the macroscopic behaviour. Variance severely affects the accuracy and the cost of such computations. Variance reduction approaches, borrowed from other contexts in the engineering sciences, can be useful. Some of these variance reduction techniques are presented, studied and tested here. PMID:27002065
Koronis binaries and the role of families in binary frequency
NASA Astrophysics Data System (ADS)
Merline, W. J.; Tamblyn, P. M.; Nesvorny, D.; Durda, D. D.; Chapman, C. R.; Dumas, C.; Owen, W. M.; Storrs, A. D.; Close, L. M.; Menard, F.
2005-08-01
Our ground-based adaptive optics observations of many larger Koronis members show no binaries, while our HST survey of smaller Koronis members (say smaller than 10 km) shows a surprising 20% binary fraction. Admittedly, this is from small-number statistics, but we nonetheless calculate a 99% confidence that the binary fraction is different from the 2% we observe among the larger (over 20km) main belt asteroids as a whole. In addition, we estimate that among the two young families (Karin and Veritas) that we surveyed for binaries in our HST Cy 13 program, the binary fraction appears to be less than 5%. These young families both have significantly smaller progenitors than the Koronis family. We have speculated that progenitor size may be a more important factor than age in determination of binary frequency. But here we suggest an alternative idea, that the binary fraction may be more related to what part of the family's size distribution is sampled. Our HST program targeted objects of the same physical sizes, but was clearly sampling further down the size distribution (to smaller sizes, relative to the largest remnant) in the Koronis sample than was the case for Karin and Veritas, which we sampled mostly at the larger sizes, relatively. Our SPH collision models are estimating the typical size-frequency distributions to be expected from catastrophic and non-catastrophic impact events. But they are also appear to be showing that the largest fragments from a collision are less likely to form binaries (as co-orbiting ejecta pairs) than are the smaller fragments. Thus, it might be expected that we would have found fewer binaries among Karin and Veritas than among the Koronis sample. In fact, models of the Karin breakup show binary formation to be unlikely in the size range measured. It some might be tempted to tie the small end of the main-belt binary population to the binaries seen among the NEAs (also small and also showing about 20% fraction), given the 20% fraction
NASA Astrophysics Data System (ADS)
Park, Conner; Read, Jocelyn; Flynn, Eric; Lockett-Ruiz, Veronica
2016-03-01
Gravitational waves, predicted by Einstein's Theory of Relativity, are a new frontier in astronomical observation we can use to observe phenomena in the universe. Laser Interferometer Gravitational wave Observatory (LIGO) is currently searching for gravitational wave signals, and requires accurate predictions in order to best extract astronomical signals from all other sources of fluctuations. The focus of my research is in increasing the accuracy of Post-Newtonian models of binary neutron star coalescence to match the computationally expensive Numerical models. Numerical simulations can take months to compute a couple of milliseconds of signal whereas the Post-Newtonian can generate similar signals in seconds. However the Post-Newtonian model is an approximation, e.g. the Taylor T4 Post-Newtonian model assumes that the two bodies in the binary neutron star system are point charges. To increase the effectiveness of the approximation, I added in tidal effects, resonance frequencies, and a windowing function. Using these observed effects from simulations significantly increases the Post-Newtonian model's similarity to the Numerical signal.
NASA Technical Reports Server (NTRS)
Lacksonen, Thomas A.
1994-01-01
Small space flight project design at NASA Langley Research Center goes through a multi-phase process from preliminary analysis to flight operations. The process insures that each system achieves its technical objectives with demonstrated quality and within planned budgets and schedules. A key technical component of early phases is decision analysis, which is a structure procedure for determining the best of a number of feasible concepts based upon project objectives. Feasible system concepts are generated by the designers and analyzed for schedule, cost, risk, and technical measures. Each performance measure value is normalized between the best and worst values and a weighted average score of all measures is calculated for each concept. The concept(s) with the highest scores are retained, while others are eliminated from further analysis. This project automated and enhanced the decision analysis process. Automation of the decision analysis process was done by creating a user-friendly, menu-driven, spreadsheet macro based decision analysis software program. The program contains data entry dialog boxes, automated data and output report generation, and automated output chart generation. The enhancements to the decision analysis process permit stochastic data entry and analysis. Rather than enter single measure values, the designers enter the range and most likely value for each measure and concept. The data can be entered at the system or subsystem level. System level data can be calculated as either sum, maximum, or product functions of the subsystem data. For each concept, the probability distributions are approximated for each measure and the total score for each concept as either constant, triangular, normal, or log-normal distributions. Based on these distributions, formulas are derived for the probability that the concept meets any given constraint, the probability that the concept meets all constraints, and the probability that the concept is within a given
Stochastic determination of matrix determinants.
Dorn, Sebastian; Ensslin, Torsten A
2015-07-01
Matrix determinants play an important role in data analysis, in particular when Gaussian processes are involved. Due to currently exploding data volumes, linear operations-matrices-acting on the data are often not accessible directly but are only represented indirectly in form of a computer routine. Such a routine implements the transformation a data vector undergoes under matrix multiplication. While efficient probing routines to estimate a matrix's diagonal or trace, based solely on such computationally affordable matrix-vector multiplications, are well known and frequently used in signal inference, there is no stochastic estimate for its determinant. We introduce a probing method for the logarithm of a determinant of a linear operator. Our method rests upon a reformulation of the log-determinant by an integral representation and the transformation of the involved terms into stochastic expressions. This stochastic determinant determination enables large-size applications in Bayesian inference, in particular evidence calculations, model comparison, and posterior determination. PMID:26274302
Mechanical autonomous stochastic heat engines
NASA Astrophysics Data System (ADS)
Serra-Garcia, Marc; Foehr, Andre; Moleron, Miguel; Lydon, Joseph; Chong, Christopher; Daraio, Chiara; . Team
Stochastic heat engines extract work from the Brownian motion of a set of particles out of equilibrium. So far, experimental demonstrations of stochastic heat engines have required extreme operating conditions or nonautonomous external control systems. In this talk, we will present a simple, purely classical, autonomous stochastic heat engine that uses the well-known tension induced nonlinearity in a string. Our engine operates between two heat baths out of equilibrium, and transfers energy from the hot bath to a work reservoir. This energy transfer occurs even if the work reservoir is at a higher temperature than the hot reservoir. The talk will cover a theoretical investigation and experimental results on a macroscopic setup subject to external noise excitations. This system presents an opportunity for the study of non equilibrium thermodynamics and is an interesting candidate for innovative energy conversion devices.
Stochastic Control of Pharmacokinetic Systems
Schumitzky, Alan; Milman, Mark; Katz, Darryl; D'Argenio, David Z.; Jelliffe, Roger W.
1983-01-01
The application of stochastic control theory to the clinical problem of designing a dosage regimen for a pharmacokinetic system is considered. This involves defining a patient-dependent pharmacokinetic model and a clinically appropriate therapeutic goal. Most investigators have attacked the dosage regimen problem by first estimating the values of the patient's unknown model parameters and then controlling the system as if those parameter estimates were in fact the true values. We have developed an alternative approach utilizing stochastic control theory in which the estimation and control phases of the problem are not separated. Mathematical results are given which show that this approach yields significant potential improvement in attaining, for example, therapeutic serum level goals over methods in which estimation and control are separated. Finally, a computer simulation is given for the optimal stochastic control of an aminoglycoside regimen which shows that this approach is feasible for practical applications.
Correlation functions in stochastic inflation
NASA Astrophysics Data System (ADS)
Vennin, Vincent; Starobinsky, Alexei A.
2015-09-01
Combining the stochastic and formalisms, we derive non-perturbative analytical expressions for all correlation functions of scalar perturbations in single-field, slow-roll inflation. The standard, classical formulas are recovered as saddle-point limits of the full results. This yields a classicality criterion that shows that stochastic effects are small only if the potential is sub-Planckian and not too flat. The saddle-point approximation also provides an expansion scheme for calculating stochastic corrections to observable quantities perturbatively in this regime. In the opposite regime, we show that a strong suppression in the power spectrum is generically obtained, and we comment on the physical implications of this effect.
Stochastic determination of matrix determinants
NASA Astrophysics Data System (ADS)
Dorn, Sebastian; Enßlin, Torsten A.
2015-07-01
Matrix determinants play an important role in data analysis, in particular when Gaussian processes are involved. Due to currently exploding data volumes, linear operations—matrices—acting on the data are often not accessible directly but are only represented indirectly in form of a computer routine. Such a routine implements the transformation a data vector undergoes under matrix multiplication. While efficient probing routines to estimate a matrix's diagonal or trace, based solely on such computationally affordable matrix-vector multiplications, are well known and frequently used in signal inference, there is no stochastic estimate for its determinant. We introduce a probing method for the logarithm of a determinant of a linear operator. Our method rests upon a reformulation of the log-determinant by an integral representation and the transformation of the involved terms into stochastic expressions. This stochastic determinant determination enables large-size applications in Bayesian inference, in particular evidence calculations, model comparison, and posterior determination.
Nonlinear optimization for stochastic simulations.
Johnson, Michael M.; Yoshimura, Ann S.; Hough, Patricia Diane; Ammerlahn, Heidi R.
2003-12-01
This report describes research targeting development of stochastic optimization algorithms and their application to mission-critical optimization problems in which uncertainty arises. The first section of this report covers the enhancement of the Trust Region Parallel Direct Search (TRPDS) algorithm to address stochastic responses and the incorporation of the algorithm into the OPT++ optimization library. The second section describes the Weapons of Mass Destruction Decision Analysis Center (WMD-DAC) suite of systems analysis tools and motivates the use of stochastic optimization techniques in such non-deterministic simulations. The third section details a batch programming interface designed to facilitate criteria-based or algorithm-driven execution of system-of-system simulations. The fourth section outlines the use of the enhanced OPT++ library and batch execution mechanism to perform systems analysis and technology trade-off studies in the WMD detection and response problem domain.
Binary stars can provide the `missing photons' needed for reionization
NASA Astrophysics Data System (ADS)
Ma, Xiangcheng; Hopkins, Philip F.; Kasen, Daniel; Quataert, Eliot; Faucher-Giguère, Claude-André; Kereš, Dušan; Murray, Norman; Strom, Allison
2016-07-01
Empirical constraints on reionization require galactic ionizing photon escape fractions fesc ≳ 20 per cent, but recent high-resolution radiation-hydrodynamic calculations have consistently found much lower values ˜1-5 per cent. While these models include strong stellar feedback and additional processes such as runaway stars, they almost exclusively consider stellar evolution models based on single (isolated) stars, despite the fact that most massive stars are in binaries. We re-visit these calculations, combining radiative transfer and high-resolution cosmological simulations with detailed models for stellar feedback from the Feedback in Realistic Environments project. For the first time, we use a stellar evolution model that includes a physically and observationally motivated treatment of binaries (the Binary Population and Spectral Synthesis model). Binary mass transfer and mergers enhance the population of massive stars at late times (≳3 Myr) after star formation, which in turn strongly enhances the late-time ionizing photon production (especially at low metallicities). These photons are produced after feedback from massive stars has carved escape channels in the interstellar medium, and so efficiently leak out of galaxies. As a result, the time-averaged `effective' escape fraction (ratio of escaped ionizing photons to observed 1500 Å photons) increases by factors ˜4-10, sufficient to explain reionization. While important uncertainties remain, we conclude that binary evolution may be critical for understanding the ionization of the Universe.
NASA Astrophysics Data System (ADS)
Maruyama, Ryota; Asakawa, Naoki
2014-09-01
A design of a bio-inspired signal/information processing device and the fabrication of a stochastic delay-derivative element (SDDE) using an immiscible polymer binary mixture of poly(L-lactic acid) with poly(ɛ-caprolactone) are described. A functional aspect of bio-inspired signal/information processing using both analogue electric circuits and numerical simulations are shown. Nano-thin films of polymeric binary mixtures were explored to realize the SDDE.
Multilevel Models for Binary Data
ERIC Educational Resources Information Center
Powers, Daniel A.
2012-01-01
The methods and models for categorical data analysis cover considerable ground, ranging from regression-type models for binary and binomial data, count data, to ordered and unordered polytomous variables, as well as regression models that mix qualitative and continuous data. This article focuses on methods for binary or binomial data, which are…
QB1 - Stochastic Gene Regulation
Munsky, Brian
2012-07-23
Summaries of this presentation are: (1) Stochastic fluctuations or 'noise' is present in the cell - Random motion and competition between reactants, Low copy, quantization of reactants, Upstream processes; (2) Fluctuations may be very important - Cell-to-cell variability, Cell fate decisions (switches), Signal amplification or damping, stochastic resonances; and (3) Some tools are available to mode these - Kinetic Monte Carlo simulations (SSA and variants), Moment approximation methods, Finite State Projection. We will see how modeling these reactions can tell us more about the underlying processes of gene regulation.
Stochastic kinetic mean field model
NASA Astrophysics Data System (ADS)
Erdélyi, Zoltán; Pasichnyy, Mykola; Bezpalchuk, Volodymyr; Tomán, János J.; Gajdics, Bence; Gusak, Andriy M.
2016-07-01
This paper introduces a new model for calculating the change in time of three-dimensional atomic configurations. The model is based on the kinetic mean field (KMF) approach, however we have transformed that model into a stochastic approach by introducing dynamic Langevin noise. The result is a stochastic kinetic mean field model (SKMF) which produces results similar to the lattice kinetic Monte Carlo (KMC). SKMF is, however, far more cost-effective and easier to implement the algorithm (open source program code is provided on
Stochastic Cooling Developments at GSI
Nolden, F.; Beckert, K.; Beller, P.; Dolinskii, A.; Franzke, B.; Jandewerth, U.; Nesmiyan, I.; Peschke, C.; Petri, P.; Steck, M.; Caspers, F.; Moehl, D.; Thorndahl, L.
2006-03-20
Stochastic Cooling is presently used at the existing storage ring ESR as a first stage of cooling for secondary heavy ion beams. In the frame of the FAIR project at GSI, stochastic cooling is planned to play a major role for the preparation of high quality antiproton and rare isotope beams. The paper describes the existing ESR system, the first stage cooling system at the planned Collector Ring, and will also cover first steps toward the design of an antiproton collection system at the planned RESR ring.
Stochastic modeling of Lagrangian accelerations
NASA Astrophysics Data System (ADS)
Reynolds, Andy
2002-11-01
It is shown how Sawford's second-order Lagrangian stochastic model (Phys. Fluids A 3, 1577-1586, 1991) for fluid-particle accelerations can be combined with a model for the evolution of the dissipation rate (Pope and Chen, Phys. Fluids A 2, 1437-1449, 1990) to produce a Lagrangian stochastic model that is consistent with both the measured distribution of Lagrangian accelerations (La Porta et al., Nature 409, 1017-1019, 2001) and Kolmogorov's similarity theory. The later condition is found not to be satisfied when a constant dissipation rate is employed and consistency with prescribed acceleration statistics is enforced through fulfilment of a well-mixed condition.
Stochastic Optimization of Complex Systems
Birge, John R.
2014-03-20
This project focused on methodologies for the solution of stochastic optimization problems based on relaxation and penalty methods, Monte Carlo simulation, parallel processing, and inverse optimization. The main results of the project were the development of a convergent method for the solution of models that include expectation constraints as in equilibrium models, improvement of Monte Carlo convergence through the use of a new method of sample batch optimization, the development of new parallel processing methods for stochastic unit commitment models, and the development of improved methods in combination with parallel processing for incorporating automatic differentiation methods into optimization.
Some remarks on Nelson's stochastic field
NASA Astrophysics Data System (ADS)
Lim, S. C.
1980-09-01
An attempt to extend Nelson's stochastic quantization procedure to tensor fields indicates that the results of Guerra et al. on the connection between a euclidean Markov scalar field and a stochastic scalar field fails to hold for tensor fields.
Partial ASL extensions for stochastic programming.
2010-03-31
partially completed extensions for stochastic programming to the AMPL/solver interface library (ASL).modeling and experimenting with stochastic recourse problems. This software is not primarily for military applications
Theory, technology, and technique of stochastic cooling
Marriner, J.
1993-10-01
The theory and technological implementation of stochastic cooling is described. Theoretical and technological limitations are discussed. Data from existing stochastic cooling systems are shown to illustrate some useful techniques.
Signature Visualization of Software Binaries
Panas, T
2008-07-01
In this paper we present work on the visualization of software binaries. In particular, we utilize ROSE, an open source compiler infrastructure, to pre-process software binaries, and we apply a landscape metaphor to visualize the signature of each binary (malware). We define the signature of a binary as a metric-based layout of the functions contained in the binary. In our initial experiment, we visualize the signatures of a series of computer worms that all originate from the same line. These visualizations are useful for a number of reasons. First, the images reveal how the archetype has evolved over a series of versions of one worm. Second, one can see the distinct changes between version. This allows the viewer to form conclusions about the development cycle of a particular worm.
NASA Astrophysics Data System (ADS)
Rieger, Samantha
2015-05-01
Recent observations have found that some contact binaries are oriented such that the secondary impacts with the primary at a high inclination. This research investigates the evolution of how such contact binaries came to exist. This process begins with an asteroid pair, where the secondary lies on the Laplace plane. The Laplace plane is a plane normal to the axis about which the pole of a satellites orbit precesses, causing a near constant inclination for such an orbit. For the study of the classical Laplace plane, the secondary asteroid is in circular orbit around an oblate primary with axial tilt. This system is also orbiting the Sun. Thus, there are two perturbations on the secondarys orbit: J2 and third body Sun perturbations. The Laplace surface is defined as the group of orbits that lie on the Laplace plane at varying distances from the primary. If the secondary is very close to the primary, the inclination of the Laplace plane will be near the equator of the asteroid, while further from the primary the inclination will be similar to the asteroid-Sun plane. The secondary will lie on the Laplace plane because near the asteroid the Laplace plane is stable to large deviations in motion, causing the asteroid to come to rest in this orbit. Assuming the secondary is asymmetrical in shape and the bodys rotation is synchronous with its orbit, the secondary will experience the BYORP effect. BYORP can cause secular motion such as the semi-major axis of the secondary expanding or contracting. Assuming the secondary expands due to BYORP, the secondary will eventually reach the unstable region of the Laplace plane. The unstable region exists if the primary has an obliquity of 68.875 degrees or greater. The unstable region exists at 0.9 Laplace radius to 1.25 Laplace radius, where the Laplace radius is defined as the distance from the central body where the inclination of the Laplace plane orbit is half the obliquity. In the unstable region, the eccentricity of the orbit
The Hamiltonian Mechanics of Stochastic Acceleration
Burby, J. W.
2013-07-17
We show how to nd the physical Langevin equation describing the trajectories of particles un- dergoing collisionless stochastic acceleration. These stochastic di erential equations retain not only one-, but two-particle statistics, and inherit the Hamiltonian nature of the underlying microscopic equations. This opens the door to using stochastic variational integrators to perform simulations of stochastic interactions such as Fermi acceleration. We illustrate the theory by applying it to two example problems.
NASA Astrophysics Data System (ADS)
Pourbaix, D.; Arenou, F.; Halbwachs, J.-L.; Siopis, C.
2013-02-01
Gaia's five-year observation baseline might naively lead to the expectation that it will be possible to fit the parallax of any sufficiently nearby object with the default five-parameter model (position at a reference epoch, parallax and proper motion). However, simulated Gaia observations of a `model Universe' composed of nearly 107 objects, 50% of which turn out to be multiple stars, show that the single-star hypothesis can severely affect parallax estimation and that more sophisticated models must be adopted. In principle, screening these spurious single-star solutions is rather straightforward, for example by evaluating the quality of the fits. However, the simulated Gaia observations also reveal that some seemingly acceptable single-star solutions can nonetheless lead to erroneous distances. These solutions turn out to be binaries with an orbital period close to one year. Without auxiliary (e.g., spectroscopic) data, they will remain unnoticed.
Stochastically forced zonal flows
NASA Astrophysics Data System (ADS)
Srinivasan, Kaushik
an approximate equation for the vorticity correlation function that is then solved perturbatively. The Reynolds stress of the pertubative solution can then be expressed as a function of the mean-flow and its y-derivatives. In particular, it is shown that as long as the forcing breaks mirror-symmetry, the Reynolds stress has a wave-like term, as a result of which the mean-flow is governed by a dispersive wave equation. In a separate study, Reynolds stress induced by an anisotropically forced unbounded Couette flow with uniform shear gamma, on a beta-plane, is calculated in conjunction with the eddy diffusivity of a co-evolving passive tracer. The flow is damped by linear drag on a time scale mu--1. The stochastic forcing is controlled by a parameter alpha, that characterizes whether eddies are elongated along the zonal direction (alpha < 0), the meridional direction (alpha > 0) or are isotropic (alpha = 0). The Reynolds stress varies linearly with alpha and non-linearly and non-monotonically with gamma; but the Reynolds stress is independent of beta. For positive values of alpha, the Reynolds stress displays an "anti-frictional" effect (energy is transferred from the eddies to the mean flow) and a frictional effect for negative values of alpha. With gamma = beta =0, the meridional tracer eddy diffusivity is v'2/(2mu), where v' is the meridional eddy velocity. In general, beta and gamma suppress the diffusivity below v'2/(2mu).
Stochastic architecture for Hopfield neural nets
NASA Technical Reports Server (NTRS)
Pavel, Sandy
1992-01-01
An expandable stochastic digital architecture for recurrent (Hopfield like) neural networks is proposed. The main features and basic principles of stochastic processing are presented. The stochastic digital architecture is based on a chip with n full interconnected neurons with a pipeline, bit processing structure. For large applications, a flexible way to interconnect many such chips is provided.
Stability of stochastic switched SIRS models
NASA Astrophysics Data System (ADS)
Meng, Xiaoying; Liu, Xinzhi; Deng, Feiqi
2011-11-01
Stochastic stability problems of a stochastic switched SIRS model with or without distributed time delay are considered. By utilizing the Lyapunov methods, sufficient stability conditions of the disease-free equilibrium are established. Stability conditions about the subsystem of the stochastic switched SIRS systems are also obtained.
NASA Technical Reports Server (NTRS)
Truong, Trieu-Kie (Inventor); Hsu, In-Shek (Inventor); Reed, Irving S. (Inventor)
1989-01-01
A pipeline binary updown counter is comprised of simple stages that may be readily replicated. Each stage is defined by the Boolean logic equation: A(sub n)(t) = A(sub n)(t - 1) exclusive OR (U AND P(sub n)) inclusive OR (D AND Q(sub n)), where A(sub n)(t) denotes the value of the nth bit at time t. The input to the counter has three values represented by two binary signals U and D such that if both are zero, the input is zero, if U = 0 and D = 1, the input is -1 and if U = 1 and D = 0, the input is +1. P(sub n) represents a product of A(sub k)'s for 1 is less than or equal to k is less than or equal to -1, while Q(sub n) represents the product of bar A's for 1 is less than or equal to K is less than or equal to n - 1, where bar A(sub k) is the complement of A(sub k) and P(sub n) and Q(sub n) are expressed as the following two equations: P(sub n) = A(sub n - 1) A(sub n - 2)...A(sub 1) and Q(sub n) = bar A(sub n - 1) bar A(sub n - 2)...bar A(sub 1), which can be written in recursive form as P(sub n) = P(sub n - 1) AND bar A(sub n - 1) and Q(sub n) = Q(sub n - 1) AND bar A(sub n - 1) with the initial values P(sub 1) = 1 and Q(sub 1) = 1.
ERIC Educational Resources Information Center
Higginbotham-Wheat, Nancy L.
This paper addresses one area of conflict in decisionmaking in computer-based instruction (CBI) research: the relationship between the researcher's definition of CBI either as a medium or as an integrated system and the design of meaningful research questions. (A medium is defined here as a device for the delivery of instruction, while an…
Stokowski, Stanley E.
1989-01-01
A laser medium is particularly useful in high average power solid state lasers. The laser medium includes a chormium dopant and preferably neodymium ions as codopant, and is primarily a gadolinium scandium gallium garnet, or an analog thereof. Divalent cations inhibit spiral morphology as large boules from which the laser medium is derived are grown, and a source of ions convertible between a trivalent state and a tetravalent state at a low ionization energy are in the laser medium to reduce an absorption coefficient at about one micron wavelength otherwise caused by the divalent cations. These divalent cations and convertible ions are dispersed in the laser medium. Preferred convertible ions are provided from titanium or cerium sources.
Stokowski, S.E.
1987-10-20
A laser medium is particularly useful in high average power solid state lasers. The laser medium includes a chromium dopant and preferably neodymium ions as codopant, and is primarily a gadolinium scandium gallium garnet, or an analog thereof. Divalent cations inhibit spiral morphology as large boules from which the laser medium is derived are grown, and a source of ions convertible between a trivalent state and a tetravalent state at a low ionization energy are in the laser medium to reduce an absorption coefficient at about one micron wavelength otherwise caused by the divalent cations. These divalent cations and convertible ions are dispersed in the laser medium. Preferred convertible ions are provided from titanium or cerium sources.
Stochastic resonance on a circle
Wiesenfeld, K. ); Pierson, D.; Pantazelou, E.; Dames, C.; Moss, F. )
1994-04-04
We describe a new realization of stochastic resonance, applicable to a broad class of systems, based on an underlying excitable dynamics with deterministic reinjection. A simple but general theory of such single-trigger'' systems is compared with analog simulations of the Fitzhugh-Nagumo model, as well as experimental data obtained from stimulated sensory neurons in the crayfish.
Stochastic-field cavitation model
Dumond, J.; Magagnato, F.; Class, A.
2013-07-15
Nonlinear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally, the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian “particles” or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and, in particular, to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. First, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations.
Universality in Stochastic Exponential Growth
NASA Astrophysics Data System (ADS)
Iyer-Biswas, Srividya; Crooks, Gavin E.; Scherer, Norbert F.; Dinner, Aaron R.
2014-07-01
Recent imaging data for single bacterial cells reveal that their mean sizes grow exponentially in time and that their size distributions collapse to a single curve when rescaled by their means. An analogous result holds for the division-time distributions. A model is needed to delineate the minimal requirements for these scaling behaviors. We formulate a microscopic theory of stochastic exponential growth as a Master Equation that accounts for these observations, in contrast to existing quantitative models of stochastic exponential growth (e.g., the Black-Scholes equation or geometric Brownian motion). Our model, the stochastic Hinshelwood cycle (SHC), is an autocatalytic reaction cycle in which each molecular species catalyzes the production of the next. By finding exact analytical solutions to the SHC and the corresponding first passage time problem, we uncover universal signatures of fluctuations in exponential growth and division. The model makes minimal assumptions, and we describe how more complex reaction networks can reduce to such a cycle. We thus expect similar scalings to be discovered in stochastic processes resulting in exponential growth that appear in diverse contexts such as cosmology, finance, technology, and population growth.
Stochastic cooling: recent theoretical directions
Bisognano, J.
1983-03-01
A kinetic-equation derivation of the stochastic-cooling Fokker-Planck equation of correlation is introduced to describe both the Schottky spectrum and signal suppression. Generalizations to nonlinear gain and coupling between degrees of freedom are presented. Analysis of bunch beam cooling is included.
Universality in stochastic exponential growth.
Iyer-Biswas, Srividya; Crooks, Gavin E; Scherer, Norbert F; Dinner, Aaron R
2014-07-11
Recent imaging data for single bacterial cells reveal that their mean sizes grow exponentially in time and that their size distributions collapse to a single curve when rescaled by their means. An analogous result holds for the division-time distributions. A model is needed to delineate the minimal requirements for these scaling behaviors. We formulate a microscopic theory of stochastic exponential growth as a Master Equation that accounts for these observations, in contrast to existing quantitative models of stochastic exponential growth (e.g., the Black-Scholes equation or geometric Brownian motion). Our model, the stochastic Hinshelwood cycle (SHC), is an autocatalytic reaction cycle in which each molecular species catalyzes the production of the next. By finding exact analytical solutions to the SHC and the corresponding first passage time problem, we uncover universal signatures of fluctuations in exponential growth and division. The model makes minimal assumptions, and we describe how more complex reaction networks can reduce to such a cycle. We thus expect similar scalings to be discovered in stochastic processes resulting in exponential growth that appear in diverse contexts such as cosmology, finance, technology, and population growth. PMID:25062238
Stochastic Resonance and Information Processing
NASA Astrophysics Data System (ADS)
Nicolis, C.
2014-12-01
A dynamical system giving rise to multiple steady states and subjected to noise and a periodic forcing is analyzed from the standpoint of information theory. It is shown that stochastic resonance has a clearcut signature on information entropy, information transfer and other related quantities characterizing information transduction within the system.
BINARIES AMONG DEBRIS DISK STARS
Rodriguez, David R.; Zuckerman, B.
2012-02-01
We have gathered a sample of 112 main-sequence stars with known debris disks. We collected published information and performed adaptive optics observations at Lick Observatory to determine if these debris disks are associated with binary or multiple stars. We discovered a previously unknown M-star companion to HD 1051 at a projected separation of 628 AU. We found that 25% {+-} 4% of our debris disk systems are binary or triple star systems, substantially less than the expected {approx}50%. The period distribution for these suggests a relative lack of systems with 1-100 AU separations. Only a few systems have blackbody disk radii comparable to the binary/triple separation. Together, these two characteristics suggest that binaries with intermediate separations of 1-100 AU readily clear out their disks. We find that the fractional disk luminosity, as a proxy for disk mass, is generally lower for multiple systems than for single stars at any given age. Hence, for a binary to possess a disk (or form planets) it must either be a very widely separated binary with disk particles orbiting a single star or it must be a small separation binary with a circumbinary disk.
Algorithmic advances in stochastic programming
Morton, D.P.
1993-07-01
Practical planning problems with deterministic forecasts of inherently uncertain parameters often yield unsatisfactory solutions. Stochastic programming formulations allow uncertain parameters to be modeled as random variables with known distributions, but the size of the resulting mathematical programs can be formidable. Decomposition-based algorithms take advantage of special structure and provide an attractive approach to such problems. We consider two classes of decomposition-based stochastic programming algorithms. The first type of algorithm addresses problems with a ``manageable`` number of scenarios. The second class incorporates Monte Carlo sampling within a decomposition algorithm. We develop and empirically study an enhanced Benders decomposition algorithm for solving multistage stochastic linear programs within a prespecified tolerance. The enhancements include warm start basis selection, preliminary cut generation, the multicut procedure, and decision tree traversing strategies. Computational results are presented for a collection of ``real-world`` multistage stochastic hydroelectric scheduling problems. Recently, there has been an increased focus on decomposition-based algorithms that use sampling within the optimization framework. These approaches hold much promise for solving stochastic programs with many scenarios. A critical component of such algorithms is a stopping criterion to ensure the quality of the solution. With this as motivation, we develop a stopping rule theory for algorithms in which bounds on the optimal objective function value are estimated by sampling. Rules are provided for selecting sample sizes and terminating the algorithm under which asymptotic validity of confidence interval statements for the quality of the proposed solution can be verified. Issues associated with the application of this theory to two sampling-based algorithms are considered, and preliminary empirical coverage results are presented.
Stochastic resonance in visual sensitivity.
Kundu, Ajanta; Sarkar, Sandip
2015-04-01
It is well known from psychophysical studies that stochastic resonance, in its simplest threshold paradigm, can be used as a tool to measure the detection sensitivity to fine details in noise contaminated stimuli. In the present manuscript, we report simulation studies conducted in the similar threshold paradigm of stochastic resonance. We have estimated the contrast sensitivity in detecting noisy sine-wave stimuli, with varying area and spatial frequency, as a function of noise strength. In all the cases, the measured sensitivity attained a peak at intermediate noise strength, which indicate the occurrence of stochastic resonance. The peak sensitivity exhibited a strong dependence on area and spatial frequency of the stimulus. We show that the peak contrast sensitivity varies with spatial frequency in a nonmonotonic fashion and the qualitative nature of the sensitivity variation is in good agreement with human contrast sensitivity function. We also demonstrate that the peak sensitivity first increases and then saturates with increasing area, and this result is in line with the results of psychophysical experiments. Additionally, we also show that critical area, denoting the saturation of contrast sensitivity, decreases with spatial frequency and the associated maximum contrast sensitivity varies with spatial frequency in a manner that is consistent with the results of psychophysical experiments. In all the studies, the sensitivities were elevated via a nonlinear filtering operation called stochastic resonance. Because of this nonlinear effect, it was not guaranteed that the sensitivities, estimated at each frequency, would be in agreement with the corresponding results of psychophysical experiments; on the contrary, close agreements were observed between our results and the findings of psychophysical investigations. These observations indicate the utility of stochastic resonance in human vision and suggest that this paradigm can be useful in psychophysical studies
Detecting stochastic backgrounds of gravitational waves with pulsar timing arrays
NASA Astrophysics Data System (ADS)
Siemens, Xavier
2016-03-01
For the past decade the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has been using the Green Bank Telescope and the Arecibo Observatory to monitor millisecond pulsars. NANOGrav, along with two other international collaborations, the European Pulsar Timing Array and the Parkes Pulsar Timing Array in Australia, form a consortium of consortia: the International Pulsar Timing Array (IPTA). The goal of the IPTA is to directly detect low-frequency gravitational waves which cause small changes to the times of arrival of radio pulses from millisecond pulsars. In this talk I will discuss the work of NANOGrav and the IPTA, as well as our sensitivity to stochastic backgrounds of gravitational waves. I will show that a detection of the background produced by supermassive black hole binaries is possible by the end of the decade. Supported by the NANOGrav Physics Frontiers Center.
Gravitational waves from binary supermassive black holes missing in pulsar observations.
Shannon, R M; Ravi, V; Lentati, L T; Lasky, P D; Hobbs, G; Kerr, M; Manchester, R N; Coles, W A; Levin, Y; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Dai, S; Keith, M J; Osłowski, S; Reardon, D J; van Straten, W; Toomey, L; Wang, J-B; Wen, L; Wyithe, J S B; Zhu, X-J
2015-09-25
Gravitational waves are expected to be radiated by supermassive black hole binaries formed during galaxy mergers. A stochastic superposition of gravitational waves from all such binary systems would modulate the arrival times of pulses from radio pulsars. Using observations of millisecond pulsars obtained with the Parkes radio telescope, we constrained the characteristic amplitude of this background, A(c,yr), to be <1.0 × 10(-15) with 95% confidence. This limit excludes predicted ranges for A(c,yr) from current models with 91 to 99.7% probability. We conclude that binary evolution is either stalled or dramatically accelerated by galactic-center environments and that higher-cadence and shorter-wavelength observations would be more sensitive to gravitational waves. PMID:26404832
On the detection of eccentric supermassive black hole binaries with pulsar timing arrays
NASA Astrophysics Data System (ADS)
Huerta, Eliu; McWilliams, Sean; Gair, Jonathan; Taylor, Stephen
2015-04-01
It is believed that supermassive black holes (SMBHs) with masses between a million up to a few billion solar masses are ubiquitous in nearby galactic nuclei. Hence, the merger of a pair of galaxies hosting these compact objects may result in the formation of a compact binary that decays to small orbital separations via interactions with its stellar and gaseous environments. Recent studies suggest that these formation channels imply that SMBH binaries may have large orbital eccentricities when they become dominated by gravitational wave emission. In light of these considerations, we present a novel and comprehensive framework that we put at work to carry out an end-to-end analysis of the effect of eccentricity on the amplitude and spectrum of a stochastic, isotropic gravitational wave background from SMBH binaries and single resolvable sources that may be detected with Pulsar Timing Arrays.
On the impact of stochastic parametrisations in the ECMWF seasonal forecasting system
NASA Astrophysics Data System (ADS)
Weisheimer, Antje; Corti, Susanna; Palmer, Tim; Vitart, Frederic
2014-05-01
Seasonal climate predictions several months ahead based on dynamical atmosphere-ocean GCMs are part of the routinely operational forecasts issued by the European Centre for Medium-Range Weather Forecasts (ECMWF). Here, the seasonal forecasting system is a seamless extension of ECMWF's medium-range ensemble weather forecasting system for the atmosphere coupled to a state-of-the-art ocean model. Model uncertainty in the atmosphere is represented by two schemes, the Stochastically Perturbed Physical Tendency (SPPT) scheme and the Stochastic Kinetic Energy Backscatter (SKEB) scheme. This contributions looks at the impact of these two stochastic parametrisation schemes on the model performance for seasonal forecasts. It is found that these schemes reduce long-standing model biases in the Indonesian warm pool area dominated by intense convection. The simulation of MJO events in the seasonal forecasts has improved due to the stochastic parametrisations. Both schemes substantially increase the ensemble spread for El Niño SST forecasts and thus make the ensemble forecasting system better calibrated. In addition, the stochastic parametrisations also have a positive effect on the simulation of atmospheric quasi-stationary circulation regimes over the extratropical Pacific-North America region.
Stochastic modeling of sunshine number data
NASA Astrophysics Data System (ADS)
Brabec, Marek; Paulescu, Marius; Badescu, Viorel
2013-11-01
In this paper, we will present a unified statistical modeling framework for estimation and forecasting sunshine number (SSN) data. Sunshine number has been proposed earlier to describe sunshine time series in qualitative terms (Theor Appl Climatol 72 (2002) 127-136) and since then, it was shown to be useful not only for theoretical purposes but also for practical considerations, e.g. those related to the development of photovoltaic energy production. Statistical modeling and prediction of SSN as a binary time series has been challenging problem, however. Our statistical model for SSN time series is based on an underlying stochastic process formulation of Markov chain type. We will show how its transition probabilities can be efficiently estimated within logistic regression framework. In fact, our logistic Markovian model can be relatively easily fitted via maximum likelihood approach. This is optimal in many respects and it also enables us to use formalized statistical inference theory to obtain not only the point estimates of transition probabilities and their functions of interest, but also related uncertainties, as well as to test of various hypotheses of practical interest, etc. It is straightforward to deal with non-homogeneous transition probabilities in this framework. Very importantly from both physical and practical points of view, logistic Markov model class allows us to test hypotheses about how SSN dependents on various external covariates (e.g. elevation angle, solar time, etc.) and about details of the dynamic model (order and functional shape of the Markov kernel, etc.). Therefore, using generalized additive model approach (GAM), we can fit and compare models of various complexity which insist on keeping physical interpretation of the statistical model and its parts. After introducing the Markovian model and general approach for identification of its parameters, we will illustrate its use and performance on high resolution SSN data from the Solar
Stochastic modeling of sunshine number data
Brabec, Marek; Paulescu, Marius; Badescu, Viorel
2013-11-13
In this paper, we will present a unified statistical modeling framework for estimation and forecasting sunshine number (SSN) data. Sunshine number has been proposed earlier to describe sunshine time series in qualitative terms (Theor Appl Climatol 72 (2002) 127-136) and since then, it was shown to be useful not only for theoretical purposes but also for practical considerations, e.g. those related to the development of photovoltaic energy production. Statistical modeling and prediction of SSN as a binary time series has been challenging problem, however. Our statistical model for SSN time series is based on an underlying stochastic process formulation of Markov chain type. We will show how its transition probabilities can be efficiently estimated within logistic regression framework. In fact, our logistic Markovian model can be relatively easily fitted via maximum likelihood approach. This is optimal in many respects and it also enables us to use formalized statistical inference theory to obtain not only the point estimates of transition probabilities and their functions of interest, but also related uncertainties, as well as to test of various hypotheses of practical interest, etc. It is straightforward to deal with non-homogeneous transition probabilities in this framework. Very importantly from both physical and practical points of view, logistic Markov model class allows us to test hypotheses about how SSN dependents on various external covariates (e.g. elevation angle, solar time, etc.) and about details of the dynamic model (order and functional shape of the Markov kernel, etc.). Therefore, using generalized additive model approach (GAM), we can fit and compare models of various complexity which insist on keeping physical interpretation of the statistical model and its parts. After introducing the Markovian model and general approach for identification of its parameters, we will illustrate its use and performance on high resolution SSN data from the Solar
Dynamic option pricing with endogenous stochastic arbitrage
NASA Astrophysics Data System (ADS)
Contreras, Mauricio; Montalva, Rodrigo; Pellicer, Rely; Villena, Marcelo
2010-09-01
Only few efforts have been made in order to relax one of the key assumptions of the Black-Scholes model: the no-arbitrage assumption. This is despite the fact that arbitrage processes usually exist in the real world, even though they tend to be short-lived. The purpose of this paper is to develop an option pricing model with endogenous stochastic arbitrage, capable of modelling in a general fashion any future and underlying asset that deviate itself from its market equilibrium. Thus, this investigation calibrates empirically the arbitrage on the futures on the S&P 500 index using transaction data from September 1997 to June 2009, from here a specific type of arbitrage called “arbitrage bubble”, based on a t-step function, is identified and hence used in our model. The theoretical results obtained for Binary and European call options, for this kind of arbitrage, show that an investment strategy that takes advantage of the identified arbitrage possibility can be defined, whenever it is possible to anticipate in relative terms the amplitude and timespan of the process. Finally, the new trajectory of the stock price is analytically estimated for a specific case of arbitrage and some numerical illustrations are developed. We find that the consequences of a finite and small endogenous arbitrage not only change the trajectory of the asset price during the period when it started, but also after the arbitrage bubble has already gone. In this context, our model will allow us to calibrate the B-S model to that new trajectory even when the arbitrage already started.
NASA Astrophysics Data System (ADS)
Dluzhnevskaya, O.; Kaygorodov, P.; Kovaleva, D.; Malkov, O.
2014-05-01
Description of the Binary star DataBase (BDB, http://bdb.inasan.ru), the world's principal database of binary and multiple systems of all observational types, is presented in the paper. BDB contains data on physical and positional parameters of 100,000 components of 40,000 systems of multiplicity 2 to 20, belonging to various observational types: visual, spectroscopic, eclipsing, etc. Information on these types of binaries is obtained from heterogeneous sources of data - astronomical and. Organization of the information is based on the careful cross-identification of the objects. BDB can be queried by star identifier, coordinates, and other parameters.
Molecular logic behind the three-way stochastic choices that expand butterfly colour vision.
Perry, Michael; Kinoshita, Michiyo; Saldi, Giuseppe; Huo, Lucy; Arikawa, Kentaro; Desplan, Claude
2016-07-14
Butterflies rely extensively on colour vision to adapt to the natural world. Most species express a broad range of colour-sensitive Rhodopsin proteins in three types of ommatidia (unit eyes), which are distributed stochastically across the retina. The retinas of Drosophila melanogaster use just two main types, in which fate is controlled by the binary stochastic decision to express the transcription factor Spineless in R7 photoreceptors. We investigated how butterflies instead generate three stochastically distributed ommatidial types, resulting in a more diverse retinal mosaic that provides the basis for additional colour comparisons and an expanded range of colour vision. We show that the Japanese yellow swallowtail (Papilio xuthus, Papilionidae) and the painted lady (Vanessa cardui, Nymphalidae) butterflies have a second R7-like photoreceptor in each ommatidium. Independent stochastic expression of Spineless in each R7-like cell results in expression of a blue-sensitive (Spineless(ON)) or an ultraviolet (UV)-sensitive (Spineless(OFF)) Rhodopsin. In P. xuthus these choices of blue/blue, blue/UV or UV/UV sensitivity in the two R7 cells are coordinated with expression of additional Rhodopsin proteins in the remaining photoreceptors, and together define the three types of ommatidia. Knocking out spineless using CRISPR/Cas9 (refs 5, 6) leads to the loss of the blue-sensitive fate in R7-like cells and transforms retinas into homogeneous fields of UV/UV-type ommatidia, with corresponding changes in other coordinated features of ommatidial type. Hence, the three possible outcomes of Spineless expression define the three ommatidial types in butterflies. This developmental strategy allowed the deployment of an additional red-sensitive Rhodopsin in P. xuthus, allowing for the evolution of expanded colour vision with a greater variety of receptors. This surprisingly simple mechanism that makes use of two binary stochastic decisions coupled with local coordination may prove
Two-state approach to stochastic hair bundle dynamics
NASA Astrophysics Data System (ADS)
Clausznitzer, Diana; Lindner, Benjamin; Jülicher, Frank; Martin, Pascal
2008-04-01
Hair cells perform the mechanoelectrical transduction of sound signals in the auditory and vestibular systems of vertebrates. The part of the hair cell essential for this transduction is the so-called hair bundle. In vitro experiments on hair cells from the sacculus of the American bullfrog have shown that the hair bundle comprises active elements capable of producing periodic deflections like a relaxation oscillator. Recently, a continuous nonlinear stochastic model of the hair bundle motion [Nadrowski , Proc. Natl. Acad. Sci. U.S.A. 101, 12195 (2004)] has been shown to reproduce the experimental data in stochastic simulations faithfully. Here, we demonstrate that a binary filtering of the hair bundle's deflection (experimental data and continuous hair bundle model) does not change significantly the spectral statistics of the spontaneous as well as the periodically driven hair bundle motion. We map the continuous hair bundle model to the FitzHugh-Nagumo model of neural excitability and discuss the bifurcations between different regimes of the system in terms of the latter model. Linearizing the nullclines and assuming perfect time-scale separation between the variables we can map the FitzHugh-Nagumo system to a simple two-state model in which each of the states corresponds to the two possible values of the binary-filtered hair bundle trajectory. For the two-state model, analytical expressions for the power spectrum and the susceptibility can be calculated [Lindner and Schimansky-Geier, Phys. Rev. E 61, 6103 (2000)] and show the same features as seen in the experimental data as well as in simulations of the continuous hair bundle model.
Binary Oscillatory Crossflow Electrophoresis
NASA Technical Reports Server (NTRS)
Molloy, Richard F.; Gallagher, Christopher T.; Leighton, David T., Jr.
1997-01-01
Electrophoresis has long been recognized as an effective analytic technique for the separation of proteins and other charged species, however attempts at scaling up to accommodate commercial volumes have met with limited success. In this report we describe a novel electrophoretic separation technique - Binary Oscillatory Crossflow Electrophoresis (BOCE). Numerical simulations indicate that the technique has the potential for preparative scale throughputs with high resolution, while simultaneously avoiding many problems common to conventional electrophoresis. The technique utilizes the interaction of an oscillatory electric field and a transverse oscillatory shear flow to create an active binary filter for the separation of charged protein species. An oscillatory electric field is applied across the narrow gap of a rectangular channel inducing a periodic motion of charged protein species. The amplitude of this motion depends on the dimensionless electrophoretic mobility, alpha = E(sub o)mu/(omega)d, where E(sub o) is the amplitude of the electric field oscillations, mu is the dimensional mobility, omega is the angular frequency of oscillation and d is the channel gap width. An oscillatory shear flow is induced along the length of the channel resulting in the separation of species with different mobilities. We present a model that predicts the oscillatory behavior of charged species and allows estimation of both the magnitude of the induced convective velocity and the effective diffusivity as a function of a in infinitely long channels. Numerical results indicate that in addition to the mobility dependence, the steady state behavior of solute species may be strongly affected by oscillating fluid into and out of the active electric field region at the ends of the cell. The effect is most pronounced using time dependent shear flows of the same frequency (cos((omega)t)) flow mode) as the electric field oscillations. Under such conditions, experiments indicate that
MCdevelop - a universal framework for Stochastic Simulations
NASA Astrophysics Data System (ADS)
Slawinska, M.; Jadach, S.
2011-03-01
We present MCdevelop, a universal computer framework for developing and exploiting the wide class of Stochastic Simulations (SS) software. This powerful universal SS software development tool has been derived from a series of scientific projects for precision calculations in high energy physics (HEP), which feature a wide range of functionality in the SS software needed for advanced precision Quantum Field Theory calculations for the past LEP experiments and for the ongoing LHC experiments at CERN, Geneva. MCdevelop is a "spin-off" product of HEP to be exploited in other areas, while it will still serve to develop new SS software for HEP experiments. Typically SS involve independent generation of large sets of random "events", often requiring considerable CPU power. Since SS jobs usually do not share memory it makes them easy to parallelize. The efficient development, testing and running in parallel SS software requires a convenient framework to develop software source code, deploy and monitor batch jobs, merge and analyse results from multiple parallel jobs, even before the production runs are terminated. Throughout the years of development of stochastic simulations for HEP, a sophisticated framework featuring all the above mentioned functionality has been implemented. MCdevelop represents its latest version, written mostly in C++ (GNU compiler gcc). It uses Autotools to build binaries (optionally managed within the KDevelop 3.5.3 Integrated Development Environment (IDE)). It uses the open-source ROOT package for histogramming, graphics and the mechanism of persistency for the C++ objects. MCdevelop helps to run multiple parallel jobs on any computer cluster with NQS-type batch system. Program summaryProgram title:MCdevelop Catalogue identifier: AEHW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http
Stability of binaries. Part II: Rubble-pile binaries
NASA Astrophysics Data System (ADS)
Sharma, Ishan
2016-10-01
We consider the stability of the binary asteroids whose members are granular aggregates held together by self-gravity alone. A binary is said to be stable whenever both its members are orbitally and structurally stable to both orbital and structural perturbations. To this end, we extend the stability analysis of Sharma (Sharma [2015] Icarus, 258, 438-453), that is applicable to binaries with rigid members, to the case of binary systems with rubble members. We employ volume averaging (Sharma et al. [2009] Icarus, 200, 304-322), which was inspired by past work on elastic/fluid, rotating and gravitating ellipsoids. This technique has shown promise when applied to rubble-pile ellipsoids, but requires further work to settle some of its underlying assumptions. The stability test is finally applied to some suspected binary systems, viz., 216 Kleopatra, 624 Hektor and 90 Antiope. We also see that equilibrated binaries that are close to mobilizing their maximum friction can sustain only a narrow range of shapes and, generally, congruent shapes are preferred.
A comparison of two- and three-dimensional stochastic models of regional solute movement
Shapiro, A.M.; Cvetkovic, V.D.
1990-01-01
Recent models of solute movement in porous media that are based on a stochastic description of the porous medium properties have been dedicated primarily to a three-dimensional interpretation of solute movement. In many practical problems, however, it is more convenient and consistent with measuring techniques to consider flow and solute transport as an areal, two-dimensional phenomenon. The physics of solute movement, however, is dependent on the three-dimensional heterogeneity in the formation. A comparison of two- and three-dimensional stochastic interpretations of solute movement in a porous medium having a statistically isotropic hydraulic conductivity field is investigated. To provide an equitable comparison between the two- and three-dimensional analyses, the stochastic properties of the transmissivity are defined in terms of the stochastic properties of the hydraulic conductivity. The variance of the transmissivity is shown to be significantly reduced in comparison to that of the hydraulic conductivity, and the transmissivity is spatially correlated over larger distances. These factors influence the two-dimensional interpretations of solute movement by underestimating the longitudinal and transverse growth of the solute plume in comparison to its description as a three-dimensional phenomenon. Although this analysis is based on small perturbation approximations and the special case of a statistically isotropic hydraulic conductivity field, it casts doubt on the use of a stochastic interpretation of the transmissivity in describing regional scale movement. However, by assuming the transmissivity to be the vertical integration of the hydraulic conductivity field at a given position, the stochastic properties of the hydraulic conductivity can be estimated from the stochastic properties of the transmissivity and applied to obtain a more accurate interpretation of solute movement. ?? 1990 Kluwer Academic Publishers.
Efficient stochastic simulations of complex reaction networks on surfaces.
Barzel, Baruch; Biham, Ofer
2007-10-14
Surfaces serve as highly efficient catalysts for a vast variety of chemical reactions. Typically, such surface reactions involve billions of molecules which diffuse and react over macroscopic areas. Therefore, stochastic fluctuations are negligible and the reaction rates can be evaluated using rate equations, which are based on the mean-field approximation. However, in case that the surface is partitioned into a large number of disconnected microscopic domains, the number of reactants in each domain becomes small and it strongly fluctuates. This is, in fact, the situation in the interstellar medium, where some crucial reactions take place on the surfaces of microscopic dust grains. In this case rate equations fail and the simulation of surface reactions requires stochastic methods such as the master equation. However, in the case of complex reaction networks, the master equation becomes infeasible because the number of equations proliferates exponentially. To solve this problem, we introduce a stochastic method based on moment equations. In this method the number of equations is dramatically reduced to just one equation for each reactive species and one equation for each reaction. Moreover, the equations can be easily constructed using a diagrammatic approach. We demonstrate the method for a set of astrophysically relevant networks of increasing complexity. It is expected to be applicable in many other contexts in which problems that exhibit analogous structure appear, such as surface catalysis in nanoscale systems, aerosol chemistry in stratospheric clouds, and genetic networks in cells. PMID:17935419
Cryptography with DNA binary strands.
Leier, A; Richter, C; Banzhaf, W; Rauhe, H
2000-06-01
Biotechnological methods can be used for cryptography. Here two different cryptographic approaches based on DNA binary strands are shown. The first approach shows how DNA binary strands can be used for steganography, a technique of encryption by information hiding, to provide rapid encryption and decryption. It is shown that DNA steganography based on DNA binary strands is secure under the assumption that an interceptor has the same technological capabilities as sender and receiver of encrypted messages. The second approach shown here is based on steganography and a method of graphical subtraction of binary gel-images. It can be used to constitute a molecular checksum and can be combined with the first approach to support encryption. DNA cryptography might become of practical relevance in the context of labelling organic and inorganic materials with DNA 'barcodes'. PMID:10963862
NASA Astrophysics Data System (ADS)
Evans, Nancy R.; Bond, H. E.; Schaefer, G.; Mason, B. D.; Karovska, M.; Tingle, E.
2013-01-01
Cepheids (5 Msun stars) provide an excellent sample for determining the binary properties of fairly massive stars. International Ultraviolet Explorer (IUE) observations of Cepheids brighter than 8th magnitude resulted in a list of ALL companions more massive than 2.0 Msun uniformly sensitive to all separations. Hubble Space Telescope Wide Field Camera 3 (WFC3) has resolved three of these binaries (Eta Aql, S Nor, and V659 Cen). Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations for a sample of 18 Cepheids, and also a distribution of mass ratios. The distribution of orbital periods shows that the 5 Msun binaries prefer shorter periods than 1 Msun stars, reflecting differences in star formation processes.
CHAOTIC ZONES AROUND GRAVITATING BINARIES
Shevchenko, Ivan I.
2015-01-20
The extent of the continuous zone of chaotic orbits of a small-mass tertiary around a system of two gravitationally bound primaries of comparable masses (a binary star, a binary black hole, a binary asteroid, etc.) is estimated analytically, as a function of the tertiary's orbital eccentricity. The separatrix map theory is used to demonstrate that the central continuous chaos zone emerges (above a threshold in the primaries' mass ratio) due to overlapping of the orbital resonances corresponding to the integer ratios p:1 between the tertiary and the central binary periods. In this zone, the unlimited chaotic orbital diffusion of the tertiary takes place, up to its ejection from the system. The primaries' mass ratio, above which such a chaotic zone is universally present at all initial eccentricities of the tertiary, is estimated. The diversity of the observed orbital configurations of biplanetary and circumbinary exosystems is shown to be in accord with the existence of the primaries' mass parameter threshold.
An adaptable binary entropy coder
NASA Technical Reports Server (NTRS)
Kiely, A.; Klimesh, M.
2001-01-01
We present a novel entropy coding technique which is based on recursive interleaving of variable-to-variable length binary source codes. We discuss code design and performance estimation methods, as well as practical encoding and decoding algorithms.
Simulating relativistic binaries with Whisky
NASA Astrophysics Data System (ADS)
Baiotti, L.
We report about our first tests and results in simulating the last phase of the coalescence and the merger of binary relativistic stars. The simulations were performed using our code Whisky and mesh refinement through the Carpet driver.
NASA Astrophysics Data System (ADS)
Eggleton, Peter P.
The mechanisms by which the periods of wide binaries (mass 8 solar mass or less and period 10-3000 d) are lengthened or shortened are discussed, synthesizing the results of recent theoretical investigations. A system of nomenclature involving seven evolutionary states, three geometrical states, and 10 types of orbital-period evolution is developed and applied; classifications of 71 binaries are presented in a table along with the basic observational parameters. Evolutionary processes in wide binaries (single-star-type winds, magnetic braking with tidal friction, and companion-reinforced attrition), late case B systems, low-mass X-ray binaries, and triple systems are examined in detail, and possible evolutionary paths are shown in diagrams.
Image-based histologic grade estimation using stochastic geometry analysis
NASA Astrophysics Data System (ADS)
Petushi, Sokol; Zhang, Jasper; Milutinovic, Aladin; Breen, David E.; Garcia, Fernando U.
2011-03-01
Background: Low reproducibility of histologic grading of breast carcinoma due to its subjectivity has traditionally diminished the prognostic value of histologic breast cancer grading. The objective of this study is to assess the effectiveness and reproducibility of grading breast carcinomas with automated computer-based image processing that utilizes stochastic geometry shape analysis. Methods: We used histology images stained with Hematoxylin & Eosin (H&E) from invasive mammary carcinoma, no special type cases as a source domain and study environment. We developed a customized hybrid semi-automated segmentation algorithm to cluster the raw image data and reduce the image domain complexity to a binary representation with the foreground representing regions of high density of malignant cells. A second algorithm was developed to apply stochastic geometry and texture analysis measurements to the segmented images and to produce shape distributions, transforming the original color images into a histogram representation that captures their distinguishing properties between various histological grades. Results: Computational results were compared against known histological grades assigned by the pathologist. The Earth Mover's Distance (EMD) similarity metric and the K-Nearest Neighbors (KNN) classification algorithm provided correlations between the high-dimensional set of shape distributions and a priori known histological grades. Conclusion: Computational pattern analysis of histology shows promise as an effective software tool in breast cancer histological grading.
Stochastic daily precipitation model with a heavy-tailed component
NASA Astrophysics Data System (ADS)
Neykov, N. M.; Neytchev, P. N.; Zucchini, W.
2014-02-01
Stochastic daily precipitation models are commonly used to generate scenarios of climate variability or change on a daily time scale. The standard models consist of two components describing the occurrence and intensity series, respectively. Binary logistic regression is used to fit the occurrence data, and the intensity series is modeled by a continuous-valued right-skewed distribution, such as gamma, Weibull or lognormal. The precipitation series is then modeled using the joint density and standard software for generalized linear models can be used to perform the computations. A drawback of these precipitation models is that they do not produce a sufficiently heavy upper tail for the distribution of daily precipitation amounts; they tend to underestimate the frequency of large storms. In this study we adapted the approach of Furrer and Katz (2008) based on hybrid distributions in order to correct for this shortcoming. In particular we applied hybrid gamma - generalized Pareto (GP) and hybrid Weibull-GP distributions to develop a stochastic precipitation model for daily rainfall at Ihtiman in western Bulgaria. We report the results of simulations designed to compare the models based on the hybrid distributions and those based on the standard distributions. Some potential difficulties are outlined.
Stochastic daily precipitation model with a heavy-tailed component
NASA Astrophysics Data System (ADS)
Neykov, N. M.; Neytchev, P. N.; Zucchini, W.
2014-09-01
Stochastic daily precipitation models are commonly used to generate scenarios of climate variability or change on a daily timescale. The standard models consist of two components describing the occurrence and intensity series, respectively. Binary logistic regression is used to fit the occurrence data, and the intensity series is modeled using a continuous-valued right-skewed distribution, such as gamma, Weibull or lognormal. The precipitation series is then modeled using the joint density, and standard software for generalized linear models can be used to perform the computations. A drawback of these precipitation models is that they do not produce a sufficiently heavy upper tail for the distribution of daily precipitation amounts; they tend to underestimate the frequency of large storms. In this study, we adapted the approach of Furrer and Katz (2008) based on hybrid distributions in order to correct for this shortcoming. In particular, we applied hybrid gamma-generalized Pareto (GP) and hybrid Weibull-GP distributions to develop a stochastic precipitation model for daily rainfall at Ihtiman in western Bulgaria. We report the results of simulations designed to compare the models based on the hybrid distributions and those based on the standard distributions. Some potential difficulties are outlined.
Ultraviolet spectroscopy of binary systems
NASA Technical Reports Server (NTRS)
Dupree, A. K.; Hartmann, L.; Raymond, J. C.
1980-01-01
Four typical binary systems that illustrate some of the major problems in the study of binary stars are discussed. Consideration is given to (1) high-luminosity X-ray sources typified by Cyg X-1 (HDE 226868) and Vela XR-1 (HD 77581), (2) low-luminosity X-ray sources (HZ Her), (3) late-type systems of W UMa and RS CVn type, and (4) cool supergiants with a hot companion (VV Cephei).
PULSAR STATE SWITCHING FROM MARKOV TRANSITIONS AND STOCHASTIC RESONANCE
Cordes, J. M.
2013-09-20
Markov processes are shown to be consistent with metastable states seen in pulsar phenomena, including intensity nulling, pulse-shape mode changes, subpulse drift rates, spin-down rates, and X-ray emission, based on the typically broad and monotonic distributions of state lifetimes. Markovianity implies a nonlinear magnetospheric system in which state changes occur stochastically, corresponding to transitions between local minima in an effective potential. State durations (though not transition times) are thus largely decoupled from the characteristic timescales of various magnetospheric processes. Dyadic states are common but some objects show at least four states with some transitions forbidden. Another case is the long-term intermittent pulsar B1931+24 that has binary radio-emission and torque states with wide, but non-monotonic duration distributions. It also shows a quasi-period of 38 ± 5 days in a 13 yr time sequence, suggesting stochastic resonance in a Markov system with a forcing function that could be strictly periodic or quasi-periodic. Nonlinear phenomena are associated with time-dependent activity in the acceleration region near each magnetic polar cap. The polar-cap diode is altered by feedback from the outer magnetosphere and by return currents from the equatorial region outside the light cylinder that may also cause the neutron star to episodically charge and discharge. Orbital perturbations of a disk or current sheet provide a natural periodicity for the forcing function in the stochastic-resonance interpretation of B1931+24. Disk dynamics may introduce additional timescales in observed phenomena. Future work can test the Markov interpretation, identify which pulsar types have a propensity for state changes, and clarify the role of selection effects.
Outbursts in Symbiotic Binaries
NASA Technical Reports Server (NTRS)
Sonneborn, George (Technical Monitor); Kenyon, Scott J.
2004-01-01
Two models have been proposed for the outbursts of symbiotic stars. In the thermonuclear model, outbursts begin when the hydrogen burning shell of a hot white dwarf reaches a critical mass. After a rapid increase in the luminosity and effective temperature, the white dwarf evolves at constant luminosity to lower effective temperatures, remains at optical maximum for several years, and then returns to quiescence along a white dwarf cooling curve. In disk instability models, the brightness rises when the accretion rate from the disk onto the central white dwarf abruptly increases by factors of 5-20. After a few month to several year period at maximum, both the luminosity and the effective temperature of the disk decline as the system returns to quiescence. If most symbiotic stars undergo thermonuclear eruptions, then symbiotics are probably poor candidates for type I supernovae. However, they can then provide approx. 10% of the material which stars recycle back into the interstellar medium. If disk instabilities are the dominant eruption mechanism, symbiotics are promising type Ia candidates but recycle less material into the interstellar medium.
Stochastic scanning multiphoton multifocal microscopy.
Jureller, Justin E; Kim, Hee Y; Scherer, Norbert F
2006-04-17
Multiparticle tracking with scanning confocal and multiphoton fluorescence imaging is increasingly important for elucidating biological function, as in the transport of intracellular cargo-carrying vesicles. We demonstrate a simple rapid-sampling stochastic scanning multifocal multiphoton microscopy (SS-MMM) fluorescence imaging technique that enables multiparticle tracking without specialized hardware at rates 1,000 times greater than conventional single point raster scanning. Stochastic scanning of a diffractive optic generated 10x10 hexagonal array of foci with a white noise driven galvanometer yields a scan pattern that is random yet space-filling. SS-MMM creates a more uniformly sampled image with fewer spatio-temporal artifacts than obtained by conventional or multibeam raster scanning. SS-MMM is verified by simulation and experimentally demonstrated by tracking microsphere diffusion in solution. PMID:19516485
Stochastic Models of Quantum Decoherence
NASA Astrophysics Data System (ADS)
Kennerly, Sam
Suppose a single qubit is repeatedly prepared and evolved under imperfectly-controlled conditions. A drunk model represents uncontrolled interactions on each experimental trial as random or stochastic terms in the qubit's Hamiltonian operator. Time evolution of states is generated by a stochastic differential equation whose sample paths evolve according to the Schrodinger equation. For models with Gaussian white noise which is independent of the qubit's state, the expectation value of the solution obeys a master equation which is identical to the high-temperature limit of the Bloch equation. Drunk models predict that experimental data can appear consistent with decoherence even if qubit states evolve by unitary transformations. Examples are shown in which reversible evolution appears to cause irreversible information loss. This paradox is resolved by distinguishing between the true state of a system and the estimated state inferred from an experimental dataset.
Stochastic thermodynamics with information reservoirs.
Barato, Andre C; Seifert, Udo
2014-10-01
We generalize stochastic thermodynamics to include information reservoirs. Such information reservoirs, which can be modeled as a sequence of bits, modify the second law. For example, work extraction from a system in contact with a single heat bath becomes possible if the system also interacts with an information reservoir. We obtain an inequality, and the corresponding fluctuation theorem, generalizing the standard entropy production of stochastic thermodynamics. From this inequality we can derive an information processing entropy production, which gives the second law in the presence of information reservoirs. We also develop a systematic linear response theory for information processing machines. For a unicyclic machine powered by an information reservoir, the efficiency at maximum power can deviate from the standard value of 1/2. For the case where energy is consumed to erase the tape, the efficiency at maximum erasure rate is found to be 1/2. PMID:25375481
Stochastic background of atmospheric cascades
Wilk, G. ); Wlodarczyk, Z. )
1993-06-15
Fluctuations in the atmospheric cascades developing during the propagation of very high energy cosmic rays through the atmosphere are investigated using stochastic branching model of pure birth process with immigration. In particular, we show that the multiplicity distributions of secondaries emerging from gamma families are much narrower than those resulting from hadronic families. We argue that the strong intermittent like behaviour found recently in atmospheric families results from the fluctuations in the cascades themselves and are insensitive to the details of elementary interactions.
Discrete stability in stochastic programming
Lepp, R.
1994-12-31
In this lecture we study stability properties of stochastic programs with recourse where the probability measure is approximated by a sequence of weakly convergent discrete measures. Such discrete approximation approach gives us a possibility to analyze explicitly the behavior of the second stage correction function. The approach is based on modern functional analytical methods of an approximation of extremum problems in function spaces, especially on the notion of the discrete convergence of vectors to an essentially bounded measurable function.
Stochastic background of atmospheric cascades
NASA Astrophysics Data System (ADS)
Wilk, G.; WŁOdarczyk, Z.
1993-06-01
Fluctuations in the atmospheric cascades developing during the propagation of very high energy cosmic rays through the atmosphere are investigated using stochastic branching model of pure birth process with immigration. In particular, we show that the multiplicity distributions of secondaries emerging from gamma families are much narrower than those resulting from hadronic families. We argue that the strong intermittent like behaviour found recently in atmospheric families results from the fluctuations in the cascades themselves and are insensitive to the details of elementary interactions.
Stochastic cooling technology at Fermilab
NASA Astrophysics Data System (ADS)
Pasquinelli, Ralph J.
2004-10-01
The first antiproton cooling systems were installed and commissioned at Fermilab in 1984-1985. In the interim period, there have been several major upgrades, system improvements, and complete reincarnation of cooling systems. This paper will present some of the technology that was pioneered at Fermilab to implement stochastic cooling systems in both the Antiproton Source and Recycler accelerators. Current performance data will also be presented.
Symmetry and Stochastic Gene Regulation
NASA Astrophysics Data System (ADS)
Ramos, Alexandre F.; Hornos, José E. M.
2007-09-01
Lorentz-like noncompact Lie symmetry SO(2,1) is found in a spin-boson stochastic model for gene expression. The invariant of the algebra characterizes the switch decay to equilibrium. The azimuthal eigenvalue describes the affinity between the regulatory protein and the gene operator site. Raising and lowering operators are constructed and their actions increase or decrease the affinity parameter. The classification of the noise regime of the gene arises from the group theoretical numbers.
Stochastic neural nets and vision
NASA Astrophysics Data System (ADS)
Fall, Thomas C.
1991-03-01
A stochastic neural net shares with the normally defined neural nets the concept that information is processed by a system consisting of a set of nodes (neurons) connected by weighted links (axons). The normal neural net takes in inputs on an initial layer of neurons which fire appropriately; a neuron of the next layer fires depending on the sum of weights of the axons leading to it from fired neurons of the first layer. The stochastic neural net differs in that the neurons are more complex and that the vision activity is a dynamic process. The first layer (viewing layer) of neurons fires stochastically based on the average brightness of the area it sees and then has a refractory period. The viewing layer looks at the image for several clock cycles. The effect is like those photo sensitive sunglasses that darken in bright light. The neurons over the bright areas are most likely in a refractory period (and this can't fire) and the neurons over the dark areas are not. Now if we move the sensing layer with respect to the image so that a portion of the neurons formerly over the dark are now over the bright, they will likely all fire on that first cycle. Thus, on that cycle, one would see a flash from that portion significantly stronger than surrounding regions. Movement the other direction would produce a patch that is darker, but this effect is not as noticeable. These effects are collected in a collection layer. This paper will discuss the use of the stochastic neural net for edge detection and segmentation of some simple images.
Mechanical Autonomous Stochastic Heat Engine.
Serra-Garcia, Marc; Foehr, André; Molerón, Miguel; Lydon, Joseph; Chong, Christopher; Daraio, Chiara
2016-07-01
Stochastic heat engines are devices that generate work from random thermal motion using a small number of highly fluctuating degrees of freedom. Proposals for such devices have existed for more than a century and include the Maxwell demon and the Feynman ratchet. Only recently have they been demonstrated experimentally, using, e.g., thermal cycles implemented in optical traps. However, recent experimental demonstrations of classical stochastic heat engines are nonautonomous, since they require an external control system that prescribes a heating and cooling cycle and consume more energy than they produce. We present a heat engine consisting of three coupled mechanical resonators (two ribbons and a cantilever) subject to a stochastic drive. The engine uses geometric nonlinearities in the resonating ribbons to autonomously convert a random excitation into a low-entropy, nonpassive oscillation of the cantilever. The engine presents the anomalous heat transport property of negative thermal conductivity, consisting in the ability to passively transfer energy from a cold reservoir to a hot reservoir. PMID:27419553
Multiple fields in stochastic inflation
NASA Astrophysics Data System (ADS)
Assadullahi, Hooshyar; Firouzjahi, Hassan; Noorbala, Mahdiyar; Vennin, Vincent; Wands, David
2016-06-01
Stochastic effects in multi-field inflationary scenarios are investigated. A hierarchy of diffusion equations is derived, the solutions of which yield moments of the numbers of inflationary e-folds. Solving the resulting partial differential equations in multi-dimensional field space is more challenging than the single-field case. A few tractable examples are discussed, which show that the number of fields is, in general, a critical parameter. When more than two fields are present for instance, the probability to explore arbitrarily large-field regions of the potential, otherwise inaccessible to single-field dynamics, becomes non-zero. In some configurations, this gives rise to an infinite mean number of e-folds, regardless of the initial conditions. Another difference with respect to single-field scenarios is that multi-field stochastic effects can be large even at sub-Planckian energy. This opens interesting new possibilities for probing quantum effects in inflationary dynamics, since the moments of the numbers of e-folds can be used to calculate the distribution of primordial density perturbations in the stochastic-δ N formalism.
Mechanical Autonomous Stochastic Heat Engine
NASA Astrophysics Data System (ADS)
Serra-Garcia, Marc; Foehr, André; Molerón, Miguel; Lydon, Joseph; Chong, Christopher; Daraio, Chiara
2016-07-01
Stochastic heat engines are devices that generate work from random thermal motion using a small number of highly fluctuating degrees of freedom. Proposals for such devices have existed for more than a century and include the Maxwell demon and the Feynman ratchet. Only recently have they been demonstrated experimentally, using, e.g., thermal cycles implemented in optical traps. However, recent experimental demonstrations of classical stochastic heat engines are nonautonomous, since they require an external control system that prescribes a heating and cooling cycle and consume more energy than they produce. We present a heat engine consisting of three coupled mechanical resonators (two ribbons and a cantilever) subject to a stochastic drive. The engine uses geometric nonlinearities in the resonating ribbons to autonomously convert a random excitation into a low-entropy, nonpassive oscillation of the cantilever. The engine presents the anomalous heat transport property of negative thermal conductivity, consisting in the ability to passively transfer energy from a cold reservoir to a hot reservoir.
Identification of 23 accreting binaries in the Galactic Bulge Survey
NASA Astrophysics Data System (ADS)
Torres, M. A. P.; Jonker, P. G.; Britt, C. T.; Johnson, C. B.; Hynes, R. I.; Greiss, S.; Steeghs, D.; Maccarone, T. J.; Özel, F.; Bassa, C.; Nelemans, G.
2014-05-01
We present the identification of optical counterparts to 23 GBS X-ray sources. All sources are classified as accreting binaries according to the emission-line characteristics inferred from medium-resolution spectroscopy. To distinguish accreting binaries from chromospherically active objects, we develop criteria based on Hα and He I λλ5786, 6678 emission-line properties available in the literature. The spectroscopic properties and photometric variability of each object is discussed and a classification is given where possible. At least 12 of the 23 systems show an accretion-dominated optical spectrum and another 6 show stellar absorption features in addition to emission lines indicating that they are probably accreting binaries in quiescence or in a low accretion rate state. Two sources are confirmed to be eclipsing: CX207 and CX794. CX207 is likely a magnetic cataclysmic variable (CV), while CX794 is a nova-like CV in the period gap. Finally, the large broadening (2100 km s-1 FWHM) of the Hα emission lines in CX446 and CX1004 suggests that they are also high-inclination or even eclipsing systems. Whether the compact object is a white dwarf in an eclipsing CV, a neutron star or a black hole in a high-inclination low-mass X-ray binary remains to be established.
Anomalous diffusion in stochastic systems with nonhomogeneously distributed traps
NASA Astrophysics Data System (ADS)
Srokowski, Tomasz
2015-05-01
The stochastic motion in a nonhomogeneous medium with traps is studied and diffusion properties of that system are discussed. The particle is subjected to a stochastic stimulation obeying a general Lévy stable statistics and experiences long rests due to nonhomogeneously distributed traps. The memory is taken into account by subordination of that process to a random time; then the subordination equation is position dependent. The problem is approximated by a decoupling of the medium structure and memory and exactly solved for a power-law position dependence of the memory. In the case of the Gaussian statistics, the density distribution and moments are derived: depending on geometry and memory parameters, the system may reveal both the subdiffusion and enhanced diffusion. The similar analysis is performed for the Lévy flights where the finiteness of the variance follows from a variable noise intensity near a boundary. Two diffusion regimes are found: in the bulk and near the surface. The anomalous diffusion exponent as a function of the system parameters is derived.
Stellar sources of the interstellar medium
NASA Astrophysics Data System (ADS)
Thielemann, F.-K.; Argast, D.; Brachwitz, F.; Martinez-Pinedo, G.; Oechslin, R.; Rauscher, T.; Hix, W. R.; Liebendörfer, M.; Mezzacappa, A.; Höflich, P.; Iwamoto, K.; Nomoto, K.; Schatz, H.; Wiescher, M. C.; Kratz, K.-L.; Pfeiffer, B.; Rosswog, S.
With the exception of the Big Bang, responsible for 1,2 H, 3,4 He, and 7 Li, stars act as sources for the composition of the interstellar medium. Cosmic rays are related to the latter and very probably due to acceleration of the mixed interstellar medium by shock waves from supernova remnants. Thus, the understanding of the abundance evolution in the interstellar medium and especially the enrichment of heavy elements, as a function of space and time, is essential. It reflects the history of star formation and the lifetimes of the diverse contributing stellar objects. Therefore, the understanding of the endpoints of stellar evolution is essential as well. These are mainly planetary nebulae and type II/Ib/Ic supernovae as evolutionary endpoints of single stars, but also events in binary systems can contribute, like e.g. supernovae of type Ia, novae and possibly X-ray bursts and neutron star or neutron star - black hole mergers. Despite many efforts, a full and self-consistent understanding of supernovae (the main contributors to nucleosynthesis in galaxies) is not existing, yet. Their fingerprints, however, seen either in spectra, lightcurves, radioactivities/decay gamma-rays or in galactic evolution, can help to constrain the composition of their ejecta and related model uncertainties.
AESS: Accelerated Exact Stochastic Simulation
NASA Astrophysics Data System (ADS)
Jenkins, David D.; Peterson, Gregory D.
2011-12-01
The Stochastic Simulation Algorithm (SSA) developed by Gillespie provides a powerful mechanism for exploring the behavior of chemical systems with small species populations or with important noise contributions. Gene circuit simulations for systems biology commonly employ the SSA method, as do ecological applications. This algorithm tends to be computationally expensive, so researchers seek an efficient implementation of SSA. In this program package, the Accelerated Exact Stochastic Simulation Algorithm (AESS) contains optimized implementations of Gillespie's SSA that improve the performance of individual simulation runs or ensembles of simulations used for sweeping parameters or to provide statistically significant results. Program summaryProgram title: AESS Catalogue identifier: AEJW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: University of Tennessee copyright agreement No. of lines in distributed program, including test data, etc.: 10 861 No. of bytes in distributed program, including test data, etc.: 394 631 Distribution format: tar.gz Programming language: C for processors, CUDA for NVIDIA GPUs Computer: Developed and tested on various x86 computers and NVIDIA C1060 Tesla and GTX 480 Fermi GPUs. The system targets x86 workstations, optionally with multicore processors or NVIDIA GPUs as accelerators. Operating system: Tested under Ubuntu Linux OS and CentOS 5.5 Linux OS Classification: 3, 16.12 Nature of problem: Simulation of chemical systems, particularly with low species populations, can be accurately performed using Gillespie's method of stochastic simulation. Numerous variations on the original stochastic simulation algorithm have been developed, including approaches that produce results with statistics that exactly match the chemical master equation (CME) as well as other approaches that approximate the CME. Solution
Planets in Evolved Binary Systems
NASA Astrophysics Data System (ADS)
Perets, Hagai B.
2011-03-01
Exo-planets are typically thought to form in protoplanetary disks left over from protostellar disk of their newly formed host star. However, additional planetary formation and evolution routes may exist in old evolved binary systems. Here we discuss the implications of binary stellar evolution on planetary systems in such environments. In these binary systems stellar evolution could lead to the formation of symbiotic stars, where mass is lost from one star and could be transferred to its binary companion, and may form an accretion disk around it. This raises the possibility that such a disk could provide the necessary environment for the formation of a new, second generation of planets in both circumstellar or circumbinary configurations. Pre-existing first generation planets surviving the post-MS evolution of such systems would be dynamically effected by the mass loss in the systems and may also interact with the newly formed disk. Such planets and/or planetesimals may also serve as seeds for the formation of the second generation planets, and/or interact with them, possibly forming atypical planetary systems. Second generation planetary systems should be typically found in white dwarf binary systems, and may show various observational signatures. Most notably, second generation planets could form in environment which are inaccessible, or less favorable, for first generation planets. The orbital phase space available for the second generation planets could be forbidden (in terms of the system stability) to first generation planets in the pre-evolved progenitor binaries. In addition planets could form in metal poor environments such as globular clusters and/or in double compact object binaries. Observations of exo-planets in such forbidden or unfavorable regions could possibly serve to uniquely identify their second generation character. Finally, we point out a few observed candidate second generation planetary systems, including Gl 86, HD 27442 and all of the
The chemically peculiar double-lined spectroscopic binary HD 90264
NASA Astrophysics Data System (ADS)
Quiroga, C.; Torres, A. F.; Cidale, L. S.
2010-10-01
Context. HD 90264 is a chemically peculiar (CP) double-lined spectroscopic binary system of the type He-weak. Double-lined binaries are unique sources of data for stellar masses, physical properties, and evolutionary aspects of stars. Therefore, the determination of orbital elements is of great importance to study how the physical characteristics of CP stars are affected by a companion. Aims: We carried out a detailed spectral and polarimetric study of the spectroscopic binary system HD 90264 to characterize its orbit, determine the stellar masses, and investigate the spectral variability and possible polarization of the binary components. Methods: We employed medium-resolution échelle spectra and polarimetric data obtained at the 2.15-m telescope at CASLEO Observatory, Argentina. We measured radial velocities and line equivalent widths with IRAF packages. The radial velocity curves of both binary components were obtained combining radial velocity data derived from the single line of Hg II λ3984 Åand the double lines of Mg II λ4481 Å. Polarimetric data were studied by means of the statistical method of Clarke & Stewart and the Welch test. Results: We found that both components of the binary system are chemically peculiar stars, deficient in helium, where the primary is a He variable and the secondary is a Hg-Mn star. We derived for the first time the orbital parameters of the binary system. We found that the system has a quasi-circular orbit (e ~ 0.04) with an orbital period of 15.727 days. Taking into account the circular orbit solution, we derived a mass ratio of q = MHe-w/MHg-Mn = 1.22. We also found a rotational period of around 15-16 days, suggesting a spin-orbit synchronization. Possible signs of intrinsic polarization have also been detected. Conclusions: HD 90264 is the first known binary system comprised of a He variable star as the primary component and a Hg-Mn star as the secondary one. Based on observations taken at Complejo Astronómico El
Long time behaviour of a stochastic nanoparticle
NASA Astrophysics Data System (ADS)
Étoré, Pierre; Labbé, Stéphane; Lelong, Jérôme
2014-09-01
In this article, we are interested in the behaviour of a single ferromagnetic mono-domain particle submitted to an external field with a stochastic perturbation. This model is the first step toward the mathematical understanding of thermal effects on a ferromagnet. In a first part, we present the stochastic model and prove that the associated stochastic differential equation is well defined. The second part is dedicated to the study of the long time behaviour of the magnetic moment and in the third part we prove that the stochastic perturbation induces a non-reversibility phenomenon. Last, we illustrate these results through numerical simulations of our stochastic model. The main results presented in this article are on the one hand the rate of convergence of the magnetization toward the unique stable equilibrium of the deterministic model and on the other hand a sharp estimate of the hysteresis phenomenon induced by the stochastic perturbation (remember that with no perturbation, the magnetic moment remains constant).
Generalized spectral decomposition for stochastic nonlinear problems
Nouy, Anthony Le Maitre, Olivier P.
2009-01-10
We present an extension of the generalized spectral decomposition method for the resolution of nonlinear stochastic problems. The method consists in the construction of a reduced basis approximation of the Galerkin solution and is independent of the stochastic discretization selected (polynomial chaos, stochastic multi-element or multi-wavelets). Two algorithms are proposed for the sequential construction of the successive generalized spectral modes. They involve decoupled resolutions of a series of deterministic and low-dimensional stochastic problems. Compared to the classical Galerkin method, the algorithms allow for significant computational savings and require minor adaptations of the deterministic codes. The methodology is detailed and tested on two model problems, the one-dimensional steady viscous Burgers equation and a two-dimensional nonlinear diffusion problem. These examples demonstrate the effectiveness of the proposed algorithms which exhibit convergence rates with the number of modes essentially dependent on the spectrum of the stochastic solution but independent of the dimension of the stochastic approximation space.
Ant colony optimization and stochastic gradient descent.
Meuleau, Nicolas; Dorigo, Marco
2002-01-01
In this article, we study the relationship between the two techniques known as ant colony optimization (ACO) and stochastic gradient descent. More precisely, we show that some empirical ACO algorithms approximate stochastic gradient descent in the space of pheromones, and we propose an implementation of stochastic gradient descent that belongs to the family of ACO algorithms. We then use this insight to explore the mutual contributions of the two techniques. PMID:12171633
Stochastic Vorticity and Associated Filtering Theory
Amirdjanova, A.; Kallianpur, G.
2002-12-19
The focus of this work is on a two-dimensional stochastic vorticity equation for an incompressible homogeneous viscous fluid. We consider a signed measure-valued stochastic partial differential equation for a vorticity process based on the Skorohod-Ito evolution of a system of N randomly moving point vortices. A nonlinear filtering problem associated with the evolution of the vorticity is considered and a corresponding Fujisaki-Kallianpur-Kunita stochastic differential equation for the optimal filter is derived.
Constraints on Inspiralling Binaries from First LWA Data
NASA Astrophysics Data System (ADS)
Papadopoulos, Joanna; Gough, J.; Cutchin, S. E.; Kavic, M.; Simonetti, J. H.; Akukwe, B.; Bear, B.; Tsai, J.; Kassim, N. E.
2014-01-01
The merger of a binary neutron star pair is expected to generate a strong transient radio signal. This emission will be strongest at low-frequencies and will disperse as it transverses the interstellar medium, arriving at Earth after coincidentally emitted gravitational or (higher frequency) electromagnetic signals. The rate of compact object merger events is poorly constrained by observations. The first station of Long Wavelength Array (LWA-1) telescope is a low-frequency radio telescope located near Socorro, NM, which is sensitive to a frequency range of 10-88 MHz. I will discuss the sensitivity of LWA-1 to transient radio emission from binary neutron star mergers and a limit set by LWA-1 observations to constrain the rate of such merger events.
Stochastic investigation of two-dimensional cross sections of rocks based on the climacogram
NASA Astrophysics Data System (ADS)
Kalamioti, Anna; Dimitriadis, Panayiotis; Tzouka, Katerina; Lerias, Eleutherios; Koutsoyiannis, Demetris
2016-04-01
The statistical properties of soil and rock formations are essential for the characterization of the porous medium geological structure as well as for the prediction of its transport properties in groundwater modelling. We investigate two-dimensional cross sections of rocks in terms of stochastic structure of its morphology quantified by the climacogram (i.e., variance of the averaged process vs. scale). The analysis is based both in microscale and macroscale data, specifically from Scanning Electron Microscope (SEM) pictures and from field photos, respectively. We identify and quantify the stochastic properties with emphasis on the large scale type of decay (exponentially or power type, else known as Hurst-Kolmogorov behaviour). Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.
The Michigan Binary Star Program
NASA Astrophysics Data System (ADS)
Lindner, Rudi P.
2007-07-01
At the end of the nineteenth century, William J. Hussey and Robert G. Aitken, both at Lick Observatory, began a systematic search for unrecorded binary stars with the aid of the 12" and 36" refracting telescopes at Lick Observatory. Aitken's work (and book on binary stars) are well known, Hussey's contributions less so. In 1905 Hussey, a Michigan engineering graduate, returned to direct the Ann Arbor astronomy program, and immediately he began to design new instrumentation for the study of binary stars and to train potential observers. For a time, he spent six months a year at the La Plata Observatory, where he discovered a number of new pairs and decided upon a major southern hemisphere campaign. He spent a decade obtaining the lenses for a large refractor, through the vicissitudes of war and depression. Finally, he obtained a site in South Africa, a 26" refractor, and a small corps of observers, but he died in London en route to fulfill his dream. His right hand man, Richard Rossiter, established the observatory and spent the next thirty years discovering and measuring binary stars: his personal total is a record for the field. This talk is an account of the methods, results, and utility of the extraordinary binary star factory in the veldt.
The violent interstellar medium
NASA Technical Reports Server (NTRS)
Mccray, R.; Snow, T. P., Jr.
1979-01-01
Observational evidence for high-velocity and high-temperature interstellar gas is reviewed. The physical processes that characterize this gas are described, including the ionization and emissivity of coronal gas, the behavior and appearance of high-velocity shocks, and interfaces between coronal gas and cooler interstellar gas. Hydrodynamical models for the action of supernova explosions and stellar winds on the interstellar medium are examined, and recent attempts to synthesize all the processes considered into a global model for the interstellar medium are discussed.
Deterministic and Stochastic Regimes of Asexual Evolution on Rugged Fitness Landscapes
Jain, Kavita; Krug, Joachim
2007-01-01
We study the adaptation dynamics of an initially maladapted asexual population with genotypes represented by binary sequences of length L. The population evolves in a maximally rugged fitness landscape with a large number of local optima. We find that whether the evolutionary trajectory is deterministic or stochastic depends on the effective mutational distance deff up to which the population can spread in genotype space. For deff = L, the deterministic quasi-species theory operates while for deff < 1, the evolution is completely stochastic. Between these two limiting cases, the dynamics are described by a local quasi-species theory below a crossover time T× while above T× the population gets trapped at a local fitness peak and manages to find a better peak via either stochastic tunneling or double mutations. In the stochastic regime deff < 1, we identify two subregimes associated with clonal interference and uphill adaptive walks, respectively. We argue that our findings are relevant to the interpretation of evolution experiments with microbial populations. PMID:17179085
NASA Astrophysics Data System (ADS)
Maiti, Sumit Kumar; Roy, Sankar Kumar
2016-05-01
In this paper, a Multi-Choice Stochastic Bi-Level Programming Problem (MCSBLPP) is considered where all the parameters of constraints are followed by normal distribution. The cost coefficients of the objective functions are multi-choice types. At first, all the probabilistic constraints are transformed into deterministic constraints using stochastic programming approach. Further, a general transformation technique with the help of binary variables is used to transform the multi-choice type cost coefficients of the objective functions of Decision Makers(DMs). Then the transformed problem is considered as a deterministic multi-choice bi-level programming problem. Finally, a numerical example is presented to illustrate the usefulness of the paper.
Experience with parametric binary dissection
NASA Technical Reports Server (NTRS)
Bokhari, Shahid H.
1993-01-01
Parametric Binary Dissection (PBD) is a new algorithm that can be used for partitioning graphs embedded in 2- or 3-dimensional space. It partitions explicitly on the basis of nodes + (lambda)x(edges cut), where lambda is the ratio of time to communicate over an edge to the time to compute at a node. The new algorithm is faster than the original binary dissection algorithm and attempts to obtain better partitions than the older algorithm, which only takes nodes into account. The performance of parametric dissection with plain binary dissection on 3 large unstructured 3-d meshes obtained from computational fluid dynamics and on 2 random graphs were compared. It was showm that the new algorithm can usually yield partitions that are substantially superior, but that its performance is heavily dependent on the input data.
Liquidus of Silicon Binary Systems
NASA Astrophysics Data System (ADS)
Safarian, Jafar; Kolbeinsen, Leiv; Tangstad, Merete
2011-08-01
Thermodynamic knowledge about liquid silicon is crucial for the production of solar-grade silicon feedstock from molten silicon. In the current study, liquidus for silicon binary alloys is formulated using a previously developed method in which the liquidus curve is calculated using two constants. The liquidus measurements for the silicon portion of the silicon alloys with Al, Ca, Mg, Fe, Ti, Zn, Cu, Ag, Au, Pt, Sn, Pb, Bi, Sb, Ga, In, Ni, Pd, Mn, and Rh are reviewed, and the consistent data were used to determine the liquidus constants. The liquidus curves for silicon binary systems are calculated and plotted. It is indicated that the calculated liquidus curves fit well with the experimental data. A correlation between the determined liquidus constants is also observed, which can be used to gain a better understanding of the thermodynamics of the silicon binary melts.
An electrically powered binary star?
NASA Astrophysics Data System (ADS)
Wu, Kinwah; Cropper, Mark; Ramsay, Gavin; Sekiguchi, Kazuhiro
2002-03-01
We propose a model for stellar binary systems consisting of a magnetic and a non-magnetic white dwarf pair which is powered principally by electrical energy. In our model the luminosity is caused by resistive heating of the stellar atmospheres arising from induced currents driven within the binary. This process is reminiscent of the Jupiter-Io system, but greatly increased in power because of the larger companion and stronger magnetic field of the primary. Electrical power is an alternative stellar luminosity source, following on from nuclear fusion and accretion. We find that this source of heating is sufficient to account for the observed X-ray luminosity of the 9.5-min binary RX J1914+24, and provides an explanation for its puzzling characteristics.
Stochastics In Circumplanetary Dust Dynamics
NASA Astrophysics Data System (ADS)
Spahn, F.; Krivov, A. V.; Sremcevic, M.; Schwarz, U.; Kurths, J.
Charged dust grains in circumplanetary environments experience, beyond various de- terministic forces, also stochastic perturbations: E.g., fluctuations of the magnetic field, the charge of the grains etc. Here, we investigate the dynamics of a dust population in a circular orbit around the planet which is perturbed by a stochastic magnetic field B , modeled by an isotropi- cally Gaussian white noise. The resulting perturbation equations give rise to a modi- 2 fied diffusion of the inclinations and eccentricities x D [t +/- sin[2nt]/(2n)] (x - alias for eccentricity e and the inclination i, t - time). The diffusion coefficient is found to be D = [G]2/n, where the gyrofrequency and the orbital frequency are denoted by G, and n, respectively. This behavior has been checked by numerical experiments. We have chosen dust grains (1µm in radius) initially moving in circular orbits around a planet (Jupiter) and integrated numerically their trajectories over their typical lifetimes (100 years). The particles were exposed to a Gaussian fluctuating magnetic field B obeying the same statistical properties as in the analytical treatment. In this case, the theoretical 2 findings have been confirmed according to x D t with a diffusion coefficient of D G/n. 2 The theoretical studies showed the statistical properties of B being of decisive im- portance. To this aim, we analyzed the magnetic field data measured by the Galileo magnetometer at Jupiter and found almost Gaussian fluctuations of about 5 % of the mean field and exponentially decaying correlations. This results in a diffusion in the space of orbital elements of at least 1...5 % (variations of inclinations and eccentric- ity) over the lifetime of the dust grains. For smaller dusty motes stochastics might well dominate the dynamics.
NASA Technical Reports Server (NTRS)
Dede, Christopher J.
1990-01-01
Claims and rebuttals that hypermedia (the associative, nonlinear interconnection of multimedia materials) is a fundamentally innovative means of thinking and communicating are described. This representational architecture has many advantages that make it a major advance over other media; however, it also has several intrinsic problems that severly limits its effectiveness as a medium. These advantages and limits in applications are discussed.
NASA Technical Reports Server (NTRS)
Gange, Robert Allen (Inventor)
1977-01-01
A holographic recording medium comprising a conductive substrate, a photoconductive layer and an electrically alterable layer of a linear, low molecular weight hydrocarbon polymer has improved fatigue resistance. An acrylic barrier layer can be interposed between the photoconductive and electrically alterable layers.
X-Shooter Medium Resolution Brown Dwarfs Library
NASA Astrophysics Data System (ADS)
Manjavacas, E.; Goldman, B.; Alcala, J. M.; Bonnefoy, Mickael; Allard, F.; Smart, R. L.; Bejar, V. J. S.; Zapatero-Osorio, M. R.; Henning, T.; Bouy, H.
2015-01-01
} We obtain medium-resolution spectra in the optical (550-1000 nm, R˜5400) and the near-infrared (1000-2500 nm, R˜3300) using the Wideband ultraviolet-infrared single target spectrograph (X-Shooter) at the Very Large Telescope (VLT). Our sample is compound of 22 brown dwarfs binary candidates with spectral types between L1 and T7. We aim to empirically confirm or refute the binarity of our candidates, comparing them to spectral templates and to other brown dwarfs in a color-magnitude diagram, for targets that have published parallaxes. } We use X-shooter at the VLT to obtain medium resolution spectra of the targets. We develop a slightly different analysis depending of the type of binaries we search for. To find L plus T brown dwarf binaries candidates, we comput spectral indices to select L-brown dwarfs plus T-brown dwarf binaries, and then we compare them to single and composite template spectra. To find potential L plus L or T plus T brown dwarf binaries, we first simulate their spectra creating synthetic binaries using combination of single template spectra. Then we compare them to our set of spectral libraries and composite of them to test if our method is able to find these binaries. } Using spectral indices, we select four possible candidates to be combination of L plus T brown dwarfs: SIMP 0136 662+0933473, 2MASSI J0423485-041403 (T0, known binary), DENIS-P J0255.0-4700 and 2MASS J13411160-3052505 We compare these candidates to single brown dwarf template spectra and combinations of them, and we select the best matches. All candidates beside SIMP 0136 662+0933473 have decent matches to composite of two single template spectra. DENIS-P J0255.0-4700 have also good agreements to several late L and early T single template spectra. To find L plus L or T plus T brown dwarfs candidates, test the comparison to templates method use before to find L plus T brown dwarf binaries. The test consist on finding synthetic L plus L and T plus T binaries by comparing with
Hamilton's principle in stochastic mechanics
NASA Astrophysics Data System (ADS)
Pavon, Michele
1995-12-01
In this paper we establish three variational principles that provide new foundations for Nelson's stochastic mechanics in the case of nonrelativistic particles without spin. The resulting variational picture is much richer and of a different nature with respect to the one previously considered in the literature. We first develop two stochastic variational principles whose Hamilton-Jacobi-like equations are precisely the two coupled partial differential equations that are obtained from the Schrödinger equation (Madelung equations). The two problems are zero-sum, noncooperative, stochastic differential games that are familiar in the control theory literature. They are solved here by means of a new, absolutely elementary method based on Lagrange functionals. For both games the saddle-point equilibrium solution is given by the Nelson's process and the optimal controls for the two competing players are precisely Nelson's current velocity v and osmotic velocity u, respectively. The first variational principle includes as special cases both the Guerra-Morato variational principle [Phys. Rev. D 27, 1774 (1983)] and Schrödinger original variational derivation of the time-independent equation. It also reduces to the classical least action principle when the intensity of the underlying noise tends to zero. It appears as a saddle-point action principle. In the second variational principle the action is simply the difference between the initial and final configurational entropy. It is therefore a saddle-point entropy production principle. From the variational principles it follows, in particular, that both v(x,t) and u(x,t) are gradients of appropriate principal functions. In the variational principles, the role of the background noise has the intuitive meaning of attempting to contrast the more classical mechanical features of the system by trying to maximize the action in the first principle and by trying to increase the entropy in the second. Combining the two variational
Stochastic Models of Human Errors
NASA Technical Reports Server (NTRS)
Elshamy, Maged; Elliott, Dawn M. (Technical Monitor)
2002-01-01
Humans play an important role in the overall reliability of engineering systems. More often accidents and systems failure are traced to human errors. Therefore, in order to have meaningful system risk analysis, the reliability of the human element must be taken into consideration. Describing the human error process by mathematical models is a key to analyzing contributing factors. Therefore, the objective of this research effort is to establish stochastic models substantiated by sound theoretic foundation to address the occurrence of human errors in the processing of the space shuttle.
Stochastic elimination of cancer cells.
Michor, Franziska; Nowak, Martin A; Frank, Steven A; Iwasa, Yoh
2003-01-01
Tissues of multicellular organisms consist of stem cells and differentiated cells. Stem cells divide to produce new stem cells or differentiated cells. Differentiated cells divide to produce new differentiated cells. We show that such a tissue design can reduce the rate of fixation of mutations that increase the net proliferation rate of cells. It has, however, no consequence for the rate of fixation of neutral mutations. We calculate the optimum relative abundance of stem cells that minimizes the rate of generating cancer cells. There is a critical fraction of stem cell divisions that is required for a stochastic elimination ('wash out') of cancer cells. PMID:14561289
Stochastic solution to quantum dynamics
NASA Technical Reports Server (NTRS)
John, Sarah; Wilson, John W.
1994-01-01
The quantum Liouville equation in the Wigner representation is solved numerically by using Monte Carlo methods. For incremental time steps, the propagation is implemented as a classical evolution in phase space modified by a quantum correction. The correction, which is a momentum jump function, is simulated in the quasi-classical approximation via a stochastic process. The technique, which is developed and validated in two- and three- dimensional momentum space, extends an earlier one-dimensional work. Also, by developing a new algorithm, the application to bound state motion in an anharmonic quartic potential shows better agreement with exact solutions in two-dimensional phase space.
Stochastic thermodynamics of information processing
NASA Astrophysics Data System (ADS)
Cardoso Barato, Andre
2015-03-01
We consider two recent advancements on theoretical aspects of thermodynamics of information processing. First we show that the theory of stochastic thermodynamics can be generalized to include information reservoirs. These reservoirs can be seen as a sequence of bits which has its Shannon entropy changed due to the interaction with the system. Second we discuss bipartite systems, which provide a convenient description of Maxwell's demon. Analyzing a special class of bipartite systems we show that they can be used to study cellular information processing, allowing for the definition of an entropic rate that quantifies how much a cell learns about a fluctuating external environment and that is bounded by the thermodynamic entropy production.
Constrained Stochastic Extended Redundancy Analysis.
DeSarbo, Wayne S; Hwang, Heungsun; Stadler Blank, Ashley; Kappe, Eelco
2015-06-01
We devise a new statistical methodology called constrained stochastic extended redundancy analysis (CSERA) to examine the comparative impact of various conceptual factors, or drivers, as well as the specific predictor variables that contribute to each driver on designated dependent variable(s). The technical details of the proposed methodology, the maximum likelihood estimation algorithm, and model selection heuristics are discussed. A sports marketing consumer psychology application is provided in a Major League Baseball (MLB) context where the effects of six conceptual drivers of game attendance and their defining predictor variables are estimated. Results compare favorably to those obtained using traditional extended redundancy analysis (ERA). PMID:24327066
Longterm lightcurves of X-ray binaries
NASA Astrophysics Data System (ADS)
Clarkson, William
The X-ray Binaries (XRB) consist of a compact object and a stellar companion, which undergoes large-scale mass-loss to the compact object by virtue of the tight ( P orb usually hours-days) orbit, producing an accretion disk surrounding the compact object. The liberation of gravitational potential energy powers exotic high-energy phenomena, indeed the resulting accretion/ outflow process is among the most efficient energy-conversion machines in the universe. The Burst And Transient Source Experiment (BATSE) and RXTE All Sky Monitor (ASM) have provided remarkable X-ray lightcurves above 1.3keV for the entire sky, at near-continuous coverage, for intervals of 9 and 7 years respectively (with ~3 years' overlap). With an order of magnitude increase in sensitivity compared to previous survey instruments, these instruments have provided new insight into the high-energy behaviour of XRBs on timescales of tens to thousands of binary orbits. This thesis describes detailed examination of the long-term X-ray lightcurves of the neutron star XRB X2127+119, SMC X-1, Her X- 1, LMC X-4, Cyg X-2 and the as yet unclassified Circinus X-1, and for Cir X-1, complementary observations in the IR band. Chapters 1 & 2 introduce X-ray Binaries in general and longterm periodicities in particular. Chapter 3 introduces the longterm datasets around which this work is based, and the chosen methods of analysis of these datasets. Chapter 4 examines the burst history of the XRB X2127+119, suggesting three possible interpretations of the apparently contradictory X-ray emission from this system, including a possible confusion of two spatially distinct sources (which was later vindicated by high-resolution imaging). Chapters 5 and 6 describe the characterisation of accretion disk warping, providing observational verification of the prevailing theoretical framework for such disk-warps. Chapters 7 & 8 examine the enigmatic XRB Circinus X-1 with high-resolution IR spectroscopy (chapter 7) and the RXTE
NASA Astrophysics Data System (ADS)
Heintz, W. D.
1981-04-01
Micrometer observations in 1979-1980 permitted the computation of substantially revised or new orbital elements for 15 visual pairs. They include the bright stars 52 Ari and 78 UMa (in the UMa cluster), four faint dK pairs, and the probable triple ADS 16185. Ephemerides for equator of data are listed in a table along with the orbital elements of the binaries. The measured positions and their residuals are listed in a second table. The considered binaries include ADS 896, 2336, 6315, 7054, 7629, 8092, 8555, 8739, 13987, 16185, Rst 1658, 3906, 3972, 4529, and Jsp 691.
Stochastic projected Gross-Pitaevskii equation for spinor and multicomponent condensates
NASA Astrophysics Data System (ADS)
Bradley, Ashton S.; Blakie, P. Blair
2014-08-01
A stochastic Gross-Pitaevskii equation is derived for partially condensed Bose gas systems subject to binary contact interactions. The theory we present provides a classical-field theory suitable for describing dissipative dynamics and phase transitions of spinor and multicomponent Bose gas systems composed of an arbitrary number of distinct interacting Bose fields. A class of dissipative processes involving distinguishable particle interchange between coherent and incoherent regions of phase space is identified. The formalism and its implications are illustrated for two-component mixtures and spin-1 Bose-Einstein condensates. For systems composed of atoms of equal mass, with thermal reservoirs that are close to equilibrium, the dissipation rates of the theory are reduced to analytical expressions that may be readily evaluated. The unified treatment of binary contact interactions presented here provides a theory with broad relevance for quasiequilibrium and far-from-equilibrium Bose-Einstein condensates.
Constraining Modified Theories of Gravity with Gravitational-Wave Stochastic Backgrounds.
Maselli, Andrea; Marassi, Stefania; Ferrari, Valeria; Kokkotas, Kostas; Schneider, Raffaella
2016-08-26
The direct discovery of gravitational waves has finally opened a new observational window on our Universe, suggesting that the population of coalescing binary black holes is larger than previously expected. These sources produce an unresolved background of gravitational waves, potentially observable by ground-based interferometers. In this Letter we investigate how modified theories of gravity, modeled using the parametrized post-Einsteinian formalism, affect the expected signal, and analyze the detectability of the resulting stochastic background by current and future ground-based interferometers. We find the constraints that Advanced LIGO would be able to set on modified theories, showing that they may significantly improve the current bounds obtained from astrophysical observations of binary pulsars. PMID:27610838
Mental Effort in Binary Categorization Aided by Binary Cues
ERIC Educational Resources Information Center
Botzer, Assaf; Meyer, Joachim; Parmet, Yisrael
2013-01-01
Binary cueing systems assist in many tasks, often alerting people about potential hazards (such as alarms and alerts). We investigate whether cues, besides possibly improving decision accuracy, also affect the effort users invest in tasks and whether the required effort in tasks affects the responses to cues. We developed a novel experimental tool…
NASA Astrophysics Data System (ADS)
Zhang, Ming
2015-10-01
A theory of 2-stage acceleration of Galactic cosmic rays in supernova remnants is proposed. The first stage is accomplished by the supernova shock front, where a power-law spectrum is established up to a certain cutoff energy. It is followed by stochastic acceleration with compressible waves/turbulence in the downstream medium. With a broad \\propto {k}-2 spectrum for the compressible plasma fluctuations, the rate of stochastic acceleration is constant over a wide range of particle momentum. In this case, the stochastic acceleration process extends the power-law spectrum cutoff energy of Galactic cosmic rays to the knee without changing the spectral slope. This situation happens as long as the rate of stochastic acceleration is faster than 1/5 of the adiabatic cooling rate. A steeper spectrum of compressible plasma fluctuations that concentrate their power in long wavelengths will accelerate cosmic rays to the knee with a small bump before its cutoff in the comic-ray energy spectrum. This theory does not require a strong amplification of the magnetic field in the upstream interstellar medium in order to accelerate cosmic rays to the knee energy.
Zhu, Yingbin; Zhao, Daomu
2008-08-01
On the basis of the generalized diffraction integral formula for an ABCD optical system in the spatial domain, a propagation law for the generalized Stokes parameters of a stochastic electromagnetic beam passing through an ABCD optical system is obtained. We describe the Stokes parameters of the source as linear combinations of the elements of the cross-spectral density matrix, and study the changes in the spectral degree of polarization and in the state of the polarization ellipse of a stochastic electromagnetic Gaussian Schell-model beam propagating through a gradient-index fiber with the help of generalized Stokes parameters and the cross-spectral density matrix. The medium has significant effect on the change of the spectral degree of polarization. However, when the correlation coefficients of the source satisfy the relation delta(xx)=delta(yy)=delta(xy)=delta(yx), the medium does not influence the spectral degree of polarization. PMID:18677357
BINARY YORP EFFECT AND EVOLUTION OF BINARY ASTEROIDS
Steinberg, Elad; Sari, Re'em
2011-02-15
The rotation states of kilometer-sized near-Earth asteroids are known to be affected by the Yarkevsky O'Keefe-Radzievskii-Paddack (YORP) effect. In a related effect, binary YORP (BYORP), the orbital properties of a binary asteroid evolve under a radiation effect mostly acting on a tidally locked secondary. The BYORP effect can alter the orbital elements over {approx}10{sup 4}-10{sup 5} years for a D{sub p} = 2 km primary with a D{sub s} = 0.4 km secondary at 1 AU. It can either separate the binary components or cause them to collide. In this paper, we devise a simple approach to calculate the YORP effect on asteroids and the BYORP effect on binaries including J{sub 2} effects due to primary oblateness and the Sun. We apply this to asteroids with known shapes as well as a set of randomly generated bodies with various degrees of smoothness. We find a strong correlation between the strengths of an asteroid's YORP and BYORP effects. Therefore, statistical knowledge of one could be used to estimate the effect of the other. We show that the action of BYORP preferentially shrinks rather than expands the binary orbit and that YORP preferentially slows down asteroids. This conclusion holds for the two extremes of thermal conductivities studied in this work and the assumption that the asteroid reaches a stable point, but may break down for moderate thermal conductivity. The YORP and BYORP effects are shown to be smaller than could be naively expected due to near cancellation of the effects at small scales. Taking this near cancellation into account, a simple order-of-magnitude estimate of the YORP and BYORP effects as a function of the sizes and smoothness of the bodies is calculated. Finally, we provide a simple proof showing that there is no secular effect due to absorption of radiation in BYORP.
A data-driven multi-cloud model for stochastic parametrization of deep convection.
Dorrestijn, J; Crommelin, D T; Biello, J A; Böing, S J
2013-05-28
Stochastic subgrid models have been proposed to capture the missing variability and correct systematic medium-term errors in general circulation models. In particular, the poor representation of subgrid-scale deep convection is a persistent problem that stochastic parametrizations are attempting to correct. In this paper, we construct such a subgrid model using data derived from large-eddy simulations (LESs) of deep convection. We use a data-driven stochastic parametrization methodology to construct a stochastic model describing a finite number of cloud states. Our model emulates, in a computationally inexpensive manner, the deep convection-resolving LES. Transitions between the cloud states are modelled with Markov chains. By conditioning the Markov chains on large-scale variables, we obtain a conditional Markov chain, which reproduces the time evolution of the cloud fractions. Furthermore, we show that the variability and spatial distribution of cloud types produced by the Markov chains become more faithful to the LES data when local spatial coupling is introduced in the subgrid Markov chains. Such spatially coupled Markov chains are equivalent to stochastic cellular automata. PMID:23588052
Stem cell proliferation and differentiation and stochastic bistability in gene expression
Zhdanov, V. P.
2007-02-15
The process of proliferation and differentiation of stem cells is inherently stochastic in the sense that the outcome of cell division is characterized by probabilities that depend on the intracellular properties, extracellular medium, and cell-cell communication. Despite four decades of intensive studies, the understanding of the physics behind this stochasticity is still limited, both in details and conceptually. Here, we suggest a simple scheme showing that the stochastic behavior of a single stem cell may be related to (i) the existence of a short stage of decision whether it will proliferate or differentiate and (ii) control of this stage by stochastic bistability in gene expression or, more specifically, by transcriptional 'bursts.' Our Monte Carlo simulations indicate that our proposed scheme may operate if the number of mRNA (or protein) molecules generated during the high-reactive periods of gene expression is below or about 50. The stochastic-burst window in the space of kinetic parameters is found to increase with decreasing the mRNA and/or regulatory-protein numbers and increasing the number of regulatory sites. For mRNA production with three regulatory sites, for example, the mRNA degradation rate constant may change in the range {+-}10%.
Recent Minima of 193 Eclipsing Binary Stars
NASA Astrophysics Data System (ADS)
Samolyk, G.
2016-06-01
This paper continues the publication of times of minima for eclipsing binary stars from observations reported to the AAVSO Eclipsing Binary section. Times of minima from CCD observations received by the author from November 2015 through January 2016 are presented.
Bayesian data assimilation for stochastic multiscale models of transport in porous media.
Marzouk, Youssef M.; van Bloemen Waanders, Bart Gustaaf; Parno, Matthew; Ray, Jaideep; Lefantzi, Sophia; Salazar, Luke; McKenna, Sean Andrew; Klise, Katherine A.
2011-10-01
We investigate Bayesian techniques that can be used to reconstruct field variables from partial observations. In particular, we target fields that exhibit spatial structures with a large spectrum of lengthscales. Contemporary methods typically describe the field on a grid and estimate structures which can be resolved by it. In contrast, we address the reconstruction of grid-resolved structures as well as estimation of statistical summaries of subgrid structures, which are smaller than the grid resolution. We perform this in two different ways (a) via a physical (phenomenological), parameterized subgrid model that summarizes the impact of the unresolved scales at the coarse level and (b) via multiscale finite elements, where specially designed prolongation and restriction operators establish the interscale link between the same problem defined on a coarse and fine mesh. The estimation problem is posed as a Bayesian inverse problem. Dimensionality reduction is performed by projecting the field to be inferred on a suitable orthogonal basis set, viz. the Karhunen-Loeve expansion of a multiGaussian. We first demonstrate our techniques on the reconstruction of a binary medium consisting of a matrix with embedded inclusions, which are too small to be grid-resolved. The reconstruction is performed using an adaptive Markov chain Monte Carlo method. We find that the posterior distributions of the inferred parameters are approximately Gaussian. We exploit this finding to reconstruct a permeability field with long, but narrow embedded fractures (which are too fine to be grid-resolved) using scalable ensemble Kalman filters; this also allows us to address larger grids. Ensemble Kalman filtering is then used to estimate the values of hydraulic conductivity and specific yield in a model of the High Plains Aquifer in Kansas. Strong conditioning of the spatial structure of the parameters and the non-linear aspects of the water table aquifer create difficulty for the ensemble Kalman
Elongated optical bottle beams generated by composite binary axicons
NASA Astrophysics Data System (ADS)
Porfirev, A. P.; Skidanov, R. V.
2016-04-01
We provide analytical, numerical and experimental study of the possibility of forming elongated optical bottle beams (OBBs) using composite binary phase axicons. In this case, the OBB is generated by the superposition of Bessel beams in the near-field region on the axicon. To generate the OBB experimentally, we utilized a spatial light modulator. The experimental results are qualitatively consistent with the results of numerical simulations performed using Fresnel transform. Such type of optical trap can be applied in many applications of microbiology, micromechanics and meteorology to manipulate micro- and nanoobjects in liquid or gaseous medium.
RHIC stochastic cooling motion control
Gassner, D.; DeSanto, L.; Olsen, R.H.; Fu, W.; Brennan, J.M.; Liaw, CJ; Bellavia, S.; Brodowski, J.
2011-03-28
Relativistic Heavy Ion Collider (RHIC) beams are subject to Intra-Beam Scattering (IBS) that causes an emittance growth in all three-phase space planes. The only way to increase integrated luminosity is to counteract IBS with cooling during RHIC stores. A stochastic cooling system for this purpose has been developed, it includes moveable pick-ups and kickers in the collider that require precise motion control mechanics, drives and controllers. Since these moving parts can limit the beam path aperture, accuracy and reliability is important. Servo, stepper, and DC motors are used to provide actuation solutions for position control. The choice of motion stage, drive motor type, and controls are based on needs defined by the variety of mechanical specifications, the unique performance requirements, and the special needs required for remote operations in an accelerator environment. In this report we will describe the remote motion control related beam line hardware, position transducers, rack electronics, and software developed for the RHIC stochastic cooling pick-ups and kickers.
Stochastic models of viral infection
NASA Astrophysics Data System (ADS)
Chou, Tom
2009-03-01
We develop biophysical models of viral infections from a stochastic process perspective. The entry of enveloped viruses is treated as a stochastic multiple receptor and coreceptor engagement process that can lead to membrane fusion or endocytosis. The probabilities of entry via fusion and endocytosis are computed as functions of the receptor/coreceptor engagement rates. Since membrane fusion and endocytosis entry pathways can lead to very different infection outcomes, we delineate the parameter regimes conducive to each entry pathway. After entry, viral material is biochemically processed and degraded as it is transported towards the nucleus. Productive infections occur only when the material reaches the nucleus in the proper biochemical state. Thus, entry into the nucleus in an infectious state requires the proper timing of the cytoplasmic transport process. We compute the productive infection probability and show its nonmonotonic dependence on both transport speeds and biochemical transformation rates. Our results carry subtle consequences on the dosage and efficacy of antivirals such as reverse transcription inhibitors.
Stochastic Methods for Aircraft Design
NASA Technical Reports Server (NTRS)
Pelz, Richard B.; Ogot, Madara
1998-01-01
The global stochastic optimization method, simulated annealing (SA), was adapted and applied to various problems in aircraft design. The research was aimed at overcoming the problem of finding an optimal design in a space with multiple minima and roughness ubiquitous to numerically generated nonlinear objective functions. SA was modified to reduce the number of objective function evaluations for an optimal design, historically the main criticism of stochastic methods. SA was applied to many CFD/MDO problems including: low sonic-boom bodies, minimum drag on supersonic fore-bodies, minimum drag on supersonic aeroelastic fore-bodies, minimum drag on HSCT aeroelastic wings, FLOPS preliminary design code, another preliminary aircraft design study with vortex lattice aerodynamics, HSR complete aircraft aerodynamics. In every case, SA provided a simple, robust and reliable optimization method which found optimal designs in order 100 objective function evaluations. Perhaps most importantly, from this academic/industrial project, technology has been successfully transferred; this method is the method of choice for optimization problems at Northrop Grumman.
Stochastic models for cell division
NASA Astrophysics Data System (ADS)
Stukalin, Evgeny; Sun, Sean
2013-03-01
The probability of cell division per unit time strongly depends of age of cells, i.e., time elapsed since their birth. The theory of cell populations in the age-time representation is systematically applied for modeling cell division for different spreads in generation times. We use stochastic simulations to address the same issue at the level of individual cells. Our approach unlike deterministic theory enables to analyze the size fluctuations of cell colonies at different growth conditions (in the absence and in the presence of cell death, for initially synchronized and asynchronous cell populations, for conditions of restricted growth). We find the simple quantitative relation between the asymptotic values of relative size fluctuations around mean values for initially synchronized cell populations under growth and the coefficients of variation of generation times. Effect of initial age distribution for asynchronous growth of cell cultures is also studied by simulations. The influence of constant cell death on fluctuations of sizes of cell populations is found to be essential even for small cell death rates, i.e., for realistic growth conditions. The stochastic model is generalized for biologically relevant case that involves both cell reproduction and cell differentiation.
Stochastic Modeling of Laminar-Turbulent Transition
NASA Technical Reports Server (NTRS)
Rubinstein, Robert; Choudhari, Meelan
2002-01-01
Stochastic versions of stability equations are developed in order to develop integrated models of transition and turbulence and to understand the effects of uncertain initial conditions on disturbance growth. Stochastic forms of the resonant triad equations, a high Reynolds number asymptotic theory, and the parabolized stability equations are developed.
Bunched Beam Stochastic Cooling and Coherent Lines
Blaskiewicz, M.; Brennan, J. M.
2006-03-20
Strong coherent signals complicate bunched beam stochastic cooling, and development of the longitudinal stochastic cooling system for RHIC required dealing with coherence in heavy ion beams. Studies with proton beams revealed additional forms of coherence. This paper presents data and analysis for both sorts of beams.
Variational principles for stochastic fluid dynamics
Holm, Darryl D.
2015-01-01
This paper derives stochastic partial differential equations (SPDEs) for fluid dynamics from a stochastic variational principle (SVP). The paper proceeds by taking variations in the SVP to derive stochastic Stratonovich fluid equations; writing their Itô representation; and then investigating the properties of these stochastic fluid models in comparison with each other, and with the corresponding deterministic fluid models. The circulation properties of the stochastic Stratonovich fluid equations are found to closely mimic those of the deterministic ideal fluid models. As with deterministic ideal flows, motion along the stochastic Stratonovich paths also preserves the helicity of the vortex field lines in incompressible stochastic flows. However, these Stratonovich properties are not apparent in the equivalent Itô representation, because they are disguised by the quadratic covariation drift term arising in the Stratonovich to Itô transformation. This term is a geometric generalization of the quadratic covariation drift term already found for scalar densities in Stratonovich's famous 1966 paper. The paper also derives motion equations for two examples of stochastic geophysical fluid dynamics; namely, the Euler–Boussinesq and quasi-geostropic approximations.
From Complex to Simple: Interdisciplinary Stochastic Models
ERIC Educational Resources Information Center
Mazilu, D. A.; Zamora, G.; Mazilu, I.
2012-01-01
We present two simple, one-dimensional, stochastic models that lead to a qualitative understanding of very complex systems from biology, nanoscience and social sciences. The first model explains the complicated dynamics of microtubules, stochastic cellular highways. Using the theory of random walks in one dimension, we find analytical expressions…
Attainability analysis in stochastic controlled systems
Ryashko, Lev
2015-03-10
A control problem for stochastically forced nonlinear continuous-time systems is considered. We propose a method for construction of the regulator that provides a preassigned probabilistic distribution of random states in stochastic equilibrium. Geometric criteria of the controllability are obtained. Constructive technique for the specification of attainability sets is suggested.
Hydrodynamic Simulations of Contact Binaries
NASA Astrophysics Data System (ADS)
Kadam, Kundan; Clayton, Geoffrey C.; Frank, Juhan; Marcello, Dominic; Motl, Patrick M.; Staff, Jan E.
2015-01-01
The motivation for our project is the peculiar case of the 'red nova" V1309 Sco which erupted in September 2008. The progenitor was, in fact, a contact binary system. We are developing a simulation of contact binaries, so that their formation, structural, and merger properties could be studied using hydrodynamics codes. The observed transient event was the disruption of the secondary star by the primary, and their subsequent merger into one star; hence to replicate this behavior, we need a core-envelope structure for both the stars. We achieve this using a combination of Self Consistant Field (SCF) technique and composite polytropes, also known as bipolytropes. So far we have been able to generate close binaries with various mass ratios. Another consequence of using bipolytropes is that according to theoretical calculations, the radius of a star should expand when the core mass fraction exceeds a critical value, resulting in interesting consequences in a binary system. We present some initial results of these simulations.
Discs in misaligned binary systems
NASA Astrophysics Data System (ADS)
Rawiraswattana, Krisada; Hubber, David A.; Goodwin, Simon P.
2016-08-01
We perform SPH simulations to study precession and changes in alignment between the circumprimary disc and the binary orbit in misaligned binary systems. We find that the precession process can be described by the rigid-disc approximation, where the disc is considered as a rigid body interacting with the binary companion only gravitationally. Precession also causes change in alignment between the rotational axis of the disc and the spin axis of the primary star. This type of alignment is of great important for explaining the origin of spin-orbit misaligned planetary systems. However, we find that the rigid-disc approximation fails to describe changes in alignment between the disc and the binary orbit. This is because the alignment process is a consequence of interactions that involve the fluidity of the disc, such as the tidal interaction and the encounter interaction. Furthermore, simulation results show that there are not only alignment processes, which bring the components towards alignment, but also anti-alignment processes, which tend to misalign the components. The alignment process dominates in systems with misalignment angle near 90°, while the anti-alignment process dominates in systems with the misalignment angle near 0° or 180°. This means that highly misaligned systems will become more aligned but slightly misaligned systems will become more misaligned.
Generating Constant Weight Binary Codes
ERIC Educational Resources Information Center
Knight, D.G.
2008-01-01
The determination of bounds for A(n, d, w), the maximum possible number of binary vectors of length n, weight w, and pairwise Hamming distance no less than d, is a classic problem in coding theory. Such sets of vectors have many applications. A description is given of how the problem can be used in a first-year undergraduate computational…
Chemical Evolution of Binary Stars
NASA Astrophysics Data System (ADS)
Izzard, R. G.
2013-02-01
Energy generation by nuclear fusion is the fundamental process that prevents stars from collapsing under their own gravity. Fusion in the core of a star converts hydrogen to heavier elements from helium to uranium. The signature of this nucleosynthesis is often visible in a single star only for a very short time, for example while the star is a red giant or, in massive stars, when it explodes. Contrarily, in a binary system nuclear-processed matter can captured by a secondary star which remains chemically polluted long after its more massive companion star has evolved and died. By probing old, low-mass stars we gain vital insight into the complex nucleosynthesis that occurred when our Galaxy was much younger than it is today. Stellar evolution itself is also affected by the presence of a companion star. Thermonuclear novae and type Ia supernovae result from mass transfer in binary stars, but big questions still surround the nature of their progenitors. Stars may even merge and one of the challenges for the future of stellar astrophysics is to quantitatively understand what happens in such extreme systems. Binary stars offer unique insights into stellar, galactic and extragalactic astrophysics through their plethora of exciting phenomena. Understanding the chemical evolution of binary stars is thus of high priority in modern astrophysics.
NASA Astrophysics Data System (ADS)
Olevic, D.; Cvetkovic, Z.
2005-04-01
Preliminary orbital elements of binary systems WDS 03494-1956 = RST 2324, WDS 03513+2621 = A 1830, WDS 04093-2025 = RST 2333, WDS 06485-1226 = A 2935, WDS 07013-0906 = A 671, and WDS 18323-1439 = CHR 73 are presented. For all systems but WDS 18323-1439 the individual masses and dynamical parallaxes are derived.
A Galactic Binary Detection Pipeline
NASA Technical Reports Server (NTRS)
Littenberg, Tyson B.
2011-01-01
The Galaxy is suspected to contain hundreds of millions of binary white dwarf systems, a large fraction of which will have sufficiently small orbital period to emit gravitational radiation in band for space-based gravitational wave detectors such as the Laser Interferometer Space Antenna (LISA). LISA's main science goal is the detection of cosmological events (supermassive black hole mergers, etc.) however the gravitational signal from the galaxy will be the dominant contribution to the data - including instrumental noise over approximately two decades in frequency. The catalogue of detectable binary systems will serve as an unparalleled means of studying the Galaxy. Furthermore, to maximize the scientific return from the mission, the data must be "cleansed" of the galactic foreground. We will present an algorithm that can accurately resolve and subtract 2:: 10000 of these sources from simulated data supplied by the Mock LISA Data Challenge Task Force. Using the time evolution of the gravitational wave frequency, we will reconstruct the position of the recovered binaries and show how LISA will sample the entire compact binary population in the Galaxy.
Stochastic ion acceleration by beating electrostatic waves.
Jorns, B; Choueiri, E Y
2013-01-01
A study is presented of the stochasticity in the orbit of a single, magnetized ion produced by the particle's interaction with two beating electrostatic waves whose frequencies differ by the ion cyclotron frequency. A second-order Lie transform perturbation theory is employed in conjunction with a numerical analysis of the maximum Lyapunov exponent to determine the velocity conditions under which stochasticity occurs in this dynamical system. Upper and lower bounds in ion velocity are found for stochastic orbits with the lower bound approximately equal to the phase velocity of the slower wave. A threshold condition for the onset of stochasticity that is linear with respect to the wave amplitudes is also derived. It is shown that the onset of stochasticity occurs for beating electrostatic waves at lower total wave energy densities than for the case of a single electrostatic wave or two nonbeating electrostatic waves. PMID:23410446
A general catalogue of close binary systems
NASA Technical Reports Server (NTRS)
Webbink, Ronald F.
1994-01-01
A comprehensive catalog of close binary stars to be used for the study of the fundamental properties of stars and for the exploration and elucidation of evolutionary processes in those systems, is presented. Spectroscopic binaries, variable stars, suspected variable stars, and interacting binaries are included in the scope of the catalog.
Hunting for brown dwarf binaries and testing atmospheric models with X-Shooter
NASA Astrophysics Data System (ADS)
Manjavacas, E.; Goldman, B.; Alcalá, J. M.; Zapatero-Osorio, M. R.; Béjar, V. J. S.; Homeier, D.; Bonnefoy, M.; Smart, R. L.; Henning, T.; Allard, F.
2016-01-01
The determination of the brown dwarf binary fraction may contribute to the understanding of the substellar formation mechanisms. Unresolved brown dwarf binaries may be revealed through their peculiar spectra or the discrepancy between optical and near-infrared spectral-type classification. We obtained medium-resolution spectra of 22 brown dwarfs with these characteristics using the X-Shooter spectrograph at the Very Large Telescope. We aimed to identify brown dwarf binary candidates, and to test if the BT-Settl 2014 atmospheric models reproduce their observed spectra. To find binaries spanning the L-T boundary, we used spectral indices and compared the spectra of the selected candidates to single spectra and synthetic binary spectra. We used synthetic binary spectra with components of same spectral type to determine as well the sensitivity of the method to this class of binaries. We identified three candidates to be combination of L plus T brown dwarfs. We are not able to identify binaries with components of similar spectral type. In our sample, we measured minimum binary fraction of 9.1^{+9.9}_{-3.0} per cent. From the best fit of the BT-Settl models 2014 to the observed spectra, we derived the atmospheric parameters for the single objects. The BT-Settl models were able to reproduce the majority of the spectral energy distributions from our objects, and the variation of the equivalent width of the Rb I (794.8 nm) and Cs I (852.0 nm) lines with the spectral type. None the less, these models did not reproduce the evolution of the equivalent widths of the Na I (818.3 and 819.5 nm) and K I (1253 nm) lines with the spectral type.
Liquid chromatographic extraction medium
Horwitz, E.P.; Dietz, M.L.
1994-09-13
A method and apparatus are disclosed for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water. 1 fig.
Liquid chromatographic extraction medium
Horwitz, E. Philip; Dietz, Mark L.
1994-01-01
A method and apparatus for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column is described. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water.
NASA Astrophysics Data System (ADS)
Kamaya, H.
1998-03-01
Many hydrodynamical researches have been developed. Especially, analysis of the compressible flow is significantly improved by interstellar physicists. To obtain sufficient appreciation, we should not analyze only the effect of self-gravity of the system but also consider the property of inhomogeneity of the interstellar medium. I stress that another hydrodynamical approach is appreciated. That is the multi-phase-flow method. In the astrophysical context, there are few preliminary works of it. I intend to develop it in more suitable method for the interstellar physics. This dissertation is only the first step for me. But, fundamental properties of the multi-phase-flow are presented, considering the effect of compressibility, self-(and/or mutual) gravity, and friction between two phases. All of these properties are generally important to examine the origin, destruction and the global distribution of interstellar medium. My motivation is trying to delve into the global properties of the interstellar medium. The method of multi-phase-flow has great advantage for my aim, and its usefulness has been shown in this thesis.
Culture Medium for Enterobacteria
Neidhardt, Frederick C.; Bloch, Philip L.; Smith, David F.
1974-01-01
A new minimal medium for enterobacteria has been developed. It supports growth of Escherichia coli and Salmonella typhimurium at rates comparable to those of any of the traditional media that have high phosphate concentrations, but each of the macronutrients (phosphate, sulfate, and nitrogen) is present at a sufficiently low level to permit isotopic labeling. Buffering capacity is provided by an organic dipolar ion, morpholinopropane sulfonate, which has a desirable pK (7.2) and no apparent inhibitory effect on growth. The medium has been developed with the objectives of (i) providing reproducibility of chemical composition, (ii) meeting the experimentally determined nutritional needs of the cell, (iii) avoiding an unnecessary excess of the major ionic species, (iv) facilitating the adjustment of the levels of individual ionic species, both for isotopic labeling and for nutritional studies, (v) supplying a complete array of micronutrients, (vi) setting a particular ion as the crop-limiting factor when the carbon and energy source is in excess, and (vii) providing maximal convenience in the manufacture and storage of the medium. PMID:4604283
Gravity darkening in binary stars
NASA Astrophysics Data System (ADS)
Espinosa Lara, F.; Rieutord, M.
2012-11-01
Context. Interpretation of light curves of many types of binary stars requires the inclusion of the (cor)relation between surface brightness and local effective gravity. Until recently, this correlation has always been modeled by a power law relating the flux or the effective temperature and the effective gravity, namely Teff ∝ geffβ . Aims: We look for a simple model that can describe the variations of the flux at the surface of stars belonging to a binary system. Methods: This model assumes that the energy flux is a divergence-free vector anti-parallel to the effective gravity. The effective gravity is computed from the Roche model. Results: After explaining in a simple manner the old result of Lucy (1967, Z. Astrophys., 65, 89), which says that β ~ 0.08 for solar type stars, we first argue that one-dimensional models should no longer be used to evaluate gravity darkening laws. We compute the correlation between log Teff and log geff using a new approach that is valid for synchronous, weakly magnetized, weakly irradiated binaries. We show that this correlation is approximately linear, validating the use of a power law relation between effective temperature and effective gravity as a first approximation. We further show that the exponent β of this power law is a slowly varying function, which we tabulate, of the mass ratio of the binary star and the Roche lobe filling factor of the stars of the system. The exponent β remains mostly in the interval [0.20,0.25] if extreme mass ratios are eliminated. Conclusions: For binary stars that are synchronous, weakly magnetized and weakly irradiated, the gravity darkening exponent is well constrained and may be removed from the free parameters of the models.
NASA Astrophysics Data System (ADS)
El-Wakil, S. A.; Sallah, M.; El-Hanbaly, A. M.
2015-10-01
The stochastic radiative transfer problem is studied in a participating planar finite continuously fluctuating medium. The problem is considered for specular- and diffusly-reflecting boundaries with linear anisotropic scattering. Random variable transformation (RVT) technique is used to get the complete average for the solution functions, that are represented by the probability-density function (PDF) of the solution process. In the RVT algorithm, a simple integral transformation to the input stochastic process (the extinction function of the medium) is applied. This linear transformation enables us to rewrite the stochastic transport equations in terms of the optical random variable (x) and the optical random thickness (L). Then the transport equation is solved deterministically to get a closed form for the solution as a function of x and L. So, the solution is used to obtain the PDF of the solution functions applying the RVT technique among the input random variable (L) and the output process (the solution functions). The obtained averages of the solution functions are used to get the complete analytical averages for some interesting physical quantities, namely, reflectivity and transmissivity at the medium boundaries. In terms of the average reflectivity and transmissivity, the average of the partial heat fluxes for the generalized problem with internal source of radiation are obtained and represented graphically.
Stochastic dual-plane on-axis digital holographic imaging on irregular surfaces.
Wang, Fengpeng; Wang, Dayong; Rong, Lu; Wang, Yunxin; Zhao, Jie
2016-05-10
An imaging method based on dual-plane on-axis digital holography is proposed for the situation in which an object is on the irregular surface of a transparent medium. Light propagation of the object on the uneven surface of the medium is analyzed and simulated. The diffracted pattern of the object is deformed or destroyed by the refracted light of the medium. Dual-plane on-axis digital holography is used to eliminate the twin image. In order to retrieve the information lost in the reconstructed image due to destructive interference, the object is illuminated by a stochastic beam that is a speckle wave produced by a ground glass. Simulated and experimental results are presented, to demonstrate that the proposed method can be used for imaging on the irregular surface of a transparent medium. PMID:27168284
Stochastic inflation and nonlinear gravity
NASA Astrophysics Data System (ADS)
Salopek, D. S.; Bond, J. R.
1991-02-01
We show how nonlinear effects of the metric and scalar fields may be included in stochastic inflation. Our formalism can be applied to non-Gaussian fluctuation models for galaxy formation. Fluctuations with wavelengths larger than the horizon length are governed by a network of Langevin equations for the physical fields. Stochastic noise terms arise from quantum fluctuations that are assumed to become classical at horizon crossing and that then contribute to the background. Using Hamilton-Jacobi methods, we solve the Arnowitt-Deser-Misner constraint equations which allows us to separate the growing modes from the decaying ones in the drift phase following each stochastic impulse. We argue that the most reasonable choice of time hypersurfaces for the Langevin system during inflation is T=ln(Ha), where H and a are the local values of the Hubble parameter and the scale factor, since T is the natural time for evolving the short-wavelength scalar field fluctuations in an inhomogeneous background. We derive a Fokker-Planck equation which describes how the probability distribution of scalar field values at a given spatial point evolves in T. Analytic Green's-function solutions obtained for a single scalar field self-interacting through an exponential potential are used to demonstrate (1) if the initial condition of the Hubble parameter is chosen to be consistent with microwave-background limits, H(φ0)/mρ<~10-4, then the fluctuations obey Gaussian statistics to a high precision, independent of the time hypersurface choice and operator-ordering ambiguities in the Fokker-Planck equation, and (2) for scales much larger than our present observable patch of the Universe, the distribution is non-Gaussian, with a tail extending to large energy densities; although there are no observable manifestations, it does show eternal inflation. Lattice simulations of our Langevin network for the exponential potential demonstrate how spatial correlations are incorporated. An initially
Stochastic models of neuronal dynamics
Harrison, L.M; David, O; Friston, K.J
2005-01-01
Cortical activity is the product of interactions among neuronal populations. Macroscopic electrophysiological phenomena are generated by these interactions. In principle, the mechanisms of these interactions afford constraints on biologically plausible models of electrophysiological responses. In other words, the macroscopic features of cortical activity can be modelled in terms of the microscopic behaviour of neurons. An evoked response potential (ERP) is the mean electrical potential measured from an electrode on the scalp, in response to some event. The purpose of this paper is to outline a population density approach to modelling ERPs. We propose a biologically plausible model of neuronal activity that enables the estimation of physiologically meaningful parameters from electrophysiological data. The model encompasses four basic characteristics of neuronal activity and organization: (i) neurons are dynamic units, (ii) driven by stochastic forces, (iii) organized into populations with similar biophysical properties and response characteristics and (iv) multiple populations interact to form functional networks. This leads to a formulation of population dynamics in terms of the Fokker–Planck equation. The solution of this equation is the temporal evolution of a probability density over state-space, representing the distribution of an ensemble of trajectories. Each trajectory corresponds to the changing state of a neuron. Measurements can be modelled by taking expectations over this density, e.g. mean membrane potential, firing rate or energy consumption per neuron. The key motivation behind our approach is that ERPs represent an average response over many neurons. This means it is sufficient to model the probability density over neurons, because this implicitly models their average state. Although the dynamics of each neuron can be highly stochastic, the dynamics of the density is not. This means we can use Bayesian inference and estimation tools that have
NASA Astrophysics Data System (ADS)
Huerta, E. A.; McWilliams, Sean T.; Gair, Jonathan R.; Taylor, Stephen R.
2015-09-01
We present a detailed analysis of the expected signal-to-noise ratios of supermassive black hole binaries on eccentric orbits observed by pulsar timing arrays. We derive several analytical relations that extend the results of Peters and Mathews [Phys. Rev. D 131, 435 (1963)] to quantify the impact of eccentricity in the detection of single resolvable binaries in the pulsar timing array band. We present ready-to-use expressions to compute the increase/loss in signal-to-noise ratio of eccentric single resolvable sources whose dominant harmonic is located in the low/high frequency sensitivity regime of pulsar timing arrays. Building upon the work of Phinney (arXiv:astro-ph/0108028) and Enoki and Nagashima [Prog. Theor. Phys. 117, 241 (2007)], we present an analytical framework that enables the construction of rapid spectra for a stochastic gravitational-wave background generated by a cosmological population of eccentric sources. We confirm previous findings which indicate that, relative to a population of quasicircular binaries, the strain of a stochastic, isotropic gravitational-wave background generated by a cosmological population of eccentric binaries will be suppressed in the frequency band of pulsar timing arrays. We quantify this effect in terms of signal-to-noise ratios in a pulsar timing array.
NASA Astrophysics Data System (ADS)
Taylor, Stephen; Sampson, Laura; Simon, Joseph
2016-03-01
There has recently been significant interest in how the galactic environments of supermassive black-hole binaries influences the stochastic gravitational-wave background signal from a population of these systems, and in how the resulting detection prospects for pulsar-timing arrays are effected. Tackling these problems requires us to have robust and computationally-efficient models for the strain spectrum as a function of different environment influences or the binary orbital eccentricity. In this talk we describe a new method of constructing these models from a small number of synthesized black-hole binary populations which have varying input physics. We use these populations to train an interpolant via Gaussian-process regression, allowing us to carry real physics into our subsequent pulsar-timing array inferences, and to also correctly propagate forward uncertainties from our interpolation.
Thomas, Philipp; Matuschek, Hannes; Grima, Ramon
2012-01-01
The accepted stochastic descriptions of biochemical dynamics under well-mixed conditions are given by the Chemical Master Equation and the Stochastic Simulation Algorithm, which are equivalent. The latter is a Monte-Carlo method, which, despite enjoying broad availability in a large number of existing software packages, is computationally expensive due to the huge amounts of ensemble averaging required for obtaining accurate statistical information. The former is a set of coupled differential-difference equations for the probability of the system being in any one of the possible mesoscopic states; these equations are typically computationally intractable because of the inherently large state space. Here we introduce the software package intrinsic Noise Analyzer (iNA), which allows for systematic analysis of stochastic biochemical kinetics by means of van Kampen's system size expansion of the Chemical Master Equation. iNA is platform independent and supports the popular SBML format natively. The present implementation is the first to adopt a complementary approach that combines state-of-the-art analysis tools using the computer algebra system Ginac with traditional methods of stochastic simulation. iNA integrates two approximation methods based on the system size expansion, the Linear Noise Approximation and effective mesoscopic rate equations, which to-date have not been available to non-expert users, into an easy-to-use graphical user interface. In particular, the present methods allow for quick approximate analysis of time-dependent mean concentrations, variances, covariances and correlations coefficients, which typically outperforms stochastic simulations. These analytical tools are complemented by automated multi-core stochastic simulations with direct statistical evaluation and visualization. We showcase iNA's performance by using it to explore the stochastic properties of cooperative and non-cooperative enzyme kinetics and a gene network associated with
The White Dwarf Mass in Interacting Binaries
NASA Astrophysics Data System (ADS)
Mukai, Koji
surveys. We have begun a comparison study of a medium energy (2-10 keV) X-ray selected sample, which will most likely include many systems with lower-mass white dwarfs. Finally, we have been conducting a survey of hard and medium energy X-ray emitting symbiotic stars, including some individual cases of special interest. We include a particular case which may allow us to measure the birth mass of a white dwarf in a symbiotic binary. These projects make use of data to be obtained through 2 approved Suzaku AO-7 proposals led by the PI, as well as archival XMM-Newton and Swift data that are already in the public domain.
NASA Astrophysics Data System (ADS)
Shen, Yue; Liu, Xin; Loeb, Abraham; Tremaine, Scott
2013-09-01
or even disfavored for massive companions. Future time-domain spectroscopic surveys of normal quasars can provide vital prior information on the structure function of stochastic velocity shifts induced by broad-line variability in single BHs. Such surveys with improved spectral quality, increased time baseline, and more epochs can greatly improve the statistical constraints of this method on the general binary population in broad-line quasars, further shrink the allowed binary parameter space, and detect true sub-parsec binaries.
NASA Astrophysics Data System (ADS)
Mel'nikov, A. V.
1996-10-01
Contents Introduction Chapter I. Basic notions and results from contemporary martingale theory §1.1. General notions of the martingale theory §1.2. Convergence (a.s.) of semimartingales. The strong law of large numbers and the law of the iterated logarithm Chapter II. Stochastic differential equations driven by semimartingales §2.1. Basic notions and results of the theory of stochastic differential equations driven by semimartingales §2.2. The method of monotone approximations. Existence of strong solutions of stochastic equations with non-smooth coefficients §2.3. Linear stochastic equations. Properties of stochastic exponentials §2.4. Linear stochastic equations. Applications to models of the financial market Chapter III. Procedures of stochastic approximation as solutions of stochastic differential equations driven by semimartingales §3.1. Formulation of the problem. A general model and its relation to the classical one §3.2. A general description of the approach to the procedures of stochastic approximation. Convergence (a.s.) and asymptotic normality §3.3. The Gaussian model of stochastic approximation. Averaged procedures and their effectiveness Chapter IV. Statistical estimation in regression models with martingale noises §4.1. The formulation of the problem and classical regression models §4.2. Asymptotic properties of MLS-estimators. Strong consistency, asymptotic normality, the law of the iterated logarithm §4.3. Regression models with deterministic regressors §4.4. Sequential MLS-estimators with guaranteed accuracy and sequential statistical inferences Bibliography
Stochastic dynamics of dengue epidemics
NASA Astrophysics Data System (ADS)
de Souza, David R.; Tomé, Tânia; Pinho, Suani T. R.; Barreto, Florisneide R.; de Oliveira, Mário J.
2013-01-01
We use a stochastic Markovian dynamics approach to describe the spreading of vector-transmitted diseases, such as dengue, and the threshold of the disease. The coexistence space is composed of two structures representing the human and mosquito populations. The human population follows a susceptible-infected-recovered (SIR) type dynamics and the mosquito population follows a susceptible-infected-susceptible (SIS) type dynamics. The human infection is caused by infected mosquitoes and vice versa, so that the SIS and SIR dynamics are interconnected. We develop a truncation scheme to solve the evolution equations from which we get the threshold of the disease and the reproductive ratio. The threshold of the disease is also obtained by performing numerical simulations. We found that for certain values of the infection rates the spreading of the disease is impossible, for any death rate of infected mosquitoes.
Thermodynamics of stochastic Turing machines
NASA Astrophysics Data System (ADS)
Strasberg, Philipp; Cerrillo, Javier; Schaller, Gernot; Brandes, Tobias
2015-10-01
In analogy to Brownian computers we explicitly show how to construct stochastic models which mimic the behavior of a general-purpose computer (a Turing machine). Our models are discrete state systems obeying a Markovian master equation, which are logically reversible and have a well-defined and consistent thermodynamic interpretation. The resulting master equation, which describes a simple one-step process on an enormously large state space, allows us to thoroughly investigate the thermodynamics of computation for this situation. Especially in the stationary regime we can well approximate the master equation by a simple Fokker-Planck equation in one dimension. We then show that the entropy production rate at steady state can be made arbitrarily small, but the total (integrated) entropy production is finite and grows logarithmically with the number of computational steps.
Stochastic thermodynamics for active matter
NASA Astrophysics Data System (ADS)
Speck, Thomas
2016-05-01
The theoretical understanding of active matter, which is driven out of equilibrium by directed motion, is still fragmental and model oriented. Stochastic thermodynamics, on the other hand, is a comprehensive theoretical framework for driven systems that allows to define fluctuating work and heat. We apply these definitions to active matter, assuming that dissipation can be modelled by effective non-conservative forces. We show that, through the work, conjugate extensive and intensive observables can be defined even in non-equilibrium steady states lacking a free energy. As an illustration, we derive the expressions for the pressure and interfacial tension of active Brownian particles. The latter becomes negative despite the observed stable phase separation. We discuss this apparent contradiction, highlighting the role of fluctuations, and we offer a tentative explanation.
Stochastic sensing through covalent interactions
Bayley, Hagan; Shin, Seong-Ho; Luchian, Tudor; Cheley, Stephen
2013-03-26
A system and method for stochastic sensing in which the analyte covalently bonds to the sensor element or an adaptor element. If such bonding is irreversible, the bond may be broken by a chemical reagent. The sensor element may be a protein, such as the engineered P.sub.SH type or .alpha.HL protein pore. The analyte may be any reactive analyte, including chemical weapons, environmental toxins and pharmaceuticals. The analyte covalently bonds to the sensor element to produce a detectable signal. Possible signals include change in electrical current, change in force, and change in fluorescence. Detection of the signal allows identification of the analyte and determination of its concentration in a sample solution. Multiple analytes present in the same solution may be detected.
Thermodynamics of stochastic Turing machines.
Strasberg, Philipp; Cerrillo, Javier; Schaller, Gernot; Brandes, Tobias
2015-10-01
In analogy to Brownian computers we explicitly show how to construct stochastic models which mimic the behavior of a general-purpose computer (a Turing machine). Our models are discrete state systems obeying a Markovian master equation, which are logically reversible and have a well-defined and consistent thermodynamic interpretation. The resulting master equation, which describes a simple one-step process on an enormously large state space, allows us to thoroughly investigate the thermodynamics of computation for this situation. Especially in the stationary regime we can well approximate the master equation by a simple Fokker-Planck equation in one dimension. We then show that the entropy production rate at steady state can be made arbitrarily small, but the total (integrated) entropy production is finite and grows logarithmically with the number of computational steps. PMID:26565165
Multiscale Stochastic Simulation and Modeling
James Glimm; Xiaolin Li
2006-01-10
Acceleration driven instabilities of fluid mixing layers include the classical cases of Rayleigh-Taylor instability, driven by a steady acceleration and Richtmyer-Meshkov instability, driven by an impulsive acceleration. Our program starts with high resolution methods of numerical simulation of two (or more) distinct fluids, continues with analytic analysis of these solutions, and the derivation of averaged equations. A striking achievement has been the systematic agreement we obtained between simulation and experiment by using a high resolution numerical method and improved physical modeling, with surface tension. Our study is accompanies by analysis using stochastic modeling and averaged equations for the multiphase problem. We have quantified the error and uncertainty using statistical modeling methods.
Heuristic-biased stochastic sampling
Bresina, J.L.
1996-12-31
This paper presents a search technique for scheduling problems, called Heuristic-Biased Stochastic Sampling (HBSS). The underlying assumption behind the HBSS approach is that strictly adhering to a search heuristic often does not yield the best solution and, therefore, exploration off the heuristic path can prove fruitful. Within the HBSS approach, the balance between heuristic adherence and exploration can be controlled according to the confidence one has in the heuristic. By varying this balance, encoded as a bias function, the HBSS approach encompasses a family of search algorithms of which greedy search and completely random search are extreme members. We present empirical results from an application of HBSS to the realworld problem of observation scheduling. These results show that with the proper bias function, it can be easy to outperform greedy search.
Extinction of metastable stochastic populations.
Assaf, Michael; Meerson, Baruch
2010-02-01
We investigate the phenomenon of extinction of a long-lived self-regulating stochastic population, caused by intrinsic (demographic) noise. Extinction typically occurs via one of two scenarios depending on whether the absorbing state n=0 is a repelling (scenario A) or attracting (scenario B) point of the deterministic rate equation. In scenario A the metastable stochastic population resides in the vicinity of an attracting fixed point next to the repelling point n=0 . In scenario B there is an intermediate repelling point n=n1 between the attracting point n=0 and another attracting point n=n2 in the vicinity of which the metastable population resides. The crux of the theory is a dissipative variant of WKB (Wentzel-Kramers-Brillouin) approximation which assumes that the typical population size in the metastable state is large. Starting from the master equation, we calculate the quasistationary probability distribution of the population sizes and the (exponentially long) mean time to extinction for each of the two scenarios. When necessary, the WKB approximation is complemented (i) by a recursive solution of the quasistationary master equation at small n and (ii) by the van Kampen system-size expansion, valid near the fixed points of the deterministic rate equation. The theory yields both entropic barriers to extinction and pre-exponential factors, and holds for a general set of multistep processes when detailed balance is broken. The results simplify considerably for single-step processes and near the characteristic bifurcations of scenarios A and B. PMID:20365539
Stochastic dynamics of cancer initiation
NASA Astrophysics Data System (ADS)
Foo, Jasmine; Leder, Kevin; Michor, Franziska
2011-02-01
Most human cancer types result from the accumulation of multiple genetic and epigenetic alterations in a single cell. Once the first change (or changes) have arisen, tumorigenesis is initiated and the subsequent emergence of additional alterations drives progression to more aggressive and ultimately invasive phenotypes. Elucidation of the dynamics of cancer initiation is of importance for an understanding of tumor evolution and cancer incidence data. In this paper, we develop a novel mathematical framework to study the processes of cancer initiation. Cells at risk of accumulating oncogenic mutations are organized into small compartments of cells and proliferate according to a stochastic process. During each cell division, an (epi)genetic alteration may arise which leads to a random fitness change, drawn from a probability distribution. Cancer is initiated when a cell gains a fitness sufficiently high to escape from the homeostatic mechanisms of the cell compartment. To investigate cancer initiation during a human lifetime, a 'race' between this fitness process and the aging process of the patient is considered; the latter is modeled as a second stochastic Markov process in an aging dimension. This model allows us to investigate the dynamics of cancer initiation and its dependence on the mutational fitness distribution. Our framework also provides a methodology to assess the effects of different life expectancy distributions on lifetime cancer incidence. We apply this methodology to colorectal tumorigenesis while considering life expectancy data of the US population to inform the dynamics of the aging process. We study how the probability of cancer initiation prior to death, the time until cancer initiation, and the mutational profile of the cancer-initiating cell depends on the shape of the mutational fitness distribution and life expectancy of the population.
Stochastic inversion by ray continuation
Haas, A.; Viallix
1989-05-01
The conventional tomographic inversion consists in minimizing residuals between measured and modelled traveltimes. The process tends to be unstable and some additional constraints are required to stabilize it. The stochastic formulation generalizes the technique and sets it on firmer theoretical bases. The Stochastic Inversion by Ray Continuation (SIRC) is a probabilistic approach, which takes a priori geological information into account and uses probability distributions to characterize data correlations and errors. It makes it possible to tie uncertainties to the results. The estimated parameters are interval velocities and B-spline coefficients used to represent smoothed interfaces. Ray tracing is done by a continuation technique between source and receives. The ray coordinates are computed from one path to the next by solving a linear system derived from Fermat's principle. The main advantages are fast computations, accurate traveltimes and derivatives. The seismic traces are gathered in CMPs. For a particular CMP, several reflecting elements are characterized by their time gradient measured on the stacked section, and related to a mean emergence direction. The program capabilities are tested on a synthetic example as well as on a field example. The strategy consists in inverting the parameters for one layer, then for the next one down. An inversion step is divided in two parts. First the parameters for the layer concerned are inverted, while the parameters for the upper layers remain fixed. Then all the parameters are reinverted. The velocity-depth section computed by the program together with the corresponding errors can be used directly for the interpretation, as an initial model for depth migration or for the complete inversion program under development.
Floral morphogenesis: stochastic explorations of a gene network epigenetic landscape.
Alvarez-Buylla, Elena R; Chaos, Alvaro; Aldana, Maximino; Benítez, Mariana; Cortes-Poza, Yuriria; Espinosa-Soto, Carlos; Hartasánchez, Diego A; Lotto, R Beau; Malkin, David; Escalera Santos, Gerardo J; Padilla-Longoria, Pablo
2008-01-01
In contrast to the classical view of development as a preprogrammed and deterministic process, recent studies have demonstrated that stochastic perturbations of highly non-linear systems may underlie the emergence and stability of biological patterns. Herein, we address the question of whether noise contributes to the generation of the stereotypical temporal pattern in gene expression during flower development. We modeled the regulatory network of organ identity genes in the Arabidopsis thaliana flower as a stochastic system. This network has previously been shown to converge to ten fixed-point attractors, each with gene expression arrays that characterize inflorescence cells and primordial cells of sepals, petals, stamens, and carpels. The network used is binary, and the logical rules that govern its dynamics are grounded in experimental evidence. We introduced different levels of uncertainty in the updating rules of the network. Interestingly, for a level of noise of around 0.5-10%, the system exhibited a sequence of transitions among attractors that mimics the sequence of gene activation configurations observed in real flowers. We also implemented the gene regulatory network as a continuous system using the Glass model of differential equations, that can be considered as a first approximation of kinetic-reaction equations, but which are not necessarily equivalent to the Boolean model. Interestingly, the Glass dynamics recover a temporal sequence of attractors, that is qualitatively similar, although not identical, to that obtained using the Boolean model. Thus, time ordering in the emergence of cell-fate patterns is not an artifact of synchronous updating in the Boolean model. Therefore, our model provides a novel explanation for the emergence and robustness of the ubiquitous temporal pattern of floral organ specification. It also constitutes a new approach to understanding morphogenesis, providing predictions on the population dynamics of cells with different
DUST GRAIN EVOLUTION IN SPATIALLY RESOLVED T TAURI BINARIES
Skemer, Andrew J.; Close, Laird M.; Hinz, Philip M.; Hoffmann, William F.; Males, Jared R.; Greene, Thomas P.
2011-10-10
Core-accretion planet formation begins in protoplanetary disks with the growth of small, interstellar medium dust grains into larger particles. The progress of grain growth, which can be quantified using 10 {mu}m silicate spectroscopy, has broad implications for the final products of planet formation. Previous studies have attempted to correlate stellar and disk properties with the 10 {mu}m silicate feature in an effort to determine which stars are efficient at grain growth. Thus far there does not appear to be a dominant correlated parameter. In this paper, we use spatially resolved adaptive optics spectroscopy of nine T Tauri binaries as tight as 0.''25 to determine if basic properties shared between binary stars, such as age, composition, and formation history, have an effect on dust grain evolution. We find with 90%-95% confidence that the silicate feature equivalent widths of binaries are more similar than those of randomly paired single stars, implying that shared properties do play an important role in dust grain evolution. At lower statistical significance, we find with 82% confidence that the secondary has a more prominent silicate emission feature (i.e., smaller grains) than the primary. If confirmed by larger surveys, this would imply that spectral type and/or binarity are important factors in dust grain evolution.
Multiple Stochastic Point Processes in Gene Expression
NASA Astrophysics Data System (ADS)
Murugan, Rajamanickam
2008-04-01
We generalize the idea of multiple-stochasticity in chemical reaction systems to gene expression. Using Chemical Langevin Equation approach we investigate how this multiple-stochasticity can influence the overall molecular number fluctuations. We show that the main sources of this multiple-stochasticity in gene expression could be the randomness in transcription and translation initiation times which in turn originates from the underlying bio-macromolecular recognition processes such as the site-specific DNA-protein interactions and therefore can be internally regulated by the supra-molecular structural factors such as the condensation/super-coiling of DNA. Our theory predicts that (1) in case of gene expression system, the variances ( φ) introduced by the randomness in transcription and translation initiation-times approximately scales with the degree of condensation ( s) of DNA or mRNA as φ ∝ s -6. From the theoretical analysis of the Fano factor as well as coefficient of variation associated with the protein number fluctuations we predict that (2) unlike the singly-stochastic case where the Fano factor has been shown to be a monotonous function of translation rate, in case of multiple-stochastic gene expression the Fano factor is a turn over function with a definite minimum. This in turn suggests that the multiple-stochastic processes can also be well tuned to behave like a singly-stochastic point processes by adjusting the rate parameters.
X-ray binaries in globular clusters
NASA Technical Reports Server (NTRS)
Grindlay, Jonathan E.
1988-01-01
X-ray and optical studies of compact binaries and globular clusters are reviewed. Topics covered include, the formation of compact binaries by three-body interactions and by tidal capture, studies of the 11 minute binary in NGC 6624 and the 8.5 hour binary in M 15 (AC211), and an evolutionary model for compact binary formation. Optical searches for X-ray binaries in globular clusters are examined including CCD surveys and studies of NGC 6712. In addition, globular clusters with central cusps in their surface brightness profiles, questions concerning the blue color of binaries, diffuse line emission from CVs, and the possibility that X-ray burst sources in the galactic bulge were formed by tidal capture in globular clusters which have since been disrupted are discussed.
A Monte Carlo model for determination of binary diffusion coefficients in gases
NASA Astrophysics Data System (ADS)
Panarese, A.; Bruno, D.; Colonna, G.; Diomede, P.; Laricchiuta, A.; Longo, S.; Capitelli, M.
2011-06-01
A Monte Carlo method has been developed for the calculation of binary diffusion coefficients in gas mixtures. The method is based on the stochastic solution of the linear Boltzmann equation obtained for the transport of one component in a thermal bath of the second one. Anisotropic scattering is included by calculating the classical deflection angle in binary collisions under isotropic potential. Model results are compared to accurate solutions of the Chapman-Enskog equation in the first and higher orders. We have selected two different cases, H 2 in H 2 and O in O 2, assuming rigid spheres or using a model phenomenological potential. Diffusion coefficients, calculated in the proposed approach, are found in close agreement with Chapman-Enskog results in all the cases considered, the deviations being reduced using higher order approximations.
A Monte Carlo model for determination of binary diffusion coefficients in gases
Panarese, A.; Bruno, D.; Colonna, G.; Diomede, P.; Laricchiuta, A.; Longo, S.; Capitelli, M.
2011-06-20
A Monte Carlo method has been developed for the calculation of binary diffusion coefficients in gas mixtures. The method is based on the stochastic solution of the linear Boltzmann equation obtained for the transport of one component in a thermal bath of the second one. Anisotropic scattering is included by calculating the classical deflection angle in binary collisions under isotropic potential. Model results are compared to accurate solutions of the Chapman-Enskog equation in the first and higher orders. We have selected two different cases, H{sub 2} in H{sub 2} and O in O{sub 2}, assuming rigid spheres or using a model phenomenological potential. Diffusion coefficients, calculated in the proposed approach, are found in close agreement with Chapman-Enskog results in all the cases considered, the deviations being reduced using higher order approximations.
Stationary Size Distributions of Growing Cells with Binary and Multiple Cell Division
NASA Astrophysics Data System (ADS)
Rading, M. M.; Engel, T. A.; Lipowsky, R.; Valleriani, A.
2011-10-01
Populations of unicellular organisms that grow under constant environmental conditions are considered theoretically. The size distribution of these cells is calculated analytically, both for the usual process of binary division, in which one mother cell produces always two daughter cells, and for the more complex process of multiple division, in which one mother cell can produce 2 n daughter cells with n=1,2,3,… . The latter mode of division is inspired by the unicellular algae Chlamydomonas reinhardtii. The uniform response of the whole population to different environmental conditions is encoded in the individual rates of growth and division of the cells. The analytical treatment of the problem is based on size-dependent rules for cell growth and stochastic transition processes for cell division. The comparison between binary and multiple division shows that these different division processes lead to qualitatively different results for the size distribution and the population growth rates.
Butts, Carter T.
2015-01-01
Stochastic models for finite binary vectors are widely used in sociology, with examples ranging from social influence models on dichotomous behaviors or attitudes to models for random graphs. Exact sampling for such models is difficult in the presence of dependence, leading to the use of Markov chain Monte Carlo (MCMC) as an approximation technique. While often effective, MCMC methods have variable execution time, and the quality of the resulting draws can be difficult to assess. Here, we present a novel alternative method for approximate sampling from binary discrete exponential families having fixed execution time and well-defined quality guarantees. We demonstrate the use of this sampling procedure in the context of random graph generation, with an application to the simulation of a large-scale social network using both geographical covariates and dyadic dependence mechanisms. PMID:26586920
Stochastic downscaling of precipitation: From dry events to heavy rainfalls
NASA Astrophysics Data System (ADS)
Vrac, M.; Naveau, P.
2007-07-01
Downscaling precipitation is a difficult challenge for the climate community. We propose and study a new stochastic weather typing approach to perform such a task. In addition to providing accurate small and medium precipitation, our procedure possesses built-in features that allow us to model adequately extreme precipitation distributions. First, we propose a new distribution for local precipitation via a probability mixture model of Gamma and Generalized Pareto (GP) distributions. The latter one stems from Extreme Value Theory (EVT). The performance of this mixture is tested on real and simulated data, and also compared to classical rainfall densities. Then our downscaling method, extending the recently developed nonhomogeneous stochastic weather typing approach, is presented. It can be summarized as a three-step program. First, regional weather precipitation patterns are constructed through a hierarchical ascending clustering method. Second, daily transitions among our precipitation patterns are represented by a nonhomogeneous Markov model influenced by large-scale atmospheric variables like NCEP reanalyses. Third, conditionally on these regional patterns, precipitation occurrence and intensity distributions are modeled as statistical mixtures. Precipitation amplitudes are assumed to follow our mixture of Gamma and GP densities. The proposed downscaling approach is applied to 37 weather stations in Illinois and compared to various possible parameterizations and to a direct modeling. Model selection procedures show that choosing one GP distribution shape parameter per pattern for all stations provides the best rainfall representation amongst all tested models. This work highlights the importance of EVT distributions to improve the modeling and downscaling of local extreme precipitations.
Ergodic crossover in partially self-avoiding stochastic walks
NASA Astrophysics Data System (ADS)
Berbert, Juliana M.; González, Rodrigo Silva; Martinez, Alexandre Souto
2013-09-01
Consider a one-dimensional environment with N randomly distributed sites. An agent explores this random medium moving deterministically with a spatial memory μ. A crossover from local to global exploration occurs in one dimension at a well-defined memory value μ1=log2N. In its stochastic version, the dynamics is ruled by the memory and by temperature T, which affects the hopping displacement. This dynamics also shows a crossover in one dimension, obtained computationally, between exploration schemes, characterized yet by the trajectory size (Np) (aging effect). In this paper we provide an analytical approach considering the modified stochastic version where the parameter T plays the role of a maximum hopping distance. This modification allows us to obtain a general analytical expression for the crossover, as a function of the parameters μ, T, and Np. Differently from what has been proposed by previous studies, we find that the crossover occurs in any dimension d. These results have been validated by numerical experiments and may be of great value for fixing optimal parameters in search algorithms.
Ergodic crossover in partially self-avoiding stochastic walks.
Berbert, Juliana M; González, Rodrigo Silva; Martinez, Alexandre Souto
2013-09-01
Consider a one-dimensional environment with N randomly distributed sites. An agent explores this random medium moving deterministically with a spatial memory μ. A crossover from local to global exploration occurs in one dimension at a well-defined memory value μ_{1}=log_{2}N. In its stochastic version, the dynamics is ruled by the memory and by temperature T, which affects the hopping displacement. This dynamics also shows a crossover in one dimension, obtained computationally, between exploration schemes, characterized yet by the trajectory size (N_{p}) (aging effect). In this paper we provide an analytical approach considering the modified stochastic version where the parameter T plays the role of a maximum hopping distance. This modification allows us to obtain a general analytical expression for the crossover, as a function of the parameters μ, T, and N_{p}. Differently from what has been proposed by previous studies, we find that the crossover occurs in any dimension d. These results have been validated by numerical experiments and may be of great value for fixing optimal parameters in search algorithms. PMID:24125225
Solving stochastic epidemiological models using computer algebra
NASA Astrophysics Data System (ADS)
Hincapie, Doracelly; Ospina, Juan
2011-06-01
Mathematical modeling in Epidemiology is an important tool to understand the ways under which the diseases are transmitted and controlled. The mathematical modeling can be implemented via deterministic or stochastic models. Deterministic models are based on short systems of non-linear ordinary differential equations and the stochastic models are based on very large systems of linear differential equations. Deterministic models admit complete, rigorous and automatic analysis of stability both local and global from which is possible to derive the algebraic expressions for the basic reproductive number and the corresponding epidemic thresholds using computer algebra software. Stochastic models are more difficult to treat and the analysis of their properties requires complicated considerations in statistical mathematics. In this work we propose to use computer algebra software with the aim to solve epidemic stochastic models such as the SIR model and the carrier-borne model. Specifically we use Maple to solve these stochastic models in the case of small groups and we obtain results that do not appear in standard textbooks or in the books updated on stochastic models in epidemiology. From our results we derive expressions which coincide with those obtained in the classical texts using advanced procedures in mathematical statistics. Our algorithms can be extended for other stochastic models in epidemiology and this shows the power of computer algebra software not only for analysis of deterministic models but also for the analysis of stochastic models. We also perform numerical simulations with our algebraic results and we made estimations for the basic parameters as the basic reproductive rate and the stochastic threshold theorem. We claim that our algorithms and results are important tools to control the diseases in a globalized world.
Stochastic inflation in a simple two-field model
Mollerach, S. ); Matarrese, S. ); Ortolan, A. ); Lucchin, F. )
1991-09-15
The dynamics of a nondominating scalar field during inflation is considered in the framework of the stochastic approach where its motion and that of the inflaton are described by two coupled Langevin equations. Curvature perturbations induced by the inflaton make the problem that of a Brownian motion in a random medium. The associated Fokker-Planck equation is solved for a free massless field in a power-law inflation driven by an inflaton with an exponential potential: this simple model could describe the dynamics of the axion, or any other pseudoGoldstone boson, during inflation. In spite of being free, the field shows a highly non-Gaussian behavior on scales much larger than the present horizon; on observable scales it gives rise to isocurvature perturbations which are both essentially Gaussian and scale-free.
A fast and convergent stochastic MLP learning algorithm.
Sakurai, A
2001-12-01
We propose a stochastic learning algorithm for multilayer perceptrons of linear-threshold function units, which theoretically converges with probability one and experimentally exhibits 100% convergence rate and remarkable speed on parity and classification problems with typical generalization accuracy. For learning the n bit parity function with n hidden units, the algorithm converged on all the trials we tested (n=2 to 12) after 5.8 x 4.1(n) presentations for 0.23 x 4.0(n-6) seconds on a 533MHz Alpha 21164A chip on average, which is five to ten times faster than Levenberg-Marquardt algorithm with restarts. For a medium size classification problem known as Thyroid in UCI repository, the algorithm is faster in speed and comparative in generalization accuracy than the standard backpropagation and Levenberg-Marquardt algorithms. PMID:11852440
Majorana approach to the stochastic theory of line shapes
NASA Astrophysics Data System (ADS)
Komijani, Yashar; Coleman, Piers
2016-08-01
Motivated by recent Mössbauer experiments on strongly correlated mixed-valence systems, we revisit the Kubo-Anderson stochastic theory of spectral line shapes. Using a Majorana representation for the nuclear spin we demonstrate how to recast the classic line-shape theory in a field-theoretic and diagrammatic language. We show that the leading contribution to the self-energy can reproduce most of the observed line-shape features including splitting and line-shape narrowing, while the vertex and the self-consistency corrections can be systematically included in the calculation. This approach permits us to predict the line shape produced by an arbitrary bulk charge fluctuation spectrum providing a model-independent way to extract the local charge fluctuation spectrum of the surrounding medium. We also derive an inverse formula to extract the charge fluctuation from the measured line shape.
Immigration-extinction dynamics of stochastic populations
NASA Astrophysics Data System (ADS)
Meerson, Baruch; Ovaskainen, Otso
2013-07-01
How high should be the rate of immigration into a stochastic population in order to significantly reduce the probability of observing the population become extinct? Is there any relation between the population size distributions with and without immigration? Under what conditions can one justify the simple patch occupancy models, which ignore the population distribution and its dynamics in a patch, and treat a patch simply as either occupied or empty? We answer these questions by exactly solving a simple stochastic model obtained by adding a steady immigration to a variant of the Verhulst model: a prototypical model of an isolated stochastic population.
A multilevel stochastic collocation method for SPDEs
Gunzburger, Max; Jantsch, Peter; Teckentrup, Aretha; Webster, Clayton
2015-03-10
We present a multilevel stochastic collocation method that, as do multilevel Monte Carlo methods, uses a hierarchy of spatial approximations to reduce the overall computational complexity when solving partial differential equations with random inputs. For approximation in parameter space, a hierarchy of multi-dimensional interpolants of increasing fidelity are used. Rigorous convergence and computational cost estimates for the new multilevel stochastic collocation method are derived and used to demonstrate its advantages compared to standard single-level stochastic collocation approximations as well as multilevel Monte Carlo methods.
Stochastic system identification in structural dynamics
Safak, Erdal
1988-01-01
Recently, new identification methods have been developed by using the concept of optimal-recursive filtering and stochastic approximation. These methods, known as stochastic identification, are based on the statistical properties of the signal and noise, and do not require the assumptions of current methods. The criterion for stochastic system identification is that the difference between the recorded output and the output from the identified system (i.e., the residual of the identification) should be equal to white noise. In this paper, first a brief review of the theory is given. Then, an application of the method is presented by using ambient vibration data from a nine-story building.
Topological charge conservation in stochastic optical fields
NASA Astrophysics Data System (ADS)
Roux, Filippus S.
2016-05-01
The fact that phase singularities in scalar stochastic optical fields are topologically conserved implies the existence of an associated conserved current, which can be expressed in terms of local correlation functions of the optical field and its transverse derivatives. Here, we derive the topological charge current for scalar stochastic optical fields and show that it obeys a conservation equation. We use the expression for the topological charge current to investigate the topological charge flow in inhomogeneous stochastic optical fields with a one-dimensional topological charge density.
Stochastic deformation of a thermodynamic symplectic structure
NASA Astrophysics Data System (ADS)
Kazinski, P. O.
2009-01-01
A stochastic deformation of a thermodynamic symplectic structure is studied. The stochastic deformation is analogous to the deformation of an algebra of observables such as deformation quantization, but for an imaginary deformation parameter (the Planck constant). Gauge symmetries of thermodynamics and corresponding stochastic mechanics, which describes fluctuations of a thermodynamic system, are revealed and gauge fields are introduced. A physical interpretation to the gauge transformations and gauge fields is given. An application of the formalism to a description of systems with distributed parameters in a local thermodynamic equilibrium is considered.
Stochastic deformation of a thermodynamic symplectic structure.
Kazinski, P O
2009-01-01
A stochastic deformation of a thermodynamic symplectic structure is studied. The stochastic deformation is analogous to the deformation of an algebra of observables such as deformation quantization, but for an imaginary deformation parameter (the Planck constant). Gauge symmetries of thermodynamics and corresponding stochastic mechanics, which describes fluctuations of a thermodynamic system, are revealed and gauge fields are introduced. A physical interpretation to the gauge transformations and gauge fields is given. An application of the formalism to a description of systems with distributed parameters in a local thermodynamic equilibrium is considered. PMID:19256999
Stochastic string models with continuous semimartingales
NASA Astrophysics Data System (ADS)
Bueno-Guerrero, Alberto; Moreno, Manuel; Navas, Javier F.
2015-09-01
This paper reformulates the stochastic string model of Santa-Clara and Sornette using stochastic calculus with continuous semimartingales. We present some new results, such as: (a) the dynamics of the short-term interest rate, (b) the PDE that must be satisfied by the bond price, and (c) an analytic expression for the price of a European bond call option. Additionally, we clarify some important features of the stochastic string model and show its relevance to price derivatives and the equivalence with an infinite dimensional HJM model to price European options.
Close supermassive binary black holes
NASA Astrophysics Data System (ADS)
Gaskell, C. Martin
2010-01-01
It has been proposed that when the peaks of the broad emission lines in active galactic nuclei (AGNs) are significantly blueshifted or redshifted from the systemic velocity of the host galaxy, this could be a consequence of orbital motion of a supermassive blackhole binary (SMB). The AGN J1536+0441 (=SDSS J153636.22+044127.0) has recently been proposed as an example of this phenomenon. It is proposed here instead that 1536+044 is an example of line emission from a disc. If this is correct, the lack of clear optical spectral evidence for close SMBs is significant and argues either that the merging of close SMBs is much faster than has generally been hitherto thought, or if the approach is slow, that when the separation of the binary is comparable to the size of the torus and broad-line region, the feeding of the black holes is disrupted.
Binary nucleation at low temperatures
NASA Technical Reports Server (NTRS)
Zahoransky, R. A.; Peters, F.
1985-01-01
The onset of homogeneous condensation of binary vapors in the supersaturated state is studied in ethanol/n-propanol and water/ethanol via their unsteady expansion in a shock tube at temperatures below 273 K. Ethanol/n-propanol forms a nearly ideal solution, whereas water/ethanol is an example of a strongly nonideal mixture. Vapor mixtures of various compositions are diluted in dry air at small mole fractions and expanded in the driver section from room temperature. The onset of homogeneous condensation is detected optically and the corresponding thermodynamic state is evaluated. The experimental results are compared with the binary nucleation theory, and the particular problems of theoretical evaluation at low temperatures are discussed.
NASA Astrophysics Data System (ADS)
Erastova, L. K.
2016-06-01
Thirty spectroscopic binary stars were found in the Second Byurakan Survey (SBS). They show composite spectra - WD(DA)+dM or dC (for example Liebert et al. 1994). They may have red color, if the radiation of the red star dominates, and blue one, if the blue star is brighter and have peculiar spectrum in our survey plate. We obtained slit spectra for most of such objects. But we often see the spectrum of one component, because our slit spectra did not cover all optical range. We examine by eye the slit spectra of all SBS stellar objects (˜700) in SDSS DR7, DR8 or DR9 independent on our observations. We confirmed or discovered the duplicity of 30 stars. Usually they are spectroscopic binaries, where one component is WD (DA) and the second one is a red star with or without emission. There also are other components combinations. Sometimes there are emission lines, probably, indicating variable ones.
NASA Astrophysics Data System (ADS)
Couteau, P.
1987-12-01
Recent interferometric and visual observations have been used to compile orbital elements for the binaries COU 79, Phi 342, ADS 5726, COU 292, ADS 15487, and COU 542. The problematic binaries COU 79 and Phi 342 are discussed in detail. The results for COU 79 indicate a dynamic parallax of 0.0182 arcsec and absolute visual magnitudes of 2.5 and 2.8, values which are not consistent with the previously-determined spectral type of F6V. A parallax of 0.01420 arcsec is found for Phi 342, and the visual magnitudes of 2.74 and 3.13 are indicative of superluminous stars outside of the main sequence.
Weisheimer, Antje; Corti, Susanna; Palmer, Tim; Vitart, Frederic
2014-06-28
The finite resolution of general circulation models of the coupled atmosphere-ocean system and the effects of sub-grid-scale variability present a major source of uncertainty in model simulations on all time scales. The European Centre for Medium-Range Weather Forecasts has been at the forefront of developing new approaches to account for these uncertainties. In particular, the stochastically perturbed physical tendency scheme and the stochastically perturbed backscatter algorithm for the atmosphere are now used routinely for global numerical weather prediction. The European Centre also performs long-range predictions of the coupled atmosphere-ocean climate system in operational forecast mode, and the latest seasonal forecasting system--System 4--has the stochastically perturbed tendency and backscatter schemes implemented in a similar way to that for the medium-range weather forecasts. Here, we present results of the impact of these schemes in System 4 by contrasting the operational performance on seasonal time scales during the retrospective forecast period 1981-2010 with comparable simulations that do not account for the representation of model uncertainty. We find that the stochastic tendency perturbation schemes helped to reduce excessively strong convective activity especially over the Maritime Continent and the tropical Western Pacific, leading to reduced biases of the outgoing longwave radiation (OLR), cloud cover, precipitation and near-surface winds. Positive impact was also found for the statistics of the Madden-Julian oscillation (MJO), showing an increase in the frequencies and amplitudes of MJO events. Further, the errors of El Niño southern oscillation forecasts become smaller, whereas increases in ensemble spread lead to a better calibrated system if the stochastic tendency is activated. The backscatter scheme has overall neutral impact. Finally, evidence for noise-activated regime transitions has been found in a cluster analysis of mid
Weisheimer, Antje; Corti, Susanna; Palmer, Tim; Vitart, Frederic
2014-01-01
The finite resolution of general circulation models of the coupled atmosphere–ocean system and the effects of sub-grid-scale variability present a major source of uncertainty in model simulations on all time scales. The European Centre for Medium-Range Weather Forecasts has been at the forefront of developing new approaches to account for these uncertainties. In particular, the stochastically perturbed physical tendency scheme and the stochastically perturbed backscatter algorithm for the atmosphere are now used routinely for global numerical weather prediction. The European Centre also performs long-range predictions of the coupled atmosphere–ocean climate system in operational forecast mode, and the latest seasonal forecasting system—System 4—has the stochastically perturbed tendency and backscatter schemes implemented in a similar way to that for the medium-range weather forecasts. Here, we present results of the impact of these schemes in System 4 by contrasting the operational performance on seasonal time scales during the retrospective forecast period 1981–2010 with comparable simulations that do not account for the representation of model uncertainty. We find that the stochastic tendency perturbation schemes helped to reduce excessively strong convective activity especially over the Maritime Continent and the tropical Western Pacific, leading to reduced biases of the outgoing longwave radiation (OLR), cloud cover, precipitation and near-surface winds. Positive impact was also found for the statistics of the Madden–Julian oscillation (MJO), showing an increase in the frequencies and amplitudes of MJO events. Further, the errors of El Niño southern oscillation forecasts become smaller, whereas increases in ensemble spread lead to a better calibrated system if the stochastic tendency is activated. The backscatter scheme has overall neutral impact. Finally, evidence for noise-activated regime transitions has been found in a cluster analysis of mid
Shaping protein distributions in stochastic self-regulated gene expression networks
NASA Astrophysics Data System (ADS)
Pájaro, Manuel; Alonso, Antonio A.; Vázquez, Carlos
2015-09-01
In this work, we study connections between dynamic behavior and network parameters, for self-regulatory networks. To that aim, a method to compute the regions in the space of parameters that sustain bimodal or binary protein distributions has been developed. Such regions are indicative of stochastic dynamics manifested either as transitions between absence and presence of protein or between two positive protein levels. The method is based on the continuous approximation of the chemical master equation, unlike other approaches that make use of a deterministic description, which as will be shown can be misleading. We find that bimodal behavior is a ubiquitous phenomenon in cooperative gene expression networks under positive feedback. It appears for any range of transcription and translation rate constants whenever leakage remains below a critical threshold. Above such a threshold, the region in the parameters space which sustains bimodality persists, although restricted to low transcription and high translation rate constants. Remarkably, such a threshold is independent of the transcription or translation rates or the proportion of an active or inactive promoter and depends only on the level of cooperativity. The proposed method can be employed to identify bimodal or binary distributions leading to stochastic dynamics with specific switching properties, by searching inside the parameter regions that sustain such behavior.
The Effect of Shape Model Uncertainty on the Geophysical Predictions of Binary Asteroids
NASA Astrophysics Data System (ADS)
McMahon, Jay W.; Scheeres, Daniel
2014-11-01
Recent work by Jacobson and Scheeres (ApJ Vol. 736, L19) have shown that for a binary asteroid system in and equilibrium between tides and the binary YORP effect, the ratio Q/k can be determined, where Q is the tidal dissipation number and k is the tidal Love number. In their work, the value for B (the binary YORP coefficient) was that computed by McMahon and Scheeres (Icarus Vol. 209, pp 494-509, 2010) for binary asteroid 1999 KW4. Using this value, it was shown that the geophysical parameters Q/k can be estimated. Furthermore, we can similarly compute μQ based on the relationship between μ and k (where μ is the rigidity parameter), as discussed by Scheirich et al (ACM, Niigata, Japan, 2012, No. 1667, id.6123). These geophysical predictions, however, depend directly on the value of the binary YORP coefficient used, which is uncertain due to the limited shape model accuracy.In this study, we analyze the effect of shape model uncertainty on the predictions of Q/k and μQ. The 1999 KW4 secondary shape model is stochastically perturbed based on the radar observation accuracy (Ostro et al, Science Vol. 314, pp 1276-1280, 2006). Furthermore the detail of the topography is varied by adding more vertices to create a higher resolution shape model. For each newly perturbed shape model, the binary YORP coefficient is computed using our most advanced modeling software, and is used to derive new values for the geophysical parameter relationships. Furthermore we compute the B for a variety of known asteroid shape models as investigated by McMahon and Scheeres (44th AAS DPS, Reno, NV, 2012. Abstract No. 105.08). The results give effective error bounds on the Q/k (and derived μQ) predictions based on the shape model uncertainties.
NASA Technical Reports Server (NTRS)
Tielens, Alexander G. G. M.
1995-01-01
The Interstellar Medium (ISM) forms an integral part of the lifecycle of stars and the galaxy. Stars are formed by gravitational contraction of interstellar clouds. Over their life, stars return much of their mass to the ISM through winds and supernova explosions, resulting in a slow enrichment in heavy elements. Understanding the origin and evolution of the ISM is a key problem within astrophysics. The KAO has made many important contributions to studies of the interstellar medium both on the macro and on the micro scale. In this overview, I will concentrate on two breakthroughs in the last decade in which KAO observations have played a major role: (1) the importance of large Polycyclic Aromatic Hydrocarbon (PAH) molecules for the ISM (section 3) and (2) the study of Photodissociation Regions (PDRs) as an analog for the diffuse ISM at large (section 4). Appropriately, the micro and macro problem are intricately interwoven in these problems. Finally, section 5 reviews the origin of the (CII) emission observed by COBE.
NASA Astrophysics Data System (ADS)
Redfield, S.
2006-09-01
The Local Interstellar Medium (LISM) is a unique environment that presents an opportunity to study general interstellar phenomena in great detail and in three dimensions. In particular, high resolution optical and ultraviolet spectroscopy have proven to be powerful tools for addressing fundamental questions concerning the physical conditions and three-dimensional (3D) morphology of this local material. After reviewing our current understanding of the structure of gas in the solar neighborhood, I will discuss the influence that the LISM can have on stellar and planetary systems, including LISM dust deposition onto planetary atmospheres and the modulation of galactic cosmic rays through the astrosphere --- the balancing interface between the outward pressure of the magnetized stellar wind and the inward pressure of the surrounding interstellar medium. On Earth, galactic cosmic rays may play a role as contributors to ozone layer chemistry, planetary electrical discharge frequency, biological mutation rates, and climate. Since the LISM shares the same volume as practically all known extrasolar planets, the prototypical debris disks systems, and nearby low-mass star-formation sites, it will be important to understand the structures of the LISM and how they may influence planetary atmospheres.
DENSE MEDIUM CYCLONE OPTIMIZATON
Gerald H. Luttrell; Chris J. Barbee; Peter J. Bethell; Chris J. Wood
2005-06-30
Dense medium cyclones (DMCs) are known to be efficient, high-tonnage devices suitable for upgrading particles in the 50 to 0.5 mm size range. This versatile separator, which uses centrifugal forces to enhance the separation of fine particles that cannot be upgraded in static dense medium separators, can be found in most modern coal plants and in a variety of mineral plants treating iron ore, dolomite, diamonds, potash and lead-zinc ores. Due to the high tonnage, a small increase in DMC efficiency can have a large impact on plant profitability. Unfortunately, the knowledge base required to properly design and operate DMCs has been seriously eroded during the past several decades. In an attempt to correct this problem, a set of engineering tools have been developed to allow producers to improve the efficiency of their DMC circuits. These tools include (1) low-cost density tracers that can be used by plant operators to rapidly assess DMC performance, (2) mathematical process models that can be used to predict the influence of changes in operating and design variables on DMC performance, and (3) an expert advisor system that provides plant operators with a user-friendly interface for evaluating, optimizing and trouble-shooting DMC circuits. The field data required to develop these tools was collected by conducting detailed sampling and evaluation programs at several industrial plant sites. These data were used to demonstrate the technical, economic and environmental benefits that can be realized through the application of these engineering tools.
Circularization time of binary galaxies
NASA Astrophysics Data System (ADS)
Junqueira, S.; de Freitas Pacheco, J. A.
1994-11-01
We report the results of numerical experiments performed to study the orbital circularization time of binary galaxies. We find that the time scale is quite long (larger than the Hubble time), confirming earlier calculations. The results depend on the initial conditions. From our simulations we obtained a fitting formula for the circularization time as a function of the initial orbital parameters like the pericentric distance, mass ratio, and eccentricity.
Cool Star Binaries with ALEXIS
NASA Technical Reports Server (NTRS)
Stern, Robert A.
1998-01-01
We proposed to search for high-temperature, flare-produced Fe XXIII line emission from active cool star binary systems using the ALEXIS all-sky survey. Previous X-ray transient searches with ARIEL V and HEAO-1, and subsequent shorter duration monitoring with the GINGA and EXOSAT satellites demonstrated that active binaries can produce large (EM approximately equals 10(exp 55-56/cu cm) X-ray flares lasting several hours or longer. Hot plasma from these flares at temperatures of 10(exp 7)K or more should produce Fe XXIII line emission at lambda = 132.8 A, very near the peak response of ALEXIS telescopes 1A and 2A. Our primary goals were to estimate flare frequency for the largest flares in the active binary systems, and, if the data permitted, to derive a distribution of flare energy vs. frequency for the sample as a whole. After a long delay due to the initial problems with the ALEXIS attitude control, the heroic efforts on the part of the ALEXIS satellite team enabled us to carry out this survey. However, the combination of the higher than expected and variable background in the ALEXIS detectors, and the lower throughput of the ALEXIS telescopes resulted in no convincing detections of large flares from the active binary systems. In addition, vignetting-corrected effective exposure times from the ALEXIS aspect solution were not available prior to the end of this contract; therefore, we were unable to convert upper limits measured in ALEXIS counts to the equivalent L(sub EUV).
Radio Is an Educational Medium.
ERIC Educational Resources Information Center
Duby, Aliza
This report summarizes information found in a survey of the literature on radio as an educational medium which covered the published literature from many areas of the world. Comments on the literature reviewed are provided throughout the text, which is organized under seven major headings: (1) Radio, Mass Medium; (2) Radio, the Medium (broadening…
Stochastic Satbility and Performance Robustness of Linear Multivariable Systems
NASA Technical Reports Server (NTRS)
Ryan, Laurie E.; Stengel, Robert F.
1990-01-01
Stochastic robustness, a simple technique used to estimate the robustness of linear, time invariant systems, is applied to a single-link robot arm control system. Concepts behind stochastic stability robustness are extended to systems with estimators and to stochastic performance robustness. Stochastic performance robustness measures based on classical design specifications are introduced, and the relationship between stochastic robustness measures and control system design parameters are discussed. The application of stochastic performance robustness, and the relationship between performance objectives and design parameters are demonstrated by means of example. The results prove stochastic robustness to be a good overall robustness analysis method that can relate robustness characteristics to control system design parameters.
Stochastic pump effect and geometric phases in dissipative and stochastic systems
Sinitsyn, Nikolai
2008-01-01
The success of Berry phases in quantum mechanics stimulated the study of similar phenomena in other areas of physics, including the theory of living cell locomotion and motion of patterns in nonlinear media. More recently, geometric phases have been applied to systems operating in a strongly stochastic environment, such as molecular motors. We discuss such geometric effects in purely classical dissipative stochastic systems and their role in the theory of the stochastic pump effect (SPE).
Pulsed Accretion onto Eccentric and Circular Binaries
NASA Astrophysics Data System (ADS)
Muñoz, Diego J.; Lai, Dong
2016-08-01
We present numerical simulations of circumbinary accretion onto eccentric and circular binaries using the moving-mesh code AREPO. This is the first set of simulations to tackle the problem of binary accretion using a finite-volume scheme on a freely moving mesh, which allows for accurate measurements of accretion onto individual stars for arbitrary binary eccentricity. While accretion onto a circular binary shows bursts with period of ∼ 5 times the binary period P b, accretion onto an eccentric binary is predominantly modulated at the period ∼ 1{P}{{b}}. For an equal-mass circular binary, the accretion rates onto individual stars are quite similar to each other, following the same variable pattern in time. By contrast, for eccentric binaries, one of the stars can accrete at a rate 10–20 times larger than its companion. This “symmetry breaking” between the stars, however, alternates over timescales of order 200P b and can be attributed to a slowly precessing, eccentric circumbinary disk. Over longer timescales, the net accretion rates onto individual stars are the same, reaching a quasi-steady state with the circumbinary disk. These results have important implications for the accretion behavior of binary T Tauri stars and supermassive binary black holes.
Pulsed Accretion onto Eccentric and Circular Binaries
NASA Astrophysics Data System (ADS)
Muñoz, Diego J.; Lai, Dong
2016-08-01
We present numerical simulations of circumbinary accretion onto eccentric and circular binaries using the moving-mesh code AREPO. This is the first set of simulations to tackle the problem of binary accretion using a finite-volume scheme on a freely moving mesh, which allows for accurate measurements of accretion onto individual stars for arbitrary binary eccentricity. While accretion onto a circular binary shows bursts with period of ˜ 5 times the binary period P b, accretion onto an eccentric binary is predominantly modulated at the period ˜ 1{P}{{b}}. For an equal-mass circular binary, the accretion rates onto individual stars are quite similar to each other, following the same variable pattern in time. By contrast, for eccentric binaries, one of the stars can accrete at a rate 10–20 times larger than its companion. This “symmetry breaking” between the stars, however, alternates over timescales of order 200P b and can be attributed to a slowly precessing, eccentric circumbinary disk. Over longer timescales, the net accretion rates onto individual stars are the same, reaching a quasi-steady state with the circumbinary disk. These results have important implications for the accretion behavior of binary T Tauri stars and supermassive binary black holes.
Galaxy Rotation and Rapid Supermassive Binary Coalescence
NASA Astrophysics Data System (ADS)
Holley-Bockelmann, Kelly; Khan, Fazeel Mahmood
2015-09-01
Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy.
Stochastic resonance during a polymer translocation process
NASA Astrophysics Data System (ADS)
Mondal, Debasish; Muthukumar, Murugappan
We study the translocation of a flexible polymer in a confined geometry subjected to a time-periodic external drive to explore stochastic resonance. We describe the equilibrium translocation process in terms of a Fokker-Planck description and use a discrete two-state model to describe the effect of the external driving force on the translocation dynamics. We observe that no stochastic resonance is possible if the associated free-energy barrier is purely entropic in nature. The polymer chain experiences a stochastic resonance effect only in presence of an energy threshold in terms of polymer-pore interaction. Once stochastic resonance is feasible, the chain entropy controls the optimal synchronization conditions significantly.
Stochastic differential equation model to Prendiville processes
Granita; Bahar, Arifah
2015-10-22
The Prendiville process is another variation of the logistic model which assumes linearly decreasing population growth rate. It is a continuous time Markov chain (CTMC) taking integer values in the finite interval. The continuous time Markov chain can be approximated by stochastic differential equation (SDE). This paper discusses the stochastic differential equation of Prendiville process. The work started with the forward Kolmogorov equation in continuous time Markov chain of Prendiville process. Then it was formulated in the form of a central-difference approximation. The approximation was then used in Fokker-Planck equation in relation to the stochastic differential equation of the Prendiville process. The explicit solution of the Prendiville process was obtained from the stochastic differential equation. Therefore, the mean and variance function of the Prendiville process could be easily found from the explicit solution.
Quadratic Stochastic Operators with Countable State Space
NASA Astrophysics Data System (ADS)
Ganikhodjaev, Nasir
2016-03-01
In this paper, we provide the classes of Poisson and Geometric quadratic stochastic operators with countable state space, study the dynamics of these operators and discuss their application to economics.
Stochasticity in plant cellular growth and patterning
Meyer, Heather M.; Roeder, Adrienne H. K.
2014-01-01
Plants, along with other multicellular organisms, have evolved specialized regulatory mechanisms to achieve proper tissue growth and morphogenesis. During development, growing tissues generate specialized cell types and complex patterns necessary for establishing the function of the organ. Tissue growth is a tightly regulated process that yields highly reproducible outcomes. Nevertheless, the underlying cellular and molecular behaviors are often stochastic. Thus, how does stochasticity, together with strict genetic regulation, give rise to reproducible tissue development? This review draws examples from plants as well as other systems to explore stochasticity in plant cell division, growth, and patterning. We conclude that stochasticity is often needed to create small differences between identical cells, which are amplified and stabilized by genetic and mechanical feedback loops to begin cell differentiation. These first few differentiating cells initiate traditional patterning mechanisms to ensure regular development. PMID:25250034
Extending Stochastic Network Calculus to Loss Analysis
Yu, Li; Zheng, Jun
2013-01-01
Loss is an important parameter of Quality of Service (QoS). Though stochastic network calculus is a very useful tool for performance evaluation of computer networks, existing studies on stochastic service guarantees mainly focused on the delay and backlog. Some efforts have been made to analyse loss by deterministic network calculus, but there are few results to extend stochastic network calculus for loss analysis. In this paper, we introduce a new parameter named loss factor into stochastic network calculus and then derive the loss bound through the existing arrival curve and service curve via this parameter. We then prove that our result is suitable for the networks with multiple input flows. Simulations show the impact of buffer size, arrival traffic, and service on the loss factor. PMID:24228019
Synchronization of noisy systems by stochastic signals
Neiman, A.; Schimansky-Geier, L.; Moss, F.; Schimansky-Geier, L.; Shulgin, B.; Collins, J.J.
1999-07-01
We study, in terms of synchronization, the {ital nonlinear response} of noisy bistable systems to a stochastic external signal, represented by Markovian dichotomic noise. We propose a general kinetic model which allows us to conduct a full analytical study of the nonlinear response, including the calculation of cross-correlation measures, the mean switching frequency, and synchronization regions. Theoretical results are compared with numerical simulations of a noisy overdamped bistable oscillator. We show that dichotomic noise can instantaneously synchronize the switching process of the system. We also show that synchronization is most pronounced at an optimal noise level{emdash}this effect connects this phenomenon with aperiodic stochastic resonance. Similar synchronization effects are observed for a stochastic neuron model stimulated by a stochastic spike train. {copyright} {ital 1999} {ital The American Physical Society}
Stochastic structure formation in random media
NASA Astrophysics Data System (ADS)
Klyatskin, V. I.
2016-01-01
Stochastic structure formation in random media is considered using examples of elementary dynamical systems related to the two-dimensional geophysical fluid dynamics (Gaussian random fields) and to stochastically excited dynamical systems described by partial differential equations (lognormal random fields). In the latter case, spatial structures (clusters) may form with a probability of one in almost every system realization due to rare events happening with vanishing probability. Problems involving stochastic parametric excitation occur in fluid dynamics, magnetohydrodynamics, plasma physics, astrophysics, and radiophysics. A more complicated stochastic problem dealing with anomalous structures on the sea surface (rogue waves) is also considered, where the random Gaussian generation of sea surface roughness is accompanied by parametric excitation.
Bootstrap performance profiles in stochastic algorithms assessment
Costa, Lino; Espírito Santo, Isabel A.C.P.; Oliveira, Pedro
2015-03-10
Optimization with stochastic algorithms has become a relevant research field. Due to its stochastic nature, its assessment is not straightforward and involves integrating accuracy and precision. Performance profiles for the mean do not show the trade-off between accuracy and precision, and parametric stochastic profiles require strong distributional assumptions and are limited to the mean performance for a large number of runs. In this work, bootstrap performance profiles are used to compare stochastic algorithms for different statistics. This technique allows the estimation of the sampling distribution of almost any statistic even with small samples. Multiple comparison profiles are presented for more than two algorithms. The advantages and drawbacks of each assessment methodology are discussed.
Communication: Embedded fragment stochastic density functional theory
Neuhauser, Daniel; Baer, Roi; Rabani, Eran
2014-07-28
We develop a method in which the electronic densities of small fragments determined by Kohn-Sham density functional theory (DFT) are embedded using stochastic DFT to form the exact density of the full system. The new method preserves the scaling and the simplicity of the stochastic DFT but cures the slow convergence that occurs when weakly coupled subsystems are treated. It overcomes the spurious charge fluctuations that impair the applications of the original stochastic DFT approach. We demonstrate the new approach on a fullerene dimer and on clusters of water molecules and show that the density of states and the total energy can be accurately described with a relatively small number of stochastic orbitals.
Young and Waltzing Binary Stars
NASA Astrophysics Data System (ADS)
2001-10-01
ADONIS Observes Low-mass Eclipsing System in Orion Summary A series of very detailed images of a binary system of two young stars have been combined into a movie . In merely 3 days, the stars swing around each other. As seen from the earth, they pass in front of each other twice during a full revolution, producing eclipses during which their combined brightness diminishes . A careful analysis of the orbital motions has now made it possible to deduce the masses of the two dancing stars . Both turn out to be about as heavy as our Sun. But while the Sun is about 4500 million years old, these two stars are still in their infancy. They are located some 1500 light-years away in the Orion star-forming region and they probably formed just 10 million years ago . This is the first time such an accurate determination of the stellar masses could be achieved for a young binary system of low-mass stars . The new result provides an important piece of information for our current understanding of how young stars evolve. The observations were obtained by a team of astronomers from Italy and ESO [1] using the ADaptive Optics Near Infrared System (ADONIS) on the 3.6-m telescope at the ESO La Silla Observatory. PR Photo 29a/01 : The RXJ 0529.4+0041 system before primary eclipse PR Photo 29b/01 : The RXJ 0529.4+0041 system at mid-primary eclipse PR Photo 29c/01 : The RXJ 0529.4+0041 system after primary eclipse PR Photo 29d/01 : The RXJ 0529.4+0041 system before secondary eclipse PR Photo 29e/01 : The RXJ 0529.4+0041 system at mid-secondary eclipse PR Photo 29f/01 : The RXJ 0529.4+0041 system after secondary eclipse PR Video Clip 06/01 : Video of the RXJ 0529.4+0041 system Binary stars and stellar masses Since some time, astronomers have noted that most stars seem to form in binary or multiple systems. This is quite fortunate, as the study of binary stars is the only way in which it is possible to measure directly one of the most fundamental quantities of a star, its mass. The mass of a
Stochastic description of quantum Brownian dynamics
NASA Astrophysics Data System (ADS)
Yan, Yun-An; Shao, Jiushu
2016-08-01
Classical Brownian motion has well been investigated since the pioneering work of Einstein, which inspired mathematicians to lay the theoretical foundation of stochastic processes. A stochastic formulation for quantum dynamics of dissipative systems described by the system-plus-bath model has been developed and found many applications in chemical dynamics, spectroscopy, quantum transport, and other fields. This article provides a tutorial review of the stochastic formulation for quantum dissipative dynamics. The key idea is to decouple the interaction between the system and the bath by virtue of the Hubbard-Stratonovich transformation or Itô calculus so that the system and the bath are not directly entangled during evolution, rather they are correlated due to the complex white noises introduced. The influence of the bath on the system is thereby defined by an induced stochastic field, which leads to the stochastic Liouville equation for the system. The exact reduced density matrix can be calculated as the stochastic average in the presence of bath-induced fields. In general, the plain implementation of the stochastic formulation is only useful for short-time dynamics, but not efficient for long-time dynamics as the statistical errors go very fast. For linear and other specific systems, the stochastic Liouville equation is a good starting point to derive the master equation. For general systems with decomposable bath-induced processes, the hierarchical approach in the form of a set of deterministic equations of motion is derived based on the stochastic formulation and provides an effective means for simulating the dissipative dynamics. A combination of the stochastic simulation and the hierarchical approach is suggested to solve the zero-temperature dynamics of the spin-boson model. This scheme correctly describes the coherent-incoherent transition (Toulouse limit) at moderate dissipation and predicts a rate dynamics in the overdamped regime. Challenging problems
Structural model uncertainty in stochastic simulation
McKay, M.D.; Morrison, J.D.
1997-09-01
Prediction uncertainty in stochastic simulation models can be described by a hierarchy of components: stochastic variability at the lowest level, input and parameter uncertainty at a higher level, and structural model uncertainty at the top. It is argued that a usual paradigm for analysis of input uncertainty is not suitable for application to structural model uncertainty. An approach more likely to produce an acceptable methodology for analyzing structural model uncertainty is one that uses characteristics specific to the particular family of models.
Complexity and synchronization in stochastic chaotic systems
NASA Astrophysics Data System (ADS)
Son Dang, Thai; Palit, Sanjay Kumar; Mukherjee, Sayan; Hoang, Thang Manh; Banerjee, Santo
2016-02-01
We investigate the complexity of a hyperchaotic dynamical system perturbed by noise and various nonlinear speech and music signals. The complexity is measured by the weighted recurrence entropy of the hyperchaotic and stochastic systems. The synchronization phenomenon between two stochastic systems with complex coupling is also investigated. These criteria are tested on chaotic and perturbed systems by mean conditional recurrence and normalized synchronization error. Numerical results including surface plots, normalized synchronization errors, complexity variations etc show the effectiveness of the proposed analysis.
Desynchronization of stochastically synchronized chemical oscillators
Snari, Razan; Tinsley, Mark R. E-mail: kshowalt@wvu.edu; Faramarzi, Sadegh; Showalter, Kenneth E-mail: kshowalt@wvu.edu; Wilson, Dan; Moehlis, Jeff; Netoff, Theoden Ivan
2015-12-15
Experimental and theoretical studies are presented on the design of perturbations that enhance desynchronization in populations of oscillators that are synchronized by periodic entrainment. A phase reduction approach is used to determine optimal perturbation timing based upon experimentally measured phase response curves. The effectiveness of the perturbation waveforms is tested experimentally in populations of periodically and stochastically synchronized chemical oscillators. The relevance of the approach to therapeutic methods for disrupting phase coherence in groups of stochastically synchronized neuronal oscillators is discussed.
Sequential decision analysis for nonstationary stochastic processes
NASA Technical Reports Server (NTRS)
Schaefer, B.
1974-01-01
A formulation of the problem of making decisions concerning the state of nonstationary stochastic processes is given. An optimal decision rule, for the case in which the stochastic process is independent of the decisions made, is derived. It is shown that this rule is a generalization of the Bayesian likelihood ratio test; and an analog to Wald's sequential likelihood ratio test is given, in which the optimal thresholds may vary with time.
Stability of Stochastic Neutral Cellular Neural Networks
NASA Astrophysics Data System (ADS)
Chen, Ling; Zhao, Hongyong
In this paper, we study a class of stochastic neutral cellular neural networks. By constructing a suitable Lyapunov functional and employing the nonnegative semi-martingale convergence theorem we give some sufficient conditions ensuring the almost sure exponential stability of the networks. The results obtained are helpful to design stability of networks when stochastic noise is taken into consideration. Finally, two examples are provided to show the correctness of our analysis.
Desynchronization of stochastically synchronized chemical oscillators.
Snari, Razan; Tinsley, Mark R; Wilson, Dan; Faramarzi, Sadegh; Netoff, Theoden Ivan; Moehlis, Jeff; Showalter, Kenneth
2015-12-01
Experimental and theoretical studies are presented on the design of perturbations that enhance desynchronization in populations of oscillators that are synchronized by periodic entrainment. A phase reduction approach is used to determine optimal perturbation timing based upon experimentally measured phase response curves. The effectiveness of the perturbation waveforms is tested experimentally in populations of periodically and stochastically synchronized chemical oscillators. The relevance of the approach to therapeutic methods for disrupting phase coherence in groups of stochastically synchronized neuronal oscillators is discussed. PMID:26723155
Desynchronization of stochastically synchronized chemical oscillators
NASA Astrophysics Data System (ADS)
Snari, Razan; Tinsley, Mark R.; Wilson, Dan; Faramarzi, Sadegh; Netoff, Theoden Ivan; Moehlis, Jeff; Showalter, Kenneth
2015-12-01
Experimental and theoretical studies are presented on the design of perturbations that enhance desynchronization in populations of oscillators that are synchronized by periodic entrainment. A phase reduction approach is used to determine optimal perturbation timing based upon experimentally measured phase response curves. The effectiveness of the perturbation waveforms is tested experimentally in populations of periodically and stochastically synchronized chemical oscillators. The relevance of the approach to therapeutic methods for disrupting phase coherence in groups of stochastically synchronized neuronal oscillators is discussed.
European Pulsar Timing Array limits on an isotropic stochastic gravitational-wave background
NASA Astrophysics Data System (ADS)
Lentati, L.; Taylor, S. R.; Mingarelli, C. M. F.; Sesana, A.; Sanidas, S. A.; Vecchio, A.; Caballero, R. N.; Lee, K. J.; van Haasteren, R.; Babak, S.; Bassa, C. G.; Brem, P.; Burgay, M.; Champion, D. J.; Cognard, I.; Desvignes, G.; Gair, J. R.; Guillemot, L.; Hessels, J. W. T.; Janssen, G. H.; Karuppusamy, R.; Kramer, M.; Lassus, A.; Lazarus, P.; Liu, K.; Osłowski, S.; Perrodin, D.; Petiteau, A.; Possenti, A.; Purver, M. B.; Rosado, P. A.; Smits, R.; Stappers, B.; Theureau, G.; Tiburzi, C.; Verbiest, J. P. W.
2015-11-01
We present new limits on an isotropic stochastic gravitational-wave background (GWB) using a six pulsar data set spanning 18 yr of observations from the 2015 European Pulsar Timing Array data release. Performing a Bayesian analysis, we fit simultaneously for the intrinsic noise parameters for each pulsar, along with common correlated signals including clock, and Solar system ephemeris errors, obtaining a robust 95 per cent upper limit on the dimensionless strain amplitude A of the background of A < 3.0 × 10-15 at a reference frequency of 1 yr-1 and a spectral index of 13/3, corresponding to a background from inspiralling supermassive black hole binaries, constraining the GW energy density to Ωgw(f)h2 < 1.1 × 10-9 at 2.8 nHz. We also present limits on the correlated power spectrum at a series of discrete frequencies, and show that our sensitivity to a fiducial isotropic GWB is highest at a frequency of ˜5 × 10-9 Hz. Finally, we discuss the implications of our analysis for the astrophysics of supermassive black hole binaries, and present 95 per cent upper limits on the string tension, Gμ/c2, characterizing a background produced by a cosmic string network for a set of possible scenarios, and for a stochastic relic GWB. For a Nambu-Goto field theory cosmic string network, we set a limit Gμ/c2 < 1.3 × 10-7, identical to that set by the Planck Collaboration, when combining Planck and high-ℓ cosmic microwave background data from other experiments. For a stochastic relic background, we set a limit of Ω ^relic_gw(f)h^2<1.2 × 10^{-9}, a factor of 9 improvement over the most stringent limits previously set by a pulsar timing array.
NASA Astrophysics Data System (ADS)
Wani, Naveel; Maqbool, Bari; Iqbal, Naseer; Misra, Ranjeev
2016-07-01
X-ray binaries and AGNs are powered by accretion discs around compact objects, where the x-rays are emitted from the inner regions and uv emission arise from the relatively cooler outer parts. There has been an increasing evidence that the variability of the x-rays in different timescales is caused by stochastic fluctuations in the accretion disc at different radii. These fluctuations although arise in the outer parts of the disc but propagate inwards to give rise to x-ray variability and hence provides a natural connection between the x-ray and uv variability. There are analytical expressions to qualitatively understand the effect of these stochastic variabilities, but quantitative predictions are only possible by a detailed hydrodynamical study of the global time dependent solution of standard accretion disc. We have developed numerical efficient code (to incorporate all these effects), which considers gas pressure dominated solutions and stochastic fluctuations with the inclusion of boundary effect of the last stable orbit.
Stability Analysis of Stochastic Neural Network with Depression and Facilitation Synapses
NASA Astrophysics Data System (ADS)
Katori, Yuichi; Igarashi, Yasuhiko; Okada, Masato; Aihara, Kazuyuki
2012-11-01
We investigate dynamical properties of a stochastic neural network model in which neurons are connected by dynamic synapses that undergo short-term depression and facilitation. In this model, the state of the neuron is described by a binary variable that represents the active or resting state of the neuron and changes stochastically. Synaptic transmission efficacy is described by variables that represent the releasable neurotransmitters and the calcium concentration of the synaptic terminal. Here, we focus on a neural network with uniform connections, and we elucidate its neural dynamics, which is influenced by dynamic synapses. We derive a macroscopic mean field model that approximates the overall behavior of the stochastic neural network. We apply stability and bifurcation analyses to the macroscopic mean field model, and we find that the network exhibits a variety of dynamical structures, including ferromagnetic and paramagnetic states, as well as an oscillatory uniform state according to the parameters that specify the noise intensity and the properties of the dynamic synapses. We believe that the present study can be a potential milestone for future modeling studies on various structured networks with dynamic synapses.
Evolution of binary stars in multiple-population globular clusters - II. Compact binaries
NASA Astrophysics Data System (ADS)
Hong, Jongsuk; Vesperini, Enrico; Sollima, Antonio; McMillan, Stephen L. W.; D'Antona, Franca; D'Ercole, Annibale
2016-04-01
We present the results of a survey of N-body simulations aimed at exploring the evolution of compact binaries in multiple-population globular clusters. We show that as a consequence of the initial differences in the structural properties of the first-generation (FG) and the second-generation (SG) populations and the effects of dynamical processes on binary stars, the SG binary fraction decreases more rapidly than that of the FG population. The difference between the FG and SG binary fraction is qualitatively similar to but quantitatively smaller than that found for wider binaries in our previous investigations. The evolution of the radial variation of the binary fraction is driven by the interplay between binary segregation, ionization and ejection. Ionization and ejection counteract in part the effects of mass segregation but for compact binaries the effects of segregation dominate and the inner binary fraction increases during the cluster evolution. We explore the variation of the difference between the FG and the SG binary fraction with the distance from the cluster centre and its dependence on the binary binding energy and cluster structural parameters. The difference between the binary fraction in the FG and the SG populations found in our simulations is consistent with the results of observational studies finding a smaller binary fraction in the SG population.
Stochastic resonance during a polymer translocation process.
Mondal, Debasish; Muthukumar, M
2016-04-14
We have studied the occurrence of stochastic resonance when a flexible polymer chain undergoes a single-file translocation through a nano-pore separating two spherical cavities, under a time-periodic external driving force. The translocation of the chain is controlled by a free energy barrier determined by chain length, pore length, pore-polymer interaction, and confinement inside the donor and receiver cavities. The external driving force is characterized by a frequency and amplitude. By combining the Fokker-Planck formalism for polymer translocation and a two-state model for stochastic resonance, we have derived analytical formulas for criteria for emergence of stochastic resonance during polymer translocation. We show that no stochastic resonance is possible if the free energy barrier for polymer translocation is purely entropic in nature. The polymer chain exhibits stochastic resonance only in the presence of an energy threshold in terms of polymer-pore interactions. Once stochastic resonance is feasible, the chain entropy controls the optimal synchronization conditions significantly. PMID:27083746
Stochastic resonance during a polymer translocation process
NASA Astrophysics Data System (ADS)
Mondal, Debasish; Muthukumar, M.
2016-04-01
We have studied the occurrence of stochastic resonance when a flexible polymer chain undergoes a single-file translocation through a nano-pore separating two spherical cavities, under a time-periodic external driving force. The translocation of the chain is controlled by a free energy barrier determined by chain length, pore length, pore-polymer interaction, and confinement inside the donor and receiver cavities. The external driving force is characterized by a frequency and amplitude. By combining the Fokker-Planck formalism for polymer translocation and a two-state model for stochastic resonance, we have derived analytical formulas for criteria for emergence of stochastic resonance during polymer translocation. We show that no stochastic resonance is possible if the free energy barrier for polymer translocation is purely entropic in nature. The polymer chain exhibits stochastic resonance only in the presence of an energy threshold in terms of polymer-pore interactions. Once stochastic resonance is feasible, the chain entropy controls the optimal synchronization conditions significantly.
Automated Flight Routing Using Stochastic Dynamic Programming
NASA Technical Reports Server (NTRS)
Ng, Hok K.; Morando, Alex; Grabbe, Shon
2010-01-01
Airspace capacity reduction due to convective weather impedes air traffic flows and causes traffic congestion. This study presents an algorithm that reroutes flights in the presence of winds, enroute convective weather, and congested airspace based on stochastic dynamic programming. A stochastic disturbance model incorporates into the reroute design process the capacity uncertainty. A trajectory-based airspace demand model is employed for calculating current and future airspace demand. The optimal routes minimize the total expected traveling time, weather incursion, and induced congestion costs. They are compared to weather-avoidance routes calculated using deterministic dynamic programming. The stochastic reroutes have smaller deviation probability than the deterministic counterpart when both reroutes have similar total flight distance. The stochastic rerouting algorithm takes into account all convective weather fields with all severity levels while the deterministic algorithm only accounts for convective weather systems exceeding a specified level of severity. When the stochastic reroutes are compared to the actual flight routes, they have similar total flight time, and both have about 1% of travel time crossing congested enroute sectors on average. The actual flight routes induce slightly less traffic congestion than the stochastic reroutes but intercept more severe convective weather.
Multidimensional stochastic approximation Monte Carlo.
Zablotskiy, Sergey V; Ivanov, Victor A; Paul, Wolfgang
2016-06-01
Stochastic Approximation Monte Carlo (SAMC) has been established as a mathematically founded powerful flat-histogram Monte Carlo method, used to determine the density of states, g(E), of a model system. We show here how it can be generalized for the determination of multidimensional probability distributions (or equivalently densities of states) of macroscopic or mesoscopic variables defined on the space of microstates of a statistical mechanical system. This establishes this method as a systematic way for coarse graining a model system, or, in other words, for performing a renormalization group step on a model. We discuss the formulation of the Kadanoff block spin transformation and the coarse-graining procedure for polymer models in this language. We also apply it to a standard case in the literature of two-dimensional densities of states, where two competing energetic effects are present g(E_{1},E_{2}). We show when and why care has to be exercised when obtaining the microcanonical density of states g(E_{1}+E_{2}) from g(E_{1},E_{2}). PMID:27415383
Stochastic models of intracellular transport
NASA Astrophysics Data System (ADS)
Bressloff, Paul C.; Newby, Jay M.
2013-01-01
The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major challenge in modeling intracellular transport is to analyze stochastic processes within complex environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually in the form of adenosine triphosphate hydrolysis, and can be direction specific, allowing biomolecules to be transported long distances; this is particularly important in neurons due to their complex geometry. In this review a wide range of analytical methods and models of intracellular transport is presented. In the case of diffusive transport, narrow escape problems, diffusion to a small target, confined and single-file diffusion, homogenization theory, and fractional diffusion are considered. In the case of active transport, Brownian ratchets, random walk models, exclusion processes, random intermittent search processes, quasi-steady-state reduction methods, and mean-field approximations are considered. Applications include receptor trafficking, axonal transport, membrane diffusion, nuclear transport, protein-DNA interactions, virus trafficking, and the self-organization of subcellular structures.
Stochastic slowdown in evolutionary processes.
Altrock, Philipp M; Gokhale, Chaitanya S; Traulsen, Arne
2010-07-01
We examine birth-death processes with state dependent transition probabilities and at least one absorbing boundary. In evolution, this describes selection acting on two different types in a finite population where reproductive events occur successively. If the two types have equal fitness the system performs a random walk. If one type has a fitness advantage it is favored by selection, which introduces a bias (asymmetry) in the transition probabilities. How long does it take until advantageous mutants have invaded and taken over? Surprisingly, we find that the average time of such a process can increase, even if the mutant type always has a fitness advantage. We discuss this finding for the Moran process and develop a simplified model which allows a more intuitive understanding. We show that this effect can occur for weak but nonvanishing bias (selection) in the state dependent transition rates and infer the scaling with system size. We also address the Wright-Fisher model commonly used in population genetics, which shows that this stochastic slowdown is not restricted to birth-death processes. PMID:20866666
A novel stochastic optimization algorithm.
Li, B; Jiang, W
2000-01-01
This paper presents a new stochastic approach SAGACIA based on proper integration of simulated annealing algorithm (SAA), genetic algorithm (GA), and chemotaxis algorithm (CA) for solving complex optimization problems. SAGACIA combines the advantages of SAA, GA, and CA together. It has the following features: (1) it is not the simple mix of SAA, GA, and CA; (2) it works from a population; (3) it can be easily used to solve optimization problems either with continuous variables or with discrete variables, and it does not need coding and decoding,; and (4) it can easily escape from local minima and converge quickly. Good solutions can be obtained in a very short time. The search process of SAGACIA can be explained with Markov chains. In this paper, it is proved that SAGACIA has the property of global asymptotical convergence. SAGACIA has been applied to solve such problems as scheduling, the training of artificial neural networks, and the optimizing of complex functions. In all the test cases, the performance of SAGACIA is better than that of SAA, GA, and CA. PMID:18244742
Multidimensional stochastic approximation Monte Carlo
NASA Astrophysics Data System (ADS)
Zablotskiy, Sergey V.; Ivanov, Victor A.; Paul, Wolfgang
2016-06-01
Stochastic Approximation Monte Carlo (SAMC) has been established as a mathematically founded powerful flat-histogram Monte Carlo method, used to determine the density of states, g (E ) , of a model system. We show here how it can be generalized for the determination of multidimensional probability distributions (or equivalently densities of states) of macroscopic or mesoscopic variables defined on the space of microstates of a statistical mechanical system. This establishes this method as a systematic way for coarse graining a model system, or, in other words, for performing a renormalization group step on a model. We discuss the formulation of the Kadanoff block spin transformation and the coarse-graining procedure for polymer models in this language. We also apply it to a standard case in the literature of two-dimensional densities of states, where two competing energetic effects are present g (E1,E2) . We show when and why care has to be exercised when obtaining the microcanonical density of states g (E1+E2) from g (E1,E2) .
Lower hybrid wavepacket stochasticity revisited
Fuchs, V.; Krlín, L.; Pánek, R.; Preinhaelter, J.; Seidl, J.; Urban, J.
2014-02-12
Analysis is presented in support of the explanation in Ref. [1] for the observation of relativistic electrons during Lower Hybrid (LH) operation in EC pre-heated plasma at the WEGA stellarator [1,2]. LH power from the WEGA TE11 circular waveguide, 9 cm diameter, un-phased, 2.45 GHz antenna, is radiated into a B≅0.5 T, Ðœ„n{sub e}≅5×10{sup 17} 1/m{sup 3} plasma at T{sub e}≅10 eV bulk temperature with an EC generated 50 keV component [1]. The fast electrons cycle around flux or drift surfaces with few collisions, sufficient for randomizing phases but insufficient for slowing fast electrons down, and thus repeatedly interact with the rf field close to the antenna mouth, gaining energy in the process. Our antenna calculations reveal a standing electric field pattern at the antenna mouth, with which we formulate the electron dynamics via a relativistic Hamiltonian. A simple approximation of the equations of motion leads to a relativistic generalization of the area-preserving Fermi-Ulam (F-U) map [3], allowing phase-space global stochasticity analysis. At typical WEGA plasma and antenna conditions, the F-U map predicts an LH driven current of about 230 A, at about 225 W of dissipated power, in good agreement with the measurements and analysis reported in [1].
Stochastic phase-change neurons
NASA Astrophysics Data System (ADS)
Tuma, Tomas; Pantazi, Angeliki; Le Gallo, Manuel; Sebastian, Abu; Eleftheriou, Evangelos
2016-08-01
Artificial neuromorphic systems based on populations of spiking neurons are an indispensable tool in understanding the human brain and in constructing neuromimetic computational systems. To reach areal and power efficiencies comparable to those seen in biological systems, electroionics-based and phase-change-based memristive devices have been explored as nanoscale counterparts of synapses. However, progress on scalable realizations of neurons has so far been limited. Here, we show that chalcogenide-based phase-change materials can be used to create an artificial neuron in which the membrane potential is represented by the phase configuration of the nanoscale phase-change device. By exploiting the physics of reversible amorphous-to-crystal phase transitions, we show that the temporal integration of postsynaptic potentials can be achieved on a nanosecond timescale. Moreover, we show that this is inherently stochastic because of the melt-quench-induced reconfiguration of the atomic structure occurring when the neuron is reset. We demonstrate the use of these phase-change neurons, and their populations, in the detection of temporal correlations in parallel data streams and in sub-Nyquist representation of high-bandwidth signals.
Stochastic phase-change neurons.
Tuma, Tomas; Pantazi, Angeliki; Le Gallo, Manuel; Sebastian, Abu; Eleftheriou, Evangelos
2016-08-01
Artificial neuromorphic systems based on populations of spiking neurons are an indispensable tool in understanding the human brain and in constructing neuromimetic computational systems. To reach areal and power efficiencies comparable to those seen in biological systems, electroionics-based and phase-change-based memristive devices have been explored as nanoscale counterparts of synapses. However, progress on scalable realizations of neurons has so far been limited. Here, we show that chalcogenide-based phase-change materials can be used to create an artificial neuron in which the membrane potential is represented by the phase configuration of the nanoscale phase-change device. By exploiting the physics of reversible amorphous-to-crystal phase transitions, we show that the temporal integration of postsynaptic potentials can be achieved on a nanosecond timescale. Moreover, we show that this is inherently stochastic because of the melt-quench-induced reconfiguration of the atomic structure occurring when the neuron is reset. We demonstrate the use of these phase-change neurons, and their populations, in the detection of temporal correlations in parallel data streams and in sub-Nyquist representation of high-bandwidth signals. PMID:27183057
Stochastic Resonance In Visual Perception
NASA Astrophysics Data System (ADS)
Simonotto, Enrico
1996-03-01
Stochastic resonance (SR) is a well established physical phenomenon wherein some measure of the coherence of a weak signal can be optimized by random fluctuations, or "noise" (K. Wiesenfeld and F. Moss, Nature), 373, 33 (1995). In all experiments to date the coherence has been measured using numerical analysis of the data, for example, signal-to-noise ratios obtained from power spectra. But, can this analysis be replaced by a perceptive task? Previously we had demonstrated this possibility with a numerical model of perceptual bistability applied to the interpretation of ambiguous figures(M. Riani and E. Simonotto, Phys. Rev. Lett.), 72, 3120 (1994). Here I describe an experiment wherein SR is detected in visual perception. A recognizible grayscale photograph was digitized and presented. The picture was then placed beneath a threshold. Every pixel for which the grayscale exceeded the threshold was painted white, and all others black. For large enough threshold, the picture is unrecognizable, but the addition of a random number to every pixel renders it interpretable(C. Seife and M. Roberts, The Economist), 336, 59, July 29 (1995). However the addition of dynamical noise to the pixels much enhances an observer's ability to interpret the picture. Here I report the results of psychophysics experiments wherein the effects of both the intensity of the noise and its correlation time were studied.
A Stochastic Model of the Solar Atmosphere
NASA Astrophysics Data System (ADS)
Gu, Yeming; Jefferies, John T.; Lindsey, Charles; Avrett, E. H.
1997-07-01
We present a model for the lower solar atmosphere based on continuum observations of the Sun spanning the 2-1200 μm wavelength range. We have shown that the data, in particular the center-to-limb brightness profiles at 50-350 μm, cannot be accounted for by any model which is plane-parallel and homogeneous in the height range in which this radiation is formed. We accordingly set out to develop a two-component model as the natural generalization. Making use of a theory for radiation transfer in a stochastic multi-component atmosphere, we find that one can indeed obtain an inhomogeneous model which satisfies center-to-limb data over the 2-1200 μm range. This composite model is made up of hot ``flux tubes'' randomly embedded in a cool medium, the flux tubes expanding to occupy an increasing proportion of the atmosphere as we move up in height. The cool ambient component shows a monotonic decrease in temperature in the range defined by the data. The temperature in the hot component is constant at about 6500 K up to about 400 km and increases monotonically above that height. The center-to-limb observations demand that the gas in the interiors of the flux tubes be recessed downward with respect to a hydrostatic equilibrium distribution of density. This appears to constitute a chromospheric Wilson depression consistent with a magnetic field of about 120 G in the flux-tube interior at a height of about 600 km. The new model is shown to be consistent with other spectral measurements independent of those used to define it. It gives a very good fit to the 0.5 μm continuum intensities across the disk, and provides an excellent accounting for the disk-center brightness temperature in the center of the 3-2 R14 CO line at 4.667 μm. A boundary temperature of less than about 3000 K in the cold component is suggested from the limb-darkening data available for this line. In an appendix we mention a procedure for an analogous study based on the intensities of multiplet lines
An effective medium theory for three-dimensional elastic heterogeneities
NASA Astrophysics Data System (ADS)
Jordan, Thomas H.
2015-11-01
A second-order Born approximation is used to formulate a self-consistent theory for the effective elastic parameters of stochastic media with ellipsoidal distributions of small-scale heterogeneity. The covariance of the stiffness tensor is represented as the product of a one-point tensor variance and a two-point scalar correlation function with ellipsoidal symmetry, which separates the statistical properties of the local anisotropy from those of the geometric anisotropy. The spatial variations can then be rescaled to an isotropic distribution by a simple metric transformation; the spherical average of the strain Green's function in the transformed space reduces to a constant Kneer tensor, and the second-order corrections to the effective elastic parameters are given by the contraction of the rescaled Kneer tensor against the single-point variance of the stiffness tensor. Explicit results are derived for stochastic models in which the heterogeneity is transversely isotropic and its second moments are characterized by a horizontal-to-vertical aspect ratio η. If medium is locally isotropic, the expressions for the anisotropic effective moduli reduce in the limit η → ∞ to Backus's second-order expressions for a 1-D stochastic laminate. Comparisons with the exact Backus theory show that the second-order approximation predicts the effective anisotropy for non-Gaussian media fairly well for relative rms fluctuations in the moduli smaller than about 30 per cent. A locally anisotropic model is formulated in which the local elastic properties have hexagonal symmetry, guided by a Gaussian random vector field that is transversely isotropic and specified by a horizontal-to-vertical orientation ratio ξ. The self-consistent theory provides closed-form expressions for the dependence of the effective moduli on 0 < ξ < ∞ and 0 < η < ∞. The effective-medium parametrizations described here appear to be suitable for incorporation into tomographic modelling.
Massive Binaries: Dynamical and Evolutionary Transformations
NASA Astrophysics Data System (ADS)
Gies, D. R.
2012-12-01
Observations of massive binaries offer us key insight about the formation, evolution, and destinies of massive stars. Here I review some advances in observational and theoretical studies of massive binaries. Surveys for binaries using radial velocity, photometric, and high angular resolution methods show that the binary frequency is high for O stars in clusters. Evolutionary models for interacting binaries demonstrate the importance of angular momentum transfer during Roche lobe overflow. The mass gainer may reach critical rotation and stem further accretion, and there are many observed cases that show the consequences of such mass loss and transfer. New hydrodynamical models describe colliding wind physics in eccentric binaries such as η Carinae and WR 140. All these research topics are championed by Tony Moffat, and the current richness of this field is due in large measure to his energetic pursuits.
New RR Lyrae variables in binary systems
NASA Astrophysics Data System (ADS)
Hajdu, G.; Catelan, M.; Jurcsik, J.; Dékány, I.; Drake, A. J.; Marquette, J.-B.
2015-04-01
Despite their importance, very few RR Lyrae (RRL) stars have been known to reside in binary systems. We report on a search for binary RRL in the OGLE-III Galactic bulge data. Our approach consists in the search for evidence of the light-travel time effect in so-called observed minus calculated (O-C) diagrams. Analysis of 1952 well-observed fundamental-mode RRL in the OGLE-III data revealed an initial sample of 29 candidates. We used the recently released OGLE-IV data to extend the baselines up to 17 yr, leading to a final sample of 12 firm binary candidates. We provide O-C diagrams and binary parameters for this final sample, and also discuss the properties of eight additional candidate binaries whose parameters cannot be firmly determined at present. We also estimate that ≳ 4 per cent of the RRL reside in binary systems.
Stochastic model for gene transcription on Drosophila melanogaster embryos.
Prata, Guilherme N; Hornos, José Eduardo M; Ramos, Alexandre F
2016-02-01
We examine immunostaining experimental data for the formation of stripe 2 of even-skipped (eve) transcripts on D. melanogaster embryos. An estimate of the factor converting immunofluorescence intensity units into molecular numbers is given. The analysis of the eve dynamics at the region of stripe 2 suggests that the promoter site of the gene has two distinct regimes: an earlier phase when it is predominantly activated until a critical time when it becomes mainly repressed. That suggests proposing a stochastic binary model for gene transcription on D. melanogaster embryos. Our model has two random variables: the transcripts number and the state of the source of mRNAs given as active or repressed. We are able to reproduce available experimental data for the average number of transcripts. An analysis of the random fluctuations on the number of eves and their consequences on the spatial precision of stripe 2 is presented. We show that the position of the anterior or posterior borders fluctuate around their average position by ∼1% of the embryo length, which is similar to what is found experimentally. The fitting of data by such a simple model suggests that it can be useful to understand the functions of randomness during developmental processes. PMID:26986358
Stochastic model for gene transcription on Drosophila melanogaster embryos
NASA Astrophysics Data System (ADS)
Prata, Guilherme N.; Hornos, José Eduardo M.; Ramos, Alexandre F.
2016-02-01
We examine immunostaining experimental data for the formation of stripe 2 of even-skipped (eve) transcripts on D. melanogaster embryos. An estimate of the factor converting immunofluorescence intensity units into molecular numbers is given. The analysis of the eve dynamics at the region of stripe 2 suggests that the promoter site of the gene has two distinct regimes: an earlier phase when it is predominantly activated until a critical time when it becomes mainly repressed. That suggests proposing a stochastic binary model for gene transcription on D. melanogaster embryos. Our model has two random variables: the transcripts number and the state of the source of mRNAs given as active or repressed. We are able to reproduce available experimental data for the average number of transcripts. An analysis of the random fluctuations on the number of eves and their consequences on the spatial precision of stripe 2 is presented. We show that the position of the anterior or posterior borders fluctuate around their average position by ˜1 % of the embryo length, which is similar to what is found experimentally. The fitting of data by such a simple model suggests that it can be useful to understand the functions of randomness during developmental processes.
X. Frank Xu
2010-03-30
Multiscale modeling of stochastic systems, or uncertainty quantization of multiscale modeling is becoming an emerging research frontier, with rapidly growing engineering applications in nanotechnology, biotechnology, advanced materials, and geo-systems, etc. While tremendous efforts have been devoted to either stochastic methods or multiscale methods, little combined work had been done on integration of multiscale and stochastic methods, and there was no method formally available to tackle multiscale problems involving uncertainties. By developing an innovative Multiscale Stochastic Finite Element Method (MSFEM), this research has made a ground-breaking contribution to the emerging field of Multiscale Stochastic Modeling (MSM) (Fig 1). The theory of MSFEM basically decomposes a boundary value problem of random microstructure into a slow scale deterministic problem and a fast scale stochastic one. The slow scale problem corresponds to common engineering modeling practices where fine-scale microstructure is approximated by certain effective constitutive constants, which can be solved by using standard numerical solvers. The fast scale problem evaluates fluctuations of local quantities due to random microstructure, which is important for scale-coupling systems and particularly those involving failure mechanisms. The Green-function-based fast-scale solver developed in this research overcomes the curse-of-dimensionality commonly met in conventional approaches, by proposing a random field-based orthogonal expansion approach. The MSFEM formulated in this project paves the way to deliver the first computational tool/software on uncertainty quantification of multiscale systems. The applications of MSFEM on engineering problems will directly enhance our modeling capability on materials science (composite materials, nanostructures), geophysics (porous media, earthquake), biological systems (biological tissues, bones, protein folding). Continuous development of MSFEM will
New Long-Period Hot Subdwarf Binaries from the Hobby-Eberly Telescope
NASA Astrophysics Data System (ADS)
Boudreaux, Thomas; Barlow, Brad; Wade, Richard A.
2016-01-01
Binary population synthesis (BPS) models are able to reproduce the observed population of short-period hot subdwarf binaries with white dwarf and M dwarf companions. However, there is still a relative dearth of information regarding hot subdwarfs with F/G/K-type main sequence companions. We have monitored the radial velocities of 15 such systems from 2005-2013 using the Medium and High Resolution Spectrographs on the Hobby-Eberly Telescope. A previous analysis of six of these targets revealed long orbital periods, in excess of a year, and non-circular orbits, both of which present a challenge to BPS models. Here we present orbital solutions for additional sdB+F/G/K binaries and discuss the implications of our findings.
Binary alloy of virus capsids and gold nanoparticles as a Mie-resonance-based optical metamaterial
NASA Astrophysics Data System (ADS)
Yannopapas, Vassilios
2015-02-01
We present a metamaterial design based on a binary alloy of gold nanoparticles and virus capsids (protein nanoparticles) which possesses metamaterial functionalities in the optical regime. Such binary alloys have already been realized in the laboratory by means of DNA-programmed crystallization of metallic nanoparticles and virus capsids with suitable DNA linkers. The resulting binary alloy has a NaTl-lattice symmetry and operates as Mie resonance-based metamaterial thanks to the extremely high values of the electric permittivity of the virus capsids. By employing an effective-medium theory and rigorous electrodynamic calculations we identify regions of photo-induced magnetic activity stemming from the Mie resonances of the virus capsids. The magnetic activity of the virus particles accompanied by the ordinary electric activity of the gold nanoparticles results in spectral regions of negative refractive index which can be tuned to a desired spectral window by varying the concentration of the RNA within the virus capsids.
Close binary stars in globular clusters
NASA Technical Reports Server (NTRS)
Margon, Bruce
1991-01-01
Although close binary stars are thought theoretically to play a major role in globular cluster dynamics, virtually no non-degenerate close binaries are known in clusters. We review the status of observations in this area, and report on two new programs which are finally yielding candidate systems suitable for further study. One of the objects, a close eclipsing system in omega Cen, is also a big straggler, thus finally proving firm evidence that globular cluster blue stragglers really are binary stars.
Microlensing Signature of Binary Black Holes
NASA Technical Reports Server (NTRS)
Schnittman, Jeremy; Sahu, Kailash; Littenberg, Tyson
2012-01-01
We calculate the light curves of galactic bulge stars magnified via microlensing by stellar-mass binary black holes along the line-of-sight. We show the sensitivity to measuring various lens parameters for a range of survey cadences and photometric precision. Using public data from the OGLE collaboration, we identify two candidates for massive binary systems, and discuss implications for theories of star formation and binary evolution.
Li, Yihe; Li, Bofeng; Gao, Yang
2015-01-01
With the increased availability of regional reference networks, Precise Point Positioning (PPP) can achieve fast ambiguity resolution (AR) and precise positioning by assimilating the satellite fractional cycle biases (FCBs) and atmospheric corrections derived from these networks. In such processing, the atmospheric corrections are usually treated as deterministic quantities. This is however unrealistic since the estimated atmospheric corrections obtained from the network data are random and furthermore the interpolated corrections diverge from the realistic corrections. This paper is dedicated to the stochastic modelling of atmospheric corrections and analyzing their effects on the PPP AR efficiency. The random errors of the interpolated corrections are processed as two components: one is from the random errors of estimated corrections at reference stations, while the other arises from the atmospheric delay discrepancies between reference stations and users. The interpolated atmospheric corrections are then applied by users as pseudo-observations with the estimated stochastic model. Two data sets are processed to assess the performance of interpolated corrections with the estimated stochastic models. The results show that when the stochastic characteristics of interpolated corrections are properly taken into account, the successful fix rate reaches 93.3% within 5 min for a medium inter-station distance network and 80.6% within 10 min for a long inter-station distance network. PMID:26633400
Li, Yihe; Li, Bofeng; Gao, Yang
2015-01-01
With the increased availability of regional reference networks, Precise Point Positioning (PPP) can achieve fast ambiguity resolution (AR) and precise positioning by assimilating the satellite fractional cycle biases (FCBs) and atmospheric corrections derived from these networks. In such processing, the atmospheric corrections are usually treated as deterministic quantities. This is however unrealistic since the estimated atmospheric corrections obtained from the network data are random and furthermore the interpolated corrections diverge from the realistic corrections. This paper is dedicated to the stochastic modelling of atmospheric corrections and analyzing their effects on the PPP AR efficiency. The random errors of the interpolated corrections are processed as two components: one is from the random errors of estimated corrections at reference stations, while the other arises from the atmospheric delay discrepancies between reference stations and users. The interpolated atmospheric corrections are then applied by users as pseudo-observations with the estimated stochastic model. Two data sets are processed to assess the performance of interpolated corrections with the estimated stochastic models. The results show that when the stochastic characteristics of interpolated corrections are properly taken into account, the successful fix rate reaches 93.3% within 5 min for a medium inter-station distance network and 80.6% within 10 min for a long inter-station distance network. PMID:26633400
Survival of planets around shrinking stellar binaries
NASA Astrophysics Data System (ADS)
Munoz, Diego Jose; Lai, Dong
2015-12-01
The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 days, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov-Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. We present new results (PNAS 112, 30, p 9264) on the orbital evolution of planets around binaries undergoing orbital decay by this "LK+tide" mechanism. From secular and N-body calculations, we show how planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Either outcome can explain these planets' elusiveness to detection. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer specific predictions as to what their orbital configurations should be like.
Survival of planets around shrinking stellar binaries
Muñoz, Diego J.; Lai, Dong
2015-01-01
The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov–Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like. PMID:26159412
Survival of planets around shrinking stellar binaries.
Muñoz, Diego J; Lai, Dong
2015-07-28
The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov-Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like. PMID:26159412
Posterior Predictive Modeling Using Multi-Scale Stochastic Inverse Parameter Estimates
NASA Astrophysics Data System (ADS)
McKenna, S. A.; Ray, J.; Bloemenwaanders, B. V.; Marzouk, Y. M.
2010-12-01
Multi-scale binary permeability field estimation from static and dynamic data is completed using Markov Chain Monte Carlo (MCMC) sampling. The binary permeability field is defined as high permeability inclusions within a lower permeability matrix. Static data are obtained as measurements of permeability with support consistent to the coarse scale discretization. Dynamic data are advective travel times along streamlines calculated through a fine-scale field and averaged for each observation point at the coarse scale. Parameters estimated at the coarse scale (30x20 grid) are the spatially varying proportion of the high permeability phase and the inclusion length and aspect ratio of the high permeability inclusions. From the non-parametric, posterior distributions estimated for these parameters, a recently developed sub-grid algorithm is employed to create an ensemble of realizations representing the fine-scale (3000x2000), binary permeability field. Each fine-scale ensemble member is instantiated by convolution of an uncorrelated multiGaussian random field with a Gaussian kernel defined by the estimated inclusion length and aspect ratio. Since the multiGaussian random field is itself a realization of a stochastic process, the procedure for generating fine-scale binary permeability field realizations is also stochastic. Two different methods are hypothesized to perform posterior predictive tests. Different mechanisms for combining multiGaussian random fields with kernels defined from the MCMC sampling are examined. Posterior predictive accuracy of the estimated parameters is assessed against a simulated ground truth for predictions at both the coarse scale (effective permeabilities) and at the fine scale (advective travel time distributions). The two techniques for conducting posterior predictive tests are compared by their ability to recover the static and dynamic data. The skill of the inference and the method for generating fine-scale binary permeability fields are
Nonergodicity of microfine binary systems
NASA Astrophysics Data System (ADS)
Son, L. D.; Sidorov, V. E.; Popel', P. S.; Shul'gin, D. B.
2016-02-01
The correction to the equation of state that is related to the nonergodicity of diffusion dynamics is discussed for a binary solid solution with a limited solubility. It is asserted that, apart from standard thermodynamic variables (temperature, volume, concentration), this correction should be taken into account in the form of the average local chemical potential fluctuations associated with microheterogeneity in order to plot a phase diagram. It is shown that a low value of this correction lowers the miscibility gap and that this gap splits when this correction increases. This situation is discussed for eutectic systems and Ga-Pb, Fe-Cu, and Cu-Zr alloys.
Tomographic reconstruction of binary fields
NASA Astrophysics Data System (ADS)
Roux, Stéphane; Leclerc, Hugo; Hild, François
2012-09-01
A novel algorithm is proposed for reconstructing binary images from their projection along a set of different orientations. Based on a nonlinear transformation of the projection data, classical back-projection procedures can be used iteratively to converge to the sought image. A multiscale implementation allows for a faster convergence. The algorithm is tested on images up to 1 Mb definition, and an error free reconstruction is achieved with a very limited number of projection data, saving a factor of about 100 on the number of projections required for classical reconstruction algorithms.
Coronal Metallicities of Active Binaries
NASA Astrophysics Data System (ADS)
Kashyap, V.; Drake, J. J.; Pease, D. O.; Schmitt, J. H. M. M.
1998-09-01
We analyze EUV and X-ray data on a sample of X-ray active binary stars to determine coronal abundances. EUVE spectrometer data are used to obtain line fluxes, which are then used to determine Differential Emission Measures (DEMs). The continuum emission predicted for these DEMs (constrained at high temperatures by measurements in the X-ray regime where available) are then compared with EUVE/DS counts to derive coronal metallicities. These measurements indicate whether the coronae on these stars are metal deficient (the ``MAD Syndrome'') or subject to the FIP-effect (low First Ionization Potential elements have enhanced abundances relative to the photospheres).
Young and Waltzing Binary Stars
NASA Astrophysics Data System (ADS)
2001-10-01
ADONIS Observes Low-mass Eclipsing System in Orion Summary A series of very detailed images of a binary system of two young stars have been combined into a movie . In merely 3 days, the stars swing around each other. As seen from the earth, they pass in front of each other twice during a full revolution, producing eclipses during which their combined brightness diminishes . A careful analysis of the orbital motions has now made it possible to deduce the masses of the two dancing stars . Both turn out to be about as heavy as our Sun. But while the Sun is about 4500 million years old, these two stars are still in their infancy. They are located some 1500 light-years away in the Orion star-forming region and they probably formed just 10 million years ago . This is the first time such an accurate determination of the stellar masses could be achieved for a young binary system of low-mass stars . The new result provides an important piece of information for our current understanding of how young stars evolve. The observations were obtained by a team of astronomers from Italy and ESO [1] using the ADaptive Optics Near Infrared System (ADONIS) on the 3.6-m telescope at the ESO La Silla Observatory. PR Photo 29a/01 : The RXJ 0529.4+0041 system before primary eclipse PR Photo 29b/01 : The RXJ 0529.4+0041 system at mid-primary eclipse PR Photo 29c/01 : The RXJ 0529.4+0041 system after primary eclipse PR Photo 29d/01 : The RXJ 0529.4+0041 system before secondary eclipse PR Photo 29e/01 : The RXJ 0529.4+0041 system at mid-secondary eclipse PR Photo 29f/01 : The RXJ 0529.4+0041 system after secondary eclipse PR Video Clip 06/01 : Video of the RXJ 0529.4+0041 system Binary stars and stellar masses Since some time, astronomers have noted that most stars seem to form in binary or multiple systems. This is quite fortunate, as the study of binary stars is the only way in which it is possible to measure directly one of the most fundamental quantities of a star, its mass. The mass of a
Srinivasan, Gopalakrishnan; Sengupta, Abhronil; Roy, Kaushik
2016-01-01
Spiking Neural Networks (SNNs) have emerged as a powerful neuromorphic computing paradigm to carry out classification and recognition tasks. Nevertheless, the general purpose computing platforms and the custom hardware architectures implemented using standard CMOS technology, have been unable to rival the power efficiency of the human brain. Hence, there is a need for novel nanoelectronic devices that can efficiently model the neurons and synapses constituting an SNN. In this work, we propose a heterostructure composed of a Magnetic Tunnel Junction (MTJ) and a heavy metal as a stochastic binary synapse. Synaptic plasticity is achieved by the stochastic switching of the MTJ conductance states, based on the temporal correlation between the spiking activities of the interconnecting neurons. Additionally, we present a significance driven long-term short-term stochastic synapse comprising two unique binary synaptic elements, in order to improve the synaptic learning efficiency. We demonstrate the efficacy of the proposed synaptic configurations and the stochastic learning algorithm on an SNN trained to classify handwritten digits from the MNIST dataset, using a device to system-level simulation framework. The power efficiency of the proposed neuromorphic system stems from the ultra-low programming energy of the spintronic synapses. PMID:27405788
Srinivasan, Gopalakrishnan; Sengupta, Abhronil; Roy, Kaushik
2016-01-01
Spiking Neural Networks (SNNs) have emerged as a powerful neuromorphic computing paradigm to carry out classification and recognition tasks. Nevertheless, the general purpose computing platforms and the custom hardware architectures implemented using standard CMOS technology, have been unable to rival the power efficiency of the human brain. Hence, there is a need for novel nanoelectronic devices that can efficiently model the neurons and synapses constituting an SNN. In this work, we propose a heterostructure composed of a Magnetic Tunnel Junction (MTJ) and a heavy metal as a stochastic binary synapse. Synaptic plasticity is achieved by the stochastic switching of the MTJ conductance states, based on the temporal correlation between the spiking activities of the interconnecting neurons. Additionally, we present a significance driven long-term short-term stochastic synapse comprising two unique binary synaptic elements, in order to improve the synaptic learning efficiency. We demonstrate the efficacy of the proposed synaptic configurations and the stochastic learning algorithm on an SNN trained to classify handwritten digits from the MNIST dataset, using a device to system-level simulation framework. The power efficiency of the proposed neuromorphic system stems from the ultra-low programming energy of the spintronic synapses. PMID:27405788
NASA Astrophysics Data System (ADS)
Srinivasan, Gopalakrishnan; Sengupta, Abhronil; Roy, Kaushik
2016-07-01
Spiking Neural Networks (SNNs) have emerged as a powerful neuromorphic computing paradigm to carry out classification and recognition tasks. Nevertheless, the general purpose computing platforms and the custom hardware architectures implemented using standard CMOS technology, have been unable to rival the power efficiency of the human brain. Hence, there is a need for novel nanoelectronic devices that can efficiently model the neurons and synapses constituting an SNN. In this work, we propose a heterostructure composed of a Magnetic Tunnel Junction (MTJ) and a heavy metal as a stochastic binary synapse. Synaptic plasticity is achieved by the stochastic switching of the MTJ conductance states, based on the temporal correlation between the spiking activities of the interconnecting neurons. Additionally, we present a significance driven long-term short-term stochastic synapse comprising two unique binary synaptic elements, in order to improve the synaptic learning efficiency. We demonstrate the efficacy of the proposed synaptic configurations and the stochastic learning algorithm on an SNN trained to classify handwritten digits from the MNIST dataset, using a device to system-level simulation framework. The power efficiency of the proposed neuromorphic system stems from the ultra-low programming energy of the spintronic synapses.
Medium term hurricane catastrophe models: a validation experiment
NASA Astrophysics Data System (ADS)
Bonazzi, Alessandro; Turner, Jessica; Dobbin, Alison; Wilson, Paul; Mitas, Christos; Bellone, Enrica
2013-04-01
Climate variability is a major source of uncertainty for the insurance industry underwriting hurricane risk. Catastrophe models provide their users with a stochastic set of events that expands the scope of the historical catalogue by including synthetic events that are likely to happen in a defined time-frame. The use of these catastrophe models is widespread in the insurance industry but it is only in recent years that climate variability has been explicitly accounted for. In the insurance parlance "medium term catastrophe model" refers to products that provide an adjusted view of risk that is meant to represent hurricane activity on a 1 to 5 year horizon, as opposed to long term models that integrate across the climate variability of the longest available time series of observations. In this presentation we discuss how a simple reinsurance program can be used to assess the value of medium term catastrophe models. We elaborate on similar concepts as discussed in "Potential Economic Value of Seasonal Hurricane Forecasts" by Emanuel et al. (2012, WCAS) and provide an example based on 24 years of historical data of the Chicago Mercantile Hurricane Index (CHI), an insured loss proxy. Profit and loss volatility of a hypothetical primary insurer are used to score medium term models versus their long term counterpart. Results show that medium term catastrophe models could help a hypothetical primary insurer to improve their financial resiliency to varying climate conditions.
Superorbital variability of the X-ray flux in the Be-donor binaries SXP 138, GX-304, and γ Cas
NASA Astrophysics Data System (ADS)
Chashkina, A. A.; Abolmasov, P. K.; Biryukov, A. V.; Shakura, N. I.
2015-06-01
RXTE observations of the X-ray binary systems SXP 138, GX-304, and γ Cas in 1997-2011 have shown for the first time that these objects (X-ray binaries with Be donors) display X-ray flux variations on timescales of ˜1000 days. This timescale is about 10 times longer than their orbital periods, and is comparable to the total time of the observations. The observed variations are apparently not strictly periodic and represent stochastic variability, as is characteristic of such systems in the optical. γ Cas is considered as an example. The series of optical observations of this system available in the AAVSO database covers 78 years, and is much longer than the timescale of the variability studied. Our analysis of this series has shown that γ Cas variability on a timescale of tens of years is predominantly stochastic with a power-law spectrum.
Small-scale structure in the diffuse interstellar medium
NASA Technical Reports Server (NTRS)
Meyer, David M.
1990-01-01
The initial results of a study to probe the small-scale structure in the diffuse interstellar medium (ISM) through IUE and optical observations of interstellar absorption lines toward both components of resolvable binary stars is reported. The binaries (Kappa CrA, 57 Aql, 59 And, HR 1609/10, 19 Lyn, and Theta Ser) observed with IUE have projected linear separations ranging from 5700 to 700 Au. Except for Kappa CrA, the strengths of the interstellar absorption lines toward both components of these binaries agree to within 10 percent. In the case of Kappa CrA, the optically thin interstellar Mg I and Mn II lines are about 50 percent stronger toward Kappa-2 CrA than Kappa-1 CrA. Higher resolution observations of interstellar Ca II show that this difference is concentrated in the main interstellar component at V(LSR) = 9 + or - 2 km/s. Interestingly, this velocity corresponds to an intervening cloud that may be associated with the prominent Loop I shell in the local ISM. Given the separation (23 arcsec) and distance (120 pc) of Kappa CrA, the line strength variations indicate that this cloud has structure on scales of 2800 AU or less.
NASA Astrophysics Data System (ADS)
Mingarelli, Chiara; Nanograv Collaboration
2015-04-01
Pulsar Timing Arrays are sensitive to gravitational waves in the 1nHz - 100 nHz frequency band. In this very low-frequency regime, we expect to measure a stochastic gravitational wave background generated by the incoherent superposition of gravitational waves from e.g. the cosmic population of supermassive black hole binaries. Previous limits on this stochastic background have assumed an isotropic distribution of the gravitation wave power--here we relax this assumption and look for power in higher order modes using a spherical harmonic decomposition of the GW power on the sky. We discuss the potential and limitations of our method. This research was supported by a Marie Curie International Outgoing Fellowship within the 7th European Community Framework Programme.
Mutual Orbits of Transneptunian Binaries
NASA Astrophysics Data System (ADS)
Grundy, William M.; Noll, K. S.; Roe, H. G.; Porter, S. B.; Trujillo, C. A.; Benecchi, S. D.; Buie, M. W.
2012-10-01
We report the latest results from a program of high spatial resolution imaging to resolve the individual components of binary transneptunian objects. These observations use Hubble Space Telescope and also laser guide star adaptive optics systems on Keck and Gemini telescopes on Mauna Kea. From relative astrometry over multiple epochs, we determine the mutual orbits of the components, and thus the total masses of the systems. Accurate masses anchor subsequent detailed investigations into the physical characteristics of these systems. For instance, dynamical masses enable computation of bulk densities for systems where the component sizes can be estimated from other measurements. Additionally, patterns in the ensemble characteristics of binary orbits offer clues to circumstances in the protoplanetary nebula when these systems formed, as well as carrying imprints of various subsequent dynamical evolution processes. The growing ensemble of known orbits shows intriguing patterns that can shed light on the evolution of this population of distant objects. This work has been supported by an NSF Planetary Astronomy grant and by several Hubble Space Telescope and NASA Keck data analysis grants. The research makes use of data from the Gemini Observatory obtained through NOAO survey program 11A-0017, from a large number of Hubble Space Telescope programs, and from several NASA Keck programs.
VizieR Online Data Catalog: Hot subdwarf binaries from MUCHFUSS (Kupfer+, 2015)
NASA Astrophysics Data System (ADS)
Kupfer, T.; Geier, S.; Heber, U.; Ostensen, R. H.; Barlow, B. N.; Maxted, P. F. L.; Heuser, C.; Schaffenroth, V.; Gaensicke, B. T.
2015-06-01
Follow-up medium resolution spectroscopy of 12 sdB binaries was obtained using different instruments including the CAHA-3.5m telescope with the TWIN spectrograph, the ESO-NTT telescope with the EFOSC2 spectrograph, the SOAR telescope with the Goodman spectrograph, the Gemini-North/South telescopes with the GMOS-N/S spectrographs and the William Herschel telescope (WHT) with the ISIS spectrograph. (3 data files).
Random musings on stochastics (Lorenz Lecture)
NASA Astrophysics Data System (ADS)
Koutsoyiannis, D.
2014-12-01
In 1960 Lorenz identified the chaotic nature of atmospheric dynamics, thus highlighting the importance of the discovery of chaos by Poincare, 70 years earlier, in the motion of three bodies. Chaos in the macroscopic world offered a natural way to explain unpredictability, that is, randomness. Concurrently with Poincare's discovery, Boltzmann introduced statistical physics, while soon after Borel and Lebesgue laid the foundation of measure theory, later (in 1930s) used by Kolmogorov as the formal foundation of probability theory. Subsequently, Kolmogorov and Khinchin introduced the concepts of stochastic processes and stationarity, and advanced the concept of ergodicity. All these areas are now collectively described by the term "stochastics", which includes probability theory, stochastic processes and statistics. As paradoxical as it may seem, stochastics offers the tools to deal with chaos, even if it results from deterministic dynamics. As chaos entails uncertainty, it is more informative and effective to replace the study of exact system trajectories with that of probability densities. Also, as the exact laws of complex systems can hardly be deduced by synthesis of the detailed interactions of system components, these laws should inevitably be inferred by induction, based on observational data and using statistics. The arithmetic of stochastics is quite different from that of regular numbers. Accordingly, it needs the development of intuition and interpretations which differ from those built upon deterministic considerations. Using stochastic tools in a deterministic context may result in mistaken conclusions. In an attempt to contribute to a more correct interpretation and use of stochastic concepts in typical tasks of nonlinear systems, several examples are studied, which aim (a) to clarify the difference in the meaning of linearity in deterministic and stochastic context; (b) to contribute to a more attentive use of stochastic concepts (entropy, statistical
NASA Astrophysics Data System (ADS)
Zhang, Yuanyuan; Zhao, Daomu
2015-09-01
The expressions for the correlation of intensity fluctuations in the far-zone that occurs in stochastic electromagnetic beams scattered by a random medium are derived within the validity of the first-order Born approximation. Some numerical results are presented to illustrate the influences of different source parameters and scatterer parameters on the normalized correlation of intensity fluctuations of the far-zone scattered field.
Stochastic modeling of the auroral electrojet index
NASA Astrophysics Data System (ADS)
Anh, V. V.; Yong, J. M.; Yu, Z. G.
2008-10-01
Substorms are often identified by bursts of activities in the magnetosphere-ionosphere system characterized by the auroral electrojet (AE) index. The highly complex nature of substorm-related bursts suggests that a stochastic approach would be needed. Stochastic models including fractional Brownian motion, linear fractional stable motion, Fokker-Planck equation and Itô-type stochastic differential equation have been suggested to model the AE index. This paper provides a stochastic model for the AE in the form of fractional stochastic differential equation. The long memory of the AE time series is represented by a fractional derivative, while its bursty behavior is modeled by a Lévy noise with inverse Gaussian marginal distribution. The equation has the form of the classical Stokes-Boussinesq-Basset equation of motion for a spherical particle in a fluid with retarded viscosity. Parameter estimation and approximation schemes are detailed for the simulation of the equation. The fractional order of the equation conforms with the previous finding that the fluctuations of the magnetosphere-ionosphere system as seen in the AE reflect the fluctuations in the solar wind: they both possess the same extent of long-range dependence. The introduction of a fractional derivative term into the equation to capture the extent of long-range dependence together with an inverse Gaussian noise input describe the right amount of intermittency inherent in the AE data.
Non-Markovian stochastic evolution equations
NASA Astrophysics Data System (ADS)
Costanza, G.
2014-05-01
Non-Markovian continuum stochastic and deterministic equations are derived from a set of discrete stochastic and deterministic evolution equations. Examples are given of discrete evolution equations whose updating rules depend on two or more previous time steps. Among them, the continuum stochastic evolution equation of the Newton second law, the stochastic evolution equation of a wave equation, the stochastic evolution equation for the scalar meson field, etc. are obtained as special cases. Extension to systems of evolution equations and other extensions are considered and examples are given. The concept of isomorphism and almost isomorphism are introduced in order to compare the coefficients of the continuum evolution equations of two different smoothing procedures that arise from two different approaches. Usually these discrepancies arising from two sources: On the one hand, the use of different representations of the generalized functions appearing in the models and, on the other hand, the different approaches used to describe the models. These new concept allows to overcome controversies that were appearing during decades in the literature.
Stochastic volatility models and Kelvin waves
NASA Astrophysics Data System (ADS)
Lipton, Alex; Sepp, Artur
2008-08-01
We use stochastic volatility models to describe the evolution of an asset price, its instantaneous volatility and its realized volatility. In particular, we concentrate on the Stein and Stein model (SSM) (1991) for the stochastic asset volatility and the Heston model (HM) (1993) for the stochastic asset variance. By construction, the volatility is not sign definite in SSM and is non-negative in HM. It is well known that both models produce closed-form expressions for the prices of vanilla option via the Lewis-Lipton formula. However, the numerical pricing of exotic options by means of the finite difference and Monte Carlo methods is much more complex for HM than for SSM. Until now, this complexity was considered to be an acceptable price to pay for ensuring that the asset volatility is non-negative. We argue that having negative stochastic volatility is a psychological rather than financial or mathematical problem, and advocate using SSM rather than HM in most applications. We extend SSM by adding volatility jumps and obtain a closed-form expression for the density of the asset price and its realized volatility. We also show that the current method of choice for solving pricing problems with stochastic volatility (via the affine ansatz for the Fourier-transformed density function) can be traced back to the Kelvin method designed in the 19th century for studying wave motion problems arising in fluid dynamics.
Stochastic resonance in models of neuronal ensembles
NASA Astrophysics Data System (ADS)
Chialvo, Dante R.; Longtin, André; Müautller-Gerking, Johannes
1997-02-01
Two recently suggested mechanisms for the neuronal encoding of sensory information involving the effect of stochastic resonance with aperiodic time-varying inputs are considered. It is shown, using theoretical arguments and numerical simulations, that the nonmonotonic behavior with increasing noise of the correlation measures used for the so-called aperiodic stochastic resonance (ASR) scenario does not rely on the cooperative effect typical of stochastic resonance in bistable and excitable systems. Rather, ASR with slowly varying signals is more properly interpreted as linearization by noise. Consequently, the broadening of the ``resonance curve'' in the multineuron stochastic resonance without tuning scenario can also be explained by this linearization. Computation of the input-output correlation as a function of both signal frequency and noise for the model system further reveals conditions where noise-induced firing with aperiodic inputs will benefit from stochastic resonance rather than linearization by noise. Thus, our study clarifies the tuning requirements for the optimal transduction of subthreshold aperiodic signals. It also shows that a single deterministic neuron can perform as well as a network when biased into a suprathreshold regime. Finally, we show that the inclusion of a refractory period in the spike-detection scheme produces a better correlation between instantaneous firing rate and input signal.
ON NEUTRAL ABSORPTION AND SPECTRAL EVOLUTION IN X-RAY BINARIES
Miller, J. M.; Cackett, E. M.; Reis, R. C.
2009-12-10
Current X-ray observatories make it possible to follow the evolution of transient and variable X-ray binaries across a broad range in luminosity and source behavior. In such studies, it can be unclear whether evolution in the low-energy portion of the spectrum should be attributed to evolution in the source, or instead to evolution in neutral photoelectric absorption. Dispersive spectrometers make it possible to address this problem. We have analyzed a small but diverse set of X-ray binaries observed with the Chandra High Energy Transmission Grating Spectrometer across a range in luminosity and different spectral states. The column density in individual photoelectric absorption edges remains constant with luminosity, both within and across source spectral states. This finding suggests that absorption in the interstellar medium strongly dominates the neutral column density observed in spectra of X-ray binaries. Consequently, evolution in the low-energy spectrum of X-ray binaries should properly be attributed to evolution in the source spectrum. We discuss our results in the context of X-ray binary spectroscopy with current and future X-ray missions.
Master-slave synchronization and invariant manifolds for coupled stochastic systems
Chueshov, Igor; Schmalfuss, Bjoern
2010-10-15
We deal with abstract systems of two coupled nonlinear stochastic (infinite dimensional) equations subjected to additive white noise type process. This kind of systems may describe various interaction phenomena in a continuum random medium. Under suitable conditions we prove the existence of an exponentially attracting random invariant manifold for the coupled system and show that this system can be reduced to a single equation with modified nonlinearity. This result means that under some conditions, we observe (nonlinear) synchronization phenomena in the coupled system. Our applications include stochastic systems consisting of (i) parabolic and hyperbolic equations, (ii) two hyperbolic equations, and (iii) Klein-Gordon and Schroedinger equations. We also show that the random manifold constructed converges to its deterministic counterpart when the intensity of noise tends to zero.
Craven, C Jeremy
2016-01-01
We present a reanalysis of the stochastic model of organelle production and show that the equilibrium distributions for the organelle numbers predicted by this model can be readily calculated in three different scenarios. These three distributions can be identified as standard distributions, and the corresponding exact formulae for their mean and variance can therefore be used in further analysis. This removes the need to rely on stochastic simulations or approximate formulae (derived using the fluctuation dissipation theorem). These calculations allow for further analysis of the predictions of the model. On the basis of this we question the extent to which the model can be used to conclude that peroxisome biogenesis is dominated by de novo production when Saccharomyces cerevisiae cells are grown on glucose medium. DOI: http://dx.doi.org/10.7554/eLife.10167.001 PMID:26783763
Dynamics of osmosis in a porous medium
Cardoso, Silvana S. S.; Cartwright, Julyan H. E.
2014-01-01
We derive from kinetic theory, fluid mechanics and thermodynamics the minimal continuum-level equations governing the flow of a binary, non-electrolytic mixture in an isotropic porous medium with osmotic effects. For dilute mixtures, these equations are linear and in this limit provide a theoretical basis for the widely used semi-empirical relations of Kedem & Katchalsky (Kedem & Katchalsky 1958 Biochim. Biophys. Acta 27, 229–246 (doi:10.1016/0006-3002(58)90330-5), which have hitherto been validated experimentally but not theoretically. The above linearity between the fluxes and the driving forces breaks down for concentrated or non-ideal mixtures, for which our equations go beyond the Kedem–Katchalsky formulation. We show that the heretofore empirical solute permeability coefficient reflects the momentum transfer between the solute molecules that are rejected at a pore entrance and the solvent molecules entering the pore space; it can be related to the inefficiency of a Maxwellian demi-demon. PMID:26064566
Dynamics of osmosis in a porous medium.
Cardoso, Silvana S S; Cartwright, Julyan H E
2014-11-01
We derive from kinetic theory, fluid mechanics and thermodynamics the minimal continuum-level equations governing the flow of a binary, non-electrolytic mixture in an isotropic porous medium with osmotic effects. For dilute mixtures, these equations are linear and in this limit provide a theoretical basis for the widely used semi-empirical relations of Kedem & Katchalsky (Kedem & Katchalsky 1958 Biochim. Biophys. Acta 27, 229-246 (doi:10.1016/0006-3002(58)90330-5), which have hitherto been validated experimentally but not theoretically. The above linearity between the fluxes and the driving forces breaks down for concentrated or non-ideal mixtures, for which our equations go beyond the Kedem-Katchalsky formulation. We show that the heretofore empirical solute permeability coefficient reflects the momentum transfer between the solute molecules that are rejected at a pore entrance and the solvent molecules entering the pore space; it can be related to the inefficiency of a Maxwellian demi-demon. PMID:26064566
The Violent Interstellar Medium of IC 2574
NASA Astrophysics Data System (ADS)
Walter, F.; Brinks, E.; Duric, N.; Kerp, J.; Klein, U.
1998-12-01
We present a multi-wavelength study of the Violent Interstellar Medium of the nearby dwarf galaxy IC 2574, a member of the M81 group of galaxies. In particular, we concentrate on the most prominent supergiant shell in IC 2574 which was detected in neutral hydrogen (H I) observations obtained with the Very Large Array (VLA). This shell is thought to be produced by the combined effects of stellar winds and supernova explosions. Massive star forming regions, as traced by Hα emission, are situated predominantly on the rim of this H I shell. This supports the view that the accumulated H I on the rim has reached densities which are high enough for secondary star formation to commence. Soft X-ray emission from within the H I hole is detected by a pointed ROSAT PSPC observation. The emission is extended and has the same size and orientation as the H I shell. These spatial properties together with a first-order spectral analysis suggest that the emission is generated by an X-ray emitting plasma located within the H I shell. However, a contribution from X-ray binaries cannot be completely ruled out at this point.
Fabricating binary optics: An overview of binary optics process technology
NASA Technical Reports Server (NTRS)
Stern, Margaret B.
1993-01-01
A review of binary optics processing technology is presented. Pattern replication techniques have been optimized to generate high-quality efficient microoptics in visible and infrared materials. High resolution optical photolithography and precision alignment is used to fabricate maximally efficient fused silica diffractive microlenses at lambda = 633 nm. The degradation in optical efficiency of four-phase-level fused silica microlenses resulting from an intentional 0.35 micron translational error has been systematically measured as a function of lens speed (F/2 - F/60). Novel processes necessary for high sag refractive IR microoptics arrays, including deep anisotropic Si-etching, planarization of deep topography and multilayer resist techniques, are described. Initial results are presented for monolithic integration of photonic and microoptic systems.
Gravitational radiation, inspiraling binaries, and cosmology
NASA Technical Reports Server (NTRS)
Chernoff, David F.; Finn, Lee S.
1993-01-01
We show how to measure cosmological parameters using observations of inspiraling binary neutron star or black hole systems in one or more gravitational wave detectors. To illustrate, we focus on the case of fixed mass binary systems observed in a single Laser Interferometer Gravitational-wave Observatory (LIGO)-like detector. Using realistic detector noise estimates, we characterize the rate of detections as a function of a threshold SNR Rho(0), H0, and the binary 'chirp' mass. For Rho(0) = 8, H0 = 100 km/s/Mpc, and 1.4 solar mass neutron star binaries, the sample has a median redshift of 0.22. Under the same assumptions but independent of H0, a conservative rate density of coalescing binaries implies LIGO will observe about 50/yr binary inspiral events. The precision with which H0 and the deceleration parameter q0 may be determined depends on the number of observed inspirals. For fixed mass binary systems, about 100 observations with Rho(0) = 10 in the LIGO will give H0 to 10 percent in an Einstein-DeSitter cosmology, and 3000 will give q0 to 20 percent. For the conservative rate density of coalescing binaries, 100 detections with Rho(0) = 10 will require about 4 yrs.
Spectroscopic Binary Frequency among CNO Stars
NASA Astrophysics Data System (ADS)
Levato, H.; Malaroda, S.; Garcia, B.; Morell, N.
1987-05-01
ABSTRACT. Radial velocity variations are- analyzed through a sample of 35 OB stars with CH anomalies.Bolton and Rogers' proposal (1978) is con- firmed in the sense that the OBN stars appear preferably in short-period binary systems, in contrast to OBC stars. : STARS-BINARY - STARS-EARLY TYPE
ECCENTRIC EVOLUTION OF SUPERMASSIVE BLACK HOLE BINARIES
Iwasawa, Masaki; An, Sangyong; Matsubayashi, Tatsushi; Funato, Yoko; Makino, Junichiro
2011-04-10
In recent numerical simulations, it has been found that the eccentricity of supermassive black hole (SMBH)-intermediate black hole (IMBH) binaries grows toward unity through interactions with the stellar background. This increase of eccentricity reduces the merging timescale of the binary through the gravitational radiation to a value well below the Hubble time. It also gives a theoretical explanation of the existence of eccentric binaries such as that in OJ287. In self-consistent N-body simulations, this increase of eccentricity is always observed. On the other hand, the result of the scattering experiment between SMBH binaries and field stars indicated that the eccentricity dose not change significantly. This discrepancy leaves the high eccentricity of the SMBH binaries in N-body simulations unexplained. Here, we present a stellar-dynamical mechanism that drives the increase of the eccentricity of an SMBH binary with a large mass ratio. There are two key processes involved. The first one is the Kozai mechanism under a non-axisymmetric potential, which effectively randomizes the angular momenta of surrounding stars. The other is the selective ejection of stars with prograde orbits. Through these two mechanisms, field stars extract the orbital angular momentum of the SMBH binary. Our proposed mechanism causes the increase in the eccentricity of most of SMBH binaries, resulting in the rapid merger through gravitational wave radiation. Our result has given a definite solution to the 'last-parsec problem'.
An Acidity Scale for Binary Oxides.
ERIC Educational Resources Information Center
Smith, Derek W.
1987-01-01
Discusses the classification of binary oxides as acidic, basic, or amphoteric. Demonstrates how a numerical scale for acidity/basicity of binary oxides can be constructed using thermochemical data for oxoacid salts. Presents the calculations derived from the data that provide the numeric scale values. (TW)
NASA Astrophysics Data System (ADS)
Kwon, J.; Yang, H.
2006-12-01
Although GPS provides continuous and accurate position information, there are still some rooms for improvement of its positional accuracy, especially in the medium and long range baseline determination. In general, in case of more than 50 km baseline length, the effect of ionospheric delay is the one causing the largest degradation in positional accuracy. For example, the ionospheric delay in terms of double differenced mode easily reaches 10 cm with baseline length of 101 km. Therefore, many researchers have been tried to mitigate/reduce the effect using various modeling methods. In this paper, the optimal stochastic modeling of the ionospheric delay in terms of baseline length is presented. The data processing has been performed by constructing a Kalman filter with states of positions, ambiguities, and the ionospheric delays in the double differenced mode. Considering the long baseline length, both double differenced GPS phase and code observations are used as observables and LAMBDA has been applied to fix the ambiguities. Here, the ionospheric delay is stochastically modeled by well-known Gaussian, 1st and 3rd order Gauss-Markov process. The parameters required in those models such as correlation distance and time is determined by the least-square adjustment using ionosphere-only observables. Mainly the results and analysis from this study show the effect of stochastic models of the ionospheric delay in terms of the baseline length, models, and parameters used. In the above example with 101 km baseline length, it was found that the positional accuracy with appropriate ionospheric modeling (Gaussian) was about ±2 cm whereas it reaches about ±15 cm with no stochastic modeling. It is expected that the approach in this study contributes to improve positional accuracy, especially in medium and long range baseline determination.
The evolution of close binary stars
NASA Astrophysics Data System (ADS)
Tutukov, A. V.; Cherepashchuk, A. M.
2016-05-01
A review of our current understanding of the physics and evolution of close binary stars with various masses under the influence of the nuclear evolution of their components and their magnetic stellar winds is presented. The role of gravitational-wave radiation by close binaries on their evolution and the loss of their orbital angular momentum is also considered. The final stages in the evolution of close binary systems are described. The review also notes the main remaining tasks related to studies of the physics and evolution of various classes of close binaries, including analyses of collisions of close binaries and supermassive black holes in galactic nuclei. Such a collision could lead to the capture of one of the components by the black hole and the acceleration of the remaining component to relativistic speeds.
Eclipsing Binaries: The Primary Distance Indicator
NASA Astrophysics Data System (ADS)
Kang, Y.-W.; Hong, K.-S.; Lee, J.
2007-06-01
we have investigated how much confidence we can place in eclipsing binaries as distance indicators. The absolute visual magnitudes and the photometric distances of the selected 318 eclipsing binaries were calculated and compared with those calculated from Hipparcos parallaxes. The absolute magnitudes and distances of eclipsing binary systems deduced from analysis of light curves and radial velocity curves are confirmed to have the same accuracy as the Hipparcos parallaxes within an error of 10 percent of the parallax value. This means that photometric distances are accurate enough over a couple thousand parsecs on the basis of the eclipsing binaries used in this paper. The photometric distances of contact binaries show good agreement with those of Rucinski (1996).
Neutron Star Mass Distribution in Binaries
NASA Astrophysics Data System (ADS)
Lee, Chang-Hwan; Kim, Young-Min
2016-05-01
Massive neutron stars with ∼ 2Mʘ have been observed in neutron star-white dwarf binaries. On the other hand, well-measured neutron star masses in double-neutron-star binaries are still consistent with the limit of 1.5Mʘ. These observations raised questions on the neutron star equations of state and the neutron star binary evolution processes. In this presentation, a hypothesis of super-Eddington accretion and its implications are discussed. We argue that a 2Mʘ neutron star is an outcome of the super-Eddington accretion during the evolution of neutron star-white dwarf binary progenitors. We also suggest the possibility of the existence of new type of neutron star binary which consists of a typical neutron star and a massive compact companion (high-mass neutron star or black hole) with M ≥ 2Mʘ.
EDITORIAL: Stochasticity in fusion plasmas
NASA Astrophysics Data System (ADS)
Finken, K. H.
2006-04-01
In recent years the importance of externally imposed resonant magnetic fields on plasma has become more and more recognized. These fields will cause ergodization at well defined plasma layers and can induce large size islands at rational q-surfaces. A hope for future large scale tokamak devices is the development of a reliable method for mitigating the large ELMs of type 1 ELMy-H-modes by modifying the edge transport. Other topics of interest for fusion reactors are the option of distributing the heat to a large area and optimizing methods for heat and particle exhaust, or the understanding of the transport around tearing mode instabilities. The cluster of papers in this issue of Nuclear Fusion is a successor to the 2004 special issue (Nuclear Fusion 44 S1-122 ) intended to raise interest in the subject. The contents of this present issue are based on presentations at the Second Workshop on Stochasticity in Fusion Plasmas (SFP) held in Juelich, Germany, 15-17 March 2005. The SFP workshops have been stimulated by the installation of the Dynamic Ergodic Divertor (DED) in the TEXTOR tokamak. It has attracted colleagues working on various plasma configurations such as tokamaks, stellarators or reversed field pinches. The workshop was originally devoted to phenomena on the plasma edge but it has been broadened to transport questions over the whole plasma cross-section. It is a meeting place for experimental and theoretical working groups. The next workshop is planned for February/March 2007 in Juelich, Germany. For details see http://www.fz-juelich.de/sfp/. The content of the workshop is summarized in the following conference summary (K.H. Finken 2006 Nuclear Fusion 46 S107-112). At the workshop experimental results on the plasma transport resulting from ergodization in various devices were presented. Highlights were the results from DIII-D on the mitigation of ELMs (see also T.E. Evans et al 2005 Nuclear Fusion 45 595 ). Theoretical work was focused around the topics
New medium licensed for campylobacter
Technology Transfer Automated Retrieval System (TEKTRAN)
A medium, “Campy-Cefex”, has been licensed by the ARS Office of Technology Transfer with Becton Dickinson (No. 1412-002) and Neogen (No. 1412-001) based on patent No. 5,891,709, “Campy-Cefex Selective and Differential Medium for Campylobacter” by Dr. Norman Stern of the Poultry Microbiological Safet...
Stochastic approach to equilibrium and nonequilibrium thermodynamics
NASA Astrophysics Data System (ADS)
Tomé, Tânia; de Oliveira, Mário J.
2015-04-01
We develop the stochastic approach to thermodynamics based on stochastic dynamics, which can be discrete (master equation) and continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itself and the second the definition of entropy production rate, which is non-negative and vanishes in thermodynamic equilibrium. Based on these assumptions, we study interacting systems with many degrees of freedom in equilibrium or out of thermodynamic equilibrium and how the macroscopic laws are derived from the stochastic dynamics. These studies include the quasiequilibrium processes; the convexity of the equilibrium surface; the monotonic time behavior of thermodynamic potentials, including entropy; the bilinear form of the entropy production rate; the Onsager coefficients and reciprocal relations; and the nonequilibrium steady states of chemical reactions.
Stochastic Differential Equation of Earthquakes Series
NASA Astrophysics Data System (ADS)
Mariani, Maria C.; Tweneboah, Osei K.; Gonzalez-Huizar, Hector; Serpa, Laura
2016-07-01
This work is devoted to modeling earthquake time series. We propose a stochastic differential equation based on the superposition of independent Ornstein-Uhlenbeck processes driven by a Γ (α, β ) process. Superposition of independent Γ (α, β ) Ornstein-Uhlenbeck processes offer analytic flexibility and provides a class of continuous time processes capable of exhibiting long memory behavior. The stochastic differential equation is applied to the study of earthquakes by fitting the superposed Γ (α, β ) Ornstein-Uhlenbeck model to earthquake sequences in South America containing very large events (Mw ≥ 8). We obtained very good fit of the observed magnitudes of the earthquakes with the stochastic differential equations, which supports the use of this methodology for the study of earthquakes sequence.
Modeling stochasticity in biochemical reaction networks
NASA Astrophysics Data System (ADS)
Constantino, P. H.; Vlysidis, M.; Smadbeck, P.; Kaznessis, Y. N.
2016-03-01
Small biomolecular systems are inherently stochastic. Indeed, fluctuations of molecular species are substantial in living organisms and may result in significant variation in cellular phenotypes. The chemical master equation (CME) is the most detailed mathematical model that can describe stochastic behaviors. However, because of its complexity the CME has been solved for only few, very small reaction networks. As a result, the contribution of CME-based approaches to biology has been very limited. In this review we discuss the approach of solving CME by a set of differential equations of probability moments, called moment equations. We present different approaches to produce and to solve these equations, emphasizing the use of factorial moments and the zero information entropy closure scheme. We also provide information on the stability analysis of stochastic systems. Finally, we speculate on the utility of CME-based modeling formalisms, especially in the context of synthetic biology efforts.
Stochastic resonance in geomagnetic polarity reversals.
Consolini, Giuseppe; De Michelis, Paola
2003-02-01
Among noise-induced cooperative phenomena a peculiar relevance is played by stochastic resonance. In this paper we offer evidence that geomagnetic polarity reversals may be due to a stochastic resonance process. In detail, analyzing the distribution function P(tau) of polarity residence times (chrons), we found the evidence of a stochastic synchronization process, i.e., a series of peaks in the P(tau) at T(n) approximately (2n+1)T(Omega)/2 with n=0,1,...,j and T(omega) approximately 0.1 Myr. This result is discussed in connection with both the typical time scale of Earth's orbit eccentricity variation and the recent results on the typical time scale of climatic long-term variation. PMID:12633403
Stochastic Differential Equation of Earthquakes Series
NASA Astrophysics Data System (ADS)
Mariani, Maria C.; Tweneboah, Osei K.; Gonzalez-Huizar, Hector; Serpa, Laura
2016-05-01
This work is devoted to modeling earthquake time series. We propose a stochastic differential equation based on the superposition of independent Ornstein-Uhlenbeck processes driven by a Γ (α, β ) process. Superposition of independent Γ (α, β ) Ornstein-Uhlenbeck processes offer analytic flexibility and provides a class of continuous time processes capable of exhibiting long memory behavior. The stochastic differential equation is applied to the study of earthquakes by fitting the superposed Γ (α, β ) Ornstein-Uhlenbeck model to earthquake sequences in South America containing very large events (Mw ≥ 8). We obtained very good fit of the observed magnitudes of the earthquakes with the stochastic differential equations, which supports the use of this methodology for the study of earthquakes sequence.
Stochastic Averaging of Duhem Hysteretic Systems
NASA Astrophysics Data System (ADS)
YING, Z. G.; ZHU, W. Q.; NI, Y. Q.; KO, J. M.
2002-06-01
The response of Duhem hysteretic system to externally and/or parametrically non-white random excitations is investigated by using the stochastic averaging method. A class of integrable Duhem hysteresis models covering many existing hysteresis models is identified and the potential energy and dissipated energy of Duhem hysteretic component are determined. The Duhem hysteretic system under random excitations is replaced equivalently by a non-hysteretic non-linear random system. The averaged Ito's stochastic differential equation for the total energy is derived and the Fokker-Planck-Kolmogorov equation associated with the averaged Ito's equation is solved to yield stationary probability density of total energy, from which the statistics of system response can be evaluated. It is observed that the numerical results by using the stochastic averaging method is in good agreement with that from digital simulation.
Derivatives of the Stochastic Growth Rate
Steinsaltz, David; Tuljapurkar, Shripad; Horvitz, Carol
2011-01-01
We consider stochastic matrix models for population driven by random environments which form a Markov chain. The top Lyapunov exponent a, which describes the long-term growth rate, depends smoothly on the demographic parameters (represented as matrix entries) and on the parameters that define the stochastic matrix of the driving Markov chain. The derivatives of a — the “stochastic elasticities” — with respect to changes in the demographic parameters were derived by Tuljapurkar (1990). These results are here extended to a formula for the derivatives with respect to changes in the Markov chain driving the environments. We supplement these formulas with rigorous bounds on computational estimation errors, and with rigorous derivations of both the new and the old formulas. PMID:21463645
Regeneration of stochastic processes: an inverse method
NASA Astrophysics Data System (ADS)
Ghasemi, F.; Peinke, J.; Sahimi, M.; Rahimi Tabar, M. R.
2005-10-01
We propose a novel inverse method that utilizes a set of data to construct a simple equation that governs the stochastic process for which the data have been measured, hence enabling us to reconstruct the stochastic process. As an example, we analyze the stochasticity in the beat-to-beat fluctuations in the heart rates of healthy subjects as well as those with congestive heart failure. The inverse method provides a novel technique for distinguishing the two classes of subjects in terms of a drift and a diffusion coefficients which behave completely differently for the two classes of subjects, hence potentially providing a novel diagnostic tool for distinguishing healthy subjects from those with congestive heart failure, even at the early stages of the disease development.
Stochastic approach to equilibrium and nonequilibrium thermodynamics.
Tomé, Tânia; de Oliveira, Mário J
2015-04-01
We develop the stochastic approach to thermodynamics based on stochastic dynamics, which can be discrete (master equation) and continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itself and the second the definition of entropy production rate, which is non-negative and vanishes in thermodynamic equilibrium. Based on these assumptions, we study interacting systems with many degrees of freedom in equilibrium or out of thermodynamic equilibrium and how the macroscopic laws are derived from the stochastic dynamics. These studies include the quasiequilibrium processes; the convexity of the equilibrium surface; the monotonic time behavior of thermodynamic potentials, including entropy; the bilinear form of the entropy production rate; the Onsager coefficients and reciprocal relations; and the nonequilibrium steady states of chemical reactions. PMID:25974471
Computational stochastic model of ions implantation
Zmievskaya, Galina I. Bondareva, Anna L.; Levchenko, Tatiana V.; Maino, Giuseppe
2015-03-10
Implantation flux ions into crystal leads to phase transition /PT/ 1-st kind. Damaging lattice is associated with processes clustering vacancies and gaseous bubbles as well their brownian motion. System of stochastic differential equations /SDEs/ Ito for evolution stochastic dynamical variables corresponds to the superposition Wiener processes. The kinetic equations in partial derivatives /KE/, Kolmogorov-Feller and Einstein-Smolukhovskii, were formulated for nucleation into lattice of weakly soluble gases. According theory, coefficients of stochastic and kinetic equations uniquely related. Radiation stimulated phase transition are characterized by kinetic distribution functions /DFs/ of implanted clusters versus their sizes and depth of gas penetration into lattice. Macroscopic parameters of kinetics such as the porosity and stress calculated in thin layers metal/dielectric due to Xe{sup ++} irradiation are attracted as example. Predictions of porosity, important for validation accumulation stresses in surfaces, can be applied at restoring of objects the cultural heritage.
Structural factoring approach for analyzing stochastic networks
NASA Technical Reports Server (NTRS)
Hayhurst, Kelly J.; Shier, Douglas R.
1991-01-01
The problem of finding the distribution of the shortest path length through a stochastic network is investigated. A general algorithm for determining the exact distribution of the shortest path length is developed based on the concept of conditional factoring, in which a directed, stochastic network is decomposed into an equivalent set of smaller, generally less complex subnetworks. Several network constructs are identified and exploited to reduce significantly the computational effort required to solve a network problem relative to complete enumeration. This algorithm can be applied to two important classes of stochastic path problems: determining the critical path distribution for acyclic networks and the exact two-terminal reliability for probabilistic networks. Computational experience with the algorithm was encouraging and allowed the exact solution of networks that have been previously analyzed only by approximation techniques.
Terrestrial Planet Formation in Binary Star Systems
NASA Technical Reports Server (NTRS)
Lissauer, J. J.; Quintana, E. V.; Adams, F. C.; Chambers, J. E.
2006-01-01
Most stars reside in binary/multiple star systems; however, previous models of planet formation have studied growth of bodies orbiting an isolated single star. Disk material has been observed around one or both components of various young close binary star systems. If planets form at the right places within such disks, they can remain dynamically stable for very long times. We have simulated the late stages of growth of terrestrial planets in both circumbinary disks around 'close' binary star systems with stellar separations ($a_B$) in the range 0.05 AU $\\le a_B \\le$ 0.4 AU and binary eccentricities in the range $0 \\le e \\le 0.8$ and circumstellar disks around individual stars with binary separations of tens of AU. The initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet growth within our Solar System and around individual stars in the Alpha Centauri system (Quintana et al. 2002, A.J., 576, 982); giant planets analogous to Jupiter and Saturn are included if their orbits are stable. The planetary systems formed around close binaries with stellar apastron distances less than or equal to 0.2 AU with small stellar eccentricities are very similar to those formed in the Sun-Jupiter-Saturn, whereas planetary systems formed around binaries with larger maximum separations tend to be sparser, with fewer planets, especially interior to 1 AU. Likewise, when the binary periastron exceeds 10 AU, terrestrial planets can form over essentially the entire range of orbits allowed for single stars with Jupiter-like planets, although fewer terrestrial planets tend to form within high eccentricity binary systems. As the binary periastron decreases, the radial extent of the terrestrial planet systems is reduced accordingly. When the periastron is 5 AU, the formation of Earth-like planets near 1 AU is compromised.
Stochastic dynamics of bionanosystems: Multiscale analysis and specialized ensembles
NASA Astrophysics Data System (ADS)
Pankavich, S.; Miao, Y.; Ortoleva, J.; Shreif, Z.; Ortoleva, P.
2008-06-01
An approach for simulating bionanosystems such as viruses and ribosomes is presented. This calibration-free approach is based on an all-atom description for bionanosystems, a universal interatomic force field, and a multiscale perspective. The supramillion-atom nature of these bionanosystems prohibits the use of a direct molecular dynamics approach for phenomena such as viral structural transitions or self-assembly that develop over milliseconds or longer. A key element of these multiscale systems is the cross-talk between, and consequent strong coupling of processes over many scales in space and time. Thus, overall nanoscale features of these systems control the relative probability of atomistic fluctuations, while the latter mediate the average forces and diffusion coefficients that induce the dynamics of these nanoscale features. This feedback loop is overlooked in typical coarse-grained methods. We elucidate the role of interscale cross-talk and overcome bionanosystem simulation difficulties with (1) automated construction of order parameters (OPs) describing suprananometer scale structural features, (2) construction of OP-dependent ensembles describing the statistical properties of atomistic variables that ultimately contribute to the entropies driving the dynamics of the OPs, and (3) the derivation of a rigorous equation for the stochastic dynamics of the OPs. As the OPs capture hydrodynamic modes in the host medium, ``long-time tails'' in the correlation functions yielding the generalized diffusion coefficients do not emerge. Since the atomic-scale features of the system are treated statistically, several ensembles are constructed that reflect various experimental conditions. Attention is paid to the proper use of the Gibbs hypothesized equivalence of long-time and ensemble averages to accommodate the varying experimental conditions. The theory provides a basis for a practical, quantitative bionanosystem modeling approach that preserves the cross
Existence Theory for Stochastic Power Law Fluids
NASA Astrophysics Data System (ADS)
Breit, Dominic
2015-06-01
We consider the equations of motion for an incompressible non-Newtonian fluid in a bounded Lipschitz domain during the time interval (0, T) together with a stochastic perturbation driven by a Brownian motion W. The balance of momentum reads as where v is the velocity, the pressure and f an external volume force. We assume the common power law model and show the existence of martingale weak solution provided . Our approach is based on the -truncation and a harmonic pressure decomposition which are adapted to the stochastic setting.
Stochastic processes in muon ionization cooling
NASA Astrophysics Data System (ADS)
Errede, D.; Makino, K.; Berz, M.; Johnstone, C. J.; Van Ginneken, A.
2004-02-01
A muon ionization cooling channel consists of three major components: the magnet optics, an acceleration cavity, and an energy absorber. The absorber of liquid hydrogen contained by thin aluminum windows is the only component which introduces stochastic processes into the otherwise deterministic acceleration system. The scattering dynamics of the transverse coordinates is described by Gaussian distributions. The asymmetric energy loss function is represented by the Vavilov distribution characterized by the minimum number of collisions necessary for a particle undergoing loss of the energy distribution average resulting from the Bethe-Bloch formula. Examples of the interplay between stochastic processes and deterministic beam dynamics are given.
Fuzzy stochastic elements method. Spectral approach
NASA Astrophysics Data System (ADS)
Sniady, Pawel; Mazur-Sniady, Krystyna; Sieniawska, Roza; Zukowski, Stanislaw
2013-05-01
We study a complex dynamic problem, which concerns a structure with uncertain parameters subjected to a stochastic excitation. Formulation of such a problem introduces fuzzy random variables for parameters of the structure and fuzzy stochastic processes for the load process. The uncertainty has two sources, namely the randomness of structural parameters such as geometry characteristics, material and damping properties, load process and imprecision of the theoretical model and incomplete information or uncertain data. All of these have a great influence on the response of the structure. By analyzing such problems we describe the random variability using the probability theory and the imprecision by use of fuzzy sets. Due to the fact that it is difficult to find an analytic expression for the inversion of the stochastic operator in the stochastic differential equation, a number of approximate methods have been proposed in the literature which can be connected to the finite element method. To evaluate the effects of excitation in the frequency domain we use the spectral density function. The spectral analysis is widely used in stochastic dynamics field of linear systems for stationary random excitation. The concept of the evolutionary spectral density is used in the case of non-stationary random excitation. We solve the considered problem using fuzzy stochastic finite element method. The solution is based on the idea of a fuzzy random frequency response vector for stationary input excitation and a transient fuzzy random frequency response vector for the fuzzy non-stationary one. We use the fuzzy random frequency response vector and the transient fuzzy random frequency response vector in the context of spectral analysis in order to determine the influence of structural uncertainty on the fuzzy random response of the structure. We study a linear system with random parameters subjected to two particular cases of stochastic excitation in a frequency domain. The first one
Digital switching noise as a stochastic process
NASA Astrophysics Data System (ADS)
Boselli, Giorgio; Trucco, Gabriella; Liberali, Valentino
2007-06-01
Switching activity of logic gates in a digital system is a deterministic process, depending on both circuit parameters and input signals. However, the huge number of logic blocks in a digital system makes digital switching a cognitively stochastic process. Switching activity is the source of the so-called "digital noise", which can be analyzed using a stochastic approach. For an asynchronous digital network, we can model digital switching currents as a shot noise process, deriving both its amplitude distribution and its power spectral density. From spectral distribution of digital currents, we can also calculate the spectral distribution and the power of disturbances injected into the on-chip power supply lines.
Stochastic time-optimal control problems
NASA Technical Reports Server (NTRS)
Zhang, W.; Elliot, D.
1988-01-01
Two types of stochastic time-optimal controls in a one-dimensional setting are considered. Multidimensional problems, in the case of complete state information available and the system modeled by stochastic differential equations, are studied under the formulation of minimizing the expected transient-response time. The necessary condition of optimality is the satisfaction for the value function of a parabolic partial differential equation with boundary conditions. The sufficient condition of optimality is also provided, based on Dynkin's formula. Finally, three examples are given.
Monostable array-enhanced stochastic resonance.
Lindner, J F; Breen, B J; Wills, M E; Bulsara, A R; Ditto, W L
2001-05-01
We present a simple nonlinear system that exhibits multiple distinct stochastic resonances. By adjusting the noise and coupling of an array of underdamped, monostable oscillators, we modify the array's natural frequencies so that the spectral response of a typical oscillator in an array of N oscillators exhibits N-1 different stochastic resonances. Such families of resonances may elucidate and facilitate a variety of noise-mediated cooperative phenomena, such as noise-enhanced propagation, in a broad class of similar nonlinear systems. PMID:11414887
Stochastic stability and instability of model ecosystems
NASA Technical Reports Server (NTRS)
Ladde, G. S.; Siljak, D. D.
1975-01-01
In this work, we initiate a stability study of multispecies communities in stochastic environment by using Ito's differential equations as community models. By applying the direct method of Liapunov, we obtain sufficient conditions for stability and instability in the mean of the equilibrium populations. The conditions are expressed in terms of the dominant diagonal property of community matrices, which is a suitable mechanism for resolving the central problem of 'complexity vs stability' in model ecosystems. As a by-product of this analysis we exhibit important structural properties of the stochastic density-dependent models, and establish tolerance of community stability to a broad class of nonlinear time-varying perturbations.