Science.gov

Sample records for binary thermodynamic cycles

  1. Transposed critical temperature Rankine thermodynamic cycle

    SciTech Connect

    Pope, W.L.; Doyle, P.A.

    1980-04-01

    The transposed critical temperature (TPCT) is shown to be an extremely important thermodynamic property in the selection of the working fluid and turbine states for optimized geothermal power plants operating on a closed organic (binary) Rankine cycle. When the optimum working fluid composition and process states are determined for given source and sink conditions (7 parameter optimization), turbine inlet states are found to be consistently adjacent to the low pressure side of the working fluids' TPCT line on pressure-enthalpy coordinates. Although the TPCT concepts herein may find numerous future applications in high temperature, advanced cycles for fossil or nuclear fired steam power plants and in supercritical organic Rankine heat recovery bottoming cycles for Diesel engines, this discussion is limited to moderate temperature (150 to 250/sup 0/C) closed simple organic Rankine cycle geothermal power plants. Conceptual design calculations pertinent to the first geothermal binary cycle Demonstration Plant are included.

  2. Superfluid thermodynamic cycle refrigerator

    DOEpatents

    Swift, Gregory W.; Kotsubo, Vincent Y.

    1992-01-01

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

  3. Superfluid thermodynamic cycle refrigerator

    DOEpatents

    Swift, G.W.; Kotsubo, V.Y.

    1992-12-22

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of [sup 3]He in a single phase [sup 3]He-[sup 4]He solution. The [sup 3]He in superfluid [sup 4]He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid [sup 3]He at an initial concentration in superfluid [sup 4]He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of [sup 4]He while restricting passage of [sup 3]He. The [sup 3]He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K. 12 figs.

  4. Thermodynamics of combined cycle plant

    NASA Astrophysics Data System (ADS)

    Crane, R. I.

    The fundamental thermodynamics of power plants including definitions of performance criteria and an introduction to exergy are reviewed, and treatments of simplified performance calculations for the components which form the major building blocks and a gas/steam combined cycle plant are given: the gas turbine, the heat recovery steam generator, and the remainder of the steam plant. Efficiency relationships and energy and exergy analyses of combined cycle plant are presented, with examples. Among the aspects considered are gas turbine performance characteristics and fuels, temperature differences for heat recovery, multiple steam pressures and reheat, supplementary firing and feed water heating. Attention is drawn to points of thermodynamic interest arising from applications of combined cycle plant to repowering of existing steam plant and to combined heat and power (cogeneration); some advances, including coal firing, are also introduced.

  5. Detonation Jet Engine. Part 1--Thermodynamic Cycle

    ERIC Educational Resources Information Center

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    We present the most relevant works on jet engine design that utilize thermodynamic cycle of detonative combustion. The efficiency advantages of thermodynamic detonative combustion cycle over Humphrey combustion cycle at constant volume and Brayton combustion cycle at constant pressure were demonstrated. An ideal Ficket-Jacobs detonation cycle, and…

  6. Modeling and analysis of advanced binary cycles

    SciTech Connect

    Gawlik, K.

    1997-12-31

    A computer model (Cycle Analysis Simulation Tool, CAST) and a methodology have been developed to perform value analysis for small, low- to moderate-temperature binary geothermal power plants. The value analysis method allows for incremental changes in the levelized electricity cost (LEC) to be determined between a baseline plant and a modified plant. Thermodynamic cycle analyses and component sizing are carried out in the model followed by economic analysis which provides LEC results. The emphasis of the present work is on evaluating the effect of mixed working fluids instead of pure fluids on the LEC of a geothermal binary plant that uses a simple Organic Rankine Cycle. Four resources were studied spanning the range of 265{degrees}F to 375{degrees}F. A variety of isobutane and propane based mixtures, in addition to pure fluids, were used as working fluids. This study shows that the use of propane mixtures at a 265{degrees}F resource can reduce the LEC by 24% when compared to a base case value that utilizes commercial isobutane as its working fluid. The cost savings drop to 6% for a 375{degrees}F resource, where an isobutane mixture is favored. Supercritical cycles were found to have the lowest cost at all resources.

  7. Advanced binary cycles: Optimum working fluids

    SciTech Connect

    Gawlik, K.; Hassani, V.

    1997-12-31

    A computer model (Cycle Analysis Simulation Tool, CAST) and a methodology have been developed to perform value analysis for small, low- to moderate-temperature binary geothermal power plants. The value analysis method allows for incremental changes in the levelized electricity cost (LEC) to be determined between a baseline plant and a modified plant. Thermodynamic cycle analyses and component sizing are carried out in the model followed by economic analysis which provides LEC results. The emphasis of the present work is on evaluating the effect of mixed working fluids instead of pure fluids on the LEC of a geothermal binary plant that uses a simple Organic Rankine Cycle. Four resources were studied spanning the range of 265{degrees}F to 375{degrees}F. A variety of isobutane and propane based mixtures, in addition to pure fluids, were used as working fluids. This study shows that the use of propane mixtures at a 265{degrees}F resource can reduce the LEC by 24% when compared to a base case value that utilizes commercial isobutane as its working fluid. The cost savings drop to 6% for a 375{degrees}F resource, where an isobutane mixture is favored. Supercritical cycles were found to have the lowest cost at all resources.

  8. Advanced binary cycles: Optimum working fluids

    SciTech Connect

    Gawlik, K.; Hassani, V.

    1997-12-31

    A computer model (Cycle Analysis Simulation Tool, CAST) and a methodology have been developed to perform value analysis for small, low- to moderate-temperature binary geothermal power plants. The value analysis method allows for incremental changes in the levelized electricity cost (LEC) to be determined between a baseline plant and a modified plant. Thermodynamic cycle analyses and component sizing are carried out in the model followed by economic analysis which provides LEC results. The emphasis of the present work is on evaluating the effect of mixed working fluids instead of pure fluids on the LEC of a geothermal binary plant that uses a simple Organic Rankine Cycle. Four resources were studied spanning the range of 265 F to 375 F. A variety of isobutane and propane based mixtures, in addition to pure fluids, were used as working fluids. This study shows that the use of propane mixtures at a 265 F resource can reduce the LEC by 24% when compared to a base case value that utilizes commercial isobutane as its working fluid. The cost savings drop to 6% for a 375 F resource, where an isobutane mixture is favored. Supercritical cycles were found to have the lowest cost at all resources.

  9. Thermodynamics of magnetized binary compact objects

    SciTech Connect

    Uryu, Koji; Gourgoulhon, Eric; Markakis, Charalampos

    2010-11-15

    Binary systems of compact objects with electromagnetic field are modeled by helically symmetric Einstein-Maxwell spacetimes with charged and magnetized perfect fluids. Previously derived thermodynamic laws for helically symmetric perfect-fluid spacetimes are extended to include the electromagnetic fields, and electric currents and charges; the first law is written as a relation between the change in the asymptotic Noether charge {delta}Q and the changes in the area and electric charge of black holes, and in the vorticity, baryon rest mass, entropy, charge and magnetic flux of the magnetized fluid. Using the conservation laws of the circulation of magnetized flow found by Bekenstein and Oron for the ideal magnetohydrodynamic fluid, and also for the flow with zero conducting current, we show that, for nearby equilibria that conserve the quantities mentioned above, the relation {delta}Q=0 is satisfied. We also discuss a formulation for computing numerical solutions of magnetized binary compact objects in equilibrium with emphasis on a first integral of the ideal magnetohydrodynamic-Euler equation.

  10. Thermodynamic Cycles--One More Time.

    ERIC Educational Resources Information Center

    Nolan, Michael J.

    1995-01-01

    Discusses interesting aspects of the Carnot cycle and other thermodynamic cycles that are generally not dealt with in elementary physics texts. Presents examples that challenge the student to think about the extraction of net work from a cycle. (JRH)

  11. Thermodynamically stable superstructures in binary alloys

    NASA Astrophysics Data System (ADS)

    Nelson, Lance

    2009-10-01

    Adding a second metal to another can induce the formation of ordered superstructures. These ordered phases have properties that are desireable in many industrial, manufacturing and technological applications. Our goal is to find which of the thousands of possible superstructures are thermodynamically stable through the use of computational tools. Owing to the many superstructures that are possible, as well as the complex nature of some of these, DFT calculations become impractical for searching for these superstructures. We employ a cluster expansion method, which uses energy information from a relatively small number of structures and fits that information to a set of interaction types. Because the resulting expansion provides a fast way to compute energies, we can use it to calculate the energies of the thousands of other superstructures. Specifically, I discuss the use of the cluster expansion on two binary alloys: AgPd and MgZn. Palladium alloys are of interest in the fabrication of jewelry, and a stable ordered phase at some concentrations would be a breakthrough for the jewelry manufacturers. Magnesium alloys are of interest because of their strength and light weight. They are being used increasingly in the manufacturing of things such as airplanes and automobiles. A cheap alloying agent that promotes the formation of an ordered structure would be a breakthrough.

  12. Some Considerations about Thermodynamic Cycles

    ERIC Educational Resources Information Center

    da Silva, M. F. Ferreira

    2012-01-01

    After completing their introductory studies on thermodynamics at the university level, typically in a second-year university course, most students show a number of misconceptions. In this work, we identify some of those erroneous ideas and try to explain their origins. We also give a suggestion to attack the problem through a systematic and…

  13. Thermodynamics of binary gas adsorption in nanopores.

    PubMed

    Dutta, Sujeet; Lefort, Ronan; Morineau, Denis; Mhanna, Ramona; Merdrignac-Conanec, Odile; Saint-Jalmes, Arnaud; Leclercq, Théo

    2016-09-21

    MCM-41 nanoporous silicas show a very high selectivity for monoalcohols over aprotic molecules during adsorption of a binary mixture in the gas phase. We present here an original use of gravimetric vapour sorption isotherms to characterize the role played by the alcohol hydrogen-bonding network in the adsorption process. Beyond simple selectivity, vapour sorption isotherms measured for various compositions help to completely unravel at the molecular level the step by step adsorption mechanism of the binary system in the nanoporous solid, from the first monolayers to the complete liquid condensation. PMID:27532892

  14. Thermodynamics of an idealized hydrologic cycle

    NASA Astrophysics Data System (ADS)

    Konings, Alexandra G.; Feng, Xue; Molini, Annalisa; Manzoni, Stefano; Vico, Giulia; Porporato, Amilcare

    2012-05-01

    The diurnal hydrologic cycle, a sequence of evapotranspiration, boundary layer growth, moist convection, and precipitation, is described in a thermodynamic framework, assuming an atmosphere composed solely of water. This idealized cycle is shown to be equivalent to an abbreviated version of the classical Rankine cycle where not all the water vapor is condensed. Energy and entropy fluxes of the processes involved in the cycle are quantified using the reversible approximation as a function of the quality of the liquid-vapor mixture (the ratio of the residual background vapor and the total mass of water) and the different temperatures at which evaporation and condensation take place. The proposed framework allows quantitative estimates of the net work (which is used by the cycle to drive the atmospheric circulation and dissipated by various frictional forces and nonidealities) as well as of the thermodynamic efficiency of the cycle. Possible extensions of the idealized framework relating to the role of dry air and the inclusion of various irreversible processes are also discussed.

  15. Quantum Maxwell's demon in thermodynamic cycles

    NASA Astrophysics Data System (ADS)

    Dong, H.; Xu, D. Z.; Cai, C. Y.; Sun, C. P.

    2011-06-01

    We study the physical mechanism of Maxwell’s demon (MD), which helps do extra work in thermodynamic cycles with the heat engine. This is exemplified with one molecule confined in an infinitely deep square potential with a movable solid wall. The MD is modeled as a two-level system (TLS) for measuring and controlling the motion of the molecule. The processes in the cycle are described in a quantum fashion. It is discovered that a MD with quantum coherence or one at a temperature lower than the molecule’s heat bath can enhance the ability of the whole working substance, formed by the heat engine plus the MD, to do work outside. This observation reveals that the essential role of the MD is to drive the whole working substance off equilibrium, or equivalently, to work between two heat baths with different effective temperatures. The elaborate studies with this model explicitly reveal the effect of finite size off the classical limit or thermodynamic limit, which contradicts common sense on a Szilard heat engine (SHE). The quantum SHE’s efficiency is evaluated in detail to prove the validity of the second law of thermodynamics.

  16. Quantum Maxwell's demon in thermodynamic cycles.

    PubMed

    Dong, H; Xu, D Z; Cai, C Y; Sun, C P

    2011-06-01

    We study the physical mechanism of Maxwell's demon (MD), which helps do extra work in thermodynamic cycles with the heat engine. This is exemplified with one molecule confined in an infinitely deep square potential with a movable solid wall. The MD is modeled as a two-level system (TLS) for measuring and controlling the motion of the molecule. The processes in the cycle are described in a quantum fashion. It is discovered that a MD with quantum coherence or one at a temperature lower than the molecule's heat bath can enhance the ability of the whole working substance, formed by the heat engine plus the MD, to do work outside. This observation reveals that the essential role of the MD is to drive the whole working substance off equilibrium, or equivalently, to work between two heat baths with different effective temperatures. The elaborate studies with this model explicitly reveal the effect of finite size off the classical limit or thermodynamic limit, which contradicts common sense on a Szilard heat engine (SHE). The quantum SHE's efficiency is evaluated in detail to prove the validity of the second law of thermodynamics. PMID:21797303

  17. Glass transition and mixing thermodynamics of a binary eutectic system.

    PubMed

    Tu, Wenkang; Chen, Zeming; Gao, Yanqin; Li, Zijing; Zhang, Yaqi; Liu, Riping; Tian, Yongjun; Wang, Li-Min

    2014-02-28

    A quantitative evaluation of the contribution of mixing thermodynamics to glass transition is performed for a binary eutectic benzil and m-nitroaniline system. The microcalorimetric measurements of the enthalpy of mixing give small and positive values, typically ~200 J mol(-1) for the equimolar mixture. The composition dependence of the glass transition temperature, T(g), is found to show a large and negative deviation from the ideal mixing rule. The Gordon-Taylor and Couchman-Karasz models are subsequently applied to interpret the T(g) behavior, however, only a small fraction of the deviation is explained. The analyses of the experimental results manifest quantitatively the importance of the mixing thermodynamics in the glass transition in miscible systems.

  18. Thermodynamic cycle in a cavity optomechanical system

    NASA Astrophysics Data System (ADS)

    Ian, Hou

    2014-07-01

    A cavity optomechanical system is initiated by the radiation pressure of a cavity field onto a mirror element acting as a quantum resonator. This radiation pressure can control the thermodynamic character of the mirror to some extent, such as by cooling its effective temperature. Here, we show that by properly engineering the spectral density of a thermal heat bath that interacts with a quantum system, the evolution of the quantum system can be effectively turned on and off. Inside a cavity optomechanical system, when the heat bath is realized by a multi-mode oscillator modelling of the mirror, this on-off effect translates to infusion or extraction of heat energy in and out of the cavity field, facilitating a four-stroke thermodynamic cycle.

  19. Reaction cycle and thermodynamics in bacteriorhodopsin

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.

    1992-01-01

    Light causes the all-trans to 13-cis isomerization of the retinal in bacteriorhodopsin; the thermal relaxation leading back to the initial state drives proton transport first via proton transfer between the retinal Schiff base and D85 and then between the Schiff base and D96. The reaction sequence and thermodynamics of this photocycle are described by measuring time-resolved absorption changes with a gated multichannel analyzer between 100 ns and 100 ms, at six temperatures between 5 degrees C and 30 degrees C. Analysis of the energetics of the chromophore reaction sequence is on the basis of a recently proposed model (Varo & Lanyi, Biochemistry 30, 5016-5022, 1991) which consists of a single cycle and many reversible reactions: BR -hv-->K<==>L<==>M1-->M2<==>N<==>O-->BR. The existence of the M1-->M2 reaction, which functions as the switch in the proton transfer, is confirmed by spectroscopic evidence. The calculated thermodynamic parameters indicate that the exchange of free energy between the protein and the protons is at the switch step. Further, a large entropy decrease at this reaction suggests a protein conformation change which will conserve delta G for driving the completion of the reaction cycle. The results provide insights to mechanism and energy coupling in this system, with possible relevance to the general question of how ion pumps function.

  20. Reversible thermodynamic cycle for AMTEC power conversion

    SciTech Connect

    Vining, C.B.; Williams, R.M.; Underwood, M.L.; Ryan, M.A.; Suitor, J.W.

    1992-07-01

    The thermodynamic cycle appropriate to an AMTEC (alkali metal thermal-to-electric converter) cell is discussed for both liquid- and vapor-fed modes of operation, under the assumption that all processes can be performed reversibly. In the liquid-fed mode, the reversible efficiency is greater than 89.6% of Carnot efficiency for heat input and rejection temperatures (900--1300 K and 400--800 K, respectively) typical of practical devices. Vapor-fed cells can approach the efficiency of liquid-fed cells. Quantitative estimates confirm that the efficiency is insensitive to either the work required to pressurize the sodium liquid or the details of the state changes associated with cooling the low pressure sodium gas to the heat rejection temperature. 10 refs.

  1. Condenser designs for binary power cycles

    SciTech Connect

    Michel, J.W.; Murphy, R.W.

    1980-01-01

    For the past four years, work has been in progress at ORNL to develop improved condensers for geothermal binary power cycles. The work has centered on optimizing the design variables associated with fluted surfaces on vertical tubes and comparing the tube performance with available enhanced tubes either for vertical or horizontal operation. Data with seven fluids including a hydrocarbon, fluorocarbons, and ammonia condensing on up to 30 different tubes have been obtained. Data for tubes of different effective lengths (0.15 to 1.20 m) and inclination have also been obtained. The primary conclusion from this work is that fluted tubes can provide an enhancement in condensation coefficient of a factor of 6 over smooth vertical tubes and a factor of 2 over enhanced commercial tubes either operating vertically or horizontally. These data, together with field test data, have formed the basis for designing two prototype condensers, one for the 60 kWe Raft River, Idaho, pilot plant and one for the 500 kWe East Mesa, California, direct-contact demonstration plant.

  2. Importance of the specific heat anomaly in the design of binary Rankine cycle power plants

    SciTech Connect

    Pope, W.L.; Doyle, P.A.; Fulton, R.L.; Silvester, L.F.

    1980-05-01

    The transposed critical temperature (TPCT) is shown to be an extremely important thermodynamic property in the selection of working fluids and turbine states for geothermal power plants operating on a closed organic (binary) Rankine cycle. When the optimum working fluid composition and process states are determined for specified source and sink conditions, turbine inlet states consistently lie adjacent to the working fluids' TPCT line for all resource temperatures, constraints, and cost and efficiency factors investigated.

  3. Geothermal binary-cycle working-fluid properties information. Annual report

    SciTech Connect

    Starling, K.E.; Kumar, K.H.; Malik, Z.I.; Batson, B.; Plumb, P.

    1981-09-30

    The research discussed was performed prior to December 31, 1979. The report was not released until September 30, 1981, so that pressure-enthalpy diagrams for a number of potential geothermal binary cycle working fluids could be prepared in SI units. Efforts were directed principally to working fluid thermophysical property correlation and presentation of properties information. Pressure-enthalpy diagrams are presented for propane, normal butane, isobutane, normal pentane, isopentane and propylene. Generalized correlations are presented for the thermodynamic and transport properties of hydrocarbon pure and mixture working fluids. Specific correlations are presented for the thermodynamic properties of 27 fluids and for the viscosity and thermal conductivity of hydrocarbons including isobutane and isopentane.

  4. Thermodynamic design of natural gas liquefaction cycles for offshore application

    NASA Astrophysics Data System (ADS)

    Chang, Ho-Myung; Lim, Hye Su; Choe, Kun Hyung

    2014-09-01

    A thermodynamic study is carried out for natural gas liquefaction cycles applicable to offshore floating plants, as partial efforts of an ongoing governmental project in Korea. For offshore liquefaction, the most suitable cycle may be different from the on-land LNG processes under operation, because compactness and simple operation are important as well as thermodynamic efficiency. As a turbine-based cycle, closed Claude cycle is proposed to use NG (natural gas) itself as refrigerant. The optimal condition for NG Claude cycle is determined with a process simulator (Aspen HYSYS), and the results are compared with fully-developed C3-MR (propane pre-cooled mixed refrigerant) JT cycles and various N2 (nitrogen) Brayton cycles in terms of efficiency and compactness. The newly proposed NG Claude cycle could be a good candidate for offshore LNG processes.

  5. Not all counterclockwise thermodynamic cycles are refrigerators

    NASA Astrophysics Data System (ADS)

    Dickerson, R. H.; Mottmann, J.

    2016-06-01

    Clockwise cycles on PV diagrams always represent heat engines. It is therefore tempting to assume that counterclockwise cycles always represent refrigerators. This common assumption is incorrect: most counterclockwise cycles cannot be refrigerators. This surprising result is explored here for quasi-static ideal gas cycles, and the necessary conditions for refrigeration cycles are clarified. Three logically self-consistent criteria can be used to determine if a counterclockwise cycle is a refrigerator. The most fundamental test compares the counterclockwise cycle with a correctly determined corresponding Carnot cycle. Other criteria we employ include a widely accepted description of the functional behavior of refrigerators, and a corollary to the second law that limits a refrigerator's coefficient of performance.

  6. Milankovitch Cycles of Terrestrial Planets in Binary Star Systems

    NASA Astrophysics Data System (ADS)

    Forgan, Duncan

    2016-08-01

    The habitability of planets in binary star systems depends not only on the radiation environment created by the two stars, but also on the perturbations to planetary orbits and rotation produced by the gravitational field of the binary and neighbouring planets. Habitable planets in binaries may therefore experience significant perturbations in orbit and spin. The direct effects of orbital resonances and secular evolution on the climate of binary planets remain largely unconsidered. We present latitudinal energy balance modelling of exoplanet climates with direct coupling to an N Body integrator and an obliquity evolution model. This allows us to simultaneously investigate the thermal and dynamical evolution of planets orbiting binary stars, and discover gravito-climatic oscillations on dynamical and secular timescales. We investigate the Kepler-47 and Alpha Centauri systems as archetypes of P and S type binary systems respectively. In the first case, Earthlike planets would experience rapid Milankovitch cycles (of order 1000 years) in eccentricity, obliquity and precession, inducing temperature oscillations of similar periods (modulated by other planets in the system). These secular temperature variations have amplitudes similar to those induced on the much shorter timescale of the binary period. In the Alpha Centauri system, the influence of the secondary produces eccentricity variations on 15,000 year timescales. This produces climate oscillations of similar strength to the variation on the orbital timescale of the binary. Phase drifts between eccentricity and obliquity oscillations creates further cycles that are of order 100,000 years in duration, which are further modulated by neighbouring planets.

  7. Critical evaluation and thermodynamic optimization of the U-Pb and U-Sb binary systems

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Jin, Liling; Chen, Chuchu; Rao, Weifeng; Wang, Cuiping; Liu, Xingjun

    2016-11-01

    A complete literature review, critical evaluation and thermodynamic optimization of the phase diagrams and thermodynamic properties of U-Pb and U-Sb binary systems are presented. The CALculation of PHAse Diagrams (CALPHAD) method was used for the thermodynamic optimization, the results of which can reproduce all available reliable experimental phase equilibria and thermodynamic data. The modified quasi-chemical model in the pair approximation (MQMPA) was used for modeling the liquid solution. The Gibbs energies of all terminal solid solutions and intermetallic compounds were described by the compound energy formalism (CEF) model. All reliable experimental data of the U-Pb and U-Sb systems have been reproduced. A self-consistent thermodynamic database has been constructed for these binary systems; this database can be used in liquid-metal fuel reactor (LMFR) research.

  8. Improving geothermal power plants with a binary cycle

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2015-12-01

    The recent development of binary geothermal technology is analyzed. General trends in the introduction of low-temperature geothermal sources are summarized. The use of single-phase low-temperature geothermal fluids in binary power plants proves possible and expedient. The benefits of power plants with a binary cycle in comparison with traditional systems are shown. The selection of the working fluid is considered, and the influence of the fluid's physicochemical properties on the design of the binary power plant is discussed. The design of binary power plants is based on the chemical composition and energy potential of the geothermal fluids and on the landscape and climatic conditions at the intended location. Experience in developing a prototype 2.5 MW Russian binary power unit at Pauzhetka geothermal power plant (Kamchatka) is outlined. Most binary systems are designed individually for a specific location. Means of improving the technology and equipment at binary geothermal power plants are identified. One option is the development of modular systems based on several binary systems that employ the heat from the working fluid at different temperatures.

  9. Investment and operating costs of binary cycle geothermal power plants

    NASA Technical Reports Server (NTRS)

    Holt, B.; Brugman, J.

    1974-01-01

    Typical investment and operating costs for geothermal power plants employing binary cycle technology and utilizing the heat energy in liquid-dominated reservoirs are discussed. These costs are developed as a function of reservoir temperature. The factors involved in optimizing plant design are discussed. A relationship between the value of electrical energy and the value of the heat energy in the reservoir is suggested.

  10. Ab initio atomistic thermodynamics study on the oxidation mechanism of binary and ternary alloy surfaces

    SciTech Connect

    Liu, Shi-Yu; Liu, Shiyang; Li, De-Jun; Wang, Sanwu; Guo, Jing; Shen, Yaogen

    2015-02-14

    Utilizing a combination of ab initio density-functional theory and thermodynamics formalism, we have established the microscopic mechanisms for oxidation of the binary and ternary alloy surfaces and provided a clear explanation for the experimental results of the oxidation. We construct three-dimensional surface phase diagrams (SPDs) for oxygen adsorption on three different Nb-X(110) (X = Ti, Al or Si) binary alloy surfaces. On the basis of the obtained SPDs, we conclude a general microscopic mechanism for the thermodynamic oxidation, that is, under O-rich conditions, a uniform single-phase SPD (type I) and a nonuniform double-phase SPD (type II) correspond to the sustained complete selective oxidation and the non-sustained partial selective oxidation by adding the X element, respectively. Furthermore, by revealing the framework of thermodynamics for the oxidation mechanism of ternary alloys through the comparison of the surface energies of two separated binary alloys, we provide an understanding for the selective oxidation behavior of the Nb ternary alloy surfaces. Using these general microscopic mechanisms, one could predict the oxidation behavior of any binary and multi-component alloy surfaces based on thermodynamics considerations.

  11. Thermodynamical estimation of the limit potentialities of irreversible binary distillation

    NASA Astrophysics Data System (ADS)

    Tsirlin, A. M.; Grigorevsky, I. N.

    2010-10-01

    The limit capacity of binary distillation is considered for conventional heat supply to the column bottom and heat removal from the refluxer and for heat supply and removal distributed over the column height. The form of operating line, appropriating to the minimum of irreversible loss for adjusted productivity and limited transfer coefficients, was found. The expression for possible capacity limit of the distillation column was obtained, depending on flow composition and heat and mass transfer coefficients.

  12. Thermodynamic properties and diffusion of water + methane binary mixtures.

    PubMed

    Shvab, I; Sadus, Richard J

    2014-03-14

    Thermodynamic and diffusion properties of water + methane mixtures in a single liquid phase are studied using NVT molecular dynamics. An extensive comparison is reported for the thermal pressure coefficient, compressibilities, expansion coefficients, heat capacities, Joule-Thomson coefficient, zero frequency speed of sound, and diffusion coefficient at methane concentrations up to 15% in the temperature range of 298-650 K. The simulations reveal a complex concentration dependence of the thermodynamic properties of water + methane mixtures. The compressibilities, heat capacities, and diffusion coefficients decrease with increasing methane concentration, whereas values of the thermal expansion coefficients and speed of sound increase. Increasing methane concentration considerably retards the self-diffusion of both water and methane in the mixture. These effects are caused by changes in hydrogen bond network, solvation shell structure, and dynamics of water molecules induced by the solvation of methane at constant volume conditions. PMID:24628180

  13. Thermodynamic properties and diffusion of water + methane binary mixtures

    SciTech Connect

    Shvab, I.; Sadus, Richard J.

    2014-03-14

    Thermodynamic and diffusion properties of water + methane mixtures in a single liquid phase are studied using NVT molecular dynamics. An extensive comparison is reported for the thermal pressure coefficient, compressibilities, expansion coefficients, heat capacities, Joule-Thomson coefficient, zero frequency speed of sound, and diffusion coefficient at methane concentrations up to 15% in the temperature range of 298–650 K. The simulations reveal a complex concentration dependence of the thermodynamic properties of water + methane mixtures. The compressibilities, heat capacities, and diffusion coefficients decrease with increasing methane concentration, whereas values of the thermal expansion coefficients and speed of sound increase. Increasing methane concentration considerably retards the self-diffusion of both water and methane in the mixture. These effects are caused by changes in hydrogen bond network, solvation shell structure, and dynamics of water molecules induced by the solvation of methane at constant volume conditions.

  14. Thermodynamic and kinetic consistency of calculated binary nucleation rates

    SciTech Connect

    Wilemski, G.; Wyslouzil, B.E.

    1996-04-02

    To establish the accuracy and applicability of analytical expressions for the steady state rate of binary nucleation, we numerically solved the birth-death equations for the vapor-to-liquid transition. These calculations were performed using rate coefficients that are consistent with the principle of detailed balance and a new self-consistent form of the equilibrium distribution function for binary cluster concentrations. We found that the customary saddle point and growth path approximations are almost always valid and can fail only if the nucleating solution phase is significantly nonideal. For example, problems can arise when the vapor composition puts the system on the verge of partial liquid phase miscibility. When this occurs for comparable monomer impingement rates, nucleation still occurs through the saddle point, but the usual quadratic expansion for the cluster free energy is inadequate. When the two impingement rates differ significantly, however, the major particle flux may bypass the saddle point and cross a low ridge on the free energy surface. The dependence of the saddle point location on the gas phase composition is also important in initiating or terminating ridge crossing nucleation.

  15. Analysis of the statistical thermodynamic model for nonlinear binary protein adsorption equilibria.

    PubMed

    Zhou, Xiao-Peng; Su, Xue-Li; Sun, Yan

    2007-01-01

    The statistical thermodynamic (ST) model was used to study nonlinear binary protein adsorption equilibria on an anion exchanger. Single-component and binary protein adsorption isotherms of bovine hemoglobin (Hb) and bovine serum albumin (BSA) on DEAE Spherodex M were determined by batch adsorption experiments in 10 mM Tris-HCl buffer containing a specific NaCl concentration (0.05, 0.10, and 0.15 M) at pH 7.40. The ST model was found to depict the effect of ionic strength on the single-component equilibria well, with model parameters depending on ionic strength. Moreover, the ST model gave acceptable fitting to the binary adsorption data with the fitted single-component model parameters, leading to the estimation of the binary ST model parameter. The effects of ionic strength on the model parameters are reasonably interpreted by the electrostatic and thermodynamic theories. The effective charge of protein in adsorption phase can be separately calculated from the two categories of the model parameters, and the values obtained from the two methods are consistent. The results demonstrate the utility of the ST model for describing nonlinear binary protein adsorption equilibria.

  16. Thermodynamic properties of ammonia-water mixtures for power cycles

    SciTech Connect

    Thorin, E. |; Dejfors, C.; Svedberg, G.

    1998-03-01

    Power cycles with ammonia-water mixtures as working fluids have been shown to reach higher thermal efficiencies than the traditional steam turbine (Rankine) cycle with water as the working fluid. Different correlations for the thermodynamic properties of ammonia-water mixtures have been used in studies of ammonia-water mixture cycles described in the literature. Four of these correlations are compared in this paper. The differences in thermal efficiencies for a bottoming Kalina cycle when these four property correlations are used are in the range 0.5 to 3.3%. The properties for saturated liquid and vapor according to three of the correlations and available experimental data are also compared at high pressures and temperatures [up to 20 MPa and 337 C (610 K)]. The difference in saturation temperature for the different correlations is up to 20%, and the difference in saturation enthalpy is as high as 100% when the pressure is 20 MPa.

  17. Correlation between thermodynamic efficiency and ecological cyclicity for thermodynamic power cycles.

    PubMed

    Layton, Astrid; Reap, John; Bras, Bert; Weissburg, Marc

    2012-01-01

    A sustainable global community requires the successful integration of environment and engineering. In the public and private sectors, designing cyclical ("closed loop") resource networks increasingly appears as a strategy employed to improve resource efficiency and reduce environmental impacts. Patterning industrial networks on ecological ones has been shown to provide significant improvements at multiple levels. Here, we apply the biological metric cyclicity to 28 familiar thermodynamic power cycles of increasing complexity. These cycles, composed of turbines and the like, are scientifically very different from natural ecosystems. Despite this difference, the application results in a positive correlation between the maximum thermal efficiency and the cyclic structure of the cycles. The immediate impact of these findings results in a simple method for comparing cycles to one another, higher cyclicity values pointing to those cycles which have the potential for a higher maximum thermal efficiency. Such a strong correlation has the promise of impacting both natural ecology and engineering thermodynamics and provides a clear motivation to look for more fundamental scientific connections between natural and engineered systems. PMID:23251638

  18. Correlation between Thermodynamic Efficiency and Ecological Cyclicity for Thermodynamic Power Cycles

    PubMed Central

    Layton, Astrid; Reap, John; Bras, Bert; Weissburg, Marc

    2012-01-01

    A sustainable global community requires the successful integration of environment and engineering. In the public and private sectors, designing cyclical (“closed loop”) resource networks increasingly appears as a strategy employed to improve resource efficiency and reduce environmental impacts. Patterning industrial networks on ecological ones has been shown to provide significant improvements at multiple levels. Here, we apply the biological metric cyclicity to 28 familiar thermodynamic power cycles of increasing complexity. These cycles, composed of turbines and the like, are scientifically very different from natural ecosystems. Despite this difference, the application results in a positive correlation between the maximum thermal efficiency and the cyclic structure of the cycles. The immediate impact of these findings results in a simple method for comparing cycles to one another, higher cyclicity values pointing to those cycles which have the potential for a higher maximum thermal efficiency. Such a strong correlation has the promise of impacting both natural ecology and engineering thermodynamics and provides a clear motivation to look for more fundamental scientific connections between natural and engineered systems. PMID:23251638

  19. Perform Thermodynamics Measurements on Fuel Cycle Case Study Systems

    SciTech Connect

    Leigh R. Martin

    2014-09-01

    This document was prepared to meet FCR&D level 3 milestone M3FT-14IN0304022, “Perform Thermodynamics Measurements on Fuel Cycle Case Study Systems.” This work was carried out under the auspices of the Thermodynamics and Kinetics FCR&D work package. This document reports preliminary work in support of determining the thermodynamic parameters for the ALSEP process. The ALSEP process is a mixed extractant system comprised of a cation exchanger 2-ethylhexyl-phosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) and a neutral solvating extractant N,N,N’,N’-tetraoctyldiglycolamide (TODGA). The extractant combination produces complex organic phase chemistry that is challenging for traditional measurement techniques. To neutralize the complexity, temperature dependent solvent extraction experiments were conducted with neat TODGA and scaled down concentrations of the ALSEP formulation to determine the enthalpies of extraction for the two conditions. A full set of thermodynamic data for Eu, Am, and Cm extraction by TODGA from 3.0 M HNO3 is reported. These data are compared to previous extraction results from a 1.0 M HNO3 aqueous medium, and a short discussion of the mixed HEH[EHP]/TODGA system results is offered.

  20. Biological catalysis of the hydrological cycle: life's thermodynamic function

    NASA Astrophysics Data System (ADS)

    Michaelian, K.

    2011-01-01

    Darwinian theory depicts life as being overwhelmingly consumed by a fight for survival in a hostile environment. However, from a thermodynamic perspective, life is a dynamic out of equilibrium process, stabilizing and coevolving in concert with its abiotic environment. The living component of the biosphere on the surface of the Earth of greatest biomass, the plants and cyanobacteria, are involved in the transpiration of a vast amount of water. Transpiration is part of the global water cycle, and it is this cycle that distinguishes Earth from its apparently life barren neighboring planets, Venus and Mars. The dissipation of sunlight into heat by organic molecules in the biosphere and its coupling to the water cycle (as well as other abiotic processes), is by far the greatest entropy producing process occurring on Earth. Life, from this perspective, can be viewed as performing an important thermodynamic function; acting as a dynamic catalyst by aiding irreversible abiotic process such as the water cycle, hurricanes, and ocean and wind currents to produce entropy. The role of animals in this view is that of unwitting but dedicated servants of the plants and cyanobacteria, helping them to grow and to spread into initially inhospitable areas.

  1. Thermodynamic coarsening arrested by viscous fingering in partially miscible binary mixtures

    NASA Astrophysics Data System (ADS)

    Fu, Xiaojing; Cueto-Felgueroso, Luis; Juanes, Ruben

    2016-09-01

    We study the evolution of binary mixtures far from equilibrium, and show that the interplay between phase separation and hydrodynamic instability can arrest the Ostwald ripening process characteristic of nonflowing mixtures. We describe a model binary system in a Hele-Shaw cell using a phase-field approach with explicit dependence of both phase fraction and mass concentration. When the viscosity contrast between phases is large (as is the case for gas and liquid phases), an imposed background flow leads to viscous fingering, phase branching, and pinch off. This dynamic flow disorder limits phase growth and arrests thermodynamic coarsening. As a result, the system reaches a regime of statistical steady state in which the binary mixture is permanently driven away from equilibrium.

  2. Thermodynamic scaling of the shear viscosity of Mie n-6 fluids and their binary mixtures.

    PubMed

    Delage-Santacreu, Stephanie; Galliero, Guillaume; Hoang, Hai; Bazile, Jean-Patrick; Boned, Christian; Fernandez, Josefa

    2015-05-01

    In this work, we have evaluated the applicability of the so-called thermodynamic scaling and the isomorph frame to describe the shear viscosity of Mie n-6 fluids of varying repulsive exponents (n = 8, 12, 18, 24, and 36). Furthermore, the effectiveness of the thermodynamic scaling to deal with binary mixtures of Mie n-6 fluids has been explored as well. To generate the viscosity database of these fluids, extensive non-equilibrium molecular dynamics simulations have been performed for various thermodynamic conditions. Then, a systematic approach has been used to determine the gamma exponent value (γ) characteristic of the thermodynamic scaling approach for each system. In addition, the applicability of the isomorph theory with a density dependent gamma has been confirmed in pure fluids. In both pure fluids and mixtures, it has been found that the thermodynamic scaling with a constant gamma is sufficient to correlate the viscosity data on a large range of thermodynamic conditions covering liquid and supercritical states as long as the density is not too high. Interestingly, it has been obtained that, in pure fluids, the value of γ is directly proportional to the repulsive exponent of the Mie potential. Finally, it has been found that the value of γ in mixtures can be deduced from those of the pure component using a simple logarithmic mixing rule.

  3. Thermodynamic scaling of the shear viscosity of Mie n-6 fluids and their binary mixtures

    NASA Astrophysics Data System (ADS)

    Delage-Santacreu, Stephanie; Galliero, Guillaume; Hoang, Hai; Bazile, Jean-Patrick; Boned, Christian; Fernandez, Josefa

    2015-05-01

    In this work, we have evaluated the applicability of the so-called thermodynamic scaling and the isomorph frame to describe the shear viscosity of Mie n-6 fluids of varying repulsive exponents (n = 8, 12, 18, 24, and 36). Furthermore, the effectiveness of the thermodynamic scaling to deal with binary mixtures of Mie n-6 fluids has been explored as well. To generate the viscosity database of these fluids, extensive non-equilibrium molecular dynamics simulations have been performed for various thermodynamic conditions. Then, a systematic approach has been used to determine the gamma exponent value (γ) characteristic of the thermodynamic scaling approach for each system. In addition, the applicability of the isomorph theory with a density dependent gamma has been confirmed in pure fluids. In both pure fluids and mixtures, it has been found that the thermodynamic scaling with a constant gamma is sufficient to correlate the viscosity data on a large range of thermodynamic conditions covering liquid and supercritical states as long as the density is not too high. Interestingly, it has been obtained that, in pure fluids, the value of γ is directly proportional to the repulsive exponent of the Mie potential. Finally, it has been found that the value of γ in mixtures can be deduced from those of the pure component using a simple logarithmic mixing rule.

  4. Thermodynamic scaling of the shear viscosity of Mie n-6 fluids and their binary mixtures

    SciTech Connect

    Delage-Santacreu, Stephanie; Galliero, Guillaume Hoang, Hai; Bazile, Jean-Patrick; Boned, Christian; Fernandez, Josefa

    2015-05-07

    In this work, we have evaluated the applicability of the so-called thermodynamic scaling and the isomorph frame to describe the shear viscosity of Mie n-6 fluids of varying repulsive exponents (n = 8, 12, 18, 24, and 36). Furthermore, the effectiveness of the thermodynamic scaling to deal with binary mixtures of Mie n-6 fluids has been explored as well. To generate the viscosity database of these fluids, extensive non-equilibrium molecular dynamics simulations have been performed for various thermodynamic conditions. Then, a systematic approach has been used to determine the gamma exponent value (γ) characteristic of the thermodynamic scaling approach for each system. In addition, the applicability of the isomorph theory with a density dependent gamma has been confirmed in pure fluids. In both pure fluids and mixtures, it has been found that the thermodynamic scaling with a constant gamma is sufficient to correlate the viscosity data on a large range of thermodynamic conditions covering liquid and supercritical states as long as the density is not too high. Interestingly, it has been obtained that, in pure fluids, the value of γ is directly proportional to the repulsive exponent of the Mie potential. Finally, it has been found that the value of γ in mixtures can be deduced from those of the pure component using a simple logarithmic mixing rule.

  5. Thermodynamic Cycle Analysis of Magnetohydrodynamic-Bypass Hypersonic Airbreathing Engines

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Cole, J. W.; Bityurin, V. A.; Lineberry, J. T.

    2000-01-01

    The prospects for realizing a magnetohydrodynamic (MHD) bypass hypersonic airbreathing engine are examined from the standpoint of fundamental thermodynamic feasibility. The MHD-bypass engine, first proposed as part of the Russian AJAX vehicle concept, is based on the idea of redistributing energy between various stages of the propulsion system flow train. The system uses an MHD generator to extract a portion of the aerodynamic heating energy from the inlet and an MHD accelerator to reintroduce this power as kinetic energy in the exhaust stream. In this way, the combustor entrance Mach number can be limited to a specified value even as the flight Mach number increases. Thus, the fuel and air can be efficiently mixed and burned within a practical combustor length, and the flight Mach number operating envelope can be extended. In this paper, we quantitatively assess the performance potential and scientific feasibility of MHD-bypass engines using a simplified thermodynamic analysis. This cycle analysis, based on a thermally and calorically perfect gas, incorporates a coupled MHD generator-accelerator system and accounts for aerodynamic losses and thermodynamic process efficiencies in the various engin components. It is found that the flight Mach number range can be significantly extended; however, overall performance is hampered by non-isentropic losses in the MHD devices.

  6. Ideal thermodynamic processes of oscillatory-flow regenerative engines will go to ideal stirling cycle?

    NASA Astrophysics Data System (ADS)

    Luo, Ercang

    2012-06-01

    This paper analyzes the thermodynamic cycle of oscillating-flow regenerative machines. Unlike the classical analysis of thermodynamic textbooks, the assumptions for pistons' movement limitations are not needed and only ideal flowing and heat transfer should be maintained in our present analysis. Under such simple assumptions, the meso-scale thermodynamic cycles of each gas parcel in typical locations of a regenerator are analyzed. It is observed that the gas parcels in the regenerator undergo Lorentz cycle in different temperature levels, whereas the locus of all gas parcels inside the regenerator is the Ericson-like thermodynamic cycle. Based on this new finding, the author argued that ideal oscillating-flow machines without heat transfer and flowing losses is not the Stirling cycle. However, this new thermodynamic cycle can still achieve the same efficiency of the Carnot heat engine and can be considered a new reversible thermodynamic cycle under two constant-temperature heat sinks.

  7. Internal dissipation and heat leaks in quantum thermodynamic cycles

    NASA Astrophysics Data System (ADS)

    Correa, Luis A.; Palao, José P.; Alonso, Daniel

    2015-09-01

    The direction of the steady-state heat currents across a generic quantum system connected to multiple baths may be engineered to realize virtually any thermodynamic cycle. In spite of their versatility, such continuous energy-conversion systems are generally unable to operate at maximum efficiency due to non-negligible sources of irreversible entropy production. In this paper we introduce a minimal model of irreversible absorption chiller. We identify and characterize the different mechanisms responsible for its irreversibility, namely heat leaks and internal dissipation, and gauge their relative impact in the overall cooling performance. We also propose reservoir engineering techniques to minimize these detrimental effects. Finally, by looking into a known three-qubit embodiment of the absorption cooling cycle, we illustrate how our simple model may help to pinpoint the different sources of irreversibility naturally arising in more complex practical heat devices.

  8. Experimental determination and thermodynamic modeling of the Ni-Re binary system

    NASA Astrophysics Data System (ADS)

    Yaqoob, Khurram; Joubert, Jean-Marc

    2012-12-01

    The phase diagram of the Ni-Re binary system has been partially reinvestigated by chemical, structural and thermal characterization of the arc melted alloys. The experimental results obtained during the present investigation were combined with the literature data and a new phase diagram of the Ni-Re binary system is proposed. In comparison with the Ni-Re phase diagram proposed by Nash et al. in 1985 [1], significant differences in the homogeneity domains, freezing ranges and peritectic reaction temperature were evidenced. On the other hand, thermodynamic modeling of the studied system by using the new experimental information has also been carried out with the help of the CALPHAD method. The calculated Ni-Re phase diagram showed a good agreement with the selected experimental information.

  9. A thermodynamic review of cryogenic refrigeration cycles for liquefaction of natural gas

    NASA Astrophysics Data System (ADS)

    Chang, Ho-Myung

    2015-12-01

    A thermodynamic review is presented on cryogenic refrigeration cycles for the liquefaction process of natural gas. The main purpose of this review is to examine the thermodynamic structure of various cycles and provide a theoretical basis for selecting a cycle in accordance with different needs and design criteria. Based on existing or proposed liquefaction processes, sixteen ideal cycles are selected and the optimal conditions to achieve their best thermodynamic performance are investigated. The selected cycles include standard and modified versions of Joule-Thomson (JT) cycle, Brayton cycle, and their combined cycle with pure refrigerants (PR) or mixed refrigerants (MR). Full details of the cycles are presented and discussed in terms of FOM (figure of merit) and thermodynamic irreversibility. In addition, a new method of nomenclature is proposed to clearly identify the structure of cycles by abbreviation.

  10. Thermodynamics of interfacial energy in binary metallic systems: influence of adsorption on dihedral angles

    SciTech Connect

    Shimizu, I. . E-mail: ichiko@eps.s.u-tiokyo.ac.jp; Takei, Y.

    2005-02-01

    The solid-liquid interfacial energy (or interfacial tension) was investigated by the lattice-liquid statistical calculation and by the Cahn-Hilliard theory of interface. Interfacial energies in binary metallic systems were estimated from a few bulk thermodynamic properties, i.e., melting temperature, entropy of fusion, and the critical temperature of the liquid phase. In eutectic systems, interfacial energy gradually increases with decreasing concentration of the solid species in the liquid. In monotectic systems, interfacial thickening occurs and interfacial energy is reduced around the liquid immiscibility gap. The results of calculation explain the experimental data of dihedral angles fairly well.

  11. The Thermodynamics of Marine Biogeochemical Cycles: Lotka Revisited

    NASA Astrophysics Data System (ADS)

    Vallino, Joseph J.; Algar, Christopher K.

    2016-01-01

    Nearly 100 years ago, Alfred Lotka published two short but insightful papers describing how ecosystems may organize. Principally, Lotka argued that ecosystems will grow in size and that their cycles will spin faster via predation and nutrient recycling so as to capture all available energy, and that evolution and natural selection are the mechanisms by which this occurs and progresses. Lotka's ideas have often been associated with the maximum power principle, but they are more consistent with recent developments in nonequilibrium thermodynamics, which assert that complex systems will organize toward maximum entropy production (MEP). In this review, we explore Lotka's hypothesis within the context of the MEP principle, as well as how this principle can be used to improve marine biogeochemistry models. We need to develop the equivalent of a climate model, as opposed to a weather model, to understand marine biogeochemistry on longer timescales, and adoption of the MEP principle can help create such models.

  12. The Thermodynamics of Marine Biogeochemical Cycles: Lotka Revisited.

    PubMed

    Vallino, Joseph J; Algar, Christopher K

    2016-01-01

    Nearly 100 years ago, Alfred Lotka published two short but insightful papers describing how ecosystems may organize. Principally, Lotka argued that ecosystems will grow in size and that their cycles will spin faster via predation and nutrient recycling so as to capture all available energy, and that evolution and natural selection are the mechanisms by which this occurs and progresses. Lotka's ideas have often been associated with the maximum power principle, but they are more consistent with recent developments in nonequilibrium thermodynamics, which assert that complex systems will organize toward maximum entropy production (MEP). In this review, we explore Lotka's hypothesis within the context of the MEP principle, as well as how this principle can be used to improve marine biogeochemistry models. We need to develop the equivalent of a climate model, as opposed to a weather model, to understand marine biogeochemistry on longer timescales, and adoption of the MEP principle can help create such models.

  13. Experimental determination and thermodynamic modeling of the Ni-Re binary system

    SciTech Connect

    Yaqoob, Khurram; Joubert, Jean-Marc

    2012-12-15

    The phase diagram of the Ni-Re binary system has been partially reinvestigated by chemical, structural and thermal characterization of the arc melted alloys. The experimental results obtained during the present investigation were combined with the literature data and a new phase diagram of the Ni-Re binary system is proposed. In comparison with the Ni-Re phase diagram proposed by Nash et al. in 1985 [1], significant differences in the homogeneity domains, freezing ranges and peritectic reaction temperature were evidenced. On the other hand, thermodynamic modeling of the studied system by using the new experimental information has also been carried out with the help of the CALPHAD method. The calculated Ni-Re phase diagram showed a good agreement with the selected experimental information. - Graphical abstract: Ni-Re phase diagram according to the present study. Highlights: Black-Right-Pointing-Pointer Re-investigation of the Ni-Re phase diagram. Black-Right-Pointing-Pointer Extended phase field of the hcp phase. Black-Right-Pointing-Pointer Different freezing ranges and peritectic reaction temperature. Black-Right-Pointing-Pointer Thermodynamic modeling of the studied system by using the CALPHAD method.

  14. A high temperature Rankine binary cycle for ground and space solar engine applications

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.; Lau, C.-V.

    1978-01-01

    A Rankine cycle covering the range of plasma temperatures possible from a solar radiation boiler is studied. The working fluid is potassium. A binary cycle with potassium as the topping cycle fluid and a conventional steam cycle as the bottoming cycle for earth-based applications is analyzed. Operation in conjunction with a wave energy exchanger is considered.

  15. THE ROLE OF KOZAI CYCLES IN NEAR-EARTH BINARY ASTEROIDS

    SciTech Connect

    Fang, Julia; Margot, Jean-Luc

    2012-03-15

    We investigate the Kozai mechanism in the context of near-Earth binaries and the Sun. The Kozai effect can lead to changes in eccentricity and inclination of the binary orbit, but it can be weakened or completely suppressed by other sources of pericenter precession, such as the oblateness of the primary body. Through numerical integrations including primary oblateness and three bodies (the two binary components and the Sun), we show that Kozai cycles cannot occur for the closely separated near-Earth binaries in our sample. We demonstrate that this is due to pericenter precession around the oblate primary, even for very small oblateness values. Since the majority of observed near-Earth binaries are not well separated, we predict that Kozai cycles do not play an important role in the orbital evolution of most near-Earth binaries. For a hypothetical wide binary modeled after 1998 ST27, the separation is large at 16 primary radii and so the orbital effects of primary oblateness are lessened. For this wide binary, we illustrate the possible excursions in eccentricity and inclination due to Kozai cycles as well as depict stable orientations for the binary's orbital plane. Unstable orientations lead to collisions between binary components, and we suggest that the Kozai effect acting in wide binaries may be a route to the formation of near-Earth contact binaries.

  16. Benzoic Acid and Chlorobenzoic Acids: Thermodynamic Study of the Pure Compounds and Binary Mixtures With Water.

    PubMed

    Reschke, Thomas; Zherikova, Kseniya V; Verevkin, Sergey P; Held, Christoph

    2016-03-01

    Benzoic acid is a model compound for drug substances in pharmaceutical research. Process design requires information about thermodynamic phase behavior of benzoic acid and its mixtures with water and organic solvents. This work addresses phase equilibria that determine stability and solubility. In this work, Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) was used to model the phase behavior of aqueous and organic solutions containing benzoic acid and chlorobenzoic acids. Absolute vapor pressures of benzoic acid and 2-, 3-, and 4-chlorobenzoic acid from literature and from our own measurements were used to determine pure-component PC-SAFT parameters. Two binary interaction parameters between water and/or benzoic acid were used to model vapor-liquid and liquid-liquid equilibria of water and/or benzoic acid between 280 and 413 K. The PC-SAFT parameters and 1 binary interaction parameter were used to model aqueous solubility of the chlorobenzoic acids. Additionally, solubility of benzoic acid in organic solvents was predicted without using binary parameters. All results showed that pure-component parameters for benzoic acid and for the chlorobenzoic acids allowed for satisfying modeling phase equilibria. The modeling approach established in this work is a further step to screen solubility and to predict the whole phase region of mixtures containing pharmaceuticals. PMID:26886302

  17. Thermodynamic analysis of organic Rankine cycle using dry working fluids

    SciTech Connect

    Wang, S.K.; Hung, T.C.

    1998-12-31

    Utilization of waste heat is not economically incentive to the industry once the temperature of the waste heat drops to a certain level. This is primarily due to a low efficiency when converting the energy of the waste heat to some forms of useful power. A Rankine cycle using organic fluids as working fluids, called organic Rankine cycle (ORC), is potentially feasible in recovering low-enthalpy containing heat sources. Nevertheless, an efficient operation of the ORC depends heavily on two factors: working conditions of the cycle and the thermodynamic properties of the working fluids. The main objective of this study is to investigate the effects of these two factors on the performance of the ORC. The working fluids under investigation are: benzene (C{sub 6}H), toluene (C{sub 7}H{sub 8}), p-xylene (C{sub 8}H{sub 10}), R113 and R123. Irreversibility of a system using various working fluids was studied since it represents the energy balance in recovering the waste heat. The study shows that the system efficiency increases as the inlet pressure of the turbine increases regardless of the working fluid used. Among the working fluids under investigation, p-xylene shows the highest efficiency while benzene the lowest. The study also shows that irreversibility depends on the type of heat source. Generally speaking, p-xylene has the lowest irreversibility in recovering a high temperature waste heat while R113 and R123 have a better performance in recovering a low temperature waste heat. In addition, an economic feasibility of ORC using various working fluids is given for ORC`s with commercial capacities.

  18. Thermodynamic Cycle Analysis of Magnetohydrodynamic-Bypass Airbreathing Hypersonic Engines

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Bityurin, Valentine A.; Lineberry, John T.

    1999-01-01

    Established analyses of conventional ramjet/scramjet performance characteristics indicate that a considerable decrease in efficiency can be expected at off-design flight conditions. This can be explained, in large part, by the deterioration of intake mass flow and limited inlet compression at low flight speeds and by the onset of thrust degradation effects associated with increased burner entry temperature at high flight speeds. In combination, these effects tend to impose lower and upper Mach number limits for practical flight. It has been noted, however, that Magnetohydrodynamic (MHD) energy management techniques represent a possible means for extending the flight Mach number envelope of conventional engines. By transferring enthalpy between different stages of the engine cycle, it appears that the onset of thrust degradation may be delayed to higher flight speeds. Obviously, the introduction of additional process inefficiencies is inevitable with this approach, but it is believed that these losses are more than compensated through optimization of the combustion process. The fundamental idea is to use MHD energy conversion processes to extract and bypass a portion of the intake kinetic energy around the burner. We refer to this general class of propulsion system as an MHD-bypass engine. In this paper, we quantitatively assess the performance potential and scientific feasibility of MHD-bypass airbreathing hypersonic engines using ideal gasdynamics and fundamental thermodynamic principles.

  19. Acoustic and Thermodynamic Properties of the Binary Liquid Mixture n-Octane + n-Dodecane

    NASA Astrophysics Data System (ADS)

    Khasanshin, T. S.; Golubeva, N. V.; Samuilov, V. S.; Shchemelev, A. P.

    2014-01-01

    The velocity of sound in the binary liquid mixture n-octane + n-dodecane has been investigated by the method of direct measurement of the pulse-transmission time in the interval of temperatures 298-433 K and pressures 0.1-100.1 MPa. The maximum measurement error amounts to 0.1%. The density, isobaric expansion coefficient, isobaric and isochoric heat capacities, and isothermal compressibility of a mixture of three compositions have been determined in the intervals of temperatures 298-393 K and pressures 0.1-100 MPa from the data on the velocity of sound. Also, the excess molar volume, the excess isothermal compressibility, and the deviation of the velocity of sound from its value for an ideal liquid have been determined. The coefficients of the Tate equation have been computed in the above temperature interval. A table of thermodynamic properties of the mixture has been presented.

  20. Acoustic and thermodynamic properties of the binary liquid system n-dodecane+ n-hexadecane

    NASA Astrophysics Data System (ADS)

    Khasanshin, T. S.; Samuilov, V. S.; Shchemelev, A. P.; Mosbach, F. M.

    2010-11-01

    By the method of direct measurement of the pulse-passage time, the velocity of sound in a binary liquid mixture n-dodecane+ n-hexadecane has been investigated in the temperature range 298-433 K and in the pressure range 0.1-100.1 MPa. The maximum measurement error is 0.1%. Experimental data on the velocity of sound for the investigated mixture have been obtained for the first time. On the basis of the data on the velocity of sound, we have determined the density, the isobaric expansion coefficient, the isobaric and isochoric heat capacities, and the isothermal compressibility coefficient of a mixture of three compositions in the 298-433 K temperature range and in the 0.1-100.1 MPa range of pressures. The coefficients of the Tate equations in the above range of parameters have been calculated. A table of thermodynamic properties of the mixture is presented.

  1. Combined cycle power unit with a binary system based on waste geothermal brine at Mutnovsk geothermal power plant

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Nikol'skii, A. I.; Semenov, V. N.

    2016-06-01

    The Russian geothermal power systems developed in the last few decades outperform their counterparts around the world in many respects. However, all Russian geothermal power stations employ steam as the geothermal fluid and discard the accompanying geothermal brine. In reality, the power of the existing Russian geothermal power stations may be increased without drilling more wells, if the waste brine is employed in combined cycle systems with steam and binary turbine units. For the example of the 50 MW Mutnovsk geothermal power plant, the optimal combined cycle power unit based on the waste geothermal brine is considered. It is of great interest to determine how the thermodynamic parameters of the secondary steam in the expansion unit and the pressure in the condenser affect the performance of the equipment in the combined cycle power unit at Mutnovsk geothermal power plant. For the utilization of the waste geothermal brine at Mutnovsk geothermal power plant, the optimal air temperature in the condensers of the combined cycle power unit is +5°C. The use of secondary steam obtained by flashing of the geothermal brine at Mutnovsk geothermal power plant 1 at a pressure of 0.2 MPa permits the generation of up to 8 MW of electric power in steam turbines and additional power of 5 MW in the turbines of the binary cycle.

  2. Thermodynamics and kinetics of binary nucleation in ideal-gas mixtures

    NASA Astrophysics Data System (ADS)

    Alekseechkin, Nikolay V.

    2015-08-01

    The nonisothermal single-component theory of droplet nucleation [N. V. Alekseechkin, Physica A 412, 186 (2014)] is extended to binary case; the droplet volume V, composition x, and temperature T are the variables of the theory. An approach based on macroscopic kinetics (in contrast to the standard microscopic model of nucleation operating with the probabilities of monomer attachment and detachment) is developed for the droplet evolution and results in the derived droplet motion equations in the space (V, x, T)—equations for V ˙ ≡ d V / d t , x ˙ , and T ˙ . The work W(V, x, T) of the droplet formation is obtained in the vicinity of the saddle point as a quadratic form with diagonal matrix. Also, the problem of generalizing the single-component Kelvin equation for the equilibrium vapor pressure to binary case is solved; it is presented here as a problem of integrability of a Pfaffian equation. The equation for T ˙ is shown to be the first law of thermodynamics for the droplet, which is a consequence of Onsager's reciprocal relations and the linked-fluxes concept. As an example of ideal solution for demonstrative numerical calculations, the o-xylene-m-xylene system is employed. Both nonisothermal and enrichment effects are shown to exist; the mean steady-state overheat of droplets and their mean steady-state enrichment are calculated with the help of the 3D distribution function. Some qualitative peculiarities of the nucleation thermodynamics and kinetics in the water-sulfuric acid system are considered in the model of regular solution. It is shown that there is a small kinetic parameter in the theory due to the small amount of the acid in the vapor and, as a consequence, the nucleation process is isothermal.

  3. Effects of Alloying on Nanoscale Grain Growth in Substitutional Binary Alloy System: Thermodynamics and Kinetics

    NASA Astrophysics Data System (ADS)

    Peng, Haoran; Chen, Yuzeng; Liu, Feng

    2015-11-01

    Applying the regular solution model, the Gibbs free energy of mixing for substitutional binary alloy system was constructed. Then, thermodynamic and kinetic parameters, e.g., driving force and solute drag force, controlling nanoscale grain growth of substitutional binary alloy systems were derived and compared to their generally accepted definitions and interpretations. It is suggested that for an actual grain growth process, the classical driving force P = γ/D ( γ the grain boundary (GB) energy, D the grain size) should be replaced by a new expression, i.e., P^' = γ /D - Δ P . Δ P represents the energy required to adjust nonequilibrium solute distribution to equilibrium solute distribution, which is equivalent to the generally accepted solute drag force impeding GB migration. By incorporating the derived new driving force for grain growth into the classical grain growth model, the reported grain growth behaviors of nanocrystalline Fe-4at. pct Zr and Pd-19at. pct Zr alloys were analyzed. On this basis, the effect of thermodynamic and kinetic parameters ( i.e., P, Δ P and the GB mobility ( M GB)) on nanoscale grain growth, were investigated. Upon grain growth, the decrease of P is caused by the reduction of γ as a result of solute segregation in GBs; the decrease of Δ P is, however, due to the decrease of grain growth velocity; whereas the decrease of M GB is attributed to the enhanced difference of solute molar fractions between the bulk and the GBs as well as the increased activation energy for GB diffusion.

  4. Thermodynamics and kinetics of binary nucleation in ideal-gas mixtures.

    PubMed

    Alekseechkin, Nikolay V

    2015-08-01

    The nonisothermal single-component theory of droplet nucleation [N. V. Alekseechkin, Physica A 412, 186 (2014)] is extended to binary case; the droplet volume V, composition x, and temperature T are the variables of the theory. An approach based on macroscopic kinetics (in contrast to the standard microscopic model of nucleation operating with the probabilities of monomer attachment and detachment) is developed for the droplet evolution and results in the derived droplet motion equations in the space (V, x, T)—equations for V̇≡dV/dt, ẋ, and Ṫ. The work W(V, x, T) of the droplet formation is obtained in the vicinity of the saddle point as a quadratic form with diagonal matrix. Also, the problem of generalizing the single-component Kelvin equation for the equilibrium vapor pressure to binary case is solved; it is presented here as a problem of integrability of a Pfaffian equation. The equation for Ṫ is shown to be the first law of thermodynamics for the droplet, which is a consequence of Onsager's reciprocal relations and the linked-fluxes concept. As an example of ideal solution for demonstrative numerical calculations, the o-xylene-m-xylene system is employed. Both nonisothermal and enrichment effects are shown to exist; the mean steady-state overheat of droplets and their mean steady-state enrichment are calculated with the help of the 3D distribution function. Some qualitative peculiarities of the nucleation thermodynamics and kinetics in the water-sulfuric acid system are considered in the model of regular solution. It is shown that there is a small kinetic parameter in the theory due to the small amount of the acid in the vapor and, as a consequence, the nucleation process is isothermal. PMID:26254656

  5. Combined First Principles Electronic Structure Calculations and Thermodynamic Study of Binary Alloys

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoqing

    In the past decade, density functional theory (DFT), combined with the highly precise computational methods and the increasing computer power, has become a most successful tool to study the physical properties of atoms, molecules, solids, surfaces and disordered systems. In this dissertation, we present a common framework, based on the density functional theory, to study the electronic structure, structural stability and the phase equilibria of both ordered compounds and solid solution of the binary alloys which usually have very small energy differences. As an illustrative example, we have made a systematic study on the Al-Li alloys which have become promising low density, high strength aerospace materials. The Al-Li ordered compounds are calculated by the all electron self-consistent, full potential linearized augmented plane wave (FLAPW) method within the local density approximation. All the stable and metastable phases are correctly predicted due to the high precision of the method. The phase stability in Al-Li alloys can be understood by our assumption that the Li atoms basically transfer their valence electrons in between the Al bonds and the resultant strengthened bonds stabilize the Al-Li compounds. The unusually high elastic modulus of the Al-Li alloys is due to the increased anisotropic Al bonding (decrease of the Poisson's ratio) with increasing Li content. Very good agreement with experiment is obtained. To utilize the existing highly precise band calculation method, we describe the Al-Li solid solution by a supercell method based on the "theory of locality". The relatively small size of a supercell is shown to give a very good description of Al-rich Al-Li solid solution. A thermodynamic model is proposed, as a first step, to calculate the phase diagrams of the binary alloys. The grand partition function, constructed from volume-dependent internal energies obtained from local-density total-energy supercell calculations, permits the determination of the

  6. First-Principles Calculations of Thermodynamic Properties and Phase Diagrams of Binary Substitutional Alloys

    NASA Astrophysics Data System (ADS)

    Asta, Mark David

    In this dissertation it is shown how quantum and statistical mechanical computational techniques can be combined in order to make possible the calculation of thermodynamic properties for solid-state binary substitutional alloy phases from first principles, i.e., from a knowledge of only basic crystallographic information and the atomic numbers of the alloy constituents. The framework which is discussed here for performing such calculations is based on the formalism of cluster expansions. Using this formalism the statistical mechanical problem of computing substitutional alloy thermodynamic properties can be reduced to that of solving a generalized Ising model. It is shown how the parameters describing atomic interactions in such an Ising model can be derived with the structure inversion method from the results of quantum mechanical calculations of zero-temperature total energies for a number of ordered stoichiometric alloy compounds sharing a common underlying parent structure. Once the parameters in the generalized Ising model have been derived, alloy thermodynamic properties can be calculated by a variety of statistical mechanical techniques. In the work presented here the quantum and statistical mechanical calculations have been performed using the linear muffin-tin orbital and cluster variation methods, respectively. These computational methods are both described in some detail. The formalism and computational techniques mentioned in the previous paragraph are applied to the study of alloy phase stability in the Ti-Al and Cd-Mg systems. For Cd -Mg an effort is made to determine the relative magnitudes of the contributions to the alloy free energy arising from configurational disorder, structural relaxations, as well as vibrational and electronic excitations. It is shown that when all of these different contributions to the free energy are included, the calculated solid-state portion of the composition-temperature phase diagram for the Cd -Mg system is in

  7. A thermodynamic study of waste heat recovery from GT-MHR using organic Rankine cycles

    NASA Astrophysics Data System (ADS)

    Yari, Mortaza; Mahmoudi, S. M. S.

    2011-02-01

    This paper presents an investigation on the utilization of waste heat from a gas turbine-modular helium reactor (GT-MHR) using different arrangements of organic Rankine cycles (ORCs) for power production. The considered organic Rankine cycles were: simple organic Rankine cycle (SORC), ORC with internal heat exchanger (HORC) and regenerative organic Rankine cycle (RORC). The performances of the combined cycles were studied from the point of view of first and second-laws of thermodynamics. Individual models were developed for each component and the effects of some important parameters such as compressor pressure ratio, turbine inlet temperature, and evaporator and environment temperatures on the efficiencies and on the exergy destruction rate were studied. Finally the combined cycles were optimized thermodynamically using the EES (Engineering Equation Solver) software. Based on the identical operating conditions for the GT-MHR cycle, a comparison between the three combined cycles and a simple GT-MHR cycle is also were made. This comparison was also carried out from the point of view of economics. The GT-MHR/SORC combined cycle proved to be the best among all the cycles from the point of view of both thermodynamics and economics. The efficiency of this cycle was about 10% higher than that of GT-MHR alone.

  8. Dixie Valley Binary Cycle Production Data 2013 YTD

    DOE Data Explorer

    Lee, Vitaly

    2013-10-18

    Proving the technical and economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the Dixie Valley Geothermal Power Plant. Monthly data for Jan 2013-September 2013

  9. Thermodynamic properties of gaseous fluorocarbons and isentropic equilibrium expansions of two binary mixtures of fluorocarbons and argon

    NASA Technical Reports Server (NTRS)

    Talcott, N. A., Jr.

    1977-01-01

    Equations and computer code are given for the thermodynamic properties of gaseous fluorocarbons in chemical equilibrium. In addition, isentropic equilibrium expansions of two binary mixtures of fluorocarbons and argon are included. The computer code calculates the equilibrium thermodynamic properties and, in some cases, the transport properties for the following fluorocarbons: CCl2F, CCl2F2, CBrF3, CF4, CHCl2F, CHF3, CCL2F-CCl2F, CCLF2-CClF2, CF3-CF3, and C4F8. Equilibrium thermodynamic properties are tabulated for six of the fluorocarbons(CCl3F, CCL2F2, CBrF3, CF4, CF3-CF3, and C4F8) and pressure-enthalpy diagrams are presented for CBrF3.

  10. Liquid-metal binary cycles for stationary power

    NASA Technical Reports Server (NTRS)

    Gutstein, M.; Furman, E. R.; Kaplan, G. M.

    1975-01-01

    The use of topping cycles to increase electric power plant efficiency is discussed, with particular attention to mercury and alkali metal Rankine cycle systems that could be considered for topping cycle applications. An overview of this technology, possible system applications, the required development, and possible problem areas is presented.

  11. The thermodynamic cycle models for geothermal power plants by considering the working fluid characteristic

    NASA Astrophysics Data System (ADS)

    Mulyana, Cukup; Adiprana, Reza; Saad, Aswad H.; M. Ridwan, H.; Muhammad, Fajar

    2016-02-01

    The scarcity of fossil energy accelerates the development of geothermal power plant in Indonesia. The main issue is how to minimize the energy loss from the geothermal working fluid so that the power generated can be increased. In some of geothermal power plant, the hot water which is resulted from flashing is flown to injection well, and steam out from turbine is condensed in condenser, while the temperature and pressure of the working fluid is still high. The aim of this research is how the waste energy can be re-used as energy source to generate electric power. The step of the research is started by studying the characteristics of geothermal fluid out from the well head. The temperature of fluid varies from 140°C - 250°C, the pressure is more than 7 bar and the fluid phase are liquid, gas, or mixing phase. Dry steam power plant is selected for vapor dominated source, single or multiple flash power plant is used for dominated water with temperature > 225°C, while the binary power plant is used for low temperature of fluid < 160°C. Theoretically, the process in the power plant can be described by thermodynamic cycle. Utilizing the heat loss of the brine and by considering the broad range of working fluid temperature, the integrated geothermal power plant has been developed. Started with two ordinary single flash power plants named unit 1 and unit 2, with the temperature 250°C resulting power is W1'+W2'. The power is enhanced by utilizing the steam that is out from first stage of the turbine by inputting the steam to the third stage, the power of the plant increase with W1''+W2" or 10% from the original power. By using flasher, the water from unit 1 and 2 is re-flashed at 200°C, and the steam is used to drive the turbine in unit 3, while the water is re-flashed at the temperature170°C and the steam is flown to the same turbine (unit 3) resulting the power of W3+W4. Using the fluid enthalpy, the calculated power of these double and triple flash power plant

  12. Thermodynamic analysis of multicomponent working fluids for Rankine bottoming cycle applications

    SciTech Connect

    Ash, J.E.

    1984-01-01

    The basic equations underlying a computer code are developed to describe the thermodynamic behavior of multicomponent working fluids in Rankine cycles. The code is to be employed in the performance analysis of Rankine bottoming cycle systems. The performance of such systems depends strongly on the working fluid characteristics. The introduction of multicomponent mixtures makes available a broad spectrum of fluid properties achievable by varying the mixture composition. The code provides a tool to analytically vary the mixture composition to optimize cycle performance.

  13. Thermodynamic Cycle and CFD Analyses for Hydrogen Fueled Air-breathing Pulse Detonation Engines

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.; Yungster, Shaye

    2002-01-01

    This paper presents the results of a thermodynamic cycle analysis of a pulse detonation engine (PDE) using a hydrogen-air mixture at static conditions. The cycle performance results, namely the specific thrust, fuel consumption and impulse are compared to a single cycle CFD analysis for a detonation tube which considers finite rate chemistry. The differences in the impulse values were indicative of the additional performance potential attainable in a PDE.

  14. On the thermal efficiency of power cycles in finite time thermodynamics

    NASA Astrophysics Data System (ADS)

    Momeni, Farhang; Morad, Mohammad Reza; Mahmoudi, Ashkan

    2016-09-01

    The Carnot, Diesel, Otto, and Brayton power cycles are reconsidered endoreversibly in finite time thermodynamics (FTT). In particular, the thermal efficiency of these standard power cycles is compared to the well-known results in classical thermodynamics. The present analysis based on FTT modelling shows that a reduction in both the maximum and minimum temperatures of the cycle causes the thermal efficiency to increase. This is antithetical to the existing trend in the classical references. Under the assumption of endoreversibility, the relation between the efficiencies is also changed to {η }{{Carnot}}\\gt {η }{{Brayton}}\\gt {η }{{Diesel}}\\gt {η }{{Otto}}, which is again very different from the corresponding classical results. The present results benefit a better understanding of the important role of irreversibility on heat engines in classical thermodynamics.

  15. The Thermodynamics of the Krebs Cycle and Related Compounds

    NASA Astrophysics Data System (ADS)

    Miller, Stanley L.; Smith-Magowan, David

    1990-07-01

    A survey is made of the enthalpies of formation, third law entropies and Gibbs energies available for Krebs cycle and related compounds. These include formate, acetate, succinate, fumarate, glycine, alanine, aspartate and glutamate. The potential of the NAD+/NADH couple is recalculated based on the ethanol/acetaldehyde and isopropanol/acetone equilibria. The reported enzyme catalyzed equilibrium constants of the Krebs cycle reactions are evaluated with estimated errors. These 28 equilibria form a network of reactions that is solved by a least squares regression procedure giving Gibbs energies of formation for 21 Krebs cycle and related compounds. They appear to be accurate to ±0.4 kJṡmol-1 for some compounds but ±1 kJṡmol-1 in less favorable cases. This procedure indicates which third law ΔfG and enzyme equilibria are inaccurate, and allows very accurate ΔfG to be determined for compounds related to the Krebs cycle by measuring enzyme equilibrium constants.

  16. Thermodynamic limits of hydrologic cycling within the Earth system: concepts, estimates and implications

    NASA Astrophysics Data System (ADS)

    Kleidon, A.; Renner, M.

    2013-03-01

    The hydrologic cycle results from the combination of energy conversions and atmospheric transport, and the laws of thermodynamics set limits to both. Here, we apply thermodynamics to derive the limits of the strength of hydrologic cycling within the Earth system and the properties and processes that shape these limits. We set up simple models to derive analytical expressions of the limits of evaporation and precipitation in relation to vertical and horizontal differences in solar radiative forcing. These limits result from a fundamental trade-off by which a greater evaporation rate reduces the temperature gradient and thus the driver for atmospheric motion that exchanges moistened air from the surface with the drier air aloft. The limits on hydrologic cycling thus reflect the strong interaction between the hydrologic flux, motion, and the driving gradient. Despite the simplicity of the models, they yield estimates for the limits of hydrologic cycling that are within the observed magnitude, suggesting that the global hydrologic cycle operates near its maximum strength. We close with a discussion of how thermodynamic limits can provide a better characterization of the interaction of vegetation and human activity with hydrologic cycling.

  17. Thermodynamic limits of hydrologic cycling within the Earth system: concepts, estimates and implications

    NASA Astrophysics Data System (ADS)

    Kleidon, A.; Renner, M.

    2013-07-01

    The hydrologic cycle results from the combination of energy conversions and atmospheric transport, and the laws of thermodynamics set limits to both. Here, we apply thermodynamics to derive the limits of the strength of hydrologic cycling within the Earth system and about the properties and processes that shape these limits. We set up simple models to derive analytical expressions of the limits of evaporation and precipitation in relation to vertical and horizontal differences in solar radiative forcing. These limits result from a fundamental trade-off by which a greater evaporation rate reduces the temperature gradient and thus the driver for atmospheric motion that exchanges moistened air from the surface with the drier air aloft. The limits on hydrologic cycling thus reflect the strong interaction between the hydrologic flux, motion, and the driving gradient. Despite the simplicity of the models, they yield estimates for the limits of hydrologic cycling that are within the observed magnitude, suggesting that the global hydrologic cycle operates near its maximum strength. We close with a discussion of how thermodynamic limits can provide a better characterization of the interaction of vegetation and human activity with hydrologic cycling.

  18. Similarity between quantum mechanics and thermodynamics: entropy, temperature, and Carnot cycle.

    PubMed

    Abe, Sumiyoshi; Okuyama, Shinji

    2011-02-01

    The similarity between quantum mechanics and thermodynamics is discussed. It is found that if the Clausius equality is imposed on the Shannon entropy and the analog of the quantity of heat, then the value of the Shannon entropy comes to formally coincide with that of the von Neumann entropy of the canonical density matrix, and pure-state quantum mechanics apparently transmutes into quantum thermodynamics. The corresponding quantum Carnot cycle of a simple two-state model of a particle confined in a one-dimensional infinite potential well is studied, and its efficiency is shown to be identical to the classical one.

  19. Theoretical Analysis of Heat Pump Cycle Characteristics with Pure Refrigerants and Binary Refrigerant Mixtures

    NASA Astrophysics Data System (ADS)

    Kagawa, Noboru; Uematsu, Masahiko; Watanabe, Koichi

    In recent years there has been an increasing interest of the use of nonazeotropic binary mixtures to improve performance in heat pump systems, and to restrict the consumption of chlorofluorocarbon (CFC) refrigerants as internationally agreed-upon in the Montreal Protocol. However, the available knowledge on the thermophysical properties of mixtures is very much limited particularly with respect to quantitative information. In order to systematize cycle performance with Refrigerant 12 (CCl2F2) + Refrigerant 22 (CHClF2) and Refrigerant 22 + Refrigerant 114 (CClF2-CClF2) systems which are technically important halogenated refrigerant mixtures, the heat pump cycle analysis in case of using these mixtures was theoretically studied. It became clear that the maximum coefficients of performance with various pure refrigerants and binary refrigerant mixtures were obtained at the reduced condensing temperature being 0.9 when the same temperature difference between condensing and evaporating temperature was chosen.

  20. Anammox revisited: thermodynamic considerations in early studies of the microbial nitrogen cycle.

    PubMed

    Oren, Aharon

    2015-08-01

    This paper explores the early literature on the thermodynamics of processes in the microbial nitrogen cycle, evaluating parameters of transfer of energy which depends on the initial and final states of the system, the mechanism of the reactions involved and the rates of these reactions. Processes discussed include the anaerobic oxidation of ammonium (the anammox reaction), the use of inorganic nitrogen compounds as electron donors for anoxygenic photosynthesis, and the mechanism and bioenergetics of biological nitrogen fixation.

  1. Raft River binary-cycle geothermal pilot power plant final report

    SciTech Connect

    Bliem, C.J.; Walrath, L.F.

    1983-04-01

    The design and performance of a 5-MW(e) binary-cycle pilot power plant that used a moderate-temperature hydrothermal resource, with isobutane as a working fluid, are examined. Operating problems experienced and solutions found are discussed and recommendations are made for improvements to future power plant designs. The plant and individual systems are analyzed for design specification versus actual performance figures.

  2. Environmental assessmental, geothermal energy, Heber geothermal binary-cycle demonstration project: Imperial County, California

    SciTech Connect

    Not Available

    1980-10-01

    The proposed design, construction, and operation of a commercial-scale (45 MWe net) binary-cycle geothermal demonstration power plant are described using the liquid-dominated geothermal resource at Heber, Imperial County, California. The following are included in the environmental assessment: a description of the affected environment, potential environmental consequences of the proposed action, mitigation measures and monitoring plans, possible future developmental activities at the Heber anomaly, and regulations and permit requirements. (MHR)

  3. Spectroscopic and thermodynamic properties of hydrogen bonded water molecules in binary liquid mixtures

    NASA Astrophysics Data System (ADS)

    Bricknell, B. C.; Ford, T. A.; Letcher, T. M.

    1997-03-01

    Some relationships have been found between the infrared spectroscopic properties of water molecules hydrogen bonded to a number of bases in binary liquid mixtures, and the partial eolar excess enthalpies at infinite dilution of water of the solutions. The results suggest a new approach to the use of the well-known Badger-Bauer relationship.

  4. Development of a thermodynamic model for a cold cycle 3He-4He dilution refrigerator

    NASA Astrophysics Data System (ADS)

    Mueller, B. W.; Miller, F. K.

    2016-10-01

    A thermodynamic model of a 3He-4He cold cycle dilution refrigerator with no actively-driven mechanical components is developed and investigated. The refrigerator employs a reversible superfluid magnetic pump, passive check valves, a phase separation chamber, and a series of recuperative heat exchangers to continuously circulate 3He-4He and maintain a 3He concentration gradient across the mixing chamber. The model predicts cooling power and mixing chamber temperature for a range of design and operating parameters, allowing an evaluation of feasibility for potential 3He-4He cold cycle dilution refrigerator prototype designs. Model simulations for a prototype refrigerator design are presented.

  5. Thermodynamic analysis of liquefied natural gas (LNG) production cycle in APCI process

    NASA Astrophysics Data System (ADS)

    Nezhad, Shahrooz Abbasi; Shabani, Bezhan; Soleimani, Majid

    2012-12-01

    The appropriate production of liquefied natural gas (LNG) with least consuming energy and maximum efficiency is quite important. In this paper, LNG production cycle by means of APCI Process has been studied. Energy equilibrium equations and exergy equilibrium equations of each equipment in the APCI cycle were established. The equipments are described using rigorous thermodynamics and no significant simplification is assumed. Taken some operating parameters as key parameters, influences of these parameters on coefficient of performance (COP) and exergy efficiency of the cascading cycle were analyzed. The results indicate that COP and exergy efficiency will be improved with the increasing of the inlet pressure of MR (mixed refrigerant) compressors, the decreasing of the NG and MR after precooling process, outlet pressure of turbine, inlet temperature of MR compressor and NG temperature after cooling in main cryogenic heat exchanger (MCHE). The COP and exergy efficiency of the APCI cycle will be above 2% and 40%, respectively, after optimizing the key parameters.

  6. A New Thermodynamic Power Conversion Cycle and Heat Engine for Space Power Applications

    NASA Astrophysics Data System (ADS)

    Baker, Karl W.

    2004-02-01

    A new heat engine concept has been invented that operates on a new two-phase thermodynamic power conversion cycle. This device exploits the space flight proven technique of using a porous capillary structure to separate liquid from vapor through heat addition. This new thermodynamic cycle, the Baker cycle, is different from the existing Rankine because liquid and vapor are at different pressures and are separated during the phase change heat addition process as opposed to the Rankine cycle where liquid and vapor are at the same pressure and mixed during phase change heat addition. This new cycle also differs from Rankine because the heat addition process occurs at varying pressures and temperatures, where as in a Rankine cycle heat addition occurs at constant pressure. It is advantageous to apply this new cycle to space applications because management of the two-phase working fluid in micro gravity can be accomplished as never before using space flight proven Loop Heat Pipe and Capillary Pumped Loop technology. This new power system contains many components with significant flight heritage. Thermodynamic performance calculations are presented for several design cases. The new power cycle and system is inherently more efficient than single-phase systems because minimal compression power is required. One case shows 31.1% overall efficiency with a maximum working fluid temperature of 637.4 K. Since the heat addition process occurs at varying temperatures, waste heat from the spacecraft could be tapped and recovered to supply a large portion of the input energy. For the example cases discussed, between 63.1 to 84.4% of the total input energy could be waste heat. This new system could be used in conjunction with phase change thermal energy storage to supplement power production replacing batteries for solar low-earth-orbit applications. It could also be used as a power converter with a radioisotope heat source yielding efficiencies over 30% while requiring a maximum

  7. Thermodynamic properties of alloys of the binary In-La system

    NASA Astrophysics Data System (ADS)

    Shevchenko, M. A.; Ivanov, M. I.; Berezutski, V. V.; Sudavtsova, V. S.

    2016-06-01

    The thermochemical properties of melts of the binary In-La system were studied by the calorimetry method at 1250-1480 K over the whole concentration interval. It was shown that significant negative heat effects of mixing are characteristic features for these melts. Using the ideal associated solution (IAS) model, the activities of components, Gibbs energies and the entropies of mixing in the alloys, and the phase diagram of this system were calculated. They agree with the data from literature.

  8. Thermodynamic properties of alloys of the binary In-Yb system

    NASA Astrophysics Data System (ADS)

    Shevchenko, M. A.; Ivanov, M. I.; Berezutski, V. V.; Sudavtsova, V. S.

    2016-05-01

    The thermochemical properties of melts of the binary In-Yb system were studied by the calorimetry method at 1160-1380 K over the whole concentration interval. It was shown that significant negative heat effects of mixing are characteristic features for these melts. Using the ideal associated solution (IAS) model, the activities of components, Gibbs energies and the entropies of mixing in the alloys, and the phase diagram of this system were calculated. They agree with the data from literature.

  9. Irreversible thermodynamics of open chemical networks. I. Emergent cycles and broken conservation laws.

    PubMed

    Polettini, Matteo; Esposito, Massimiliano

    2014-07-14

    In this paper and Paper II, we outline a general framework for the thermodynamic description of open chemical reaction networks, with special regard to metabolic networks regulating cellular physiology and biochemical functions. We first introduce closed networks "in a box", whose thermodynamics is subjected to strict physical constraints: the mass-action law, elementarity of processes, and detailed balance. We further digress on the role of solvents and on the seemingly unacknowledged property of network independence of free energy landscapes. We then open the system by assuming that the concentrations of certain substrate species (the chemostats) are fixed, whether because promptly regulated by the environment via contact with reservoirs, or because nearly constant in a time window. As a result, the system is driven out of equilibrium. A rich algebraic and topological structure ensues in the network of internal species: Emergent irreversible cycles are associated with nonvanishing affinities, whose symmetries are dictated by the breakage of conservation laws. These central results are resumed in the relation a + b = s(Y) between the number of fundamental affinities a, that of broken conservation laws b and the number of chemostats s(Y). We decompose the steady state entropy production rate in terms of fundamental fluxes and affinities in the spirit of Schnakenberg's theory of network thermodynamics, paving the way for the forthcoming treatment of the linear regime, of efficiency and tight coupling, of free energy transduction, and of thermodynamic constraints for network reconstruction. PMID:25028009

  10. Irreversible thermodynamics of open chemical networks. I. Emergent cycles and broken conservation laws

    SciTech Connect

    Polettini, Matteo Esposito, Massimiliano

    2014-07-14

    In this paper and Paper II, we outline a general framework for the thermodynamic description of open chemical reaction networks, with special regard to metabolic networks regulating cellular physiology and biochemical functions. We first introduce closed networks “in a box”, whose thermodynamics is subjected to strict physical constraints: the mass-action law, elementarity of processes, and detailed balance. We further digress on the role of solvents and on the seemingly unacknowledged property of network independence of free energy landscapes. We then open the system by assuming that the concentrations of certain substrate species (the chemostats) are fixed, whether because promptly regulated by the environment via contact with reservoirs, or because nearly constant in a time window. As a result, the system is driven out of equilibrium. A rich algebraic and topological structure ensues in the network of internal species: Emergent irreversible cycles are associated with nonvanishing affinities, whose symmetries are dictated by the breakage of conservation laws. These central results are resumed in the relation a + b = s{sup Y} between the number of fundamental affinities a, that of broken conservation laws b and the number of chemostats s{sup Y}. We decompose the steady state entropy production rate in terms of fundamental fluxes and affinities in the spirit of Schnakenberg's theory of network thermodynamics, paving the way for the forthcoming treatment of the linear regime, of efficiency and tight coupling, of free energy transduction, and of thermodynamic constraints for network reconstruction.

  11. Irreversible thermodynamics of open chemical networks. I. Emergent cycles and broken conservation laws

    NASA Astrophysics Data System (ADS)

    Polettini, Matteo; Esposito, Massimiliano

    2014-07-01

    In this paper and Paper II, we outline a general framework for the thermodynamic description of open chemical reaction networks, with special regard to metabolic networks regulating cellular physiology and biochemical functions. We first introduce closed networks "in a box", whose thermodynamics is subjected to strict physical constraints: the mass-action law, elementarity of processes, and detailed balance. We further digress on the role of solvents and on the seemingly unacknowledged property of network independence of free energy landscapes. We then open the system by assuming that the concentrations of certain substrate species (the chemostats) are fixed, whether because promptly regulated by the environment via contact with reservoirs, or because nearly constant in a time window. As a result, the system is driven out of equilibrium. A rich algebraic and topological structure ensues in the network of internal species: Emergent irreversible cycles are associated with nonvanishing affinities, whose symmetries are dictated by the breakage of conservation laws. These central results are resumed in the relation a + b = sY between the number of fundamental affinities a, that of broken conservation laws b and the number of chemostats sY. We decompose the steady state entropy production rate in terms of fundamental fluxes and affinities in the spirit of Schnakenberg's theory of network thermodynamics, paving the way for the forthcoming treatment of the linear regime, of efficiency and tight coupling, of free energy transduction, and of thermodynamic constraints for network reconstruction.

  12. Irreversible thermodynamics of open chemical networks. I. Emergent cycles and broken conservation laws.

    PubMed

    Polettini, Matteo; Esposito, Massimiliano

    2014-07-14

    In this paper and Paper II, we outline a general framework for the thermodynamic description of open chemical reaction networks, with special regard to metabolic networks regulating cellular physiology and biochemical functions. We first introduce closed networks "in a box", whose thermodynamics is subjected to strict physical constraints: the mass-action law, elementarity of processes, and detailed balance. We further digress on the role of solvents and on the seemingly unacknowledged property of network independence of free energy landscapes. We then open the system by assuming that the concentrations of certain substrate species (the chemostats) are fixed, whether because promptly regulated by the environment via contact with reservoirs, or because nearly constant in a time window. As a result, the system is driven out of equilibrium. A rich algebraic and topological structure ensues in the network of internal species: Emergent irreversible cycles are associated with nonvanishing affinities, whose symmetries are dictated by the breakage of conservation laws. These central results are resumed in the relation a + b = s(Y) between the number of fundamental affinities a, that of broken conservation laws b and the number of chemostats s(Y). We decompose the steady state entropy production rate in terms of fundamental fluxes and affinities in the spirit of Schnakenberg's theory of network thermodynamics, paving the way for the forthcoming treatment of the linear regime, of efficiency and tight coupling, of free energy transduction, and of thermodynamic constraints for network reconstruction.

  13. HESS Opinions "Biological catalysis of the hydrological cycle: life's thermodynamic function"

    NASA Astrophysics Data System (ADS)

    Michaelian, K.

    2012-08-01

    Darwinian theory depicts life as being overwhelmingly consumed by a fight for survival in a hostile environment. However, from a thermodynamic perspective, life is a dynamic, out of equilibrium process, stabilizing and coevolving in concert with its abiotic environment. The living components of the biosphere on the Earth's surface of greatest biomass, the plants and cyanobacteria, are involved in the transpiration of a vast amount of water. Transpiration is part of the global water cycle, and it is this cycle that distinguishes Earth from its apparently life-barren neighboring planets, Venus and Mars. The dissipation of sunlight into heat by organic molecules in the biosphere, and its coupling to the water cycle (as well as other abiotic processes), is by far the greatest entropy-producing process occurring on Earth. Life, from this perspective, can be viewed as performing an important thermodynamic function, acting as a dynamic catalyst by aiding irreversible abiotic processes such as the water cycle, hurricanes, and ocean and wind currents to produce entropy. The role of animals in this view is that of unwitting but dedicated servants of the plants and cyanobacteria, helping them to grow, and to spread into initially inhospitable areas.

  14. Binary Gene Expression Patterning of the Molt Cycle: The Case of Chitin Metabolism

    PubMed Central

    Abehsera, Shai; Glazer, Lilah; Tynyakov, Jenny; Plaschkes, Inbar; Chalifa-Caspi, Vered; Khalaila, Isam; Aflalo, Eliahu D.; Sagi, Amir

    2015-01-01

    In crustaceans, like all arthropods, growth is accompanied by a molting cycle. This cycle comprises major physiological events in which mineralized chitinous structures are built and degraded. These events are in turn governed by genes whose patterns of expression are presumably linked to the molting cycle. To study these genes we performed next generation sequencing and constructed a molt-related transcriptomic library from two exoskeletal-forming tissues of the crayfish Cherax quadricarinatus, namely the gastrolith and the mandible cuticle-forming epithelium. To simplify the study of such a complex process as molting, a novel approach, binary patterning of gene expression, was employed. This approach revealed that key genes involved in the synthesis and breakdown of chitin exhibit a molt-related pattern in the gastrolith-forming epithelium. On the other hand, the same genes in the mandible cuticle-forming epithelium showed a molt-independent pattern of expression. Genes related to the metabolism of glucosamine-6-phosphate, a chitin precursor synthesized from simple sugars, showed a molt-related pattern of expression in both tissues. The binary patterning approach unfolds typical patterns of gene expression during the molt cycle of a crustacean. The use of such a simplifying integrative tool for assessing gene patterning seems appropriate for the study of complex biological processes. PMID:25919476

  15. Exergoeconomic analysis and optimization of an evaporator for a binary mixture of fluids in an organic Rankine cycle

    NASA Astrophysics Data System (ADS)

    Li, You-Rong; Du, Mei-Tang; Wang, Jian-Ning

    2012-12-01

    This paper focuses on the research of an evaporator with a binary mixture of organic working fluids in the organic Rankine cycle. Exergoeconomic analysis and performance optimization were performed based on the first and second laws of thermodynamics, and the exergoeconomic theory. The annual total cost per unit heat transfer rate was introduced as the objective function. In this model, the exergy loss cost caused by the heat transfer irreversibility and the capital cost were taken into account; however, the exergy loss due to the frictional pressure drops, heat dissipation to surroundings, and the flow imbalance were neglected. The variation laws of the annual total cost with respect to the number of transfer units and the temperature ratios were presented. Optimal design parameters that minimize the objective function had been obtained, and the effects of some important dimensionless parameters on the optimal performances had also been discussed for three types of evaporator flow arrangements. In addition, optimal design parameters of evaporators were compared with those of condensers.

  16. THERMODYNAMIC ANALYSIS OF AMMONIA-WATER-CARBON DIOXIDE MIXTURES FOR DESIGNING NEW POWER GENERATION CYCLES

    SciTech Connect

    Ashish Gupta

    2003-01-15

    This project was undertaken with the goal of developing a computational package for the thermodynamic properties of ammonia-water-carbon dioxide mixtures at elevated temperature and pressure conditions. This objective was accomplished by modifying an existing set of empirical equations of state for ammonia-water mixtures. This involved using the Wagner equation of state for the gas phase properties of carbon dioxide. In the liquid phase, Pitzer's ionic model was used. The implementation of this approach in the form of a computation package that can be used for the optimization of power cycles required additional code development. In particular, this thermodynamic model consisted of a large set of non-linear equations. Consequently, in the interest of computational speed and robustness that is required when applied to optimization problems, analytic gradients were incorporated in the Newton solver routines. The equations were then implemented using a stream property predictor to make initial guesses of the composition, temperature, pressure, enthalpy, entropy, etc. near a known state. The predictor's validity is then tested upon the convergence of an iteration. It proved difficult to obtain experimental data from the literature that could be used to test the accuracy of the new thermodynamic property package, and this remains a critical need for future efforts in the area. It was possible, however, to assess the feasibility of using this complicated property prediction package for power cycle design and optimization. Such feasibility was first demonstrated by modification of our Kalina cycle optimization code to use the package with either a deterministic optimizer, MINOS, or a stochastic optimizer using differential evolution, a genetic-algorithm-based technique. Beyond this feasibility demonstration, a new approach to the design and optimization of power cycles was developed using a graph theoretic approach.

  17. The Carnot cycle and the teaching of thermodynamics: a historical approach

    NASA Astrophysics Data System (ADS)

    Laranjeiras, Cássio C.; Portela, Sebastião I. C.

    2016-09-01

    The Carnot cycle is a topic that is traditionally present in introductory physics courses dedicated to the teaching of thermodynamics, playing an essential role in introducing the concept of Entropy and the consequent formulation of the second Law. Its effective understanding and contribution to the development of thermodynamics is often hindered, however. Among other things, this is the result of a pragmatic approach, which usually limits itself to presenting the isotherms and adiabatic curves in a P-V diagram and is totally disconnected from the historical fundamentals of Heat Theory. The purpose of this paper is to reveal the potential of an approach to the subject that recovers the historical and social dimensions of scientific knowledge, and to promote reflections about the nature of science (NOS).

  18. A point of view on Otto cycle approach specific for an undergraduate thermodynamics course in CMU

    NASA Astrophysics Data System (ADS)

    Memet, F.; Preda, A.

    2015-11-01

    This paper refers to the description of the way in which can be presented to future marine engineers the analyzis of the performance of an Otto cycle, in a manner which is beyond the classic approach of the course of thermodynamics in Constanta Maritime University. The conventional course of thermodynamics is dealing with the topic of performance analysis of the cycle of the internal combustion engine with isochoric combustion for the situation in which the working medium is treated as such a perfect gas. This type of approach is viable only when are considered relatively small temperature differences. But this is the situation when specific heats are seen as constant. Instead, the practical experience has shown that small temperature differences are not viable, resulting the need for variable specific heat evaluation. The presentation bellow is available for the adiabatic exponent written as a liniar function depending on temperature. In the section of this paper dedicated to methods and materials, the situation in which the specific heat is taken as constant is not neglected, additionaly being given the algorithm for variable specific heat.For the both cases it is given the way in which it is assessed the work output. The calculus is based on the cycle shown in temperature- entropy diagram, in which are also indicated the irreversible adiabatic compression and expansion. The experience achieved after understanding this theory will allow to future professionals to deal successfully with the design practice of internal combustion engines.

  19. Universal efficiency bounds of weak-dissipative thermodynamic cycles at the maximum power output.

    PubMed

    Guo, Juncheng; Wang, Junyi; Wang, Yuan; Chen, Jincan

    2013-01-01

    Based on the assumption of weak dissipation introduced by Esposito et al. [Phys. Rev. Lett. 105, 150603 (2010)], analytic expressions for the efficiency bounds of several classes of typical thermodynamic cycles at the maximum power output are derived. The results obtained are of universal significance. They can be used to conveniently reveal the general characteristics of not only Carnot heat engines, but also isothermal chemical engines, non-Carnot heat engines, flux flow engines, gravitational engines, quantum Carnot heat engines, and two-level quantum Carnot engines at the maximum power output and to directly draw many important conclusions in the literature.

  20. The thermodynamics of pyrochemical processes for liquid metal reactor fuel cycles

    SciTech Connect

    Johnson, I.

    1987-01-01

    The thermodynamic basis for pyrochemical processes for the recovery and purification of fuel for the liquid metal reactor fuel cycle is described. These processes involve the transport of the uranium and plutonium from one liquid alloy to another through a molten salt. The processes discussed use liquid alloys of cadmium, zinc, and magnesium and molten chloride salts. The oxidation-reduction steps are done either chemically by the use of an auxiliary redox couple or electrochemically by the use of an external electrical supply. The same basic thermodynamics apply to both the salt transport and the electrotransport processes. Large deviations from ideal solution behavior of the actinides and lanthanides in the liquid alloys have a major influence on the solubilities and the performance of both the salt transport and electrotransport processes. Separation of plutonium and uranium from each other and decontamination from the more noble fission product elements can be achieved using both transport processes. The thermodynamic analysis is used to make process design computations for different process conditions.

  1. Thermodynamic design of methane liquefaction system based on reversed-Brayton cycle

    NASA Astrophysics Data System (ADS)

    Chang, Ho-Myung; Chung, Myung Jin; Kim, Min Jee; Park, Seong Bum

    2009-06-01

    A thermodynamic design is performed for reversed-Brayton refrigeration cycle to liquefy methane separated from landfill gas (LFG) in distributed scale. Objective of the design is to find the most efficient operating conditions for a skid-mount type of liquefaction system that is capable of LNG production at 160 l/h. Special attention is paid on liquefying counterflow heat exchanger, because the temperature difference between cold refrigerant and methane is smallest at the middle of heat exchanger, which seriously limits the overall thermodynamic performance of the liquefaction system. Nitrogen is selected as refrigerant, as it is superior to helium in thermodynamic efficiency. In order to consider specifically the size effect of heat exchangers, the performance of plate-fin heat exchangers is estimated with rigorous numerical calculations by incorporating a commercial code for properties of methane and the refrigerant. Optimal conditions in operating pressure and heat exchanger size are presented and discussed for prototype construction under a governmental project in Korea.

  2. Thermodynamic properties of binary mixtures containing cycloalkanones; Excess volumes of cycloalkanones + cyclohexane, + benzene, and + tetrachloromethane

    SciTech Connect

    Dernini, S.; Polcaro, A.M.; Ricci, P.F. ); Marongiu, B. )

    1989-04-01

    Molar excess volumes have been determined by means of a vibrating-tube densimeter for binary liquid mixtures of cycloalkanones (cyclopentanone and cyclohexanone) + cyclohexane, + benzene, and + tetrachloromethane. The V/sup E/ data are reported over the complete mole fraction range at 288.15, 298.15, and 308.15{Kappa}. The obtained excess volumes are positive for mixtures of cyclopentanone with cyclohexane and are negative for mixtures of the cycloalkanones with benzene and tetrachloromethane; for the system cyclohexanone-cyclohexane the V/sup E/ values are positive for a wide range of mole fraction, but at very low cyclohexane mole fraction an inversion of the sign of V/sup E/ is observed. The data show that in the considered range of temperature the values of the temperature coefficient ({partial derivative}V/sup E//{partial derivative}T) are negative for mixtures of the cycloalkanones with benzene and are almost zero for mixtures with cyclohexane and with tetrachloromethane.

  3. Theoretical Analysis of Heat Pump Cycle Characteristics with Pure Refrigerants and Binary Refrigerant Mixtures

    NASA Astrophysics Data System (ADS)

    Kagawa, Noboru; Uematsu, Masahiko; Watanabe, Koichi

    In recent years there has been an increasing interest of the use of nonazeotropic binary mixtures to improve performance in heat pump systems, and to restrict the consumption of chlorofluorocarbon (CFC) refrigerants as internationally agreed-upon in the Montreal Protocol. However, the available knowledge on the thermophysical properties of mixtures is very much limited particularly with respect to quantitative information. In order to examine cycle performance for Refrigerant 12 (CCl2F2) + Refrigerant 22 (CHClF2) and Refrigerant 22 + Refrigerant 114 (CClF2-CClF2) systems which are technically important halogenated refrigerant mixtures, the heat pump cycle analysis in case of using pure Refrigerants 12, 22 and 114 was theoretically carried out in the present paper. For the purpose of systematizing the heat pump cycle characteristics with pure refrigerants, the cycle analysis for Refrigerants 502, 13B1, 152a, 717 (NH3) and 290 (C3H8) was also examined. It became clear that the maximum coefficients of performance with various refrigerants were obtained at the reduced condensing temperature being 0.9 when the same temperature difference between condensing and evaporating temperature was chosen.

  4. Accurate values of some thermodynamic properties for carbon dioxide, ethane, propane, and some binary mixtures.

    PubMed

    Velasco, Inmaculada; Rivas, Clara; Martínez-López, José F; Blanco, Sofía T; Otín, Santos; Artal, Manuela

    2011-06-30

    Quasicontinuous PρT data of CO(2), ethane, propane, and the [CO(2) + ethane] mixture have been determined along subcritical, critical, and supercritical regions. These data have been used to develop the optimal experimental method and to determine the precision of the results obtained when using an Anton Paar DMA HPM vibrating-tube densimeter. A comparison with data from reference EoS and other authors confirm the quality of our experimental setup, its calibration, and testing. For pure compounds, the value of the mean relative deviation is MRD(ρ) = 0.05% for the liquid phase and for the extended critical and supercritical region. For binary mixtures the mean relative deviation is MRD(ρ) = 0.70% in the range up to 20 MPa and MRD(ρ) = 0.20% in the range up to 70 MPa. The number of experimental points measured and their just quality have enable us to determine some derivated properties with satisfactory precision; isothermal compressibilities, κ(T), have been calculated for CO(2) and ethane (MRD(κ(T)) = 1.5%), isobaric expasion coefficients, α(P), and internal pressures, π(i), for CO(2) (MRD(α(P)) = 5% and MRD(π(i)) = 7%) and ethane (MRD(α(P)) = 7.5% and MRD(π(i)) = 8%). An in-depth discussion is presented on the behavior of the properties obtained along subcritical, critical, and supercritical regions. In addition, PuT values have been determined for water and compressed ethane from 273.19 to 463.26 K up to pressures of 190.0 MPa, using a device based on a 5 MHz pulsed ultrasonic system (MRD(u) = 0.1%). With these data we have calibrated the apparatus and have verified the adequacy of the operation with normal liquids as well as with some compressed gases. From density and speed of sound data of ethane, isentropic compressibilities, κ(s), have been obtained, and from these and our values for κ(T) and α(P), isobaric heat capacities, C(p), have been calculated with MRD(C(p)) = 3%, wich is within that of the EoS. PMID:21639086

  5. Thermodynamic analysis of a Rankine cycle powered vapor compression ice maker using solar energy.

    PubMed

    Hu, Bing; Bu, Xianbiao; Ma, Weibin

    2014-01-01

    To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with increasing generation temperature. For every working fluid there is an optimal generation temperature at which organic Rankine efficiency achieves the maximum value. The cooling power per square meter collector and ice production per square meter collector per day are, respectively, 126.44 W m(-2) and 7.61 kg m(-2) day(-1) at the generation temperature of 140 °C for working fluid of R245fa, which demonstrates the feasibility of organic Rankine cycle powered vapor compression ice maker. PMID:25202735

  6. Thermodynamic and dynamic controls on changes in the zonally anomalous hydrological cycle

    NASA Astrophysics Data System (ADS)

    Wills, Robert C.; Byrne, Michael P.; Schneider, Tapio

    2016-05-01

    The wet gets wetter, dry gets drier paradigm explains the expected moistening of the extratropics and drying of the subtropics as the atmospheric moisture content increases with global warming. Here we show, using precipitation minus evaporation (P - E) data from climate models, that it cannot be extended to apply regionally to deviations from the zonal mean. Wet and dry zones shift substantially in response to shifts in the stationary-eddy circulations that cause them. Additionally, atmospheric circulation changes lead to a smaller increase in the zonal variance of P - E than would be expected from atmospheric moistening alone. The P - E variance change can be split into dynamic and thermodynamic components through an analysis of the atmospheric moisture budget. This reveals that a weakening of stationary-eddy circulations and changes in the zonal variation of transient-eddy moisture fluxes moderate the strengthening of the zonally anomalous hydrological cycle with global warming.

  7. Atomic-level characterization of transport cycle thermodynamics in the glycerol-3-phosphate:phosphate antiporter

    PubMed Central

    Moradi, Mahmoud; Enkavi, Giray; Tajkhorshid, Emad

    2015-01-01

    Membrane transporters actively translocate their substrate by undergoing large-scale structural transitions between inward- (IF) and outward-facing (OF) states (‘alternating-access' mechanism). Despite extensive structural studies, atomic-level mechanistic details of such structural transitions, and as importantly, their coupling to chemical events supplying the energy, remain amongst the most elusive aspects of the function of these proteins. Here we present a quantitative, atomic-level description of the functional thermodynamic cycle for the glycerol-3-phosphate:phosphate antiporter GlpT by using a novel approach in reconstructing the free energy landscape governing the IF↔OF transition along a cyclic transition pathway involving both apo and substrate-bound states. Our results provide a fully atomic description of the complete transport process, offering a structural model for the alternating-access mechanism and substantiating the close coupling between global structural transitions and local chemical events. PMID:26417850

  8. Experimental opto-mechanics with levitated nanoparticles: towards quantum control and thermodynamic cycles (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Kiesel, Nikolai; Blaser, Florian; Delic, Uros; Grass, David; Dechant, Andreas; Lutz, Eric; Bathaee, Marzieh; Aspelmeyer, Markus

    2015-08-01

    Combining optical levitation and cavity optomechanics constitutes a promising approach to prepare and control the motional quantum state of massive objects (>10^9 amu). This, in turn, would represent a completely new type of light-matter interface and has, for example, been predicted to enable experimental tests of macrorealistic models or of non-Newtonian gravity at small length scales. Such ideas have triggered significant experimental efforts to realizing such novel systems. To this end, we have recently successfully demonstrated cavity-cooling of a levitated sub-micron silica particle in a classical regime at a pressure of approximately 1mbar. Access to higher vacuum of approx. 10^-6 mbar has been demonstrated using 3D-feedback cooling in optical tweezers without cavity-coupling. Here we will illustrate our strategy towards trapping, 3D-cooling and quantum control of nanoparticles in ultra-high vacuum using cavity-based feedback cooling methods and clean particle loading with hollow-core photonic crystal fibers. We will also discuss the current experimental progress both in 3D-cavity cooling and HCPCF-based transport of nanoparticles. As yet another application of cavity-controlled levitated nanoparticles we will show how to implement a thermodynamic Sterling cycle operating in the underdamped regime. We present optimized protocols with respect to efficiency at maximum power in this little explored regime. We also show that the excellent level of control in our system will allow reproducing all relevant features of such optimized protocols. In a next step, this will enable studies of thermodynamics cycles in a regime where the quantization of the mechanical motion becomes relevant.

  9. Uranyl(VI) nitrate salts: modeling thermodynamic properties using the binding mean spherical approximation theory and determination of "fictive" binary data.

    PubMed

    Ruas, Alexandre; Bernard, Olivier; Caniffi, Barbara; Simonin, Jean-Pierre; Turq, Pierre; Blum, Lesser; Moisy, Philippe

    2006-02-23

    This work is aimed at a description of the thermodynamic properties of highly concentrated aqueous solutions of uranyl nitrate at 25 degrees C. A new resolution of the binding mean spherical approximation (BIMSA) theory, taking into account 1-1 and also 1-2 complex formation, is developed and used to reproduce, from a simple procedure, experimental uranyl nitrate osmotic coefficient variation with concentration. For better consistency of the theory, binary uranyl perchlorate and chloride osmotic coefficients are also calculated. Comparison of calculated and experimental values is made. The possibility of regarding the ternary system UO(2)(NO(3))(2)/HNO(3)/H(2)O as a "simple" solution (in the sense of Zdanovskii, Stokes, and Robinson) is examined from water activity and density measurements. Also, an analysis of existing uranyl nitrate binary data is proposed and compared with our obtained data. On the basis of the concept of "simple" solution, values for density and water activity for the binary system UO(2)(NO(3))(2)/H(2)O are proposed in a concentration range on which uranyl nitrate precipitates from measurements on concentrated solutions of the ternary system UO(2)(NO(3))(2)/HNO(3)/H(2)O. This new set of binary data is "fictive" in the sense that the real binary system is not stable chemically. Finally, a new, interesting predictive capability of the BIMSA theory is shown.

  10. Effect of Mixed Working Fluid Composition on Binary Cycle Condenser Heat Transfer Coefficients

    SciTech Connect

    Dan Wendt; Greg Mines

    2011-10-01

    Effect of Mixed Working Fluid Composition on Binary Cycle Condenser Heat Transfer Coefficients Dan Wendt, Greg Mines Idaho National Laboratory The use of mixed working fluids in binary power plants can provide significant increases in plant performance, provided the heat exchangers are designed to take advantage of these fluids non-isothermal phase changes. In the 1980's testing was conducted at DOE's Heat Cycle Research Facility (HCRF) where mixtures of different compositions were vaporized at supercritical pressures and then condensed. This testing had focused on using the data collected to verify that Heat Transfer Research Incorporated (HTRI) codes were suitable for the design of heat exchangers that could be used with mixtures. The HCRF data includes mixture compositions varying from 0% to 40% isopentane and condenser tube orientations of 15{sup o}, 60{sup o}, and 90{sup o} from horizontal. Testing was performed over a range of working fluid and cooling fluid conditions. Though the condenser used in this testing was water cooled, the working fluid condensation occurred on the tube-side of the heat exchanger. This tube-side condensation is analogous to that in an air-cooled condenser. Tube-side condensing heat transfer coefficient information gleaned from the HCRF testing is used in this study to assess the suitability of air-cooled condenser designs for use with mixtures. Results of an air-cooled binary plant process model performed with Aspen Plus indicate that that the optimal mixture composition (producing the maximum net power for the scenario considered) is within the range of compositions for which data exist. The HCRF data is used to assess the impact of composition, tube orientation, and process parameters on the condensing heat transfer coefficients. The sensitivity of the condensing coefficients to these factors is evaluated and the suitability of air-cooled condenser designs with mixtures is assessed. This paper summarizes the evaluation of the HCRF

  11. Interim Report: Air-Cooled Condensers for Next Generation Geothermal Power Plants Improved Binary Cycle Performance

    SciTech Connect

    Daniel S. Wendt; Greg L. Mines

    2010-09-01

    As geothermal resources that are more expensive to develop are utilized for power generation, there will be increased incentive to use more efficient power plants. This is expected to be the case with Enhanced Geothermal System (EGS) resources. These resources will likely require wells drilled to depths greater than encountered with hydrothermal resources, and will have the added costs for stimulation to create the subsurface reservoir. It is postulated that plants generating power from these resources will likely utilize the binary cycle technology where heat is rejected sensibly to the ambient. The consumptive use of a portion of the produced geothermal fluid for evaporative heat rejection in the conventional flash-steam conversion cycle is likely to preclude its use with EGS resources. This will be especially true in those areas where there is a high demand for finite supplies of water. Though they have no consumptive use of water, using air-cooling systems for heat rejection has disadvantages. These systems have higher capital costs, reduced power output (heat is rejected at the higher dry-bulb temperature), increased parasitics (fan power), and greater variability in power generation on both a diurnal and annual basis (larger variation in the dry-bulb temperature). This is an interim report for the task ‘Air-Cooled Condensers in Next- Generation Conversion Systems’. The work performed was specifically aimed at a plant that uses commercially available binary cycle technologies with an EGS resource. Concepts were evaluated that have the potential to increase performance, lower cost, or mitigate the adverse effects of off-design operation. The impact on both cost and performance were determined for the concepts considered, and the scenarios identified where a particular concept is best suited. Most, but not all, of the concepts evaluated are associated with the rejection of heat. This report specifically addresses three of the concepts evaluated: the use of

  12. IDENTIFICATION AND EXPERIMENTAL DATABASE FOR BINARY AND MULTICOMPONENT MIXTURES WITH POTENTIAL FOR INCREASING OVERALL CYCLE EFFICIENCY

    SciTech Connect

    Stephen M Bajorek; J. Schnelle

    2002-05-01

    This report describes an experimental investigation designed to identify binary and multicomponent mixture systems that may be for increasing the overall efficiency of a coal fired unit by extracting heat from flue gases. While ammonia-water mixtures have shown promise for increasing cycle efficiencies in a Kalina cycle, the costs and associated range of thermal conditions involved in a heat recovery system may prohibit its use in a relatively low temperature heat recovery system. This investigation considered commercially available non-azeotropic binary mixtures with a boiling range applicable to a flue gas initially at 477.6 K (400 F) and developed an experimental database of boiling heat transfer coefficients for those mixtures. In addition to their potential as working fluids for increasing cycle efficiency, cost, ease of handling, toxicity, and environmental concerns were considered in selection of the mixture systems to be examined experimentally. Based on this review, water-glycol systems were identified as good candidates. However, previous investigations of mixture boiling have focused on aqueous hydrocarbon mixtures, where water is the heaviest component. There have been few studies of water-glycol systems, and those that do exist have investigated boiling on plain surfaces only. In water-glycol systems, water is the light component, which makes these systems unique compared to those that have been previously examined. This report examines several water-glycol systems, and documents a database of experimental heat transfer coefficients for these systems. In addition, this investigation also examines the effect of an enhanced surface on pool boiling in water-glycol mixtures, by comparing boiling on a smooth surface to boiling on a Turbo IIIB. The experimental apparatus, test sections, and the experimental procedures are described. The mixture systems tested included water-propylene glycol, water-ethylene glycol, and water-diethylene glycol. All

  13. Thermodynamic Evaluation of Reaction Abilities of Structural Units in Fe-O Binary Melts Based on the Atom-Molecule Coexistence Theory

    NASA Astrophysics Data System (ADS)

    Yang, Xue-min; Li, Jin-yan; Wei, Meng-fang; Zhang, Jian

    2016-02-01

    A thermodynamic model for calculating the mass action concentrations Ni of structural units in Fe-O binary melts based on the atom-molecule coexistence theory, i.e., AMCT- Ni model, has been developed and verified to be valid through comparing with the calculated activities a_{R,i} of both O and Fe over a temperature range from 1833 K to 1973 K (1560 °C to 1700 °C). Moreover, activity coefficients γ_{O} or f_{{%,O} or f_{H,O} of O coupled with activity a_{R,O} or a_{%, O} or a_{H,O} of O and the corresponding first-order activity interaction coefficient \\varepsilon_{O}^{O} or e_{O}^{O} or h_{O}^{O} of O to O have also been determined by the developed AMCT- Ni model and verified to be credible. In addition, the molar mixing thermodynamic properties of Fe-O binary melts have been determined to be accurate. Values of the calculated mass action concentration N_{Fe} of free Fe are in good agreement with results of the calculated activity a_{R,Fe} of Fe relative to pure liquid Fe(l) as standard state in Fe-O binary melts. The calculated mass action concentration N_{O} of free O has a closely corresponding relationship with the calculated activity a_{R,O} of O relative to ideal O2 at 101,325 Pa as standard state in Fe-O binary melts. However, values of the calculated mass action concentration N_{O} of free O are much greater than results of the calculated activity a_{R,O} of O in Fe-O binary melts. The converted mass action concentration N_{O}^' of total O relative to ideal O2 at 101,325 Pa as standard state can be obtained through transferring standard state of the calculated mass action concentration N_{O} of free O. The converted mass action concentration N_{O}^' of total O or the converted activity a_{{R,O}^{AMCT} of O can well be matched with the calculated activity a_{R,O} of O in Fe-O binary melts. Although the obtained expression of first-order activity interaction coefficient \\varepsilon_{O}^{O} or e_{O}^{O} or h_{O}^{O} by the developed AMCT- Ni model for

  14. Thermodynamic Analysis of a Rankine Cycle Powered Vapor Compression Ice Maker Using Solar Energy

    PubMed Central

    Hu, Bing; Bu, Xianbiao; Ma, Weibin

    2014-01-01

    To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with increasing generation temperature. For every working fluid there is an optimal generation temperature at which organic Rankine efficiency achieves the maximum value. The cooling power per square meter collector and ice production per square meter collector per day are, respectively, 126.44 W m−2 and 7.61 kg m−2 day−1 at the generation temperature of 140°C for working fluid of R245fa, which demonstrates the feasibility of organic Rankine cycle powered vapor compression ice maker. PMID:25202735

  15. DNA thermodynamic stability and supercoil dynamics determine the gene expression program during the bacterial growth cycle.

    PubMed

    Sobetzko, Patrick; Glinkowska, Monika; Travers, Andrew; Muskhelishvili, Georgi

    2013-07-01

    The chromosomal DNA polymer constituting the cellular genetic material is primarily a device for coding information. Whilst the gene sequences comprise the digital (discontinuous) linear code, physiological alterations of the DNA superhelical density generate in addition analog (continuous) three-dimensional information essential for regulation of both chromosome compaction and gene expression. Insight into the relationship between the DNA analog information and the digital linear code is of fundamental importance for understanding genetic regulation. Our previous study in the model organism Escherichia coli suggested that the chromosomal gene order and a spatiotemporal gradient of DNA superhelicity associated with DNA replication determine the growth phase-dependent gene transcription. In this study we reveal a general gradient of DNA thermodynamic stability correlated with the polarity of chromosomal replication and manifest in the spatiotemporal pattern of gene transcription during the bacterial growth cycle. Furthermore, by integrating the physical and dynamic features of the transcribed sequences with their functional content we identify spatiotemporal domains of gene expression encompassing different functions. We thus provide both an insight into the organisational principle of the bacterial growth program and a novel holistic methodology for exploring chromosomal dynamics.

  16. From low- to high-potential bioenergetic chains: Thermodynamic constraints of Q-cycle function.

    PubMed

    Bergdoll, Lucie; Ten Brink, Felix; Nitschke, Wolfgang; Picot, Daniel; Baymann, Frauke

    2016-09-01

    The electrochemical parameters of all cofactors in the supercomplex formed by the Rieske/cytb complex and the SoxM/A-type O2-reductase from the menaquinone-containing Firmicute Geobacillus stearothermophilus were determined by spectroelectrochemistry and EPR redox titrations. All redox midpoint potentials (Em) were found to be lower than those of ubi- or plastoquinone-containing systems by a value comparable to the redox potential difference between the respective quinones. In particular, Em values of +200mV, -360mV, -220mV and -50mV (at pH7) were obtained for the Rieske cluster, heme bL, heme bH and heme ci, respectively. Comparable values of -330mV, -200mV and +120mV for hemes bL, bH and the Rieske cluster were determined for an anaerobic Firmicute, Heliobacterium modesticaldum. Thermodynamic constraints, optimization of proton motive force build-up and the necessity of ROS-avoidance imposed by the rise in atmospheric O2 2.5billionyears ago are discussed as putative evolutionary driving forces resulting in the observed redox upshift. The close conservation of the entire redox landscape between low and high potential systems suggests that operation of the Q-cycle requires the precise electrochemical tuning of enzyme cofactors to the quinone substrate as stipulated in P. Mitchell's hypothesis. PMID:27328272

  17. Thermodynamic Analysis of Isothermal Redox Cycling of Ceria for Solar Fuel Production

    SciTech Connect

    Bader, R; Venstrom, LJ; Davidson, JH; Lipinski, W

    2013-09-01

    A thermodynamic analysis of continuous fuel production by redox cycling of ceria in a single solar reactor under isothermal conditions is presented. Ceria is partially reduced in a sweep gas flow of purified nitrogen and reoxidized with either steam or carbon dioxide to produce hydrogen or carbon monoxide, respectively. The sweep gas and oxidizer flows are preheated by the product gases. The influence of selected process parameters, including operating temperature, pressure, and the effectiveness of heat recovery, on the solar-to-fuel conversion efficiency is determined. For a solar concentration ratio of 3000, typical of state-of-the-art solar dish concentrators, and operating temperature of 1773 K, 95.5% of the available gas-phase heat must be recovered to reach conversion efficiencies of 10% and 18% for hydrogen and carbon monoxide production, respectively, assuming the flow rate of inert sweep gas is equivalent to that in a counter-current flow arrangement of gas and ceria. The efficiency depends strongly on the gas-phase heat recovery effectiveness and the sweep gas flow rate. Introducing a temperature swing of 150 K between reduction and oxidation steps strongly reduces the sweep gas flow rate and increases the efficiency from 10% to 31.6% for hydrogen production.

  18. Assessment of the sustainability of technology by means of a thermodynamically based life cycle analysis.

    PubMed

    Dewulf, Jo; van Langenhove, Herman

    2002-01-01

    Life cycle analysis is one of the tools in the assessment of the sustainability of technological options. It takes into account all effects on the ecosystem and the population which may endanger the possibilities of current and future generations. However, the main bottleneck in current LCA methodologies is the balancing of different effects, being all quantified on different scales. In this work, a methodology is proposed, which allows one to quantify different effects of the production, consumption and disposal of goods, and services on a single scale. The basis of the methodology is the second law of thermodynamics. All production, consumption and disposal processes affecting the ecosystem and the population, are quantified in terms of loss of exergy. The exergy content of a material is the maximum amount of energy which can be transformed into work at given environmental conditions. Next to the elaboration of the methodology, the new approach is illustrated by examples of the production of synthetic organic polymers, inorganic building insulation materials and different waste gas treatment options.

  19. A detailed analysis of entropy production and improvement of the thermodynamic cycle of an adsorption refrigerating plant

    NASA Astrophysics Data System (ADS)

    Okunev, B. N.; Safonov, M. S.

    2006-07-01

    A thermodynamic analysis of an adsorption refrigerating plant with closed loops for a working substance and auxiliary liquid heat carrier has been carried out in application to the adsorption pair “water-CaCl2 impregnated into the pores of a silica gel.” Using the obtained periodic solutions of the system of energy-balance equations for the heat carrier and the sorbent layer, the most thermodynamically effective modes of operation of the refrigerating plant have been determined as functions of governing parameters. The entropy production in various modules of the plant is calculated, and the main sources of entropy generation are revealed. This made it possible to suggest an improved scheme of an adsorption refrigerating cycle with regenerative heat exchangers connected at the inlet and outlet from the adsorbers. The possibility of a considerable increase in the coefficient of thermodynamic efficiency in such a system has been justified.

  20. High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants

    SciTech Connect

    Zia, Jalal; Sevincer, Edip; Chen, Huijuan; Hardy, Ajilli; Wickersham, Paul; Kalra, Chiranjeev; Laursen, Anna Lis; Vandeputte, Thomas

    2013-06-29

    A thermo-economic model has been built and validated for prediction of project economics of Enhanced Geothermal Projects. The thermo-economic model calculates and iteratively optimizes the LCOE (levelized cost of electricity) for a prospective EGS (Enhanced Geothermal) site. It takes into account the local subsurface temperature gradient, the cost of drilling and reservoir creation, stimulation and power plant configuration. It calculates and optimizes the power plant configuration vs. well depth. Thus outputs from the model include optimal well depth and power plant configuration for the lowest LCOE. The main focus of this final report was to experimentally validate the thermodynamic properties that formed the basis of the thermo-economic model built in Phase 2, and thus build confidence that the predictions of the model could be used reliably for process downselection and preliminary design at a given set of geothermal (and/or waste heat) boundary conditions. The fluid and cycle downselected was based on a new proprietary fluid from a vendor in a supercritical ORC cycle at a resource condition of 200°C inlet temperature. The team devised and executed a series of experiments to prove the suitability of the new fluid in realistic ORC cycle conditions. Furthermore, the team performed a preliminary design study for a MW-scale turbo expander that would be used for a supercritical ORC cycle with this new fluid. The following summarizes the main findings in the investigative campaign that was undertaken: 1. Chemical compatibility of the new fluid with common seal/gasket/Oring materials was found to be problematic. Neoprene, Viton, and silicone materials were found to be incompatible, suffering chemical decomposition, swelling and/or compression set issues. Of the materials tested, only TEFLON was found to be compatible under actual ORC temperature and pressure conditions. 2. Thermal stability of the new fluid at 200°C and 40 bar was found to be acceptable after 399

  1. Thermophysical properties of working fluids for binary geothermal cycles. Final report

    SciTech Connect

    Diller, D.E.; Gallagher, J.S.; Kamgar-Parsi, B.; Morrison, G.; Levelt Sengers, J.M.H.; Sengers, J.V.; Van Poolen, L.J.; Waxman, M.

    1984-07-01

    The following are presented: thermodynamic properties of isobutane and isobutane-isopentane mixtures; a scaled fundamental equation for mixtures of isobutane and isopentane near gas-liquid critical line; and viscosities of hydrocarbons and their mixtures. (MHR)

  2. Life cycle assessment integrated with thermodynamic analysis of bio-fuel options for solid oxide fuel cells.

    PubMed

    Lin, Jiefeng; Babbitt, Callie W; Trabold, Thomas A

    2013-01-01

    A methodology that integrates life cycle assessment (LCA) with thermodynamic analysis is developed and applied to evaluate the environmental impacts of producing biofuels from waste biomass, including biodiesel from waste cooking oil, ethanol from corn stover, and compressed natural gas from municipal solid wastes. Solid oxide fuel cell-based auxiliary power units using bio-fuel as the hydrogen precursor enable generation of auxiliary electricity for idling heavy-duty trucks. Thermodynamic analysis is applied to evaluate the fuel conversion efficiency and determine the amount of fuel feedstock needed to generate a unit of electrical power. These inputs feed into an LCA that compares energy consumption and greenhouse gas emissions of different fuel pathways. Results show that compressed natural gas from municipal solid wastes is an optimal bio-fuel option for SOFC-APU applications in New York State. However, this methodology can be regionalized within the U.S. or internationally to account for different fuel feedstock options. PMID:23201905

  3. Life cycle assessment integrated with thermodynamic analysis of bio-fuel options for solid oxide fuel cells.

    PubMed

    Lin, Jiefeng; Babbitt, Callie W; Trabold, Thomas A

    2013-01-01

    A methodology that integrates life cycle assessment (LCA) with thermodynamic analysis is developed and applied to evaluate the environmental impacts of producing biofuels from waste biomass, including biodiesel from waste cooking oil, ethanol from corn stover, and compressed natural gas from municipal solid wastes. Solid oxide fuel cell-based auxiliary power units using bio-fuel as the hydrogen precursor enable generation of auxiliary electricity for idling heavy-duty trucks. Thermodynamic analysis is applied to evaluate the fuel conversion efficiency and determine the amount of fuel feedstock needed to generate a unit of electrical power. These inputs feed into an LCA that compares energy consumption and greenhouse gas emissions of different fuel pathways. Results show that compressed natural gas from municipal solid wastes is an optimal bio-fuel option for SOFC-APU applications in New York State. However, this methodology can be regionalized within the U.S. or internationally to account for different fuel feedstock options.

  4. Thermodynamic and design considerations of organic Rankine cycles in combined application with a solar thermal gas turbine

    NASA Astrophysics Data System (ADS)

    Braun, R.; Kusterer, K.; Sugimoto, T.; Tanimura, K.; Bohn, D.

    2013-12-01

    Concentrated Solar Power (CSP) technologies are considered to provide a significant contribution for the electric power production in the future. Different kinds of technologies are presently in operation or under development, e.g. parabolic troughs, central receivers, solar dish systems and Fresnel reflectors. This paper takes the focus on central receiver technologies, where the solar radiation is concentrated by a field of heliostats in a receiver on the top of a tall tower. To get this CSP technology ready for the future, the system costs have to reduce significantly. The main cost driver in such kind of CSP technologies are the huge amount of heliostats. To reduce the amount of heliostats, and so the investment costs, the efficiency of the energy conversion cycle becomes an important issue. An increase in the cycle efficiency results in a decrease of the solar heliostat field and thus, in a significant cost reduction. The paper presents the results of a thermodynamic model of an Organic Rankine Cycle (ORC) for combined cycle application together with a solar thermal gas turbine. The gas turbine cycle is modeled with an additional intercooler and recuperator and is based on a typical industrial gas turbine in the 2 MW class. The gas turbine has a two stage radial compressor and a three stage axial turbine. The compressed air is preheated within a solar receiver to 950°C before entering the combustor. A hybrid operation of the gas turbine is considered. In order to achieve a further increase of the overall efficiency, the combined operation of the gas turbine and an Organic Rankine Cycle is considered. Therefore an ORC has been set up, which is thermally connected to the gas turbine cycle at two positions. The ORC can be coupled to the solar-thermal gas turbine cycle at the intercooler and after the recuperator. Thus, waste heat from different cycle positions can be transferred to the ORC for additional production of electricity. Within this investigation

  5. Theoretical investigation of the electronic structure, optical, elastic and thermodynamics properties of a newly binary boron nitride (T-B3N3)

    NASA Astrophysics Data System (ADS)

    Zhao, Shibo; Long, Jianping

    2015-02-01

    The ultrasoft pseudopotential planewave (UPPW) within density functional theory (DFT) has been used to investigate the electronic structure, optical, elastic and thermodynamics properties of newly binary boron nitride (T-B3N3). The calculated lattice parameters are in good agreement with previous theoretical results and deviated are less than 0.4%. The electronic structure showed that the T-B3N3 is metallic, and the optical spectra exhibit a noticeable anisotropy. The static dielectric constants, optical permittivity constants and the elastic properties are calculated. From our results, we observe that T-B3N3 is mechanically unstable and ductile. The entropy, enthalpy, free energy, heat capacity and Debye temperature of T-B3N3 was obtained. Up to now, there are no available experimental data about those properties. The results obtained in the present paper could provide important reference data for future studies.

  6. Comparison of Optimal Thermodynamic Models of the Tricarboxylic Acid Cycle from Heterotrophs, Cyanobacteria, and Green Sulfur Bacteria

    SciTech Connect

    Thomas, Dennis G.; Jaramillo Riveri, Sebastian I.; Baxter, Douglas J.; Cannon, William R.

    2014-12-15

    We have applied a new stochastic simulation approach to predict the metabolite levels, energy flow, and material flux in the different oxidative TCA cycles found in E. coli and Synechococcus sp. PCC 7002, and in the reductive TCA cycle typical of chemolithoautotrophs and phototrophic green sulfur bacteria such as Chlorobaculum tepidum. The simulation approach is based on equations of state and employs an assumption similar to that used in transition state theory. The ability to evaluate the thermodynamics of metabolic pathways allows one to understand the relationship between coupling of energy and material gradients in the environment and the selforganization of stable biological systems, and it is shown that each cycle operates in the direction expected due to its environmental niche. The simulations predict changes in metabolite levels and flux in response to changes in cofactor concentrations that would be hard to predict without an elaborate model based on the law of mass action. In fact, we show that a thermodynamically unfavorable reaction can still have flux in the forward direction when it is part of a reaction network. The ability to predict metabolite levels, energy flow and material flux should be significant for understanding the dynamics of natural systems and for understanding principles for engineering organisms for production of specialty chemicals, such as biofuels.

  7. Molecular simulation of fluids with non-identical intermolecular potentials: Thermodynamic properties of 10-5 + 12-6 Mie potential binary mixtures

    SciTech Connect

    Stiegler, Thomas; Sadus, Richard J.

    2015-02-28

    General methods for combining interactions between particles characterised by non-identical intermolecular potentials are investigated. The combination methods are tested by performing molecular dynamics simulations to determine the pressure, energy, isochoric and isobaric heat capacities, thermal expansion coefficient, isothermal compressibility, Joule-Thomson coefficient, and speed of sound of 10-5 + 12-6 Mie potential binary mixtures. In addition to the two non-identical Mie potentials, mixtures are also studied with non-identical intermolecular parameters. The combination methods are compared with results obtained by simply averaging the Mie exponents. When either the energy or size parameters are non-identical, very significant differences emerge in the thermodynamic properties predicted by the alternative combination methods. The isobaric heat capacity is the thermodynamic property that is most affected by the relative magnitude of the intermolecular potential parameters and the method for combining non-identical potentials. Either the arithmetic or geometric combination of potentials provides a simple and effective way of performing simulations involving mixtures of components characterised by non-identical intermolecular potentials, which is independent of their functional form.

  8. Molecular simulation of fluids with non-identical intermolecular potentials: Thermodynamic properties of 10-5 + 12-6 Mie potential binary mixtures

    NASA Astrophysics Data System (ADS)

    Stiegler, Thomas; Sadus, Richard J.

    2015-02-01

    General methods for combining interactions between particles characterised by non-identical intermolecular potentials are investigated. The combination methods are tested by performing molecular dynamics simulations to determine the pressure, energy, isochoric and isobaric heat capacities, thermal expansion coefficient, isothermal compressibility, Joule-Thomson coefficient, and speed of sound of 10-5 + 12-6 Mie potential binary mixtures. In addition to the two non-identical Mie potentials, mixtures are also studied with non-identical intermolecular parameters. The combination methods are compared with results obtained by simply averaging the Mie exponents. When either the energy or size parameters are non-identical, very significant differences emerge in the thermodynamic properties predicted by the alternative combination methods. The isobaric heat capacity is the thermodynamic property that is most affected by the relative magnitude of the intermolecular potential parameters and the method for combining non-identical potentials. Either the arithmetic or geometric combination of potentials provides a simple and effective way of performing simulations involving mixtures of components characterised by non-identical intermolecular potentials, which is independent of their functional form.

  9. A Thermodynamics Model for the Emergence of a Stripe-like Binary SAM on a Nanoparticle Surface.

    PubMed

    Ge, Xinwei; Ke, Pu Chun; Davis, Thomas P; Ding, Feng

    2015-10-01

    It has been under debate if a self-assembled monolayer (SAM) with two immiscible ligands of different chain lengths and/or bulkiness can form a stripe-like pattern on a nanoparticle (NP) surface. The entropic gain upon such pattern formation due to difference in chain lengths and/or bulkiness has been proposed as the driving force in literature. Using atomistic discrete molecular dynamics simulations it is shown that stripe-like pattern could indeed emerge, but only for a subset of binary SAM systems. In addition to entropic contributions, the formation of a striped pattern also strongly depends upon interligand interactions governed by the physicochemical properties of the ligand constituents. Due to the interplay between entropy and enthalpy, a binary SAM system can be categorized into three different types depending on whether and under what condition a striped pattern can emerge. The results help clarify the ongoing debate and our proposed principle can aid in the engineering of novel binary SAMs on a NP surface.

  10. Binary Switching of Calendar Cells in the Pituitary Defines the Phase of the Circannual Cycle in Mammals

    PubMed Central

    Wood, Shona H.; Christian, Helen C.; Miedzinska, Katarzyna; Saer, Ben R.C.; Johnson, Mark; Paton, Bob; Yu, Le; McNeilly, Judith; Davis, Julian R.E.; McNeilly, Alan S.; Burt, David W.; Loudon, Andrew S.I.

    2015-01-01

    Summary Persistent free-running circannual (approximately year-long) rhythms have evolved in animals to regulate hormone cycles, drive metabolic rhythms (including hibernation), and time annual reproduction. Recent studies have defined the photoperiodic input to this rhythm, wherein melatonin acts on thyrotroph cells of the pituitary pars tuberalis (PT), leading to seasonal changes in the control of thyroid hormone metabolism in the hypothalamus. However, seasonal rhythms persist in constant conditions in many species in the absence of a changing photoperiod signal, leading to the generation of circannual cycles. It is not known which cells, tissues, and pathways generate these remarkable long-term rhythmic processes. We show that individual PT thyrotrophs can be in one of two binary states reflecting either a long (EYA3+) or short (CHGA+) photoperiod, with the relative proportion in each state defining the phase of the circannual cycle. We also show that a morphogenic cycle driven by the PT leads to extensive re-modeling of the PT and hypothalamus over the circannual cycle. We propose that the PT may employ a recapitulated developmental pathway to drive changes in morphology of tissues and cells. Our data are consistent with the hypothesis that the circannual timer may reside within the PT thyrotroph and is encoded by a binary switch timing mechanism, which may regulate the generation of circannual neuroendocrine rhythms, leading to dynamic re-modeling of the hypothalamic interface. In summary, the PT-ventral hypothalamus now appears to be a prime structure involved in long-term rhythm generation. PMID:26412130

  11. Evaluation of Hybrid Air-Cooled Flash/Binary Power Cycle

    SciTech Connect

    Greg Mines

    2005-10-01

    Geothermal binary power plants reject a significant portion of the heat removed from the geothermal fluid. Because of the relatively low temperature of the heat source (geothermal fluid), the performance of these plants is quite sensitive to the sink temperature to which heat is rejected. This is particularly true of air-cooled binary plants. Recent efforts by the geothermal industry have examined the potential to evaporatively cool the air entering the air-cooled condensers during the hotter portions of a summer day. While the work has shown the benefit of this concept, air-cooled binary plants are typically located in regions that lack an adequate supply of clean water for use in this evaporative cooling. In the work presented, this water issue is addressed by pre-flashing the geothermal fluid to produce a clean condensate that can be utilized during the hotter portions of the year to evaporatively cool the air. This study examines both the impact of this pre-flash on the performance of the binary plant, and the increase in power output due to the ability to incorporate an evaporative component to the heat rejection process.

  12. Thermodynamic analysis of performance improvement by reheat on the CO2 transcritical power cycle

    NASA Astrophysics Data System (ADS)

    Tuo, Hanfei

    2012-06-01

    The CO2 transcritical rankine power cycle has been widely investigated recently, because of its better temperature glide matching between sensible heat source and working fluid in vapor generator, and its desirable qualities, such as moderate critical point, little environment impact and low cost. A reheat CO2 transcritical power cycle with two stage expansion is presented to improve baseline cycle performance in this paper. Energy and exergy analysis are carried out to investigate effects of important parameters on cycle performance. The main results show that reheat cycle performance is sensitive to the variation of medium pressures and the optimum medium pressures exist for maximizing work output and thermal efficiency, respectively. Reheat cycle is compared to baseline cycle under the same conditions. More significant improvements by reheat are obtained at lower turbine inlet temperatures and larger high cycle pressure. Work output improvement is much higher than thermal efficiency improvement, because extra waste heat is required to reheat CO2. Based on second law analysis, exergy efficiency of reheat cycle is also higher than that of baseline cycle, because more useful work is converted from waste heat. Reheat with two stage expansion has great potential to improve thermal efficiency and especially net work output of a CO2 transcritical power cycle using a low-grade heat source.

  13. An Introduction to Thermodynamic Performance Analysis of Aircraft Gas Turbine Engine Cycles Using the Numerical Propulsion System Simulation Code

    NASA Technical Reports Server (NTRS)

    Jones, Scott M.

    2007-01-01

    This document is intended as an introduction to the analysis of gas turbine engine cycles using the Numerical Propulsion System Simulation (NPSS) code. It is assumed that the analyst has a firm understanding of fluid flow, gas dynamics, thermodynamics, and turbomachinery theory. The purpose of this paper is to provide for the novice the information necessary to begin cycle analysis using NPSS. This paper and the annotated example serve as a starting point and by no means cover the entire range of information and experience necessary for engine performance simulation. NPSS syntax is presented but for a more detailed explanation of the code the user is referred to the NPSS User Guide and Reference document (ref. 1).

  14. Thermodynamics of Gas Turbine Cycles with Analytic Derivatives in OpenMDAO

    NASA Technical Reports Server (NTRS)

    Gray, Justin; Chin, Jeffrey; Hearn, Tristan; Hendricks, Eric; Lavelle, Thomas; Martins, Joaquim R. R. A.

    2016-01-01

    A new equilibrium thermodynamics analysis tool was built based on the CEA method using the OpenMDAO framework. The new tool provides forward and adjoint analytic derivatives for use with gradient based optimization algorithms. The new tool was validated against the original CEA code to ensure an accurate analysis and the analytic derivatives were validated against finite-difference approximations. Performance comparisons between analytic and finite difference methods showed a significant speed advantage for the analytic methods. To further test the new analysis tool, a sample optimization was performed to find the optimal air-fuel equivalence ratio, , maximizing combustion temperature for a range of different pressures. Collectively, the results demonstrate the viability of the new tool to serve as the thermodynamic backbone for future work on a full propulsion modeling tool.

  15. Thermodynamic metrics for aggregation of natural resources in life cycle analysis: insight via application to some transportation fuels.

    PubMed

    Baral, Anil; Bakshi, Bhavik R

    2010-01-15

    While methods for aggregating emissions are widely used and standardized in life cycle assessment (LCA), there is little agreement about methods for aggregating natural resources for obtaining interpretable metrics. Thermodynamic methods have been suggested including energy, exergy, and emergy analyses. This work provides insight into the nature of thermodynamic aggregation, including assumptions about substitutability between resources and loss of detailed information about the data being combined. Methods considered include calorific value or energy, industrial cumulative exergy consumption (ICEC) and its variations, and ecological cumulative exergy consumption (ECEC) or emergy. A hierarchy of metrics is proposed that spans the range from detailed data to aggregate metrics. At the fine scale, detailed data can help identify resources to whose depletion the selected product is most vulnerable. At the coarse scale, new insight is provided about thermodynamic aggregation methods. Among these, energy analysis is appropriate only for products that rely primarily on fossil fuels, and it cannot provide a useful indication of renewability. Exergy-based methods can provide results similar to energy analysis by including only nonrenewable fuels but can also account for materials use and provide a renewability index. However, ICEC and its variations do not address substitutability between resources, causing its results to be dominated by dilute and low-quality resources such as sunlight. The use of monetary values to account for substitutability does not consider many ecological resources and may not be appropriate for the analysis of emerging products. ECEC or emergy explicitly considers substitutability and resource quality and provides more intuitive results but is plagued by data gaps and uncertainties. This insight is illustrated via application to the life cycles of gasoline, diesel, corn ethanol, and soybean biodiesel. Here, aggregate metrics reveal the dilemma

  16. Thermodynamic performance of a hybrid air cycle refrigeration system using a desiccant rotor

    NASA Astrophysics Data System (ADS)

    Hwang, Kyudae; Song, Chan Ho; Kim, Sung Ki; Saito, Kiyoshi; Kawai, Sunao

    2013-03-01

    Due to the concern on global warming, the demand for a system using natural refrigerant is increasing and many researches have been devoted to develop systems with natural refrigerants. Among natural refrigerant systems, an air cycle system has emerged as one of alternatives of Freon gas system due to environmentally friendly feature in spite of the inherent low efficiency. To overcome the technical barrier, this study proposed combination of multiple systems as a hybrid cycle to achieve higher efficiency of an air cycle system. The hybrid air cycle adopts a humidity control units such as an adsorber and a desorber to obtain the cooling effect from latent heat as well as sensible heat. To investigate the efficacy of the hybrid air cycle, the cooling performance of a hybrid air cycle is investigated analytically and experimentally. From the simulation result, it is found that COP of the hybrid air cycle is two times higher than that of the conventional air cycle. The experiments are conducted on the performance of the desiccant system according to the rotation speed in the system and displayed the feasibility of the key element in the hybrid air cycle system. From the results, it is shown that the system efficiency can be enhanced by utilization of the exhausted heat through the ambient heat exchanger with advantage of controlling the humidity by the desiccant rotor.

  17. Recombinant Escherichia coli GMP reductase: kinetic, catalytic and chemical mechanisms, and thermodynamics of enzyme-ligand binary complex formation.

    PubMed

    Martinelli, Leonardo Krás Borges; Ducati, Rodrigo Gay; Rosado, Leonardo Astolfi; Breda, Ardala; Selbach, Bruna Pelegrim; Santos, Diógenes Santiago; Basso, Luiz Augusto

    2011-04-01

    Guanosine monophosphate (GMP) reductase catalyzes the reductive deamination of GMP to inosine monophosphate (IMP). GMP reductase plays an important role in the conversion of nucleoside and nucleotide derivatives of guanine to adenine nucleotides. In addition, as a member of the purine salvage pathway, it also participates in the reutilization of free intracellular bases. Here we present cloning, expression and purification of Escherichia coli guaC-encoded GMP reductase to determine its kinetic mechanism, as well as chemical and thermodynamic features of this reaction. Initial velocity studies and isothermal titration calorimetry demonstrated that GMP reductase follows an ordered bi-bi kinetic mechanism, in which GMP binds first to the enzyme followed by NADPH binding, and NADP(+) dissociates first followed by IMP release. The isothermal titration calorimetry also showed that GMP and IMP binding are thermodynamically favorable processes. The pH-rate profiles showed groups with apparent pK values of 6.6 and 9.6 involved in catalysis, and pK values of 7.1 and 8.6 important to GMP binding, and a pK value of 6.2 important for NADPH binding. Primary deuterium kinetic isotope effects demonstrated that hydride transfer contributes to the rate-limiting step, whereas solvent kinetic isotope effects arise from a single protonic site that plays a modest role in catalysis. Multiple isotope effects suggest that protonation and hydride transfer steps take place in the same transition state, lending support to a concerted mechanism. Pre-steady-state kinetic data suggest that product release does not contribute to the rate-limiting step of the reaction catalyzed by E. coli GMP reductase.

  18. Comment on "Similarity between quantum mechanics and thermodynamics: Entropy, temperature, and Carnot cycle".

    PubMed

    González-Díaz, L A; Díaz-Solórzano, S

    2015-05-01

    In the paper by Abe and Okuyama [Phys. Rev. E 83, 021121 (2011)], the quantum Carnot cycle of a simple two-state model of a particle confined in a one-dimensional infinite potential well is discussed. It is claimed that the state at the beginning of the quantum Carnot cycle is pure. After that, it is apparently transmuted to a mixed state if Clausius equality is imposed. We prove that this statement is incorrect. In particular, we prove that the state at the beginning of the cycle is mixed due to the process of measuring energy. PMID:26066282

  19. Comment on "Similarity between quantum mechanics and thermodynamics: Entropy, temperature, and Carnot cycle".

    PubMed

    González-Díaz, L A; Díaz-Solórzano, S

    2015-05-01

    In the paper by Abe and Okuyama [Phys. Rev. E 83, 021121 (2011)], the quantum Carnot cycle of a simple two-state model of a particle confined in a one-dimensional infinite potential well is discussed. It is claimed that the state at the beginning of the quantum Carnot cycle is pure. After that, it is apparently transmuted to a mixed state if Clausius equality is imposed. We prove that this statement is incorrect. In particular, we prove that the state at the beginning of the cycle is mixed due to the process of measuring energy.

  20. Thermodynamic constitutive model for load-biased thermal cycling test of shape memory alloy

    SciTech Connect

    Young, Sung; Nam, Tae-Hyun

    2013-12-15

    Graphical abstract: - Highlights: • Thermodynamic calculation model for martensitic transformation of shape memory alloy was proposed. • Evolution of the self-accommodation was considered independently by a rate-dependent kinetic equation. • Finite element calculation was conducted for B2–B19′ transformation of Ti–44.5Ni–5Cu–0.5 V (at.%). • Three-dimensional numerical results predict the macroscopic strain under bias loading accurately. - Abstract: This paper presents a three-dimensional calculation model for martensitic phase transformation of shape memory alloy. Constitutive model based on thermodynamic theory was provided. The average behavior was accounted for by considering the volume fraction of each martensitic variant in the material. Evolution of the volume fraction of each variant was determined by a rate-dependent kinetic equation. We assumed that nucleation rate is faster for the self-accommodation than for the stress-induced variants. Three-dimensional finite element analysis was conducted and the results were compared with the experimental data of Ti–44.5Ni–5Cu–0.5 V (at.%) alloy under bias loading.

  1. The active RS Canum Venaticorum binary II Pegasi. IV. The SPOT activity cycle

    NASA Astrophysics Data System (ADS)

    Berdyugina, S. V.; Berdyugin, A. V.; Ilyin, I.; Tuominen, I.

    1999-10-01

    A total of 6 new surface images of II Peg obtained for the years 1997 and 1998 confirms the recently revealed permanent active longitude structure. The lower limit of the active longitudes' lifetime is now extended up to 25 years. A new ``flip-flop'' phenomenon, redefined as a switch of the activity between the active longitudes, has started in summer of 1998. It coincides reasonably well with the moment predicted from the activity cycle of the star. This confirms definitely the cyclic behaviour of the activity of II Peg we recently discovered. Therefore, we assign numbers to the cycles of 4.65 yr since the earliest photoelectric observations of II Peg and define the active longitudes as ``odd'' and ``even'' corresponding to odd and even numbers of cycles. With such a definition, in late 1998 the 7th cycle began and the ``odd'' active longitude became more active. From the analysis of the spot area evolution within the active longitudes we conclude that the activity cycle is developed as a rearrangement of the nearly constant amount of the spot area between the active longitudes. We discuss the ``flip-flop'' phenomenon as a tracer of stellar activity and the role of the unseen secondary in establishing the cycle. Based on observations collected at the Nordic Optical Telescope (NOT), La Palma, Spain; the 1.25m telescope of the Crimean Astrophysical Observatory, Ukraine; the Phoenix 10 robotic telescope, APT Observatory, Arizona, USA.}

  2. Entropy production in mesoscopic stochastic thermodynamics: nonequilibrium kinetic cycles driven by chemical potentials, temperatures, and mechanical forces

    NASA Astrophysics Data System (ADS)

    Qian, Hong; Kjelstrup, Signe; Kolomeisky, Anatoly B.; Bedeaux, Dick

    2016-04-01

    Nonequilibrium thermodynamics (NET) investigates processes in systems out of global equilibrium. On a mesoscopic level, it provides a statistical dynamic description of various complex phenomena such as chemical reactions, ion transport, diffusion, thermochemical, thermomechanical and mechanochemical fluxes. In the present review, we introduce a mesoscopic stochastic formulation of NET by analyzing entropy production in several simple examples. The fundamental role of nonequilibrium steady-state cycle kinetics is emphasized. The statistical mechanics of Onsager’s reciprocal relations in this context is elucidated. Chemomechanical, thermomechanical, and enzyme-catalyzed thermochemical energy transduction processes are discussed. It is argued that mesoscopic stochastic NET in phase space provides a rigorous mathematical basis of fundamental concepts needed for understanding complex processes in chemistry, physics and biology. This theory is also relevant for nanoscale technological advances.

  3. Thermodynamic behavior of the binaries 1-butylpyridinium tetrafluoroborate with water and alkanols: their interpretation using 1H NMR spectroscopy and quantum-chemistry calculations.

    PubMed

    Vreekamp, Remko; Castellano, Desire; Palomar, José; Ortega, Juan; Espiau, Fernando; Fernández, Luís; Penco, Eduvigis

    2011-07-14

    Here we present experimental data of different properties for a set of binary mixtures composed of water or alkanols (methanol to butanol) with an ionic liquid (IL), butylpyridinium tetrafluoroborate [bpy][BF(4)]. Solubility data (x(IL),T) are presented for each of the mixtures, including water, which is found to have a small interval of compositions in IL, x(IL), with immiscibility. In each case, the upper critical solubility temperature (UCST) is determined and a correlation was observed between the UCST and the nature of the compounds in the mixtures. Miscibility curves establish the composition and temperature intervals where thermodynamic properties of the mixtures, such as enthalpies H(m)(E) and volumes V(m)(E), can be determined. Hence, at 298.15 and 318.15 K these can only be found with the first four alkanols. All mixing properties are correlated with a suitable equation ξ (x(IL),T,Y(m)(E) = 0. An analysis on the influence of the temperature in the properties is shown, likewise a comparison between the results obtained here and those of analogous mixtures, discussing the position of the -CH(3) group in the pyridinic ring. The (1)H NMR spectra are determined to analyze the molecular interactions present, especially those due to hydrogen bonds. Additional information about the molecular interactions and their influence on the mixing properties is obtained by quantum chemistry calculations. PMID:21648473

  4. Surface interactions, thermodynamics and topography of binary monolayers of Insulin with dipalmitoylphosphatidylcholine and 1-palmitoyl-2-oleoylphosphatidylcholine at the air/water interface.

    PubMed

    Grasso, E J; Oliveira, R G; Maggio, B

    2016-02-15

    The molecular packing, thermodynamics and surface topography of binary Langmuir monolayers of Insulin and DPPC (dipalmitoylphosphatidylcholine) or POCP (1-palmitoyl-2-oleoylphosphatidylcholine) at the air/water interface on Zn(2+) containing solutions were studied. Miscibility and interactions were ascertained by the variation of surface pressure-mean molecular area isotherms, surface compressional modulus and surface (dipole) potential with the film composition. Brewster Angle Microscopy was used to visualize the surface topography of the monolayers. Below 20mN/m Insulin forms stable homogenous films with DPPC and POPC at all mole fractions studied (except for films with XINS=0.05 at 10mN/m where domain coexistence was observed). Above 20mN/m, a segregation process between mixed phases occurred in all monolayers without squeezing out of individual components. Under compression the films exhibit formation of a viscoelastic or kinetically trapped organization leading to considerable composition-dependent hysteresis under expansion that occurs with entropic-enthalpic compensation. The spontaneously unfavorable interactions of Insulin with DPPC are driven by favorable enthalpy that is overcome by unfavorable entropic ordering; in films with POPC both the enthalpic and entropic effects are unfavorable. The surface topography reveals domain coexistence at relatively high pressure showing a striped appearance. The interactions of Insulin with two major membrane phospholipids induces composition-dependent and long-range changes of the surface organization that ought to be considered in the context of the information-transducing capabilities of the hormone for cell functioning.

  5. Surface interactions, thermodynamics and topography of binary monolayers of Insulin with dipalmitoylphosphatidylcholine and 1-palmitoyl-2-oleoylphosphatidylcholine at the air/water interface.

    PubMed

    Grasso, E J; Oliveira, R G; Maggio, B

    2016-02-15

    The molecular packing, thermodynamics and surface topography of binary Langmuir monolayers of Insulin and DPPC (dipalmitoylphosphatidylcholine) or POCP (1-palmitoyl-2-oleoylphosphatidylcholine) at the air/water interface on Zn(2+) containing solutions were studied. Miscibility and interactions were ascertained by the variation of surface pressure-mean molecular area isotherms, surface compressional modulus and surface (dipole) potential with the film composition. Brewster Angle Microscopy was used to visualize the surface topography of the monolayers. Below 20mN/m Insulin forms stable homogenous films with DPPC and POPC at all mole fractions studied (except for films with XINS=0.05 at 10mN/m where domain coexistence was observed). Above 20mN/m, a segregation process between mixed phases occurred in all monolayers without squeezing out of individual components. Under compression the films exhibit formation of a viscoelastic or kinetically trapped organization leading to considerable composition-dependent hysteresis under expansion that occurs with entropic-enthalpic compensation. The spontaneously unfavorable interactions of Insulin with DPPC are driven by favorable enthalpy that is overcome by unfavorable entropic ordering; in films with POPC both the enthalpic and entropic effects are unfavorable. The surface topography reveals domain coexistence at relatively high pressure showing a striped appearance. The interactions of Insulin with two major membrane phospholipids induces composition-dependent and long-range changes of the surface organization that ought to be considered in the context of the information-transducing capabilities of the hormone for cell functioning. PMID:26624532

  6. Thermodynamic behavior of the binaries 1-butylpyridinium tetrafluoroborate with water and alkanols: their interpretation using 1H NMR spectroscopy and quantum-chemistry calculations.

    PubMed

    Vreekamp, Remko; Castellano, Desire; Palomar, José; Ortega, Juan; Espiau, Fernando; Fernández, Luís; Penco, Eduvigis

    2011-07-14

    Here we present experimental data of different properties for a set of binary mixtures composed of water or alkanols (methanol to butanol) with an ionic liquid (IL), butylpyridinium tetrafluoroborate [bpy][BF(4)]. Solubility data (x(IL),T) are presented for each of the mixtures, including water, which is found to have a small interval of compositions in IL, x(IL), with immiscibility. In each case, the upper critical solubility temperature (UCST) is determined and a correlation was observed between the UCST and the nature of the compounds in the mixtures. Miscibility curves establish the composition and temperature intervals where thermodynamic properties of the mixtures, such as enthalpies H(m)(E) and volumes V(m)(E), can be determined. Hence, at 298.15 and 318.15 K these can only be found with the first four alkanols. All mixing properties are correlated with a suitable equation ξ (x(IL),T,Y(m)(E) = 0. An analysis on the influence of the temperature in the properties is shown, likewise a comparison between the results obtained here and those of analogous mixtures, discussing the position of the -CH(3) group in the pyridinic ring. The (1)H NMR spectra are determined to analyze the molecular interactions present, especially those due to hydrogen bonds. Additional information about the molecular interactions and their influence on the mixing properties is obtained by quantum chemistry calculations.

  7. Thermodynamic modeling and performance analysis of the variable-temperature heat reservoir absorption heat pump cycle

    NASA Astrophysics Data System (ADS)

    Qin, Xiaoyong; Chen, Lingen; Ge, Yanlin; Sun, Fengrui

    2015-10-01

    For practical absorption heat pump (AHP) plants, not all external heat reservoir heat capacities are infinite. External heat reservoir heat capacity should be an effect factor in modeling and performance analysis of AHP cycles. A variable-temperature heat reservoir AHP cycle is modeled, in which internal working substance is working in four temperature levels and all irreversibility factors are considered. The irreversibility includes heat transfer irreversibility, internal dissipation irreversibility and heat leakage irreversibility. The general equations among coefficient of performance (COP), heating load and some key characteristic parameters are obtained. The general and optimal characteristics are obtained by using numerical calculations. Besides, the influences of heat capacities of heat reservoirs, internal dissipation irreversibility, and heat leakage irreversibility on cycle performance are analyzed. The conclusions can offer some guidelines for design and operation of AHP plants.

  8. Thermodynamical and structural properties of binary mixtures of imidazolium chloride ionic liquids and alcohols from molecular simulation

    NASA Astrophysics Data System (ADS)

    Raabe, Gabriele; Köhler, Jürgen

    2008-10-01

    We have performed molecular dynamics simulations to determine the densities, excess energies of mixing, and structural properties of binary mixtures of the 1-alkyl-3-methylimidazolium chloride ionic liquids (ILs) [amim][Cl] and ethanol and 1-propanol in the temperature range from 298.15to363.15K. As in our previous work [J. Chem. Phys. 128, 154509 (2008)], our simulation studies are based on a united atom model from Liu et al. [Phys. Chem. Chem. Phys. 8, 1096 (2006)] for the 1-ethyl- and 1-butyl-3-methylimidazolium cations [emim+] and [bmim+], which we have extended to the 1-hexyl-3-methylimidazolium [hmim+] cation and combined with parameters of Canongia Lopes et al. [J. Phys. Chem. B 108, 2038 (2004)] for the chloride anion [Cl-] and the force field by Khare et al. for the alcohols [J. Phys. Chem. B 108, 10071 (2004)]. With this, we provide both prediction for the densities of the mixtures that have mostly not been investigated experimentally yet and a molecular picture of the interactions between the alcohol molecules and the ions. The negative excess energies of all mixtures indicate an energetically favorable mixing of [amim][Cl] ILs and alcohols. To gain insight into the nonideality of the mixtures on the molecular level, we analyzed their local structures by radial and spatial distribution functions. These analyses show that the local ordering in these mixtures is determined by strong hydrogen-bond interactions between the chloride anion and the hydroxyls of the alcohols, enhanced interactions between the anion and the charged domain of the cation, and an increasing aggregation of the nonpolar alkyl tails of the alcohols and the cations with increasing cation size, which results in a segregation of polar and nonpolar domains.

  9. Thermodynamics and extraction modeling of trivalent lanthanides in the nuclear fuel cycle

    SciTech Connect

    Levitskaia, T.G.; Chatterjee, S.; Valerio, E.L.; Robinson, T.A.

    2013-07-01

    In this investigation, a combination of VPO (Vapor Pressure Osmometry) and water activity methods was applied to measure water activity and osmotic coefficients of binary lanthanide nitrate solutions at a temperature of 25 C. degrees. It was observed that the nature of the lanthanide nitrate has pronounced effect on the water activity in solution. In the solutions with the same Ln(NO{sub 3}){sub 3} molality, water activity is decreased in the order from the light to heavy lanthanides. This trend was explained by the contraction of the lanthanide ionic radii in the same order resulting in the [Ln(H{sub 2}O){sub n}]{sup 3+} (aq) hydration number of 9 for the early (La-Sm) and 8 for the late (Dy-Lu) lanthanides, with the intermediate metals exhibiting a mixture of eight and nine coordinate molecules. This results in the dissimilar effect of the light and heavy lanthanides on the water structure manifesting in the systematic changes of the water activity in the series of concentrated lanthanide solutions. Experimental water activity and osmotic coefficient data agree well with the literature for both 1:1 and 3:1 electrolyte systems. The Pitzer parameters obtained fitting these data are in an excellent agreement with the literature reported values for Ln(NO{sub 3}){sub 3} solutions.

  10. Efficiency at maximum power of a quantum Otto cycle within finite-time or irreversible thermodynamics.

    PubMed

    Wu, Feilong; He, Jizhou; Ma, Yongli; Wang, Jianhui

    2014-12-01

    We consider the efficiency at maximum power of a quantum Otto engine, which uses a spin or a harmonic system as its working substance and works between two heat reservoirs at constant temperatures T(h) and T(c) (thermodynamics, we calculate the Onsager coefficients and show that the value of η(CA) is indeed the upper bound of EMP for an Otto engine working in the linear-response regime.

  11. Efficiency at maximum power of a quantum Otto cycle within finite-time or irreversible thermodynamics

    NASA Astrophysics Data System (ADS)

    Wu, Feilong; He, Jizhou; Ma, Yongli; Wang, Jianhui

    2014-12-01

    We consider the efficiency at maximum power of a quantum Otto engine, which uses a spin or a harmonic system as its working substance and works between two heat reservoirs at constant temperatures Th and Tc (thermodynamics, we calculate the Onsager coefficients and show that the value of ηCA is indeed the upper bound of EMP for an Otto engine working in the linear-response regime.

  12. Thermodynamic systems analysis of open-cycle Ocean Thermal Energy Conversion (OTEC)

    NASA Astrophysics Data System (ADS)

    Parsons, B. K.; Bharathan, D.; Althof, J. A.

    1985-09-01

    This report describes an updated thermal-hydraulic systems analysis program called OTECSYS that studies the integrated performance of an open-cycle ocean thermal energy conversion (OTEC) plant, specifically, the effects of component performance, design parameters, and site specific resource data on the total system performance and plant size. OTECSYS can size the various open-cycle power cycle and hydraulic components. Models for the evaporator, mist eliminator, turbine-generator diffuser, direct-contact condenser, exhaust compressors, seawater pumps, and seawater piping are included, as are evaluations of the pressure drops associated with the intercomponent connections. It can also determine the required steam, cold seawater, and warm seawater flow rates. OTECSYS uses an approach similar to earlier work and integrates the most up-to-date developments in component performance and configuration. The program format allows the user to examine subsystem concepts not currently included by creating new component models. It will be useful to the OTEC plant designer who wants to quantify the design point sizing, performance, and power production using site-specific resource data. Detailed design trade-offs are easily evaluated, and several examples of these types of investigations are presented using plant size and power as criteria.

  13. Changes of the thermodynamic parameters in failure conditions of the micro-CHP cycle

    NASA Astrophysics Data System (ADS)

    Matysko, Robert; Mikielewicz, Jarosław; Ihnatowicz, Eugeniusz

    2014-03-01

    The paper presents the calculations for the failure conditions of the ORC (organic Rankine cycle) cycle in the electrical power system. It analyses the possible reasons of breakdown, such as the electrical power loss or the automatic safety valve failure. The micro-CHP (combined heat and power) system should have maintenance-free configuration, which means that the user does not have to be acquainted with all the details of the ORC system operation. However, the system should always be equipped with the safety control systems allowing for the immediate turn off of the ORC cycle in case of any failure. In case of emergency, the control system should take over the safety tasks and protect the micro-CHP system from damaging. Although, the control systems are able to respond quickly to the CHP system equipped with the inertial systems, the negative effects of failure are unavoidable and always remain for some time. Moreover, the paper presents the results of calculations determining the inertia for the micro-CHP system of the circulating ORC pump, heat removal pump (cooling condenser) and the heat supply pump in failure conditions.

  14. Thermodynamic and dynamic controls on the amplitude of the zonally anomalous hydrological cycle

    NASA Astrophysics Data System (ADS)

    Wills, Robert; Byrne, Michael; Schneider, Tapio

    2016-04-01

    The "wet gets wetter, dry gets drier" paradigm is a useful starting point for under- standing zonal-mean changes in precipitation minus evaporation (P-E). It can explain the expected moistening of the high latitudes and drying of the subtropics in response to global warming. We examine P-E changes over the next century in comprehensive climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). We show that "wet gets wetter, dry gets drier" can not be extended to apply to regional variations about the zonal mean, which account for the majority of the spatial variability of P-E in the modern climate. Wet and dry zones shift substantially in response to shifts in the stationary-eddy circulations that cause them. The largest changes are in the tropical oceans where wet zones get drier and dry zones get wetter in response to a restructuring and decrease in strength of tropical circulations such as the Walker circulation. Further progress can be made by examining changes in the zonal variance of P-E. The zonal variance of P-E increases robustly at all latitudes in the Representative Concentration Pathways RCP8.5 scenario, but with a smaller fractional increase than the moisture content of the atmosphere. The variance change can be split into dynamic and thermodynamic components by relating it to changes in surface specific humidity, stationary-eddy divergent circulations, and transient-eddy fluxes. The modeled sub Clausius-Clapeyron change of zonal P-E variance gives evidence of a decrease in stationary-eddy overturning and in zonally anomalous transient-eddy moisture flux convergence with global warming.

  15. Reply to "Comment on 'Similarity between quantum mechanics and thermodynamics: Entropy, temperature, and Carnot cycle' ''.

    PubMed

    Abe, Sumiyoshi

    2015-05-01

    In their Comment on the paper [Abe and Okuyama, Phys. Rev. E 83, 021121 (2011)], González-Díaz and Díaz-Solórzano discuss that the initial state of the quantum-mechanical analog of the Carnot cycle should be not in a pure state but in a mixed state due to a projective measurement of the system energy. Here, first the Comment is shown to miss the point. Then, second, multiple projective measurements are discussed as a generalization of the Comment, although they are not relevant to the work commented.

  16. Dry/Wet Cycling and the Thermodynamics and Kinetics of Prebiotic Polymer Synthesis

    PubMed Central

    Ross, David S.; Deamer, David

    2016-01-01

    The endoergic nature of protein and nucleic acid assembly in aqueous media presents two questions that are fundamental to the understanding of life’s origins: (i) how did the polymers arise in an aqueous prebiotic world; and (ii) once formed in some manner, how were they sufficiently persistent to engage in further chemistry. We propose here a quantitative resolution of these issues that evolved from recent accounts in which RNA-like polymers were produced in evaporation/rehydration cycles. The equilibrium Nm + Nn ↔ Nm+n + H2O is endoergic by about 3.3 kcal/mol for polynucleotide formation, and the system thus lies far to the left in the starting solutions. Kinetic simulations of the evaporation showed that simple Le Châtelier’s principle shifts were insufficient, but the introduction of oligomer-stabilizing factors of 5–10 kcal/mol both moved the process to the right and respectively boosted and retarded the elongation and hydrolysis rates. Molecular crowding and excluded volume effects in present-day cells yield stabilizing factors of that order, and we argue here that the crowded conditions in the evaporites generate similar effects. Oligomer formation is thus energetically preferred in those settings, but the process is thwarted in each evaporation step as diffusion becomes rate limiting. Rehydration dissipates disordered oligomer clusters in the evaporites, however, and subsequent dry/wet cycling accordingly “ratchets up” the system to an ultimate population of kinetically trappedthermodynamically preferred biopolymers. PMID:27472365

  17. Dry/Wet Cycling and the Thermodynamics and Kinetics of Prebiotic Polymer Synthesis.

    PubMed

    Ross, David S; Deamer, David

    2016-07-26

    The endoergic nature of protein and nucleic acid assembly in aqueous media presents two questions that are fundamental to the understanding of life's origins: (i) how did the polymers arise in an aqueous prebiotic world; and (ii) once formed in some manner, how were they sufficiently persistent to engage in further chemistry. We propose here a quantitative resolution of these issues that evolved from recent accounts in which RNA-like polymers were produced in evaporation/rehydration cycles. The equilibrium Nm + Nn ↔ Nm+n + H₂O is endoergic by about 3.3 kcal/mol for polynucleotide formation, and the system thus lies far to the left in the starting solutions. Kinetic simulations of the evaporation showed that simple Le Châtelier's principle shifts were insufficient, but the introduction of oligomer-stabilizing factors of 5-10 kcal/mol both moved the process to the right and respectively boosted and retarded the elongation and hydrolysis rates. Molecular crowding and excluded volume effects in present-day cells yield stabilizing factors of that order, and we argue here that the crowded conditions in the evaporites generate similar effects. Oligomer formation is thus energetically preferred in those settings, but the process is thwarted in each evaporation step as diffusion becomes rate limiting. Rehydration dissipates disordered oligomer clusters in the evaporites, however, and subsequent dry/wet cycling accordingly "ratchets up" the system to an ultimate population of kinetically trappedthermodynamically preferred biopolymers.

  18. Dry/Wet Cycling and the Thermodynamics and Kinetics of Prebiotic Polymer Synthesis.

    PubMed

    Ross, David S; Deamer, David

    2016-01-01

    The endoergic nature of protein and nucleic acid assembly in aqueous media presents two questions that are fundamental to the understanding of life's origins: (i) how did the polymers arise in an aqueous prebiotic world; and (ii) once formed in some manner, how were they sufficiently persistent to engage in further chemistry. We propose here a quantitative resolution of these issues that evolved from recent accounts in which RNA-like polymers were produced in evaporation/rehydration cycles. The equilibrium Nm + Nn ↔ Nm+n + H₂O is endoergic by about 3.3 kcal/mol for polynucleotide formation, and the system thus lies far to the left in the starting solutions. Kinetic simulations of the evaporation showed that simple Le Châtelier's principle shifts were insufficient, but the introduction of oligomer-stabilizing factors of 5-10 kcal/mol both moved the process to the right and respectively boosted and retarded the elongation and hydrolysis rates. Molecular crowding and excluded volume effects in present-day cells yield stabilizing factors of that order, and we argue here that the crowded conditions in the evaporites generate similar effects. Oligomer formation is thus energetically preferred in those settings, but the process is thwarted in each evaporation step as diffusion becomes rate limiting. Rehydration dissipates disordered oligomer clusters in the evaporites, however, and subsequent dry/wet cycling accordingly "ratchets up" the system to an ultimate population of kinetically trappedthermodynamically preferred biopolymers. PMID:27472365

  19. Suzaku monitoring of hard X-ray emission from η Carinae over a single binary orbital cycle

    SciTech Connect

    Hamaguchi, Kenji; Corcoran, Michael F.; Yuasa, Takayuki; Ishida, Manabu; Pittard, Julian M.; Russell, Christopher M. P.

    2014-11-10

    The Suzaku X-ray observatory monitored the supermassive binary system η Carinae 10 times during the whole 5.5 yr orbital cycle between 2005 and 2011. This series of observations presents the first long-term monitoring of this enigmatic system in the extremely hard X-ray band between 15 and 40 keV. During most of the orbit, the 15-25 keV emission varied similarly to the 2-10 keV emission, indicating an origin in the hard energy tail of the kT ∼ 4 keV wind-wind collision (WWC) plasma. However, the 15-25 keV emission declined only by a factor of three around periastron when the 2-10 keV emission dropped by two orders of magnitude due probably to an eclipse of the WWC plasma. The observed minimum in the 15-25 keV emission occurred after the 2-10 keV flux had already recovered by a factor of ∼3. This may mean that the WWC activity was strong, but hidden behind the thick primary stellar wind during the eclipse. The 25-40 keV flux was rather constant through the orbital cycle, at the level measured with INTEGRAL in 2004. This result may suggest a connection of this flux component to the γ-ray source detected in this field. The helium-like Fe Kα line complex at ∼6.7 keV became strongly distorted toward periastron as seen in the previous cycle. The 5-9 keV spectra can be reproduced well with a two-component spectral model, which includes plasma in collision equilibrium and a plasma in non-equilibrium ionization (NEI) with τ ∼ 10{sup 11} cm{sup –3} s{sup –1}. The NEI plasma increases in importance toward periastron.

  20. Scale Resistant Heat Exchanger for Low Temperature Geothermal Binary Cycle Power Plant

    SciTech Connect

    Hays, Lance G.

    2014-11-18

    Phase 1 of the investigation of improvements to low temperature geothermal power systems was completed. The improvements considered were reduction of scaling in heat exchangers and a hermetic turbine generator (eliminating seals, seal system, gearbox, and lube oil system). A scaling test system with several experiments was designed and operated at Coso geothermal resource with brine having a high scaling potential. Several methods were investigated at the brine temperature of 235 ºF. One method, circulation of abradable balls through the brine passages, was found to substantially reduce scale deposits. The test heat exchanger was operated with brine outlet temperatures as low as 125 ºF, which enables increased heat input available to power conversion systems. For advanced low temperature cycles, such as the Variable Phase Cycle (VPC) or Kalina Cycle, the lower brine temperature will result in a 20-30% increase in power production from low temperature resources. A preliminary design of an abradable ball system (ABS) was done for the heat exchanger of the 1 megawatt VPC system at Coso resource. The ABS will be installed and demonstrated in Phase 2 of this project, increasing the power production above that possible with the present 175 ºF brine outlet limit. A hermetic turbine generator (TGH) was designed and manufacturing drawings produced. This unit will use the working fluid (R134a) to lubricate the bearings and cool the generator. The 200 kW turbine directly drives the generator, eliminating a gearbox and lube oil system. Elimination of external seals eliminates the potential of leakage of the refrigerant or hydrocarbon working fluids, resulting in environmental improvement. A similar design has been demonstrated by Energent in an ORC waste heat recovery system. The existing VPC power plant at Coso was modified to enable the “piggyback” demonstration of the TGH. The existing heat exchanger, pumps, and condenser will be operated to provide the required

  1. Thermodynamic and heat transfer analysis of heat recovery from engine test cell by Organic Rankine Cycle

    NASA Astrophysics Data System (ADS)

    Shokati, Naser; Mohammadkhani, Farzad; Farrokhi, Navid; Ranjbar, Faramarz

    2014-12-01

    During manufacture of engines, evaluation of engine performance is essential. This is accomplished in test cells. During the test, a significant portion of heat energy released by the fuel is wasted. In this study, in order to recover these heat losses, Organic Rankine Cycle (ORC) is recommended. The study has been conducted assuming the diesel oil to be composed of a single hydrocarbon such as C12H26. The composition of exhaust gases (products of combustion) have been computed (and not determined experimentally) from the stoichiometric equation representing the combustion reaction. The test cell heat losses are recovered in three separate heat exchangers (preheater, evaporator and superheater). These heat exchangers are separately designed, and the whole system is analyzed from energy and exergy viewpoints. Finally, a parametric study is performed to investigate the effect of different variables on the system performance characteristics such as the ORC net power, heat exchangers effectiveness, the first law efficiency, exergy destruction and heat transfer surfaces. The results of the study show that by utilizing ORC, heat recovery equivalent to 8.85 % of the engine power is possible. The evaporator has the highest exergy destruction rate, while the pump has the lowest among the system components. Heat transfer surfaces are calculated to be 173.6, 58.7, and 11.87 m2 for the preheater, evaporator and superheater, respectively.

  2. Thermodynamic properties of binary mixtures containing dimethyl carbonate+2-alkanol: Experimental data, correlation and prediction by ERAS model and cubic EOS

    NASA Astrophysics Data System (ADS)

    Almasi, Mohammad

    2013-03-01

    Densities and viscosities for binary mixtures of dimethyl carbonate with 2-propanol up to 2-heptanol were measured at various temperatures and ambient pressure. From experimental data, excess molar volumes, VmE. were calculated and correlated by the Redlich-Kister equation to obtain the binary coefficients and the standard deviations. Excess molar volumes, VmE, are positive for all studied mixtures over the entire range of the mole fraction. The ERAS-model has been applied for describing the binary excess molar volumes and also Peng-Robinson-Stryjek-Vera (PRSV) equation of state (EOS) has been used to predict the binary excess molar volumes and viscosities. Also several semi-empirical models were used to correlate the viscosity of binary mixtures.

  3. Couplings between the seasonal cycles of surface thermodynamics and radiative fluxes in the semi-arid Sahel

    NASA Astrophysics Data System (ADS)

    Guichard, F.; Kergoat, L.; Mougin, E.; Timouk, F.; Bock, O.; Hiernaux, P.

    2009-04-01

    A good knowledge of surface fluxes and atmospheric low levels is central to improving our understanding of the West African monsoon. This study provides a quantitative analysis of the peculiar seasonal and diurnal cycles of surface thermodynamics and radiative fluxes encountered in Central Sahel. It is based on a multi-year dataset collected in the Malian Gourma over a sandy soil at 1.5°W-15.3°N (a site referred to as Agoufou) with an automated weather station and a sunphotometer (AERONET), complemented by observations from the AMMA field campaign. The seasonal cycle of this Tropical region is characterized by a broad maximum of temperature in May, following the first minimum of the solar zenith angle by a few weeks, when Agoufou lies within the West African Heat-Low, and a late summer maximum of equivalent potential temperature within the core of the monsoon season, around the second yearly maximum of solar zenith angle, as the temperature reaches its Summer minimum. More broadly, subtle balances between surface air temperature and moisture fields are found on a range of scales. For instance, during the monsoon, apart from August, their opposite daytime fluctuations (warming, drying) lead to an almost flat diurnal cycle of the equivalent potential temperature at the surface. This feature stands out in contrast to other more humid continental regions. Here, the strong dynamics associated with the transition from a drier hot Spring to a brief cooler wet tropical Summer climate involves very large transformations of the diurnal cycles. The Summer increase of surface net radiation, Rnet, is also strong; typically 10-day mean Rnet reaches about 5 times its Winter minimum (~30 W.m-2) in August (~150 W.m-2). A major feature revealed by observations is that this increase is mostly driven by modifications of the surface upwelling fluxes shaped by rainfall events and vegetation phenology (surface cooling and darkening), while the direct impact of atmospheric changes on

  4. Thermodynamics of the formation of sulfuric acid dimers in the binary (H2SO4-H2O) and ternary (H2SO4-H2O-NH3) system

    NASA Astrophysics Data System (ADS)

    Kürten, A.; Münch, S.; Rondo, L.; Bianchi, F.; Duplissy, J.; Jokinen, T.; Junninen, H.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Almeida, J.; Amorim, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Franchin, A.; Kirkby, J.; Kupc, A.; Makhmutov, V.; Petäjä, T.; Praplan, A. P.; Riccobono, F.; Steiner, G.; Tomé, A.; Tsagkogeorgas, G.; Wagner, P. E.; Wimmer, D.; Baltensperger, U.; Kulmala, M.; Worsnop, D. R.; Curtius, J.

    2015-09-01

    Sulfuric acid is an important gas influencing atmospheric new particle formation (NPF). Both the binary (H2SO4-H2O) system and the ternary system involving ammonia (H2SO4-H2O-NH3) may be important in the free troposphere. An essential step in the nucleation of aerosol particles from gas-phase precursors is the formation of a dimer, so an understanding of the thermodynamics of dimer formation over a wide range of atmospheric conditions is essential to describe NPF. We have used the CLOUD chamber to conduct nucleation experiments for these systems at temperatures from 208 to 248 K. Neutral monomer and dimer concentrations of sulfuric acid were measured using a chemical ionization mass spectrometer (CIMS). From these measurements, dimer evaporation rates in the binary system were derived for temperatures of 208 and 223 K. We compare these results to literature data from a previous study that was conducted at higher temperatures but is in good agreement with the present study. For the ternary system the formation of H2SO4·NH3 is very likely an essential step in the formation of sulfuric acid dimers, which were measured at 210, 223, and 248 K. We estimate the thermodynamic properties (dH and dS) of the H2SO4·NH3 cluster using a simple heuristic model and the measured data. Furthermore, we report the first measurements of large neutral sulfuric acid clusters containing as many as 10 sulfuric acid molecules for the binary system using chemical ionization-atmospheric pressure interface time-of-flight (CI-APi-TOF) mass spectrometry.

  5. Experimental Determination of Thermodynamic Properties of Ion-Exchange in Heulandite: Binary Ion-Exchange Experiments at 55 and 85 oC Involving Ca2+, Sr2+, Na+, and K+

    SciTech Connect

    Fridriksson, T; Neuhoff, P S; Viani, B E; Bird, D K

    2004-04-26

    Fridriksson and others consistency among the equilibrium constants for three binary pairs was 900 J per mole of charge equivalents (eq) for the 55 C experiments and 2300 J eq-1 for the 85 C experiments. The applicability of the present experimental results and thermodynamic models was assessed by calculating the composition of heulandite in Icelandic geothermal systems from known compositions using the regressed thermodynamic properties of Ca{sup 2+}-Na{sup +} exchange at 85 C. Calculations predict an average Ca mole fraction [defined as Ca/(Ca+Na)] in heulandite of 0.74, in excellent agreement with observed compositions of heulandite from geothermal and metamorphic systems in Iceland (0.75). Thermodynamic data for heulandite ion exchange derived in this study can be used to predict partitioning of Ca, K, Na, and Sr between heulandite and aqueous solutions in geologic systems. Because heulandite is the most effective sink for Sr in basaltic aquifers that have undergone zeolite facies metamorphism, the experimental results of this study will provide essential data for modeling Sr transport in aquifers in low-grade metabasalts.

  6. Thermodynamic study of air-cycle and mercury-vapor-cycle systems for refrigerating cooling air for turbines or other components

    NASA Technical Reports Server (NTRS)

    Nachtigall, Alfred J; Freche, John C; Esgar, Jack B

    1956-01-01

    An analysis of air refrigeration systems indicated that air cycles are generally less satisfactory than simple heat exchangers unless high component efficiencies and high values of heat-exchanger effectiveness can be obtained. A system employing a mercury-vapor cycle appears to be feasible for refrigerating air that must enter the system at temperature levels of approximately 1500 degrees R, and this cycle is more efficient than the air cycle. Weight of the systems was not considered. The analysis of the systems is presented in a generalized dimensionless form.

  7. Liquid-liquid miscibility gaps in drug-water binary systems: crystal structure and thermodynamic properties of prilocaine and the temperature-composition phase diagram of the prilocaine-water system.

    PubMed

    Rietveld, Ivo B; Perrin, Marc-Antoine; Toscani, Siro; Barrio, Maria; Nicolai, Beatrice; Tamarit, Josep-Lluis; Ceolin, René

    2013-04-01

    EMLA cream, a "eutectic mixture of local anesthetics", was developed in the early 1980s by Astra Pharmaceutical Production. The mixture of anesthetics containing lidocaine, prilocaine, and water is liquid at room temperature, which is partly due to the eutectic equilibrium between prilocaine and lidocaine at 293 K, as was clear from the start. However, the full thermodynamic background for the stability of the liquid and its emulsion-like appearance has never been elucidated. In the present study of the binary system prilocaine-water, a region of liquid-liquid demixing has been observed, linked to a monotectic equilibrium at 302.4 K. It results in a prilocaine-rich liquid containing approximately 0.7 mol fraction of anesthetic. Similar behavior has been reported for the binary system lidocaine-water (Céolin, R.; et al. J. Pharm. Sci. 2010, 99 (6), 2756-2765). In the ternary mixture, the combination of the monotectic equilibrium and the above-mentioned eutectic equilibrium between prilocaine and lidocaine results in an anesthetic-rich liquid that remains stable below room temperature. This liquid forms an emulsion-like mixture in the presence of an aqueous solution saturated with anesthetics. Physical properties and the crystal structure of prilocaine are also reported.

  8. Excess enthalpies of mixing, effect of temperature and composition on the density, and viscosity and thermodynamic properties of binary systems of {ammonium-based ionic liquid + alkanediol}.

    PubMed

    Domańska, Urszula; Papis, Paulina; Szydłowski, Jerzy; Królikowska, Marta; Królikowski, Marek

    2014-11-01

    In the present work the excess enthalpies of butyltrimethylammonium bis(trifluoromethyl-sulfonyl)imide, [N1114][NTf2], with 1,2-propanediol, or 1,2-butanediol, or 2,3-butanediol have been measured at T = 298.15 K. Additionally, the density, ρ, and dynamic viscosity, η, for binary solutions containing ionic liquids (ILs) and alkanedioles, {butyltrimethylammonium bis(trifluoromethyl-sulfonyl)imide, [N1114][NTf2], + 1,2-propanediol, 1,2-butanediol, 2,3-butanediol} and {(2-hydroxyethyl)trimethylammonium bis(trifluoro-methylsulfonyl)imide, [N1112OH][NTf2], + 1,2-propanediol, 1,3-propanediol, 1,5-pentanediol}, at wide temperature and composition ranges at ambient pressure have been investigated. From experimental values of the density, ρ, and dynamic viscosity, η, the excess molar volumes, V(E), and dynamic viscosity deviations, Δη, were calculated and correlated using the Redlich-Kister polynomial equation. The temperature dependence of density and viscosity for the tested binary systems was described by an empirical second-order polynomial and by the Vogel-Fucher-Tammann equation, respectively. The variation of density and viscosity as a function of composition has been described by the polynomial correlations. Comparison of the experimental results for the binary mixtures tested in this work allows us to determine the influence of alkanediol carbon chain length, the position of the hydroxyl group in the alcohol, and the influence of the structure of the cation of the ionic liquid on the presented properties.

  9. Analysis of a new thermodynamic cycle for combined power and cooling using low and mid temperature solar collectors

    SciTech Connect

    Goswami, D.Y.; Xu, F.

    1999-05-01

    A combined thermal power and cooling cycle is proposed which combines the Rankine and absorption refrigeration cycles. It can provide power output as well as refrigeration with power generation as a primary goal. Ammonia-water mixture is used as a working fluid. The boiling temperature of the ammonia-water mixture increases as the boiling process proceeds until all liquid is vaporized, so that a better thermal match is obtained in the boiler. The proposed cycle takes advantage of the low boiling temperature of ammonia vapor so that it can be expanded to a low temperature while it is still in a vapor state or a high quality two phase state. This cycle is ideally suited for solar thermal power using low cost concentrating collectors, with the potential to reduce the capital cost of a solar thermal power plant. The cycle can also be used as a bottoming cycle for any thermal power plant. This paper presents a parametric analysis of the proposed cycle.

  10. Thermodynamic study of complex formation between Kryptofix-5 and Sn2+ in several individual and binary non-aqueous solvents using a conductometric method

    NASA Astrophysics Data System (ADS)

    Khoshnood, Razieh Sanavi; Hatami, Elaheh

    2014-12-01

    The complex formation between 1,13-bis(8-quinolyl)-1,4,7,10,13-pentaoxatridecane (Kryptofix-5) and Sn2+ ions was studied in pure acetonitrile (AN), dimethylformamide (DMF), 1,4-dioxane (DOX), and methanol (MeOH) and in acetonitrile-1,4-dioxane (AN-DOX), acetonitrile-dichloromethane (AN-DCM), acetonitrile-methanol (AN-MeOH), and acetonitrile-dimethylformamide (AN-DMF) binary mixed solvent solutions at different temperatures using conductometric method. 1: 1 [ML] complex is formed between the metal cation and ligand in most solvent systems but in the cases of AN-MeOH (MeOH = 90 mol %) binary mixture and in pure MeOH a 2: 1 [M2L] complex was observed, that is the stoichiometry of complexes may be changed by the nature of the medium. The stability order of the (Kryptofix-5·Sn)2+ complex in the studied binary mixed solvent solutions at 25°C was found to be AN-DOX > AN-DCM > AN-MeOH > AN-DMF and in the case of pure solvents at 25°C the sequence was the following: AN > DMF > DOX. A non-linear behavior was observed for changes of log K f of (Kryptofix-5·Sn)2+ complex versus the composition of the binary mixed solvents, which was explained in terms of solvent-solvent intractions and also by the preferential solvation of the f species involved in the complexation reaction. The values of standard enthalpy changes (Δ Hc°) for complexation reactions were obtained from the slope of the Van't Hoff plots and the changes in standard entropy (Δ Sc°) were calculated from the relationship Δ Gc,298.15° = Δ Hc° - 298.15Δ Sc°. The results show that in most cases, the (Kryptofix-5·Sn)2+ complex is both enthalpy and entropy stabilized.

  11. Thermodynamic analysis of a possible CO{sub 2}-laser plant included in a heat engine cycle

    SciTech Connect

    Bisio, G.; Rubatto, G.

    1998-07-01

    In these last years, several plants have been realized in some industrialized countries to recover pressure exergy from various fluids. That has been done by means of suitable turbines in particular for blast-furnace top gas and natural gas. Various papers have examined the topic, considering pros and cons. High-power CO{sub 2}-lasers are being more and more widely used for welding, drilling and cutting in machine shops. In the near future different kinds of metal surface treatments will probably become routine practice with laser units. The industries benefiting most from high power lasers will be: the automotive industry, shipbuilding, the offshore industry, the aerospace industry, the nuclear and the chemical processing industries. Both degradation and cooling problems may be alleviated by allowing the gas to flow through the laser tube and by reducing its pressure outside this tube. Thus, a thermodynamic analysis on high-power CO{sub 2}-lasers with particular reference to a possible energy recovery is justified. In previous papers the critical examination of the concept of efficiency has led one of the present authors to the definition of an operational domain in which the process can be achieved. This domain is confined by regions of no entropy production (upper limit) and no useful effects (lower limit). On the basis of these concepts and of what has been done for pressure exergy recovery from other fluids, exergy investigations and an analysis of losses are performed for a cyclic process including a high performance CO2 laser. Thermodynamic analysis of flow processes in a CO{sub 2}-laser plant shows that the inclusion of a turbine in this plant allows us to recover the most part of the exergy necessary for the compressor; in addition, the water consumption for the refrigeration in the heat exchanger is reduced.

  12. Thermodynamic Analysis of the Use a Chemical Heat Pump to Link a Supercritical Water-Cooled Nuclear Reactor and a Thermochemical Water-Splitting Cycle for Hydrogen Production

    NASA Astrophysics Data System (ADS)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.; Pioro, Igor

    Increases in the power generation efficiency of nuclear power plants (NPPs) are mainly limited by the permissible temperatures in nuclear reactors and the corresponding temperatures and pressures of the coolants in reactors. Coolant parameters are limited by the corrosion rates of materials and nuclear-reactor safety constraints. The advanced construction materials for the next generation of CANDU reactors, which employ supercritical water (SCW) as a coolant and heat carrier, permit improved “steam” parameters (outlet temperatures up to 625°C and pressures of about 25 MPa). An increase in the temperature of steam allows it to be utilized in thermochemical water splitting cycles to produce hydrogen. These methods are considered by many to be among the most efficient ways to produce hydrogen from water and to have advantages over traditional low-temperature water electrolysis. However, even lower temperature water splitting cycles (Cu-Cl, UT-3, etc.) require an intensive heat supply at temperatures higher than 550-600°C. A sufficient increase in the heat transfer from the nuclear reactor to a thermochemical water splitting cycle, without jeopardizing nuclear reactor safety, might be effectively achieved by application of a heat pump, which increases the temperature of the heat supplied by virtue of a cyclic process driven by mechanical or electrical work. Here, a high-temperature chemical heat pump, which employs the reversible catalytic methane conversion reaction, is proposed. The reaction shift from exothermic to endothermic and back is achieved by a change of the steam concentration in the reaction mixture. This heat pump, coupled with the second steam cycle of a SCW nuclear power generation plant on one side and a thermochemical water splitting cycle on the other, increases the temperature of the “nuclear” heat and, consequently, the intensity of heat transfer into the water splitting cycle. A comparative preliminary thermodynamic analysis is conducted

  13. Thermodynamics of Resource Recycling.

    ERIC Educational Resources Information Center

    Hauserman, W. B.

    1988-01-01

    Evaluates the overall economic efficiency of a closed resource cycle. Uses elementary thermodynamic definitions of overall thermal efficiency for determining an economically quantifiable basis. Selects aluminum for investigation and includes a value-entropy diagram for a closed aluminum cycle. (MVL)

  14. Thermodynamic modeling of the C(CH2OH)4-(NH2)(CH3)C(CH2OH)2 binary system

    SciTech Connect

    Chellappa, Raja; Russell, Renee; Chandra, Dhanesh

    2004-10-12

    A new calculated phase diagram of pentaerythritol [PE:P C(CH2OH)4]-2-amino-2-methyl-1,3-propanediol [AMPL: (NH2)(CH3)C(CH2OH)2 ] 'plastic crystals' is presented. The low temperature PE-rich * phase has a tetragonal structure whereas the AMPL-rich * phase has a monoclinic structure. Upon heating, these low temperature * or * phases transform to a high temperature * or *' plastic crystal phases. The PE-rich * phase has an FCC structure and the AMPL-rich *' phase has a BCC structure. The system exhibits complex behavior with one low temperature peritectoid, a high temperature eutectoid, and a peritectic. The * and * phases are assumed to be regular solutions and the plastic crystal phases (* and *') are described using sub-regular solution models. The optimization for excess Gibbs energy parameters was perfomred using Thermo-Calc (TCC) software. The magnitudes of the interaction parameters are relatively large compared to those for similar plastic crystal binary systems.

  15. Computer code for single-point thermodynamic analysis of hydrogen/oxygen expander-cycle rocket engines

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.; Jones, Scott M.

    1991-01-01

    This analysis and this computer code apply to full, split, and dual expander cycles. Heat regeneration from the turbine exhaust to the pump exhaust is allowed. The combustion process is modeled as one of chemical equilibrium in an infinite-area or a finite-area combustor. Gas composition in the nozzle may be either equilibrium or frozen during expansion. This report, which serves as a users guide for the computer code, describes the system, the analysis methodology, and the program input and output. Sample calculations are included to show effects of key variables such as nozzle area ratio and oxidizer-to-fuel mass ratio.

  16. A metabolite-sensitive, thermodynamically constrained model of cardiac cross-bridge cycling: implications for force development during ischemia.

    PubMed

    Tran, Kenneth; Smith, Nicolas P; Loiselle, Denis S; Crampin, Edmund J

    2010-01-20

    We present a metabolically regulated model of cardiac active force generation with which we investigate the effects of ischemia on maximum force production. Our model, based on a model of cross-bridge kinetics that was developed by others, reproduces many of the observed effects of MgATP, MgADP, Pi, and H(+) on force development while retaining the force/length/Ca(2+) properties of the original model. We introduce three new parameters to account for the competitive binding of H(+) to the Ca(2+) binding site on troponin C and the binding of MgADP within the cross-bridge cycle. These parameters, along with the Pi and H(+) regulatory steps within the cross-bridge cycle, were constrained using data from the literature and validated using a range of metabolic and sinusoidal length perturbation protocols. The placement of the MgADP binding step between two strongly-bound and force-generating states leads to the emergence of an unexpected effect on the force-MgADP curve, where the trend of the relationship (positive or negative) depends on the concentrations of the other metabolites and [H(+)]. The model is used to investigate the sensitivity of maximum force production to changes in metabolite concentrations during the development of ischemia.

  17. Starspot evolution, differential rotation, and magnetic cycles in the chromospherically active binaries lambda andromedae, sigma Geminorum, II Pegasi, and V711 Tauri

    NASA Technical Reports Server (NTRS)

    Henry, Gregory W.; Eaton, Joel A.; Hamer, Jamesia; Hall, Douglas S.

    1995-01-01

    We have analyzed 15-19 yr of photoelectric photometry, obtained manually and with automated telescopes, of the chromospherically active binaries lambda And, sigma Gem, II Peg, and V711 Tau. These observations let us identify individual dark starspots on the stellar surfaces from periodic dimming of the starlight, follow the evolution of these spots, and search for long-term cyclic changes in the properties of these starspots that might reveal magnetic cycles analogous to the Sun's 11 yr sunspot cycle. We developed a computer code to fit a simple two-spot model to our observed light curves that allows us to extract the most easily determinable and most reliable spot parameters from the light curves, i.e., spot longitudes and radii. We then used these measured properties to identify individual spots and to chart their life histories by constructing migration and amplitude curves. We identified and followed 11 spots in lambda And, 16 in sigma Gem, 12 in II Peg, and 15 in V711 Tau. Lifetimes of individual spots ranged from a few months to longer than 6 yr. Differential rotation coefficients, estimated from the observed range of spot rotation periods for each star and defined by equation (2), were 0.04 for lambda And, 0.038 for sigma Gem, 0.005 for II Peg, and 0.006 for V711 Tau, versus 0.19 for the Sun. We searched for cyclic changes in mean brightness, B-V color index, and spot rotation period as evidence for long-term cycles. Of these, long-term variability in mean brightness appears to offer the best evidence for such cycles in these four stars. Cycles of 11.1 yr for lambda And, 8.5 yr for sigma Gem, 11 yr for II Peg, and 16 yr V711 Tau are implied by these mean brightness changes. Cyclic changes in spot rotation period were found in lambda And and possibly II Peg. Errors in B-V were too large for any long-term changes to be detectable.

  18. Electrochemical thermodynamic measurement system

    DOEpatents

    Reynier, Yvan; Yazami, Rachid; Fultz, Brent T.

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  19. Development of New Thermodynamic Cycles

    SciTech Connect

    D. Yogi Goswami

    2002-04-30

    In general, optimization is a way to find the best solution to a problem of any kind. We do a lot of optimization in our daily life. For example, we always search for the best product, which meets our demands, with the lowest possible price. In engineering, optimization is a very powerful tool. There is usually more than one acceptable solution to an engineering problem. The goal of an engineer is to find the best one. When there are more than a few acceptable solutions, it may be simply impossible to compare them by hand. More sophisticated mathematical methods have been developed to help find the best solution.

  20. Thermodynamic Diagrams

    NASA Astrophysics Data System (ADS)

    Chaston, Scot

    1999-02-01

    Thermodynamic data such as equilibrium constants, standard cell potentials, molar enthalpies of formation, and standard entropies of substances can be a very useful basis for an organized presentation of knowledge in diverse areas of applied chemistry. Thermodynamic data can become particularly useful when incorporated into thermodynamic diagrams that are designed to be easy to recall, to serve as a basis for reconstructing previous knowledge, and to determine whether reactions can occur exergonically or only with the help of an external energy source. Few students in our chemistry-based courses would want to acquire the depth of knowledge or rigor of professional thermodynamicists. But they should nevertheless learn how to make good use of thermodynamic data in their professional occupations that span the chemical, biological, environmental, and medical laboratory fields. This article discusses examples of three thermodynamic diagrams that have been developed for this purpose. They are the thermodynamic energy account (TEA), the total entropy scale, and the thermodynamic scale diagrams. These diagrams help in the teaching and learning of thermodynamics by bringing the imagination into the process of developing a better understanding of abstract thermodynamic functions, and by allowing the reader to keep track of specialist thermodynamic discourses in the literature.

  1. Phase relations in the system NaCl-KCl-H2O: IV. Differential thermal analysis of the sylvite liquidus in the KCl-H2O binary, the liquidus in the NaCl-KCl-H2O ternary, and the solidus in the NaCl-KCl binary to 2 kb pressure, and a summary of experimental data for thermodynamic-PTX analysis of solid-liquid equilibria at elevated P-T conditions

    USGS Publications Warehouse

    Chou, I.-Ming; Sterner, S.M.; Pitzer, Kenneth S.

    1992-01-01

    The sylvite liquidus in the binary system KCl-H2O and the liquidus in the ternary system NaCl-KCl-H2O were determined by using isobaric differential thermal analysis (DTA) cooling scans at pressures up to 2 kbars. Sylvite solubilities along the three-phase curve in the binary system KCl-H2O were obtained by the intersection of sylvite-liquidus isopleths with the three-phase curve in a P-T plot. These solubility data can be represented by the equation Wt.% KCl (??0.2) = 12.19 + 0.1557T - 5.4071 ?? 10-5 T2, where 400 ??? T ??? 770??C. These data are consistent with previous experimental observations. The solidus in the binary system NaCl-KCl was determined by using isobaric DTA heating scans at pressures up to 2 kbars. Using these liquidus and solidus data and other published information, a thermodynamic-PTX analysis of solid-liquid equilibria at high pressures and temperatures for the ternary system has been performed and is presented in an accompanying paper (Part V of this series). However, all experimental liquidus, solidus, and solvus data used in this analysis are summarized in this report (Part IV) and they are compared with the calculated values based on the analysis. ?? 1992.

  2. Binary stars.

    PubMed

    Paczynacuteski, B

    1984-07-20

    Most stars in the solar neighborhood are either double or multiple systems. They provide a unique opportunity to measure stellar masses and radii and to study many interesting and important phenomena. The best candidates for black holes are compact massive components of two x-ray binaries: Cygnus X-1 and LMC X-3. The binary radio pulsar PSR 1913 + 16 provides the best available evidence for gravitational radiation. Accretion disks and jets observed in close binaries offer a very good testing ground for models of active galactic nuclei and quasars.

  3. Binary stars.

    PubMed

    Paczynacuteski, B

    1984-07-20

    Most stars in the solar neighborhood are either double or multiple systems. They provide a unique opportunity to measure stellar masses and radii and to study many interesting and important phenomena. The best candidates for black holes are compact massive components of two x-ray binaries: Cygnus X-1 and LMC X-3. The binary radio pulsar PSR 1913 + 16 provides the best available evidence for gravitational radiation. Accretion disks and jets observed in close binaries offer a very good testing ground for models of active galactic nuclei and quasars. PMID:17749544

  4. Thermodynamic holography.

    PubMed

    Wei, Bo-Bo; Jiang, Zhan-Feng; Liu, Ren-Bao

    2015-01-01

    The holographic principle states that the information about a volume of a system is encoded on the boundary surface of the volume. Holography appears in many branches of physics, such as optics, electromagnetism, many-body physics, quantum gravity, and string theory. Here we show that holography is also an underlying principle in thermodynamics, a most important foundation of physics. The thermodynamics of a system is fully determined by its partition function. We prove that the partition function of a finite but arbitrarily large system is an analytic function on the complex plane of physical parameters, and therefore the partition function in a region on the complex plane is uniquely determined by its values along the boundary. The thermodynamic holography has applications in studying thermodynamics of nano-scale systems (such as molecule engines, nano-generators and macromolecules) and provides a new approach to many-body physics. PMID:26478214

  5. Thermodynamic holography

    PubMed Central

    Wei, Bo-Bo; Jiang, Zhan-Feng; Liu, Ren-Bao

    2015-01-01

    The holographic principle states that the information about a volume of a system is encoded on the boundary surface of the volume. Holography appears in many branches of physics, such as optics, electromagnetism, many-body physics, quantum gravity, and string theory. Here we show that holography is also an underlying principle in thermodynamics, a most important foundation of physics. The thermodynamics of a system is fully determined by its partition function. We prove that the partition function of a finite but arbitrarily large system is an analytic function on the complex plane of physical parameters, and therefore the partition function in a region on the complex plane is uniquely determined by its values along the boundary. The thermodynamic holography has applications in studying thermodynamics of nano-scale systems (such as molecule engines, nano-generators and macromolecules) and provides a new approach to many-body physics. PMID:26478214

  6. Signature Visualization of Software Binaries

    SciTech Connect

    Panas, T

    2008-07-01

    In this paper we present work on the visualization of software binaries. In particular, we utilize ROSE, an open source compiler infrastructure, to pre-process software binaries, and we apply a landscape metaphor to visualize the signature of each binary (malware). We define the signature of a binary as a metric-based layout of the functions contained in the binary. In our initial experiment, we visualize the signatures of a series of computer worms that all originate from the same line. These visualizations are useful for a number of reasons. First, the images reveal how the archetype has evolved over a series of versions of one worm. Second, one can see the distinct changes between version. This allows the viewer to form conclusions about the development cycle of a particular worm.

  7. Stochastic thermodynamics

    NASA Astrophysics Data System (ADS)

    Eichhorn, Ralf; Aurell, Erik

    2014-04-01

    'Stochastic thermodynamics as a conceptual framework combines the stochastic energetics approach introduced a decade ago by Sekimoto [1] with the idea that entropy can consistently be assigned to a single fluctuating trajectory [2]'. This quote, taken from Udo Seifert's [3] 2008 review, nicely summarizes the basic ideas behind stochastic thermodynamics: for small systems, driven by external forces and in contact with a heat bath at a well-defined temperature, stochastic energetics [4] defines the exchanged work and heat along a single fluctuating trajectory and connects them to changes in the internal (system) energy by an energy balance analogous to the first law of thermodynamics. Additionally, providing a consistent definition of trajectory-wise entropy production gives rise to second-law-like relations and forms the basis for a 'stochastic thermodynamics' along individual fluctuating trajectories. In order to construct meaningful concepts of work, heat and entropy production for single trajectories, their definitions are based on the stochastic equations of motion modeling the physical system of interest. Because of this, they are valid even for systems that are prevented from equilibrating with the thermal environment by external driving forces (or other sources of non-equilibrium). In that way, the central notions of equilibrium thermodynamics, such as heat, work and entropy, are consistently extended to the non-equilibrium realm. In the (non-equilibrium) ensemble, the trajectory-wise quantities acquire distributions. General statements derived within stochastic thermodynamics typically refer to properties of these distributions, and are valid in the non-equilibrium regime even beyond the linear response. The extension of statistical mechanics and of exact thermodynamic statements to the non-equilibrium realm has been discussed from the early days of statistical mechanics more than 100 years ago. This debate culminated in the development of linear response

  8. Cycle Analysis

    SciTech Connect

    Wright, Steven A.

    2012-03-20

    1. The Cycle Analysis code is an Microsoft Excel code that performs many different types of thermodynamic cycle analysis for power producing systems. The code will calculate the temperature and pressure and all other thermodynamic properties at the inlet and outlet of each component. The code also calculates the power that is produced, the efficiency, and the heat transported in the heater, gas chiller and recuperators. The code provides a schematic of the loop and provides the temperature and pressure at each location in the loop. The code also provides a T-S (temperature-entropy) diagram of the loop and often it provides an pressure enthalpy plot as well. 2. This version of the code concentrates on supercritical CO2 power cycles, but by simply changing the name of the working fluid many other types of fluids can be analyzed. The Cycle Analysis code provided here contains 18 different types of power cycles. Each cycle is contained in one worksheet or tab that the user can select. The user can change the yellow highlighted regions to perform different thermodynamic cycle analysis.

  9. Cycle Analysis

    2012-03-20

    1. The Cycle Analysis code is an Microsoft Excel code that performs many different types of thermodynamic cycle analysis for power producing systems. The code will calculate the temperature and pressure and all other thermodynamic properties at the inlet and outlet of each component. The code also calculates the power that is produced, the efficiency, and the heat transported in the heater, gas chiller and recuperators. The code provides a schematic of the loop andmore » provides the temperature and pressure at each location in the loop. The code also provides a T-S (temperature-entropy) diagram of the loop and often it provides an pressure enthalpy plot as well. 2. This version of the code concentrates on supercritical CO2 power cycles, but by simply changing the name of the working fluid many other types of fluids can be analyzed. The Cycle Analysis code provided here contains 18 different types of power cycles. Each cycle is contained in one worksheet or tab that the user can select. The user can change the yellow highlighted regions to perform different thermodynamic cycle analysis.« less

  10. Methodology of Thermodynamics

    ERIC Educational Resources Information Center

    Mohan, Gyan

    1969-01-01

    Presents a systematization of the mathematical formulae in thermodynamics. From the set of thermodynamic variables, four equations are derived which contain the total mathematical jargon of thermodynamics. (LC)

  11. Thermodynamic evaluation of mass diffusion in ionic mixtures

    SciTech Connect

    Kagan, Grigory; Tang, Xian-Zhu

    2014-02-15

    The thermodynamic technique of Landau and Lifshitz originally developed for inter-species diffusion in a binary neutral gas mixture is extended to a quasi-neutral plasma with two ion species. It is shown that, while baro- and electro-diffusion coefficients depend on the choice of the thermodynamic system, prediction for the total diffusive mass flux is invariant.

  12. Thermodynamic cost of computation, algorithmic complexity and the information metric

    NASA Technical Reports Server (NTRS)

    Zurek, W. H.

    1989-01-01

    Algorithmic complexity is discussed as a computational counterpart to the second law of thermodynamics. It is shown that algorithmic complexity, which is a measure of randomness, sets limits on the thermodynamic cost of computations and casts a new light on the limitations of Maxwell's demon. Algorithmic complexity can also be used to define distance between binary strings.

  13. Binary Planets

    NASA Astrophysics Data System (ADS)

    Ryan, Keegan; Nakajima, Miki; Stevenson, David J.

    2014-11-01

    Can a bound pair of similar mass terrestrial planets exist? We are interested here in bodies with a mass ratio of ~ 3:1 or less (so Pluto/Charon or Earth/Moon do not qualify) and we do not regard the absence of any such discoveries in the Kepler data set to be significant since the tidal decay and merger of a close binary is prohibitively fast well inside of 1AU. SPH simulations of equal mass “Earths” were carried out to seek an answer to this question, assuming encounters that were only slightly more energetic than parabolic (zero energy). We were interested in whether the collision or near collision of two similar mass bodies would lead to a binary in which the two bodies remain largely intact, effectively a tidal capture hypothesis though with the tidal distortion being very large. Necessarily, the angular momentum of such an encounter will lead to bodies separated by only a few planetary radii if capture occurs. Consistent with previous work, mostly by Canup, we find that most impacts are disruptive, leading to a dominant mass body surrounded by a disk from which a secondary forms whose mass is small compared to the primary, hence not a binary planet by our adopted definition. However, larger impact parameter “kissing” collisions were found to produce binaries because the dissipation upon first encounter was sufficient to provide a bound orbit that was then rung down by tides to an end state where the planets are only a few planetary radii apart. The long computational times for these simulation make it difficult to fully map the phase space of encounters for which this outcome is likely but the indications are that the probability is not vanishingly small and since planetary encounters are a plausible part of planet formation, we expect binary planets to exist and be a non-negligible fraction of the larger orbital radius exoplanets awaiting discovery.

  14. Structure Map for Embedded Binary Alloy Nanocrystals

    SciTech Connect

    Yuan, C.W.; Shin, S.J.; Liao, C.Y.; Guzman, J.; Stone, P.R.; Watanabe, M.; Ager III, J.W.; Haller, E.E.; Chrzan, D.C.

    2008-09-20

    The equilibrium structure of embedded nanocrystals formed from strongly segregating binary-alloys is considered within a simple thermodynamic model. The model identifies two dimensionlessinterface energies that dictate the structure, and allows prediction of the stable structure for anychoice of these parameters. The resulting structure map includes three distinct nanocrystal mor-phologies: core/shell, lobe/lobe, and completely separated spheres.

  15. Descriptive thermodynamics

    NASA Astrophysics Data System (ADS)

    Ford, David; Huntsman, Steven

    2006-06-01

    Thermodynamics (in concert with its sister discipline, statistical physics) can be regarded as a data reduction scheme based on partitioning a total system into a subsystem and a bath that weakly interact with each other. Whereas conventionally, the systems investigated require this form of data reduction in order to facilitate prediction, a different problem also occurs, in the context of communication networks, markets, etc. Such “empirically accessible” systems typically overwhelm observers with the sort of information that in the case of (say) a gas is effectively unobtainable. What is required for such complex interacting systems is not prediction (this may be impossible when humans besides the observer are responsible for the interactions) but rather, description as a route to understanding. Still, the need for a thermodynamical data reduction scheme remains. In this paper, we show how an empirical temperature can be computed for finite, empirically accessible systems, and further outline how this construction allows the age-old science of thermodynamics to be fruitfully applied to them.

  16. Approaching the Post-Newtonian Regime with Numerical Relativity: A Compact-Object Binary Simulation Spanning 350 Gravitational-Wave Cycles.

    PubMed

    Szilágyi, Béla; Blackman, Jonathan; Buonanno, Alessandra; Taracchini, Andrea; Pfeiffer, Harald P; Scheel, Mark A; Chu, Tony; Kidder, Lawrence E; Pan, Yi

    2015-07-17

    We present the first numerical-relativity simulation of a compact-object binary whose gravitational waveform is long enough to cover the entire frequency band of advanced gravitational-wave detectors, such as LIGO, Virgo, and KAGRA, for mass ratio 7 and total mass as low as 45.5M_{⊙}. We find that effective-one-body models, either uncalibrated or calibrated against substantially shorter numerical-relativity waveforms at smaller mass ratios, reproduce our new waveform remarkably well, with a negligible loss in detection rate due to modeling error. In contrast, post-Newtonian inspiral waveforms and existing calibrated phenomenological inspiral-merger-ringdown waveforms display greater disagreement with our new simulation. The disagreement varies substantially depending on the specific post-Newtonian approximant used. PMID:26230780

  17. Approaching the Post-Newtonian Regime with Numerical Relativity: A Compact-Object Binary Simulation Spanning 350 Gravitational-Wave Cycles.

    PubMed

    Szilágyi, Béla; Blackman, Jonathan; Buonanno, Alessandra; Taracchini, Andrea; Pfeiffer, Harald P; Scheel, Mark A; Chu, Tony; Kidder, Lawrence E; Pan, Yi

    2015-07-17

    We present the first numerical-relativity simulation of a compact-object binary whose gravitational waveform is long enough to cover the entire frequency band of advanced gravitational-wave detectors, such as LIGO, Virgo, and KAGRA, for mass ratio 7 and total mass as low as 45.5M_{⊙}. We find that effective-one-body models, either uncalibrated or calibrated against substantially shorter numerical-relativity waveforms at smaller mass ratios, reproduce our new waveform remarkably well, with a negligible loss in detection rate due to modeling error. In contrast, post-Newtonian inspiral waveforms and existing calibrated phenomenological inspiral-merger-ringdown waveforms display greater disagreement with our new simulation. The disagreement varies substantially depending on the specific post-Newtonian approximant used.

  18. The Formation of Contact and Very Close Binaries

    SciTech Connect

    Kisseleva-Eggleton, L; Eggleton, P P

    2007-08-10

    We explore the possibility that all close binaries, i.e. those with periods {approx}< 3 d, including contact (W UMa) binaries, are produced from initially wider binaries (periods of say 10's of days) by the action of a triple companion through the medium of Kozai Cycles with Tidal Friction (KCTF).

  19. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 4: Open recuperated and bottomed gas turbine cycles. [performance prediction and energy conversion efficiency of gas turbines in electric power plants (thermodynamic cycles)

    NASA Technical Reports Server (NTRS)

    Amos, D. J.; Grube, J. E.

    1976-01-01

    Open-cycle recuperated gas turbine plant with inlet temperatures of 1255 to 1644 K (1800 to 2500 F) and recuperators with effectiveness values of 0, 70, 80 and 90% are considered. A 1644 K (2500 F) gas turbine would have a 33.5% plant efficiency in a simple cycle, 37.6% in a recuperated cycle and 47.6% when combined with a sulfur dioxide bottomer. The distillate burning recuperated plant was calculated to produce electricity at a cost of 8.19 mills/MJ (29.5 mills/kWh). Due to their low capital cost $170 to 200 $/kW, the open cycle gas turbine plant should see duty for peaking and intermediate load duty.

  20. Nanoscopic Thermodynamics.

    PubMed

    Qi, Weihong

    2016-09-20

    Conventional thermodynamics for bulk substances encounters challenges when one considers materials on the nanometer scale. Quantities such as entropy, enthalpy, free energy, melting temperature, ordering temperature, Debye temperature, and specific heat no longer remain constant but change with the crystal dimension, size, and morphology. Often, one phenomenon is associated with a variety of theories from different perspectives. Still, a model that can reconcile the size and shape dependence of the thermal properties of the nanoscaled substances remains one of the goals of nanoscience and nanotechnology. This Account highlights the nanoscopic thermodynamics for nanoparticles, nanowires, and nanofilms, with particular emphasis on the bond energy model. The central idea is that the atomic cohesive energy determines the thermodynamic performance of a substance and the cohesive energy varies with the atomic coordination environment. It is the cohesive energy difference between the core and the shell that dictates the nanoscopic thermodynamics. This bond energy model rationalizes the following: (i) how the surface dangling bonds depress the melting temperature, entropy, and enthalpy; (ii) how the order-disorder transition of the nanoparticles depends on particle size and how their stability may vary when they are embedded in an appropriate matrix; (iii) predictions of the existence of face-centered cubic structures of Ti, Zr, and Hf at small size; (iv) how two elements that are immiscible in the bulk can form an alloy on the nanoscale, where the critical size can be predicted. The model has enabled us to reproduce the size and shape dependence of a number of physical properties, such as melting temperature, melting entropy, melting enthalpy, ordering temperature, Gibbs free energy, and formation heat, among others, for materials such as Pd, Au, Ag, Cu, Ni, Sn, Pb, In, Bi, Al, Ti, Zr, Hf, In-Al, Ag-Ni, Co-Pt, Cu-Ag, Cu-Ni, Au-Ni, Ag-Pt, and Au-Pt on the nanometer scale

  1. A review of the remote sensing of lower-tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles

    DOE PAGESBeta

    Wulfmeyer, Volker; Hardesty, Mike; Turner, David D.; Behrendt, Andreas; Cadeddu, Maria; Di Girolamo, Paolo; Schlüssel, Peter; van Baelen, Joël; Zus, Florian

    2015-07-08

    A review of remote sensing technology for lower-tropospheric thermodynamic (TD) profiling is presented with focus on high accuracy and high temporal-vertical resolution. The contributions of these instruments to the understanding of the Earth system are assessed with respect to radiative transfer, land-surface-atmosphere feedback, convection initiation, and data assimilation. We demonstrate that for progress in weather and climate research, TD profilers are essential. These observational systems must resolve gradients of humidity and temperature in the stable or unstable atmospheric surface layer close to the ground, in the mixed layer, in the interfacial layer – usually characterized by an inversion – andmore » the lower troposphere. A thorough analysis of the current observing systems is performed revealing significant gaps that must be addressed to fulfill existing needs. We analyze whether current and future passive and active remote sensing systems can close these gaps. A methodological analysis and demonstration of measurement capabilities with respect to bias and precision is executed both for passive and active remote sensing including passive infrared and microwave spectroscopy, the global positioning system as well as water-vapor and temperature Raman lidar and water-vapor differential absorption lidar. Whereas passive remote sensing systems are already mature with respect to operational applications, active remote sensing systems require further engineering to become operational in networks. However, active remote sensing systems provide a smaller bias as well as higher temporal and vertical resolutions. For a suitable mesoscale network design, TD profiler system developments should be intensified and dedicated observing system simulation experiments should be performed.« less

  2. A review of the remote sensing of lower-tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles

    SciTech Connect

    Wulfmeyer, Volker; Hardesty, Mike; Turner, David D.; Behrendt, Andreas; Cadeddu, Maria; Di Girolamo, Paolo; Schlüssel, Peter; van Baelen, Joël; Zus, Florian

    2015-07-08

    A review of remote sensing technology for lower-tropospheric thermodynamic (TD) profiling is presented with focus on high accuracy and high temporal-vertical resolution. The contributions of these instruments to the understanding of the Earth system are assessed with respect to radiative transfer, land-surface-atmosphere feedback, convection initiation, and data assimilation. We demonstrate that for progress in weather and climate research, TD profilers are essential. These observational systems must resolve gradients of humidity and temperature in the stable or unstable atmospheric surface layer close to the ground, in the mixed layer, in the interfacial layer – usually characterized by an inversion – and the lower troposphere. A thorough analysis of the current observing systems is performed revealing significant gaps that must be addressed to fulfill existing needs. We analyze whether current and future passive and active remote sensing systems can close these gaps. A methodological analysis and demonstration of measurement capabilities with respect to bias and precision is executed both for passive and active remote sensing including passive infrared and microwave spectroscopy, the global positioning system as well as water-vapor and temperature Raman lidar and water-vapor differential absorption lidar. Whereas passive remote sensing systems are already mature with respect to operational applications, active remote sensing systems require further engineering to become operational in networks. However, active remote sensing systems provide a smaller bias as well as higher temporal and vertical resolutions. For a suitable mesoscale network design, TD profiler system developments should be intensified and dedicated observing system simulation experiments should be performed.

  3. Numerical Analysis of Integral Characteristics for the Condenser Setups of Independent Power-Supply Sources with the Closed-Looped Thermodynamic Cycle

    NASA Astrophysics Data System (ADS)

    Vysokomorny, Vladimir S.; Vysokomornaya, Vladimir S.

    2016-02-01

    The mathematical model of heat and mass transfer processes with phase transition is developed. It allows analyzing of integral characteristics for the condenser setup of independent power-supply plant with the organic Rankine cycle. Different kinds of organic liquids can be used as a coolant and working substance. The temperatures of the working liquid at the condenser outlet under different values of outside air temperature are determined. The comparative analysis of the utilization efficiency of different cooling systems and organic coolants is carried out.

  4. Thermodynamics of Thermoelectric Materials

    NASA Astrophysics Data System (ADS)

    Doak, Jeff W.

    One challenge facing society is the responsible use of our energy resources. Increasing the efficiency of energy generation provides one path to solving this challenge. One commonality among most current energy generation methods is that waste heat is generated during the generation process. Thermoelectrics can provide a solution to increasing the efficiency of power generation and automotive systems by converting waste heat directly to electricity. The current barrier to implementation of thermoelectric systems is the low efficiencies of underlying thermoelectric materials. The efficiency of a thermoelectric material depends on the electronic and thermal transport properties of the material; a good thermoelectric material should be an electronic conductor and a thermal insulator, traits which generally oppose one another. The thermal properties of a thermoelectric material can be improved by forming nanoscale precipitates with the material which scatter phonons, reducing the thermal conductivity. The electronic properties of a thermoelectric material can be improved by doping the material to increase the electronic conductivity or by alloying the material to favorably alter its band structure. The ability of these chemical modifications to affect the thermoelectric efficiency of material are ultimately governed by the chemical thermodynamics of the system. PbTe is a prototypical thermoelectric material: Alloying PbTe with PbS (or other materials) creates nanostructures which scatter phonons and reduce the lattice thermal conductivity. Doping PbTe with Na increases the hole concentration, increasing the electronic conductivity. In this work, we investigate the thermodynamics of PbTe and similar systems using first principles to understand the underlying mechanisms controlling the formation of nanostructures and the amount of doping allowed in these systems. In this work we: 1) investigate the thermodynamics of pseudo-binary alloys of IV--VI systems to identify the

  5. Natural thermodynamics

    NASA Astrophysics Data System (ADS)

    Annila, Arto

    2016-02-01

    The principle of increasing entropy is derived from statistical physics of open systems assuming that quanta of actions, as undividable basic build blocks, embody everything. According to this tenet, all systems evolve from one state to another either by acquiring quanta from their surroundings or by discarding quanta to the surroundings in order to attain energetic balance in least time. These natural processes result in ubiquitous scale-free patterns: skewed distributions that accumulate in a sigmoid manner and hence span log-log scales mostly as straight lines. Moreover, the equation for least-time motions reveals that evolution is by nature a non-deterministic process. Although the obtained insight in thermodynamics from the notion of quanta in motion yields nothing new, it accentuates that contemporary comprehension is impaired when modeling evolution as a computable process by imposing conservation of energy and thereby ignoring that quantum of actions are the carriers of energy from the system to its surroundings.

  6. Advances in thermodynamics

    SciTech Connect

    Sieniutycz, S. ); Salamon, P. )

    1990-01-01

    This book covers: nonequilibrium thermodynamics for solar energy applications; finite-time thermodynamics as applied to solar power conversion; thermodynamics and economics; exergy analysis; and an analysis of cumulative exergy consumption and exergy losses.

  7. A thermodynamic study of interaction of Ag+, Mg2+, Ca2+, and K+ cations with 4-hydroxyphenyl-2,5-bis(2-benzofuranyl)pyridine in some binary mixed non-aqueous solvents

    NASA Astrophysics Data System (ADS)

    Khoshnood, Razieh Sanavi; Hatami, Elaheh; Arefi, Donya; Maknoni, Fatemeh Zahra

    2016-02-01

    In the present work the complexation process between Ag+ and Mg2+ cations and 4-hydroxyphenyl-2,5-bis(2-benzofuranyl)pyridine (HBFPY) ligand was studied in pure dimethylformamide (DMF), ethanol (EtOH), acetonitrile (AN) and in (DMF-EtOH), (AN-EtOH) and (DMF-AN) binary mixed solvent solutions at different temperatures using the conductometric method. Also in this work the complexation reaction between Ca2+, K+ cations and HBFPY ligand, was studied in pure dimethylformamide (DMF), propanol (PrOH), 1,4-dioxane (DOX), ethanol (EtOH) and in DMF-PrOH, DMF-DOX and DMF-EtOH binary mixed solvent solutions at different temperatures using the conductometric method. The conductance data show that the stoichiometry of the complexes formed between this ligand and the studied cations is 1 : 1 [ML]. In most cases, addition of HBFPY to solutions of these cations, causes a continuous increase in the molar conductivities which indicates that the mobility of complexed cations is more than the uncomplexed ones. The stability constants of the complexes were obtained from fitting of molar conductivity curves using a computer program, GENPLOT. The stability constant of [Mg(HBFPY)]2+ complex in various neat solvents at 15°C decreases in order: EtOH > DMF > AN and the stability constant of [Ag(HBFPY)]+ complex in various neat solvents at 35°C decreases in order: DMF > EtOH. The values of standard enthalpy changes (Δ H° c ) for complexation reactions were obtained from the slope of the Van't Hoff plots and the changes in standard entropy (Δ S° c ) were calculated from the relationship Δ H° c,295.15= Δ H° c -298.15Δ S° c .

  8. Effect of system variables involved in packed column SFC of nevirapine as model analyte using response surface methodology: application to retention thermodynamics, solute transfer kinetic study and binary diffusion coefficient determination.

    PubMed

    Kaul, Neerej; Agrawal, Himani; Paradkar, A R; Mahadik, K R

    2005-08-31

    A multifactor optimization technique is successfully applied to study the effect of simultaneously varying the system variables on feasibility of nevirapine analysis by packed column supercritical fluid chromatography (PC-SFC). The optimal conditions were determined with the aid of the response surface methodology using 3(3) factorial designs. The method is based on methanol-modified carbon dioxide as the mobile phase at flow rate of 3.0 ml/min with elution through a JASCO Finepak SIL-5, [C18 (5-micron, 25 cm x 4.6 mm, i.d.)] column using photodiode array detection. The method has been successfully used to analyze commercial solid dosage form to assess the chromatographic performance of SFC system. The present work briefs the thermodynamic applications of PC-SFC with an emphasis on the results of nevirapine. The foremost of such applications is the determination of solute diffusion coefficient in supercritical mobile phase by Taylor-Aris peak broadening technique.

  9. Vaporization thermodynamic studies by high-temperature mass spectrometry on some three-phase regions over the MnO-TeO2 binary line in the Mn-Te-O ternary system.

    PubMed

    Narasimhan, T S Lakshmi; Sai Baba, M; Viswanathan, R

    2006-12-28

    Knudsen effusion mass spectrometric measurements have been performed in the temperature range of 850-950 K over four three-phase mixtures, each phase mixture having at least one phase lying on the MnO-TeO2 binary line of the Mn-Te-O phase diagram, and the rest of the phases lying above this binary line. The three-phase mixtures investigated are Mn3O4 + MnO + Mn6Te5O16; Mn3O4 + Mn6Te5O16 + MnTeO3; Mn3O4 + Mn3TeO6 + MnTeO3; and Mn3TeO6 + MnTeO3 + Mn2Te3O8. The vapor pressures of the gaseous species TeO2, TeO, and Te2 over these three-phase mixtures were measured, and various heterogeneous solid-gas reactions were evaluated along with the homogeneous gas-phase reaction TeO2(g) + 0.5Te2(g) = 2 TeO(g). The enthalpy and Gibbs free energy of formation of the four ternary Mn-Te-O phases were deduced at T = 900 K. These values (in kJ.mol-1), along with the estimated uncertainties in them are Delta(f)H(o)m = 4150 +/- 19, 752 +/- 11, 1710 +/- 11, 1924 +/- 40, and Delta(f)G(o)m= 2835 +/- 28, 511 +/- 11, 1254 +/- 19, 1238 +/- 38, for Mn6Te5O16, MnTeO3, Mn3TeO6, and Mn2Te3O8, respectively. A thermochemical assessment was made to examine the conditions under which the ternary Mn-Te-O phases could be formed on a stainless steel clad of mixed-oxide-fueled (MO2; M = U + Pu) fast breeder nuclear reactors. The phase Mn3TeO6 could be formed when the fuel is even slightly hyperstoichiometric (O/M = 2.0002) and the phase Mn6Te5O16 could also be formed when O/M = 2.0004. The threshold tellurium potential for the formation of Mn3TeO6 is higher than that for MnTe0.80 and CrTe1.10, but is comparable to that for MoTe1.10, and even lower than that for FeTe0.81 or NiTe0.63.

  10. The Thermodynamics of a Refrigeration System.

    ERIC Educational Resources Information Center

    Azevedo e Silva, J. F. M.

    1991-01-01

    An attempt to clarify the teaching of some of the concepts of thermodynamics through the observation of an experiment with an ordinary refrigeration system is presented. The cycle of operation in the refrigeration system and the individual processes in the cycle are described. (KR)

  11. Quantum cluster equilibrium model of N-methylformamide-water binary mixtures

    NASA Astrophysics Data System (ADS)

    von Domaros, Michael; Jähnigen, Sascha; Friedrich, Joachim; Kirchner, Barbara

    2016-02-01

    The established quantum cluster equilibrium (QCE) approach is refined and applied to N-methylformamide (NMF) and its aqueous solution. The QCE method is split into two iterative cycles: one which converges to the liquid phase solution of the QCE equations and another which yields the gas phase. By comparing Gibbs energies, the thermodynamically stable phase at a given temperature and pressure is then chosen. The new methodology avoids metastable solutions and allows a different treatment of the mean-field interactions within the gas and liquid phases. These changes are of crucial importance for the treatment of binary mixtures. For the first time in a QCE study, the cis-trans-isomerism of a species (NMF) is explicitly considered. Cluster geometries and frequencies are calculated using density functional theory (DFT) and complementary coupled cluster single point energies are used to benchmark the DFT results. Independent of the selected quantum-chemical method, a large set of clusters is required for an accurate thermodynamic description of the binary mixture. The liquid phase of neat NMF is found to be dominated by the cyclic trans-NMF pentamer, which can be interpreted as a linear trimer that is stabilized by explicit solvation of two further NMF molecules. This cluster reflects the known hydrogen bond network preferences of neat NMF.

  12. Simulating Metabolism with Statistical Thermodynamics

    PubMed Central

    Cannon, William R.

    2014-01-01

    New methods are needed for large scale modeling of metabolism that predict metabolite levels and characterize the thermodynamics of individual reactions and pathways. Current approaches use either kinetic simulations, which are difficult to extend to large networks of reactions because of the need for rate constants, or flux-based methods, which have a large number of feasible solutions because they are unconstrained by the law of mass action. This report presents an alternative modeling approach based on statistical thermodynamics. The principles of this approach are demonstrated using a simple set of coupled reactions, and then the system is characterized with respect to the changes in energy, entropy, free energy, and entropy production. Finally, the physical and biochemical insights that this approach can provide for metabolism are demonstrated by application to the tricarboxylic acid (TCA) cycle of Escherichia coli. The reaction and pathway thermodynamics are evaluated and predictions are made regarding changes in concentration of TCA cycle intermediates due to 10- and 100-fold changes in the ratio of NAD+:NADH concentrations. Finally, the assumptions and caveats regarding the use of statistical thermodynamics to model non-equilibrium reactions are discussed. PMID:25089525

  13. Thermodynamics of wax precipitation in petroleum mixtures

    SciTech Connect

    Lira-Galeana, C.; Firoozabadi, A.; Prausnitz, J.M. |

    1996-01-01

    A thermodynamic framework is developed for calculating wax precipitation in petroleum mixtures over a wide temperature range. The framework uses the experimentally supported assumption that precipitated wax consists of several solid phases; each solid phase is described as a pure component or pseudocomponent that does not mix with other solid phases. Liquid-phase properties are obtained from an equation of state. Calculated wax-precipitation data are in excellent agreement with experimental results for binary and multicomponent hydrocarbon mixtures, including petroleum.

  14. Thermodynamics of wax precipitation in petroleum mixtures

    SciTech Connect

    Firoozabadi, A.; Lira-Galeana, C.L.; Prausnitz, J.M.

    1995-12-01

    A thermodynamic framework is developed for calculating wax precipitation in petroleum mixtures over a wide temperature range. The framework assumes that the precipitated wax consists of several solid phases; each solid-phase is described as a pure component or pseudocomponent which does not mix with other solid phases. Liquid-phase properties are obtained from an equation of state. Calculated wax precipitation data are in excellent agreement with experimental results for binary and multicomponent hydrocarbon mixtures, including petroleum.

  15. Thermodynamics of Radiation Modes

    ERIC Educational Resources Information Center

    Pina, Eduardo; de la Selva, Sara Maria Teresa

    2010-01-01

    We study the equilibrium thermodynamics of the electromagnetic radiation in a cavity of a given volume and temperature. We found three levels of description, the thermodynamics of one mode, the thermodynamics of the distribution of frequencies in a band by summing over the frequencies in it and the global thermodynamics by summing over all the…

  16. Stellivore extraterrestrials? Binary stars as living systems

    NASA Astrophysics Data System (ADS)

    Vidal, Clément

    2016-11-01

    We lack signs of extraterrestrial intelligence (ETI) despite decades of observation in the whole electromagnetic spectrum. Could evidence be buried in existing data? To recognize ETI, we first propose criteria discerning life from non-life based on thermodynamics and living systems theory. Then we extrapolate civilizational development to both external and internal growth. Taken together, these two trends lead to an argument that some existing binary stars might actually be ETI. Since these hypothetical beings feed actively on stars, we call them "stellivores". I present an independent thermodynamic argument for their existence, with a metabolic interpretation of interacting binary stars. The jury is still out, but the hypothesis is empirically testable with existing astrophysical data.

  17. Applicability of the theory of thermodynamic similarity to predict the enthalpies of vaporization of aliphatic aldehydes

    NASA Astrophysics Data System (ADS)

    Esina, Z. N.; Korchuganova, M. R.

    2015-06-01

    The theory of thermodynamic similarity is used to predict the enthalpies of vaporization of aliphatic aldehydes. The predicted data allow us to calculate the phase diagrams of liquid-vapor equilibrium in a binary water-aliphatic aldehyde system.

  18. Thermodynamic power stations at low temperatures

    NASA Astrophysics Data System (ADS)

    Malherbe, J.; Ployart, R.; Alleau, T.; Bandelier, P.; Lauro, F.

    The development of low-temperature thermodynamic power stations using solar energy is considered, with special attention given to the choice of the thermodynamic cycle (Rankine), working fluids (frigorific halogen compounds), and heat exchangers. Thermomechanical conversion machines, such as ac motors and rotating volumetric motors are discussed. A system is recommended for the use of solar energy for irrigation and pumping in remote areas. Other applications include the production of cold of fresh water from brackish waters, and energy recovery from hot springs.

  19. Thermodynamic analysis of total energy gas turbines

    NASA Astrophysics Data System (ADS)

    Stecco, S. S.

    For a thermodynamic analysis of gas turbine power plants (GTPP) with exhaust gases recovery, a simple recovery cogeneration plant and a steam-gas combined cogeneration plant are analyzed according to the First and Second Laws of Thermodynamics. Attention is given to the convenience of different GTPP solutions for different ratios of heat to electricity production; methods of analysis of bottoming Rankine cycle power plants with respect to various fluids; and fuel savings.

  20. Research into the origins of engineering thermodynamics

    SciTech Connect

    Bejan, A.

    1988-09-01

    This paper draws attention to a series of misconceptions and misstatements regarding the origin and meaning of some of the most basic concepts of engineering thermodynamics. The six examples exhibited in the paper relate to the concepts of reversibility, entropy, mechanical equivalent of the calorie, the first law of thermodynamics for open systems, enthalpy and the Diesel cycle. A complete list of the pioneering references concludes the paper.

  1. Advanced working fluids: Thermodynamic properties

    NASA Astrophysics Data System (ADS)

    Lee, Lloyd L.; Gering, Kevin L.

    1990-10-01

    Electrolytes are used as working fluids in gas fired heat pump chiller engine cycles. To find out which molecular parameters of the electrolytes impact on cycle performance, a molecular theory is developed for calculating solution properties, enthalpies, vapor-liquid equilibria, and engine cycle performance. Aqueous and ammoniac single and mixed salt solutions in single and multisolvent systems are investigated. An accurate correlation is developed to evaluate properties for concentrated electrolyte solutions. Sensitivity analysis is used to determine the impact of molecular parameters on the thermodynamic properties and cycle performance. The preferred electrolytes are of 1-1 valence type, small ion size, high molecular weight, and in strongly colligative cosolvent. The operating windows are determined for a number of absorption fluids of industrial importance.

  2. Measuring Thermodynamic Length

    SciTech Connect

    Crooks, Gavin E

    2007-09-07

    Thermodynamic length is a metric distance between equilibrium thermodynamic states. Among other interesting properties, this metric asymptotically bounds the dissipation induced by a finite time transformation of a thermodynamic system. It is also connected to the Jensen-Shannon divergence, Fisher information, and Rao's entropy differential metric. Therefore, thermodynamic length is of central interestin understanding matter out of equilibrium. In this Letter, we will consider how to denethermodynamic length for a small system described by equilibrium statistical mechanics and how to measure thermodynamic length within a computer simulation. Surprisingly, Bennett's classic acceptance ratio method for measuring free energy differences also measures thermodynamic length.

  3. The "Sadly Cannot" Thermodynamic Cycle Revisited.

    ERIC Educational Resources Information Center

    Mills, David S.; Huston, Craig S.

    1991-01-01

    An exercise that gives students a chance to use the equations of state for both an ideal gas and for an adiabatic process in determining the points at which heat flow reverses direction and at which the working substance reaches its maximum temperature is demonstrated. (KR)

  4. Thermodynamic analysis of phase equilibria in the iron-zirconium system

    SciTech Connect

    Pelton, A.D.; Leibowitz, L.; Blomquist, R.A.

    1992-09-01

    Continuing interest in development of metallic fuels for nuclear reactors has prompted an examination of the phase relations of many of the relevant binary and ternary systems of interest. We performed a thermodynamic analysis and optimization of the Fe-Zr system. Overall reasonably good agreement was found with published diagrams, but some significant changes were required to ensure thermodynamic consistency.

  5. Thermodynamic analysis of phase equilibria in the iron-zirconium system

    SciTech Connect

    Pelton, A.D. ); Leibowitz, L.; Blomquist, R.A. )

    1992-01-01

    Continuing interest in development of metallic fuels for nuclear reactors has prompted an examination of the phase relations of many of the relevant binary and ternary systems of interest. We performed a thermodynamic analysis and optimization of the Fe-Zr system. Overall reasonably good agreement was found with published diagrams, but some significant changes were required to ensure thermodynamic consistency.

  6. Thermodynamic Modeling of the Cr-Fe-S System

    NASA Astrophysics Data System (ADS)

    Waldner, Peter

    2014-02-01

    All known phases of the chromium-iron-sulfur ternary system are taken into consideration within a thermodynamic analysis of phase equilibria and thermodynamic data at 1 bar total pressure over the entire composition range between 298.15 K (25 °C) and temperatures greater than the liquidus. The modeling is based on recent evaluations of the Fe-S and Cr-S binary subsystems. The extended modified quasi-chemical model is applied for the liquid chromium-iron-sulfur phase. The Gibbs energy of solid solution phases as high-temperature chromium-iron pyrrhotite and the thiospinel Daubréelite is described by sublattice models within the framework of the compound energy formalism. Analysis of complex phase relations is now possible on the basis of a consistent thermodynamic description of the system. The thermodynamic modeling presented can be combined with models of other metal-sulfur systems to develop a thermodynamic multicomponent/multiphase database.

  7. Stability of binaries. Part 1: Rigid binaries

    NASA Astrophysics Data System (ADS)

    Sharma, Ishan

    2015-09-01

    We consider the stability of binary asteroids whose members are possibly granular aggregates held together by self-gravity alone. A binary is said to be stable whenever each member is orbitally and structurally stable to both orbital and structural perturbations. To this end, we extend the stability test for rotating granular aggregates introduced by Sharma (Sharma, I. [2012]. J. Fluid Mech., 708, 71-99; Sharma, I. [2013]. Icarus, 223, 367-382; Sharma, I. [2014]. Icarus, 229, 278-294) to the case of binary systems comprised of rubble members. In part I, we specialize to the case of a binary with rigid members subjected to full three-dimensional perturbations. Finally, we employ the stability test to critically appraise shape models of four suspected binary systems, viz., 216 Kleopatra, 25143 Itokawa, 624 Hektor and 90 Antiope.

  8. Thermodynamic constraints on fluctuation phenomena

    NASA Astrophysics Data System (ADS)

    Maroney, O. J. E.

    2009-12-01

    The relationships among reversible Carnot cycles, the absence of perpetual motion machines, and the existence of a nondecreasing globally unique entropy function form the starting point of many textbook presentations of the foundations of thermodynamics. However, the thermal fluctuation phenomena associated with statistical mechanics has been argued to restrict the domain of validity of this basis of the second law of thermodynamics. Here we demonstrate that fluctuation phenomena can be incorporated into the traditional presentation, extending rather than restricting the domain of validity of the phenomenologically motivated second law. Consistency conditions lead to constraints upon the possible spectrum of thermal fluctuations. In a special case this uniquely selects the Gibbs canonical distribution and more generally incorporates the Tsallis distributions. No particular model of microscopic dynamics need be assumed.

  9. Thermodynamic constraints on fluctuation phenomena.

    PubMed

    Maroney, O J E

    2009-12-01

    The relationships among reversible Carnot cycles, the absence of perpetual motion machines, and the existence of a nondecreasing globally unique entropy function form the starting point of many textbook presentations of the foundations of thermodynamics. However, the thermal fluctuation phenomena associated with statistical mechanics has been argued to restrict the domain of validity of this basis of the second law of thermodynamics. Here we demonstrate that fluctuation phenomena can be incorporated into the traditional presentation, extending rather than restricting the domain of validity of the phenomenologically motivated second law. Consistency conditions lead to constraints upon the possible spectrum of thermal fluctuations. In a special case this uniquely selects the Gibbs canonical distribution and more generally incorporates the Tsallis distributions. No particular model of microscopic dynamics need be assumed.

  10. Thermodynamics: Frontiers and Foundations.

    SciTech Connect

    JEFFERY,; LEWINS, D.

    2009-07-27

    Version 00 Dr. J.D. Lewins has now released the following new book for free distribution: Thermodynamics: Frontiers and Foundations, Preface by Sir Alan Cottrell Introduction 1. Four-Square Foundations: The Laws of Thermodynamics 2. Maximum Entropy and Minimum Energy: The Master Functions and Equations 3. Ideal Gases and their Applications 4. Real Fluids and Some Applications 5. Van der Waals: A Model for Real Fluids 6. Surface Tension: Bubbles and Drops 7. Inert and Reactive Mixtures; An introduction to Chemical Thermodynamics 8. Radiation Thermodynamics: Solar Power Potential 9. Outposts of the Empire 10. A Glimpse into Statistical Thermodynamics Envoi

  11. Thermodynamics: Frontiers and Foundations.

    2009-07-27

    Version 00 Dr. J.D. Lewins has now released the following new book for free distribution: Thermodynamics: Frontiers and Foundations, Preface by Sir Alan Cottrell Introduction 1. Four-Square Foundations: The Laws of Thermodynamics 2. Maximum Entropy and Minimum Energy: The Master Functions and Equations 3. Ideal Gases and their Applications 4. Real Fluids and Some Applications 5. Van der Waals: A Model for Real Fluids 6. Surface Tension: Bubbles and Drops 7. Inert and Reactive Mixtures;more » An introduction to Chemical Thermodynamics 8. Radiation Thermodynamics: Solar Power Potential 9. Outposts of the Empire 10. A Glimpse into Statistical Thermodynamics Envoi« less

  12. Binary mask programmable hologram.

    PubMed

    Tsang, P W M; Poon, T-C; Zhou, Changhe; Cheung, K W K

    2012-11-19

    We report, for the first time, the concept and generation of a novel Fresnel hologram called the digital binary mask programmable hologram (BMPH). A BMPH is comprised of a static, high resolution binary grating that is overlaid with a lower resolution binary mask. The reconstructed image of the BMPH can be programmed to approximate a target image (including both intensity and depth information) by configuring the pattern of the binary mask with a simple genetic algorithm (SGA). As the low resolution binary mask can be realized with less stringent display technology, our method enables the development of simple and economical holographic video display.

  13. Search for Binary Trojans

    NASA Astrophysics Data System (ADS)

    Noll, Keith S.; Grundy, W. M.; Ryan, E. L.; Benecchi, S. D.

    2015-11-01

    We have reexamined 41 Trojan asteroids observed with the Hubble Space Telescope (HST) to search for unresolved binaries. We have identified one candidate binary with a separation of 53 milliarcsec, about the width of the diffraction limited point-spread function (PSF). Sub-resolution-element detection of binaries is possible with HST because of the high signal-to-noise ratio of the observations and the stability of the PSF. Identification and confirmation of binary Trojans is important because a Trojan Tour is one of five possible New Frontiers missions. A binary could constitute a potentially high value target because of the opportunity to study two objects and to test models of the primordial nature of binaries. The potential to derive mass-based physical information from the binary orbit could yield more clues to the origin of Trojans.

  14. Shear viscosity of binary mixtures: The Gay-Berne potential

    NASA Astrophysics Data System (ADS)

    Khordad, R.

    2012-05-01

    The Gay-Berne (GB) potential model is an interesting and useful model to study the real systems. Using the potential model, we intend to examine the thermodynamical properties of some anisotropic binary mixtures in two different phases, liquid and gas. For this purpose, we apply the integral equation method and solve numerically the Percus-Yevick (PY) integral equation. Then, we obtain the expansion coefficients of correlation functions to calculate the thermodynamical properties. Finally, we compare our results with the available experimental data [e.g., HFC-125 + propane, R-125/143a, methanol + toluene, benzene + methanol, cyclohexane + ethanol, benzene + ethanol, carbon tetrachloride + ethyl acetate, and methanol + ethanol]. The results show that the GB potential model is capable for predicting the thermodynamical properties of binary mixtures with acceptable accuracy.

  15. PHOEBE: PHysics Of Eclipsing BinariEs

    NASA Astrophysics Data System (ADS)

    Prsa, Andrej; Matijevic, Gal; Latkovic, Olivera; Vilardell, Francesc; Wils, Patrick

    2011-06-01

    PHOEBE (PHysics Of Eclipsing BinariEs) is a modeling package for eclipsing binary stars, built on top of the widely used WD program (Wilson & Devinney 1971). This introductory paper overviews most important scientific extensions (incorporating observational spectra of eclipsing binaries into the solution-seeking process, extracting individual temperatures from observed color indices, main-sequence constraining and proper treatment of the reddening), numerical innovations (suggested improvements to WD's Differential Corrections method, the new Nelder & Mead's downhill Simplex method) and technical aspects (back-end scripter structure, graphical user interface). While PHOEBE retains 100% WD compatibility, its add-ons are a powerful way to enhance WD by encompassing even more physics and solution reliability.

  16. Time and irreversibility in axiomatic thermodynamics

    NASA Astrophysics Data System (ADS)

    Marsland, Robert; Brown, Harvey R.; Valente, Giovanni

    2015-07-01

    Thermodynamics is the paradigm example in physics of a time-asymmetric theory, but the origin of the asymmetry lies deeper than the second law. A primordial arrow can be defined by the way of the equilibration principle ("minus first law"). By appealing to this arrow, the nature of the well-known ambiguity in Carathéodory's 1909 version of the second law becomes clear. Following Carathéodory's seminal work, formulations of thermodynamics have gained ground that highlight the role of the binary relation of adiabatic accessibility between equilibrium states, the most prominent recent example being the important 1999 axiomatization due to Lieb and Yngvason. This formulation can be shown to contain an ambiguity strictly analogous to that in Carathéodory's treatment.

  17. Thermodynamics and Structure of Plutonium Alloys

    SciTech Connect

    Allen, P G; Turchi, P A; Gallegos, G F

    2004-01-30

    The goal of this project was to investigate the chemical and structural effects of gallium and impurity elements, iron and nickel, on the phase behavior and crystallography of Pu-Ga alloys. This was done utilizing a theoretical chemical approach to predict binary and ternary alloy energetics, phase stability, and transformations. The modeling results were validated with experimental data derived from the synthesis of selected alloys and advanced characterization tools. The ultimate goal of this work was to develop a robust predictive capability for studying the thermodynamics and the structure-properties relationships in complex materials of high relevance to the Laboratory and DOE mission.

  18. Preferential Solvation in Binary and Ternary Mixtures.

    PubMed

    Pallewela, Gayani N; Smith, Paul E

    2015-12-24

    Preferential solvation has become a useful tool to help characterize and understand the properties of liquid mixtures. Here, we provide a new quantitative measure of preferential solvation in binary and ternary mixtures that uses Kirkwood-Buff integrals as input, but differs from traditional measures. The advantages of the new measure are highlighted and compared with established literature approaches. Molecular dynamics simulations are performed to further investigate the nature of binary mixtures, as described by the new and existing measures of preferential solvation. It is shown that the new measure of preferential solvation is rigorous, has a simple physical interpretation, can be easily related to the underlying thermodynamic properties of the mixture, and naturally leads to zero values for ideal mixtures.

  19. Open cycle thermoacoustics

    SciTech Connect

    Reid, Robert Stowers

    2000-01-01

    A new type of thermodynamic device combining a thermodynamic cycle with the externally applied steady flow of an open thermodynamic process is discussed and experimentally demonstrated. The gas flowing through this device can be heated or cooled in a series of semi-open cyclic steps. The combination of open and cyclic flows makes possible the elimination of some or all of the heat exchangers (with their associated irreversibility). Heat is directly exchanged with the process fluid as it flows through the device when operating as a refrigerator, producing a staging effect that tends to increase First Law thermodynamic efficiency. An open-flow thermoacoustic refrigerator was built to demonstrate this concept. Several approaches are presented that describe the physical characteristics of this device. Tests have been conducted on this refrigerator with good agreement with a proposed theory.

  20. Complex competitive systems and competitive thermodynamics.

    PubMed

    Klimenko, A Y

    2013-01-13

    This publication reviews the framework of abstract competition, which is aimed at studying complex systems with competition in their generic form. Although the concept of abstract competition has been derived from a specific field--modelling of mixing in turbulent reacting flows--this concept is, generally, not attached to a specific phenomenon or application. Two classes of competition rules, transitive and intransitive, need to be distinguished. Transitive competitions are shown to be consistent (at least qualitatively) with thermodynamic principles, which allows for introduction of special competitive thermodynamics. Competitive systems can thus be characterized by thermodynamic quantities (such as competitive entropy and competitive potential), which determine that the predominant direction of evolution of the system is directed towards higher competitiveness. There is, however, an important difference: while conventional thermodynamics is constrained by its zeroth law and is fundamentally transitive, the transitivity of competitive thermodynamics depends on the transitivity of the competition rules. The analogy with conventional thermodynamics weakens as competitive systems become more intransitive, while strongly intransitive competitions can display types of behaviour associated with complexity: competitive cooperation and leaping cycles. Results of simulations demonstrating complex behaviour in abstract competitions are presented in the electronic supplementary material.

  1. Flip-flopping binary black holes.

    PubMed

    Lousto, Carlos O; Healy, James

    2015-04-10

    We study binary spinning black holes to display the long term individual spin dynamics. We perform a full numerical simulation starting at an initial proper separation of d≈25M between equal mass holes and evolve them down to merger for nearly 48 orbits, 3 precession cycles, and half of a flip-flop cycle. The simulation lasts for t=20 000M and displays a total change in the orientation of the spin of one of the black holes from an initial alignment with the orbital angular momentum to a complete antialignment after half of a flip-flop cycle. We compare this evolution with an integration of the 3.5 post-Newtonian equations of motion and spin evolution to show that this process continuously flip flops the spin during the lifetime of the binary until merger. We also provide lower order analytic expressions for the maximum flip-flop angle and frequency. We discuss the effects this dynamics may have on spin growth in accreting binaries and on the observational consequences for galactic and supermassive binary black holes.

  2. Flip-flopping binary black holes.

    PubMed

    Lousto, Carlos O; Healy, James

    2015-04-10

    We study binary spinning black holes to display the long term individual spin dynamics. We perform a full numerical simulation starting at an initial proper separation of d≈25M between equal mass holes and evolve them down to merger for nearly 48 orbits, 3 precession cycles, and half of a flip-flop cycle. The simulation lasts for t=20 000M and displays a total change in the orientation of the spin of one of the black holes from an initial alignment with the orbital angular momentum to a complete antialignment after half of a flip-flop cycle. We compare this evolution with an integration of the 3.5 post-Newtonian equations of motion and spin evolution to show that this process continuously flip flops the spin during the lifetime of the binary until merger. We also provide lower order analytic expressions for the maximum flip-flop angle and frequency. We discuss the effects this dynamics may have on spin growth in accreting binaries and on the observational consequences for galactic and supermassive binary black holes. PMID:25910104

  3. 3D Models of Symbiotic Binaries

    NASA Astrophysics Data System (ADS)

    Mohamed, S.; Booth, R.; Podsiadlowski, Ph.; Ramstedt, S.; Vlemmings, W.; Maercker, M.

    2015-12-01

    Symbiotic binaries consist of a cool, mass-losing giant and an accreting, compact companion. We present 3D Smoothed Particle Hydrodynamics (SPH) models of two such interacting binaries, RS Oph and Mira AB. RS Oph is also a recurrent nova system, thus we model multiple quiescent mass transfer-nova outburst cycles. The resulting circumstellar structures of both systems are highly complex with the formation of spirals, arcs, shells, equatorial and bipolar outflows. We compare the models to recent observations and discuss the implications of our results for related systems, e.g., bipolar nebulae and jets, chemically peculiar stars, and the progenitors of Type Ia supernovae.

  4. Qualitative and quantitative reasoning about thermodynamics

    NASA Technical Reports Server (NTRS)

    Skorstad, Gordon; Forbus, Ken

    1989-01-01

    One goal of qualitative physics is to capture the tacit knowledge of engineers and scientists. It is shown how Qualitative Process theory can be used to express concepts of engineering thermodynamics. In particular, it is shown how to integrate qualitative and quantitative knowledge to solve textbook problems involving thermodynamic cycles, such as gas turbine plants and steam power plants. These ideas were implemented in a program called SCHISM. Its analysis of a sample textbook problem is described and plans for future work are discussed.

  5. Molecular motors: thermodynamics and the random walk.

    PubMed Central

    Thomas, N.; Imafuku, Y.; Tawada, K.

    2001-01-01

    The biochemical cycle of a molecular motor provides the essential link between its thermodynamics and kinetics. The thermodynamics of the cycle determine the motor's ability to perform mechanical work, whilst the kinetics of the cycle govern its stochastic behaviour. We concentrate here on tightly coupled, processive molecular motors, such as kinesin and myosin V, which hydrolyse one molecule of ATP per forward step. Thermodynamics require that, when such a motor pulls against a constant load f, the ratio of the forward and backward products of the rate constants for its cycle is exp [-(DeltaG + u(0)f)/kT], where -DeltaG is the free energy available from ATP hydrolysis and u(0) is the motor's step size. A hypothetical one-state motor can therefore act as a chemically driven ratchet executing a biased random walk. Treating this random walk as a diffusion problem, we calculate the forward velocity v and the diffusion coefficient D and we find that its randomness parameter r is determined solely by thermodynamics. However, real molecular motors pass through several states at each attachment site. They satisfy a modified diffusion equation that follows directly from the rate equations for the biochemical cycle and their effective diffusion coefficient is reduced to D-v(2)tau, where tau is the time-constant for the motor to reach the steady state. Hence, the randomness of multistate motors is reduced compared with the one-state case and can be used for determining tau. Our analysis therefore demonstrates the intimate relationship between the biochemical cycle, the force-velocity relation and the random motion of molecular motors. PMID:11600075

  6. Thermodynamics and combustion modeling

    NASA Technical Reports Server (NTRS)

    Zeleznik, Frank J.

    1986-01-01

    Modeling fluid phase phenomena blends the conservation equations of continuum mechanics with the property equations of thermodynamics. The thermodynamic contribution becomes especially important when the phenomena involve chemical reactions as they do in combustion systems. The successful study of combustion processes requires (1) the availability of accurate thermodynamic properties for both the reactants and the products of reaction and (2) the computational capabilities to use the properties. A discussion is given of some aspects of the problem of estimating accurate thermodynamic properties both for reactants and products of reaction. Also, some examples of the use of thermodynamic properties for modeling chemically reacting systems are presented. These examples include one-dimensional flow systems and the internal combustion engine.

  7. Thermodynamic estimation: Ionic materials

    SciTech Connect

    Glasser, Leslie

    2013-10-15

    Thermodynamics establishes equilibrium relations among thermodynamic parameters (“properties”) and delineates the effects of variation of the thermodynamic functions (typically temperature and pressure) on those parameters. However, classical thermodynamics does not provide values for the necessary thermodynamic properties, which must be established by extra-thermodynamic means such as experiment, theoretical calculation, or empirical estimation. While many values may be found in the numerous collected tables in the literature, these are necessarily incomplete because either the experimental measurements have not been made or the materials may be hypothetical. The current paper presents a number of simple and relible estimation methods for thermodynamic properties, principally for ionic materials. The results may also be used as a check for obvious errors in published values. The estimation methods described are typically based on addition of properties of individual ions, or sums of properties of neutral ion groups (such as “double” salts, in the Simple Salt Approximation), or based upon correlations such as with formula unit volumes (Volume-Based Thermodynamics). - Graphical abstract: Thermodynamic properties of ionic materials may be readily estimated by summation of the properties of individual ions, by summation of the properties of ‘double salts’, and by correlation with formula volume. Such estimates may fill gaps in the literature, and may also be used as checks of published values. This simplicity arises from exploitation of the fact that repulsive energy terms are of short range and very similar across materials, while coulombic interactions provide a very large component of the attractive energy in ionic systems. Display Omitted - Highlights: • Estimation methods for thermodynamic properties of ionic materials are introduced. • Methods are based on summation of single ions, multiple salts, and correlations. • Heat capacity, entropy

  8. Ligand Exchange Governs the Crystal Structures in Binary Nanocrystal Superlattices.

    PubMed

    Wei, Jingjing; Schaeffer, Nicolas; Pileni, Marie-Paule

    2015-11-25

    The surface chemistry in colloidal nanocrystals on the final crystalline structure of binary superlattices produced by self-assembly of two sets of nanocrystals is hereby demonstrated. By mixing nanocrystals having two different sizes and the same coating agent, oleylamine (OAM), the binary nanocrystal superlattices that are produced, such as NaCl, AlB2, NaZn13, and MgZn2, are well in agreement with the crystalline structures predicted by the hard-sphere model, their formation being purely driven by entropic forces. By opposition, when large and small nanocrystals are coated with two different ligands [OAM and dodecanethiol (DDT), respectively] while keeping all other experimental conditions unchanged, the final binary structures markedly change and various structures with lower packing densities, such as Cu3Au, CaB6, and quasicrystals, are observed. This effect of the nanocrystals' coating agents could also be extended to other binary systems, such as Ag-Au and CoFe2O4-Ag supracrystalline binary lattices. In order to understand this effect, a mechanism based on ligand exchange process is proposed. Ligand exchange mechanism is believed to affect the thermodynamics in the formation of binary systems composed of two sets of nanocrystals with different sizes and bearing two different coating agents. Hence, the formation of binary superlattices with lower packing densities may be favored kinetically because the required energetic penalty is smaller than that of a denser structure. PMID:26549642

  9. The Outflows of Binary AGB Stars

    NASA Astrophysics Data System (ADS)

    Ramstedt, S.; Vlemmings, W. H. T.; Mohamed, S.

    2015-12-01

    The required conditions for stars to evolve into planetary nebulae (PNs) continues to puzzle. Since PNs are found in a wide variety of shapes, processes that could sculpt circumstellar envelopes (CSEs) are being investigated. A binary companion will have a strong gravitational effect, but known binary AGB stars are rare. Using ALMA in Cycle 1 and 2, we have observed a small sample of well-studied, binary AGB stars, covering a decisive range in separation, in order to determine the influence of a companion on the circumstellar morphology of the AGB primary. The first steps toward interpreting and analyzing the data have been taken, and the results will be compared to 3D Smoothed Particle Hydrodynamics (SPH) models of the gravitational interaction.

  10. Information Thermodynamics of Cytosine DNA Methylation.

    PubMed

    Sanchez, Robersy; Mackenzie, Sally A

    2016-01-01

    Cytosine DNA methylation (CDM) is a stable epigenetic modification to the genome and a widespread regulatory process in living organisms that involves multicomponent molecular machines. Genome-wide cytosine methylation patterning participates in the epigenetic reprogramming of a cell, suggesting that the biological information contained within methylation positions may be amenable to decoding. Adaptation to a new cellular or organismal environment also implies the potential for genome-wide redistribution of CDM changes that will ensure the stability of DNA molecules. This raises the question of whether or not we would be able to sort out the regulatory methylation signals from the CDM background ("noise") induced by thermal fluctuations. Here, we propose a novel statistical and information thermodynamic description of the CDM changes to address the last question. The physical basis of our statistical mechanical model was evaluated in two respects: 1) the adherence to Landauer's principle, according to which molecular machines must dissipate a minimum energy ε = kBT ln2 at each logic operation, where kB is the Boltzmann constant, and T is the absolute temperature and 2) whether or not the binary stretch of methylation marks on the DNA molecule comprise a language of sorts, properly constrained by thermodynamic principles. The study was performed for genome-wide methylation data from 152 ecotypes and 40 trans-generational variations of Arabidopsis thaliana and 93 human tissues. The DNA persistence length, a basic mechanical property altered by CDM, was estimated with values from 39 to 66.9 nm. Classical methylome analysis can be retrieved by applying information thermodynamic modelling, which is able to discriminate signal from noise. Our finding suggests that the CDM signal comprises a language scheme properly constrained by molecular thermodynamic principles, which is part of an epigenomic communication system that obeys the same thermodynamic rules as do current

  11. Dynamical Casimir effect and minimal temperature in quantum thermodynamics

    NASA Astrophysics Data System (ADS)

    Benenti, Giuliano; Strini, Giuliano

    2015-02-01

    We study the fundamental limitations of cooling to absolute zero for a qubit, interacting with a single mode of the electromagnetic field. Our results show that the dynamical Casimir effect, which is unavoidable in any finite-time thermodynamic cycle, forbids the attainability of the absolute zero of temperature, even in the limit of an infinite number of cycles.

  12. Thermodynamics: A Stirling effort

    NASA Astrophysics Data System (ADS)

    Horowitz, Jordan M.; Parrondo, Juan M. R.

    2012-02-01

    The realization of a single-particle Stirling engine pushes thermodynamics into stochastic territory where fluctuations dominate, and points towards a better understanding of energy transduction at the microscale.

  13. Thermodynamics and Frozen Foods.

    ERIC Educational Resources Information Center

    Kerr, William L.; Reid, David S.

    1993-01-01

    The heat content of a food at a given temperature can be described by the thermodynamic property of enthalpy. Presents a method to construct a simple calorimeter for measuring the enthalpy changes of different foods during freezing. (MDH)

  14. A thermodynamic formulation of root water uptake

    NASA Astrophysics Data System (ADS)

    Hildebrandt, Anke; Kleidon, Axel; Bechmann, Marcel

    2016-08-01

    By extracting bound water from the soil and lifting it to the canopy, root systems of vegetation perform work. Here we describe how root water uptake can be evaluated thermodynamically and demonstrate that this evaluation provides additional insights into the factors that impede root water uptake. We derive an expression that relates the energy export at the base of the root system to a sum of terms that reflect all fluxes and storage changes along the flow path in thermodynamic terms. We illustrate this thermodynamic formulation using an idealized setup of scenarios with a simple model. In these scenarios, we demonstrate why heterogeneity in soil water distribution and rooting properties affect the impediment of water flow even though the mean soil water content and rooting properties are the same across the scenarios. The effects of heterogeneity can clearly be identified in the thermodynamics of the system in terms of differences in dissipative losses and hydraulic energy, resulting in an earlier start of water limitation in the drying cycle. We conclude that this thermodynamic evaluation of root water uptake conveniently provides insights into the impediments of different processes along the entire flow path, which goes beyond resistances and also accounts for the role of heterogeneity in soil water distribution.

  15. Thermodynamics of random reaction networks.

    PubMed

    Fischer, Jakob; Kleidon, Axel; Dittrich, Peter

    2015-01-01

    Reaction networks are useful for analyzing reaction systems occurring in chemistry, systems biology, or Earth system science. Despite the importance of thermodynamic disequilibrium for many of those systems, the general thermodynamic properties of reaction networks are poorly understood. To circumvent the problem of sparse thermodynamic data, we generate artificial reaction networks and investigate their non-equilibrium steady state for various boundary fluxes. We generate linear and nonlinear networks using four different complex network models (Erdős-Rényi, Barabási-Albert, Watts-Strogatz, Pan-Sinha) and compare their topological properties with real reaction networks. For similar boundary conditions the steady state flow through the linear networks is about one order of magnitude higher than the flow through comparable nonlinear networks. In all networks, the flow decreases with the distance between the inflow and outflow boundary species, with Watts-Strogatz networks showing a significantly smaller slope compared to the three other network types. The distribution of entropy production of the individual reactions inside the network follows a power law in the intermediate region with an exponent of circa -1.5 for linear and -1.66 for nonlinear networks. An elevated entropy production rate is found in reactions associated with weakly connected species. This effect is stronger in nonlinear networks than in the linear ones. Increasing the flow through the nonlinear networks also increases the number of cycles and leads to a narrower distribution of chemical potentials. We conclude that the relation between distribution of dissipation, network topology and strength of disequilibrium is nontrivial and can be studied systematically by artificial reaction networks.

  16. Thermodynamics of random reaction networks.

    PubMed

    Fischer, Jakob; Kleidon, Axel; Dittrich, Peter

    2015-01-01

    Reaction networks are useful for analyzing reaction systems occurring in chemistry, systems biology, or Earth system science. Despite the importance of thermodynamic disequilibrium for many of those systems, the general thermodynamic properties of reaction networks are poorly understood. To circumvent the problem of sparse thermodynamic data, we generate artificial reaction networks and investigate their non-equilibrium steady state for various boundary fluxes. We generate linear and nonlinear networks using four different complex network models (Erdős-Rényi, Barabási-Albert, Watts-Strogatz, Pan-Sinha) and compare their topological properties with real reaction networks. For similar boundary conditions the steady state flow through the linear networks is about one order of magnitude higher than the flow through comparable nonlinear networks. In all networks, the flow decreases with the distance between the inflow and outflow boundary species, with Watts-Strogatz networks showing a significantly smaller slope compared to the three other network types. The distribution of entropy production of the individual reactions inside the network follows a power law in the intermediate region with an exponent of circa -1.5 for linear and -1.66 for nonlinear networks. An elevated entropy production rate is found in reactions associated with weakly connected species. This effect is stronger in nonlinear networks than in the linear ones. Increasing the flow through the nonlinear networks also increases the number of cycles and leads to a narrower distribution of chemical potentials. We conclude that the relation between distribution of dissipation, network topology and strength of disequilibrium is nontrivial and can be studied systematically by artificial reaction networks. PMID:25723751

  17. Binaries in globular clusters

    NASA Technical Reports Server (NTRS)

    Hut, Piet; Mcmillan, Steve; Goodman, Jeremy; Mateo, Mario; Phinney, E. S.; Pryor, Carlton; Richer, Harvey B.; Verbunt, Frank; Weinberg, Martin

    1992-01-01

    Recent observations have shown that globular clusters contain a substantial number of binaries most of which are believed to be primordial. We discuss different successful optical search techniques, based on radial-velocity variables, photometric variables, and the positions of stars in the color-magnitude diagram. In addition, we review searches in other wavelengths, which have turned up low-mass X-ray binaries and more recently a variety of radio pulsars. On the theoretical side, we give an overview of the different physical mechanisms through which individual binaries evolve. We discuss the various simulation techniques which recently have been employed to study the effects of a primordial binary population, and the fascinating interplay between stellar evolution and stellar dynamics which drives globular-cluster evolution.

  18. Sometimes binary is better

    NASA Astrophysics Data System (ADS)

    Sprows, David

    2015-04-01

    This note uses material involving perfect numbers and Zeno's paradoxes to show that although most students prefer to use base 10 when working with mathematical concepts there are times when the binary system is best.

  19. Double Degenerate Binary Systems

    SciTech Connect

    Yakut, K.

    2011-09-21

    In this study, angular momentum loss via gravitational radiation in double degenerate binary (DDB)systems (NS + NS, NS + WD, WD + WD, and AM CVn) is studied. Energy loss by gravitational waves has been estimated for each type of systems.

  20. A thermodynamic self-consistent theory of asymmetric hard-core Yukawa mixtures.

    PubMed

    Pellicane, Giuseppe; Caccamo, Carlo

    2016-10-19

    We perform structural and thermodynamic calculations in the framework of the modified hypernetted chain (MHNC) integral equation closure to the Ornstein-Zernike equation for binary mixtures of size-different particles interacting with hard-core Yukawa pair potentials. We use the Percus-Yevick (PY) bridge functions of a binary mixture of hard-sphere (HSM) particles. The hard-sphere diameters of the PY bridge functions of the HSM system are adjusted so to achieve thermodynamic consistency between the virial and compressibility equations of state. We show the benefit of thermodynamic consistency by comparing the MHNC results with the available computer simulation data reported in the literature, and we demonstrate that the self-consistent thermodynamic theory provides a better reproduction of the simulation data over other microscopic theories. PMID:27545096

  1. A thermodynamic self-consistent theory of asymmetric hard-core Yukawa mixtures

    NASA Astrophysics Data System (ADS)

    Pellicane, Giuseppe; Caccamo, Carlo

    2016-10-01

    We perform structural and thermodynamic calculations in the framework of the modified hypernetted chain (MHNC) integral equation closure to the Ornstein-Zernike equation for binary mixtures of size-different particles interacting with hard-core Yukawa pair potentials. We use the Percus-Yevick (PY) bridge functions of a binary mixture of hard-sphere (HSM) particles. The hard-sphere diameters of the PY bridge functions of the HSM system are adjusted so to achieve thermodynamic consistency between the virial and compressibility equations of state. We show the benefit of thermodynamic consistency by comparing the MHNC results with the available computer simulation data reported in the literature, and we demonstrate that the self-consistent thermodynamic theory provides a better reproduction of the simulation data over other microscopic theories.

  2. The As-Cu-Ni System: A Chemical Thermodynamic Model for Ancient Recycling

    NASA Astrophysics Data System (ADS)

    Sabatini, Benjamin J.

    2015-12-01

    This article is the first thermodynamically reasoned ancient metal system assessment intended for use by archaeologists and archaeometallurgists to aid in the interpretation of remelted/recycled copper alloys composed of arsenic and copper, and arsenic, copper, and nickel. These models are meant to fulfill two main purposes: first, to be applied toward the identification of progressive and regressive temporal changes in artifact chemistry that would have occurred due to recycling, and second, to provide thermodynamic insight into why such metal combinations existed in antiquity. Built on well-established thermodynamics, these models were created using a combination of custom-written software and published binary thermodynamic systems data adjusted to within the boundary conditions of 1200°C and 1 atm. Using these parameters, the behavior of each element and their likelihood of loss in the binaries As-Cu, As-Ni, Cu-Ni, and ternary As-Cu-Ni, systems, under assumed ancient furnace conditions, was determined.

  3. X-ray binaries

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Satellite X-ray experiments and ground-based programs aimed at observation of X-ray binaries are discussed. Experiments aboard OAO-3, OSO-8, Ariel 5, Uhuru, and Skylab are included along with rocket and ground-based observations. Major topics covered are: Her X-1, Cyg X-3, Cen X-3, Cyg X-1, the transient source A0620-00, other possible X-ray binaries, and plans and prospects for future observational programs.

  4. Binary-Symmetry Detection

    NASA Technical Reports Server (NTRS)

    Lopez, Hiram

    1987-01-01

    Transmission errors for zeros and ones tabulated separately. Binary-symmetry detector employs psuedo-random data pattern used as test message coming through channel. Message then modulo-2 added to locally generated and synchronized version of test data pattern in same manner found in manufactured test sets of today. Binary symmetrical channel shows nearly 50-percent ones to 50-percent zeroes correspondence. Degree of asymmetry represents imbalances due to either modulation, transmission, or demodulation processes of system when perturbed by noise.

  5. Scattering from binary optics

    NASA Technical Reports Server (NTRS)

    Ricks, Douglas W.

    1993-01-01

    There are a number of sources of scattering in binary optics: etch depth errors, line edge errors, quantization errors, roughness, and the binary approximation to the ideal surface. These sources of scattering can be systematic (deterministic) or random. In this paper, scattering formulas for both systematic and random errors are derived using Fourier optics. These formulas can be used to explain the results of scattering measurements and computer simulations.

  6. Spectroscopic Binary Stars

    NASA Astrophysics Data System (ADS)

    Batten, A.; Murdin, P.

    2000-11-01

    Historically, spectroscopic binary stars were binary systems whose nature was discovered by the changing DOPPLER EFFECT or shift of the spectral lines of one or both of the component stars. The observed Doppler shift is a combination of that produced by the constant RADIAL VELOCITY (i.e. line-of-sight velocity) of the center of mass of the whole system, and the variable shift resulting from the o...

  7. Orbits of 6 Binaries

    NASA Astrophysics Data System (ADS)

    Olevic, D.; Cvetkovic, Z.

    In this paper the orbits of binaries WDS 10093+2020 = A 2145, WDS 21074-0814 = BU 368 AB and WDS 22288-0001 = STF 2909 AB are recalculated because of significant deviations of more recent observations from the ephemerides. For binaries WDS 22384-0754 = A 2695, WDS 23474-7118 = FIN 375 Aa and WDS 23578+2508 = McA 76 the orbital elements are calculated for the first time.

  8. Spinodal decomposition of chemically reactive binary mixtures

    NASA Astrophysics Data System (ADS)

    Lamorgese, A.; Mauri, R.

    2016-08-01

    We simulate the influence of a reversible isomerization reaction on the phase segregation process occurring after spinodal decomposition of a deeply quenched regular binary mixture, restricting attention to systems wherein material transport occurs solely by diffusion. Our theoretical approach follows a diffuse-interface model of partially miscible binary mixtures wherein the coupling between reaction and diffusion is addressed within the frame of nonequilibrium thermodynamics, leading to a linear dependence of the reaction rate on the chemical affinity. Ultimately, the rate for an elementary reaction depends on the local part of the chemical potential difference since reaction is an inherently local phenomenon. Based on two-dimensional simulation results, we express the competition between segregation and reaction as a function of the Damköhler number. For a phase-separating mixture with components having different physical properties, a skewed phase diagram leads, at large times, to a system converging to a single-phase equilibrium state, corresponding to the absolute minimum of the Gibbs free energy. This conclusion continues to hold for the critical phase separation of an ideally perfectly symmetric binary mixture, where the choice of final equilibrium state at large times depends on the initial mean concentration being slightly larger or less than the critical concentration.

  9. Spinodal decomposition of chemically reactive binary mixtures.

    PubMed

    Lamorgese, A; Mauri, R

    2016-08-01

    We simulate the influence of a reversible isomerization reaction on the phase segregation process occurring after spinodal decomposition of a deeply quenched regular binary mixture, restricting attention to systems wherein material transport occurs solely by diffusion. Our theoretical approach follows a diffuse-interface model of partially miscible binary mixtures wherein the coupling between reaction and diffusion is addressed within the frame of nonequilibrium thermodynamics, leading to a linear dependence of the reaction rate on the chemical affinity. Ultimately, the rate for an elementary reaction depends on the local part of the chemical potential difference since reaction is an inherently local phenomenon. Based on two-dimensional simulation results, we express the competition between segregation and reaction as a function of the Damköhler number. For a phase-separating mixture with components having different physical properties, a skewed phase diagram leads, at large times, to a system converging to a single-phase equilibrium state, corresponding to the absolute minimum of the Gibbs free energy. This conclusion continues to hold for the critical phase separation of an ideally perfectly symmetric binary mixture, where the choice of final equilibrium state at large times depends on the initial mean concentration being slightly larger or less than the critical concentration. PMID:27627358

  10. Heat Cycle Reserch Experimental Program report, FY-84

    SciTech Connect

    Whitbeck, J.F.

    1984-09-01

    The Heat Cycle Research Facility (HCRF) is an experimental binary-cycle facility used to investigate different concepts and/or components for generating electrical power from a geothermal resource. This report briefly desc

  11. Advanced binary geothermal power plants: Limits of performance

    NASA Astrophysics Data System (ADS)

    Bliem, C. J.; Mines, G. L.

    1991-01-01

    The Heat Cycle Research Program is investigating potential improvements to power cycles utilizing moderate temperature geothermal resources to produce electrical power. Investigations have specifically examined Rankine cycle binary power systems. Binary Rankine cycles are more efficient than the flash steam cycles at moderate resource temperature, achieving a higher net brine effectiveness. At resource conditions similar to those at the Heber binary plant, it has been shown that mixtures of saturated hydrocarbons (alkanes) or halogenated hydrocarbons operating in a supercritical Rankine cycle gave improved performance over Rankine cycles with the pure working fluids executing single or dual boiling cycles or supercritical cycles. Recently, other types of cycles have been proposed for binary geothermal service. The feasible limits on efficiency of a plant given practical limits on equipment performance is explored and the methods used in these advanced concept plants to achieve the maximum possible efficiency are discussed. (Here feasible is intended to mean reasonably achievable and not cost effective.) No direct economic analysis was made because of the sensitivity of economic results to site specific input. The limit of performance of three advanced plants were considered. The performance predictions were taken from the developers of each concept. The advanced plants considered appear to be approaching the feasible limit of performance. Ultimately, the plant designer must weigh the advantages and disadvantages of the the different cycles to find the best plant for a given service. In addition, a standard is presented of comparison of the work which has been done in the Heat Cycle Research Program and in the industrial sector by Exergy, Inc. and Polythermal Technologies.

  12. Introduction to combined cycles

    NASA Astrophysics Data System (ADS)

    Moore, M. J.

    Ideas and concepts underlying the technology of combined cycles including the scientific principles involved and the reasons these cycles are in fashion at the present time, are presented. A cycle is a steady flow process for conversion of heat energy into work, in which a working medium passes through a range of states, returning to its original state. Cycles for power production are the steam cycle, which is a closed cycle, and the gas turbine, which represents an open cycle. Combined cycle thermodynamic parameters, are discussed. The general arrangement of the plant is outlined and important features of their component parts described. The scope for future development is discussed. It is concluded that for the next few years the natural gas fired combined cycle will be the main type of plant installed for electricity generation and cogeneration. Whilst gas turbines may not increase substantially in unit size, there remains scope for further increase in firing temperature with consequent increase in cycle performance. However the larger global reserves of coal are providing an incentive to the development of plant for clean coal combustion using the inherent advantage of the combined cycle to attain high efficiencies.

  13. Solar System binaries

    NASA Astrophysics Data System (ADS)

    Noll, Keith S.

    The discovery of binaries in each of the major populations of minor bodies in the solar system is propelling a rapid growth of heretofore unattainable physical information. The availability of mass and density constraints for minor bodies opens the door to studies of internal structure, comparisons with meteorite samples, and correlations between bulk-physical and surface-spectral properties. The number of known binaries is now more than 70 and is growing rapidly. A smaller number have had the extensive followup observations needed to derive mass and albedo information, but this list is growing as well. It will soon be the case that we will know more about the physical parameters of objects in the Kuiper Belt than has been known about asteroids in the Main Belt for the last 200 years. Another important aspect of binaries is understanding the mechanisms that lead to their formation and survival. The relative sizes and separations of binaries in the different minor body populations point to more than one mechanism for forming bound pairs. Collisions appear to play a major role in the Main Belt. Rotational and/or tidal fission may be important in the Near Earth population. For the Kuiper Belt, capture in multi-body interactions may be the preferred formation mechanism. However, all of these conclusions remain tentative and limited by observational and theoretical incompleteness. Observational techniques for identifying binaries are equally varied. High angular resolution observations from space and from the ground are critical for detection of the relatively distant binaries in the Main Belt and the Kuiper Belt. Radar has been the most productive method for detection of Near Earth binaries. Lightcurve analysis is an independent technique that is capable of exploring phase space inaccessible to direct observations. Finally, spacecraft flybys have played a crucial paradigm-changing role with discoveries that unlocked this now-burgeoning field.

  14. Session 9: Heber Geothermal Binary Demonstration Project

    SciTech Connect

    Allen, Richard F.; Nelson, Tiffany T.

    1983-12-01

    The Heber Binary Project had its beginning in studies performed for the Electric Power Research Institute (EPRI), which identified the need for commercial scale (50 Mw or larger) demonstration of the binary cycle technology. In late 1980, SDG&E and the Department of Energy (DOE) signed a Cooperative Agreement calling for DOE to share in 50 percent of the Project costs. Similarly, SDG&E signed Project participation agreements with EPRI, the Imperial Irrigation District, California Department of Water Resources, and Southern California Edison Company, which provided the remaining 50 percent of the required funding. In 1982, the State of California also joined the Project. The objectives of the Heber Binary Project are to demonstrate the potential of moderate-temperature (below 410 F) geothermal energy to produce economic electric power with binary cycle conversion technology, and to establish schedule, cost and equipment performance, reservoir performance, and the environmental acceptability of such plants. The plant will be the first large-scale power generating facility in the world utilizing the binary conversion process, and it is expected that information resulting from this Project will be applicable to a wide range of moderate-temperature hydrothermal reservoirs, which represent 80 percent of geothermal resources in the United States. To accomplish the plant engineering, design, and equipment procurement, SDG&E has hired Fluor Engineers, Inc., Power Division, of Irvine, California. In early 1982, SDG&E contracted for construction management services with Dravo Constructors, Inc. (DCI) of New York. DCI is responsible for casting the Fluor design into construction packages, letting the construction contracts, and overseeing the construction in the field.

  15. Methods for thermodynamic evaluation of battery state of health

    DOEpatents

    Yazami, Rachid; McMenamin, Joseph; Reynier, Yvan; Fultz, Brent T

    2013-05-21

    Described are systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and battery systems and for characterizing the state of health of electrodes and battery systems. Measurement of physical attributes of electrodes and batteries corresponding to thermodynamically stabilized electrode conditions permit determination of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and battery systems, such as energy, power density, current rate, cycle life and state of health. Also provided are systems and methods for charging a battery according to its state of health.

  16. Thermodynamics of Biological Processes

    PubMed Central

    Garcia, Hernan G.; Kondev, Jane; Orme, Nigel; Theriot, Julie A.; Phillips, Rob

    2012-01-01

    There is a long and rich tradition of using ideas from both equilibrium thermodynamics and its microscopic partner theory of equilibrium statistical mechanics. In this chapter, we provide some background on the origins of the seemingly unreasonable effectiveness of ideas from both thermodynamics and statistical mechanics in biology. After making a description of these foundational issues, we turn to a series of case studies primarily focused on binding that are intended to illustrate the broad biological reach of equilibrium thinking in biology. These case studies include ligand-gated ion channels, thermodynamic models of transcription, and recent applications to the problem of bacterial chemotaxis. As part of the description of these case studies, we explore a number of different uses of the famed Monod–Wyman–Changeux (MWC) model as a generic tool for providing a mathematical characterization of two-state systems. These case studies should provide a template for tailoring equilibrium ideas to other problems of biological interest. PMID:21333788

  17. Thermodynamics of graphene

    NASA Astrophysics Data System (ADS)

    Rusanov, A. I.

    2014-12-01

    The 21st century has brought a lot of new results related to graphene. Apparently, graphene has been characterized from all points of view except surface science and, especially, surface thermodynamics. This report aims to close this gap. Since graphene is the first real two-dimensional solid, a general formulation of the thermodynamics of two-dimensional solid bodies is given. The two-dimensional chemical potential tensor coupled with stress tensor is introduced, and fundamental equations are derived for energy, free energy, grand thermodynamic potential (in the classical and hybrid forms), enthalpy, and Gibbs energy. The fundamentals of linear boundary phenomena are formulated with explaining the concept of a dividing line, the mechanical and thermodynamic line tensions, line energy and other linear properties with necessary thermodynamic equations. The one-dimensional analogs of the Gibbs adsorption equation and Shuttleworth-Herring relation are presented. The general thermodynamic relationships are illustrated with calculations based on molecular theory. To make the reader sensible of the harmony of chemical and van der Waals forces in graphene, the remake of the classical graphite theory is presented with additional variable combinations of graphene sheets. The calculation of the line energy of graphene is exhibited including contributions both from chemical bonds and van der Waals forces (expectedly, the latter are considerably smaller than the former). The problem of graphene holes originating from migrating vacancies is discussed on the basis of the Gibbs-Curie principle. An important aspect of line tension is the planar sheet/nanotube transition where line tension acts as a driving force. Using the bending stiffness of graphene, the possible radius range is estimated for achiral (zigzag and armchair) nanotubes.

  18. Thermodynamics of ABC transporters.

    PubMed

    Zhang, Xuejun C; Han, Lei; Zhao, Yan

    2016-01-01

    ABC transporters form the largest of all transporter families, and their structural study has made tremendous progress over recent years. However, despite such advances, the precise mechanisms that determine the energy-coupling between ATP hydrolysis and the conformational changes following substrate binding remain to be elucidated. Here, we present our thermodynamic analysis for both ABC importers and exporters, and introduce the two new concepts of differential-binding energy and elastic conformational energy into the discussion. We hope that the structural analysis of ABC transporters will henceforth take thermodynamic aspects of transport mechanisms into account as well.

  19. Viscoplasticity: A thermodynamic formulation

    NASA Technical Reports Server (NTRS)

    Freed, A. D.; Chaboche, J. L.

    1989-01-01

    A thermodynamic foundation using the concept of internal state variables is given for a general theory of viscoplasticity, as it applies to initially isotropic materials. Three fundamental internal state variables are admitted. They are: a tensor valued back stress for kinematic effects, and the scalar valued drag and yield strengths for isotropic effects. All three are considered to phenomenologically evolve according to competitive processes between strain hardening, strain induced dynamic recovery, and time induced static recovery. Within this phenomenological framework, a thermodynamically admissible set of evolution equations is put forth. This theory allows each of the three fundamental internal variables to be composed as a sum of independently evolving constituents.

  20. Beyond Equilibrium Thermodynamics

    NASA Astrophysics Data System (ADS)

    Öttinger, Hans Christian

    2005-01-01

    Beyond Equilibrium Thermodynamics fills a niche in the market by providing a comprehensive introduction to a new, emerging topic in the field. The importance of non-equilibrium thermodynamics is addressed in order to fully understand how a system works, whether it is in a biological system like the brain or a system that develops plastic. In order to fully grasp the subject, the book clearly explains the physical concepts and mathematics involved, as well as presenting problems and solutions; over 200 exercises and answers are included. Engineers, scientists, and applied mathematicians can all use the book to address their problems in modelling, calculating, and understanding dynamic responses of materials.

  1. Kepler's Cool Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Swift, Jonathan; Muirhead, P. S.; Johnson, J. A.; Gonzales, A.; Shporer, A.; Plavchan, P.; Lockwood, A.; Morton, T.

    2014-01-01

    Some of the most exciting exoplanet results to date have come from the smallest and coolest sample of stars in the Kepler field—the M dwarfs. These cool stars represent the largest stellar population in the Galaxy which in turn harbors one of the largest known exoplanet populations. However, an accurate understanding of their physical properties currently eludes us. Detached, M dwarf eclipsing binary systems provide an accurate and precise, model-independent means of measuring the fundamental properties of low-mass stars shedding light on the rich physics embodied by this spectral class and refining our knowledge of their exoplanets. We have undertaken an observational campaign to obtain masses, radii, and effective temperatures of the Kepler eclipsing binaries having an M dwarf primary with periods between 1 and 60 days. These data will allow detailed comparisons between stellar properties, binary period, rotation, metallicity and activity levels.

  2. Binary ferrihydrite catalysts

    DOEpatents

    Huffman, Gerald P.; Zhao, Jianmin; Feng, Zhen

    1996-01-01

    A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered.

  3. Binary ferrihydrite catalysts

    DOEpatents

    Huffman, G.P.; Zhao, J.; Feng, Z.

    1996-12-03

    A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered. 3 figs.

  4. Binary Oscillatory Crossflow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Molloy, Richard F.; Gallagher, Christopher T.; Leighton, David T., Jr.

    1996-01-01

    We present preliminary results of our implementation of a novel electrophoresis separation technique: Binary Oscillatory Cross flow Electrophoresis (BOCE). The technique utilizes the interaction of two driving forces, an oscillatory electric field and an oscillatory shear flow, to create an active binary filter for the separation of charged species. Analytical and numerical studies have indicated that this technique is capable of separating proteins with electrophoretic mobilities differing by less than 10%. With an experimental device containing a separation chamber 20 cm long, 5 cm wide, and 1 mm thick, an order of magnitude increase in throughput over commercially available electrophoresis devices is theoretically possible.

  5. Identification list of binaries

    NASA Astrophysics Data System (ADS)

    Malkov,, O.; Karchevsky,, A.; Kaygorodov, P.; Kovaleva, D.

    The Identification List of Binaries (ILB) is a star catalogue constructed to facilitate cross-referencing between different catalogues of binary stars. As of 2015, it comprises designations for approximately 120,000 double/multiple systems. ILB contains star coordinates and cross-references to the Bayer/Flemsteed, DM (BD/CD/CPD), HD, HIP, ADS, WDS, CCDM, TDSC, GCVS, SBC9, IGR (and some other X-ray catalogues), PSR designations, as well as identifications in the recently developed BSDB system. ILB eventually became a part of the BDB stellar database.

  6. Black Hole Thermodynamics in an Undergraduate Thermodynamics Course.

    ERIC Educational Resources Information Center

    Parker, Barry R.; McLeod, Robert J.

    1980-01-01

    An analogy, which has been drawn between black hole physics and thermodynamics, is mathematically broadened in this article. Equations similar to the standard partial differential relations of thermodynamics are found for black holes. The results can be used to supplement an undergraduate thermodynamics course. (Author/SK)

  7. Program Computes Thermodynamic Functions

    NASA Technical Reports Server (NTRS)

    Mcbride, Bonnie J.; Gordon, Sanford

    1994-01-01

    PAC91 is latest in PAC (Properties and Coefficients) series. Two principal features are to provide means of (1) generating theoretical thermodynamic functions from molecular constants and (2) least-squares fitting of these functions to empirical equations. PAC91 written in FORTRAN 77 to be machine-independent.

  8. Focus on stochastic thermodynamics

    NASA Astrophysics Data System (ADS)

    Van den Broeck, Christian; Sasa, Shin-ichi; Seifert, Udo

    2016-02-01

    We introduce the thirty papers collected in this ‘focus on’ issue. The contributions explore conceptual issues within and around stochastic thermodynamics, use this framework for the theoretical modeling and experimental investigation of specific systems, and provide further perspectives on and for this active field.

  9. Thermodynamics in dynamical spacetimes

    NASA Astrophysics Data System (ADS)

    Tresguerres, Romualdo

    2014-03-01

    We derive a general formulation of the laws of irreversible thermodynamics in the presence of electromagnetism and gravity. For the handling of macroscopic material media, we use as a guide the field equations and the Noether identities of fundamental matter as deduced in the framework of gauge theories of the Poincaré ⊗ U(1) group.

  10. On Teaching Thermodynamics

    ERIC Educational Resources Information Center

    Debbasch, F.

    2011-01-01

    The logical structure of classical thermodynamics is presented in a modern, geometrical manner. The first and second law receive clear, operatively oriented statements and the Gibbs free energy extremum principle is fully discussed. Applications relevant to chemistry, such as phase transitions, dilute solutions theory and, in particular, the law…

  11. Thermodynamics of Dilute Solutions.

    ERIC Educational Resources Information Center

    Jancso, Gabor; Fenby, David V.

    1983-01-01

    Discusses principles and definitions related to the thermodynamics of dilute solutions. Topics considered include dilute solution, Gibbs-Duhem equation, reference systems (pure gases and gaseous mixtures, liquid mixtures, dilute solutions), real dilute solutions (focusing on solute and solvent), terminology, standard states, and reference systems.…

  12. Dixie Valley Bottoming Binary Unit

    SciTech Connect

    McDonald, Dale

    2014-12-21

    This binary plant is the first air cooled, high-output refrigeration based waste heat recovery cycle in the industry. Its working fluid is environmentally friendly and as such, the permits that would be required with a hydrocarbon based cycle are not necessary. The unit is largely modularized, meaning that the unit’s individual skids were assembled in another location and were shipped via truck to the plant site. The Air Cooled Condensers (ACC), equipment piping, and Balance of Plant (BOP) piping were constructed at site. This project further demonstrates the technical feasibility of using low temperature brine for geothermal power utilization. The development of the unit led to the realization of low temperature, high output, and environmentally friendly heat recovery systems through domestic research and engineering. The project generates additional renewable energy, resulting in cleaner air and reduced carbon dioxide emissions. Royalty and tax payments to governmental agencies will increase, resulting in reduced financial pressure on local entities. The major components of the unit were sourced from American companies, resulting in increased economic activity throughout the country.

  13. Binary coding for hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Chang, Chein-I.; Chang, Chein-Chi; Lin, Chinsu

    2004-10-01

    Binary coding is one of simplest ways to characterize spectral features. One commonly used method is a binary coding-based image software system, called Spectral Analysis Manager (SPAM) for remotely sensed imagery developed by Mazer et al. For a given spectral signature, the SPAM calculates its spectral mean and inter-band spectral difference and uses them as thresholds to generate a binary code word for this particular spectral signature. Such coding scheme is generally effective and also very simple to implement. This paper revisits the SPAM and further develops three new SPAM-based binary coding methods, called equal probability partition (EPP) binary coding, halfway partition (HP) binary coding and median partition (MP) binary coding. These three binary coding methods along with the SPAM well be evaluated for spectral discrimination and identification. In doing so, a new criterion, called a posteriori discrimination probability (APDP) is also introduced for performance measure.

  14. N-Bit Binary Resistor

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping

    1989-01-01

    Binary resistors in series tailored to precise value of resistance. Desired value of resistance obtained by cutting appropriate traces across resistors. Multibit, binary-based, adjustable resistor with high resolution used in many applications where precise resistance required.

  15. Fluctuating Thermodynamics for Biological Processes

    NASA Astrophysics Data System (ADS)

    Ham, Sihyun

    Because biomolecular processes are largely under thermodynamic control, dynamic extension of thermodynamics is necessary to uncover the mechanisms and driving factors of fluctuating processes. The fluctuating thermodynamics technology presented in this talk offers a practical means for the thermodynamic characterization of conformational dynamics in biomolecules. The use of fluctuating thermodynamics has the potential to provide a comprehensive picture of fluctuating phenomena in diverse biological processes. Through the application of fluctuating thermodynamics, we provide a thermodynamic perspective on the misfolding and aggregation of the various proteins associated with human diseases. In this talk, I will present the detailed concepts and applications of the fluctuating thermodynamics technology for elucidating biological processes. This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1401-13.

  16. Binary stars - Formation by fragmentation

    NASA Technical Reports Server (NTRS)

    Boss, Alan P.

    1988-01-01

    Theories of binary star formation by capture, separate nuclei, fission and fragmentation are compared, assessing the success of theoretical attempts to explain the observed properties of main-sequence binary stars. The theory of formation by fragmentation is examined, discussing the prospects for checking the theory against observations of binary premain-sequence stars. It is concluded that formation by fragmentation is successful at explaining many of the key properties of main-sequence binary stars.

  17. Separation in Binary Alloys

    NASA Technical Reports Server (NTRS)

    Frazier, D. O.; Facemire, B. R.; Kaukler, W. F.; Witherow, W. K.; Fanning, U.

    1986-01-01

    Studies of monotectic alloys and alloy analogs reviewed. Report surveys research on liquid/liquid and solid/liquid separation in binary monotectic alloys. Emphasizes separation processes in low gravity, such as in outer space or in free fall in drop towers. Advances in methods of controlling separation in experiments highlighted.

  18. Two-fluid theory and thermodynamic properties of liquid mixtures. Application to hard-sphere mixtures

    PubMed Central

    Brandani, V.; Prausnitz, J. M.

    1982-01-01

    This paper is the second of three describing a two-fluid theory of binary liquid mixtures. The general theory presented in the preceding paper is used to derive a model for calculating thermodynamic properties of hard-sphere mixtures. Calculations indicate that desirable boundary conditions are satisfied. PMID:16593220

  19. Thermochemical cycles

    NASA Technical Reports Server (NTRS)

    Funk, J. E.; Soliman, M. A.; Carty, R. H.; Conger, W. L.; Cox, K. E.; Lawson, D.

    1975-01-01

    The thermochemical production of hydrogen is described along with the HYDRGN computer program which attempts to rate the various thermochemical cycles. Specific thermochemical cycles discussed include: iron sulfur cycle; iron chloride cycle; and hybrid sulfuric acid cycle.

  20. Thermodynamic Curvature and Black Holes

    NASA Astrophysics Data System (ADS)

    Ruppeiner, George

    In my talk, I will discuss black hole thermodynamics, particularly what happens when you add thermodynamic curvature to the mix. Although black hole thermodynamics is a little off the main theme of this workshop, I hope nevertheless that my message will be of some interest to researchers in supersymmetry and supergravity.

  1. Variable pressure power cycle and control system

    DOEpatents

    Goldsberry, Fred L.

    1984-11-27

    A variable pressure power cycle and control system that is adjustable to a variable heat source is disclosed. The power cycle adjusts itself to the heat source so that a minimal temperature difference is maintained between the heat source fluid and the power cycle working fluid, thereby substantially matching the thermodynamic envelope of the power cycle to the thermodynamic envelope of the heat source. Adjustments are made by sensing the inlet temperature of the heat source fluid and then setting a superheated vapor temperature and pressure to achieve a minimum temperature difference between the heat source fluid and the working fluid.

  2. Enthalpies of a binary alloy during solidification

    NASA Technical Reports Server (NTRS)

    Poirier, D. R.; Nandapurkar, P.

    1988-01-01

    The purpose of the paper is to present a method of calculating the enthalpy of a dendritic alloy during solidification. The enthalpies of the dendritic solid and interdendritic liquid of alloys of the Pb-Sn system are evaluated, but the method could be applied to other binaries, as well. The enthalpies are consistent with a recent evaluation of the thermodynamics of Pb-Sn alloys and with the redistribution of solute in the same during dendritic solidification. Because of the heat of mixing in Pb-Sn alloys, the interdendritic liquid of hypoeutectic alloys (Pb-rich) of less than 50 wt pct Sn has enthalpies that increase as temperature decreases during solidification.

  3. Nucleation of bubbles in binary fluids

    NASA Astrophysics Data System (ADS)

    Talanquer, V.; Oxtoby, David W.

    1995-02-01

    We have applied density functional methods to predict the nucleation rates of bubbles in superheated, stretched, or supersaturated binary fluid mixtures. Our model uses Lennard-Jones mixtures, with mixing rules chosen to allow either ideal or nonideal solution behavior. Deviations from the predictions of classical nucleation theory are in general quite large, with the locus of observable bubble nucleation (the kinetic stability limit) following the spinodal (the thermodynamic stability limit) reasonably closely. Comparisons are made with a variety of experiments, and puzzling earlier results are explained, such as the increase in solubility of some gases with temperature at the kinetic stability limit. Further experiments are needed to explore the variety of behavior predicted by the present calculations.

  4. Massive binaries in R136 using Hubble

    NASA Astrophysics Data System (ADS)

    Caballero-Nieves, Saida; Crowther, Paul; Bostroem, K. Azalee; Maíz Apellániz, Jesus

    2014-09-01

    We have undertaken a complete HST/STIS spectroscopic survey of R136, the young, central dense starburst cluster of the LMC 30 Doradus nebula, which hosts the most massive stars currently known. Our CCD datasets, comprising 17 adjacent 0.2"×52" long slits, were split across Cycles 19 and 20 to allow us to search for spectroscopic binaries. We will present the results of our survey, including a comparison with the massive-star population in the wider 30 Doradus region from the VLT Flames Tarantula survey. We will also describe upcoming HST/FGS observations, which will probe intermediate-separation binaries in R136, and discuss this cluster in the context of unresolved young extragalactic star clusters.

  5. Kalina cycle application to gas turbine combined cycles

    SciTech Connect

    Bjorge, R.W.; Corman, J.C.; Smith, R.W.

    1995-12-31

    Gas turbine-based combined cycles have gained broad market acceptance due to their favorable economics, high efficiency and excellent environmental performance. Combined-cycle performance improvements have tracked the rapid advance of gas turbine technology. The introduction of the steam-cooled STAG 107H and 109H combined-cycle systems with their 60% net plant efficiency capability is the latest step in this trend. High-efficiency steam bottoming cycles have also advanced, with the current state-of-the-art being the three-pressure reheat cycle. The Kalina Cycle utilizing a mixture of ammonia and water as the working fluid promises to further continue these combined cycle-performance improvements with dramatic changes in the bottoming cycle. These improvements are due to non-isothermal heat acquisition and heat rejection, as well as internal heat recuperation, which reduce losses of thermodynamic availability, or exergy, in the cycle. This paper discusses the application of the Kalina Cycle to gas turbine-based combined cycles, including system design and performance characteristics. It compares Kalina Cycle performance and economics with that of a state-of-the-art steam bottoming cycle, showing the potential economic advantages of this innovative cycle in combined-cycle applications. Several variants of the Kalina Cycle system and the Distillation Condensation Subsystem (DCSS), which replaces the condenser as the heat rejection and recuperation system of the Kalina Cycle, have been studied. Results show that the Kalina Cycle can enhance the gas turbine bottoming cycle power output by over 15% when compared with a three-pressure reheat Rankine bottoming cycle. This yields an efficiency improvement of 2-3 percentage points, a significant advance in the state-of-the-art. Based on these substantial performance gains, GE is pursuing the commercialization of the Kalina Cycle for combined-cycle applications under a worldwide exclusive license from Exergy, Inc.

  6. Thermodynamics of biochemical networks and duality theorems

    NASA Astrophysics Data System (ADS)

    De Martino, Daniele

    2013-05-01

    One interesting yet difficult computational issue has recently been posed in biophysics in regard to the implementation of thermodynamic constraints to complex networks. Biochemical networks of enzymes inside cells are among the most efficient, robust, differentiated, and flexible free-energy transducers in nature. How is the second law of thermodynamics encoded for these complex networks? In this article it is demonstrated that for chemical reaction networks in the steady state the exclusion (presence) of closed reaction cycles makes possible (impossible) the definition of a chemical potential vector. Interestingly, this statement is encoded in one of the key results in combinatorial optimization, i.e., the Gordan theorem of the alternatives. From a computational viewpoint, the theorem reveals that calculating a reaction's free energy and identifying infeasible loops in flux states are dual problems whose solutions are mutually exclusive, and this opens the way for efficient and scalable methods to perform the energy balance analysis of large-scale biochemical networks.

  7. Statistical Mechanics and Thermodynamics of Viral Evolution

    NASA Astrophysics Data System (ADS)

    Jones, Barbara; Kaufman, James

    Using methods drawn from physics we study the life cycle of viruses. We analyze a model of viral infection and evolution using the ``grand canonical ensemble'' and formalisms from statistical mechanics and thermodynamics. Using this approach we determine possible genetic states of a model virus and host as a function of two independent pressures-immune response and system temperature. We show the system has a real thermodynamic temperature, and discover a new phase transition between a positive temperature regime of normal replication and a negative temperature ``disordered'' phase of the virus. We distinguish this from previous observations of a phase transition that arises as a function of mutation rate. From an evolutionary biology point of view, at steady state the viruses naturally evolve to distinct quasispecies. The approach used here could be refined to apply to real biological systems, perhaps providing insight into immune escape, the emergence of novel pathogens and other results of viral evolution.

  8. Dynamically tunable transformation thermodynamics

    NASA Astrophysics Data System (ADS)

    García-Meca, Carlos; Barceló, Carlos

    2016-04-01

    Recently, the introduction of transformation thermodynamics has provided a way to design thermal media that alter the flow of heat according to any spatial deformation, enabling the construction of novel devices such as thermal cloaks or concentrators. However, in its current version, this technique only allows static deformations of space. Here, we develop a space–time theory of transformation thermodynamics that incorporates the possibility of performing time-varying deformations. This extra freedom greatly widens the range of achievable effects, providing an additional degree of control for heat management applications. As an example, we design a reconfigurable thermal cloak that can be opened and closed dynamically, therefore being able to gradually adjust the temperature distribution of a given region.

  9. Canonical fluid thermodynamics

    NASA Technical Reports Server (NTRS)

    Schmid, L. A.

    1972-01-01

    The space-time integral of the thermodynamic pressure plays the role of the thermodynamic potential for compressible, adiabatic flow in the sense that the pressure integral for stable flow is less than for all slightly different flows. This stability criterion can be converted into a variational minimum principle by requiring the molar free-enthalpy and the temperature, which are the arguments of the pressure function, to be generalized velocities, that is, the proper-time derivatives of scalar spare-time functions which are generalized coordinates in the canonical formalism. In a fluid context, proper-time differentiation must be expressed in terms of three independent quantities that specify the fluid velocity. This can be done in several ways, all of which lead to different variants (canonical transformations) of the same constraint-free action integral whose Euler-Lagrange equations are just the well-known equations of motion for adiabatic compressible flow.

  10. Thermodynamic analysis of spectra

    SciTech Connect

    Mitchell, G. E.; Shriner, J. F. Jr.

    2008-04-04

    Although random matrix theory had its initial application to neutron resonances, there is a relative scarcity of suitable nuclear data. The primary reason for this is the sensitivity of the standard measures used to evaluate spectra--the spectra must be essential pure (no state with a different symmetry) and complete (no states missing). Additional measures that are less sensitive to these experimental limitations are of significant value. The standard measure for long range order is the {delta}{sub 3} statistic. In the original paper that introduced this statistic, Dyson and Mehta also attempted to evaluate spectra with thermodynamic variables obtained from the circular orthogonal ensemble. We consider the thermodynamic 'internal energy' and evaluate its sensitivity to experimental limitations such as missing and spurious levels. Monte Carlo simulations suggest that the internal energy is less sensitive to mistakes than is {delta}{sub 3}, and thus the internal energy can serve as a addition to the tool kit for evaluating experimental spectra.

  11. Thermodynamics of nuclear transport

    NASA Astrophysics Data System (ADS)

    Wang, Ching-Hao; Mehta, Pankaj; Elbaum, Michael

    Molecular transport across the nuclear envelope is important for eukaryotes for gene expression and signaling. Experimental studies have revealed that nuclear transport is inherently a nonequilibrium process and actively consumes energy. In this work we present a thermodynamics theory of nuclear transport for a major class of nuclear transporters that are mediated by the small GTPase Ran. We identify the molecular elements responsible for powering nuclear transport, which we term the ``Ran battery'' and find that the efficiency of transport, measured by the cargo nuclear localization ratio, is limited by competition between cargo molecules and RanGTP to bind transport receptors, as well as the amount of NTF2 (i.e. RanGDP carrier) available to circulate the energy flow. This picture complements our current understanding of nuclear transport by providing a comprehensive thermodynamics framework to decipher the underlying biochemical machinery. Pm and CHW were supported by a Simons Investigator in the Mathematical Modeling in Living Systems grant (to PM).

  12. Contact symmetries and Hamiltonian thermodynamics

    SciTech Connect

    Bravetti, A.; Lopez-Monsalvo, C.S.; Nettel, F.

    2015-10-15

    It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher’s Information Matrix. In this work we analyse several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendre symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production.

  13. Statistical Thermodynamics and Microscale Thermophysics

    NASA Astrophysics Data System (ADS)

    Carey, Van P.

    1999-08-01

    Many exciting new developments in microscale engineering are based on the application of traditional principles of statistical thermodynamics. In this text Van Carey offers a modern view of thermodynamics, interweaving classical and statistical thermodynamic principles and applying them to current engineering systems. He begins with coverage of microscale energy storage mechanisms from a quantum mechanics perspective and then develops the fundamental elements of classical and statistical thermodynamics. Subsequent chapters discuss applications of equilibrium statistical thermodynamics to solid, liquid, and gas phase systems. The remainder of the book is devoted to nonequilibrium thermodynamics of transport phenomena and to nonequilibrium effects and noncontinuum behavior at the microscale. Although the text emphasizes mathematical development, Carey includes many examples and exercises to illustrate how the theoretical concepts are applied to systems of scientific and engineering interest. In the process he offers a fresh view of statistical thermodynamics for advanced undergraduate and graduate students, as well as practitioners, in mechanical, chemical, and materials engineering.

  14. Identifying functional thermodynamics in autonomous Maxwellian ratchets

    NASA Astrophysics Data System (ADS)

    Boyd, Alexander B.; Mandal, Dibyendu; Crutchfield, James P.

    2016-02-01

    We introduce a family of Maxwellian Demons for which correlations among information bearing degrees of freedom can be calculated exactly and in compact analytical form. This allows one to precisely determine Demon functional thermodynamic operating regimes, when previous methods either misclassify or simply fail due to approximations they invoke. This reveals that these Demons are more functional than previous candidates. They too behave either as engines, lifting a mass against gravity by extracting energy from a single heat reservoir, or as Landauer erasers, consuming external work to remove information from a sequence of binary symbols by decreasing their individual uncertainty. Going beyond these, our Demon exhibits a new functionality that erases bits not by simply decreasing individual-symbol uncertainty, but by increasing inter-bit correlations (that is, by adding temporal order) while increasing single-symbol uncertainty. In all cases, but especially in the new erasure regime, exactly accounting for informational correlations leads to tight bounds on Demon performance, expressed as a refined Second Law of thermodynamics that relies on the Kolmogorov-Sinai entropy for dynamical processes and not on changes purely in system configurational entropy, as previously employed. We rigorously derive the refined Second Law under minimal assumptions and so it applies quite broadly—for Demons with and without memory and input sequences that are correlated or not. We note that general Maxwellian Demons readily violate previously proposed, alternative such bounds, while the current bound still holds. As such, it broadly describes the minimal energetic cost of any computation by a thermodynamic system.

  15. CODATA thermodynamic tables

    SciTech Connect

    Garvin, D.; Parker, V.B.; White, H.J. Jr.

    1987-01-01

    Recommended values are presented for chemical thermodynamic properties of selected compounds of calcium and their mixtures. These have been prepared in accord with a previously developed plan and as a test of it. All values in the present table are mutually consistent and are consistent with the CODATA Key Values for Thermodynamics. The values are recommended for general use. This work has been an activity of the CODATA Task Group on Chemical Thermodynamic Tables. The evaluated data are for common compounds of calcium (element, oxide, hydroxide, peroxide, fluoride, sulfate, nitrate and carbonate, their hydrates and their ions in aqueous solution) and for three systems: Ca-Mg, CaCl/sub 2/-KCl and CaCl/sub 2/-H/sub 2/O. Forty one tables of thermal functions (heat capacity, entropy, enthalpy, and Gibbs energy functions) are given for those compounds of magnesium, calcium and potassium for which the properties have been evaluated in this work. Twenty four tables of thermal functions are given for auxiliary substances. Each table spans the temperature range 0 to 4000 K, to the extent that data are available. Formation properties at 298.15 K (enthalpy and Gibbs energy of formation) are given for 68 compounds of calcium, magnesium and potassium plus the relevant values for 54 auxiliary substances.

  16. The discovery of thermodynamics

    NASA Astrophysics Data System (ADS)

    Weinberger, Peter

    2013-07-01

    Based on the idea that a scientific journal is also an "agora" (Greek: market place) for the exchange of ideas and scientific concepts, the history of thermodynamics between 1800 and 1910 as documented in the Philosophical Magazine Archives is uncovered. Famous scientists such as Joule, Thomson (Lord Kelvin), Clausius, Maxwell or Boltzmann shared this forum. Not always in the most friendly manner. It is interesting to find out, how difficult it was to describe in a scientific (mathematical) language a phenomenon like "heat", to see, how long it took to arrive at one of the fundamental principles in physics: entropy. Scientific progress started from the simple rule of Boyle and Mariotte dating from the late eighteenth century and arrived in the twentieth century with the concept of probabilities. Thermodynamics was the driving intellectual force behind the industrial revolution, behind the enormous social changes caused by this revolution. The history of thermodynamics is a fascinating story, which also gives insights into the mechanism that seem to govern science.

  17. Nonequilibrium thermodynamics of nucleation

    SciTech Connect

    Schweizer, M.; Sagis, L. M. C.

    2014-12-14

    We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a metastable phase and a nucleating phase, we derive the fundamental dynamics for this phenomenon, based on continuous Fokker-Planck equations. We are readily able to treat non-isothermal nucleation even when the nucleating cores cannot be attributed intensive thermodynamic properties. In addition, we capture the dynamics of the time-dependent metastable phase being continuously expelled from the nucleating phase, and keep rigorous track of the volume corrections to the dynamics. Within our framework the definition of a thermodynamic nuclei temperature is manifest. For the special case of nucleation of a gas phase towards its vapor-liquid coexistence, we illustrate that our approach is capable of reproducing recent literature results obtained by more microscopic considerations for the suppression of the nucleation rate due to nonisothermal effects.

  18. Interactions in Massive Colliding Wind Binaries

    NASA Technical Reports Server (NTRS)

    Corcoran, M.

    2012-01-01

    The most massive stars (M> 60 Solar Mass) play crucial roles in altering the chemical and thermodynamic properties of their host galaxies. Stellar mass is the fundamental stellar parameter that determines their ancillary properties and which ultimately determines the fate of these stars and their influence on their galactic environs. Unfortunately, stellar mass becomes observationally and theoretically less well constrained as it increases. Theory becomes uncertain mostly because very massive stars are prone to strong, variable mass loss which is difficult to model. Observational constraints are uncertain too. Massive stars are rare, and massive binary stars (needed for dynamical determination of mass) are rarer still: and of these systems only a fraction have suitably high orbital inclinations for direct photometric and spectroscopic radial-velocity analysis. Even in the small number of cases in which a high-inclination binary near the upper mass limit can be identified, rotational broadening and contamination of spectral line features from thick circumstellar material (either natal clouds or produced by strong stellar wind driven mass loss from one or both of he stellar components) biases the analysis. In the wilds of the upper HR diagram, we're often left with indirect and circumstantial means of determining mass, a rather unsatisfactory state of affairs.

  19. Structure Defect Property Relationships in Binary Intermetallics

    NASA Astrophysics Data System (ADS)

    Medasani, Bharat; Ding, Hong; Chen, Wei; Persson, Kristin; Canning, Andrew; Haranczyk, Maciej; Asta, Mark

    2015-03-01

    Ordered intermetallics are light weight materials with technologically useful high temperature properties such as creep resistance. Knowledge of constitutional and thermal defects is required to understand these properties. Vacancies and antisites are the dominant defects in the intermetallics and their concentrations and formation enthalpies could be computed by using first principles density functional theory and thermodynamic formalisms such as dilute solution method. Previously many properties of the intermetallics such as melting temperatures and formation enthalpies were statistically analyzed for large number of intermetallics using structure maps and data mining approaches. We undertook a similar exercise to establish the dependence of the defect properties in binary intermetallics on the underlying structural and chemical composition. For more than 200 binary intermetallics comprising of AB, AB2 and AB3 structures, we computed the concentrations and formation enthalpies of vacancies and antisites in a small range of stoichiometries deviating from ideal stoichiometry. The calculated defect properties were datamined to gain predictive capabilities of defect properties as well as to classify the intermetallics for their suitability in high-T applications. Supported by the US DOE under Contract No. DEAC02-05CH11231 under the Materials Project Center grant (Award No. EDCBEE).

  20. Massive Black Hole Binary Evolution

    NASA Astrophysics Data System (ADS)

    Merritt, David; Milosavljević, Milos

    2005-11-01

    Coalescence of binary supermassive black holes (SBHs) would constitute the strongest sources of gravitational waves to be observed by LISA. While the formation of binary SBHs during galaxy mergers is almost inevitable, coalescence requires that the separation between binary components first drop by a few orders of magnitude, due presumably to interaction of the binary with stars and gas in a galactic nucleus. This article reviews the observational evidence for binary SBHs and discusses how they would evolve. No completely convincing case of a bound, binary SBH has yet been found, although a handful of systems (e.g. interacting galaxies; remnants of galaxy mergers) are now believed to contain two SBHs at projected separations of <~ 1kpc. N-body studies of binary evolution in gas-free galaxies have reached large enough particle numbers to reproduce the slow, "diffusive" refilling of the binary's loss cone that is believed to characterize binary evolution in real galactic nuclei. While some of the results of these simulations - e.g. the binary hardening rate and eccentricity evolution - are strongly N-dependent, others - e.g. the "damage" inflicted by the binary on the nucleus - are not. Luminous early-type galaxies often exhibit depleted cores with masses of ~ 1-2 times the mass of their nuclear SBHs, consistent with the predictions of the binary model. Studies of the interaction of massive binaries with gas are still in their infancy, although much progress is expected in the near future. Binary coalescence has a large influence on the spins of SBHs, even for mass ratios as extreme as 10:1, and evidence of spin-flips may have been observed.

  1. Binary Love relations

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Yunes, Nicolás

    2016-07-01

    When in a tight binary, the mutual tidal deformations of neutron stars get imprinted onto observables, encoding information about their internal structure at supranuclear densities and gravity in the extreme-gravity regime. Gravitational wave (GW) observations of their late binary inspiral may serve as a tool to extract the individual tidal deformabilities, but this is made difficult by degeneracies between them in the GW model. We here resolve this problem by discovering approximately equation-of-state (EoS)-insensitive relations between dimensionless combinations of the individual tidal deformabilities. We show that these relations break degeneracies in the GW model, allowing for the accurate extraction of both deformabilities. Such measurements can be used to better differentiate between EoS models, and improve tests of general relativity and cosmology.

  2. Parametric binary dissection

    NASA Technical Reports Server (NTRS)

    Bokhari, Shahid H.; Crockett, Thomas W.; Nicol, David M.

    1993-01-01

    Binary dissection is widely used to partition non-uniform domains over parallel computers. This algorithm does not consider the perimeter, surface area, or aspect ratio of the regions being generated and can yield decompositions that have poor communication to computation ratio. Parametric Binary Dissection (PBD) is a new algorithm in which each cut is chosen to minimize load + lambda x(shape). In a 2 (or 3) dimensional problem, load is the amount of computation to be performed in a subregion and shape could refer to the perimeter (respectively surface) of that subregion. Shape is a measure of communication overhead and the parameter permits us to trade off load imbalance against communication overhead. When A is zero, the algorithm reduces to plain binary dissection. This algorithm can be used to partition graphs embedded in 2 or 3-d. Load is the number of nodes in a subregion, shape the number of edges that leave that subregion, and lambda the ratio of time to communicate over an edge to the time to compute at a node. An algorithm is presented that finds the depth d parametric dissection of an embedded graph with n vertices and e edges in O(max(n log n, de)) time, which is an improvement over the O(dn log n) time of plain binary dissection. Parallel versions of this algorithm are also presented; the best of these requires O((n/p) log(sup 3)p) time on a p processor hypercube, assuming graphs of bounded degree. How PBD is applied to 3-d unstructured meshes and yields partitions that are better than those obtained by plain dissection is described. Its application to the color image quantization problem is also discussed, in which samples in a high-resolution color space are mapped onto a lower resolution space in a way that minimizes the color error.

  3. Binary Optics Toolkit

    1996-04-02

    This software is a set of tools for the design and analysis of binary optics. It consists of a series of stand-alone programs written in C and some scripts written in an application-specific language interpreted by a CAD program called DW2000. This software can be used to optimize the design and placement of a complex lens array from input to output and produce contours, mask designs, and data exported for diffractive optic analysis.

  4. Separated Fringe Packet Binaries

    NASA Astrophysics Data System (ADS)

    Bagnuolo, W. G.; Taylor, S. F.; McAlister, H. A.; ten Brummelaar, T.; Sturmann, L.; Sturmann, J.; Turner, N. H.; Berger, D.; Ridgway, S. T.; CenterHigh Angular Resolution Astronomy (CHARA)

    2004-12-01

    Individually resolved packets are produced by scans from the CHARA Interferometer Array for binary stars with separations from 10 to 100 milli-arcsec (mas) in the K' band. We have used this data for astrometry of the binary with the goal of improving the visual orbits for these systems. About 12 data sets of 400 scans each can be collected for a star within an hour. The intrinsic accuracy with simple linear/quadratic fits to the time-separation curve yields accuracies of 0.15 mas. But, for systems with separations less than 80 mas, the measured separation is modulated periodically by the secondary star's packet riding over the sidelobes of the primary which provides a phase reference. This "sidelobe verniering" can improve the precision to better than 50 micro-arcsec. These techniques, represents 1-2 orders of magnitude improvement in astrometic accuracy over speckle interferometry techniques. Visual orbits can then be refined via a maximum liklihood technique, which leads to revisions in the stellar masses. We present the results for several binaries that have been observed at the CHARA Array, starting in 2001.

  5. Evolutionary models of binaries

    NASA Astrophysics Data System (ADS)

    van Rensbergen, Walter; Mennekens, Nicki; de Greve, Jean-Pierre; Jansen, Kim; de Loore, Bert

    2011-07-01

    We have put on CDS a catalog containing 561 evolutionary models of binaries: J/A+A/487/1129 (Van Rensbergen+, 2008). The catalog covers a grid of binaries with a B-type primary at birth, different values for the initial mass ratio and a wide range of initial orbital periods. The evolution was calculated with the Brussels code in which we introduced the spinning up and the creation of a hot spot on the gainer or its accretion disk, caused by impacting mass coming from the donor. When the kinetic energy of fast rotation added to the radiative energy of the hot spot exceeds the binding energy, a fraction of the transferred matter leaves the system: the evolution is liberal during a short lasting era of rapid mass transfer. The spin-up of the gainer was modulated using both strong and weak tides. The catalog shows the results for both types. For comparison, we included the evolutionary tracks calculated with the conservative assumption. Binaries with an initial primary below 6 Msolar show hardly any mass loss from the system and thus evolve conservatively. Above this limit differences between liberal and conservative evolution grow with increasing initial mass of the primary star.

  6. Three colour photoelectric observations of the eclipsing binary TT HER

    NASA Astrophysics Data System (ADS)

    Burchi, R.; Dipaolantonio, A.; Mancuso, S.; Milano, L.; Vittone, A.

    1982-07-01

    Three color photoelectric observations of the eclipsing binary TT Her are presented. The observation sequence and the automation of the measurement cycle allowed 3742 points in each of the colors to be collected. The measurements were reduced to phase by means of an ephemeris and are shown. A preliminary analysis of the period variability is made.

  7. SECULAR EVOLUTION OF COMPACT BINARIES NEAR MASSIVE BLACK HOLES: GRAVITATIONAL WAVE SOURCES AND OTHER EXOTICA

    SciTech Connect

    Antonini, Fabio; Perets, Hagai B.

    2012-09-20

    The environment near supermassive black holes (SMBHs) in galactic nuclei contains a large number of stars and compact objects. A fraction of these are likely to be members of binaries. Here we discuss the binary population of stellar black holes and neutron stars near SMBHs and focus on the secular evolution of such binaries, due to the perturbation by the SMBH. Binaries with highly inclined orbits with respect to their orbit around the SMBH are strongly affected by secular Kozai processes, which periodically change their eccentricities and inclinations (Kozai cycles). During periapsis approach, at the highest eccentricities during the Kozai cycles, gravitational wave (GW) emission becomes highly efficient. Some binaries in this environment can inspiral and coalesce at timescales much shorter than a Hubble time and much shorter than similar binaries that do not reside near an SMBH. The close environment of SMBHs could therefore serve as a catalyst for the inspiral and coalescence of binaries and strongly affect their orbital properties. Such compact binaries would be detectable as GW sources by the next generation of GW detectors (e.g., advanced-LIGO). Our analysis shows that {approx}0.5% of such nuclear merging binaries will enter the LIGO observational window while on orbits that are still very eccentric (e {approx}> 0.5). The efficient GW analysis for such systems would therefore require the use of eccentric templates. We also find that binaries very close to the SMBH could evolve through a complex dynamical (non-secular) evolution, leading to emission of several GW pulses during only a few years (though these are likely to be rare). Finally, we note that the formation of close stellar binaries, X-ray binaries, and their merger products could be induced by similar secular processes, combined with tidal friction rather than GW emission as in the case of compact object binaries.

  8. Binary-Signal Recovery

    NASA Technical Reports Server (NTRS)

    Griebeler, Elmer L.

    2011-01-01

    Binary communication through long cables, opto-isolators, isolating transformers, or repeaters can become distorted in characteristic ways. The usual solution is to slow the communication rate, change to a different method, or improve the communication media. It would help if the characteristic distortions could be accommodated at the receiving end to ease the communication problem. The distortions come from loss of the high-frequency content, which adds slopes to the transitions from ones to zeroes and zeroes to ones. This weakens the definition of the ones and zeroes in the time domain. The other major distortion is the reduction of low frequency, which causes the voltage that defines the ones or zeroes to drift out of recognizable range. This development describes a method for recovering a binary data stream from a signal that has been subjected to a loss of both higher-frequency content and low-frequency content that is essential to define the difference between ones and zeroes. The method makes use of the frequency structure of the waveform created by the data stream, and then enhances the characteristics related to the data to reconstruct the binary switching pattern. A major issue is simplicity. The approach taken here is to take the first derivative of the signal and then feed it to a hysteresis switch. This is equivalent in practice to using a non-resonant band pass filter feeding a Schmitt trigger. Obviously, the derivative signal needs to be offset to halfway between the thresholds of the hysteresis switch, and amplified so that the derivatives reliably exceed the thresholds. A transition from a zero to a one is the most substantial, fastest plus movement of voltage, and therefore will create the largest plus first derivative pulse. Since the quiet state of the derivative is sitting between the hysteresis thresholds, the plus pulse exceeds the plus threshold, switching the hysteresis switch plus, which re-establishes the data zero to one transition

  9. Teaching Thermodynamics with Physlets[R] in Introductory Physics

    ERIC Educational Resources Information Center

    Cox, Anne J.; Belloni, Mario; Dancy, Melissa; Christian, Wolfgang

    2003-01-01

    This paper describes the use of interactive, Physlet[R]-based curricular material designed to help students learn concepts of thermodynamics with a particular focus on the use of kinetic theory models. These exercises help students visualize ideal gas particle dynamics and engine cycles, make concrete connections between mechanics and…

  10. Binary Nucleation of Water and Sodium Chloride

    SciTech Connect

    Nemec, Thomas; Marsik, Frantisek; Palmer, Donald

    2005-01-01

    Nucleation processes in the binary water-sodium chloride system are investigated in the sense of the classical nucleation theory (CNT). The CNT is modified to be able to handle the electrolytic nature of the system and is employed to investigate the acceleration of the nucleation process due to the presence of sodium chloride in the steam. This phenomenon, frequently observed in the Wilson zone of steam turbines, is called early condensation. Therefore, the nucleation rates of the water-sodium chloride mixture are of key importance in the power cycle industry.

  11. Hydrate equilibria for binary and ternary mixtures of methane, propane, isobutane, and n-butane; Effect of salinity

    SciTech Connect

    Paranjpe, S.G. ); Kamath, V.A.; Patil, S.L. ); Godpole, S.P. )

    1989-11-01

    This paper provides new experimental data on the phase behavior of gas hydrates for several binary and ternary mixtures of methane, propane, isobutane, and n-butane. After the molecular Kihara parameters for n-butane in the thermodynamic model were tuned, the predictions were in good agreement with the experimental data. The role of n-butane formation is explained, and the effect of salinity on the phase behavior of binary mixtures of propane/n-butane is determined.

  12. RNA Thermodynamic Structural Entropy

    PubMed Central

    Garcia-Martin, Juan Antonio; Clote, Peter

    2015-01-01

    Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner’99 and Turner’04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http

  13. RNA Thermodynamic Structural Entropy.

    PubMed

    Garcia-Martin, Juan Antonio; Clote, Peter

    2015-01-01

    Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http

  14. Interfacial solvation thermodynamics.

    PubMed

    Ben-Amotz, Dor

    2016-10-19

    Previous studies have reached conflicting conclusions regarding the interplay of cavity formation, polarizability, desolvation, and surface capillary waves in driving the interfacial adsorptions of ions and molecules at air-water interfaces. Here we revisit these questions by combining exact potential distribution results with linear response theory and other physically motivated approximations. The results highlight both exact and approximate compensation relations pertaining to direct (solute-solvent) and indirect (solvent-solvent) contributions to adsorption thermodynamics, of relevance to solvation at air-water interfaces, as well as a broader class of processes linked to the mean force potential between ions, molecules, nanoparticles, proteins, and biological assemblies. PMID:27545849

  15. Stochastic thermodynamics of resetting

    NASA Astrophysics Data System (ADS)

    Fuchs, Jaco; Goldt, Sebastian; Seifert, Udo

    2016-03-01

    Stochastic dynamics with random resetting leads to a non-equilibrium steady state. Here, we consider the thermodynamics of resetting by deriving the first and second law for resetting processes far from equilibrium. We identify the contributions to the entropy production of the system which arise due to resetting and show that they correspond to the rate with which information is either erased or created. Using Landauer's principle, we derive a bound on the amount of work that is required to maintain a resetting process. We discuss different regimes of resetting, including a Maxwell demon scenario where heat is extracted from a bath at constant temperature.

  16. Interfacial solvation thermodynamics

    NASA Astrophysics Data System (ADS)

    Ben-Amotz, Dor

    2016-10-01

    Previous studies have reached conflicting conclusions regarding the interplay of cavity formation, polarizability, desolvation, and surface capillary waves in driving the interfacial adsorptions of ions and molecules at air-water interfaces. Here we revisit these questions by combining exact potential distribution results with linear response theory and other physically motivated approximations. The results highlight both exact and approximate compensation relations pertaining to direct (solute-solvent) and indirect (solvent-solvent) contributions to adsorption thermodynamics, of relevance to solvation at air-water interfaces, as well as a broader class of processes linked to the mean force potential between ions, molecules, nanoparticles, proteins, and biological assemblies.

  17. Thermodynamics of paracrystalline silicon

    SciTech Connect

    Voyles, P. M.; Treacy, M. M. J.; Gibson, J. M.

    2000-05-09

    Fluctuation microscopy experiments have shown that the as-deposited structure of amorphous silicon thin films is paracrystalline. A paracrystal consists of small (< 3 nm in diameter) topologically crystalline grains separated by a disordered matrix. Here the authors consider the thermodynamics of paracrystalline silicon as a function of the grain size and the temperature. They offer a simple model that qualitatively explains the observed metastability of the ordered structure at low temperature (300 K), the relaxation towards a more disordered structure at intermediate temperatures (600 K), and the recrystallization at high temperatures (1,000 K).

  18. Dynamics versus thermodynamics

    NASA Astrophysics Data System (ADS)

    Berdichevsky, V. L.

    1991-05-01

    An effort is made to characterize the ways in which the approaches of statistical mechanics and thermodynamics can be useful in the study of the dynamic behavior of structures. This meditation proceeds through consideration of such wide-ranging and deliberately provocative questions as: 'What are to be considered values in a stress-distribution function?' and 'How many degrees-of-freedom has a beam?'; it then gives attention to the hierarchy of vibrations, the interaction of the mechanism of dissipation with invisible degrees of freedom, and a plausible view of vibrations for the case of small dissipation.

  19. Thermodynamics of Rubber Elasticity

    NASA Astrophysics Data System (ADS)

    Pellicer, J.; Manzanares, J. A.; Zúñiga, J.; Utrillas, P.; Fernández, J.

    2001-02-01

    A thermodynamic study of an isotropic rubber band under uniaxial stress is presented on the basis of its equation of state. The behavior of the rubber band is compared with both that of an ideal elastomer and that of an ideal gas, considering the generalized Joule's law as the ideality criterion. First, the thermal expansion of rubber at constant stress and the change in the stress with temperature at constant length are described. Thermoelastic inversion is then considered, and the experimental observations are easily rationalized. Finally, the temperature changes observed in the adiabatic stretching of a rubber band are evaluated from the decrease of entropy with length.

  20. Binary optics: Trends and limitations

    NASA Technical Reports Server (NTRS)

    Farn, Michael W.; Veldkamp, Wilfrid B.

    1993-01-01

    We describe the current state of binary optics, addressing both the technology and the industry (i.e., marketplace). With respect to the technology, the two dominant aspects are optical design methods and fabrication capabilities, with the optical design problem being limited by human innovation in the search for new applications and the fabrication issue being limited by the availability of resources required to improve fabrication capabilities. With respect to the industry, the current marketplace does not favor binary optics as a separate product line and so we expect that companies whose primary purpose is the production of binary optics will not represent the bulk of binary optics production. Rather, binary optics' more natural role is as an enabling technology - a technology which will directly result in a competitive advantage in a company's other business areas - and so we expect that the majority of binary optics will be produced for internal use.

  1. Binary optics: Trends and limitations

    NASA Astrophysics Data System (ADS)

    Farn, Michael W.; Veldkamp, Wilfrid B.

    1993-08-01

    We describe the current state of binary optics, addressing both the technology and the industry (i.e., marketplace). With respect to the technology, the two dominant aspects are optical design methods and fabrication capabilities, with the optical design problem being limited by human innovation in the search for new applications and the fabrication issue being limited by the availability of resources required to improve fabrication capabilities. With respect to the industry, the current marketplace does not favor binary optics as a separate product line and so we expect that companies whose primary purpose is the production of binary optics will not represent the bulk of binary optics production. Rather, binary optics' more natural role is as an enabling technology - a technology which will directly result in a competitive advantage in a company's other business areas - and so we expect that the majority of binary optics will be produced for internal use.

  2. On thermodynamic and microscopic reversibility

    SciTech Connect

    Crooks, Gavin E.

    2011-07-12

    The word 'reversible' has two (apparently) distinct applications in statistical thermodynamics. A thermodynamically reversible process indicates an experimental protocol for which the entropy change is zero, whereas the principle of microscopic reversibility asserts that the probability of any trajectory of a system through phase space equals that of the time reversed trajectory. However, these two terms are actually synonymous: a thermodynamically reversible process is microscopically reversible, and vice versa.

  3. Binary Stars in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Mateo, M.; Murdin, P.

    2000-11-01

    Globular clusters have long been known to be among the richest stellar groupings within our Galaxy, but for many years they were believed to be largely devoid of the most minimal stellar group: binary stars (see BINARY STARS: OVERVIEW). For many years, the only evidence that any binaries existed in these clusters came from the presence of BLUE STRAGGLERS—stars that appear to be significantly you...

  4. Thermodynamic assessment of the Pr-O system

    SciTech Connect

    McMurray, Jake W.

    2015-12-24

    We found that the Calphad method was used to perform a thermodynamic assessment of the Pr–O system. Compound energy formalism representations were developed for the fluorite α-PrO 2–x and bixbyite σ-Pr 3 O 5 ± x solid solutions while the two-sublattice liquid model was used to describe the binary melt. The series of phases between Pr 2 O 3 and PrO 2 were taken to be stoichiometric. Moreover, the equilibrium oxygen pressure, phase equilibria, and enthalpy data were used to optimize the adjustable parameters of the models for a self-consistent representation of the thermodynamic behavior of the Pr–O system from 298 K to melting.

  5. Thermodynamic assessment of the Pr-O system

    DOE PAGESBeta

    McMurray, Jake W.

    2015-12-24

    We found that the Calphad method was used to perform a thermodynamic assessment of the Pr–O system. Compound energy formalism representations were developed for the fluorite α-PrO 2–x and bixbyite σ-Pr 3 O 5 ± x solid solutions while the two-sublattice liquid model was used to describe the binary melt. The series of phases between Pr 2 O 3 and PrO 2 were taken to be stoichiometric. Moreover, the equilibrium oxygen pressure, phase equilibria, and enthalpy data were used to optimize the adjustable parameters of the models for a self-consistent representation of the thermodynamic behavior of the Pr–O system frommore » 298 K to melting.« less

  6. Statistical thermodynamics of material transport in nonisothermal suspensions.

    PubMed

    Semenov, Semen; Schimpf, Martin

    2015-02-26

    An approach to the transport of material in a temperature gradient is outlined using nonequilibrium thermodynamics theory. The model is applicable to the thermophoresis of colloids and nanoparticles in systems with limited miscibility. Component chemical potentials in binary systems are calculated using statistical mechanics. The local pressure distribution is obtained using the condition of local thermodynamic equilibrium around the suspended particle. The Laplace contribution of the local pressure distribution within the layer of liquid surrounding the particle leads to a size dependence that is consistent with empirical data. The contribution of Keezom interaction to the thermodiffusion coefficient is calculated using empirical values of the thermodiffusion coefficient for silica particles in water and acetonitrile. The resulting interaction energies are consistent with those found in the literature.

  7. Thermodynamics of a trapped Bose-Fermi mixture

    SciTech Connect

    Hu, Hui; Liu, Xia-Ji

    2003-08-01

    By using the Hartree-Fock-Bogoliubov equations within the Popov approximation, we investigate the thermodynamic properties of a dilute binary Bose-Fermi mixture confined in an isotropic harmonic trap. For mixtures with an attractive Bose-Fermi interaction, we find a sizable enhancement of the condensate fraction and of the critical temperature of Bose-Einstein condensation with respect to the predictions for a pure interacting Bose gas. Conversely, the influence of the repulsive Bose-Fermi interaction is less pronounced. The possible relevance of our results in current experiments on trapped {sup 87}Rb-{sup 40}K mixtures is discussed.

  8. Thermodynamics of Accelerating Black Holes

    NASA Astrophysics Data System (ADS)

    Appels, Michael; Gregory, Ruth; KubizÅák, David

    2016-09-01

    We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon—even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

  9. Predictive thermodynamics for condensed phases.

    PubMed

    Glasser, Leslie; Jenkins, H Donald Brooke

    2005-10-01

    Thermodynamic information is central to assessment of the stability and reactivity of materials. However, because of both the demanding nature of experimental thermodynamics and the virtually unlimited number of conceivable compounds, experimental data is often unavailable or, for hypothetical materials, necessarily impossible to obtain. We describe simple procedures for thermodynamic prediction for condensed phases, both ionic and organic covalent, principally via formula unit volumes (or density); our volume-based approach (VBT) provides a new thermodynamic tool for such assessment. These methods, being independent of detailed knowledge of crystal structures, are applicable to liquids and amorphous materials as well as to crystalline solids. Examples of their use are provided. PMID:16172676

  10. Evolution of Close Binary Systems

    SciTech Connect

    Yakut, K; Eggleton, P

    2005-01-24

    We collected data on the masses, radii, etc. of three classes of close binary stars: low-temperature contact binaries (LTCBs), near-contact binaries (NCBs), and detached close binaries (DCBs). They restrict themselves to systems where (1) both components are, at least arguably, near the Main Sequence, (2) the periods are less than a day, and (3) there is both spectroscopic and photometric analysis leading to reasonably reliable data. They discuss the possible evolutionary connections between these three classes, emphasizing the roles played by mass loss and angular momentum loss in rapidly-rotating cool stars.

  11. Solid/liquid interfacial free energies in binary systems

    NASA Technical Reports Server (NTRS)

    Nason, D.; Tiller, W. A.

    1973-01-01

    Description of a semiquantitative technique for predicting the segregation characteristics of smooth interfaces between binary solid and liquid solutions in terms of readily available thermodynamic parameters of the bulk solutions. A lattice-liquid interfacial model and a pair-bonded regular solution model are employed in the treatment with an accommodation for liquid interfacial entropy. The method is used to calculate the interfacial segregation and the free energy of segregation for solid-liquid interfaces between binary solutions for the (111) boundary of fcc crystals. The zone of compositional transition across the interface is shown to be on the order of a few atomic layers in width, being moderately narrower for ideal solutions. The free energy of the segregated interface depends primarily upon the solid composition and the heats of fusion of the component atoms, the composition difference of the solutions, and the difference of the heats of mixing of the solutions.

  12. Low autocorrelation binary sequences

    NASA Astrophysics Data System (ADS)

    Packebusch, Tom; Mertens, Stephan

    2016-04-01

    Binary sequences with minimal autocorrelations have applications in communication engineering, mathematics and computer science. In statistical physics they appear as groundstates of the Bernasconi model. Finding these sequences is a notoriously hard problem, that so far can be solved only by exhaustive search. We review recent algorithms and present a new algorithm that finds optimal sequences of length N in time O(N {1.73}N). We computed all optimal sequences for N≤slant 66 and all optimal skewsymmetric sequences for N≤slant 119.

  13. BINARY STORAGE ELEMENT

    DOEpatents

    Chu, J.C.

    1958-06-10

    A binary storage device is described comprising a toggle provided with associsted improved driver circuits adapted to produce reliable action of the toggle during clearing of the toggle to one of its two states. or transferring information into and out of the toggle. The invention resides in the development of a self-regulating driver circuit to minimize the fluctuation of the driving voltages for the toggle. The disclosed driver circuit produces two pulses in response to an input pulse: a first or ''clear'' pulse beginning nt substantially the same time but endlrg slightly sooner than the second or ''transfer'' output pulse.

  14. The ζ Aurigae Binaries

    NASA Astrophysics Data System (ADS)

    Griffin, R. Elizabeth; Ake, Thomas B.

    This opening chapter provides a brief historical overview of the ζ Aur stars, with a focus on what K.O. Wright, his predecessors and colleagues at the Dominion Astrophysical Observatory, and his contemporaries further afield, achieved during the era of pre-electronic data. It places the topic within the framework of modern observing, data management and computing, outlines the principal features of the chromospheric-eclipse phenomena which single out the ζ Aur binaries for special study, and describes the considerable potential which this remarkable yet very select group of stars offers for increasing our understanding of stellar physics.

  15. Binary porous convection

    NASA Astrophysics Data System (ADS)

    Carey, Michael Richard

    Binary porous convection falls into the larger category of pattern formation---a symmetry breaking instability which creates a spatially periodic structure within a homogeneous system. The experiments and model presented in this dissertation indicate that an essential piece of physics is missing from the standard Darcian picture used to describe pattern formation in a porous medium convection system. Present theory predicts a bifurcation to an oscillatory state at onset for a binary mixture in a porous media over a wide range of experimental parameters (Brand and Steinberg, Physics Letters 93A 333 (1983)). This theory is inadequate in explaining the predominant large amplitude, backward, stationary overturning convection state observed in our experiments after transients have decayed. Convection experiments were visualized with magnetic resonance imaging and performed with a foam medium in slot and cylindrical geometries as well as a rectangular, packed bead system with water-ethanol mixtures. We explore the possibility that the difference between theory and experiment is due to enhanced solutal mixing not included in previous theories. The enhanced mixing of the fluid produces an effective diffusion coefficient that largely suppresses gradients in the concentration field, resulting in single-fluid like behavior. We model the experimental system with a Lorenz truncation of the binary Darcy equations with enhanced mixing. This model predicts results qualitatively similar to experiments: a forward bifurcation to small amplitude oscillations with a secondary backward bifurcation to large amplitude stationary convection. We have also developed an experimental nuclear magnetic resonance technique that measures the effective diffusion coefficient, D = D(v), as a function of velocity, v, for the individual species of the binary mixture simultaneously. However, the mixing effect measured in plug flow experiments is roughly two to three orders of magnitude too small to have

  16. Thermodynamics of Error Correction

    NASA Astrophysics Data System (ADS)

    Sartori, Pablo; Pigolotti, Simone

    2015-10-01

    Information processing at the molecular scale is limited by thermal fluctuations. This can cause undesired consequences in copying information since thermal noise can lead to errors that can compromise the functionality of the copy. For example, a high error rate during DNA duplication can lead to cell death. Given the importance of accurate copying at the molecular scale, it is fundamental to understand its thermodynamic features. In this paper, we derive a universal expression for the copy error as a function of entropy production and work dissipated by the system during wrong incorporations. Its derivation is based on the second law of thermodynamics; hence, its validity is independent of the details of the molecular machinery, be it any polymerase or artificial copying device. Using this expression, we find that information can be copied in three different regimes. In two of them, work is dissipated to either increase or decrease the error. In the third regime, the protocol extracts work while correcting errors, reminiscent of a Maxwell demon. As a case study, we apply our framework to study a copy protocol assisted by kinetic proofreading, and show that it can operate in any of these three regimes. We finally show that, for any effective proofreading scheme, error reduction is limited by the chemical driving of the proofreading reaction.

  17. Thermodynamics of geothermal fluids

    SciTech Connect

    Rogers, P.S.Z.

    1981-03-01

    A model to predict the thermodynamic properties of geothermal brines, based on a minimum amount of experimental data on a few key systems, is tested. Volumetric properties of aqueous sodium chloride, taken from the literature, are represented by a parametric equation over the range 0 to 300{sup 0}C and 1 bar to 1 kbar. Density measurements at 20 bar needed to complete the volumetric description also are presented. The pressure dependence of activity and thermal properties, derived from the volumetric equation, can be used to complete an equation of state for sodium chloride solutions. A flow calorimeter, used to obtain heat capacity data at high temperatures and pressures, is described. Heat capacity measurements, from 30 to 200{sup 0}C and 1 bar to 200 bar, are used to derive values for the activity coefficient and other thermodynamic properties of sodium sulfate solutions as a function of temperature. Literature data on the solubility of gypsum in mixed electrolyte solutions have been used to evaluate model parameters for calculating gypsum solubility in seawater and natural brines. Predictions of strontium and barium sulfate solubility in seawater also are given.

  18. Thermodynamics. [algebraic structure

    NASA Technical Reports Server (NTRS)

    Zeleznik, F. J.

    1976-01-01

    The fundamental structure of thermodynamics is purely algebraic, in the sense of atopological, and it is also independent of partitions, composite systems, the zeroth law, and entropy. The algebraic structure requires the notion of heat, but not the first law. It contains a precise definition of entropy and identifies it as a purely mathematical concept. It also permits the construction of an entropy function from heat measurements alone when appropriate conditions are satisfied. Topology is required only for a discussion of the continuity of thermodynamic properties, and then the weak topology is the relevant topology. The integrability of the differential form of the first law can be examined independently of Caratheodory's theorem and his inaccessibility axiom. Criteria are established by which one can determine when an integrating factor can be made intensive and the pseudopotential extensive and also an entropy. Finally, a realization of the first law is constructed which is suitable for all systems whether they are solids or fluids, whether they do or do not exhibit chemical reactions, and whether electromagnetic fields are or are not present.

  19. Thermodynamics of diffusion

    NASA Astrophysics Data System (ADS)

    Matuszak, Daniel

    Diffusion is the migration of molecules in the reference frame of a system's center of mass and it is a physical process that occurs in all chemical and biological systems. Diffusion generally involves intermolecular interactions that lead to clustering, adsorption, and phase transitions; as such, it is difficult to describe theoretically on a molecular level in systems containing both intermolecular repulsions and attractions. This work describes a simple thermodynamic approach that accounts for intermolecular attractions and repulsions (much like how the van der Waals equation does) to model and help provide an understanding of diffusion. The approach is an extension of the equilibrium Lattice Density Functional Theory of Aranovich and Donohue; it was developed with Mason and Lonsdale's guidelines on how to construct and test a transport theory. In the framework of lattice fluids, this new approach gives (a) correct equilibrium limits, (b) Fickian behavior for non-interacting systems, (c) correct departures from Fickian behavior in non-ideal systems, (d) the correct Maxwell-Stefan formulation, (e) symmetry behavior upon re-labeling species, (f) reasonable non-equilibrium phase behavior, (g) agreement with Molecular Dynamics simulations, (h) agreement with the theory of non-equilibrium thermodynamics, (i) a vanishing diffusive flux at the critical point, and (j) other qualitatively-correct behaviors when applied to problems in porous membranes and in packed beds.

  20. A Characterization of 9,851 Contact Binaries in the CRTS Variable Sources Catalog

    NASA Astrophysics Data System (ADS)

    Marsh, Franklin; Prince, Thomas Allen; Mahabal, Ashish A.; Bellm, Eric Christopher

    2016-01-01

    We have constructed a sample of over 9,000 contact binaries (W UMa systems) using the Catalina Real-Time Transient Survey (or CRTS) Variables Sources Catalog. By measuring period change rates, brightness change rates, light curve statistics, temperatures, absolute magnitudes, and distances for this large sample, we aim to improve the understanding of the evolution and dynamics of contact binaries. We show that binaries with convective outer envelopes have a different distribution of amplitudes, O'Connell effect magnitudes, and magnitude differences between eclipse minima than binaries that are radiative to the photosphere. We find that more than 2000 binaries exhibit a change in mean brightness over the 8 year timespan of CRTS measurements with at least 3-sigma significance. We note that 23.7% of binaries with convective outer envelopes exhibited a significant change in brightness, while only 5.8% of radiative binaries exhibited a significant change in brightness. In some binaries, we discover periodic trends in the mean brightness over the 8 year CRTS timespan, which may be related to the stellar magnetic activity cycle of the primary. We also find 871 binaries that exhibit period changes at 3-sigma significance. In this work, we demonstrate how all-sky transient surveys can be be used to study contact binary systems in a statistical manner, paving the way for work with future surveys.

  1. Thermodynamic assessment of the Pdsbnd Rhsbnd Ru system using calphad and first-principles methods

    NASA Astrophysics Data System (ADS)

    Gossé, S.; Dupin, N.; Guéneau, C.; Crivello, J.-C.; Joubert, J.-M.

    2016-06-01

    Palladium, rhodium and ruthenium are abundant fission products that form in oxide fuels in nuclear reactors. Under operating conditions, these Platinum-Group Metal (PGM) fission products accumulate in high concentration at the rim of the oxide fuel and mainly precipitate into metallic solid solutions. Their thermochemistry is of significant interest to predict the high temperature chemical interactions between the fuel and the cladding or the possible precipitation of PGM phases in high level nuclear waste glasses. To predict the thermodynamic properties of these PGM fission products, a thermodynamic modeling is being developed on the ternary Pdsbnd Rhsbnd Ru system using the Calphad method. Because experimental thermodynamic data are scarce, Special Quasirandom Structures coupled with Density Functional Theory methods were used to calculate mixing enthalpy data in the solid solutions. The resulting thermodynamic description based on only binary interaction parameters is in good agreement with the few data on the ternary system.

  2. Are thermally coupled distillation columns always thermodynamically more efficient for ternary distillations?

    SciTech Connect

    Agrawal, R.; Fidkowski, Z.T.

    1998-08-01

    The thermodynamic efficiency of five ternary distillation configurations to distill ideal saturated liquids into pour product streams are calculated and compared. A striking result of this study is that for the fully coupled column (Petlyuk) configuration, which is known to have the lowest heat demand for ternary distillation, the range of values of feed composition and relative volatilities for which it is the most thermodynamically efficient configuration is quite limited. Among the three thermally coupled column configurations tend to provide the most efficient configuration more often than the fully coupled configuration. Generally, the modified direct and indirect split configurations together provide the most thermodynamically efficient configuration for more feed compositions and relative volatilities than do the three thermally coupled column configurations. The high thermodynamic efficiency of these two configurations is primarily due to their ability to either accept or reject heat at the intermediate temperatures of binary mixtures.

  3. Biochemical Thermodynamics under near Physiological Conditions

    ERIC Educational Resources Information Center

    Mendez, Eduardo

    2008-01-01

    The recommendations for nomenclature and tables in Biochemical Thermodynamics approved by IUBMB and IUPAC in 1994 can be easily introduced after the chemical thermodynamic formalism. Substitution of the usual standard thermodynamic properties by the transformed ones in the thermodynamic equations, and the use of appropriate thermodynamic tables…

  4. SECULAR EVOLUTION OF BINARIES NEAR MASSIVE BLACK HOLES: FORMATION OF COMPACT BINARIES, MERGER/COLLISION PRODUCTS AND G2-LIKE OBJECTS

    SciTech Connect

    Prodan, Snezana; Antonini, Fabio; Perets, Hagai B. E-mail: antonini@cita.utoronto.ca

    2015-02-01

    Here we discuss the evolution of binaries around massive black holes (MBHs) in nuclear stellar clusters. We focus on their secular evolution due to the perturbation by the MBHs, while simplistically accounting for their collisional evolution. Binaries with highly inclined orbits with respect to their orbits around MBHs are strongly affected by secular processes, which periodically change their eccentricities and inclinations (e.g., Kozai-Lidov cycles). During periapsis approach, dissipative processes such as tidal friction may become highly efficient, and may lead to shrinkage of a binary orbit and even to its merger. Binaries in this environment can therefore significantly change their orbital evolution due to the MBH third-body perturbative effects. Such orbital evolution may impinge on their later stellar evolution. Here we follow the secular dynamics of such binaries and its coupling to tidal evolution, as well as the stellar evolution of such binaries on longer timescales. We find that stellar binaries in the central parts of nuclear stellar clusters (NSCs) are highly likely to evolve into eccentric and/or short-period binaries, and become strongly interacting binaries either on the main sequence (at which point they may even merge), or through their later binary stellar evolution. The central parts of NSCs therefore catalyze the formation and evolution of strongly interacting binaries, and lead to the enhanced formation of blue stragglers, X-ray binaries, gravitational wave sources, and possible supernova progenitors. Induced mergers/collisions may also lead to the formation of G2-like cloud-like objects such as the one recently observed in the Galactic center.

  5. Modeling Binary Neutron Stars

    NASA Astrophysics Data System (ADS)

    Park, Conner; Read, Jocelyn; Flynn, Eric; Lockett-Ruiz, Veronica

    2016-03-01

    Gravitational waves, predicted by Einstein's Theory of Relativity, are a new frontier in astronomical observation we can use to observe phenomena in the universe. Laser Interferometer Gravitational wave Observatory (LIGO) is currently searching for gravitational wave signals, and requires accurate predictions in order to best extract astronomical signals from all other sources of fluctuations. The focus of my research is in increasing the accuracy of Post-Newtonian models of binary neutron star coalescence to match the computationally expensive Numerical models. Numerical simulations can take months to compute a couple of milliseconds of signal whereas the Post-Newtonian can generate similar signals in seconds. However the Post-Newtonian model is an approximation, e.g. the Taylor T4 Post-Newtonian model assumes that the two bodies in the binary neutron star system are point charges. To increase the effectiveness of the approximation, I added in tidal effects, resonance frequencies, and a windowing function. Using these observed effects from simulations significantly increases the Post-Newtonian model's similarity to the Numerical signal.

  6. The Thermodynamics of Virus Capsid Assembly

    PubMed Central

    Katen, Sarah; Zlotnick, Adam

    2009-01-01

    Virus capsid assembly is a critical step in the viral life cycle. The underlying basis of capsid stability is key to understanding this process. Capsid subunits interact with weak individual contact energies to form a globally stable icosahedral lattice; this structure is ideal for encapsidating the viral genome and host partners and protecting its contents upon secretion, yet the unique properties of its assembly and intersubunit contacts allows for the capsid to dissociate upon entering a new host cell. The stability of the capsid can be analyzed by treating capsid assembly as an equilibrium polymerization reaction, modified from the traditional polymer model to account for the fact that a separate nucleus is formed for each individual capsid. From the concentrations of reactants and products in an equilibrated assembly reaction, it is possible to extract the thermodynamic parameters of assembly for a wide array of icosahedral viruses using well-characterized biochemical and biophysical methods. In this chapter we describe the basic analysis and provide examples of thermodynamic assembly data for several different icosahedral viruses. These data provide new insights into the assembly mechanisms of spherical virus capsids, as well as the biology of the viral life cycle. PMID:19289214

  7. Thermodynamic Analysis of Nanoporous Membrane Separation Processes

    NASA Astrophysics Data System (ADS)

    Rogers, David; Rempe, Susan

    2011-03-01

    We give an analysis of desalination energy requirements in order to quantify the potential for future improvements in desalination membrane technology. Our thermodynamic analysis makes it possible to draw conclusions from the vast array of equilibrium molecular dynamics simulations present in the literature as well as create a standardized comparison for measuring and reporting experimental reverse osmosis material efficiency. Commonly employed methods for estimating minimum desalination energy costs have been revised to include operations at positive input stream recovery ratios using a thermodynamic cycle analogous to the Carnot cycle. Several gaps in the statistical mechanical theory of irreversible processes have also been identified which may in the future lead to improved communication between materials engineering models and statistical mechanical simulation. Simulation results for silica surfaces and nanochannels are also presented. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Thermodynamics and Spontaneity

    NASA Astrophysics Data System (ADS)

    Ochs, Raymond S.

    1996-10-01

    Despite the importance of thermodynamics as the foundation of chemistry, most students emerge from introductory courses with only a dim understanding of this subject. Generally students recognize that the information is significant, yet do not assimilate it into later studies, especially in applied fields such as biology and biochemistry. A clear sense of the problem is reflected in a number of other contributions to this Journal (e.g., 1 - 6). Most (1 - 4, 6) recommend increased rigor in derivation of equations. This may appeal to students in advanced courses in chemical thermodynamics, but not to most. A few other suggestions are to introduce the subject earlier in general chemistry courses (2) or to provide innovative ways to visualize reaction changes (3). I suggest that the problem lies at another level entirely: the meanings of the terms are not clear. Recently, MacNeal (7) introduced the concept of mathsemantics, the joining of mathematics with a deep understanding of the sense (semantics) in which it operates. For example, the author argues that not only can we add apples and oranges (yielding total fruit), but that anything less than such a synthesis is trivial. Mathematics is hard, not because of the actual mathematical part of the problem but because of the semantics. As discussed thoroughly by Weinburg (8), the very names we affix to ideas dominate how we think about them. A similar reorientation would benefit chemical education. By way of example, the word "spontaneous" is widely used in thermodynamics, presumably because the word is familiar and assists understanding of this subject. In the following, I will provide evidence that this word has contributed more to the obfuscation of chemical ideas than it has helped elucidate them. Literature Cited 1. Redlich, O. J. Chem. Educ. 1975, 52, 374 - 376. 2. Bergquist, W.; Heikkinen, H. J. Chem. Educ. 1990, 67, 1000 - 1003. 3. Macomber, R. S. J. Chem. Educ. 1994, 71, 311 - 312. 4. Sanchez, K. S.; Vergenz, R

  9. New Horizons in Thermodynamics

    NASA Astrophysics Data System (ADS)

    Hayward, Geoffrey Gordon

    1991-02-01

    This thesis collects five papers which treat the theory of horizon thermodynamics and its applications to cosmology. In the first paper I consider general, spherically symmetric spacetimes with cosmological and black hole horizons. I find that a state of thermal equilibrium may exist in classical manifolds with two horizons so long as a matter distribution is present. I calculate the Euclidean action for non-classical manifolds with and without boundary and relate it to the grand canonical weighting factor. I find that the mean thermal energy of the cosmological horizon is negative. In the second paper I derive the first law of thermodynamics for bounded, static, spherically symmetric spacetimes which include a matter distribution and either a black hole or cosmological horizon. I calculate heat capacities associated with matter/horizon systems and find that they may be positive or negative depending on the matter configuration. I discuss the case in which the cosmological constant is allowed to vary and conclude that the Hawking/Coleman mechanisms for explaining the low value of the cosmological constant are not well formulated. In the third paper, co-authored by Jorma Louko, we analyze variational principles for non-smooth metrics. These principles give insight to the problem of constructing minisuperspace path integrals in horizon statistical mechanics and quantum cosmology. We demonstrate that smoothness conditions can be derived from the variational principle as equations of motion. We suggest a new prescription for minisuperspace path integrals on the manifold | D times S^2. In the fourth paper, I examine the contribution of the horizon energy density to black hole temperature. I show the existence of positive heat capacity solutions in the small mass regime. In the fifth paper, co-authored by Diego Pavon we investigate the role of primordial black holes in the very early universe under SU(3) times SU(2) times U (1), SU(5), and their supersymmetric

  10. Thermodynamics from Car to Kitchen

    ERIC Educational Resources Information Center

    Auty, Geoff

    2014-01-01

    The historical background to the laws of thermodynamics is explained using examples we can all observe in the world around us, focusing on motorised transport, refrigeration and solar heating. This is not to be considered as an academic article. The purpose is to improve understanding of thermodynamics rather than impart new knowledge, and for…

  11. Thermodynamic analysis of conductive filaments

    NASA Astrophysics Data System (ADS)

    Karpov, V.; Niraula, D.; Karpov, I.

    2016-08-01

    We present a thermodynamic theory of the conductive filament growth and dissolution in random access memory describing the observed features of their current-voltage (IV) characteristics. Our theory is based on the self-consisted Fokker-Planck approach reducing the filament kinetics to its thermodynamics. Expressing the observed IV features through material parameters, our results pave a way to device improvements.

  12. Thermodynamics--A Practical Subject.

    ERIC Educational Resources Information Center

    Jones, Hugh G.

    1984-01-01

    Provides a simplified, synoptic overview of the area of thermodynamics, enumerating and explaining the four basic laws, and introducing the mathematics involved in a stepwise fashion. Discusses such basic tools of thermodynamics as enthalpy, entropy, Helmholtz free energy, and Gibbs free energy, and their uses in problem solving. (JM)

  13. Ch. 33 Modeling: Computational Thermodynamics

    SciTech Connect

    Besmann, Theodore M

    2012-01-01

    This chapter considers methods and techniques for computational modeling for nuclear materials with a focus on fuels. The basic concepts for chemical thermodynamics are described and various current models for complex crystalline and liquid phases are illustrated. Also included are descriptions of available databases for use in chemical thermodynamic studies and commercial codes for performing complex equilibrium calculations.

  14. Nonequilibrium thermodynamics and energy efficiency in weight loss diets

    PubMed Central

    Feinman, Richard D; Fine, Eugene J

    2007-01-01

    Carbohydrate restriction as a strategy for control of obesity is based on two effects: a behavioral effect, spontaneous reduction in caloric intake and a metabolic effect, an apparent reduction in energy efficiency, greater weight loss per calorie consumed. Variable energy efficiency is established in many contexts (hormonal imbalance, weight regain and knock-out experiments in animal models), but in the area of the effect of macronutrient composition on weight loss, controversy remains. Resistance to the idea comes from a perception that variable weight loss on isocaloric diets would somehow violate the laws of thermodynamics, that is, only caloric intake is important ("a calorie is a calorie"). Previous explanations of how the phenomenon occurs, based on equilibrium thermodynamics, emphasized the inefficiencies introduced by substrate cycling and requirements for increased gluconeogenesis. Living systems, however, are maintained far from equilibrium, and metabolism is controlled by the regulation of the rates of enzymatic reactions. The principles of nonequilibrium thermodynamics which emphasize kinetic fluxes as well as thermodynamic forces should therefore also be considered. Here we review the principles of nonequilibrium thermodynamics and provide an approach to the problem of maintenance and change in body mass by recasting the problem of TAG accumulation and breakdown in the adipocyte in the language of nonequilibrium thermodynamics. We describe adipocyte physiology in terms of cycling between an efficient storage mode and a dissipative mode. Experimentally, this is measured in the rate of fatty acid flux and fatty acid oxidation. Hormonal levels controlled by changes in dietary carbohydrate regulate the relative contributions of the efficient and dissipative parts of the cycle. While no experiment exists that measures all relevant variables, the model is supported by evidence in the literature that 1) dietary carbohydrate, via its effect on hormone levels

  15. Multilevel Models for Binary Data

    ERIC Educational Resources Information Center

    Powers, Daniel A.

    2012-01-01

    The methods and models for categorical data analysis cover considerable ground, ranging from regression-type models for binary and binomial data, count data, to ordered and unordered polytomous variables, as well as regression models that mix qualitative and continuous data. This article focuses on methods for binary or binomial data, which are…

  16. Thermodynamics and cement science

    SciTech Connect

    Damidot, D.; Lothenbach, B.; Herfort, D.; Glasser, F.P.

    2011-07-15

    Thermodynamics applied to cement science has proved to be very valuable. One of the most striking findings has been the extent to which the hydrate phases, with one conspicuous exception, achieve equilibrium. The important exception is the persistence of amorphous C-S-H which is metastable with respect to crystalline calcium silicate hydrates. Nevertheless C-S-H can be included in the scope of calculations. As a consequence, from comparison of calculation and experiment, it appears that kinetics is not necessarily an insuperable barrier to engineering the phase composition of a hydrated Portland cement. Also the sensitivity of the mineralogy of the AFm and AFt phase compositions to the presence of calcite and to temperature has been reported. This knowledge gives a powerful incentive to develop links between the mineralogy and engineering properties of hydrated cement paste and, of course, anticipates improvements in its performance leading to decreasing the environmental impacts of cement production.

  17. The thermodynamic brain.

    PubMed

    Donnelly, Joseph; Czosnyka, Marek

    2014-01-01

    Apart from its complex functionality, the brain is a robust thermodynamic machine; the tissue metabolic rate is high and it is thermally shielded by a skull. Therefore, if there is no high-volume blood flow to cool and stabilize the brain temperature, the possibility of unstable behavior seems to be high. Inflowing arterial blood is normally cooler than the brain tissue temperature, and outflowing venous blood is normally warmer than arterial blood but cooler than the brain tissue. Brain blood flow can thus be understood as a cooler for the brain. Pros and cons of clinical measurement, with clear indication for a multimodal monitoring approach, are discussed along with a brief review of basic facts known about temperature, cerebral blood flow and volume, intracranial pressure, and compartmental compliances of the brain. PMID:25672816

  18. Thermodynamics of Protein Aggregation

    NASA Astrophysics Data System (ADS)

    Osborne, Kenneth L.; Barz, Bogdan; Bachmann, Michael; Strodel, Birgit

    Amyloid protein aggregation characterizes many neurodegenerative disorders, including Alzheimer's, Parkinson's, and Creutz- feldt-Jakob disease. Evidence suggests that amyloid aggregates may share similar aggregation pathways, implying simulation of full-length amyloid proteins is not necessary for understanding amyloid formation. In this study we simulate GNNQQNY, the N-terminal prion-determining domain of the yeast protein Sup35 to investigate the thermodynamics of structural transitions during aggregation. We use a coarse-grained model with replica-exchange molecular dynamics to investigate the association of 3-, 6-, and 12-chain GNNQQNY systems and we determine the aggregation pathway by studying aggregation states of GN- NQQNY. We find that the aggregation of the hydrophilic GNNQQNY sequence is mainly driven by H-bond formation, leading to the formation of /3-sheets from the very beginning of the assembly process. Condensation (aggregation) and ordering take place simultaneously, which is underpinned by the occurrence of a single heat capacity peak only.

  19. Modern problems of thermodynamics

    NASA Astrophysics Data System (ADS)

    Novikov, I. I.

    2012-12-01

    The role of energy and methods of its saving for the development of human society and life are analyzed. The importance of future use of space energy flows and energy of water and air oceans is emphasized. The authors consider the idea of the unit for production of electric energy and pure substances using sodium chloride which reserves are limitless on the planet. Looking retrospectively at the development of power engineering from the elementary fire to modern electric power station, we see that the used method of heat production, namely by direct interaction of fuel and oxidizer, is the simplest. However, it may be possible to combust coal, i.e., carbon in salt melt, for instance, sodium chloride that would be more rational and efficient. If the stated problems are solved positively, we would master all energy properties of the substance; and this is the main problem of thermodynamics being one of the sciences on energy.

  20. A triple origin for the lack of tight coplanar circumbinary planets around short-period binaries

    NASA Astrophysics Data System (ADS)

    Hamers, Adrian; Perets, Hagai B.; Portegies Zwart, Simon

    2015-12-01

    Detection of transiting circumbinary planets is more tractable around short-period binaries. However, sofar, no such binaries have been found with orbits shorter than 7 days. Short-period main sequence binaries have been suggested to form in triple systems, through a combination of secular Kozai-Lidov cycles and tidal friction (KLCTF). Here, we show that coplanar circumbinary transiting planets are unlikely to exist around short-period binaries, due to triple evolution. We use secular analysis, N-body simulations and analytic considerations as well as population synthesis models to characterize their overall properties. We find that the existence of a circumbinary planet in a triple is likely to produce one of the following outcomes. (1) Sufficiently massive planets in tight and/or coplanar orbits around the inner binary can partially or completely quench the KL evolution, `shielding' the inner binary from the secular effects of the tertiary, and not allowing the KLCTF process to take place. In this case, the inner binary will not shrink to become a short-period binary. (2) KL evolution is not quenched and it drives the planetary orbit into high eccentricities, giving rise to an unstable configuration, in which the planet is most likely ejected from the system. (3) KL evolution is not quenched, but the planet survives the KLCTF evolution and the formation of the short-period binary; the planet orbit is likely to be much wider than the currently observed inner binary orbit, and is likely to be inclined in respect to the binary orbit, as well as eccentric. These outcomes lead to two main conclusions: (1) it is unlikely to find a (massive) planet on a tight and coplanar orbit around a short-period main-sequence binary, and (2) the frequency, masses and orbits of non-coplanar circumbinary planets in short-period binaries are constrained by their secular evolution.

  1. A Hamiltonian approach to Thermodynamics

    NASA Astrophysics Data System (ADS)

    Baldiotti, M. C.; Fresneda, R.; Molina, C.

    2016-10-01

    In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac's theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases.

  2. Thermodynamic aspects of vitrification.

    PubMed

    Wowk, Brian

    2010-02-01

    Vitrification is a process in which a liquid begins to behave as a solid during cooling without any substantial change in molecular arrangement or thermodynamic state variables. The physical phenomenon of vitrification is relevant to both cryopreservation by freezing, in which cells survive in glass between ice crystals, and cryopreservation by vitrification in which a whole sample is vitrified. The change from liquid to solid behavior is called the glass transition. It is coincident with liquid viscosity reaching 10(13) Poise during cooling, which corresponds to a shear stress relaxation time of several minutes. The glass transition can be understood on a molecular level as a loss of rotational and translational degrees of freedom over a particular measurement timescale, leaving only bond vibration within a fixed molecular structure. Reduced freedom of molecular movement results in decreased heat capacity and thermal expansivity in glass relative to the liquid state. In cryoprotectant solutions, the change from liquid to solid properties happens over a approximately 10 degrees C temperature interval centered on a glass transition temperature, typically near -120 degrees C (+/-10 degrees C) for solutions used for vitrification. Loss of freedom to quickly rearrange molecular position causes liquids to depart from thermodynamic equilibrium as they turn into a glass during vitrification. Residual molecular mobility below the glass transition temperature allows glass to very slowly contract, release heat, and decrease entropy during relaxation toward equilibrium. Although diffusion is practically non-existent below the glass transition temperature, small local movements of molecules related to relaxation have consequences for cryobiology. In particular, ice nucleation in supercooled vitrification solutions occurs at remarkable speed until at least 15 degrees C below the glass transition temperature. PMID:19538955

  3. Thermodynamics of feldspathoid solutions

    NASA Astrophysics Data System (ADS)

    Sack, Richard O.; Ghiorso, Mark S.

    We have developed models for the thermody-namic properties of nephelines, kalsilites, and leucites in the simple system NaAlSiO4-KAlSiO4-Ca0.5AlSiO4-SiO2-H2O that are consistent with all known constraints on subsolidus equilibria and thermodynamic properties, and have integrated them into the existing MELTS software package. The model for nepheline is formulated for the simplifying assumptions that (1) a molecular mixing-type approximation describes changes in the configurational entropy associated with the coupled exchange substitutions □Si?NaAl and □Ca? Na2 and that (2) Na+ and K+ display long-range non-convergent ordering between a large cation and the three small cation sites in the Na4Al4Si4O16 formula unit. Notable features of the model include the prediction that the mineral tetrakalsilite (``panunzite'', sensu stricto) results from anti-ordering of Na and K between the large cation and the three small cation sites in the nepheline structure at high temperatures, an average dT/dP slope of about 55°/kbar for the reaction over the temperature and pressure ranges 800-1050 °C and 500-5000 bars, roughly symmetric (i.e. quadratic) solution behavior of the K-Na substitution along joins between fully ordered components in nepheline, and large positive Gibbs energies for the nepheline reciprocal reactions and and for the leucite reciprocal reaction

  4. Evolution of binary black holes in self gravitating discs. Dissecting the torques

    NASA Astrophysics Data System (ADS)

    Roedig, C.; Sesana, A.; Dotti, M.; Cuadra, J.; Amaro-Seoane, P.; Haardt, F.

    2012-09-01

    Context. Massive black hole binaries, formed in galaxy mergers, are expected to evolve in dense circumbinary discs. Understanding of the disc-binary coupled dynamics is vital to assess both the final fate of the system and its potentially observable features. Aims: Aimed at understanding the physical roots of the secular evolution of the binary, we study the interplay between gas accretion and gravity torques in changing the binary elements (semi-major axis and eccentricity) and its total angular momentum budget. We pay special attention to the gravity torques, by analysing their physical origin and location within the disc. Methods: We analysed three-dimensional smoothed particle hydrodynamics simulations of the evolution of initially quasi-circular massive black hole binaries (BHBs) residing in the central hollow (cavity) of massive self-gravitating circumbinary discs. We performed a set of simulations adopting different thermodynamics for the gas within the cavity and for the "numerical size" of the black holes. Results: We show that (i) the BHB eccentricity growth found in our previous work is a general result, independent of the accretion and the adopted thermodynamics; (ii) the semi-major axis decay depends not only on the gravity torques but also on their subtle interplay with the disc-binary angular momentum transfer due to accretion; (iii) the spectral structure of the gravity torques is predominately caused by disc edge overdensities and spiral arms developing in the body of the disc and, in general, does not reflect directly the period of the binary; (iv) the net gravity torque changes sign across the BHB corotation radius (positive inside vs negative outside) We quantify the relative importance of the two, which appear to depend on the thermodynamical properties of the instreaming gas, and which is crucial in assessing the disc-binary angular momentum transfer; (v) the net torque manifests as a purely kinematic (non-resonant) effect as it stems from the

  5. Using Rubber-Elastic Material Ideal Gas Analogies to Teach Introductory Thermodynamics. Part II: The Laws of Thermodynamics

    NASA Astrophysics Data System (ADS)

    Smith, Brent

    2002-12-01

    Polymeric rubber-elastic material (REM) is in many ways analogous to ideal gases. This may be used to good advantage as a supplementary system for teaching elementary thermodynamic concepts, equations of state, and the laws of thermodynamics. Part II includes thermometry and the zeroth law, heat, work, energy and the first law, Joule's law, heat capacity, adiabats and isotherms, enthalpy, heat entropy and the second law, heat engines, the Carnot cycle, Maxwell's equations, free energy, and configurational entropy and the third law. Useful examples, demonstrations, and problems are reviewed.

  6. BINARY ASTROMETRIC MICROLENSING WITH GAIA

    SciTech Connect

    Sajadian, Sedighe

    2015-04-15

    We investigate whether or not Gaia can specify the binary fractions of massive stellar populations in the Galactic disk through astrometric microlensing. Furthermore, we study whether or not some information about their mass distributions can be inferred via this method. In this regard, we simulate the binary astrometric microlensing events due to massive stellar populations according to the Gaia observing strategy by considering (i) stellar-mass black holes, (ii) neutron stars, (iii) white dwarfs, and (iv) main-sequence stars as microlenses. The Gaia efficiency for detecting the binary signatures in binary astrometric microlensing events is ∼10%–20%. By calculating the optical depth due to the mentioned stellar populations, the numbers of the binary astrometric microlensing events being observed with Gaia with detectable binary signatures, for the binary fraction of about 0.1, are estimated to be 6, 11, 77, and 1316, respectively. Consequently, Gaia can potentially specify the binary fractions of these massive stellar populations. However, the binary fraction of black holes measured with this method has a large uncertainty owing to a low number of the estimated events. Knowing the binary fractions in massive stellar populations helps with studying the gravitational waves. Moreover, we investigate the number of massive microlenses for which Gaia specifies masses through astrometric microlensing of single lenses toward the Galactic bulge. The resulting efficiencies of measuring the mass of mentioned populations are 9.8%, 2.9%, 1.2%, and 0.8%, respectively. The numbers of their astrometric microlensing events being observed in the Gaia era in which the lens mass can be inferred with the relative error less than 0.5 toward the Galactic bulge are estimated as 45, 34, 76, and 786, respectively. Hence, Gaia potentially gives us some information about the mass distribution of these massive stellar populations.

  7. Evolution of Small Binary Asteroids with the Binary YORP Effect

    NASA Astrophysics Data System (ADS)

    Frouard, Julien

    2013-05-01

    Abstract (2,250 Maximum Characters): Small, Near-Earth binaries are believed to be created following the fission of an asteroid spun up by the YORP effect. It is then believed that the YORP effect acting on the secondary (Binary YORP) increases or decreases the binary mutual distance on 10^5 yr timescales. How long this mechanism can apply is not yet fully understood. We investigate the binary orbital and rotational dynamics by using non-averaged, direct numerical simulations, taking into account the relative motion of two ellipsoids (primary and secondary) and the solar perturbation. We add the YORP force and torque on the orbital and rotational motion of the secondary. As a check of our code we obtain a ~ 7.2 cm/yr drift in semi-major axis for 1999 KW4 beta, consistent with the values obtained with former analytical studies. The synchronous rotation of the secondary is required for the Binary YORP to be effective. We investigate the synchronous lock of the secondary in function of different parameters ; mutual distance, shape of the secondary, and heliocentric orbit. For example we show that the secondary of 1999 KW4 can be synchronous only up to 7 Rp (primary radius), where the resonance becomes completely chaotic even for very small eccentricities. We use Gaussian Random Spheres to obtain various secondary shapes, and check the evolution of the binaries with the Binary YORP effect.

  8. Kozai Cycles and Tidal Friction

    SciTech Connect

    L, K; P.P., E

    2009-07-17

    Several studies in the last three years indicate that close binaries, i.e. those with periods of {approx}< 3 d, are very commonly found to have a third body in attendance. We argue that this proves that the third body is necessary in order to make the inner period so short, and further argue that the only reasonable explanation is that the third body causes shrinkage of the inner period, from perhaps a week or more to the current short period, by means of the combination of Kozai cycles and tidal friction (KCTF). In addition, once KCTF has produced a rather close binary, magnetic braking also combined with tidal friction (MBTF) can decrease the inner orbit further, to the formation of a contact binary or even a merged single star. Some of the products of KCTF that have been suggested, either by others or by us, are W UMa binaries, Blue Stragglers, X-ray active BY Dra stars, and short-period Algols. We also argue that some components of wide binaries are actually merged remnants of former close inner pairs. This may include such objects as rapidly rotating dwarfs (AB Dor, BO Mic) and some (but not all) Be stars.

  9. Life, hierarchy, and the thermodynamic machinery of planet Earth.

    PubMed

    Kleidon, Axel

    2010-12-01

    Throughout Earth's history, life has increased greatly in abundance, complexity, and diversity. At the same time, it has substantially altered the Earth's environment, evolving some of its variables to states further and further away from thermodynamic equilibrium. For instance, concentrations in atmospheric oxygen have increased throughout Earth's history, resulting in an increased chemical disequilibrium in the atmosphere as well as an increased redox gradient between the atmosphere and the Earth's reducing crust. These trends seem to contradict the second law of thermodynamics, which states for isolated systems that gradients and free energy are dissipated over time, resulting in a state of thermodynamic equilibrium. This seeming contradiction is resolved by considering planet Earth as a coupled, hierarchical and evolving non-equilibrium thermodynamic system that has been substantially altered by the input of free energy generated by photosynthetic life. Here, I present this hierarchical thermodynamic theory of the Earth system. I first present simple considerations to show that thermodynamic variables are driven away from a state of thermodynamic equilibrium by the transfer of power from some other process and that the resulting state of disequilibrium reflects the past net work done on the variable. This is applied to the processes of planet Earth to characterize the generation and transfer of free energy and its dissipation, from radiative gradients to temperature and chemical potential gradients that result in chemical, kinetic, and potential free energy and associated dynamics of the climate system and geochemical cycles. The maximization of power transfer among the processes within this hierarchy yields thermodynamic efficiencies much lower than the Carnot efficiency of equilibrium thermodynamics and is closely related to the proposed principle of Maximum Entropy Production (MEP). The role of life is then discussed as a photochemical process that generates

  10. VLSI binary updown counter

    NASA Technical Reports Server (NTRS)

    Truong, Trieu-Kie (Inventor); Hsu, In-Shek (Inventor); Reed, Irving S. (Inventor)

    1989-01-01

    A pipeline binary updown counter is comprised of simple stages that may be readily replicated. Each stage is defined by the Boolean logic equation: A(sub n)(t) = A(sub n)(t - 1) exclusive OR (U AND P(sub n)) inclusive OR (D AND Q(sub n)), where A(sub n)(t) denotes the value of the nth bit at time t. The input to the counter has three values represented by two binary signals U and D such that if both are zero, the input is zero, if U = 0 and D = 1, the input is -1 and if U = 1 and D = 0, the input is +1. P(sub n) represents a product of A(sub k)'s for 1 is less than or equal to k is less than or equal to -1, while Q(sub n) represents the product of bar A's for 1 is less than or equal to K is less than or equal to n - 1, where bar A(sub k) is the complement of A(sub k) and P(sub n) and Q(sub n) are expressed as the following two equations: P(sub n) = A(sub n - 1) A(sub n - 2)...A(sub 1) and Q(sub n) = bar A(sub n - 1) bar A(sub n - 2)...bar A(sub 1), which can be written in recursive form as P(sub n) = P(sub n - 1) AND bar A(sub n - 1) and Q(sub n) = Q(sub n - 1) AND bar A(sub n - 1) with the initial values P(sub 1) = 1 and Q(sub 1) = 1.

  11. Thermodynamic assessment of the palladium-selenium (Pd-Se) system

    NASA Astrophysics Data System (ADS)

    Bordier, S.; Chocard, A.; Gossé, S.

    2014-08-01

    Palladium and selenium are fission products produced in the nuclear fuel under irradiation. To better understand the high temperature thermochemistry of these elements, the Pd-Se phase diagram was assessed using the Calphad method. The Pd-Se binary description was optimized using thermodynamic and phase diagram data from the literature and some DTA experiments performed in this work. The calculated phase diagram and thermodynamic properties are consistent with the experimental results in the whole Pd-Se composition range.

  12. Grain growth and grain boundary segregation in binary alloys: A Monte-Carlo simulation

    SciTech Connect

    Liu, J.M. |; Wu, Z.C.

    1997-08-15

    The authors have presented a Monte-Carlo simulation of grain growth and solute segregation on the grain boundaries (GBs) in binary alloys. A thermodynamic approach of the simulation algorithm has been given. The preliminary simulation of a simplified binary system indicates that pronounced solute segregation on the GBs is achieved, characterized by linearly increasing solute concentration on the GBs and significant spatial correlation of the solute distribution. The authors observe the normal grain growth in the present system by demonstrating the scaling behavior of its size distribution although the kinetics is seriously slowed down, exhibiting an exponent much lower than the 1/2 law.

  13. Some heat engine cycles in which liquids can work.

    PubMed

    Allen, P C; Paulson, D N; Wheatley, J C

    1981-01-01

    Liquids can work in heat engine cycles that employ regeneration. Four such cycles are discussed: Stirling, Malone, Stirling-Malone, and Brayton. Both regeneration and the role of the second thermodynamic medium are treated, and the principles are verified by quantitative measurements with propylene in a Stirling-Malone cycle. PMID:16592952

  14. Some heat engine cycles in which liquids can work.

    PubMed

    Allen, P C; Paulson, D N; Wheatley, J C

    1981-01-01

    Liquids can work in heat engine cycles that employ regeneration. Four such cycles are discussed: Stirling, Malone, Stirling-Malone, and Brayton. Both regeneration and the role of the second thermodynamic medium are treated, and the principles are verified by quantitative measurements with propylene in a Stirling-Malone cycle.

  15. Some heat engine cycles in which liquids can work

    PubMed Central

    Allen, P. C.; Paulson, D. N.; Wheatley, J. C.

    1981-01-01

    Liquids can work in heat engine cycles that employ regeneration. Four such cycles are discussed: Stirling, Malone, Stirling-Malone, and Brayton. Both regeneration and the role of the second thermodynamic medium are treated, and the principles are verified by quantitative measurements with propylene in a Stirling-Malone cycle. PMID:16592952

  16. The disruption of multiplanet systems through resonance with a binary orbit.

    PubMed

    Touma, Jihad R; Sridhar, S

    2015-08-27

    Most exoplanetary systems in binary stars are of S-type, and consist of one or more planets orbiting a primary star with a wide binary stellar companion. Planetary eccentricities and mutual inclinations can be large, perhaps forced gravitationally by the binary companion. Earlier work on single planet systems appealed to the Kozai-Lidov instability wherein a sufficiently inclined binary orbit excites large-amplitude oscillations in the planet's eccentricity and inclination. The instability, however, can be quenched by many agents that induce fast orbital precession, including mutual gravitational forces in a multiplanet system. Here we report that orbital precession, which inhibits Kozai-Lidov cycling in a multiplanet system, can become fast enough to resonate with the orbital motion of a distant binary companion. Resonant binary forcing results in dramatic outcomes ranging from the excitation of large planetary eccentricities and mutual inclinations to total disruption. Processes such as planetary migration can bring an initially non-resonant system into resonance. As it does not require special physical or initial conditions, binary resonant driving is generic and may have altered the architecture of many multiplanet systems. It can also weaken the multiplanet occurrence rate in wide binaries, and affect planet formation in close binaries. PMID:26310763

  17. The disruption of multiplanet systems through resonance with a binary orbit.

    PubMed

    Touma, Jihad R; Sridhar, S

    2015-08-27

    Most exoplanetary systems in binary stars are of S-type, and consist of one or more planets orbiting a primary star with a wide binary stellar companion. Planetary eccentricities and mutual inclinations can be large, perhaps forced gravitationally by the binary companion. Earlier work on single planet systems appealed to the Kozai-Lidov instability wherein a sufficiently inclined binary orbit excites large-amplitude oscillations in the planet's eccentricity and inclination. The instability, however, can be quenched by many agents that induce fast orbital precession, including mutual gravitational forces in a multiplanet system. Here we report that orbital precession, which inhibits Kozai-Lidov cycling in a multiplanet system, can become fast enough to resonate with the orbital motion of a distant binary companion. Resonant binary forcing results in dramatic outcomes ranging from the excitation of large planetary eccentricities and mutual inclinations to total disruption. Processes such as planetary migration can bring an initially non-resonant system into resonance. As it does not require special physical or initial conditions, binary resonant driving is generic and may have altered the architecture of many multiplanet systems. It can also weaken the multiplanet occurrence rate in wide binaries, and affect planet formation in close binaries.

  18. Thermodynamic Metrics and Optimal Paths

    SciTech Connect

    Sivak, David; Crooks, Gavin

    2012-05-08

    A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful work, while operating away from thermal equilibrium without excessive dissipation. To this end, we derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and bestows optimal protocols with many useful properties. We discuss the connection to the existing thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal control parameter protocols in a simple nonequilibrium model.

  19. Stochastic thermodynamics of information processing

    NASA Astrophysics Data System (ADS)

    Cardoso Barato, Andre

    2015-03-01

    We consider two recent advancements on theoretical aspects of thermodynamics of information processing. First we show that the theory of stochastic thermodynamics can be generalized to include information reservoirs. These reservoirs can be seen as a sequence of bits which has its Shannon entropy changed due to the interaction with the system. Second we discuss bipartite systems, which provide a convenient description of Maxwell's demon. Analyzing a special class of bipartite systems we show that they can be used to study cellular information processing, allowing for the definition of an entropic rate that quantifies how much a cell learns about a fluctuating external environment and that is bounded by the thermodynamic entropy production.

  20. Actinide Thermodynamics at Elevated Temperatures

    SciTech Connect

    Friese, Judah I.; Rao, Linfeng; Xia, Yuanxian; Bachelor, Paula P.; Tian, Guoxin

    2007-11-16

    The postclosure chemical environment in the proposed Yucca Mountain repository is expected to experience elevated temperatures. Predicting migration of actinides is possible if sufficient, reliable thermodynamic data on hydrolysis and complexation are available for these temperatures. Data are scarce and scattered for 25 degrees C, and nonexistent for elevated temperatures. This collaborative project between LBNL and PNNL collects thermodynamic data at elevated temperatures on actinide complexes with inorganic ligands that may be present in Yucca Mountain. The ligands include hydroxide, fluoride, sulfate, phosphate and carbonate. Thermodynamic parameters of complexation, including stability constants, enthalpy, entropy and heat capacity of complexation, are measured with a variety of techniques including solvent extraction, potentiometry, spectrophotometry and calorimetry

  1. The Thermodynamic Properties of Cubanite

    NASA Technical Reports Server (NTRS)

    Berger, E. L.; Lauretta, D. S.; Keller, L. P.

    2012-01-01

    CuFe2S3 exists in two polymorphs, a low-temperature orthorhombic form (cubanite) and a high-temperature cubic form (isocubanite). Cubanite has been identified in the CI-chondrite and Stardust collections. However, the thermodynamic properties of cubanite have neither been measured nor estimated. Our derivation of a thermodynamic model for cubanite allows constraints to be placed on the formation conditions. This data, along with the temperature constraint afforded by the crystal structure, can be used to assess the environments in which cubanite formation is (or is not) thermodynamically favored.

  2. Taming catalysts in quantum thermodynamics

    NASA Astrophysics Data System (ADS)

    Skrzypczyk, Paul

    2015-08-01

    Auxiliary quantum systems which can be borrowed to help facilitate thermodynamic processes but must be returned almost undisturbed—i.e. catalysts—are very powerful objects in quantum thermodynamics. In fact, they appear almost too powerful, since they allow for any state transformation to be carried out while being disturbed by an arbitrarily small amount. In their recent paper Ng et al (2015 New J. Phys. 17 085004) show how to tame catalysts in quantum thermodynamics by placing additional physical constraints on them, in terms of dimension and energy.

  3. CRC handbook of applied thermodynamics

    SciTech Connect

    Palmer, D.A. . Research and Development Dept.)

    1987-01-01

    This book feature an overview of the importance of physical properties and thermodynamics; and the use of thermodynamics to predict the extent of reaction in proposed new chemical combinations. The use of special types of data and prediction methods to develop flowsheets for probing projects; and sources of critically evaluated data, dividing the published works into three categories depending on quality are given. Methods of doing one's own critical evaluation of literature, a list of known North American contract experimentalist with the types of data measured by each, methods for measuring equilibrium data, and thermodynamic concepts to carry out process optimization are also featured.

  4. Content identification: binary content fingerprinting versus binary content encoding

    NASA Astrophysics Data System (ADS)

    Ferdowsi, Sohrab; Voloshynovskiy, Svyatoslav; Kostadinov, Dimche

    2014-02-01

    In this work, we address the problem of content identification. We consider content identification as a special case of multiclass classification. The conventional approach towards identification is based on content fingerprinting where a short binary content description known as a fingerprint is extracted from the content. We propose an alternative solution based on elements of machine learning theory and digital communications. Similar to binary content fingerprinting, binary content representation is generated based on a set of trained binary classifiers. We consider several training/encoding strategies and demonstrate that the proposed system can achieve the upper theoretical performance limits of content identification. The experimental results were carried out both on a synthetic dataset with different parameters and the FAMOS dataset of microstructures from consumer packages.

  5. Resonant Transneptunian Binaries: Evidence for Slow Migration of Neptune

    NASA Technical Reports Server (NTRS)

    Noll, Keith S.; Grundy, W. M.; Schlichting, H. E.; Murray-Clay, R. A.; Benecchi, S. B.

    2012-01-01

    As Neptune migrated, its mean-motion resonances preceded it into the planetesimal disk. The efficiency of capture into mean motion resonances depends on the smoothness of Neptune's migration and the local population available to be captured. The two strongest resonances, the 3:2 at 39.4 AU and 2:1 at 47.7 AU, straddle the core repository of the physically distinct and binary-rich Cold Classicals, providing a unique opportunity to test the details of Neptune's migration. Smooth migration should result in a measurable difference between the 3:2 and 2:1 resonant object properties, with low inclination 2:1s having a high fraction of red binaries, mirroring that of the Cold Classicals while the 3:2 will would have fewer binaries. Rapid migration would generate a more homogeneous result. Resonant objects observed with HST show a higher rate of binaries in the 2:1 relative to the 3:2, significant at the 2cr level. This suggests slow Neptune migration over a large enough distance that the 2:1 swept through the Cold Classical region. Colors are available for only a fraction of these targets but a prevalence of red objects in outer Resonances has been reported. We report here on ongoing observations with HST in cycle 19 targeting all unobserved Resonants with observations that will measure color and search for binary companions using the WFC3.

  6. Binary Oscillatory Crossflow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Molloy, Richard F.; Gallagher, Christopher T.; Leighton, David T., Jr.

    1997-01-01

    Electrophoresis has long been recognized as an effective analytic technique for the separation of proteins and other charged species, however attempts at scaling up to accommodate commercial volumes have met with limited success. In this report we describe a novel electrophoretic separation technique - Binary Oscillatory Crossflow Electrophoresis (BOCE). Numerical simulations indicate that the technique has the potential for preparative scale throughputs with high resolution, while simultaneously avoiding many problems common to conventional electrophoresis. The technique utilizes the interaction of an oscillatory electric field and a transverse oscillatory shear flow to create an active binary filter for the separation of charged protein species. An oscillatory electric field is applied across the narrow gap of a rectangular channel inducing a periodic motion of charged protein species. The amplitude of this motion depends on the dimensionless electrophoretic mobility, alpha = E(sub o)mu/(omega)d, where E(sub o) is the amplitude of the electric field oscillations, mu is the dimensional mobility, omega is the angular frequency of oscillation and d is the channel gap width. An oscillatory shear flow is induced along the length of the channel resulting in the separation of species with different mobilities. We present a model that predicts the oscillatory behavior of charged species and allows estimation of both the magnitude of the induced convective velocity and the effective diffusivity as a function of a in infinitely long channels. Numerical results indicate that in addition to the mobility dependence, the steady state behavior of solute species may be strongly affected by oscillating fluid into and out of the active electric field region at the ends of the cell. The effect is most pronounced using time dependent shear flows of the same frequency (cos((omega)t)) flow mode) as the electric field oscillations. Under such conditions, experiments indicate that

  7. Stability of binaries. Part II: Rubble-pile binaries

    NASA Astrophysics Data System (ADS)

    Sharma, Ishan

    2016-10-01

    We consider the stability of the binary asteroids whose members are granular aggregates held together by self-gravity alone. A binary is said to be stable whenever both its members are orbitally and structurally stable to both orbital and structural perturbations. To this end, we extend the stability analysis of Sharma (Sharma [2015] Icarus, 258, 438-453), that is applicable to binaries with rigid members, to the case of binary systems with rubble members. We employ volume averaging (Sharma et al. [2009] Icarus, 200, 304-322), which was inspired by past work on elastic/fluid, rotating and gravitating ellipsoids. This technique has shown promise when applied to rubble-pile ellipsoids, but requires further work to settle some of its underlying assumptions. The stability test is finally applied to some suspected binary systems, viz., 216 Kleopatra, 624 Hektor and 90 Antiope. We also see that equilibrated binaries that are close to mobilizing their maximum friction can sustain only a narrow range of shapes and, generally, congruent shapes are preferred.

  8. Comparison of geothermal power conversion cycles

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.

    1976-01-01

    Geothermal power conversion cycles are compared with respect to recovery of the available wellhead power. The cycles compared are flash steam, in which steam turbines are driven by steam separated from one or more flash stages; binary, in which heat is transferred from the brine to an organic turbine cycle; flash binary, in which heat is transferred from flashed steam to an organic turbine cycle; and dual steam, in which two-phase expanders are driven by the flashing steam-brine mixture and steam turbines by the separated steam. Expander efficiencies assumed are 0.7 for steam turbines, 0.8 for organic turbines, and 0.6 for two-phase expanders. The fraction of available wellhead power delivered by each cycle is found to be about the same at all brine temperatures: 0.65 with one stage and 0.7 with four stages for dual stream; 0.4 with one stage and 0.6 with four stages for flash steam; 0.5 for binary; and 0.3 with one stage and 0.5 with four stages for flash binary.

  9. Thermodynamic black di-rings

    SciTech Connect

    Iguchi, Hideo; Mishima, Takashi

    2010-10-15

    Previously the five dimensional S{sup 1}-rotating black rings have been superposed in a concentric way by some solitonic methods, and regular systems of two S{sup 1}-rotating black rings were constructed by the authors and then Evslin and Krishnan (we called these solutions 'black di-rings'). In this place we show some characteristics of the solutions of five dimensional black di-rings, especially in thermodynamic equilibrium. After the summary of the di-ring expressions and their physical quantities, first we comment on the equivalence of the two different solution sets of the black di-rings. Then the existence of thermodynamic black di-rings is shown, in which both isothermality and isorotation between the inner black ring and the outer black ring are realized. We also give detailed analysis of peculiar properties of the thermodynamic black di-ring including discussion about a certain kind of thermodynamic stability (instability) of the system.

  10. Thermodynamic efficiency of solar concentrators.

    PubMed

    Shatz, Narkis; Bortz, John; Winston, Roland

    2010-04-26

    The optical thermodynamic efficiency is a comprehensive metric that takes into account all loss mechanisms associated with transferring flux from the source to the target phase space, which may include losses due to inadequate design, non-ideal materials, fabrication errors, and less than maximal concentration. We discuss consequences of Fermat's principle of geometrical optics and review étendue dilution and optical loss mechanisms associated with nonimaging concentrators. We develop an expression for the optical thermodynamic efficiency which combines the first and second laws of thermodynamics. As such, this metric is a gold standard for evaluating the performance of nonimaging concentrators. We provide examples illustrating the use of this new metric for concentrating photovoltaic systems for solar power applications, and in particular show how skewness mismatch limits the attainable optical thermodynamic efficiency. PMID:20588573

  11. Thermodynamic efficiency of solar concentrators.

    PubMed

    Shatz, Narkis; Bortz, John; Winston, Roland

    2010-04-26

    The optical thermodynamic efficiency is a comprehensive metric that takes into account all loss mechanisms associated with transferring flux from the source to the target phase space, which may include losses due to inadequate design, non-ideal materials, fabrication errors, and less than maximal concentration. We discuss consequences of Fermat's principle of geometrical optics and review étendue dilution and optical loss mechanisms associated with nonimaging concentrators. We develop an expression for the optical thermodynamic efficiency which combines the first and second laws of thermodynamics. As such, this metric is a gold standard for evaluating the performance of nonimaging concentrators. We provide examples illustrating the use of this new metric for concentrating photovoltaic systems for solar power applications, and in particular show how skewness mismatch limits the attainable optical thermodynamic efficiency. PMID:20607882

  12. Thermodynamic Vent System Test in a Low Earth Orbit Simulation

    NASA Technical Reports Server (NTRS)

    VanOverbeke, Thomas J.

    2004-01-01

    A thermodynamic vent system for a cryogenic nitrogen tank was tested in a vacuum chamber simulating oxygen storage in low earth orbit. The nitrogen tank was surrounded by a cryo-shroud at -40 F. The tank was insulated with two layers of multi-layer insulation. Heat transfer into cryogenic tanks causes phase change and increases tank pressure which must be controlled. A thermodynamic vent system was used to control pressure as the location of vapor is unknown in low gravity and direct venting would be wasteful. The thermodynamic vent system consists of a Joule-Thomson valve and heat exchanger installed on the inlet side of the tank mixer-pump. The combination is used to extract thermal energy from the tank fluid, reducing temperature and ullage pressure. The system was sized so that the tank mixer-pump operated a small fraction of the time to limit motor heating. Initially the mixer used sub-cooled liquid to cool the liquid-vapor interface inducing condensation and pressure reduction. Later, the thermodynamic vent system was used. Pressure cycles were performed until steady-state operation was demonstrated. Three test runs were conducted at tank fills of 97, 80, and 63 percent. Each test was begun with a boil-off test to determine heat transfer into the tank. The lower tank fills had time averaged vent rates very close to steady-state boil-off rates showing the thermodynamic vent system was nearly as efficient as direct venting in normal gravity.

  13. On the thermodynamics of some generalized second-grade fluids

    SciTech Connect

    Man CS, Massoudi M

    2010-01-01

    The generalized second-grade fluids, which have been used for modeling the creep of ice and the flow of coal-water and coal-oil slurries, are among the simplest non-Newtonian fluid models that can describe shear-thinning/thickening and exhibit normal stress effects. In this article, we conduct thermodynamic analysis on a class of generalized second-grade fluids, one distinguishing feature of which is the existence of a constitutive function that describes frictional heating. We work within the framework of Serrin’s original formulation of neoclassical thermodynamics, where internal energy and entropy functions, if they exist for a continuous body at all, are to be derived from the classical First Law and (quantitatively reformulated) Second Law of thermodynamics for cycles. For the class of generalized second-grade fluids in question, we show from the First Law that an internal energy density u exists, and we derive the equation of energy balance; from the Second Law, we demonstrate the existence of an entropy density s and derive the Clausius–Duhem inequality that it satisfies.We obtain explicit expressions for u, s and the frictional heating , and derive thermodynamic restrictions on thematerial functions of temperature μ, α1, and α2 that appear in the constitutive relation for the Cauchy stress. For the special case of second-grade fluids, our expressions for u and s agree with those which Dunn and Fosdick [6] derived under the theoretical framework of the rational thermodynamics of Coleman and Noll.

  14. Active vibration and balance system for closed cycle thermodynamic machines

    NASA Technical Reports Server (NTRS)

    Qiu, Songgang (Inventor); Augenblick, John E. (Inventor); Peterson, Allen A. (Inventor); White, Maurice A. (Inventor)

    2004-01-01

    An active balance system is provided for counterbalancing vibrations of an axially reciprocating machine. The balance system includes a support member, a flexure assembly, a counterbalance mass, and a linear motor or an actuator. The support member is configured for attachment to the machine. The flexure assembly includes at least one flat spring having connections along a central portion and an outer peripheral portion. One of the central portion and the outer peripheral portion is fixedly mounted to the support member. The counterbalance mass is fixedly carried by the flexure assembly along another of the central portion and the outer peripheral portion. The linear motor has one of a stator and a mover fixedly mounted to the support member and another of the stator and the mover fixedly mounted to the counterbalance mass. The linear motor is operative to axially reciprocate the counterbalance mass. A method is also provided.

  15. From wide to close binaries?

    NASA Astrophysics Data System (ADS)

    Eggleton, Peter P.

    The mechanisms by which the periods of wide binaries (mass 8 solar mass or less and period 10-3000 d) are lengthened or shortened are discussed, synthesizing the results of recent theoretical investigations. A system of nomenclature involving seven evolutionary states, three geometrical states, and 10 types of orbital-period evolution is developed and applied; classifications of 71 binaries are presented in a table along with the basic observational parameters. Evolutionary processes in wide binaries (single-star-type winds, magnetic braking with tidal friction, and companion-reinforced attrition), late case B systems, low-mass X-ray binaries, and triple systems are examined in detail, and possible evolutionary paths are shown in diagrams.

  16. An adaptable binary entropy coder

    NASA Technical Reports Server (NTRS)

    Kiely, A.; Klimesh, M.

    2001-01-01

    We present a novel entropy coding technique which is based on recursive interleaving of variable-to-variable length binary source codes. We discuss code design and performance estimation methods, as well as practical encoding and decoding algorithms.

  17. Cryptography with DNA binary strands.

    PubMed

    Leier, A; Richter, C; Banzhaf, W; Rauhe, H

    2000-06-01

    Biotechnological methods can be used for cryptography. Here two different cryptographic approaches based on DNA binary strands are shown. The first approach shows how DNA binary strands can be used for steganography, a technique of encryption by information hiding, to provide rapid encryption and decryption. It is shown that DNA steganography based on DNA binary strands is secure under the assumption that an interceptor has the same technological capabilities as sender and receiver of encrypted messages. The second approach shown here is based on steganography and a method of graphical subtraction of binary gel-images. It can be used to constitute a molecular checksum and can be combined with the first approach to support encryption. DNA cryptography might become of practical relevance in the context of labelling organic and inorganic materials with DNA 'barcodes'.

  18. CHAOTIC ZONES AROUND GRAVITATING BINARIES

    SciTech Connect

    Shevchenko, Ivan I.

    2015-01-20

    The extent of the continuous zone of chaotic orbits of a small-mass tertiary around a system of two gravitationally bound primaries of comparable masses (a binary star, a binary black hole, a binary asteroid, etc.) is estimated analytically, as a function of the tertiary's orbital eccentricity. The separatrix map theory is used to demonstrate that the central continuous chaos zone emerges (above a threshold in the primaries' mass ratio) due to overlapping of the orbital resonances corresponding to the integer ratios p:1 between the tertiary and the central binary periods. In this zone, the unlimited chaotic orbital diffusion of the tertiary takes place, up to its ejection from the system. The primaries' mass ratio, above which such a chaotic zone is universally present at all initial eccentricities of the tertiary, is estimated. The diversity of the observed orbital configurations of biplanetary and circumbinary exosystems is shown to be in accord with the existence of the primaries' mass parameter threshold.

  19. Separation in 5 Msun Binaries

    NASA Astrophysics Data System (ADS)

    Evans, Nancy R.; Bond, H. E.; Schaefer, G.; Mason, B. D.; Karovska, M.; Tingle, E.

    2013-01-01

    Cepheids (5 Msun stars) provide an excellent sample for determining the binary properties of fairly massive stars. International Ultraviolet Explorer (IUE) observations of Cepheids brighter than 8th magnitude resulted in a list of ALL companions more massive than 2.0 Msun uniformly sensitive to all separations. Hubble Space Telescope Wide Field Camera 3 (WFC3) has resolved three of these binaries (Eta Aql, S Nor, and V659 Cen). Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations for a sample of 18 Cepheids, and also a distribution of mass ratios. The distribution of orbital periods shows that the 5 Msun binaries prefer shorter periods than 1 Msun stars, reflecting differences in star formation processes.

  20. Simulating relativistic binaries with Whisky

    NASA Astrophysics Data System (ADS)

    Baiotti, L.

    We report about our first tests and results in simulating the last phase of the coalescence and the merger of binary relativistic stars. The simulations were performed using our code Whisky and mesh refinement through the Carpet driver.

  1. Stochastic thermodynamics, fluctuation theorems and molecular machines.

    PubMed

    Seifert, Udo

    2012-12-01

    Stochastic thermodynamics as reviewed here systematically provides a framework for extending the notions of classical thermodynamics such as work, heat and entropy production to the level of individual trajectories of well-defined non-equilibrium ensembles. It applies whenever a non-equilibrium process is still coupled to one (or several) heat bath(s) of constant temperature. Paradigmatic systems are single colloidal particles in time-dependent laser traps, polymers in external flow, enzymes and molecular motors in single molecule assays, small biochemical networks and thermoelectric devices involving single electron transport. For such systems, a first-law like energy balance can be identified along fluctuating trajectories. For a basic Markovian dynamics implemented either on the continuum level with Langevin equations or on a discrete set of states as a master equation, thermodynamic consistency imposes a local-detailed balance constraint on noise and rates, respectively. Various integral and detailed fluctuation theorems, which are derived here in a unifying approach from one master theorem, constrain the probability distributions for work, heat and entropy production depending on the nature of the system and the choice of non-equilibrium conditions. For non-equilibrium steady states, particularly strong results hold like a generalized fluctuation-dissipation theorem involving entropy production. Ramifications and applications of these concepts include optimal driving between specified states in finite time, the role of measurement-based feedback processes and the relation between dissipation and irreversibility. Efficiency and, in particular, efficiency at maximum power can be discussed systematically beyond the linear response regime for two classes of molecular machines, isothermal ones such as molecular motors, and heat engines such as thermoelectric devices, using a common framework based on a cycle decomposition of entropy production.

  2. Isobaric vapor-liquid equilibria for binary systems α-phenylethylamine + toluene and α-phenylethylamine + cyclohexane at 100 kPa

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoru; Gao, Yingyu; Ban, Chunlan; Huang, Qiang

    2016-09-01

    In this paper the results of the vapor-liquid equilibria study at 100 kPa are presented for two binary systems: α-phenylethylamine(1) + toluene (2) and (α-phenylethylamine(1) + cyclohexane(2)). The binary VLE data of the two systems were correlated by the Wilson, NRTL, and UNIQUAC models. For each binary system the deviations between the results of the correlations and the experimental data have been calculated. For the both binary systems the average relative deviations in temperature for the three models were lower than 0.99%. The average absolute deviations in vapour phase composition (mole fractions) and in temperature T were lower than 0.0271 and 1.93 K, respectively. Thermodynamic consistency has been tested for all vapor-liquid equilibrium data by the Herrington method. The values calculated by Wilson and NRTL equations satisfied the thermodynamics consistency test for the both two systems, while the values calculated by UNIQUAC equation didn't.

  3. Simulating Metabolism with Statistical Thermodynamics

    SciTech Connect

    Cannon, William R.

    2014-08-04

    Kinetic probabilities of state are usually based on empirical measurements, while thermodynamic state probabilities are based on the assumption that chemical species are distributed to according to a multinomial Boltzmann distribution. While the use of kinetic simulations is desirable, obtaining all the mass action rate constants necessary to carry out kinetic simulations is an overwhelming challenge. Here, the kinetic probability of a state is compared in depth to the thermodynamic probability of a state for sets of coupled reactions. The entropic and energetic contributions to thermodynamic stable states are described and compared to entropic and energetic contributions of kinetic steady states. It is shown that many kinetic steady states are possible for a system of coupled reactions depending on the relative values of the mass action rate constants, but only one of these corresponds to a thermodynamically stable state. Furthermore, the thermodynamic stable state corresponds to a minimum free energy state. The use of thermodynamic simulations of state to model metabolic processes is attractive, since metabolite levels and energy requirements of pathways can be evaluated using only standard free energies of formation as parameters in the probability distribution. In chemical physics, the assumption of a Boltzmann distribution is the basis of transition state theory for modeling transitory species. Application to stable species, such as those found in metabolic processes, is a less severe assumption that would enable the use of simulations of state.

  4. Thermodynamic Analysis of Biodegradation Pathways

    PubMed Central

    Finley, Stacey D.; Broadbelt, Linda J.

    2014-01-01

    Microorganisms provide a wealth of biodegradative potential in the reduction and elimination of xenobiotic compounds in the environment. One useful metric to evaluate potential biodegradation pathways is thermodynamic feasibility. However, experimental data for the thermodynamic properties of xenobiotics is scarce. The present work uses a group contribution method to study the thermodynamic properties of the University of Minnesota Biocatalysis/Biodegradation Database. The Gibbs free energies of formation and reaction are estimated for 914 compounds (81%) and 902 reactions (75%), respectively, in the database. The reactions are classified based on the minimum and maximum Gibbs free energy values, which accounts for uncertainty in the free energy estimates and a feasible concentration range relevant to biodegradation. Using the free energy estimates, the cumulative free energy change of 89 biodegradation pathways (51%) in the database could be estimated. A comparison of the likelihood of the biotransformation rules in the Pathway Prediction System and their thermodynamic feasibility was then carried out. This analysis revealed that when evaluating the feasibility of biodegradation pathways, it is important to consider the thermodynamic topology of the reactions in the context of the complete pathway. Group contribution is shown to be a viable tool for estimating, a priori, the thermodynamic feasibility and the relative likelihood of alternative biodegradation reactions. This work offers a useful tool to a broad range of researchers interested in estimating the feasibility of the reactions in existing or novel biodegradation pathways. PMID:19288443

  5. Exoplanets bouncing between binary stars

    NASA Astrophysics Data System (ADS)

    Moeckel, Nickolas; Veras, Dimitri

    2012-05-01

    Exoplanetary systems are found not only among single stars, but also among binaries of widely varying parameters. Binaries with separations of 100-1000 au are prevalent in the solar neighbourhood; at these separations, planet formation around a binary member may largely proceed as if around a single star. During the early dynamical evolution of a planetary system, planet-planet scattering can eject planets from a star's grasp. In a binary, the motion of a planet ejected from one star has effectively entered a restricted three-body system consisting of itself and the two stars, and the equations of motion of the three-body problem will apply as long as the ejected planet remains far from the remaining planets. Depending on its energy, escape from the binary as a whole may be impossible or delayed until the three-body approximation breaks down, and further close interactions with its planetary siblings boost its energy when it passes close to its parent star. Until then, this planet may be able to transition from the space around one star to the other, and chaotically 'bounce' back and forth. In this paper, we directly simulate scattering planetary systems that are around one member of a circular binary, and quantify the frequency of bouncing in scattered planets. We find that a great majority (70-85 per cent) of ejected planets will pass at least once through the space of it's host's binary companion, and depending on the binary parameters about 35-75 per cent will begin bouncing. The time spent bouncing is roughly lognormally distributed with a peak at about 104 yr, with only a small percentage bouncing for more than 1 Myr. This process may perturb and possibly incite instability among existing planets around the companion star. In rare cases, the presence of multiple planets orbiting both stars may cause post-bouncing capture or planetary swapping.

  6. Thermodynamics of firms' growth.

    PubMed

    Zambrano, Eduardo; Hernando, Alberto; Fernández Bariviera, Aurelio; Hernando, Ricardo; Plastino, Angelo

    2015-11-01

    The distribution of firms' growth and firms' sizes is a topic under intense scrutiny. In this paper, we show that a thermodynamic model based on the maximum entropy principle, with dynamical prior information, can be constructed that adequately describes the dynamics and distribution of firms' growth. Our theoretical framework is tested against a comprehensive database of Spanish firms, which covers, to a very large extent, Spain's economic activity, with a total of 1,155,142 firms evolving along a full decade. We show that the empirical exponent of Pareto's law, a rule often observed in the rank distribution of large-size firms, is explained by the capacity of economic system for creating/destroying firms, and that can be used to measure the health of a capitalist-based economy. Indeed, our model predicts that when the exponent is larger than 1, creation of firms is favoured; when it is smaller than 1, destruction of firms is favoured instead; and when it equals 1 (matching Zipf's law), the system is in a full macroeconomic equilibrium, entailing 'free' creation and/or destruction of firms. For medium and smaller firm sizes, the dynamical regime changes, the whole distribution can no longer be fitted to a single simple analytical form and numerical prediction is required. Our model constitutes the basis for a full predictive framework regarding the economic evolution of an ensemble of firms. Such a structure can be potentially used to develop simulations and test hypothetical scenarios, such as economic crisis or the response to specific policy measures.

  7. Thermodynamics of firms' growth

    PubMed Central

    Zambrano, Eduardo; Hernando, Alberto; Hernando, Ricardo; Plastino, Angelo

    2015-01-01

    The distribution of firms' growth and firms' sizes is a topic under intense scrutiny. In this paper, we show that a thermodynamic model based on the maximum entropy principle, with dynamical prior information, can be constructed that adequately describes the dynamics and distribution of firms' growth. Our theoretical framework is tested against a comprehensive database of Spanish firms, which covers, to a very large extent, Spain's economic activity, with a total of 1 155 142 firms evolving along a full decade. We show that the empirical exponent of Pareto's law, a rule often observed in the rank distribution of large-size firms, is explained by the capacity of economic system for creating/destroying firms, and that can be used to measure the health of a capitalist-based economy. Indeed, our model predicts that when the exponent is larger than 1, creation of firms is favoured; when it is smaller than 1, destruction of firms is favoured instead; and when it equals 1 (matching Zipf's law), the system is in a full macroeconomic equilibrium, entailing ‘free’ creation and/or destruction of firms. For medium and smaller firm sizes, the dynamical regime changes, the whole distribution can no longer be fitted to a single simple analytical form and numerical prediction is required. Our model constitutes the basis for a full predictive framework regarding the economic evolution of an ensemble of firms. Such a structure can be potentially used to develop simulations and test hypothetical scenarios, such as economic crisis or the response to specific policy measures. PMID:26510828

  8. Thermodynamics of firms' growth.

    PubMed

    Zambrano, Eduardo; Hernando, Alberto; Fernández Bariviera, Aurelio; Hernando, Ricardo; Plastino, Angelo

    2015-11-01

    The distribution of firms' growth and firms' sizes is a topic under intense scrutiny. In this paper, we show that a thermodynamic model based on the maximum entropy principle, with dynamical prior information, can be constructed that adequately describes the dynamics and distribution of firms' growth. Our theoretical framework is tested against a comprehensive database of Spanish firms, which covers, to a very large extent, Spain's economic activity, with a total of 1,155,142 firms evolving along a full decade. We show that the empirical exponent of Pareto's law, a rule often observed in the rank distribution of large-size firms, is explained by the capacity of economic system for creating/destroying firms, and that can be used to measure the health of a capitalist-based economy. Indeed, our model predicts that when the exponent is larger than 1, creation of firms is favoured; when it is smaller than 1, destruction of firms is favoured instead; and when it equals 1 (matching Zipf's law), the system is in a full macroeconomic equilibrium, entailing 'free' creation and/or destruction of firms. For medium and smaller firm sizes, the dynamical regime changes, the whole distribution can no longer be fitted to a single simple analytical form and numerical prediction is required. Our model constitutes the basis for a full predictive framework regarding the economic evolution of an ensemble of firms. Such a structure can be potentially used to develop simulations and test hypothetical scenarios, such as economic crisis or the response to specific policy measures. PMID:26510828

  9. Statistical Mechanics and Thermodynamics of Viral Evolution

    PubMed Central

    Jones, Barbara A.; Lessler, Justin; Bianco, Simone; Kaufman, James H.

    2015-01-01

    This paper uses methods drawn from physics to study the life cycle of viruses. The paper analyzes a model of viral infection and evolution using the "grand canonical ensemble" and formalisms from statistical mechanics and thermodynamics. Using this approach we enumerate all possible genetic states of a model virus and host as a function of two independent pressures–immune response and system temperature. We prove the system has a real thermodynamic temperature, and discover a new phase transition between a positive temperature regime of normal replication and a negative temperature “disordered” phase of the virus. We distinguish this from previous observations of a phase transition that arises as a function of mutation rate. From an evolutionary biology point of view, at steady state the viruses naturally evolve to distinct quasispecies. This paper also reveals a universal relationship that relates the order parameter (as a measure of mutational robustness) to evolvability in agreement with recent experimental and theoretical work. Given that real viruses have finite length RNA segments that encode proteins which determine virus fitness, the approach used here could be refined to apply to real biological systems, perhaps providing insight into immune escape, the emergence of novel pathogens and other results of viral evolution. PMID:26422205

  10. Inspection of the Heber binary-cycle geothermal project

    SciTech Connect

    Not Available

    1984-03-28

    We concluded that DOE had effective management control procedures to monitor project costs and the design, construction and demonstration activities. Lessons learned from previous DOE geothermal projects were applied and technical information generated from the Heber plant will be transferred to the public and private sectors by the project participants. We also identified the following issues that concerned us: Revenue Sharing: under existing revenue sharing provisions in the Cooperative Agreement, we estimate that reimbursable revenues to DOE will range between $30.5 million and $51.6 million. DOE and the public should be reimbursed for the total contribution of $61 million because the plant, if commercialized, will primarily benefit ratepayers and stockholders of San Diego Gas and Electric Company (SDG and E); Project Office Support Contracts: Our analyses of a number of project office support contracts suggest that some of this work should be cost shared with SDG and E; in other cases, the value of the work is questionable and appears to be an unnecessary expenditure of DOE funds; and Questionable Contractor Procurement: the noncompetitive procurement of a private firm to develop an economic study of a second Heber plant appears to be unjustified and duplicates work already planned by project participants. Comments on a draft of this report were received from the Acting Assistant Secretary for Conservation and Renewable Energy and from Heber program and project managers.

  11. Binary Cycle Geothermal Demonstration Power Plant New Developments

    SciTech Connect

    Lacy, Robert G.; Jacobson, William O.

    1980-12-01

    San Diego Gas and Electric Company (SDG and E) has been associated with geothermal exploration and development in the Imperial Valley since 1971. SDG and E currently has interests in the four geothermal reservoirs shown. Major SDG and E activities have included drilling and flow testing geothermal exploration wells, feasibility and process flow studies, small-scale field testing of power processes and equipment, and pilot plant scale test facility design, construction and operation. Supporting activities have included geothermal leasing, acquisition of land and water rights, pursual of a major new transmission line to carry Imperial Valley geothermal and other sources of power to San Diego, and support of Magma Electric's 10 MW East Mesa Geothermal Power Plant.

  12. Thermodynamic Analysis of the Amin Engine

    NASA Astrophysics Data System (ADS)

    Wheeler, John C.

    2002-11-01

    Extraordinary claims for the The Amin engine, made recently in full-page paid advertisements in Science Magazine and Physics Today are based upon faulty analysis of the proposed cycle. As presented, the engine constitutes a claim to violate the second law of thermodynamics, purporting to produce net useful work while extracting heat from a reservoir at a single temperature. When analyzed correctly, it conforms to the second law and produces at most zero net work when operating under isothermal conditions. The author neglects the torque-angle work needed to change the angular velocity and/or moment of inertia of the working fluid in the cylinder. When this is correctly accounted for, the contradiction with the second law is resolved.

  13. A study of a spot migration in two contact binaries: KIC 2159783 and KIC 6118779

    NASA Astrophysics Data System (ADS)

    Debski, B.; Baran, A.; Zola, S.

    2014-03-01

    Data of contact binaries, provided by the Kepler spacecraft, can be successfully applied to estimate the parameters of a binary system only if its light curve has a flat-bottom secondary minimum. The derived system parameters are accurate enough to search for a spot migration using the Wilson-Devinney code. For binaries with a regular activity (e.g. KIC 6118779) the numerical spot modeling is consistent with a model-independent light curve morphology analysis. Finally, we proved that spot migration cycles established by the Wilson-Devinney modeling correspond to the O'Connell effect and maxima separation methods.

  14. Orthogonal patterns in binary neural networks

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1988-01-01

    A binary neural network that stores only mutually orthogonal patterns is shown to converge, when probed by any pattern, to a pattern in the memory space, i.e., the space spanned by the stored patterns. The latter are shown to be the only members of the memory space under a certain coding condition, which allows maximum storage of M=(2N) sup 0.5 patterns, where N is the number of neurons. The stored patterns are shown to have basins of attraction of radius N/(2M), within which errors are corrected with probability 1 in a single update cycle. When the probe falls outside these regions, the error correction capability can still be increased to 1 by repeatedly running the network with the same probe.

  15. Be/X-ray binaries

    NASA Astrophysics Data System (ADS)

    Reig, Pablo

    2011-03-01

    The interest in X/ γ-ray Astronomy has grown enormously in the last decades thanks to the ability to send X-ray space missions above the Earth’s atmosphere. There are more than half a million X-ray sources detected and over a hundred missions (past and currently operational) devoted to the study of cosmic X/ γ rays. With the improved sensibilities of the currently active missions new detections occur almost on a daily basis. Among these, neutron-star X-ray binaries form an important group because they are among the brightest extra-solar objects in the sky and are characterized by dramatic variability in brightness on timescales ranging from milliseconds to months and years. Their main source of power is the gravitational energy released by matter accreted from a companion star and falling onto the neutron star in a relatively close binary system. Neutron-star X-ray binaries divide into high-mass and low-mass systems according to whether the mass of the donor star is above ˜8 or below ˜2 M⊙, respectively. Massive X-ray binaries divide further into supergiant X-ray binaries and Be/X-ray binaries depending on the evolutionary status of the optical companion. Virtually all Be/X-ray binaries show X-ray pulsations. Therefore, these systems can be used as unique natural laboratories to investigate the properties of matter under extreme conditions of gravity and magnetic field. The purpose of this work is to review the observational properties of Be/X-ray binaries. The open questions in Be/X-ray binaries include those related to the Be star companion, that is, the so-called “Be phenomenon”, such as, timescales associated to the formation and dissipation of the equatorial disc, mass-ejection mechanisms, V/ R variability, and rotation rates; those related to the neutron star, such as, mass determination, accretion physics, and spin period evolution; but also, those that result from the interaction of the two constituents, such as, disc truncation and mass

  16. Unsupervised learning of binary vectors

    NASA Astrophysics Data System (ADS)

    Copelli Lopes da Silva, Mauro

    In this thesis, unsupervised learning of binary vectors from data is studied using methods from Statistical Mechanics of disordered systems. In the model, data vectors are distributed according to a single symmetry-breaking direction. The aim of unsupervised learning is to provide a good approximation to this direction. The difference with respect to previous studies is the knowledge that this preferential direction has binary components. It is shown that sampling from the posterior distribution (Gibbs learning) leads, for general smooth distributions, to an exponentially fast approach to perfect learning in the asymptotic limit of large number of examples. If the distribution is non-smooth, then first order phase transitions to perfect learning are expected. In the limit of poor performance, a second order phase transition ("retarded learning") is predicted to occur if the data distribution is not biased. Using concepts from Bayesian inference, the center of mass of the Gibbs ensemble is shown to have maximal average (Bayes-optimal) performance. This upper bound for continuous vectors is extended to a discrete space, resulting in the clipped center of mass of the Gibbs ensemble having maximal average performance among the binary vectors. To calculate the performance of this best binary vector, the geometric properties of the center of mass of binary vectors are studied. The surprising result is found that the center of mass of infinite binary vectors which obey some simple constraints, is again a binary vector. When disorder is taken into account in the calculation, however, a vector with continuous components is obtained. The performance of the best binary vector is calculated and shown to always lie above that of Gibbs learning and below the Bayes-optimal performance. Making use of a variational approach under the replica symmetric ansatz, an optimal potential is constructed in the limits of zero temperature and mutual overlap 1. Minimization of this potential

  17. Menstrual Cycle

    MedlinePlus

    ... Pregnancy This information in Spanish ( en español ) The menstrual cycle Day 1 starts with the first day of ... drop around Day 25 . This signals the next menstrual cycle to begin. The egg will break apart and ...

  18. Biogeochemical Cycling

    NASA Technical Reports Server (NTRS)

    Bebout, Brad; Fonda, Mark (Technical Monitor)

    2002-01-01

    This lecture will introduce the concept of biogeochemical cycling. The roles of microbes in the cycling of nutrients, production and consumption of trace gases, and mineralization will be briefly introduced.

  19. Critical evaluation and thermodynamic optimization of the Iron-Rare-Earth systems

    NASA Astrophysics Data System (ADS)

    Konar, Bikram

    thermodynamic and phase diagram data in the literature for the fourteen Fe-RE binary systems: Fe-La, Fe-Ce, Fe-Pr, Fe-Nd, Fe-Sm, Fe-Gd, Fe-Tb, Fe-Dy, Fe-Ho, Fe-Er, Fe-Tm, Fe-Lu, Fe-Sc and Fe-Y are critically evaluated and optimized to obtain thermodynamic model parameters. The model parameters can be used to calculate phase diagrams and Gibbs energies of all phases as functions of temperature and composition. This database can be incorporated with the present thermodynamic database in FactSage software to perform complex chemical reactions and phase diagram calculations for RE magnet recycling process.

  20. Planets in Evolved Binary Systems

    NASA Astrophysics Data System (ADS)

    Perets, Hagai B.

    2011-03-01

    Exo-planets are typically thought to form in protoplanetary disks left over from protostellar disk of their newly formed host star. However, additional planetary formation and evolution routes may exist in old evolved binary systems. Here we discuss the implications of binary stellar evolution on planetary systems in such environments. In these binary systems stellar evolution could lead to the formation of symbiotic stars, where mass is lost from one star and could be transferred to its binary companion, and may form an accretion disk around it. This raises the possibility that such a disk could provide the necessary environment for the formation of a new, second generation of planets in both circumstellar or circumbinary configurations. Pre-existing first generation planets surviving the post-MS evolution of such systems would be dynamically effected by the mass loss in the systems and may also interact with the newly formed disk. Such planets and/or planetesimals may also serve as seeds for the formation of the second generation planets, and/or interact with them, possibly forming atypical planetary systems. Second generation planetary systems should be typically found in white dwarf binary systems, and may show various observational signatures. Most notably, second generation planets could form in environment which are inaccessible, or less favorable, for first generation planets. The orbital phase space available for the second generation planets could be forbidden (in terms of the system stability) to first generation planets in the pre-evolved progenitor binaries. In addition planets could form in metal poor environments such as globular clusters and/or in double compact object binaries. Observations of exo-planets in such forbidden or unfavorable regions could possibly serve to uniquely identify their second generation character. Finally, we point out a few observed candidate second generation planetary systems, including Gl 86, HD 27442 and all of the

  1. Application of Thermodynamic Calculations to the Pyro-refining Process for Production of High Purity Bismuth

    NASA Astrophysics Data System (ADS)

    Mezbahul-Islam, Mohammad; Belanger, Frederic; Chartrand, Patrice; Jung, In-Ho; Coursol, Pascal

    2016-04-01

    The present work has been performed with the aim to optimize the existing process for the production of high purity bismuth (99.999 pct). A thermo-chemical database including most of the probable impurities of bismuth (Bi-X, X = Ag, Au, Al, Ca, Cu, Fe, Mg, Mn, Na, Ni, Pb, S, Sb, Sn, Si, Te, Zn) has been constructed to perform different thermodynamic calculations required for the refining process. Thermodynamic description for eight of the selected binaries, Bi-Ca, Cu, Mn, Ni, Pb, S, Sb, and Sn, has been given in the current paper. Using the current database, different thermodynamic calculations have been performed to explain the steps involved in the bismuth refining process.

  2. Thermodynamic assessment of the LiF-NaF-ThF 4-UF 4 system

    NASA Astrophysics Data System (ADS)

    Beneš, O.; Beilmann, M.; Konings, R. J. M.

    2010-10-01

    A thermodynamic assessment of the LiF-NaF-ThF 4-UF 4 system is presented in this study. The binary phase diagrams are optimized based on the known experimental data and the excess Gibbs energies of liquid and solid solutions are described using a modified quasi chemical model and polynomial formalism respectively. The higher order systems are extrapolated according to asymmetric Toop mathematical formalism. Based on the developed thermodynamic database the fuel composition of the molten salt fast reactor is optimized. In total three different fuel compositions are identified. Properties of these fuel compositions such as melting point, vapour pressure and the boiling temperature are derived from the obtained thermodynamic assessment and are presented in this study.

  3. Interface Thermodynamics with Applications to Atomistic Simulations

    NASA Astrophysics Data System (ADS)

    Frolov, Timofey

    Interfaces are ubiquitous in natural phenomena. While the description of interfaces in fluid systems is well developed, solid-fluid and solid-solid interfaces are not well understood. This deficiency is especially true for solid-solid interfaces, which play critical roles in materials engineering, solid-state physics and solid-state chemistry. In this thesis, the Gibbs theory of interfaces is generalized to describe phase boundaries under non-hydrostatic stress in multicomponent systems. We obtain equations that describe coherent solid-solid interfaces with shear stresses parallel to the boundary plane, incoherent solid-solid interfaces for certain constraint variations, solid-fluid interfaces, grain boundaries and surfaces. In the second part of the thesis, the developed theory is applied to study particular types of interfaces using atomistic simulations. We modeled solid surface, solid-liquid interface and grain boundaries. The simulations allowed to calculate values of key thermodynamic properties, clarify behavior of these properties with temperature, composition and stress and test the predictions of the theory. Surface surface free energy and surface stress in a single component system were computed as functions of temperature. The values of these two excess properties do not converge near the melting point despite the extensive surface premelting. Solid-liquid interface free energy was computed using the developed thermodynamic integration technique as a function of composition in CuAg binary alloy and as a function of biaxial strain in a single component Cu system. In the later case the equilibrium states between the non-hydrostatically stressed solid and liquid were accurately predicted using the derived Clausius--Clapeyron type equation. We show that for non-hydrostatic equilibrium interfaces stress is not unique and compute different interface stresses using our simulation data. We also studied effects of elastic deformation, temperature and chemical

  4. Methods and systems for thermodynamic evaluation of battery state of health

    SciTech Connect

    Yazami, Rachid; McMenamin, Joseph; Reynier, Yvan; Fultz, Brent T

    2014-12-02

    Described are systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and battery systems and for characterizing the state of health of electrodes and battery systems. Measurement of physical attributes of electrodes and batteries corresponding to thermodynamically stabilized electrode conditions permit determination of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and battery systems, such as energy, power density, current rate, cycle life and state of health. Also provided are systems and methods for charging a battery according to its state of health.

  5. Rotary Stirling-Cycle Engine And Generator

    NASA Technical Reports Server (NTRS)

    Chandler, Joseph A.

    1990-01-01

    Proposed electric-power generator comprises three motor generators coordinated by microprocessor and driven by rotary Stirling-cycle heat engine. Combination offers thermodynamic efficiency of Stirling cycle, relatively low vibration, and automatic adjustment of operating parameters to suit changing load on generator. Rotary Stirling cycle engine converts heat to power via compression and expansion of working gas between three pairs of rotary pistons on three concentric shafts in phased motion. Three motor/generators each connected to one of concentric shafts, can alternately move and be moved by pistons. Microprocessor coordinates their operation, including switching between motor and generator modes at appropriate times during each cycle.

  6. The Michigan Binary Star Program

    NASA Astrophysics Data System (ADS)

    Lindner, Rudi P.

    2007-07-01

    At the end of the nineteenth century, William J. Hussey and Robert G. Aitken, both at Lick Observatory, began a systematic search for unrecorded binary stars with the aid of the 12" and 36" refracting telescopes at Lick Observatory. Aitken's work (and book on binary stars) are well known, Hussey's contributions less so. In 1905 Hussey, a Michigan engineering graduate, returned to direct the Ann Arbor astronomy program, and immediately he began to design new instrumentation for the study of binary stars and to train potential observers. For a time, he spent six months a year at the La Plata Observatory, where he discovered a number of new pairs and decided upon a major southern hemisphere campaign. He spent a decade obtaining the lenses for a large refractor, through the vicissitudes of war and depression. Finally, he obtained a site in South Africa, a 26" refractor, and a small corps of observers, but he died in London en route to fulfill his dream. His right hand man, Richard Rossiter, established the observatory and spent the next thirty years discovering and measuring binary stars: his personal total is a record for the field. This talk is an account of the methods, results, and utility of the extraordinary binary star factory in the veldt.

  7. Experimental investigation of an ammonia-based combined power and cooling cycle

    NASA Astrophysics Data System (ADS)

    Tamm, Gunnar Olavi

    A novel ammonia-water thermodynamic cycle, capable of producing both power and refrigeration, was proposed by D. Yogi Goswami. The binary mixture exhibits variable boiling temperatures during the boiling process, which leads to a good thermal match between the heating fluid and working fluid for efficient heat source utilization. The cycle can be driven by low temperature sources such as solar, geothermal, and waste heat from a conventional power cycle, reducing the reliance on high temperature sources such as fossil fuels. A theoretical simulation of the cycle at heat source temperatures obtainable from low and mid temperature solar collectors showed that the ideal cycle could produce power and refrigeration at a maximum exergy efficiency, defined as the ratio of the net work and refrigeration output to the change in availability of the heat source, of over 60%. The exergy efficiency is a useful measure of the cycle's performance as it compares the effectiveness of different cycles in harnessing the same source. An experimental system was constructed to demonstrate the feasibility of the cycle and to compare the experimental results with the theoretical simulations. In this first phase of experimentation, the turbine expansion was simulated with a throttling valve and a heat exchanger. Results showed that the vapor generation and absorption condensation processes work experimentally. The potential for combined turbine work and refrigeration output was evidenced in operating the system. Analysis of losses led to modifications in the system design, which were implemented to yield improvements in heat exchange, vapor generation, pump performance and overall stability. The research that has been conducted verifies the potential of the power and cooling cycle as an alternative to using conventional fossil fuel technologies. The research that continues is to further demonstrate the concept and direct it towards industry. On the large scale, the cycle can be used for

  8. A thermochemical data bank for cycle analysis

    NASA Technical Reports Server (NTRS)

    Carty, R. H.; Funk, J. E.; Conger, W. L.; Soliman, M. A.; Cox, K. E.

    1976-01-01

    The use of a computer program PAC-2 to produce a thermodynamic data bank for various materials used in water splitting cycles is described. The sources of raw data and a listing of 439 materials for which data are available are presented. The use of the data bank in conjunction with two other programs, CEC-72 and HYDRGN, is also discussed. The integration of these three programs implement an evaluation procedure for thermochemical water splitting cycles. CEC-72 is a program used to predict the equilibrium composition of the various chemical reactions in the cycle. HYDRGN is a program which is used to calculate changes in thermodynamic properties, work of separation, amount of recycle, internal heat regeneration, total thermal energy, and process thermal efficiency for a thermochemical cycle.

  9. Nonequilibrium thermodynamics of an interface

    NASA Astrophysics Data System (ADS)

    Schweizer, Marco; Öttinger, Hans Christian; Savin, Thierry

    2016-05-01

    Interfacial thermodynamics has deep ramifications in understanding the boundary conditions of transport theories. We present a formulation of local equilibrium for interfaces that extends the thermodynamics of the "dividing surface," as introduced by Gibbs, to nonequilibrium settings such as evaporation or condensation. By identifying the precise position of the dividing surface in the interfacial region with a gauge degree of freedom, we exploit gauge-invariance requirements to consistently define the intensive variables for the interface. The model is verified under stringent conditions by employing high-precision nonequilibrium molecular-dynamics simulations of a coexisting vapor-liquid Lennard-Jones fluid. We conclude that the interfacial temperature is determined using the surface tension as a "thermometer," and it can be significantly different from the temperatures of the adjacent phases. Our findings lay foundations for nonequilibrium interfacial thermodynamics.

  10. Non-hermitian quantum thermodynamics

    NASA Astrophysics Data System (ADS)

    Gardas, Bartłomiej; Deffner, Sebastian; Saxena, Avadh

    2016-03-01

    Thermodynamics is the phenomenological theory of heat and work. Here we analyze to what extent quantum thermodynamic relations are immune to the underlying mathematical formulation of quantum mechanics. As a main result, we show that the Jarzynski equality holds true for all non-hermitian quantum systems with real spectrum. This equality expresses the second law of thermodynamics for isothermal processes arbitrarily far from equilibrium. In the quasistatic limit however, the second law leads to the Carnot bound which is fulfilled even if some eigenenergies are complex provided they appear in conjugate pairs. Furthermore, we propose two setups to test our predictions, namely with strongly interacting excitons and photons in a semiconductor microcavity and in the non-hermitian tight-binding model.

  11. Analyze distillation columns with thermodynamics

    SciTech Connect

    Ognisty, T.P. )

    1995-02-01

    In a distillation column, heat supplies the work for separating the components of a feed stream into products. Distillation columns consume some 95% of the total energy used in separations. This amounts to roughly 3% of the energy consumed in the US. Since distillation is so energy intensive and requires significant capital outlays, an endless quest to improve the economics has continued since the beginning of the industry. By analyzing the thermodynamics of a distillation column, an engineer can quantify the thermodynamic efficiency of the process, identify the regions where energy can be better utilized, and define the minimum targets for energy consumption. This article reviews the principles of distillation column thermodynamics and outlines the analysis of lost work profiles and column heat profiles. It then illustrates these concepts through three examples.

  12. Statistical thermodynamics of clustered populations.

    PubMed

    Matsoukas, Themis

    2014-08-01

    We present a thermodynamic theory for a generic population of M individuals distributed into N groups (clusters). We construct the ensemble of all distributions with fixed M and N, introduce a selection functional that embodies the physics that governs the population, and obtain the distribution that emerges in the scaling limit as the most probable among all distributions consistent with the given physics. We develop the thermodynamics of the ensemble and establish a rigorous mapping to regular thermodynamics. We treat the emergence of a so-called giant component as a formal phase transition and show that the criteria for its emergence are entirely analogous to the equilibrium conditions in molecular systems. We demonstrate the theory by an analytic model and confirm the predictions by Monte Carlo simulation.

  13. Non-hermitian quantum thermodynamics.

    PubMed

    Gardas, Bartłomiej; Deffner, Sebastian; Saxena, Avadh

    2016-01-01

    Thermodynamics is the phenomenological theory of heat and work. Here we analyze to what extent quantum thermodynamic relations are immune to the underlying mathematical formulation of quantum mechanics. As a main result, we show that the Jarzynski equality holds true for all non-hermitian quantum systems with real spectrum. This equality expresses the second law of thermodynamics for isothermal processes arbitrarily far from equilibrium. In the quasistatic limit however, the second law leads to the Carnot bound which is fulfilled even if some eigenenergies are complex provided they appear in conjugate pairs. Furthermore, we propose two setups to test our predictions, namely with strongly interacting excitons and photons in a semiconductor microcavity and in the non-hermitian tight-binding model. PMID:27003686

  14. Non-hermitian quantum thermodynamics

    PubMed Central

    Gardas, Bartłomiej; Deffner, Sebastian; Saxena, Avadh

    2016-01-01

    Thermodynamics is the phenomenological theory of heat and work. Here we analyze to what extent quantum thermodynamic relations are immune to the underlying mathematical formulation of quantum mechanics. As a main result, we show that the Jarzynski equality holds true for all non-hermitian quantum systems with real spectrum. This equality expresses the second law of thermodynamics for isothermal processes arbitrarily far from equilibrium. In the quasistatic limit however, the second law leads to the Carnot bound which is fulfilled even if some eigenenergies are complex provided they appear in conjugate pairs. Furthermore, we propose two setups to test our predictions, namely with strongly interacting excitons and photons in a semiconductor microcavity and in the non-hermitian tight-binding model. PMID:27003686

  15. Non-hermitian quantum thermodynamics

    DOE PAGESBeta

    Gardas, Bartłomiej; Deffner, Sebastian; Saxena, Avadh

    2016-03-22

    Thermodynamics is the phenomenological theory of heat and work. Here we analyze to what extent quantum thermodynamic relations are immune to the underlying mathematical formulation of quantum mechanics. As a main result, we show that the Jarzynski equality holds true for all non-hermitian quantum systems with real spectrum. This equality expresses the second law of thermodynamics for isothermal processes arbitrarily far from equilibrium. In the quasistatic limit however, the second law leads to the Carnot bound which is fulfilled even if some eigenenergies are complex provided they appear in conjugate pairs. Lastly, we propose two setups to test our predictions,more » namely with strongly interacting excitons and photons in a semiconductor microcavity and in the non-hermitian tight-binding model.« less

  16. Nonequilibrium thermodynamics of an interface.

    PubMed

    Schweizer, Marco; Öttinger, Hans Christian; Savin, Thierry

    2016-05-01

    Interfacial thermodynamics has deep ramifications in understanding the boundary conditions of transport theories. We present a formulation of local equilibrium for interfaces that extends the thermodynamics of the "dividing surface," as introduced by Gibbs, to nonequilibrium settings such as evaporation or condensation. By identifying the precise position of the dividing surface in the interfacial region with a gauge degree of freedom, we exploit gauge-invariance requirements to consistently define the intensive variables for the interface. The model is verified under stringent conditions by employing high-precision nonequilibrium molecular-dynamics simulations of a coexisting vapor-liquid Lennard-Jones fluid. We conclude that the interfacial temperature is determined using the surface tension as a "thermometer," and it can be significantly different from the temperatures of the adjacent phases. Our findings lay foundations for nonequilibrium interfacial thermodynamics.

  17. Nonequilibrium thermodynamics of an interface.

    PubMed

    Schweizer, Marco; Öttinger, Hans Christian; Savin, Thierry

    2016-05-01

    Interfacial thermodynamics has deep ramifications in understanding the boundary conditions of transport theories. We present a formulation of local equilibrium for interfaces that extends the thermodynamics of the "dividing surface," as introduced by Gibbs, to nonequilibrium settings such as evaporation or condensation. By identifying the precise position of the dividing surface in the interfacial region with a gauge degree of freedom, we exploit gauge-invariance requirements to consistently define the intensive variables for the interface. The model is verified under stringent conditions by employing high-precision nonequilibrium molecular-dynamics simulations of a coexisting vapor-liquid Lennard-Jones fluid. We conclude that the interfacial temperature is determined using the surface tension as a "thermometer," and it can be significantly different from the temperatures of the adjacent phases. Our findings lay foundations for nonequilibrium interfacial thermodynamics. PMID:27300960

  18. Thermodynamics from a scaling Hamiltonian

    NASA Astrophysics Data System (ADS)

    Del Pino, L. A.; Troncoso, P.; Curilef, S.

    2007-11-01

    There are problems with defining the thermodynamic limit of systems with long-range interactions; as a result, the thermodynamic behavior of these types of systems is anomalous. In the present work, we review some concepts from both extensive and nonextensive thermodynamic perspectives. We use a model, whose Hamiltonian takes into account spins ferromagnetically coupled in a chain via a power law that decays at large interparticle distance r as 1/rα for α⩾0 . Here, we review old nonextensive scaling. In addition, we propose a Hamiltonian scaled by 2((N/2)1-α-1)/(1-α) that explicitly includes symmetry of the lattice and dependence on the size N of the system. The approach enabled us to improve upon previous results. A numerical test is conducted through Monte Carlo simulations. In the model, periodic boundary conditions are adopted to eliminate surface effects.

  19. Improvements to the ejector expansion refrigeration cycle

    SciTech Connect

    Menegay, P.; Kornhauser, A.A.

    1996-12-31

    The ejector expansion refrigeration cycle (EERC) is a variant of the standard vapor compression cycle in which an ejector is used to recover part of the work that would otherwise be lost in the expansion valve. In initial testing EERC performance was poor, mainly due to thermodynamic non-equilibrium conditions in the ejector motive nozzle. Modifications were made to correct this problem, and significant performance improvements were found.

  20. Experience with parametric binary dissection

    NASA Technical Reports Server (NTRS)

    Bokhari, Shahid H.

    1993-01-01

    Parametric Binary Dissection (PBD) is a new algorithm that can be used for partitioning graphs embedded in 2- or 3-dimensional space. It partitions explicitly on the basis of nodes + (lambda)x(edges cut), where lambda is the ratio of time to communicate over an edge to the time to compute at a node. The new algorithm is faster than the original binary dissection algorithm and attempts to obtain better partitions than the older algorithm, which only takes nodes into account. The performance of parametric dissection with plain binary dissection on 3 large unstructured 3-d meshes obtained from computational fluid dynamics and on 2 random graphs were compared. It was showm that the new algorithm can usually yield partitions that are substantially superior, but that its performance is heavily dependent on the input data.

  1. CRC handbook of applied thermodynamics

    SciTech Connect

    Palmer, D.A. . Research and Development Dept.)

    1987-01-01

    The emphasis of this book is on applied thermodynamics, featuring the stage of development of a process rather than the logical development of thermodynamic principles. It is organized according to the types of problems encountered in industry, such as probing research, process assessment, and process development. The applied principles presented can be used in most areas of industry including oil and gas production and processing, chemical processing, power generation, polymer production, food processing, synthetic fuels production, specialty chemicals and pharmaceuticals production, bioengineered processes, etc.

  2. Power-cycle studies for a geothermal electric plant for MX operating bases

    SciTech Connect

    Bliem, C.J.; Kochan, R.J.

    1981-11-01

    Binary geothermal plants were investigated for providing electrical power for MX missile bases. A number of pure hydrocarbons and hydrocarbon mixtures were evaluated as working fluids for geothermal resource temperatures of 365, 400, and 450/sup 0/F. Cycle thermodynamic analyses were conducted for pure geothermal plants and for two types of coal-geothermal hybrid plants. Cycle performance results were presented as net geofluid effectiveness (net plant output in watts per geofluid flow in 1 bm/hr) and cooling water makeup effectiveness (net plant output in watts per makeup water flow in 1 bm/hr). A working fluid containing 90% (mass) isobutane/10% hexane was selected, and plant statepoints and energy balances were determined for 20MW(e) geothermal plants at each of the three resource temperatures. Working fluid heaters and condensers were sized for these plants. It is concluded that for the advanced plants investigated, geothermal resources in the 365 to 450/sup 0/F range can provide useful energy for powering MX missile bases.

  3. precession: Dynamics of spinning black-hole binaries with python

    NASA Astrophysics Data System (ADS)

    Gerosa, Davide; Kesden, Michael

    2016-06-01

    We present the numerical code precession, a new open-source python module to study the dynamics of precessing black-hole binaries in the post-Newtonian regime. The code provides a comprehensive toolbox to (i) study the evolution of the black-hole spins along their precession cycles, (ii) perform gravitational-wave-driven binary inspirals using both orbit-averaged and precession-averaged integrations, and (iii) predict the properties of the merger remnant through fitting formulas obtained from numerical-relativity simulations. precession is a ready-to-use tool to add the black-hole spin dynamics to larger-scale numerical studies such as gravitational-wave parameter estimation codes, population synthesis models to predict gravitational-wave event rates, galaxy merger trees and cosmological simulations of structure formation. precession provides fast and reliable integration methods to propagate statistical samples of black-hole binaries from/to large separations where they form to/from small separations where they become detectable, thus linking gravitational-wave observations of spinning black-hole binaries to their astrophysical formation history. The code is also a useful tool to compute initial parameters for numerical-relativity simulations targeting specific precessing systems. precession can be installed from the python Package Index, and it is freely distributed under version control on github, where further documentation is provided.

  4. Mental Effort in Binary Categorization Aided by Binary Cues

    ERIC Educational Resources Information Center

    Botzer, Assaf; Meyer, Joachim; Parmet, Yisrael

    2013-01-01

    Binary cueing systems assist in many tasks, often alerting people about potential hazards (such as alarms and alerts). We investigate whether cues, besides possibly improving decision accuracy, also affect the effort users invest in tasks and whether the required effort in tasks affects the responses to cues. We developed a novel experimental tool…

  5. FES cycling.

    PubMed

    Newham, D J; Donaldson, N de N

    2007-01-01

    Spinal cord injury (SCI) leads to a partial or complete disruption of motor, sensory, and autonomic nerve pathways below the level of the lesion. In paraplegic patients, functional electrical stimulation (FES) was originally widely considered as a means to restore walking function but this was proved technically very difficult because of the numerous degrees of freedom involved in walking. FES cycling was developed for people with SCI and has the advantages that cycling can be maintained for reasonably long periods in trained muscles and the risk of falls is low. In the article, we review research findings relevant to the successful application of FES cycling including the effects on muscle size, strength and function, and the cardiovascular and bone changes. We also describe important practical considerations in FES cycling regarding the application of surface electrodes, training and setting up the stimulator limitations, implanted stimulators and FES cycling including FES cycling in groups and other FES exercises such as FES rowing.

  6. Thermodynamic and Mechanical Analysis of a Thermomagnetic Rotary Engine

    NASA Astrophysics Data System (ADS)

    Fajar, D. M.; Khotimah, S. N.; Khairurrijal

    2016-08-01

    A heat engine in magnetic system had three thermodynamic coordinates: magnetic intensity ℋ, total magnetization ℳ, and temperature T, where the first two of them are respectively analogous to that of gaseous system: pressure P and volume V. Consequently, Carnot cycle that constitutes the principle of a heat engine in gaseous system is also valid on that in magnetic system. A thermomagnetic rotary engine is one model of it that was designed in the form of a ferromagnetic wheel that can rotates because of magnetization change at Curie temperature. The study is aimed to describe the thermodynamic and mechanical analysis of a thermomagnetic rotary engine and calculate the efficiencies. In thermodynamic view, the ideal processes are isothermal demagnetization, adiabatic demagnetization, isothermal magnetization, and adiabatic magnetization. The values of thermodynamic efficiency depend on temperature difference between hot and cold reservoir. In mechanical view, a rotational work is determined through calculation of moment of inertia and average angular speed. The value of mechanical efficiency is calculated from ratio between rotational work and heat received by system. The study also obtains exergetic efficiency that states the performance quality of the engine.

  7. BINARY YORP EFFECT AND EVOLUTION OF BINARY ASTEROIDS

    SciTech Connect

    Steinberg, Elad; Sari, Re'em

    2011-02-15

    The rotation states of kilometer-sized near-Earth asteroids are known to be affected by the Yarkevsky O'Keefe-Radzievskii-Paddack (YORP) effect. In a related effect, binary YORP (BYORP), the orbital properties of a binary asteroid evolve under a radiation effect mostly acting on a tidally locked secondary. The BYORP effect can alter the orbital elements over {approx}10{sup 4}-10{sup 5} years for a D{sub p} = 2 km primary with a D{sub s} = 0.4 km secondary at 1 AU. It can either separate the binary components or cause them to collide. In this paper, we devise a simple approach to calculate the YORP effect on asteroids and the BYORP effect on binaries including J{sub 2} effects due to primary oblateness and the Sun. We apply this to asteroids with known shapes as well as a set of randomly generated bodies with various degrees of smoothness. We find a strong correlation between the strengths of an asteroid's YORP and BYORP effects. Therefore, statistical knowledge of one could be used to estimate the effect of the other. We show that the action of BYORP preferentially shrinks rather than expands the binary orbit and that YORP preferentially slows down asteroids. This conclusion holds for the two extremes of thermal conductivities studied in this work and the assumption that the asteroid reaches a stable point, but may break down for moderate thermal conductivity. The YORP and BYORP effects are shown to be smaller than could be naively expected due to near cancellation of the effects at small scales. Taking this near cancellation into account, a simple order-of-magnitude estimate of the YORP and BYORP effects as a function of the sizes and smoothness of the bodies is calculated. Finally, we provide a simple proof showing that there is no secular effect due to absorption of radiation in BYORP.

  8. KEPLER ECLIPSING BINARIES WITH STELLAR COMPANIONS

    SciTech Connect

    Gies, D. R.; Matson, R. A.; Guo, Z.; Lester, K. V.; Orosz, J. A.; Peters, G. J. E-mail: rmatson@chara.gsu.edu E-mail: lester@chara.gsu.edu E-mail: gjpeters@mucen.usc.edu

    2015-12-15

    Many short-period binary stars have distant orbiting companions that have played a role in driving the binary components into close separation. Indirect detection of a tertiary star is possible by measuring apparent changes in eclipse times of eclipsing binaries as the binary orbits the common center of mass. Here we present an analysis of the eclipse timings of 41 eclipsing binaries observed throughout the NASA Kepler mission of long duration and precise photometry. This subset of binaries is characterized by relatively deep and frequent eclipses of both stellar components. We present preliminary orbital elements for seven probable triple stars among this sample, and we discuss apparent period changes in seven additional eclipsing binaries that may be related to motion about a tertiary in a long period orbit. The results will be used in ongoing investigations of the spectra and light curves of these binaries for further evidence of the presence of third stars.

  9. Observational Properties of Synthetic Visual Binary Catalog

    NASA Astrophysics Data System (ADS)

    Nurmi, P.

    2004-08-01

    Forthcoming astrometric missions will observe a huge number of new binaries from which a large fraction will be visual binaries. Detailed planning of optimal detection procedures requires pre-launch information about the observational properties of expected visual binaries. Hence, a synthetic binary catalog is created and analyzed for observational properties of visual binary stars. These results help to understand what kind of binaries we expect to find in the final output catalogs of astrometric missions. These results represent `true' binary distributions if all of them would be observed. All real observational projects or astrometric satellites sample only small fractions of these populations depending on the observational capabilities of the missions. In this study we consider only relative numbers with respect to the total number of binary stars assumed to exist in the sky down to the magnitude limit depending on the astrometric mission.

  10. Thermodynamics of electrochemical lithium storage.

    PubMed

    Maier, Joachim

    2013-05-01

    The thermodynamics of electrochemical lithium storage are examined by taking into account that it is the point defects that enable storage. While the Li defects are mobile, most of the other point defects have to be considered as frozen owing to the performance temperature being low compared to the melting point of the electrode materials. The defect chemistry needs to be considered to fully understand equilibrium charge/discharge curves. On this basis, single phase and multiphase storage mechanisms can be discussed in terms of theoretical storage capacity and theoretical voltage. Of paramount interest in the field of Li batteries are metastable materials, in particular nanocrystalline and amorphous materials. The thermodynamics of storage and voltage, also at interfaces, thus deserve a special treatment. The relationship between reversible cell voltage and lithium content is derived for the novel job-sharing mechanism. With respect to the classic storage modes, thermodynamic differences for cathodes and anodes are elaborated with a special attention being paid to the search for new materials. As this contribution concentrates on the equilibrium state, current-related phenomena (irreversible thermodynamics) are only briefly touched upon. PMID:23630067

  11. A Simple Statistical Thermodynamics Experiment

    ERIC Educational Resources Information Center

    LoPresto, Michael C.

    2010-01-01

    Comparing the predicted and actual rolls of combinations of both two and three dice can help to introduce many of the basic concepts of statistical thermodynamics, including multiplicity, probability, microstates, and macrostates, and demonstrate that entropy is indeed a measure of randomness, that disordered states (those of higher entropy) are…

  12. THERMODYNAMICS USED IN ENVIRONMENTAL ENGINEERING

    EPA Science Inventory

    Thermodynamics is a science in which energy transformations are studied as well as their relationships to the changes in the chemical properties of a system. It is the fundamental basis of many engineering fields. The profession of environmental engineering is no exception. In pa...

  13. Thermodynamics on the Molality Scale

    ERIC Educational Resources Information Center

    Canagaratna, Sebastian G.; Maheswaran, M.

    2013-01-01

    For physical measurements, the compositions of solutions, especially electrolyte solutions, are expressed in terms of molality rather than mole fractions. The development of the necessary thermodynamic equations directly in terms of molality is not common in textbooks, and the treatment in the literature is not very systematic. We develop a…

  14. Thermodynamics of electrochemical lithium storage.

    PubMed

    Maier, Joachim

    2013-05-01

    The thermodynamics of electrochemical lithium storage are examined by taking into account that it is the point defects that enable storage. While the Li defects are mobile, most of the other point defects have to be considered as frozen owing to the performance temperature being low compared to the melting point of the electrode materials. The defect chemistry needs to be considered to fully understand equilibrium charge/discharge curves. On this basis, single phase and multiphase storage mechanisms can be discussed in terms of theoretical storage capacity and theoretical voltage. Of paramount interest in the field of Li batteries are metastable materials, in particular nanocrystalline and amorphous materials. The thermodynamics of storage and voltage, also at interfaces, thus deserve a special treatment. The relationship between reversible cell voltage and lithium content is derived for the novel job-sharing mechanism. With respect to the classic storage modes, thermodynamic differences for cathodes and anodes are elaborated with a special attention being paid to the search for new materials. As this contribution concentrates on the equilibrium state, current-related phenomena (irreversible thermodynamics) are only briefly touched upon.

  15. Conservation laws and thermodynamic efficiencies.

    PubMed

    Benenti, Giuliano; Casati, Giulio; Wang, Jiao

    2013-02-15

    We show that generic systems with a single relevant conserved quantity reach the Carnot efficiency in the thermodynamic limit. Such a general result is illustrated by means of a diatomic chain of hard-point elastically colliding particles where the total momentum is the only relevant conserved quantity.

  16. Analogy between Thermodynamics and Mechanics.

    ERIC Educational Resources Information Center

    Peterson, Mark A.

    1979-01-01

    Establishes and illustrates a formal analogy between the motion of a particle and the "motion" of the equilibrium state of a homogeneous system in a quasistatic process. The purpose is to show that there is a much larger set of natural coordinate transformations in thermodynamics. (GA)

  17. Thermodynamics of Oligonucleotide Duplex Melting

    ERIC Educational Resources Information Center

    Schreiber-Gosche, Sherrie; Edwards, Robert A.

    2009-01-01

    Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply…

  18. Application of Gas Dynamical Friction for Planetesimals. II. Evolution of Binary Planetesimals

    NASA Astrophysics Data System (ADS)

    Grishin, Evgeni; Perets, Hagai B.

    2016-04-01

    One of the first stages of planet formation is the growth of small planetesimals and their accumulation into large planetesimals and planetary embryos. This early stage occurs long before the dispersal of most of the gas from the protoplanetary disk. At this stage gas-planetesimal interactions play a key role in the dynamical evolution of single intermediate-mass planetesimals (mp ˜ 1021-1025 g) through gas dynamical friction (GDF). A significant fraction of all solar system planetesimals (asteroids and Kuiper-belt objects) are known to be binary planetesimals (BPs). Here, we explore the effects of GDF on the evolution of BPs embedded in a gaseous disk using an N-body code with a fiducial external force accounting for GDF. We find that GDF can induce binary mergers on timescales shorter than the disk lifetime for masses above mp ≳ 1022 g at 1 au, independent of the binary initial separation and eccentricity. Such mergers can affect the structure of merger-formed planetesimals, and the GDF-induced binary inspiral can play a role in the evolution of the planetesimal disk. In addition, binaries on eccentric orbits around the star may evolve in the supersonic regime, where the torque reverses and the binary expands, which would enhance the cross section for planetesimal encounters with the binary. Highly inclined binaries with small mass ratios, evolve due to the combined effects of Kozai-Lidov (KL) cycles with GDF which lead to chaotic evolution. Prograde binaries go through semi-regular KL evolution, while retrograde binaries frequently flip their inclination and ˜50% of them are destroyed.

  19. Thermodynamic study of (anthracene + benzo[a]pyrene) solid mixtures.

    PubMed

    Rice, James W; Suuberg, Eric M

    2010-11-01

    To characterize better the thermodynamic behavior of a binary polycyclic aromatic hydrocarbon mixture, thermochemical and vapor pressure experiments were used to examine the phase behavior of the {anthracene (1) + benzo[a]pyrene (2)} system. A solid-liquid phase diagram was mapped for the mixture. A eutectic point occurs at x(1) = 0.26. The eutectic mixture is an amorphous solid that lacks organized crystal structure and melts between T = (414 and 420) K. For mixtures that contain 0.10 < x(1) < 0.90, the enthalpy of fusion is dominated by that of the eutectic. Solid-vapor equilibrium studies show that mixtures of anthracene and benzo[a]pyrene at x(1) < 0.10 sublime at the vapor pressure of pure benzo[a]pyrene. These results suggest that the solid-vapor equilibrium of benzo[a]pyrene is not significantly influenced by moderate levels of anthracene in the crystal structure.

  20. Thermodynamic study of (anthracene + benzo[a]pyrene) solid mixtures

    PubMed Central

    Rice, James W.; Suuberg, Eric M.

    2010-01-01

    To characterize better the thermodynamic behavior of a binary polycyclic aromatic hydrocarbon mixture, thermochemical and vapor pressure experiments were used to examine the phase behavior of the {anthracene (1) + benzo[a]pyrene (2)} system. A solid-liquid phase diagram was mapped for the mixture. A eutectic point occurs at x1 = 0.26. The eutectic mixture is an amorphous solid that lacks organized crystal structure and melts between T = (414 and 420) K. For mixtures that contain 0.10 < x1 < 0.90, the enthalpy of fusion is dominated by that of the eutectic. Solid-vapor equilibrium studies show that mixtures of anthracene and benzo[a]pyrene at x1 < 0.10 sublime at the vapor pressure of pure benzo[a]pyrene. These results suggest that the solid-vapor equilibrium of benzo[a]pyrene is not significantly influenced by moderate levels of anthracene in the crystal structure. PMID:20814451

  1. Performance analysis of a solar-powered organic rankine cycle engine.

    PubMed

    Bryszewska-Mazurek, Anna; Swieboda, Tymoteusz; Mazurek, Wojciech

    2011-01-01

    This paper presents the performance analysis of a power plant with the Organic Rankine Cycle (ORC). The power plant is supplied by thermal energy utilized from a solar energy collector. R245fa was the working fluid in the thermodynamic cycle. The organic cycle with heat regeneration was built and tested experimentally. The ORC with a heat regenerator obtained the maximum thermodynamic efficiency of approximately 9%. PMID:21305882

  2. A Galactic Binary Detection Pipeline

    NASA Technical Reports Server (NTRS)

    Littenberg, Tyson B.

    2011-01-01

    The Galaxy is suspected to contain hundreds of millions of binary white dwarf systems, a large fraction of which will have sufficiently small orbital period to emit gravitational radiation in band for space-based gravitational wave detectors such as the Laser Interferometer Space Antenna (LISA). LISA's main science goal is the detection of cosmological events (supermassive black hole mergers, etc.) however the gravitational signal from the galaxy will be the dominant contribution to the data - including instrumental noise over approximately two decades in frequency. The catalogue of detectable binary systems will serve as an unparalleled means of studying the Galaxy. Furthermore, to maximize the scientific return from the mission, the data must be "cleansed" of the galactic foreground. We will present an algorithm that can accurately resolve and subtract 2:: 10000 of these sources from simulated data supplied by the Mock LISA Data Challenge Task Force. Using the time evolution of the gravitational wave frequency, we will reconstruct the position of the recovered binaries and show how LISA will sample the entire compact binary population in the Galaxy.

  3. Spectral Investigation of Binary Asteroids

    NASA Astrophysics Data System (ADS)

    Birlan, Mirel; Nedelcu, D.; Descamps, P.; Berthier, J.; Marchis, F.; Merouane, S.

    2008-09-01

    The number of binary asteroids increased in a significant manner during the last years. Multiple types of observations obtained in adaptive optics, photometry, and radar, allow the rethinking not only the dynamics of the asteroids, but also their physics. The spectroscopy of a binary system can play a key role for establish the mineralogical composition of components, and implicitly the range of their density. By the application of these considerations to the physical and dynamical models, the physical parameters such as the macro-porosity or the "rubble pile” structures could be derived. Observations of binary asteroid (854) Frostia, and binary candidates (1333) Cevenola, and (3632) Chaplin were carried out in the 0.8-2.5 µm spectral range using SpeX/IRTF in LowRes mode. The asteroids present features in both 1 and 2 µm regions, suggesting the presence of silicates in the surface composition. The analysis of slopes, band strengths, and the most probable mineralogical models will be presented.

  4. Discs in misaligned binary systems

    NASA Astrophysics Data System (ADS)

    Rawiraswattana, Krisada; Hubber, David A.; Goodwin, Simon P.

    2016-08-01

    We perform SPH simulations to study precession and changes in alignment between the circumprimary disc and the binary orbit in misaligned binary systems. We find that the precession process can be described by the rigid-disc approximation, where the disc is considered as a rigid body interacting with the binary companion only gravitationally. Precession also causes change in alignment between the rotational axis of the disc and the spin axis of the primary star. This type of alignment is of great important for explaining the origin of spin-orbit misaligned planetary systems. However, we find that the rigid-disc approximation fails to describe changes in alignment between the disc and the binary orbit. This is because the alignment process is a consequence of interactions that involve the fluidity of the disc, such as the tidal interaction and the encounter interaction. Furthermore, simulation results show that there are not only alignment processes, which bring the components towards alignment, but also anti-alignment processes, which tend to misalign the components. The alignment process dominates in systems with misalignment angle near 90°, while the anti-alignment process dominates in systems with the misalignment angle near 0° or 180°. This means that highly misaligned systems will become more aligned but slightly misaligned systems will become more misaligned.

  5. Hydrodynamic Simulations of Contact Binaries

    NASA Astrophysics Data System (ADS)

    Kadam, Kundan; Clayton, Geoffrey C.; Frank, Juhan; Marcello, Dominic; Motl, Patrick M.; Staff, Jan E.

    2015-01-01

    The motivation for our project is the peculiar case of the 'red nova" V1309 Sco which erupted in September 2008. The progenitor was, in fact, a contact binary system. We are developing a simulation of contact binaries, so that their formation, structural, and merger properties could be studied using hydrodynamics codes. The observed transient event was the disruption of the secondary star by the primary, and their subsequent merger into one star; hence to replicate this behavior, we need a core-envelope structure for both the stars. We achieve this using a combination of Self Consistant Field (SCF) technique and composite polytropes, also known as bipolytropes. So far we have been able to generate close binaries with various mass ratios. Another consequence of using bipolytropes is that according to theoretical calculations, the radius of a star should expand when the core mass fraction exceeds a critical value, resulting in interesting consequences in a binary system. We present some initial results of these simulations.

  6. Generating Constant Weight Binary Codes

    ERIC Educational Resources Information Center

    Knight, D.G.

    2008-01-01

    The determination of bounds for A(n, d, w), the maximum possible number of binary vectors of length n, weight w, and pairwise Hamming distance no less than d, is a classic problem in coding theory. Such sets of vectors have many applications. A description is given of how the problem can be used in a first-year undergraduate computational…

  7. Development of a Stirling System Dynamic Model With Enhanced Thermodynamics

    NASA Technical Reports Server (NTRS)

    Regan, Timothy F.; Lewandowski, Edward J.

    2005-01-01

    The Stirling Convertor System Dynamic Model developed at NASA Glenn Research Center is a software model developed from first principles that includes the mechanical and mounting dynamics, the thermodynamics, the linear alternator, and the controller of a free-piston Stirling power convertor, along with the end user load. As such it represents the first detailed modeling tool for fully integrated Stirling convertor-based power systems. The thermodynamics of the model were originally a form of the isothermal Stirling cycle. In some situations it may be desirable to improve the accuracy of the Stirling cycle portion of the model. An option under consideration is to enhance the SDM thermodynamics by coupling the model with Gedeon Associates Sage simulation code. The result will be a model that gives a more accurate prediction of the performance and dynamics of the free-piston Stirling convertor. A method of integrating the Sage simulation code with the System Dynamic Model is described. Results of SDM and Sage simulation are compared to test data. Model parameter estimation and model validation are discussed.

  8. Thermodynamics of statistical inference by cells.

    PubMed

    Lang, Alex H; Fisher, Charles K; Mora, Thierry; Mehta, Pankaj

    2014-10-01

    The deep connection between thermodynamics, computation, and information is now well established both theoretically and experimentally. Here, we extend these ideas to show that thermodynamics also places fundamental constraints on statistical estimation and learning. To do so, we investigate the constraints placed by (nonequilibrium) thermodynamics on the ability of biochemical signaling networks to estimate the concentration of an external signal. We show that accuracy is limited by energy consumption, suggesting that there are fundamental thermodynamic constraints on statistical inference.

  9. A thermodynamic study of selective solvation in solvent mixtures.

    PubMed

    Cabot, Rafel; Hunter, Christopher A

    2010-04-21

    Changes in the (31)P NMR chemical shift of tri-n-butylphosphine oxide have been measured as function of solvent composition in a number of binary solvent mixtures. The data were analysed using a model that separates the contributions of specific H-bond interactions with the first solvation shell and the non-specific effects of the bulk solvent on the chemical shift. This allowed measurement of equilibrium constants between differently solvated states of the probe and hence thermodynamic quantification of preferential solvation in the binary mixtures. The results are analysed in the context of the electrostatic solvent competition model, which assumes that solvent effects on intermolecular interactions can be interpreted based on the exchange of specific functional group contacts, with minimal involvement of the bulk solvent. The thermodynamic measurements of preferential solvation were used to determine the H-bond donor parameter alpha for cyclohexane, n-octane, n-dodecane, benzene, 1,4-dioxane, carbon tetrachloride, acetone, dichloromethane, dimethyl sulfoxide and chloroform. For solvents where the H-bond donor parameters have been measured as solutes in carbon tetrachloride solution, the H-bond donor parameters measured here for the same compounds as solvents are practically identical, i.e. solute and solvent H-bond parameters are directly interchangable. For alkanes, the experimental H-bond donor parameter is significantly larger than expected based on calculated molecular electrostatic potential surfaces. This might suggest an increase in the relative importance of van der Waals interactions when electrostatic effects are weak. PMID:20449502

  10. Thermodynamic aspects of heat pipe operation

    NASA Technical Reports Server (NTRS)

    Richter, Robert; Gottschlich, Joseph

    1990-01-01

    An expanded heat pipe operating model is described which includes thermodynamic and heat transfer considerations to reconcile disparities between actual and theoretical heat pipe performances. The analysis shows that thermodynamic considerations can explain the observed heat pipe performance limitations. A full understanding of thermodynamic processes could lead to advanced concepts for thermal transport devices.

  11. Intermediate reboiler and condenser arrangement for binary distillation columns

    SciTech Connect

    Agrawal, R.; Herron, D.M.

    1998-06-01

    The most thermodynamically efficient configuration for adding or removing heat from an intermediate location of an ideal binary distillation column distilling pure products is derived. The optimal policy requires that preconditioning of the feed be part of the overall decision-making process. The optimal configuration can be determined through the use of two parameters, {alpha}{sub IR} and {alpha}{sub IC}, that are solely functions of feed composition. Simple and readily usable heuristics using these parameters are developed that help instantly identify the most efficient selection among (1) totally vaporizing and returning a side-draw liquid stream from an intermediate location of the distillation column, (2) partially or totally vaporizing a portion of the given saturated liquid feed, (3) partially or totally condensing a portion of the given saturated vapor feed, and (4) totally condensing and returning a side-draw vapor stream from an intermediate location of the distillation column.

  12. Thermodynamic Modeling of Hydrogen Storage Capacity in Mg-Na Alloys

    PubMed Central

    Abdessameud, S.; Mezbahul-Islam, M.; Medraj, M.

    2014-01-01

    Thermodynamic modeling of the H-Mg-Na system is performed for the first time in this work in order to understand the phase relationships in this system. A new thermodynamic description of the stable NaMgH3 hydride is performed and the thermodynamic models for the H-Mg, Mg-Na, and H-Na systems are reassessed using the modified quasichemical model for the liquid phase. The thermodynamic properties of the ternary system are estimated from the models of the binary systems and the ternary compound using CALPHAD technique. The constructed database is successfully used to reproduce the pressure-composition isotherms for MgH2 + 10 wt.% NaH mixtures. Also, the pressure-temperature equilibrium diagram and reaction paths for the same composition are predicted at different temperatures and pressures. Even though it is proved that H-Mg-Na does not meet the DOE hydrogen storage requirements for onboard applications, the best working temperatures and pressures to benefit from its full catalytic role are given. Also, the present database can be used for thermodynamic assessments of higher order systems. PMID:25383361

  13. Thermodynamic modeling of hydrogen storage capacity in Mg-Na alloys.

    PubMed

    Abdessameud, S; Mezbahul-Islam, M; Medraj, M

    2014-01-01

    Thermodynamic modeling of the H-Mg-Na system is performed for the first time in this work in order to understand the phase relationships in this system. A new thermodynamic description of the stable NaMgH3 hydride is performed and the thermodynamic models for the H-Mg, Mg-Na, and H-Na systems are reassessed using the modified quasichemical model for the liquid phase. The thermodynamic properties of the ternary system are estimated from the models of the binary systems and the ternary compound using CALPHAD technique. The constructed database is successfully used to reproduce the pressure-composition isotherms for MgH2 + 10 wt.% NaH mixtures. Also, the pressure-temperature equilibrium diagram and reaction paths for the same composition are predicted at different temperatures and pressures. Even though it is proved that H-Mg-Na does not meet the DOE hydrogen storage requirements for onboard applications, the best working temperatures and pressures to benefit from its full catalytic role are given. Also, the present database can be used for thermodynamic assessments of higher order systems. PMID:25383361

  14. Thermodynamic modeling of hydrogen storage capacity in Mg-Na alloys.

    PubMed

    Abdessameud, S; Mezbahul-Islam, M; Medraj, M

    2014-01-01

    Thermodynamic modeling of the H-Mg-Na system is performed for the first time in this work in order to understand the phase relationships in this system. A new thermodynamic description of the stable NaMgH3 hydride is performed and the thermodynamic models for the H-Mg, Mg-Na, and H-Na systems are reassessed using the modified quasichemical model for the liquid phase. The thermodynamic properties of the ternary system are estimated from the models of the binary systems and the ternary compound using CALPHAD technique. The constructed database is successfully used to reproduce the pressure-composition isotherms for MgH2 + 10 wt.% NaH mixtures. Also, the pressure-temperature equilibrium diagram and reaction paths for the same composition are predicted at different temperatures and pressures. Even though it is proved that H-Mg-Na does not meet the DOE hydrogen storage requirements for onboard applications, the best working temperatures and pressures to benefit from its full catalytic role are given. Also, the present database can be used for thermodynamic assessments of higher order systems.

  15. Thermodynamics and statistical mechanics. [thermodynamic properties of gases

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The basic thermodynamic properties of gases are reviewed and the relations between them are derived from the first and second laws. The elements of statistical mechanics are then formulated and the partition function is derived. The classical form of the partition function is used to obtain the Maxwell-Boltzmann distribution of kinetic energies in the gas phase and the equipartition of energy theorem is given in its most general form. The thermodynamic properties are all derived as functions of the partition function. Quantum statistics are reviewed briefly and the differences between the Boltzmann distribution function for classical particles and the Fermi-Dirac and Bose-Einstein distributions for quantum particles are discussed.

  16. Phase equilibrium calculations of ternary liquid mixtures with binary interaction parameters and molecular size parameters determined from molecular dynamics.

    PubMed

    Oh, Suk Yung; Bae, Young Chan

    2010-07-15

    The method presented in this paper was developed to predict liquid-liquid equilibria in ternary liquid mixtures by using a combination of a thermodynamic model and molecular dynamics simulations. In general, common classical thermodynamic models have many parameters which are determined by fitting a model with experimental data. This proposed method, however, provides a simple procedure for calculating liquid-liquid equilibria utilizing binary interaction parameters and molecular size parameters determined from molecular dynamics simulations. This method was applied to mixtures containing water, hydrocarbons, alcohols, chlorides, ketones, acids, and other organic liquids over various temperature ranges. The predicted results agree well with the experimental data without the use of adjustable parameters.

  17. Equilibrium equation of state of a hard sphere binary mixture at very large densities using replica exchange Monte Carlo simulations.

    PubMed

    Odriozola, Gerardo; Berthier, Ludovic

    2011-02-01

    We use replica exchange Monte Carlo simulations to measure the equilibrium equation of state of the disordered fluid state for a binary hard sphere mixture up to very large densities where standard Monte Carlo simulations do not easily reach thermal equilibrium. For the moderate system sizes we use (up to N = 100), we find no sign of a pressure discontinuity near the location of dynamic glass singularities extrapolated using either algebraic or simple exponential divergences, suggesting they do not correspond to genuine thermodynamic glass transitions. Several scenarios are proposed for the fate of the fluid state in the thermodynamic limit.

  18. UV Chromospheric Activity in Cool, Short-Period Contact Binaries

    NASA Technical Reports Server (NTRS)

    Hrivnak, Bruce J.

    2000-01-01

    We have completed our analysis of the IUE spectra of the short-period contact binary OO Aql. OO Aql is a rare W UMa-type eclipsing binary in which the two solar-type stars may have only recently evolved into contact. The binary has an unusually high mass ratio (0.84), and a relatively long orbital period (0.506 d) for its spectral type (mid-G). Twelve ultraviolet spectra of OO Aql were obtained in 1988 with the IUE satellite, including a series of consecutive observations that cover nearly a complete orbital cycle. Chromospheric activity is studied by means of the Mg II h+k emission at 2800 A. The Mg II emission is found to vary, even when the emission is normalized to the adjacent continuum flux. This variation may be correlated with orbital phase in the 1988 observations. It also appears that the normalized Mg H emission varies with time, as seen in spectra obtained at two different epochs in 1988 and when compared with two spectra obtained several years earlier. The level of chromospheric activity in OO Aql is less than that of other W UMa-type binaries of similar colors, but this is attributed to its early stage of contact binary evolution. Ultraviolet light curves were composed from measurements of the ultraviolet continuum in the spectra. These were analyzed along with visible light curves of OO Aql to determine the system parameters. The large wavelength range in the light curves enabled a well-constrained fit to a cool spot in the system. A paper on these results is scheduled for publication in the February 2001 issue of the Astronomical Journal.

  19. Thermodynamics of information exchange between two coupled quantum dots.

    PubMed

    Kutvonen, Aki; Sagawa, Takahiro; Ala-Nissila, Tapio

    2016-03-01

    We propose a setup based on two coupled quantum dots where thermodynamics of a measurement can be quantitatively characterized. The information obtained in the measurement can be utilized by performing feedback in a manner apparently breaking the second law of thermodynamics. In this way the setup can be operated as a Maxwell's demon, where both the measurement and feedback are performed separately by controlling an external parameter. This is analogous to the case of the original Szilard engine. Since the setup contains both the microscopic demon and the engine itself, the operation of the whole measurement-feedback cycle can be explained in detail at the level of single realizations. In addition, we derive integral fluctuation relations for both the bare and coarse-grained entropy productions in the setup. PMID:27078332

  20. Thermodynamics of information exchange between two coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Kutvonen, Aki; Sagawa, Takahiro; Ala-Nissila, Tapio

    2016-03-01

    We propose a setup based on two coupled quantum dots where thermodynamics of a measurement can be quantitatively characterized. The information obtained in the measurement can be utilized by performing feedback in a manner apparently breaking the second law of thermodynamics. In this way the setup can be operated as a Maxwell's demon, where both the measurement and feedback are performed separately by controlling an external parameter. This is analogous to the case of the original Szilard engine. Since the setup contains both the microscopic demon and the engine itself, the operation of the whole measurement-feedback cycle can be explained in detail at the level of single realizations. In addition, we derive integral fluctuation relations for both the bare and coarse-grained entropy productions in the setup.