Binary YORP Effect and Evolution of Binary Asteroids
NASA Astrophysics Data System (ADS)
Steinberg, Elad; Sari, Re'em
2011-02-01
The rotation states of kilometer-sized near-Earth asteroids are known to be affected by the Yarkevsky O'Keefe-Radzievskii-Paddack (YORP) effect. In a related effect, binary YORP (BYORP), the orbital properties of a binary asteroid evolve under a radiation effect mostly acting on a tidally locked secondary. The BYORP effect can alter the orbital elements over ~104-105 years for a Dp = 2 km primary with a Ds = 0.4 km secondary at 1 AU. It can either separate the binary components or cause them to collide. In this paper, we devise a simple approach to calculate the YORP effect on asteroids and the BYORP effect on binaries including J 2 effects due to primary oblateness and the Sun. We apply this to asteroids with known shapes as well as a set of randomly generated bodies with various degrees of smoothness. We find a strong correlation between the strengths of an asteroid's YORP and BYORP effects. Therefore, statistical knowledge of one could be used to estimate the effect of the other. We show that the action of BYORP preferentially shrinks rather than expands the binary orbit and that YORP preferentially slows down asteroids. This conclusion holds for the two extremes of thermal conductivities studied in this work and the assumption that the asteroid reaches a stable point, but may break down for moderate thermal conductivity. The YORP and BYORP effects are shown to be smaller than could be naively expected due to near cancellation of the effects at small scales. Taking this near cancellation into account, a simple order-of-magnitude estimate of the YORP and BYORP effects as a function of the sizes and smoothness of the bodies is calculated. Finally, we provide a simple proof showing that there is no secular effect due to absorption of radiation in BYORP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinberg, Elad; Sari, Re'em, E-mail: elad.steinberg@mail.huji.ac.il
The rotation states of kilometer-sized near-Earth asteroids are known to be affected by the Yarkevsky O'Keefe-Radzievskii-Paddack (YORP) effect. In a related effect, binary YORP (BYORP), the orbital properties of a binary asteroid evolve under a radiation effect mostly acting on a tidally locked secondary. The BYORP effect can alter the orbital elements over {approx}10{sup 4}-10{sup 5} years for a D{sub p} = 2 km primary with a D{sub s} = 0.4 km secondary at 1 AU. It can either separate the binary components or cause them to collide. In this paper, we devise a simple approach to calculate the YORPmore » effect on asteroids and the BYORP effect on binaries including J{sub 2} effects due to primary oblateness and the Sun. We apply this to asteroids with known shapes as well as a set of randomly generated bodies with various degrees of smoothness. We find a strong correlation between the strengths of an asteroid's YORP and BYORP effects. Therefore, statistical knowledge of one could be used to estimate the effect of the other. We show that the action of BYORP preferentially shrinks rather than expands the binary orbit and that YORP preferentially slows down asteroids. This conclusion holds for the two extremes of thermal conductivities studied in this work and the assumption that the asteroid reaches a stable point, but may break down for moderate thermal conductivity. The YORP and BYORP effects are shown to be smaller than could be naively expected due to near cancellation of the effects at small scales. Taking this near cancellation into account, a simple order-of-magnitude estimate of the YORP and BYORP effects as a function of the sizes and smoothness of the bodies is calculated. Finally, we provide a simple proof showing that there is no secular effect due to absorption of radiation in BYORP.« less
Collapsing Binary Asteroids With YORP And BYORP
NASA Astrophysics Data System (ADS)
Taylor, Patrick A.
2012-05-01
A separated binary system may be collapsed to contact via the removal of angular momentum from the system until a viable tidal end state no longer exists. The thermal YORP and BYORP effects are both capable of removing angular momentum from the system, by spin-down of the components and shrinking the mutual orbit, respectively. The YORP effect, with strength of order that measured for (1862) Apollo [1], can collapse a binary system with equal-mass components in as little as tens of thousands of years (depending on the initial angular momentum), while smaller secondaries require two or more orders of magnitude longer to collapse. BYORP, with a BYORP coefficent of 0.001 [2], is less efficient, especially for smaller secondaries. By these methods, only near-Earth binaries with large mass ratios can collapse within a dynamical lifetime, a population of which is observed by radar with a frequency comparable to separated binaries. [1] Kaasalainen et al., 2007, Nature 446, 420-422. [2] McMahon and Scheeres, 2010, Icarus 209, 494-509.
A New Equilibrium State for Singly Synchronous Binary Asteroids
NASA Astrophysics Data System (ADS)
Golubov, Oleksiy; Unukovych, Vladyslav; Scheeres, Daniel J.
2018-04-01
The evolution of rotation states of small asteroids is governed by the Yarkovsky–O’Keefe–Radzievskii–Paddack (YORP) effect, nonetheless some asteroids can stop their YORP evolution by attaining a stable equilibrium. The same is true for binary asteroids subjected to the binary YORP (BYORP) effect. Here we discuss a new type of equilibrium that combines these two, which is possible in a singly synchronous binary system. This equilibrium occurs when the normal YORP, the tangential YORP, and the BYORP compensate each other, and tidal torques distribute the angular momentum between the components of the system and dissipate energy. If unperturbed, such a system would remain singly synchronous in perpetuity with constant spin and orbit rates, as the tidal torques dissipate the incoming energy from impinging sunlight at the same rate. The probability of the existence of this kind of equilibrium in a binary system is found to be on the order of a few percent.
Orbital evolution of small binary asteroids
NASA Astrophysics Data System (ADS)
Ćuk, Matija; Nesvorný, David
2010-06-01
About 15% of both near-Earth and main-belt asteroids with diameters below 10 km are now known to be binary. These small asteroid binaries are relatively uniform and typically contain a fast-spinning, flattened primary and a synchronously rotating, elongated secondary that is 20-40% as large (in diameter) as the primary. The principal formation mechanism for these binaries is now thought to be YORP (Yarkovsky-O'Keefe-Radzievskii-Paddack) effect induced spin-up of the primary followed by mass loss and accretion of the secondary from the released material. It has previously been suggested (Ćuk, M. [2007]. Astrophys. J. 659, L57-L60) that the present population of small binary asteroids is in a steady state between production through YORP and destruction through binary YORP (BYORP), which should increase or decrease secondary's orbit, depending on the satellite's shape. However, BYORP-driven evolution has not been directly modeled until now. Here we construct a simple numerical model of the binary's orbital as well the secondary's rotational dynamics which includes BYORP and selected terms representing main solar perturbations. We find that many secondaries should be vulnerable to chaotic rotation even for relatively low-eccentricity mutual orbits. We also find that the precession of the mutual orbit for typical small binary asteroids might be dominated by the perturbations from the prolate and librating secondary, rather than the oblate primary. When we evolve the mutual orbit by BYORP we find that the indirect effects on the binary's eccentricity (through the coupling between the orbit and the secondary's spin) dominate over direct ones caused by the BYORP acceleration. In particular, outward evolution causes eccentricity to increase and eventually triggers chaotic rotation of the secondary. We conclude that the most likely outcome will be reestablishing of the synchronous lock with a "flipped" secondary which would then evolve back in. For inward evolution we find an initial decrease of eccentricity and secondary's librations, to be followed by later increase. We think that it is likely that various forms of dissipation we did not model may damp the secondary's librations close to the primary, allowing for further inward evolution and a possible merger. We conclude that a merger or a tidal disruption of the secondary are the most likely outcomes of the BYORP evolution. Dissociation into heliocentric pairs by BYORP alone should be very difficult, and satellite loss might be restricted to the minority of systems containing more than one satellite at the time.
NASA Astrophysics Data System (ADS)
Jacobson, Seth A.; Marzari, Francesco; Rossi, Alessandro; Scheeres, Daniel J.
2016-10-01
From the results of a comprehensive asteroid population evolution model, we conclude that the YORP-induced rotational fission hypothesis is consistent with the observed population statistics of small asteroids in the main belt including binaries and contact binaries. These conclusions rest on the asteroid rotation model of Marzari et al. ([2011]Icarus, 214, 622-631), which incorporates both the YORP effect and collisional evolution. This work adds to that model the rotational fission hypothesis, described in detail within, and the binary evolution model of Jacobson et al. ([2011a] Icarus, 214, 161-178) and Jacobson et al. ([2011b] The Astrophysical Journal Letters, 736, L19). Our complete asteroid population evolution model is highly constrained by these and other previous works, and therefore it has only two significant free parameters: the ratio of low to high mass ratio binaries formed after rotational fission events and the mean strength of the binary YORP (BYORP) effect. We successfully reproduce characteristic statistics of the small asteroid population: the binary fraction, the fast binary fraction, steady-state mass ratio fraction and the contact binary fraction. We find that in order for the model to best match observations, rotational fission produces high mass ratio (> 0.2) binary components with four to eight times the frequency as low mass ratio (<0.2) components, where the mass ratio is the mass of the secondary component divided by the mass of the primary component. This is consistent with post-rotational fission binary system mass ratio being drawn from either a flat or a positive and shallow distribution, since the high mass ratio bin is four times the size of the low mass ratio bin; this is in contrast to the observed steady-state binary mass ratio, which has a negative and steep distribution. This can be understood in the context of the BYORP-tidal equilibrium hypothesis, which predicts that low mass ratio binaries survive for a significantly longer period of time than high mass ratio systems. We also find that the mean of the log-normal BYORP coefficient distribution μB ≳10-2 , which is consistent with estimates from shape modeling (McMahon and Scheeres, 2012a).
A contact binary asteroid evolutionary cycle driven by BYORP & the classical Laplace plane
NASA Astrophysics Data System (ADS)
Rieger, Samantha; Scheeres, Daniel J.
2017-10-01
Several contact binaries have been observed to have high obliquities distributed around 90°. With this information, we explore the possibility of these high obliquities being a key characteristic that causes an evolutionary cycle of contact binary formation and separation.The contact binary cycle begins with a single asteroid that is spinning up due to the YORP effect. For the binary cycle we assume YORP will drive the obliquity to 90°. Eventually, the asteroid will reach a critical spin frequency that will cause the asteroid to fission into a binary. We assume that the mass-ratio, q, of the system is greater than 0.2. With a high q, the secondary will not escape/impact the primary but will evolve through tides into a stable circular double-synchronous orbit. The binary being synchronous will cause the forces from BYORP to have secular effects on the system. For this cycle, BYORP will need to expand the secondary away from the primary.As the system expands, we have found that the secondary will follow the classical Laplace plane. Therefore, the secondary’s orbit will increase in inclination with respect to the equator as the secondary’s orbit expands. The Laplace plane is a stable orbit to perturbations from J2 & Sun tides except for an instability region that exists for primaries with obliquities above 68.875° & a secondary orbital radius of 13.5-19.5 primary radii. Once BYORP expands the secondary into this instability region, the eccentricity of the secondary’s orbit will increase until the orbit intersects with the primary & causes an impact. This impact will create a contact binary with a new obliquity that will randomly range from 23°-150°. The cycle will begin again with YORP driving the contact binary to an obliquity of 90°.Our contribution will discuss the proposed contact binary cycle in more detail, including the mechanics of the system that drives the events given above. We will include investigations into how losing synchronous lock will disrupt the eccentricity growth in the Laplace plane instability region. We will also discuss the time scales of each event to help predict which part of the cycle we will most likely to be observing when discovering new contact binaries & binary systems.
Photometric constraints on binary asteroid dynamics
NASA Astrophysics Data System (ADS)
Scheirich, Peter
2015-08-01
To date, about 50 binary NEAs, 20 Mars-crossing and 80 small MB asteroids are known. We observe also a population of about 200 unbound asteroid systems (asteroid pairs). I will review the photometric observational data we have for the best observed cases and compare them with theories of binary and paired asteroids evolution.The observed characteristics of asteroid systems suggest their formation by rotational fission of parent rubble-pile asteroids after being spun up by the YORP effect. The angular momentum content of binary asteroids is close to critical. The orientations of satellite orbits of observed binary systems are non-random; the orbital poles concentrate near the obliquities of 0 and 180 degrees, i.e., near the YORP asymptotic states.Recently, a significant excess of retrograde satellite orbits was detected, which is not yet explained characteristic.An evolution of binary system depend heavily on the BYORP effect. If BYORP is contractive, the primary and secondary could end in a tidal-BYORP equilibrium. Observations of mutual events between binary components in at least four apparitions are needed for BYORP to be revealed by detecting a quadratic drift in mean anomaly of the satellite. I will show the observational evidence of single-synchronous binary asteroid with tidally locked satellite (175706 1996 FG3), i.e, with the quadratic drift equal to zero, and binary asteroid with contracting orbit (88710 2001 SL9), with positive value of the quadratic drift (the solution for the quadratic drift is ambiguous so far, with possible values of 5 and 8 deg/yr2).The spin configuration of the satellite play a crucial role in the evolution of the system under the influence of the BYORP effect. I will show that the rotational lightcurves of the satellites show that most of them have small libration amplitudes (up to 20 deg.), with a few interesting exceptions.Acknowledgements: This work has been supported by the Grant Agency of the Czech Republic, Grant P209/12/0229, and by the Ministry of Education of the Czech Republic, Grant LG12001.
NASA Astrophysics Data System (ADS)
Rieger, Samantha M.
Natural and artificial satellites are subject to perturbations when orbiting near-Earth asteroids. These perturbations include non-uniform gravity from the asteroid, third-body disturbances from the Sun, and solar radiation pressure. For small natural (1 cm-15 m) and artificial satellites, solar radiation pressure is the primary perturbation that will cause their orbits to go unstable. For the asteroid Bennu, the future target of the spacecraft OSIRIS-REx, the possibility of natural satellites having stable orbits around the asteroid and characterize these stable regions is investigated. It has been found that the main orbital phenomena responsible for the stability or instability of these possible natural satellites are Sun-synchronous orbits, the modified Laplace plane, and the Kozai resonance. These findings are applied to other asteroids as well as to artificial satellites. The re-emission of solar radiation pressure through BYORP is also investigated for binary asteroid systems. Specifically, the BYORP force is combined with the Laplace plane such that BYORP expands the orbit of the binary system along the Laplace surface where the secondary increases in inclination. For obliquities from 68.875° - 111.125° the binary will eventually extend into the Laplace instability region, where the eccentricity of the orbit will increase. A subset of the instability region leads to eccentricities high enough that the secondary will impact the primary. This result inspired the development of a hypothesis of a contact-binary binary cycle described briefly in the following. YORP will increase the spin rate of a contact binary while also driving the spin-pole to an obliquity of 90°. Eventually, the contact binary will fission. The binary will subsequently become double-synchronous, thus allowing the BYORP acceleration to have secular effects on the orbit. The orbit will then expand along the Laplace surface to the Laplace plane instability region eventually leading to an impact and the start of a new cycle with the YORP process.
NASA Astrophysics Data System (ADS)
Jacobson, S.; Scheeres, D.; Rossi, A.; Marzari, F.; Davis, D.
2014-07-01
From the results of a comprehensive asteroid-population-evolution model, we conclude that the YORP-induced rotational-fission hypothesis has strong repercussions for the small size end of the main-belt asteroid size-frequency distribution and is consistent with observed asteroid-population statistics and with the observed sub-populations of binary asteroids, asteroid pairs and contact binaries. The foundation of this model is the asteroid-rotation model of Marzari et al. (2011) and Rossi et al. (2009), which incorporates both the YORP effect and collisional evolution. This work adds to that model the rotational fission hypothesis (i.e. when the rotation rate exceeds a critical value, erosion and binary formation occur; Scheeres 2007) and binary-asteroid evolution (Jacobson & Scheeres, 2011). The YORP-effect timescale for large asteroids with diameters D > ˜ 6 km is longer than the collision timescale in the main belt, thus the frequency of large asteroids is determined by a collisional equilibrium (e.g. Bottke 2005), but for small asteroids with diameters D < ˜ 6 km, the asteroid-population evolution model confirms that YORP-induced rotational fission destroys small asteroids more frequently than collisions. Therefore, the frequency of these small asteroids is determined by an equilibrium between the creation of new asteroids out of the impact debris of larger asteroids and the destruction of these asteroids by YORP-induced rotational fission. By introducing a new source of destruction that varies strongly with size, YORP-induced rotational fission alters the slope of the size-frequency distribution. Using the outputs of the asteroid-population evolution model and a 1-D collision evolution model, we can generate this new size-frequency distribution and it matches the change in slope observed by the SKADS survey (Gladman 2009). This agreement is achieved with both an accretional power-law or a truncated ''Asteroids were Born Big'' size-frequency distribution (Weidenschilling 2010, Morbidelli 2009). The binary-asteroid evolution model is highly constrained by the modeling done in Jacobson & Scheeres, and therefore the asteroid-population evolution model has only two significant free parameters: the ratio of low-to-high-mass-ratio binaries formed after rotational fission events and the mean strength of the binary YORP (BYORP) effect. Using this model, we successfully reproduce the observed small-asteroid sub-populations, which orthogonally constrain the two free parameters. We find the outcome of rotational fission most likely produces an initial mass-ratio fraction that is four to eight times as likely to produce high-mass-ratio systems as low-mass-ratio systems, which is consistent with rotational fission creating binary systems in a flat distribution with respect to mass ratio. We also find that the mean of the log-normal BYORP coefficient distribution B ≈ 10^{-2}.
LONG-TERM STABLE EQUILIBRIA FOR SYNCHRONOUS BINARY ASTEROIDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobson, Seth A.; Scheeres, Daniel J.
Synchronous binary asteroids may exist in a long-term stable equilibrium, where the opposing torques from mutual body tides and the binary YORP (BYORP) effect cancel. Interior of this equilibrium, mutual body tides are stronger than the BYORP effect and the mutual orbit semimajor axis expands to the equilibrium; outside of the equilibrium, the BYORP effect dominates the evolution and the system semimajor axis will contract to the equilibrium. If the observed population of small (0.1-10 km diameter) synchronous binaries are in static configurations that are no longer evolving, then this would be confirmed by a null result in the observationalmore » tests for the BYORP effect. The confirmed existence of this equilibrium combined with a shape model of the secondary of the system enables the direct study of asteroid geophysics through the tidal theory. The observed synchronous asteroid population cannot exist in this equilibrium if described by the canonical 'monolithic' geophysical model. The 'rubble pile' geophysical model proposed by Goldreich and Sari is sufficient, however it predicts a tidal Love number directly proportional to the radius of the asteroid, while the best fit to the data predicts a tidal Love number inversely proportional to the radius. This deviation from the canonical and Goldreich and Sari models motivates future study of asteroid geophysics. Ongoing BYORP detection campaigns will determine whether these systems are in an equilibrium, and future determination of secondary shapes will allow direct determination of asteroid geophysical parameters.« less
Binary asteroid orbit evolution due to primary shape deformation
NASA Astrophysics Data System (ADS)
Hirabayashi, Masatoshi; Jacobson, Seth A.; Davis, Alex
2017-10-01
About a sixth of all small asteroid systems are binary [Margot et al., Science, 2002]. Many binary asteroids consist of an elongated synchronous secondary body orbiting a fast-rotating spheroidal primary body with ridges on its equator. The primary in such systems has experienced a long-term spin-up due to the YORP effect [Vokrouhlick'y et al., Asteroid IV, 2015]. This spin-up process can make the primary reach its spin barrier inducing shape deformation processes that ease the structural condition for failure inside the primary [e.g., Holsapple, Icarus, 2010]. Earlier works have shown that structural heterogeneities in the primary such as the shape and density distribution induce asymmetric deformation [Sánchez and Scheeres, Icarus, 2016]. Here, we investigate how asymmetric shape deformation in the primary affects the mutual motion of a binary system. We use a dynamics model for an irregularly shaped binary system that accounts for possible deformation of the primary [Hirabayashi et al., LPSC, 2017]. In this model, we consider asymmetric deformation that occurs based on structural failure in the primary and thus it modifies the location of the center of mass of the system. Using 1999 KW4 as an example, we study a hypothetical case in which the primary is initially identical to the current shape [Ostro et al., Science, 2006] with an aspect ratio (AR) of 0.83 and then suddenly changes its shape to an AR of 0.76. The results show that the asymmetric deformation process and the shift of the center of mass excite the eccentricity of the mutual orbit. Considering that the original mutual orbit has an eccentricity of 0.0004, after the primary shape change the eccentricity reaches values up to 0.15. Also, since the gravity field is modified after deformation, the secondary’s spin is desynchronized from the mutual orbit. Since synchronicity is a requirement for the binary YORP (BYORP) effect, which modifies the semi-major axis of binary asteroids, a primary shape change temporarily pauses the BYORP effect, in effect lengthening the effective BYORP timescale.
NASA Astrophysics Data System (ADS)
Pravec, P.
2013-05-01
From October 2012 we run our NEOSource project on the Danish 1.54-m telescope on La Silla. The primary aim of the project is to study non-gravitational processes in asteroids near the Earth and in their source regions in the main asteroidal belt. In my talk, I will give a brief overview of our current knowledge of the asteroidal non- gravitational processes and how we study them with photometric observations. I will talk especially about binary and paired asteroids that appear to be formed by rotational fission, about detecting the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) and BYORP (binary YORP) effects of anisotropic thermal emission from asteroids that change their spins and satellite orbits, and about non-principal axis rotators (the so called "tumblers") among the smallest, super-critically rotating asteroids with sizes < 100 meters.
Formation of the Wide Asynchronous Binary Asteroid Population
NASA Astrophysics Data System (ADS)
Jacobson, Seth A.; Scheeres, Daniel J.; McMahon, Jay
2014-01-01
We propose and analyze a new mechanism for the formation of the wide asynchronous binary population. These binary asteroids have wide semimajor axes relative to most near-Earth and main belt asteroid systems. Confirmed members have rapidly rotating primaries and satellites that are not tidally locked. Previously suggested formation mechanisms from impact ejecta, from planetary flybys, and directly from rotational fission events cannot satisfy all of the observations. The newly hypothesized mechanism works as follows: (1) these systems are formed from rotational fission, (2) their satellites are tidally locked, (3) their orbits are expanded by the binary Yarkovsky-O'Keefe-Radzievskii-Paddack (BYORP) effect, (4) their satellites desynchronize as a result of the adiabatic invariance between the libration of the secondary and the mutual orbit, and (5) the secondary avoids resynchronization because of the YORP effect. This seemingly complex chain of events is a natural pathway for binaries with satellites that have particular shapes, which define the BYORP effect torque that acts on the system. After detailing the theory, we analyze each of the wide asynchronous binary members and candidates to assess their most likely formation mechanism. Finally, we suggest possible future observations to check and constrain our hypothesis.
Forming the wide asynchronous binary asteroid population
NASA Astrophysics Data System (ADS)
Jacobson, S.; Scheeres, D.; McMahon, J.
2014-07-01
We propose and analyze a new mechanism for the formation of the wide asynchronous binary population. These binary asteroids have wide semi-major axes relative to most near-Earth-asteroid and main-belt-asteroid systems as shown in the attached table. Confirmed members have rapidly rotating primaries and satellites that are not tidally locked. Previously suggested formation mechanisms from impact ejecta, from planetary flybys, and directly from rotational-fission events cannot satisfy all of the observations. The newly hypothesized mechanism works as follows: (1) these systems are formed from rotational fission, (2) their satellites are tidally locked, (3) their orbits are expanded by the binary Yarkovsky-O'Keefe-Radzievskii-Paddack (BYORP) effect, (4) their satellites desynchronize as a result of the adiabatic invariance between the libration of the secondary and the mutual orbit, and (5) the secondary avoids resynchronization because of the YORP effect. This seemingly complex chain of events is a natural pathway for binaries with satellites that have particular shapes, which define the BYORP effect torque that acts on the system. After detailing the theory, we analyze each of the wide-asynchronous-binary members and candidates to assess their most likely formation mechanism. Finally, we suggest possible future observations to check and constrain our hypothesis.
Primary Surface Particle Motion as a Mechanism for YORP-Driven Binary Asteroid Evolution
NASA Astrophysics Data System (ADS)
Fahnestock, Eugene G.; Scheeres, D. J.
2008-09-01
Within the largest class of binary asteroid systems -- asynchronous binaries typified by 1999 KW4 -- we hypothesize continued YORP spin-up of the rapidly rotating primary leads to recurring episodic lofting motion of primary equator regolith. We theorize this is a mechanism for transporting YORP-injected angular momentum from primary spin into the mutual orbit. This both enables binary primaries to continue to spin at near surface fission rates and produces continued orbit expansion on time scales several times faster than expansion predicted by tidal dissipation alone. This is distinct from the Binary Yorp (BYORP) phenomenon, not studied in this work but to be added to it later. We evaluate our hypotheses using a combination of techniques for an example binary system. First high-fidelity dynamic simulation of surface-originating particles in the full-detail gravity field of the binary components, themselves propagated according to the full two body problem, gives particle final disposition (return impact, transfer impact, escape). Trajectory end states found for regolith lofted at different initial primary spin rates and relative poses are collected into probability matrices, allowing probabilistic propagation of surface particles for long durations at low computational cost. We track changes to mass, inertia dyad, rotation state, and centroid position and velocity for each component in response to this mapped particle motion. This allows tracking of primary, secondary, and mutual orbit angular momenta over time, clearly demonstrating the angular momentum transfer mechanism and validating our hypotheses. We present current orbit expansion rates and estimated orbit size doubling times consistent with this mechanism, for a few binary systems. We also discuss ramifications of this type of rapid binary evolution towards separation, including the frequency with which "divorced binaries" on similar heliocentric orbits are produced, formation of triple systems such as 2001 SN263, and separation timescale dependence on heliocentric distance.
NASA Technical Reports Server (NTRS)
Rubincam, David Parry
2012-01-01
Less than catastrophic meteoroid impacts over 10(exp 5) years may change the shape of small rubble-pile satellites in binary NEAs, lengthening the average BYORP (binary Yarkovsky-Radzievskii-Paddack) rate of orbital evolution. An estimate of shape-shifting meteoroid fluxes give numbers close enough to causing random walks in the semimajor axis of binary systems to warrant further investigation
Dynamical evolution of small bodies in the Solar System
NASA Astrophysics Data System (ADS)
Jacobson, Seth A.
2012-05-01
This thesis explores the dynamical evolution of small bodies in the Solar System. It focuses on the asteroid population but parts of the theory can be applied to other systems such as comets or Kuiper Belt objects. Small is a relative term that refers to bodies whose dynamics can be significantly perturbed by non-gravitational forces and tidal torques on timescales less than their lifetimes (for instance the collisional timescale in the Main Belt asteroid population or the sun impact timescale for the near-Earth asteroid population). Non-gravitational torques such as the YORP effect can result in the active endogenous evolution of asteroid systems; something that was not considered more than twenty years ago. This thesis is divided into three independent studies. The first explores the dynamics of a binary systems immediately after formation from rotational fission. The rotational fission hypothesis states that a rotationally torqued asteroid will fission when the centrifugal accelerations across the body exceed gravitational attraction. Asteroids must have very little or no tensile strength for this to occur, and are often referred to as "rubble piles.'' A more complete description of the hypothesis and the ensuing dynamics is provided there. From that study a framework of asteroid evolution is assembled. It is determined that mass ratio is the most important factor for determining the outcome of a rotational fission event. Each observed binary morphology is tied to this evolutionary schema and the relevant timescales are assessed. In the second study, the role of non-gravitational and tidal torques in binary asteroid systems is explored. Understanding the competition between tides and the YORP effect provides insight into the relative abundances of the different binary morphologies and the effect of planetary flybys. The interplay between tides and the BYORP effect creates dramatic evolutionary pathways that lead to interesting end states including stranded widely separated asynchronous binaries or tightly bound synchronous binaries, which occupy a revealing equilibrium. The first results of observations are reported that confirm the theoretically predicted equilibrium. In the final study, the binary asteroid evolutionary model is embedded in a model of the entire Main Belt asteroid population. The asteroid population evolution model includes the effects of collisions as well as the YORP-induced rotational fission. The model output is favorably compared to a number of observables. This allows inferences to be made regarding the free parameters of the model including the most likely typical binary lifetimes. These studies can be combined to create an overall picture of asteroid evolution. From only the power of sunlight, an asteroid can transform into a myriad number of different states according to a few fundamental forces.
Asteroid Geophysics through a Tidal-BYORP Equilibrium
NASA Astrophysics Data System (ADS)
Jacobson, S. A.; Scheeres, D. J.
2012-12-01
There exists a long-term stable orbital equilibrium for singly synchronous binary asteroids balancing the contractive BYORP (binary Yarkovsky-O'Keefe-Radzievskii-Paddack) effect and the expansive tidal torque from the secondary onto the primary [Jacobson & Scheeres 2011]. Observations of 1996 FG3 determined that this object is consistent with occupying the predicted equilibrium [Scheirich, et al., 2012]. From the torque balance, the important tidal parameters of the primary and BYORP coefficient of the secondary can be directly determined for the first time, albeit degenerately. Singly synchronous systems consist of a rapidly spinning primary and a tidally locked secondary. Two torques evolve the mutual orbit of the system. First, the secondary raises a tidal torque on the primary, and this process expands the semi-major axis of the mutual orbit according to two parameters. The tidal Love number k is related to the strength (rigidity) of the body. The tidal dissipation number Q describes the mechanical energy dissipation. Second, the BYORP torque is the summed torques from all of the incident and exigent photons on the secondary acting on the barycenter of the system. Unless there is a spin-orbit resonance, the torques sum to zero. McMahon & Scheeres [2010] showed that showed that to first order in eccentricity the evolution of the semi-major axis and eccentricity depends only upon a single constant coefficient B determined by the shape of the secondary (size-independent). The BYORP torque can either contract or expand the mutual orbit, however it evolves the eccentricity with the opposite sign. Jacobson & Scheeres [2011] determined that when the BYORP torque is contractive, it can balance the expansive tidal torque. The system evolves to an equilibrium semi-major axis that is stable in eccentricity due to tidal decay overcoming BYORP excitation. If the singly synchronous population occupies this equilibrium, then the three unknown (i.e. unobserved) parameters: Bs Qp/k_p, as shown in the figure. Since the BYORP coefficient is defined to be size independent, the tidal parameters Qp/k_p ∝ Rp. This inverse dependence is different than the predicted dependencies of the classical tidal Love number kp ∝ Rp2 and the ``rubble-pile'' tidal Love number predicted in Goldreich & Sari [2009] kp ∝ Rp. Calculated Bs Qp/ kp for each observed singly synchronous binary asteroid system. The circled system is 1996 FG3. The solid line is the fit Bs Qp/k_p = 2557 Rp and the dashed lines are a facto r of 10 and a factor of 0.01 different.
Evolutionary Pathways for Asteroid Satellites
NASA Astrophysics Data System (ADS)
Jacobson, Seth Andrew
2015-08-01
The YORP-induced rotational fission hypothesis is a proposed mechanism for the creation of small asteroid binaries, which make up approximately 1/6-th of the near-Earth asteroid and small Main Belt asteroid populations. The YORP effect is a radiative torque that rotationally accelerates asteroids on timescales of thousands to millions of years. As asteroids rotationally accelerate, centrifugal accelerations on material within the body can match gravitational accelerations holding that material in place. When this occurs, that material goes into orbit. Once in orbit that material coalesces into a companion that undergoes continued dynamical evolution.Observations with radar, photometric and direct imaging techniques reveal a diverse array of small asteroid satellites. These systems can be sorted into a number of morphologies according to size, multiplicity of members, dynamical orbit and spin states, and member shapes. For instance, singly synchronous binaries have short separation distances between the two members, rapidly rotating oblate primary members, and tidally locked prolate secondary members. Other confirmed binary morphologies include doubly synchronous, tight asynchronous and wide asynchronous binaries. Related to these binary morphologies are unbound paired asteroid systems and bi-lobate contact binaries.A critical test for the YORP-induced rotational fission hypothesis is whether the binary asteroids produced evolve to the observed binary and related systems. In this talk I will review how this evolution is believed to occur according to gravitational dynamics, mutual body tides and the binary YORP effect.
New observations and new models of spin-orbit coupling in binary asteroids
NASA Astrophysics Data System (ADS)
Margot, Jean-Luc; Naidu, Shantanu
2015-08-01
The YORP-induced rotational fission hypothesis is the leading candidate for explaining the formation of binaries, triples, and pairs among small (<20 km) asteroids (e.g., Margot et al, Asteroids IV, subm., 2015). Various evolutionary paths following rotational fission have been suggested, but many important questions remain about the evolutionary mechanisms and timescales. We test hypotheses about the evolution of binary asteroids by obtaining precise descriptions of the orbits and components of binary systems with radar and by examining the system dynamics with detailed numerical simulations. Predictions for component spin states and orbital precession rates can then be compared to observables in our data sets or in other data sets to elucidate the states of various systems and their likely evolutionary paths.Accurate simulations require knowledge of the masses, shapes, and spin states of individual binary components. Because radar observations can provide exquisite data sets spanning days with spatial resolutions at the decameter level, we can invert for the component shapes and measure spin states. We can also solve for the mutual orbit by fitting the observed separations between components. In addition, the superb (10e-7--10e-8) fractional uncertainties in range allow us to measure the reflex motions directly, allowing masses of individual components to be determined.We use recently published observations of the binary 2000 DP107 (Naidu et al. AJ, subm., 2015) and that of other systems to simulate the dynamics of components in well-characterized binary systems (Naidu and Margot, AJ 149, 80, 2015). We model the coupled spin and orbital motions of two rigid, ellipsoidal bodies under the influence of their mutual gravitational potential. We use surface of section plots to map the possible spin configurations of the satellites. For asynchronous satellites, the analysis reveals large regions of phase space where the spin state of the satellite is chaotic. The presence of chaotic regions may substantially increase spin synchronization timescales, delay BYORP-type evolution, extend the lifetime of binaries, and explain the observed fraction of asynchronous binaries.
NASA Astrophysics Data System (ADS)
Rossi, A.; Marzari, F.; Scheeres, D.; Jacobson, S.; Davis, D.
In the last several years a comprehensive asteroid-population-evolution model was developed incorporating both the YORP effect and collisional evolution \\citep{rossi_2009}, \\citep{marz_2011}, \\citep{jac_mnras}. From the results of this model we were able to match the observed main belt rotation rate distribution and to give a first plausible explanation of the observed excess of slow rotators, through a random walk-like evolution of the spin, induced by repeated collisions with small projectiles. Moreover, adding to the model the rotational fission hypothesis (i.e. when the rotation rate exceeds a critical value, erosion and binary formation occur; \\citealt{sch_2007}) and binary-asteroid evolution \\citep{jac_sch}, we first showed that the YORP-induced rotational-fission hypothesis has strong repercussions for the small size end of the main-belt asteroid size-frequency distribution. We also concluded that this hypothesis is consistent with observed asteroid-population statistics and with the observed sub-populations of binary asteroids, asteroid pairs and contact binaries. An overview of the results obtained, the modelling uncertainties and the ongoing work will be given.
Dynamics of rotationally fissioned asteroids: Source of observed small asteroid systems
NASA Astrophysics Data System (ADS)
Jacobson, Seth A.; Scheeres, Daniel J.
2011-07-01
We present a model of near-Earth asteroid (NEA) rotational fission and ensuing dynamics that describes the creation of synchronous binaries and all other observed NEA systems including: doubly synchronous binaries, high- e binaries, ternary systems, and contact binaries. Our model only presupposes the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect, "rubble pile" asteroid geophysics, and gravitational interactions. The YORP effect torques a "rubble pile" asteroid until the asteroid reaches its fission spin limit and the components enter orbit about each other (Scheeres, D.J. [2007]. Icarus 189, 370-385). Non-spherical gravitational potentials couple the spin states to the orbit state and chaotically drive the system towards the observed asteroid classes along two evolutionary tracks primarily distinguished by mass ratio. Related to this is a new binary process termed secondary fission - the secondary asteroid of the binary system is rotationally accelerated via gravitational torques until it fissions, thus creating a chaotic ternary system. The initially chaotic binary can be stabilized to create a synchronous binary by components of the fissioned secondary asteroid impacting the primary asteroid, solar gravitational perturbations, and mutual body tides. These results emphasize the importance of the initial component size distribution and configuration within the parent asteroid. NEAs may go through multiple binary cycles and many YORP-induced rotational fissions during their approximately 10 Myr lifetime in the inner Solar System. Rotational fission and the ensuing dynamics are responsible for all NEA systems including the most commonly observed synchronous binaries.
Stochastic YORP On Real Asteroid Shapes
NASA Astrophysics Data System (ADS)
McMahon, Jay W.
2015-05-01
Since its theoretical foundation and subsequent observational verification, the YORP effect has been understood to be a fundamental process that controls the evolution of small asteroids in the inner solar system. In particular, the coupling of the YORP and Yarkovsky effects are hypothesized to be largely responsible for the transport of asteroids from the main belt to the inner solar system populations. Furthermore, the YORP effect is thought to lead to rotational fission of small asteroids, which leads to the creation of multiple asteroid systems, contact binary asteroids, and asteroid pairs. However recent studies have called into question the ability of YORP to produce these results. In particular, the high sensitivity of the YORP coefficients to variations in the shape of an asteroid, combined with the possibility of a changing shape due to YORP accelerated spin rates can combine to create a stochastic YORP coefficient which can arrest or change the evolution of a small asteroid's spin state. In this talk, initial results are presented from new simulations which comprehensively model the stochastic YORP process. Shape change is governed by the surface slopes on radar based asteroid shape models, where the highest slope regions change first. The investigation of the modification of YORP coefficients and subsequent spin state evolution as a result of this dynamically influenced shape change is presented and discussed.
COUPLED SPIN AND SHAPE EVOLUTION OF SMALL RUBBLE-PILE ASTEROIDS: SELF-LIMITATION OF THE YORP EFFECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cotto-Figueroa, Desireé; Statler, Thomas S.; Richardson, Derek C.
2015-04-10
We present the first self-consistent simulations of the coupled spin-shape evolution of small gravitational aggregates under the influence of the YORP effect. Because of YORP’s sensitivity to surface topography, even small centrifugally driven reconfigurations of aggregates can alter the YORP torque dramatically, resulting in spin evolution that can differ qualitatively from the rigid-body prediction. One-third of our simulations follow a simple evolution described as a modified YORP cycle. Two-thirds exhibit one or more of three distinct behaviors—stochastic YORP, self-governed YORP, and stagnating YORP—which together result in YORP self-limitation. Self-limitation confines rotation rates of evolving aggregates to far narrower ranges thanmore » those expected in the classical YORP cycle, greatly prolonging the times over which objects can preserve their sense of rotation. Simulated objects are initially randomly packed, disordered aggregates of identical spheres in rotating equilibrium, with low internal angles of friction. Their shape evolution is characterized by rearrangement of the entire body, including the deep interior. They do not evolve to axisymmetric top shapes with equatorial ridges. Mass loss occurs in one-third of the simulations, typically in small amounts from the ends of a prolate-triaxial body. We conjecture that YORP self-limitation may inhibit formation of top-shapes, binaries, or both, by restricting the amount of angular momentum that can be imparted to a deformable body. Stochastic YORP, in particular, will affect the evolution of collisional families whose orbits drift apart under the influence of Yarkovsky forces, in observable ways.« less
NASA Astrophysics Data System (ADS)
Pravec, P.; Scheirich, P.; Vokrouhlický, D.; Harris, A. W.; Kušnirák, P.; Hornoch, K.; Pray, D. P.; Higgins, D.; Galád, A.; Világi, J.; Gajdoš, Š.; Kornoš, L.; Oey, J.; Husárik, M.; Cooney, W. R.; Gross, J.; Terrell, D.; Durkee, R.; Pollock, J.; Reichart, D. E.; Ivarsen, K.; Haislip, J.; LaCluyze, A.; Krugly, Yu. N.; Gaftonyuk, N.; Stephens, R. D.; Dyvig, R.; Reddy, V.; Chiorny, V.; Vaduvescu, O.; Longa-Peña, P.; Tudorica, A.; Warner, B. D.; Masi, G.; Brinsfield, J.; Gonçalves, R.; Brown, P.; Krzeminski, Z.; Gerashchenko, O.; Shevchenko, V.; Molotov, I.; Marchis, F.
2012-03-01
Our photometric observations of 18 main-belt binary systems in more than one apparition revealed a strikingly high number of 15 having positively re-observed mutual events in the return apparitions. Our simulations of the survey showed that it cannot be due to an observational selection effect and that the data strongly suggest that poles of mutual orbits between components of binary asteroids in the primary size range 3-8 km are not distributed randomly: The null hypothesis of an isotropic distribution of the orbit poles is rejected at a confidence level greater than 99.99%. Binary orbit poles concentrate at high ecliptic latitudes, within 30° of the poles of the ecliptic. We propose that the binary orbit poles oriented preferentially up/down-right are due to either of the two processes: (i) the YORP tilt of spin axes of their parent bodies toward the asymptotic states near obliquities 0° and 180° (pre-formation mechanism) or (ii) the YORP tilt of spin axes of the primary components of already formed binary systems toward the asymptotic states near obliquities 0° and 180° (post-formation mechanism). The alternative process of elimination of binaries with poles closer to the ecliptic by dynamical instability, such as the Kozai effect due to gravitational perturbations from the Sun, does not explain the observed orbit pole concentration. This is because for close binary asteroid systems, the gravitational effects of primary’s irregular shape dominate the solar-tide effect.
NASA Astrophysics Data System (ADS)
Rossi, Alessandro; Jacobson, S.; Marzari, F.; Scheeres, D.; Davis, D. R.
2013-10-01
From the results of a comprehensive asteroid population evolution model, we conclude that the YORP-induced rotational fission hypothesis has strong repercussions for the small size end of the Main Belt asteroid size frequency distribution. These results are consistent with observed asteroid population statistics. The foundation of this model is the asteroid rotation model of Marzari et al. (2011), which incorporates both the YORP effect and collisional evolution. This work adds to that model the rotational fission hypothesis (i.e. when the rotation rate exceeds a critical value, erosion and binary formation occur). The YORP effect timescale for large asteroids with diameters D > ~6 km is longer than the collision timescale in the Main Belt, thus the frequency of large asteroids is determined by a collisional equilibrium (e.g. Bottke 2005), but for small asteroids with diameters D < ~6 km, the asteroid population evolution model confirms that YORP-induced rotational fission destroys small asteroids more frequently than collisions. Therefore, the frequency of these small asteroids is determined by an equilibrium between the creation of new asteroids out of the impact debris of larger asteroids and the destruction of these asteroids by YORP-induced rotational fission. By introducing a new source of destruction that varies strongly with size, YORP-induced rotational fission alters the slope of the size frequency distribution. Using the outputs of the asteroid population evolution model and a 1-D collision evolution model, we can generate this new size frequency distribution and it matches the change in slope observed by the SKADS survey (Gladman 2009). This agreement is achieved with both an accretional power-law or a truncated “Asteroids were Born Big” size frequency distribution (Weidenschilling 2010, Morbidelli 2009).
Asteroid 2017 FZ2 et al.: signs of recent mass-shedding from YORP?
NASA Astrophysics Data System (ADS)
de la Fuente Marcos, C.; de la Fuente Marcos, R.
2018-01-01
The first direct detection of the asteroidal Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect, a phenomenon that changes the spin states of small bodies due to thermal reemission of sunlight from their surfaces, was obtained for (54509) YORP 2000 PH5. Such an alteration can slowly increase the rotation rate of asteroids, driving them to reach their fission limit and causing their disruption. This process can produce binaries and unbound asteroid pairs. Secondary fission opens the door to the eventual formation of transient but genetically related groupings. Here, we show that the small near-Earth asteroid (NEA) 2017 FZ2 was a co-orbital of our planet of the quasi-satellite type prior to their close encounter on 2017 March 23. Because of this flyby with the Earth, 2017 FZ2 has become a non-resonant NEA. Our N-body simulations indicate that this object may have experienced quasi-satellite engagements with our planet in the past and it may return as a co-orbital in the future. We identify a number of NEAs that follow similar paths, the largest named being YORP, which is also an Earth's co-orbital. An apparent excess of NEAs moving in these peculiar orbits is studied within the framework of two orbit population models. A possibility that emerges from this analysis is that such an excess, if real, could be the result of mass shedding from YORP itself or a putative larger object that produced YORP. Future spectroscopic observations of 2017 FZ2 during its next visit in 2018 (and of related objects when feasible) may be able to confirm or reject this interpretation.
Spin Rate Distribution of Small Asteroids Shaped by YORP Effect
NASA Astrophysics Data System (ADS)
Pravec, Petr
2008-09-01
We studied a distribution of spin rates of main belt/Mars crossing (MB/MC) asteroids with diameters 3-15 km using data obtained within the Photometric Survey of Asynchronous Binary Asteroids (Pravec et al. 2008). We found that the spin distribution of the small asteroids is uniform in the range from f = 1 to 9.5 d-1, and there is an excess of slow rotators with f < 1 d-1. The observed distribution appears to be controlled by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. The magnitude of the excess of slow rotators is related to the residence time of slowed down asteroids in the excess and the rate of spin rate change outside the excess. We estimated a median YORP spin rate change of 0.022 d-1/Myr for asteroids in our sample (i.e., a median time in which the spin rate changes by 1 d-1 is 45 Myr), thus the residence time of slowed down asteroids in the excess is 110 Myr. The spin rate distribution of near-Earth asteroids (NEAs) with sizes in the range 0.2-3 km ( 5-times smaller in median diameter than the MB/MC asteroids sample) shows a similar excess of slow rotators, but there is also a concentration of NEAs at fast spin rates with f = 9-10 d-1. The concentration at fast spin rates is correlated with a narrower distribution of spin rates of primaries of binary systems among NEAs; the difference may be due to the apparently more evolved population of binaries among MB/MC asteroids. Reference: Pravec, P., and 30 colleagues, 2008. Spin rate distribution of small asteroids. Icarus, in press. DOI: http://dx.doi.org/10.1016/j.icarus.2008.05.012
Asteroid Systems: Binaries, Triples, and Pairs
NASA Astrophysics Data System (ADS)
Margot, J.-L.; Pravec, P.; Taylor, P.; Carry, B.; Jacobson, S.
In the past decade, the number of known binary near-Earth asteroids has more than quadrupled and the number of known large main-belt asteroids with satellites has doubled. Half a dozen triple asteroids have been discovered, and the previously unrecognized populations of asteroid pairs and small main-belt binaries have been identified. The current observational evidence confirms that small (≲20 km) binaries form by rotational fission and establishes that the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect powers the spin-up process. A unifying paradigm based on rotational fission and post-fission dynamics can explain the formation of small binaries, triples, and pairs. Large (>~20 km) binaries with small satellites are most likely created during large collisions.
Disaggregation of small, cohesive rubble pile asteroids due to YORP
NASA Astrophysics Data System (ADS)
Scheeres, D. J.
2018-04-01
The implication of small amounts of cohesion within relatively small rubble pile asteroids is investigated with regard to their evolution under the persistent presence of the YORP effect. We find that below a characteristic size, which is a function of cohesive strength, density and other properties, rubble pile asteroids can enter a "disaggregation phase" in which they are subject to repeated fissions after which the formation of a stabilizing binary system is not possible. Once this threshold is passed rubble pile asteroids may be disaggregated into their constituent components within a finite time span. These constituent components will have their own spin limits - albeit potentially at a much higher spin rate due to the greater strength of a monolithic body. The implications of this prediction are discussed and include modification of size distributions, prevalence of monolithic bodies among meteoroids and the lifetime of small rubble pile bodies in the solar system. The theory is then used to place constraints on the strength of binary asteroids characterized as a function of their type.
Near-Earth asteroid satellite spins under spin-orbit coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naidu, Shantanu P.; Margot, Jean-Luc
We develop a fourth-order numerical integrator to simulate the coupled spin and orbital motions of two rigid bodies having arbitrary mass distributions under the influence of their mutual gravitational potential. We simulate the dynamics of components in well-characterized binary and triple near-Earth asteroid systems and use surface of section plots to map the possible spin configurations of the satellites. For asynchronous satellites, the analysis reveals large regions of phase space where the spin state of the satellite is chaotic. For synchronous satellites, we show that libration amplitudes can reach detectable values even for moderately elongated shapes. The presence of chaoticmore » regions in the phase space has important consequences for the evolution of binary asteroids. It may substantially increase spin synchronization timescales, explain the observed fraction of asychronous binaries, delay BYORP-type evolution, and extend the lifetime of binaries. The variations in spin rate due to large librations also affect the analysis and interpretation of light curve and radar observations.« less
The Observing Working Group for the Asteroid Impact & Delfection Assessment (AIDA) Mission
NASA Astrophysics Data System (ADS)
Osip, David J.; Rivkin, Andrew S.; Pravec, Petr; Moskovitz, Nicholas; Thirouin, Audrey; Scheirich, Peter; Oszkiewicz, Dagmara Anna; Richardson, Derek C.; Polishook, David; Ryan, William; Thomas, Cristina; Busch, Michael W.; Cheng, Andrew F.; Michel, Patrick; AIDA Observing Working Group
2016-10-01
The Asteroid Impact & Deflection Assessment (AIDA) mission is a joint ESA-NASA mission concept currently under study. AIDA has two components: the Double Asteroid Redirect Test (DART) is the US component designed to demonstrate a kinetic impactor, while the Asteroid Impact Mission (AIM) spacecraft is on station to do a thorough pre- and post-impact survey of the Didymos system.Members of the DART and AIM Investigation teams have been organized into several joint and independent working groups. While there is overlap in subject matter and membership between the groups, we focus here on the activities of the Observing Working Group.The first work by the group was undertaken during the spring of 2015, before DART entered Phase A. During this period Didymos made an apparition reaching roughly V ~ 20.5 in brightness, and our top priority was constraining which of two very different pole positions for the Didymos system was correct. Several telescopes in the 2-4-m aperture range around the world attempted observations. An observed mutual event allowed the one pole position to be ruled out. Didymos is now thought to be a low-obliquity, retrograde rotator, similar to many other asteroid binary systems and consistent with expectations from a YORP-driven origin for the satellite.We have begun planning for the 2017 apparition, occurring in the first half of the year. Didymos will be ~20% brighter at opposition than the 2015 apparition. Scaling from the successful observations with the 4.3-m Lowell Discovery Channel Telescope indicates that we will need telescopes at least 4 m (or larger, for some of the tasks, or at times longer before or after the opposition) in primary diameter for the advanced characterization in 2017.Currently, we have four goals for this apparition: 1) confirming the preferred retrograde pole position; 2) gathering data to allow BYORP-driven changes in the mutual orbit to potentially be determined by later observations; 3) establishing whether or not the secondary is in synchronous rotation with the primary; and 4) constraining the inclination of the satellite orbit.
Anisotropic distribution of orbit poles of binary asteroids
NASA Astrophysics Data System (ADS)
Pravec, P.; Scheirich, P.; Vokrouhlický, D.; Harris, A. W.; Kusnirak, P.; Hornoch, K.; Pray, D. P.; Higgins, D.; Galád, A.; Világi, J.; Gajdos, S.; Kornos, L.; Oey, J.; Husárik, M.; Cooney, W. R.; Gross, J.; Terrell, D.; Durkee, R.; Pollock, J.; Reichart, D.; Ivarsen, K.; Haislip, J.; Lacluyze, A.; Krugly, Y. N.; Gaftonyuk, N.; Dyvig, R.; Reddy, V.; Stephens, R. D.; Chiorny, V.; Vaduvescu, O.; Longa, P.; Tudorica, A.; Warner, B. D.; Masi, G.; Brinsfield, J.; Gonçalves, R.; Brown, P.; Krzeminski, Z.; Gerashchenko, O.; Marchis, F.
2011-10-01
Our photometric observations of 18 mainbelt binary systems in more than one apparition revealed a strikingly high number of 15 having positively re-observed mutual events in the return apparitions. Our simulations of the survey showed that the data strongly suggest that poles of mutual orbits between components of binary asteroids are not distributed randomly: The null hypothesis of the isotropic distribution of orbit poles is rejected at a confidence level greater than 99.99%. Binary orbit poles concentrate at high ecliptic latitudes, within 30° of the poles of the ecliptic. We propose that the binary orbit poles oriented preferentially up/down-right are due to formation of small binary systems by rotational fission of critically spinning parent bodies with poles near the YORP asymptotic states with obliquities near 0 and 180°. An alternative process of elimination of binaries with poles closer to the ecliptic by the Kozai dynamics of gravitational perturbations from the sun does not explain the observed orbit pole concentration as in the close asteroid binary systems the J2 perturbation due to the primary dominates the solar-tide effect.
Spin rate distribution of small asteroids
NASA Astrophysics Data System (ADS)
Pravec, P.; Harris, A. W.; Vokrouhlický, D.; Warner, B. D.; Kušnirák, P.; Hornoch, K.; Pray, D. P.; Higgins, D.; Oey, J.; Galád, A.; Gajdoš, Š.; Kornoš, L.; Világi, J.; Husárik, M.; Krugly, Yu. N.; Shevchenko, V.; Chiorny, V.; Gaftonyuk, N.; Cooney, W. R.; Gross, J.; Terrell, D.; Stephens, R. D.; Dyvig, R.; Reddy, V.; Ries, J. G.; Colas, F.; Lecacheux, J.; Durkee, R.; Masi, G.; Koff, R. A.; Goncalves, R.
2008-10-01
The spin rate distribution of main belt/Mars crossing (MB/MC) asteroids with diameters 3-15 km is uniform in the range from f=1 to 9.5 d -1, and there is an excess of slow rotators with f<1 d -1. The observed distribution appears to be controlled by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. The magnitude of the excess of slow rotators is related to the residence time of slowed down asteroids in the excess and the rate of spin rate change outside the excess. We estimated a median YORP spin rate change of ≈0.022 d/Myr for asteroids in our sample (i.e., a median time in which the spin rate changes by 1 d -1 is ≈45 Myr), thus the residence time of slowed down asteroids in the excess is ≈110 Myr. The spin rate distribution of near-Earth asteroids (NEAs) with sizes in the range 0.2-3 km (˜5 times smaller in median diameter than the MB/MC asteroids sample) shows a similar excess of slow rotators, but there is also a concentration of NEAs at fast spin rates with f=9-10 d. The concentration at fast spin rates is correlated with a narrower distribution of spin rates of primaries of binary systems among NEAs; the difference may be due to the apparently more evolved population of binaries among MB/MC asteroids.
Modelling evolution of asteroid's rotation due to the YORP effect
NASA Astrophysics Data System (ADS)
Golubov, Oleksiy; Lipatova, Veronika; Scheeres, Daniel J.
2016-05-01
The Yarkovsky--O'Keefe--Radzievskii--Paddack (or YORP) effect is influence of light pressure on rotation of asteroids. It is the most important factor for evolution of rotation state of small asteroids, which can drastically alter their rotation rate and obliquity over cosmologic timescales.In the poster we present our program, which calculates evolution of ratation state of small asteroids subject to the YORP effect. The program accounts for both axial and obliquity components of YORP, takes into account the thermal inertia of the asteroid's soil, and the tangential YORP. The axial component of YORP is computed using the model by Steinberg and Sari (AJ, 141, 55). The thermal inertia is accounted for in the framework of Golubov et al. 2016 (MNRAS, stw540). Computation of the tangential YORP is based on a siple analytical model, whose applicability is verified via comparison to exact numeric simulations.We apply the program to different shape models of asteroids, and study coupled evolution of their rotation rate and obliquity.
Heat Models of Asteroids and the YORP Effect
NASA Astrophysics Data System (ADS)
Golubov, O.
The Yarkovsky-O'Keefe-Radzievski-Paddack (YORP) effect is a torque of light pressure recoil forces acting on an asteroid. We show how this torque can be expressed as an integral of a universal function over the surface of an asteroid, and discuss generalizations of this expression for the case of non-Lambert's scattering laws, non-convex shapes of asteroids, and non-zero heat conductivity. Then we discuss tangential YORP (TYORP), which appears due to uneven heat conductivity in stones lying on the surface of an asteroid. TYORP manifests itself as a drag, which pulls the surface in the tangential direction. Finally, we discuss relation and interplay between the normal YORP and the tangential YORP.
A Statistical Analysis of YORP Coefficients
NASA Astrophysics Data System (ADS)
McMahon, Jay W.; Scheeres, D.
2013-10-01
The YORP (Yarkovsky-O'Keefe-Radzievskii-Paddack) effect is theorized to be a major factor in the evolution of small asteroids (<10 km) in the near-Earth and main belt populations. YORP torques, which originate from absorbed sunlight and subsequent thermal radiation, causes secular changes in an asteroid's spin rate and spin vector orientation (e.g. Rubincam, Journal of Geophysical Research, 1995). This in turn controls the magnitude and direction of the Yarkovsky effect, which causes a drift in an asteroid's heliocentric semi-major axis (Vokrouhlicky and Farinella, Nature, 2000). YORP is also thought to be responsible for the creation of multiple asteroid systems and asteroid pairs through the process of rotational fission (Pravec et al, Nature, 2010). Despite the fact that the YORP effect has been measured on several asteroids (e.g. Taylor et al, Science, 2007 and Kaasalainen et al, Nature, 2007), it has proven very difficult to predict the effect accurately from a shape model due to the sensitivity of the YORP coefficients to shape changes (Statler, Icarus, 2009). This has been especially troublesome for Itokawa, for which a very detailed shape model is available (Scheeres et al, Icarus 2007; Breiter et al, Astronomy & Astrophysics, 2009). In this study, we compute the YORP coefficients for a number asteroids with detailed shape models available on the PDS-SBN. We then statistically perturb the asteroid shapes at the same resolution, creating a family of YORP coefficients for each shape. Next, we analyze the change in YORP coefficients between a shape model of accuracy obtainable from radar with one including small-scale topography on the surface as was observed on Itokawa. The combination of these families of coefficients will effectively give error bars on our knowledge of the YORP coefficients given a shape model of some accuracy. Finally, we discuss the statistical effect of boulder and craters, and the modification of these results due to recent studies on thermal beaming (Rozitis and Green, Mon. Not. R. Astron. Soc., 2012) and "tangential" YORP (Golubov and Krugly, The Astrophysical Journal Letters, 2012).
The YORP effect on 25 143 Itokawa
NASA Astrophysics Data System (ADS)
Breiter, S.; Bartczak, P.; Czekaj, M.; Oczujda, B.; Vokrouhlický, D.
2009-11-01
Context: The asteroid 25143 Itokawa is one of the candidates for the detection of the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect in the rotation period. Previous studies were carried out up to the 196 608 facets triangulation model and were not able to provide a good theoretical estimate of this effect, raising questions about the influence of the mesh resolution and the centre of mass location on the evolution the rotation period. Aims: The YORP effect on Itokawa is computed for different topography models up to the highest resolution Gaskell mesh of 3 145 728 triangular faces in an attempt to find the best possible YORP estimate. Other, lower resolution models are also studied and the question of the dependence of the rotation period drift on the density distribution inhomogeneities is reexamined. A comparison is made with 433 Eros models possessing a similar resolution. Methods: The Rubincam approximation (zero conductivity) is assumed in the numerical simulation of the YORP effect in rotation period. The mean thermal radiation torques are summed over triangular facets assuming Keplerian heliocentric motion and uniform rotation around a body-fixed axis. Results: There is no evidence of YORP convergence in Gaskell model family. Differently simplified meshes may converge quickly to their parent models, but this does not prove the quality of YORP computed from the latter. We confirm the high sensitivity of the YORP effect to the fine details of the surface for 25 143 Itokawa and 433 Eros. The sensitivity of the Itokawa YORP to the centre of mass shift is weaker than in earlier works, but instead the results prove to be sensitive to the spin axis orientation in the body frame. Conclusions: Either the sensitivity of the YORP effect is a physical phenomenon and all present predictions are questionable, or the present thermal models are too simplified.
The YORP effect on the GOES 8 and GOES 10 satellites: A case study
NASA Astrophysics Data System (ADS)
Albuja, Antonella A.; Scheeres, Daniel J.; Cognion, Rita L.; Ryan, William; Ryan, Eileen V.
2018-01-01
The Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect is a proposed explanation for the observed rotation behavior of inactive satellites in Earth orbit. This paper further explores the YORP effect for highly asymmetric inactive satellites. Satellite models are developed to represent the GOES 8 and GOES 10 satellites, both of which are currently inactive in geosynchronous Earth orbit (GEO). A simple satellite model for the GOES 8 satellite is used to analyze the short period variations of the angular velocity and obliquity as a result of the YORP effect. A more complex model for the rotational dynamics of the GOES 8 and GOES 10 satellites are developed to probe their sensitivity and to match observed spin periods and states of these satellites. The simulated rotation periods are compared to observations for both satellites. The comparison between YORP theory and observed rotation rates for both satellites show that the YORP effect could be the cause for the observed rotational behavior. The YORP model also predicts a novel state for the GOES 8 satellite, namely that it could periodically fall into a tumbling rotation state. Recent observations of this satellite are consistent with this prediction.
Investigating the binary nature of active asteroid 288P/300163
NASA Astrophysics Data System (ADS)
Agarwal, Jessica
2016-10-01
We propose to study the suspected binary nature of active asteroid 288P/300163. We aim to confirm or disprove the existence of a binary nucleus, and - if confirmed - to measure the mutual orbital period and orbit orientation of the compoents, and their sizes. We request 5 orbits of WFC3 imaging, spaced at intervals of 8-12 days. 288P belongs to the recently discovered group of active asteroids, and is particularly remarkable as HST images obtained during its last close approach to Earth in 2011 are consistent with a barely resolved binary system. If confirmed, 288P would be the first known active binary asteroid. For the first time, we would see two important consequences of rotational break-up in a single object: binary formation and dust ejection, highlighting the importance of the YORP-effect in re-shaping the asteroid belt. Confirming 288P as a binary would be a key step towards understanding the evolutionary processes underlying asteroid activity. In order to resolve the two components we need 288P at a geocentric distance comparable to or less than we had in 2011 December (1.85 AU). This condition will be fulfilled for the first time since 2011, between mid-July and mid-November of 2016. The next opportunity to carry out such observations will be in 2021.
Evolution of angular velocity for defunct satellites as a result of YORP: An initial study
NASA Astrophysics Data System (ADS)
Albuja, Antonella A.; Scheeres, Daniel J.; McMahon, Jay W.
2015-07-01
Observations of defunct satellites show that these objects are generally rotating, with some having very fast rotation rates, yet the cause of these rapid rates is unknown. The observed secular change in the spin rate and spin axis orientation of asteroids is known to be caused by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect, however, its effect on inactive satellites in Earth orbit remains unexplored. This paper applies the YORP effect to defunct satellites and analyzes its effect on the spin rate and obliquity of these objects. This work uses two different satellite geometries to explore the secular change of the spin rate and obliquity caused by the YORP effect for inactive Geostationary Earth Orbit (GEO) satellites. One of the model satellites has an asymmetric geometry, which leads to the classical YORP effect as originally formulated for asteroids. The other model satellite is geometrically symmetric, but relies on mass distribution asymmetry to generate the YORP effect. For both models the secular change is explored with averaged dynamics, and the solutions of the averaged theory are compared with numerical integrations of the non-averaged equations of motion. Additionally, previously published observations of inactive GEO satellites are used to estimate the YORP torque acting on those bodies. A comparison between this torque and the expected torque on a defunct satellite shows that the two are of the same order of magnitude. These results motivate further study on the YORP effect in the realm of inactive satellites.
Obliquity dependence of the tangential YORP
NASA Astrophysics Data System (ADS)
Ševeček, P.; Golubov, O.; Scheeres, D. J.; Krugly, Yu. N.
2016-08-01
Context. The tangential Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect is a thermophysical effect that can alter the rotation rate of asteroids and is distinct from the so-called normal YORP effect, but to date has only been studied for asteroids with zero obliquity. Aims: We aim to study the tangential YORP force produced by spherical boulders on the surface of an asteroid with an arbitrary obliquity. Methods: A finite element method is used to simulate heat conductivity inside a boulder, to find the recoil force experienced by it. Then an ellipsoidal asteroid uniformly covered by these types of boulders is considered and the torque is numerically integrated over its surface. Results: Tangential YORP is found to operate on non-zero obliquities and decreases by a factor of two for increasing obliquity.
Analytical YORP torques model with an improved temperature distribution function
NASA Astrophysics Data System (ADS)
Breiter, S.; Vokrouhlický, D.; Nesvorný, D.
2010-01-01
Previous models of the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect relied either on the zero thermal conductivity assumption, or on the solutions of the heat conduction equations assuming an infinite body size. We present the first YORP solution accounting for a finite size and non-radial direction of the surface normal vectors in the temperature distribution. The new thermal model implies the dependence of the YORP effect in rotation rate on asteroids conductivity. It is shown that the effect on small objects does not scale as the inverse square of diameter, but rather as the first power of the inverse.
Is Asteroid 951 Gaspra in a Resonant State with Its Spin Increasing Due to YORP?
NASA Technical Reports Server (NTRS)
Rubincam, David Parry; Rowlands, David D.; Ray, Richard D.; Smith, David E. (Technical Monitor)
2002-01-01
Asteroid 951 Gaspra appears to be in an obliquity resonance with its spin increasing due to the YORP effect. Gaspra, an asteroid 5.8 km in radius, is a prograde rotator with a rotation period of 7.03 hours. A three million year integration indicates its orbit is stable over at least this time span. From its known shape and spin axis orientation and assuming a uniform density, Gaspra's axial precession period turns out to be nearly commensurate with its orbital precession period, which leads to a resonance condition with consequent huge variations in its obliquity. At the same time its shape is such that the Yarkovsky-O'Keefe-Radzievskii-Paddack effect (YORP effect for short) is increasing its spin rate. The YORP cycle normally leads from spin-up to spin-down and then repeating the cycle; however, it appears possible that resonance trapping can at least temporarily interrupt the YORP cycle, causing spin-up until the resonance is exited. This behavior may partially explain why there is an excess of fast rotators among small asteroids. YORP may also be a reason for small asteroids entering resonances in the first place.
The influence of global self-heating on the Yarkovsky and YORP effects
NASA Astrophysics Data System (ADS)
Rozitis, B.; Green, S. F.
2013-07-01
In addition to collisions and gravitational forces, there is a growing amount of evidence that photon recoil forces from the asymmetric reflection and thermal re-radiation of absorbed sunlight are primary mechanisms that are fundamental to the physical and dynamical evolution of small asteroids. The Yarkovsky effect causes orbital drift, and the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect causes changes in the rotation rate and pole orientation. We present an adaptation of the Advanced Thermophysical Model to simultaneously predict the Yarkovsky and YORP effects in the presence of global self-heating that occurs within the large concavities of irregularly shaped asteroids, which has been neglected or dismissed in all previous models. It is also combined with rough surface thermal-infrared beaming effects, which have been previously shown to enhance the Yarkovsky orbital drift and dampen on average the YORP rotational acceleration by orders of several tens of per cent. Tests on all published concave shape models of near-Earth asteroids, and also on 100 Gaussian random spheres, show that the Yarkovsky effect is sensitive to shadowing and global self-heating effects at the few per cent level or less. For simplicity, Yarkovsky models can neglect these effects if the level of accuracy desired is of this order. Unlike the Yarkovsky effect, the YORP effect can be very sensitive to shadowing and global self-heating effects. Its sensitivity increases with decreasing relative strength of the YORP rotational acceleration, and does not appear to depend greatly on the degree of asteroid concavity. Global self-heating tends to produce a vertical offset in an asteroid's YORP-rotational-acceleration versus obliquity curve which is in opposite direction to that produced by shadowing effects. It also ensures that at least one critical obliquity angle exists at which zero YORP rotational acceleration occurs. Global self-heating must be included for accurate predictions of the YORP effect if an asteroid exhibits a large shadowing effect. If global self-heating effects are not included, then it is found in ˜75 per cent of cases that better predictions are produced when shadowing is also not included. Furthermore, global self-heating has implications for reducing the sensitivity of the YORP effect predictions to detailed variations in an asteroid's shape model.
Spin State Equilibria of Asteroids due to YORP Effects
NASA Astrophysics Data System (ADS)
Golubov, Oleksiy; Scheeres, Daniel J.; Lipatova, Veronika
2016-05-01
Spins of small asteroids are controlled by the Yarkovsky--O'Keefe--Radzievskii--Paddack (YORP) effect. The normal version of this effect has two components: the axial component alters the rotation rate, while the obliquity component alters the obliquity. Under this model the rotation state of an asteroid can be described in a phase plane with the rotation rate along the polar radius and the obliquity as the polar angle. The YORP effect induces a phase flow in this plane, which determines the distribution of asteroid rotation rates and obliquities.We study the properties of this phase flow for several typical cases. Some phase flows have stable attractors, while in others all trajectories go to very small or large rotation rates. In the simplest case of zero thermal inertia approximate analytical solutions to dynamics equations are possible. Including thermal inertia and the Tangential YORP effect makes the possible evolutionary scenarios much more diverse. We study possible evolution paths and classify the most general trends. Also we discuss possible implications for the distribution of asteroid rotation rates and obliquities.A special emphasis is put on asteroid (25143) Itokawa, whose shape model is well determined, but who's measured YORP acceleration does not agree with the predictions of normal YORP. We show that Itokawa's rotational state can be explained by the presence of tangential YORP and that it may be in or close to a stable spin state equilibrium. The implications of such states will be discussed.
Rotational breakup as the origin of small binary asteroids.
Walsh, Kevin J; Richardson, Derek C; Michel, Patrick
2008-07-10
Asteroids with satellites are observed throughout the Solar System, from subkilometre near-Earth asteroid pairs to systems of large and distant bodies in the Kuiper belt. The smallest and closest systems are found among the near-Earth and small inner main-belt asteroids, which typically have rapidly rotating primaries and close secondaries on circular orbits. About 15 per cent of near-Earth and main-belt asteroids with diameters under 10 km have satellites. The mechanism that forms such similar binaries in these two dynamically different populations was hitherto unclear. Here we show that these binaries are created by the slow spinup of a 'rubble pile' asteroid by means of the thermal YORP (Yarkovsky-O'Keefe-Radzievskii-Paddack) effect. We find that mass shed from the equator of a critically spinning body accretes into a satellite if the material is collisionally dissipative and the primary maintains a low equatorial elongation. The satellite forms mostly from material originating near the primary's surface and enters into a close, low-eccentricity orbit. The properties of binaries produced by our model match those currently observed in the small near-Earth and main-belt asteroid populations, including 1999 KW(4) (refs 3, 4).
Rotational breakup as the origin of small binary asteroids
NASA Astrophysics Data System (ADS)
Walsh, Kevin J.; Richardson, Derek C.; Michel, Patrick
2008-07-01
Asteroids with satellites are observed throughout the Solar System, from subkilometre near-Earth asteroid pairs to systems of large and distant bodies in the Kuiper belt. The smallest and closest systems are found among the near-Earth and small inner main-belt asteroids, which typically have rapidly rotating primaries and close secondaries on circular orbits. About 15 per cent of near-Earth and main-belt asteroids with diameters under 10km have satellites. The mechanism that forms such similar binaries in these two dynamically different populations was hitherto unclear. Here we show that these binaries are created by the slow spinup of a `rubble pile' asteroid by means of the thermal YORP (Yarkovsky-O'Keefe-Radzievskii-Paddack) effect. We find that mass shed from the equator of a critically spinning body accretes into a satellite if the material is collisionally dissipative and the primary maintains a low equatorial elongation. The satellite forms mostly from material originating near the primary's surface and enters into a close, low-eccentricity orbit. The properties of binaries produced by our model match those currently observed in the small near-Earth and main-belt asteroid populations, including 1999KW4 (refs 3, 4).
Effects of optical and geometrical properties on YORP effect for inactive satellites
NASA Astrophysics Data System (ADS)
Albuja, A.; Scheeres, D.
2014-09-01
With the increasing number of space debris in Earth orbit, it is important to understand the dynamics of these objects. Initial studies have demonstrated that the Yarkovsky, O'Keefe, Radzievskii, Paddack (YORP) effect on inactive satellite needs to be further explored as it could be noticeably affecting the rotational dynamics of these Earth orbiting objects. The YORP effect is created by torques resulting from light and thermal energy being re-emitted from the surface of a body. This effect has been well studied and observed to affect the spin states of asteroids. The purpose of this paper is to further investigate YORP in the realm of large inactive Geosynchronous Earth Orbit (GEO) satellites. The forces that cause the YORP effect are highly dependent on the optical, thermal and geometrical properties of the facets making up the surface of the body being analyzed. This paper focuses on exploring the effect of these properties on the YORP effect for inactive satellite. Two different satellite models that represent bus types of inactive satellites in GEO are used for this study. By varying the optical, thermal and geometrical properties of these models, in a manner that remains consistent with realistic satellite parameters, we can understand the relationship between these properties and the torques created by YORP. Having this knowledge allows for better understanding of the possible attitude states (spin rate and obliquity) for uncontrolled satellites in GEO. This information can then be used to make predictions of the long-term behavior of the rotation rate and obliquity of these objects. Categories of potential final states for defunct GEO satellites can then be created based on geometrical and optical properties (e.g. spin up continuously, spin down continuously, etc.). This allows the population of inactive GEO satellites to be studied in a more general sense and final attitude states for these objects can be quickly identified. Furthermore, an understanding of the sensitivity of YORP to each individual parameter is gained through this paper. Having knowledge of the attitude dynamics for these objects is key for accurate prediction of the orbital dynamics as these two are closely coupled when torques such as YORP are acting on the body.
Modeling of the Yarkovsky and YORP effects
NASA Astrophysics Data System (ADS)
Rozitis, B.
2014-07-01
The Yarkovsky and YORP effects are now widely regarded to be fundamental mechanisms, in addition to collisions and gravitational forces, which drive the dynamical and physical evolution of small asteroids in the Solar System [1]. They are caused by the net force and torque resulting from the asymmetric reflection and thermal re-radiation of sunlight from an asteroid's surface. The net force (Yarkovsky effect) causes the asteroid's orbit to drift outwards or inwards depending on whether the asteroid is a prograde or retrograde rotator. The first direct measurement of Yarkovsky orbital drift was achieved by sensitive radar-ranging on the near-Earth asteroid (NEA) (6489) Golevka in 2003 [2]. The net torque (YORP effect) changes the asteroid's rotation rate and the direction of its spin axis. It can cause an asteroid to spin faster or slower depending on the shape asymmetry, and the first direct measurement of the YORP rotational acceleration was achieved by lightcurve observations on NEA (54509) YORP in 2007 [3]. Since these first direct detections, the Yarkovsky orbital drift has been detected in several tens of NEAs [4,5], and the YORP rotational acceleration has been detected in four more NEAs [6--9]. Indirect evidence of the action of these two effects has also been seen in the populations of NEAs [10], small main-belt asteroids [11], and asteroid families [12]. Modeling of these effects allows further insights into the properties of detected asteroids to be gained, such as the bulk density, obliquity, and surface thermal properties. Recently, high-precision astrometric observations of the Yarkovsky orbital drift of PHA (101955) Bennu were combined with suitable models informed by thermal-infrared observations to derive a bulk density with an uncertainty comparable to that of in-situ spacecraft investigations [13]. Also, the recent YORP effect detection in (25143) Itokawa was combined with a model utilizing the highly detailed Hayabusa-derived shape model to infer an inhomogeneous internal bulk density distribution [9]. Prediction and interpretation of these two effects are therefore critically dependent on accurate models that describe how asteroids reflect and thermally re-radiate sunlight. Yarkovsky and YORP effect models must take into account an asteroid's size and shape, mass and moment of inertia, surface thermal/reflection/emission properties, rotation state, and its orbit about the Sun. A variety of analytical, numerical, and semi-analytical models have been developed over the past decade to study these effects with different levels of detail. The Yarkovsky effect is driven by a morning-afternoon temperature asymmetry during a rotation (diurnal effect) or orbit (seasonal effect) that arises on asteroids with non-zero thermal inertias. Models show that this temperature asymmetry can be enhanced by surface roughness through thermal-infrared beaming effects [14]. YORP rotation rate changes are driven by shape irregularities where photon torques induced on opposite sides of the body do not cancel out. These rotation rate changes have been shown to be independent of thermal inertia for asteroids larger than the thermal skin depth [15]. The YORP effect has also been shown to be highly sensitive to small-scale shape variations [16], surface roughness [14], and the shape model resolution [17] such that the uncertainty in any prediction could be very large. However, recent work has shown that this sensitivity could be less than previously thought when both shadowing and global self-heating effects are included [18], and/or when the induced YORP rotation rate change is relatively large [19]. Recently, a new model has been developed that can simultaneously interpret thermal-infrared observations and predict the Yarkovsky/YORP effects for the derived properties, and has been verified against observations for NEA (1862) Apollo [20]. Also, a ''tangential-YORP'' model has been proposed to explain why only YORP rotational acceleration has been observed when YORP rotational deceleration should also be observed in equal numbers [21]. In the talk, the latest Yarkovsky and YORP modeling techniques and methods will be reviewed, and the future directions of such modeling efforts will be discussed.
YORP effect on real objects. I. Statistical properties
NASA Astrophysics Data System (ADS)
Micheli, M.; Paolicchi, P.
2008-10-01
Context: The intensity of the YORP (Yarkovsky, O'Keefe, Radzievskii, and Paddack) effect and its ability to affect the rotational properties of asteroids depend mainly on the size of the body and on its shape. At present, we have a database of about 30 well-defined shapes of real minor bodies (most of them asteroids, but also planetary satellites and cometary nuclei). Aims: In this paper we perform a statistical analysis of how the YORP effect depends on the shape. Methods: We used the Rubincam approximation (i.e. neglecting the effects of a finite thermal conductivity). Results: We show that, among real bodies, the distribution of the YORP types, according to the classification of Vokrouhlický and Čapek, is significantly different from the one obtained in the same paper from theoretical modeling of shapes. A new “type” also comes out. Moreover, we show that the types are strongly correlated with the intensity of the YORP effect (when normalized to eliminate the dependence on the size, and thus only related to the shape).
Zero secular torque on asteroids from impinging solar photons in the YORP effect: A simple proof
NASA Astrophysics Data System (ADS)
Rubincam, David Parry; Paddack, Stephen J.
2010-10-01
YORP torques, where "YORP" stands for "Yarokovsky-O'Keefe-Radzievskii-Paddack," arise mainly from sunlight reflected off a Solar System object and the infrared radiation emitted by it. We show here, through the most elementary demonstration that we can devise, that secular torques from impinging solar photons are generally negligible and thus cause little secular evolution of an asteroid's obliquity or spin rate.
Zero Secular Torque on Asteroids from Impinging Solar Photons in the YORP Effect: A Simple Proof
NASA Technical Reports Server (NTRS)
Rubincam, David Perry; Paddack, Stephen J.
2010-01-01
YORP torques, where "YORP" stands for "Yarokovsky-O'Keefe-Radzievskii-Paddack." arise mainly from sun light reflected off a Solar System object and the infrared radiation emi tted by it. We show here, through the most elementary demonstration that we Can devise, that secular torques from impinging solar photons are generally negligible and thus cause little secular evolution of an asteroid's obliquity or spin rate.
Spin-state and thermophysical analysis of the near-Earth asteroid (8567) 1996 HW_1
NASA Astrophysics Data System (ADS)
Rożek, A.; Lowry, S.; Rozitis, B.; Wolters, S.; Hicks, M.; Duddy, S.; Fitzsimmons, A.; Green, S.; Snodgrass, C.; Weissman, P.
2014-07-01
The asteroid (8567) 1996 HW_1 is a near-Earth Amor-class asteroid. It has been a target of visual lightcurve observations during the two apparitions in 2005 [1,2] and 2008 [3]. The lightcurve datasets were complemented by the radar data obtained at Arecibo during the close approach in September 2008 [4]. The data was combined to constrain the shape and spin state of the asteroid. The sidereal spin rate was measured to be P = 8.76243 hours, and pole position expressed in ecliptic coordinates as λ=281°, β = -31°, with a complex rotation state not being ruled out. The shape of the asteroid resembles a contact binary with two components connected by a narrow neck. It was predicted that the asteroid's rotation rate is decreasing due to the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. We aimed to verify the predicted YORP-induced period change [4]. The asteroid (8567) 1996 HW_1 has been selected as one of the targets of an ESO Large Programme led by Dr. S. Lowry. The programme includes photometric monitoring, infrared thermal observations, and visual near-infrared spectroscopy of selected near-Earth asteroids. Within the ESO LP, the asteroid has been observed on six runs between April 2010 and April 2013 with ESO's 3.6-m NTT telescope (Chile) to acquire optical lightcurves, and in September and December 2011 the infrared observations were performed with the VISIR instrument at the ESO's 8.2-m VLT telescope (Chile). The data set is completed by the visual lightcurve observations gathered from supporting programmes at JPL's Table Mountain Observatory (USA), Palomar 200-in telescope (USA), and the 2-m Liverpool Telescope (Spain). The visual lightcurves from our 2010-2013 observing campaign were combined with the previously published lightcurves from 2005-2009, doubling the time span of the observations for the purpose of the potential YORP detection. The shape model developed from radar and lightcurve data [4] has been used in the spin-state analysis. The current spin-state model reproduces the shape of all the lightcurves obtained over the eight years very well. We do not detect any signature of YORP in our data despite the long time base of our observations and the quality of the data obtained. The updated and improved spin-state model was used to determine the rotation phase of thermal fluxes obtained with VISIR very precisely. The thermal data was analysed using the Advanced Thermo-Physical Model (ATPM) [5,6]. The effective diameter is estimated to be 2.18 ± 0.05 km, which is consistent with the radar estimate of 2.02 ± 0.16 km. Thermal inertia is at the level of 170 ± 50 {Jm}^{-2}{K}^{-1}{s}^{-1/2} with roughness fraction above 75 %. The geometric albedo (using H = 15.27) can be constrained to P_ν = 0.29 ± 0.01. The ATPM modelling indicates a small YORP-induced acceleration at a rate of about 2.6 × 10^{-10} {rad} {d}^{-2} and an obliquity change of 0.9° per 10^5 years. The current value of obliquity, around 129.2°, is close to the critical value where the rotational component of YORP disappears. This result is in agreement with the results of our spin-state analysis. The detection of a period change at the predicted level may require a much longer observational time span. We note the difference in the sign between this prediction and the earlier estimates coming from the inclusion of large-scale self-heating in our analysis. For an object with a major concavity, it might occur that some parts of its surface will be irradiated by sunlight reflected off the other parts of the surface. This self-heating can significantly change the outcome of the YORP torque computation [7].
NASA Astrophysics Data System (ADS)
Albuja, Antonella A.; Scheeres, Daniel J.
2015-02-01
The Yarkovsky-O'Keefe-Radzvieskii-Paddack (YORP) effect has been well studied for asteroids. This paper develops an analytic solution to find the normal emission YORP component for a single facet. The solution presented here does not account for self-shadowing or self-heating. The YORP coefficient for all facets can be summed together to find the total coefficient of the asteroid. The normal emission component of YORP has been shown to be the most important for asteroids and it directly affects the rate of change of the asteroid's spin period. The analytical solution found is a sole function of the facet's geometry and the obliquity of the asteroid. This solution is universal for any facet and its orientation. The behaviour of the coefficient is analysed with this analytical solution. The closed-form solution is used to find the total YORP coefficient for the asteroids Apollo and 1998 ML14 whose shape models are composed of different numbers of facets. The results are then compared to published results and those obtained through numerical quadrature for validation.
Rotational Dynamics of Inactive Satellites as a Result of the YORP Effect
NASA Astrophysics Data System (ADS)
Albuja, Antonella A.
Observations of inactive satellites in Earth orbit show that these objects are generally rotating, some with very fast rotation rates. In addition, observations indicate that the rotation rate at which defunct satellites spin tends to evolve over time. However, the cause for this behavior is unknown. The observed secular change in the spin rate and spin axis orientation of asteroids is known to be caused by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect, which results in a torque that is created from reflected thermal energy and sunlight from the surface of an asteroid. This thesis explores the effect of YORP on defunct satellites in Earth orbit and offers this as a potential cause for the observed rotation states of inactive satellites. In this work, several different satellite models are developed to represent inactive satellites in Geostationary Earth Orbit (GEO). The evolution of the spin rate and obliquity for each satellite is then explored using Euler's equations of motion as well as spin and year averaged dynamics. This results in the dynamics being analyzed to understand the secular changes that occur, as well as the variations that result from short period terms over the course of a year. Some of the model satellites have asymmetric geometries, leading to the classical YORP effect as originally formulated for asteroids. One model satellite is geometrically symmetric, but relies on mass distribution asymmetry to generate the YORP effect. Because the YORP effect is directly dependent on geometric, optical and thermal properties of the satellite, varying these parameters can lead to different long-term rotational behavior. A sensitivity study is done by varying these parameters and analyzing its effect on the long-term dynamics of a satellite. Additionally, available observation data of inactive GEO satellites are used to estimate the YORP torque acting on those bodies. A comparison between this torque and the expected torque on a defunct satellite shows that the two are of the same order of magnitude, demonstrating that YORP could be a cause for the observed behavior.
The influence of rough surface thermal-infrared beaming on the Yarkovsky and YORP effects
NASA Astrophysics Data System (ADS)
Rozitis, B.; Green, S. F.
2012-06-01
It is now becoming widely accepted that photon recoil forces from the asymmetric reflection and thermal re-radiation of absorbed sunlight are, together with collisions and gravitational forces, primary mechanisms governing the dynamical and physical evolution of asteroids. The Yarkovsky effect causes orbital semimajor axis drift, and the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect causes changes in the rotation rate and pole orientation. We present an adaptation of the Advanced Thermophysical Model to simultaneously predict the Yarkovsky and YORP effects in the presence of thermal-infrared beaming caused by surface roughness, which has been neglected or dismissed in all previous models. Tests on Gaussian random sphere shaped asteroids, and on the real shapes of asteroids (1620) Geographos and (6489) Golevka, show that rough surface thermal-infrared beaming enhances the Yarkovsky orbital drift by typically tens of per cent but it can be as much as a factor of 2. The YORP rotational acceleration is on average dampened by up to a third typically but can be as much as one-half. We find that the Yarkovsky orbital drift is only sensitive to the average degree, and not to the spatial distribution, of roughness across an asteroid surface. However, the YORP rotational acceleration is sensitive to the surface roughness spatial distribution, and can add significant uncertainties to the predictions for asteroids with relatively weak YORP effects. To accurately predict either effect the degree and spatial distribution of roughness across an asteroid surface must be known.
YORP: Influence on Rotation Rate
NASA Astrophysics Data System (ADS)
Golubov, A. A.; Krugly, Yu. N.
2010-06-01
We have developed a semi-analytical model for calculating angular acceleration of asteroids due to Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. The calculation of the YORP effect has been generalized for the case of elliptic orbits. It has been shown that the acceleration does not depend on thermal inertia of the asteroid's surface. The model was applied to the asteroid 1620 Geographos and led to acceleration 2×10^{-18}s^{-2}. This value is close to the acceleration obtained from photometric observations of Geographos by Durech et al. [1].
YORP torques with 1D thermal model
NASA Astrophysics Data System (ADS)
Breiter, S.; Bartczak, P.; Czekaj, M.
2010-11-01
A numerical model of the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect for objects defined in terms of a triangular mesh is described. The algorithm requires that each surface triangle can be handled independently, which implies the use of a 1D thermal model. Insolation of each triangle is determined by an optimized ray-triangle intersection search. Surface temperature is modelled with a spectral approach; imposing a quasi-periodic solution we replace heat conduction equation by the Helmholtz equation. Non-linear boundary conditions are handled by an iterative, fast Fourier transform based solver. The results resolve the question of the YORP effect in rotation rate independence on conductivity within the non-linear 1D thermal model regardless of the accuracy issues and homogeneity assumptions. A seasonal YORP effect in attitude is revealed for objects moving on elliptic orbits when a non-linear thermal model is used.
Tumbling asteroid rotation with the YORP torque and inelastic energy dissipation
NASA Astrophysics Data System (ADS)
Breiter, S.; Murawiecka, M.
2015-05-01
The Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect and rotational energy dissipation due to inelastic deformations are two key mechanisms affecting rotation of tumbling asteroids in long term. Each of the effects used to be discussed separately. We present the first results concerning a simulation of their joint action. Asteroids (3103) Eger and (99942) Apophis, as well as their scaled variants, are used as test bodies. Plugging in the dissipation destroys limit cycles of the pure YORP, but creates a new asymptotic state of stationary tumbling with a fixed rotation period. The present model does not contradict finding Eger in the principal axis rotation. For Apophis, the model suggests that its current rotation state should be relatively young. In general, the fraction of initial conditions leading to the principal axis rotation is too small, compared to the actual data. The model requires a stronger energy dissipation and weaker YORP components in the nutation angle and obliquity.
Detection of the YORP effect in asteroid (1620) Geographos
NASA Astrophysics Data System (ADS)
Durech, J.; Vokrouhlický, D.; Kaasalainen, M.; Higgins, D.; Krugly, Yu. N.; Gaftonyuk, N. M.; Shevchenko, V. G.; Chiorny, V. G.; Hamanowa, H.; Hamanowa, H.; Reddy, V.; Dyvig, R. R.
2008-10-01
Aims: The rotation state of small asteroids is affected by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) torque. The directly observable consequence of the YORP effect is the secular change of the asteroid's rotation period. We carried out new photometric observations of asteroid (1620) Geographos in 2008 to extend the time line that, if long enough, would enable us to see possible deviations from a constant period rotation. Methods: We used the lightcurve inversion method to model the shape and spin state of Geographos. We assumed that the rotation rate evolves in time as ω(t) = ω0 + \\upsilon t, where both the constant term of the rotation rate ω0 and the linear term \\upsilon are parameters to be optimized. In total, we used 94 lightcurves observed in 1969-2008. Results: We show that for \\upsilon = 0, a constant-period model, the whole dataset of lightcurves cannot be satisfactorily fitted. However, when relaxing \\upsilon in the optimization process we obtain an excellent agreement between the model and observations. The best-fit value \\upsilon = (1.15 ± 0.15) × 10-8 rad d-2 implies that Geographos' rotation rate accelerates by ≃2.7 ms yr-1. This is in agreement with the theoretically predicted value 1.4 × 10-8 rad d-2 obtained from numerical integration of YORP torques acting on our convex shape model. Geographos is only the third asteroid (after (1862) Apollo and (54509) YORP) for which the YORP effect has been detected. It is also the largest object for which effects of thermal torques were revealed.
Yarkovsky-O'Keefe-Radzievskii-Paddack effect with anisotropic radiation
NASA Astrophysics Data System (ADS)
Breiter, S.; Vokrouhlický, D.
2011-02-01
In this paper, we study the influence of optical scattering and thermal radiation models on the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. The Lambertian formulation is compared with the scattering and emission laws and Lommel-Seeliger reflection. Although the form of the reflectivity function strongly influences the mean torques because of scattering or thermal radiation alone, their combined contribution to the rotation period YORP effect is not very different from the standard Lambertian values. For higher albedo values, the differences between the Hapke and Lambert models become significant for the YORP effect in attitude.
Generalized YORP evolution: Onset of tumbling and new asymptotic states
NASA Astrophysics Data System (ADS)
Vokrouhlický, D.; Breiter, S.; Nesvorný, D.; Bottke, W. F.
2007-11-01
Asteroids have a wide range of rotation states. While the majority spin a few times to several times each day in principal axis rotation, a small number spin so slowly that they have somehow managed to enter into a tumbling rotation state. Here we investigate whether the Yarkovsky-Radzievskii-O'Keefe-Paddack (YORP) thermal radiation effect could have produced these unusual spin states. To do this, we developed a Lie-Poisson integrator of the orbital and rotational motion of a model asteroid. Solar torques, YORP, and internal energy dissipation were included in our model. Using this code, we found that YORP can no longer drive the spin rates of bodies toward values infinitely close to zero. Instead, bodies losing too much rotation angular momentum fall into chaotic tumbling rotation states where the spin axis wanders randomly for some interval of time. Eventually, our model asteroids reach rotation states that approach regular motion of the spin axis in the body frame. An analytical model designed to describe this behavior does a good job of predicting how and when the onset of tumbling motion should take place. The question of whether a given asteroid will fall into a tumbling rotation state depends on the efficiency of its internal energy dissipation and on the precise way YORP modifies the spin rates of small bodies.
The strength and detectability of the YORP effect in near-Earth asteroids: a statistical approach
NASA Astrophysics Data System (ADS)
Rozitis, B.; Green, S. F.
2013-04-01
In addition to collisions and gravitational forces, it is now becoming widely acknowledged that photon recoil forces and torques from the asymmetric reflection and thermal re-radiation of sunlight are primary mechanisms that govern the rotational evolution of an asteroid. The Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect causes changes in the rotation rate and pole direction of an irregularly shaped asteroid. We present a simple Monte Carlo method to estimate the range of YORP rotational accelerations acting on a near-Earth asteroid (NEA) without knowledge of its detailed shape, and to estimate its detectability using light-curve observations. The method requires knowledge of an asteroid's orbital properties and size, and assumes that the future observational circumstances of an asteroid have already been thought through. It is verified by application to the observational circumstances of the seven YORP-investigated asteroids, and is then applied to 540 NEAs with NEOWISE and/or other diameter measurements, and to all NEAs using Minor Planet Center Orbit absolute magnitudes. The YORP detectability is found to be a strong function of the combined asteroid orbital and diameter properties, and is independent of the rotation period for NEAs that do not have very fast or slow rotation rates. The median and 1σ spread of YORP rotational acceleration expected to be acting on a particular NEA (dω/dt in rad yr-2) can be estimated from its semimajor axis (a in au), eccentricity (e) and diameter (D in km) by using | {{dω } / {dt}} | = 1.20_{ - 0.86}^{ + 1.66} × 10^{ - 2}( {a^2sqrt{1 - e^2} D^2} )^{ - 1} and/or by using | {{dω }/{dt}} | = 1.00_{ - 0.81}^{ + 3.07} × 10^{ - 2}( {a^2sqrt{1 - e^2} D^2} )^{ - 1} if the diameter is instead estimated from the absolute magnitude by assuming a geometric albedo of 0.1. The length of a light-curve observational campaign required to achieve a 50 per cent probability of detecting the YORP effect in a particular NEA (T_CAM_50 in yr) can be estimated by using T_CAM_50 = 12.5( {a^2sqrt{1 - e^2} D^2} )^{1/2} and/or by using T_CAM_50 = 13.7( {a^2sqrt{1 - e^2} D^2} )^{1 /2} for an absolute-magnitude-estimated diameter. To achieve a 95 per cent YORP-detection probability, these last two relations need to be multiplied by factors of ˜3.4 and ˜4.5, respectively. This method and approximate relations will be useful for astronomers who plan to look for YORP rotational acceleration in specific NEAs, and for all-sky surveys that may serendipitously observe NEA light curves.
Detection of the YORP Effect in Asteroid (3103) Eger
NASA Astrophysics Data System (ADS)
Durech, Josef; Vokrouhlicky, D.; Polishook, D.; Krugly, Y. N.; Gaftonyuk, N. M.; Stephens, R. D.; Warner, B. D.; Kaasalainen, M.; Gross, J.; Cooney, W.; Terrel, D.
2009-09-01
The rotation state of small bodies of the Solar System is affected by the thermal Yarkovsky-O'Keefe-Radzievski-Paddack (YORP) torque. The directly observable consequence of YORP is the secular change of the asteroid's rotational period in time. We carried out new photometric measurements of asteroid (3103) Eger during its suitable apparitions in 2001-2009. We also used archived data going back to 1987. Using all available photometry covering more than twenty years, we were able to detect a tiny deviation from the constant-period rotation. This deviation caused an observable shift between the observed lightcurves and those predicted by the best constant-period model. We used the lightcurve inversion method to derive a shape/spin solution that fitted the data at best. We assumed that the rotation rate evolved linearly in time and derived the acceleration of Eger's rotation rate dω/dt = (9 +/- 6) x 10-9 rad/d2 (maximum estimated uncertainty). The accelerating model provides a significantly better fit than the constant-period model. The value of dω/dt derived from observations is in agreement with the theoretical value computed numerically from the lightcurve inversion shape model and its spin axis orientation. After the three asteroids for which the YORP effect has already been detected (1862 Apollo, 54509 YORP, and 1620 Geographos), Eger is the fourth one.
Analytic Theory for the Yarkovsky-O Effect on Obliquity
NASA Astrophysics Data System (ADS)
Nesvorný, David; Vokrouhlický, David
2008-07-01
The Yarkovsky-O'Keefe-Radzievski-Paddack (YORP) effect is a thermal radiation torque that causes small objects to speed up or slow down their rotation and modify their spin vector orientation. This effect has important implications for spin dynamics of diameter D lsim 50 km asteroids. In our previous work we developed an analytic theory for the component of the YORP torque that affects the spin rate. Here we extend these calculations to determine the effect of the YORP torque on obliquity. Our theory is limited to objects with near-spherical shapes. Two limiting cases are studied: (1) immediate emission of the thermal energy that occurs for surface thermal conductivity K = 0; (2) the effects of K ≠ 0 in the limit of small temporal variations of the surface temperature. We use the linearized heat transport equation to model (2). The results include explicit scaling of the YORP torque on obliquity with physical and dynamical parameters such as the thermal conductivity and spin rate. The dependence of torques on the obliquity is given as series of the Legendre polynomials. Comparisons show excellent agreement of the analytic results with the numerically calculated YORP torques for objects such as asteroids 1998 KY26 and (66391) 1999 KW4. We suggest that an important fraction of main belt asteroids may have specific obliquity values (generalized Slivan states) arising from the roots of the Legendre polynomials.
Physical models for the normal YORP and diurnal Yarkovsky effects
NASA Astrophysics Data System (ADS)
Golubov, O.; Kravets, Y.; Krugly, Yu. N.; Scheeres, D. J.
2016-06-01
We propose an analytic model for the normal Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) and diurnal Yarkovsky effects experienced by a convex asteroid. Both the YORP torque and the Yarkovsky force are expressed as integrals of a universal function over the surface of an asteroid. Although in general this function can only be calculated numerically from the solution of the heat conductivity equation, approximate solutions can be obtained in quadratures for important limiting cases. We consider three such simplified models: Rubincam's approximation (zero heat conductivity), low thermal inertia limit (including the next order correction and thus valid for small heat conductivity), and high thermal inertia limit (valid for large heat conductivity). All three simplified models are compared with the exact solution.
NASA Astrophysics Data System (ADS)
Rozek, A.; Breiter, S.; Vokrouhlicky, D.
2011-10-01
A semi-analytical model of the Yarkovsky-O'Keefe- Radzievskii-Paddack (YORP) effect on an asteroid spin in non principal axis rotation state is presented. Assuming zero conductivity, the YORP torque is represented by spherical harmonics series with vector coefficients, allowing to use any degree and order of approximation. Within the quadrupole approximation of the illumination function we find the same first integrals involving rotational momentum, obliquity and dynamical inertia that were obtained by Cicaló and Scheeres [1]. The integrals do not exist when higher degree terms of illumination function are included and then the asymptotic states known from Vokrouhlický et al. [2] appear. This resolves an apparent contradiction between earlier results. Averaged equations of motion admit stable and unstable limit cycle solutions that were not detected previously.
Binaries and triples among asteroid pairs
NASA Astrophysics Data System (ADS)
Pravec, Petr; Scheirich, Peter; Kušnirák, Peter; Hornoch, Kamil; Galád, Adrián
2015-08-01
Despite major achievements obtained during the past two decades, our knowledge of the population and properties of small binary and multiple asteroid systems is still far from advanced. There is a numerous indirect evidence for that most small asteroid systems were formed by rotational fission of cohesionless parent asteroids that were spun up to the critical frequency presumably by YORP, but details of the process are lacking. Furthermore, as we proceed with observations of more and more binary and paired asteroids, we reveal new facts that substantially refine and sometimes change our understanding of the asteroid systems. One significant new finding we have recently obtained is that primaries of many asteroid pairs are actually binary or triple systems. The first such case found is (3749) Balam (Vokrouhlický, ApJL 706, L37, 2009). We have found 9 more binary systems among asteroid pairs within our ongoing NEOSource photometric project since October 2012. They are (6369) 1983 UC, (8306) Shoko, (9783) Tensho-kan, (10123) Fideoja, (21436) Chaoyichi, (43008) 1999 UD31, (44620) 1999 RS43, (46829) 1998 OS14 and (80218) 1999 VO123. We will review their characteristics. These paired binaries as we call them are mostly similar to binaries in the general ("background") population (of unpaired asteroids), but there are a few trends. The paired binaries tend to have larger secondaries with D_2/D_1 = 0.3 to 0.5 and they also tend to be wider systems with 8 of the 10 having orbital periods between 30 and 81 hours, than average among binaries in the general population. There may be also a larger fraction of triples; (3749) Balam is a confirmed triple, having a larger close and a smaller distant satellite, and (8306) Shoko and (10123) Fideoja are suspect triples as they show additional rotational lightcurve components with periods of 61 and 38.8 h that differ from the orbital period of 36.2 and 56.5 h, respectively. The unbound secondaries tend to be of the same size or smaller (with one exception) than the bound orbiting secondaries. I will compare the observed properties of the paired binaries to predictions from theories of formation of asteroid binaries and pairs.
Dynamical evolution of the Cybele asteroids
NASA Astrophysics Data System (ADS)
Carruba, V.; Nesvorný, D.; Aljbaae, S.; Huaman, M. E.
2015-07-01
The Cybele region, located between the 2J:-1A and 5J:-3A mean-motion resonances, is adjacent and exterior to the asteroid main belt. An increasing density of three-body resonances makes the region between the Cybele and Hilda populations dynamically unstable, so that the Cybele zone could be considered the last outpost of an extended main belt. The presence of binary asteroids with large primaries and small secondaries suggested that asteroid families should be found in this region, but only relatively recently the first dynamical groups were identified in this area. Among these, the Sylvia group has been proposed to be one of the oldest families in the extended main belt. In this work we identify families in the Cybele region in the context of the local dynamics and non-gravitational forces such as the Yarkovsky and stochastic Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effects. We confirm the detection of the new Helga group at ≃3.65 au, which could extend the outer boundary of the Cybele region up to the 5J:-3A mean-motion resonance. We obtain age estimates for the four families, Sylvia, Huberta, Ulla, and Helga, currently detectable in the Cybele region, using Monte Carlo methods that include the effects of stochastic YORP and variability of the solar luminosity. The Sylvia family should be T = 1220 ± 40 Myr old, with a possible older secondary solution. Any collisional Cybele group formed prior to the Late Heavy Bombardment would have been most likely completely dispersed in the jumping Jupiter scenario of planetary migration.
Defunct Satellites, Rotation Rates and the YORP Effect
NASA Astrophysics Data System (ADS)
Albuja, A.; Scheeres, D.
2013-09-01
With the increasing number of defunct satellites and associated space debris found in orbit, it is important to understand the dynamics governing the motion of these bodies. Orbit perturbations are coupled with the body's attitude dynamics; therefore it is necessary to have an understanding of attitude dynamics for accurate predictions of debris orbits. Additionally, it is important to have a clear idea of the rotational dynamics of such objects for removal and mitigation purposes. The Yarkovsky-O'Keefe-Raszvieskii-Paddack (YORP) effect has been well studied and credited for the observed secular change in angular velocity of various asteroids. The YORP effect arises due to sunlight being either absorbed and re-emitted as energy or being directly reflected, creating a net downward force on the body's surface. As a result of both of these factors, an overall torque is created on the body yielding a change in the rotational dynamics. While YORP has been extensively studied for asteroids, it has yet to be systematically applied to objects in Earth orbit such as space debris. This paper analyzes the effects of YORP on the obliquity and angular velocity of defunct satellites and other pieces of debris found in Earth orbit. The rotational dynamics are first averaged over the rotational period and next over the orbital period of the Earth, about which the debris is assumed to be orbiting. Using these averaged dynamics, long-term predictions of the evolution of both angular velocity and obliquity are made. In the analysis simulation results are compared to published observational data for defunct satellites. The observed rotation periods of the satellites are used to compute how much torque would be required to obtain such a period only due to YORP. These required torques are compared to the torques that we predict to be acting on these satellites. As an example of what we will present, consider the GEO satellite Gorizont-11. The normalized inferred coefficient for the satellite Gorizont-11 is compared to the computed normalized coefficient for the same satellite. The computed normalized coefficient for Gorizont-11 is 6e-3, while the inferred normalized coefficient for the same satellite is 9e-3. We note that these are of the same order of magnitude, although the real number will be a function of the optical reflectance properties of the bodies, their geometry, etc. The results of this work show that YORP could be the sole cause for the anomalous and rapid rotation of some defunct satellites that has been seen through observations.
Detection of the YORP effect for small asteroids in the Karin family
NASA Astrophysics Data System (ADS)
Nesvorny, David; Carruba, Valerio; Vokrouhlicky, David
2016-10-01
The Karin family formed by a collisional breakup of a ~40-km parent asteroid only 5.75 Myr ago. The young age can be demonstrated by numerically integrating the orbits of Karin family members backward in time and showing the convergence of orbital elements. Previous work has pointed out that the convergence is not ideal if the backward integration only accounts for the gravitational perturbations from the Solar System planets. It improves when the thermal radiation force known as the Yarkovsky effect is accounted for. This method can be used to estimate the spin obliquities of Karin family members. Here we show that the obliquity distribution of diameter D=1-2 km asteroids in the Karin family is bimodal, as expected if the YORP effect acted to move obliquities toward extreme values (0 or 180 deg). The measured magnitude of the effect is consistent with the standard YORP model. Specifically, the strength of the YORP effect is inferred to be roughly 70% of the nominal YORP strength obtained for a collection of random Gaussian spheroids. The surface thermal conductivity is found to be 0.07-0.2 W/m/K (thermal inertia 300-500 in the SI units). These results are consistent with surfaces composed of rough and rocky regolith. The obliquity values predicted here for 480 members of the Karin cluster can be validated by the lightcurve inversion method. In broader context, the bimodal distribution of obliquities in the Karin cluster can be thought as an initial stage of dynamical evolution that later leads to a characteristically bi-lobed distribution of family members in the semimajor axis (e.g., Eos, Merxia or Erigone families).
YORP torque as the function of shape harmonics
NASA Astrophysics Data System (ADS)
Breiter, Sławomir; Michalska, Hanna
2008-08-01
The second-order analytical approximation of the mean Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) torque components is given as an explicit function of the shape spherical harmonics coefficients for a sufficiently regular minor body. The results are based upon a new expression for the insolation function, significantly simpler than in previous works. Linearized plane-parallel model of the temperature distribution derived from the insolation function allows us to take into account a non-zero conductivity. Final expressions for the three average components of the YORP torque related with rotation period, obliquity and precession are given in a form of the Legendre series of the cosine of obliquity. The series have good numerical properties and can be easily truncated according to the degree of the Legendre polynomials or associated functions, with first two terms playing the principal role.
Results of near-Earth-asteroid photometry in the frame of the ASPIN programme
NASA Astrophysics Data System (ADS)
Krugly, Y.; Molotov, I.; Inasaridze, R.; Kvaratskhelia, O.; Aivazyan, V.; Rumyantsev, V.; Belskaya, I.; Golubaev, A.; Sergeev, A.; Shevchenko, V.; Slyusarev, I.; Burkhonov, O.; Ehgamberdiev, S.; Elenin, L.; Voropaev, V.; Koupianov, V.; Gaftonyuk, N.; Baransky, A.; Irsmambetova, T.; Litvinenko, E.; Aliev, A.; Namkhai, T.
2014-07-01
Regular photometric observations aimed for obtaining physical properties of near-Earth asteroids (NEA) are carried out within the Asteroid Search and Photometry Initiative (ASPIN) of the International Scientific Optical Network (ISON). At present, ISON project joins 35 observation facilities in 15 countries with 80 telescopes of different class. Photometric observations of NEAs are carried out at the telescopes with apertures from 20 cm up to 2.6 m equipped with CCD cameras. The obtained lightcurves in the Johnson-Cousins photometric system or in exceptional cases in the integral light (unfiltered photometry) have typical photometric accuracy of 0.01-0.03 mag. The main targets of these observations are near-Earth asteroids as hazardous objects pose a threat for the Earth civilization. The main purpose of the observations is to study characteristics of asteroids such as rotation period, size, and shape of the body, and surface composition. The observations are aimed toward searching binary asteroids, supporting the asteroid radar observations and investigation of the YORP effect. In 2013, we have observed 40 near-Earth asteroids in more than 200 nights. The rotation periods have been determined for 14 NEAs for the first time and, for 6 NEAs, rotation periods were defined more precisely. New rotation periods have been obtained for objects from Aten group: (137805) 1999 YK_5, (329437) 2002 OA_{22}, (367943) Duende (2012 DA_{14}); Apollo: (17188) 1999 WC_2, (137126) 1999 CF_9, (163249) 2002 GT, (251346) 2007 SJ, 2013 TV_{135}; Amor: (9950) ESA, (24445) 2000 PM_8, (137199) 1999 KX_4, (285263) 1998 QE_2, (361071) 2006 AO_4, 2010 XZ_{67}, and refined for (1943) Anteros, (3361) Orpheus, (3752) Camillo, (7888) 1993 UC, (53435) 1999 VM_{40}, (68216) 2001 CV_{26}. NEAs (7888) 1993 UC and (68216) 2001 CV_{26} were found to show signs of a binary nature. To detect possible binary asteroids, we observe the object during several consecutive nights and at several observatories located at different longitudes. In particular, to cover a long time interval and not to miss the eclipse/occultation minima, the binary NEA (285263) 1998 QE_2 has been observed in close dates in Ukraine, Georgia, Tajikistan, Mongolia, the Far East of Russia, and Mexico. To test an influence of the YORP effect on the spin rates, the lightcurves of NEAs (2100) Ra-Shalom, 88710 2001 SL_9, and (138852) 2000 WN_{10} have been obtained. The observations of small NEAs (with diameters smaller 200 m) have revealed very fast rotating NEAs with rotation periods smaller than 2.2 hours for (363305) 2002 NV_{16}, 2000 KA, and 2013 QR_1. Many of our targets were also the targets of the radar observations in the Arecibo and the Goldstone. The obtained results will be presented and the perspectives of the ASPIN programme will be discussed.
NASA Astrophysics Data System (ADS)
Ďurech, J.; Vokrouhlický, D.; Baransky, A. R.; Breiter, S.; Burkhonov, O. A.; Cooney, W.; Fuller, V.; Gaftonyuk, N. M.; Gross, J.; Inasaridze, R. Ya.; Kaasalainen, M.; Krugly, Yu. N.; Kvaratshelia, O. I.; Litvinenko, E. A.; Macomber, B.; Marchis, F.; Molotov, I. E.; Oey, J.; Polishook, D.; Pollock, J.; Pravec, P.; Sárneczky, K.; Shevchenko, V. G.; Slyusarev, I.; Stephens, R.; Szabó, Gy.; Terrell, D.; Vachier, F.; Vanderplate, Z.; Viikinkoski, M.; Warner, B. D.
2012-11-01
Context. The spin state of small asteroids can change on a long timescale by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect, the net torque that arises from anisotropically scattered sunlight and proper thermal radiation from an irregularly-shaped asteroid. The secular change in the rotation period caused by the YORP effect can be detected by analysis of asteroid photometric lightcurves. Aims: We analyzed photometric lightcurves of near-Earth asteroids (1865) Cerberus, (2100) Ra-Shalom, and (3103) Eger with the aim to detect possible deviations from the constant rotation caused by the YORP effect. Methods: We carried out new photometric observations of the three asteroids, combined the new lightcurves with archived data, and used the lightcurve inversion method to model the asteroid shape, pole direction, and rotation rate. The YORP effect was modeled as a linear change in the rotation rate in time dω/dt. Values of dω/dt derived from observations were compared with the values predicted by theory. Results: We derived physical models for all three asteroids. We had to model Eger as a nonconvex body because the convex model failed to fit the lightcurves observed at high phase angles. We probably detected the acceleration of the rotation rate of Eger dω/dt = (1.4 ± 0.6) × 10-8 rad d-2 (3σ error), which corresponds to a decrease in the rotation period by 4.2 ms yr-1. The photometry of Cerberus and Ra-Shalom was consistent with a constant-period model, and no secular change in the spin rate was detected. We could only constrain maximum values of |dω/dt| < 8 × 10-9 rad d-2 for Cerberus, and |dω/dt| < 3 × 10-8 rad d-2 for Ra-Shalom. Tables 1-3 are available in electronic form at http://www.aanda.org
The Yarkovsky and YORP Effects
NASA Astrophysics Data System (ADS)
Vokrouhlický, D.; Bottke, W. F.; Chesley, S. R.; Scheeres, D. J.; Statler, T. S.
The Yarkovsky effect describes a small but significant force that affects the orbital motion of meteoroids and asteroids smaller than 30-40 km in diameter. It is caused by sunlight; when these bodies heat up in the Sun, they eventually reradiate the energy away in the thermal waveband, which in turn creates a tiny thrust. This recoil acceleration is much weaker than solar and planetary gravitational forces, but it can produce measurable orbital changes over decades and substantial orbital effects over millions to billions of years. The same physical phenomenon also creates a thermal torque that, complemented by a torque produced by scattered sunlight, can modify the rotation rates and obliquities of small bodies as well. This rotational variant has been coined the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. During the past decade or so, the Yarkovsky and YORP effects have been used to explore and potentially resolve a number of unsolved mysteries in planetary science dealing with small bodies. Here we review the main results to date, and preview the goals for future work.
Detection of the YORP effect in asteroid (161989) Cacus
NASA Astrophysics Data System (ADS)
Durech, Josef; Vokrouhlicky, David; Pravec, Petr; Hanus, Josef; Kusnirak, Peter; Hornoch, Kamil; Galad, Adrian; Masi, Gianluca
2016-10-01
The rotation state of small asteroids is affected by the thermal Yarkovsky-O'Keefe-Radzievski-Paddack (YORP) torque. The directly observable consequence of YORP is the secular change of the asteroid's rotational period in time. We carried out new photometric observations of asteroid (161989) Cacus during its apparitions in 2014-2016. Using the new lightcurves together with archived data going back to 1978, we were able to detect a tiny deviation from the constant-period rotation. This deviation caused an observable shift between the observed lightcurves and those predicted by the best constant-period model. We used the lightcurve inversion method to derive a shape/spin solution that fitted the data at best. We assumed that the rotation rate evolved linearly in time and derived the acceleration of the rotation rate dω/dt = (1.9 +/- 0.3) × 10-8 rad/day2. The accelerating model provides a significantly better fit than the constant-period model. By applying a thermophysical model on WISE thermal infrared data, we estimated the thermal inertia of the surface to Γ = 250-2000 J m-2 s-0.5 K-1 and the volume-equivalent diameter to 0.8-1.2 km (1σ intervals). The value of dω/dt derived from observations is in agreement with the theoretical value computed numerically from the lightcurve inversion shape model and its spin axis orientation. Cacus has become the sixth asteroid with YORP detection. Surprisingly, for all six cases the rotation rate accelerates.
Resurfacing asteroids from YORP spin-up and failure
NASA Astrophysics Data System (ADS)
Graves, Kevin J.; Minton, David A.; Hirabayashi, Masatoshi; DeMeo, Francesca E.; Carry, Benoit
2018-04-01
The spectral properties of S and Q-type asteroids can change over time due to interaction with the solar wind and micrometeorite impacts in a process known as 'space weathering.' Space weathering raises the spectral slope and decreases the 1 μm absorption band depth in the spectra of S and Q-type asteroids. Over time, Q-type asteroids, which have very similar spectra to ordinary chondrite meteorites, will change into S-type asteroids. Because there are a significant number of Q-type asteroids, there must be some process which is resurfacing S-type asteroids into Q-types. In this study, we use asteroid data from the Sloan Digital Sky Survey to show a trend between the slope through the g‧, r‧, and i‧ filters, called the gri-slope, and size that holds for all populations of S and Q-type asteroids in the inner solar system, regardless of orbit. We model the evolution of a suite of asteroids in a Monte Carlo YORP rotational evolution and space weathering model. We show that spin-up and failure from YORP is one of the key resurfacing mechanisms that creates the observed weathering trends with size. By varying the non-dimensional YORP coefficient and running time of the present model over the range 475-1425 Myr, we find a range of values for the space weathering timescale, τSW ≈ 19-80 Myr at 2.2 AU. We also estimate the time to weather a newly resurfaced Q-type asteroid into an S-complex asteroid at 1 AU, τQ → S(1AU) ≈ 2-7 Myr.
Detection of the YORP Effect for Small Asteroids in the Karin Cluster
NASA Astrophysics Data System (ADS)
Carruba, V.; Nesvorný, D.; Vokrouhlický, D.
2016-06-01
The Karin cluster is a young asteroid family thought to have formed only ≃ 5.75 Myr ago. The young age can be demonstrated by numerically integrating the orbits of Karin cluster members backward in time and showing the convergence of the perihelion and nodal longitudes (as well as other orbital elements). Previous work has pointed out that the convergence is not ideal if the backward integration only accounts for the gravitational perturbations from the solar system planets. It improves when the thermal radiation force known as the Yarkovsky effect is accounted for. This argument can be used to estimate the spin obliquities of the Karin cluster members. Here we take advantage of the fast growing membership of the Karin cluster and show that the obliquity distribution of diameter D≃ 1{--}2 km Karin asteroids is bimodal, as expected if the YORP effect acted to move obliquities toward extreme values (0° or 180°). The measured magnitude of the effect is consistent with the standard YORP model. The surface thermal conductivity is inferred to be 0.07-0.2 W m-1 K-1 (thermal inertia ≃ 300{--}500 J m-2 K-1 s{}-1/2). We find that the strength of the YORP effect is roughly ≃ 0.7 of the nominal strength obtained for a collection of random Gaussian spheroids. These results are consistent with a surface composed of rough, rocky regolith. The obliquity values predicted here for 480 members of the Karin cluster can be validated by the light-curve inversion method.
A three-dimensional model of Tangential YORP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golubov, O.; Scheeres, D. J.; Krugly, Yu. N., E-mail: golubov@astron.kharkov.ua
2014-10-10
Tangential YORP, or TYORP, has recently been demonstrated to be an important factor in the evolution of an asteroid's rotation state. It is complementary to normal YORP, or NYORP, which used to be considered previously. While NYORP is produced by non-symmetry in the large-scale geometry of an asteroid, TYORP is due to heat conductivity in stones on the surface of the asteroid. To date, TYORP has been studied only in a simplified one-dimensional model, substituting stones with high long walls. This article for the first time considers TYORP in a realistic three-dimensional model, also including shadowing and self-illumination effects viamore » ray tracing. TYORP is simulated for spherical stones lying on regolith. The model includes only five free parameters and the dependence of the TYORP on each of them is studied. The TYORP torque appears to be smaller than previous estimates from the one-dimensional model, but is still comparable to the NYORP torques. These results can be used to estimate TYORP of different asteroids and also as a basis for more sophisticated models of TYORP.« less
A Newborn Asteroid Family of Likely Rotational Origin Harboring a Doubly-Synchronous Binary
NASA Astrophysics Data System (ADS)
Drahus, Michal; Waniak, Waclaw
2016-10-01
From the total number of about twenty active asteroids identified to date, one of the most intriguing is P/2012 F5. The 2-km sized object has a short rotation period of 3.24 hr - the shortest known among main-belt active asteroids and comets - and is trailed by several fragments recently separated from the main nucleus (Drahus et al. 2015, ApJL 802, L8). Our extensive observations with Hubble in late 2015 and early 2016 have revealed that the fragments are real and stable "baby asteroids", still cocooned in their birth dust trail. Consequently, P/2012 F5 is the first known asteroid family forming in the present-day epoch. Given the rapid spin of the main nucleus, the system is also the best candidate for the first "rotational" asteroid family originating from rotational fission (as opposed to the long-known "collisional" families), extending the recently identified class of asteroid pairs (Pravec et al. 2010, Nature 466, 1085). Furthermore, the HST data allowed us to measure a light curve of the brightest fragment of P/2012 F5, several magnitudes fainter than the main nucleus. The light curve has all the characteristics of a close binary with significantly elongated, roughly equal sized components, having equal rotation and orbital periods of about 9 hr. The existence of a doubly-synchronous binary in an ultra-young asteroid family is seemingly inconsistent with the established "slow" binary formation path, in which YORP torques first lead to rotational fission and then tides lead to synchronization (Jacobson & Scheeres 2011, Icarus 214, 161). Instead, we believe that the object fissioned while orbiting the main nucleus and drawing its angular momentum, and was subsequently ejected from the system as a finished doubly-synchronous binary. This scenario is consistent with computer simulations in that the timescales for secondary fission and ejection from the system are indeed very short (Jacobson & Scheeres 2011, Icarus 214, 161). But the empirical evidence that fissioned secondaries can escape as doubly-synchronous binaries came as a surprise, so we seem to have accidentally identified a new, "rapid" formation path of such systems, not yet accounted for by the prevailing theory.
Tidal and Dynamical Evolution of Binary Asteroids
NASA Astrophysics Data System (ADS)
Jacobson, Seth A.; Scheeres, D. J.
2009-05-01
We derive a realistic model for the evolution of a tidally perturbed binary, using classical theory, to examine the system just after a spin-up fission event. The spin rate of an asteroid can be increased by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect -- thermal re-radiation from an asymmetric body, which induces torques that can rotationally accelerate the body. If the asteroid is modeled as a "rubble pile", a collection of gravitationally bound gravel with no tensile strength, increasing the spin rate will lead to a fission process that would resemble that of a viscous fluidic body [Holsapple 2007]. However, high-resolution imagery of an asteroid's constituents indicates that there is a significant distribution of size scales. A specific example is the asteroid Itokawa, which appears to be two such rubble piles in contact with each other [Fujiwara 2006]. The shape of these bodies will be irregular (modeled as tri-axial ellipsoids with a gravitational potential expanded up to second order). Their motions will raise tides on the opposing body. These tides will dissipate energy, potentially providing enough energy loss for the system to settle into a stable orbit. Fissioned binary systems are always initially unstable [Scheeres 2009, 2008]. We expect tidal dissipation rates to vary widely during the initial evolution of the system, due to this instability. The model applies instantaneous tidal torques to determine energy loss. Our preliminary results indicate that tidal energy dissipation could relax the system to a state of relative equilibrium on order 100,000 years, creating systems similar to those observed. Holsapple, K. A., Icarus, 187, 2007. Fujiwara, A., Science, 312, 2006. Scheeres, D., CMDA, 2009 (Accepted Jan 10, 2009). Scheeres, D., AAS, DDA meeting #39, #9.01, 2008.
Meteoroid Impacts: A Competitor for Yarkovsky and YORP
NASA Astrophysics Data System (ADS)
Wiegert, Paul
2014-11-01
Meteoroids impacting an asteroid transfer linear and angular momentum to the larger body, which may change its orbit and its rotational state. The meteoroid environment of our Solar System may affect small (few meter sizes and smaller) asteroids at a level that is comparable to the Yarkovsky and Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effects.Asteroids orbiting on prograde orbits near the Earth encounter an anisotropic meteoroid environment, including a population of particles on retrograde orbits generally accepted to be material from long-period comets spiralling inwards under Poynting-Robertson drag. High relative speed (60 km/s) impacts by meteoroids provide a small effective drag force that decreases asteroid semimajor axes and which is independent of their rotation pole. This effect may exceed the Yarkovsky drift at sizes near and below one meter.The momentum content of the meteoroids themselves is small enough to neglect, but it is the momentum transport by ejecta that increases the net effective force by two orders of magnitude for impacts into bare rock surfaces: this brings the effect to a level where it is of order that due to Yarkovsky, at least for small bodies. However, the above results are sensitive to the extrapolation of laboratory microcratering experiment results to real meteoroid-asteroid collisions and need further study.Meteoroid impacts may also affect asteroid spins at a level comparable to that of YORP at sizes smaller than tens of meters. However, we conclude that recent measurements of the YORP effect have probably not been compromised, because of the targets' large sizes and because they are known or likely to be regolith-covered rather than bare rock, which decreases the efficiency of ejecta production. However, the effect of impacts increases sharply with decreasing size, and may be important for asteroids smaller than a few tens of meters in radius.
Dynamical and Physical Properties of 65803 Didymos, the Proposed AIDA Mission Target
NASA Astrophysics Data System (ADS)
Richardson, Derek C.; Barnouin, Olivier S.; Benner, Lance A. M.; Bottke, William; Campo Bagatin, Adriano; Cheng, Andrew F.; Eggl, Siegfried; Hamilton, Douglas P.; Hestroffer, Daniel; Hirabayashi, Masatoshi; Maurel, Clara; McMahon, Jay W.; Michel, Patrick; Murdoch, Naomi; Naidu, Shantanu P.; Pravec, Petr; Rivkin, Andrew S.; Rosenblatt, Pascal; Sarid, Gal; Scheeres, Daniel J.; Scheirich, Peter; Tsiganis, Kleomenis; Zhang, Yun; AIDA Dynamical and Physical Properties of Didymos Working Group
2016-10-01
Binary near-Earth asteroid (NEA) 65803 Didymos is the proposed Asteroid Impact & Deflection Assessment (AIDA) mission target, combining an orbiter [1] and a kinetic impactor for a planned encounter in fall 2022 [2]. The Dynamical and Physical Properties of Didymos Working Group supports this mission by addressing questions related to understanding the dynamical state of the system and inferring physical properties. Didymos is an Apollo-class NEA that likely reached its current orbit by exiting the inner main belt near or within the nu-6 resonance (> 82% chance) [3]. Remote observations [4] show Didymos is spectroscopically most consistent with ordinary chondrites. The diameters of the binary components are measured to be about 780 and 160 m [5]. A model of the short-term binary dynamics suggests possible librations of the secondary with up to ~10-deg amplitude, depending on its axial ratio. However, an equilibrium orbital and rotational solution is consistent with a libration amplitude of only ~1 deg. The primary, with an estimated 2.1 g/cc bulk density (uncertainty 30%) has a possibly super-critical rotation period of 2.26 h that may imply a cohesive strength of several tens of Pa. At this rate, perturbed regolith material may go through take-off/landing cycles and cause loss of fines due to solar radiation pressure. Based on a continuum analysis [6], the internal structure would likely fail before the equatorial region. A discrete analysis [7,8] shows that a minimum of 2.5 g/cc bulk density is needed for the structure to hold without cohesion. The system may be subject to weak thermal radiation forces (BYORP) with a period drift of no greater than 1 s/yr [9]. Experiments using the ISAE-SUPAERO drop tower [10] are underway to model the possible deployment of a lander on the secondary. References: [1] Michel et al. 2016, ASR 57, 2529; [2] Cheng et al. 2016, P&SS 127, 27; [3] Granvik et al. 2015, DPS 47, 214.07; [4] Dunn et al. 2013, LPSC 44, 1719; [5] Osip et al. 2016, this meeting; [6] Hirabayashi & Scheeres 2015, IAU 29, 2256185; [7] Barnouin et al. 2015, DPS 47, 402.09; [8] Zhang et al. 2016, this meeting; [9] McMahon et al. 2016, LPSC 47, 1903; [10] Sunday et al. 2016, Rev. Sci. Instr., accepted.
Escape of asteroids from the main belt
NASA Astrophysics Data System (ADS)
Granvik, Mikael; Morbidelli, Alessandro; Vokrouhlický, David; Bottke, William F.; Nesvorný, David; Jedicke, Robert
2017-02-01
Aims: We locate escape routes from the main asteroid belt, particularly into the near-Earth-object (NEO) region, and estimate the relative fluxes for different escape routes as a function of object size under the influence of the Yarkovsky semimajor-axis drift. Methods: We integrated the orbits of 78 355 known and 14 094 cloned main-belt objects and Cybele and Hilda asteroids (hereafter collectively called MBOs) for 100 Myr and recorded the characteristics of the escaping objects. The selected sample of MBOs with perihelion distance q > 1.3 au and semimajor axis a < 4.1 au is essentially complete, with an absolute magnitude limit ranging from HV < 15.9 in the inner belt (a < 2.5 au) to HV < 14.4 in the outer belt (2.5 au < a < 4.1 au). We modeled the semimajor-axis drift caused by the Yarkovsky force and assigned four different sizes (diameters of 0.1, 0.3, 1.0, and 3.0 km) and random spin obliquities (either 0 deg or 180 deg) for each test asteroid. Results: We find more than ten obvious escape routes from the asteroid belt to the NEO region, and they typically coincide with low-order mean-motion resonances with Jupiter and secular resonances. The locations of the escape routes are independent of the semimajor-axis drift rate and thus are also independent of the asteroid diameter. The locations of the escape routes are likewise unaffected when we added a model for Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) cycles coupled with secular evolution of the rotation pole as a result of the solar gravitational torque. A Yarkovsky-only model predicts a flux of asteroids entering the NEO region that is too high compared to the observationally constrained flux, and the discrepancy grows larger for smaller asteroids. A combined Yarkovsky and YORP model predicts a flux of small NEOs that is approximately a factor of 5 too low compared to an observationally constrained estimate. This suggests that the characteristic timescale of the YORP cycle is longer than our canonical YORP model predicts.
Detailed Pictures of Multiple Asteroid Systems in the Main-Belt
NASA Astrophysics Data System (ADS)
Marchis, F.; Emery, J. P.; Enriquez, J. E.; Descamps, P.; Berthier, J.; Vachier, F.; Durech, J.
2011-12-01
Since their discovery less than 10 years ago, ~200 known multiple asteroid systems have been studied with a combination of observing techniques, including adaptive optics, lightcurve photometry, and mid-infrared spectrophotometry. Those observations show that ~15 large (D>100km) asteroids that are known to possess km-sized satellite(s) (22 Kalliope, 45 Eugenia, 87 Sylvia, 93 Minerva, 216 Kleopatra, ...) share common orbital characteristics, implying a common formation scenario: e.g. catastrophic disruption or ejection after an oblique impact. More than 70 smaller (10-15km) binary asteroid systems have been detected through anomalies in their lightcurves and are believed to have formed by fission due to the YORP effect. By comparison with meteorite analog densities, mid-IR data reveal that these systems have a significant porosity (larger than 30%) implying a rubble-pile interior. We will review these key results and discuss their implications for the interior of asteroids in the light of recent space mission results. Future explorations using new ground-based facilities and space mission concepts will be also discussed. This work is supported by the NSF grant AAG-0807468 and NASA grant NNX11AD62G
NASA Astrophysics Data System (ADS)
2007-03-01
For the very first time, astronomers have witnessed the speeding up of an asteroid's rotation, and have shown that it is due to a theoretical effect predicted but never seen before. The international team of scientists used an armada of telescopes to discover that the asteroid's rotation period currently decreases by 1 millisecond every year, as a consequence of the heating of the asteroid's surface by the Sun. Eventually it may spin faster than any known asteroid in the solar system and even break apart. ESO PR Photo 11a/07 ESO PR Photo 11a/07 Asteroid 2000 PH5 "The Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect is believed to alter the way small bodies in the Solar System rotate," said Stephen Lowry (Queens University Belfast, UK), lead-author of one of the two companion papers in which this work is reported [1, 2]. "The warming caused by sunlight hitting the surfaces of asteroids and meteoroids leads to a gentle recoil effect as the heat is released," he added. "By analogy, if one were to shine light on a propeller over a long enough period, it would start spinning." Although this is an almost immeasurably weak force, its effect over millions of years is far from negligible. Astronomers believe the YORP effect may be responsible for spinning some asteroids up so fast that they break apart, perhaps leading to the formation of double asteroids. Others may be slowed down so that they take many days to complete a full turn. The YORP effect also plays an important role in changing the orbits of asteroids between Mars and Jupiter, including their delivery to planet-crossing orbits, such as those of near-Earth asteroids. Despite its importance, the effect has never been seen acting on a solar system body, until now. Using extensive optical and radar imaging from powerful Earth-based observatories, astronomers have directly observed the YORP effect in action on a small near-Earth asteroid, known as (54509) 2000 PH5. Shortly after its discovery in 2000, it was realised that asteroid 2000 PH5 would be the ideal candidate for such a YORP detection. With a diameter of just 114 metres, it is relatively small and so more susceptible to the effect. Also, it rotates very fast, with one 'day' on the asteroid lasting just over 12 Earth minutes, implying that the YORP effect may have been acting on it for some time. With this in mind, the team of astronomers undertook a long term monitoring campaign of the asteroid with the aim of detecting any tiny changes in its rotation speed. Over a 4-year time span, Stephen Lowry, Alan Fitzsimmons and colleagues took images of the asteroid at a range of telescope sites including ESO's 8.2-m Very Large Telescope array and 3.5-m New Technology Telescope in Chile, the 3.5-m telescope at Calar Alto, Spain, along with a suite of other telescopes from the Czech Republic, the Canary Islands, Hawaii, Spain and Chile. With these facilities the astronomers measured the slight brightness variations as the asteroid rotated. ESO PR Photo 11b/07 ESO PR Photo 11b/07 Radar Images of 2000 PH5 Over the same time period, the radar team led by Patrick Taylor and Jean-Luc Margot of Cornell University employed the unique capabilities of the Arecibo Observatory in Puerto Rico and the Goldstone radar facility in California to observe the asteroid by 'bouncing' a radar pulse off the asteroid and analysing its echo. "With this technique we can reconstruct a 3-D model of the asteroid's shape, with the necessary detail to allow a comparison between the observations and theory," said Taylor. After careful analysis of the optical data, the asteroid's spin rate was seen to steadily increase with time, at a rate that can be explained by the YORP theory. Critically, the effect was observed year after year, for more than 4 years. Furthermore, this number was elegantly supported via analysis of the combined radar and optical data, as it was required that the asteroid is increasing its spin rate at exactly this rate in order for a satisfactory 3-D shape model to be determined. ESO PR Video 11/07 ESO PR Video 11c/07 Watch the Asteroid Move! To predict what will happen to the asteroid in the future, Lowry and his colleagues performed detailed computer simulations using the measured strength of the YORP effect and the detailed shape model. They found that the orbit of the asteroid about the Sun could remain stable for up to the next 35 million years, allowing the rotation period to be reduced by a factor of 36, to just 20 seconds, faster than any asteroid whose rotation has been measured until now. "This exceptionally fast spin-rate could force the asteroid to reshape itself or even split apart, leading to the birth of a new double system," said Lowry.
E-type asteroid (2867) Steins as imaged by OSIRIS on board Rosetta.
Keller, H U; Barbieri, C; Koschny, D; Lamy, P; Rickman, H; Rodrigo, R; Sierks, H; A'Hearn, M F; Angrilli, F; Barucci, M A; Bertaux, J-L; Cremonese, G; Da Deppo, V; Davidsson, B; De Cecco, M; Debei, S; Fornasier, S; Fulle, M; Groussin, O; Gutierrez, P J; Hviid, S F; Ip, W-H; Jorda, L; Knollenberg, J; Kramm, J R; Kührt, E; Küppers, M; Lara, L-M; Lazzarin, M; Lopez Moreno, J; Marzari, F; Michalik, H; Naletto, G; Sabau, L; Thomas, N; Wenzel, K-P; Bertini, I; Besse, S; Ferri, F; Kaasalainen, M; Lowry, S; Marchi, S; Mottola, S; Sabolo, W; Schröder, S E; Spjuth, S; Vernazza, P
2010-01-08
The European Space Agency's Rosetta mission encountered the main-belt asteroid (2867) Steins while on its way to rendezvous with comet 67P/Churyumov-Gerasimenko. Images taken with the OSIRIS (optical, spectroscopic, and infrared remote( )imaging system) cameras on board Rosetta show that Steins is an oblate body with an effective spherical diameter of 5.3 kilometers. Its surface does not show color variations. The morphology of Steins is dominated by linear faults and a large 2.1-kilometer-diameter crater near its south pole. Crater counts reveal a distinct lack of small craters. Steins is not solid rock but a rubble pile and has a conical appearance that is probably the result of reshaping due to Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) spin-up. The OSIRIS images constitute direct evidence for the YORP effect on a main-belt asteroid.
E-Type Asteroid (2867) Steins as Imaged by OSIRIS on Board Rosetta
NASA Astrophysics Data System (ADS)
Keller, H. U.; Barbieri, C.; Koschny, D.; Lamy, P.; Rickman, H.; Rodrigo, R.; Sierks, H.; A'Hearn, M. F.; Angrilli, F.; Barucci, M. A.; Bertaux, J.-L.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; De Cecco, M.; Debei, S.; Fornasier, S.; Fulle, M.; Groussin, O.; Gutierrez, P. J.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Knollenberg, J.; Kramm, J. R.; Kührt, E.; Küppers, M.; Lara, L.-M.; Lazzarin, M.; Moreno, J. Lopez; Marzari, F.; Michalik, H.; Naletto, G.; Sabau, L.; Thomas, N.; Wenzel, K.-P.; Bertini, I.; Besse, S.; Ferri, F.; Kaasalainen, M.; Lowry, S.; Marchi, S.; Mottola, S.; Sabolo, W.; Schröder, S. E.; Spjuth, S.; Vernazza, P.
2010-01-01
The European Space Agency’s Rosetta mission encountered the main-belt asteroid (2867) Steins while on its way to rendezvous with comet 67P/Churyumov-Gerasimenko. Images taken with the OSIRIS (optical, spectroscopic, and infrared remote imaging system) cameras on board Rosetta show that Steins is an oblate body with an effective spherical diameter of 5.3 kilometers. Its surface does not show color variations. The morphology of Steins is dominated by linear faults and a large 2.1-kilometer-diameter crater near its south pole. Crater counts reveal a distinct lack of small craters. Steins is not solid rock but a rubble pile and has a conical appearance that is probably the result of reshaping due to Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) spin-up. The OSIRIS images constitute direct evidence for the YORP effect on a main-belt asteroid.
NASA Astrophysics Data System (ADS)
Paddack, Stephen; Rubincam, David P.
2015-11-01
It’s all about photons and their behavior. Yarkovsky (1844-1902) did not have the knowledge we have today about photons and radiation pressure. Nevertheless, he published a pamphlet in 1901 that small rotating celestial bodies could absorb sunlight and reradiate it as heat after a delay, resulting in possible orbital changes, setting the stage for radiation effects in celestial mechanics. Yarkovsly’s work remained obscure until Öpik recalled having read Yarkovsky’s pamphlet. Öpik brought Yarkovsky’s idea to the attention of John A. O’Keefe in the late 1960s. O’Keefe, the mentor for two aspiring PhD students, Paddack and Rubincam, told them about Yarkovsky. In 1968 Paddack postulated that the reflection of sunlight off of small, irregularly shaped celestial bodies could have a significant effect on their spin rates. He referred to this as a windmill effect. Paddack and O’Keefe tested the idea of windmill shapes causing spin by dropping crushed stones with irregular shapes into a swimming pool and watching them twirl. Paddack then mimicked the space environment by placing windmill-shaped artificial objects and tektites in a vacuum chamber on an almost frictionless bearing and spinning them up with a strong source of light, conclusively showing the relation of shape to spin. Earlier in 1954 Radzievskii wrote about the effects radiation pressure on variations in the albedo of small celestial bodies as a means of changing their spin rates. The uniform color of Paddack’s test bodies ruled out Radzievskii’s effect as the cause for the observed spin-up. The Yarkovsky effect was minimized because the test object had a coating of vapor-deposited aluminum with a very high albedo and consequently did not heat up. In 2000 Rubincam applied Paddack’s idea to small asteroids and called it the YORP effect (YORP = Yarkovsky-O’Keefe-Radzievskii-Paddack), to give it a catchy name and sell the idea. In 2007 results were published in Science about the observed behavior of asteroid (54509) 2000 PH5 stating that its spin rate changes because of the YORP effect (Lowery et al and Taylor et al). Since 2000 there have been more than 400 papers and talks with “YORP” in the title or the abstract.
The partial fission of fast spinning asteroids
NASA Astrophysics Data System (ADS)
Tardivel, Simon; Sanchez, Paul; Scheeres, Daniel J.
2016-10-01
The spin rates of asteroids systematically change over time due the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. Above a certain spin rate that depends on the body's density, regions of an asteroid can enter in tension, with components held to the body by cohesive forces. When the body fails, deformation or fission can occur. Catastrophic fission leading to complete disruption has been directly observed in active asteroid P/2013 R3. Partial fission, the loss of only part of the body, has been proposed as a mechanism for the formation of binaries and is explored here.The equatorial cavities of (341843) 2008 EV5 and of (185851) 2000 DP107 (a binary system) are consistent with a localized partial fission of the body (LPSC 2016 #1036). The examination of the gravity field of these bodies reveals that a mass placed within these cavities could be shed. In this mechanism, the outward pull of inertial forces creates an average stress at the cavity interface of ≈1 Pa for 2008 EV5 and ≈3 Pa for 2000 DP107 at spin periods of ≈3.15 h for the assumed densities of 1.3 g/cm3.This work continues the study of this partial, localized fission. Specifically, it addresses the issue of the low cohesion necessary to the mechanism. These cohesion values are typically lower than global strength values inferred on other asteroids (10 - 200 Pa), meaning that partial fission may occur prior to larger-scale deformations. Yet, several processes can explain the discrepancy, as they can naturally segregate particles by size. For instance, landslides or granular convection (Brazil nut effect) could bring larger boulders to the equator of the body, while finer particles are left at higher latitudes or sink to the center. Conversely, failure of the interior could bring boulders to the surface. The peculiar profile shape of these asteroids, shared by many binaries (e.g. 1999 KW4, 1996 FG3) may also be a clue of this heterogeneity, as this "spin top" shape is obtained in simulations with a weak shell and a strong core.Using observations and simulations, we consider these processes and the role that this partial fission mechanism could play in the formation of binary asteroids and the creation of equatorial divots on asteroids.
Pairs of Asteroids Probably of a Common Origin
NASA Astrophysics Data System (ADS)
Vokrouhlický, David; Nesvorný, David
2008-07-01
We report the first observational evidence for pairs of main-belt asteroids with bodies in each pair having nearly identical orbits. The existence of ~60 pairs identified here cannot be reconciled with random fluctuations of the asteroid orbit density and rather suggests a common origin of the paired objects. We propose that the identified pairs formed by (i) collisional disruptions of km-sized and larger parent asteroids, (ii) Yarkovsky-O'Keefe-Radzievski-Paddack (YORP)-induced spin-up and rotational fission of fast-rotating objects, and/or (iii) splitting of unstable asteroid binaries. In case (i), the pairs would be parts of compact collisional families with many km- and sub-km-size members that should be found by future asteroid surveys. Our dynamical analysis suggests that most identified pairs formed within the past lsim1 Myr, in several cases even much more recently. For example, paired asteroids (6070) Rheinland and (54827) 2001 NQ8 probably separated from their common ancestor only 16.5-19 kyr ago. Given their putatively very recent formation, the identified objects are prime candidates for astronomical observations. The title paraphrases that of Hirayama's 1918 paper "Groups of asteroids probably of a common origin," where the first evidence was given for groups of asteroid fragments produced by disruptive collisions.
Yarkovsky-O'Keefe-Radzievskii-Paddack effect on tumbling objects
NASA Astrophysics Data System (ADS)
Breiter, S.; Rożek, A.; Vokrouhlický, D.
2011-11-01
A semi-analytical model of the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect on an asteroid spin in a non-principal axis rotation state is developed. The model describes the spin-state evolution in Deprit-Elipe variables, first-order averaged with respect to rotation and Keplerian orbital motion. Assuming zero conductivity, the YORP torque is represented by spherical harmonic series with vectorial coefficients, allowing us to use any degree and order of approximation. Within the quadrupole approximation of the illumination function we find the same first integrals involving rotational momentum, obliquity and dynamical inertia that were obtained by Cicaló & Scheeres. The integrals do not exist when higher degree terms of the illumination function are included, and then the asymptotic states known from Vokrouhlický et al. appear. This resolves an apparent contradiction between earlier results. Averaged equations of motion admit stable and unstable limit cycle solutions that were not previously detected. Non-averaged numerical integration by the Taylor series method for an exemplary shape of 3103 Eger is in good agreement with the semi-analytical theory.
A possible YORP effect on C and S Main Belt Asteroids
NASA Astrophysics Data System (ADS)
Carbognani, A.
2011-01-01
A rotating frequency analysis in a previous paper, showed that two samples of C and S-type asteroids belonging to the Main Belt, but not to any families, present two different values for the transition diameter to a Maxwellian distribution of the rotation frequency, respectively 48 and 33 km. In this paper, after a more detailed statistical analysis, aiming to verify that the result is physically relevant, we found a better estimate for the transition diameter, respectively D C = 44 ± 2 km and D S = 30 ± 1 km. The ratio between these estimated transition diameters, D C/ D S = 1.5 ± 0.1, can be supported with the help of the YORP (Yarkovsky-O'Keefe-Radzievskii-Paddack) effect, although other physical causes cannot be completely ruled out. In this paper we have derived a simple scaling law for YORP which, taking into account the different average heliocentric distance, the bulk density, the albedo and the asteroid "asymmetry surface factor", has enabled us to reasonably justify the ratio between the diameters transition of C-type and S-type asteroids. The same scaling law can be used to estimate a new ratio between the bulk densities of S and C asteroids samples (giving ρ S/ ρ C ≈ 2.9 ± 0.3), and can explain why the asteroids near the transition diameter have about the same absolute magnitude. For C-type asteroids, using the found density ratio and other estimates of S-type density, it is also possible to estimate an average bulk density equal to 0.9 ± 0.1 g cm -3, a value compatible with icy composition. The suggested explanation for the difference of the transition diameters is a plausible hypothesis, consistent with the data, but it needs to be studied more in depth with further observations.
The Discovery and Analysis of a New Type of Wolf-Rayet Star
NASA Astrophysics Data System (ADS)
Nowinski, Matt Clarke
A massive impact event on (4) Vesta is believed to have created the Vesta family of asteroids (Asphaug, 1997). The rotational characteristics of the Vesta family provide important clues about this event, including its timing, the make-up of the resulting debris, the subsequent migration of members of the family into Earth-crossing orbits, and the deposition of the Howardite-Eucrite-Diogenite meteorites on the Earth's surface. This study conducted lightcurve measurements of ten Vp-type asteroids, drawn from an asteroid taxonomy defined by Carvano et al. (2010) and based on the Sloan Digital Sky Survey (SDSS) Moving Object Catalogue (MOC4). These measurements identified a range of asteroid rotation periods from approximately 2.5 to 9.5 hours, as well as a potential synchronous binary system, (15121) 2000 EN14. The lightcurve results were combined with those of other V/Vp-type asteroids available in LightCurve Database (LCDB; Warner et al., 2009), and matched with both WISE diameter/albedo (J. Masiero et al., 2011) and near-infrared spectroscopic (Hardersen et al., 2014-2018) data. This integrated approach identified a set of Vesta family asteroids with relatively fast spin rates, nearly spherical shapes, and loose aggregate compositions. These findings, combined with the non-Maxwellian shape of this population's spin rate distribution, highlighted the importance of thermal Yarkovsky-YORP effects on the evolution of the Vesta family.
Rotation-induced YORP break-up of small bodies to produce post-main-sequence debris
NASA Astrophysics Data System (ADS)
Veras, D.; Jacobson, S. A.; Gänsicke, B. T.
2017-09-01
We hypothesize that the in situ break-up of small bodies such as asteroids spun to fission during the giant branch phases of stellar evolution provides an important contribution to the debris orbiting and ultimately polluting white dwarfs. The YORP (Yarkovsky-O'Keefe-Radviesvki-Paddock) effect, which arises from radiation pressure, accelerates the spin rate of asymmetric asteroids, which can eventually shear themselves apart. This pressure is maintained and enhanced around dying stars because the outward push of an asteroid due to stellar mass loss is insignificant compared to the resulting stellar luminosity increase. Consequently, giant star radiation will destroy nearly all bodies with radii in the range 100 m-10 km that survive their parent star's main-sequence lifetime within a distance of about 7 au; smaller bodies are spun apart to their strongest, competent components. This estimate is conservative and would increase for highly asymmetric shapes or incorporation of the inward drag due to giant star stellar wind. The resulting debris field, which could extend to thousands of au, may be perturbed by remnant planetary systems to reproduce the observed dusty and gaseous discs which accompany polluted white dwarfs.
Spin Axis Distribution of the Hungaria Asteroids via Lightcurve Inversion
NASA Astrophysics Data System (ADS)
Warner, Brian D.
2015-05-01
In the past decade or so, the influence on small asteroids of the YORP (Yarkovsky-O'Keefe-Radzievskii-Paddack) effect, which is the asymmetric thermal emission of received sunlight, has been firmly established. The two strongest pieces of evidence are the nearly flat distribution of rotation rates of small asteroids and the distribution of spin axes (poles). YORP theory says that the spin axes, barring outside influences, are eventually forced to low obliquities, i.e., the poles are located near the north or south ecliptic poles. This would seem natural for objects with low orbital inclinations. However, for objects with high orbital inclinations, such as the Hungarias, there are some questions if this would still be the case. The authors and other observers have accumulated dense lightcurves of the Hungaria asteroids for more than a decade. The combination of these dense lightcurves and sparse data from asteroid search surveys has allowed using lightcurve inversion techniques to determine the spin axes for almost 75 Hungaria asteroids. The results confirm earlier works that show an anisotropic distribution of spin axes that favors the ecliptic poles and, as predicted for the Hungarias, a preponderance of retrograde rotators.
Revised age estimates of the Euphrosyne family
NASA Astrophysics Data System (ADS)
Carruba, Valerio; Masiero, Joseph R.; Cibulková, Helena; Aljbaae, Safwan; Espinoza Huaman, Mariela
2015-08-01
The Euphrosyne family, a high inclination asteroid family in the outer main belt, is considered one of the most peculiar groups of asteroids. It is characterized by the steepest size frequency distribution (SFD) among families in the main belt, and it is the only family crossed near its center by the ν6 secular resonance. Previous studies have shown that the steep size frequency distribution may be the result of the dynamical evolution of the family.In this work we further explore the unique dynamical configuration of the Euphrosyne family by refining the previous age values, considering the effects of changes in shapes of the asteroids during YORP cycle (``stochastic YORP''), the long-term effect of close encounters of family members with (31) Euphrosyne itself, and the effect that changing key parameters of the Yarkovsky force (such as density and thermal conductivity) has on the estimate of the family age obtained using Monte Carlo methods. Numerical simulations accounting for the interaction with the local web of secular and mean-motion resonances allow us to refine previous estimates of the family age. The cratering event that formed the Euphrosyne family most likely occurred between 560 and 1160 Myr ago, and no earlier than 1400 Myr ago when we allow for larger uncertainties in the key parameters of the Yarkovsky force.
Post-main-sequence debris from rotation-induced YORP break-up of small bodies
NASA Astrophysics Data System (ADS)
Veras, Dimitri; Jacobson, Seth A.; Gänsicke, Boris T.
2014-12-01
Although discs of dust and gas have been observed orbiting white dwarfs, the origin of this circumstellar matter is uncertain. We hypothesize that the in situ break-up of small bodies such as asteroids spun to fission during the giant branch phases of stellar evolution provides an important contribution to this debris. The YORP (Yarkovsky-O'Keefe-Radviesvki-Paddock) effect, which arises from radiation pressure, accelerates the spin rate of asymmetric asteroids, which can eventually shear themselves apart. This pressure is maintained and enhanced around dying stars because the outward push of an asteroid due to stellar mass loss is insignificant compared to the resulting stellar luminosity increase. Consequently, giant star radiation will destroy nearly all bodies with radii in the range 100 m-10 km that survive their parent star's main-sequence lifetime within a distance of about 7 au; smaller bodies are spun apart to their strongest, competent components. This estimate is conservative and would increase for highly asymmetric shapes or incorporation of the inward drag due to giant star stellar wind. The resulting debris field, which could extend to thousands of au, may be perturbed by remnant planetary systems to reproduce the observed dusty and gaseous discs which accompany polluted white dwarfs.
Meteoroid impacts onto asteroids: A competitor for Yarkovsky and YORP
NASA Astrophysics Data System (ADS)
Wiegert, Paul A.
2015-05-01
The impact of a meteoroid onto an asteroid transfers linear and angular momentum to the larger body, which may affect its orbit and its rotational state. Here we show that the meteoroid environment of our Solar System can have an effect on small asteroids that is comparable to the Yarkovsky and Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effects under certain conditions. The momentum content of the meteoroids themselves is expected to generate an effect much smaller than that of the Yarkovsky effect. However, momentum transport by ejecta may increase the net effective force by one order of magnitude for iron or regolith surfaces, and two orders of magnitude for impacts into bare rock surfaces. The result is sensitive to the extrapolation of laboratory microcratering experiment results to real meteoroid-asteroid collisions and needs further study. If this extrapolation holds, then meteoroid impacts are more important to the dynamics of small rocky asteroids than had previously been considered. Asteroids orbiting on prograde orbits near the Earth encounter an anisotropic meteoroid environment, including a population of particles on retrograde orbits generally accepted to be material from long-period comets spiralling inwards under Poynting-Robertson drag. High relative speed (60 km s-1) impacts by meteoroids provide a small effective drag force that decreases asteroid semimajor axes and which is independent of their rotation pole. If small asteroids are bare instead of regolith covered, as is perhaps to be expected given their rapid rotation rates (Harris, A.W., Pravec, P. [2006]. In: Daniela, L., Sylvio Ferraz, M., Angel, F.J. (Eds.), Asteroids, Comets, Meteors. IAU Symposium, vol. 229, pp. 439-447), this effect may exceed the instantaneous Yarkovsky drift at sizes near and below one meter. Since one meter objects are the most abundant meteorite droppers at the Earth, the delivery of these important objects may be controlled by drag against the meteoroid environment. The rate of reorientation of asteroid spins is also substantially increased when momentum transport by ejecta is included. This has an indirect effect on the net Yarkovsky drift, particularly the diurnal variant, as the sign of the drift it creates depends on its rotational state. The net drift of an asteroid towards a resonance under the diurnal Yarkovsky effect can be slowed by more frequent pole reorientations or induced tumbling. This may make the effect of the meteoroid environment more important than the Yarkovsky effect at sizes even above one meter. Meteoroid impacts also affect asteroid spins at a level comparable to that of YORP at sizes smaller than tens of meters. Here the effect comes primarily from a small number of impacts by centimeter size particles. We conclude that recent measurements of the YORP effect have probably not been compromised, because of the targets' large sizes and because they are known or likely to be regolith-covered rather than bare rock. However, the effect of impacts increases sharply with decreasing size, and will likely become important for asteroids smaller than a few tens of meters in radius.
Failure modes and conditions of a cohesive, spherical body due to YORP spin-up
NASA Astrophysics Data System (ADS)
Hirabayashi, Masatoshi
2015-12-01
This paper presents transition of the failure mode of a cohesive, spherical body due to The Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) spin-up. On the assumption that the distribution of materials in the body is homogeneous, failed regions first appearing in the body at different spin rates are predicted by comparing the yield condition of an elastic stress in the body. It is found that as the spin rate increases, the locations of the failed regions move from the equatorial surface to the central region. To avoid such failure modes, the body should have higher cohesive strength. The results by this model are consistent with those by a plastic finite element model. Then, this model and a two-layered-cohesive model first proposed by Hirabayashi et al. are used to classify possible evolution and disruption of a spherical body. There are three possible pathways to disruption. First, because of a strong structure, failure of the central region is dominant and eventually leads to a breakup into multiple components. Secondly, a weak surface and a weak interior make the body oblate. Thirdly, a strong internal core prevents the body from failing and only allows surface shedding. This implies that observed failure modes may highly depend on the internal structure of an asteroid, which could provide crucial information for giving constraints on the physical properties.
Asteroid Evolution: Role of geotechnical properties
NASA Astrophysics Data System (ADS)
Sanchez Lana, Diego P.
2015-08-01
Over the last decade of Planetary research, the scientific community has made many advances in their understanding of the evolution of asteroids in the Solar System. One particular area of fruitful study started with the bold idea that these small planetary bodies could be gravitational aggregates and initially motivated by several different observations and early simulations.If we start with the idea that asteroids are aggregates of different sized components, and not singular monolithic bodies, it is possible to study them with some of the tools that have been used in the fields of Soil Mechanics and Granular Dynamics. In them, parameters such as porosity, cohesive and tensile strength, angles of friction and repose, particle size distributions, stress states, heterogeneity and yield criteria among others, determine how these granular systems will react when subjected to different, changing, external factors. These external factors are believed to have produced and shaped the asteroids that now exist around us and include solar photon momentum, gravitational tides, micro- and macro-impacts and internal energy dissipation.In this presentation we will review what is known about the surface and interiors of rubble pile asteroids, how different theoretical, experimental and simulation tools have been used to study them, how space mission and ground-based observations have shaped our understanding of their physical reality, and what we expect to learn from future missions. The talk will also touch on some of the latest findings obtained by different groups. In particular we will discuss the rotational evolution of self-gravitating aggregates under the influence of the YORP effect and how their angles of friction, tensile strength, porosity, internal structure and density give rise to different disruption modes and the role they play in the formation of asteroids pairs, tumblers and binary systems.
The Collisional Evolution of the Main Asteroid Belt
NASA Astrophysics Data System (ADS)
Bottke, W. F.; Brož, M.; O'Brien, D. P.; Campo Bagatin, A.; Morbidelli, A.; Marchi, S.
Collisional and dynamical models of the main asteroid belt allow us to glean insights into planetesimal- and planet-formation scenarios as well as how the main belt reached its current state. Here we discuss many of the processes affecting asteroidal evolution and the constraints that can be used to test collisional model results. We argue the main belt's wavy size-frequency distribution for diameter D < 100-km asteroids is increasingly a byproduct of comminution as one goes to smaller sizes, with its shape a fossil-like remnant of a violent early epoch. Most D > 100-km asteroids, however, are primordial, with their physical properties set by planetesimal formation and accretion processes. The main-belt size distribution as a whole has evolved into a collisional steady state, and it has possibly been in that state for billions of years. Asteroid families provide a critical historical record of main-belt collisions. The heavily depleted and largely dispersed "ghost families," however, may hold the key to understanding what happened in the primordial days of the main belt. New asteroidal fragments are steadily created by both collisions and mass shedding events via YORP spinup processes. A fraction of this population, in the form of D < 30 km fragments, go on to escape the main belt via the Yarkovsky/YORP effects and gravitational resonances, thereby creating a quasi-steady-state population of planet-crossing and near-Earth asteroids. These populations go on to bombard all inner solar system worlds. By carefully interpreting the cratering records they produce, it is possible to constrain how portions of the main-belt population have evolved with time.
A Most Incredible Asteroid: The Break-Up of P/2013 R3
NASA Astrophysics Data System (ADS)
Jewitt, David; Agarwal, Jessica; Li, Jing; Weaver, Harold A.; Mutchler, Maximilian J.; Larson, Stephen M.
2017-10-01
We present a comprehensive study of the actively disintegrating asteroid P/2013 R3. Using the Hubble and Keck telescopes, we identified thirteen discrete components separating with a mean, pair-wise velocity dispersion of v = 0.33+/-0.03 m/s. Their separation times are staggered over an interval of 5 months. Combined, the components of P/2013 R3 would form a single spherical body with radius 400 m, which is our best estimate of the size of the precursor object. Dust enveloping the system has, in the first observations, a cross-section 30 sq. km but fades monotonically at a rate consistent with the action of radiation pressure sweeping. The individual components exhibit comet-like morphologies and also fade except where secondary fragmentation is accompanied by the release of additional dust. Upper limits to the radii of any embedded solid nuclei are typically 100 to 200 m (geometric albedo 0.05 assumed). The observations are consistent with rotational disruption of a weak (cohesive strength 50 to 100 Pa) parent body, 400 m in radius. Estimated radiation (YORP) spin-up times of this parent are less than 1 Myr, shorter than the collisional lifetime. If present, water ice sublimating at as little as 1 g/s could generate a torque on the parent body rivaling the YORP torque. Under conservative assumptions about the frequency of similar disruptions, the inferred asteroid debris production rate is 1000 kg/s, which is at least 4 percent of the rate needed to maintain the Zodiacal Cloud.The work has been recently published: D. Jewitt, J. Agarwal, J. Li, H. Weaver, M. Mutchler, S. Larson (2017). The Astronomical Journal, 153:223(17pp)
Anatomy of an Asteroid Breakup: The Case of P/2013 R3
NASA Astrophysics Data System (ADS)
Jewitt, David; Agarwal, Jessica; Li, Jing; Weaver, Harold; Mutchler, Max; Larson, Stephen
2017-05-01
We present an analysis of new and published data on P/2013 R3, the first asteroid detected while disintegrating. Thirteen discrete components are measured in the interval between UT 2013 October 01 and 2014 February 13. We determine a mean, pair-wise velocity dispersion among these components of Δv = 0.33 ± 0.03 m s-1 and find that their separation times are staggered over an interval of ˜5 months. Dust enveloping the system has, in the first observations, a cross-section of ˜30 km2 but fades monotonically at a rate consistent with the action of radiation pressure sweeping. The individual components exhibit comet-like morphologies and also fade except where secondary fragmentation is accompanied by the release of additional dust. We find only upper limits to the radii of any embedded solid nuclei, typically ˜100-200 m (geometric albedo 0.05 assumed). Combined, the components of P/2013 R3 would form a single spherical body with a radius of ≲ 400 m, which is our best estimate of the size of the precursor object. The observations are consistent with rotational disruption of a weak (cohesive strength of ˜50 to 100 N m-2) parent body, ˜400 m in radius. Estimated radiation (YORP) spin-up times of this parent are ≲ 1 {Myr}, shorter than the collisional lifetime. If present, water ice sublimating at as little as 10-3 kg s-1 could generate a torque on the parent body rivaling the YORP torque. Under conservative assumptions about the frequency of similar disruptions, the inferred asteroid debris production rate is ≳103 kg s-1, which is at least 4% of the rate needed to maintain the Zodiacal Cloud.
NASA Astrophysics Data System (ADS)
Connolly, Harold C.; Lauretta, Dante S.; Walsh, Kevin J.; Tachibana, Shogo; Bottke, William F.
2015-01-01
The data from the analysis of samples returned by Hayabusa from asteroid 25143 Itokawa are used to constrain the preaccretion history, the geological activity that occurred after accretion, and the dynamical history of the asteroid from the main belt to near-Earth space. We synthesize existing data to pose hypotheses to be tested by dynamical modeling and the analyses of future samples returned by Hayabusa 2 and OSIRIS-REx. Specifically, we argue that the Yarkosky-O'Keefe-Radzievskii-Paddack (YORP) effect may be responsible for producing geologically high-energy environments on Itokawa and other asteroids that process regolith and essentially affect regolith gardening.
Photometric Studies of Rapidly Spinning Decommissioned GEO Satellites
NASA Astrophysics Data System (ADS)
Ryan, W.; Ryan, E.
A satellites general characteristics can be substantially influenced by changes in the space environment. Rapidly spinning decommissioned satellites provide an excellent opportunity to study the rotation-dependent physical processes that affect a resident space objects (RSO) spin kinematics over time. Specifically, inactive satellites at or near geosynchronous Earth-orbit (GEO) provide easy targets for which high quality data can be collected and analyzed such that small differences can be detected under single-year or less time frames. Previous workers have shown that the rotational periods of defunct GEOs have been changing over time [1]. Further, the Yarkovsky-OKeefe-Radzievskii-Paddak (YORP) effect, a phenomenon which has been well-studied in the context of the changing the spin states of asteroids, has recently been suggested to be the cause of secular alterations in the rotational period of inactive satellites [2]. Researchers at the Magdalena Ridge Observatory 2.4-meter telescope (operated by the New Mexico Institute of Mining and Technology) have been investigating the spins states of retired GEOs and other high altitude space debris since 2007 [3]. In this current work, the 2.4-meter telescope was used to track and observe the objects typically over a one- to two-hour period, repeated several times over the course of weeks. When feasible, this is then repeated on a yearly basis. Data is taken with a 1 second cadence, nominally in groups of three 600 second image sets. With the current equipment, the cadence of the image sequences is very precise while the start time is accurate only to the nearest second. Therefore, periods are determined individually using each image sequence. Repeatability of the period determination for each of these sequences is typically on the order of 0.01 second or better for objects where a single period is identified. Spin rate periods determined from the GEO light curves collected thus far have been found to range from ~3 sec to many tens of seconds. Based on these observed rotational characteristics, results will be presented on both the long- and short-term spin-rate variations of selected targets. The objective was to study a variety of satellites for rotational stability over time, and to discern how physical effects (such as YORP) might be dependent on the optical, thermal and geometrical parameters of the object. References: [1] Papushev, P., Karavaev, Y., and Mishina, M., Investigations of the evolution of optical characteristics and dynamics of proper rotation of uncontrolled geostationary artificial satellites, Advances in Space Research, 416-1422, 2009. [2] Albuja, A.A. and Scheeres, D.J., Defunct Satellites, Rotation Rates and the YORP Effect, Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Wailea, Hawaii, 156-163, 2013. [3] Romero, V., W.H. Ryan, and E.V. Ryan, Monitoring Variations to the Near-Earth Space Environment during High Solar Activity using Orbiting Rocket Bodies, Proceedings of the 2007 AMOS Technical Conference, Hawaii, 389-393, 2007.
The effect of tidal forces on the minimum energy configurations of the full three-body problem
NASA Astrophysics Data System (ADS)
Levine, Edward
We investigate the evolution of minimum energy configurations for the Full Three Body Problem (3BP). A stable ternary asteroid system will gradually become unstable due to the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect and an unpredictable trajectory will ensue. Through the interaction of tidal torques, energy in the system will dissipate in the form of heat until a stable minimum energy configuration is reached. We present a simulation that describes the dynamical evolution of three bodies under the mutual effects of gravity and tidal torques. Simulations show that bodies do not get stuck in local minima and transition to the predicted minimum energy configuration.
On the first ν6 anti-aligned librating asteroid family of Tina
NASA Astrophysics Data System (ADS)
Carruba, V.; Morbidelli, A.
2011-04-01
Asteroid families are groups of bodies identified in the space of proper elements or of frequencies that share a common origin in the collisional break-up of their progenitors. Their dynamical evolution is shaped by the interaction with the local web of mean-motion and secular resonances, and by non-gravitational effects, such as the 'Yarkovsky' and 'Yarkovsky-O'Keefe-Radzievskii-Paddack' (YORP) effects. Thus, obtaining information on their age and original ejection velocity field is generally a difficult task. Recently, two families were found to have a large fraction of members in the non-linear secular resonance z1: the Agnia and Padua families. Conserved quantities of the z1resonance allowed for a more precise determination of their ages and ejection velocity fields. So far, however, no family was known to be in a linear secular resonance, such as the ν6 resonance, although individual asteroids were known to be in ν6 anti-aligned librating states. The ν6 resonance occurs when there is a commensurability between the frequency of precession of the pericentre of an asteroid and that of Saturn. As a consequence, in librating states, the resonant argument oscillates around a stable point. In anti-aligned librating states, the resonant argument oscillates around the stable point at 180°. Here we show that the newly identified Tina family is characterized by having all its members in such a state, making it the only family in the asteroid belt known to be completely embedded in a secular resonance configuration. This rare dynamical configuration limits the maximum eccentricity of Tina members, preventing them from experiencing Martian close encounters and forming a stable island of a new dynamical type. The current dispersion of asteroid resonant elements suggests that the family should be at least 2.5 Myr old, while Monte Carlo simulations including the Yarkovsky and YORP effects suggest that the Tina family should be 170+20-30 Myr old.
Population control of Martian Trojans by the Yarkovsky & YORP effects
NASA Astrophysics Data System (ADS)
Christou, Apostolos; Borisov, Galin; Jacobson, Seth A.; Colas, Francois; dell'Oro, Aldo; Cellino, Alberto; Bagnulo, Stefano
2017-10-01
Mars is the only terrestrial planet supporting a stable population of Trojan asteroids. One, (5261) Eureka, has a family of smaller asteroids of similar composition (Borisov et al, 2017; Polishook et al, 2017) that likely separated from Eureka within the last 1 Gyr (Ćuk et al, 2015). Two other Trojans, (101429) 1998 VF31 and (121514) 1999 UJ7, of similar size and on similar orbits to Eureka, are not associated with families of asteroids, begging the question of what makes Eureka special.The Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect may have formed the Eureka family (Christou, 2013; Ćuk et al, 2015) by the spinning off of ``YORPlets’’, a mechanism also responsible for close orbital pairs of small Main Belt asteroids (Pravec et al, 2010). Eureka’s fast rotation rate (P=2.69 hr; Koehn et al, 2014), right at the so-called ``spin barrier’’ (Warner et al, 2009), apparently supports this.We obtained photometry of 101429 and 121514 to find out their rotation periods. We find an unusually long, ˜50 hr period for 121514; the asteroid may be in a ``tumbling’’ rotational state that inhibits YOPRlet production. On the other hand, the faster (P=7.7 hr) rotation we obtain for 101429 does not preclude it from having been spun up to the rotational fission limit during the most recent 10s of Myr.Instead, 101429’s location near a secular resonance (Scholl et al, 2005) may lead to rapid loss of any YORPlet asteroids. Indeed, test particles started at 101429’s orbit and evolving under the Yarkovsky effect escape within a few hundred Myr, several times faster than particles started near Eureka. We conclude that the stability enjoyed by asteroids in Eureka’s orbital vicinity, combined with the ability to readily populate that vicinity with new asteroids, are likely responsible for Eureka’s status as the only Martian Trojan with a family.
A mission concept for a Grand Tour of Multiple Asteroid Systems
NASA Astrophysics Data System (ADS)
Marchis, F.; Dankanich, J.; Tricarico, P.; Bellerose, J.
2009-12-01
In 1993, the Galileo spacecraft imaged the first companion of asteroid, Dactyl orbiting 243 Ida, a main-belt asteroid. Since then, discoveries have been accumulated thanks to the development of high angular resolution imaging on ground-based telescopes (adaptive optics), radar observations and accurate photometric light curve measurements. To date, 180 companions of small solar system bodies (SSSBs) are known in various populations, including 100 in the asteroid main belt, 33 Near Earth Asteroids, 4 Jupiter-Trojan asteroids and 44 in the Kuiper Belt. Multiple Asteroids have been shown to be complex worlds in their own with a wide range of morphologies, dynamical histories, and structural evolution. To the exception of 243 Ida, no spacecraft has visited any of them. Investigating binary asteroid systems can verify and validate current theories on their formation and on the influence of the sun in their formation (YORP effect) and evolution (space weathering). In particular, assessing the origin of the secondary satellite, if it is of common origin or capture, can provide clue of their formation. To a larger extend, the determination of their nature, scenario formation and evolution are key to understand how planet formation occurred but also to understand i) the population and compositional structure of the SSSB today ii) how the dynamics and collisions modify this structure over time iii) what the physical properties of asteroids are (density, porosity) iv) how the surface modification processes affect our ability to determine this structure (e.g. space weathering). In addition, being able to study these properties on closeby asteroids will give a relative scale accounting for the sizes, shape, rotation periods and cratering rate of these small and young bodies. In the framework of the NASA Discovery program, we propose a mission consisting of a Grand Tour of several multiple asteroid systems, including the flyby of a near earth binary asteroid and the rendezvous with several multiple asteroid systems located in the main belt. This mission concept uses the NASA's evolutionary Xenon Thruster (NEXT), the second generation of electric propulsion with 3 times more input power than the previous generation (NSTAR) of the Dawn mission. The mission objectives for each rendezvous asteroid are i) the characterization of the surface geology by direct imaging in visible and thermal infrared spectroscopy, ii) the characterization of the shape and gravity coupling visible observations with LIDAR ranging data, iii) the determination of the thermophysical properties of the surface, and iv) the identification of the surface composition by visible and near-infrared spectroscopy. The trajectory, science package and mission operations of the mission will be described. This work is supported by the National Science Foundation 05-608, "Astronomy and Astrophysics Research Grants (AAG)" No AST-0807468
Lightcurve survey of V-type asteroids in the inner asteroid belt
NASA Astrophysics Data System (ADS)
Hasegawa, Sunao; Miyasaka, Seidai; Mito, Hiroyuki; Sarugaku, Yuki; Ozawa, Tomohiko; Kuroda, Daisuke; Nishihara, Setsuko; Harada, Akari; Yoshida, Michitoshi; Yanagisawa, Kenshi; Shimizu, Yasuhiro; Nagayama, Shogo; Toda, Hiroyuki; Okita, Kichi; Kawai, Nobuyuki; Mori, Machiko; Sekiguchi, Tomohiko; Ishiguro, Masateru; Abe, Takumi; Abe, Masanao
2014-06-01
We observed the lightcurves of 13 V-type asteroids [(1933) Tinchen, (2011) Veteraniya, (2508) Alupka, (3657) Ermolova, (3900) Knezevic, (4005) Dyagilev, (4383) Suruga, (4434) Nikulin, (4796) Lewis, (6331) 1992 FZ1, (8645) 1998 TN, (10285) Renemichelsen, and (10320) Reiland]. Using these observations we determined the rotational rates of the asteroids, with the exception of Nikulin and Renemichelsen. The distribution of rotational rates of 59 V-type asteroids in the inner main belt, including 29 members of the Vesta family, which are regarded as being ejecta from the asteroid (4) Vesta, is inconsistent with the best-fit Maxwellian distribution. This inconsistency may be due to the effect of thermal radiation Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) torques, which implies that the collision event that formed V-type asteroids is sub-billion to several billion years in age.
Rotation State Evolution of Retired Geosynchronous Satellites
NASA Astrophysics Data System (ADS)
Benson, C.; Scheeres, D. J.; Ryan, W. H.; Ryan, E. V.; Moskovitz, N.
Non-periodic light curve rotation state analysis is conducted for the retired geosynchronous satellite GOES 8. This particular satellite has been observed periodically at the Maui Research and Technology Center as well as Magdalena Ridge and Lowell Observatories since 2013. To extract tumbling periods from the light curves, twodimensional Fourier series fits were used. Torque-free dynamics and the satellite’s known mass properties were then leveraged to constrain the candidate periods. Finally, simulated light curves were generated using a representative shape model for further validation. Analysis of the light curves suggests that GOES 8 transitioned from uniform rotation in 2014 to continually evolving tumbling motion by 2016. These findings are consistent with previous dynamical simulations and support the hypothesis that the Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect drives rotation state evolution of retired geosynchronous satellites.
Gemini and Keck Observations of Slowly Rotating, Bilobate Active Asteroid (300163)
NASA Astrophysics Data System (ADS)
Waniak, Waclaw; Drahus, Michal
2016-10-01
One of the most puzzling questions regarding Active Asteroids is the mechanism of their activation. While some Active Asteroids show protracted and often recurrent mass loss, consistent with seasonal ice sublimation, some other eject dust impulsively as a result of a catastrophic disruption (e.g. Jewitt et al. 2015, Asteroids IV, 221). It has been suggested that ice can be excavated from the cold near-surface interior by an impact (Hsieh & Jewitt 2006, Science 312, 561) or, for small objects susceptible to YORP torques, by near-critical spin rate (Sheppard & Trujillo 2014, AJ 149, 44). But impact and rapid spin can also cause a catastrophic disruption (e.g. Jewitt et al. 2015, Asteroids IV, 221). It therefore becomes apparent that the different types of mass loss observed in Active Asteroids can be best classified and understood based on the nucleus spin rates (Drahus et al. 2015, ApJL 802, L8), but unfortunately the rotation periods have been measured for a very limited number of these objects. With this in mind we have initiated a survey of light curves of small Active Asteroids on the largest ground-based optical telescopes. Here we present the results for (300163), also known as 288P and 2006 VW139, which is a small 2.6-km sized asteroid that exhibited a comet-like activity over 100 days in the second half of 2011 (Hsieh et al. 2012, ApJL 748, L15; Licandro et al. 2013, A&A 550, A17; Agarwal et al. 2016, AJ 151, 12). Using Keck/DEIMOS and Gemini/GMOS-S working in tandem on UT 2015 May 21-22 we have detected an inactive nucleus and measured a complete, dense, high-S/N rotational light curve. The light curve has a double-peaked period of 16 hours, an amplitude of 0.4 mag, and moderately narrow minima suggesting a bilobate or contact-binary shape. The long rotation period clearly demonstrates a non-rotational origin of activity of this object, consistent with an impact. Furthermore, among the five small Active Asteroids with known rotation periods (300163) is only the second object with a confirmed slow spin rate, the other three rotating rapidly, near the limit of rotational stability. This suggests that rotation- and impact-driven origin of activity can be comparably common among small asteroids.
A New Approach on the Long Term Dynamics of NEO's Under Yarkovsky Effect.
NASA Astrophysics Data System (ADS)
Peláez, Jesús; Urrutxua, Hodei; Bombardelli, Claudio; Perez-Grande, Isabel
2011-12-01
A classical approach to the many-body problem is that of using special perturbation methods. Nowadays and due to the availability of high-speed computers is an essential tool in Space Dynamics which exhibits a great advantage: it is applicable to any orbit involving any number of bodies and all sorts of astrodynamical problems, especially when these problems fall into regions in which general perturbation theories are absent. One such case is, for example, that Near Earth Objects (NEO's) dynamics. In this field, the Group of Tether Dynamics of UPM (GDT) has developed a new regularisation scheme - called DROMO - which is characterised by only 8 ODE. This new regularisation scheme allows a new approach to the dynamics of NEO's in the long term, specially appropriated to consider the influence of the anisotropic thermal emission (Yarkovsky and YORP effects) on the dynamics. A new project, called NEODROMO, has been started in GDT that aims to provide a reliable tool for the long term dynamics of NEO's.
The OSIRIS-REx Radio Science Experiment at Bennu
NASA Astrophysics Data System (ADS)
McMahon, J. W.; Scheeres, D. J.; Hesar, S. G.; Farnocchia, D.; Chesley, S.; Lauretta, D.
2018-02-01
The OSIRIS-REx mission will conduct a Radio Science investigation of the asteroid Bennu with a primary goal of estimating the mass and gravity field of the asteroid. The spacecraft will conduct proximity operations around Bennu for over 1 year, during which time radiometric tracking data, optical landmark tracking images, and altimetry data will be obtained that can be used to make these estimates. Most significantly, the main Radio Science experiment will be a 9-day arc of quiescent operations in a 1-km nominally circular terminator orbit. The pristine data from this arc will allow the Radio Science team to determine the significant components of the gravity field up to the fourth spherical harmonic degree. The Radio Science team will also be responsible for estimating the surface accelerations, surface slopes, constraints on the internal density distribution of Bennu, the rotational state of Bennu to confirm YORP estimates, and the ephemeris of Bennu that incorporates a detailed model of the Yarkovsky effect.
Dynamics of asteroid family halos constrained by spin/shape models
NASA Astrophysics Data System (ADS)
Broz, Miroslav
2016-10-01
A number of asteroid families cannot be identified solely on the basis of the Hierarchical Clustering Method (HCM), because they have additional 'former' members in the surroundings which constitute a so called halo (e.g. Broz & Morbidelli 2013). They are usually mixed up with the background population which has to be taken into account too.Luckily, new photometric observations allow to derive new spin/shape models, which serve as independent constraints for dynamical models. For example, a recent census of the Eos family shows 43 core and 27 halo asteroids (including background) with known spin orientations.To this point, we present a complex spin-orbital model which includes full N-body dynamics and consequently accounts for all mean-motion, secular, or three-body gravitational resonances, the Yarkovsky drift, YORP effect, collisional reorientations and also spin-orbital interactions. These are especially important for the Koronis family. In this project, we make use of data from the DAMIT database and ProjectSoft Blue Eye 600 observatory.
Rotation Studies of Jovian Trojan Asteroids
NASA Astrophysics Data System (ADS)
French, Linda M.; Stephens, Robert D.; Wasserman, Lawrence H.; Lederer, Susan M.; Rohl, Derrick A.
2011-08-01
The Jovian Trojan asteroids appear to be fundamentally different from main belt asteroids. They formed further from the sun, they are of different composition, and their collisional history is different. Lightcurve studies provide information about the distribution of rotation frequencies of a group of asteroids. For main belt asteroids larger than about 40 km in diameter, the distribution of rotation frequencies is Maxwellian (Pravec et al. 2000). This suggests that collisions determine their rotation properties. Smaller main belt asteroids, however, show a predominance of both fast and slow rotators, with the observed spin distribution apparently controlled by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect (Pravec et al. 2008). The Trojans larger than 100 km in diameter have been almost completely sampled, but lightcurves for smaller Trojans have been less well studied due to their low albedos and greater solar distances. We propose to investigate the rotation periods of 4-6 small (D < 50 km) Trojan asteroids and 6-9 Trojans in the 50-100 km size range.
Constraints on the near-Earth asteroid obliquity distribution from the Yarkovsky effect
NASA Astrophysics Data System (ADS)
Tardioli, C.; Farnocchia, D.; Rozitis, B.; Cotto-Figueroa, D.; Chesley, S. R.; Statler, T. S.; Vasile, M.
2017-12-01
Aims: From light curve and radar data we know the spin axis of only 43 near-Earth asteroids. In this paper we attempt to constrain the spin axis obliquity distribution of near-Earth asteroids by leveraging the Yarkovsky effect and its dependence on an asteroid's obliquity. Methods: By modeling the physical parameters driving the Yarkovsky effect, we solve an inverse problem where we test different simple parametric obliquity distributions. Each distribution results in a predicted Yarkovsky effect distribution that we compare with a χ2 test to a dataset of 125 Yarkovsky estimates. Results: We find different obliquity distributions that are statistically satisfactory. In particular, among the considered models, the best-fit solution is a quadratic function, which only depends on two parameters, favors extreme obliquities consistent with the expected outcomes from the YORP effect, has a 2:1 ratio between retrograde and direct rotators, which is in agreement with theoretical predictions, and is statistically consistent with the distribution of known spin axes of near-Earth asteroids.
The Spin Vector of (832) Karin
NASA Astrophysics Data System (ADS)
Slivan, Stephen M.; Molnar, L. A.
2010-10-01
We observed rotation lightcurves of Koronis family and Karin cluster member (832) Karin during its four consecutive apparitions in 2006-2009, and combined the new observations with previously published lightcurves to determine its spin vector orientation and preliminary model shape. Karin is a prograde rotator with a period of 18.352 h, spin obliquity near 41°, and pole ecliptic longitude near either 51° or 228°. Although the two ambiguous pole solutions are near the clustered pole solutions of four Koronis family members whose spins are thought to be trapped in a spin-orbit resonance (Vokrouhlický et al., 2003), Karin does not seem to be trapped in the resonance; this is consistent with the expectation that the 6 My age of Karin (Nesvorný et al., 2002) is too young for YORP torques to have modified its spin since its formation. The spin vector and shape results for Karin will constrain family formation models that include spin properties, and we discuss the Karin results in the context of the other members of the Karin cluster, the Karin parent body, and the parent body's siblings in the Koronis family.
A m-ary linear feedback shift register with binary logic
NASA Technical Reports Server (NTRS)
Perlman, M. (Inventor)
1973-01-01
A family of m-ary linear feedback shift registers with binary logic is disclosed. Each m-ary linear feedback shift register with binary logic generates a binary representation of a nonbinary recurring sequence, producible with a m-ary linear feedback shift register without binary logic in which m is greater than 2. The state table of a m-ary linear feedback shift register without binary logic, utilizing sum modulo m feedback, is first tubulated for a given initial state. The entries in the state table are coded in binary and the binary entries are used to set the initial states of the stages of a plurality of binary shift registers. A single feedback logic unit is employed which provides a separate feedback binary digit to each binary register as a function of the states of corresponding stages of the binary registers.
WIYN OPEN CLUSTER STUDY. XLVIII. THE HARD-BINARY POPULATION OF NGC 188
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geller, Aaron M.; Mathieu, Robert D., E-mail: a-geller@northwestern.edu, E-mail: mathieu@astro.wisc.edu
2012-08-15
We present an in-depth study of the hard-binary population of the old (7 Gyr) open cluster NGC 188. Utilizing 85 spectroscopic binary orbits out of a complete sample of 129 detected binary members, we study the cluster binary frequency and the distributions of binary orbital elements among the main-sequence (MS), giant, and blue straggler (BS) populations. The results are derived from our ongoing radial velocity survey of the cluster, which spans in magnitude from the brightest stars in the cluster to V = 16.5 (about 1.1-0.9 M{sub Sun} ), and extends to a projected radius of 17 pc ({approx}13 coremore » radii). Our detectable binaries have periods ranging from a few days to of order 10{sup 4} days, and thus are hard binaries that dynamically power the cluster. The MS solar-type hard binaries in NGC 188 are nearly indistinguishable from similar binaries in the Galactic field. We observe a global solar-type MS hard-binary frequency in NGC 188 of 23% {+-} 2%, which when corrected for incompleteness results in a frequency of 29% {+-} 3% for binaries with periods less than 10{sup 4} days. For MS hard binaries in the cluster, we observe a log-period distribution that rises toward our detection limit, a roughly Gaussian eccentricity distribution centered on e = 0.35 (for binaries with periods longer than the circularization period), and a secondary-mass distribution that rises toward lower-mass companions. Importantly, the NGC 188 BS binaries show significantly different characteristics than the solar-type MS binaries in NGC 188. We observe a BS hard-binary frequency of 76% {+-} 19%, three times that of the MS. The excess of this binary frequency over the normal MS binary frequency is valid at the >99% confidence level. Furthermore, the BS binary eccentricity-log-period distribution is distinct from that of the MS at the 99% confidence level, with the majority of the BS binaries having periods of order 1000 days and lower eccentricities. The secondary-mass distribution for these long-period BS binaries is narrow and peaked with a mean value of about 0.5 M{sub Sun }. Predictions for mass-transfer products are most closely consistent with the binary properties of these NGC 188 BSs, which comprise two-thirds of the BS population. Additionally, we compare the NGC 188 binaries to those evolved within the sophisticated Hurley et al. (2005) N-body open cluster simulation. The MS hard-binary population predicted by the simulation is significantly different from the MS hard-binary population observed in NGC 188, in frequency and distributions of period and eccentricity. Many of these differences result from the adopted initial binary population, while others reflect on the physics used in the simulation (e.g., tidal circularization). Additional simulations with initial conditions that are better motivated by observations are necessary to properly investigate the dynamical evolution of a rich binary population in open clusters like NGC 188.« less
Coevolution of Binaries and Circumbinary Gaseous Disks
NASA Astrophysics Data System (ADS)
Fleming, David; Quinn, Thomas R.
2018-04-01
The recent discoveries of circumbinary planets by Kepler raise questions for contemporary planet formation models. Understanding how these planets form requires characterizing their formation environment, the circumbinary protoplanetary disk, and how the disk and binary interact. The central binary excites resonances in the surrounding protoplanetary disk that drive evolution in both the binary orbital elements and in the disk. To probe how these interactions impact both binary eccentricity and disk structure evolution, we ran N-body smooth particle hydrodynamics (SPH) simulations of gaseous protoplanetary disks surrounding binaries based on Kepler 38 for 10^4 binary orbital periods for several initial binary eccentricities. We find that nearly circular binaries weakly couple to the disk via a parametric instability and excite disk eccentricity growth. Eccentric binaries strongly couple to the disk causing eccentricity growth for both the disk and binary. Disks around sufficiently eccentric binaries strongly couple to the disk and develop an m = 1 spiral wave launched from the 1:3 eccentric outer Lindblad resonance (EOLR). This wave corresponds to an alignment of gas particle longitude of periastrons. We find that in all simulations, the binary semi-major axis decays due to dissipation from the viscous disk.
The True Ultracool Binary Fraction Using Spectral Binaries
NASA Astrophysics Data System (ADS)
Bardalez Gagliuffi, Daniella; Burgasser, Adam J.; Schmidt, Sarah J.; Gagné, Jonathan; Faherty, Jacqueline K.; Cruz, Kelle; Gelino, Chris
2018-01-01
Brown dwarfs bridge the gap between stars and giant planets. While the essential mechanisms governing their formation are not well constrained, binary statistics are a direct outcome of the formation process, and thus provide a means to test formation theories. Observational constraints on the brown dwarf binary fraction place it at 10 ‑ 20%, dominated by imaging studies (85% of systems) with the most common separation at 4 AU. This coincides with the resolution limit of state-of-the-art imaging techniques, suggesting that the binary fraction is underestimated. We have developed a separation-independent method to identify and characterize tightly-separated (< 5 AU) binary systems of brown dwarfs as spectral binaries by identifying traces of methane in the spectra of late-M and early-L dwarfs. Imaging follow-up of 17 spectral binaries yielded 3 (18%) resolved systems, corroborating the observed binary fraction, but 5 (29%) known binaries were missed, reinforcing the hypothesis that the short-separation systems are undercounted. In order to find the true binary fraction of brown dwarfs, we have compiled a volume-limited, spectroscopic sample of M7-L5 dwarfs and searched for T dwarf companions. In the 25 pc volume, 4 candidates were found, three of which are already confirmed, leading to a spectral binary fraction of 0.95 ± 0.50%, albeit for a specific combination of spectral types. To extract the true binary fraction and determine the biases of the spectral binary method, we have produced a binary population simulation based on different assumptions of the mass function, age distribution, evolutionary models and mass ratio distribution. Applying the correction fraction resulting from this method to the observed spectral binary fraction yields a true binary fraction of 27 ± 4%, which is roughly within 1σ of the binary fraction obtained from high resolution imaging studies, radial velocity and astrometric monitoring. This method can be extended to identify giant planet companions to young brown dwarfs.
Research on the Orbital Period of Massive Binaries
NASA Astrophysics Data System (ADS)
Zhao, E.; Qain, S.
2011-12-01
Massive binary is the kind of binary, whose spectral type is earlier than B5. Research on massive binary plays an important role in the mass and angular momentum transfer or loss between the components, and the evolution of binary. Some massive binaries are observed and analyzed, including O-type binary LY Aur, B-type contact binary RZ Pyx and B-type semi-detached binary AI Cru. It is found that all of their periods have a long-term increasing, which indicates that the system is undergoing a Case A slow mass transfer stage on the nuclear time-scale of the secondary. Moreover, analysis show a cyclic change of orbital period, which can be explained by the light-travel effect time of the third body.
Tidal disruption of inclined or eccentric binaries by massive black holes
NASA Astrophysics Data System (ADS)
Brown, Harriet; Kobayashi, Shiho; Rossi, Elena M.; Sari, Re'em
2018-07-01
Binary stars that are on close orbits around massive black holes (MBHs) such as Sgr A* in the centre of the Milky Way are liable to undergo tidal disruption and eject a hypervelocity star. We study the interaction between such an MBH and circular binaries for general binary orientations and penetration depths (i.e. binaries penetrate into the tidal radius around the BH). We show that for very deep penetrators, almost all binaries are disrupted when the binary rotation axis is roughly oriented towards the BH or it is in the opposite direction. The surviving chance becomes significant when the angle between the binary rotation axis and the BH direction is between 0.15π and 0.85π. The surviving chance is as high as ˜20 per cent when the binary rotation axis is perpendicular to the BH direction. However, for shallow penetrators, the highest disruption chance is found in such a perpendicular case, especially in the prograde case. This is because the dynamics of shallow penetrators is more sensitive to the relative orientation of the binary and orbital angular momenta. We provide numerical fits to the disruption probability and energy gain at the BH encounter as a function of the penetration depth. The latter can be simply rescaled in terms of binary masses, their initial separation, and the binary-to-BH mass ratio to evaluate the ejection velocity of a binary members in various systems. We also investigate the disruption of coplanar, eccentric binaries by an MBH. It is shown that for highly eccentric binaries retrograde orbits have a significantly increased disruption probability and ejection velocities compared to the circular binaries.
Tidal Disruption of Inclined or Eccentric Binaries by Massive Black Holes
NASA Astrophysics Data System (ADS)
Brown, Harriet; Kobayashi, Shiho; Rossi, Elena M.; Sari, Re'em
2018-04-01
Binary stars that are on close orbits around massive black holes (MBH) such as Sgr A* in the centre of the Milky Way are liable to undergo tidal disruption and eject a hypervelocity star. We study the interaction between such a MBH and circular binaries for general binary orientations and penetration depths (i.e. binaries penetrate into the tidal radius around the BH). We show that for very deep penetrators, almost all binaries are disrupted when the binary rotation axis is roughly oriented toward the BH or it is in the opposite direction. The surviving chance becomes significant when the angle between the binary rotation axis and the BH direction is between 0.15π and 0.85π. The surviving chance is as high as ˜20% when the binary rotation axis is perpendicular to the BH direction. However, for shallow penetrators, the highest disruption chance is found in such a perpendicular case, especially in the prograde case. This is because the dynamics of shallow penetrators is more sensitive to the relative orientation of the binary and orbital angular momenta. We provide numerical fits to the disruption probability and energy gain at the the BH encounter as a function of the penetration depth. The latter can be simply rescaled in terms of binary masses, their initial separation and the binary-to-BH mass ratio to evaluate the ejection velocity of a binary members in various systems. We also investigate the disruption of coplanar, eccentric binaries by a MBH. It is shown that for highly eccentric binaries retrograde orbits have a significantly increased disruption probability and ejection velocities compared to the circular binaries.
New Results on Contact Binary Stars
NASA Astrophysics Data System (ADS)
He, J.; Qian, S.; Zhu, L.; Liu, L.; Liao, W.
2014-08-01
Contact binary star is a kind of close binary with the strongest interaction binary system. Their formations and evolutions are unsolved problems in astrophysics. Since 2000, our groups have observed and studied more than half a hundred of contact binaries. In this report, I will summarize our new results of some contact binary stars (e.g. UZ CMi, GSC 03526-01995, FU Dra, GSC 0763-0572, V524 Mon, MR Com, etc.). They are as follow: (1) We discovered that V524 Mon and MR Com are shallow-contact binaries with their period decreasing; (2) GSC 03526-01995 is middle-contact binary without a period increasing or decreasing continuously; (3) UZ CMi, GSC 0763-0572 and FU Dra are middle-contact binaries with the period increasing continuously; (4) UZ CMi, GSC 03526-01995, FU Dra and V524 Mon show period oscillation which may imply the presence of additional components in these contact binaries.
How I Learned to Stop Worrying and Love Eclipsing Binaries
NASA Astrophysics Data System (ADS)
Moe, Maxwell Cassady
Relatively massive B-type stars with closely orbiting stellar companions can evolve to produce Type Ia supernovae, X-ray binaries, millisecond pulsars, mergers of neutron stars, gamma ray bursts, and sources of gravitational waves. However, the formation mechanism, intrinsic frequency, and evolutionary processes of B-type binaries are poorly understood. As of 2012, the binary statistics of massive stars had not been measured at low metallicities, extreme mass ratios, or intermediate orbital periods. This thesis utilizes large data sets of eclipsing binaries to measure the physical properties of B-type binaries in these previously unexplored portions of the parameter space. The updated binary statistics provide invaluable insight into the formation of massive stars and binaries as well as reliable initial conditions for population synthesis studies of binary star evolution. We first compare the properties of B-type eclipsing binaries in our Milky Way Galaxy and the nearby Magellanic Cloud Galaxies. We model the eclipsing binary light curves and perform detailed Monte Carlo simulations to recover the intrinsic properties and distributions of the close binary population. We find the frequency, period distribution, and mass-ratio distribution of close B-type binaries do not significantly depend on metallicity or environment. These results indicate the formation of massive binaries are relatively insensitive to their chemical abundances or immediate surroundings. Second, we search for low-mass eclipsing companions to massive B-type stars in the Large Magellanic Cloud Galaxy. In addition to finding such extreme mass-ratio binaries, we serendipitously discover a new class of eclipsing binaries. Each system comprises a massive B-type star that is fully formed and a nascent low-mass companion that is still contracting toward its normal phase of evolution. The large low-mass secondaries discernibly reflect much of the light they intercept from the hot B-type stars, thereby producing sinusoidal variations in perceived brightness as they orbit. These nascent eclipsing binaries are embedded in the hearts of star-forming emission nebulae, and therefore provide a unique snapshot into the formation and evolution of massive binaries and stellar nurseries. We next examine a large sample of B-type eclipsing binaries with intermediate orbital periods. To achieve such a task, we develop an automated pipeline to classify the eclipsing binaries, measure their physical properties from the observed light curves, and recover the intrinsic binary statistics by correcting for selection effects. We find the population of massive binaries at intermediate separations differ from those orbiting in close proximity. Close massive binaries favor small eccentricities and have correlated component masses, demonstrating they coevolved via competitive accretion during their formation in the circumbinary disk. Meanwhile, B-type binaries at slightly wider separations are born with large eccentricities and are weighted toward extreme mass ratios, indicating the components formed relatively independently and subsequently evolved to their current configurations via dynamical interactions. By using eclipsing binaries as accurate age indicators, we also reveal that the binary orbital eccentricities and the line-of-sight dust extinctions are anticorrelated with respect to time. These empirical relations provide robust constraints for tidal evolution in massive binaries and the evolution of the dust content in their surrounding environments. Finally, we compile observations of early-type binaries identified via spectroscopy, eclipses, long-baseline interferometry, adaptive optics, lucky imaging, high-contrast photometry, and common proper motion. We combine the samples from the various surveys and correct for their respective selection effects to determine a comprehensive nature of the intrinsic binary statistics of massive stars. We find the probability distributions of primary mass, secondary mass, orbital period, and orbital eccentricity are all interrelated. These updated multiplicity statistics imply a greater frequency of low-mass X-ray binaries, millisecond pulsars, and Type Ia supernovae than previously predicted.
WIYN OPEN CLUSTER STUDY. XXXVI. SPECTROSCOPIC BINARY ORBITS IN NGC 188
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geller, Aaron M.; Mathieu, Robert D.; Harris, Hugh C.
2009-04-15
We present 98 spectroscopic binary orbits resulting from our ongoing radial velocity survey of the old (7 Gyr) open cluster NGC 188. All but 13 are high-probability cluster members based on both radial velocity and proper motion membership analyses. Fifteen of these member binaries are double lined. Our stellar sample spans a magnitude range of 10.8 {<=}V{<=} 16.5 (1.14-0.92 M {sub sun}) and extends spatially to 17 pc ({approx}13 core radii). All of our binary orbits have periods ranging from a few days to on the order of 10{sup 3} days, and thus are hard binaries that dynamically power themore » cluster. For each binary, we present the orbital solutions and place constraints on the component masses. Additionally, we discuss a few binaries of note from our sample, identifying a likely blue straggler-blue straggler binary system (7782), a double-lined binary with a secondary star which is underluminous for its mass (5080), two potential eclipsing binaries (4705 and 5762), and two binaries which are likely members of a quadruple system (5015a and 5015b)« less
Learning Rotation-Invariant Local Binary Descriptor.
Duan, Yueqi; Lu, Jiwen; Feng, Jianjiang; Zhou, Jie
2017-08-01
In this paper, we propose a rotation-invariant local binary descriptor (RI-LBD) learning method for visual recognition. Compared with hand-crafted local binary descriptors, such as local binary pattern and its variants, which require strong prior knowledge, local binary feature learning methods are more efficient and data-adaptive. Unlike existing learning-based local binary descriptors, such as compact binary face descriptor and simultaneous local binary feature learning and encoding, which are susceptible to rotations, our RI-LBD first categorizes each local patch into a rotational binary pattern (RBP), and then jointly learns the orientation for each pattern and the projection matrix to obtain RI-LBDs. As all the rotation variants of a patch belong to the same RBP, they are rotated into the same orientation and projected into the same binary descriptor. Then, we construct a codebook by a clustering method on the learned binary codes, and obtain a histogram feature for each image as the final representation. In order to exploit higher order statistical information, we extend our RI-LBD to the triple rotation-invariant co-occurrence local binary descriptor (TRICo-LBD) learning method, which learns a triple co-occurrence binary code for each local patch. Extensive experimental results on four different visual recognition tasks, including image patch matching, texture classification, face recognition, and scene classification, show that our RI-LBD and TRICo-LBD outperform most existing local descriptors.
Binary interaction dominates the evolution of massive stars.
Sana, H; de Mink, S E; de Koter, A; Langer, N; Evans, C J; Gieles, M; Gosset, E; Izzard, R G; Le Bouquin, J-B; Schneider, F R N
2012-07-27
The presence of a nearby companion alters the evolution of massive stars in binary systems, leading to phenomena such as stellar mergers, x-ray binaries, and gamma-ray bursts. Unambiguous constraints on the fraction of massive stars affected by binary interaction were lacking. We simultaneously measured all relevant binary characteristics in a sample of Galactic massive O stars and quantified the frequency and nature of binary interactions. More than 70% of all massive stars will exchange mass with a companion, leading to a binary merger in one-third of the cases. These numbers greatly exceed previous estimates and imply that binary interaction dominates the evolution of massive stars, with implications for populations of massive stars and their supernovae.
Learning to assign binary weights to binary descriptor
NASA Astrophysics Data System (ADS)
Huang, Zhoudi; Wei, Zhenzhong; Zhang, Guangjun
2016-10-01
Constructing robust binary local feature descriptors are receiving increasing interest due to their binary nature, which can enable fast processing while requiring significantly less memory than their floating-point competitors. To bridge the performance gap between the binary and floating-point descriptors without increasing the computational cost of computing and matching, optimal binary weights are learning to assign to binary descriptor for considering each bit might contribute differently to the distinctiveness and robustness. Technically, a large-scale regularized optimization method is applied to learn float weights for each bit of the binary descriptor. Furthermore, binary approximation for the float weights is performed by utilizing an efficient alternatively greedy strategy, which can significantly improve the discriminative power while preserve fast matching advantage. Extensive experimental results on two challenging datasets (Brown dataset and Oxford dataset) demonstrate the effectiveness and efficiency of the proposed method.
Primordial main equence binary stars in the globular cluster M71
NASA Technical Reports Server (NTRS)
Yan, Lin; Mateo, Mario
1994-01-01
We report the identification of five short-period variables near the center of the metal-rich globular cluster M71. Our observations consist of multiepoch VI charge coupled device (CCD) images centered on the cluster and covering a 6.3 min x 6.3 min field. Four of these variables are contact eclipsing binaries with periods between 0.35 and 0.41 days; one is a detached or semidetached eclipsing binary with a period of 0.56 days. Two of the variables were first identified as possible eclipsing binaries in an earlier survey by Hodder et al. (1992). We have used a variety of arguments to conclude that all five binary stars are probable members of M71, a result that is consistent with the low number (0.15) of short-period field binaries expected along this line of sight. Based on a simple model of how contact binaries evolve from initially detached binaries, we have determined a lower limit of 1.3% on the frequency of primordial binaries in M71 with initial orbital periods in the range 2.5 - 5 days. This implies that the overall primordial binary frequency, f, is 22(sup +26)(sub -12)% assuming df/d log P = const ( the 'flat' distribution), or f = 57(sup +15)(sub -8)% for df/d log P = 0.032 log P + const as observed for G-dwarf binaries in the solar neighborhood (the 'sloped' distribution). Both estimates of f correspond to binaries with initial periods shorter than 800 yr since any longer-period binaries would have been disrupted over the lifetime of the cluster. Our short-period binary frequency is in excellent agreement with the observed frequency of red-giant binaries observed in globulars if we adopt the flat distribution. For the sloped distribution, our results significantly overestimate the number of red-giant binaries. All of the short-period M71 binaries lie within 1 mag of the luminosity of the cluster turnoff in the color-magnitude diagram despite the fact we should have easily detected similar eclipsing binaries 2 - 2.5 mag fainter than this. We discuss the implications of this on our estimates of the binary frequency in M71 and on the formation of blue stragglers.
Rotation lightcurves of small jovian Trojan asteroids
NASA Astrophysics Data System (ADS)
French, Linda M.; Stephens, Robert D.; Coley, Daniel; Wasserman, Lawrence H.; Sieben, Jennifer
2015-07-01
Several lines of evidence support a common origin for, and possible hereditary link between, cometary nuclei and jovian Trojan asteroids. Due to their distance and low albedos, few comet-sized Trojans have been studied. We present new lightcurve information for 19 Trojans ≲ 30 km in diameter, more than doubling the number of objects in this size range for which some rotation information is known. The minimum densities for objects with complete lightcurves are estimated and are found to be comparable to those measured for cometary nuclei. A significant fraction (∼40%) of this observed small Trojan population rotates slowly (P > 24 h), with measured periods as long as 375 h (Warner, B.D., Stephens, R.D. [2011]. Minor Planet Bull. 38, 110-111). The excess of slow rotators may be due to the YORP effect. Results of the Kolmogorov-Smirnov test suggest that the distribution of Trojan rotation rates is dissimilar to those of Main Belt Asteroids of the same size. Concerted observations of a large number of Trojans could establish the spin barrier (Warner, B.D., Harris, A.W., Pravec, P. [2009]. Icarus 202, 134-146), making it possible to estimate densities for objects near the critical period.
The thermal and physical characteristics of the Gao-Guenie (H5) meteorite
NASA Astrophysics Data System (ADS)
Beech, Martin; Coulson, Ian M.; Nie, Wenshuang; McCausland, Phil
2009-06-01
Measurements of the bulk density, grain density, porosity, and magnetic susceptibility of 19 Gao-Guenie H5 chondrite meteorite samples are presented. We find average values of bulk density < ρbulk>=3.46±0.07 g/cm 3, grain density < ρgrain>=3.53±0.08 g/cm 3, porosity < P(%)>=2.46±1.39, and bulk mass magnetic susceptibility
Asteroid families: Current situation
NASA Astrophysics Data System (ADS)
Cellino, A.; Dell'Oro, A.; Tedesco, E. F.
2009-02-01
Being the products of energetic collisional events, asteroid families provide a fundamental body of evidence to test the predictions of theoretical and numerical models of catastrophic disruption phenomena. The goal is to obtain, from current physical and dynamical data, reliable inferences on the original disruption events that produced the observed families. The main problem in doing this is recognizing, and quantitatively assessing, the importance of evolutionary phenomena that have progressively changed the observable properties of families, due to physical processes unrelated to the original disruption events. Since the early 1990s, there has been a significant evolution in our interpretation of family properties. New ideas have been conceived, primarily as a consequence of the development of refined models of catastrophic disruption processes, and of the discovery of evolutionary processes that had not been accounted for in previous studies. The latter include primarily the Yarkovsky and Yarkovsky-O'Keefe-Radzvieski-Paddack (YORP) effects - radiation phenomena that can secularly change the semi-major axis and the rotation state. We present a brief review of the current state of the art in our understanding of asteroid families, point out some open problems, and discuss a few likely directions for future developments.
COSMIC probes into compact binary formation and evolution
NASA Astrophysics Data System (ADS)
Breivik, Katelyn
2018-01-01
The population of compact binaries in the galaxy represents the final state of all binaries that have lived up to the present epoch. Compact binaries present a unique opportunity to probe binary evolution since many of the interactions binaries experience can be imprinted on the compact binary population. By combining binary evolution simulations with catalogs of observable compact binary systems, we can distill the dominant physical processes that govern binary star evolution, as well as predict the abundance and variety of their end products.The next decades herald a previously unseen opportunity to study compact binaries. Multi-messenger observations from telescopes across all wavelengths and gravitational-wave observatories spanning several decades of frequency will give an unprecedented view into the structure of these systems and the composition of their components. Observations will not always be coincident and in some cases may be separated by several years, providing an avenue for simulations to better constrain binary evolution models in preparation for future observations.I will present the results of three population synthesis studies of compact binary populations carried out with the Compact Object Synthesis and Monte Carlo Investigation Code (COSMIC). I will first show how binary-black-hole formation channels can be understood with LISA observations. I will then show how the population of double white dwarfs observed with LISA and Gaia could provide a detailed view of mass transfer and accretion. Finally, I will show that Gaia could discover thousands black holes in the Milky Way through astrometric observations, yielding view into black-hole astrophysics that is complementary to and independent from both X-ray and gravitational-wave astronomy.
Binary Systems and the Initial Mass Function
NASA Astrophysics Data System (ADS)
Malkov, O. Yu.
2017-07-01
In the present paper we discuss advantages and disadvantages of binary stars, which are important for star formation history determination. We show that to make definite conclusions of the initial mass function shape, it is necessary to study binary population well enough to correct the luminosity function for unresolved binaries; to construct the mass-luminosity relation based on wide binaries data, and to separate observational mass functions of primaries, of secondaries, and of unresolved binaries.
Simulating Gravitational Radiation from Binary Black Holes Mergers as LISA Sources
NASA Technical Reports Server (NTRS)
Baker, John
2005-01-01
A viewgraph presentation on the simulation of gravitational waves from Binary Massive Black Holes with LISA observations is shown. The topics include: 1) Massive Black Holes (MBHs); 2) MBH Binaries; 3) Gravitational Wavws from MBH Binaries; 4) Observing with LISA; 5) How LISA sees MBH binary mergers; 6) MBH binary inspirals to LISA; 7) Numerical Relativity Simulations; 8) Numerical Relativity Challenges; 9) Recent Successes; 10) Goddard Team; 11) Binary Black Hole Simulations at Goddard; 12) Goddard Recent Advances; 13) Baker, et al.:GSFC; 13) Starting Farther Out; 14) Comparing Initial Separation; 15) Now with AMR; and 16) Conclusion.
NASA Astrophysics Data System (ADS)
Martin, Rebecca G.; Lubow, Stephen H.
2018-06-01
In a recent paper Martin & Lubow showed that a circumbinary disc around an eccentric binary can undergo damped nodal oscillations that lead to the polar (perpendicular) alignment of the disc relative to the binary orbit. The disc angular momentum vector aligns to the eccentricity vector of the binary. We explore the robustness of this mechanism for a low mass disc (0.001 of the binary mass) and its dependence on system parameters by means of hydrodynamic disc simulations. We describe how the evolution depends upon the disc viscosity, temperature, size, binary mass ratio, orbital eccentricity and inclination. We compare results with predictions of linear theory. We show that polar alignment of a low mass disc may occur over a wide range of binary-disc parameters. We discuss the application of our results to the formation of planetary systems around eccentric binary stars.
KEPLER ECLIPSING BINARIES WITH STELLAR COMPANIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gies, D. R.; Matson, R. A.; Guo, Z.
2015-12-15
Many short-period binary stars have distant orbiting companions that have played a role in driving the binary components into close separation. Indirect detection of a tertiary star is possible by measuring apparent changes in eclipse times of eclipsing binaries as the binary orbits the common center of mass. Here we present an analysis of the eclipse timings of 41 eclipsing binaries observed throughout the NASA Kepler mission of long duration and precise photometry. This subset of binaries is characterized by relatively deep and frequent eclipses of both stellar components. We present preliminary orbital elements for seven probable triple stars amongmore » this sample, and we discuss apparent period changes in seven additional eclipsing binaries that may be related to motion about a tertiary in a long period orbit. The results will be used in ongoing investigations of the spectra and light curves of these binaries for further evidence of the presence of third stars.« less
Radial Velocities of 41 Kepler Eclipsing Binaries
NASA Astrophysics Data System (ADS)
Matson, Rachel A.; Gies, Douglas R.; Guo, Zhao; Williams, Stephen J.
2017-12-01
Eclipsing binaries are vital for directly determining stellar parameters without reliance on models or scaling relations. Spectroscopically derived parameters of detached and semi-detached binaries allow us to determine component masses that can inform theories of stellar and binary evolution. Here we present moderate resolution ground-based spectra of stars in close binary systems with and without (detected) tertiary companions observed by NASA’s Kepler mission and analyzed for eclipse timing variations. We obtain radial velocities and spectroscopic orbits for five single-lined and 35 double-lined systems, and confirm one false positive eclipsing binary. For the double-lined spectroscopic binaries, we also determine individual component masses and examine the mass ratio {M}2/{M}1 distribution, which is dominated by binaries with like-mass pairs and semi-detached classical Algol systems that have undergone mass transfer. Finally, we constrain the mass of the tertiary component for five double-lined binaries with previously detected companions.
NASA Technical Reports Server (NTRS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.;
2012-01-01
We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009, and October 20. 2010. We searched for signals from binaries with total mass between 2 and 25 Stellar Mass; this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass. including the results from previous LIGO and Virgo observations. The cumulative 90% confidence rate upper limits of the binary coalescence of binary neutron star, neutron star-black hole, and binary black hole systems are 1.3 x 10(exp -4), 3.1 x 10(exp -5), and 6.4 x 10(exp -6)/cu Mpc/yr, respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge.
NASA Astrophysics Data System (ADS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Agathos, M.; Ajith, P.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amariutei, D.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barker, D.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Beker, M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet–Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; del Prete, M.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.; Dietz, A.; DiGuglielmo, J.; Donovan, F.; Dooley, K. L.; Dorsher, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Farr, W.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Flanigan, M.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P. J.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Ganija, M. R.; Garcia, J.; Garofoli, J. A.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Geng, R.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Gray, N.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Ha, T.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Hardt, A.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; Jang, H.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kamaretsos, I.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B.; Kim, C.; Kim, D.; Kim, H.; Kim, K.; Kim, N.; Kim, Y.-M.; King, P. J.; Kinsey, M.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Leaci, P.; Lee, C. H.; Lee, H. M.; Leindecker, N.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Luan, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marandi, A.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menendez, D.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Moesta, P.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Mosca, S.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Nawrodt, R.; Necula, V.; Nelson, J.; Newton, G.; Nishizawa, A.; Nocera, F.; Nolting, D.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pedraza, M.; Peiris, P.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Persichetti, G.; Phelps, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Prato, M.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C. R.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Redwine, K.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Ryll, H.; Sainathan, P.; Sakosky, M.; Salemi, F.; Samblowski, A.; Sammut, L.; Sancho de la Jordana, L.; Sandberg, V.; Sankar, S.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schlamminger, S.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Smith, R. J. E.; Somiya, K.; Sorazu, B.; Soto, J.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Stein, A. J.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Tseng, K.; Tucker, E.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vitale, S.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, X.; Wang, Z.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.; Zadroźny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhang, W.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2012-04-01
We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009, and October 20, 2010. We searched for signals from binaries with total mass between 2 and 25M⊙; this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass, including the results from previous LIGO and Virgo observations. The cumulative 90% confidence rate upper limits of the binary coalescence of binary neutron star, neutron star-black hole, and binary black hole systems are 1.3×10-4, 3.1×10-5, and 6.4×10-6Mpc-3yr-1, respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prodan, Snezana; Antonini, Fabio; Perets, Hagai B., E-mail: sprodan@cita.utoronto.ca, E-mail: antonini@cita.utoronto.ca
2015-02-01
Here we discuss the evolution of binaries around massive black holes (MBHs) in nuclear stellar clusters. We focus on their secular evolution due to the perturbation by the MBHs, while simplistically accounting for their collisional evolution. Binaries with highly inclined orbits with respect to their orbits around MBHs are strongly affected by secular processes, which periodically change their eccentricities and inclinations (e.g., Kozai-Lidov cycles). During periapsis approach, dissipative processes such as tidal friction may become highly efficient, and may lead to shrinkage of a binary orbit and even to its merger. Binaries in this environment can therefore significantly change theirmore » orbital evolution due to the MBH third-body perturbative effects. Such orbital evolution may impinge on their later stellar evolution. Here we follow the secular dynamics of such binaries and its coupling to tidal evolution, as well as the stellar evolution of such binaries on longer timescales. We find that stellar binaries in the central parts of nuclear stellar clusters (NSCs) are highly likely to evolve into eccentric and/or short-period binaries, and become strongly interacting binaries either on the main sequence (at which point they may even merge), or through their later binary stellar evolution. The central parts of NSCs therefore catalyze the formation and evolution of strongly interacting binaries, and lead to the enhanced formation of blue stragglers, X-ray binaries, gravitational wave sources, and possible supernova progenitors. Induced mergers/collisions may also lead to the formation of G2-like cloud-like objects such as the one recently observed in the Galactic center.« less
Facile assembly of 3D binary colloidal crystals from soft microgel spheres.
Liu, Yang; Guan, Ying; Zhang, Yongjun
2014-03-01
It still remains a big challenge to fabricate binary colloidal crystals (binary CCs) from hard colloidal spheres, although a lot of efforts have been made. Here, for the first time, binary CCs are assembled from soft hydrogel spheres, PNIPAM microgels, instead of hard spheres. Different from hard spheres, microgel binary CCs can be facilely fabricated by simply heating binary microgel dispersions to 37 °C and then allowing them to cool back to room temperature. The formation of highly ordered structure is indicated by the appearance of an iridescent color and a sharp Bragg diffraction peak. Compared with hard sphere binary CCs, the assembly of PNIPAM microgel binary CCs is much simpler, faster and with a higher "atom" economy. The easy formation of PNIPAM microgel binary CC is attributed to the thermosensitivity and soft nature of the PNIPAM microgel spheres. In addition, PNIPAM microgel binary CCs can respond to temperature change, and their stop band can be tuned by changing the concentration of the dispersion. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Improving geothermal power plants with a binary cycle
NASA Astrophysics Data System (ADS)
Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.
2015-12-01
The recent development of binary geothermal technology is analyzed. General trends in the introduction of low-temperature geothermal sources are summarized. The use of single-phase low-temperature geothermal fluids in binary power plants proves possible and expedient. The benefits of power plants with a binary cycle in comparison with traditional systems are shown. The selection of the working fluid is considered, and the influence of the fluid's physicochemical properties on the design of the binary power plant is discussed. The design of binary power plants is based on the chemical composition and energy potential of the geothermal fluids and on the landscape and climatic conditions at the intended location. Experience in developing a prototype 2.5 MW Russian binary power unit at Pauzhetka geothermal power plant (Kamchatka) is outlined. Most binary systems are designed individually for a specific location. Means of improving the technology and equipment at binary geothermal power plants are identified. One option is the development of modular systems based on several binary systems that employ the heat from the working fluid at different temperatures.
Subdwarf B Stars: Tracers Of Binary Evolution
NASA Astrophysics Data System (ADS)
Morales-Rueda, L.; Maxted, P. F. L.; Marsh, T. R.
2007-08-01
Subdwarf B stars are a superb stellar population to study binary evolution. In 2001, Maxted et al. (MNRAS, 326, 1391) found that 21 out of the 36 subdwarf B stars they studied were in short period binaries. These observations inspired new theoretical work that suggests that up to 90 per cent of subdwarf B stars are in binary systems with the remaining apparently single stars being the product of merging pairs. This high binary fraction added to the fact that they are detached binaries that have not changed significantly since they came out of the common envelope, make subdwarf B stars a perfect population to study binary evolution. By comparing the observed orbital period distribution of subdwarf B stars with that obtained from population synthesis calculations we can determine fundamental parameters of binary evolution such as the common envelope ejection efficiency. Here we give an overview of the fraction of short period binaries found from different surveys as well as the most up to date orbital period distribution determined observationally. We also present results from a recent search for subdwarf B stars in long period binaries.
Contact Binaries on Their Way Towards Merging
NASA Astrophysics Data System (ADS)
Gazeas, K.
2015-07-01
Contact binaries are the most frequently observed type of eclipsing star system. They are small, cool, low-mass binaries belonging to a relatively old stellar population. They follow certain empirical relationships that closely connect a number of physical parameters with each other, largely because of constraints coming from the Roche geometry. As a result, contact binaries provide an excellent test of stellar evolution, specifically for stellar merger scenarios. Observing campaigns by many authors have led to the cataloging of thousands of contact binaries and enabled statistical studies of many of their properties. A large number of contact binaries have been found to exhibit extraordinary behavior, requiring follow-up observations to study their peculiarities in detail. For example, a doubly-eclipsing quadruple system consisting of a contact binary and a detached binary is a highly constrained system offering an excellent laboratory to test evolutionary theories for binaries. A new observing project was initiated at the University of Athens in 2012 in order to investigate the possible lower limit for the orbital period of binary systems before coalescence, prior to merging.
Survival of planets around shrinking stellar binaries
Muñoz, Diego J.; Lai, Dong
2015-01-01
The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov–Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like. PMID:26159412
Survival of planets around shrinking stellar binaries.
Muñoz, Diego J; Lai, Dong
2015-07-28
The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov-Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like.
Eclipsing Stellar Binaries in the Galactic Center
NASA Astrophysics Data System (ADS)
Li, Gongjie; Ginsburg, Idan; Naoz, Smadar; Loeb, Abraham
2017-12-01
Compact stellar binaries are expected to survive in the dense environment of the Galactic center. The stable binaries may undergo Kozai–Lidov oscillations due to perturbations from the central supermassive black hole (Sgr A*), yet the general relativistic precession can suppress the Kozai–Lidov oscillations and keep the stellar binaries from merging. However, it is challenging to resolve the binary sources and distinguish them from single stars. The close separations of the stable binaries allow higher eclipse probabilities. Here, we consider the massive star SO-2 as an example and calculate the probability of detecting eclipses, assuming it is a binary. We find that the eclipse probability is ∼30%–50%, reaching higher values when the stellar binary is more eccentric or highly inclined relative to its orbit around Sgr A*.
Pulsars in binary systems: probing binary stellar evolution and general relativity.
Stairs, Ingrid H
2004-04-23
Radio pulsars in binary orbits often have short millisecond spin periods as a result of mass transfer from their companion stars. They therefore act as very precise, stable, moving clocks that allow us to investigate a large set of otherwise inaccessible astrophysical problems. The orbital parameters derived from high-precision binary pulsar timing provide constraints on binary evolution, characteristics of the binary pulsar population, and the masses of neutron stars with different mass-transfer histories. These binary systems also test gravitational theories, setting strong limits on deviations from general relativity. Surveys for new pulsars yield new binary systems that increase our understanding of all these fields and may open up whole new areas of physics, as most spectacularly evidenced by the recent discovery of an extremely relativistic double-pulsar system.
An improved catalog of halo wide binary candidates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, Christine; Monroy-Rodríguez, Miguel A., E-mail: chris@astro.unam.mx
2014-08-01
We present an improved catalog of halo wide binaries compiled from an extensive literature search. Most of our binaries stem from the common proper motion binary catalogs by Allen et al. and Chanamé and Gould, but we have also included binaries from the lists of Ryan and Zapatero-Osorio and Martín. All binaries were carefully checked and their distances and systemic radial velocities are included when available. Probable membership to the halo population was tested by means of reduced proper motion diagrams for 251 candidate halo binaries. After eliminating obvious disk binaries, we ended up with 211 probable halo binaries, 150more » of which have radial velocities available. We compute galactic orbits for these 150 binaries and calculate the time they spend within the galactic disk. Considering the full sample of 251 candidate halo binaries as well as several subsamples, we find that the distribution of angular separations (or expected major semiaxes) follows a power law f(a) ∼ a {sup –1} (Oepik's relation) up to different limits. For the 50 most disk-like binaries, those that spend their entire lives within z = ±500 pc, this limit is found to be 19,000 AU (0.09 pc), while for the 50 most halo-like binaries, those that spend on average only 18% of their lives within z = ±500 pc, the limit is 63,000 AU (0.31 pc). In a companion paper, we employ this catalog to establish limits on the masses of the halo massive perturbers (massive compact halo objects).« less
NASA Astrophysics Data System (ADS)
Barnouin, Olivier; Michel, Patrick; Richardson, Derek
2016-04-01
In order to understand the origin of the 65803 Didymos, the target of the Asteroid Impact and Deflection Assessment mission, and gain insights on the origin and evolution of the asteroid's162173 Ryugu and 101955 Bennu, we investigate systematically the shapes of all re-accumulated fragments produced by the catastrophic disruption of a parent body that is 1 km in diameter or larger. These new fragments eventually become new asteroids of the size that current sample-return missions plan to explore. We choose a range of impact conditions by varying the parent bodies' strength, size and porosity, and the velocity and size of the projectile. Impact conditions range from near the catastrophic threshold, usually designated by Q*, where half of the target's mass escapes, to far greater values above this threshold. Our numerical investigations of the catastrophic disruption, which are undertaken using an SPH hydrocode, include a model of fragmentation for porous materials. The gravitationally dominated phase of reaccumulation of our asteroids is computed using the N-body code pkdgrav. At sufficiently slow impact speeds in the N-body model, particles are permitted to stick, forming irregular, competent pieces that can gather into non-idealized rubble piles as a result of re-accumulation. Shape and spin information of re-accumulated bodies are thus preserved. Due to numerical expense, this first study uses what we call a hard-sphere model, rather than a soft-sphere spring and dashpot model. This latter model is more commonly used in granular flow simulations for which detailed treatment of the multicontact physics is needed, which is not the case here, and comes at the expense of much smaller timesteps. With the hard-sphere model, there are three supported collision outcomes for bonded aggregates: sticking on contact (to grow the aggregate); bouncing (computed for these generally non-central impacts); and fragmentation (wherein the particles involved become detached from their respective aggregates and proceed to bounce as rigid spheres, possibly releasing more particles). We adjusted the strength of the forming aggregates to the measured strength of materials in the lab, scaled to the aggregate size, by using strength size scaling rules. In the future we expect to compare our hard-sphere models to a few soft-sphere for reasonable granular materials to best characterize differences between the two approaches, if any. Our results indicate that while 25143 Itokawa-like potato-shaped asteroids are typically the outcome of disruption, often more spherical or "top-shaped" asteroids can also be produced. Our results confirm what others have already noted, namely that a "top-shaped" or diamond shaped asteroid is not necessarily the result of the formation of YORP spin-up. Other criteria besides just shape need to be developed to determine whether or not the evolution of an asteroid and its surface geology have been dominated by YORP-related processes or by impact-derived re-accretion.
R144: a very massive binary likely ejected from R136 through a binary-binary encounter
NASA Astrophysics Data System (ADS)
Oh, Seungkyung; Kroupa, Pavel; Banerjee, Sambaran
2014-02-01
R144 is a recently confirmed very massive, spectroscopic binary which appears isolated from the core of the massive young star cluster R136. The dynamical ejection hypothesis as an origin for its location is claimed improbable by Sana et al. due to its binary nature and high mass. We demonstrate here by means of direct N-body calculations that a very massive binary system can be readily dynamically ejected from an R136-like cluster, through a close encounter with a very massive system. One out of four N-body cluster models produces a dynamically ejected very massive binary system with a mass comparable to R144. The system has a system mass of ≈355 M⊙ and is located at 36.8 pc from the centre of its parent cluster, moving away from the cluster with a velocity of 57 km s-1 at 2 Myr as a result of a binary-binary interaction. This implies that R144 could have been ejected from R136 through a strong encounter with another massive binary or single star. In addition, we discuss all massive binaries and single stars which are ejected dynamically from their parent cluster in the N-body models.
Hydrodynamical processes in coalescing binary stars
NASA Astrophysics Data System (ADS)
Lai, Dong
1994-01-01
Coalescing neutron star binaries are considered to be the most promising sources of gravitational waves that could be detected by the planned laser-interferometer LIGO/VIRGO detectors. Extracting gravity wave signals from noisy data requires accurate theoretical waveforms in the frequency range 10-1000 Hz end detailed understanding of the dynamics of the binary orbits. We investigate the quasi-equilibrium and dynamical tidal interactions in coalescing binary stars, with particular focus on binary neutron stars. We develop a new formalism to study the equilibrium and dynamics of fluid stars in binary systems. The stars are modeled as compressible ellipsoids, and satisfy polytropic equation of state. The hydrodynamic equations are reduced to a set of ordinary differential equations for the evolution of the principal axes and other global quantities. The equilibrium binary structure is determined by a set of algebraic equations. We consider both synchronized and nonsynchronized systems, obtaining the generalizations to compressible fluid of the classical results for the ellipsoidal binary configurations. Our method can be applied to a wide variety of astrophysical binary systems containing neutron stars, white dwarfs, main-sequence stars and planets. We find that both secular and dynamical instabilities can develop in close binaries. The quasi-static (secular) orbital evolution, as well as the dynamical evolution of binaries driven by viscous dissipation and gravitational radiation reaction are studied. The development of the dynamical instability accelerates the binary coalescence at small separation, leading to appreciable radial infall velocity near contact. We also study resonant excitations of g-mode oscillations in coalescing binary neutron stars. A resonance occurs when the frequency of the tidal driving force equals one of the intrinsic g-mode frequencies. Using realistic microscopic nuclear equations of state, we determine the g-modes in a cold neutron atar. Resonant excitations of these g-modes during the last few minutes of the binary coalescence result in energy transfer and angular momentum transfer from the binary orbit to the neutron star. Because of the weak coupling between the g-modes and the tidal potential, the induced orbital phase errors due to resonances are small. However, resonant excitations of the g-modes play an important role in the tidal heating of binary neutron stars.
Kumar, Dhananjay; Singh, Alpana; Gaur, J P
2008-11-01
The sorption of Cu(II) and Pb(II) by Pithophora markedly decreased as the concentration of the secondary metal ion, Cu(II) or Pb(II), increased in the binary metal solution. However, the test alga showed a greater affinity to sorb Cu(II) than Pb(II) from the binary metal solution. Mono-component Freundlich, Langmuir, Redlich-Peterson and Sips isotherms successfully predicted the sorption of Cu(II) and Pb(II) from both single and binary metal solutions. None of the tested binary sorption isotherms could realistically predict Cu(II) and Pb(II) sorption capacity and affinity of the test alga for the binary metal solutions of varying composition, which mono-component isotherms could very well accomplish. Hence, mono-component isotherm modeling at different concentrations of the secondary metal ion seems to be a better option than binary isotherms for metal sorption from binary metal solution.
Truncation of the Binary Distribution Function in Globular Cluster Formation
NASA Astrophysics Data System (ADS)
Vesperini, E.; Chernoff, David F.
1996-02-01
We investigate a population of primordial binaries during the initial stage of evolution of a star cluster. For our calculations we assume that equal-mass stars form rapidly in a tidally truncated gas cloud, that ˜10% of the stars are in binaries, and that the resulting star cluster undergoes an epoch of violent relaxation. We study the collisional interaction of the binaries and single stars, in particular, the ionization of the binaries and the energy exchange between binaries and single stars. We find that for large N systems (N > 1000), even the most violent beginning leaves the binary distribution function largely intact. Hence, the binding energy originally tied up in the cloud's protostellar pairs is preserved during the relaxation process, and the binaries are available to interact at later times within the virialized cluster.
Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO.
Rodriguez, Carl L; Morscher, Meagan; Pattabiraman, Bharath; Chatterjee, Sourav; Haster, Carl-Johan; Rasio, Frederic A
2015-07-31
The predicted rate of binary black hole mergers from galactic fields can vary over several orders of magnitude and is extremely sensitive to the assumptions of stellar evolution. But in dense stellar environments such as globular clusters, binary black holes form by well-understood gravitational interactions. In this Letter, we study the formation of black hole binaries in an extensive collection of realistic globular cluster models. By comparing these models to observed Milky Way and extragalactic globular clusters, we find that the mergers of dynamically formed binaries could be detected at a rate of ∼100 per year, potentially dominating the binary black hole merger rate. We also find that a majority of cluster-formed binaries are more massive than their field-formed counterparts, suggesting that Advanced LIGO could identify certain binaries as originating from dense stellar environments.
WHITE-LIGHT FLARES ON CLOSE BINARIES OBSERVED WITH KEPLER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Qing; Xin, Yu; Liu, Ji-Feng
2016-06-01
Based on Kepler data, we present the results of a search for white light flares on 1049 close binaries. We identify 234 flare binaries, of which 6818 flares are detected. We compare the flare-binary fraction in different binary morphologies (“detachedness”). The result shows that the fractions in over-contact and ellipsoidal binaries are approximately 10%–20% lower than those in detached and semi-detached systems. We calculate the binary flare activity level (AL) of all the flare binaries, and discuss its variations along the orbital period ( P {sub orb}) and rotation period ( P {sub rot}, calculated for only detached binaries). Wemore » find that the AL increases with decreasing P {sub orb} or P {sub rot}, up to the critical values at P {sub orb} ∼ 3 days or P {sub rot} ∼ 1.5 days, and thereafter the AL starts decreasing no matter how fast the stars rotate. We examine the flaring rate as a function of orbital phase in two eclipsing binaries on which a large number of flares are detected. It appears that there is no correlation between flaring rate and orbital phase in these two binaries. In contrast, when we examine the function with 203 flares on 20 non-eclipse ellipsoidal binaries, bimodal distribution of amplitude-weighted flare numbers shows up at orbital phases 0.25 and 0.75. Such variation could be larger than what is expected from the cross section modification.« less
Shrinking of Binaries in a WIMPY Background at the Galactic Center
NASA Astrophysics Data System (ADS)
Hills, J. G.
2001-12-01
The nature of the dark matter in the Galactic Halo is still not clear. Constraints can be placed on it; e.g., it cannot be in baryons less massive than about 1022 grams (Hills, 1986, Astron. J. 92, 595). It may be in elementary weakly interacting massive particles, WIMPS. Apart from providing most of the mass of the Galaxy, the only known significant dynamical effect of WIMPS is to cause a gradual shrinking of tightly bound binaries (Hills 1983, Astron. J. 88, 1269) as they interact with the background soup of WIMPS. This effect may be observable in binaries close to the Galactic Center if a significant fraction of the mass density near the central black hole is from WIMPS. The requisite binaries would have to have orbital velocities greater than the local velocity dispersion of the WIMPS relative to the binary. The velocity dispersion increases near the black hole. The binary cannot be too close to the black hole or its tidal field will breakup the binary. If the local WIMP density is 107 g/cm3, the fractional rate of reduction in the binary orbital period is about 5 x 10-10/yr for a binary having a semimajor axis equal to 3 solar radii in a soup of WIMPS having a velocity dispersion of 200 km/s relative to the binary. This gradual erosion of the binary period may be detectable, particularly, if one of the binary components is a pulsar.
The extraneous eclipses on binary light curves: KIC 5255552, KIC 10091110, and KIC 11495766
NASA Astrophysics Data System (ADS)
Zhang, J.; Qian, S. B.; Wang, S. M.; Sun, L. L.; Wu, Y.; Jiang, L. Q.
2018-03-01
Aims: We aim to find more eclipsing multiple systems and obtain their parameters, thus increasing our understanding of multiple systems. Methods: The extraneous eclipses on the Kepler binary light curves indicating extraneous bodies were searched. The binary light curves were analyzed using the binary model, and the extraneous eclipses were studied on their periodicity and shape changes. Results: Three binaries with extraneous eclipses on the binary light curves were found and studied based on the Kepler observations. The object KIC 5255552 is an eclipsing triple system with a fast changing inner binary and an outer companion uncovered by three groups of extraneous eclipses of 862.1(±0.1) d period. The KIC 10091110 is suggested to be a double eclipsing binary system with several possible extraordinary coincidences: the two binaries share similar extremely small mass ratios (0.060(13) and 0.0564(18)), similar mean primary densities (0.3264(42) ρ⊙ and 0.3019(28) ρ⊙), and, most notably, the ratio of the two binaries' periods is very close to integer 2 (8.5303353/4.2185174 = 2.022). The KIC 11495766 is a probable triple system with a 120.73 d period binary and (at least) one non-eclipse companion. Furthermore, very close to it in the celestial sphere, there is a blended background stellar binary of 8.3404432 d period. A first list of 25 eclipsing multiple candidates is presented, with the hope that it will be beneficial for study of eclipsing multiples.
Facile Fabrication of Binary Nanoscale Interface for No-Loss Microdroplet Transportation.
Liang, Weitao; Zhu, Liqun; Li, Weiping; Xu, Chang; Liu, Huicong
2016-06-07
Binary nanoscale interfacial materials are fundamental issues in many applications for smart surfaces. A binary nanoscale interface with binary surface morphology and binary wetting behaviors has been prepared by a facile wet-chemical method. The prepared surface presents superhydrophobicity and high adhesion with the droplet at the same time. The composition, surface morphology, and wetting behaviors of the prepared surface have been systematic studied. The special wetting behaviors can be contributed to the binary nanoscale effect. The stability of the prepared surface was also investigated. As a primary application, a facile device based on the prepared binary nanoscale interface with superhydrophobicity and high adhesion was constructed for microdroplet transportation.
Searches for all types of binary mergers in the first Advanced LIGO observing run
NASA Astrophysics Data System (ADS)
Read, Jocelyn
2017-01-01
The first observational run of the Advanced LIGO detectors covered September 12, 2015 to January 19, 2016. In that time, two definitive observations of merging binary black hole systems were made. In particular, the second observation, GW151226, relied on matched-filter searches targeting merging binaries. These searches were also capable of detecting binary mergers from binary neutron stars and from black-hole/neutron-star binaries. In this talk, I will give an overview of LIGO compact binary coalescence searches, in particular focusing on systems that contain neutron stars. I will discuss the sensitive volumes of the first observing run, the astrophysical implications of detections and non-detections, and prospects for future observations
Binary pulsar evolution: unveiled links and new species
NASA Astrophysics Data System (ADS)
Possenti, Andrea
2013-03-01
In the last years a series of blind and/or targeted pulsar searches led to almost triple the number of known binary pulsars in the galactic field with respect to a decade ago. The focus will be on few outliers, which are emerging from the average properties of the enlarged binary pulsar population. Some of them may represent the long sought missing links between two kinds of neutron star binaries, while others could represent the stereotype of new groups of binaries, resulting from an evolutionary path which is more exotic than those considered until recently. In particular, a new class of binaries, which can be dubbed Ultra Low Mass Binary Pulsars (ULMBPs), is emerging from recent data.
NASA Astrophysics Data System (ADS)
Noll, Keith S.
2015-08-01
The Pluto-Charon binary was the first trans-neptunian binary to be identified in 1978. Pluto-Charon is a true binary with both components orbiting a barycenter located between them. The Pluto system is also the first, and to date only, known binary with a satellite system consisting of four small satellites in near-resonant orbits around the common center of mass. Seven other Plutinos, objects in 3:2 mean motion resonance with Neptune, have orbital companions including 2004 KB19 reported here for the first time. Compared to the Cold Classical population, the Plutinos differ in the frequency of binaries, the relative sizes of the components, and their inclination distribution. These differences point to distinct dynamical histories and binary formation processes encountered by Plutinos.
The disruption of multiplanet systems through resonance with a binary orbit.
Touma, Jihad R; Sridhar, S
2015-08-27
Most exoplanetary systems in binary stars are of S-type, and consist of one or more planets orbiting a primary star with a wide binary stellar companion. Planetary eccentricities and mutual inclinations can be large, perhaps forced gravitationally by the binary companion. Earlier work on single planet systems appealed to the Kozai-Lidov instability wherein a sufficiently inclined binary orbit excites large-amplitude oscillations in the planet's eccentricity and inclination. The instability, however, can be quenched by many agents that induce fast orbital precession, including mutual gravitational forces in a multiplanet system. Here we report that orbital precession, which inhibits Kozai-Lidov cycling in a multiplanet system, can become fast enough to resonate with the orbital motion of a distant binary companion. Resonant binary forcing results in dramatic outcomes ranging from the excitation of large planetary eccentricities and mutual inclinations to total disruption. Processes such as planetary migration can bring an initially non-resonant system into resonance. As it does not require special physical or initial conditions, binary resonant driving is generic and may have altered the architecture of many multiplanet systems. It can also weaken the multiplanet occurrence rate in wide binaries, and affect planet formation in close binaries.
THE EFFECT OF UNRESOLVED BINARIES ON GLOBULAR CLUSTER PROPER-MOTION DISPERSION PROFILES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bianchini, P.; Norris, M. A.; Ven, G. van de
2016-03-20
High-precision kinematic studies of globular clusters (GCs) require an accurate knowledge of all possible sources of contamination. Among other sources, binary stars can introduce systematic biases in the kinematics. Using a set of Monte Carlo cluster simulations with different concentrations and binary fractions, we investigate the effect of unresolved binaries on proper-motion dispersion profiles, treating the simulations like Hubble Space Telescope proper-motion samples. Since GCs evolve toward a state of partial energy equipartition, more-massive stars lose energy and decrease their velocity dispersion. As a consequence, on average, binaries have a lower velocity dispersion, since they are more-massive kinematic tracers. Wemore » show that, in the case of clusters with high binary fractions (initial binary fractions of 50%) and high concentrations (i.e., closer to energy equipartition), unresolved binaries introduce a color-dependent bias in the velocity dispersion of main-sequence stars of the order of 0.1–0.3 km s{sup −1} (corresponding to 1%−6% of the velocity dispersion), with the reddest stars having a lower velocity dispersion, due to the higher fraction of contaminating binaries. This bias depends on the ability to distinguish binaries from single stars, on the details of the color–magnitude diagram and the photometric errors. We apply our analysis to the HSTPROMO data set of NGC 7078 (M15) and show that no effect ascribable to binaries is observed, consistent with the low binary fraction of the cluster. Our work indicates that binaries do not significantly bias proper-motion velocity-dispersion profiles, but should be taken into account in the error budget of kinematic analyses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geller, Aaron M.; Grijs, Richard de; Li, Chengyuan
2015-05-20
The two Large Magellanic Cloud star clusters, NGC 1805 and NGC 1818, are approximately the same chronological age (∼30 Myr), but show different radial trends in binary frequency. The F-type stars (1.3–2.2 M{sub ⊙}) in NGC 1818 have a binary frequency that decreases toward the core, while the binary frequency for stars of similar mass in NGC 1805 is flat with radius, or perhaps bimodal (with a peak in the core). We show here, through detailed N-body modeling, that both clusters could have formed with the same primordial binary frequency and with binary orbital elements and masses drawn from themore » same distributions (defined from observations of open clusters and the field of our Galaxy). The observed radial trends in binary frequency for both clusters are best matched with models that have initial substructure. Furthermore, both clusters may be evolving along a very similar dynamical sequence, with the key difference that NGC 1805 is dynamically older than NGC 1818. The F-type binaries in NGC 1818 still show evidence of an initial period of rapid dynamical disruptions (which occur preferentially in the core), while NGC 1805 has already begun to recover a higher core binary frequency, owing to mass segregation (which will eventually produce a distribution in binary frequency that rises only toward the core, as is observed in old Milky Way star clusters). This recovery rate increases for higher-mass binaries, and therefore even at one age in one cluster, we predict a similar dynamical sequence in the radial distribution of the binary frequency as a function of binary primary mass.« less
Efficient algorithms for dilated mappings of binary trees
NASA Technical Reports Server (NTRS)
Iqbal, M. Ashraf
1990-01-01
The problem is addressed to find a 1-1 mapping of the vertices of a binary tree onto those of a target binary tree such that the son of a node on the first binary tree is mapped onto a descendent of the image of that node in the second binary tree. There are two natural measures of the cost of this mapping, namely the dilation cost, i.e., the maximum distance in the target binary tree between the images of vertices that are adjacent in the original tree. The other measure, expansion cost, is defined as the number of extra nodes/edges to be added to the target binary tree in order to ensure a 1-1 mapping. An efficient algorithm to find a mapping of one binary tree onto another is described. It is shown that it is possible to minimize one cost of mapping at the expense of the other. This problem arises when designing pipelined arithmetic logic units (ALU) for special purpose computers. The pipeline is composed of ALU chips connected in the form of a binary tree. The operands to the pipeline can be supplied to the leaf nodes of the binary tree which then process and pass the results up to their parents. The final result is available at the root. As each new application may require a distinct nesting of operations, it is useful to be able to find a good mapping of a new binary tree over existing ALU tree. Another problem arises if every distinct required binary tree is known beforehand. Here it is useful to hardwire the pipeline in the form of a minimal supertree that contains all required binary trees.
VizieR Online Data Catalog: Orbital parameters of 341 new binaries (Murphy+, 2018)
NASA Astrophysics Data System (ADS)
Murphy, S. J.; Moe, M.; Kurtz, D. W.; Bedding, T.; Shibahashi, H.; Boffin, H. M. J.
2018-01-01
Kepler targets with effective temperatures between 6600 and 10000K have been investigated for pulsational phase modulation that can be attributed to binary orbital motion. For each target, we provide a binary status, which also reflects whether or not the target pulsates. For the binary systems, we provide the Kepler Input Catalogue (KIC) number, as well as the binary orbital elements: the period, semi-major axis, eccentricity, longitude of periastron, time of periastron passage, binary mass function and a calculated radial velocity semi-amplitude. (3 data files).
Commission 42: Close Binary Stars
NASA Astrophysics Data System (ADS)
Rucinski, Slavek M.; Ribas, Ignasi; Giménez, Alvaro; Harmanec, Petr; Hilditch, Ronald W.; Kaluzny, Janusz; Niarchos, Panayiotis; Nordström, Birgitta; Oláh, Katalin; Richards, Mercedes T.; Scarfe, Colin D.; Sion, Edward M.; Torres, Guillermo; Vrielmann, Sonja
Two meetings of interest to close binaries took place during the reporting period: A full day session on short-period binary stars mostly CV's (Milone et al. 2008) during the 2006 AAS Spring meeting in Calgary and the very broadly designed IAU Symposium No. 240 on Binary Stars as Critical Tools and Tests in Contemporary Astrophysics in Prague, 2006, with many papers on close binaries [Hartkopf et al. 2007]. In addition, the book by Eggleton (2006), which is a comprehensive summary of evolutionary processes in binary and multiple stars, was published.
Cas A and the Crab were not stellar binaries at death
NASA Astrophysics Data System (ADS)
Kochanek, C. S.
2018-01-01
The majority of massive stars are in binaries, which implies that many core collapse supernovae should be binaries at the time of the explosion. Here we show that the three most recent, local (visual) SNe (the Crab, Cas A and SN 1987A) were not stellar binaries at death, with limits on the initial mass ratios of q = M2/M1 ≲ 0.1. No quantitative limits have previously been set for Cas A and the Crab, while for SN 1987A we merely updated existing limits in view of new estimates of the dust content. The lack of stellar companions to these three ccSNe implies a 90 per cent confidence upper limit on the q ≳ 0.1 binary fraction at death of fb < 44 per cent. In a passively evolving binary model (meaning no binary interactions), with a flat mass ratio distribution and a Salpeter IMF, the resulting 90 per cent confidence upper limit on the initial binary fraction of F < 63 per cent is in tension with observed massive binary statistics. Allowing a significant fraction fM ≃ 25 per cent of stellar binaries to merge reduces the tension, with F < 63({1-f}M)^{-1}{ per cent} ˜eq 81{ per cent}, but allowing for the significant fraction in higher order systems (triples, etc.) reintroduces the tension. That Cas A was not a stellar binary at death also shows that a surviving massive binary companion at the time of the explosion is not necessary for producing a Type IIb SNe. Much larger surveys for binary companions to Galactic SNe will become feasible with the release of the full Gaia proper motion and parallax catalogues providing a powerful probe of the statistics of such binaries and their role in massive star evolution, neutron star velocity distributions and runaway stars.
Formation and Evolution of X-ray Binaries
NASA Astrophysics Data System (ADS)
Shao, Y.
2017-07-01
X-ray binaries are a class of binary systems, in which the accretor is a compact star (i.e., black hole, neutron star, or white dwarf). They are one of the most important objects in the universe, which can be used to study not only binary evolution but also accretion disks and compact stars. Statistical investigations of these binaries help to understand the formation and evolution of galaxies, and sometimes provide useful constraints on the cosmological models. The goal of this thesis is to investigate the formation and evolution processes of X-ray binaries including Be/X-ray binaries, low-mass X-ray binaries (LMXBs), ultraluminous X-ray sources (ULXs), and cataclysmic variables. In Chapter 1 we give a brief review on the basic knowledge of the binary evolution. In Chapter 2 we discuss the formation of Be stars through binary interaction. In this chapter we investigate the formation of Be stars resulting from mass transfer in binaries in the Galaxy. Using binary evolution and population synthesis calculations, we find that in Be/neutron star binaries the Be stars have a lower limit of mass ˜ 8 M⊙ if they are formed by a stable (i.e., without the occurrence of common envelope evolution) and nonconservative mass transfer. We demonstrate that the isolated Be stars may originate from both mergers of two main-sequence stars and disrupted Be binaries during the supernova explosions of the primary stars, but mergers seem to play a much more important role. Finally the fraction of Be stars produced by binary interactions in all B type stars can be as high as ˜ 13%-30% , implying that most of Be stars may result from binary interaction. In Chapter 3 we show the evolution of intermediate- and low-mass X-ray binaries (I/LMXBs) and the formation of millisecond pulsars. Comparing the calculated results with the observations of binary radio pulsars, we report the following results: (1) The allowed parameter space for forming binary pulsars in the initial orbital period-donor mass plane increases with the increasing neutron star mass. This may help to explain why some millisecond pulsars with orbital periods longer than ˜ 60 d seem to have less massive white dwarfs than expected. Alternatively, some of these wide binary pulsars may be formed through mass transfer driven by planet/brown dwarf-involved common envelope evolution; (2) Some of the pulsars in compact binaries might have evolved from intermediate-mass X-ray binaries with an anomalous magnetic braking; (3) The equilibrium spin periods of neutron stars in low-mass X-ray binaries are in general shorter than the observed spin periods of binary pulsars by more than one order of magnitude, suggesting that either the simple equilibrium spin model does not apply, or there are other mechanisms/processes spinning down the neutron stars. In Chapter 4, angular momentum loss mechanisms in the cataclysmic variables below the period gap are presented. By considering several kinds of consequential angular momentum loss mechanisms, we find that neither isotropic wind from the white dwarf nor outflow from the L1 point can explain the extra angular momentum loss rate, while an ouflow from the L2 point or a circumbinary disk can effectively extract the angular momentum provided that ˜ 15%-45% of the transferred mass is lost from the binary. A more promising mechanism is a circumbinary disk exerting a gravitational torque on the binary. In this case the mass loss fraction can be as low as ≲ 10-3. In Chapter 5 we present a study on the population of ultraluminous X-ray sources with an accreting neutron star. Most ULXs are believed to be X-ray binary systems, but previous observational and theoretical studies tend to prefer a black hole rather than a neutron star accretor. The recent discovery of 1.37 s pulsations from the ULX M82 X-2 has established its nature as a magnetized neutron star. In this chapter we model the formation history of neutron star ULXs in an M82- or Milky Way-like galaxy, by use of both binary population synthesis and detailed binary evolution calculations. We find that the birthrate is around 10-4 yr-1 for the incipient X-ray binaries in both cases. We demonstrate the distribution of the ULX population in the donor mass - orbital period plane. Our results suggest that, compared with black hole X-ray binaries, neutron star X-ray binaries may significantly contribute to the ULX population, and high/intermediate-mass X-ray binaries dominate the neutron star ULX population in M82/Milky Way-like galaxies, respectively. In Chapter 6, the population of intermediate- and low-mass X-ray binaries in the Galaxy is explored. We investigate the formation and evolutionary sequences of Galactic intermediate- and low-mass X-ray binaries by combining binary population synthesis (BPS) and detailed stellar evolutionary calculations. Using an updated BPS code we compute the evolution of massive binaries that leads to the formation of incipient I/LMXBs, and present their distribution in the initial donor mass vs. initial orbital period diagram. We then follow the evolution of I/LMXBs until the formation of binary millisecond pulsars (BMSPs). We show that during the evolution of I/LMXBs they are likely to be observed as relatively compact binaries. The resultant BMSPs have orbital periods ranging from about 1 day to a few hundred days. These features are consistent with observations of LMXBs and BMSPs. We also confirm the discrepancies between theoretical predictions and observations mentioned in the literature, that is, the theoretical average mass transfer rates of LMXBs are considerably lower than observed, and the number of BMSPs with orbital periods ˜ 0.1-1 \\unit{d} is severely underestimated. Both imply that something is missing in the modeling of LMXBs, which is likely to be related to the mechanisms of the orbital angular momentum loss. Finally in Chapter 7 we summarize our results and give the prospects for the future work.
Learning Compact Binary Face Descriptor for Face Recognition.
Lu, Jiwen; Liong, Venice Erin; Zhou, Xiuzhuang; Zhou, Jie
2015-10-01
Binary feature descriptors such as local binary patterns (LBP) and its variations have been widely used in many face recognition systems due to their excellent robustness and strong discriminative power. However, most existing binary face descriptors are hand-crafted, which require strong prior knowledge to engineer them by hand. In this paper, we propose a compact binary face descriptor (CBFD) feature learning method for face representation and recognition. Given each face image, we first extract pixel difference vectors (PDVs) in local patches by computing the difference between each pixel and its neighboring pixels. Then, we learn a feature mapping to project these pixel difference vectors into low-dimensional binary vectors in an unsupervised manner, where 1) the variance of all binary codes in the training set is maximized, 2) the loss between the original real-valued codes and the learned binary codes is minimized, and 3) binary codes evenly distribute at each learned bin, so that the redundancy information in PDVs is removed and compact binary codes are obtained. Lastly, we cluster and pool these binary codes into a histogram feature as the final representation for each face image. Moreover, we propose a coupled CBFD (C-CBFD) method by reducing the modality gap of heterogeneous faces at the feature level to make our method applicable to heterogeneous face recognition. Extensive experimental results on five widely used face datasets show that our methods outperform state-of-the-art face descriptors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sánchez-Salcedo, F. J.; Chametla, Raul O., E-mail: jsanchez@astro.unam.mx
Using time-dependent linear theory, we investigate the morphology of the gravitational wake induced by a binary, whose center of mass moves at velocity V{sub cm} against a uniform background of gas. For simplicity, we assume that the components of the binary are on circular orbits about their common center of mass. The consequences of dynamical friction is twofold. First, gas dynamical friction may drag the center of mass of the binary and cause the binary to migrate. Second, drag forces also induce a braking torque, which causes the orbits of the components of the binary to shrink. We compute themore » drag forces acting on one component of the binary due to the gravitational interaction with its own wake. We show that the dynamical friction force responsible for decelerating the center of mass of the binary is smaller than it is in the point-mass case because of the loss of gravitational focusing. We show that the braking internal torque depends on the Mach numbers of each binary component about their center of mass, and also on the Mach number of the center of mass of the binary. In general, the internal torque decreases with increasing the velocity of the binary relative to the ambient gas cloud. However, this is not always the case. We also mention the relevance of our results to the period distribution of binaries.« less
The Ruinous Influence of Close Binary Companions on Planetary Systems
NASA Astrophysics Data System (ADS)
Kraus, Adam L.; Ireland, Michael; Mann, Andrew; Huber, Daniel; Dupuy, Trent J.
2017-01-01
The majority of solar-type stars are found in binary systems, and the dynamical influence of binary companions is expected to profoundly influence planetary systems. However, the difficulty of identifying planets in binary systems has left the magnitude of this effect uncertain; despite numerous theoretical hurdles to their formation and survival, at least some binary systems clearly host planets. We present high-resolution imaging of nearly 500 Kepler Objects of Interest (KOIs) obtained using adaptive-optics imaging and nonredundant aperture-mask interferometry on the Keck II telescope. We super-resolve some binary systems to projected separations of under 5 AU, showing that planets might form in these dynamically active environments. However, the full distribution of projected separations for our planet-host sample more broadly reveals a deep paucity of binary companions at solar-system scales. When the binary population is parametrized with a semimajor axis cutoff a cut and a suppression factor inside that cutoff S bin, we find with correlated uncertainties that inside acut = 47 +59/-23 AU, the planet occurrence rate in binary systems is only Sbin = 0.34 +0.14/-0.15 times that of wider binaries or single stars. Our results demonstrate that a fifth of all solar-type stars in the Milky Way are disallowed from hosting planetary systems due to the influence of a binary companion.
The Ruinous Influence of Close Binary Companions on Planetary Systems
NASA Astrophysics Data System (ADS)
Kraus, Adam L.; Ireland, Michael; Mann, Andrew; Huber, Daniel; Dupuy, Trent J.
2017-06-01
The majority of solar-type stars are found in binary systems, and the dynamical influence of binary companions is expected to profoundly influence planetary systems. However, the difficulty of identifying planets in binary systems has left the magnitude of this effect uncertain; despite numerous theoretical hurdles to their formation and survival, at least some binary systems clearly host planets. We present high-resolution imaging of nearly 500 Kepler Objects of Interest (KOIs) obtained using adaptive-optics imaging and nonredundant aperture-mask interferometry on the Keck II telescope. We super-resolve some binary systems to projected separations of under 5 AU, showing that planets might form in these dynamically active environments. However, the full distribution of projected separations for our planet-host sample more broadly reveals a deep paucity of binary companions at solar-system scales. When the binary population is parametrized with a semimajor axis cutoff a cut and a suppression factor inside that cutoff S bin, we find with correlated uncertainties that inside acut = 47 +59/-23 AU, the planet occurrence rate in binary systems is only Sbin = 0.34+0.14/-0.15 times that of wider binaries or single stars. Our results demonstrate that a fifth of all solar-type stars in the Milky Way are disallowed from hosting planetary systems due to the influence of a binary companion.
Fill-in binary loop pulse-torque quantizer
NASA Technical Reports Server (NTRS)
Lory, C. B.
1975-01-01
Fill-in binary (FIB) loop provides constant heating of torque generator, an advantage of binary current switching. At the same time, it avoids mode-related dead zone and data delay of binary, an advantage of ternary quantization.
Einstein observations of selected close binaries and shell stars
NASA Technical Reports Server (NTRS)
Guinan, E. F.; Koch, R. H.; Plavec, M. J.
1984-01-01
Several evolved close binaries and shell stars were observed with the IPC aboard the HEAO 2 Einstein Observatory. No eclipsing target was detected, and only two of the shell binaries were detected. It is argued that there is no substantial difference in L(X) for eclipsing and non-eclipsing binaries. The close binary and shell star CX Dra was detected as a moderately strong source, and the best interpretation is that the X-ray flux arises primarily from the corona of the cool member of the binary at about the level of Algol-like or RS CVn-type sources. The residual visible-band light curve of this binary has been modeled so as to conform as well as possible with this interpretation. HD 51480 was detected as a weak source. Substantial background information from IUE and ground scanner measurements are given for this binary. The positions and flux values of several accidentally detected sources are given.
A ROSAT Survey of Contact Binary Stars
NASA Astrophysics Data System (ADS)
Geske, M. T.; Gettel, S. J.; McKay, T. A.
2006-01-01
Contact binary stars are common variable stars that are all believed to emit relatively large fluxes of X-rays. In this work we combine a large new sample of contact binary stars derived from the ROTSE-I telescope with X-ray data from the ROSAT All Sky Survey (RASS) to estimate the X-ray volume emissivity of contact binary stars in the Galaxy. We obtained X-ray fluxes for 140 contact binaries from the RASS, as well as two additional stars observed by the XMM-Newton observatory. From these data we confirm the emission of X-rays from all contact binary systems, with typical luminosities of approximately 1.0×1030 ergs s-1. Combining calculated luminosities with an estimated contact binary space density, we find that contact binaries do not have strong enough X-ray emission to account for a significant portion of the Galactic X-ray background.
On the frequency of close binary systems among very low-mass stars and brown dwarfs
NASA Astrophysics Data System (ADS)
Maxted, P. F. L.; Jeffries, R. D.
2005-09-01
We have used Monte Carlo simulation techniques and published radial velocity surveys to constrain the frequency of very low-mass star (VLMS) and brown dwarf (BD) binary systems and their separation (a) distribution. Gaussian models for the separation distribution with a peak at a= 4au and 0.6 <=σlog(a/au)<= 1.0, correctly predict the number of observed binaries, yielding a close (a < 2.6au) binary frequency of 17-30 per cent and an overall VLMS/BD binary frequency of 32-45 per cent. We find that the available N-body models of VLMS/BD formation from dynamically decaying protostellar multiple systems are excluded at >99 per cent confidence because they predict too few close binary VLMS/BDs. The large number of close binaries and high overall binary frequency are also very inconsistent with recent smoothed particle hydrodynamical modelling and argue against a dynamical origin for VLMS/BDs.
Close binary systems among very low-mass stars and brown dwarfs
NASA Astrophysics Data System (ADS)
Jeffries, R. D.; Maxted, P. F. L.
2005-12-01
Using Monte Carlo simulations and published radial velocity surveys we have constrained the frequency and separation (a) distribution of very low-mass star (VLM) and brown dwarf (BD) binary systems. We find that simple Gaussian extensions of the observed wide binary distribution, with a peak at 4 AU and 0.6<\\sigma_{\\log(a/AU)}<1.0, correctly reproduce the observed number of close binary systems, implying a close (a<2.6 AU) binary frequency of 17-30 % and overall frequency of 32-45 %. N-body models of the dynamical decay of unstable protostellar multiple systems are excluded with high confidence because they do not produce enough close binary VLMs/BDs. The large number of close binaries and high overall binary frequency are also completely inconsistent with published smoothed particle hydrodynamical modelling and argue against a dynamical origin for VLMs/BDs.
Wide- and contact-binary formation in substructured young stellar clusters
NASA Astrophysics Data System (ADS)
Dorval, J.; Boily, C. M.; Moraux, E.; Roos, O.
2017-02-01
We explore with collisional gravitational N-body models the evolution of binary stars in initially fragmented and globally subvirial clusters of stars. Binaries are inserted in the (initially) clumpy configurations so as to match the observed distributions of the field-binary-stars' semimajor axes a and binary fraction versus primary mass. The dissolution rate of wide binaries is very high at the start of the simulations, and is much reduced once the clumps are eroded by the global infall. The transition between the two regimes is sharper as the number of stars N is increased, from N = 1.5 k up to 80 k. The fraction of dissolved binary stars increases only mildly with N, from ≈15 per cent to ≈25 per cent for the same range in N. We repeated the calculation for two initial system mean number densities of 6 per pc3 (low) and 400 per pc3 (high). We found that the longer free-fall time of the low-density runs allows for prolonged binary-binary interactions inside clumps and the formation of very tight (a ≈ 0.01 au) binaries by exchange collisions. This is an indication that the statistics of such compact binaries bear a direct link to their environment at birth. We also explore the formation of wide (a ≳ 5 × 104 au) binaries and find a low (≈0.01 per cent) fraction mildly bound to the central star cluster. The high-precision astrometric mission Gaia could identify them as outflowing shells or streams.
1974: the discovery of the first binary pulsar
NASA Astrophysics Data System (ADS)
Damour, Thibault
2015-06-01
The 1974 discovery, by Russell A Hulse and Joseph H Taylor, of the first binary pulsar, PSR B1913+16, opened up new possibilities for the study of relativistic gravity. PSR B1913+16, as well as several other binary pulsars, provided direct observational proof that gravity propagates at the velocity of light and has a quadrupolar structure. Binary pulsars also provided accurate tests of the strong-field regime of relativistic gravity. General relativity has passed all of the binary pulsar tests with flying colors. The discovery of binary pulsars also had very important consequences for astrophysics, leading to accurate measurement of neutron star masses, improved understanding of the possible evolution scenarios for the co-evolution of binary stars, and proof of the existence of binary neutron stars emitting gravitational waves for hundreds of millions of years, before coalescing in catastrophic events radiating intense gravitational wave signals, and probably also leading to important emissions of electromagnetic radiation and neutrinos. This article reviews the history of the discovery of the first binary pulsar, and describes both its immediate impact and its longer-term effect on theoretical and experimental studies of relativistic gravity.
The Evolution of Compact Binary Star Systems.
Postnov, Konstantin A; Yungelson, Lev R
2006-01-01
We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars - compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.
The Evolution of Compact Binary Star Systems.
Postnov, Konstantin A; Yungelson, Lev R
2014-01-01
We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Mergings of compact-star binaries are expected to be the most important sources for forthcoming gravitational-wave (GW) astronomy. In the first part of the review, we discuss observational manifestations of close binaries with NS and/or BH components and their merger rate, crucial points in the formation and evolution of compact stars in binary systems, including the treatment of the natal kicks, which NSs and BHs acquire during the core collapse of massive stars and the common envelope phase of binary evolution, which are most relevant to the merging rates of NS-NS, NS-BH and BH-BH binaries. The second part of the review is devoted mainly to the formation and evolution of binary WDs and their observational manifestations, including their role as progenitors of cosmologically-important thermonuclear SN Ia. We also consider AM CVn-stars, which are thought to be the best verification binary GW sources for future low-frequency GW space interferometers.
Bi-lobed Shape of Comet 67P from a Collapsed Binary
NASA Astrophysics Data System (ADS)
Nesvorný, David; Parker, Joel; Vokrouhlický, David
2018-06-01
The Rosetta spacecraft observations revealed that the nucleus of comet 67P/Churyumov–Gerasimenko consists of two similarly sized lobes connected by a narrow neck. Here, we evaluate the possibility that 67P is a collapsed binary. We assume that the progenitor of 67P was a binary and consider various physical mechanisms that could have brought the binary components together, including small-scale impacts and gravitational encounters with planets. We find that 67P could be a primordial body (i.e., not a collisional fragment) if the outer planetesimal disk lasted ≲10 Myr before it was dispersed by migrating Neptune. The probability of binary collapse by impact is ≃30% for tightly bound binaries. Most km-class binaries become collisionally dissolved. Roughly 10% of the surviving binaries later evolve to become contact binaries during the disk dispersal, when bodies suffer gravitational encounters with Neptune. Overall, the processes described in this work do not seem to be efficient enough to explain the large fraction (∼67%) of bi-lobed cometary nuclei inferred from spacecraft imaging.
Radio crickets: chirping jets from black hole binaries entering their gravitational wave inspiral
NASA Astrophysics Data System (ADS)
Kulkarni, Girish; Loeb, Abraham
2016-03-01
We study a novel electromagnetic signature of supermassive black hole (BH) binaries whose inspiral starts being dominated by gravitational wave (GW) emission. Recent simulations suggest that the binary's member BHs can continue to accrete gas from the circumbinary accretion disc in this phase of the binary's evolution, all the way until coalescence. If one of the binary members produces a radio jet as a result of accretion, the jet precesses along a biconical surface due to the binary's orbital motion. When the binary enters the GW phase of its evolution, the opening angle widens, the jet exhibits milliarcsecond-scale wiggles, and the conical surface of jet precession is twisted due to apparent superluminal motion. The rapidly increasing orbital velocity of the binary gives the jet an appearance of a `chirp'. This helical chirping morphology of the jet can be used to infer the binary parameters. For binaries with mass 107-1010 M⊙ at redshifts z < 0.5, monitoring these features in current and archival data will place a lower limit on sources that could be detected by Evolved Laser Interferometer Space Antenna and Pulsar Timing Arrays. In the future, microarcsecond interferometry with the Square Kilometre Array will increase the potential usefulness of this technique.
NASA Astrophysics Data System (ADS)
Bonetti, Matteo; Perego, Albino; Capelo, Pedro R.; Dotti, Massimo; Miller, M. Coleman
2018-05-01
Surface abundance observations of halo stars hint at the occurrence of r-process nucleosynthesis at low metallicity ([Fe/H] < -3), possibly within the first 108 yr after the formation of the first stars. Possible loci of early-Universe r-process nucleosynthesis are the ejecta of either black hole-neutron star or neutron star-neutron star binary mergers. Here, we study the effect of the inclination-eccentricity oscillations raised by a tertiary (e.g. a star) on the coalescence time-scale of the inner compact object binaries. Our results are highly sensitive to the assumed initial distribution of the inner binary semi-major axes. Distributions with mostly wide compact object binaries are most affected by the third object, resulting in a strong increase (by more than a factor of 2) in the fraction of fast coalescences. If instead the distribution preferentially populates very close compact binaries, general relativistic precession prevents the third body from increasing the inner binary eccentricity to very high values. In this last case, the fraction of coalescing binaries is increased much less by tertiaries, but the fraction of binaries that would coalesce within 108 yr even without a third object is already high. Our results provide additional support to the compact-binary merger scenario for r-process nucleosynthesis.
Constraining Accreting Binary Populations in Normal Galaxies
NASA Astrophysics Data System (ADS)
Lehmer, Bret; Hornschemeier, A.; Basu-Zych, A.; Fragos, T.; Jenkins, L.; Kalogera, V.; Ptak, A.; Tzanavaris, P.; Zezas, A.
2011-01-01
X-ray emission from accreting binary systems (X-ray binaries) uniquely probe the binary phase of stellar evolution and the formation of compact objects such as neutron stars and black holes. A detailed understanding of X-ray binary systems is needed to provide physical insight into the formation and evolution of the stars involved, as well as the demographics of interesting binary remnants, such as millisecond pulsars and gravitational wave sources. Our program makes wide use of Chandra observations and complementary multiwavelength data sets (through, e.g., the Spitzer Infrared Nearby Galaxies Survey [SINGS] and the Great Observatories Origins Deep Survey [GOODS]), as well as super-computing facilities, to provide: (1) improved calibrations for correlations between X-ray binary emission and physical properties (e.g., star-formation rate and stellar mass) for galaxies in the local Universe; (2) new physical constraints on accreting binary processes (e.g., common-envelope phase and mass transfer) through the fitting of X-ray binary synthesis models to observed local galaxy X-ray binary luminosity functions; (3) observational and model constraints on the X-ray evolution of normal galaxies over the last 90% of cosmic history (since z 4) from the Chandra Deep Field surveys and accreting binary synthesis models; and (4) predictions for deeper observations from forthcoming generations of X-ray telesopes (e.g., IXO, WFXT, and Gen-X) to provide a science driver for these missions. In this talk, we highlight the details of our program and discuss recent results.
Galaxy Rotation and Rapid Supermassive Binary Coalescence
NASA Astrophysics Data System (ADS)
Holley-Bockelmann, Kelly; Khan, Fazeel Mahmood
2015-09-01
Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy.
The evolution of photoevaporating viscous discs in binaries
NASA Astrophysics Data System (ADS)
Rosotti, Giovanni P.; Clarke, Cathie J.
2018-02-01
A large fraction of stars are in binary systems, yet the evolution of protoplanetary discs in binaries has been little explored from the theoretical side. In this paper, we investigate the evolution of the discs surrounding the primary and secondary components of binary systems on the assumption that this is driven by photoevaporation induced by X-rays from the respective star. We show how for close enough separations (20-30 au for average X-ray luminosities) the tidal torque of the companion changes the qualitative behaviour of disc dispersal from inside out to outside in. Fewer transition discs created by photoevaporation are thus expected in binaries. We also demonstrate that in close binaries the reduction in viscous time leads to accelerated disc clearing around both components, consistent with unresolved observations. When looking at the differential disc evolution around the two components, in close binaries discs around the secondary clear first due to the shorter viscous time-scale associated with the smaller outer radius. In wide binaries instead the difference in photoevaporation rate makes the secondaries longer lived, though this is somewhat dependent on the assumed scaling of viscosity with stellar mass. We find that our models are broadly compatible with the growing sample of resolved observations of discs in binaries. We also predict that binaries have higher accretion rates than single stars for the same disc mass. Thus, binaries probably contribute to the observed scatter in the relationship between disc mass and accretion rate in young stars.
GALAXY ROTATION AND RAPID SUPERMASSIVE BINARY COALESCENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holley-Bockelmann, Kelly; Khan, Fazeel Mahmood, E-mail: k.holley@vanderbilt.edu
2015-09-10
Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolutionmore » in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy.« less
Searching Ultra-compact Pulsar Binaries with Abnormal Timing Behavior
NASA Astrophysics Data System (ADS)
Gong, B. P.; Li, Y. P.; Yuan, J. P.; Tian, J.; Zhang, Y. Y.; Li, D.; Jiang, B.; Li, X. D.; Wang, H. G.; Zou, Y. C.; Shao, L. J.
2018-03-01
Ultra-compact pulsar binaries are both ideal sources of gravitational radiation for gravitational wave detectors and laboratories for fundamental physics. However, the shortest orbital period of all radio pulsar binaries is currently 1.6 hr. The absence of pulsar binaries with a shorter orbital period is most likely due to technique limit. This paper points out that a tidal effect occurring on pulsar binaries with a short orbital period can perturb the orbital elements and result in a significant change in orbital modulation, which dramatically reduces the sensitivity of the acceleration searching that is widely used. Here a new search is proposed. The abnormal timing residual exhibited in a single pulse observation is simulated by a tidal effect occurring on an ultra-compact binary. The reproduction of the main features represented by the sharp peaks displayed in the abnormal timing behavior suggests that pulsars like PSR B0919+06 could be a candidate for an ultra-compact binary of an orbital period of ∼10 minutes and a companion star of a white dwarf star. The binary nature of such a candidate is further tested by (1) comparing the predicted long-term binary effect with decades of timing noise observed and (2) observing the optical counterpart of the expected companion star. Test (1) likely supports our model, while more observations are needed in test (2). Some interesting ultra-compact binaries could be found in the near future by applying such a new approach to other binary candidates.
NASA Astrophysics Data System (ADS)
Cao, Zhoujian; Han, Wen-Biao
2017-08-01
Binary black hole systems are among the most important sources for gravitational wave detection. They are also good objects for theoretical research for general relativity. A gravitational waveform template is important to data analysis. An effective-one-body-numerical-relativity (EOBNR) model has played an essential role in the LIGO data analysis. For future space-based gravitational wave detection, many binary systems will admit a somewhat orbit eccentricity. At the same time, the eccentric binary is also an interesting topic for theoretical study in general relativity. In this paper, we construct the first eccentric binary waveform model based on an effective-one-body-numerical-relativity framework. Our basic assumption in the model construction is that the involved eccentricity is small. We have compared our eccentric EOBNR model to the circular one used in the LIGO data analysis. We have also tested our eccentric EOBNR model against another recently proposed eccentric binary waveform model; against numerical relativity simulation results; and against perturbation approximation results for extreme mass ratio binary systems. Compared to numerical relativity simulations with an eccentricity as large as about 0.2, the overlap factor for our eccentric EOBNR model is better than 0.98 for all tested cases, including spinless binary and spinning binary, equal mass binary, and unequal mass binary. Hopefully, our eccentric model can be the starting point to develop a faithful template for future space-based gravitational wave detectors.
Where Kinsey, Christ, and Tila Tequila meet: discourse and the sexual (non)-binary.
Callis, April S
2014-01-01
Drawing on 80 interviews and 17 months of participant observation in Lexington, Kentucky, this article details how individuals drew on three areas of national and local discourse to conceptualize sexuality. Media, popular science, and religious discourses can be viewed as portraying sexuality bifocally--as both a binary of heterosexual/homosexual and as a non-binary that encompasses fluidity. However, individuals in Lexington drew on each of these areas of discourse differently. Religion was thought to produce a binary vision of sexuality, whereas popular science accounts were understood as both binary and not. The media was understood as portraying non-binary identities that were not viable, thus strengthening the sexual binary. These differing points of view led identities such as bisexual and queer to lack cultural intelligibility.
Learning moment-based fast local binary descriptor
NASA Astrophysics Data System (ADS)
Bellarbi, Abdelkader; Zenati, Nadia; Otmane, Samir; Belghit, Hayet
2017-03-01
Recently, binary descriptors have attracted significant attention due to their speed and low memory consumption; however, using intensity differences to calculate the binary descriptive vector is not efficient enough. We propose an approach to binary description called POLAR_MOBIL, in which we perform binary tests between geometrical and statistical information using moments in the patch instead of the classical intensity binary test. In addition, we introduce a learning technique used to select an optimized set of binary tests with low correlation and high variance. This approach offers high distinctiveness against affine transformations and appearance changes. An extensive evaluation on well-known benchmark datasets reveals the robustness and the effectiveness of the proposed descriptor, as well as its good performance in terms of low computation complexity when compared with state-of-the-art real-time local descriptors.
Stability of binaries. Part 1: Rigid binaries
NASA Astrophysics Data System (ADS)
Sharma, Ishan
2015-09-01
We consider the stability of binary asteroids whose members are possibly granular aggregates held together by self-gravity alone. A binary is said to be stable whenever each member is orbitally and structurally stable to both orbital and structural perturbations. To this end, we extend the stability test for rotating granular aggregates introduced by Sharma (Sharma, I. [2012]. J. Fluid Mech., 708, 71-99; Sharma, I. [2013]. Icarus, 223, 367-382; Sharma, I. [2014]. Icarus, 229, 278-294) to the case of binary systems comprised of rubble members. In part I, we specialize to the case of a binary with rigid members subjected to full three-dimensional perturbations. Finally, we employ the stability test to critically appraise shape models of four suspected binary systems, viz., 216 Kleopatra, 25143 Itokawa, 624 Hektor and 90 Antiope.
NASA Astrophysics Data System (ADS)
Astakhov, Sergey A.; Lee, Ernestine A.; Farrelly, David
2005-06-01
The discovery that many trans-Neptunian objects exist in pairs, or binaries, is proving invaluable for shedding light on the formation, evolution and structure of the outer Solar system. Based on recent systematic searches it has been estimated that up to 10 per cent of Kuiper-belt objects might be binaries. However, all examples discovered to date are unusual, as compared with near-Earth and main-belt asteroid binaries, for their mass ratios of the order of unity and their large, eccentric orbits. In this article we propose a common dynamical origin for these compositional and orbital properties based on four-body simulations in the Hill approximation. Our calculations suggest that binaries are produced through the following chain of events. Initially, long-lived quasi-bound binaries form by two bodies getting entangled in thin layers of dynamical chaos produced by solar tides within the Hill sphere. Next, energy transfer through gravitational scattering with a low-mass intruder nudges the binary into a nearby non-chaotic, stable zone of phase space. Finally, the binary hardens (loses energy) through a series of relatively gentle gravitational scattering encounters with further intruders. This produces binary orbits that are well fitted by Kepler ellipses. Dynamically, the overall process is strongly favoured if the original quasi-bound binary contains comparable masses. We propose a simplified model of chaotic scattering to explain these results. Our findings suggest that the observed preference for roughly equal-mass ratio binaries is probably a real effect; that is, it is not primarily due to an observational bias for widely separated, comparably bright objects. Nevertheless, we predict that a sizeable population of very unequal-mass Kuiper-belt binaries is probably awaiting discovery.
EXTRASOLAR BINARY PLANETS. II. DETECTABILITY BY TRANSIT OBSERVATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, K. M.; Ida, S.; Ochiai, H.
2015-05-20
We discuss the detectability of gravitationally bound pairs of gas-giant planets (which we call “binary planets”) in extrasolar planetary systems that are formed through orbital instability followed by planet–planet dynamical tides during their close encounters, based on the results of N-body simulations by Ochiai et al. (Paper I). Paper I showed that the formation probability of a binary is as much as ∼10% for three giant planet systems that undergo orbital instability, and after post-capture long-term tidal evolution, the typical binary separation is three to five times the sum of the physical radii of the planets. The binary planets aremore » stable during the main-sequence lifetime of solar-type stars, if the stellarcentric semimajor axis of the binary is larger than 0.3 AU. We show that detecting modulations of transit light curves is the most promising observational method to detect binary planets. Since the likely binary separations are comparable to the stellar diameter, the shape of the transit light curve is different from transit to transit, depending on the phase of the binary’s orbit. The transit durations and depth for binary planet transits are generally longer and deeper than those for the single planet case. We point out that binary planets could exist among the known inflated gas-giant planets or objects classified as false positive detections at orbital radii ≳0.3 AU, propose a binary planet explanation for the CoRoT candidate SRc01 E2 1066, and show that binary planets are likely to be present in, and could be detected using, Kepler-quality data.« less
NASA Astrophysics Data System (ADS)
Shi, Yu; Wang, Yue; Xu, Shijie
2018-04-01
The motion of a massless particle in the gravity of a binary asteroid system, referred as the restricted full three-body problem (RF3BP), is fundamental, not only for the evolution of the binary system, but also for the design of relevant space missions. In this paper, equilibrium points and associated periodic orbit families in the gravity of a binary system are investigated, with the binary (66391) 1999 KW4 as an example. The polyhedron shape model is used to describe irregular shapes and corresponding gravity fields of the primary and secondary of (66391) 1999 KW4, which is more accurate than the ellipsoid shape model in previous studies and provides a high-fidelity representation of the gravitational environment. Both of the synchronous and non-synchronous states of the binary system are considered. For the synchronous binary system, the equilibrium points and their stability are determined, and periodic orbit families emanating from each equilibrium point are generated by using the shooting (multiple shooting) method and the homotopy method, where the homotopy function connects the circular restricted three-body problem and RF3BP. In the non-synchronous binary system, trajectories of equivalent equilibrium points are calculated, and the associated periodic orbits are obtained by using the homotopy method, where the homotopy function connects the synchronous and non-synchronous systems. Although only the binary (66391) 1999 KW4 is considered, our methods will also be well applicable to other binary systems with polyhedron shape data. Our results on equilibrium points and associated periodic orbits provide general insights into the dynamical environment and orbital behaviors in proximity of small binary asteroids and enable the trajectory design and mission operations in future binary system explorations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oelkers, Ryan J.; Stassun, Keivan G.; Dhital, Saurav, E-mail: ryan.j.oelkers@vanderbilt.edu
The formation and evolution of binary star systems are some of the remaining key questions in modern astronomy. Wide binary pairs (separations >10{sup 3} au) are particularly intriguing because their low binding energies make it difficult for the stars to stay gravitationally bound over extended timescales, and thus to probe the dynamics of binary formation and dissolution. Our previous SLoWPoKES catalogs, I and II, provided the largest and most complete sample of wide-binary pairs of low masses. Here we present an extension of these catalogs to a broad range of stellar masses: the Gaia Assorted Mass Binaries Long Excluded frommore » SloWPoKES (GAMBLES), comprising 8660 statistically significant wide pairs that we make available in a living online database. Within this catalog we identify a subset of 543 long-lived (dissipation timescale >1.5 Gyr) candidate binary pairs, of assorted mass, with typical separations between 10{sup 3} and 10{sup 5.5} au (0.002–1.5 pc), using the published distances and proper motions from the Tycho -Gaia Astrometric Solution and Sloan Digital Sky Survey photometry. Each pair has at most a false positive probability of 0.05; the total expectation is 2.44 false binaries in our sample. Among these, we find 22 systems with 3 components, 1 system with 4 components, and 15 pairs consisting of at least 1 possible red giant. We find the largest long-lived binary separation to be nearly 3.2 pc; even so, >76% of GAMBLES long-lived binaries have large binding energies and dissipation lifetimes longer than 1.5 Gyr. Finally, we find that the distribution of binary separations is clearly bimodal, corroborating the findings from SloWPoKES and suggesting multiple pathways for the formation and dissipation of the widest binaries in the Galaxy.« less
NASA Astrophysics Data System (ADS)
Oelkers, Ryan J.; Stassun, Keivan G.; Dhital, Saurav
2017-06-01
The formation and evolution of binary star systems are some of the remaining key questions in modern astronomy. Wide binary pairs (separations >103 au) are particularly intriguing because their low binding energies make it difficult for the stars to stay gravitationally bound over extended timescales, and thus to probe the dynamics of binary formation and dissolution. Our previous SLoWPoKES catalogs, I and II, provided the largest and most complete sample of wide-binary pairs of low masses. Here we present an extension of these catalogs to a broad range of stellar masses: the Gaia Assorted Mass Binaries Long Excluded from SloWPoKES (GAMBLES), comprising 8660 statistically significant wide pairs that we make available in a living online database. Within this catalog we identify a subset of 543 long-lived (dissipation timescale >1.5 Gyr) candidate binary pairs, of assorted mass, with typical separations between 103 and 105.5 au (0.002-1.5 pc), using the published distances and proper motions from the Tycho-Gaia Astrometric Solution and Sloan Digital Sky Survey photometry. Each pair has at most a false positive probability of 0.05; the total expectation is 2.44 false binaries in our sample. Among these, we find 22 systems with 3 components, 1 system with 4 components, and 15 pairs consisting of at least 1 possible red giant. We find the largest long-lived binary separation to be nearly 3.2 pc even so, >76% of GAMBLES long-lived binaries have large binding energies and dissipation lifetimes longer than 1.5 Gyr. Finally, we find that the distribution of binary separations is clearly bimodal, corroborating the findings from SloWPoKES and suggesting multiple pathways for the formation and dissipation of the widest binaries in the Galaxy.
What we learn from eclipsing binaries in the ultraviolet
NASA Technical Reports Server (NTRS)
Guinan, Edward F.
1990-01-01
Recent results on stars and stellar physics from IUE (International Ultraviolet Explorer) observations of eclipsing binaries are discussed. Several case studies are presented, including V 444 Cyg, Aur stars, V 471 Tau and AR Lac. Topics include stellar winds and mass loss, stellar atmospheres, stellar dynamos, and surface activity. Studies of binary star dynamics and evolution are discussed. The progress made with IUE in understanding the complex dynamical and evolutionary processes taking place in W UMa-type binaries and Algol systems is highlighted. The initial results of intensive studies of the W UMa star VW Cep and three representative Algol-type binaries (in different stages of evolution) focused on gas flows and accretion, are included. The future prospects of eclipsing binary research are explored. Remaining problems are surveyed and the next challenges are presented. The roles that eclipsing binaries could play in studies of stellar evolution, cluster dynamics, galactic structure, mass luminosity relations for extra galactic systems, cosmology, and even possible detection of extra solar system planets using eclipsing binaries are discussed.
Stability of binaries. Part II: Rubble-pile binaries
NASA Astrophysics Data System (ADS)
Sharma, Ishan
2016-10-01
We consider the stability of the binary asteroids whose members are granular aggregates held together by self-gravity alone. A binary is said to be stable whenever both its members are orbitally and structurally stable to both orbital and structural perturbations. To this end, we extend the stability analysis of Sharma (Sharma [2015] Icarus, 258, 438-453), that is applicable to binaries with rigid members, to the case of binary systems with rubble members. We employ volume averaging (Sharma et al. [2009] Icarus, 200, 304-322), which was inspired by past work on elastic/fluid, rotating and gravitating ellipsoids. This technique has shown promise when applied to rubble-pile ellipsoids, but requires further work to settle some of its underlying assumptions. The stability test is finally applied to some suspected binary systems, viz., 216 Kleopatra, 624 Hektor and 90 Antiope. We also see that equilibrated binaries that are close to mobilizing their maximum friction can sustain only a narrow range of shapes and, generally, congruent shapes are preferred.
Leportier, Thibault; Park, Min Chul; Kim, You Seok; Kim, Taegeun
2015-02-09
In this paper, we present a three-dimensional holographic imaging system. The proposed approach records a complex hologram of a real object using optical scanning holography, converts the complex form to binary data, and then reconstructs the recorded hologram using a spatial light modulator (SLM). The conversion from the recorded hologram to a binary hologram is achieved using a direct binary search algorithm. We present experimental results that verify the efficacy of our approach. To the best of our knowledge, this is the first time that a hologram of a real object has been reconstructed using a binary SLM.
NASA Astrophysics Data System (ADS)
Soszyński, I.; Pawlak, M.; Pietrukowicz, P.; Udalski, A.; Szymański, M. K.; Wyrzykowski, Ł.; Ulaczyk, K.; Poleski, R.; Kozłowski, S.; Skowron, D. M.; Skowron, J.; Mróz, P.; Hamanowicz, A.
2016-12-01
We present a collection of 450 598 eclipsing and ellipsoidal binary systems detected in the OGLE fields toward the Galactic bulge. The collection consists of binary systems of all types: detached, semi-detached, and contact eclipsing binaries, RS CVn stars, cataclysmic variables, HW Vir binaries, double periodic variables, and even planetary transits. For all stars we provide the I- and V-band time-series photometry obtained during the OGLE-II, OGLE-III, and OGLE-IV surveys. We discuss methods used to identify binary systems in the OGLE data and present several objects of particular interest.
Accuracy of inference on the physics of binary evolution from gravitational-wave observations
NASA Astrophysics Data System (ADS)
Barrett, Jim W.; Gaebel, Sebastian M.; Neijssel, Coenraad J.; Vigna-Gómez, Alejandro; Stevenson, Simon; Berry, Christopher P. L.; Farr, Will M.; Mandel, Ilya
2018-04-01
The properties of the population of merging binary black holes encode some of the uncertain physics underlying the evolution of massive stars in binaries. The binary black hole merger rate and chirp-mass distribution are being measured by ground-based gravitational-wave detectors. We consider isolated binary evolution, and explore how accurately the physical model can be constrained with such observations by applying the Fisher information matrix to the merging black hole population simulated with the rapid binary-population synthesis code COMPAS. We investigate variations in four COMPAS parameters: common-envelope efficiency, kick-velocity dispersion, and mass-loss rates during the luminous blue variable and Wolf-Rayet stellar-evolutionary phases. We find that ˜1000 observations would constrain these model parameters to a fractional accuracy of a few per cent. Given the empirically determined binary black hole merger rate, we can expect gravitational-wave observations alone to place strong constraints on the physics of stellar and binary evolution within a few years. Our approach can be extended to use other observational data sets; combining observations at different evolutionary stages will lead to a better understanding of stellar and binary physics.
Testing the Binary Black Hole Nature of a Compact Binary Coalescence
NASA Astrophysics Data System (ADS)
Krishnendu, N. V.; Arun, K. G.; Mishra, Chandra Kant
2017-09-01
We propose a novel method to test the binary black hole nature of compact binaries detectable by gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact objects. The spirit of the test lies in the "no-hair" conjecture for black holes where all properties of a Kerr black hole are characterized by its mass and spin. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.
Accuracy of inference on the physics of binary evolution from gravitational-wave observations
NASA Astrophysics Data System (ADS)
Barrett, Jim W.; Gaebel, Sebastian M.; Neijssel, Coenraad J.; Vigna-Gómez, Alejandro; Stevenson, Simon; Berry, Christopher P. L.; Farr, Will M.; Mandel, Ilya
2018-07-01
The properties of the population of merging binary black holes encode some of the uncertain physics underlying the evolution of massive stars in binaries. The binary black hole merger rate and chirp-mass distribution are being measured by ground-based gravitational-wave detectors. We consider isolated binary evolution, and explore how accurately the physical model can be constrained with such observations by applying the Fisher information matrix to the merging black hole population simulated with the rapid binary-population synthesis code COMPAS. We investigate variations in four COMPAS parameters: common-envelope efficiency, kick-velocity dispersion and mass-loss rates during the luminous blue variable, and Wolf-Rayet stellar-evolutionary phases. We find that ˜1000 observations would constrain these model parameters to a fractional accuracy of a few per cent. Given the empirically determined binary black hole merger rate, we can expect gravitational-wave observations alone to place strong constraints on the physics of stellar and binary evolution within a few years. Our approach can be extended to use other observational data sets; combining observations at different evolutionary stages will lead to a better understanding of stellar and binary physics.
Gravitational radiation, inspiraling binaries, and cosmology
NASA Technical Reports Server (NTRS)
Chernoff, David F.; Finn, Lee S.
1993-01-01
We show how to measure cosmological parameters using observations of inspiraling binary neutron star or black hole systems in one or more gravitational wave detectors. To illustrate, we focus on the case of fixed mass binary systems observed in a single Laser Interferometer Gravitational-wave Observatory (LIGO)-like detector. Using realistic detector noise estimates, we characterize the rate of detections as a function of a threshold SNR Rho(0), H0, and the binary 'chirp' mass. For Rho(0) = 8, H0 = 100 km/s/Mpc, and 1.4 solar mass neutron star binaries, the sample has a median redshift of 0.22. Under the same assumptions but independent of H0, a conservative rate density of coalescing binaries implies LIGO will observe about 50/yr binary inspiral events. The precision with which H0 and the deceleration parameter q0 may be determined depends on the number of observed inspirals. For fixed mass binary systems, about 100 observations with Rho(0) = 10 in the LIGO will give H0 to 10 percent in an Einstein-DeSitter cosmology, and 3000 will give q0 to 20 percent. For the conservative rate density of coalescing binaries, 100 detections with Rho(0) = 10 will require about 4 yrs.
Distinguishing Between Formation Channels for Binary Black Holes with LISA
NASA Astrophysics Data System (ADS)
Breivik, Katelyn; Rodriguez, Carl L.; Larson, Shane L.; Kalogera, Vassiliki; Rasio, Frederic A.
2017-01-01
The recent detections of GW150914 and GW151226 imply an abundance of stellar-mass binary-black-hole mergers in the local universe. While ground-based gravitational-wave detectors are limited to observing the final moments before a binary merges, space-based detectors, such as the Laser Interferometer Space Antenna (LISA), can observe binaries at lower orbital frequencies where such systems may still encode information about their formation histories. In particular, the orbital eccentricity and mass of binary black holes in the LISA frequency band can be used together to discriminate between binaries formed in isolation in galactic fields and those formed in dense stellar environments such as globular clusters. In this letter, we explore the orbital eccentricity and mass of binary-black-hole populations as they evolve through the LISA frequency band. Overall we find that there are two distinct populations discernible by LISA. We show that up to ~90% of binaries formed either dynamically or in isolation have eccentricities measurable by LISA. Finally, we note how measured eccentricities of low-mass binary black holes evolved in isolation could provide detailed constraints on the physics of black-hole natal kicks and common-envelope evolution.
Synthetic Survey of the Kepler Field
NASA Astrophysics Data System (ADS)
Wells, Mark; Prša, Andrej
2018-01-01
In the era of large scale surveys, including LSST and Gaia, binary population studies will flourish due to the large influx of data. In addition to probing binary populations as a function of galactic latitude, under-sampled groups such as low mass binaries will be observed at an unprecedented rate. To prepare for these missions, binary population simulations need to be carried out at high fidelity. These simulations will enable the creation of simulated data and, through comparison with real data, will allow the underlying binary parameter distributions to be explored. In order for the simulations to be considered robust, they should reproduce observed distributions accurately. To this end we have developed a simulator which takes input models and creates a synthetic population of eclipsing binaries. Starting from a galactic single star model, implemented using Galaxia, a code by Sharma et al. (2011), and applying observed multiplicity, mass-ratio, period, and eccentricity distributions, as reported by Raghavan et al. (2010), Duchêne & Kraus (2013), and Moe & Di Stefano (2017), we are able to generate synthetic binary surveys that correspond to any survey cadences. In order to calibrate our input models we compare the results of our synthesized eclipsing binary survey to the Kepler Eclipsing Binary catalog.
Resonant Tidal Forcing in Close Binaries: Implications for CVs
NASA Astrophysics Data System (ADS)
Ford, K. E. Saavik; McKernan, Barry; Schwab, Elliana
2018-01-01
Resonant tidal forcing occurs when the tidal forcing frequency of a binary matches a quadrupolar oscillation mode of one of the binary members and energy is transferred from the orbit of the binary to the mode. Tidal locking permits ongoing resonant driving of modes even as binary orbital parameters change. At small binary separations during tidal lock, a significant fraction of binary orbital energy can be deposited quickly into a resonant mode and the binary decays faster than via the emission of gravitational radiation alone. Here we discuss some of the implications of resonant tidal forcing for the class of binaries known as Cataclysmic Variable (CV) stars. We show that resonant tidal forcing of the donor’s Roche lobe could explain the observed 2‑3hr period gap in CVs, assuming modest orbital eccentricities are allowed (eb ∼ 0.03), and can be complementary or an alternative to, existing models. Sudden collapse of the companion orbit, yielding a Type Ia supernova is disfavoured, since Hydrogen is not observed in Type Ia supernova spectra. Therefore, resonance must generally be truncated, probably via mass loss from the Roche lobe or orbital perturbation, ultimately producing a short period CV containing an ’overheated’ white dwarf.
Testing the Binary Black Hole Nature of a Compact Binary Coalescence.
Krishnendu, N V; Arun, K G; Mishra, Chandra Kant
2017-09-01
We propose a novel method to test the binary black hole nature of compact binaries detectable by gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact objects. The spirit of the test lies in the "no-hair" conjecture for black holes where all properties of a Kerr black hole are characterized by its mass and spin. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.
Using binary statistics in Taurus-Auriga to distinguish between brown dwarf formation processes
NASA Astrophysics Data System (ADS)
Marks, M.; Martín, E. L.; Béjar, V. J. S.; Lodieu, N.; Kroupa, P.; Manjavacas, E.; Thies, I.; Rebolo López, R.; Velasco, S.
2017-08-01
Context. One of the key questions of the star formation problem is whether brown dwarfs (BDs) form in the manner of stars directly from the gravitational collapse of a molecular cloud core (star-like) or whether BDs and some very low-mass stars (VLMSs) constitute a separate population that forms alongside stars comparable to the population of planets, for example through circumstellar disk (peripheral) fragmentation. Aims: For young stars in Taurus-Auriga the binary fraction has been shown to be large with little dependence on primary mass above ≈ 0.2 M⊙, while for BDs the binary fraction is < 10%. Here we investigate a case in which BDs in Taurus formed dominantly, but not exclusively, through peripheral fragmentation, which naturally results in small binary fractions. The decline of the binary frequency in the transition region between star-like formation and peripheral formation is modelled. Methods: We employed a dynamical population synthesis model in which stellar binary formation is universal with a large binary fraction close to unity. Peripheral objects form separately in circumstellar disks with a distinctive initial mass function (IMF), their own orbital parameter distributions for binaries, and small binary fractions, according to observations and expectations from smoothed particle hydrodynamics (SPH) and grid-based computations. A small amount of dynamical processing of the stellar component was accounted for as appropriate for the low-density Taurus-Auriga embedded clusters. Results: The binary fraction declines strongly in the transition region between star-like and peripheral formation, exhibiting characteristic features. The location of these features and the steepness of this trend depend on the mass limits for star-like and peripheral formation. Such a trend might be unique to low density regions, such as Taurus, which host binary populations that are largely unprocessed dynamically in which the binary fraction is large for stars down to M-dwarfs and small for BDs. Conclusions: The existence of a strong decline in the binary fraction - primary mass diagram will become verifiable in future surveys on BD and VLMS binarity in the Taurus-Auriga star-forming region. The binary fraction - primary mass diagram is a diagnostic of the (non-)continuity of star formation along the mass scale, the separateness of the stellar and BD populations, and the dominant formation channel for BDs and BD binaries in regions of low stellar density hosting dynamically unprocessed populations.
ERIC Educational Resources Information Center
Metz, William
1983-01-01
Discusses the nature of and current research related to binary stars, indicating that the knowledge that most stars come in pairs is critical to the understanding of stellar phenomena. Subjects addressed include aberrant stellar behavior, x-ray binaries, lobes/disks, close binaries, planetary nebulas, and formation/evolution of binaries. (JN)
Absolute parameters and chemical composition of the binary star OU Gem
NASA Astrophysics Data System (ADS)
Glazunova, L. V.; Mishenina, T. V.; Soubiran, C.; Kovtyukh, V. V.
2014-10-01
The absolute parameters and chemical composition of the BY Dra-type spectroscopic binary OU Gem (HD 45088) were determined on the basis of 10 high-resolution spectra. A new orbital solution of the binary system was determined, the binary ephemerides were specified, and the main physical and atmospheric parameters of the binary components were obtained. The chemical composition of both components was estimated for the first time for the stars of such type.
Heber Binary Project. Binary Cycle Geothermal Demonstration Power Plant (RP1900-1)
NASA Astrophysics Data System (ADS)
Lacy, R. G.; Nelson, T. T.
1982-12-01
The Heber Binary Project (1) demonstrates the potential of moderate temperature (below 410 F) geothermal energy to produce economic electric power with binary cycle conversion technology; (2) allows the scaling up and evaluation of the performance of binary cycle technology in geothermal service; (3) establishes schedule, cost and equipment performance, reservoir performance, and the environmental acceptability of such plants; and (4) resolves uncertainties associated with the reservoir performance, plant operation, and economics.
Orbital synchronization capture of two binaries emitting gravitational waves
NASA Astrophysics Data System (ADS)
Seto, Naoki
2018-03-01
We study the possibility of orbital synchronization capture for a hierarchical quadrupole stellar system composed by two binaries emitting gravitational waves. Based on a simple model including the mass transfer for white dwarf binaries, we find that the capture might be realized for inter-binary distances less than their gravitational wavelength. We also discuss related intriguing phenomena such as a parasitic relation between the coupled white dwarf binaries and significant reductions of gravitational and electromagnetic radiations.
High statistical heterogeneity is more frequent in meta-analysis of continuous than binary outcomes.
Alba, Ana C; Alexander, Paul E; Chang, Joanne; MacIsaac, John; DeFry, Samantha; Guyatt, Gordon H
2016-02-01
We compared the distribution of heterogeneity in meta-analyses of binary and continuous outcomes. We searched citations in MEDLINE and Cochrane databases for meta-analyses of randomized trials published in 2012 that reported a measure of heterogeneity of either binary or continuous outcomes. Two reviewers independently performed eligibility screening and data abstraction. We evaluated the distribution of I(2) in meta-analyses of binary and continuous outcomes and explored hypotheses explaining the difference in distributions. After full-text screening, we selected 671 meta-analyses evaluating 557 binary and 352 continuous outcomes. Heterogeneity as assessed by I(2) proved higher in continuous than in binary outcomes: the proportion of continuous and binary outcomes reporting an I(2) of 0% was 34% vs. 52%, respectively, and reporting an I(2) of 60-100% was 39% vs. 14%. In continuous but not binary outcomes, I(2) increased with larger number of studies included in a meta-analysis. Increased precision and sample size do not explain the larger I(2) found in meta-analyses of continuous outcomes with a larger number of studies. Meta-analyses evaluating continuous outcomes showed substantially higher I(2) than meta-analyses of binary outcomes. Results suggest differing standards for interpreting I(2) in continuous vs. binary outcomes may be appropriate. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Dogan, Suzan
2016-07-01
Accretion discs are common in binary systems, and they are often found to be misaligned with respect to the binary orbit. The gravitational torque from a companion induces nodal precession in misaligned disc orbits. In this study, we first calculate whether this precession is strong enough to overcome the internal disc torques communicating angular momentum. We compare the disc precession torque with the disc viscous torque to determine whether the disc should warp or break. For typical parameters precession wins: the disc breaks into distinct planes that precess effectively independently. To check our analytical findings, we perform 3D hydrodynamical numerical simulations using the PHANTOM smoothed particle hydrodynamics code, and confirm that disc breaking is widespread and enhances accretion on to the central object. For some inclinations, the disc goes through strong Kozai cycles. Disc breaking promotes markedly enhanced and variable accretion and potentially produces high-energy particles or radiation through shocks. This would have significant implications for all binary systems: e.g. accretion outbursts in X-ray binaries and fuelling supermassive black hole (SMBH) binaries. The behaviour we have discussed in this work is relevant to a variety of astrophysical systems, for example X-ray binaries, where the disc plane may be tilted by radiation warping, SMBH binaries, where accretion of misaligned gas can create effectively random inclinations and protostellar binaries, where a disc may be misaligned by a variety of effects such as binary capture/exchange, accretion after binary formation.
The Impact of Binary Companions on Planetary Systems
NASA Astrophysics Data System (ADS)
Kraus, Adam L.; Ireland, Michael; Dupuy, Trent; Mann, Andrew; Huber, Daniel
2018-01-01
The majority of solar-type stars are found in binary systems, and the dynamical influence of binary companions is expected to profoundly influence planetary systems. However, the difficulty of identifying planets in binary systems has left the magnitude of this effect uncertain; despite numerous theoretical hurdles to their formation and survival, at least some binary systems clearly host planets. We present high-resolution imaging of nearly 500 Kepler Objects of Interest (KOIs) obtained using adaptive-optics imaging and nonredundant aperture-mask interferometry on the Keck II telescope. We super-resolve some binary systems to projected separations of under 5 AU, showing that planets might form in these dynamically active environments. However, the full distribution of projected separations for our planet-host sample more broadly reveals a deep paucity of binary companions at solar-system scales. Our results demonstrate that a fifth of all solar-type stars in the Milky Way are disallowed from hosting planetary systems due to the influence of a binary companion. We now update these results with multi-epoch imaging to reject non-comoving background stars and securely identify even the least massive stellar companions, as well as tracing out the orbital motion of stellar companions. These results are beginning to reveal not just the fraction of binaries that do not host planets, but also potential explanations for planet survival even in some very close, dynamically active binary systems.
The extreme Kuiper Belt binary 2001 QW322.
Petit, J-M; Kavelaars, J J; Gladman, B J; Margot, J L; Nicholson, P D; Jones, R L; Parker, J Wm; Ashby, M L N; Bagatin, A Campo; Benavidez, P; Coffey, J; Rousselot, P; Mousis, O; Taylor, P A
2008-10-17
The study of binary Kuiper Belt objects helps to probe the dynamic conditions present during planet formation in the solar system. We report on the mutual-orbit determination of 2001 QW322, a Kuiper Belt binary with a very large separation whose properties challenge binary-formation and -evolution theories. Six years of tracking indicate that the binary's mutual-orbit period is approximately 25 to 30 years, that the orbit pole is retrograde and inclined 50 degrees to 62 degrees from the ecliptic plane, and, most surprisingly, that the mutual orbital eccentricity is <0.4. The semimajor axis of 105,000 to 135,000 kilometers is 10 times that of other near-equal-mass binaries. Because this weakly bound binary is prone to orbital disruption by interlopers, its lifetime in its present state is probably less than 1 billion years.
The Solar-Type Hard-Binary Frequency and Distributions of Orbital Parameters in the Open Cluster M37
NASA Astrophysics Data System (ADS)
Geller, Aaron M.; Meibom, Soren; Barnes, Sydney A.; Mathieu, Robert D.
2014-02-01
Binary stars, and particularly the short-period ``hard'' binaries, govern the dynamical evolution of star clusters and determine the formation rates and mechanisms for exotic stars like blue stragglers and X-ray sources. Understanding the near-primordial hard-binary population of star clusters is of primary importance for dynamical models of star clusters, which have the potential to greatly advance our understanding of star cluster evolution. Yet the binary frequencies and distributions of binary orbital parameters (period, eccentricity, etc.) for young coeval stellar populations are poorly known, due to a lack of necessary observations. The young (~540 Myr) open cluster M37 hosts a rich binary population that can be used to empirically define these initial conditions. Importantly, this cluster has been the target of a comprehensive WIYN/Hydra radial-velocity (RV) survey, from which we have already identified a nearly complete sample of 329 solar-type (1.5 <=M [M_⊙] <=1.0) members in M37. Of these stars, 82 show significant RV variability, indicative of a binary companion. We propose to build upon these data with a multi-epoch RV survey using WIYN/Hydra to derive kinematic orbital solutions for these 82 binaries in M37. This project was granted time in 2013B and scheduled for later this year. We anticipate that about half of the detected binaries in M37 will acquire enough RV measurements (>=10) in 2013B to begin searching for orbital solutions. With this proposal and perhaps one additional semester we should achieve >=10 RV measurements for the remaining binaries.
Beyond the Binary: Dexterous Teaching and Knowing in Mathematics Education
ERIC Educational Resources Information Center
Adam, Raoul; Chigeza, Philemon
2015-01-01
This paper identifies binary oppositions in the discourse of mathematics education and introduces a binary-epistemic model for (re)conceptualising these oppositions and the epistemic-pedagogic problems they represent. The model is attentive to the contextual relationships between pedagogically relevant binaries (e.g., traditional/progressive,…
COMPARISON OF THERMAL EFFICIENCIES FOR A MERCURY-STEAM BINARY VAPOR CYCLE AND THE RANKINE CYCLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prem, L.L.
1961-05-19
A comparison of the thermal efficiencies of the mercurysteam binary vapor cycle and the Rankine cycle shows that the binary cycle efficiency is greater. A temperatureentropy diagram and a schematic layout of the binary cycle are presented for clarity. (N.W.R.)
Hayasaki, Kimitake; Loeb, Abraham
2016-10-21
Galaxy mergers produce supermassive black hole binaries, which emit gravitational waves prior to their coalescence. We perform three-dimensional hydrodynamic simulations to study the tidal disruption of stars by such a binary in the final centuries of its life. We find that the gas stream of the stellar debris moves chaotically in the binary potential and forms accretion disks around both black holes. The accretion light curve is modulated over the binary orbital period owing to relativistic beaming. This periodic signal allows to detect the decay of the binary orbit due to gravitational wave emission by observing two tidal disruption events that are separated by more than a decade.
NASA Astrophysics Data System (ADS)
Pal, Amrindra; Kumar, Santosh; Sharma, Sandeep
2017-05-01
Binary to octal and octal to binary code converter is a device that allows placing digital information from many inputs to many outputs. Any application of combinational logic circuit can be implemented by using external gates. In this paper, binary to octal and octal to binary code converter is proposed using electro-optic effect inside lithium-niobate based Mach-Zehnder interferometers (MZIs). The MZI structures have powerful capability to switching an optical input signal to a desired output port. The paper constitutes a mathematical description of the proposed device and thereafter simulation using MATLAB. The study is verified using beam propagation method (BPM).
Hayasaki, Kimitake; Loeb, Abraham
2016-01-01
Galaxy mergers produce supermassive black hole binaries, which emit gravitational waves prior to their coalescence. We perform three-dimensional hydrodynamic simulations to study the tidal disruption of stars by such a binary in the final centuries of its life. We find that the gas stream of the stellar debris moves chaotically in the binary potential and forms accretion disks around both black holes. The accretion light curve is modulated over the binary orbital period owing to relativistic beaming. This periodic signal allows to detect the decay of the binary orbit due to gravitational wave emission by observing two tidal disruption events that are separated by more than a decade. PMID:27767188
Binary Lenses in OGLE-III EWS Database. Seasons 2002-2003
NASA Astrophysics Data System (ADS)
Jaroszynski, M.; Udalski, A.; Kubiak, M.; Szymanski, M.; Pietrzynski, G.; Soszynski, I.; Zebrun, K.; Szewczyk, O.; Wyrzykowski, L.
2004-06-01
We present 15 binary lens candidates from OGLE-III Early Warning System database for seasons 2002-2003. We also found 15 events interpreted as single mass lensing of double sources. The candidates were selected by visual light curves inspection. Examining the models of binary lenses of this and our previous study (10 caustic crossing events of OGLE-II seasons 1997--1999) we find one case of extreme mass ratio binary (q approx 0.005) and the rest in the range 0.1
Binary optics: Trends and limitations
NASA Technical Reports Server (NTRS)
Farn, Michael W.; Veldkamp, Wilfrid B.
1993-01-01
We describe the current state of binary optics, addressing both the technology and the industry (i.e., marketplace). With respect to the technology, the two dominant aspects are optical design methods and fabrication capabilities, with the optical design problem being limited by human innovation in the search for new applications and the fabrication issue being limited by the availability of resources required to improve fabrication capabilities. With respect to the industry, the current marketplace does not favor binary optics as a separate product line and so we expect that companies whose primary purpose is the production of binary optics will not represent the bulk of binary optics production. Rather, binary optics' more natural role is as an enabling technology - a technology which will directly result in a competitive advantage in a company's other business areas - and so we expect that the majority of binary optics will be produced for internal use.
Trans*versing the DMZ: A Non-Binary Autoethnographic Exploration of Gender and Masculinity
ERIC Educational Resources Information Center
Stewart, Dafina-Lazarus
2017-01-01
Using an abductive, critical-poststructuralist autoethnographic approach, I consider the ways in which masculine of centre, non-binary/genderqueer trans* identities transverse the poles of socializing binary gender systems, structures, and norms which inform higher education. In this paper, I assert that non-binary genderqueer identities are…
Binary Arithmetic From Hariot (CA, 1600 A.D.) to the Computer Age.
ERIC Educational Resources Information Center
Glaser, Anton
This history of binary arithmetic begins with details of Thomas Hariot's contribution and includes specific references to Hariot's manuscripts kept at the British Museum. A binary code developed by Sir Francis Bacon is discussed. Briefly mentioned are contributions to binary arithmetic made by Leibniz, Fontenelle, Gauss, Euler, Benzout, Barlow,…
Kuchlyan, Jagannath; Banik, Debasis; Roy, Arpita; Kundu, Niloy; Sarkar, Nilmoni
2014-12-04
In this article we have investigated intermolecular excited-state proton transfer (ESPT) of firefly's chromophore D-luciferin in DMSO-water binary mixtures using steady-state and time-resolved fluorescence spectroscopy. The unusual behavior of DMSO-water binary mixture as reported by Bagchi et al. (J. Phys. Chem. B 2010, 114, 12875-12882) was also found using D-luciferin as intermolecular ESPT probe. The binary mixture has given evidence of its anomalous nature at low mole fractions of DMSO (below XD = 0.4) in our systematic investigation. Upon excitation of neutral D-luciferin molecule, dual fluorescence emissions (protonated and deprotonated form) are observed in DMSO-water binary mixture. A clear isoemissive point in the time-resolved area normalized emission spectra further indicates two emissive species in the excited state of D-luciferin in DMSO-water binary mixture. DMSO-water binary mixtures of different compositions are fascinating hydrogen bonding systems. Therefore, we have observed unusual changes in the fluorescence emission intensity, fluorescence quantum yield, and fluorescence lifetime of more hydrogen bonding sensitive anionic form of D-luciferin in low DMSO content of DMSO-water binary mixture.
SIM Lite Detection of Habitable Planets in P-Type Binary-Planetary Systems
NASA Technical Reports Server (NTRS)
Pan, Xiaopei; Shao, Michael; Shaklan, Stuart; Goullioud, Renaud
2010-01-01
Close binary stars like spectroscopic binaries create a completely different environment than single stars for the evolution of a protoplanetary disk. Dynamical interactions between one star and protoplanets in such systems provide more challenges for theorists to model giant planet migration and formation of multiple planets. For habitable planets the majority of host stars are in binary star systems. So far only a small amount of Jupiter-size planets have been discovered in binary stars, whose minimum separations are 20 AU and the median value is about 1000 AU (because of difficulties in radial velocity measurements). The SIM Lite mission, a space-based astrometric observatory, has a unique capability to detect habitable planets in binary star systems. This work analyzed responses of the optical system to the field stop for companion stars and demonstrated that SIM Lite can observe exoplanets in visual binaries with small angular separations. In particular we investigated the issues for the search for terrestrial planets in P-type binary-planetary systems, where the planets move around both stars in a relatively distant orbit.
Formation of wide binaries by turbulent fragmentation
NASA Astrophysics Data System (ADS)
Lee, Jeong-Eun; Lee, Seokho; Dunham, Michael M.; Tatematsu, Ken'ichi; Choi, Minho; Bergin, Edwin A.; Evans, Neal J.
2017-08-01
Understanding the formation of wide-binary systems of very low-mass stars (M ≤ 0.1 solar masses, M⊙) is challenging 1,2,3 . The most obvious route is through widely separated low-mass collapsing fragments produced by turbulent fragmentation of a molecular core4,5. However, close binaries or multiples from disk fragmentation can also evolve to wide binaries over a few initial crossing times of the stellar cluster through tidal evolution6. Finding an isolated low-mass wide-binary system in the earliest stage of formation, before tidal evolution could occur, would prove that turbulent fragmentation is a viable mechanism for (very) low-mass wide binaries. Here we report high-resolution ALMA observations of a known wide-separation protostellar binary, showing that each component has a circumstellar disk. The system is too young7 to have evolved from a close binary, and the disk axes are misaligned, providing strong support for the turbulent fragmentation model. Masses of both stars are derived from the Keplerian rotation of the disks; both are very low-mass stars.
Terrestrial Planet Formation in Binary Star Systems
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; Quintana, Elisa V.; Chambers, John; Duncan, Martin J.; Adams, Fred
2003-01-01
Most stars reside in multiple star systems; however, virtually all models of planetary growth have assumed an isolated single star. Numerical simulations of the collapse of molecular cloud cores to form binary stars suggest that disks will form within such systems. Observations indirectly suggest disk material around one or both components within young binary star systems. If planets form at the right places within such circumstellar disks, they can remain in stable orbits within the binary star systems for eons. We are simulating the late stages of growth of terrestrial planets within binary star systems, using a new, ultrafast, symplectic integrator that we have developed for this purpose. We show that the late stages of terrestrial planet formation can indeed take place in a wide variety of binary systems and we have begun to delineate the range of parameter space for which this statement is true. Results of our initial simulations of planetary growth around each star in the alpha Centauri system and other 'wide' binary systems, as well as around both stars in very close binary systems, will be presented.
Binary Star Fractions from the LAMOST DR4
NASA Astrophysics Data System (ADS)
Tian, Zhi-Jia; Liu, Xiao-Wei; Yuan, Hai-Bo; Chen, Bing-Qiu; Xiang, Mao-Sheng; Huang, Yang; Wang, Chun; Zhang, Hua-Wei; Guo, Jin-Cheng; Ren, Juan-Juan; Huo, Zhi-Ying; Yang, Yong; Zhang, Meng; Bi, Shao-Lan; Yang, Wu-Ming; Liu, Kang; Zhang, Xian-Fei; Li, Tan-Da; Wu, Ya-Qian; Zhang, Jing-Hua
2018-05-01
Stellar systems composed of single, double, triple or higher-order systems are rightfully regarded as the fundamental building blocks of the Milky Way. Binary stars play an important role in formation and evolution of the Galaxy. Through comparing the radial velocity variations from multi-epoch observations, we analyze the binary fraction of dwarf stars observed with LAMOST. Effects of different model assumptions, such as orbital period distributions on the estimate of binary fractions, are investigated. The results based on log-normal distribution of orbital periods reproduce the previous complete analyses better than the power-law distribution. We find that the binary fraction increases with T eff and decreases with [Fe/H]. We first investigate the relation between α-elements and binary fraction in such a large sample as provided by LAMOST. The old stars with high [α/Fe] dominate with a higher binary fraction than young stars with low [α/Fe]. At the same mass, earlier forming stars possess a higher binary fraction than newly forming ones, which may be related with evolution of the Galaxy.
Reduction from cost-sensitive ordinal ranking to weighted binary classification.
Lin, Hsuan-Tien; Li, Ling
2012-05-01
We present a reduction framework from ordinal ranking to binary classification. The framework consists of three steps: extracting extended examples from the original examples, learning a binary classifier on the extended examples with any binary classification algorithm, and constructing a ranker from the binary classifier. Based on the framework, we show that a weighted 0/1 loss of the binary classifier upper-bounds the mislabeling cost of the ranker, both error-wise and regret-wise. Our framework allows not only the design of good ordinal ranking algorithms based on well-tuned binary classification approaches, but also the derivation of new generalization bounds for ordinal ranking from known bounds for binary classification. In addition, our framework unifies many existing ordinal ranking algorithms, such as perceptron ranking and support vector ordinal regression. When compared empirically on benchmark data sets, some of our newly designed algorithms enjoy advantages in terms of both training speed and generalization performance over existing algorithms. In addition, the newly designed algorithms lead to better cost-sensitive ordinal ranking performance, as well as improved listwise ranking performance.
Three-body affairs in the outer solar system
NASA Astrophysics Data System (ADS)
Funato, Yoko; Makino, Junichiro; Hut, Piet; Kokubo, Eiichiro; Kinoshita, Daisuke
Recent observations have revealed an unexpectedly high binary fraction among the Trans-Neptunian Objects (TNOs) that populate the Kuiper Belt. The TNO binaries are strikingly different from asteroid binaries in four respects: their frequency is an order of magnitude larger, the mass ratio of their components is closer to unity, and their orbits are wider and highly eccentric. Two explanations have been proposed for their formation, one assuming large numbers of massive bodies, and one assuming large numbers of light bodies. We argue that both assumptions are unwarranted, and we show how TNO binaries can be produced from a modest number of intermediate-mass bodies of the type predicted by the gravitational instability theory for the formation of planetesimals. We start with a TNO binary population similar to the asteroid binary population, but subsequently modified by three-body exchange reactions, a process that is far more efficient in the Kuiper belt, because of the much smaller tidal perturbations by the Sun. Our mechanism can naturally account for all four characteristics that distinguish TNO binaries from main-belt asteroid binaries.
Embedding intensity image into a binary hologram with strong noise resistant capability
NASA Astrophysics Data System (ADS)
Zhuang, Zhaoyong; Jiao, Shuming; Zou, Wenbin; Li, Xia
2017-11-01
A digital hologram can be employed as a host image for image watermarking applications to protect information security. Past research demonstrates that a gray level intensity image can be embedded into a binary Fresnel hologram by error diffusion method or bit truncation coding method. However, the fidelity of the retrieved watermark image from binary hologram is generally not satisfactory, especially when the binary hologram is contaminated with noise. To address this problem, we propose a JPEG-BCH encoding method in this paper. First, we employ the JPEG standard to compress the intensity image into a binary bit stream. Next, we encode the binary bit stream with BCH code to obtain error correction capability. Finally, the JPEG-BCH code is embedded into the binary hologram. By this way, the intensity image can be retrieved with high fidelity by a BCH-JPEG decoder even if the binary hologram suffers from serious noise contamination. Numerical simulation results show that the image quality of retrieved intensity image with our proposed method is superior to the state-of-the-art work reported.
Dynamical Formation and Merger of Binary Black Holes
NASA Astrophysics Data System (ADS)
Stone, Nicholas
2017-01-01
The advent of gravitational wave (GW) astronomy began with Advanced LIGO's 2015 discovery of GWs from coalescing black hole (BH) binaries. GW astronomy holds great promise for testing general relativity, but also for investigating open astrophysical questions not amenable to traditional electromagnetic observations. One such question concerns the origin of stellar mass BH binaries in the universe: do these form primarily from evolution of isolated binaries of massive stars, or do they form through more exotic dynamical channels? The best studied dynamical formation channel involves multibody interactions of BHs and stars in dense globular cluster environments, but many other dynamical scenarios have recently been proposed, ranging from the Kozai effect in hierarchical triple systems to BH binary formation in the outskirts of Toomre-unstable accretion disks surrounding supermassive black holes. The BH binaries formed through these processes will have different distributions of observable parameters (e.g. mass ratios, spins) than BH binaries formed through the evolution of isolated binary stars. In my talk I will overview these and other dynamical formation scenarios, and summarize the key observational tests that will enable Advanced LIGO or other future detectors to determine what formation pathway creates the majority of binary BHs in the universe. NCS thanks NASA, which has funded his work through Einstein postdoctoral grant PF5-160145.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conroy, Kyle E.; Stassun, Keivan G.; Prša, Andrej
2014-02-01
We present a catalog of precise eclipse times and analysis of third-body signals among 1279 close binaries in the latest Kepler Eclipsing Binary Catalog. For these short-period binaries, Kepler's 30 minute exposure time causes significant smearing of light curves. In addition, common astrophysical phenomena such as chromospheric activity, as well as imperfections in the light curve detrending process, can create systematic artifacts that may produce fictitious signals in the eclipse timings. We present a method to measure precise eclipse times in the presence of distorted light curves, such as in contact and near-contact binaries which exhibit continuously changing light levelsmore » in and out of eclipse. We identify 236 systems for which we find a timing variation signal compatible with the presence of a third body. These are modeled for the light travel time effect and the basic properties of the third body are derived. This study complements J. A. Orosz et al. (in preparation), which focuses on eclipse timing variations of longer period binaries with flat out-of-eclipse regions. Together, these two papers provide comprehensive eclipse timings for all binaries in the Kepler Eclipsing Binary Catalog, as an ongoing resource freely accessible online to the community.« less
"I would have preferred more options": accounting for non-binary youth in health research.
Frohard-Dourlent, Hélène; Dobson, Sarah; Clark, Beth A; Doull, Marion; Saewyc, Elizabeth M
2017-01-01
As a research team focused on vulnerable youth, we increasingly need to find ways to acknowledge non-binary genders in health research. Youth have become more vocal about expanding notions of gender beyond traditional categories of boy/man and girl/woman. Integrating non-binary identities into established research processes is a complex undertaking in a culture that often assumes gender is a binary variable. In this article, we present the challenges at every stage of the research process and questions we have asked ourselves to consider non-binary genders in our work. As researchers, how do we interrogate the assumptions that have made non-binary lives invisible? What challenges arise when attempting to transform research practices to incorporate non-binary genders? Why is it crucial that researchers consider these questions at each step of the research process? We draw on our own research experiences to highlight points of tensions and possibilities for change. Improving access to inclusive health-care for non-binary people, and non-binary youth in particular, is part of creating a more equitable healthcare system. We argue that increased and improved access to inclusive health-care can be supported by research that acknowledges and includes people of all genders. © 2016 John Wiley & Sons Ltd.
Bondi-Hoyle-Lyttleton Accretion onto Binaries
NASA Astrophysics Data System (ADS)
Antoni, Andrea; MacLeod, Morgan; Ramírez-Ruiz, Enrico
2018-01-01
Binary stars are not rare. While only close binary stars will eventually interact with one another, even the widest binary systems interact with their gaseous surroundings. The rates of accretion and the gaseous drag forces arising in these interactions are the key to understanding how these systems evolve. This poster examines accretion flows around a binary system moving supersonically through a background gas. We perform three-dimensional hydrodynamic simulations of Bondi-Hoyle-Lyttleton accretion using the adaptive mesh refinement code FLASH. We simulate a range of values of semi-major axis of the orbit relative to the gravitational focusing impact parameter of the pair. On large scales, gas is gravitationally focused by the center-of-mass of the binary, leading to dynamical friction drag and to the accretion of mass and momentum. On smaller scales, the orbital motion imprints itself on the gas. Notably, the magnitude and direction of the forces acting on the binary inherit this orbital dependence. The long-term evolution of the binary is determined by the timescales for accretion, slow down of the center-of-mass, and decay of the orbit. We use our simulations to measure these timescales and to establish a hierarchy between them. In general, our simulations indicate that binaries moving through gaseous media will slow down before the orbit decays.
The fate of close encounters between binary stars and binary supermassive black holes
NASA Astrophysics Data System (ADS)
Wang, Yi-Han; Leigh, Nathan; Yuan, Ye-Fei; Perna, Rosalba
2018-04-01
The evolution of main-sequence binaries that reside in the Galactic Centre can be heavily influenced by the central supermassive black hole (SMBH). Due to these perturbative effects, the stellar binaries in dense environments are likely to experience mergers, collisions, or ejections through secular and/or non-secular interactions. More direct interactions with the central SMBH are thought to produce hypervelocity stars (HVSs) and tidal disruption events (TDEs). In this paper, we use N-body simulations to study the dynamics of stellar binaries orbiting a central SMBH primary with an outer SMBH secondary orbiting this inner triple. The effects of the secondary SMBH on the event rates of HVSs, TDEs, and stellar mergers are investigated, as a function of the SMBH-SMBH binary mass ratio. Our numerical experiments reveal that, relative to the isolated SMBH case, the TDE and HVS rates are enhanced for, respectively, the smallest and largest mass ratio SMBH-SMBH binaries. This suggests that the observed event rates of TDEs and HVSs have the potential to serve as a diagnostic of the mass ratio of a central SMBH-SMBH binary. The presence of a secondary SMBH also allows for the creation of hypervelocity binaries. Observations of these systems could thus constrain the presence of a secondary SMBH in the Galactic Centre.
Measuring the Number of M Dwarfs per M Dwarf Using Kepler Eclipsing Binaries
NASA Astrophysics Data System (ADS)
Shan, Yutong; Johnson, John A.; Morton, Timothy D.
2015-11-01
We measure the binarity of detached M dwarfs in the Kepler field with orbital periods in the range of 1-90 days. Kepler’s photometric precision and nearly continuous monitoring of stellar targets over time baselines ranging from 3 months to 4 years make its detection efficiency for eclipsing binaries nearly complete over this period range and for all radius ratios. Our investigation employs a statistical framework akin to that used for inferring planetary occurrence rates from planetary transits. The obvious simplification is that eclipsing binaries have a vastly improved detection efficiency that is limited chiefly by their geometric probabilities to eclipse. For the M-dwarf sample observed by the Kepler Mission, the fractional incidence of eclipsing binaries implies that there are {0.11}-0.04+0.02 close stellar companions per apparently single M dwarf. Our measured binarity is higher than previous inferences of the occurrence rate of close binaries via radial velocity techniques, at roughly the 2σ level. This study represents the first use of eclipsing binary detections from a high quality transiting planet mission to infer binary statistics. Application of this statistical framework to the eclipsing binaries discovered by future transit surveys will establish better constraints on short-period M+M binary rate, as well as binarity measurements for stars of other spectral types.
The incidence of stellar mergers and mass gainers among massive stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Mink, S. E.; Sana, H.; Langer, N.
2014-02-10
Because the majority of massive stars are born as members of close binary systems, populations of massive main-sequence stars contain stellar mergers and products of binary mass transfer. We simulate populations of massive stars accounting for all major binary evolution effects based on the most recent binary parameter statistics and extensively evaluate the effect of model uncertainties. Assuming constant star formation, we find that 8{sub −4}{sup +9}% of a sample of early-type stars are the products of a merger resulting from a close binary system. In total we find that 30{sub −15}{sup +10}% of massive main-sequence stars are the productsmore » of binary interaction. We show that the commonly adopted approach to minimize the effects of binaries on an observed sample by excluding systems detected as binaries through radial velocity campaigns can be counterproductive. Systems with significant radial velocity variations are mostly pre-interaction systems. Excluding them substantially enhances the relative incidence of mergers and binary products in the non-radial velocity variable sample. This poses a challenge for testing single stellar evolutionary models. It also raises the question of whether certain peculiar classes of stars, such as magnetic O stars, are the result of binary interaction and it emphasizes the need to further study the effect of binarity on the diagnostics that are used to derive the fundamental properties (star-formation history, initial mass function, mass-to-light ratio) of stellar populations nearby and at high redshift.« less
Black hole binaries dynamically formed in globular clusters
NASA Astrophysics Data System (ADS)
Park, Dawoo; Kim, Chunglee; Lee, Hyung Mok; Bae, Yeong-Bok; Belczynski, Krzysztof
2017-08-01
We investigate properties of black hole (BH) binaries formed in globular clusters via dynamical processes, using directN-body simulations. We pay attention to effects of BH mass function on the total mass and mass ratio distributions of BH binaries ejected from clusters. First, we consider BH populations with two different masses in order to learn basic differences from models with single-mass BHs only. Secondly, we consider continuous BH mass functions adapted from recent studies on massive star evolution in a low metallicity environment, where globular clusters are formed. In this work, we consider only binaries that are formed by three-body processes and ignore stellar evolution and primordial binaries for simplicity. Our results imply that most BH binary mergers take place after they get ejected from the cluster. Also, mass ratios of dynamically formed binaries should be close to 1 or likely to be less than 2:1. Since the binary formation efficiency is larger for higher-mass BHs, it is likely that a BH mass function sampled by gravitational-wave observations would be weighed towards higher masses than the mass function of single BHs for a dynamically formed population. Applying conservative assumptions regarding globular cluster populations such as small BH mass fraction and no primordial binaries, the merger rate of BH binaries originated from globular clusters is estimated to be at least 6.5 yr-1 Gpc-3. Actual rate can be up to more than several times of our conservative estimate.
Neutron-star–black-hole binaries produced by binary-driven hypernovae
Fryer, Chris L.; Oliveira, F. G.; Rueda, Jorge A.; ...
2015-12-04
Here, binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (E iso ≳10 52 erg), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed “ultrastripped” binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differentlymore » than compact binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs.« less
Neutron-Star-Black-Hole Binaries Produced by Binary-Driven Hypernovae.
Fryer, Chris L; Oliveira, F G; Rueda, J A; Ruffini, R
2015-12-04
Binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (E_{iso}≳10^{52} erg), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed "ultrastripped" binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differently than compact binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs.
APPLICATION OF GAS DYNAMICAL FRICTION FOR PLANETESIMALS. II. EVOLUTION OF BINARY PLANETESIMALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grishin, Evgeni; Perets, Hagai B.
2016-04-01
One of the first stages of planet formation is the growth of small planetesimals and their accumulation into large planetesimals and planetary embryos. This early stage occurs long before the dispersal of most of the gas from the protoplanetary disk. At this stage gas–planetesimal interactions play a key role in the dynamical evolution of single intermediate-mass planetesimals (m{sub p} ∼ 10{sup 21}–10{sup 25} g) through gas dynamical friction (GDF). A significant fraction of all solar system planetesimals (asteroids and Kuiper-belt objects) are known to be binary planetesimals (BPs). Here, we explore the effects of GDF on the evolution of BPs embedded inmore » a gaseous disk using an N-body code with a fiducial external force accounting for GDF. We find that GDF can induce binary mergers on timescales shorter than the disk lifetime for masses above m{sub p} ≳ 10{sup 22} g at 1 au, independent of the binary initial separation and eccentricity. Such mergers can affect the structure of merger-formed planetesimals, and the GDF-induced binary inspiral can play a role in the evolution of the planetesimal disk. In addition, binaries on eccentric orbits around the star may evolve in the supersonic regime, where the torque reverses and the binary expands, which would enhance the cross section for planetesimal encounters with the binary. Highly inclined binaries with small mass ratios, evolve due to the combined effects of Kozai–Lidov (KL) cycles with GDF which lead to chaotic evolution. Prograde binaries go through semi-regular KL evolution, while retrograde binaries frequently flip their inclination and ∼50% of them are destroyed.« less
Binary toxin and its clinical importance in Clostridium difficile infection, Belgium.
Pilate, T; Verhaegen, J; Van Ranst, M; Saegeman, V
2016-11-01
Binary toxin-producing Clostridium difficile strains such as ribotypes 027 and 078 have been associated with increased Clostridium difficile infection (CDI) severity. Our objective was to investigate the association between presence of the binary toxin gene and CDI severity and recurrence. We performed a laboratory-based retrospective study including patients between January 2013 and March 2015 whose fecal samples were analyzed by polymerase chain reaction (PCR) for the presence of the genes for toxin B and binary toxin and a deletion in the tcdC gene, specific for ribotype 027. Clinical and epidemiological characteristics were compared between 33 binary toxin-positive CDI patients and 33 binary toxin-negative CDI patients. Subsequently, the characteristics of 66 CDI patients were compared to those of 66 diarrhea patients who were carriers of non-toxigenic C. difficile strains. Fifty-nine of 1034 (5.7 %) fecal samples analyzed by PCR were binary toxin-positive, belonging to 33 different patients. No samples were positive for ribotype 027. Binary toxin-positive CDI patients did not differ from binary toxin-negative CDI patients in terms of disease recurrence, morbidity, or mortality, except for a higher peripheral leukocytosis in the binary toxin-positive group (16.30 × 10 9 /L vs. 11.65 × 10 9 /L; p = 0.02). The second part of our study showed that CDI patients had more severe disease, but not a higher 30-day mortality rate than diarrhea patients with a non-toxicogenic C. difficile strain. In our setting with a low prevalence of ribotype 027, the presence of the binary toxin gene is not associated with poor outcome.
BINARY ASTROMETRIC MICROLENSING WITH GAIA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sajadian, Sedighe, E-mail: sajadian@ipm.ir; Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran
2015-04-15
We investigate whether or not Gaia can specify the binary fractions of massive stellar populations in the Galactic disk through astrometric microlensing. Furthermore, we study whether or not some information about their mass distributions can be inferred via this method. In this regard, we simulate the binary astrometric microlensing events due to massive stellar populations according to the Gaia observing strategy by considering (i) stellar-mass black holes, (ii) neutron stars, (iii) white dwarfs, and (iv) main-sequence stars as microlenses. The Gaia efficiency for detecting the binary signatures in binary astrometric microlensing events is ∼10%–20%. By calculating the optical depth duemore » to the mentioned stellar populations, the numbers of the binary astrometric microlensing events being observed with Gaia with detectable binary signatures, for the binary fraction of about 0.1, are estimated to be 6, 11, 77, and 1316, respectively. Consequently, Gaia can potentially specify the binary fractions of these massive stellar populations. However, the binary fraction of black holes measured with this method has a large uncertainty owing to a low number of the estimated events. Knowing the binary fractions in massive stellar populations helps with studying the gravitational waves. Moreover, we investigate the number of massive microlenses for which Gaia specifies masses through astrometric microlensing of single lenses toward the Galactic bulge. The resulting efficiencies of measuring the mass of mentioned populations are 9.8%, 2.9%, 1.2%, and 0.8%, respectively. The numbers of their astrometric microlensing events being observed in the Gaia era in which the lens mass can be inferred with the relative error less than 0.5 toward the Galactic bulge are estimated as 45, 34, 76, and 786, respectively. Hence, Gaia potentially gives us some information about the mass distribution of these massive stellar populations.« less
NASA Astrophysics Data System (ADS)
Jiang, Dengkai; Chen, Xuefei; Li, Lifang; Han, Zhanwen
2017-11-01
Two blue-straggler sequences discovered in globular cluster M30 provide a strong constraint on the formation mechanisms of blue stragglers. We study the formation of blue-straggler binaries through binary evolution, and find that binary evolution can contribute to the blue stragglers in both of the sequences. Whether a blue-straggler is located in the blue sequence or red sequence depends on the contribution of the mass donor to the total luminosity of the binary, which is generally observed as a single star in globular clusters. The blue stragglers in the blue sequence have a cool white dwarf companion, while the majority (˜60%) of the objects in the red sequence are binaries that are still experiencing mass transfer. However, there are also some objects for which the donors have just finished the mass transfer (the stripped-core stars, ˜10%) or the blue stragglers (the accretors) have evolved away from the blue sequence (˜30%). Meanwhile, W UMa contact binaries found in both sequences may be explained by various mass ratios, that is, W UMa contact binaries in the red sequence have two components with comparable masses (e.g., mass ratio q ˜ 0.3-1.0), while those in the blue sequence have low mass ratios (e.g., q< 0.3). However, the fraction of the blue sequence in M30 cannot be reproduced by binary population synthesis if we assumed the initial parameters of a binary sample to be the same as those of the field. This possibly indicates that dynamical effects on binary systems are very important in globular clusters.
High-resolution spectroscopy of extremely metal-poor stars from SDSS/Segue. II. Binary fraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoki, Wako; Suda, Takuma; Beers, Timothy C.
2015-02-01
The fraction of binary systems in various stellar populations of the Galaxy and the distribution of their orbital parameters are important but not well-determined factors in studies of star formation, stellar evolution, and Galactic chemical evolution. While observational studies have been carried out for a large sample of nearby stars, including some metal-poor Population II stars, almost no constraints on the binary nature for extremely metal-poor (EMP; [Fe/H] <−3.0) stars have yet been obtained. Here we investigate the fraction of double-lined spectroscopic binaries and carbon-enhanced metal-poor (CEMP) stars, many of which could have formed as pairs of low-mass and intermediate-massmore » stars, to estimate the lower limit of the fraction of binary systems having short periods. The estimate is based on a sample of very metal-poor stars selected from the Sloan Digital Sky Survey and observed at high spectral resolution in a previous study by Aoki et al. That survey reported 3 double-lined spectroscopic binaries and 11 CEMP stars, which we consider along with a sample of EMP stars from the literature compiled in the SAGA database. We have conducted measurements of the velocity components for stacked absorption features of different spectral lines for each double-lined spectroscopic binary. Our estimate indicates that the fraction of binary stars having orbital periods shorter than 1000 days is at least 10%, and possibly as high as 20% if the majority of CEMP stars are formed in such short-period binaries. This result suggests that the period distribution of EMP binary systems is biased toward short periods, unless the binary fraction of low-mass EMP stars is significantly higher than that of other nearby stars.« less
Neutron-Star-Black-Hole Binaries Produced by Binary-Driven Hypernovae
NASA Astrophysics Data System (ADS)
Fryer, Chris L.; Oliveira, F. G.; Rueda, J. A.; Ruffini, R.
2015-12-01
Binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (Eiso≳1052 erg ), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed "ultrastripped" binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differently than compact binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs.
Contact binaries in the Trans-neptunian Belt
NASA Astrophysics Data System (ADS)
Thirouin, Audrey; Sheppard, Scott S.
2017-10-01
A contact binary is made up of two objects that are almost touching or in contact with each other. These systems have been found in the Near-Earth Object population, the main belt of asteroids, the Jupiter Trojans, the comet population and even in the Trans-neptunian belt.Several studies suggest that up to 30% of the Trans-Neptunian Objects (TNOs) could be contact binaries (Sheppard & Jewitt 2004, Lacerda 2011). Contact binaries are not resolvable with the Hubble Space Telescope because of the small separation between the system's components (Noll et al. 2008). Only lightcurves with a characteristic V-/U-shape at the minimum/maximum of brightness and a large amplitude can identify these contact binaries. Despite an expected high fraction of contact binaries, 2001 QG298 is the only confirmed contact binary in the Trans-Neptunian belt, and 2003 SQ317 is a candidate to this class of systems (Sheppard & Jewitt 2004, Lacerda et al. 2014).Recently, using the Lowell’s 4.3m Discovery Channel Telescope and the 6.5m Magellan Telescope, we started a search for contact binaries at the edge of our Solar System. So far, our survey focused on about 40 objects in different dynamical groups of the Trans-Neptunian belt for sparse or complete lightcurves. We report the discovery of 5 new potential contact binaries converting the current estimate of potential/confirmed contact binaries to 7 objects. With one epoch of observations per object, we are not able to model in detail the systems, but we derive estimate for basic information such as shape, size, density of both objects as well as the separation between the system’s components. In this work, we will present these new systems, their basic characteristics, and we will discuss the potential main reservoir of contact binaries in the Trans-neptunian belt.
New shape models of asteroids reconstructed from sparse-in-time photometry
NASA Astrophysics Data System (ADS)
Durech, Josef; Hanus, Josef; Vanco, Radim; Oszkiewicz, Dagmara Anna
2015-08-01
Asteroid physical parameters - the shape, the sidereal rotation period, and the spin axis orientation - can be reconstructed from the disk-integrated photometry either dense (classical lightcurves) or sparse in time by the lightcurve inversion method. We will review our recent progress in asteroid shape reconstruction from sparse photometry. The problem of finding a unique solution of the inverse problem is time consuming because the sidereal rotation period has to be found by scanning a wide interval of possible periods. This can be efficiently solved by splitting the period parameter space into small parts that are sent to computers of volunteers and processed in parallel. We will show how this approach of distributed computing works with currently available sparse photometry processed in the framework of project Asteroids@home. In particular, we will show the results based on the Lowell Photometric Database. The method produce reliable asteroid models with very low rate of false solutions and the pipelines and codes can be directly used also to other sources of sparse photometry - Gaia data, for example. We will present the distribution of spin axis of hundreds of asteroids, discuss the dependence of the spin obliquity on the size of an asteroid,and show examples of spin-axis distribution in asteroid families that confirm the Yarkovsky/YORP evolution scenario.
The Hoffmeister asteroid family
NASA Astrophysics Data System (ADS)
Carruba, V.; Novaković, B.; Aljbaae, S.
2017-03-01
The Hoffmeister family is a C-type group located in the central main belt. Dynamically, it is important because of its interaction with the ν1C nodal secular resonance with Ceres, which significantly increases the dispersion in inclination of family members at a lower semimajor axis. As an effect, the distribution of inclination values of the Hoffmeister family at a semimajor axis lower than its centre is significantly leptokurtic, and this can be used to set constraints on the terminal ejection velocity field of the family at the time it was produced. By performing an analysis of the time behaviour of the kurtosis of the vW component of the ejection velocity field [γ2(vW)], as obtained from Gauss' equations, for different fictitious Hoffmeister families with different values of the ejection velocity field, we were able to exclude that the Hoffmeister family should be older than 335 Myr. Constraints from the currently observed inclination distribution of the Hoffmeister family suggest that its terminal ejection velocity parameter VEJ should be lower than 25 m s-1. Results of a Yarko-YORP Monte Carlo method to family dating, combined with other constraints from inclinations and γ2(vW), indicate that the Hoffmeister family should be 220^{+60}_{-40} Myr old, with an ejection parameter VEJ = 20 ± 5 m s-1.
Latitudinal Spectral Variations on Asteroid 101955 Bennu
NASA Astrophysics Data System (ADS)
Binzel, Richard P.; DeMeo, F.
2013-10-01
Asteroid 101955 Bennu (1999 RQ36) is the sample return target for the OSIRIS-REx mission. From multiple observations at different aspect angles, we detect a slight but deemed reliable spectral slope difference between the polar and equatorial regions of Bennu. We explore whether these may be compositional or grain-size effects. Surface variations may be a consequence of polar-to-equatorial migration of regolith as modeled by Walsh et al. (2008; Nature 454, 188) as a consequence of spin-up induced by the YORP (Yarkovsky-O’Keefe-Radzievskii-Paddack) thermal effect. Our results are based on near-infrared spectral measurements of 101955 Bennu obtained on May 2, 2012 UT using the 6.5m Baade Telescope at the Magellan Observatory in Las Campanas, Chile. Additional Magellan 6.5m observations were obtained in July 2011. At Magellan, we utilized the FIRE (Folded-port InfraRed Echellette) spectrograph (Simcoe et al. 2010; Proc. SPIE 7735) over the wavelength range 0.8- to 2.3-microns. We compare these new Magellan data with previous results (Clark et al. 2011; Icarus 216, 462) where asteroid Bennu was measured in September 2005 using the NASA IRTF 3-m using the SpeX instrument (Rayner et al. 2003, PASP 115, 362) over a similar wavelength range.
IS THE LARGE CRATER ON THE ASTEROID (2867) STEINS REALLY AN IMPACT CRATER?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, A. J. W.; Price, M. C.; Burchell, M. J., E-mail: m.j.burchell@kent.ac.uk
The large crater on the asteroid (2867) Steins attracted much attention when it was first observed by the Rosetta spacecraft in 2008. Initially, it was widely thought to be unusually large compared to the size of the asteroid. It was quickly realized that this was not the case and there are other examples of similar (or larger) craters on small bodies in the same size range; however, it is still widely accepted that it is a crater arising from an impact onto the body which occurred after its formation. The asteroid (2867) Steins also has an equatorial bulge, usually consideredmore » to have arisen from redistribution of mass due to spin-up of the body caused by the YORP effect. Conversely, it is shown here that, based on catastrophic disruption experiments in laboratory impact studies, a similarly shaped body to the asteroid Steins can arise from the break-up of a parent in a catastrophic disruption event; this includes the presence of a large crater-like feature and equatorial bulge. This suggests that the large crater-like feature on Steins may not be a crater from a subsequent impact, but may have arisen directly from the fragmentation process of a larger, catastrophically disrupted parent.« less
MARVELS Radial Velocity Solutions to Seven Kepler Eclipsing Binaries
NASA Astrophysics Data System (ADS)
Heslar, Michael Francis; Thomas, Neil B.; Ge, Jian; Ma, Bo; Herczeg, Alec; Reyes, Alan; SDSS-III MARVELS Team
2016-01-01
Eclipsing binaries serve momentous purposes to improve the basis of understanding aspects of stellar astrophysics, such as the accurate calculation of the physical parameters of stars and the enigmatic mass-radius relationship of M and K dwarfs. We report the investigation results of 7 eclipsing binary candidates, initially identified by the Kepler mission, overlapped with the radial velocity observations from the SDSS-III Multi-Object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS). The RV extractions and spectroscopic solutions of these eclipsing binaries were generated by the University of Florida's 1D data pipeline with a median RV precision of ~60-100 m/s, which was utilized for the DR12 data release. We performed the cross-reference fitting of the MARVELS RV data and the Kepler photometric fluxes obtained from the Kepler Eclipsing Binary Catalog (V2) and modelled the 7 eclipsing binaries in the BinaryMaker3 and PHOEBE programs. This analysis accurately determined the absolute physical and orbital parameters of each binary. Most of the companion stars were determined to have masses of K and M dwarf stars (0.3-0.8 M⊙), and allowed for an investigation into the mass-radius relationship of M and K dwarfs. Among the cases are KIC 9163796, a 122.2 day period "heartbeat star", a recently-discovered class of eccentric binaries known for tidal distortions and pulsations, with a high eccentricity (e~0.75) and KIC 11244501, a 0.29 day period, contact binary with a double-lined spectrum and mass ratio (q~0.45). We also report on the possible reclassification of 2 Kepler eclipsing binary candidates as background eclipsing binaries based on the analysis of the flux measurements, flux ratios of the spectroscopic and photometric solutions, the differences in the FOVs, the image processing of Kepler, and RV and spectral analysis of MARVELS.
NASA Astrophysics Data System (ADS)
Bluhm, P.; Jones, M. I.; Vanzi, L.; Soto, M. G.; Vos, J.; Wittenmyer, R. A.; Drass, H.; Jenkins, J. S.; Olivares, F.; Mennickent, R. E.; Vučković, M.; Rojo, P.; Melo, C. H. F.
2016-10-01
We report the discovery of 24 spectroscopic binary companions to giant stars. We fully constrain the orbital solution for 6 of these systems. We cannot unambiguously derive the orbital elements for the remaining stars because the phase coverage is incomplete. Of these stars, 6 present radial velocity trends that are compatible with long-period brown dwarf companions. The orbital solutions of the 24 binary systems indicate that these giant binary systems have a wide range in orbital periods, eccentricities, and companion masses. For the binaries with restricted orbital solutions, we find a range of orbital periods of between ~97-1600 days and eccentricities of between ~0.1-0.4. In addition, we studied the metallicity distribution of single and binary giant stars. We computed the metallicity of a total of 395 evolved stars, 59 of wich are in binary systems. We find a flat distribution for these binary stars and therefore conclude that stellar binary systems, and potentially brown dwarfs, have a different formation mechanism than planets. This result is confirmed by recent works showing that extrasolar planets orbiting giants are more frequent around metal-rich stars. Finally, we investigate the eccentricity as a function of the orbital period. We analyzed a total of 130 spectroscopic binaries, including those presented here and systems from the literature. We find that most of the binary stars with periods ≲30 days have circular orbits, while at longer orbital periods we observe a wide spread in their eccentricities. Based on observations collected at La Silla - Paranal Observatory under programs IDs IDs 085.C-0557, 087.C.0476, 089.C-0524, 090.C-0345, 096.A-9020 and through the Chilean Telescope Time under programs IDs CN2012A-73, CN2012B-47, CN2013A-111, CN2013B-51, CN2014A-52 and CN2015A-48.
Wijaya, Sony Hartono; Afendi, Farit Mochamad; Batubara, Irmanida; Darusman, Latifah K; Altaf-Ul-Amin, Md; Kanaya, Shigehiko
2016-12-07
The binary similarity and dissimilarity measures have critical roles in the processing of data consisting of binary vectors in various fields including bioinformatics and chemometrics. These metrics express the similarity and dissimilarity values between two binary vectors in terms of the positive matches, absence mismatches or negative matches. To our knowledge, there is no published work presenting a systematic way of finding an appropriate equation to measure binary similarity that performs well for certain data type or application. A proper method to select a suitable binary similarity or dissimilarity measure is needed to obtain better classification results. In this study, we proposed a novel approach to select binary similarity and dissimilarity measures. We collected 79 binary similarity and dissimilarity equations by extensive literature search and implemented those equations as an R package called bmeasures. We applied these metrics to quantify the similarity and dissimilarity between herbal medicine formulas belonging to the Indonesian Jamu and Japanese Kampo separately. We assessed the capability of binary equations to classify herbal medicine pairs into match and mismatch efficacies based on their similarity or dissimilarity coefficients using the Receiver Operating Characteristic (ROC) curve analysis. According to the area under the ROC curve results, we found Indonesian Jamu and Japanese Kampo datasets obtained different ranking of binary similarity and dissimilarity measures. Out of all the equations, the Forbes-2 similarity and the Variant of Correlation similarity measures are recommended for studying the relationship between Jamu formulas and Kampo formulas, respectively. The selection of binary similarity and dissimilarity measures for multivariate analysis is data dependent. The proposed method can be used to find the most suitable binary similarity and dissimilarity equation wisely for a particular data. Our finding suggests that all four types of matching quantities in the Operational Taxonomic Unit (OTU) table are important to calculate the similarity and dissimilarity coefficients between herbal medicine formulas. Also, the binary similarity and dissimilarity measures that include the negative match quantity d achieve better capability to separate herbal medicine pairs compared to equations that exclude d.
Habitability in Binary Systems: The Role of UV Reduction and Magnetic Protection
NASA Astrophysics Data System (ADS)
Clark, Joni; Mason, P. A.; Zuluaga, J. I.; Cuartas, P. A.; Bustamonte, S.
2013-06-01
The number of planets found in binary systems is growing rapidly and the discovery of many more planets in binary systems appears inevitable. We use the newly refined and more restrictive, single star habitable zone (HZ) models of Kopparapu et al. (2013) and include planetary magnetic protection calculations in order to investigate binary star habitability. Here we present results on circumstellar or S-type planets, which are planets orbiting a single star member of a binary. P-type planets, on the other hand, orbit the center of mass of the binary. Stable planetary orbits exist in HZs for both types of binaries as long as the semi-major axis of the planet is either greater than (P-type) or less than (S-type) a few times the semi-major axis of the binary. We define two types of S-type binaries for this investigation. The SA-type is a circumstellar planet orbiting the binary’s primary star. In this case, the limits of habitability are dominated by the primary being only slightly affected by the presence of the lower mass companion. Thus, the SA-type planets have habitability characteristics, including magnetic protection, similar to single stars of the same type. The SB-type is a circumstellar planet orbiting the secondary star in a wide binary. An SB-type planet needs to orbit slightly outside the secondary’s single star HZ and remain within the primary’s single star HZ at all times. We explore the parameter space for which this is possible. We have found that planets lying in the combined HZ of SB binaries can be magnetically protected against the effects of stellar winds from both primary and secondary stars in a limited number of cases. We conclude that habitable conditions exist for a subset of SA-type, and a smaller subset of SB-type binaries. However, circumbinary planets (P-types) provide the most intriguing possibilities for the existence of complex life due to the effect of synchronization of binaries with periods in the 20-30 day range which allows for planets with significant magnetic protection.
Formation and Evolution of X-ray Binaries
NASA Astrophysics Data System (ADS)
Fragkos, Anastasios
X-ray binaries - mass-transferring binary stellar systems with compact object accretors - are unique astrophysical laboratories. They carry information about many complex physical processes such as star formation, compact object formation, and evolution of interacting binaries. My thesis work involves the study of the formation and evolution of Galactic and extra-galacticX-ray binaries using both detailed and realistic simulation tools, and population synthesis techniques. I applied an innovative analysis method that allows the reconstruction of the full evolutionary history of known black hole X-ray binaries back to the time of compact object formation. This analysis takes into account all the available observationally determined properties of a system, and models in detail four of its evolutionary evolutionary phases: mass transfer through the ongoing X-ray phase, tidal evolution before the onset of Roche-lobe overflow, motion through the Galactic potential after the formation of the black hole, and binary orbital dynamics at the time of core collapse. Motivated by deep extra-galactic Chandra survey observations, I worked on population synthesis models of low-mass X-ray binaries in the two elliptical galaxies NGC3379 and NGC4278. These simulations were targeted at understanding the origin of the shape and normalization of the observed X-ray luminosity functions. In a follow up study, I proposed a physically motivated prescription for the modeling of transient neutron star low-mass X-ray binary properties, such as duty cycle, outburst duration and recurrence time. This prescription enabled the direct comparison of transient low-mass X-ray binary population synthesis models to the Chandra X-ray survey of the two ellipticals NGC3379 and NGC4278. Finally, I worked on population synthesismodels of black holeX-ray binaries in the MilkyWay. This work was motivated by recent developments in observational techniques for the measurement of black hole spin magnitudes in black hole X-ray binaries. The accuracy of these techniques depend on misalignment of the black hole spin with respect to the orbital angular momentum. In black hole X-ray binaries, this misalignment can occur during the supernova explosion that forms the compact object. In this study, I presented population synthesis models of Galactic black hole X-ray binaries, and examined the distribution of misalignment angles, and its dependence on the model parameters.
NASA Astrophysics Data System (ADS)
Rodriguez, Carl L.; Chatterjee, Sourav; Rasio, Frederic A.
2016-04-01
The recent discovery of GW150914, the binary black hole merger detected by Advanced LIGO, has the potential to revolutionize observational astrophysics. But to fully utilize this new window into the Universe, we must compare these new observations to detailed models of binary black hole formation throughout cosmic time. Expanding upon our previous work [C. L. Rodriguez, M. Morscher, B. Pattabiraman, S. Chatterjee, C.-J. Haster, and F. A. Rasio, Phys. Rev. Lett. 115, 051101 (2015).], we study merging binary black holes formed in globular clusters using our Monte Carlo approach to stellar dynamics. We have created a new set of 52 cluster models with different masses, metallicities, and radii to fully characterize the binary black hole merger rate. These models include all the relevant dynamical processes (such as two-body relaxation, strong encounters, and three-body binary formation) and agree well with detailed direct N -body simulations. In addition, we have enhanced our stellar evolution algorithms with updated metallicity-dependent stellar wind and supernova prescriptions, allowing us to compare our results directly to the most recent population synthesis predictions for merger rates from isolated binary evolution. We explore the relationship between a cluster's global properties and the population of binary black holes that it produces. In particular, we derive a numerically calibrated relationship between the merger times of ejected black hole binaries and a cluster's mass and radius. With our improved treatment of stellar evolution, we find that globular clusters can produce a significant population of massive black hole binaries that merge in the local Universe. We explore the masses and mass ratios of these binaries as a function of redshift, and find a merger rate of ˜5 Gpc-3yr-1 in the local Universe, with 80% of sources having total masses from 32 M⊙ to 64 M⊙. Under standard assumptions, approximately one out of every seven binary black hole mergers in the local Universe will have originated in a globular cluster, but we also explore the sensitivity of this result to different assumptions for binary stellar evolution. If black holes were born with significant natal kicks, comparable to those of neutron stars, then the merger rate of binary black holes from globular clusters would be comparable to that from the field, with approximately 1 /2 of mergers originating in clusters. Finally we point out that population synthesis results for the field may also be modified by dynamical interactions of binaries taking place in dense star clusters which, unlike globular clusters, dissolved before the present day.
The first eclipsing binary catalogue from the MOA-II data base
NASA Astrophysics Data System (ADS)
Li, M. C. A.; Rattenbury, N. J.; Bond, I. A.; Sumi, T.; Bennett, D. P.; Koshimoto, N.; Abe, F.; Asakura, Y.; Barry, R.; Bhattacharya, A.; Donachie, M.; Evans, P.; Freeman, M.; Fukui, A.; Hirao, Y.; Itow, Y.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Nagakane, M.; Ohnishi, K.; Saito, To.; Sharan, A.; Sullivan, D. J.; Suzuki, D.; Tristram, P. J.; Yonehara, A.
2017-09-01
We present the first catalogue of eclipsing binaries in two MOA (Microlensing Observations in Astrophysics) fields towards the Galactic bulge, in which over 8000 candidates, mostly contact and semidetached binaries of periods <1 d, were identified. In this paper, the light curves of a small number of interesting candidates, including eccentric binaries, binaries with noteworthy phase modulations and eclipsing RS Canum Venaticorum type stars, are shown as examples. In addition, we identified three triple object candidates by detecting the light-travel-time effect in their eclipse time variation curves.
Control of broadband optically generated ultrasound pulses using binary amplitude holograms.
Brown, Michael D; Jaros, Jiri; Cox, Ben T; Treeby, Bradley E
2016-04-01
In this work, the use of binary amplitude holography is investigated as a mechanism to focus broadband acoustic pulses generated by high peak-power pulsed lasers. Two algorithms are described for the calculation of the binary holograms; one using ray-tracing, and one using an optimization based on direct binary search. It is shown using numerical simulations that when a binary amplitude hologram is excited by a train of laser pulses at its design frequency, the acoustic field can be focused at a pre-determined distribution of points, including single and multiple focal points, and line and square foci. The numerical results are validated by acoustic field measurements from binary amplitude holograms, excited by a high peak-power laser.
Formation of the first three gravitational-wave observations through isolated binary evolution
Stevenson, Simon; Vigna-Gómez, Alejandro; Mandel, Ilya; Barrett, Jim W.; Neijssel, Coenraad J.; Perkins, David; de Mink, Selma E.
2017-01-01
During its first four months of taking data, Advanced LIGO has detected gravitational waves from two binary black hole mergers, GW150914 and GW151226, along with the statistically less significant binary black hole merger candidate LVT151012. Here we use the rapid binary population synthesis code COMPAS to show that all three events can be explained by a single evolutionary channel—classical isolated binary evolution via mass transfer including a common envelope phase. We show all three events could have formed in low-metallicity environments (Z=0.001) from progenitor binaries with typical total masses ≳160M⊙, ≳60M⊙ and ≳90M⊙, for GW150914, GW151226 and LVT151012, respectively. PMID:28378739
Spectral properties of binary asteroids
NASA Astrophysics Data System (ADS)
Pajuelo, Myriam; Birlan, Mirel; Carry, Benoît; DeMeo, Francesca E.; Binzel, Richard P.; Berthier, Jérôme
2018-04-01
We present the first attempt to characterize the distribution of taxonomic class among the population of binary asteroids (15% of all small asteroids). For that, an analysis of 0.8-2.5{μ m} near-infrared spectra obtained with the SpeX instrument on the NASA/IRTF is presented. Taxonomic class and meteorite analog is determined for each target, increasing the sample of binary asteroids with known taxonomy by 21%. Most binary systems are bound in the S-, X-, and C- classes, followed by Q and V-types. The rate of binary systems in each taxonomic class agrees within uncertainty with the background population of small near-Earth objects and inner main belt asteroids, but for the C-types which are under-represented among binaries.
Accretion dynamics in pre-main sequence binaries
NASA Astrophysics Data System (ADS)
Tofflemire, B.; Mathieu, R.; Herczeg, G.; Ardila, D.; Akeson, R.; Ciardi, D.; Johns-Krull, C.
Binary stars are a common outcome of star formation. Orbital resonances, especially in short-period systems, are capable of reshaping the distribution and flows of circumstellar material. Simulations of the binary-disk interaction predict a dynamically cleared gap around the central binary, accompanied by periodic ``pulsed'' accretion events that are driven by orbital motion. To place observational constraints on the binary-disk interaction, we have conducted a long-term monitoring program tracing the time-variable accretion behavior of 9 short-period binaries. In this proceeding we present two results from our campaign: 1) the detection of periodic pulsed accretion events in DQ Tau and TWA 3A, and 2) evidence that the TWA 3A primary is the dominant accretor in the system.
Berry, C E; Davies, K A; Owens, D W; Wilcox, M H
2017-12-01
Some strains of Clostridium difficile produce a binary toxin, in addition to the main C. difficile virulence factors (toxins A and B). There have been conflicting reports regarding the role of binary toxin and its relationship to the severity of C. difficile infection (CDI). Samples, isolates and clinical data were collected as part of a prospective multicentre diagnostic study. Clostridium difficile isolates (n = 1259) were tested by polymerase chain reaction (PCR) assay to detect binary toxin genes cdtA and cdtB. The PCR binary toxin gene results were compared with clinical severity and outcome data, including 30-day all-cause mortality. The 1259 isolates corresponded to 1083 different patients (October 2010 to September 2011). The prevalence of binary toxin positive strains was significantly higher in faecal samples with detectable toxin A/B than in those without toxin but that were positive by cytotoxigenic culture (26.3% vs. 10.3%, p < 0.001). The presence of binary toxin correlated moderately with markers of CDI severity (white cell count, serum albumin concentration and serum creatinine concentration). However, the risk ratio for all-cause mortality was 1.68 for binary toxin positive patients and patients were significantly less likely to survive if they had CDI caused by a binary toxin gene positive strain, even after adjusting for age (p < 0.001). The presence of binary toxin genes does not predict the clinical severity of CDI, but it is significantly associated with the risk of all-cause mortality.
Theoretical studies of binaries in astrophysics
NASA Astrophysics Data System (ADS)
Dischler, Johann Sebastian
This thesis introduces and summarizes four papers dealing with computer simulations of astrophysical processes involving binaries. The first part gives the rational and theoretical background to these papers. In paper I and II a statistical approach to studying eclipsing binaries is described. By using population synthesis models for binaries the probabilities for eclipses are calculated for different luminosity classes of binaries. These are compared with Hipparcos data and they agree well if one uses a standard input distribution for the orbit sizes. If one uses a random pairing model, where both companions are independently picked from an IMF, one finds too feclipsing binaries by an order of magnitude. In paper III we investigate a possible scenario for the origin of the stars observed close to the centre of our galaxy, called S stars. We propose that a cluster falls radially cowards the central black hole. The binaries within the cluster can then, if they have small impact parameters, be broken up by the black hole's tidal held and one of the components of the binary will be captured by the black hole. Paper IV investigates how the onset of mass transfer in eccentric binaries depends on the eccentricity. To do this we have developed a new two-phase SPH scheme where very light particles are at tire outer edge of our simulated star. This enables us to get a much better resolution of the very small mass that is transferred in close binaries. Our simulations show that the minimum required distance between the stars to have mass transfer decreases with the eccentricity.
Embedded binaries and their dense cores
NASA Astrophysics Data System (ADS)
Sadavoy, Sarah I.; Stahler, Steven W.
2017-08-01
We explore the relationship between young, embedded binaries and their parent cores, using observations within the Perseus Molecular Cloud. We combine recently published Very Large Array observations of young stars with core properties obtained from Submillimetre Common-User Bolometer Array 2 observations at 850 μm. Most embedded binary systems are found towards the centres of their parent cores, although several systems have components closer to the core edge. Wide binaries, defined as those systems with physical separations greater than 500 au, show a tendency to be aligned with the long axes of their parent cores, whereas tight binaries show no preferred orientation. We test a number of simple, evolutionary models to account for the observed populations of Class 0 and I sources, both single and binary. In the model that best explains the observations, all stars form initially as wide binaries. These binaries either break up into separate stars or else shrink into tighter orbits. Under the assumption that both stars remain embedded following binary break-up, we find a total star formation rate of 168 Myr-1. Alternatively, one star may be ejected from the dense core due to binary break-up. This latter assumption results in a star formation rate of 247 Myr-1. Both production rates are in satisfactory agreement with current estimates from other studies of Perseus. Future observations should be able to distinguish between these two possibilities. If our model continues to provide a good fit to other star-forming regions, then the mass fraction of dense cores that becomes stars is double what is currently believed.
NASA Astrophysics Data System (ADS)
Gong, Yan-Xiang; Ji, Jianghui
2018-05-01
Although several S-type and P-type planets in binary systems were discovered in past years, S-type planets have not yet been found in close binaries with an orbital separation not more than 5 au. Recent studies suggest that S-type planets in close binaries may be detected through high-accuracy observations. However, nowadays planet formation theories imply that it is difficult for S-type planets in close binaries systems to form in situ. In this work, we extensively perform numerical simulations to explore scenarios of planet-planet scattering among circumbinary planets and subsequent tidal capture in various binary configurations, to examine whether the mechanism can play a part in producing such kind of planets. Our results show that this mechanism is robust. The maximum capture probability is ˜10%, which can be comparable to the tidal capture probability of hot Jupiters in single star systems. The capture probability is related to binary configurations, where a smaller eccentricity or a low mass ratio of the binary will lead to a larger probability of capture, and vice versa. Furthermore, we find that S-type planets with retrograde orbits can be naturally produced via capture process. These planets on retrograde orbits can help us distinguish in situ formation and post-capture origin for S-type planet in close binaries systems. The forthcoming missions (PLATO) will provide the opportunity and feasibility to detect such planets. Our work provides several suggestions for selecting target binaries in search for S-type planets in the near future.
Learning Discriminative Binary Codes for Large-scale Cross-modal Retrieval.
Xu, Xing; Shen, Fumin; Yang, Yang; Shen, Heng Tao; Li, Xuelong
2017-05-01
Hashing based methods have attracted considerable attention for efficient cross-modal retrieval on large-scale multimedia data. The core problem of cross-modal hashing is how to learn compact binary codes that construct the underlying correlations between heterogeneous features from different modalities. A majority of recent approaches aim at learning hash functions to preserve the pairwise similarities defined by given class labels. However, these methods fail to explicitly explore the discriminative property of class labels during hash function learning. In addition, they usually discard the discrete constraints imposed on the to-be-learned binary codes, and compromise to solve a relaxed problem with quantization to obtain the approximate binary solution. Therefore, the binary codes generated by these methods are suboptimal and less discriminative to different classes. To overcome these drawbacks, we propose a novel cross-modal hashing method, termed discrete cross-modal hashing (DCH), which directly learns discriminative binary codes while retaining the discrete constraints. Specifically, DCH learns modality-specific hash functions for generating unified binary codes, and these binary codes are viewed as representative features for discriminative classification with class labels. An effective discrete optimization algorithm is developed for DCH to jointly learn the modality-specific hash function and the unified binary codes. Extensive experiments on three benchmark data sets highlight the superiority of DCH under various cross-modal scenarios and show its state-of-the-art performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevenson, Simon; Ohme, Frank; Fairhurst, Stephen, E-mail: simon.stevenson@ligo.org
2015-09-01
The coalescence of compact binaries containing neutron stars or black holes is one of the most promising signals for advanced ground-based laser interferometer gravitational-wave (GW) detectors, with the first direct detections expected over the next few years. The rate of binary coalescences and the distribution of component masses is highly uncertain, and population synthesis models predict a wide range of plausible values. Poorly constrained parameters in population synthesis models correspond to poorly understood astrophysics at various stages in the evolution of massive binary stars, the progenitors of binary neutron star and binary black hole systems. These include effects such asmore » supernova kick velocities, parameters governing the energetics of common envelope evolution and the strength of stellar winds. Observing multiple binary black hole systems through GWs will allow us to infer details of the astrophysical mechanisms that lead to their formation. Here we simulate GW observations from a series of population synthesis models including the effects of known selection biases, measurement errors and cosmology. We compare the predictions arising from different models and show that we will be able to distinguish between them with observations (or the lack of them) from the early runs of the advanced LIGO and Virgo detectors. This will allow us to narrow down the large parameter space for binary evolution models.« less
Mass transfer in white dwarf-neutron star binaries
NASA Astrophysics Data System (ADS)
Bobrick, Alexey; Davies, Melvyn B.; Church, Ross P.
2017-05-01
We perform hydrodynamic simulations of mass transfer in binaries that contain a white dwarf and a neutron star (WD-NS binaries), and measure the specific angular momentum of material lost from the binary in disc winds. By incorporating our results within a long-term evolution model, we measure the long-term stability of mass transfer in these binaries. We find that only binaries containing helium white dwarfs (WDs) with masses less than a critical mass of MWD, crit = 0.2 M⊙ undergo stable mass transfer and evolve into ultracompact X-ray binaries. Systems with higher mass WDs experience unstable mass transfer, which leads to tidal disruption of the WD. Our low critical mass compared to the standard jet-only model of mass-loss arises from the efficient removal of angular momentum in the mechanical disc winds, which develop at highly super-Eddington mass-transfer rates. We find that the eccentricities expected for WD-NS binaries when they come into contact do not affect the loss of angular momentum, and can only affect the long-term evolution if they change on shorter time-scales than the mass-transfer rate. Our results are broadly consistent with the observed numbers of both ultracompact X-ray binaries and radio pulsars with WD companions. The observed calcium-rich gap transients are consistent with the merger rate of unstable systems with higher mass WDs.
Binary statistics among population II stars
NASA Astrophysics Data System (ADS)
Zinnecker, H.; Köhler, R.; Jahreiß, H.
2004-08-01
Population II stars are old, metal-poor, Galactic halo stars with high proper motion. We have carried out a visual binary survey of 164 halo stars in the solar neighborhood (median distance 100 pc), using infrared speckle interferometry, adaptive optics, and wide field direct imaging. The sample is based on the lists of Population II stars of Carney et al. (1994) and Norris (1986), with reliable distances from HIPPARCOS measurements. At face value, we found 33 binaries, 6 triples, and 1 quadruple system. When we limit ourselves to K-band flux ratios larger than 0.1 (to avoid background contamination), the numbers drop to 9 binaries and 1 triple, corresponding to a binary frequency of 6 - 7 % above our angular resolution limit of about 0.1 arcsec. If we count all systems with K-band flux ratios greater than 0.01, we obtain 15 more binaries and 3 more triples, corresponding to a binary frequency for projected separations in excess of 10 AU of around 20 %. This is to be compared with the frequency of spectroscopic binaries (up to a period of 3000 days) of Population II stars of about 15 % (Latham et al. 2002). We also determined a semi-major axis distribution for our visual Population II binary and triple systems, which appears to be remarkably different from that of Population I stars. Second epoch-observations must help confirm the reality of our results.
1994-04-01
a variation of Ziv - Lempel compression [ZL77]. We found that using a standard compression algorithm rather than semantic compression allowed simplified...mentation. In Proceedings of the Conference on Programming Language Design and Implementation, 1993. (ZL77] J. Ziv and A. Lempel . A universal algorithm ...required by adaptable binaries. Our ABS stores adaptable binary information using the conventional binary symbol table and compresses this data using
2006-01-01
neutron stars and black holes properties of condensed matter Post CE Binaries V471 Tau (K2 V + wd) Symbiotic Binaries (M III + wd) X-ray Binaries CH...low-mass stars the respect they deserve, since these stars may be the dominant contributor to baryonic mass in the Universe. Ben Lane discussed recent
Searching for Compact Binary Mergers with Advanced LIGO
NASA Astrophysics Data System (ADS)
Nitz, Alexander` Harvey
2017-06-01
Several binary black hole mergers were discovered during Advanced LIGOs first observing run, and LIGO is currently well into its second observing run. We will discuss the state of the art in searching for merger signals in LIGO data, and how this will aid in the detection of binary neutron star, neutron-star black hole, and binary black hole mergers.
Deep Hashing for Scalable Image Search.
Lu, Jiwen; Liong, Venice Erin; Zhou, Jie
2017-05-01
In this paper, we propose a new deep hashing (DH) approach to learn compact binary codes for scalable image search. Unlike most existing binary codes learning methods, which usually seek a single linear projection to map each sample into a binary feature vector, we develop a deep neural network to seek multiple hierarchical non-linear transformations to learn these binary codes, so that the non-linear relationship of samples can be well exploited. Our model is learned under three constraints at the top layer of the developed deep network: 1) the loss between the compact real-valued code and the learned binary vector is minimized, 2) the binary codes distribute evenly on each bit, and 3) different bits are as independent as possible. To further improve the discriminative power of the learned binary codes, we extend DH into supervised DH (SDH) and multi-label SDH by including a discriminative term into the objective function of DH, which simultaneously maximizes the inter-class variations and minimizes the intra-class variations of the learned binary codes with the single-label and multi-label settings, respectively. Extensive experimental results on eight widely used image search data sets show that our proposed methods achieve very competitive results with the state-of-the-arts.
A deep survey of the X-ray binary populations in the SMC
NASA Astrophysics Data System (ADS)
Zezas, A.; Antoniou, V.
2017-10-01
The Small Magellanic Cloud (SMC) has been the subject of systematic X-ray surveys over the past two decades, which have yielded a rich population of high-mass X-ray binaries consisting predominantly of Be/X-ray binaries. We present results from our deep Chandra survey of the SMC which targeted regions with stellar populations ranging between ˜10-100 Myr. X-ray luminosities down to ˜3×10^{32} erg/s were reached, probing all active accreting binaries and extending well into the regime of quiescent accreting binaries and X-ray emitting normal stars. We measure the dependence of the formation efficiency of X-ray binaries on age. We also detect pulsations from 19 known and one new candidate pulsar. We construct the X-ray luminosity function in different regions of the SMC, which shows clear evidence for the propeller effect the centrifugal inhibition of accretion due to the interaction of the accretion flow with the pulsar's magnetic field. Finally we compare these results with predictions for the formation efficiency of X-ray binaries as a function of age from X-ray binary population synthesis models.
SuperWASP J015100.23-100524.2: A SPOTTED SHALLOW-CONTACT BINARY BELOW THE PERIOD LIMIT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, S. B.; Zhang, B.; He, J. J.
2015-10-15
SuperWASP J015100.23-100524.2 (hereafter J015100) is an eclipsing binary with an orbital period of 0.d2145 that is below the short-period limit of contact binary stars. Complete light curves of J015100 in B, V, R, and I bands are presented and are analyzed with the Wilson–Devinney method. It has been discovered that J015100 is a shallow-contact binary (f = 14.6(±2.7)%) with a mass ratio of 3.128. It is a W-type contact binary where the less massive component is about 130 K hotter than the more massive one. The asymmetries of light curves are explained as one dark spot on the more massivemore » component. The detection of J015100 as a contact binary below the period limit suggests that contact binaries below this limit are not rapidly destroyed. This shallow-contact system may be formed from a detached short-period binary similar to DV Psc (Sp. = K4/K5; P = 0.d30855) via orbital shrinkage due to angular momentum loss through magnetic stellar wind.« less
Wind-accelerated orbital evolution in binary systems with giant stars
NASA Astrophysics Data System (ADS)
Chen, Zhuo; Blackman, Eric G.; Nordhaus, Jason; Frank, Adam; Carroll-Nellenback, Jonathan
2018-01-01
Using 3D radiation-hydrodynamic simulations and analytic theory, we study the orbital evolution of asymptotic giant branch (AGB) binary systems for various initial orbital separations and mass ratios, and thus different initial accretion modes. The time evolution of binary separations and orbital periods are calculated directly from the averaged mass-loss rate, accretion rate and angular momentum loss rate. We separately consider spin-orbit synchronized and zero-spin AGB cases. We find that the angular momentum carried away by the mass loss together with the mass transfer can effectively shrink the orbit when accretion occurs via wind-Roche lobe overflow. In contrast, the larger fraction of mass lost in Bondi-Hoyle-Lyttleton accreting systems acts to enlarge the orbit. Synchronized binaries tend to experience stronger orbital period decay in close binaries. We also find that orbital period decay is faster when we account for the non-linear evolution of the accretion mode as the binary starts to tighten. This can increase the fraction of binaries that result in common envelope, luminous red novae, Type Ia supernovae and planetary nebulae with tight central binaries. The results also imply that planets in the habitable zone around white dwarfs are unlikely to be found.
Spin Evolution of Stellar Progenitors in Compact Binaries
NASA Astrophysics Data System (ADS)
Steinle, Nathan; Kesden, Michael
2018-01-01
Understanding the effects of various processes on the spins of stellar progenitors in compact binary systems is important for modeling the binary’s evolution and thus for interpreting the gravitational radiation emitted during inspiral and merger. Tides, winds, and natal kicks can drastically modify the binary parameters: tidal interactions increase the spin magnitudes, align the spins with the orbital angular momentum, and circularize the orbit; stellar winds decrease the spin magnitudes and cause mass loss; and natal kicks can misalign the spins and orbital angular momentum or even disrupt the binary. Also, during Roche lobe overflow, the binary may experience either stable mass transfer or common envelope evolution. The former can lead to a mass ratio reversal and alter the component spins, while the latter can dramatically shrink the binary separation. For a wide range of physically reasonable stellar-evolution scenarios, we compare the timescales of these processes to assess their relative contributions in determining the initial spins of compact binary systems.
Li, Zhirong; Liu, Xiaolei; Zhao, Jianhong; Xu, Kaiyue; Tian, Tiantian; Yang, Jing; Qiang, Cuixin; Shi, Dongyan; Wei, Honglian; Sun, Suju; Cui, Qingqing; Li, Ruxin; Niu, Yanan; Huang, Bixing
2018-04-01
Clostridium difficile is the causative pathogen for antibiotic-related nosocomial diarrhea. For epidemiological study and identification of virulent clones, a new binary typing method was developed for C. difficile in this study. The usefulness of this newly developed optimized 10-loci binary typing method was compared with two widely used methods ribotyping and multilocus sequence typing (MLST) in 189 C. difficile samples. The binary typing, ribotyping and MLST typed the samples into 53 binary types (BTs), 26 ribotypes (RTs), and 33 MLST sequence types (STs), respectively. The typing ability of the binary method was better than that of either ribotyping or MLST expressed in Simpson Index (SI) at 0.937, 0.892 and 0.859, respectively. The ease of testing, portability and cost-effectiveness of the new binary typing would make it a useful typing alternative for outbreak investigations within healthcare facilities and epidemiological research. Copyright © 2018 Elsevier B.V. All rights reserved.
ILLUMINATING BLACK HOLE BINARY FORMATION CHANNELS WITH SPINS IN ADVANCED LIGO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Carl L.; Zevin, Michael; Pankow, Chris
The recent detections of the binary black hole mergers GW150914 and GW151226 have inaugurated the field of gravitational-wave astronomy. For the two main formation channels that have been proposed for these sources, isolated binary evolution in galactic fields and dynamical formation in dense star clusters, the predicted masses and merger rates overlap significantly, complicating any astrophysical claims that rely on measured masses alone. Here, we examine the distribution of spin–orbit misalignments expected for binaries from the field and from dense star clusters. Under standard assumptions for black hole natal kicks, we find that black hole binaries similar to GW150914 couldmore » be formed with significant spin–orbit misalignment only through dynamical processes. In particular, these heavy-black hole binaries can only form with a significant spin–orbit anti -alignment in the dynamical channel. Our results suggest that future detections of merging black hole binaries with measurable spins will allow us to identify the main formation channel for these systems.« less
Linear chirp phase perturbing approach for finding binary phased codes
NASA Astrophysics Data System (ADS)
Li, Bing C.
2017-05-01
Binary phased codes have many applications in communication and radar systems. These applications require binary phased codes to have low sidelobes in order to reduce interferences and false detection. Barker codes are the ones that satisfy these requirements and they have lowest maximum sidelobes. However, Barker codes have very limited code lengths (equal or less than 13) while many applications including low probability of intercept radar, and spread spectrum communication, require much higher code lengths. The conventional techniques of finding binary phased codes in literatures include exhaust search, neural network, and evolutionary methods, and they all require very expensive computation for large code lengths. Therefore these techniques are limited to find binary phased codes with small code lengths (less than 100). In this paper, by analyzing Barker code, linear chirp, and P3 phases, we propose a new approach to find binary codes. Experiments show that the proposed method is able to find long low sidelobe binary phased codes (code length >500) with reasonable computational cost.
Dual-sensitivity profilometry with defocused projection of binary fringes.
Garnica, G; Padilla, M; Servin, M
2017-10-01
A dual-sensitivity profilometry technique based on defocused projection of binary fringes is presented. Here, two sets of fringe patterns with a sinusoidal profile are produced by applying the same analog low-pass filter (projector defocusing) to binary fringes with a high- and low-frequency spatial carrier. The high-frequency fringes have a binary square-wave profile, while the low-frequency binary fringes are produced with error-diffusion dithering. The binary nature of the binary fringes removes the need for calibration of the projector's nonlinear gamma. Working with high-frequency carrier fringes, we obtain a high-quality wrapped phase. On the other hand, working with low-frequency carrier fringes we found a lower-quality, nonwrapped phase map. The nonwrapped estimation is used as stepping stone for dual-sensitivity temporal phase unwrapping, extending the applicability of the technique to discontinuous (piecewise continuous) surfaces. We are proposing a single defocusing level for faster high- and low-frequency fringe data acquisition. The proposed technique is validated with experimental results.
Searching for Unresolved Binary Brown Dwarfs
NASA Astrophysics Data System (ADS)
Albretsen, Jacob; Stephens, Denise
2007-10-01
There are currently L and T brown dwarfs (BDs) with errors in their classification of +/- 1 to 2 spectra types. Metallicity and gravitational differences have accounted for some of these discrepancies, and recent studies have shown unresolved binary BDs may offer some explanation as well. However limitations in technology and resources often make it difficult to clearly resolve an object that may be binary in nature. Stephens and Noll (2006) identified statistically strong binary source candidates from Hubble Space Telescope (HST) images of Trans-Neptunian Objects (TNOs) that were apparently unresolved using model point-spread functions for single and binary sources. The HST archive contains numerous observations of BDs using the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) that have never been rigorously analyzed for binary properties. Using methods developed by Stephens and Noll (2006), BD observations from the HST data archive are being analyzed for possible unresolved binaries. Preliminary results will be presented. This technique will identify potential candidates for future observations to determine orbital information.
Chen, Han; Wang, Chaolong; Conomos, Matthew P.; Stilp, Adrienne M.; Li, Zilin; Sofer, Tamar; Szpiro, Adam A.; Chen, Wei; Brehm, John M.; Celedón, Juan C.; Redline, Susan; Papanicolaou, George J.; Thornton, Timothy A.; Laurie, Cathy C.; Rice, Kenneth; Lin, Xihong
2016-01-01
Linear mixed models (LMMs) are widely used in genome-wide association studies (GWASs) to account for population structure and relatedness, for both continuous and binary traits. Motivated by the failure of LMMs to control type I errors in a GWAS of asthma, a binary trait, we show that LMMs are generally inappropriate for analyzing binary traits when population stratification leads to violation of the LMM’s constant-residual variance assumption. To overcome this problem, we develop a computationally efficient logistic mixed model approach for genome-wide analysis of binary traits, the generalized linear mixed model association test (GMMAT). This approach fits a logistic mixed model once per GWAS and performs score tests under the null hypothesis of no association between a binary trait and individual genetic variants. We show in simulation studies and real data analysis that GMMAT effectively controls for population structure and relatedness when analyzing binary traits in a wide variety of study designs. PMID:27018471
Binary Black Hole Mergers from Planet-like Migrations.
Gould; Rix
2000-03-20
If supermassive black holes (BHs) are generically present in galaxy centers, and if galaxies are built up through hierarchical merging, BH binaries are at least temporary features of most galactic bulges. Observations suggest, however, that binary BHs are rare, pointing toward a binary lifetime far shorter than the Hubble time. We show that, almost regardless of the detailed mechanism, all stellar dynamical processes are too slow in reducing the orbital separation once orbital velocities in the binary exceed the virial velocity of the system. We propose that a massive gas disk surrounding a BH binary can effect its merger rapidly, in a scenario analogous to the orbital decay of super-Jovian planets due to a proto-planetary disk. As in the case of planets, gas accretion onto the secondary (here a supermassive BH) is integrally connected with its inward migration. Such accretion would give rise to quasar activity. BH binary mergers could therefore be responsible for many or most quasars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillwig, Todd C.; Schaub, S. C.; Bond, Howard E.
We explore the photometrically variable central stars of the planetary nebulae HaTr 4 and Hf 2-2. Both have been classified as close binary star systems previously based on their light curves alone. Here, we present additional arguments and data confirming the identification of both as close binaries with an irradiated cool companion to the hot central star. We include updated light curves, orbital periods, and preliminary binary modeling for both systems. We also identify for the first time the central star of HaTr 4 as an eclipsing binary. Neither system has been well studied in the past, but we utilizemore » the small amount of existing data to limit possible binary parameters, including system inclination. These parameters are then compared to nebular parameters to further our knowledge of the relationship between binary central stars of planetary nebulae and nebular shaping and ejection.« less
Expanding the catalog of binary black-hole simulations: aligned-spin configurations
NASA Astrophysics Data System (ADS)
Chu, Tony; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela; SXS Collaboration
2015-04-01
A major goal of numerical relativity is to model the inspiral and merger of binary black holes through sufficiently accurate and long simulations, to enable the successful detection of gravitational waves. However, covering the full parameter space of binary configurations is a computationally daunting task. The SXS Collaboration has made important progress in this direction recently, with a catalog of 174 publicly available binary black-hole simulations [black-holes.org/waveforms]. Nevertheless, the parameter-space coverage remains sparse, even for non-precessing binaries. In this talk, I will describe an addition to the SXS catalog to improve its coverage, consisting of 95 new simulations of aligned-spin binaries with moderate mass ratios and dimensionless spins as high as 0.9. Some applications of these new simulations will also be mentioned.
Photometric binary stars in Praesepe and the search for globular cluster binaries
NASA Technical Reports Server (NTRS)
Bolte, Michael
1991-01-01
A radial velocity study of the stars which are located on a second sequence above the single-star zero-age main sequence at a given color in the color-magnitude diagram of the open cluster Praesepe, (NGC 2632) shows that 10, and possibly 11, of 17 are binary systems. Of the binary systems, five have full amplitudes for their velocity variations that are greater than 50 km/s. To the extent that they can be applied to globular clusters, these results suggests that (1) observations of 'second-sequence' stars in globular clusters would be an efficient way of finding main-sequence binary systems in globulars, and (2) current instrumentation on large telescopes is sufficient for establishing unambiguously the existence of main-sequence binary systems in nearby globular clusters.
Dynamic Inertia Weight Binary Bat Algorithm with Neighborhood Search
2017-01-01
Binary bat algorithm (BBA) is a binary version of the bat algorithm (BA). It has been proven that BBA is competitive compared to other binary heuristic algorithms. Since the update processes of velocity in the algorithm are consistent with BA, in some cases, this algorithm also faces the premature convergence problem. This paper proposes an improved binary bat algorithm (IBBA) to solve this problem. To evaluate the performance of IBBA, standard benchmark functions and zero-one knapsack problems have been employed. The numeric results obtained by benchmark functions experiment prove that the proposed approach greatly outperforms the original BBA and binary particle swarm optimization (BPSO). Compared with several other heuristic algorithms on zero-one knapsack problems, it also verifies that the proposed algorithm is more able to avoid local minima. PMID:28634487
Dynamic Inertia Weight Binary Bat Algorithm with Neighborhood Search.
Huang, Xingwang; Zeng, Xuewen; Han, Rui
2017-01-01
Binary bat algorithm (BBA) is a binary version of the bat algorithm (BA). It has been proven that BBA is competitive compared to other binary heuristic algorithms. Since the update processes of velocity in the algorithm are consistent with BA, in some cases, this algorithm also faces the premature convergence problem. This paper proposes an improved binary bat algorithm (IBBA) to solve this problem. To evaluate the performance of IBBA, standard benchmark functions and zero-one knapsack problems have been employed. The numeric results obtained by benchmark functions experiment prove that the proposed approach greatly outperforms the original BBA and binary particle swarm optimization (BPSO). Compared with several other heuristic algorithms on zero-one knapsack problems, it also verifies that the proposed algorithm is more able to avoid local minima.
Simulations of binary black hole mergers
NASA Astrophysics Data System (ADS)
Lovelace, Geoffrey
2017-01-01
Advanced LIGO's observations of merging binary black holes have inaugurated the era of gravitational wave astronomy. Accurate models of binary black holes and the gravitational waves they emit are helping Advanced LIGO to find as many gravitational waves as possible and to learn as much as possible about the waves' sources. These models require numerical-relativity simulations of binary black holes, because near the time when the black holes merge, all analytic approximations break down. Following breakthroughs in 2005, many research groups have built numerical-relativity codes capable of simulating binary black holes. In this talk, I will discuss current challenges in simulating binary black holes for gravitational-wave astronomy, and I will discuss the tremendous progress that has already enabled such simulations to become an essential tool for Advanced LIGO.
Spectral properties of binary asteroids
NASA Astrophysics Data System (ADS)
Pajuelo, Myriam; Birlan, Mirel; Carry, Benoît; DeMeo, Francesca E.; Binzel, Richard P.; Berthier, Jérôme
2018-07-01
We present the first attempt to characterize the distribution of taxonomic class among the population of binary asteroids (15 per cent of all small asteroids). For that, an analysis of 0.8-2.5 µm near-infrared spectra obtained with the SpeX instrument on the NASA/IRTF (Infrared Telescope Facility) is presented. Taxonomic class and meteorite analogue is determined for each target, increasing the sample of binary asteroids with known taxonomy by 21 per cent. Most binary systems are bound in the S, X, and C classes, followed by Q and V types. The rate of binary systems in each taxonomic class agrees within uncertainty with the background population of small near-Earth objects and inner main belt asteroids, but for the C types which are under-represented among binaries.
Formation of black hole x-ray binaries in globular clusters
NASA Astrophysics Data System (ADS)
Kremer, Kyle; Chatterjee, Sourav; Rodriguez, Carl; Rasio, Frederic
2018-01-01
We explore the formation of mass-transferring binary systems containing black holes within globular clusters. We show that it is possible to form mass-transferring binaries with main sequence, giant, and white dwarf companions with a variety of orbital parameters in globular clusters spanning a large range in present-day properties. We show that the presence of mass-transferring black hole systems has little correlation with the total number of black holes within the cluster at any time. In addition to mass-transferring binaries retained within their host clusters at late times, we also examine the black hole and neutron star binaries that are ejected from their host clusters. These ejected systems may contribute to the low-mass x-ray binary population in the galactic field.
Formation of a 'planet' by rapid evaporation of a pulsar's companion
NASA Technical Reports Server (NTRS)
Rasio, F. A.; Shapiro, S. L.; Teukolsky, S. A.
1992-01-01
A model based on the binary configuration of the PSR1829-10 pulsar (Bailes et al., 1991) is used to show that the formation of a binary pulsar with a planet-size companion, large original separation, and small eccentricity could result from the rapid evaporation of a much more massive binary companion by the pulsar's radiation. Such an evaporation process is known to be taking place in at least two other binary pulsars: PSR1957 + 20 (Fruchter et al., 1990; Ryba and Taylor, 1991) and PSR1744 - 24A (Lyne et al., 1990). It is shown here that, about one million years ago, the companion mass and binary separation could have been comparable to those currently observed in the eclipsing binary pulsar PSR1957 + 20.
Steffen, J. H.; Quinn, S. N.; Borucki, W. J.; ...
2011-10-01
We present a hierarchical triple star system (KIC 9140402) where a low mass eclipsing binary orbits a more massive third star. The orbital period of the binary (4.98829 Days) is determined by the eclipse times seen in photometry from NASA's Kepler spacecraft. The periodically changing tidal field, due to the eccentric orbit of the binary about the tertiary, causes a change in the orbital period of the binary. The resulting eclipse timing variations provide insight into the dynamics and architecture of this system and allow the inference of the total mass of the binary (0.424±0.017M circle-dot) and the orbital parametersmore » of the binary about the central star.« less
Barausse, Enrico; Yunes, Nicolás; Chamberlain, Katie
2016-06-17
The aLIGO detection of the black-hole binary GW150914 opens a new era for probing extreme gravity. Many gravity theories predict the emission of dipole gravitational radiation by binaries. This is excluded to high accuracy in binary pulsars, but entire classes of theories predict this effect predominantly (or only) in binaries involving black holes. Joint observations of GW150914-like systems by aLIGO and eLISA will improve bounds on dipole emission from black-hole binaries by 6 orders of magnitude relative to current constraints, provided that eLISA is not dramatically descoped.
Inferences about binary stellar populations using gravitational wave observations
NASA Astrophysics Data System (ADS)
Wysocki, Daniel; Gerosa, Davide; O'Shaughnessy, Richard; Belczynski, Krzysztof; Gladysz, Wojciech; Berti, Emanuele; Kesden, Michael; Holz, Daniel
2018-01-01
With the dawn of gravitational wave astronomy, enabled by the LIGO and Virgo interferometers, we now have a new window into the Universe. In the short time these detectors have been in use, multiple confirmed detections of gravitational waves from compact binary coalescences have been made. Stellar binary systems are one of the likely progenitors of the observed compact binary sources. If this is indeed the case, then we can use measured properties of these binary systems to learn about their progenitors. We will discuss the Bayesian framework in which we make these inferences, and results which include mass and spin distributions.
NASA Astrophysics Data System (ADS)
Almeida, L. A.; Sana, H.; Taylor, W.; Barbá, R.; Bonanos, A. Z.; Crowther, P.; Damineli, A.; de Koter, A.; de Mink, S. E.; Evans, C. J.; Gieles, M.; Grin, N. J.; Hénault-Brunet, V.; Langer, N.; Lennon, D.; Lockwood, S.; Maíz Apellániz, J.; Moffat, A. F. J.; Neijssel, C.; Norman, C.; Ramírez-Agudelo, O. H.; Richardson, N. D.; Schootemeijer, A.; Shenar, T.; Soszyński, I.; Tramper, F.; Vink, J. S.
2017-02-01
Context. Massive binaries play a crucial role in the Universe. Knowing the distributions of their orbital parameters is important for a wide range of topics from stellar feedback to binary evolution channels and from the distribution of supernova types to gravitational wave progenitors, yet no direct measurements exist outside the Milky Way. Aims: The Tarantula Massive Binary Monitoring project was designed to help fill this gap by obtaining multi-epoch radial velocity (RV) monitoring of 102 massive binaries in the 30 Doradus region. Methods: In this paper we analyze 32 FLAMES/GIRAFFE observations of 93 O- and 7 B-type binaries. We performed a Fourier analysis and obtained orbital solutions for 82 systems: 51 single-lined (SB1) and 31 double-lined (SB2) spectroscopic binaries. Results: Overall, the binary fraction and orbital properties across the 30 Doradus region are found to be similar to existing Galactic samples. This indicates that within these domains environmental effects are of second order in shaping the properties of massive binary systems. A small difference is found in the distribution of orbital periods, which is slightly flatter (in log space) in 30 Doradus than in the Galaxy, although this may be compatible within error estimates and differences in the fitting methodology. Also, orbital periods in 30 Doradus can be as short as 1.1 d, somewhat shorter than seen in Galactic samples. Equal mass binaries (q> 0.95) in 30 Doradus are all found outside NGC 2070, the central association that surrounds R136a, the very young and massive cluster at 30 Doradus's core. Most of the differences, albeit small, are compatible with expectations from binary evolution. One outstanding exception, however, is the fact that earlier spectral types (O2-O7) tend to have shorter orbital periods than later spectral types (O9.2-O9.7). Conclusions: Our results point to a relative universality of the incidence rate of massive binaries and their orbital properties in the metallicity range from solar (Z⊙) to about half solar. This provides the first direct constraints on massive binary properties in massive star-forming galaxies at the Universe's peak of star formation at redshifts z 1 to 2 which are estimated to have Z 0.5 Z⊙. The log of observations and RV measurements for all targets are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A84
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Fazeel Mahmood; Preto, Miguel; Berentzen, Ingo
Galaxy centers are residing places for supermassive black holes (SMBHs). Galaxy mergers bring SMBHs close together to form gravitationally bound binary systems, which, if able to coalesce in less than a Hubble time, would be one of the most promising sources of gravitational waves (GWs) for the Laser Interferometer Space Antenna. In spherical galaxy models, SMBH binaries stall at a separation of approximately 1 pc, leading to the 'final parsec problem' (FPP). On the other hand, it has been shown that merger-induced triaxiality of the remnant in equal-mass mergers is capable of supporting a constant supply of stars on themore » so-called centrophilic orbits that interact with the binary and thus avoid the FPP. In this paper, using a set of direct N-body simulations of mergers of initially spherically symmetric galaxies with different mass ratios, we show that the merger-induced triaxiality is also able to drive unequal-mass SMBH binaries to coalescence. The binary hardening rates are high and depend only weakly on the mass ratios of SMBHs for a wide range of mass ratios q. There is, however, an abrupt transition in the hardening rates for mergers with mass ratios somewhere between q {approx} 0.05 and 0.1, resulting from the monotonic decrease of merger-induced triaxiality with mass ratio q, as the secondary galaxy becomes too small and light to significantly perturb the primary, i.e., the more massive one. The hardening rates are significantly higher for galaxies having steep cusps in comparison with those having shallow cups at centers. The evolution of the binary SMBH leads to relatively shallower inner slopes at the centers of the merger remnants. The stellar mass displaced by the SMBH binary on its way to coalescence is {approx}1-5 times the combined mass of binary SMBHs. The coalescence timescales for SMBH binary with mass {approx}10{sup 6} M{sub Sun} are less than 1 Gyr and for those at the upper end of SMBH masses 10{sup 9} M{sub Sun} are 1-2 Gyr for less eccentric binaries whereas they are less than 1 Gyr for highly eccentric binaries. SMBH binaries are thus expected to be promising sources of GWs at low and high redshifts.« less
Microlensing Signature of Binary Black Holes
NASA Technical Reports Server (NTRS)
Schnittman, Jeremy; Sahu, Kailash; Littenberg, Tyson
2012-01-01
We calculate the light curves of galactic bulge stars magnified via microlensing by stellar-mass binary black holes along the line-of-sight. We show the sensitivity to measuring various lens parameters for a range of survey cadences and photometric precision. Using public data from the OGLE collaboration, we identify two candidates for massive binary systems, and discuss implications for theories of star formation and binary evolution.
Kim, Jieun; Seo, Mi-Ran; Kang, Jung Oak; Choi, Tae Yeal; Pai, Hyunjoo
2013-06-01
Binary toxin-producing Clostridium difficile infections (CDI) are known to be more severe and to cause higher case fatality rates than those by binary toxin-negative isolates. There has been few data of binary toxin-producing CDI in Korea. Objective of the study is to characterize clinical and microbiological trait of CDI cause by binary-toxin producing isolates in Korea. From September 2008 through January 2010, clinical characteristics, medication history and treatment outcome of all the CDI patients were collected prospectively. Toxin characterization, PCR ribotyping and antibiotic susceptibility were performed with the stool isolates of C. difficile. During the period, CDI caused by 11binary toxin-producing isolates and 105 toxin A & toxin B-positive binary toxin-negative isolates were identified. Comparing the disease severity and clinical findings between two groups, leukocytosis and mucoid stool were more frequently observed in patients with binary toxin-positive isolates (OR: 5.2, 95% CI: 1.1 to 25.4, P = 0.043; OR: 7.6, 95% CI: 1.6 to 35.6, P = 0.010, respectively), but clinical outcome of 2 groups did not show any difference. For the risk factors for acquisition of binary toxin-positive isolates, previous use of glycopeptides was the significant risk factor (OR: 6.2, 95% CI: 1.4 to 28.6, P = 0.019), but use of probiotics worked as an inhibitory factor (OR: 0.1, 95% CI: 0.0 to 0.8; P = 0.026). PCR ribotypes of binary toxinproducing C. difficile showed variable patterns: ribotype 130, 4 isolates; 027, 3 isolates; 267 and 122, 1 each isolate and unidentified C1, 2 isolates. All 11 binary toxin-positive isolates were highly susceptible to clindamycin, moxifloxacin, metronidazole, vancomycin and piperacillin-tazobactam, however, 1 of 11 of the isolates was resistant to rifaximin. Binary toxin-producing C. difficile infection was not common in Korea and those isolates showed diverse PCR ribotypes with high susceptibility to antimicrobial agents. Glycopeptide use was a risk factor for CDI by those isolates.
Kim, Jieun; Seo, Mi-ran; Kang, Jung Oak; Choi, Tae Yeal
2013-01-01
Background Binary toxin-producing Clostridium difficile infections (CDI) are known to be more severe and to cause higher case fatality rates than those by binary toxin-negative isolates. There has been few data of binary toxin-producing CDI in Korea. Objective of the study is to characterize clinical and microbiological trait of CDI cause by binary-toxin producing isolates in Korea. Materials and Methods From September 2008 through January 2010, clinical characteristics, medication history and treatment outcome of all the CDI patients were collected prospectively. Toxin characterization, PCR ribotyping and antibiotic susceptibility were performed with the stool isolates of C. difficile. Results During the period, CDI caused by 11binary toxin-producing isolates and 105 toxin A & toxin B-positive binary toxin-negative isolates were identified. Comparing the disease severity and clinical findings between two groups, leukocytosis and mucoid stool were more frequently observed in patients with binary toxin-positive isolates (OR: 5.2, 95% CI: 1.1 to 25.4, P = 0.043; OR: 7.6, 95% CI: 1.6 to 35.6, P = 0.010, respectively), but clinical outcome of 2 groups did not show any difference. For the risk factors for acquisition of binary toxin-positive isolates, previous use of glycopeptides was the significant risk factor (OR: 6.2, 95% CI: 1.4 to 28.6, P = 0.019), but use of probiotics worked as an inhibitory factor (OR: 0.1, 95% CI: 0.0 to 0.8; P = 0.026). PCR ribotypes of binary toxinproducing C. difficile showed variable patterns: ribotype 130, 4 isolates; 027, 3 isolates; 267 and 122, 1 each isolate and unidentified C1, 2 isolates. All 11 binary toxin-positive isolates were highly susceptible to clindamycin, moxifloxacin, metronidazole, vancomycin and piperacillin-tazobactam, however, 1 of 11 of the isolates was resistant to rifaximin. Conclusions Binary toxin-producing C. difficile infection was not common in Korea and those isolates showed diverse PCR ribotypes with high susceptibility to antimicrobial agents. Glycopeptide use was a risk factor for CDI by those isolates. PMID:24265965
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ablimit, Iminhaji; Maeda, Keiichi; Li, Xiang-Dong
Binary population synthesis (BPS) studies provide a comprehensive way to understand the evolution of binaries and their end products. Close white dwarf (WD) binaries have crucial characteristics for examining the influence of unresolved physical parameters on binary evolution. In this paper, we perform Monte Carlo BPS simulations, investigating the population of WD/main-sequence (WD/MS) binaries and double WD binaries using a publicly available binary star evolution code under 37 different assumptions for key physical processes and binary initial conditions. We considered different combinations of the binding energy parameter ( λ {sub g}: considering gravitational energy only; λ {sub b}: considering bothmore » gravitational energy and internal energy; and λ {sub e}: considering gravitational energy, internal energy, and entropy of the envelope, with values derived from the MESA code), CE efficiency, critical mass ratio, initial primary mass function, and metallicity. We find that a larger number of post-CE WD/MS binaries in tight orbits are formed when the binding energy parameters are set by λ {sub e} than in those cases where other prescriptions are adopted. We also determine the effects of the other input parameters on the orbital periods and mass distributions of post-CE WD/MS binaries. As they contain at least one CO WD, double WD systems that evolved from WD/MS binaries may explode as type Ia supernovae (SNe Ia) via merging. In this work, we also investigate the frequency of two WD mergers and compare it to the SNe Ia rate. The calculated Galactic SNe Ia rate with λ = λ {sub e} is comparable to the observed SNe Ia rate, ∼8.2 × 10{sup 5} yr{sup 1} – ∼4 × 10{sup 3} yr{sup 1} depending on the other BPS parameters, if a DD system does not require a mass ratio higher than ∼0.8 to become an SNe Ia. On the other hand, a violent merger scenario, which requires the combined mass of two CO WDs ≥ 1.6 M {sub ⊙} and a mass ratio >0.8, results in a much lower SNe Ia rate than is observed.« less
NASA Astrophysics Data System (ADS)
Tofflemire, Benjamin M.; Mathieu, Robert D.; Ardila, David R.; Ciardi, David R.
2015-01-01
Most stars are born in binaries, and the evolution of protostellar disks in pre-main sequence (PMS) binary stars is a current frontier of star formation research. PMS binary stars can have up to three accretion disks: two circumstellar disks and a circumbinary disk separated by a dynamically cleared gap. Theory suggests that mass may periodically flow in an accretion stream from a circumbinary disk across the gap onto circumstellar disks or stellar surfaces. Thus, accretion in PMS binaries is controlled by not only radiation, disk viscosity, and magnetic fields, but also by orbital dynamics.As part of a larger, ongoing effort to characterize mass accretion in young binary systems, we test the predictions of the binary accretion stream theory through continuous, multi-orbit, multi-color optical and near-infrared (NIR) time-series photometry. Observations such as these are capable of detecting and characterizing these modulated accretion streams, if they are generally present. Broad-band blue and ultraviolet photometry trace the accretion luminosity and photospheric temperature while NIR photometry provide a measurement of warm circumstellar material, all as a function of orbital phase. The predicted phase and magnitude of enhanced accretion are highly dependent on the binary orbital parameters and as such, our campaign focuses on 10 PMS binaries of varying periods and eccentricities. Here we present multi-color optical (U, B,V, R), narrowband (Hα), and multi-color NIR (J, H) lightcurves of the PMS binary V4046 Sgr (P=2.42 days) obtained with the SMARTS 1.3m telescope and LCOGT 1m telescope network. These results act to showcase the quality and breadth of data we have, or are currently obtaining, for each of the PMS binaries in our sample. With the full characterization of our sample, these observations will guide an extension of the accretion paradigm from single young stars to multiple systems.
Terrestrial Planet Formation in Binary Star Systems
NASA Technical Reports Server (NTRS)
Lissauer, J. J.; Quintana, E. V.; Adams, F. C.; Chambers, J. E.
2006-01-01
Most stars reside in binary/multiple star systems; however, previous models of planet formation have studied growth of bodies orbiting an isolated single star. Disk material has been observed around one or both components of various young close binary star systems. If planets form at the right places within such disks, they can remain dynamically stable for very long times. We have simulated the late stages of growth of terrestrial planets in both circumbinary disks around 'close' binary star systems with stellar separations ($a_B$) in the range 0.05 AU $\\le a_B \\le$ 0.4 AU and binary eccentricities in the range $0 \\le e \\le 0.8$ and circumstellar disks around individual stars with binary separations of tens of AU. The initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet growth within our Solar System and around individual stars in the Alpha Centauri system (Quintana et al. 2002, A.J., 576, 982); giant planets analogous to Jupiter and Saturn are included if their orbits are stable. The planetary systems formed around close binaries with stellar apastron distances less than or equal to 0.2 AU with small stellar eccentricities are very similar to those formed in the Sun-Jupiter-Saturn, whereas planetary systems formed around binaries with larger maximum separations tend to be sparser, with fewer planets, especially interior to 1 AU. Likewise, when the binary periastron exceeds 10 AU, terrestrial planets can form over essentially the entire range of orbits allowed for single stars with Jupiter-like planets, although fewer terrestrial planets tend to form within high eccentricity binary systems. As the binary periastron decreases, the radial extent of the terrestrial planet systems is reduced accordingly. When the periastron is 5 AU, the formation of Earth-like planets near 1 AU is compromised.
Candidate Binary Microlensing Events from the MACHO Project
NASA Astrophysics Data System (ADS)
Becker, A. C.; Alcock, C.; Allsman, R. A.; Alves, D. R.; Axelrod, T. S.; Bennett, D. P.; Cook, K. H.; Drake, A. J.; Freeman, K. C.; Griest, K.; King, L. J.; Lehner, M. J.; Marshall, S. L.; Minniti, D.; Peterson, B. A.; Popowski, P.; Pratt, M. R.; Quinn, P. J.; Rodgers, A. W.; Stubbs, C. W.; Sutherland, W.; Tomaney, A.; Vandehei, T.; Welch, D. L.; Baines, D.; Brakel, A.; Crook, B.; Howard, J.; Leach, T.; McDowell, D.; McKeown, S.; Mitchell, J.; Moreland, J.; Pozza, E.; Purcell, P.; Ring, S.; Salmon, A.; Ward, K.; Wyper, G.; Heller, A.; Kaspi, S.; Kovo, O.; Maoz, D.; Retter, A.; Rhie, S. H.; Stetson, P.; Walker, A.; MACHO Collaboration
1998-12-01
We present the lightcurves of 22 gravitational microlensing events from the first six years of the MACHO Project gravitational microlensing survey which are likely examples of lensing by binary systems. These events were selected from a total sample of ~ 300 events which were either detected by the MACHO Alert System or discovered through retrospective analyses of the MACHO database. Many of these events appear to have undergone a caustic or cusp crossing, and 2 of the events are well fit with lensing by binary systems with large mass ratios, indicating secondary companions of approximately planetary mass. The event rate is roughly consistent with predictions based upon our knowledge of the properties of binary stars. The utility of binary lensing in helping to solve the Galactic dark matter problem is demonstrated with analyses of 3 binary microlensing events seen towards the Magellanic Clouds. Source star resolution during caustic crossings in 2 of these events allows us to estimate the location of the lensing systems, assuming each source is a single star and not a short period binary. * MACHO LMC-9 appears to be a binary lensing event with a caustic crossing partially resolved in 2 observations. The resulting lens proper motion appears too small for a single source and LMC disk lens. However, it is considerably less likely to be a single source star and Galactic halo lens. We estimate the a priori probability of a short period binary source with a detectable binary character to be ~ 10 %. If the source is also a binary, then we currently have no constraints on the lens location. * The most recent of these events, MACHO 98-SMC-1, was detected in real-time. Follow-up observations by the MACHO/GMAN, PLANET, MPS, EROS and OGLE microlensing collaborations lead to the robust conclusion that the lens likely resides in the SMC.
NASA Astrophysics Data System (ADS)
van den Berg, Maureen C.
2015-08-01
The binaries in the core of a star cluster are the energy source that prevents the cluster from experiencing core collapse. To model the dynamical evolution of a cluster, it is important to have constraints on the primordial binary content. X-ray observations of old star clusters are very efficient in detecting the close interacting binaries among the cluster members. The X-ray sources in star clusters are a mix of binaries that were dynamically formed and primordial binaries. In massive, dense star clusters, dynamical encounters play an important role in shaping the properties and numbers of the binaries. In contrast, in the low-density clusters the impact of dynamical encounters is presumed to be very small, and the close binaries detected in X-rays represent a primordial population. The lowest density globular clusters have current masses and central densities similar to those of the oldest open clusters in our Milky Way. I will discuss the results of studies with the Chandra X-ray Observatory that have nevertheless revealed a clear dichotomy: far fewer (if any at all) X-ray sources are detected in the central regions of the low-density globular clusters compared to the number of secure cluster members that have been detected in old open clusters (above a limiting X-ray luminosity of typically 4e30 erg/s). The low stellar encounter rates imply that dynamical destruction of binaries can be ignored at present, therefore an explanation must be sought elsewhere. I will discuss several factors that can shed light on the implied differences between the primordial close binary populations in the two types of star clusters.
Full Ionisation In Binary-Binary Encounters With Small Positive Energies
NASA Astrophysics Data System (ADS)
Sweatman, W. L.
2006-08-01
Interactions between binary stars and single stars and binary stars and other binary stars play a key role in the dynamics of a dense stellar system. Energy can be transferred between the internal dynamics of a binary and the larger scale dynamics of the interacting objects. Binaries can be destroyed and created by the interaction. In a binary-binary encounter, full ionisation occurs when both of the binary stars are destroyed in the interaction to create four single stars. This is only possible when the total energy of the system is positive. For very small energies the probability of this occurring is very low and it tends towards zero as the total energy tends towards zero. Here the case is considered for which all the stars have equal masses. An asymptotic power law is predicted relating the probability of full ionisation with the total energy when this latter quantity is small. The exponent, which is approximately 2.31, is compared with the results from numerical scattering experiments. The theoretical approach taken is similar to one used previously in the three-body problem. It makes use of the fact that the most dramatic changes in scale and energies of a few-body system occur when its components pass near to a central configuration. The position, and number, of these configurations is not known for the general four-body problem, however, with equal masses there are known to be exactly five different cases. Separate consideration and comparison of the properties of orbits close to each of these five central configurations enables the prediction of the form of the cross-section for full ionisation for the case of small positive total energy. This is the relation between total energy and the probability of total ionisation described above.
Efficient Merge and Insert Operations for Binary Heaps and Trees
NASA Technical Reports Server (NTRS)
Kuszmaul, Christopher Lee; Woo, Alex C. (Technical Monitor)
2000-01-01
Binary heaps and binary search trees merge efficiently. We introduce a new amortized analysis that allows us to prove the cost of merging either binary heaps or balanced binary trees is O(l), in the amortized sense. The standard set of other operations (create, insert, delete, extract minimum, in the case of binary heaps, and balanced binary trees, as well as a search operation for balanced binary trees) remain with a cost of O(log n). For binary heaps implemented as arrays, we show a new merge algorithm that has a single operation cost for merging two heaps, a and b, of O(absolute value of a + min(log absolute value of b log log absolute value of b. log absolute value of a log absolute value of b). This is an improvement over O(absolute value of a + log absolute value of a log absolute value of b). The cost of the new merge is so low that it can be used in a new structure which we call shadow heaps. to implement the insert operation to a tunable efficiency. Shadow heaps support the insert operation for simple priority queues in an amortized time of O(f(n)) and other operations in time O((log n log log n)/f (n)), where 1 less than or equal to f (n) less than or equal to log log n. More generally, the results here show that any data structure with operations that change its size by at most one, with the exception of a merge (aka meld) operation, can efficiently amortize the cost of the merge under conditions that are true for most implementations of binary heaps and search trees.
NASA Astrophysics Data System (ADS)
Almog, Assaf; Garlaschelli, Diego
2014-09-01
The dynamics of complex systems, from financial markets to the brain, can be monitored in terms of multiple time series of activity of the constituent units, such as stocks or neurons, respectively. While the main focus of time series analysis is on the magnitude of temporal increments, a significant piece of information is encoded into the binary projection (i.e. the sign) of such increments. In this paper we provide further evidence of this by showing strong nonlinear relations between binary and non-binary properties of financial time series. These relations are a novel quantification of the fact that extreme price increments occur more often when most stocks move in the same direction. We then introduce an information-theoretic approach to the analysis of the binary signature of single and multiple time series. Through the definition of maximum-entropy ensembles of binary matrices and their mapping to spin models in statistical physics, we quantify the information encoded into the simplest binary properties of real time series and identify the most informative property given a set of measurements. Our formalism is able to accurately replicate, and mathematically characterize, the observed binary/non-binary relations. We also obtain a phase diagram allowing us to identify, based only on the instantaneous aggregate return of a set of multiple time series, a regime where the so-called ‘market mode’ has an optimal interpretation in terms of collective (endogenous) effects, a regime where it is parsimoniously explained by pure noise, and a regime where it can be regarded as a combination of endogenous and exogenous factors. Our approach allows us to connect spin models, simple stochastic processes, and ensembles of time series inferred from partial information.
The Eclipsing Binary On-Line Atlas (EBOLA)
NASA Astrophysics Data System (ADS)
Bradstreet, D. H.; Steelman, D. P.; Sanders, S. J.; Hargis, J. R.
2004-05-01
In conjunction with the upcoming release of \\it Binary Maker 3.0, an extensive on-line database of eclipsing binaries is being made available. The purposes of the atlas are: \\begin {enumerate} Allow quick and easy access to information on published eclipsing binaries. Amass a consistent database of light and radial velocity curve solutions to aid in solving new systems. Provide invaluable querying capabilities on all of the parameters of the systems so that informative research can be quickly accomplished on a multitude of published results. Aid observers in establishing new observing programs based upon stars needing new light and/or radial velocity curves. Encourage workers to submit their published results so that others may have easy access to their work. Provide a vast but easily accessible storehouse of information on eclipsing binaries to accelerate the process of understanding analysis techniques and current work in the field. \\end {enumerate} The database will eventually consist of all published eclipsing binaries with light curve solutions. The following information and data will be supplied whenever available for each binary: original light curves in all bandpasses, original radial velocity observations, light curve parameters, RA and Dec, V-magnitudes, spectral types, color indices, periods, binary type, 3D representation of the system near quadrature, plots of the original light curves and synthetic models, plots of the radial velocity observations with theoretical models, and \\it Binary Maker 3.0 data files (parameter, light curve, radial velocity). The pertinent references for each star are also given with hyperlinks directly to the papers via the NASA Abstract website for downloading, if available. In addition the Atlas has extensive searching options so that workers can specifically search for binaries with specific characteristics. The website has more than 150 systems already uploaded. The URL for the site is http://ebola.eastern.edu/.
Extrasolar binary planets. I. Formation by tidal capture during planet-planet scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ochiai, H.; Nagasawa, M.; Ida, S., E-mail: nagasawa.m.ad@m.titech.ac.jp
2014-08-01
We have investigated (1) the formation of gravitationally bounded pairs of gas-giant planets (which we call 'binary planets') from capturing each other through planet-planet dynamical tide during their close encounters and (2) the subsequent long-term orbital evolution due to planet-planet and planet-star quasi-static tides. For the initial evolution in phase 1, we carried out N-body simulations of the systems consisting of three Jupiter-mass planets taking into account the dynamical tide. The formation rate of the binary planets is as much as 10% of the systems that undergo orbital crossing, and this fraction is almost independent of the initial stellarcentric semimajormore » axes of the planets, while ejection and merging rates sensitively depend on the semimajor axes. As a result of circularization by the planet-planet dynamical tide, typical binary separations are a few times the sum of the physical radii of the planets. After the orbital circularization, the evolution of the binary system is governed by long-term quasi-static tide. We analytically calculated the quasi-static tidal evolution in phase 2. The binary planets first enter the spin-orbit synchronous state by the planet-planet tide. The planet-star tide removes angular momentum of the binary motion, eventually resulting in a collision between the planets. However, we found that the binary planets survive the tidal decay for the main-sequence lifetime of solar-type stars (∼10 Gyr), if the binary planets are beyond ∼0.3 AU from the central stars. These results suggest that the binary planets can be detected by transit observations at ≳ 0.3 AU.« less
Hunting for brown dwarf binaries with X-Shooter
NASA Astrophysics Data System (ADS)
Manjavacas, E.; Goldman, B.; Alcalá, J. M.; Zapatero-Osorio, M. R.; Béjar, B. J. S.; Homeier, D.; Bonnefoy, M.; Smart, R. L.; Henning, T.; Allard, F.
2015-05-01
The refinement of the brown dwarf binary fraction may contribute to the understanding of the substellar formation mechanisms. Peculiar brown dwarf spectra or discrepancy between optical and near-infrared spectral type classification of brown dwarfs may indicate unresolved brown dwarf binary systems. We obtained medium-resolution spectra of 22 brown dwarfs of potential binary candidates using X-Shooter at the VLT. We aimed to select brown dwarf binary candidates. We also tested whether BT-Settl 2014 atmospheric models reproduce the physics in the atmospheres of these objects. To find different spectral type spectral binaries, we used spectral indices and we compared the selected candidates to single spectra and composition of two single spectra from libraries, to try to reproduce our X-Shooter spectra. We also created artificial binaries within the same spectral class, and we tried to find them using the same method as for brown dwarf binaries with different spectral types. We compared our spectra to the BT-Settl models 2014. We selected six possible candidates to be combination of L plus T brown dwarfs. All candidates, except one, are better reproduced by a combination of two single brown dwarf spectra than by a single spectrum. The one-sided F-test discarded this object as a binary candidate. We found that we are not able to find the artificial binaries with components of the same spectral type using the same method used for L plus T brown dwarfs. Best matches to models gave a range of effective temperatures between 950 K and 1900 K, a range of gravities between 4.0 and 5.5. Some best matches corresponded to supersolar metallicity.
Periodic Emission from the Gamma-ray Binary 1FGL J1018.6-5856
NASA Technical Reports Server (NTRS)
Celic, O.; Corbet, R. H. D.; Donato, D.; Ferrara, E. C.; Gehrels, N.; Harding, A. K.; Hays, E.; McEnery, J. E.; Thompson, D. J.; Troja, E.
2012-01-01
Gamma-ray binaries are stellar systems containing a neutron star or black hole with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that IFGL JI018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable X-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an 06V f) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. IFGL J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.
An X-ray look at the first head-trail nebula in an X-ray binary
NASA Astrophysics Data System (ADS)
Soleri, Paolo
2011-09-01
Head-tail trails are a common feature in active galactic nuclei and pulsar bow-shocks. Heinz et al. (2008) suggested that also X-ray binaries, being jet sources moving with high velocities in dense media, can leave trails of highly ionized plasma that should be detectable at radio frequencies. During bservations of faint-persistent X-ray binaries, we discovered an optical nebula around the X-ray binary SAX J1712.6-3739, consisting of a bow-shock ring-like nebula in front of the binary and two trails originating close to it. This is the first detection of such structure in a X-ray binary and it opens a new sub-field in the study of these objects. Observations with XMM-Newton and Chandra are now needed to investigate the properties of the surrounding nebula.
An X-ray look at the first head-trail nebula in an X-ray binary
NASA Astrophysics Data System (ADS)
Soleri, Paolo
2010-10-01
Head-tail trails are a common feature in active galactic nuclei and pulsar bow-shocks. Heinz et al. (2008) suggested that also X-ray binaries, being jet sources moving with high velocities in dense media, can leave trails of highly ionized plasma that should be detectable at radio frequencies. During observations of faint-persistent X-ray binaries, we discovered an optical nebula around the X-ray binary SAX J1712.6-3739, consisting of a bow-shock ring-like nebula ``in front'' of the binary and two trails originating close to it. This is the first detection of such structure in a X-ray binary and it opens a new sub-field in the study of these objects. Observations with XMM-Newton and Chandra are now needed to investigate the properties of the surrounding nebula.
Precision of proportion estimation with binary compressed Raman spectrum.
Réfrégier, Philippe; Scotté, Camille; de Aguiar, Hilton B; Rigneault, Hervé; Galland, Frédéric
2018-01-01
The precision of proportion estimation with binary filtering of a Raman spectrum mixture is analyzed when the number of binary filters is equal to the number of present species and when the measurements are corrupted with Poisson photon noise. It is shown that the Cramer-Rao bound provides a useful methodology to analyze the performance of such an approach, in particular when the binary filters are orthogonal. It is demonstrated that a simple linear mean square error estimation method is efficient (i.e., has a variance equal to the Cramer-Rao bound). Evolutions of the Cramer-Rao bound are analyzed when the measuring times are optimized or when the considered proportion for binary filter synthesis is not optimized. Two strategies for the appropriate choice of this considered proportion are also analyzed for the binary filter synthesis.
The Großschwabhausen binary survey
NASA Astrophysics Data System (ADS)
Mugrauer, M.; Buder, S.; Reum, F.; Birth, A.
2017-01-01
Background: Since 2009, the Großschwabhausen binary survey is being carried out at the University Observatory Jena. This new imaging survey uses available time slots during photometric monitoring campaigns, caused by nonphotometric weather conditions, which often exhibit good atmospheric seeing. The goal of the project is to obtain current relative astrometric measurements of the binary systems that are listed in the Washington Visual Double Star Catalog. Materials and Methods: For the survey we use the Refraktor-Teleskop-Kamera at the University Observatory Jena to take imaging data of selected visual binary systems. Results: In this paper, we characterize the target sample of the survey, describe the imaging observations and the astrometric measurements including the astrometric calibration, and present the relative astrometric measures of 352 binaries that could be obtained during the course of the Großschwabhausen binary survey, so far.
Numerical Relativity Simulations of Compact Binary Populations in Dense Stellar Environments
NASA Astrophysics Data System (ADS)
Glennon, Derek Ray; Huerta, Eliu; Allen, Gabrielle; Haas, Roland; Seidel, Edward; NCSA Gravity Group
2018-01-01
We present a catalog of numerical relativity simulations that describe binary black hole mergers on eccentric orbits. These simulations have been obtained with the open source, Einstein Toolkit numerical relativity software, using the Blue Waters supercomputer. We use this catalog to quantify observables, such as the mass and spin of black holes formed by binary black hole mergers, as a function of eccentricity. This study is the first of its kind in the literature to quantify these astrophysical observables for binary black hole mergers with mass-ratios q<6, and eccentricities e<0.2. This study is an important step in understanding the properties of eccentric binary black hole mergers, and informs the use of gravitational wave observations to confirm or rule out the existence of compact binary populations in dense stellar environments.
Are Binary Separations related to their System Mass?
NASA Astrophysics Data System (ADS)
Sterzik, M. F.; Durisen, R. H.
2004-08-01
We compile most recent multiplicity fractions and binary separation distributions for different primary masses, including very low-mass and brown dwarf primaries, and compare them with dynamical decay models of small-N clusters. The model predictions are based on detailed numerical calculations of the internal cluster dynamics, as well as on Monte-Carlo methods. Both observations and models reflect the same trends: (1) The multiplicity fraction is an increasing function of the primary mass. (2) The mean binary separations are increasing with the system mass in the sense that very low-mass binaries have average separations around ≈ 4AU, while the binary separation distribution for solar-type primaries peaks at ≈ 40AU. M-type binary systems apparently preferentially populate intermediate separations. Similar specific energy at the time of cluster formation for all cluster masses can possibly explain this trend.
Periodic emission from the gamma-ray binary 1FGL J1018.6-5856.
Fermi LAT Collaboration; Ackermann, M; Ajello, M; Ballet, J; Barbiellini, G; Bastieri, D; Belfiore, A; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Cavazzuti, E; Cecchi, C; Çelik, Ö; Charles, E; Chaty, S; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Corbel, S; Corbet, R H D; Cutini, S; de Luca, A; den Hartog, P R; de Palma, F; Dermer, C D; Digel, S W; do Couto e Silva, E; Donato, D; Drell, P S; Drlica-Wagner, A; Dubois, R; Dubus, G; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hill, A B; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, T J; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ozaki, M; Paneque, D; Parent, D; Pesce-Rollins, M; Pierbattista, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Ritz, S; Romani, R W; Roth, M; Saz Parkinson, P M; Sgrò, C; Siskind, E J; Spandre, G; Spinelli, P; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Tinivella, M; Torres, D F; Tosti, G; Troja, E; Uchiyama, Y; Usher, T L; Vandenbroucke, J; Vianello, G; Vitale, V; Waite, A P; Winer, B L; Wood, K S; Wood, M; Yang, Z; Zimmer, S; Coe, M J; Di Mille, F; Edwards, P G; Filipović, M D; Payne, J L; Stevens, J; Torres, M A P
2012-01-13
Gamma-ray binaries are stellar systems containing a neutron star or black hole, with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL J1018.6-5856 exhibits intensity and spectral modulation with a 16.6-day period. We identified a variable x-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGL J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.
Periodic Emission from the Gamma-Ray Binary 1FGL J1018.6-5856
NASA Technical Reports Server (NTRS)
2012-01-01
Gamma-ray binaries are stellar systems containing a neutron star or black hole, with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy, A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL ]1018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable x-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGL ]1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.
Binary classification of items of interest in a repeatable process
Abell, Jeffrey A.; Spicer, John Patrick; Wincek, Michael Anthony; Wang, Hui; Chakraborty, Debejyo
2014-06-24
A system includes host and learning machines in electrical communication with sensors positioned with respect to an item of interest, e.g., a weld, and memory. The host executes instructions from memory to predict a binary quality status of the item. The learning machine receives signals from the sensor(s), identifies candidate features, and extracts features from the candidates that are more predictive of the binary quality status relative to other candidate features. The learning machine maps the extracted features to a dimensional space that includes most of the items from a passing binary class and excludes all or most of the items from a failing binary class. The host also compares the received signals for a subsequent item of interest to the dimensional space to thereby predict, in real time, the binary quality status of the subsequent item of interest.
SEARCHING FOR BINARY Y DWARFS WITH THE GEMINI MULTI-CONJUGATE ADAPTIVE OPTICS SYSTEM (GeMS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Opitz, Daniela; Tinney, C. G.; Faherty, Jacqueline K.
The NASA Wide-field Infrared Survey Explorer (WISE) has discovered almost all the known members of the new class of Y-type brown dwarfs. Most of these Y dwarfs have been identified as isolated objects in the field. It is known that binaries with L- and T-type brown dwarf primaries are less prevalent than either M-dwarf or solar-type primaries, they tend to have smaller separations and are more frequently detected in near-equal mass configurations. The binary statistics for Y-type brown dwarfs, however, are sparse, and so it is unclear if the same trends that hold for L- and T-type brown dwarfs alsomore » hold for Y-type ones. In addition, the detection of binary companions to very cool Y dwarfs may well be the best means available for discovering even colder objects. We present results for binary properties of a sample of five WISE Y dwarfs with the Gemini Multi-Conjugate Adaptive Optics System. We find no evidence for binary companions in these data, which suggests these systems are not equal-luminosity (or equal-mass) binaries with separations larger than ∼0.5–1.9 AU. For equal-mass binaries at an age of 5 Gyr, we find that the binary binding energies ruled out by our observations (i.e., 10{sup 42} erg) are consistent with those observed in previous studies of hotter ultra-cool dwarfs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuang Quntao; Gao Xun; Yu Qingjuan, E-mail: yuqj@pku.edu.cn
In this paper, we study possible signatures of binary planets or exomoons on the Rossiter-McLaughlin (R-M) effect. Our analyses show that the R-M effect for a binary planet or an exomoon during its complete transit phase can be divided into two parts. The first is the conventional one similar to the R-M effect from the transit of a single planet, of which the mass and the projected area are the combinations of the binary components; the second is caused by the orbital rotation of the binary components, which may add a sine- or linear-mode deviation to the stellar radial velocitymore » curve. We find that the latter effect can be up to several ten m s{sup -1}. Our numerical simulations as well as analyses illustrate that the distribution and dispersion of the latter effects obtained from multiple transit events can be used to constrain the dynamical configuration of the binary planet, such as how the inner orbit of the binary planet is inclined to its orbit rotating around the central star. We find that the signatures caused by the orbital rotation of the binary components are more likely to be revealed if the two components of a binary planet have different masses and mass densities, especially if the heavy one has a high mass density and the light one has a low density. Similar signatures on the R-M effect may also be revealed in a hierarchical triple star system containing a dark compact binary and a tertiary star.« less
A spectrum synthesis program for binary stars
NASA Technical Reports Server (NTRS)
Linnell, Albert P.; Hubeny, Ivan
1994-01-01
A new program produces synthetic spectra of binary stars at arbitrary values of orbital longitude, including longitudes of partial or complete eclipse. The stellar components may be distorted, either tidally or rotationally, or both. Either or both components may be rotating nonsynchronously. We illustrate the program performance with two cases: EE Peg, an eclipsing binary with small distortion, and SX Aur, an eclipsing binary that is close to contact.
NASA Astrophysics Data System (ADS)
Warner, Brian D.
2013-04-01
Results of the analysis of lightcurves of six binary asteroids obtained at the Palmer Divide Observatory are reported. Of the six, three were previously known to be binary: 9069 Hovland, (26471) 2000 AS152, and 1994 XD. The remaining three are new confirmed or probable binary discoveries made at PDO: 2047 Smetana, (5646) 1990 TR, and (52316) 1992 BD.
Self-organization in a system of binary strings with spatial interactions
NASA Astrophysics Data System (ADS)
Banzhaf, W.; Dittrich, P.; Eller, B.
1999-01-01
We consider an artificial reaction system whose components are binary strings. Upon encounter, two binary strings produce a third string which competes for storage space with the originators. String types or species can only survive when produced in sufficient numbers. Spatial interactions through introduction of a topology and rules for distance-dependent reactions are discussed. We observe various kinds of survival strategies of binary strings.
Exact Algorithms for Duplication-Transfer-Loss Reconciliation with Non-Binary Gene Trees.
Kordi, Misagh; Bansal, Mukul S
2017-06-01
Duplication-Transfer-Loss (DTL) reconciliation is a powerful method for studying gene family evolution in the presence of horizontal gene transfer. DTL reconciliation seeks to reconcile gene trees with species trees by postulating speciation, duplication, transfer, and loss events. Efficient algorithms exist for finding optimal DTL reconciliations when the gene tree is binary. In practice, however, gene trees are often non-binary due to uncertainty in the gene tree topologies, and DTL reconciliation with non-binary gene trees is known to be NP-hard. In this paper, we present the first exact algorithms for DTL reconciliation with non-binary gene trees. Specifically, we (i) show that the DTL reconciliation problem for non-binary gene trees is fixed-parameter tractable in the maximum degree of the gene tree, (ii) present an exponential-time, but in-practice efficient, algorithm to track and enumerate all optimal binary resolutions of a non-binary input gene tree, and (iii) apply our algorithms to a large empirical data set of over 4700 gene trees from 100 species to study the impact of gene tree uncertainty on DTL-reconciliation and to demonstrate the applicability and utility of our algorithms. The new techniques and algorithms introduced in this paper will help biologists avoid incorrect evolutionary inferences caused by gene tree uncertainty.
NASA Astrophysics Data System (ADS)
Choi, Yonghan; Cha, Dong-Hyun; Lee, Myong-In; Kim, Joowan; Jin, Chun-Sil; Park, Sang-Hun; Joh, Min-Su
2017-06-01
A total of three binary tropical cyclone (TC) cases over the Western North Pacific are selected to investigate the effects of satellite radiance data assimilation on analyses and forecasts of binary TCs. Two parallel cycling experiments with a 6 h interval are performed for each binary TC case, and the difference between the two experiments is whether satellite radiance observations are assimilated. Satellite radiance observations are assimilated using the Weather Research and Forecasting Data Assimilation (WRFDA)'s three-dimensional variational (3D-Var) system, which includes the observation operator, quality control procedures, and bias correction algorithm for radiance observations. On average, radiance assimilation results in slight improvements of environmental fields and track forecasts of binary TC cases, but the detailed effects vary with the case. When there is no direct interaction between binary TCs, radiance assimilation leads to better depictions of environmental fields, and finally it results in improved track forecasts. However, positive effects of radiance assimilation on track forecasts can be reduced when there exists a direct interaction between binary TCs and intensities/structures of binary TCs are not represented well. An initialization method (e.g., dynamic initialization) combined with radiance assimilation and/or more advanced DA techniques (e.g., hybrid method) can be considered to overcome these limitations.
The iron complex in high mass X-ray binaries
NASA Astrophysics Data System (ADS)
Giménez-García, A.; Torrejón, J. M.; Martínez-Núñez, S.; Rodes-Rocas, J. J.; Bernabéu, G.
2013-05-01
An X-ray binary system consists of a compact object (a white dwarf, a neutron star or a black hole) accreting material from an optical companion star. The spectral type of the optical component strongly affects the mass transfer to the compact object. This is the reason why X-ray binary systems are usually divided in High Mass X-ray Binaries (companion O or B type, denoted HMXB) and Low Mass X-ray Binaries (companion type A or later). The HMXB are divided depending on the partner's luminosity class in two main groups: the Supergiant X-ray Binaries (SGXB) and Be X-ray Binaries (BeXB). We introduce the spectral characterization of a sample of 9 High Mass X-ray Binaries in the iron complex (˜ 6-7 keV). This spectral range is a fundamental tool in the study of the surrounding material of these systems. The sources have been divided into three main groups according to their current standard classification: SGXB, BeXB and γ Cassiopeae-like. The purpose of this work is to look for qualitative patterns in the iron complex, around 6-7 keV, in order to discern between current different classes that make up the group of HMXB. We find significant spectral patterns for each of the sets, reflecting differences in accretion physics thereof.
The formation of high-mass binary star systems
NASA Astrophysics Data System (ADS)
Lund, Kristin; Bonnell, Ian A.
2018-06-01
We develop a semi-analytic model to investigate how accretion onto wide low-mass binary stars can result in a close high-mass binary system. The key ingredient is to allow mass accretion while limiting the gain in angular momentum. We envision this process as being regulated by an external magnetic field during infall. Molecular clouds are made to collapse spherically with material either accreting onto the stars or settling in a disk. Our aim is to determine what initial conditions are needed for the resulting binary to be both massive and close. Whether material accretes, and what happens to the binary separation as a result, depends on the relative size of its specific angular momentum, compared to the specific angular momentum of the binary. When we add a magnetic field we are introducing a torque to the system which is capable of stripping the molecular cloud of some of its angular momentum, and consequently easing the formation of high-mass binaries. Our results suggest that clouds in excess of 1000 M⊙ and radii of 0.5 pc or larger, can easily form binary systems with masses in excess of 25 M⊙ and separations of order 10 R⊙ with magnetic fields of order 100 μG (mass-to-flux ratios of order 5).
NASA Astrophysics Data System (ADS)
Eldridge, J. J.; Stanway, E. R.; Xiao, L.; McClelland, L. A. S.; Taylor, G.; Ng, M.; Greis, S. M. L.; Bray, J. C.
2017-11-01
The Binary Population and Spectral Synthesis suite of binary stellar evolution models and synthetic stellar populations provides a framework for the physically motivated analysis of both the integrated light from distant stellar populations and the detailed properties of those nearby. We present a new version 2.1 data release of these models, detailing the methodology by which Binary Population and Spectral Synthesis incorporates binary mass transfer and its effect on stellar evolution pathways, as well as the construction of simple stellar populations. We demonstrate key tests of the latest Binary Population and Spectral Synthesis model suite demonstrating its ability to reproduce the colours and derived properties of resolved stellar populations, including well-constrained eclipsing binaries. We consider observational constraints on the ratio of massive star types and the distribution of stellar remnant masses. We describe the identification of supernova progenitors in our models, and demonstrate a good agreement to the properties of observed progenitors. We also test our models against photometric and spectroscopic observations of unresolved stellar populations, both in the local and distant Universe, finding that binary models provide a self-consistent explanation for observed galaxy properties across a broad redshift range. Finally, we carefully describe the limitations of our models, and areas where we expect to see significant improvement in future versions.
Black Hole Mergers in Galactic Nuclei Induced by the Eccentric Kozai–Lidov Effect
NASA Astrophysics Data System (ADS)
Hoang, Bao-Minh; Naoz, Smadar; Kocsis, Bence; Rasio, Frederic A.; Dosopoulou, Fani
2018-04-01
Nuclear star clusters around a central massive black hole (MBH) are expected to be abundant in stellar black hole (BH) remnants and BH–BH binaries. These binaries form a hierarchical triple system with the central MBH, and gravitational perturbations from the MBH can cause high-eccentricity excitation in the BH–BH binary orbit. During this process, the eccentricity may approach unity, and the pericenter distance may become sufficiently small so that gravitational-wave emission drives the BH–BH binary to merge. In this work, we construct a simple proof-of-concept model for this process, and specifically, we study the eccentric Kozai–Lidov mechanism in unequal-mass, soft BH–BH binaries. Our model is based on a set of Monte Carlo simulations for BH–BH binaries in galactic nuclei, taking into account quadrupole- and octupole-level secular perturbations, general relativistic precession, and gravitational-wave emission. For a typical steady-state number of BH–BH binaries, our model predicts a total merger rate of ∼1–3 {Gpc} ‑3 {yr} ‑1, depending on the assumed density profile in the nucleus. Thus, our mechanism could potentially compete with other dynamical formation processes for merging BH–BH binaries, such as the interactions of stellar BHs in globular clusters or in nuclear star clusters without an MBH.
NASA Astrophysics Data System (ADS)
Eggleton, Peter P.
The mechanisms by which the periods of wide binaries (mass 8 solar mass or less and period 10-3000 d) are lengthened or shortened are discussed, synthesizing the results of recent theoretical investigations. A system of nomenclature involving seven evolutionary states, three geometrical states, and 10 types of orbital-period evolution is developed and applied; classifications of 71 binaries are presented in a table along with the basic observational parameters. Evolutionary processes in wide binaries (single-star-type winds, magnetic braking with tidal friction, and companion-reinforced attrition), late case B systems, low-mass X-ray binaries, and triple systems are examined in detail, and possible evolutionary paths are shown in diagrams.
Optimization of binary thermodynamic and phase diagram data
NASA Astrophysics Data System (ADS)
Bale, Christopher W.; Pelton, A. D.
1983-03-01
An optimization technique based upon least squares regression is presented to permit the simultaneous analysis of diverse experimental binary thermodynamic and phase diagram data. Coefficients of polynomial expansions for the enthalpy and excess entropy of binary solutions are obtained which can subsequently be used to calculate the thermodynamic properties or the phase diagram. In an interactive computer-assisted analysis employing this technique, one can critically analyze a large number of diverse data in a binary system rapidly, in a manner which is fully self-consistent thermodynamically. Examples of applications to the Bi-Zn, Cd-Pb, PbCl2-KCl, LiCl-FeCl2, and Au-Ni binary systems are given.
Bayesian performance metrics of binary sensors in homeland security applications
NASA Astrophysics Data System (ADS)
Jannson, Tomasz P.; Forrester, Thomas C.
2008-04-01
Bayesian performance metrics, based on such parameters, as: prior probability, probability of detection (or, accuracy), false alarm rate, and positive predictive value, characterizes the performance of binary sensors; i.e., sensors that have only binary response: true target/false target. Such binary sensors, very common in Homeland Security, produce an alarm that can be true, or false. They include: X-ray airport inspection, IED inspections, product quality control, cancer medical diagnosis, part of ATR, and many others. In this paper, we analyze direct and inverse conditional probabilities in the context of Bayesian inference and binary sensors, using X-ray luggage inspection statistical results as a guideline.
Fast optimization of binary clusters using a novel dynamic lattice searching method.
Wu, Xia; Cheng, Wen
2014-09-28
Global optimization of binary clusters has been a difficult task despite of much effort and many efficient methods. Directing toward two types of elements (i.e., homotop problem) in binary clusters, two classes of virtual dynamic lattices are constructed and a modified dynamic lattice searching (DLS) method, i.e., binary DLS (BDLS) method, is developed. However, it was found that the BDLS can only be utilized for the optimization of binary clusters with small sizes because homotop problem is hard to be solved without atomic exchange operation. Therefore, the iterated local search (ILS) method is adopted to solve homotop problem and an efficient method based on the BDLS method and ILS, named as BDLS-ILS, is presented for global optimization of binary clusters. In order to assess the efficiency of the proposed method, binary Lennard-Jones clusters with up to 100 atoms are investigated. Results show that the method is proved to be efficient. Furthermore, the BDLS-ILS method is also adopted to study the geometrical structures of (AuPd)79 clusters with DFT-fit parameters of Gupta potential.
Alternation blindness in the representation of binary sequences.
Yu, Ru Qi; Osherson, Daniel; Zhao, Jiaying
2018-03-01
Binary information is prevalent in the environment and contains 2 distinct outcomes. Binary sequences consist of a mixture of alternation and repetition. Understanding how people perceive such sequences would contribute to a general theory of information processing. In this study, we examined how people process alternation and repetition in binary sequences. Across 4 paradigms involving estimation, working memory, change detection, and visual search, we found that the number of alternations is underestimated compared with repetitions (Experiment 1). Moreover, recall for binary sequences deteriorates as the sequence alternates more (Experiment 2). Changes in bits are also harder to detect as the sequence alternates more (Experiment 3). Finally, visual targets superimposed on bits of a binary sequence take longer to process as alternation increases (Experiment 4). Overall, our results indicate that compared with repetition, alternation in a binary sequence is less salient in the sense of requiring more attention for successful encoding. The current study thus reveals the cognitive constraints in the representation of alternation and provides a new explanation for the overalternation bias in randomness perception. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Chen, Han; Wang, Chaolong; Conomos, Matthew P; Stilp, Adrienne M; Li, Zilin; Sofer, Tamar; Szpiro, Adam A; Chen, Wei; Brehm, John M; Celedón, Juan C; Redline, Susan; Papanicolaou, George J; Thornton, Timothy A; Laurie, Cathy C; Rice, Kenneth; Lin, Xihong
2016-04-07
Linear mixed models (LMMs) are widely used in genome-wide association studies (GWASs) to account for population structure and relatedness, for both continuous and binary traits. Motivated by the failure of LMMs to control type I errors in a GWAS of asthma, a binary trait, we show that LMMs are generally inappropriate for analyzing binary traits when population stratification leads to violation of the LMM's constant-residual variance assumption. To overcome this problem, we develop a computationally efficient logistic mixed model approach for genome-wide analysis of binary traits, the generalized linear mixed model association test (GMMAT). This approach fits a logistic mixed model once per GWAS and performs score tests under the null hypothesis of no association between a binary trait and individual genetic variants. We show in simulation studies and real data analysis that GMMAT effectively controls for population structure and relatedness when analyzing binary traits in a wide variety of study designs. Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Using Model Point Spread Functions to Identifying Binary Brown Dwarf Systems
NASA Astrophysics Data System (ADS)
Matt, Kyle; Stephens, Denise C.; Lunsford, Leanne T.
2017-01-01
A Brown Dwarf (BD) is a celestial object that is not massive enough to undergo hydrogen fusion in its core. BDs can form in pairs called binaries. Due to the great distances between Earth and these BDs, they act as point sources of light and the angular separation between binary BDs can be small enough to appear as a single, unresolved object in images, according to Rayleigh Criterion. It is not currently possible to resolve some of these objects into separate light sources. Stephens and Noll (2006) developed a method that used model point spread functions (PSFs) to identify binary Trans-Neptunian Objects, we will use this method to identify binary BD systems in the Hubble Space Telescope archive. This method works by comparing model PSFs of single and binary sources to the observed PSFs. We also use a method to compare model spectral data for single and binary fits to determine the best parameter values for each component of the system. We describe these methods, its challenges and other possible uses in this poster.
The binary progenitors of short and long GRBs and their gravitational-wave emission
NASA Astrophysics Data System (ADS)
Rueda, J. A.; Ruffini, R.; Rodriguez, J. F.; Muccino, M.; Aimuratov, Y.; Barres de Almeida, U.; Becerra, L.; Bianco, C. L.; Cherubini, C.; Filippi, S.; Kovacevic, M.; Moradi, R.; Pisani, G. B.; Wang, Y.
2018-01-01
We have sub-classified short and long-duration gamma-ray bursts (GRBs) into seven families according to the binary nature of their progenitors. Short GRBs are produced in mergers of neutron-star binaries (NS-NS) or neutron star-black hole binaries (NS-BH). Long GRBs are produced via the induced gravitational collapse (IGC) scenario occurring in a tight binary system composed of a carbon-oxygen core (COcore) and a NS companion. The COcore explodes as type Ic supernova (SN) leading to a hypercritical accretion process onto the NS: if the accretion is sufficiently high the NS reaches the critical mass and collapses forming a BH, otherwise a massive NS is formed. Therefore long GRBs can lead either to NS-BH or to NS-NS binaries depending on the entity of the accretion. We discuss for the above compact-object binaries: 1) the role of the NS structure and the nuclear equation of state; 2) the occurrence rates obtained from X and gamma-rays observations; 3) the predicted annual number of detections by the Advanced LIGO interferometer of their gravitational-wave emission.
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2018-03-01
The LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star component will add to the contribution from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude ΩGW(f =25 Hz )=1. 8-1.3+2.7×10-9 with 90% confidence, compared with ΩGW(f =25 Hz )=1. 1-0.7+1.2×10-9 from binary black holes alone. Assuming the most probable rate for compact binary mergers, we find that the total background may be detectable with a signal-to-noise-ratio of 3 after 40 months of total observation time, based on the expected timeline for Advanced LIGO and Virgo to reach their design sensitivity.
Modeling the binary circumstellar medium of Type IIb/L/n supernova progenitors
NASA Astrophysics Data System (ADS)
Kolb, Christopher; Blondin, John; Borkowski, Kazik; Reynolds, Stephen
2018-01-01
Circumstellar interaction in close binary systems can produce a highly asymmetric environment, particularly for systems with a mass outflow velocity comparable to the binary orbital speed. This asymmetric circumstellar medium (CSM) becomes visible after a supernova explosion, when SN radiation illuminates the gas and when SN ejecta collide with the CSM. We aim to better understand the development of this asymmetric CSM, particularly for binary systems containing a red supergiant progenitor, and to study its impact on supernova morphology. To achieve this, we model the asymmetric wind and subsequent supernova explosion in full 3D hydrodynamics using the shock-capturing hydro code VH-1 on a spherical yin-yang grid. Wind interaction is computed in a frame co-rotating with the binary system, and gas is accelerated using a radiation pressure-driven wind model where optical depth of the radiative force is dependent on azimuthally-averaged gas density. We present characterization of our asymmetric wind density distribution model by fitting a polar-to-equatorial density contrast function to free parameters such as binary separation distance, primary mass loss rate, and binary mass ratio.
Effect of binary fraction on color-magnitude diagram of NGC 1904
NASA Astrophysics Data System (ADS)
Li, Zhongmu; Deng, Yangyang
2018-05-01
The age of a southern globular cluster in Milky Way, NGC 1904, was shown to be larger than the typical age of the universe, around 13.7 Gyr, by some photometric studies which assumed all stars as single stars. Besides the uncertainties in photometry, isochrone and fitting technique, the neglect of binary stars possibly distorted the result. We study the effect of binary fraction on the color-magnitude diagram (CMD) of NGC 1904, via a new tool for CMD studies, Powerful CMD, which can determine binary fraction, age, metallicity, distance modulus, color excess, rotating star fraction and star formation history simultaneously. We finally obtain the youngest age of 14.1±2.1 Gyr with a zero-age binary fraction of 60 percent for cluster NGC 1904. The result is consistent with the age of the universe. Although our result suggests that binary fraction affects the determination of age slightly, it can improve the fitting to observed CMD, in particular blue stragglers. This suggests us to consider the effect of binaries in the studies of star clusters.
Envelopes in eclipsing binary stars
NASA Technical Reports Server (NTRS)
Huang, S.
1972-01-01
Theoretical research on eclipsing binaries is presented. The specific areas of investigation are the following: (1) the relevance of envelopes to the study of the light curves of eclipsing binaries, (2) the disk envelope, and (3) the spherical envelope.
Fast transient X-rays from flare stars and RS CVn binaries
NASA Astrophysics Data System (ADS)
Rao, A. R.; Vahia, M. N.
1987-12-01
The authors have studied the fast transient X-ray (FTX) observations of the Ariel V satellite. They find that the FTX have characteristics very similar to the stellar flares detected in flare stars and RS CVn binaries by other satellites. It is found that, of the possible candidate objects, only the flare stars and RS CVn binaries can be associated with the Ariel V observations. 11 new flare stars and RS CVn binaries are associated with the FTX. This brings the total number of identifications with the flare stars and RS CVn binaries to 17. The authors further study the flare properties and correlate the peak X-ray luminosity of these Ariel V sources with the bolometric luminosity of the candidate stars. They discuss a solar flare model and show that the observed correlation can be explained under the assumption of constant temperature loops of binary sizes.
Orbital motion in pre-main sequence binaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer, G. H.; Prato, L.; Simon, M.
2014-06-01
We present results from our ongoing program to map the visual orbits of pre-main sequence (PMS) binaries in the Taurus star forming region using adaptive optics imaging at the Keck Observatory. We combine our results with measurements reported in the literature to analyze the orbital motion for each binary. We present preliminary orbits for DF Tau, T Tau S, ZZ Tau, and the Pleiades binary HBC 351. Seven additional binaries show curvature in their relative motion. Currently, we can place lower limits on the orbital periods for these systems; full solutions will be possible with more orbital coverage. Five othermore » binaries show motion that is indistinguishable from linear motion. We suspect that these systems are bound and might show curvature with additional measurements in the future. The observations reported herein lay critical groundwork toward the goal of measuring precise masses for low-mass PMS stars.« less
NASA Technical Reports Server (NTRS)
Mccluskey, G. E.; Kondo, Y.
1983-01-01
The eclipsing binary system R Arae = HD 149730 is a relatively bright southern system with an orbital period of about 4.4 days. It is a single-lined spectroscopic binary. The spectral class of the primary component is B9 Vp. The system was included in a study of mass flow and evolution in close binary systems using the International Ultraviolet Explorer satellite (IUE). Four spectra in the wavelength range from 1150 to 1900 A were obtained with the far-ultraviolet SWP camera, and six spectra in the range from 1900 to 3200 range were obtained with the mid-ultraviolet LWR camera. The close binary R Arae exhibits very unusual ultraviolet spectra. It appears that no other close binary system, observed with any of the orbiting satellites, shows outside-eclipse ultraviolet continuum flux variations of this nature.
A Maximum Likelihood Approach to Functional Mapping of Longitudinal Binary Traits
Wang, Chenguang; Li, Hongying; Wang, Zhong; Wang, Yaqun; Wang, Ningtao; Wang, Zuoheng; Wu, Rongling
2013-01-01
Despite their importance in biology and biomedicine, genetic mapping of binary traits that change over time has not been well explored. In this article, we develop a statistical model for mapping quantitative trait loci (QTLs) that govern longitudinal responses of binary traits. The model is constructed within the maximum likelihood framework by which the association between binary responses is modeled in terms of conditional log odds-ratios. With this parameterization, the maximum likelihood estimates (MLEs) of marginal mean parameters are robust to the misspecification of time dependence. We implement an iterative procedures to obtain the MLEs of QTL genotype-specific parameters that define longitudinal binary responses. The usefulness of the model was validated by analyzing a real example in rice. Simulation studies were performed to investigate the statistical properties of the model, showing that the model has power to identify and map specific QTLs responsible for the temporal pattern of binary traits. PMID:23183762
Luo, Xiaoming; Cao, Juhang; He, Limin; Wang, Hongping; Yan, Haipeng; Qin, Yahua
2017-01-01
The coalescence process of binary droplets in oil under ultrasonic standing waves was investigated with high-speed photography. Three motion models of binary droplets in coalescence process were illustrated: (1) slight translational oscillation; (2) sinusoidal translational oscillation; (3) migration along with acoustic streaming. To reveal the droplets coalescence mechanisms, the influence of main factors (such as acoustic intensity, droplet size, viscosity and interfacial tension, etc) on the motion and coalescence of binary droplets was studied under ultrasonic standing waves. Results indicate that the shortest coalescence time is achieved when binary droplets show sinusoidal translational oscillation. The corresponding acoustic intensity in this case is the optimum acoustic intensity. Under the optimum acoustic intensity, drop size decrease will bring about coalescence time decrease by enhancing the binary droplets oscillation. Moreover, there is an optimum interfacial tension to achieve the shortest coalescence time. Copyright © 2016 Elsevier B.V. All rights reserved.
Black hole/pulsar binaries in the Galaxy
NASA Astrophysics Data System (ADS)
Shao, Yong; Li, Xiang-Dong
2018-06-01
We have performed population synthesis calculation on the formation of binaries containing a black hole (BH) and a neutron star (NS) in the Galactic disc. Some of important input parameters, especially for the treatment of common envelope evolution, are updated in the calculation. We have discussed the uncertainties from the star formation rate of the Galaxy and the velocity distribution of NS kicks on the birthrate (˜ 0.6-13 M yr^{-1}) of BH/NS binaries. From incident BH/NS binaries, by modelling the orbital evolution due to gravitational wave radiation and the NS evolution as radio pulsars, we obtain the distributions of the observable parameters such as the orbital period, eccentricity, and pulse period of the BH/pulsar binaries. We estimate that there may be ˜3-80 BH/pulsar binaries in the Galactic disc and around 10 per cent of them could be detected by the Five-hundred-metre Aperture Spherical radio Telescope.
Measuring Parameters of Massive Black Hole Binaries with Partially-Aligned Spins
NASA Technical Reports Server (NTRS)
Lang, Ryan N.; Hughes, Scott A.; Cornish, Neil J.
2010-01-01
It is important to understand how well the gravitational-wave observatory LISA can measure parameters of massive black hole binaries. It has been shown that including spin precession in the waveform breaks degeneracies and produces smaller expected parameter errors than a simpler, precession-free analysis. However, recent work has shown that gas in binaries can partially align the spins with the orbital angular momentum, thus reducing the precession effect. We show how this degrades the earlier results, producing more pessimistic errors in gaseous mergers. However, we then add higher harmonics to the signal model; these also break degeneracies, but they are not affected by the presence of gas. The harmonics often restore the errors in partially-aligned binaries to the same as, or better than/ those that are obtained for fully precessing binaries with no harmonics. Finally, we investigate what LISA measurements of spin alignment can tell us about the nature of gas around a binary,
Periodic Emission from the Gamma-Ray Binary 1FGL J1018.6-5856
Ackermann, M.
2012-01-12
Gamma-ray binaries are stellar systems containing a neutron star or black hole with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL J1018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable X-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGLmore » J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.« less
On the Induced Gravitational Collapse
NASA Astrophysics Data System (ADS)
Becerra, Laura M.; Bianco, Carlo; Fryer, Chris; Rueda, Jorge; Ruffini, Remo
2018-01-01
The induced gravitational collapse (IGC) paradigm has been applied to explain the long gamma ray burst (GRB) associated with type Ic supernova, and recently the Xray flashes (XRFs). The progenitor is a binary systems of a carbon-oxygen core (CO) and a neutron star (NS). The CO core collapses and undergoes a supernova explosion which triggers the hypercritical accretion onto the NS companion (up to 10-2 M⊙s-1). For the binary driven hypernova (BdHNe), the binary system is enough bound, the NS reach its critical mass, and collapse to a black hole (BH) with a GRB emission characterized by an isotropic energy Eiso > 1052 erg. Otherwise, for binary systems with larger binary separations, the hypercritical accretion onto the NS is not sufficient to induced its gravitational collapse, a X-ray flash is produced with Eiso < 1052 erg. We're going to focus in identify the binary parameters that limits the BdHNe systems with the XRFs systems.
Binary classification of items of interest in a repeatable process
Abell, Jeffrey A; Spicer, John Patrick; Wincek, Michael Anthony; Wang, Hui; Chakraborty, Debejyo
2015-01-06
A system includes host and learning machines. Each machine has a processor in electrical communication with at least one sensor. Instructions for predicting a binary quality status of an item of interest during a repeatable process are recorded in memory. The binary quality status includes passing and failing binary classes. The learning machine receives signals from the at least one sensor and identifies candidate features. Features are extracted from the candidate features, each more predictive of the binary quality status. The extracted features are mapped to a dimensional space having a number of dimensions proportional to the number of extracted features. The dimensional space includes most of the passing class and excludes at least 90 percent of the failing class. Received signals are compared to the boundaries of the recorded dimensional space to predict, in real time, the binary quality status of a subsequent item of interest.
LISA verification binaries with updated distances from Gaia Data Release 2
NASA Astrophysics Data System (ADS)
Kupfer, T.; Korol, V.; Shah, S.; Nelemans, G.; Marsh, T. R.; Ramsay, G.; Groot, P. J.; Steeghs, D. T. H.; Rossi, E. M.
2018-06-01
Ultracompact binaries with orbital periods less than a few hours will dominate the gravitational wave signal in the mHz regime. Until recently, 10 systems were expected have a predicted gravitational wave signal strong enough to be detectable by the Laser Interferometer Space Antenna (LISA), the so-called `verification binaries'. System parameters, including distances, are needed to provide an accurate prediction of the expected gravitational wave strength to be measured by LISA. Using parallaxes from Gaia Data Release 2 we calculate signal-to-noise ratios (SNR) for ≈50 verification binary candidates. We find that 11 binaries reach a SNR≥20, two further binaries reaching a SNR≥5 and three more systems are expected to have a SNR≈5 after four years integration with LISA. For these 16 systems we present predictions of the gravitational wave amplitude (A) and parameter uncertainties from Fisher information matrix on the amplitude (A) and inclination (ι).
2007 TY430: A COLD CLASSICAL KUIPER BELT TYPE BINARY IN THE PLUTINO POPULATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheppard, Scott S.; Ragozzine, Darin; Trujillo, Chadwick, E-mail: sheppard@dtm.ciw.edu
2012-03-15
Kuiper Belt object 2007 TY430 is the first wide, equal-sized, binary known in the 3:2 mean motion resonance with Neptune. The two components have a maximum separation of about 1 arcsec and are on average less than 0.1 mag different in apparent magnitude with identical ultra-red colors (g - i = 1.49 {+-} 0.01 mag). Using nearly monthly observations of 2007 TY430 from 2007 to 2011, the orbit of the mutual components was found to have a period of 961.2 {+-} 4.6 days with a semi-major axis of 21000 {+-} 160 km and eccentricity of 0.1529 {+-} 0.0028. The inclinationmore » with respect to the ecliptic is 15.68 {+-} 0.22 deg and extensive observations have allowed the mirror orbit to be eliminated as a possibility. The total mass for the binary system was found to be 7.90 {+-} 0.21 Multiplication-Sign 10{sup 17} kg. Equal-sized, wide binaries and ultra-red colors are common in the low-inclination 'cold' classical part of the Kuiper Belt and likely formed through some sort of three-body interactions within a much denser Kuiper Belt. To date 2007 TY430 is the only ultra-red, equal-sized binary known outside of the classical Kuiper Belt population. Numerical simulations suggest 2007 TY430 is moderately unstable in the outer part of the 3:2 resonance and thus 2007 TY430 is likely an escaped 'cold' classical object that later got trapped in the 3:2 resonance. Similar to the known equal-sized, wide binaries in the cold classical population, the binary 2007 TY430 requires a high albedo and very low density structure to obtain the total mass found for the pair. For a realistic minimum density of 0.5 g cm{sup -3} the albedo of 2007 TY430 would be greater than 0.17. For reasonable densities, the radii of either component should be less than 60 km, and thus the relatively low eccentricity of the binary is interesting since no tides should be operating on the bodies at their large distances from each other. The low prograde inclination of the binary also makes it unlikely that the Kozai mechanism could have altered the orbit, making the 2007 TY430 binary orbit likely one of the few relatively unaltered primordial binary orbits known. Under some binary formation models, the low-inclination prograde orbit of the 2007 TY430 binary indicates formation within a relatively high velocity regime in the Kuiper Belt.« less
White dwarf-main sequence binaries from LAMOST: the DR5 catalogue
NASA Astrophysics Data System (ADS)
Ren, J.-J.; Rebassa-Mansergas, A.; Parsons, S. G.; Liu, X.-W.; Luo, A.-L.; Kong, X.; Zhang, H.-T.
2018-07-01
We present the data release (DR) 5 catalogue of white dwarf-main sequence (WDMS) binaries from the Large sky Area Multi-Object fibre Spectroscopic Telescope (LAMOST). The catalogue contains 876 WDMS binaries, of which 757 are additions to our previous LAMOST DR1 sample and 357 are systems that have not been published before. We also describe a LAMOST-dedicated survey that aims at obtaining spectra of photometrically selected WDMS binaries from the Sloan Digital Sky Survey (SDSS) that are expected to contain cool white dwarfs and/or early-type M dwarf companions. This is a population under-represented in previous SDSS WDMS binary catalogues. We determine the stellar parameters (white dwarf effective temperatures, surface gravities and masses, and M dwarf spectral types) of the LAMOST DR5 WDMS binaries and make use of the parameter distributions to analyse the properties of the sample. We find that, despite our efforts, systems containing cool white dwarfs remain under-represented. Moreover, we make use of LAMOST DR5 and SDSS DR14 (when available) spectra to measure the Na I λλ 8183.27, 8194.81 absorption doublet and/or Hα emission radial velocities of our systems. This allows identifying 128 binaries displaying significant radial velocity variations, 76 of which are new. Finally, we cross-match our catalogue with the Catalina Surveys and identify 57 systems displaying light-curve variations. These include 16 eclipsing systems, two of which are new, and nine binaries that are new eclipsing candidates. We calculate periodograms from the photometric data and measure (estimate) the orbital periods of 30 (15) WDMS binaries.
Shell-binary nanoparticle materials with variable electrical and electro-mechanical properties.
Zhang, P; Bousack, H; Dai, Y; Offenhäusser, A; Mayer, D
2018-01-18
Nanoparticle (NP) materials with the capability to adjust their electrical and electro-mechanical properties facilitate applications in strain sensing technology. Traditional NP materials based on single component NPs lack a systematic and effective means of tuning their electrical and electro-mechanical properties. Here, we report on a new type of shell-binary NP material fabricated by self-assembly with either homogeneous or heterogeneous arrangements of NPs. Variable electrical and electro-mechanical properties were obtained for both materials. We show that the electrical and electro-mechanical properties of these shell-binary NP materials are highly tunable and strongly affected by the NP species as well as their corresponding volume fraction ratio. The conductivity and the gauge factor of these shell-binary NP materials can be altered by about five and two orders of magnitude, respectively. These shell-binary NP materials with different arrangements of NPs also demonstrate different volume fraction dependent electro-mechanical properties. The shell-binary NP materials with a heterogeneous arrangement of NPs exhibit a peaking of the sensitivity at medium mixing ratios, which arises from the aggregation induced local strain enhancement. Studies on the electron transport regimes and micro-morphologies of these shell-binary NP materials revealed the different mechanisms accounting for the variable electrical and electro-mechanical properties. A model based on effective medium theory is used to describe the electrical and electro-mechanical properties of such shell-binary nanomaterials and shows an excellent match with experiment data. These shell-binary NP materials possess great potential applications in high-performance strain sensing technology due to their variable electrical and electro-mechanical properties.
Local Multi-Grouped Binary Descriptor With Ring-Based Pooling Configuration and Optimization.
Gao, Yongqiang; Huang, Weilin; Qiao, Yu
2015-12-01
Local binary descriptors are attracting increasingly attention due to their great advantages in computational speed, which are able to achieve real-time performance in numerous image/vision applications. Various methods have been proposed to learn data-dependent binary descriptors. However, most existing binary descriptors aim overly at computational simplicity at the expense of significant information loss which causes ambiguity in similarity measure using Hamming distance. In this paper, by considering multiple features might share complementary information, we present a novel local binary descriptor, referred as ring-based multi-grouped descriptor (RMGD), to successfully bridge the performance gap between current binary and floated-point descriptors. Our contributions are twofold. First, we introduce a new pooling configuration based on spatial ring-region sampling, allowing for involving binary tests on the full set of pairwise regions with different shapes, scales, and distances. This leads to a more meaningful description than the existing methods which normally apply a limited set of pooling configurations. Then, an extended Adaboost is proposed for an efficient bit selection by emphasizing high variance and low correlation, achieving a highly compact representation. Second, the RMGD is computed from multiple image properties where binary strings are extracted. We cast multi-grouped features integration as rankSVM or sparse support vector machine learning problem, so that different features can compensate strongly for each other, which is the key to discriminativeness and robustness. The performance of the RMGD was evaluated on a number of publicly available benchmarks, where the RMGD outperforms the state-of-the-art binary descriptors significantly.
Choice of optimal working fluid for binary power plants at extremely low temperature brine
NASA Astrophysics Data System (ADS)
Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.
2016-12-01
The geothermal energy development problems based on using binary power plants utilizing lowpotential geothermal resources are considered. It is shown that one of the possible ways of increasing the efficiency of heat utilization of geothermal brine in a wide temperature range is the use of multistage power systems with series-connected binary power plants based on incremental primary energy conversion. Some practically significant results of design-analytical investigations of physicochemical properties of various organic substances and their influence on the main parameters of the flowsheet and the technical and operational characteristics of heat-mechanical and heat-exchange equipment for binary power plant operating on extremely-low temperature geothermal brine (70°C) are presented. The calculation results of geothermal brine specific flow rate, capacity (net), and other operation characteristics of binary power plants with the capacity of 2.5 MW at using various organic substances are a practical interest. It is shown that the working fluid selection significantly influences on the parameters of the flowsheet and the operational characteristics of the binary power plant, and the problem of selection of working fluid is in the search for compromise based on the priorities in the field of efficiency, safety, and ecology criteria of a binary power plant. It is proposed in the investigations on the working fluid selection of the binary plant to use the plotting method of multiaxis complex diagrams of relative parameters and characteristic of binary power plants. Some examples of plotting and analyzing these diagrams intended to choose the working fluid provided that the efficiency of geothermal brine is taken as main priority.
Flare Activity of Wide Binary Stars with Kepler
NASA Astrophysics Data System (ADS)
Clarke, Riley W.; Davenport, James R. A.; Covey, Kevin R.; Baranec, Christoph
2018-01-01
We present an analysis of flare activity in wide binary stars using a combination of value-added data sets from the NASA Kepler mission. The target list contains a set of previously discovered wide binary star systems identified by proper motions in the Kepler field. We cross-matched these systems with estimates of flare activity for ∼200,000 stars in the Kepler field, allowing us to compare relative flare luminosity between stars in coeval binaries. From a sample of 184 previously known wide binaries in the Kepler field, we find 58 with detectable flare activity in at least 1 component, 33 of which are similar in mass (q > 0.8). Of these 33 equal-mass binaries, the majority display similar (±1 dex) flare luminosity between both stars, as expected for stars of equal mass and age. However, we find two equal-mass pairs where the secondary (lower mass) star is more active than its counterpart, and two equal-mass pairs where the primary star is more active. The stellar rotation periods are also anomalously fast for stars with elevated flare activity. Pairs with discrepant rotation and activity qualitatively seem to have lower mass ratios. These outliers may be due to tidal spin-up, indicating these wide binaries could be hierarchical triple systems. We additionally present high-resolution adaptive optics images for two wide binary systems to test this hypothesis. The demographics of stellar rotation and magnetic activity between stars in wide binaries may be useful indicators for discerning the formation scenarios of these systems.
The influence of massive black hole binaries on the morphology of merger remnants
NASA Astrophysics Data System (ADS)
Bortolas, E.; Gualandris, A.; Dotti, M.; Read, J. I.
2018-06-01
Massive black hole (MBH) binaries, formed as a result of galaxy mergers, are expected to harden by dynamical friction and three-body stellar scatterings, until emission of gravitational waves (GWs) leads to their final coalescence. According to recent simulations, MBH binaries can efficiently harden via stellar encounters only when the host geometry is triaxial, even if only modestly, as angular momentum diffusion allows an efficient repopulation of the binary loss cone. In this paper, we carry out a suite of N-body simulations of equal-mass galaxy collisions, varying the initial orbits and density profiles for the merging galaxies and running simulations both with and without central MBHs. We find that the presence of an MBH binary in the remnant makes the system nearly oblate, aligned with the galaxy merger plane, within a radius enclosing 100 MBH masses. We never find binary hosts to be prolate on any scale. The decaying MBHs slightly enhance the tangential anisotropy in the centre of the remnant due to angular momentum injection and the slingshot ejection of stars on nearly radial orbits. This latter effect results in about 1 per cent of the remnant stars being expelled from the galactic nucleus. Finally, we do not find any strong connection between the remnant morphology and the binary hardening rate, which depends only on the inner density slope of the remnant galaxy. Our results suggest that MBH binaries are able to coalesce within a few Gyr, even if the binary is found to partially erase the merger-induced triaxiality from the remnant.
Population trends of binary near-Earth asteroids based on radar and lightcurves observations
NASA Astrophysics Data System (ADS)
Brozovic, Marina; Benner, Lance A. M.; Naidu, Shantanu P.; Taylor, Patrick A.; Busch, Michael W.; Margot, Jean-Luc; Nolan, Michael C.; Howell, Ellen S.; Springmann, Alessondra; Giorgini, Jon D.; Shepard, Michael K.; Magri, Christopher; Richardson, James E.; Rivera-Valentin, Edgard G.; Rodriguez-Ford, Linda A.; Zambrano Marin, Luisa Fernanda
2016-10-01
The Arecibo and Goldstone planetary radars are invaluable instruments for the discovery and characterization of binary and triple asteroids in the near-Earth asteroid (NEA) population. To date, 41 out of 56 known binaries and triples (~73% of the objects) have been discovered by radar and 49 of these multiple systems have been detected by radar. Their absolute magnitudes range from 12.4 for (1866) Sisyphus to 22.6 for 2015 TD144 and have a mean and rms dispersion of 18.1+-2.0. There is a pronounced decrease in the abundance of binaries for absolute magnitudes H>20. One of the smallest binaries, 1994 CJ1, with an absolute magnitude H=21.4, is also the most accessible binary for a spacecraft rendezvous. Among 365 NEAs with H<22 (corresponding to diameters larger than ~ 140 m) detected by radar since 1999, ~13% have at least one companion. Two triple systems are known, (15391) 2001 SN263 and (136617) 1994 CC, but this is probably an underestimate due to low signal to noise ratios (SNRs) for many of the binary radar detections. Taxonomic classes have been reported for 41 out of 56 currently known multiple systems and some trends are starting to emerge: at least 50% of multiple asteroid systems are S, Sq, Q, or Sk, and at least 20% are optically dark (C, B, P, or U). Thirteen V-class NEAs have been observed by radar and six of them are binaries. Curiously, a comparable number of E-class objects have been detected by radar, but none is known to be a binary.
NASA Technical Reports Server (NTRS)
Veitch, J.; Raymond, V.; Farr, B.; Farr, W.; Graff, P.; Vitale, S.; Aylott, B.; Blackburn, K.; Christensen, N.; Coughlin, M.
2015-01-01
The Advanced LIGO and Advanced Virgo gravitational wave (GW) detectors will begin operation in the coming years, with compact binary coalescence events a likely source for the first detections. The gravitational waveforms emitted directly encode information about the sources, including the masses and spins of the compact objects. Recovering the physical parameters of the sources from the GW observations is a key analysis task. This work describes the LALInference software library for Bayesian parameter estimation of compact binary signals, which builds on several previous methods to provide a well-tested toolkit which has already been used for several studies. We show that our implementation is able to correctly recover the parameters of compact binary signals from simulated data from the advanced GW detectors. We demonstrate this with a detailed comparison on three compact binary systems: a binary neutron star (BNS), a neutron star - black hole binary (NSBH) and a binary black hole (BBH), where we show a cross-comparison of results obtained using three independent sampling algorithms. These systems were analysed with non-spinning, aligned spin and generic spin configurations respectively, showing that consistent results can be obtained even with the full 15-dimensional parameter space of the generic spin configurations. We also demonstrate statistically that the Bayesian credible intervals we recover correspond to frequentist confidence intervals under correct prior assumptions by analysing a set of 100 signals drawn from the prior. We discuss the computational cost of these algorithms, and describe the general and problem-specific sampling techniques we have used to improve the efficiency of sampling the compact binary coalescence (CBC) parameter space.
White dwarf-main sequence binaries from LAMOST: the DR5 catalogue
NASA Astrophysics Data System (ADS)
Ren, J.-J.; Rebassa-Mansergas, A.; Parsons, S. G.; Liu, X.-W.; Luo, A.-L.; Kong, X.; Zhang, H.-T.
2018-03-01
We present the data release (DR) 5 catalogue of white dwarf-main sequence (WDMS) binaries from the Large Area Multi-Object fiber Spectroscopic Telescope (LAMOST). The catalogue contains 876 WDMS binaries, of which 757 are additions to our previous LAMOST DR1 sample and 357 are systems that have not been published before. We also describe a LAMOST-dedicated survey that aims at obtaining spectra of photometrically-selected WDMS binaries from the Sloan Digital Sky Survey (SDSS) that are expected to contain cool white dwarfs and/or early type M dwarf companions. This is a population under-represented in previous SDSS WDMS binary catalogues. We determine the stellar parameters (white dwarf effective temperatures, surface gravities and masses, and M dwarf spectral types) of the LAMOST DR5 WDMS binaries and make use of the parameter distributions to analyse the properties of the sample. We find that, despite our efforts, systems containing cool white dwarfs remain under-represented. Moreover, we make use of LAMOST DR5 and SDSS DR14 (when available) spectra to measure the Na I λλ 8183.27, 8194.81 absorption doublet and/or Hα emission radial velocities of our systems. This allows identifying 128 binaries displaying significant radial velocity variations, 76 of which are new. Finally, we cross-match our catalogue with the Catalina Surveys and identify 57 systems displaying light curve variations. These include 16 eclipsing systems, two of which are new, and nine binaries that are new eclipsing candidates. We calculate periodograms from the photometric data and measure (estimate) the orbital periods of 30 (15) WDMS binaries.
BHDD: Primordial black hole binaries code
NASA Astrophysics Data System (ADS)
Kavanagh, Bradley J.; Gaggero, Daniele; Bertone, Gianfranco
2018-06-01
BHDD (BlackHolesDarkDress) simulates primordial black hole (PBH) binaries that are clothed in dark matter (DM) halos. The software uses N-body simulations and analytical estimates to follow the evolution of PBH binaries formed in the early Universe.
Binaries, cluster dynamics and population studies of stars and stellar phenomena
NASA Astrophysics Data System (ADS)
Vanbeveren, Dany
2005-10-01
The effects of binaries on population studies of stars and stellar phenomena have been investigated over the past 3 decades by many research groups. Here we will focus mainly on the work that has been done recently in Brussels and we will consider the following topics: the effect of binaries on overall galactic chemical evolutionary models and on the rates of different types of supernova, the population of point-like X-ray sources where we distinguish the standard high mass X-ray binaries and the ULXs, a UFO-scenario for the formation of WR+OB binaries in dense star systems. Finally we critically discuss the possible effect of rotation on population studies.
Maurya, Sandeep Kumar; Das, Dhiman; Goswami, Debabrata
2016-06-13
Photo-thermal behavior of binary liquid mixtures has been studied by high repetition rate (HRR) Z-scan technique with femtosecond laser pulses. Changes in the peak-valley difference in transmittance (ΔT P-V ) for closed aperture Z-scan experiments are indicative of thermal effects induced by HRR femtosecond laser pulses. We show such indicative results can have a far-reaching impact on molecular properties and intermolecular interactions in binary liquid mixtures. Spectroscopic parameters derived from this experimental technique show that the combined effect of physical and molecular properties of the constituent binary liquids can be related to the components of the binary liquid. © The Author(s) 2016.
NASA Technical Reports Server (NTRS)
Hut, Piet; Mcmillan, Steve; Goodman, Jeremy; Mateo, Mario; Phinney, E. S.; Pryor, Carlton; Richer, Harvey B.; Verbunt, Frank; Weinberg, Martin
1992-01-01
Recent observations have shown that globular clusters contain a substantial number of binaries most of which are believed to be primordial. We discuss different successful optical search techniques, based on radial-velocity variables, photometric variables, and the positions of stars in the color-magnitude diagram. In addition, we review searches in other wavelengths, which have turned up low-mass X-ray binaries and more recently a variety of radio pulsars. On the theoretical side, we give an overview of the different physical mechanisms through which individual binaries evolve. We discuss the various simulation techniques which recently have been employed to study the effects of a primordial binary population, and the fascinating interplay between stellar evolution and stellar dynamics which drives globular-cluster evolution.
Rotation invariant deep binary hashing for fast image retrieval
NASA Astrophysics Data System (ADS)
Dai, Lai; Liu, Jianming; Jiang, Aiwen
2017-07-01
In this paper, we study how to compactly represent image's characteristics for fast image retrieval. We propose supervised rotation invariant compact discriminative binary descriptors through combining convolutional neural network with hashing. In the proposed network, binary codes are learned by employing a hidden layer for representing latent concepts that dominate on class labels. A loss function is proposed to minimize the difference between binary descriptors that describe reference image and the rotated one. Compared with some other supervised methods, the proposed network doesn't have to require pair-wised inputs for binary code learning. Experimental results show that our method is effective and achieves state-of-the-art results on the CIFAR-10 and MNIST datasets.
Dynamical evolution of young binaries and multiple systems
NASA Astrophysics Data System (ADS)
Reipurth, B.
Most stars, and perhaps all, are born in small multiple systems whose components interact, leading to chaotic dynamic behavior. Some components are ejected, either into distant orbits or into outright escapes, while the remaining components form temporary and eventually permanent binary systems. More than half of all such breakups of multiple systems occur during the protostellar phase, leading to the occasional ejection of protostars outside their nascent cloud cores. Such orphaned protostars are observed as wide companions to embedded protostars, and thus allow the direct study of protostellar objects. Dynamic interactions during early stellar evolution explain the shape and enormous width of the separation distribution function of binaries, from close spectroscopic binaries to the widest binaries.
Stochastic Gravitational-Wave Background due to Primordial Binary Black Hole Mergers.
Mandic, Vuk; Bird, Simeon; Cholis, Ilias
2016-11-11
Recent Advanced LIGO detections of binary black hole mergers have prompted multiple studies investigating the possibility that the heavy GW150914 binary system was of primordial origin, and hence could be evidence for dark matter in the form of black holes. We compute the stochastic background arising from the incoherent superposition of such primordial binary black hole systems in the Universe and compare it to the similar background spectrum due to binary black hole systems of stellar origin. We investigate the possibility of detecting this background with future gravitational-wave detectors, and conclude that constraining the dark matter component in the form of black holes using stochastic gravitational-wave background measurements will be very challenging.
NASA Astrophysics Data System (ADS)
Noll, K. S.
2017-12-01
The Jupiter Trojans, in the context of giant planet migration models, can be thought of as an extension of the small body populations found beyond Neptune in the Kuiper Belt. Binaries are a distinctive feature of small body populations in the Kuiper Belt with an especially high fraction apparent among the brightest Cold Classicals. The binary fraction, relative sizes, and separations in the dynamically excited populations (Scattered, Resonant) reflects processes that may have eroded a more abundant initial population. This trend continues in the Centaurs and Trojans where few binaries have been found. We review new evidence including a third resolved Trojan binary and lightcurve studies to understand how the Trojans are related to the small body populations that originated in the outer protoplanetary disk.
State-change in the "transition" binary millisecond pulsar J1023+0038
NASA Astrophysics Data System (ADS)
Stappers, B. W.; Archibald, A.; Bassa, C.; Hessels, J.; Janssen, G.; Kaspi, V.; Lyne, A.; Patruno, A.; Hill, A. B.
2013-10-01
We report a change in the state of PSR J1023+0038, a source which is believed to be transitioning from an X-ray binary to an eclipsing binary radio millisecond pulsar (Archibald et al. 2009, Science, 324, 1411). The system was known to contain an accretion disk in 2001 but has shown no signs of it, or of accretion, since then, rather exhibiting all the properties of an eclipsing binary millisecond radio pulsar (MSP).
NASA Astrophysics Data System (ADS)
Zedam, Lemnaouar; Barkat, Omar; De Baets, Bernard
2018-05-01
In this paper, we generalize the notion of traces of a binary relation to the setting of ternary relations. With a given ternary relation, we associate three binary relations: its left, middle and right trace. As in the binary case, these traces facilitate the study and characterization of properties of a ternary relation. Interestingly, the traces themselves turn out to be the greatest solutions of relational inequalities associated with newly introduced compositions of a ternary relation with a binary relation (and vice versa).
NASA Technical Reports Server (NTRS)
Baker, John
2012-01-01
Effects of accretion disks on spins and eccentricities of binaries, and implications for gravitational waves. John Baker Space-based gravitational wave observations will allow exquisitely precise measurements of massive black hole binary properties. Through several recently suggested processes, these properties may depend on interactions with accretion disks through the merger process. I will discuss ways that accretion may influence those binary properties which may be probed by gravitational-wave observations.
NASA Technical Reports Server (NTRS)
Bond, Howard E.
1992-01-01
A brief summary of the research highlights is presented. The topics covered include the following: binary nuclei of planetary nebulae; other variable planetary nuclei; low-mass supergiants; and other IUE-related research.
NASA Technical Reports Server (NTRS)
Strong, J. P., III
1973-01-01
Tse computers have the potential of operating four or five orders of magnitude faster than present digital computers. The computers of the new design use binary images as their basic computational entity. The word 'tse' is the transliteration of the Chinese word for 'pictograph character.' Tse computers are large collections of devices that perform logical operations on binary images. The operations on binary images are to be performed over the entire image simultaneously.
Be discs in coplanar circular binaries: Phase-locked variations of emission lines
NASA Astrophysics Data System (ADS)
Panoglou, Despina; Faes, Daniel M.; Carciofi, Alex C.; Okazaki, Atsuo T.; Baade, Dietrich; Rivinius, Thomas; Borges Fernandes, Marcelo
2018-01-01
In this paper, we present the first results of radiative transfer calculations on decretion discs of binary Be stars. A smoothed particle hydrodynamics code computes the structure of Be discs in coplanar circular binary systems for a range of orbital and disc parameters. The resulting disc configuration consists of two spiral arms, and this can be given as input into a Monte Carlo code, which calculates the radiative transfer along the line of sight for various observational coordinates. Making use of the property of steady disc structure in coplanar circular binaries, observables are computed as functions of the orbital phase. Some orbital-phase series of line profiles are given for selected parameter sets under various viewing angles, to allow comparison with observations. Flat-topped profiles with and without superimposed multiple structures are reproduced, showing, for example, that triple-peaked profiles do not have to be necessarily associated with warped discs and misaligned binaries. It is demonstrated that binary tidal effects give rise to phase-locked variability of the violet-to-red (V/R) ratio of hydrogen emission lines. The V/R ratio exhibits two maxima per cycle; in certain cases those maxima are equal, leading to a clear new V/R cycle every half orbital period. This study opens a way to identifying binaries and to constraining the parameters of binary systems that exhibit phase-locked variations induced by tidal interaction with a companion star.
Binary-disk interaction. II. Gap-opening criteria for unequal-mass binaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Valle, Luciano; Escala, Andrés, E-mail: ldelvalleb@gmail.com
We study the interaction of an unequal-mass binary with an isothermal circumbinary disk, motivated by the theoretical and observational evidence that after a major merger of gas-rich galaxies, a massive gaseous disk with a supermassive black hole binary will be formed in the nuclear region. We focus on the gravitational torques that the binary exerts on the disk and how these torques can drive the formation of a gap in the disk. This exchange of angular momentum between the binary and the disk is mainly driven by the gravitational interaction between the binary and a strong nonaxisymmetric density perturbation thatmore » is produced in the disk, in response to the presence of the binary. Using smoothed particle hydrodynamics numerical simulations, we test two gap-opening criteria, one that assumes the geometry of the density perturbation is an ellipsoid/thick spiral and another that assumes a flat spiral geometry for the density perturbation. We find that the flat spiral gap-opening criterion successfully predicts which simulations will have a gap in the disk and which will not. We also study the limiting cases predicted by the gap-opening criteria. Since the viscosity in our simulations is considerably smaller than the expected value in the nuclear regions of gas-rich merging galaxies, we conclude that in such environments the formation of a circumbinary gap is unlikely.« less
EVERY INTERACTING DOUBLE WHITE DWARF BINARY MAY MERGE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Ken J.
2015-05-20
Interacting double white dwarf (WD) binaries can give rise to a wide variety of astrophysical outcomes ranging from faint thermonuclear and Type Ia supernovae to the formation of neutron stars and stably accreting AM Canum Venaticorum systems. One key factor affecting the final outcome is whether mass transfer remains dynamically stable or instead diverges, leading to the tidal disruption of the donor and the merger of the binary. It is typically thought that for low ratios of the donor mass to the accretor mass, mass transfer remains stable, especially if accretion occurs via a disk. In this Letter, we examinemore » low mass ratio double WD binaries and find that the initial phase of hydrogen-rich mass transfer leads to a classical nova-like outburst on the accretor. Dynamical friction within the expanding nova shell shrinks the orbit and causes the mass transfer rate to increase dramatically above the accretor's Eddington limit, possibly resulting in a binary merger. If the binary survives the first hydrogen-rich nova outbursts, dynamical friction within the subsequent helium-powered nova shells pushes the system even more strongly toward merger. While further calculations are necessary to confirm this outcome for the entire range of binaries previously thought to be dynamically stable, it appears likely that most, if not all, interacting double WD binaries will merge during the course of their evolution.« less
NASA Astrophysics Data System (ADS)
Bardalez Gagliuffi, Daniella C.; Gelino, Christopher R.; Burgasser, Adam J.
2015-11-01
We present high resolution Laser Guide Star Adaptive Optics imaging of 43 late-M, L and T dwarf systems with Keck/NIRC2. These include 17 spectral binary candidates, systems whose spectra suggest the presence of a T dwarf secondary. We resolve three systems: 2MASS J1341-3052, SDSS J1511+0607 and SDSS J2052-1609 the first two are resolved for the first time. All three have projected separations <8 AU and estimated periods of 14-80 years. We also report a preliminary orbit determination for SDSS J2052-1609 based on six epochs of resolved astrometry between 2005 and 2010. Among the 14 unresolved spectral binaries, 5 systems were confirmed binaries but remained unresolved, implying a minimum binary fraction of {47}-11+12% for this sample. Our inability to resolve most of the spectral binaries, including the confirmed binaries, supports the hypothesis that a large fraction of very low mass systems have relatively small separations and are missed with direct imaging. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.
Ligand Exchange Governs the Crystal Structures in Binary Nanocrystal Superlattices.
Wei, Jingjing; Schaeffer, Nicolas; Pileni, Marie-Paule
2015-11-25
The surface chemistry in colloidal nanocrystals on the final crystalline structure of binary superlattices produced by self-assembly of two sets of nanocrystals is hereby demonstrated. By mixing nanocrystals having two different sizes and the same coating agent, oleylamine (OAM), the binary nanocrystal superlattices that are produced, such as NaCl, AlB2, NaZn13, and MgZn2, are well in agreement with the crystalline structures predicted by the hard-sphere model, their formation being purely driven by entropic forces. By opposition, when large and small nanocrystals are coated with two different ligands [OAM and dodecanethiol (DDT), respectively] while keeping all other experimental conditions unchanged, the final binary structures markedly change and various structures with lower packing densities, such as Cu3Au, CaB6, and quasicrystals, are observed. This effect of the nanocrystals' coating agents could also be extended to other binary systems, such as Ag-Au and CoFe2O4-Ag supracrystalline binary lattices. In order to understand this effect, a mechanism based on ligand exchange process is proposed. Ligand exchange mechanism is believed to affect the thermodynamics in the formation of binary systems composed of two sets of nanocrystals with different sizes and bearing two different coating agents. Hence, the formation of binary superlattices with lower packing densities may be favored kinetically because the required energetic penalty is smaller than that of a denser structure.
VizieR Online Data Catalog: Cataclysmic Binaries, LMXBs, and related objects (Ritter+, 2003)
NASA Astrophysics Data System (ADS)
Ritter, H.; Kolb, U.
2004-03-01
Cataclysmic Binaries are semi-detached binaries consisting of a white dwarf or a white dwarf precursor primary and a low-mass secondary which is filling its critical Roche lobe. The secondary is not necessarily unevolved, it may even be a highly evolved star as for example in the case of the AM CVn-type stars. Low-Mass X-Ray Binaries are semi-detached binaries consisting of either a neutron star or a black hole primary, and a low-mass secondary which is filling its critical Roche lobe. Related Objects are detached binaries consisting of either a white dwarf or a white dwarf precursor primary and of a low-mass secondary. The secondary may also be a highly evolved star. The catalogue lists coordinates, apparent magnitudes, orbital parameters, stellar parameters of the components and other characteristic properties of 522 cataclysmic binaries, 75 low-mass X-ray binaries and 117 related objects with known or suspected orbital periods together with a comprehensive selection of the relevant recent literature. In addition the catalogue contains a list of references to published finding charts for 695 of the 714 objects. A cross-reference list of alias object designations concludes the catalogue. Literature published before 31 December 2003 has, as far as possible, been taken into account. This catalogue supersedes the 5th edition (catalogue ) and the updated lists by Ritter and Kolb (1995; catalogue ) (1998; catalogue ). (10 data files).
VizieR Online Data Catalog: Cataclysmic Binaries, LMXBs, and related objects (Ritter+, 2003)
NASA Astrophysics Data System (ADS)
Ritter, H.; Kolb, U.
2005-03-01
Cataclysmic Binaries are semi-detached binaries consisting of a white dwarf or a white dwarf precursor primary and a low-mass secondary which is filling its critical Roche lobe. The secondary is not necessarily unevolved, it may even be a highly evolved star as for example in the case of the AM CVn-type stars. Low-Mass X-Ray Binaries are semi-detached binaries consisting of either a neutron star or a black hole primary, and a low-mass secondary which is filling its critical Roche lobe. Related Objects are detached binaries consisting of either a white dwarf or a white dwarf precursor primary and of a low-mass secondary. The secondary may also be a highly evolved star. The catalogue lists coordinates, apparent magnitudes, orbital parameters, stellar parameters of the components and other characteristic properties of 572 cataclysmic binaries, 80 low-mass X-ray binaries and 142 related objects with known or suspected orbital periods together with a comprehensive selection of the relevant recent literature. In addition the catalogue contains a list of references to published finding charts for 761 of the 794 objects. A cross-reference list of alias object designations concludes the catalogue. Literature published before 31 December 2004 has, as far as possible, been taken into account. This catalogue supersedes the 5th edition (catalogue ) and the updated lists by Ritter and Kolb (1995; catalogue ) (1998; catalogue ). (10 data files).
Gonçalves, Carina; Decré, Dominique; Barbut, Frédéric; Burghoffer, Béatrice; Petit, Jean-Claude
2004-01-01
In addition to the two large clostridial cytotoxins (TcdA and TcdB), some strains of Clostridium difficile also produce an actin-specific ADP-ribosyltransferase, called binary toxin CDT. We used a PCR method and Southern blotting for the detection of genes encoding the enzymatic (CDTa) and binding (CDTb) components of the binary toxin in 369 strains isolated from patients with suspected C. difficile-associated diarrhea or colitis. Twenty-two strains (a prevalence of 6%) harbored both genes. When binary toxin production was assessed by Western blotting, 19 of the 22 strains reacted with antisera against the iota toxin of C. perfringens (anti-Ia and anti-Ib). Additionally, binary toxin activity, detected by the ADP-ribosyltransferase assay, was present in only 17 of the 22 strains. Subsequently, all 22 binary toxin-positive strains were tested for the production of toxins TcdA and TcdB, toxinotyped, and characterized by serogrouping, PCR ribotyping, arbitrarily primed PCR, and pulsed-field gel electrophoresis. All binary toxin-positive strains also produced TcdB and/or TcdA. However, they had significant changes in the tcdA and tcdB genes and belonged to variant toxinotypes III, IV, V, VII, IX, and XIII. We could differentiate 16 profiles by using typing methods, indicating that most of the binary toxin-positive strains were unrelated. PMID:15131151
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jumper, Peter H.; Fisher, Robert T., E-mail: robert.fisher@umassd.edu
2013-05-20
The formation of brown dwarfs (BDs) poses a key challenge to star formation theory. The observed dearth of nearby ({<=}5 AU) BD companions to solar mass stars, known as the BD desert, as well as the tendency for low-mass binary systems to be more tightly bound than stellar binaries, has been cited as evidence for distinct formation mechanisms for BDs and stars. In this paper, we explore the implications of the minimal hypothesis that BDs in binary systems originate via the same fundamental fragmentation mechanism as stars, within isolated, turbulent giant molecular cloud cores. We demonstrate analytically that the scalingmore » of specific angular momentum with turbulent core mass naturally gives rise to the BD desert, as well as wide BD binary systems. Further, we show that the turbulent core fragmentation model also naturally predicts that very low mass binary and BD/BD systems are more tightly bound than stellar systems. In addition, in order to capture the stochastic variation intrinsic to turbulence, we generate 10{sup 4} model turbulent cores with synthetic turbulent velocity fields to show that the turbulent fragmentation model accommodates a small fraction of binary BDs with wide separations, similar to observations. Indeed, the picture which emerges from the turbulent fragmentation model is that a single fragmentation mechanism may largely shape both stellar and BD binary distributions during formation.« less
Equilibrium, stability, and orbital evolution of close binary systems
NASA Technical Reports Server (NTRS)
Lai, Dong; Rasio, Frederic A.; Shapiro, Stuart L.
1994-01-01
We present a new analytic study of the equilibrium and stability properties of close binary systems containing polytropic components. Our method is based on the use of ellipsoidal trial functions in an energy variational principle. We consider both synchronized and nonsynchronized systems, constructing the compressible generalizations of the classical Darwin and Darwin-Riemann configurations. Our method can be applied to a wide variety of binary models where the stellar masses, radii, spins, entropies, and polytropic indices are all allowed to vary over wide ranges and independently for each component. We find that both secular and dynamical instabilities can develop before a Roche limit or contact is reached along a sequence of models with decreasing binary separation. High incompressibility always makes a given binary system more susceptible to these instabilities, but the dependence on the mass ratio is more complicated. As simple applications, we construct models of double degenerate systems and of low-mass main-sequence star binaries. We also discuss the orbital evoltuion of close binary systems under the combined influence of fluid viscosity and secular angular momentum losses from processes like gravitational radiation. We show that the existence of global fluid instabilities can have a profound effect on the terminal evolution of coalescing binaries. The validity of our analytic solutions is examined by means of detailed comparisons with the results of recent numerical fluid calculations in three dimensions.
NASA Astrophysics Data System (ADS)
Ziosi, Brunetto Marco; Mapelli, Michela; Branchesi, Marica; Tormen, Giuseppe
2014-07-01
In this paper, we study the formation and dynamical evolution of black hole-black hole (BH-BH) binaries in young star clusters (YSCs), by means of N-body simulations. The simulations include metallicity-dependent recipes for stellar evolution and stellar winds, and have been run for three different metallicities (Z = 0.01, 0.1 and 1 Z⊙). Following recent theoretical models of wind mass-loss and core-collapse supernovae, we assume that the mass of the stellar remnants depends on the metallicity of the progenitor stars. We find that BH-BH binaries form efficiently because of dynamical exchanges: in our simulations, we find about 10 times more BH-BH binaries than double neutron star binaries. The simulated BH-BH binaries form earlier in metal-poor YSCs, which host more massive black holes (BHs) than in metal-rich YSCs. The simulated BH-BH binaries have very large chirp masses (up to 80 M⊙), because the BH mass is assumed to depend on metallicity, and because BHs can grow in mass due to the merger with stars. The simulated BH-BH binaries span a wide range of orbital periods (10-3-107 yr), and only a small fraction of them (0.3 per cent) is expected to merge within a Hubble time. We discuss the estimated merger rate from our simulations and the implications for Advanced VIRGO and LIGO.
Compact X-ray Binary Re-creation in Core Collapse: NGC 6397
NASA Astrophysics Data System (ADS)
Grindlay, J. E.; Bogdanov, S.; van den Berg, M.; Heinke, C.
2005-12-01
We report new Chandra observations of the core collapsed globular cluster NGC 6397. In comparison with our original Chandra observations (Grindlay et al 2001, ApJ, 563, L53), we now detect some 30 sources (vs. 20) in the cluster. A new CV is confirmed, though new HST/ACS optical observations (see Cohn et al this meeting) show that one of the original CV candidates is a background AGN). The 9 CVs (optically identified) yet only one MSP and one qLMXB suggest either a factor of 7 reduction in NSs/WDs vs. what we find in 47Tuc (see Grindlay 2005, Proc. Cefalu Conf. on Interacting Binaries) or that CVs are produced in the core collapse. The possible second MSP with main sequence companion, source U18 (see Grindlay et al 2001) is similar in its X-ray and optical properties to MSP-W in 47Tuc, which must have swapped its binary companion. Together with the one confirmed (radio) MSP in NGC 6397, with an evolved main sequence secondary, the process of enhanced partner swapping in the high stellar density of core collapse is implicated. At the same time, main sequence - main sequence binaries (active binaries) are depleted in the cluster core, presumably by "binary burning" in core collapse. These binary re-creation and destruction mechanisms in core collapse have profound implications for binary evolution and mergers in globulars that have undergone core collapse.
The Primordial Binary Fraction in Trumpler 14: Frequency and Multiplicity Parameters
NASA Astrophysics Data System (ADS)
Sabbi, Elena
2017-08-01
This is an astrometric proposal designed to identify and characterize the properties of medium- and long-period (orbital periods ranging from 1.8 to 100 years) visual binaries in the mass range between 4 and 20 Mo in the young compact cluster Trumpler 14 in the Carina Nebula. We aim to probe the virtually unexplored population of intermediate- and high-mass binaries that will experience a Roche-lobe overflow during their post-main-sequence evolution. These binaries are of particular interest because they are expected to be the progenitors of supernovae Type Ia, b, and c, X-ray binaries, double neutron stars and double black holes. Multiplicity properties of young stars can be further used to constrain the outcome of the star-formation process and hence distinguish between various formation scenarios. The medium- and long-period binaries (P> 0.5 yr) are hard to detect and expensive to characterize with traditional ground-based spectroscopy. Knowledge of their orbital properties is however crucial to properly estimate the overall fraction of OB stars whose evolution is affected by binary interaction and to predict the outcome of such interaction. Because of the well characterized PSF of WFC3/UVIS and its temporal stability, HST is the only facility able to characterize the properties of OB-type medium-period binaries in Tr14, and Tr14 is the only nearby high-density OB-type young cluster.
Eclipsing binary stars with a δ Scuti component
NASA Astrophysics Data System (ADS)
Kahraman Aliçavuş, F.; Soydugan, E.; Smalley, B.; Kubát, J.
2017-09-01
Eclipsing binaries with a δ Sct component are powerful tools to derive the fundamental parameters and probe the internal structure of stars. In this study, spectral analysis of six primary δ Sct components in eclipsing binaries has been performed. Values of Teff, v sin I, and metallicity for the stars have been derived from medium-resolution spectroscopy. Additionally, a revised list of δ Sct stars in eclipsing binaries is presented. In this list, we have only given the δ Sct stars in eclipsing binaries to show the effects of the secondary components and tidal-locking on the pulsations of primary δ Sct components. The stellar pulsation, atmospheric and fundamental parameters (e.g. mass, radius) of 92 δ Sct stars in eclipsing binaries have been gathered. Comparison of the properties of single and eclipsing binary member δ Sct stars has been made. We find that single δ Sct stars pulsate in longer periods and with higher amplitudes than the primary δ Sct components in eclipsing binaries. The v sin I of δ Sct components is found to be significantly lower than that of single δ Sct stars. Relationships between the pulsation periods, amplitudes and stellar parameters in our list have been examined. Significant correlations between the pulsation periods and the orbital periods, Teff, log g, radius, mass ratio, v sin I and the filling factor have been found.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaulme, P.; McKeever, J.; Rawls, M. L.
2013-04-10
Red giant stars are proving to be an incredible source of information for testing models of stellar evolution, as asteroseismology has opened up a window into their interiors. Such insights are a direct result of the unprecedented data from space missions CoRoT and Kepler as well as recent theoretical advances. Eclipsing binaries are also fundamental astrophysical objects, and when coupled with asteroseismology, binaries provide two independent methods to obtain masses and radii and exciting opportunities to develop highly constrained stellar models. The possibility of discovering pulsating red giants in eclipsing binary systems is therefore an important goal that could potentiallymore » offer very robust characterization of these systems. Until recently, only one case has been discovered with Kepler. We cross-correlate the detected red giant and eclipsing-binary catalogs from Kepler data to find possible candidate systems. Light-curve modeling and mean properties measured from asteroseismology are combined to yield specific measurements of periods, masses, radii, temperatures, eclipse timing variations, core rotation rates, and red giant evolutionary state. After using three different techniques to eliminate false positives, out of the 70 systems common to the red giant and eclipsing-binary catalogs we find 13 strong candidates (12 previously unknown) to be eclipsing binaries, one to be a non-eclipsing binary with tidally induced oscillations, and 10 more to be hierarchical triple systems, all of which include a pulsating red giant. The systems span a range of orbital eccentricities, periods, and spectral types F, G, K, and M for the companion of the red giant. One case even suggests an eclipsing binary composed of two red giant stars and another of a red giant with a {delta}-Scuti star. The discovery of multiple pulsating red giants in eclipsing binaries provides an exciting test bed for precise astrophysical modeling, and follow-up spectroscopic observations of many of the candidate systems are encouraged. The resulting highly constrained stellar parameters will allow, for example, the exploration of how binary tidal interactions affect pulsations when compared to the single-star case.« less
Circumbinary discs: Numerical and physical behaviour
NASA Astrophysics Data System (ADS)
Thun, Daniel; Kley, Wilhelm; Picogna, Giovanni
2017-08-01
Aims: Discs around a central binary system play an important role in star and planet formation and in the evolution of galactic discs. These circumbinary discs are strongly disturbed by the time varying potential of the binary system and display a complex dynamical evolution that is not well understood. Our goal is to investigate the impact of disc and binary parameters on the dynamical aspects of the disc. Methods: We study the evolution of circumbinary discs under the gravitational influence of the binary using two-dimensional hydrodynamical simulations. To distinguish between physical and numerical effects we apply three hydrodynamical codes. First we analyse in detail numerical issues concerning the conditions at the boundaries and grid resolution. We then perform a series of simulations with different binary parameters (eccentricity, mass ratio) and disc parameters (viscosity, aspect ratio) starting from a reference model with Kepler-16 parameters. Results: Concerning the numerical aspects we find that the length of the inner grid radius and the binary semi-major axis must be comparable, with free outflow conditions applied such that mass can flow onto the central binary. A closed inner boundary leads to unstable evolutions. We find that the inner disc turns eccentric and precesses for all investigated physical parameters. The precession rate is slow with periods (Tprec) starting at around 500 binary orbits (Tbin) for high viscosity and a high aspect ratio H/R where the inner hole is smaller and more circular. Reducing α and H/R increases the gap size and Tprec reaches 2500 Tbin. For varying binary mass ratios qbin the gap size remains constant, whereas Tprec decreases with increasing qbin. For varying binary eccentricities ebin we find two separate branches in the gap size and eccentricity diagram. The bifurcation occurs at around ecrit ≈ 0.18 where the gap is smallest with the shortest Tprec. For ebin lower and higher than ecrit, the gap size and Tprec increase. Circular binaries create the most eccentric discs. Movies associated to Figs. 1 and 8 are available at http://www.aanda.org
Observational properties of massive black hole binary progenitors
NASA Astrophysics Data System (ADS)
Hainich, R.; Oskinova, L. M.; Shenar, T.; Marchant, P.; Eldridge, J. J.; Sander, A. A. C.; Hamann, W.-R.; Langer, N.; Todt, H.
2018-01-01
Context. The first directly detected gravitational waves (GW 150914) were emitted by two coalescing black holes (BHs) with masses of ≈ 36 M⊙ and ≈ 29 M⊙. Several scenarios have been proposed to put this detection into an astrophysical context. The evolution of an isolated massive binary system is among commonly considered models. Aims: Various groups have performed detailed binary-evolution calculations that lead to BH merger events. However, the question remains open as to whether binary systems with the predicted properties really exist. The aim of this paper is to help observers to close this gap by providing spectral characteristics of massive binary BH progenitors during a phase where at least one of the companions is still non-degenerate. Methods: Stellar evolution models predict fundamental stellar parameters. Using these as input for our stellar atmosphere code (Potsdam Wolf-Rayet), we compute a set of models for selected evolutionary stages of massive merging BH progenitors at different metallicities. Results: The synthetic spectra obtained from our atmosphere calculations reveal that progenitors of massive BH merger events start their lives as O2-3V stars that evolve to early-type blue supergiants before they undergo core-collapse during the Wolf-Rayet phase. When the primary has collapsed, the remaining system will appear as a wind-fed high-mass X-ray binary. Based on our atmosphere models, we provide feedback parameters, broad band magnitudes, and spectral templates that should help to identify such binaries in the future. Conclusions: While the predicted parameter space for massive BH binary progenitors is partly realized in nature, none of the known massive binaries match our synthetic spectra of massive BH binary progenitors exactly. Comparisons of empirically determined mass-loss rates with those assumed by evolution calculations reveal significant differences. The consideration of the empirical mass-loss rates in evolution calculations will possibly entail a shift of the maximum in the predicted binary-BH merger rate to higher metallicities, that is, more candidates should be expected in our cosmic neighborhood than previously assumed.
Serial binary interval ratios improve rhythm reproduction.
Wu, Xiang; Westanmo, Anders; Zhou, Liang; Pan, Junhao
2013-01-01
Musical rhythm perception is a natural human ability that involves complex cognitive processes. Rhythm refers to the organization of events in time, and musical rhythms have an underlying hierarchical metrical structure. The metrical structure induces the feeling of a beat and the extent to which a rhythm induces the feeling of a beat is referred to as its metrical strength. Binary ratios are the most frequent interval ratio in musical rhythms. Rhythms with hierarchical binary ratios are better discriminated and reproduced than rhythms with hierarchical non-binary ratios. However, it remains unclear whether a superiority of serial binary over non-binary ratios in rhythm perception and reproduction exists. In addition, how different types of serial ratios influence the metrical strength of rhythms remains to be elucidated. The present study investigated serial binary vs. non-binary ratios in a reproduction task. Rhythms formed with exclusively binary (1:2:4:8), non-binary integer (1:3:5:6), and non-integer (1:2.3:5.3:6.4) ratios were examined within a constant meter. The results showed that the 1:2:4:8 rhythm type was more accurately reproduced than the 1:3:5:6 and 1:2.3:5.3:6.4 rhythm types, and the 1:2.3:5.3:6.4 rhythm type was more accurately reproduced than the 1:3:5:6 rhythm type. Further analyses showed that reproduction performance was better predicted by the distribution pattern of event occurrences within an inter-beat interval, than by the coincidence of events with beats, or the magnitude and complexity of interval ratios. Whereas rhythm theories and empirical data emphasize the role of the coincidence of events with beats in determining metrical strength and predicting rhythm performance, the present results suggest that rhythm processing may be better understood when the distribution pattern of event occurrences is taken into account. These results provide new insights into the mechanisms underlining musical rhythm perception.
Serial binary interval ratios improve rhythm reproduction
Wu, Xiang; Westanmo, Anders; Zhou, Liang; Pan, Junhao
2013-01-01
Musical rhythm perception is a natural human ability that involves complex cognitive processes. Rhythm refers to the organization of events in time, and musical rhythms have an underlying hierarchical metrical structure. The metrical structure induces the feeling of a beat and the extent to which a rhythm induces the feeling of a beat is referred to as its metrical strength. Binary ratios are the most frequent interval ratio in musical rhythms. Rhythms with hierarchical binary ratios are better discriminated and reproduced than rhythms with hierarchical non-binary ratios. However, it remains unclear whether a superiority of serial binary over non-binary ratios in rhythm perception and reproduction exists. In addition, how different types of serial ratios influence the metrical strength of rhythms remains to be elucidated. The present study investigated serial binary vs. non-binary ratios in a reproduction task. Rhythms formed with exclusively binary (1:2:4:8), non-binary integer (1:3:5:6), and non-integer (1:2.3:5.3:6.4) ratios were examined within a constant meter. The results showed that the 1:2:4:8 rhythm type was more accurately reproduced than the 1:3:5:6 and 1:2.3:5.3:6.4 rhythm types, and the 1:2.3:5.3:6.4 rhythm type was more accurately reproduced than the 1:3:5:6 rhythm type. Further analyses showed that reproduction performance was better predicted by the distribution pattern of event occurrences within an inter-beat interval, than by the coincidence of events with beats, or the magnitude and complexity of interval ratios. Whereas rhythm theories and empirical data emphasize the role of the coincidence of events with beats in determining metrical strength and predicting rhythm performance, the present results suggest that rhythm processing may be better understood when the distribution pattern of event occurrences is taken into account. These results provide new insights into the mechanisms underlining musical rhythm perception. PMID:23964258
Binary Sources and Binary Lenses in Microlensing Surveys of MACHOs
NASA Astrophysics Data System (ADS)
Petrovic, N.; Di Stefano, R.; Perna, R.
2003-12-01
Microlensing is an intriguing phenomenon which may yield information about the nature of dark matter. Early observational searches identified hundreds of microlensing light curves. The data set consisted mainly of point-lens light curves and binary-lens events in which the light curves exhibit caustic crossings. Very few mildly perturbed light curves were observed, although this latter type should constitute the majority of binary lens light curves. Di Stefano (2001) has suggested that the failure to take binary effects into account may have influenced the estimates of optical depth derived from microlensing surveys. The work we report on here is the first step in a systematic analysis of binary lenses and binary sources and their impact on the results of statistical microlensing surveys. In order to asses the problem, we ran Monte-Carlo simulations of various microlensing events involving binary stars (both as the source and as the lens). For each event with peak magnification > 1.34, we sampled the characteristic light curve and recorded the chi squared value when fitting the curve with a point lens model; we used this to asses the perturbation rate. We also recorded the parameters of each system, the maximum magnification, the times at which each light curve started and ended and the number of caustic crossings. We found that both the binarity of sources and the binarity of lenses increased the lensing rate. While the binarity of sources had a negligible effect on the perturbation rates of the light curves, the binarity of lenses had a notable effect. The combination of binary sources and binary lenses produces an observable rate of interesting events exhibiting multiple "repeats" in which the magnification rises above and dips below 1.34 several times. Finally, the binarity of lenses impacted both the durations of the events and the maximum magnifications. This work was supported in part by the SAO intern program (NSF grant AST-9731923) and NASA contracts NAS8-39073 and NAS8-38248 (CXC).
On the Lack of Circumbinary Planets Orbiting Isolated Binary Stars
NASA Astrophysics Data System (ADS)
Fleming, David; Barnes, Rory; Graham, David E.; Luger, Rodrigo; Quinn, Thomas R.
2018-04-01
To date, no binary star system with an orbital period less than 7.5 days has been observed to host a circumbinary planet (CBP), a puzzling observation given the thousands of binary stars with orbital periods < 10 days discovered by the Kepler mission (Kirk et al., 2016) and the observational biases that favor their detection (Munoz & Lai, 2015). We outline a mechanism that explains the observed lack of CBPs via coupled stellar-tidal evolution of isolated binary stars. Tidal forces between low-mass, short-period binary stars on the pre-main sequence slow the stellar rotations, transferring rotational angular momentum to the orbit as the stars approach the tidally locked state. This transfer increases the binary orbital period, expanding the region of dynamical instability around the binary, and destabilizing CBPs that tend to preferentially orbit just beyond the initial dynamical stability limit. After the stars tidally lock, we find that angular momentum loss due to magnetic braking can significantly shrink the binary orbit, and hence the region of dynamical stability, over time impacting where surviving CBPs are observed relative to the boundary. We perform simulations over a wide range of parameter space and find that the expansion of the instability region occurs for most plausible initial conditions and that in some cases, the stability semi-major axis doubles from its initial value. We examine the dynamical and observable consequences of a CBP falling within the dynamical instability limit by running N-body simulations of circumbinary planetary systems and find that typically, at least one planet is ejected from the system. We apply our theory to the shortest period Kepler binary that possesses a CBP, Kepler-47, and find that its existence is consistent with our model. Under conservative assumptions, we find that coupled stellar-tidal evolution of pre-main sequence binary stars removes at least one close-in CBP in 87% of multi-planet circumbinary systems.
Observational Evidence for Tidal Interaction in Close Binary Systems
NASA Astrophysics Data System (ADS)
Mazeh, T.
This paper reviews the rich corpus of observational evidence for tidal effects, mostly based on photometric and radial-velocity measurements. This is done in a period when the study of binaries is being revolutionized by large-scaled photometric surveys that are detecting many thousands of new binaries and tens of extrasolar planets. We begin by examining the short-term effects, such as ellipsoidal variability and apsidal motion. We next turn to the long-term effects, of which circularization was studied the most: a transition period between circular and eccentric orbits has been derived for eight coeval samples of binaries. The study of synchronization and spin-orbit alignment is less advanced. As binaries are supposed to reach synchronization before circularization, one can expect finding eccentric binaries in pseudo-synchronization state, the evidence for which is reviewed. We also discuss synchronization in PMS and young stars, and compare the emerging timescale with the circularization timescale. We next examine the tidal interaction in close binaries that are orbited by a third distant companion, and review the effect of pumping the binary eccentricity by the third star. We elaborate on the impact of the pumped eccentricity on the tidal evolution of close binaries residing in triple systems, which may shrink the binary separation. Finally we consider the extrasolar planets and the observational evidence for tidal interaction with their parent stars. This includes a mechanism that can induce radial drift of short-period planets, either inward or outward, depending on the planetary radial position relative to the corotation radius. Another effect is the circularization of planetary orbits, the evidence for which can be found in eccentricity-versus-period plot of the planets already known. Whenever possible, the paper attempts to address the possible confrontation between theory and observations, and to point out noteworthy cases and observations that can be performed in the future and may shed some light on the key questions that remain open.
Planet Formation in Stellar Binaries: How Disk Gravity Can Lower theFragmentation Barrier
NASA Astrophysics Data System (ADS)
Silsbee, Kedron; Rafikov, Roman R.
2014-11-01
Binary star systems present a challenge to current theories of planet formation. Perturbations from the companion star dynamically excite the protoplanetary disk, which can lead to destructive collisions between planetesimals, and prevent growth from 1 km to 100 km sized planetesimals. Despite this apparent barrier to coagulation, planets have been discovered within several small-separation (<20 AU), eccentric (eb 0.4) binaries, such as alpha Cen and gamma Cep. We address this problem by analytically exploring planetesimal dynamics under the simultaneous action of (1) binary perturbation, (2) gas drag (which tends to align planetesimal orbits), and (3), the gravity of an eccentric protoplanetary disk. We then use our dynamical solutions to assess the outcomes of planetesimal collisions (growth, destruction, erosion) for a variety of disk models. We find that planets in small-separation binaries can form at their present locations if the primordial protoplanetary disks were massive (>0.01M⊙) and not very eccentric (eccentricity of order several per cent at the location of planet). This constraint on the disk mass is compatible with the high masses of the giant planets in known gamma Cep-like binaries, which require a large mass reservoir for their formation. We show that for these massive disks, disk gravity is dominant over the gravity of the binary companion at the location of the observed planets. Therefore, planetesimal growth is highly sensitive to disk properties. The requirement of low disk eccentricity is in line with the recent hydrodynamic simulations that tend to show gaseous disks in eccentric binaries developing very low eccentricity, at the level of a few percent. A massive purely axisymmetric disk makes for a friendlier environment for planetesimal growth by driving rapid apsidal precession of planetesimals, and averaging out the eccentricity excitation from the binary companion. When the protoplanetary disk is eccentric we find that the most favorable conditions for planetesimal growth emerge when the disk is non-precessing and is apsidally aligned with the orbit of the binary.
An axion-like scalar field environment effect on binary black hole merger
NASA Astrophysics Data System (ADS)
Yang, Qing; Ji, Li-Wei; Hu, Bin; Cao, Zhou-Jian; Cai, Rong-Gen
2018-06-01
The environment, such as an accretion disk, could modify the signal of the gravitational wave from astrophysical black hole binaries. In this article, we model the matter field around intermediate-mass binary black holes by means of an axion-like scalar field and investigate their joint evolution. In detail, we consider equal mass binary black holes surrounded by a shell of axion-like scalar field both in spherically symmetric and non-spherically symmetric cases, and with different strengths of the scalar field. Our result shows that the environmental scalar field could essentially modify the dynamics. Firstly, in the spherically symmetric case, with increase of the scalar field strength, the number of circular orbits for the binary black hole is reduced. This means that the scalar field could significantly accelerate the merger process. Secondly, once the scalar field strength exceeds a certain critical value, the scalar field could collapse into a third black hole with its mass being larger than that of the binary. Consequently, the new black hole that collapses from the environmental scalar field could accrete the binary promptly and the binary collides head-on with each other. In this process, there is almost no quadrupole signal produced, and, consequently, the gravitational wave is greatly suppressed. Thirdly, when the scalar field strength is relatively smaller than the critical value, the black hole orbit could develop eccentricity through accretion of the scalar field. Fourthly, during the initial stage of the inspiral, the gravitational attractive force from the axion-like scalar field could induce a sudden turn in the binary orbits, hence resulting in a transient wiggle in the gravitational waveform. Finally, in the non-spherical case, the scalar field could gravitationally attract the binary moving toward the center of mass for the scalar field and slow down the merger process.
Dynamics of binary-disk interaction. 1: Resonances and disk gap sizes
NASA Technical Reports Server (NTRS)
Artymowicz, Pawel; Lubow, Stephen H.
1994-01-01
We investigate the gravitational interaction of a generally eccentric binary star system with circumbinary and circumstellar gaseous disks. The disks are assumed to be coplanar with the binary, geometrically thin, and primarily governed by gas pressure and (turbulent) viscosity but not self-gravity. Both ordinary and eccentric Lindblad resonances are primarily responsible for truncating the disks in binaries with arbitrary eccentricity and nonextreme mass ratio. Starting from a smooth disk configuration, after the gravitational field of the binary truncates the disk on the dynamical timescale, a quasi-equilibrium is achieved, in which the resonant and viscous torques balance each other and any changes in the structure of the disk (e.g., due to global viscous evolution) occur slowly, preserving the average size of the gap. We analytically compute the approximate sizes of disks (or disk gaps) as a function of binary mass ratio and eccentricity in this quasi-equilibrium. Comparing the gap sizes with results of direct simulations using the smoothed particle hydrodynamics (SPH), we obtain a good agreement. As a by-product of the computations, we verify that standard SPH codes can adequately represent the dynamics of disks with moderate viscosity, Reynolds number R approximately 10(exp 3). For typical viscous disk parameters, and with a denoting the binary semimajor axis, the inner edge location of a circumbinary disk varies from 1.8a to 2.6a with binary eccentricity increasing from 0 to 0.25. For eccentricities 0 less than e less than 0.75, the minimum separation between a component star and the circumbinary disk inner edge is greater than a. Our calculations are relevant, among others, to protobinary stars and the recently discovered T Tau pre-main-sequence binaries. We briefly examine the case of a pre-main-sequence spectroscopic binary GW Ori and conclude that circumbinary disk truncation to the size required by one proposed spectroscopic model cannot be due to Linblad resonances, even if the disk is nonviscous.
Improving children's affective decision making in the Children's Gambling Task.
Andrews, Glenda; Moussaumai, Jennifer
2015-11-01
Affective decision making was examined in 108 children (3-, 4-, and 5-year-olds) using the Children's Gambling Task (CGT). Children completed the CGT and then responded to awareness questions. Children in the binary_experience and binary_experience+awareness (not control) conditions first completed two simpler versions. Children in the binary_experience+awareness condition also responded to questions about relational components of the simpler versions. Experience with simpler versions facilitated decision making in 4- and 5-year-olds, but 3-year-olds' advantageous choices declined across trial blocks in the binary_experience and control conditions. Responding to questions about relational components further benefited the 4- and 5-year-olds. The 3-year-olds' advantageous choices on the final block were at chance level in the binary_experience+awareness condition but were below chance level in the other conditions. Awareness following the CGT was strongly correlated with advantageous choices and with age. Awareness was demonstrated by 5-year-olds (all conditions) and 4-year-olds (binary_experience and binary_experience+awareness) but not by 3-year-olds. The findings demonstrate the importance of complexity and conscious awareness in cognitive development. Copyright © 2015 Elsevier Inc. All rights reserved.
Cost-Sensitive Local Binary Feature Learning for Facial Age Estimation.
Lu, Jiwen; Liong, Venice Erin; Zhou, Jie
2015-12-01
In this paper, we propose a cost-sensitive local binary feature learning (CS-LBFL) method for facial age estimation. Unlike the conventional facial age estimation methods that employ hand-crafted descriptors or holistically learned descriptors for feature representation, our CS-LBFL method learns discriminative local features directly from raw pixels for face representation. Motivated by the fact that facial age estimation is a cost-sensitive computer vision problem and local binary features are more robust to illumination and expression variations than holistic features, we learn a series of hashing functions to project raw pixel values extracted from face patches into low-dimensional binary codes, where binary codes with similar chronological ages are projected as close as possible, and those with dissimilar chronological ages are projected as far as possible. Then, we pool and encode these local binary codes within each face image as a real-valued histogram feature for face representation. Moreover, we propose a cost-sensitive local binary multi-feature learning method to jointly learn multiple sets of hashing functions using face patches extracted from different scales to exploit complementary information. Our methods achieve competitive performance on four widely used face aging data sets.
Texture Classification by Texton: Statistical versus Binary
Guo, Zhenhua; Zhang, Zhongcheng; Li, Xiu; Li, Qin; You, Jane
2014-01-01
Using statistical textons for texture classification has shown great success recently. The maximal response 8 (Statistical_MR8), image patch (Statistical_Joint) and locally invariant fractal (Statistical_Fractal) are typical statistical texton algorithms and state-of-the-art texture classification methods. However, there are two limitations when using these methods. First, it needs a training stage to build a texton library, thus the recognition accuracy will be highly depended on the training samples; second, during feature extraction, local feature is assigned to a texton by searching for the nearest texton in the whole library, which is time consuming when the library size is big and the dimension of feature is high. To address the above two issues, in this paper, three binary texton counterpart methods were proposed, Binary_MR8, Binary_Joint, and Binary_Fractal. These methods do not require any training step but encode local feature into binary representation directly. The experimental results on the CUReT, UIUC and KTH-TIPS databases show that binary texton could get sound results with fast feature extraction, especially when the image size is not big and the quality of image is not poor. PMID:24520346
Self-Supervised Video Hashing With Hierarchical Binary Auto-Encoder.
Song, Jingkuan; Zhang, Hanwang; Li, Xiangpeng; Gao, Lianli; Wang, Meng; Hong, Richang
2018-07-01
Existing video hash functions are built on three isolated stages: frame pooling, relaxed learning, and binarization, which have not adequately explored the temporal order of video frames in a joint binary optimization model, resulting in severe information loss. In this paper, we propose a novel unsupervised video hashing framework dubbed self-supervised video hashing (SSVH), which is able to capture the temporal nature of videos in an end-to-end learning to hash fashion. We specifically address two central problems: 1) how to design an encoder-decoder architecture to generate binary codes for videos and 2) how to equip the binary codes with the ability of accurate video retrieval. We design a hierarchical binary auto-encoder to model the temporal dependencies in videos with multiple granularities, and embed the videos into binary codes with less computations than the stacked architecture. Then, we encourage the binary codes to simultaneously reconstruct the visual content and neighborhood structure of the videos. Experiments on two real-world data sets show that our SSVH method can significantly outperform the state-of-the-art methods and achieve the current best performance on the task of unsupervised video retrieval.
Hierarchically self-assembled hexagonal honeycomb and kagome superlattices of binary 1D colloids.
Lim, Sung-Hwan; Lee, Taehoon; Oh, Younghoon; Narayanan, Theyencheri; Sung, Bong June; Choi, Sung-Min
2017-08-25
Synthesis of binary nanoparticle superlattices has attracted attention for a broad spectrum of potential applications. However, this has remained challenging for one-dimensional nanoparticle systems. In this study, we investigate the packing behavior of one-dimensional nanoparticles of different diameters into a hexagonally packed cylindrical micellar system and demonstrate that binary one-dimensional nanoparticle superlattices of two different symmetries can be obtained by tuning particle diameter and mixing ratios. The hexagonal arrays of one-dimensional nanoparticles are embedded in the honeycomb lattices (for AB 2 type) or kagome lattices (for AB 3 type) of micellar cylinders. The maximization of free volume entropy is considered as the main driving force for the formation of superlattices, which is well supported by our theoretical free energy calculations. Our approach provides a route for fabricating binary one-dimensional nanoparticle superlattices and may be applicable for inorganic one-dimensional nanoparticle systems.Binary mixtures of 1D particles are rarely observed to cooperatively self-assemble into binary superlattices, as the particle types separate into phases. Here, the authors design a system that avoids phase separation, obtaining binary superlattices with different symmetries by simply tuning the particle diameter and mixture composition.
Lu, Jiwen; Erin Liong, Venice; Zhou, Jie
2017-08-09
In this paper, we propose a simultaneous local binary feature learning and encoding (SLBFLE) approach for both homogeneous and heterogeneous face recognition. Unlike existing hand-crafted face descriptors such as local binary pattern (LBP) and Gabor features which usually require strong prior knowledge, our SLBFLE is an unsupervised feature learning approach which automatically learns face representation from raw pixels. Unlike existing binary face descriptors such as the LBP, discriminant face descriptor (DFD), and compact binary face descriptor (CBFD) which use a two-stage feature extraction procedure, our SLBFLE jointly learns binary codes and the codebook for local face patches so that discriminative information from raw pixels from face images of different identities can be obtained by using a one-stage feature learning and encoding procedure. Moreover, we propose a coupled simultaneous local binary feature learning and encoding (C-SLBFLE) method to make the proposed approach suitable for heterogeneous face matching. Unlike most existing coupled feature learning methods which learn a pair of transformation matrices for each modality, we exploit both the common and specific information from heterogeneous face samples to characterize their underlying correlations. Experimental results on six widely used face datasets are presented to demonstrate the effectiveness of the proposed method.
On the Complexity of Duplication-Transfer-Loss Reconciliation with Non-Binary Gene Trees.
Kordi, Misagh; Bansal, Mukul S
2017-01-01
Duplication-Transfer-Loss (DTL) reconciliation has emerged as a powerful technique for studying gene family evolution in the presence of horizontal gene transfer. DTL reconciliation takes as input a gene family phylogeny and the corresponding species phylogeny, and reconciles the two by postulating speciation, gene duplication, horizontal gene transfer, and gene loss events. Efficient algorithms exist for finding optimal DTL reconciliations when the gene tree is binary. However, gene trees are frequently non-binary. With such non-binary gene trees, the reconciliation problem seeks to find a binary resolution of the gene tree that minimizes the reconciliation cost. Given the prevalence of non-binary gene trees, many efficient algorithms have been developed for this problem in the context of the simpler Duplication-Loss (DL) reconciliation model. Yet, no efficient algorithms exist for DTL reconciliation with non-binary gene trees and the complexity of the problem remains unknown. In this work, we resolve this open question by showing that the problem is, in fact, NP-hard. Our reduction applies to both the dated and undated formulations of DTL reconciliation. By resolving this long-standing open problem, this work will spur the development of both exact and heuristic algorithms for this important problem.
The binary Kuiper-belt object 1998 WW31.
Veillet, Christian; Parker, Joel Wm; Griffin, Ian; Marsden, Brian; Doressoundiram, Alain; Buie, Marc; Tholen, David J; Connelley, Michael; Holman, Matthew J
2002-04-18
The recent discovery of a binary asteroid during a spacecraft fly-by generated keen interest, because the orbital parameters of binaries can provide measures of the masses, and mutual eclipses could allow us to determine individual sizes and bulk densities. Several binary near-Earth, main-belt and Trojan asteroids have subsequently been discovered. The Kuiper belt-the region of space extending from Neptune (at 30 astronomical units) to well over 100 AU and believed to be the source of new short-period comets-has become a fascinating new window onto the formation of our Solar System since the first member object, not counting Pluto, was discovered in 1992 (ref. 13). Here we report that the Kuiper-belt object 1998 WW31 is binary with a highly eccentric orbit (eccentricity e approximately 0.8) and a long period (about 570 days), very different from the Pluto/Charon system, which was hitherto the only previously known binary in the Kuiper belt. Assuming a density in the range of 1 to 2 g cm-3, the albedo of the binary components is between 0.05 and 0.08, close to the value of 0.04 generally assumed for Kuiper-belt objects.
Photometric Analysis and Modeling of Five Mass-Transferring Binary Systems
NASA Astrophysics Data System (ADS)
Geist, Emily; Beaky, Matthew; Jamison, Kate
2018-01-01
In overcontact eclipsing binary systems, both stellar components have overfilled their Roche lobes, resulting in a dumbbell-shaped shared envelope. Mass transfer is common in overcontact binaries, which can be observed as a slow change on the rotation period of the system.We studied five overcontact eclipsing binary systems with evidence of period change, and thus likely mass transfer between the components, identified by Nelson (2014): V0579 Lyr, KN Vul, V0406 Lyr, V2240 Cyg, and MS Her. We used the 31-inch NURO telescope at Lowell Observatory in Flagstaff, Arizona to obtain images in B,V,R, and I filters for V0579 Lyr, and the 16-inch Meade LX200GPS telescope with attached SBIG ST-8XME CCD camera at Juniata College in Huntingdon, Pennsylvania to image KN Vul, V0406 Lyr, V2240 Cyg, and MS Her, also in B,V,R, and I.After data reduction, we created light curves for each of the systems and modeled the eclipsing binaries using the BinaryMaker3 and PHOEBE programs to determine their fundamental physical parameters for the first time. Complete light curves and preliminary models for each of these neglected eclipsing binary systems will be presented.
How do binary separations depend on cloud initial conditions?
NASA Astrophysics Data System (ADS)
Sterzik, M. F.; Durisen, R. H.; Zinnecker, H.
2003-11-01
We explore the consequences of a star formation scenario in which the isothermal collapse of a rotating, star-forming core is followed by prompt fragmentation into a cluster containing a small number (N <~ 10) of protostars and/or substellar objects. The subsequent evolution of the cluster is assumed to be dominated by dynamical interactions among cluster members, and this establishes the final properties of the binary and multiple systems. The characteristic scale of the fragmenting core is determined by the cloud initial conditions (such as temperature, angular momentum and mass), and we are able to relate the separation distributions of the final binary population to the properties of the star-forming core. Because the fragmentation scale immediately after the isothermal collapse is typically a factor of 3-10 too large, we conjecture that fragmentation into small clusters followed by dynamical evolution is required to account for the observed binary separation distributions. Differences in the environmental properties of the cores are expected to imprint differences on the characteristic dimensions of the binary systems they form. Recent observations of hierarchical systems, differences in binary characteristics among star forming regions and systematic variations in binary properties with primary mass can be interpreted in the context of this scenario.
Abbott, B P; Abbott, R; Abbott, T D; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Afrough, M; Agarwal, B; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allen, G; Allocca, A; Altin, P A; Amato, A; Ananyeva, A; Anderson, S B; Anderson, W G; Angelova, S V; Antier, S; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Atallah, D V; Aufmuth, P; Aulbert, C; AultONeal, K; Austin, C; Avila-Alvarez, A; Babak, S; Bacon, P; Bader, M K M; Bae, S; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Banagiri, S; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barkett, K; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bawaj, M; Bayley, J C; Bazzan, M; Bécsy, B; Beer, C; Bejger, M; Belahcene, I; Bell, A S; Berger, B K; Bergmann, G; Bero, J J; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Biscoveanu, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bode, N; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonilla, E; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bossie, K; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Bustillo, J Calderón; Callister, T A; Calloni, E; Camp, J B; Canepa, M; Canizares, P; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Carney, M F; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerdá-Durán, P; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chase, E; Chassande-Mottin, E; Chatterjee, D; Cheeseboro, B D; Chen, H Y; Chen, X; Chen, Y; Cheng, H-P; Chia, H; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, A K W; Chung, S; Ciani, G; Ciolfi, R; Cirelli, C E; Cirone, A; Clara, F; Clark, J A; Clearwater, P; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Cohen, D; Colla, A; Collette, C G; Cominsky, L R; Constancio, M; Conti, L; Cooper, S J; Corban, P; Corbitt, T R; Cordero-Carrión, I; Corley, K R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Dálya, G; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davis, D; Daw, E J; Day, B; De, S; DeBra, D; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Demos, N; Denker, T; Dent, T; De Pietri, R; Dergachev, V; De Rosa, R; DeRosa, R T; De Rossi, C; DeSalvo, R; de Varona, O; Devenson, J; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Renzo, F; Doctor, Z; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Dreissigacker, C; Driggers, J C; Du, Z; Ducrot, M; Dupej, P; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Eisenstein, R A; Essick, R C; Estevez, D; Etienne, Z B; Etzel, T; Evans, M; Evans, T M; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fee, C; Fehrmann, H; Feicht, J; Fejer, M M; Fernandez-Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finstad, D; Fiori, I; Fiorucci, D; Fishbach, M; Fisher, R P; Fitz-Axen, M; Flaminio, R; Fletcher, M; Fong, H; Font, J A; Forsyth, P W F; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Ganija, M R; Gaonkar, S G; Garcia-Quiros, C; Garufi, F; Gateley, B; Gaudio, S; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, D; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glover, L; Goetz, E; Goetz, R; Gomes, S; Goncharov, B; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Gretarsson, E M; Groot, P; Grote, H; Grunewald, S; Gruning, P; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Halim, O; Hall, B R; Hall, E D; Hamilton, E Z; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hannuksela, O A; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hinderer, T; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Horst, C; Hough, J; Houston, E A; Howell, E J; Hreibi, A; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Inta, R; Intini, G; Isa, H N; Isac, J-M; Isi, M; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kalaghatgi, C V; Kalogera, V; Kamai, B; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katolik, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kawabe, K; Kéfélian, F; Keitel, D; Kemball, A J; Kennedy, R; Kent, C; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chunglee; Kim, J C; Kim, K; Kim, W; Kim, W S; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kinley-Hanlon, M; Kirchhoff, R; Kissel, J S; Kleybolte, L; Klimenko, S; Knowles, T D; Koch, P; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Krämer, C; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, P; Kumar, R; Kumar, S; Kuo, L; Kutynia, A; Kwang, S; Lackey, B D; Lai, K H; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lee, C H; Lee, H K; Lee, H M; Lee, H W; Lee, K; Lehmann, J; Lenon, A; Leonardi, M; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Linker, S D; Littenberg, T B; Liu, J; Lo, R K L; Lockerbie, N A; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lumaca, D; Lundgren, A P; Lynch, R; Ma, Y; Macas, R; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña Hernandez, I; Magaña-Sandoval, F; Magaña Zertuche, L; Magee, R M; Majorana, E; Maksimovic, I; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markakis, C; Markosyan, A S; Markowitz, A; Maros, E; Marquina, A; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Mason, K; Massera, E; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matas, A; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McCuller, L; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McNeill, L; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Mejuto-Villa, E; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, B B; Miller, J; Millhouse, M; Milovich-Goff, M C; Minazzoli, O; Minenkov, Y; Ming, J; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moffa, D; Moggi, A; Mogushi, K; Mohan, M; Mohapatra, S R P; Montani, M; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muñiz, E A; Muratore, M; Murray, P G; Napier, K; Nardecchia, I; Naticchioni, L; Nayak, R K; Neilson, J; Nelemans, G; Nelson, T J N; Nery, M; Neunzert, A; Nevin, L; Newport, J M; Newton, G; Ng, K K Y; Nguyen, T T; Nichols, D; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; North, C; Nuttall, L K; Oberling, J; O'Dea, G D; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Okada, M A; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; Ormiston, R; Ortega, L F; O'Shaughnessy, R; Ossokine, S; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Page, M A; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, Howard; Pan, Huang-Wei; Pang, B; Pang, P T H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Parida, A; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patil, M; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pirello, M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Porter, E K; Post, A; Powell, J; Prasad, J; Pratt, J W W; Pratten, G; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rajbhandari, B; Rakhmanov, M; Ramirez, K E; Ramos-Buades, A; Rapagnani, P; Raymond, V; Razzano, M; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Ren, W; Reyes, S D; Ricci, F; Ricker, P M; Rieger, S; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romel, C L; Romie, J H; Rosińska, D; Ross, M P; Rowan, S; Rüdiger, A; Ruggi, P; Rutins, G; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sanchez, L E; Sanchis-Gual, N; Sandberg, V; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheel, M; Scheuer, J; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schulte, B W; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Seidel, E; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D A; Shaffer, T J; Shah, A A; Shahriar, M S; Shaner, M B; Shao, L; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, L P; Singh, A; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Somala, S; Son, E J; Sonnenberg, J A; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staats, K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stevenson, S P; Stone, R; Stops, D J; Strain, K A; Stratta, G; Strigin, S E; Strunk, A; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Suresh, J; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Tait, S C; Talbot, C; Talukder, D; Tanner, D B; Tápai, M; Taracchini, A; Tasson, J D; Taylor, J A; Taylor, R; Tewari, S V; Theeg, T; Thies, F; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tonelli, M; Tornasi, Z; Torres-Forné, A; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trinastic, J; Tringali, M C; Trozzo, L; Tsang, K W; Tse, M; Tso, R; Tsukada, L; Tsuna, D; Tuyenbayev, D; Ueno, K; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vasúth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Viceré, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walet, R; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, J Z; Wang, W H; Wang, Y F; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessel, E K; Weßels, P; Westerweck, J; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Whittle, C; Wilken, D; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Wofford, J; Wong, K W K; Worden, J; Wright, J L; Wu, D S; Wysocki, D M; Xiao, S; Yamamoto, H; Yancey, C C; Yang, L; Yap, M J; Yazback, M; Yu, Hang; Yu, Haocun; Yvert, M; Zadrożny, A; Zanolin, M; Zelenova, T; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y-H; Zhao, C; Zhou, M; Zhou, Z; Zhu, S J; Zhu, X J; Zucker, M E; Zweizig, J
2018-03-02
The LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star component will add to the contribution from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude Ω_{GW}(f=25 Hz)=1.8_{-1.3}^{+2.7}×10^{-9} with 90% confidence, compared with Ω_{GW}(f=25 Hz)=1.1_{-0.7}^{+1.2}×10^{-9} from binary black holes alone. Assuming the most probable rate for compact binary mergers, we find that the total background may be detectable with a signal-to-noise-ratio of 3 after 40 months of total observation time, based on the expected timeline for Advanced LIGO and Virgo to reach their design sensitivity.
Self-Supervised Video Hashing With Hierarchical Binary Auto-Encoder
NASA Astrophysics Data System (ADS)
Song, Jingkuan; Zhang, Hanwang; Li, Xiangpeng; Gao, Lianli; Wang, Meng; Hong, Richang
2018-07-01
Existing video hash functions are built on three isolated stages: frame pooling, relaxed learning, and binarization, which have not adequately explored the temporal order of video frames in a joint binary optimization model, resulting in severe information loss. In this paper, we propose a novel unsupervised video hashing framework dubbed Self-Supervised Video Hashing (SSVH), that is able to capture the temporal nature of videos in an end-to-end learning-to-hash fashion. We specifically address two central problems: 1) how to design an encoder-decoder architecture to generate binary codes for videos; and 2) how to equip the binary codes with the ability of accurate video retrieval. We design a hierarchical binary autoencoder to model the temporal dependencies in videos with multiple granularities, and embed the videos into binary codes with less computations than the stacked architecture. Then, we encourage the binary codes to simultaneously reconstruct the visual content and neighborhood structure of the videos. Experiments on two real-world datasets (FCVID and YFCC) show that our SSVH method can significantly outperform the state-of-the-art methods and achieve the currently best performance on the task of unsupervised video retrieval.
Dynamical evolution of a fictitious population of binary Neptune Trojans
NASA Astrophysics Data System (ADS)
Brunini, Adrián
2018-03-01
We present numerical simulations of the evolution of a synthetic population of Binary Neptune Trojans, under the influence of the solar perturbations and tidal friction (the so-called Kozai cycles and tidal friction evolution). Our model includes the dynamical influence of the four giant planets on the heliocentric orbit of the binary centre of mass. In this paper, we explore the evolution of initially tight binaries around the Neptune L4 Lagrange point. We found that the variation of the heliocentric orbital elements due to the libration around the Lagrange point introduces significant changes in the orbital evolution of the binaries. Collisional processes would not play a significant role in the dynamical evolution of Neptune Trojans. After 4.5 × 109 yr of evolution, ˜50 per cent of the synthetic systems end up separated as single objects, most of them with slow diurnal rotation rate. The final orbital distribution of the surviving binary systems is statistically similar to the one found for Kuiper Belt Binaries when collisional evolution is not included in the model. Systems composed by a primary and a small satellite are more fragile than the ones composed by components of similar sizes.
75 FR 26738 - Sunshine Act Meeting Notice
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-12
... Considered: Agenda: (1) Consideration of the trading of futures and binary options based on motion picture... revenues collared futures and binary option contracts, and the Cantor Exchange (``Cantor'') The Expendables... related to MDEX's Takers opening weekend motion picture revenues collared futures and binary option...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tessmer, Manuel
This paper generalizes the structure of gravitational waves from orbiting spinning binaries under leading order spin-orbit coupling, as given in the work by Koenigsdoerffer and Gopakumar [Phys. Rev. D 71, 024039 (2005)] for single-spin and equal-mass binaries, to unequal-mass binaries and arbitrary spin configurations. The orbital motion is taken to be quasicircular and the fractional mass difference is assumed to be small against one. The emitted gravitational waveforms are given in analytic form.
Mass flow in interacting binaries observed in the ultraviolet
NASA Technical Reports Server (NTRS)
Kondo, Yoji
1989-01-01
Recent satellite observations of close binary systems show that practically all binaries exhibit evidence of mass flow and that, where the observations are sufficiently detailed, a fraction of the matter flowing out of the mass-losing component is accreted by the companion and the remainder is lost from the binary system. The mass flow is not conservative. During the phase of dynamic mass flow, the companion star becomes immersed in optically-thick plasma and the physical properties of that star elude close scrutiny.
Creation of an anti-imaging system using binary optics.
Wang, Haifeng; Lin, Jian; Zhang, Dawei; Wang, Yang; Gu, Min; Urbach, H P; Gan, Fuxi; Zhuang, Songlin
2016-09-13
We present a concealing method in which an anti-point spread function (APSF) is generated using binary optics, which produces a large-scale dark area in the focal region that can hide any object located within it. This result is achieved by generating two identical PSFs of opposite signs, one consisting of positive electromagnetic waves from the zero-phase region of the binary optical element and the other consisting of negative electromagnetic waves from the pi-phase region of the binary optical element.
Creation of an anti-imaging system using binary optics
Wang, Haifeng; Lin, Jian; Zhang, Dawei; Wang, Yang; Gu, Min; Urbach, H. P.; Gan, Fuxi; Zhuang, Songlin
2016-01-01
We present a concealing method in which an anti-point spread function (APSF) is generated using binary optics, which produces a large-scale dark area in the focal region that can hide any object located within it. This result is achieved by generating two identical PSFs of opposite signs, one consisting of positive electromagnetic waves from the zero-phase region of the binary optical element and the other consisting of negative electromagnetic waves from the pi-phase region of the binary optical element. PMID:27620068
In what sense a neutron star-black hole binary is the holy grail for testing gravity?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagchi, Manjari; Torres, Diego F., E-mail: manjari.bagchi@icts.res.in, E-mail: dtorres@ieec.uab.es
2014-08-01
Pulsars in binary systems have been very successful to test the validity of general relativity in the strong field regime [1-4]. So far, such binaries include neutron star-white dwarf (NS-WD) and neutron star-neutron star (NS-NS) systems. It is commonly believed that a neutron star-black hole (NS-BH) binary will be much superior for this purpose. But in what sense is this true? Does it apply to all possible deviations?.
Clustering and Dimensionality Reduction to Discover Interesting Patterns in Binary Data
NASA Astrophysics Data System (ADS)
Palumbo, Francesco; D'Enza, Alfonso Iodice
The attention towards binary data coding increased consistently in the last decade due to several reasons. The analysis of binary data characterizes several fields of application, such as market basket analysis, DNA microarray data, image mining, text mining and web-clickstream mining. The paper illustrates two different approaches exploiting a profitable combination of clustering and dimensionality reduction for the identification of non-trivial association structures in binary data. An application in the Association Rules framework supports the theory with the empirical evidence.
Evolution of magnetic cataclysmic binaries
NASA Technical Reports Server (NTRS)
Lamb, Don Q.; Melia, F.
1988-01-01
The evolution of magnetic cataclysmic binaries is reviewed, with emphasis on the synchronization process by which DQ Herculis stars become AM Herculis stars. The various mechanisms that are thought to drive the evolution of cataclysmic binaries are discussed, and the criterion for stream versus disk accretion, the physics of the accretion and synchronization torques, and the conditions required for synchronization are described. The different physical regimes to which magnetic cataclysmic binaries belong are summarized, and how synchronization may be achieved, and how it may be broken, are considered.
Frontiers of stellar evolution
NASA Technical Reports Server (NTRS)
Lambert, David L. (Editor)
1991-01-01
The present conference discusses theoretical and observational views of star formation, spectroscopic constraints on the evolution of massive stars, very low mass stars and brown dwarfs, asteroseismology, globular clusters as tests of stellar evolution, observational tests of stellar evolution, and mass loss from cool evolved giant stars. Also discussed are white dwarfs and hot subdwarfs, neutron stars and black holes, supernovae from single stars, close binaries with evolved components, accretion disks in interacting binaries, supernovae in binary systems, stellar evolution and galactic chemical evolution, and interacting binaries containing compact components.
Spectral types of four binaries based on photometric observations
NASA Astrophysics Data System (ADS)
Shimanskii, V. V.; Bikmaev, I. F.; Borisov, N. V.; Vlasyuk, V. V.; Galeev, A. I.; Sakhibullin, N. A.; Spiridonova, O. I.
2008-09-01
We present results of photometric and spectroscopic observations of four close binaries with subdwarf B components: PG 0918+029, PG 1000+408, PG 1116+301, PG 0001+275. We discovered that PG 1000+408 is a close binary, with the most probable orbital period being P orb = 1.041145 day. Based on a comparison of the observed light curves at selected orbital phases and theoretical predictions for their variations, all the systems are classified as doubly degenerate binaries with low-luminosity white-dwarf secondaries.
Polarized light curves illuminate wind geometries in Wolf-Rayet binary stars
NASA Astrophysics Data System (ADS)
Hoffman, Jennifer L.; Fullard, Andrew G.; Nordsieck, Kenneth H.
2018-01-01
Although the majority of massive stars are affected by a companion during the course of their evolution, the role of binary systems in creating supernova and GRB progenitors is not well understood. Binaries containing Wolf-Rayet stars are particularly interesting because they may provide a mechanism for producing the rapid rotation necessary for GRB formation. However, constraining the evolutionary fate of a Wolf-Rayet binary system requires characterizing its mass loss and mass transfer, a difficult prospect in systems whose colliding winds obscure the stars and produce complicated spectral signatures.The technique of spectropolarimetry is ideally suited to studying WR binary systems because it can disentangle spectral components that take different scattering paths through a complex distribution of circumstellar material. In particular, comparing the polarization behavior as a function of orbital phase of the continuum (which arises from the stars) with that of the emission lines (which arise from the interaction region) can provide a detailed view of the wind structures in a WR+O binary and constrain the system’s mass loss and mass transfer properties.We present new continuum and line polarization curves for three WR+O binaries (WR 30, WR 47, and WR 113) obtained with the RSS spectropolarimeter at the Southern African Large Telescope. We use radiative transfer simulations to analyze the polarization curves, and discuss our interpretations in light of current models for V444 Cygni, a well-studied related binary system. Accurately characterizing the structures of the wind collision regions in these massive binaries is key to understanding their evolution and properly accounting for their contribution to the supernova (and possible GRB) progenitor population.
SLoWPoKES-II: 100,000 WIDE BINARIES IDENTIFIED IN SDSS WITHOUT PROPER MOTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhital, Saurav; West, Andrew A.; Schluns, Kyle J.
2015-08-15
We present the Sloan Low-mass Wide Pairs of Kinematically Equivalent Stars (SLoWPoKES)-II catalog of low-mass visual binaries identified from the Sloan Digital Sky Survey (SDSS) by matching photometric distances. The candidate pairs are vetted by comparing the stellar information. The candidate pairs are vetted by comparing the stellar density at their respective Galactic positions to Monte Carlo realizations of a simulated Milky Way. In this way, we are able to identify large numbers of bona fide wide binaries without the need for proper motions. Here, 105,537 visual binaries with angular separations of ∼1–20″ were identified, each with a probability ofmore » chance alignment of ≤5%. This is the largest catalog of bona fide wide binaries to date, and it contains a diversity of systems—in mass, mass ratios, binary separations, metallicity, and evolutionary states—that should facilitate follow-up studies to characterize the properties of M dwarfs and white dwarfs. There is a subtle but definitive suggestion of multiple populations in the physical separation distribution, supporting earlier findings. We suggest that wide binaries are composed of multiple populations, most likely representing different formation modes. There are 141 M7 or later wide binary candidates, representing a seven-fold increase over the number currently known. These binaries are too wide to have been formed via the ejection mechanism. Finally, we found that 6% of spectroscopically confirmed M dwarfs are not included in the SDSS STAR catalog; they are misclassified as extended sources due to the presence of a nearby or partially resolved companion. The SLoWPoKES-II catalog is publicly available to the entire community on the World Wide Web via the Filtergraph data visualization portal.« less
High-mass X-ray binary populations. 1: Galactic modeling
NASA Technical Reports Server (NTRS)
Dalton, William W.; Sarazin, Craig L.
1995-01-01
Modern stellar evolutionary tracks are used to calculate the evolution of a very large number of massive binary star systems (M(sub tot) greater than or = 15 solar mass) which cover a wide range of total masses, mass ratios, and starting separations. Each binary is evolved accounting for mass and angular momentum loss through the supernova of the primary to the X-ray binary phase. Using the observed rate of star formation in our Galaxy and the properties of massive binaries, we calculate the expected high-mass X-ray binary (HMXRB) population in the Galaxy. We test various massive binary evolutionary scenarios by comparing the resulting HMXRB predictions with the X-ray observations. A major goal of this study is the determination of the fraction of matter lost from the system during the Roche lobe overflow phase. Curiously, we find that the total numbers of observable HMXRBs are nearly independent of this assumed mass-loss fraction, with any of the values tested here giving acceptable agreement between predicted and observed numbers. However, comparison of the period distribution of our HMXRB models with the observed period distribution does reveal a distinction among the various models. As a result of this comparison, we conclude that approximately 70% of the overflow matter is lost from a massive binary system during mass transfer in the Roche lobe overflow phase. We compare models constructed assuming that all X-ray emission is due to accretion onto the compact object from the donor star's wind with models that incorporate a simplified disk accretion scheme. By comparing the results of these models with observations, we conclude that the formation of disks in HMXRBs must be relatively common. We also calculate the rate of formation of double degenerate binaries, high velocity detached compact objects, and Thorne-Zytkow objects.
Rebehmed, Joseph; Quintus, Flavien; Mornon, Jean-Paul; Callebaut, Isabelle
2016-05-01
Several studies have highlighted the leading role of the sequence periodicity of polar and nonpolar amino acids (binary patterns) in the formation of regular secondary structures (RSS). However, these were based on the analysis of only a few simple cases, with no direct mean to correlate binary patterns with the limits of RSS. Here, HCA-derived hydrophobic clusters (HC) which are conditioned binary patterns whose positions fit well those of RSS, were considered. All the HC types, defined by unique binary patterns, which were commonly observed in three-dimensional (3D) structures of globular domains, were analyzed. The 180 HC types with preferences for either α-helices or β-strands distinctly contain basic binary units typical of these RSS. Therefore a general trend supporting the "binary pattern preference" assumption was observed. HC for which observed RSS are in disagreement with their expected behavior (discordant HC) were also examined. They were separated in HC types with moderate preferences for RSS, having "weak" binary patterns and versatile RSS and HC types with high preferences for RSS, having "strong" binary patterns and then displaying nonpolar amino acids at the protein surface. It was shown that in both cases, discordant HC could be distinguished from concordant ones by well-differentiated amino acid compositions. The obtained results could, thus, help to complement the currently available methods for the accurate prediction of secondary structures in proteins from the only information of a single amino acid sequence. This can be especially useful for characterizing orphan sequences and for assisting protein engineering and design. © 2016 Wiley Periodicals, Inc.
R package to estimate intracluster correlation coefficient with confidence interval for binary data.
Chakraborty, Hrishikesh; Hossain, Akhtar
2018-03-01
The Intracluster Correlation Coefficient (ICC) is a major parameter of interest in cluster randomized trials that measures the degree to which responses within the same cluster are correlated. There are several types of ICC estimators and its confidence intervals (CI) suggested in the literature for binary data. Studies have compared relative weaknesses and advantages of ICC estimators as well as its CI for binary data and suggested situations where one is advantageous in practical research. The commonly used statistical computing systems currently facilitate estimation of only a very few variants of ICC and its CI. To address the limitations of current statistical packages, we developed an R package, ICCbin, to facilitate estimating ICC and its CI for binary responses using different methods. The ICCbin package is designed to provide estimates of ICC in 16 different ways including analysis of variance methods, moments based estimation, direct probabilistic methods, correlation based estimation, and resampling method. CI of ICC is estimated using 5 different methods. It also generates cluster binary data using exchangeable correlation structure. ICCbin package provides two functions for users. The function rcbin() generates cluster binary data and the function iccbin() estimates ICC and it's CI. The users can choose appropriate ICC and its CI estimate from the wide selection of estimates from the outputs. The R package ICCbin presents very flexible and easy to use ways to generate cluster binary data and to estimate ICC and it's CI for binary response using different methods. The package ICCbin is freely available for use with R from the CRAN repository (https://cran.r-project.org/package=ICCbin). We believe that this package can be a very useful tool for researchers to design cluster randomized trials with binary outcome. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yamaguchi, M. S.; Yano, T.; Gouda, N.
2018-03-01
We develop a method for identifying a compact object in binary systems with astrometric measurements and apply it to some binaries. Compact objects in some high-mass X-ray binaries and gamma-ray binaries are unknown, which is responsible for the fact that emission mechanisms in such systems have not yet confirmed. The accurate estimate of the mass of the compact object allows us to identify the compact object in such systems. Astrometric measurements are expected to enable us to estimate the masses of the compact objects in the binary systems via a determination of a binary orbit. We aim to evaluate the possibility of the identification of the compact objects for some binary systems. We then calculate probabilities that the compact object is correctly identified with astrometric observation (= confidence level) by taking into account a dependence of the orbital shape on orbital parameters and distributions of masses of white dwarfs, neutron stars and black holes. We find that the astrometric measurements with the precision of 70 μas for γ Cas allow us to identify the compact object at 99 per cent confidence level if the compact object is a white dwarf with 0.6 M⊙. In addition, we can identify the compact object with the precision of 10 μas at 97 per cent or larger confidence level for LS I +61° 303 and 99 per cent or larger for HESS J0632+057. These results imply that the astrometric measurements with the 10 μas precision level can realize the identification of compact objects for γ Cas, LS I +61° 303, and HESS J0632+057.
An accessible echelle pipeline and its application to a binary star
NASA Astrophysics Data System (ADS)
Carmichael, Theron; Johnson, John Asher
2018-01-01
Nearly every star observed in the Galaxy has one or more companions that play an integral role in the evolution of the star. Whether it is a planet or another star, a companion opens up opportunities for unique forms of analysis to be done on a system. Some 2400 lightyears away, there is a 3-10 Myr old binary system called KH 15D, which not only includes two T Tauri K-type stars in a close orbit of 48 days, but also a truncated, coherently precessing warped disk in a circumbinary orbit.In binary systems, a double-lined spectroscopic binary may be observable in spectra. This is a spectrum that contains a mixture of each star's properties and manifests as two sets of spectral emission and absorption lines that correspond to each star. Slightly different is a single-lined spectroscopic binary, where only one set of spectral lines from one star is visible. The data of KH 15D are studied in the form of a double single-lined spectroscopic binary. This means that at two separate observing times, a single-lined spectroscopic binary is obtained from one of the stars of KH 15D. This is possible because of the circumbinary disk that blocks one star at a time from view.Here, we study this binary system with a combination of archival echelle data from the Keck Observatory and new echelle data from Las Campanas Observatory. This optical data is reduced with a new Python-based pipeline available on GitHub. The objective is to measure the mass function of the binary star and refine the current values of each star's properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruiter, Ashley J.; Belczynski, Krzysztof; Benacquista, Matthew
Double white dwarfs (WDs) are expected to be a source of confusion-limited noise for the future gravitational wave observatory LISA. In a specific frequency range, this 'foreground noise' is predicted to rise above the instrumental noise and hinder the detection of other types of signals, e.g., gravitational waves arising from stellar-mass objects inspiraling into massive black holes. In many previous studies, only detached populations of compact object binaries have been considered in estimating the LISA gravitational wave foreground signal. Here, we investigate the influence of compact object detached and Roche-Lobe overflow (RLOF) Galactic binaries on the shape and strength ofmore » the LISA signal. Since >99% of remnant binaries that have orbital periods within the LISA sensitivity range are WD binaries, we consider only these binaries when calculating the LISA signal. We find that the contribution of RLOF binaries to the foreground noise is negligible at low frequencies, but becomes significant at higher frequencies, pushing the frequency at which the foreground noise drops below the instrumental noise to >6 mHz. We find that it is important to consider the population of mass-transferring binaries in order to obtain an accurate assessment of the foreground noise on the LISA data stream. However, we estimate that there still exists a sizeable number ({approx}11,300) of Galactic double WD binaries that will have a signal-to-noise ratio >5, and thus will be potentially resolvable with LISA. We present the LISA gravitational wave signal from the Galactic population of WD binaries, show the most important formation channels contributing to the LISA disk and bulge populations, and discuss the implications of these new findings.« less
Using LISA to Learn How Pairs of Black Holes Formed
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-11-01
Artists impression of the European Space Agencys Laser Interferometer Space Antenna, currently planned for a 2034 launch. [NASA]How are black-hole binaries built? Observations of gravitational waves from these systems made using the European Space Agencys upcoming mission, the Laser Interferometer Space Antenna (LISA) may be able to reveal their origins.Formation ChannelsThere are two primary placeswhere stellar-mass black-hole binaries are thought to form:In isolation in the galactic field, as the components of a stellar binary independently evolve into black holes but remain bound to each other.In dense stellar environments like globular clusters, where the high density of already-formed black holes can cause a pair to dynamically interact and form a binary before being ejected from the cluster.Can we differentiate between these origins based on future detections of gravitational waves from black-hole binaries? A team of scientists led by Katelyn Breivik (CIERA, Northwestern University) thinks that we can!The gravitational-wave spectrum and how we detect it (click for a closer look!). While ground-based interferometers like LIGO detect black-hole binaries in the final moments before merger, LISAs lower frequency band will allow it to detect binaries earlier in their inspiral. [NASA Goddard SFC]Differentiation by EccentricityBreivik and collaborators believe that the key clue is the binarys eccentricity. Gravitational-wave emission will eventually circularize all black-hole binaries during their inspiral. But in the first formation scenario, binary evolution processes like tidal circularization and mass transfer will reduce the binarys eccentricity early on whereas in the second scenario, the binaries that form in globular clusters may retain eccentricity in their orbits long enough that we can detect it.Ground-based interferometers wont be up to this task; by the time the binary orbits shrink enough to evolve into the LIGO frequency band, the orbits wont have measurable eccentricity anymore. But the upcoming space-based LISA mission, which will operate in a lower frequency band, might be able to pick up this signature.To determine if LISA can pull it off, Breivik and collaborators simulate two populations of binary black holes: one evolved in isolation in galactic fields, and the other formed dynamically in globular clusters and then ejected. The authors then explore the evolution of these populations masses and eccentricities as their orbits narrow into the LISA-detectable frequency band.Eccentricity evolution tracks as a function of gravitational-wave frequency for black-hole binaries formed in dynamical scenarios (black) and in isolation (blue for those with a common-envelope episode, green for those without). Eccentricities above 10-2 are measurable for all binaries; those above 10-3 are measurable for 90%. LISAs frequency band is shown in grey. [Breivik et al. 2016]Separating PopulationsBreivik and collaborators find that LISA will be able to make several important distinctions. First, if LISA detects binary black holes with eccentricities of e 0.01 at frequencies above 10-2 Hz, we can be fairly certainthat these originated from dynamical processes in dense stellar environments.For binary black holes detected with eccentricities of e 0.01 at lower frequencies, they could either have formed in dense stellar environments or they could have formed in isolation. Based on this studys results, however, those with measurable eccentricities that formed in isolation mostlikely originated from a common-envelope formation. Measuring eccentricities of such systems in the future could provide constraints on the physics of how this formation mechanism works.Though the field of gravitational-wave astronomy is only just beginning, its future is promising! Theoretical studies like this one will help us to extracta greater understanding from the observations we can expect down the road.BonusCheck out this beautiful simulationfrom Northwestern Visualization and Carl Rodriguez (a co-author on the above study) that shows what the formation of a binary black hole in a globular cluster might look like!http://aasnova.org/wp-content/uploads/2016/11/accelerated_nbody_hd.mp4CitationKatelyn Breivik et al 2016 ApJL 830 L18. doi:10.3847/2041-8205/830/1/L18
NASA Astrophysics Data System (ADS)
Evans, Nancy R.; Bond, H. E.; Schaefer, G.; Mason, B. D.; Karovska, M.; Tingle, E.
2013-01-01
Cepheids (5 Msun stars) provide an excellent sample for determining the binary properties of fairly massive stars. International Ultraviolet Explorer (IUE) observations of Cepheids brighter than 8th magnitude resulted in a list of ALL companions more massive than 2.0 Msun uniformly sensitive to all separations. Hubble Space Telescope Wide Field Camera 3 (WFC3) has resolved three of these binaries (Eta Aql, S Nor, and V659 Cen). Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations for a sample of 18 Cepheids, and also a distribution of mass ratios. The distribution of orbital periods shows that the 5 Msun binaries prefer shorter periods than 1 Msun stars, reflecting differences in star formation processes.
Malware detection and analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Ken; Lloyd, Levi; Crussell, Jonathan
Embodiments of the invention describe systems and methods for malicious software detection and analysis. A binary executable comprising obfuscated malware on a host device may be received, and incident data indicating a time when the binary executable was received and identifying processes operating on the host device may be recorded. The binary executable is analyzed via a scalable plurality of execution environments, including one or more non-virtual execution environments and one or more virtual execution environments, to generate runtime data and deobfuscation data attributable to the binary executable. At least some of the runtime data and deobfuscation data attributable tomore » the binary executable is stored in a shared database, while at least some of the incident data is stored in a private, non-shared database.« less
Properties OF M31. V. 298 eclipsing binaries from PAndromeda
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C.-H.; Koppenhoefer, J.; Seitz, S.
2014-12-10
The goal of this work is to conduct a photometric study of eclipsing binaries in M31. We apply a modified box-fitting algorithm to search for eclipsing binary candidates and determine their period. We classify these candidates into detached, semi-detached, and contact systems using the Fourier decomposition method. We cross-match the position of our detached candidates with the photometry from Local Group Survey and select 13 candidates brighter than 20.5 mag in V. The relative physical parameters of these detached candidates are further characterized with the Detached Eclipsing Binary Light curve fitter (DEBiL) by Devor. We will follow up the detachedmore » eclipsing binaries spectroscopically and determine the distance to M31.« less
Kumar, Deepak; Kumar, Pramendra; Pandey, Jyoti
2018-04-17
The antimicrobial binary grafted chitosan film [chit-g-Poly (An-co-Am)] was prepared by grafting of acrylonitrile and acrylamide on to chitosan via microwave initiated graft copolymerization. The grafting of acrylonitrile and acrylamide onto chitosan backbone was confirmed by FTIR, XRD, SEM and TGA/DTA/DTG analytical techniques. The binary grafted chitosan film possessed efficient antimicrobial activity against three tested strains, i.e. Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The prepared binary grafted chitosan film was tested for packaging apple and guava to prevent microbial infection and extend their shelf life. The biodegradability study of binary grafted chitosan film was also done and all the results were positive. Copyright © 2018. Published by Elsevier B.V.
Generation of binary holograms for deep scenes captured with a camera and a depth sensor
NASA Astrophysics Data System (ADS)
Leportier, Thibault; Park, Min-Chul
2017-01-01
This work presents binary hologram generation from images of a real object acquired from a Kinect sensor. Since hologram calculation from a point-cloud or polygon model presents a heavy computational burden, we adopted a depth-layer approach to generate the holograms. This method enables us to obtain holographic data of large scenes quickly. Our investigations focus on the performance of different methods, iterative and noniterative, to convert complex holograms into binary format. Comparisons were performed to examine the reconstruction of the binary holograms at different depths. We also propose to modify the direct binary search algorithm to take into account several reference image planes. Then, deep scenes featuring multiple planes of interest can be reconstructed with better efficiency.
NASA Astrophysics Data System (ADS)
González, J. F.; Levato, H.; Grosso, M.
We present preliminary results of a long-term project devoted to the observational study of the binary star population in open clusters and its connection with the dynamical and evolutionary properties of the clusters. We report the discovery of 17 double-lined spectroscopic binaries, 30 radial velocity variables and about 30 suspected variables. In the 17 clusters of our sample the binary frequency ranges between 20 and 40 %, and reaches typically 60 % if all suspected binaries are included. We study the spatial distribution of the binary stars with respect to the cluster center and we discuss the statistical correlation of the mass-ratio distribution with the cluster age.
Spectroscopic observations of V443 Herculis - A symbiotic binary with a low mass white dwarf
NASA Technical Reports Server (NTRS)
Dobrzycka, Danuta; Kenyon, Scott J.; Mikolajewska, Joanna
1993-01-01
We present an analysis of new and existing photometric and spectroscopic observations of the symbiotic binary V443 Herculis. This binary system consists of a normal M5 giant and a hot compact star. These two objects have comparable luminosities: about 1500 solar for the M5 giant and about 1000 solar for the compact star. We identify three nebular regions in this binary: a small, highly ionized volume surrounding the hot component, a modestly ionized shell close to the red giant photosphere, and a less dense region of intermediate ionization encompassing both binary components. The system parameters for V443 Her suggest the hot component currently declines from a symbiotic nova eruption.
NASA Astrophysics Data System (ADS)
Kushkhov, Kh. B.; Kardanov, A. L.; Adamokova, M. N.
2013-02-01
Nanopowders of binary tungsten-molybdenum carbide are fabricated by high-temperature electrochemical synthesis. The optimum concentration relations between electrolyte components, the current density, and the quantity of electricity are determined to synthesize binary tungsten-molybdenum carbides.
Biclustering sparse binary genomic data.
van Uitert, Miranda; Meuleman, Wouter; Wessels, Lodewyk
2008-12-01
Genomic datasets often consist of large, binary, sparse data matrices. In such a dataset, one is often interested in finding contiguous blocks that (mostly) contain ones. This is a biclustering problem, and while many algorithms have been proposed to deal with gene expression data, only two algorithms have been proposed that specifically deal with binary matrices. None of the gene expression biclustering algorithms can handle the large number of zeros in sparse binary matrices. The two proposed binary algorithms failed to produce meaningful results. In this article, we present a new algorithm that is able to extract biclusters from sparse, binary datasets. A powerful feature is that biclusters with different numbers of rows and columns can be detected, varying from many rows to few columns and few rows to many columns. It allows the user to guide the search towards biclusters of specific dimensions. When applying our algorithm to an input matrix derived from TRANSFAC, we find transcription factors with distinctly dissimilar binding motifs, but a clear set of common targets that are significantly enriched for GO categories.
Towards constructing multi-bit binary adder based on Belousov-Zhabotinsky reaction
NASA Astrophysics Data System (ADS)
Zhang, Guo-Mao; Wong, Ieong; Chou, Meng-Ta; Zhao, Xin
2012-04-01
It has been proposed that the spatial excitable media can perform a wide range of computational operations, from image processing, to path planning, to logical and arithmetic computations. The realizations in the field of chemical logical and arithmetic computations are mainly concerned with single simple logical functions in experiments. In this study, based on Belousov-Zhabotinsky reaction, we performed simulations toward the realization of a more complex operation, the binary adder. Combining with some of the existing functional structures that have been verified experimentally, we designed a planar geometrical binary adder chemical device. Through numerical simulations, we first demonstrated that the device can implement the function of a single-bit full binary adder. Then we show that the binary adder units can be further extended in plane, and coupled together to realize a two-bit, or even multi-bit binary adder. The realization of chemical adders can guide the constructions of other sophisticated arithmetic functions, ultimately leading to the implementation of chemical computer and other intelligent systems.
NASA Astrophysics Data System (ADS)
Qin, Yi; Wang, Zhipeng; Wang, Hongjuan; Gong, Qiong
2018-07-01
We propose a binary image encryption method in joint transform correlator (JTC) by aid of the run-length encoding (RLE) and Quick Response (QR) code, which enables lossless retrieval of the primary image. The binary image is encoded with RLE to obtain the highly compressed data, and then the compressed binary image is further scrambled using a chaos-based method. The compressed and scrambled binary image is then transformed into one QR code that will be finally encrypted in JTC. The proposed method successfully, for the first time to our best knowledge, encodes a binary image into a QR code with the identical size of it, and therefore may probe a new way for extending the application of QR code in optical security. Moreover, the preprocessing operations, including RLE, chaos scrambling and the QR code translation, append an additional security level on JTC. We present digital results that confirm our approach.
Near-Infrared Polarimetry of the GG Tauri A Binary System
NASA Technical Reports Server (NTRS)
Itoh, Yoichi; Oasa, Yumiko; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Hashimoto, Jun; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph C.; Egner, Sebastian;
2014-01-01
A high angular resolution near-infrared image that shows the intensity of polarization for the GG Tau A binary system was obtained with the Subaru Telescope. The image shows a circumbinary disk scattering the light from the central binary. The azimuthal profile of the intensity of polarization for the circumbinary disk is roughly reproduced by a simple disk model with the Henyey-Greenstein phase function and the Rayleigh function, indicating there are small dust grains at the surface of the disk. Combined with a previous observation of the circumbinary disk, our image indicates that the gap structure in the circumbinary disk orbits counterclockwise, but material in the disk orbits clockwise. We propose that there is a shadow caused by material located between the central binary and the circumbinary disk. The separations and position angles of the stellar components of the binary in the past 20 yr are consistent with the binary orbit with a = 33.4 AU and e = 0.34.
Hidden slow pulsars in binaries
NASA Technical Reports Server (NTRS)
Tavani, Marco; Brookshaw, Leigh
1993-01-01
The recent discovery of the binary containing the slow pulsar PSR 1718-19 orbiting around a low-mass companion star adds new light on the characteristics of binary pulsars. The properties of the radio eclipses of PSR 1718-19 are the most striking observational characteristics of this system. The surface of the companion star produces a mass outflow which leaves only a small 'window' in orbital phase for the detection of PSR 1718-19 around 400 MHz. At this observing frequency, PSR 1718-19 is clearly observable only for about 1 hr out of the total 6.2 hr orbital period. The aim of this Letter is twofold: (1) to model the hydrodynamical behavior of the eclipsing material from the companion star of PSR 1718-19 and (2) to argue that a population of binary slow pulsars might have escaped detection in pulsar surveys carried out at 400 MHz. The possible existence of a population of partially or totally hidden slow pulsars in binaries will have a strong impact on current theories of binary evolution of neutron stars.
Truong, Son Ngoc; Ham, Seok-Jin; Min, Kyeong-Sik
2014-01-01
In this paper, a neuromorphic crossbar circuit with binary memristors is proposed for speech recognition. The binary memristors which are based on filamentary-switching mechanism can be found more popularly and are easy to be fabricated than analog memristors that are rare in materials and need a more complicated fabrication process. Thus, we develop a neuromorphic crossbar circuit using filamentary-switching binary memristors not using interface-switching analog memristors. The proposed binary memristor crossbar can recognize five vowels with 4-bit 64 input channels. The proposed crossbar is tested by 2,500 speech samples and verified to be able to recognize 89.2% of the tested samples. From the statistical simulation, the recognition rate of the binary memristor crossbar is estimated to be degraded very little from 89.2% to 80%, though the percentage variation in memristance is increased very much from 0% to 15%. In contrast, the analog memristor crossbar loses its recognition rate significantly from 96% to 9% for the same percentage variation in memristance.
Interfacing modeling suite Physics Of Eclipsing Binaries 2.0 with a Virtual Reality Platform
NASA Astrophysics Data System (ADS)
Harriett, Edward; Conroy, Kyle; Prša, Andrej; Klassner, Frank
2018-01-01
To explore alternate methods for modeling eclipsing binary stars, we extrapolate upon PHOEBE’s (PHysics Of Eclipsing BinariEs) capabilities in a virtual reality (VR) environment to create an immersive and interactive experience for users. The application used is Vizard, a python-scripted VR development platform for environments such as Cave Automatic Virtual Environment (CAVE) and other off-the-shelf VR headsets. Vizard allows the freedom for all modeling to be precompiled without compromising functionality or usage on its part. The system requires five arguments to be precomputed using PHOEBE’s python front-end: the effective temperature, flux, relative intensity, vertex coordinates, and orbits; the user can opt to implement other features from PHOEBE to be accessed within the simulation as well. Here we present the method for making the data observables accessible in real time. An Occulus Rift will be available for a live showcase of various cases of VR rendering of PHOEBE binary systems including detached and contact binary stars.
Poynting-Flux-Driven Bubbles and Shocks Around Merging Neutron Star Binaries
NASA Astrophysics Data System (ADS)
Medvedev, M. V.; Loeb, A.
2013-04-01
Merging binaries of compact relativistic objects are thought to be progenitors of short gamma-ray bursts. Because of the strong magnetic field of one or both binary members and high orbital frequencies, these binaries are strong sources of energy in the form of Poynting flux. The steady injection of energy by the binary forms a bubble filled with matter with the relativistic equation of state, which pushes on the surrounding plasma and can drive a shock wave in it. Unlike the Sedov-von Neumann-Taylor blast wave solution for a point-like explosion, the shock wave here is continuously driven by the ever-increasing pressure inside the bubble. We calculate from the first principles the dynamics and evolution of the bubble and the shock surrounding it, demonstrate that it exhibits finite time singularity and find the corresponding analytical solution. We predict that such binaries can be observed as radio sources a few hours before and after the merger.
Accreting Black Hole Binaries in Globular Clusters
NASA Astrophysics Data System (ADS)
Kremer, Kyle; Chatterjee, Sourav; Rodriguez, Carl L.; Rasio, Frederic A.
2018-01-01
We explore the formation of mass-transferring binary systems containing black holes (BHs) within globular clusters (GC). We show that it is possible to form mass-transferring BH binaries with main sequence, giant, and white dwarf companions with a variety of orbital parameters in GCs spanning a large range in present-day properties. All mass-transferring BH binaries found in our models at late times are dynamically created. The BHs in these systems experienced a median of ∼30 dynamical encounters within the cluster before and after acquiring the donor. Furthermore, we show that the presence of mass-transferring BH systems has little correlation with the total number of BHs within the cluster at any time. This is because the net rate of formation of BH–non-BH binaries in a cluster is largely independent of the total number of retained BHs. Our results suggest that the detection of a mass-transferring BH binary in a GC does not necessarily indicate that the host cluster contains a large BH population.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clausen, Drew; Wade, Richard A.; Kopparapu, Ravi Kumar
Binaries that contain a hot subdwarf (sdB) star and a main-sequence companion may have interacted in the past. This binary population has historically helped determine our understanding of binary stellar evolution. We have computed a grid of binary population synthesis models using different assumptions about the minimum core mass for helium ignition, the envelope binding energy, the common-envelope ejection efficiency, the amount of mass and angular momentum lost during stable mass transfer, and the criteria for stable mass transfer on the red giant branch and in the Hertzsprung gap. These parameters separately and together can significantly change the entire predictedmore » population of sdBs. Nonetheless, several different parameter sets can reproduce the observed subpopulation of sdB + white dwarf and sdB + M dwarf binaries, which has been used to constrain these parameters in previous studies. The period distribution of sdB + early F dwarf binaries offers a better test of different mass transfer scenarios for stars that fill their Roche lobes on the red giant branch.« less
NASA Astrophysics Data System (ADS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Amador Ceron, E.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Arain, M. A.; Araya, M.; Aronsson, M.; Arun, K. G.; Aso, Y.; Aston, S.; Astone, P.; Atkinson, D. E.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballardin, G.; Ballinger, T.; Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Beker, M. G.; Belletoile, A.; Benacquista, M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bigotta, S.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birindelli, S.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Boccara, C.; Bock, O.; Bodiya, T. P.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Bose, S.; Bosi, L.; Bouhou, B.; Boyle, M.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Budzyński, R.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet–Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cain, J.; Calloni, E.; Camp, J. B.; Campagna, E.; Campsie, P.; Cannizzo, J.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C.; Carbognani, F.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coulon, J.-P.; Coward, D.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Das, K.; Dattilo, V.; Daudert, B.; Davier, M.; Davies, G.; Davis, A.; Daw, E. J.; Day, R.; Dayanga, T.; de Rosa, R.; Debra, D.; Degallaix, J.; Del Prete, M.; Dergachev, V.; Derosa, R.; Desalvo, R.; Devanka, P.; Dhurandhar, S.; di Fiore, L.; di Lieto, A.; di Palma, I.; di Paolo Emilio, M.; di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Dorsher, S.; Douglas, E. S. D.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Dueck, J.; Dumas, J.-C.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Ely, G.; Engel, R.; Etzel, T.; Evans, M.; Evans, T.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flanigan, M.; Flasch, K.; Foley, S.; Forrest, C.; Forsi, E.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Garofoli, J. A.; Garufi, F.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hall, P.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Hayler, T.; Heefner, J.; Heitmann, H.; Hello, P.; Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Howell, E.; Hoyland, D.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh–Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, H.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kowalska, I.; Kozak, D.; Krause, T.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kullman, J.; Kumar, R.; Kwee, P.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lazzarini, A.; Leaci, P.; Leong, J.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Lin, H.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lu, P.; Luan, J.; Lubiński, M.; Lucianetti, A.; Lück, H.; Lundgren, A.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Mak, C.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIvor, G.; McKechan, D. J. A.; Meadors, G.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Merill, L.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mino, Y.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreau, J.; Moreno, G.; Morgado, N.; Morgia, A.; Mors, K.; Mosca, S.; Moscatelli, V.; Mossavi, K.; Mours, B.; Mowlowry, C.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murray, P. G.; Nash, T.; Nawrodt, R.; Nelson, J.; Neri, I.; Newton, G.; Nishida, E.; Nishizawa, A.; Nocera, F.; Nolting, D.; Ochsner, E.; O'Dell, J.; Ogin, G. H.; Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Pardi, S.; Pareja, M.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pathak, D.; Pedraza, M.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Persichetti, G.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Postiglione, F.; Prato, M.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Radke, T.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Roberts, P.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Röver, C.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sakata, S.; Sakosky, M.; Salemi, F.; Sammut, L.; Sancho de La Jordana, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Santostasi, G.; Saraf, S.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Speirits, F. C.; Sperandio, L.; Stein, A. J.; Stein, L. C.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Trummer, J.; Tseng, K.; Turner, L.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vaishnav, B.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A.; Vinet, J.-Y.; Vocca, H.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yeaton-Massey, D.; Yoshida, S.; Yu, P. P.; Yvert, M.; Zanolin, M.; Zhang, L.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2010-11-01
We report the results of the first search for gravitational waves from compact binary coalescence using data from the Laser Interferometer Gravitational-Wave Observatory and Virgo detectors. Five months of data were collected during the Laser Interferometer Gravitational-Wave Observatory’s S5 and Virgo’s VSR1 science runs. The search focused on signals from binary mergers with a total mass between 2 and 35M⊙. No gravitational waves are identified. The cumulative 90%-confidence upper limits on the rate of compact binary coalescence are calculated for nonspinning binary neutron stars, black hole-neutron star systems, and binary black holes to be 8.7×10-3yr-1L10-1, 2.2×10-3yr-1L10-1, and 4.4×10-4yr-1L10-1, respectively, where L10 is 1010 times the blue solar luminosity. These upper limits are compared with astrophysical expectations.
Star formation history: Modeling of visual binaries
NASA Astrophysics Data System (ADS)
Gebrehiwot, Y. M.; Tessema, S. B.; Malkov, O. Yu.; Kovaleva, D. A.; Sytov, A. Yu.; Tutukov, A. V.
2018-05-01
Most stars form in binary or multiple systems. Their evolution is defined by masses of components, orbital separation and eccentricity. In order to understand star formation and evolutionary processes, it is vital to find distributions of physical parameters of binaries. We have carried out Monte Carlo simulations in which we simulate different pairing scenarios: random pairing, primary-constrained pairing, split-core pairing, and total and primary pairing in order to get distributions of binaries over physical parameters at birth. Next, for comparison with observations, we account for stellar evolution and selection effects. Brightness, radius, temperature, and other parameters of components are assigned or calculated according to approximate relations for stars in different evolutionary stages (main-sequence stars, red giants, white dwarfs, relativistic objects). Evolutionary stage is defined as a function of system age and component masses. We compare our results with the observed IMF, binarity rate, and binary mass-ratio distributions for field visual binaries to find initial distributions and pairing scenarios that produce observed distributions.
Correcting Velocity Dispersions of Dwarf Spheroidal Galaxies for Binary Orbital Motion
NASA Astrophysics Data System (ADS)
Minor, Quinn E.; Martinez, Greg; Bullock, James; Kaplinghat, Manoj; Trainor, Ryan
2010-10-01
We show that the measured velocity dispersions of dwarf spheroidal galaxies from about 4 to 10 km s-1 are unlikely to be inflated by more than 30% due to the orbital motion of binary stars and demonstrate that the intrinsic velocity dispersions can be determined to within a few percent accuracy using two-epoch observations with 1-2 yr as the optimal time interval. The crucial observable is the threshold fraction—the fraction of stars that show velocity changes larger than a given threshold between measurements. The threshold fraction is tightly correlated with the dispersion introduced by binaries, independent of the underlying binary fraction and distribution of orbital parameters. We outline a simple procedure to correct the velocity dispersion to within a few percent accuracy by using the threshold fraction and provide fitting functions for this method. We also develop a methodology for constraining properties of binary populations from both single- and two-epoch velocity measurements by including the binary velocity distribution in a Bayesian analysis.
Accretion as a function of Orbital Phase in Young Close Binaries
NASA Astrophysics Data System (ADS)
Ardila, David R.; Herczeg, G.; Johns-Krull, C. M.; Mathieu, R. D.; Vodniza, A.; Tofflemire, B. M.
2014-01-01
Many planets are known to reside around binaries and the study of young binary systems is crucial to understand their formation. Young ($<10$ Myrs) low-mass binaries are generally surrounded by circumbinary disk with an inner gap. Gas from the disk must cross this gap for accretion to take place and here we present observations of this process as a function of orbital phase. We have obtained time-resolved FUV and NUV spectroscopy (1350 to 3000 A) of DQ Tau and UZ Tau E, using the Cosmic Origins Spectrograph on-board the Hubble Space Telescope. Each target was observed 2 to 4 times per binary orbit, over three or four consecutive orbits. For DQ Tau, we find some evidence that accretion occurs equally into both binary members, while for UZ Tau E this is not the case. H2 emission for DQ Tau most likely originates within the circumbinary gap, while for UZ Tau E no 1000 K gas is detected within the gap, although magnetospheric accretion does take place.
Do all Planetary Nebulae result from Common Envelopes?
NASA Astrophysics Data System (ADS)
De Marco, O.; Moe, M.; Herwig, F.; Politano, M.
2005-12-01
The common envelope interaction is responsible for evolved close binaries. Some of these binaries reside in the middle of planetary nebulae (PN). Conventional wisdom has it that only about 10% of all PN contain close binary central stars. Recent observational results, however, strongly suggest that most or even all PN are in close binary systems. Interestingly, our population synthesis calculations predict that the number of post-common envelope PN is in agreement with the total number of PN in the Galaxy. On the other hand, if all stars (single and in binaries) with mass between ˜1-8 M⊙ eject a PN, there would be 10-20 times many more PN in the galaxy than observed. This theoretical result is in agreement with the observations in suggesting that binary interactions play a functional rather than marginal role in the creation of PN. FH acknowledges funds from the U.S. Dept. of Energy, under contract W-7405-ENG-36 to Los Alamos National Laboratory. MP gratefully acknowledges NSF grant AST-0328484 to Marquette University.
NASA Technical Reports Server (NTRS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.;
2010-01-01
We report the results of the first search for gravitational waves from compact binary coalescence using data from the Laser Interferometer Gravitational-wave Observatory (LIGO) and Virgo detectors. Five months of data were collected during the concurrent S5 (UGO) and VSRI (Virgo) science runs. The search focused on signals from binary mergers with a total mass between 2 and 35 Solar Mass. No gravitational waves are identified. The cumulative 90%-confidence upper limits on the rate of compact binary coalescence are calculated for non-spinning binary neutron stars, black hole-neutron star systems, and binary black holes to be 8.7 x 10(exp -3) / yr-1/L(sub 10) 2.2 x 10-3 yr-1L101, and 4.4 x 10(exp -4)3) / yr-1/L(sub 10) respectively, where L (sub 10) is 10(exp 10) times the blue solar luminosity. These upper limits are compared with astrophysical expectations.
Optimizing binary phase and amplitude filters for PCE, SNR, and discrimination
NASA Technical Reports Server (NTRS)
Downie, John D.
1992-01-01
Binary phase-only filters (BPOFs) have generated much study because of their implementation on currently available spatial light modulator devices. On polarization-rotating devices such as the magneto-optic spatial light modulator (SLM), it is also possible to encode binary amplitude information into two SLM transmission states, in addition to the binary phase information. This is done by varying the rotation angle of the polarization analyzer following the SLM in the optical train. Through this parameter, a continuum of filters may be designed that span the space of binary phase and amplitude filters (BPAFs) between BPOFs and binary amplitude filters. In this study, we investigate the design of optimal BPAFs for the key correlation characteristics of peak sharpness (through the peak-to-correlation energy (PCE) metric), signal-to-noise ratio (SNR), and discrimination between in-class and out-of-class images. We present simulation results illustrating improvements obtained over conventional BPOFs, and trade-offs between the different performance criteria in terms of the filter design parameter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yue; Liu, Xin; Loeb, Abraham
We perform a systematic search for sub-parsec binary supermassive black holes (BHs) in normal broad-line quasars at z < 0.8, using multi-epoch Sloan Digital Sky Survey (SDSS) spectroscopy of the broad Hβ line. Our working model is that (1) one and only one of the two BHs in the binary is active; (2) the active BH dynamically dominates its own broad-line region (BLR) in the binary system, so that the mean velocity of the BLR reflects the mean velocity of its host BH; (3) the inactive companion BH is orbiting at a distance of a few R{sub BLR}, where R{submore » BLR} ∼ 0.01-0.1 pc is the BLR size. We search for the expected line-of-sight acceleration of the broad-line velocity from binary orbital motion by cross-correlating SDSS spectra from two epochs separated by up to several years in the quasar rest frame. Out of ∼700 pairs of spectra for which we have good measurements of the velocity shift between two epochs (1σ error ∼40 km s{sup –1}), we detect 28 systems with significant velocity shifts in broad Hβ, among which 7 are the best candidates for the hypothesized binaries, 4 are most likely due to broad-line variability in single BHs, and the rest are ambiguous. Continued spectroscopic observations of these candidates will easily strengthen or disprove these claims. We use the distribution of the observed accelerations (mostly non-detections) to place constraints on the abundance of such binary systems among the general quasar population. Excess variance in the velocity shift is inferred for observations separated by longer than 0.4 yr (quasar rest frame). Attributing all the excess to binary motion would imply that most of the quasars in this sample must be in binaries, that the inactive BH must be on average more massive than the active one, and that the binary separation is at most a few times the size of the BLR. However, if this excess variance is partly or largely due to long-term broad-line variability, the requirement of a large population of close binaries is much weakened or even disfavored for massive companions. Future time-domain spectroscopic surveys of normal quasars can provide vital prior information on the structure function of stochastic velocity shifts induced by broad-line variability in single BHs. Such surveys with improved spectral quality, increased time baseline, and more epochs can greatly improve the statistical constraints of this method on the general binary population in broad-line quasars, further shrink the allowed binary parameter space, and detect true sub-parsec binaries.« less
Eclipsing Binaries From the CSTAR Project at Dome A, Antarctica
NASA Astrophysics Data System (ADS)
Yang, Ming; Zhang, Hui; Wang, Songhu; Zhou, Ji-Lin; Zhou, Xu; Wang, Lingzhi; Wang, Lifan; Wittenmyer, R. A.; Liu, Hui-Gen; Meng, Zeyang; Ashley, M. C. B.; Storey, J. W. V.; Bayliss, D.; Tinney, Chris; Wang, Ying; Wu, Donghong; Liang, Ensi; Yu, Zhouyi; Fan, Zhou; Feng, Long-Long; Gong, Xuefei; Lawrence, J. S.; Liu, Qiang; Luong-Van, D. M.; Ma, Jun; Wu, Zhenyu; Yan, Jun; Yang, Huigen; Yang, Ji; Yuan, Xiangyan; Zhang, Tianmeng; Zhu, Zhenxi; Zou, Hu
2015-04-01
The Chinese Small Telescope ARray (CSTAR) has observed an area around the Celestial South Pole at Dome A since 2008. About 20,000 light curves in the i band were obtained during the observation season lasting from 2008 March to July. The photometric precision achieves about 4 mmag at i = 7.5 and 20 mmag at i = 12 within a 30 s exposure time. These light curves are analyzed using Lomb-Scargle, Phase Dispersion Minimization, and Box Least Squares methods to search for periodic signals. False positives may appear as a variable signature caused by contaminating stars and the observation mode of CSTAR. Therefore, the period and position of each variable candidate are checked to eliminate false positives. Eclipsing binaries are removed by visual inspection, frequency spectrum analysis, and a locally linear embedding technique. We identify 53 eclipsing binaries in the field of view of CSTAR, containing 24 detached binaries, 8 semi-detached binaries, 18 contact binaries, and 3 ellipsoidal variables. To derive the parameters of these binaries, we use the Eclipsing Binaries via Artificial Intelligence method. The primary and secondary eclipse timing variations (ETVs) for semi-detached and contact systems are analyzed. Correlated primary and secondary ETVs confirmed by false alarm tests may indicate an unseen perturbing companion. Through ETV analysis, we identify two triple systems (CSTAR J084612.64-883342.9 and CSTAR J220502.55-895206.7). The orbital parameters of the third body in CSTAR J220502.55-895206.7 are derived using a simple dynamical model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Duncan A.; Zimmerman, Peter J.
2010-01-15
Inspiralling compact binaries are expected to circularize before their gravitational-wave signals reach the sensitive frequency band of ground-based detectors. Current searches for gravitational waves from compact binaries using the LIGO and Virgo detectors therefore use circular templates to construct matched filters. Binary formation models have been proposed which suggest that some systems detectable by the LIGO-Virgo network may have non-negligible eccentricity. We investigate the ability of the restricted 3.5 post-Newtonian order TaylorF2 template bank, used by LIGO and Virgo to search for gravitational waves from compact binaries with masses M{<=}35M{sub {center_dot},} to detect binaries with nonzero eccentricity. We model themore » gravitational waves from eccentric binaries using the x-model post-Newtonian formalism proposed by Hinder et al.[I. Hinder, F. Hermann, P. Laguna, and D. Shoemaker, arXiv:0806.1037v1]. We find that small residual eccentricities (e{sub 0} < or approx. 0.05 at 40 Hz) do not significantly affect the ability of current LIGO searches to detect gravitational waves from coalescing compact binaries with total mass 2M{sub {center_dot}<}M<15M{sub {center_dot}.} For eccentricities e{sub 0} > or approx. 0.1, the loss in matched filter signal-to-noise ratio due to eccentricity can be significant and so templates which include eccentric effects will be required to perform optimal searches for such systems.« less
Planet Formation in Binary Star Systems
NASA Astrophysics Data System (ADS)
Martin, Rebecca
About half of observed exoplanets are estimated to be in binary systems. Understanding planet formation and evolution in binaries is therefore essential for explaining observed exoplanet properties. Recently, we discovered that a highly misaligned circumstellar disk in a binary system can undergo global Kozai-Lidov (KL) oscillations of the disk inclination and eccentricity. These oscillations likely have a significant impact on the formation and orbital evolution of planets in binary star systems. Planet formation by core accretion cannot operate during KL oscillations of the disk. First, we propose to consider the process of disk mass transfer between the binary members. Secondly, we will investigate the possibility of planet formation by disk fragmentation. Disk self gravity can weaken or suppress the oscillations during the early disk evolution when the disk mass is relatively high for a narrow range of parameters. Thirdly, we will investigate the evolution of a planet whose orbit is initially aligned with respect to the disk, but misaligned with respect to the orbit of the binary. We will study how these processes relate to observations of star-spin and planet orbit misalignment and to observations of planets that appear to be undergoing KL oscillations. Finally, we will analyze the evolution of misaligned multi-planet systems. This theoretical work will involve a combination of analytic and numerical techniques. The aim of this research is to shed some light on the formation of planets in binary star systems and to contribute to NASA's goal of understanding of the origins of exoplanetary systems.
VizieR Online Data Catalog: Cataclysmic Binaries, LMXBs, and related objects (Ritter+, 2003)
NASA Astrophysics Data System (ADS)
Ritter, H.; Kolb, U.
2003-08-01
Cataclysmic Binaries are semi-detached binaries consisting of a white dwarf or a white dwarf precursor primary and a low-mass secondary which is filling its critical Roche lobe. The secondary is not necessarily unevolved, it may even be a highly evolved star as for example in the case of the AM CVn-type stars. Low-Mass X-Ray Binaries are semi-detached binaries consisting of either a neutron star or a black hole primary, and a low-mass secondary which is filling its critical Roche lobe. Related Objects are detached binaries consisting of either a white dwarf or a white dwarf precursor primary and of a low-mass secondary. The secondary may also be a highly evolved star. The catalogue lists coordinates, apparent magnitudes, orbital parameters, stellar parameters of the components and other characteristic properties of 501 cataclysmic binaries, 74 low-mass X-ray binaries and 114 related objects with known or suspected orbital periods together with a comprehensive selection of the relevant recent literature. In addition the catalogue contains a list of references to published finding charts for 651 of the 689 objects. A cross-reference list of alias object designations concludes the catalogue. Literature published before 30 June 2003 has, as far as possible, been taken into account. This catalogue supersedes the 5th edition (catalogue
Dynamical Formation Signatures of Black Hole Binaries in the First Detected Mergers by LIGO
NASA Astrophysics Data System (ADS)
O'Leary, Ryan M.; Meiron, Yohai; Kocsis, Bence
2016-06-01
The dynamical formation of stellar-mass black hole-black hole binaries has long been a promising source of gravitational waves for the Laser Interferometer Gravitational-Wave Observatory (LIGO). Mass segregation, gravitational focusing, and multibody dynamical interactions naturally increase the interaction rate between the most massive black holes in dense stellar systems, eventually leading them to merge. We find that dynamical interactions, particularly three-body binary formation, enhance the merger rate of black hole binaries with total mass M tot roughly as \\propto {M}{{tot}}β , with β ≳ 4. We find that this relation holds mostly independently of the initial mass function, but the exact value depends on the degree of mass segregation. The detection rate of such massive black hole binaries is only further enhanced by LIGO’s greater sensitivity to massive black hole binaries with M tot ≲ 80 {M}⊙ . We find that for power-law BH mass functions dN/dM ∝ M -α with α ≤ 2, LIGO is most likely to detect black hole binaries with a mass twice that of the maximum initial black hole mass and a mass ratio near one. Repeated mergers of black holes inside the cluster result in about ˜5% of mergers being observed between two and three times the maximum initial black hole mass. Using these relations, one may be able to invert the observed distribution to the initial mass function with multiple detections of merging black hole binaries.
Binary Microlensing Events from the MACHO Project
NASA Astrophysics Data System (ADS)
Alcock, C.; Allsman, R. A.; Alves, D.; Axelrod, T. S.; Baines, D.; Becker, A. C.; Bennett, D. P.; Bourke, A.; Brakel, A.; Cook, K. H.; Crook, B.; Crouch, A.; Dan, J.; Drake, A. J.; Fragile, P. C.; Freeman, K. C.; Gal-Yam, A.; Geha, M.; Gray, J.; Griest, K.; Gurtierrez, A.; Heller, A.; Howard, J.; Johnson, B. R.; Kaspi, S.; Keane, M.; Kovo, O.; Leach, C.; Leach, T.; Leibowitz, E. M.; Lehner, M. J.; Lipkin, Y.; Maoz, D.; Marshall, S. L.; McDowell, D.; McKeown, S.; Mendelson, H.; Messenger, B.; Minniti, D.; Nelson, C.; Peterson, B. A.; Popowski, P.; Pozza, E.; Purcell, P.; Pratt, M. R.; Quinn, J.; Quinn, P. J.; Rhie, S. H.; Rodgers, A. W.; Salmon, A.; Shemmer, O.; Stetson, P.; Stubbs, C. W.; Sutherland, W.; Thomson, S.; Tomaney, A.; Vandehei, T.; Walker, A.; Ward, K.; Wyper, G.
2000-09-01
We present the light curves of 21 gravitational microlensing events from the first six years of the MACHO Project gravitational microlensing survey that are likely examples of lensing by binary systems. These events were manually selected from a total sample of ~350 candidate microlensing events that were either detected by the MACHO Alert System or discovered through retrospective analyses of the MACHO database. At least 14 of these 21 events exhibit strong (caustic) features, and four of the events are well fit with lensing by large mass ratio (brown dwarf or planetary) systems, although these fits are not necessarily unique. The total binary event rate is roughly consistent with predictions based upon our knowledge of the properties of binary stars, but a precise comparison cannot be made without a determination of our binary lens event detection efficiency. Toward the Galactic bulge, we find a ratio of caustic crossing to noncaustic crossing binary lensing events of 12:4, excluding one event for which we present two fits. This suggests significant incompleteness in our ability to detect and characterize noncaustic crossing binary lensing. The distribution of mass ratios, N(q), for these binary lenses appears relatively flat. We are also able to reliably measure source-face crossing times in four of the bulge caustic crossing events, and recover from them a distribution of lens proper motions, masses, and distances consistent with a population of Galactic bulge lenses at a distance of 7+/-1 kpc. This analysis yields two systems with companions of ~0.05 Msolar.
NASA Technical Reports Server (NTRS)
Fries, M.; Abell, P.; Brisset, J.; Britt, D.; Colwell, J.; Durda, D.; Dove, A.; Graham, L.; Hartzell, C.; John, K.;
2016-01-01
The Strata-1 experiment will study the evolution of asteroidal regolith through long-duration exposure of simulant materials to the microgravity environment on the International Space Station (ISS). Many asteroids feature low bulk densities, which implies high values of porosity and a mechanical structure composed of loosely bound particles, (i.e. the "rubble pile" model), a prime example of a granular medium. Even the higher-density, mechanically coherent asteroids feature a significant surface layer of loose regolith. These bodies are subjected to a variety of forces and will evolve in response to very small perturbations such as micrometeoroid impacts, planetary flybys, and the YORP effect. Our understanding of this dynamical evolution and the inter-particle forces involved would benefit from long-term observations of granular materials exposed to small vibrations in microgravity. A detailed understanding of asteroid mechanical evolution is needed in order to predict the surface characteristics of as-of-yet unvisited bodies, to understand the larger context of samples collected by missions such as OSIRIS-REx and Hayabusa 1 and 2, and to mitigate risks for both manned and unmanned missions to asteroidal bodies. Understanding regolith dynamics will inform designs of how to land and set anchors, safely sample/move material on asteroidal surfaces, process large volumes of material for in situ resource utilization (ISRU) purposes, and, in general, predict behavior of large and small particles on disturbed asteroid surfaces.
Slow Rotating Asteroids: A Long Day's Journey into Night
NASA Astrophysics Data System (ADS)
Warner, Brian D.
2009-05-01
While there is no formal definition of a "slow rotator" among asteroids, anything with a period of at least 24 hours can be considered to be at least at the fast end of the group. These objects are of particular interest to those studying the evolution and dynamics of the asteroids within the solar system for several reasons. Most important among them is to generalize theories regarding the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect, which is the thermal re-radiation of sunlight that can not only affect the orientation of an asteroid's spin axis but its rate of rotation as well. In those cases where the spin rate is decreased, an asteroid can eventually be sent into a state of "tumbling" (NPAR - non-principal axis rotation) that can last for millions of years. However, not all slow rotating asteroids appear to be tumbling. This is not expected and so careful studies of these objects are needed to determine if this is really the case or if the tumbling has reached a condition where the secondary frequency - the precession of the spin axis - has been reduced to near zero. Furthermore, there appears to be an excess of slow rotators among the NEA and inner main-belt populations. Determining whether or not this is true among the broader population of asteroids is also vital to understanding the forces at work among the asteroids.
A Martian origin for the Mars Trojan asteroids
NASA Astrophysics Data System (ADS)
Polishook, D.; Jacobson, S. A.; Morbidelli, A.; Aharonson, O.
2017-08-01
Seven of the nine known Mars Trojan asteroids belong to an orbital cluster1,2 named after its largest member, (5261) Eureka. Eureka is probably the progenitor of the whole cluster, which formed at least 1 Gyr ago3. It has been suggested3 that the thermal YORP (Yarkovsky-O'Keefe-Radzievskii-Paddack) effect spun up Eureka, resulting in fragments being ejected by the rotational-fission mechanism. Eureka's spectrum exhibits a broad and deep absorption band around 1 μm, indicating an olivine-rich composition4. Here we show evidence that the Trojan Eureka cluster progenitor could have originated as impact debris excavated from the Martian mantle. We present new near-infrared observations of two Trojans ((311999) 2007 NS2 and (385250) 2001 DH47) and find that both exhibit an olivine-rich reflectance spectrum similar to Eureka's. These measurements confirm that the progenitor of the cluster has an achondritic composition4. Olivine-rich reflectance spectra are rare amongst asteroids5 but are seen around the largest basins on Mars6. They are also consistent with some Martian meteorites (for example, Chassigny7) and with the material comprising much of the Martian mantle8,9. Using numerical simulations, we show that the Mars Trojans are more likely to be impact ejecta from Mars than captured olivine-rich asteroids transported from the main belt. This result directly links specific asteroids to debris from the forming planets.
A Survey of Rotation Lightcurves of Small Jovian Trojan Asteroids in the L4 Cloud
NASA Astrophysics Data System (ADS)
French, Linda M.; Stephens, Robert; Warner, Brian; James, David; Rohl, Derrick; Connour, Kyle
2017-10-01
Jovian Trojan asteroids are of interest both as objects in their own right and as possible relics of Solar System formation. Several lines of evidence support a common origin for, and possible hereditary link between, Jovian Trojan asteroids and cometary nuclei. Asteroid lightcurves give information about processes that have affected a group of asteroids including their density. Due to their distance and low albedos, few comet-sized Trojans have been studied. We have been carrying out a survey of Trojan lightcurve properties comparing small Trojan asteroids with comets (French et al 2015). We present new lightcurve information for 39 Trojans less than about 35 km in diameter. We report our latest results and compare them with results from the sparsely-sampled lightcurves from the Palomar Transient Factory (Waszazak et al., Chang et al. 2015). The minimum densities for objects with complete lightcurves are estimated and are found to becomparable to those measured for cometary nuclei. A significant fraction (~40%) of thisobserved small Trojan population rotates slowly (P > 24 hours), with measured periods as over 500 hours (Waszczak et al 2015). The excess of slow rotators may be due to the YORP effect. Results of the Kolmogorov-Smirnov test suggest that the distribution of Trojan rotation rates is dissimilar to those of Main Belt Asteroids of the same size.
Optoelectronic Inner-Product Neural Associative Memory
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang
1993-01-01
Optoelectronic apparatus acts as artificial neural network performing associative recall of binary images. Recall process is iterative one involving optical computation of inner products between binary input vector and one or more reference binary vectors in memory. Inner-product method requires far less memory space than matrix-vector method.
Teaching Non-Recursive Binary Searching: Establishing a Conceptual Framework.
ERIC Educational Resources Information Center
Magel, E. Terry
1989-01-01
Discusses problems associated with teaching non-recursive binary searching in computer language classes, and describes a teacher-directed dialog based on dictionary use that helps students use their previous searching experiences to conceptualize the binary search process. Algorithmic development is discussed and appropriate classroom discussion…
Radar Discovery and Characterization of Binary Near-Earth Asteroids
NASA Technical Reports Server (NTRS)
Margot, J. L.; Nolan, M. C.; Benner, L. A. M.; Ostro, S. J.; Jurgens, R. F.; Giorgini, J. D.; Slade, M. A.; Howell, E. S.; Campbell, D. B.
2002-01-01
The radar instruments at Arecibo and Goldstone recently provided the first confirmed discoveries of binary asteroids in the near-Earth population. The physical and orbital properties of four near-Earth binary systems are described in detail. Additional information is contained in the original extended abstract.
VizieR Online Data Catalog: Parameters of 529 Kepler eclipsing binaries (Kjurkchieva+, 2017)
NASA Astrophysics Data System (ADS)
Kjurkchieva, D.; Vasileva, D.; Atanasova, T.
2017-11-01
We reviewed the Kepler eclipsing binary catalog (Prsa et al. 2011, Cat. J/AJ/141/83; Slawson et al. 2011, Cat. J/AJ/142/160; Matijevic et al. 2012) to search for detached eclipsing binaries with eccentric orbits. (5 data files).
NASA Technical Reports Server (NTRS)
Reid, Max B.; Ma, Paul W.; Downie, John D.
1990-01-01
An optical correlation-based system is demonstrated which recognizes an object and determines its angular orientation by traversing a hierarchical data base of binary filters. The data-base architecture is made possible by the development of binary synthetic discriminant function filters.
A study of binary Kuiper belt objects
NASA Astrophysics Data System (ADS)
Kern, Susan Diane
2006-06-01
About 10 5 bodies larger than 100km in diameter (Jewitt 1998) reside in the Kuiper Belt, beyond the orbit of Neptune. Since 1992 observational surveys have discovered over one thousand of these objects, believed to be fossil remnants of events that occurred nearly 4.5 billion years ago. Sixteen of these objects are currently known to be binaries, and many more are expected to be discovered. As part of the Deep Ecliptic Survey (DES) I have helped catalog nearly one third of the known Kuiper Belt object (KBO) population, and used that database for further physical studies. Recovery observations for dynamical studies of newly discovered objects with the Magellan telescopes and a high resolution imager, MagIC, revealed three binaries, 88611 (2001QT297), 2003QY90, and 2005EO304. One binary was found in the discovery observations, 2003UN284. Lightcurve measurements of these, and other non-binary KBOs, were obtained to look for unique rotational characteristics. Eleven of thirty-three objects, excluding the binaries, were found to have measurable variability. One of these objects, 2002GW32 has a particularly large amplitude (> 1 magnitude) of variability, and 2002GP32 has a relatively short (~3.3 hours, single-peaked) lightcurve. Among the binary population all the observed objects showed some level of variation. The secondary of 88611 was fit with a single-peaked period of 5.5±0.02 hours while the primary component appears to be non-variable above the measurement errors (0.05 magnitudes). Neither component appears to be color variable. The components of 2003QY90 are both highly variable yielding single- peaked rotation periods of 3.5±1.1 and 7.2±2.9 hours with amplitudes of 0.34±0.06 and 0.90±0.18 magnitudes, respectively. The rotation periods are comparable to those of other non-binary KBOs although distinct from that of an identified contact binary. Orbits and partial orbits for Kuiper belt binaries (KBBs) show a wide range of eccentricities, and an increasing number of binaries with decreasing binary semi-major axis. These characteristics exclude the formation models proposed by Funato et al. (2003) and Weidenschilling (2002), respectively. Conversely, the formation models of Astakhov et al. (2005) and Goldreich et al. (2002) appear to describe the observations, at least in part. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)
Close encounters of the third-body kind. [intruding bodies in binary star systems
NASA Technical Reports Server (NTRS)
Davies, M. B.; Benz, W.; Hills, J. G.
1994-01-01
We simulated encounters involving binaries of two eccentricities: e = 0 (i.e., circular binaries) and e = 0.5. In both cases the binary contained a point mass of 1.4 solar masses (i.e., a neutron star) and a 0.8 solar masses main-sequence star modeled as a polytrope. The semimajor axes of both binaries were set to 60 solar radii (0.28 AU). We considered intruders of three masses: 1.4 solar masses (a neutron star), 0.8 solar masses (a main-sequence star or a higher mass white dwarf), and 0.64 solar masses (a more typical mass white dwarf). Our strategy was to perform a large number (40,000) of encounters using a three-body code, then to rerun a small number of cases with a three-dimensional smoothed particle hydrodynamics (SPH) code to determine the importance of hydrodynamical effects. Using the results of the three-body runs, we computed the exchange across sections, sigma(sub ex). From the results of the SPH runs, we computed the cross sections for clean exchange, denoted by sigma(sub cx); the formation of a triple system, denoted by sigma(sub trp); and the formation of a merged binary with an object formed from the merger of two of the stars left in orbit around the third star, denoted by sigma(sub mb). For encounters between either binary and a 1.4 solar masses neutron star, sigma(sub cx) approx. 0.7 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 0.3 sigma(sub ex). For encounters between either binary and the 0.8 solar masses main-sequence star, sigma(sub cx) approx. 0.50 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 1.0 sigma(sub ex). If the main sequence star is replaced by a main-sequence star of the same mass, we have sigma(sub cx) approx. 0.5 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 1.6 sigma(sub ex). Although the exchange cross section is a sensitive function of intruder mass, we see that the cross section to produce merged binaries is roughly independent of intruder mass. The merged binaries produced have semi-major axes much larger than either those of the original binaries or those of binaries produced in clean exchanges. Coupled with their lower kick velocities, received from the encounters, their larger size will enhance their cross section, shortening the waiting time to a subsequent encounter with another single star.
GJ 3236 - radial velocity determination
NASA Astrophysics Data System (ADS)
Kára, J.; Wolf, M.; Zharikov, S.
2018-04-01
We present a new study of low-mass red-dwarf eclipsing binary GJ 3236 using spectroscopic data obtained by the 2.12-m telescope at the San Pedro Mártir Observatory. We resolved radial velocities of both components of the binary and improved determination of the physical parameters of the binary.
The impact of IUE on binary star studies
NASA Technical Reports Server (NTRS)
Plavec, M. J.
1981-01-01
The use of IUE observations in the investigation of binary stars is discussed. The results of data analysis of several classes of binary systems are briefly reviewed including zeta Aurigae and VV Cephei stars, mu Sagittarii, epsilon Aurigae, beta Lyrae and the W Serpentis stars, symbiotic stars, and the Algols.
Studies of Horst's Procedure for Binary Data Analysis.
ERIC Educational Resources Information Center
Gray, William M.; Hofmann, Richard J.
Most responses to educational and psychological test items may be represented in binary form. However, such dichotomously scored items present special problems when an analysis of correlational interrelationships among the items is attempted. Two general methods of analyzing binary data are proposed by Horst to partial out the effects of…
Computer program documentation: CYBER to Univac binary conversion user's guide
NASA Technical Reports Server (NTRS)
Martin, E. W.
1980-01-01
A user's guide for a computer program which will convert SINDA temperature history data from CDC (Cyber) binary format to UNIVAC 1100 binary format is presented. The various options available, the required input, the optional output, file assignments, and the restrictions of the program are discussed.