DOE Office of Scientific and Technical Information (OSTI.GOV)
Ewsuk, K.G.; Cochran, R.J.; Blackwell, B.F.
The properties and performance of a ceramic component is determined by a combination of the materials from which it was fabricated and how it was processed. Most ceramic components are manufactured by dry pressing a powder/binder system in which the organic binder provides formability and green compact strength. A key step in this manufacturing process is the removal of the binder from the powder compact after pressing. The organic binder is typically removed by a thermal decomposition process in which heating rate, temperature, and time are the key process parameters. Empirical approaches are generally used to design the burnout time-temperaturemore » cycle, often resulting in excessive processing times and energy usage, and higher overall manufacturing costs. Ideally, binder burnout should be completed as quickly as possible without damaging the compact, while using a minimum of energy. Process and computational modeling offer one means to achieve this end. The objective of this study is to develop an experimentally validated computer model that can be used to better understand, control, and optimize binder burnout from green ceramic compacts.« less
Paraffin wax removal from metal injection moulded cocrmo alloy compact by solvent debinding process
NASA Astrophysics Data System (ADS)
Dandang, N. A. N.; Harun, W. S. W.; Khalil, N. Z.; Ahmad, A. H.; Romlay, F. R. M.; Johari, N. A.
2017-10-01
One of the most crucial and time consuming phase in metal injection moulding (MIM) process is “debinding”. These days, in metal injection moulding process, they had recounted that first debinding practice was depend on thermal binder degradation, which demanding more than 200 hours for complete removal of binder. Fortunately, these days world had introduced multi-stage debinding techniques to simplified the debinding time process. This research study variables for solvent debinding which are temperature and soaking time for samples made by MIM CoCrMo powder. Since wax as the key principal in the binder origination, paraffin wax will be removed together with stearic acid from the green bodies. Then, debinding process is conducted at 50, 60 and 70°C for 30-240 minutes. It is carried out in n-heptane solution. Percentage weight loss of the binder were measured. Lastly, scanning electron microscope (SEM) analysis and visual inspection were observed for the surface of brown compact. From the results, samples debound at 70°C exhibited a significant amount of binder loss; nevertheless, sample collapse, brittle surface and cracks were detected. But, at 60°C temperature and time of 4 hours proven finest results as it shows sufficient binder loss, nonappearance of surface cracks and easy to handle. Overall, binder loss is directly related to solvent debinding temperature and time.
Method for the preparation of ferrous low carbon porous material
Miller, Curtis Jack
2014-05-27
A method for preparing a porous metal article using a powder metallurgy forming process is provided which eliminates the conventional steps associated with removing residual carbon. The method uses a feedstock that includes a ferrous metal powder and a polycarbonate binder. The polycarbonate binder can be removed by thermal decomposition after the metal article is formed without leaving a carbon residue.
Phenomena during thermal removal of binders
NASA Astrophysics Data System (ADS)
Hrdina, Kenneth Edward
The research presented herein has focused on debinding of an ethylene copolymer from a SiC based molded ceramic green body. Examination of the binder burnout process was carried out by breaking down the process into two distinct regions: those events which occur before any weight loss begins, and those events occurring during binder removal. Below the temperature of observed binder loss (175sp°C), both reversible and irreversible displacement was observed to occur. The displacement was accounted for by relaxation of molding stresses, thermal expansion of the system, and melting of the semicrystalline copolymer occurring during heating. Upon further heating the binder undergoes a two stage thermal degradation process. In the first stage, acetic acid is the only degradation product formed, as determined by GC/MS analysis. In this stage, component shrinkage persisted and it was found that one unit volume of shrinkage corresponded with one unit volume of binder removed, indicating that no porosity developed. The escaping acetic acid effluents must diffuse through liquid polymer filled porous regions to escape. The gas pressure of the acetic acid species produced in the first stage of the thermal degradation may exceed the ambient pressure promoting bubble formation. Controlling the heating rate of the specimen maintains the gas pressure below the bubbling threshold and minimizes the degradation time. Experiments have determined the kinetics of the reaction in the presence of the high surface area (10-15msp2/g) ceramic powder and then verified that acetic acid was diffusing through the polymer phase to the specimen surface where evaporation is taking place. The sorption method measured the diffusivity and activity of acetic acid within the filled ceramic system within a TGA. These data were incorporated into a Fickian type model which included the rate of generation of the diffusing species. The modeling process involved prediction of the bloating temperature as a function of the sample size for a given heating rate. The predicted results and experimental results show good correlation. The model was used to optimize the heating schedule which minimized the binder removal time.
Advancements in Binder Systems for Solid Freeform Fabrication
NASA Technical Reports Server (NTRS)
Cooper, Ken; Munafo, Paul (Technical Monitor)
2002-01-01
Paper will present recent developments in advanced material binder systems for solid freeform fabrication (SFF) technologies. The advantage of SFF is the capability to custom fabricate complex geometries directly from computer aided design data in layer- by-layer fashion, eliminated the need for traditional fixturing and tooling. Binders allow for the low temperature processing of 'green' structural materials, either metal, ceramic or composite, in traditional rapid prototyping machines. The greatest obstacle comes when green parts must then go through a sintering or burnout process to remove the binders and fully densify the parent material, without damaging or distorting the original part geometry. Critical issues and up-to-date assessments will be delivered on various material systems.
Development of bio-sourced binder to metal injection moulding
NASA Astrophysics Data System (ADS)
Royer, Alexandre; Barrière, Thierry; Gelin, Jean-Claude
2016-10-01
In the MIM process the binder play the most important role. It provides fluidity of the feedstock mixture for injection molding and adhesion of the powder to keep the molded shape. The binder must provide strength and cohesion for the molded part, must be easy to be removed from the molded part, and must be the recyclable, environmentally friendly and economical ones. The goal of this study is to develop a binder environmentally friendly. For this, a study of formulation based on polyethylene glycol, because of is water debinding properties, was made. Polylactic acid and Polyhydroxyalkanoates were investigated as bio sourced polymers. The chemical, miscibility and rheological behavior of the binder formulation were investigated.
Improvements in Fabrication of Sand/Binder Cores for Casting
NASA Technical Reports Server (NTRS)
Bakhitiyarov, Sayavur I.; Overfelt, Ruel A.; Adanur, Sabit
2005-01-01
Three improvements have been devised for the cold-box process, which is a special molding process used to make sand/binder cores for casting hollow metal parts. These improvements are: The use of fiber-reinforced composite binder materials (in contradistinction to the non-fiber-reinforced binders used heretofore), The substitution of a directed-vortex core-blowing subprocess for a prior core-blowing process that involved a movable gassing plate, and The use of filters made from filtration-grade fabrics to prevent clogging of vents. For reasons that exceed the scope of this article, most foundries have adopted the cold-box process for making cores for casting metals. However, this process is not widely known outside the metal-casting industry; therefore, a description of pertinent aspects of the cold-box process is prerequisite to a meaningful description of the aforementioned improvements. In the cold-box process as practiced heretofore, sand is first mixed with a phenolic resin (considered to be part 1 of a three-part binder) and an isocyanate resin (part 2 of the binder). Then by use of compressed air, the mixture is blown into a core box, which is a mold for forming the core. Next, an amine gas (part 3 of the binder) that acts as a catalyst for polymerization of parts 1 and 2 is blown through the core box. Alternatively, a liquid amine that vaporizes during polymerization can be incorporated into the sand/resin mixture. Once polymerization is complete, the amine gas is purged from the core box by use of compressed air. The finished core is then removed from the core box.
Atomic Oxygen Treatment as a Method of Recovering Smoke Damaged Paintings. Revised
NASA Technical Reports Server (NTRS)
Rutledge, Sharon K.; Banks, Bruce A.; Forkapa, Mark; Stueber, Thomas; Sechkar, Edward; Malinowski, Kevin
1999-01-01
A noncontact technique is described that uses atomic oxygen, generated under low pressure in the presence of nitrogen, to remove soot and charred varnish from the surface of a painting. The process, which involves surface oxidation, permits control of the amount of surface material removed. The effectiveness of the process was evaluated by reflectance measurements from selected areas made during the removal of soot from acrylic gesso, ink on paper, and varnished oil paint substrates. For the latter substrate, treatment also involved the removal of damaged varnish and paint binder from the surface.
Solvent-Free Manufacturing of Electrodes for Lithium-ion Batteries
NASA Astrophysics Data System (ADS)
Ludwig, Brandon; Zheng, Zhangfeng; Shou, Wan; Wang, Yan; Pan, Heng
2016-03-01
Lithium ion battery electrodes were manufactured using a new, completely dry powder painting process. The solvents used for conventional slurry-cast electrodes have been completely removed. Thermal activation time has been greatly reduced due to the time and resource demanding solvent evaporation process needed with slurry-cast electrode manufacturing being replaced by a hot rolling process. It has been found that thermal activation time to induce mechanical bonding of the thermoplastic polymer to the remaining active electrode particles is only a few seconds. Removing the solvent and drying process allows large-scale Li-ion battery production to be more economically viable in markets such as automotive energy storage systems. By understanding the surface energies of various powders which govern the powder mixing and binder distribution, bonding tests of the dry-deposited particles onto the current collector show that the bonding strength is greater than slurry-cast electrodes, 148.8 kPa as compared to 84.3 kPa. Electrochemical tests show that the new electrodes outperform conventional slurry processed electrodes, which is due to different binder distribution.
Effective recycling of manganese oxide cathodes for lithium based batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poyraz, Altug S.; Huang, Jianping; Cheng, Shaobo
A facile cathode recycling process is demonstrated where the previously used binder-free self-supporting cathodes (BFSSC) are removed from a cell, heat treated, and then inserted into a new cell restoring the delivered capacity and cycle life.
Characterization of polymeric binders for Metal Injection Molding (MIM) process
NASA Astrophysics Data System (ADS)
Adames, Juan M.
The Metal Injection Molding (MIM) process is an economically attractive method of producing large amounts of small and complex metallic parts. This is achieved by combining the productivity of injection molding with the versatility of sintering of metal particulates. In MIM, the powdered metal is blended with a plastic binder to obtain the feedstock. The binder imparts flowability to the blend at injection molding conditions and strength at ambient conditions. After molding, the binder is removed in a sequence of steps that usually involves solvent-extraction and polymer burn-out. Once the binder is removed, the metal particles are sintered. In this research several topics of the MIM process were studied to understand how the polymeric binder, similar to the one used in the sponsoring company, works. This was done by examining the compounding and water debinding processes, the rheological and thermal properties, and the microstructure of the binder/metal composite at different processing stages. The factors studied included the metal contents, the composition of the binder and the processing conditions. The three binders prepared during the course of this research were blends of a polyolefin, polyoxymethylene copolymer (POM) and a water-soluble polymer (WSP). The polyolefin resins included polypropylene (PP), high-density polyethylene (HDPE) and linear low-density polyethylene (LLDPE). The powdered metal in the feedstocks was 316 L stainless steel. The compounding studies were completed in an internal mixer under different conditions of temperature, rotational speed and feedstock composition. It was found that the metal concentration was the most important factor in determining the torque evolution curves. The observation of microstructure with Scanning Electron Microscope (SEM) at different stages during compounding revealed that the metal particles neither agglomerate nor touch each other. The liquid extraction of the water-soluble polymer (WSP) from the molded parts (or water debinding) was investigated using two configurations of flow of water relative to the samples. Both permitted the reduction of the mass transfer resistance outside the parts, revealing information on the diffusion of the WSP inside the part exclusively. The debinding studies showed that a single effective diffusivity could be used to model the extraction process of the binder from molded parts. This approach is more accurate when the debinding time is above 2 hours. Steady shear and dynamic experiments were conducted on the binder and feedstocks samples containing LLDPE. The results of both experiments revealed that the feedstocks did not show yield stress even though the highest metal content was 64% by volume. Therefore, it was concluded that there were only hydrodynamic interactions between the metal particles. The thermal characterization of binders, polymers and feedstocks included differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The DSC tests were performed after preheating and quenching of the samples. The heating rate was 20°C/min. The TGA scans were conducted from room temperature to 700°C at 20°C/min. The DSC tests revealed that the melting point of the polymers depressed when blended in the binders and feedstocks. The depression was more intense for POM and the water-soluble polymer than for the polyolefins. Therefore, it was concluded that the melting point depression of POM and the water-soluble polymer was caused by their entrapment in the polyolefin matrix and in between the metal particles. The TGA scans showed that the feedstocks with higher metal concentration had higher final decomposition temperature, but similar onset temperature. The reason was that the higher the metal concentration the more difficult the diffusion of the products of the decomposition of the binder out of the samples. The morphological studies revealed that the binders were heterogeneous showing domains of the polar resins, embedded in a continuous phase composed of polyolefin. This distribution of phases was the result of the immiscibility between the polymeric components, and of the higher concentration (>70 vol%) of the polyolefin with respect to the polar components (polyoxymethylene and water-soluble polymer). The deformation during steady shear testing and compounding of the binder with the metal modified the size of the dispersed domains. The steady shearing increased the size of the dispersed domains by coalescence of the particles. On the other hand, the presence of powdered metal during compounding forced a redistribution of the dispersed phases. Apparently, a thin heterogeneous layer of binder surrounded the metal particles while most of the polyolefin occupied the space between the coated metal particles. The SEM study on samples obtained after water debinding revealed that the water-soluble polymer did not distribute uniformly on the surface of the molded disk of feedstock used for water debinding tests.
Process for manufacturing a lithium alloy electrochemical cell
Bennett, William R.
1992-10-13
A process for manufacturing a lithium alloy, metal sulfide cell tape casts slurried alloy powders in an organic solvent containing a dissolved thermoplastic organic binder onto casting surfaces. The organic solvent is then evaporated to produce a flexible tape removable adhering to the casting surface. The tape is densified to increase its green strength and then peeled from the casting surface. The tape is laminated with a separator containing a lithium salt electrolyte and a metal sulfide electrode to form a green cell. The binder is evaporated from the green cell at a temperature lower than the melting temperature of the lithium salt electrolyte. Lithium alloy, metal sulfide and separator powders may be tape cast.
One step HIP canning of powder metallurgy composites
NASA Technical Reports Server (NTRS)
Juhas, John J. (Inventor)
1990-01-01
A single step is relied on in the canning process for hot isostatic pressing (HIP) powder metallurgy composites. The binders are totally removed while the HIP can of compatible refractory metal is sealed at high vacuum and temperature. This eliminates outgassing during hot isostatic pressing.
PROCESS OF FORMING POWDERED MATERIAL
Glatter, J.; Schaner, B.E.
1961-07-14
A process of forming high-density compacts of a powdered ceramic material is described by agglomerating the powdered ceramic material with a heat- decompossble binder, adding a heat-decompossble lubricant to the agglomerated material, placing a quantity of the material into a die cavity, pressing the material to form a compact, pretreating the compacts in a nonoxidizing atmosphere to remove the binder and lubricant, and sintering the compacts. When this process is used for making nuclear reactor fuel elements, the ceramic material is an oxide powder of a fissionsble material and after forming, the compacts are placed in a cladding tube which is closed at its ends by vapor tight end caps, so that the sintered compacts are held in close contact with each other and with the interior wall of the cladding tube.
Preparation of prepreg graphite tape with insoluble polymer
NASA Technical Reports Server (NTRS)
Yates, C. I.
1973-01-01
Powdered polymer is finely ground. Second polymer, soluble, is mixed with appropriate solvent. Milled polymer and graphite filaments are added to soluble polymer-solvent solution to create slurry. Slurry is dried, and when ready for processing, the soluble, binder-polymer is removed by heat during precure or cure cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voina, N.I.; Barca, F.; Mogos, D.
1995-12-31
In modern combustors, 95--98% of the organic mass of a solid combustible is converted into caloric energy; 2--4% remain in the fly ash captured in electrofilters and hydraulically removed in most cases. The 2--4% unburned materials in fly ash, together with the water from being hydraulically transported, make it difficult for the use of the fly ash for metal extraction or as a binder in the materials industry. This work presents the research results of a study in which the burning process was modified to result in fly ash without carbon content and fly ash removal by dry capture. Laboratorymore » fluidized-bed combustion of lignite with and without addition of limestone for sulfur capture was used to generate ashes for further study. The ashes were studied for their use as binders and as a cement substitute.« less
Extrusion of metal oxide superconducting wire, tube or ribbon
Dusek, Joseph T.
1993-10-05
A process for extruding a superconducting metal oxide composition YBa.sub.2 Cu.sub.3 O.sub.7-x provides a wire (tube or ribbon) having a cohesive mass and a degree of flexibility together with enhanced electrical properties. Wire diameters in the range of 6-85 mils have been produced with smaller wires on the order of 10 mils in diameter exhibiting enhanced flexibility for forming braided, or multistrand, configurations for greater current carrying capacity. The composition for extrusion contains a polymeric binder to provide a cohesive mass to bind the particles together during the extrusion process with the binder subsequently removed at lower temperatures during sintering. The composition for extrusion further includes a deflocculent, an organic plasticizer and a solvent which also are subsequently removed during sintering. Electrically conductive tubing with an inner diameter of 52 mil and an outer diameter of 87-355 mil has also been produced. Flat ribbons have been produced in the range of 10-125 mil thick by 100-500 mil wide. The superconducting wire, tube or ribbon may include an outer ceramic insulating sheath co-extruded with the wire, tubing or ribbon.
Extrusion of metal oxide superconducting wire, tube or ribbon
Dusek, Joseph T.
1993-01-01
A process for extruding a superconducting metal oxide composition YBa.sub.2 Cu.sub.3 O.sub.7-x provides a wire (tube or ribbon) having a cohesive mass and a degree of flexibility together with enhanced electrical properties. Wire diameters in the range of 6-85 mils have been produced with smaller wires on the order of 10 mils in diameter exhibiting enhanced flexibility for forming braided, or multistrand, configurations for greater current carrying capacity. The composition for extrusion contains a polymeric binder to provide a cohesive mass to bind the particles together during the extrusion process with the binder subsequently removed at lower temperatures during sintering. The composition for extrusion further includes a deflocculent, an organic plasticizer and a solvent which also are subsequently removed during sintering. Electrically conductive tubing with an inner diameter of 52 mil and an outer diameter of 87-355 mil has also been produced. Flat ribbons have been produced in the range of 10-125 mil thick by 100-500 mil wide. The superconducting wire, tube or ribbon may include an outer ceramic insulating sheath co-extruded with the wire, tubing or ribbon.
Phosphate binder usage in kidney failure patients.
Bleyer, Anthony J
2003-06-01
Phosphorus binders are used in patients with kidney failure because of the incomplete removal of phosphorus with dialysis and the inability to exclude phosphorus from the diet. Aluminium was the initial phosphorus binder used, but was replaced by calcium-containing binders because of the development of aluminium toxicity. Calcium-based binders have been the mainstay of therapy for many years, but recent investigations have pointed to increased rates of vascular calcification in patients taking calcium-containing binders. For this reason, alternative agents have been developed. Sevelamer (Renagel), GelTex Pharmaceuticals Inc.) is a polymer which has been found to effectively bind phosphorus. It has resulted in a decreased rate of vascular calcification compared to calcium-containing binders. Other agents under development include lanthanum carbonate and iron-complex preparations. Further research will likely concentrate on identifying binders that bind phosphate more efficiently, have minimal gastrointestinal side effects and provide other benefits to dialysis patients.
Seyedein Ghannad, S M R; Lotfollahi, M N
2018-03-01
Heavy metals are continuously contaminating the surface and subsurface water. The adsorption process is an attractive alternative for removing the heavy metals because of its low cost, simple operation, high efficiency, and flexible design. In this study, influences of β-zeolite and Cu-modified β-zeolite on preparation of granular activated carbons (GACs) from a composite of powder activated carbon (PAC), methylcellulose as organic binder, bentonite as inorganic binder, and water were investigated. A number of granular samples were prepared by controlling the weight percentage of binder materials, PAC and zeolites as a reinforcing adsorbent. Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction techniques were employed to characterize zeolite, modified zeolite and produced GAC. The produced GACs were used as the adsorbent for removal of Zn +2 , Cd 2+ and Pb 2+ ions from aqueous solutions. The results indicated that the adsorption of metals ions depended on the pH (5.5) and contact time (30 min). Maximum adsorption of 97.6% for Pb 2+ , 95.9% for Cd 2+ and 91.1% for Zn +2 occurred with a new kind of GAC made of Cu-modified β-zeolite. The Zn +2 , Cd 2+ and Pb 2+ ions sorption kinetics data were well described by a pseudo-second order model for all sorbents. The Langmuir and Freundlich isotherm models were applied to analyze the experimental equilibrium data.
Wear and corrosion behaviour of tungsten carbide based coatings with different metallic binder
NASA Astrophysics Data System (ADS)
Kamdi, Z.; Apandi, M. N. M.; Ibrahim, M. D.
2017-12-01
Tungsten carbide based coating has been well known as wear and corrosion resistance materials. However, less study is done on comparing the coating with different binder. Thus, in this work the wear and corrosion behaviour of high velocity oxy-fuel (HVOF) coatings, namely (i) tungsten carbide cobalt and (ii) tungsten carbide nickel will be evaluated. Both coatings were characterised using X-ray Diffractometer (XRD) and Scanning Electron Microscope (SEM). The wear behaviour has been examined using the modified grinder machine by weight loss measurement. Two types of abrasive have been used that include 3 g by weight alumina and silica. While for the corrosion behaviour, it is monitored by three electrodes of electrochemical test and immersion test for 30 days in an acidic environment. The electrolyte used was 0.5 M sulphuric acids (H2SO4). It was found that the cobalt binder shows higher wear resistance compares to the nickel binder for both slurry types. The harder alumina compared to silica results in higher wear rate with removal of carbide and binder is about the same rate. For silica abrasive, due to slightly lower hardness compared to the carbide, the wear is dominated by binder removal followed by carbide detachment. For corrosion, the nickel binder shows four times higher wear resistance compared to the cobalt binder as expected due to its natural behaviour. These finding demonstrate that the selection of coating to be used in different application in this case, wear and corrosion shall be chosen carefully to maximize the usage of the coating.
Formation of thin walled ceramic solid oxide fuel cells
Claar, Terry D.; Busch, Donald E.; Picciolo, John J.
1989-01-01
To reduce thermal stress and improve bonding in a high temperature monolithic solid oxide fuel cell (SOFC), intermediate layers are provided between the SOFC's electrodes and electrolyte which are of different compositions. The intermediate layers are comprised of a blend of some of the materials used in the electrode and electrolyte compositions. Particle size is controlled to reduce problems involving differential shrinkage rates of the various layers when the entire structure is fired at a single temperature, while pore formers are provided in the electrolyte layers to be removed during firing for the formation of desired pores in the electrode layers. Each layer includes a binder in the form of a thermosetting acrylic which during initial processing is cured to provide a self-supporting structure with the ceramic components in the green state. A self-supporting corrugated structure is thus formed prior to firing, which the organic components of the binder and plasticizer removed during firing to provide a high strength, high temperature resistant ceramic structure of low weight and density.
NASA Technical Reports Server (NTRS)
Divecha, A. P.
1974-01-01
Attempts made to develop processes capable of producing metal composites in structural shapes and sizes suitable for space applications are described. The processes must be continuous and promise to lower fabrication costs. Special attention was given to the aluminum boride (Al/b) composite system. Results show that despite adequate temperature control, the consolidation characteristics did not improve as expected. Inadequate binder removal was identified as the cause responsible. An Al/c (aluminum-graphite) composite was also examined.
Potter, Russell M; Olang, Nassreen
2013-04-12
The in-vitro dissolution rate of fibres is a good predictor of the in-vivo behavior and potential health effects of inhaled fibres. This study examines the effect of a new formaldehyde-free carbohydrate-polycarboxylic acid binder on the in-vitro dissolution rate of biosoluble glass fibres. Dissolution rate measurements in pH 7.4 physiological saline solution show that the presence of the binder on wool insulation glass fibres has no effect on their dissolution. There is no measurable difference between the dissolution rates of continuous draw fibres before and after binder was applied by dipping. Nor is there a measurable difference between the dissolution rates of a production glass wool sample with binder and that same sample after removal of the binder by low-temperature ashing. Morphological examination shows that swelling of the binder in the solution is at least partially responsible for the development of open channels around the glass-binder interface early in the dissolution. These channels allow fluid to reach the entire glass surface under the binder coating. There is no evidence of any delay in the dissolution rate as a result of the binder coating.
2013-01-01
The in-vitro dissolution rate of fibres is a good predictor of the in-vivo behavior and potential health effects of inhaled fibres. This study examines the effect of a new formaldehyde-free carbohydrate-polycarboxylic acid binder on the in-vitro dissolution rate of biosoluble glass fibres. Dissolution rate measurements in pH 7.4 physiological saline solution show that the presence of the binder on wool insulation glass fibres has no effect on their dissolution. There is no measurable difference between the dissolution rates of continuous draw fibres before and after binder was applied by dipping. Nor is there a measurable difference between the dissolution rates of a production glass wool sample with binder and that same sample after removal of the binder by low-temperature ashing. Morphological examination shows that swelling of the binder in the solution is at least partially responsible for the development of open channels around the glass-binder interface early in the dissolution. These channels allow fluid to reach the entire glass surface under the binder coating. There is no evidence of any delay in the dissolution rate as a result of the binder coating. PMID:23587247
Transparent superhydrophobic surfaces using a spray coating process
Polyzos, Georgios; Jang, Gyoung Gug; Smith, D. Barton; ...
2017-11-03
One significant maintenance problem and cost associated with solar energy conversion systems is the soiling due to the accumulation of dust and other pollutants. Here in this work, we describe a scalable approach for applying antisoiling coatings based on superhydrophobic (SH) silica particles using a spray coating process. A large water contact angle (WCA) is one of the characteristics of excellent SH surfaces and because of the low surface energy and low adhesion forces the soiling rate is reduced. Our findings indicate that the WCA depends strongly on the ratio of the polymer binder and the nanoparticles. The nanoparticle surfacemore » coverage of the spray coated samples was substantially improved after rinsing with solvent. This process tended to remove large aggregates and excess polymer binder and further increased the WCA by allowing exposure of the functionalized nanoparticles. The durability of the SH coatings was enhanced when the substrate was pretreated with polymer binder and an optimal curing time between 30 and 60 min. The abrasion tests of the SH coatings we report in this study showed that the WCA decreased from ~ 166° to ~ 157° after exposure to 2.6 g of sand. Such coatings will help reduce costs of periodic cleaning of solar energy conversion systems (photovoltaic panels and concentrated solar mirrors).« less
Transparent superhydrophobic surfaces using a spray coating process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polyzos, Georgios; Jang, Gyoung Gug; Smith, D. Barton
One significant maintenance problem and cost associated with solar energy conversion systems is the soiling due to the accumulation of dust and other pollutants. Here in this work, we describe a scalable approach for applying antisoiling coatings based on superhydrophobic (SH) silica particles using a spray coating process. A large water contact angle (WCA) is one of the characteristics of excellent SH surfaces and because of the low surface energy and low adhesion forces the soiling rate is reduced. Our findings indicate that the WCA depends strongly on the ratio of the polymer binder and the nanoparticles. The nanoparticle surfacemore » coverage of the spray coated samples was substantially improved after rinsing with solvent. This process tended to remove large aggregates and excess polymer binder and further increased the WCA by allowing exposure of the functionalized nanoparticles. The durability of the SH coatings was enhanced when the substrate was pretreated with polymer binder and an optimal curing time between 30 and 60 min. The abrasion tests of the SH coatings we report in this study showed that the WCA decreased from ~ 166° to ~ 157° after exposure to 2.6 g of sand. Such coatings will help reduce costs of periodic cleaning of solar energy conversion systems (photovoltaic panels and concentrated solar mirrors).« less
NASA Technical Reports Server (NTRS)
Wiesner, Valerie L.; Youngblood, Jeffrey; Trice, Rodney
2014-01-01
Room-temperature injection molding is proposed as a novel, low-cost and more energy efficient manufacturing process capable of forming complex-shaped zirconium diboride (ZrB2) parts. This innovative processing method utilized aqueous suspensions with high powder loading and a minimal amount (5 vol.) of water-soluble polyvinylpyrrolidone (PVP), which was used as a viscosity modifier. Rheological characterization was performed to evaluate the room-temperature flow properties of ZrB2-PVP suspensions. ZrB2 specimens were fabricated with high green body strength and were machinable prior to binder removal despite their low polymer content. After binder burnout and pressureless sintering, the bulk density and microstructure of specimens were characterized using Archimedes technique and scanning electron microscopy. X-Ray Diffraction was used to determine the phase compositions present in sintered specimens. Ultimate strength of sintered specimens will be determined using ASTM C1323-10 compressive C-ring test.
Fuel agglomerates and method of agglomeration
Wen, Wu-Wey
1986-01-01
Solid fuel agglomerates are prepared of particulate coal or other carbonaceous material with a binder having a high humic acid or humate salt content. The humic acid is extracted from oxidized carbonaceous material with a mild aqueous alkali solution of, for instance, ammonia. The particulate material is blended with the extract which serves as the binder for the agglomerates. The water-resistant agglomerates are formed such as by pelletizing, followed by drying to remove moisture and solidify the humic acid binder throughout the agglomerate.
Method of making bonded or sintered permanent magnets
McCallum, R.W.; Dennis, K.W.; Lograsso, B.K.; Anderson, I.E.
1993-08-31
An isotropic permanent magnet is made by mixing a thermally responsive, low viscosity binder and atomized rare earth-transition metal (e.g., iron) alloy powder having a carbon-bearing (e.g., graphite) layer thereon that facilitates wetting and bonding of the powder particles by the binder. Prior to mixing with the binder, the atomized alloy powder may be sized or classified to provide a particular particle size fraction having a grain size within a given relatively narrow range. A selected particle size fraction is mixed with the binder and the mixture is molded to a desired complex magnet shape. A molded isotropic permanent magnet is thereby formed. A sintered isotropic permanent magnet can be formed by removing the binder from the molded mixture and thereafter sintering to full density.
Method of making bonded or sintered permanent magnets
McCallum, R.W.; Dennis, K.W.; Lograsso, B.K.; Anderson, I.E.
1995-11-28
An isotropic permanent magnet is made by mixing a thermally responsive, low viscosity binder and atomized rare earth-transition metal (e.g., iron) alloy powder having a carbon-bearing (e.g., graphite) layer thereon that facilitates wetting and bonding of the powder particles by the binder. Prior to mixing with the binder, the atomized alloy powder may be sized or classified to provide a particular particle size fraction having a grain size within a given relatively narrow range. A selected particle size fraction is mixed with the binder and the mixture is molded to a desired complex magnet shape. A molded isotropic permanent magnet is thereby formed. A sintered isotropic permanent magnet can be formed by removing the binder from the molded mixture and thereafter sintering to full density. 14 figs.
Method of making bonded or sintered permanent magnets
McCallum, R. William; Dennis, Kevin W.; Lograsso, Barbara K.; Anderson, Iver E.
1995-11-28
An isotropic permanent magnet is made by mixing a thermally responsive, low viscosity binder and atomized rare earth-transition metal (e.g., iron) alloy powder having a carbon-bearing (e.g., graphite) layer thereon that facilitates wetting and bonding of the powder particles by the binder. Prior to mixing with the binder, the atomized alloy powder may be sized or classified to provide a particular particle size fraction having a grain size within a given relatively narrow range. A selected particle size fraction is mixed with the binder and the mixture is molded to a desired complex magnet shape. A molded isotropic permanent magnet is thereby formed. A sintered isotropic permanent magnet can be formed by removing the binder from the molded mixture and thereafter sintering to full density.
40 CFR 63.10899 - What are my recordkeeping and reporting requirements?
Code of Federal Regulations, 2012 CFR
2012-07-01
... identifying each of the broker's scrap suppliers and documenting the scrap supplier's participation in an approved mercury switch removal program. (4) You must keep records to document use of any binder chemical... quantity and composition of each HAP-containing chemical binder or coating material used to make molds and...
40 CFR 63.10899 - What are my recordkeeping and reporting requirements?
Code of Federal Regulations, 2013 CFR
2013-07-01
... identifying each of the broker's scrap suppliers and documenting the scrap supplier's participation in an approved mercury switch removal program. (4) You must keep records to document use of any binder chemical... quantity and composition of each HAP-containing chemical binder or coating material used to make molds and...
40 CFR 63.10899 - What are my recordkeeping and reporting requirements?
Code of Federal Regulations, 2014 CFR
2014-07-01
... identifying each of the broker's scrap suppliers and documenting the scrap supplier's participation in an approved mercury switch removal program. (4) You must keep records to document use of any binder chemical... quantity and composition of each HAP-containing chemical binder or coating material used to make molds and...
Improved silicon carbide for advanced heat engines. I - Process development for injection molding
NASA Technical Reports Server (NTRS)
Whalen, Thomas J.; Trela, Walter
1989-01-01
Alternate processing methods have been investigated as a means of improving the mechanical properties of injection-molded SiC. Various mixing processes (dry, high-sheer, and fluid) were evaluated along with the morphology and particle size of the starting beta-SiC powder. Statistically-designed experiments were used to determine significant effects and interactions of variables in the mixing, injection molding, and binder removal process steps. Improvements in mechanical strength can be correlated with the reduction in flaw size observed in the injection molded green bodies obtained with improved processing methods.
Electrochemical components employing polysiloxane-derived binders
Delnick, Frank M.
2013-06-11
A processed polysiloxane resin binder for use in electrochemical components and the method for fabricating components with the binder. The binder comprises processed polysiloxane resin that is partially oxidized and retains some of its methyl groups following partial oxidation. The binder is suitable for use in electrodes of various types, separators in electrochemical devices, primary lithium batteries, electrolytic capacitors, electrochemical capacitors, fuel cells and sensors.
Effects of POE-g-MAH on properties of PP-based binder in metal injection molding
NASA Astrophysics Data System (ADS)
Li, Duxin; Zhang, Chenming; Ding, Chuxiong; Pan, Donghua; Lu, Renwei; Yang, Zhongchen
2018-06-01
The objective of this study is to explore the effects of maleic anhydride-grafted polyolefin elastomer (POE-g-MAH) on properties of polypropylene (PP)-based binder. The viscosity of feedstocks as well as properties of green parts, brown parts and sintered parts were investigated. Through the analysis of viscosity, the feedstock containing 8 vol% POE-g-MAH in binder was supposed to be more suitable for the injection molding. The impact absorbed energy at break increased with increasing POE-g-MAH content in binder while the bending strength decreased first and then increased. The introduction of POE-g-MAH improve the density distribution and increased the density of green parts. After debinding, most binder components were removed regardless of the POE-g-MAH content in binder. As for the parts after sintering, the carbon content decreased with an increase in POE-g-MAH content. The results suggest that POE-g-MAH act as a toughening agent as well as compatibilizer for PP-based binder/metal powder system. The mechanical properties of the green parts could be enhanced even after multiple injection and in addition the powder-binder separation trend could be decreased.
NASA Astrophysics Data System (ADS)
Menet, Claire; Reynaud, Pascal; Fantozzi, Gilbert; Thibault, Delphine; Laforêt, Adrien
2017-06-01
Sand cores are used to produce internal cavities of metallic cast parts with complex shapes like automotive cylinder heads. Foundry cores are granular materials made of sand grains aggregated with binder bridges. In the cold box coring process, the binder is a polyurethane resin. It is noteworthy that during the casting of the liquid metal, the polymer binder is seriously damaged. This kind of materials has been poorly investigated so far. This study aims for a better understanding of the mechanical behaviour and fracture of cores subjected to various loads and thermal ageing. Particularly, the focus is on the decoring step, which consists in removing the sand by hammering and vibration of the metallic part after casting. This major project, generated from the collaboration of the aluminum casting company Montupet, and two laboratories Centre des Matériaux (CdM) and MATEIS, includes both experimental and numerical activities in order to model the decoring step of cylinder heads based on empiric data. Here, the experimental part of the work is presented.
Sangvanich, Thanapon; Ngamcherdtrakul, Worapol; Lee, Richard; Morry, Jingga; Castro, David; Fryxell, Glen E.; Yantasee, Wassana
2014-01-01
Phosphate removal is both biologically and environmentally important. Biologically, hyperphosphatemia is a critical condition in end-stage chronic kidney disease patients. Patients with hyperphosphatemia are treated long-term with oral phosphate binders to prevent phosphate absorption to the body by capturing phosphate in the gastrointestinal (GI) tract followed by fecal excretion. Environmentally, phosphate levels in natural water resources must be regulated according to limits set forth by the US Environmental Protection Agency. By utilizing nanotechnology and ligand design, we developed a new material to overcome limitations of traditional sorbent materials such as low phosphate binding capacity, slow binding kinetics, and negative interference by other anions. A phosphate binder based on iron-ethylenediamine on nanoporous silica (Fe-EDA-SAMMS) has been optimized for substrates and Fe(III) deposition methods. The Fe-EDA-SAMMS material had a 4-fold increase in phosphate binding capacity and a broader operating pH window compared to other reports. The material had a faster phosphate binding rate and was significantly less affected by other anions than Sevelamer HCl, the gold standard oral phosphate binder, and AG® 1-X8, a commercially available anion exchanger. It had less cytotoxicity to Caco-2 cells than lanthanum carbonate, another prescribed oral phosphate binder. The Fe-EDA-SAMMS also had high capacity for arsenate and chromate, two of the most toxic anions in natural water. PMID:25554735
Fabrication of sinterable silicon nitride by injection molding
NASA Technical Reports Server (NTRS)
Quackenbush, C. L.; French, K.; Neil, J. T.
1982-01-01
Transformation of structural ceramics from the laboratory to production requires development of near net shape fabrication techniques which minimize finish grinding. One potential technique for producing large quantities of complex-shaped parts at a low cost, and microstructure of sintered silicon nitride fabricated by injection molding is discussed and compared to data generated from isostatically dry-pressed material. Binder selection methodology, compounding of ceramic and binder components, injection molding techniques, and problems in binder removal are discussed. Strength, oxidation resistance, and microstructure of sintered silicon nitride fabricated by injection molding is discussed and compared to data generated from isostatically dry-pressed material.
Improved silicon nitride for advanced heat engines
NASA Technical Reports Server (NTRS)
Yeh, H. C.; Wimmer, J. M.; Huang, H. H.; Rorabaugh, M. E.; Schienle, J.; Styhr, K. H.
1985-01-01
The AiResearch Casting Company baseline silicon nitride (92 percent GTE SN-502 Si sub 3 N sub 4 plus 6 percent Y sub 2 O sub 3 plus 2 percent Al sub 2 O sub 3) was characterized with methods that included chemical analysis, oxygen content determination, electrophoresis, particle size distribution analysis, surface area determination, and analysis of the degree of agglomeration and maximum particle size of elutriated powder. Test bars were injection molded and processed through sintering at 0.68 MPa (100 psi) of nitrogen. The as-sintered test bars were evaluated by X-ray phase analysis, room and elevated temperature modulus of rupture strength, Weibull modulus, stress rupture, strength after oxidation, fracture origins, microstructure, and density from quantities of samples sufficiently large to generate statistically valid results. A series of small test matrices were conducted to study the effects and interactions of processing parameters which included raw materials, binder systems, binder removal cycles, injection molding temperatures, particle size distribution, sintering additives, and sintering cycle parameters.
Monteyne, Tinne; Vancoillie, Jochem; Remon, Jean-Paul; Vervaet, Chris; De Beer, Thomas
2016-10-01
The pharmaceutical industry has a growing interest in alternative manufacturing models allowing automation and continuous production in order to improve process efficiency and reduce costs. Implementing a switch from batch to continuous processing requires fundamental process understanding and the implementation of quality-by-design (QbD) principles. The aim of this study was to examine the relationship between formulation-parameters (type binder, binder concentration, drug-binder miscibility), process-parameters (screw speed, powder feed rate and granulation temperature), granule properties (size, size distribution, shape, friability, true density, flowability) and tablet properties (tensile strength, friability, dissolution rate) of four different drug-binder formulations using Design of experiments (DOE). Two binders (polyethylene glycol (PEG) and Soluplus®) with a different solid state, semi-crystalline vs amorphous respectively, were combined with two model-drugs, metoprolol tartrate (MPT) and caffeine anhydrous (CAF), both having a contrasting miscibility with the binders. This research revealed that the granule properties of miscible drug-binder systems depended on the powder feed rate and barrel filling degree of the granulator whereas the granule properties of immiscible systems were mainly influenced by binder concentration. Using an amorphous binder, the tablet tensile strength depended on the granule size. In contrast, granule friability was more important for tablet quality using a brittle binder. However, this was not the case for caffeine-containing blends, since these phenomena were dominated by the enhanced compression properties of caffeine Form I, which was formed during granulation. Hence, it is important to gain knowledge about formulation behavior during processing since this influences the effect of process parameters onto the granule and tablet properties. Copyright © 2016 Elsevier B.V. All rights reserved.
Casoli, Antonella; Di Diego, Zaira; Isca, Clelia
2014-12-01
Cleaning is one of the most important, delicate, and at the same time controversial processes in the conservation treatment of paintings. Although a strict definition of cleaning would be the removal of dirt, grime, or other accretions (surface cleaning), in the conservation field, cleaning is used in the broader meaning to include thinning/removing altered or “unwanted layers” of materials without damaging or altering the physicochemical properties of the surfaces to be preserved. The cleaning of unvarnished paintings is one of the most critical issues that are currently discussed. Several studies exist regarding different cleaning tools, such as gels, soaps, enzymes, ionic liquids, and foams, as well as various dry methods and lasers, but only a few have been performed on the risk associated with the use of water and organic solvents for the cleaning treatments in relation to the original paint binder. The aim of the study is to verify analytically the behavior of water gelling agents during cleaning treatments and the interaction of the following elements: water or organic solvents applied for the removal of gel residues with the original lipid paint binder. For this purpose, the study was conducted on a fragment of canvas painting (sixteenth to seventeenth century) of Soprintendenza per i Beni Storici, Artistici ed Etnoantropologici del Friuli Venezia Giulia (Superintendence for the Historical, Artistic and Ethno-anthropological Heritage of Friuli Venezia Giulia), Udine by means of Fourier transform infrared spectroscopy, gas chromatography/mass spectrometry, and scanning electron microscopy.
Coercivity Recovery Effect of Sm-Fe-Cu-Al Alloy on Sm2Fe17N3 Magnet
NASA Astrophysics Data System (ADS)
Otogawa, Kohei; Asahi, Toru; Jinno, Miho; Yamaguchi, Wataru; Takagi, Kenta; Kwon, Hansang
2018-03-01
The potential of a Sm-Fe-Cu-Al binder for improvement of the magnetic properties of Sm2Fe17N3 was examined. Transmission electron microscope (TEM) observation of a Sm-Fe-Cu-Al alloy-bonded Sm2Fe17N3 magnet which showed high coercivity revealed that the Sm-Fe-Cu-Al alloy had an effect of removing the surface oxide layer of the Sm2 Fe17N3 grains. However, the Sm-Fe-Cu-Al binder was contaminated by carbon and nitrogen, which originated from the organic solvent used as the milling medium during pulverization. To prevent carbon and nitrogen contamination, the Sm-Fe- Cu-Al alloy was added directly on the surface of the Sm2Fe17N3 grains by sputtering. Comparing the recovered coercivity per unit amount of the added binder the uncontaminated binder-coated sample had a higher coercivity recovery effect than the milled binder-added sample. These results suggested that sufficient addition of the contamination-free Sm-Fe-Cu-Al binder has the possibility to reduce the amount of binder necessary to produce a high coercive Sm2Fe17N3 magnet.
Influence of solidification accelerators on structure formation of anhydrite-containing binders
NASA Astrophysics Data System (ADS)
Anikanova, L.; Volkova, O.; Kudyakov, A.; Sarkisov, Y.; Tolstov, D.
2016-01-01
The article presents results of scientific analysis of chemical additives influence on acid fluoride binder. It was found that the influence of sulfate nature additives on the process of hydration and solidification of the binder is similar to influence of additives on indissoluble anhydrite. Additives with SO42- anion NO- are more efficient. The mentioned additives according to accelerating effect belong to the following succession: K2SO4 > Na2SO4 > FeSO4 > MgSO4. Facilitation of the process of hydration and solidification of the binder, increase in density and durability of the binder (32 MPa) is to the greatest extent achieved with the introduction of 2% sodium sulfate additive of the binder's mass into the composition of the binder along with the ultrasonic treatment of water solution. Directed crystal formation process with healing of porous structure by new growths presented as calcium sulfate dehydrate and hydroglauberite provides positive effect.
NASA Astrophysics Data System (ADS)
Miyanaji, Hadi; Zhang, Shanshan; Lassell, Austin; Zandinejad, Amirali; Yang, Li
2016-03-01
Custom ceramic structures possess significant potentials in many applications such as dentistry and aerospace where extreme environments are present. Specifically, highly customized geometries with adequate performance are needed for various dental prostheses applications. This paper demonstrates the development of process and post-process parameters for a dental porcelain ceramic material using binder jetting additive manufacturing (AM). Various process parameters such as binder amount, drying power level, drying time and powder spread speed were studied experimentally for their effect on geometrical and mechanical characteristics of green parts. In addition, the effects of sintering and printing parameters on the qualities of the densified ceramic structures were also investigated experimentally. The results provide insights into the process-property relationships for the binder jetting AM process, and some of the challenges of the process that need to be further characterized for the successful adoption of the binder jetting technology in high quality ceramic fabrications are discussed.
Composition, Respirable Fraction and Dissolution Rate of 24 Stone Wool MMVF with their Binder.
Wohlleben, Wendel; Waindok, Hubert; Daumann, Björn; Werle, Kai; Drum, Melanie; Egenolf, Heiko
2017-08-07
Man-made vitreous fibres (MMVF) are produced on a large scale for thermal insulation purposes. After extensive studies of fibre effects in the 1980ies and 1990ies, the composition of MMVF was modified to reduce the fibrotic and cancerogenic potential via reduced biopersistence. However, occupational risks by handling, applying, disposing modern MMVF may be underestimated as the conventional regulatory classification -combining composition, in-vivo clearance and effects- seems to be based entirely on MMVF after removal of the binder. Here we report the oxide composition of 23 modern MMVF from Germany, Finland, UK, Denmark, Russia, China (five different producers) and one pre-1995 MMVF. We find that most of the investigated modern MMVF can be classified as "High-alumina, low-silica wool", but several were on or beyond the borderline to "pre-1995 Rock (Stone) wool". We then used well-established flow-through dissolution testing at pH 4.5 and pH 7.4, with and without binder, at various flow rates, to screen the biosolubility of 14 MMVF over 32 days. At the flow rate and acidic pH of reports that found 47 ng/cm 2 /h dissolution rate for reference biopersistent MMVF21 (without binder), we find rates from 17 to 90 ng/cm 2 /h for modern MMVF as customary in trade (with binder). Removing the binder accelerates the dissolution significantly, but not to the level of reference biosoluble MMVF34. We finally simulated handling or disposing of MMVF and measured size fractions in the aerosol. The respirable fraction of modern MMVF is low, but not less than pre-1995 MMVF. The average composition of modern stone wool MMVF is different from historic biopersistent MMVF, but to a lesser extent than expected. The dissolution rates measured by abiotic methods indicate that the binder has a significant influence on dissolution via gel formation. Considering the content of respirable fibres, these findings imply that the risk assessment of modern stone wool may need to be revisited based on in-vivo studies of MMFV as marketed (with binder).
NASA Astrophysics Data System (ADS)
Ibrahim, R.; Azmirruddin, M.; Wei, G. C.; Fong, L. K.; Abdullah, N. I.; Omar, K.; Muhamad, M.; Muhamad, S.
2010-03-01
Binder system is one of the most important criteria for the powder injection molding (PIM) process. Failure in the selection of the binder system will affect on the final properties of the sintered parts. The objectives of this studied is to develop a novel binder system based on the local natural resources and environmental friendly binder system from palm oil derivative which is easily available and cheap in our country of Malaysia. The novel binder that has been developed will be replaced the commercial thermo-plastic binder system or as an alternative binder system. The results show that the physical and mechanical properties of the final sintered parts fulfill the Metal Powder Industries Federation (MPIF) standard 35 for PIM parts. The biocompatibility test using cell osteosarcoma (MG63) and vero fibroblastic also shows that the cell was successfully growth on the sintered stainless steel 316L parts indicate that the novel binder was not toxic. Therefore, the novel binder system based on palm oil derivative that has been developed as a binder system fulfills the important criteria for the binder system in PIM process.
1993-02-01
sintered in hydrogen furnace at very high temperatures . Multiple furnace firing occurs until the binders are removed and part density is achieved "* Process...and base Low temperature co-fired ceramic - Metallized for shielding and grounding - Low resistance thick-film metallization - High thermal resistance...ESPECIALLY LOW TEMPERATURE COFIRED CERAMIC CERAMICS HIGH THERMAL CONDUCTIVITY,MATCHED GaAS AND SILICON SUBSTRATE MATERIALS I I,1Z#A,17Mr1 J, TI
Armor-Piercing Shot Processed from Molybdenum Bearing Tungsten Carbide
1959-03-01
study were of the same contour aa WC cores employed in all previous scale model terminal ballistic studies of the effect of core composition on...Pennsylvania, by cold pressing and sintering techniques from their composition WS12. This composition is reduced from low grade western ores without the...removal of Mo and results in a product of the following composition after the tungsten is carburized and the binder is added: WC 87.4% Co. 12% Mo
Process for manufacturing tantalum capacitors
Lauf, Robert J.; Holcombe, Cressie E.; Dykes, Norman L.
1993-01-01
A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1300.degree. to 2000.degree. C. by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO.sub.2. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.
Process for manufacturing tantalum capacitors
Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.
1993-02-02
A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1,300 to 2,000 C by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO[sub 2]. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.
Novel Binders and Methods for Agglomeration of Ore
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. K. Kawatra; T. C. Eisele; K. A. Lewandowski
2006-12-31
Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that willmore » work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking. This project has identified several acid-resistant binders and agglomeration procedures that can be used for improving the energy efficiency of heap leaching, by preventing the ''ponding'' and ''channeling'' effects that currently cause reduced recovery and extended leaching cycle times. Methods have also been developed for iron ore processing which are intended to improve the performance of pellet binders, and have directly saved energy by increasing filtration rates of the pelletization feed by as much as 23%.« less
Method of manufacturing tin-doped indium oxide nanofibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozcan, Soydan; Naskar, Amit K
2017-06-06
A method of making indium tin oxide nanofibers includes the step of mixing indium and tin precursor compounds with a binder polymer to form a nanofiber precursor composition. The nanofiber precursor composition is co-formed with a supporting polymer to form a composite nanofiber having a precursor composition nanofiber completely surrounded by the supporting polymer composition. The supporting polymer composition is removed from the composite nanofiber to expose the precursor composition nanofiber. The precursor composition nanofiber is then heated in the presence of oxygen such as O.sub.2 to form indium tin oxide and to remove the binder polymer to form anmore » indium tin oxide nanofiber. A method of making metal oxide nanofibers is also disclosed.« less
NOVEL BINDERS AND METHODS FOR AGGLOMERATION OF ORE
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.K. Kawatra; T.C. Eisele; J.A. Gurtler
2004-04-01
Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that willmore » work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking.« less
2011-01-01
combustion of these materials. To address the aforementioned perchlorate issues, an effort was initiated by ARDEC to remove potassium per- chlorate ...with acceptable burn times for pyrotechnic applications by using potassium nitrate– amorphous boron–crystalline boron/boron carbide–epoxy binder mixtures...3,4] Moreover, it was discovered by ARDEC that a potassium nitrate–boron carbide–epoxy binder mix- ture alone was able to generate suitable green
Contributions of depth filter components to protein adsorption in bioprocessing.
Khanal, Ohnmar; Singh, Nripen; Traylor, Steven J; Xu, Xuankuo; Ghose, Sanchayita; Li, Zheng J; Lenhoff, Abraham M
2018-04-16
Depth filtration is widely used in downstream bioprocessing to remove particulate contaminants via depth straining and is therefore applied to harvest clarification and other processing steps. However, depth filtration also removes proteins via adsorption, which can contribute variously to impurity clearance and to reduction in product yield. The adsorption may occur on the different components of the depth filter, that is, filter aid, binder, and cellulose filter. We measured adsorption of several model proteins and therapeutic proteins onto filter aids, cellulose, and commercial depth filters at pH 5-8 and ionic strengths <50 mM and correlated the adsorption data to bulk measured properties such as surface area, morphology, surface charge density, and composition. We also explored the role of each depth filter component in the adsorption of proteins with different net charges, using confocal microscopy. Our findings show that a complete depth filter's maximum adsorptive capacity for proteins can be estimated by its protein monolayer coverage values, which are of order mg/m 2 , depending on the protein size. Furthermore, the extent of adsorption of different proteins appears to depend on the nature of the resin binder and its extent of coating over the depth filter surface, particularly in masking the cation-exchanger-like capacity of the siliceous filter aids. In addition to guiding improved depth filter selection, the findings can be leveraged in inspiring a more intentional selection of components and design of depth filter construction for particular impurity removal targets. © 2018 Wiley Periodicals, Inc.
Kolan, Krishna C R; Leu, Ming C; Hilmas, Gregory E; Brown, Roger F; Velez, Mariano
2011-06-01
Bioactive glasses are promising materials for bone scaffolds due to their ability to assist in tissue regeneration. When implanted in vivo, bioactive glasses can convert into hydroxyapatite, the main mineral constituent of human bone, and form a strong bond with the surrounding tissues, thus providing an advantage over polymer scaffold materials. Bone scaffold fabrication using additive manufacturing techniques can provide control over pore interconnectivity during fabrication of the scaffold, which helps in mimicking human trabecular bone. 13-93 glass, a third-generation bioactive material designed to accelerate the body's natural ability to heal itself, was used in the research described herein to fabricate bone scaffolds using the selective laser sintering (SLS) process. 13-93 glass mixed with stearic acid (as the polymer binder) by ball milling was used as the powder feedstock for the SLS machine. The fabricated green scaffolds underwent binder burnout to remove the stearic acid binder and were then sintered at temperatures between 675 °C and 695 °C. The sintered scaffolds had pore sizes ranging from 300 to 800 µm with 50% apparent porosity and an average compressive strength of 20.4 MPa, which is excellent for non-load bearing applications and among the highest reported for an interconnected porous scaffold fabricated with bioactive glasses using the SLS process. The MTT labeling experiment and measurements of MTT formazan formation are evidence that the rough surface of SLS scaffolds provides a cell-friendly surface capable of supporting robust cell growth.
Do aluminium-based phosphate binders continue to have a role in contemporary nephrology practice?
Mudge, David W; Johnson, David W; Hawley, Carmel M; Campbell, Scott B; Isbel, Nicole M; van Eps, Carolyn L; Petrie, James J B
2011-05-13
Aluminium-containing phosphate binders have long been used for treatment of hyperphosphatemia in dialysis patients. Their safety became controversial in the early 1980's after reports of aluminium related neurological and bone disease began to appear. Available historical evidence however, suggests that neurological toxicity may have primarily been caused by excessive exposure to aluminium in dialysis fluid, rather than aluminium-containing oral phosphate binders. Limited evidence suggests that aluminium bone disease may also be on the decline in the era of aluminium removal from dialysis fluid, even with continued use of aluminium binders. The K/DOQI and KDIGO guidelines both suggest avoiding aluminium-containing binders. These guidelines will tend to promote the use of the newer, more expensive binders (lanthanum, sevelamer), which have limited evidence for benefit and, like aluminium, limited long-term safety data. Treating hyperphosphatemia in dialysis patients continues to represent a major challenge, and there is a large body of evidence linking serum phosphate concentrations with mortality. Most nephrologists agree that phosphate binders have the potential to meaningfully reduce mortality in dialysis patients. Aluminium is one of the cheapest, most effective and well tolerated of the class, however there are no prospective or randomised trials examining the efficacy and safety of aluminium as a binder. Aluminium continues to be used as a binder in Australia as well as some other countries, despite concern about the potential for toxicity. There are some data from selected case series that aluminium bone disease may be declining in the era of reduced aluminium content in dialysis fluid, due to rigorous water testing. This paper seeks to revisit the contemporary evidence for the safety record of aluminium-containing binders in dialysis patients. It puts their use into the context of the newer, more expensive binders and increasing concerns about the risks of calcium binders, which continue to be widely used. The paper seeks to answer whether the continued use of aluminium is justifiable in the absence of prospective data establishing its safety, and we call for prospective trials to be conducted comparing the available binders both in terms of efficacy and safety. © 2011 Mudge et al; licensee BioMed Central Ltd.
Do aluminium-based phosphate binders continue to have a role in contemporary nephrology practice?
2011-01-01
Background Aluminium-containing phosphate binders have long been used for treatment of hyperphosphatemia in dialysis patients. Their safety became controversial in the early 1980's after reports of aluminium related neurological and bone disease began to appear. Available historical evidence however, suggests that neurological toxicity may have primarily been caused by excessive exposure to aluminium in dialysis fluid, rather than aluminium-containing oral phosphate binders. Limited evidence suggests that aluminium bone disease may also be on the decline in the era of aluminium removal from dialysis fluid, even with continued use of aluminium binders. Discussion The K/DOQI and KDIGO guidelines both suggest avoiding aluminium-containing binders. These guidelines will tend to promote the use of the newer, more expensive binders (lanthanum, sevelamer), which have limited evidence for benefit and, like aluminium, limited long-term safety data. Treating hyperphosphatemia in dialysis patients continues to represent a major challenge, and there is a large body of evidence linking serum phosphate concentrations with mortality. Most nephrologists agree that phosphate binders have the potential to meaningfully reduce mortality in dialysis patients. Aluminium is one of the cheapest, most effective and well tolerated of the class, however there are no prospective or randomised trials examining the efficacy and safety of aluminium as a binder. Aluminium continues to be used as a binder in Australia as well as some other countries, despite concern about the potential for toxicity. There are some data from selected case series that aluminium bone disease may be declining in the era of reduced aluminium content in dialysis fluid, due to rigorous water testing. Summary This paper seeks to revisit the contemporary evidence for the safety record of aluminium-containing binders in dialysis patients. It puts their use into the context of the newer, more expensive binders and increasing concerns about the risks of calcium binders, which continue to be widely used. The paper seeks to answer whether the continued use of aluminium is justifiable in the absence of prospective data establishing its safety, and we call for prospective trials to be conducted comparing the available binders both in terms of efficacy and safety. PMID:21569446
Mix design and pollution control potential of pervious concrete with non-compliant waste fly ash.
Soto-Pérez, Linoshka; Hwang, Sangchul
2016-07-01
Pervious concrete mix was optimized for the maximum compressive strength and the desired permeability at 7 mm/s with varying percentages of water-to-binder (W/B), fly ash-to-binder (FA/B), nano-iron oxide-to-binder (NI/B) and water reducer-to-binder (WR/B). The mass ratio of coarse aggregates in sizes of 4.75-9.5 mm to the binder was fixed at 4:1. Waste FA used in the study was not compliant with a standard specification for use as a mineral admixture in concrete. One optimum pervious concrete (Opt A) targeting high volume FA utilization had a 28-day compressive strength of 22.8 MPa and a permeability of 5.6 mm/s with a mix design at 36% W/B, 35% FA/B, 6% NI/B and 1.2% WR/B. The other (Opt B) targeting a less use of admixtures had a 28-day compressive strength and a permeability of 21.4 MPa and 7.6 mm/s, respectively, at 32% W/B, 10% FA/B, 0.5% NI/B and 0.8% WR/B. During 10 loads at a 2-h contact time each, the Opt A and Opt B achieved the average fecal coliform removals of 72.4% and 77.9% and phosphorus removals of 49.8% and 40.5%, respectively. Therefore, non-compliant waste FA could be utilized for a cleaner production of pervious concrete possessing a greater structural strength and compatible hydrological property and pollution control potential, compared to the ordinary pervious concrete. Copyright © 2016 Elsevier Ltd. All rights reserved.
NOVEL BINDERS AND METHODS FOR AGGLOMERATION OF ORE
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.K. Kawatra; T.C. Eisele; J.A. Gurtler
2005-04-01
Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not breakdown during processing. However, for many important metal extraction processes there are no binders known that will workmore » satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process. As a result, operators of many facilities see large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching.« less
Novel Binders and Methods for Agglomeration of Ore
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. K. Kawatra; T. C. Eisele; J. A. Gurtler
2004-03-31
Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that willmore » work satisfactorily. A primary example of this is copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process. As a result, operators of acidic heap-leach facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of other agglomeration applications, particularly advanced primary ironmaking.« less
Cano, Santiago
2018-01-01
Additive manufacturing (AM) is the fabrication of real three-dimensional objects from metals, ceramics, or plastics by adding material, usually as layers. There are several variants of AM; among them material extrusion (ME) is one of the most versatile and widely used. In MEAM, molten or viscous materials are pushed through an orifice and are selectively deposited as strands to form stacked layers and subsequently a three-dimensional object. The commonly used materials for MEAM are thermoplastic polymers and particulate composites; however, recently innovative formulations of highly-filled polymers (HP) with metals or ceramics have also been made available. MEAM with HP is an indirect process, which uses sacrificial polymeric binders to shape metallic and ceramic components. After removing the binder, the powder particles are fused together in a conventional sintering step. In this review the different types of MEAM techniques and relevant industrial approaches for the fabrication of metallic and ceramic components are described. The composition of certain HP binder systems and powders are presented; the methods of compounding and filament making HP are explained; the stages of shaping, debinding, and sintering are discussed; and finally a comparison of the parts produced via MEAM-HP with those produced via other manufacturing techniques is presented. PMID:29783705
Gonzalez-Gutierrez, Joamin; Cano, Santiago; Schuschnigg, Stephan; Kukla, Christian; Sapkota, Janak; Holzer, Clemens
2018-05-18
Additive manufacturing (AM) is the fabrication of real three-dimensional objects from metals, ceramics, or plastics by adding material, usually as layers. There are several variants of AM; among them material extrusion (ME) is one of the most versatile and widely used. In MEAM, molten or viscous materials are pushed through an orifice and are selectively deposited as strands to form stacked layers and subsequently a three-dimensional object. The commonly used materials for MEAM are thermoplastic polymers and particulate composites; however, recently innovative formulations of highly-filled polymers (HP) with metals or ceramics have also been made available. MEAM with HP is an indirect process, which uses sacrificial polymeric binders to shape metallic and ceramic components. After removing the binder, the powder particles are fused together in a conventional sintering step. In this review the different types of MEAM techniques and relevant industrial approaches for the fabrication of metallic and ceramic components are described. The composition of certain HP binder systems and powders are presented; the methods of compounding and filament making HP are explained; the stages of shaping, debinding, and sintering are discussed; and finally a comparison of the parts produced via MEAM-HP with those produced via other manufacturing techniques is presented.
Alkali-metal silicate binders and methods of manufacture
NASA Technical Reports Server (NTRS)
Schutt, J. B. (Inventor)
1979-01-01
A paint binder is described which uses a potassium or sodium silicate dispersion having a silicon dioxide to alkali-metal oxide mol ratio of from 4.8:1 to 6.0:1. The binder exhibits stability during both manufacture and storage. The process of making the binder is predictable and repeatable and the binder may be made with inexpensive components. The high mol ratio is achieved with the inclusion of a silicon dioxide hydrogel. The binder, which also employs a silicone, is in the final form of a hydrogel sol.
Selective catalytic reduction system and process using a pre-sulfated zirconia binder
Sobolevskiy, Anatoly; Rossin, Joseph A.
2010-06-29
A selective catalytic reduction (SCR) process with a palladium catalyst for reducing NOx in a gas, using hydrogen as a reducing agent is provided. The process comprises contacting the gas stream with a catalyst system, the catalyst system comprising (ZrO.sub.2)SO.sub.4, palladium, and a pre-sulfated zirconia binder. The inclusion of a pre-sulfated zirconia binder substantially increases the durability of a Pd-based SCR catalyst system. A system for implementing the disclosed process is further provided.
NASA Astrophysics Data System (ADS)
Kamaruddin, M. A.; Bakri, M. M. A.; Norashiddin, F. A.; Zawawi, M. H.; Zainol, M. R. R. A.
2018-03-01
The use of coconut shell based adsorbent for removing various pollutants from wastewater offers attractive advantages such as exceptional adsorption capacity with larger surface area, low-cost and biocompatibility for a wide range of pollutants. The same goes for calcium carbonate based adsorbent, which provides better removal for metals ions through precipitation method. In fact, recycling of waste material is considered environmentally preferable and is supported by public opinion and government policy. However, because of unit operations mechanisms and effectiveness are different to one another in downstream process, it is quite difficult to provide good adsorbent that exhibits dual attributes of hydrophobic and hydrophilic characters. This paper provides brief process for sintering of composite adsorbent for separation and purification of industrial wastewater application. Characterization was performed by physical and chemical approach. Results prove that the inclusion of biopolymer as composite binder improved mechanical properties of the composite adsorbent.
Process development for green part printing using binder jetting additive manufacturing
NASA Astrophysics Data System (ADS)
Miyanaji, Hadi; Orth, Morgan; Akbar, Junaid Muhammad; Yang, Li
2018-05-01
Originally developed decades ago, the binder jetting additive manufacturing (BJ-AM) process possesses various advantages compared to other additive manufacturing (AM) technologies such as broad material compatibility and technological expandability. However, the adoption of BJ-AM has been limited by the lack of knowledge with the fundamental understanding of the process principles and characteristics, as well as the relatively few systematic design guideline that are available. In this work, the process design considerations for BJ-AM in green part fabrication were discussed in detail in order to provide a comprehensive perspective of the design for additive manufacturing for the process. Various process factors, including binder saturation, in-process drying, powder spreading, powder feedstock characteristics, binder characteristics and post-process curing, could significantly affect the printing quality of the green parts such as geometrical accuracy and part integrity. For powder feedstock with low flowability, even though process parameters could be optimized to partially offset the printing feasibility issue, the qualities of the green parts will be intrinsically limited due to the existence of large internal voids that are inaccessible to the binder. In addition, during the process development, the balanced combination between the saturation level and in-process drying is of critical importance in the quality control of the green parts.
Phosphate-bonded ceramic–wood composites : R&D project overview and invitation to participate
Theodore L. Laufenberg; Matt Aro
2004-01-01
We are developing chemically bonded ceramic phosphate binders for the production of biofiber-based composite materials. These binders promise to have better processing and properties than some current cement and polymer resin binder systems. The ceramic phosphate binders (termed Ceramicrete), if used in place of cement and polymers, will significantly reduce the...
Reuse potential of low-calcium bottom ash as aggregate through pelletization.
Geetha, S; Ramamurthy, K
2010-01-01
Coal combustion residues which include fly ash, bottom ash and boiler slag is one of the major pollutants as these residues require large land area for their disposal. Among these residues, utilization of bottom ash in the construction industry is very low. This paper explains the use of bottom ash through pelletization. Raw bottom ash could not be pelletized as such due to its coarseness. Though pulverized bottom ash could be pelletized, the pelletization efficiency was low, and the aggregates were too weak to withstand the handling stresses. To improve the pelletization efficiency, different clay and cementitious binders were used with bottom ash. The influence of different factors and their interaction effects were studied on the duration of pelletization process and the pelletization efficiency through fractional factorial design. Addition of binders facilitated conversion of low-calcium bottom ash into aggregates. To achieve maximum pelletization efficiency, the binder content and moisture requirements vary with type of binder. Addition of Ca(OH)(2) improved the (i) pelletization efficiency, (ii) reduced the duration of pelletization process from an average of 14-7 min, and (iii) reduced the binder dosage for a given pelletization efficiency. For aggregate with clay binders and cementitious binder, Ca(OH)(2) and binder dosage have significant effect in reducing the duration of pelletization process. 2010 Elsevier Ltd. All rights reserved.
High-resolution direct 3D printed PLGA scaffolds: print and shrink.
Chia, Helena N; Wu, Benjamin M
2014-12-17
Direct three-dimensional printing (3DP) produces the final part composed of the powder and binder used in fabrication. An advantage of direct 3DP is control over both the microarchitecture and macroarchitecture. Prints which use porogen incorporated in the powder result in high pore interconnectivity, uniform porosity, and defined pore size after leaching. The main limitations of direct 3DP for synthetic polymers are the use of organic solvents which can dissolve polymers used in most printheads and limited resolution due to unavoidable spreading of the binder droplet after contact with the powder. This study describes a materials processing strategy to eliminate the use of organic solvent during the printing process and to improve 3DP resolution by shrinking with a non-solvent plasticizer. Briefly, poly(lactic-co-glycolic acid) (PLGA) powder was prepared by emulsion solvent evaporation to form polymer microparticles. The printing powder was composed of polymer microparticles dry mixed with sucrose particles. After printing with a water-based liquid binder, the polymer microparticles were fused together to form a network by solvent vapor in an enclosed vessel. The sucrose is removed by leaching and the resulting scaffold is placed in a solution of methanol. The methanol acts as a non-solvent plasticizer and allows for polymer chain rearrangement and efficient packing of polymer chains. The resulting volumetric shrinkage is ∼80% at 90% methanol. A complex shape (honey-comb) was designed, printed, and shrunken to demonstrate isotropic shrinking with the ability to reach a final resolution of ∼400 μm. The effect of type of alcohol (i.e. methanol or ethanol), concentration of alcohol, and temperature on volumetric shrinking was studied. This study presents a novel materials processing strategy to overcome the main limitations of direct 3DP to produce high resolution PLGA scaffolds.
Laser-assisted manufacturing of super-insulation materials
NASA Astrophysics Data System (ADS)
Wang, Zhen; Zhang, Tao; Park, Byung Kyu; Lee, Woo Il; Hwang, David
2017-02-01
Being lightweight materials with good mechanical and thermal properties, hollow glass micro-particles (HGMPs) have been widely studied for multiple applications. In this study, it is shown that by using reduced binder fraction diluted in solvent, enables minimal contacts among the HGMPs assisted by a natural capillary trend, as confirmed by optical and electron microscope imaging. Such material architecture fabricated in a composite level proves to have enhanced thermal insulation performance through quantitative thermal conductivity measurement. Mechanical strength has also been evaluated in terms of particle-binder bonding by tensile test via in-situ microscope inspection. Effect of laser treatment was examined for further improvement of thermal and mechanical properties by selective binder removal and efficient redistribution of remaining binder components. The fabricated composite materials have potential applications to building insulation materials for their scalable manufacturing nature, improved thermal insulation performance and reasonable mechanical strength. Further studies are needed to understand mechanical and thermal properties of the resulting composites, and key fabrication mechanisms involved with laser treatment of complex multi-component and multi-phase systems.
Influence of solidification accelerators on structure formation of anhydrite-containing binders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anikanova, L., E-mail: alasmit@mail.ru; Volkova, O., E-mail: v.olga.nikitina@gmail.com; Kudyakov, A.
2016-01-15
The article presents results of scientific analysis of chemical additives influence on acid fluoride binder. It was found that the influence of sulfate nature additives on the process of hydration and solidification of the binder is similar to influence of additives on indissoluble anhydrite. Additives with SO{sub 4}{sup 2−} anion NO{sup −} are more efficient. The mentioned additives according to accelerating effect belong to the following succession: K{sub 2}SO{sub 4} > Na{sub 2}SO{sub 4} > FeSO{sub 4} > MgSO{sub 4}. Facilitation of the process of hydration and solidification of the binder, increase in density and durability of the binder (32 MPa)more » is to the greatest extent achieved with the introduction of 2% sodium sulfate additive of the binder’s mass into the composition of the binder along with the ultrasonic treatment of water solution. Directed crystal formation process with healing of porous structure by new growths presented as calcium sulfate dehydrate and hydroglauberite provides positive effect.« less
Carbon electrode for desalination purpose in capacitive deionization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endarko,, E-mail: endarko@physics.its.ac.id; Fadilah, Nurul; Anggoro, Diky
Carbon electrodes for desalination purpose have been successfully synthesized using activated carbon powder (BET surface area=700 – 1400 m{sup 2}/g), carbon black and polyvinyl alcohol (PVA) binder by cross-linking method with glutaric acid (GA) at 120 °C. The electrochemical properties of the carbon electrodes were analyzed using electrical impedance spectroscopy (EIS) and cyclic voltammetry (CV) whilst the physical properties were observed with scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX). In order to assess the desalting performance, salt removal experiments were performed by constructing a capacitive deionization unit cell with five pairs of carbon electrodes. For each pair consistedmore » of two parallel carbon electrodes separated by a spacer. Desalination and regeneration processes were also observed in the salt-removal experiments. The salt-removal experiments were carried out in single-pass mode using a solution with 0.1 M NaCl at a flow rate of 10 mL/min. A voltage of 3 V was applied to the cell for 60 minutes for both processes in desalination and regeneration. The result showed that the percentage value of the salt-removal was achieved at 20%.« less
3D printed glass: surface finish and bulk properties as a function of the printing process
NASA Astrophysics Data System (ADS)
Klein, Susanne; Avery, Michael P.; Richardson, Robert; Bartlett, Paul; Frei, Regina; Simske, Steven
2015-03-01
It is impossible to print glass directly from a melt, layer by layer. Glass is not only very sensitive to temperature gradients between different layers but also to the cooling process. To achieve a glass state the melt, has to be cooled rapidly to avoid crystallization of the material and then annealed to remove cooling induced stress. In 3D-printing of glass the objects are shaped at room temperature and then fired. The material properties of the final objects are crucially dependent on the frit size of the glass powder used during shaping, the chemical formula of the binder and the firing procedure. For frit sizes below 250 μm, we seem to find a constant volume of pores of less than 5%. Decreasing frit size leads to an increase in the number of pores which then leads to an increase of opacity. The two different binders, 2- hydroxyethyl cellulose and carboxymethylcellulose sodium salt, generate very different porosities. The porosity of samples with 2-hydroxyethyl cellulose is similar to frit-only samples, whereas carboxymethylcellulose sodium salt creates a glass foam. The surface finish is determined by the material the glass comes into contact with during firing.
NASA Technical Reports Server (NTRS)
Chase, V. A.; Harrison, E. S.
1985-01-01
A study was conducted to assess the merits of using graphite/polyimide, NR-150B2 resin, for structural applications on advanced space launch vehicles. The program was divided into two phases: (1) Fabrication Process Development; and (2) Demonstration Components. The first phase of the program involved the selection of a graphite fiber, quality assurance of the NR-150B2 polyimide resin, and the quality assurance of the graphite/polyimide prepreg. In the second phase of the program, a limited number of components were fabricated before the NR-150B2 resin system was removed from the market by the supplier, Du Pont. The advancement of the NR-150B2 polyimide resin binder was found to vary significantly based on previous time and temperature history during the prepregging operation. Strength retention at 316C (600F) was found to be 50% that of room temperature strength. However, the composite would retain its initial strength after 200 hours exposure at 316C (600F). Basic chemistry studies are required for determining NR-150B2 resin binder quality assurance parameters. Graphite fibers are available that can withstand high temperature cure and postcure cycles.
Co removal and phase transformations during high power diode laser irradiation of cemented carbide
NASA Astrophysics Data System (ADS)
Barletta, M.; Rubino, G.; Gisario, A.
2011-02-01
The use of a continuous wave-high power diode laser for removing surface Co-binder from Co-cemented tungsten carbide (WC-Co (5.8 wt%.)) hardmetal slabs was investigated. Combined scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction analyses were performed in order to study the phase transformations and micro-structural modifications of the WC-Co substrates occurring during and after laser irradiation. The micro-structure of the WC-Co progressively transforms as energy density increased, exhibiting stronger removal of Co and WC grain growth. At very high energy density, local melting of the WC grains with the formation of big agglomerates of interlaced grains is observed, and the crystalline structure of the irradiated substrate shows the presence of a brittle ternary eutectic phase of W, Co and C (often referred to as the η-phase). The latter can be detrimental to the mechanical properties of WC-Co. Therefore, the proper adjustment of the laser processing parameters plays a crucial role in surface treatments of WC-Co substrates prior to post-processing like diamond deposition.
Yoon, Jihee; Oh, Dongyeop X; Jo, Changshin; Lee, Jinwoo; Hwang, Dong Soo
2014-12-14
Si-based anodes in lithium ion batteries (LIBs) have exceptionally high theoretical capacity, but the use of a Si-based anode in LIBs is problematic because the charging-discharging process can fracture the Si particles. Alginate and its derivatives show promise as Si particle binders in the anode. We show that calcium-mediated "egg-box" electrostatic cross-linking of alginate improves toughness, resilience, electrolyte desolvation of the alginate binder as a Si-binder for LIBs. Consequently, the improved mechanical properties of the calcium alginate binder compared to the sodium alginate binder and other commercial binders extend the lifetime and increase the capacity of Si-based anodes in LIBs.
Novel Binders and Methods for Agglomeration of Ore
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. K. Kawatra; T. C. Eisele; K. A. Lewandowski
2006-03-31
Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that willmore » work satisfactorily at a reasonable cost. A primary example of this is copper heap leaching, where there are no binders currently encountered in this acidic environment process. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching. The active involvement of our industrial partners will help to ensure rapid commercialization of any agglomeration technologies developed by this project.« less
Novel Binders and Methods for Agglomeration of Ore
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. K. Kawatra; T. C. Eisele; J. A. Gurtler
2005-09-30
Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that willmore » work satisfactorily at a reasonable cost. A primary example of this is copper heap leaching, where there are no binders currently encountered in this acidic environment process. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching. The active involvement of our industrial partners will help to ensure rapid commercialization of any agglomeration technologies developed by this project.« less
NASA Astrophysics Data System (ADS)
Pee, J. H.; Kim, Y. J.; Kim, J. Y.; Seong, N. E.; Cho, W. S.; Kim, K. J.
2011-10-01
Decomposition promoting factors and decomposition mechanism in the zinc decomposition process of waste hard metals which are composed mostly of tungsten carbide and cobalt were evaluated. Zinc volatility amount was suppressed and zinc steam pressure was produced in the reaction graphite crucible inside an electric furnace for ZDP. Reaction was done for 2 hrs at 650 °C, which 100 % decomposed the waste hard metals that were over 30 mm thick. As for the separation-decomposition of waste hard metals, zinc melted alloy formed a liquid composed of a mixture of γ-β1 phase from the cobalt binder layer (reaction interface). The volume of reacted zone was expanded and the waste hard metal layer was decomposed-separated horizontally from the hard metal. Zinc used in the ZDP process was almost completely removed-collected by decantation and volatilization-collection process at 1000 °C. The small amount of zinc remaining in the tungsten carbide-cobalt powder which was completely decomposed was fully removed by using phosphate solution which had a slow cobalt dissolution speed.
NASA Astrophysics Data System (ADS)
Agne, Aboubakry; Barrière, Thierry
2018-05-01
Metal injection molding (MIM) is a process combining advantages of thermoplastic injection molding and powder metallurgy process in order to manufacture components with complex and near net-shape geometries. The debinding of a green component can be performed in two steps, first by using solvent debinding in order to extract the organic part of the binder and then by thermal degradation of the rest of the binder. A shorter and innovative method for extracting an organic binder involves the use of supercritical fluid instead of a regular solvent. The debinding via a supercritical fluid was recently investigated to extract organic binders contained in components obtained by Metal Injection Molding. It consists to put the component in an enclosure subjected to high pressure and temperature. The supercritical fluid has various properties depending on these two conditions, e.g., density and viscosity. The high-pressure combined with the high temperature during the process affect the component structure. Three mechanisms contributing to the deformation of the component can been differentiated: thermal expansion, binder extraction and supercritical fluid effect on the outer surfaces of the component. If one supposes that, the deformation due to binder extraction is negligible, thermal expansion and the fluid effect are probably the main mechanisms that can produce several stress. A finite-element model, which couples fluid-structures interaction and structural mechanics, has been developed and performed on the Comsol Multiphysics® finite-element software platform allowed to estimate the stress distribution during the supercritical debinding of MIM component composed of Inconel 718 powders, polypropylene, polyethylene glycol and stearic acid as binder. The proposed numerical simulations allow the estimation of the stress distribution with respect to the processing parameters for MIM components during the supercritical debinding process using a stationary solver.
Fluidizable particulate materials and methods of making same
Gupta, Raghubir P.
1999-01-01
The invention provides fluidizable, substantially spherical particulate material of improved attrition resistance having an average particle size from about 100 to about 400 microns useful as sorbents, catalysts, catalytic supports, specialty ceramics or the like. The particles are prepared by spray drying a slurry comprising inorganic starting materials and an organic binder. Exemplary inorganic starting materials include mixtures of zinc oxide with titanium dioxide, or with iron oxide, alumina or the like. Exemplary organic binders include polyvinyl alcohol, hydroxypropylemethyl cellulose, polyvinyl acetate and the like. The spray dried particles are heat treated at a first temperature wherein organic binder material is removed to thereby provide a porous structure to the particles, and thereafter the particles are calcined at a higher temperature to cause reaction of the inorganic starting materials and to thereby form the final inorganic particulate material.
Field test of a polyphosphoric acid (PPA) modified asphalt binder on Rt. 1 in Perry.
DOT National Transportation Integrated Search
2013-04-01
The Maine Department of Transportation (MaineDOT) uses the Superpave hot mix asphalt process and : specifies asphalt binder grades using the Performance Grade criteria. The Department mainly uses asphalt : binder grade PG 64-28. This is an asphalt bi...
Wen, Shulong; Niu, Zhuyu; Zhang, Zhen; Li, Lianghao; Chen, Yuancai
2018-01-05
Ethylenediaminetetraacetic acid (EDTA) could form stable complexes with toxic metals such as nickel due to its strong chelation. The three-dimensional (3D) macroporous graphene aerogels (GA), which was in-situ assembled by reduced graphene oxide (rGO) sheets on titanium wire as binder-free electrode, was presented as cathode for the degradation of EDTA-Ni in Electro-Fenton process. The X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscope (TEM) and Brunauer-Emmett-Teller (BET) results indicated 3D GA formed three dimensional architecture with large and homogenous macropore structure and surface area. Cyclic Voltammetry (CV), Linear Sweep Voltammetry (LSV) and Rotating Ring-disk Electrode (RRDE) results showed that the 3D GA cathode at pH 3 displayed the highest current density and electrochemical active surface area (ECSA), and better two-electron selectivity for ORR than other pH value, confirming the 3D-GA cathode at pH 3 has the highest electrocatalytic activity and generates more H 2 O 2 . The factors such as pH, applied current density, concentration of Fe 2+ , Na 2 SO 4, and aeration rates of air were also investigated. Under the optimum conditions, 73.5% of EDTA-Ni was degraded after reaction for 2h. Mechanism analysis indicated that the production of OH on the 3D GA cathode played an important role in the removal of EDTA-Ni in the 3D GA-EF process, where the direct regeneration of Fe 2+ on the cathode would greatly reduce the consumption of H 2 O 2 . Therefore, it is of great promise for 3D-GA catalyst to be developed as highly efficient, cost-effective and durable cathode for the removal of EDTA-Ni. Copyright © 2017 Elsevier B.V. All rights reserved.
Method of waste stabilization via chemically bonded phosphate ceramics
Wagh, Arun S.; Singh, Dileep; Jeong, Seung-Young
1998-01-01
A method for regulating the reaction temperature of a ceramic formulation process is provided comprising supplying a solution containing a monovalent alkali metal; mixing said solution with an oxide powder to create a binder; contacting said binder with bulk material to form a slurry; and allowing the slurry to cure. A highly crystalline waste form is also provided consisting of a binder containing potassium and waste substrate encapsulated by the binder.
Method of waste stabilization via chemically bonded phosphate ceramics
Wagh, A.S.; Singh, D.; Jeong, S.Y.
1998-11-03
A method for regulating the reaction temperature of a ceramic formulation process is provided comprising supplying a solution containing a monovalent alkali metal; mixing said solution with an oxide powder to create a binder; contacting said binder with bulk material to form a slurry; and allowing the slurry to cure. A highly crystalline waste form is also provided consisting of a binder containing potassium and waste substrate encapsulated by the binder. 3 figs.
NASA Technical Reports Server (NTRS)
Moser, B. G.; Landel, R. F. (Inventor)
1972-01-01
Filled polymer compositions are made by dissolving the polymer binder in a suitable sublimable solvent, mixing the filler material with the polymer and its solvent, freezing the resultant mixture, and subliming the frozen solvent from the mixture from which it is then removed. The remaining composition is suitable for conventional processing such as compression molding or extruding. A particular feature of the method of manufacture is pouring the mixed solution slowly in a continuous stream into a cryogenic bath wherein frozen particles of the mixture result. The frozen individual particles are then subjected to the sublimation.
DOT National Transportation Integrated Search
2012-04-01
The Maine Department of Transportation (MaineDOT) uses the Superpave hot mix asphalt process and : specifies asphalt binder grades using the Performance Grade criteria. The Department mainly uses asphalt : binder grade PG64-28. This is an asphalt bin...
NASA Astrophysics Data System (ADS)
Kadlec, J.; Rieger, D.; Kovářík, T.; Novotný, P.; Franče, P.; Pola, M.
2017-02-01
In this study the effect of metakaolin replacement by milled blast furnace slag in alkali-activated geopolymeric binder was investigated in accordance to their rheological and mechanical properties. It was demonstrated that slag addition into the metakaolin binder can improve mechanical properties of final products. Our investigation was focused on broad interval of metakaolin substitution in the range from 100 to 40 volume per cents of metakaolin so that the volume content of solids in final binder was maintained constant. Prepared binders were activated by alkaline solution of potassium silicate with silicate module of 1.61. The particle size analyses were performed for determination of particle size distribution. The rheological properties were determined in accordance to flow properties by measurements on Ford viscosity cup and by oscillatory measurements of hardening process. For the investigation of hardening process, the strain controlled small amplitude oscillatory rheometry was used in plane-plate geometry. For determination of applied mechanical properties were binders filled by ceramic grog in the granularity range 0-1 mm. The filling was maintained constant at 275 volume per cents in accordance to ratio of solids in dry binder. The mechanical properties were investigated after 1, 7 and 28 days and microstructure was documented by scanning electron microscopy. The results indicate that slag addition have beneficial effect not only on mechanical properties of hardened binder but also on flow properties of fresh geopolymer paste and subsequent hardening kinetics of alkali-activated binders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tate, John G.; Richardson, Bradley S.; Love, Lonnie J.
ORNL worked with the Schaeffler Group USA to explore additive manufacturing techniques that might be appropriate for prototyping of bearing cages. Multiple additive manufacturing techniques were investigated, including e-beam, binder jet and multiple laser based processes. The binder jet process worked best for the thin, detailed cages printed.
Willecke, N; Szepes, A; Wunderlich, M; Remon, J P; Vervaet, C; De Beer, T
2018-04-21
The overall objective of this work is to understand how excipient characteristics influence the drug product quality attributes and process performance of a continuous twin screw wet granulation process. The knowledge gained in this study is intended to be used for Quality by Design (QbD)-based formulation design and formulation optimization. Three principal components which represent the overarching properties of 8 selected pharmaceutical fillers were used as factors, whereas factors 4 and 5 represented binder type and binder concentration in a design of experiments (DoE). The majority of process parameters were kept constant to minimize their influence on the granule and drug product quality. 27 DoE batches consisting of binary filler/binder mixtures were processed via continuous twin screw wet granulation followed by tablet compression. Multiple linear regression models were built providing understanding of the impact of filler and binder properties on granule and tablet quality attributes (i.e. 16 DoE responses). The impact of fillers on the granule and tablet responses was more dominant compared to the impact of binder type and concentration. The filler properties had a relevant effect on granule characteristics, such as particle size, friability and specific surface area. Binder type and concentration revealed a relevant influence on granule flowability and friability as well as on the compactability (required compression force during tableting to obtain target hardness). In order to evaluate the DoE models' validity, a verification of the DoE models was performed with new formulations (i.e. a new combination of filler, binder type and binder concentration) which were initially not included in the dataset used to build the DoE models. The combined PCA (principle component analysis)/DoE approach allowed to link the excipient properties with the drug product quality attributes. Copyright © 2018 Elsevier B.V. All rights reserved.
Recovery of a Charred Painting Using Atomic Oxygen Treatment
NASA Technical Reports Server (NTRS)
Rutledge, Sharon K.; Banks, Bruce A.; Chichernea, Virgil A.
1999-01-01
A noncontact method is described which uses atomic oxygen to remove soot and char from the surface of a painting. The atomic oxygen was generated by the dissociation of oxygen in low pressure air using radio frequency energy. The treatment, which is an oxidation process, allows control of the amount of material to be removed. The effectiveness of char removal from half of a fire-damaged oil painting was studied using reflected light measurements from selected areas of the painting and by visual and photographic observation. The atomic oxygen was able to effectively remove char and soot from the treated half of the painting. The remaining loosely bound pigment was lightly sprayed with a mist to replace the binder and then varnish was reapplied. Caution should he used when treating an untested paint medium using atomic oxygen. A representative edge or corner should he tested first in order to determine if the process would be safe for the pigments present. As more testing occurs, a greater knowledge base will be developed as to what types of paints and varnishes can or cannot be treated using this technique. With the proper precautions, atomic oxygen treatment does appear to be a technique with great potential for allowing very charred, previously unrestorable art to be salvaged.
Huang, Yuhong; Wei, Oiang; Chu, Chung-tse; Zheng, Haixing
2001-01-01
Metal nitride, carbonitride, and oxycarbonitride powder with high surface area (up to 150 m.sup.2 /g) is prepared by using sol-gel process. The metal organic precursor, alkoxides or amides, is synthesized firstly. The metal organic precursor is modified by using unhydrolyzable organic ligands or templates. A wet gel is formed then by hydrolysis and condensation process. The solvent in the wet gel is then be removed supercritically to form porous amorphous hydroxide. This porous hydroxide materials is sintered to 725.degree. C. under the ammonia flow and porous nitride powder is formed. The other way to obtain high surface area nitride, carbonitride, and oxycarbonitride powder is to pyrolyze polymerized templated metal amides aerogel in an inert atmosphere. The electrochemical capacitors are prepared by using sol-gel prepared nitride, carbonitride, and oxycarbonitride powder. Two methods are used to assemble the capacitors. Electrode is formed either by pressing the mixture of nitride powder and binder to a foil, or by depositing electrode coating onto metal current collector. The binder or coating is converted into a continuous network of electrode material after thermal treatment to provide enhanced energy and power density. Liquid electrolyte is soaked into porous electrode. The electrochemical capacitor assembly further has a porous separator layer between two electrodes/electrolyte and forming a unit cell.
Keary, Colin M; Sheskey, Paul J
2004-09-01
Spray granulation is commonly used to improve the flow of drug formulation powders by adding liquid binders. We have discovered a new granulation process whereby liquid binders are added as aqueous foam. Initial experiments indicate that foam granulations require less binder than spray granulations, less water is added to the powder mass, rates of addition of foam can be greater than rates of addition of sprayed liquids, and foam can be added in a single batch to the surface of the powder mass for incorporation at some later stage in the process. This new process appears to have no detrimental effects on granulate, tablet, or in vitro drug dissolution properties. In addition, the elimination of spray addition reduces the complexity of the process and avoids the plugging problems associated with spray nozzles. Several formulations were successfully scaled up from laboratory scale (1.5 kg) to pilot scale (15 kg). Process control was good and there was no detrimental effect on tablet and drug dissolution properties. This paper also proposes a working hypothesis of the mechanism by which foam granulation operates.
Intensive Hemodialysis, Mineral and Bone Disorder, and Phosphate Binder Use.
Copland, Michael; Komenda, Paul; Weinhandl, Eric D; McCullough, Peter A; Morfin, Jose A
2016-11-01
Mineral and bone disorder is a common complication of end-stage renal disease. Notably, hyperphosphatemia likely promotes calcification of the myocardium, valves, and arteries. Hyperphosphatemia is associated with higher risk for cardiovascular mortality and morbidity along a gradient beginning at 5.0mg/dL. Among contemporary hemodialysis (HD) patients, mean serum phosphorus level is 5.2mg/dL, although 25% of patients have serum phosphorus levels of 5.5 to 6.9mg/dL; and 13%, >7.0mg/dL. Treatment of hyperphosphatemia is burdensome. Dialysis patients consume a mean of 19 pills per day, half of which are phosphate binders. Medicare Part D expenditures on binders for dialysis patients approached $700 million in 2013. Phosphorus removal with thrice-weekly HD (4 hours per session) is ∼3,000mg/wk. However, clearance is unlikely to counterbalance dietary intake, which varies around a mean of 7,000mg/wk. Dietary restriction and phosphate binders are important interventions, but each has limitations. Dietary control is complicated by limited access to healthy food choices and unclear labeling. Meanwhile, adherence to phosphate binders is poor, especially in younger patients and those with high pill burden. Multiple randomized clinical trials show that intensive HD reduces serum phosphorus levels. In the Frequent Hemodialysis Network (FHN) trial, short daily and nocturnal schedules reduced serum phosphorus levels by 0.6 and 1.6mg/dL, respectively, relative to 3 sessions per week. A similar effect of nocturnal HD was observed in an earlier trial. In the daily arm of the FHN trial, intensive HD significantly lowered estimated phosphate binder dose per day, whereas in the nocturnal arm, intensive HD led to binder discontinuation in 75% of patients. However, intensive HD appears to have no meaningful effects on serum calcium and parathyroid hormone concentrations. In conclusion, intensive HD, especially nocturnal HD, lowers serum phosphorus levels and decreases the need for phosphate binders. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Die Starter: A New System to Manage Early Feasibility in Sheet Metal Forming
NASA Astrophysics Data System (ADS)
Narainen, Rodrigue; Porzner, Harald
2016-08-01
Die Starter, a new system developed by ESI Group, allows the user to drastically reduce the number of iterations during the early tool process feasibility. This innovative system automatically designs the first quick die face, generating binder and addendum surfaces (NURBS surfaces) by taking account the full die process. Die Starter also improves the initial die face based on feasibility criteria (avoiding splits, wrinkles) by automatically generating the geometrical modifications of the binder and addendum and the bead restraining forces with minimal material usage. This paper presents a description of the new system and the methodology of Die Starter. Some industrial examples are presented from the part geometry to final die face including automatic developed flanges, part on binder and inner binder.
Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy.
Xiao, Jiefeng; Li, Jia; Xu, Zhengming
2017-09-15
The large-batch application of lithium ion batteries leads to the mass production of spent batteries. So the enhancement of disposal ability of spent lithium ion batteries is becoming very urgent. This study proposes an integrated process to handle bulk spent lithium manganese (LiMn 2 O 4 ) batteries to in situ recycle high value-added products without any additives. By mechanical separation, the mixed electrode materials mainly including binder, graphite and LiMn 2 O 4 are firstly obtained from spent batteries. Then, the reaction characteristics for the oxygen-free roasting of mixed electrode materials are analyzed. And the results show that mixed electrode materials can be in situ converted into manganese oxide (MnO) and lithium carbonate (Li 2 CO 3 ) at 1073K for 45min. In this process, the binder is evaporated and decomposed into gaseous products which can be collected to avoid disposal cost. Finally, 91.30% of Li resource as Li 2 CO 3 is leached from roasted powders by water and then high value-added Li 2 CO 3 crystals are further gained by evaporating the filter liquid. The filter residues are burned in air to remove the graphite and the final residues as manganous-manganic oxide (Mn 3 O 4 ) is obtained. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Belyaev, P. S.; Mishchenko, S. V.; Belyaev, V. P.; Belousov, O. A.; Frolov, V. A.
2018-04-01
The objects of this study are petroleum road bitumen and polymeric bituminous binder for road surfaces obtained by polymer materials. The subject of the study is monitoring the polymer-bitumen binder quality changes as a result of varying the bitumen modification process. The purpose of the work is to identify the patterns of the modification process and build a mathematical model that provides the ability to calculate and select technological equipment. It is shown that the polymer-bitumen binder production with specified quality parameters can be ensured in apparatuses with agitators in turbulent mode without the colloidal mills use. Bitumen mix and modifying additives limiting indicators which can be used as restrictions in the form of mathematical model inequalities are defined. A mathematical model for the polymer-bitumen binder preparation has been developed and its adequacy has been confirmed.
Char binder for fluidized beds
Borio, Richard W.; Accortt, Joseph I.
1981-01-01
An arrangement that utilizes agglomerating coal as a binder to bond coal fines and recycled char into an agglomerate mass that will have suitable retention time when introduced into a fluidized bed 14 for combustion. The simultaneous use of coal for a primary fuel and as a binder effects significant savings in the elimination of non-essential materials and processing steps.
Effect of binder burnout on the sealing performance of glass ceramics for solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Ertugrul, Tugrul Y.; Celik, Selahattin; Mat, Mahmut D.
2013-11-01
The glass ceramics composite sealants are among few materials suitable for the solid oxide fuel cells (SOFC) due to their high operating temperatures (600 °C-850 °C). The glass ceramics chemically bond to both the metallic interconnector and the ceramic electrolyte and provide a gas tight connection. A careful and several stages manufacturing procedure is required to obtain a gas tight sealing. In this study, effects of binder burnout process on the sealing performance are investigated employing commercially available glass ceramic powders. The glass ceramic laminates are produced by mixing glass ceramic powders with the organic binders and employing a tape casting method. The laminates are sandwiched between the metallic interconnectors of an SOFC cell. The burnout and subsequent sealing quality are analyzed by measuring leakage rate and final macrostructure of sealing region. The effects of heating rate, dead weight load, solid loading, carrier gas and their flow rates are investigated. It is found that sealing quality is affected from all investigated parameters. While a slower heating rate is required for a better burnout, the mass flow rate of sweep gas must be adequate for removal of the burned gas. The leakage rate is reduced to 0.1 ml min-1 with 2 °C min-1 + 1 °C min-1 heating rate, 86.25% solid loading, 200 N dead weight load and 500 ml min-1 sweep gas flow rate.
Nandwana, Peeyush; Elliott, Amy M.; Siddel, Derek; ...
2017-01-03
Traditional manufacturing of Inconel 718 components from castings and thermomechanical processing routes involve extensive post processing and machining to attain the desired geometry. Additive manufacturing (AM) technologies including direct energy deposition (DED), selective laser melting (SLM), electron beam melting (EBM) and binder jet 3D printing (BJ3DP) can minimize scrap generation and reduce lead times. While there is extensive literature on the use of melting and solidification based AM technologies, there has been limited research on the use of binder jet 3D printing. In this paper, a brief review on binder jet additive manufacturing of Inconel 718 is presented. In addition,more » existing knowledge on sintering of Inconel 718 has been extended to binder jet 3D printing. We found that supersolidus liquid phase sintering (SLPS) is necessary to achieve full densification of Inconel 718. SLPS is sensitive to the feedstock chemistry that has a strong influence on the liquid volume fraction at the processing temperature. Based on these results, we discuss an empirical framework to determine the role of powder particle size and liquid volume fraction on sintering kinetics. In conclusion, the role of powder packing factor and binder saturation on microstructural evolution is discussed. The current challenges in the use of BJ3DP for fabrication of Inconel 718, as well as, extension to other metal systems, are presented.« less
Tan, Bernice Mei Jin; Loh, Zhi Hui; Soh, Josephine Lay Peng; Liew, Celine Valeria; Heng, Paul Wan Sia
2014-01-02
Binder distribution in the powder mass during high shear granulation is especially critical with the use of viscous liquid binders and with short processing times. A viscous liquid binder was delivered into the powder mass at two flow rates using three methods: pouring, pumping and spraying from a pressure pot. Binder content analyses at the scale of individual granules were conducted to investigate the impact of different delivery conditions on the homogeneity of binder distribution. There was clear evidence of non-uniformity of binder content among individual granules across all delivery conditions, particularly for the fast rates of delivery. Poorer reproducibility values of tablet thickness and disintegration time were observed when binder was poured but this may be overcome by pumping or spraying from the pressure pot. Greater homogeneity of binder distribution occurred with the slow rates of delivery and led to the earlier onset of granule growth and a consequent increase in granule size. Larger granule size and lower proportion of fines were in turn associated with increased granule bulk density and improvement of granule flow. In conclusion, delivery of a viscous binder at a slow rate either by pumping or via a pressure pot was most desirable during granulation. Copyright © 2013 Elsevier B.V. All rights reserved.
Development and Design of Binder Systems for Titanium Metal Injection Molding: An Overview
NASA Astrophysics Data System (ADS)
Wen, Guian; Cao, Peng; Gabbitas, Brian; Zhang, Deliang; Edmonds, Neil
2013-03-01
Titanium metal injection molding (Ti-MIM) has been practiced since the late 1980s. Logically, the Ti-MIM practice follows the similar processes developed for the antecedent materials such as stainless steel and ceramics. Although Ti-MIM is a favorite research topic today, the issue of convincing the designers to use Ti injection-molded parts still exists. This is mainly because of the concern about contamination which seems unavoidable during the Ti-MIM process. Much information about the binder formulation, powder requirements, debinding, and sintering is available in the literature. There are several powder vendors and feedstock suppliers. However, most of the binders in the feedstock are proprietarily protected. The disclosed information on the binders used for formulating powder feedstock is very limited, which in turn discourages their adoption by engineering designers. This overview intends to discuss some of major binder systems for Ti-MIM available in the literature. It serves to provide a guideline for the Ti-MIM practitioners to choose a suitable powder feedstock.
Code of Federal Regulations, 2011 CFR
2011-07-01
... procedures used by the scrap supplier for either removing accessible mercury switches or for purchasing... chemical composition of all catalyst binder formulations applied in each furan warm box mold or core making...
Code of Federal Regulations, 2012 CFR
2012-07-01
... procedures used by the scrap supplier for either removing accessible mercury switches or for purchasing... chemical composition of all catalyst binder formulations applied in each furan warm box mold or core making...
Code of Federal Regulations, 2014 CFR
2014-07-01
... procedures used by the scrap supplier for either removing accessible mercury switches or for purchasing... chemical composition of all catalyst binder formulations applied in each furan warm box mold or core making...
Code of Federal Regulations, 2013 CFR
2013-07-01
... procedures used by the scrap supplier for either removing accessible mercury switches or for purchasing... chemical composition of all catalyst binder formulations applied in each furan warm box mold or core making...
Fraioli, Anthony V.; Schertz, William W.
1987-01-01
A composite formed of small desiccant particles retained in a dark matrix composed of a porous binder containing a transition metal oxide with pores to provide moisture transport with respect to the particles, and metallic fibers to remove the heat of condensation during dehumidification and provide heat for the removal of moisture during regeneration. The moisture absorbing properties of the composite may be regenerated by exposure of the dark matrix to solar radiation with dehumidification occurring at night.
Development of a solvent processed insensitive propellant
NASA Technical Reports Server (NTRS)
Trask, R.; Costa, E.; Beardell, A. J.
1980-01-01
Two types of low vulnerability propellants are studied which are distinguished by whether the binder is a rubber, such as polyurethane or CTBN, or a plasticizable polymer such as ethyl cellulose or cellulose acetate. The former propellants are made by a partial cure extrusion process while the latter are made by the conventional solvent process. Emphasis is given to a cellulose binder (plasticizer) RDX composition. The type of binder used, the particle size of the RDX and the presence of small quantities of nitrocellulose in the solvent processed compositions have important influences on the mechanical and combustion characteristics of the propellant. The low temperature combustion is of particular concern because of potential breakup of the grains that can lead to instability.
Tumuluru, Jaya Shankar; Conner, Craig C.; Hoover, Amber N.
2016-01-01
A major challenge in the production of pellets is the high cost associated with drying biomass from 30 to 10% (w.b.) moisture content. At Idaho National Laboratory, a high-moisture pelleting process was developed to reduce the drying cost. In this process the biomass pellets are produced at higher feedstock moisture contents than conventional methods, and the high moisture pellets produced are further dried in energy efficient dryers. This process helps to reduce the feedstock moisture content by about 5-10% during pelleting, which is mainly due to frictional heat developed in the die. The objective of this research was to explore how binder addition influences the pellet quality and energy consumption of the high-moisture pelleting process in a flat die pellet mill. In the present study, raw corn stover was pelleted at moistures of 33, 36, and 39% (w.b.) by addition of 0, 2, and 4% pure corn starch. The partially dried pellets produced were further dried in a laboratory oven at 70 °C for 3-4 hr to lower the pellet moisture to less than 9% (w.b.). The high moisture and dried pellets were evaluated for their physical properties, such as bulk density and durability. The results indicated that increasing the binder percentage to 4% improved pellet durability and reduced the specific energy consumption by 20-40% compared to pellets with no binder. At higher binder addition (4%), the reduction in feedstock moisture during pelleting was <4%, whereas the reduction was about 7-8% without the binder. With 4% binder and 33% (w.b.) feedstock moisture content, the bulk density and durability values observed of the dried pellets were >510 kg/m3 and >98%, respectively, and the percent fine particles generated was reduced to <3%. PMID:27340875
Tumuluru, Jaya Shankar; Conner, Craig C; Hoover, Amber N
2016-06-15
A major challenge in the production of pellets is the high cost associated with drying biomass from 30 to 10% (w.b.) moisture content. At Idaho National Laboratory, a high-moisture pelleting process was developed to reduce the drying cost. In this process the biomass pellets are produced at higher feedstock moisture contents than conventional methods, and the high moisture pellets produced are further dried in energy efficient dryers. This process helps to reduce the feedstock moisture content by about 5-10% during pelleting, which is mainly due to frictional heat developed in the die. The objective of this research was to explore how binder addition influences the pellet quality and energy consumption of the high-moisture pelleting process in a flat die pellet mill. In the present study, raw corn stover was pelleted at moistures of 33, 36, and 39% (w.b.) by addition of 0, 2, and 4% pure corn starch. The partially dried pellets produced were further dried in a laboratory oven at 70 °C for 3-4 hr to lower the pellet moisture to less than 9% (w.b.). The high moisture and dried pellets were evaluated for their physical properties, such as bulk density and durability. The results indicated that increasing the binder percentage to 4% improved pellet durability and reduced the specific energy consumption by 20-40% compared to pellets with no binder. At higher binder addition (4%), the reduction in feedstock moisture during pelleting was <4%, whereas the reduction was about 7-8% without the binder. With 4% binder and 33% (w.b.) feedstock moisture content, the bulk density and durability values observed of the dried pellets were >510 kg/m(3) and >98%, respectively, and the percent fine particles generated was reduced to <3%.
40 CFR 63.1386 - Notification, recordkeeping, and reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... microfiche; and (iii) The owner or operator may report required information on paper or on a labeled computer... exceedance was corrected; (v) The formulation of each binder batch and the LOI and density for each product... binder formulation; (vi) Process parameter level(s) for RS and FA manufacturing lines that use process...
Komersová, Alena; Lochař, Václav; Myslíková, Kateřina; Mužíková, Jitka; Bartoš, Martin
2016-12-01
The aim of this study is to present the possibility of using of co-processed dry binders for formulation of matrix tablets with drug controlled release. Hydrophilic matrix tablets with tramadol hydrochloride, hypromellose and different co-processed dry binders were prepared by direct compression method. Hypromelloses Methocel™ K4M Premium CR or Methocel™ K100M Premium CR were used as controlled release agents and Prosolv® SMCC 90 or Disintequik™ MCC 25 were used as co-processed dry binders. Homogeneity of the tablets was evaluated using scanning electron microscopy and energy dispersive X-ray microanalysis. The release of tramadol hydrochloride from prepared formulations was studied by dissolution test method. The dissolution profiles obtained were evaluated by non-linear regression analysis, release rate constants and other kinetic parameters were determined. It was found that matrix tablets based on Prosolv® SMCC 90 and Methocel™ Premium CR cannot control the tramadol release effectively for >12h and tablets containing Disintequik™ MCC 25 and Methocel™ Premium CR >8h. Copyright © 2016 Elsevier B.V. All rights reserved.
Takasaki, Hiroshi; Yonemochi, Etsuo; Ito, Masanori; Wada, Koichi; Terada, Katsuhide
2015-01-01
The aim of this study was to evaluate binders to improve the flowability of granulates and compactibility of Metformin HCL (Met) using the moist aqueous granulation (MAG) process. The effect of the binder moisture content on granulate and tablet quality was also evaluated. Vinylpyrrolidone-vinyl acetate copolymer (Kollidon VA64 fine: VA64), polyvidone (Povidone K12: PVP), hydroxypropyl cellulose (HPC SSL SF: HPC) and hydroxypropyl methylcellulose (Methocel E5 LV: HPMC) were evaluated as binders. These granulates, except for HPMC, had a lower yield pressure than Met active pharmaceutical ingredient (API). HPMC Met was not sufficiently granulated with low water volume. No problems were observed with the VA64 Met granulates during the tableting process. However, HPC Met granulates had a bowl-forming tendency, and PVP Met granulates had the tendency to stick during the tableting process. These bowl-forming and sticking tendencies may have been due to the low moisture absorbency of HPC and the high volume of bound water of PVP, respectively. VA64 Met granulates had the highest ambient moisture content (bulk water, bound water) and moisture absorbency. It was concluded that the type of binder used for the Met MAG process has an impact on granulate flow and compactibility, as well as moisture absorbency and maintenance of moisture balance.
Takasaki, Hiroshi; Yonemochi, Etsuo; Ito, Masanori; Wada, Koichi; Terada, Katsuhide
2015-01-01
The aim of this study was to evaluate binders to improve the flowability of granulates and compactibility of Metformin HCL (Met) using the moist aqueous granulation (MAG) process. The effect of the binder moisture content on granulate and tablet quality was also evaluated. Vinylpyrrolidone–vinyl acetate copolymer (Kollidon VA64 fine: VA64), polyvidone (Povidone K12: PVP), hydroxypropyl cellulose (HPC SSL SF: HPC) and hydroxypropyl methylcellulose (Methocel E5 LV: HPMC) were evaluated as binders. These granulates, except for HPMC, had a lower yield pressure than Met active pharmaceutical ingredient (API). HPMC Met was not sufficiently granulated with low water volume. No problems were observed with the VA64 Met granulates during the tableting process. However, HPC Met granulates had a bowl-forming tendency, and PVP Met granulates had the tendency to stick during the tableting process. These bowl-forming and sticking tendencies may have been due to the low moisture absorbency of HPC and the high volume of bound water of PVP, respectively. VA64 Met granulates had the highest ambient moisture content (bulk water, bound water) and moisture absorbency. It was concluded that the type of binder used for the Met MAG process has an impact on granulate flow and compactibility, as well as moisture absorbency and maintenance of moisture balance. PMID:26779418
Fraioli, A.V.; Schertz, W.W.
1984-06-06
This patent discloses a composite formed of small desiccant particles retained in a dark matrix composed of a porous binder containing a transition metal oxide with pores to provide moisture transport with respect to the particles, and metallic fibers to remove the heat of condensation during dehumidification and provide heat for the removal of moisture during regeneration. The moisture absorbing properties of the composite may be regenerated by exposure of the dark matrix to solar radiation with dehumidification occurring at night.
Asphalt mixtures with a high amount of RAP - case study
NASA Astrophysics Data System (ADS)
Koudelka, Tomas; Varaus, Michal
2017-09-01
A case study of one trial section in the Pilsen region is presented. The pavement in the section was newly constructed in 2015 using one type of an asphalt concrete mixtures with varying RAP content. The constructed surface course comprises of 0% to 50% RAP. In order to restore the aged binder properties and to avoid the embrittlement of the produced mixtures, a rubber-based modifier/rejuvenator was employed. For technological reasons during manufacturing processes, which engage a parallel drying drum, a crude oil-based rejuvenator was also added. This article contains the preliminary data from an on-going project focused on monitoring the properties of bituminous binders contained in asphalt mixtures. The actual bituminous binders were extracted straight after production, after 6 months and after 12 months. The binder characteristics are evaluated using empirical testing as well as functional tests. Low temperature properties are measured by a Bending Beam Rheometer (BBR). The preliminary results show, that the bituminous binders properties change significantly in a relatively short period of time. The progress in binder’ characteristics is contradictory to up-to date knowledge. The probability that the phenomenon of diffusion between aged binder and rejuvenator agents occurs exists. Moreover, the data might indicate that the process of rejuvenator evaporation takes place.
Effect of binder liquid type on spherical crystallization.
Maghsoodi, Maryam; Hajipour, Ali
2014-11-01
Spherical crystallization is a process of formation of agglomerates of crystals held together by binder liquid. This research focused on understanding the effect of type of solvents used as binder liquid on the agglomeration of crystals. Carbamazepine and ethanol/water were used respectively as a model drug and crystallization system. Eight solvents as binder liquid including chloroform, dichloromethane, isopropyl acetate, ethyl acetate, n-hexane, dimethyl aniline, benzene and toluene were examined to better understand the relationship between the physical properties of the binder liquid and its ability to bring about the formation of the agglomerates. Moreover, the agglomerates obtained from effective solvents as binder liquid were evaluated in term of size, apparent particle density and compressive strength. In this study the clear trend was observed experimentally in the agglomerate formation as a function of physical properties of the binder liquid such as miscibility with crystallization system. Furthermore, the properties of obtained agglomerates such as size, apparent particle density and compressive strength were directly related to physical properties of effective binder liquids. RESULTS of this study offer a useful starting point for a conceptual framework to guide the selection of solvent systems for spherical crystallization.
Gupta, R.P.; Gangwal, S.K.; Jain, S.C.
1998-02-03
The present invention provides a zinc titanate sorbent material useful in desulfurization applications. The zinc titanate material is in the form of generally spherical particles of substantially uniform chemical distribution. The sorbent material is capable of absorbing sulfur compounds from a gaseous feed in an amount of at least about 15 weight percent based on the weight of the sorbent. The sorbent material is prepared by a process including: (a) forming a zinc oxide/titanium dioxide dry blend, (b) preparing a substantially uniform aqueous slurry comprising the zinc oxide/titanium dioxide dry blend, organic binder, and at least about 1 weight percent inorganic binder based on the solids weight of the slurry, (c) spray drying the slurry to produce substantially spherical particles, and (d) calcining the particles at a temperature of between about 750 to about 950 C. The dry blend is formed by mixing between about 0.5 to about 2 parts zinc oxide having a median particle size of less than about 0.5 microns, and about 1 part titanium dioxide having a median particle size of less than about 1 micron. The slurry contains substantially no free silica and may be prepared by the process including (1) preparing an aqueous solution of organic binder, (2) adding the dry blend to the aqueous solution of organic binder, and (3) adding the inorganic binder to the solution of organic binder, and blend. Additional reagents, such as a surfactant, may also be incorporated into the sorbent material. The present invention also provides a process for desulfurizing a gaseous stream. The process includes passing a gaseous stream through a reactor containing an attrition resistant zinc titanate sorbent material of the present invention.
Gupta, Raghubir P.; Gangwal, Santosh K.; Jain, Suresh C.
1998-01-01
The present invention provides a zinc titanate sorbent material useful in desulfurization applications. The zinc titanate material is in the form of generally spherical particles of substantially uniform chemical distribution. The sorbent material is capable of absorbing sulfur compounds from a gaseous feed in an amount of at least about 15 weight percent based on the weight of the sorbent. The sorbent material is prepared by a process including: (a) forming a zinc oxide/titanium dioxide dry blend, (b) preparing a substantially uniform aqueous slurry comprising the zinc oxide/titanium dioxide dry blend, organic binder, and at least about 1 weight percent inorganic binder based on the solids weight of the slurry, (c) spray drying the slurry to produce substantially spherical particles, and (d) calcining the particles at a temperature of between about 750.degree. C. to about 950.degree. C. The dry blend is formed by mixing between about 0.5 to about 2 parts zinc oxide having a median particle size of less than about 0.5 .mu., and about 1 part titanium dioxide having a median particle size of less than about 1 .mu.. The slurry contains substantially no free silica and may be prepared by the process including (1) preparing an aqueous solution of organic binder, (2) adding the dry blend to the aqueous solution of organic binder, and (3) adding the inorganic binder to the solution of organic binder, and blend. Additional reagents, such as a surfactant, may also be incorporated into the sorbent material. The present invention also provides a process for desulfurizing a gaseous stream. The process includes passing a gaseous stream through a reactor containing an attrition resistant zinc titanate sorbent material of the present invention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O`Neal, G.W.
1991-12-31
During this quarter the work on Task 3, char upgrading, was in two areas; upgrading Penelec char made from Penelec filter cake to blast furnace formed coke, and evaluating various bituminous pitch binders. The formed coke from Penelec filter cake was of good quality with a high crush strength of 3000 pounds. The reactivity was not equal to that of conventional coke but it is felt that it could be made to equal conventional coke with further study, specifically by adding binder coal to the raw material recipe. The work evaluating bituminous pitch binders confirmed earlier thinking that will bemore » valuable to a commercial scale-up. Asphalt binders are compatible with coal tar binders and produce a coke of equal quality. Hence asphalt binders can be used to supply deficiencies of tar production in units employing coals with insufficient volatile matter to supply enough tar for the coking process. Asphalt binders have about a 50% savings from coal tar pitch. During the 4th Quarter of 1991, a total of 15 Continuous Mild Gasification Unit (CMGU) test runs were made. Efforts continued to determine the optimum forward/reverse ratio to maximize coal feed rate. The success of these efforts has been limited with a maximum coal feed rate of 400 lbs/hr obtainable with a caking coal. The handicap of not having screw shaft heaters cannot be overcome by adjustment of the forward/reverse ratio.« less
Development of an advanced, continuous mild gasification process for the production of co-products
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Neal, G.W.
1991-01-01
During this quarter the work on Task 3, char upgrading, was in two areas; upgrading Penelec char made from Penelec filter cake to blast furnace formed coke, and evaluating various bituminous pitch binders. The formed coke from Penelec filter cake was of good quality with a high crush strength of 3000 pounds. The reactivity was not equal to that of conventional coke but it is felt that it could be made to equal conventional coke with further study, specifically by adding binder coal to the raw material recipe. The work evaluating bituminous pitch binders confirmed earlier thinking that will bemore » valuable to a commercial scale-up. Asphalt binders are compatible with coal tar binders and produce a coke of equal quality. Hence asphalt binders can be used to supply deficiencies of tar production in units employing coals with insufficient volatile matter to supply enough tar for the coking process. Asphalt binders have about a 50% savings from coal tar pitch. During the 4th Quarter of 1991, a total of 15 Continuous Mild Gasification Unit (CMGU) test runs were made. Efforts continued to determine the optimum forward/reverse ratio to maximize coal feed rate. The success of these efforts has been limited with a maximum coal feed rate of 400 lbs/hr obtainable with a caking coal. The handicap of not having screw shaft heaters cannot be overcome by adjustment of the forward/reverse ratio.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandwana, Peeyush; Elliott, Amy M.; Siddel, Derek
Traditional manufacturing of Inconel 718 components from castings and thermomechanical processing routes involve extensive post processing and machining to attain the desired geometry. Additive manufacturing (AM) technologies including direct energy deposition (DED), selective laser melting (SLM), electron beam melting (EBM) and binder jet 3D printing (BJ3DP) can minimize scrap generation and reduce lead times. While there is extensive literature on the use of melting and solidification based AM technologies, there has been limited research on the use of binder jet 3D printing. In this paper, a brief review on binder jet additive manufacturing of Inconel 718 is presented. In addition,more » existing knowledge on sintering of Inconel 718 has been extended to binder jet 3D printing. We found that supersolidus liquid phase sintering (SLPS) is necessary to achieve full densification of Inconel 718. SLPS is sensitive to the feedstock chemistry that has a strong influence on the liquid volume fraction at the processing temperature. Based on these results, we discuss an empirical framework to determine the role of powder particle size and liquid volume fraction on sintering kinetics. In conclusion, the role of powder packing factor and binder saturation on microstructural evolution is discussed. The current challenges in the use of BJ3DP for fabrication of Inconel 718, as well as, extension to other metal systems, are presented.« less
The role of nanocrystalline binder metallic coating into WC after additive manufacturing
NASA Astrophysics Data System (ADS)
Cavaleiro, A. J.; Fernandes, C. M.; Farinha, A. R.; Gestel, C. V.; Jhabvala, J.; Boillat, E.; Senos, A. M. R.; Vieira, M. T.
2018-01-01
Tungsten carbide with microsized particle powders are commonly used embedded in a tough binder metal. The application of these composites is not limited to cutting tools, WC based material has been increasingly used in gaskets and other mechanical parts with complex geometries. Consequently, additive manufacturing processes as Selective Laser Sintering (SLS) might be the solution to overcome some of the manufacturing problems. However, the use of SLS leads to resolve the problems resulting from difference of physical properties between tungsten carbide and the metallic binder, such as laser absorbance and thermal conductivity. In this work, an original approach of powder surface modification was considered to prepare WC-metal composite powders and overcome these constraints, consisting on the sputter-coating of the WC particle surfaces with a nanocrystalline thin film of metallic binder material (stainless steel). The coating improves the thermal behavior and rheology of the WC particles and, at the same time, ensures a binder homogenous distribution. The feasibility of the SLS technology as manufacturing process for WC powder sputter-coated with 13 wt% stainless steel AISI 304L was explored with different laser power and scanning speed parameters. The SLS layers were characterized regarding elemental distribution, phase composition and morphology, and the results are discussed emphasizing the role of the coating on the consolidation process.
NASA Astrophysics Data System (ADS)
Takeshita, Kenji; Ogata, Takeshi
By the Fukushima nuclear disaster, large amounts of water and sea water polluted mainly with radioactive Cs were generated and the environment around the nuclear site was contaminated by the fallout from the nuclear site. The coagulation settling process using ferric ferrocyanide and an inorganic coagulant and the adsorption process using ferric ferrocyanide granulated by silica binder were applied to the treatment of polluted water. In the coagulation settling process, Cs was removed completely from polluted water and sea water (DF∼104). In the adsorption process, the recovery of trace Cs (10 ppb) in sea water, which was not suitable for the use of zeolite, was attained successfully. Finally, the recovery of Cs from sewage sludge was tested by a combined process with the hydrothermal process using subcritical water and the coagulation settling process using ferric ferrocyanide. 96% of radioactive Cs was recovered successfully from sewage sludge with the radioactivity of 10,000 Bq/kg.
High Performance Composite Dielectric Ink for Ultracapacitors
NASA Technical Reports Server (NTRS)
Rolin, Terry D. (Inventor); Hill, Curtis W. (Inventor)
2017-01-01
The present invention is a dielectric ink and means for printing using said ink. Approximately 10-20% of the ink is a custom organic vehicle made of a polar solvent and a binder. Approximately 30-70% of the ink is a dielectric powder having an average particle diameter of approximately 10-750 nm. Approximately 5-15% of the ink is a dielectric constant glass. Approximately 10-35% of the ink is an additional amount of solvent. The ink is deposited on a printing substrate to form at least one printed product, which is then dried and cured to remove the solvent and binder, respectively. The printed product then undergoes sintering in an inert gas atmosphere.
Factors affecting hazardous waste solidification/stabilization: a review.
Malviya, Rachana; Chaudhary, Rubina
2006-09-01
Solidification/stabilization is accepted as a well-established disposal technique for hazardous waste. As a result many different types of hazardous wastes are treated with different binders. The S/S products have different property from waste and binders individually. The effectiveness of S/S process is studied by physical, chemical and microstructural methods. This paper summarizes the effect of different waste stream such as heavy metals bearing sludge, filter cake, fly ash, and slag on the properties of cement and other binders. The factors affecting strength development is studied using mix designs, including metal bearing waste alters the hydration and setting time of binders. Pore structure depends on relative quantity of the constituents, cement hydration products and their reaction products with admixtures. Carbonation and additives can lead to strength improvement in waste-binder matrix.
Nayak, Vignesh; Jyothi, Mannekote Shivanna; Balakrishna, R Geetha; Padaki, Mahesh; Ismail, Ahmad Fauzi
2015-06-01
Herein we present a new approach for the complete removal of Cr(VI) species, through reduction of Cr(VI) to Cr(III), followed by adsorption of Cr(III). Reduction of chromium from water is an important challenge, as Cr(IV) is one of the most toxic substances emitted from industrial processes. Chitosan (CS) thin films were developed on plain polysulfone (PSf) and PSf/TiO2 membrane substrates by a temperature-induced technique using polyvinyl alcohol as a binder. Structure property elucidation was carried out by X-ray diffraction, microscopy, spectroscopy, contact angle measurement, and water uptake studies. The increase in hydrophilicity followed the order: PSf < PSf/TiO2 < PSf/TiO2/CS membranes. Use of this thin-film composite membrane for chromium removal was investigated with regards to the effects of light and pH. The observations reveal 100 % reduction of Cr(VI) to Cr(III) through electrons and protons donated from OH and NH2 groups of the CS layer; the reduced Cr(III) species are adsorbed onto the CS layer via complexation to give chromium-free water.
40 CFR 63.10890 - What are my management practices and compliance requirements?
Code of Federal Regulations, 2014 CFR
2014-07-01
... pollution prevention management practices for metallic scrap and mercury switches in § 63.10885 and binder... of mercury switches and a site-specific plan implementing the material specifications according to... scrap providers who participate in a program for removal of mercury switches that has been approved by...
40 CFR 63.10890 - What are my management practices and compliance requirements?
Code of Federal Regulations, 2012 CFR
2012-07-01
... pollution prevention management practices for metallic scrap and mercury switches in § 63.10885 and binder... of mercury switches and a site-specific plan implementing the material specifications according to... scrap providers who participate in a program for removal of mercury switches that has been approved by...
40 CFR 63.10890 - What are my management practices and compliance requirements?
Code of Federal Regulations, 2013 CFR
2013-07-01
... pollution prevention management practices for metallic scrap and mercury switches in § 63.10885 and binder... of mercury switches and a site-specific plan implementing the material specifications according to... scrap providers who participate in a program for removal of mercury switches that has been approved by...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-28
... scrap materials, the removal of mercury switches, and binder formulations. Large iron and steel..., or financial resources expended by persons to generate, maintain, retain, or disclose or provide... reiterated in this ICR. Dated: December 21, 2011. John Moses, Director, Collection Strategies Division. [FR...
Dynamic SEM wear studies of tungsten carbide cermets. [friction and wear experiments
NASA Technical Reports Server (NTRS)
Brainard, W. A.; Buckley, D. H.
1975-01-01
Dynamic friction and wear experiments were conducted in a scanning electron microscope. The wear behavior of pure tungsten carbide and composite with 6 and 15 weight percent cobalt binder was examined, and etching of the binder was done to selectively determine the role of the binder in the wear process. Dynamic experiments were conducted as the tungsten carbide (WC) and bonded WC cermet surfaces were transversed by a 50 micron radiused diamond stylus. These studies show that the predominant wear process in WC is fracture initiated by plastic deformation, and the wear of the etched cermets is similar to pure WC. The presence of the cobalt binder reduces both friction and wear. The cementing action of the cobalt reduces granular separation, and promotes a dense polished layer because of its low shear strength film-forming properties. The wear debris generated from unetched surface is approximately the same composition as the bulk.
Dynamic SEM wear studies of tungsten carbide cermets
NASA Technical Reports Server (NTRS)
Brainard, W. A.; Buckley, D. H.
1975-01-01
Dynamic friction and wear experiments were conducted in a scanning electron microscope. The wear behavior of pure tungsten carbide and composite with 6 and 15 weight percent cobalt binder was examined. Etching of the binder was done to selectively determine the role of the binder in the wear process. Dynamic experiments were conducted as the WC and bonded WC cermet surfaces were transversed by a 50 micron radiused diamond stylus. These studies show that the predominant wear process in WC is fracture initiated by plastic deformation. The wear of the etched cermets is similar to pure WC. The presence of the cobalt binder reduces both friction and wear. The cementing action of the cobalt reduces granular separation and promotes a dense polished layer because of its low shear strength film-forming properties. The wear debris generated from unetched surface is approximately the same composition as the bulk.
Lignin as a Binder Material for Eco-Friendly Li-Ion Batteries
Lu, Huiran; Cornell, Ann; Alvarado, Fernando; Behm, Mårten; Leijonmarck, Simon; Li, Jiebing; Tomani, Per; Lindbergh, Göran
2016-01-01
The industrial lignin used here is a byproduct from Kraft pulp mills, extracted from black liquor. Since lignin is inexpensive, abundant and renewable, its utilization has attracted more and more attention. In this work, lignin was used for the first time as binder material for LiFePO4 positive and graphite negative electrodes in Li-ion batteries. A procedure for pretreatment of lignin, where low-molecular fractions were removed by leaching, was necessary to obtain good battery performance. The lignin was analyzed for molecular mass distribution and thermal behavior prior to and after the pretreatment. Electrodes containing active material, conductive particles and lignin were cast on metal foils, acting as current collectors and characterized using scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge cycles. Good reversible capacities were obtained, 148 mAh·g−1 for the positive electrode and 305 mAh·g−1 for the negative electrode. Fairly good rate capabilities were found for both the positive electrode with 117 mAh·g−1 and the negative electrode with 160 mAh·g−1 at 1C. Low ohmic resistance also indicated good binder functionality. The results show that lignin is a promising candidate as binder material for electrodes in eco-friendly Li-ion batteries. PMID:28773252
Nasim, Aashir; Blank, Melissa D; Cobb, Caroline O; Berry, Brittany M; Kennedy, May G; Eissenberg, Thomas
2014-02-01
Cigar smoking is increasingly common among adolescents who perceive cigars as less harmful than cigarettes. This perception of reduced harm is especially true for cigars that are user-modified by removing the tobacco binder through a process called 'freaking'. Little is known about 'freaking' and this multi-study, mixed-methods analysis sought to understand better the rationale and prevailing beliefs about this smoking practice using YouTube videos. In Study 1, we conducted a descriptive content analysis on the characteristics of 26 randomly sampled cigar product modification (CPM) videos posted during 2006-10. In Study 2, a thematic analysis was performed on the transcripts of commentary associated with each video to characterize viewers' comments about video content. Study 1 results revealed that 90% of videos illustrated a four-step CPM technique: 'Loosening the tobacco'; 'Dumping the tobacco'; 'Removing the cigar binder' and 'Repacking the tobacco'. Four themes related to the purpose of CPM were also derived from video content: 'Easier to smoke' (54%), 'Beliefs in reduction of health risks' (31%), 'Changing the burn rate' (15%) and 'Taste enhancement' (12%). Study 2 results concerning the content characteristics of video comments were categorized into three themes: 'Disseminating information/answering questions' (81%), 'Seeking advice/asking questions' (69%) and 'Learning cigar modification techniques' (35%). Favorable comments were more common (81%) compared to unfavorable (58%) and comment content suggested low-risk perceptions and poor understanding of smoking harms. These findings highlight a novel means for youth to access information concerning CPM that may have important implications for tobacco control policy and prevention.
Hausnerova, Berenika; Kuritka, Ivo; Bleyan, Davit
2014-02-27
This paper reports the substitution of polyolefin backbone binder components with low melting temperature carnauba wax for powder injection moulding applications. The effect of various binder compositions of Al₂O₃ feedstock on thermal degradation parameters is investigated by thermogravimetric analysis. Within the experimental framework 29 original feedstock compositions were prepared and the superiority of carnauba wax over the polyethylene binder backbone was demonstrated in compositions containing polyethylene glycol as the initial opening agent and governing the proper mechanism of the degradation process. Moreover, the replacement of synthetic polymer by the natural wax contributes to an increase of environmental sustainability of modern industrial technologies.
Uematsu, Shuta; Tabuchi, Yudai; Ito, Yuji; Taki, Masumi
2018-06-01
A peptide-type covalent binder for a target protein was obtained by combinatorial screening of fluoroprobe-conjugated peptide libraries on bacteriophage T7. The solvatochromic fluoroprobe works as a bait during the affinity selection process of phage display. To obtain the targeted covalent binder, the bait in the selected consensus peptide was altered into a reactive warhead possessing a sulfonyl fluoride. The reaction efficiency and site/position specificity of the covalent conjugation between the binder and the target protein were evaluated by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and rationalized by a protein-ligand docking simulation.
NASA Technical Reports Server (NTRS)
Divecha, A. P.; Karmarkar, S. D.; Pawar, P. G.
1973-01-01
The continuing efforts in upscaling to produce larger diameter Al/B tubes are described. While the basic methodology remains unchanged, the larger volume of acrylic binder material and its removal by dissolution in toluene had to be performed by dynamic scrubbing. Similarly, the boron and MCF continuous length requirements increased when a 6 foot long by 7 inches wide mat was needed. These modifications and associated problems are described fully with schematics. Also included are seven experiments conducted to prepare larger tubes. The thermal profile, drawing speeds, and furnace positions in the draw bench bay are presented along with metallographic evidence of composite cross sections.
Kristensen, Jakob
2006-10-27
The purpose of this research was to investigate the use of polyethylene glycol (PEG) solutions as the primary binder liquid in a 2-step agglomeration process performed in a rotary processor and characterize the resulting granules and their tableting characteristics. This was done by granulation of binary mixtures of microcrystalline cellulose (MCC) and either lactose, calcium phosphate, acetaminophen, or theophylline, in a 1:3 ratio, using a 50% (wt/wt) aqueous solution of PEG and water as the binder liquid. Formulations containing lactose were agglomerated using 5 different amounts of the PEG binder solution, giving rise to a PEG content in the range of 6% to 43% (wt/wt). The process outcome was characterized according to adhesion, yield, and water requirement, and the prepared granules were characterized according to size, size distribution, and flow properties as well as tableting properties. The agglomeration of all mixtures resulted in high yields of free-flowing agglomerates and gave rise to good reproducibility of the investigated agglomerate characteristics. The process allowed for the incorporation of 42.5% (wt/wt) PEG, which is higher than the percentage of PEG reported for other equipment. Tablets of sufficient strength could be prepared with all investigated excipients using 20% wt/wt PEG; higher PEG contents gave rise to adhesion and prolonged disintegration. In conclusion, agglomeration in a torque-controlled rotary processor using solutions of PEG as the primary binder liquid was found to be a robust process, suitable for the incorporation of high contents of PEG and/or drug compounds.
Batra, Amol; Desai, Dipen; Serajuddin, Abu T M
2017-01-01
Traditionally, the melt granulation for pharmaceutical products was performed at low temperature (<90°C) with high-shear granulators using low-melting waxy binders, and tablets produced using such granules were not amenable to large-scale manufacturing. The situation has changed in recent years by the use of twin screw extruder where the processing temperature could be increased to as high as 180°C and polymers with high T g could be used as binders. In this study, different polymeric binders were screened for their suitability in improving compactibility of 2 drugs, metformin hydrochloride and acetaminophen, by twin screw melt granulation. Processing temperatures for the 2 drugs were set at 180°C and 130°C, respectively. Screw configuration, screw speed, and feed rate were optimized such that all polymeric binders used produced granules. Several hydroxypropyl cellulose, hydroxypropyl methylcellulose, polyvinylpyrrolidone, and methacrylate-based polymers, including Klucel ® EXF, Eudragit ® EPO, and Soluplus ® , demonstrated good tablet tensile strength (>2 MPa) when granules were produced using only 10% wt/wt polymer concentration. Certain polymers provided acceptable compactibility even at 5% wt/wt. Thus, twin screw melt granulation process may be used with different polymers at a wide range of temperature. Due to low excipient concentration, this granulation method is especially suitable for high-dose tablets. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Byrne, Martin A.; Lupinski, John H.
1984-01-01
An improved amorphous metal composite and process of making the composite. The amorphous metal composite comprises amorphous metal (e.g. iron) and a low molecular weight thermosetting polymer binder. The process comprises placing an amorphous metal in particulate form and a thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite.
Rheological and thermal performance of newly developed binder systems for ceramic injection molding
NASA Astrophysics Data System (ADS)
Hausnerova, Berenika; Kasparkova, Vera; Hnatkova, Eva
2016-05-01
In a novel binder system, carnauba wax was considered to replace the synthetic backbone polymers (polyolefins) enhancing the environmental sustainability of Ceramic Injection Molding (CIM) technology. The paper presents comparison of the rheological performance and thermal behavior of the aluminum oxide CIM feedstocks based on a binder containing carnauba wax with those consisting of a commercial binder. Further, acrawax (N, N'-Ethylene Bis-stearamide) has been considered as another possible substitute of polyolefins. For both proposed substitutes there is a significant reduction in viscosity, and in case of carnauba wax based feedstock also in processing temperature, which is essential for injection molding of reactive powders. Thermal characterization comprised analyses of single neat binders, their mixtures and mixtures with aluminum oxide. The presence of powder lowered melting temperatures of all tested binders except of polyolefin. Further depression in melting point of poly(ethylene glycol) is observed in combination with polyolefin in the presence of powder, and it is related to changes in size of the crystalline domains.
Performance analysis of flexible DSSC with binder addition
NASA Astrophysics Data System (ADS)
Muliani, Lia; Hidayat, Jojo; Anggraini, Putri Nur
2016-04-01
Flexible DSSC is one of modification of DSSC based on its substrate. Operating at low temperature, flexible DSSC requires a binder to improve particles interconnection. This research was done to compare the morphology and performance of flexible DSSC that was produced with binder-added and binder-free. TiO2 powder, butanol, and HCl were mixed for preparation of TiO2 paste. Small amount of titanium isopropoxide as binder was added into the mixture. TiO2 paste was deposited on ITO-PET plastic substrate with area of 1x1 cm2 by doctor blade method. Furthermore, SEM, XRD, and BET characterization were done to analyze morphology and surface area of the TiO2 photoelectrode microstructures. Dyed TiO2 photoelectrode and platinum counter electrode were assembled and injected by electrolyte. In the last process, flexible DSSCs were illuminated by sun simulator to do J-V measurement. As a result, flexible DSSC containing binder showed higher performance with photoconversion efficiency of 0.31%.
Method of waste stabilization with dewatered chemically bonded phosphate ceramics
Wagh, Arun; Maloney, Martin D.
2010-06-29
A method of stabilizing a waste in a chemically bonded phosphate ceramic (CBPC). The method consists of preparing a slurry including the waste, water, an oxide binder, and a phosphate binder. The slurry is then allowed to cure to a solid, hydrated CBPC matrix. Next, bound water within the solid, hydrated CBPC matrix is removed. Typically, the bound water is removed by applying heat to the cured CBPC matrix. Preferably, the quantity of heat applied to the cured CBPC matrix is sufficient to drive off water bound within the hydrated CBPC matrix, but not to volatalize other non-water components of the matrix, such as metals and radioactive components. Typically, a temperature range of between 100.degree. C.-200.degree. C. will be sufficient. In another embodiment of the invention wherein the waste and water have been mixed prior to the preparation of the slurry, a select amount of water may be evaporated from the waste and water mixture prior to preparation of the slurry. Another aspect of the invention is a direct anyhydrous CBPC fabrication method wherein water is removed from the slurry by heating and mixing the slurry while allowing the slurry to cure. Additional aspects of the invention are ceramic matrix waste forms prepared by the methods disclosed above.
Qu, Xin; Liu, Quan; Wang, Chao; Wang, Dawei; Oeser, Markus
2018-02-06
Conventional asphalt binder derived from the petroleum refining process is widely used in pavement engineering. However, asphalt binder is a non-renewable material. Therefore, the use of a co-production of renewable bio-oil as a modifier for petroleum asphalt has recently been getting more attention in the pavement field due to its renewability and its optimization for conventional petroleum-based asphalt binder. Significant research efforts have been done that mainly focus on the mechanical properties of bio-asphalt binder. However, there is still a lack of studies describing the effects of the co-production on performance of asphalt binders from a micro-scale perspective to better understand the fundamental modification mechanism. In this study, a reasonable molecular structure for the co-production of renewable bio-oils is created based on previous research findings and the observed functional groups from Fourier-transform infrared spectroscopy tests, which are fundamental and critical for establishing the molecular model of bio-asphalt binder with various biomaterials contents. Molecular simulation shows that the increase of biomaterial content causes the decrease of cohesion energy density, which can be related to the observed decrease of dynamic modulus. Additionally, a parameter of Flexibility Index is employed to characterize the ability of asphalt binder to resist deformation under oscillatory loading accurately.
Willecke, N; Szepes, A; Wunderlich, M; Remon, J P; Vervaet, C; De Beer, T
2017-04-30
The overall objective of this work is to understand how excipient characteristics influence the process and product performance for a continuous twin-screw wet granulation process. The knowledge gained through this study is intended to be used for a Quality by Design (QbD)-based formulation design approach and formulation optimization. A total of 9 preferred fillers and 9 preferred binders were selected for this study. The selected fillers and binders were extensively characterized regarding their physico-chemical and solid state properties using 21 material characterization techniques. Subsequently, principal component analysis (PCA) was performed on the data sets of filler and binder characteristics in order to reduce the variety of single characteristics to a limited number of overarching properties. Four principal components (PC) explained 98.4% of the overall variability in the fillers data set, while three principal components explained 93.4% of the overall variability in the data set of binders. Both PCA models allowed in-depth evaluation of similarities and differences in the excipient properties. Copyright © 2017. Published by Elsevier B.V.
Process for producing an activated carbon adsorbent with integral heat transfer apparatus
NASA Technical Reports Server (NTRS)
Jones, Jack A. (Inventor); Yavrouian, Andre H. (Inventor)
1996-01-01
A process for producing an integral adsorbent-heat exchanger apparatus useful in ammonia refrigerant heat pump systems. In one embodiment, the process wets an activated carbon particles-solvent mixture with a binder-solvent mixture, presses the binder wetted activated carbon mixture on a metal tube surface and thereafter pyrolyzes the mixture to form a bonded activated carbon matrix adjoined to the tube surface. The integral apparatus can be easily and inexpensively produced by the process in large quantities.
Development and Application of Functionalized Protein Binders in Multicellular Organisms.
Bieli, D; Alborelli, I; Harmansa, S; Matsuda, S; Caussinus, E; Affolter, M
2016-01-01
Protein-protein interactions are crucial for almost all biological processes. Studying such interactions in their native environment is critical but not easy to perform. Recently developed genetically encoded protein binders were shown to function inside living cells. These molecules offer a new, direct way to assess protein function, distribution and dynamics in vivo. A widely used protein binder scaffold are the so-called nanobodies, which are derived from the variable domain of camelid heavy-chain antibodies. Another commonly used scaffold, the DARPins, is based on Ankyrin repeats. In this review, we highlight how these binders can be functionalized in order to study proteins in vivo during the development of multicellular organisms. It is to be anticipated that many more applications for such synthetic protein binders will be developed in the near future. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, Amy M; Mehdizadeh Momen, Ayyoub; Benedict, Michael
2015-01-01
Developing high resolution 3D printed metallic microchannels is a challenge especially when there is an essential need for high packing density of the primary material. While high packing density could be achieved by heating the structure to the sintering temperature, some heat sensitive applications require other strategies to improve the packing density of primary materials. In this study the goal is to develop high green or pack densities microchannels on the scale of 2-300 microns which have a robust mechanical structure. Binder-jet 3D printing is an additive manufacturing process in which droplets of binder are deposited via inkjet into amore » bed of powder. By repeatedly spreading thin layers of powder and depositing binder into the appropriate 2D profiles, complex 3D objects can be created one layer at time. Microchannels with features on the order of 500 microns were fabricated via binder jetting of steel powder and then sintered and/or infiltrated with a secondary material. The average particle size of the steel powder was varied along with the droplet volume of the inkjet-deposited binder. The resolution of the process, packing density of the primary material, the subsequent features sizes of the microchannels, and the overall microchannel quality were characterized as a function of particle size distribution, droplet sizes and heat treatment temperatures.« less
Development of a green binder system for paper products.
Flory, Ashley R; Vicuna Requesens, Deborah; Devaiah, Shivakumar P; Teoh, Keat Thomas; Mansfield, Shawn D; Hood, Elizabeth E
2013-03-26
It is important for industries to find green chemistries for manufacturing their products that have utility, are cost-effective and that protect the environment. The paper industry is no exception. Renewable resources derived from plant components could be an excellent substitute for the chemicals that are currently used as paper binders. Air laid pressed paper products that are typically used in wet wipes must be bound together so they can resist mechanical tearing during storage and use. The binders must be strong but cost-effective. Although chemical binders are approved by the Environmental Protection Agency, the public is demanding products with lower carbon footprints and that are derived from renewable sources. In this project, carbohydrates, proteins and phenolic compounds were applied to air laid, pressed paper products in order to identify potential renewable green binders that are as strong as the current commercial binders, while being organic and renewable. Each potential green binder was applied to several filter paper strips and tested for strength in the direction perpendicular to the cellulose fibril orientation. Out of the twenty binders surveyed, soy protein, gelatin, zein protein, pectin and Salix lignin provided comparable strength results to a currently employed chemical binder. These organic and renewable binders can be purchased in large quantities at low cost, require minimal reaction time and do not form viscous solutions that would clog sprayers, characteristics that make them attractive to the non-woven paper industry. As with any new process, a large-scale trial must be conducted along with an economic analysis of the procedure. However, because multiple examples of "green" binders were found that showed strong cross-linking activity, a candidate for commercial application will likely be found.
Development of a green binder system for paper products
2013-01-01
Background It is important for industries to find green chemistries for manufacturing their products that have utility, are cost-effective and that protect the environment. The paper industry is no exception. Renewable resources derived from plant components could be an excellent substitute for the chemicals that are currently used as paper binders. Air laid pressed paper products that are typically used in wet wipes must be bound together so they can resist mechanical tearing during storage and use. The binders must be strong but cost-effective. Although chemical binders are approved by the Environmental Protection Agency, the public is demanding products with lower carbon footprints and that are derived from renewable sources. Results In this project, carbohydrates, proteins and phenolic compounds were applied to air laid, pressed paper products in order to identify potential renewable green binders that are as strong as the current commercial binders, while being organic and renewable. Each potential green binder was applied to several filter paper strips and tested for strength in the direction perpendicular to the cellulose fibril orientation. Out of the twenty binders surveyed, soy protein, gelatin, zein protein, pectin and Salix lignin provided comparable strength results to a currently employed chemical binder. Conclusions These organic and renewable binders can be purchased in large quantities at low cost, require minimal reaction time and do not form viscous solutions that would clog sprayers, characteristics that make them attractive to the non-woven paper industry. As with any new process, a large-scale trial must be conducted along with an economic analysis of the procedure. However, because multiple examples of “green” binders were found that showed strong cross-linking activity, a candidate for commercial application will likely be found. PMID:23531016
Research notes : recycling roads and roofs.
DOT National Transportation Integrated Search
2010-06-01
One objective of the larger study is to develop recommendations for a design process for selecting the grade of virgin asphalt binder for HMAC mixtures containing RAP or RAS, or combinations of RAP and RAS, such that the blended binder meets the desi...
Mostafaei, Amir; Hughes, Eamonn T; Hilla, Colleen; Stevens, Erica L; Chmielus, Markus
2017-02-01
Binder jet printing (BJP) is a metal additive manufacturing method that manufactures parts with complex geometry by depositing powder layer-by-layer, selectively joining particles in each layer with a polymeric binder and finally curing the binder. After the printing process, the parts still in the powder bed must be sintered to achieve full densification (A. Mostafaei, Y. Behnamian, Y.L. Krimer, E.L. Stevens, J.L. Luo, M. Chmielus, 2016; A. Mostafaei, E. Stevens, E. Hughes, S. Biery, C. Hilla, M. Chmielus, 2016; A. Mostafaei, Y. Behnamian, Y.L. Krimer, E.L. Stevens, J.L. Luo, M. Chmielus, 2016) [1-3]. The collected data presents the characterization of the as-received gas- and water-atomized alloy 625 powders, BJP processing parameters and density of the sintered samples. The effect of sintering temperatures on the microstructure and the relative density of binder jet printed parts made from differently atomized nickel-based superalloy 625 powders are briefly compared in this paper. Detailed data can be found in the original published papers by authors in (A. Mostafaei, J. Toman, E.L. Stevens, E.T. Hughes, Y.L. Krimer, M. Chmielus, 2017) [4].
Processing of Building Binder Materials to Increase their Activation
NASA Astrophysics Data System (ADS)
Fediuk, R. S.; Garmashov, I. S.; Kuzmin, D. E.; Stoyushko, N. Yu; Gladkova, N. A.
2018-01-01
The paper deals modern physical methods of activation of building powder materials. During mechanical activation a composite binder active molecules cement minerals occur in the destruction of the molecular defects in the areas of packaging and breaking metastable phase decompensation intermolecular forces. The process is accompanied by a change in the kinetics of hardening of Portland cement. Activated concrete has a number of features that are used as design characteristics of structures and are due to the structure of the activated binder and its contacts with concrete aggregates. These features also have a significant impact on the nature of the destruction of concrete under load, changing the boundaries of its microcracks and durability.
New gelling systems to fabricate complex-shaped transparent ceramics
NASA Astrophysics Data System (ADS)
Yang, Yan; Wu, Yiquan
2013-06-01
The aim of this work was to prepare transparent ceramics with large size and complex-shapes by a new water-soluble gelling agent poly(isobutylene-alt-maleic anhydride). Alumina was used as an example of the application of the new gelling system. A stable suspension with 38vol% was prepared by ball milling. Trapped bubbles were removed before casting to obtain homogenous green bodies. The microstructure and particle distribution of alumina raw material were tested. The thermal behavior of the alumina green body was investigated, which exhibited low weight loss when compared with other gelling processes. The influence of solid loading and gelling agent addition were studied on the basis of rheological behavior of the suspension. The microstructures of alumina powders, green bodies before and after de-bindering process, were compared to understand the gelling condition between alumina particles and gelling agent.
40 CFR 63.7700 - What work practice standards must I meet?
Code of Federal Regulations, 2010 CFR
2010-07-01
... obtain and maintain onsite a copy of the procedures used by the scrap supplier for either removing... applicable, or document your attempts to obtain a copy of these procedures from the scrap suppliers servicing..., you must use a binder chemical formulation that does not contain methanol as a specific ingredient of...
40 CFR 63.7700 - What work practice standards must I meet?
Code of Federal Regulations, 2011 CFR
2011-07-01
... obtain and maintain onsite a copy of the procedures used by the scrap supplier for either removing... applicable, or document your attempts to obtain a copy of these procedures from the scrap suppliers servicing..., you must use a binder chemical formulation that does not contain methanol as a specific ingredient of...
Low Temperature Sorbents for Removal of Sulfur Compounds from Fluid Feed Streams
Siriwardane, Ranjani
2004-06-01
A sorbent material is provided comprising a material reactive with sulfur, a binder unreactive with sulfur and an inert material, wherein the sorbent absorbs the sulfur at temperatures between 30 and 200 C. Sulfur absorption capacity as high as 22 weight percent has been observed with these materials.
High-discharge-rate lithium ion battery
Liu, Gao; Battaglia, Vincent S; Zheng, Honghe
2014-04-22
The present invention provides for a lithium ion battery and process for creating such, comprising higher binder to carbon conductor ratios than presently used in the industry. The battery is characterized by much lower interfacial resistances at the anode and cathode as a result of initially mixing a carbon conductor with a binder, then with the active material. Further improvements in cycleability can also be realized by first mixing the carbon conductor with the active material first and then adding the binder.
Grymonpré, W; Verstraete, G; Vanhoorne, V; Remon, J P; De Beer, T; Vervaet, C
2018-03-01
The concept of twin-screw melt granulation (TSMG) has steadily (re)-gained interest in pharmaceutical formulation development as an intermediate step during tablet manufacturing. However, to be considered as a viable processing option for solid oral dosage forms there is a need to understand all critical sources of variability which could affect this granulation technique. The purpose of this study was to provide an in-depth analysis of the continuous TSMG process in order to expose the critical process parameters (CPP) and elucidate the impact of process and formulation parameters on the critical quality attributes (CQA) of granules and tablets during continuous TSMG. A first part of the study dealt with the screening of various amorphous polymers as binder for producing high-dosed melt granules of two model drug (i.e. acetaminophen and hydrochlorothiazide). The second part of this study described a quality-by-design (QbD) approach for melt granulation of hydrochlorothiazide in order to thoroughly evaluate TSMG, milling and tableting stage of the continuous TSMG line. Using amorphous polymeric binders resulted in melt granules with high milling efficiency due to their brittle behaviour without producing excessive amounts of fines, providing high granule yields with low friability. Therefore, it makes them extremely suitable for further downstream processing. One of the most important CPP during TSMG with polymeric binders was the granulation-torque, which - in case of polymers with high T g - increased during longer granulation runs to critical levels endangering the continuous process flow. However, by optimizing both screw speed and throughput or changing to polymeric binders with lower T g it was possible to significantly reduce this risk. This research paper highlighted that TSMG must be considered as a viable option during formulation development of solid oral dosage forms based on the robustness of the CQA of both melt granules and tablets. Copyright © 2017 Elsevier B.V. All rights reserved.
Criteria for asphalt-rubber concrete in civil airport pavements: Mixture design
NASA Astrophysics Data System (ADS)
Roberts, F. L.; Lytton, R. L.; Hoyt, D.
1986-07-01
A mixture design procedure is developed to allow the use of asphalt-rubber binders in concrete for flexible airport pavement. The asphalt-rubber is produced by reacting asphalt with ground, scrap tire rubber to produce the binder for the asphalt-rubber concrete. Procedures for laboratory preparation of alsphalt-rubber binders using an equipment setup that was found by researchers to produce laboratory binders with similar properties to field processes are included. The rubber-asphalt concrete mixture design procedure includes adjustments to the aggregate gradation to permit space for the rubber particles in the asphalt-rubber binder as well as suggested mixing and compaction temperatures, and compaction efforts. While the procedure was used in the laboratory to successfully produce asphalt-rubber concrete mixtures, it should be evaluated in the field to ensure that consistent results can be achieved in a production environment.
Research on preparation of phosphate-modified animal glue binder for foundry use
NASA Astrophysics Data System (ADS)
Wang, Tian-Shu; Liu, Wei-Hua; Li, Ying-Min
2018-03-01
In this paper, three phosphates were used as modifiers to modify animal glue binder. The structural characteristics and thermal properties of animal glue binder treated with phosphates were studied by Fourier transform-infrared spectroscopy, gel permeation chromatography and derivative thermogravimetric analysis. The results showed that the modified animal glue binder had better sand tensile strength and lower viscosity than untreated animal glue binder. The best modification process was as follows: the optimal amount of sodium carbonate was 4 wt% to animal glue; the optimal weight ratio of the modifiers was sodium pyrophosphate : sodium tripolyphosphate : sodium hexametaphosphate : animal glue = 3 : 3 : 4 : 100, and the optimal reaction should be performed at 80°C for a reaction time of 120 min. A final tensile strength of approximately 3.20 MPa was achieved and the viscosity value was approximately 880 mPa s.
Microarray Detection of Duplex and Triplex DNA Binders with DNA-Modified Gold Nanoparticles
Lytton-Jean, Abigail K. R.; Han, Min Su; Mirkin, Chad A.
2008-01-01
We have designed a chip-based assay, using microarray technology, for determining the relative binding affinities of duplex and triplex DNA binders. This assay combines the high discrimination capabilities afforded by DNA-modified Au nanoparticles with the high-throughput capabilities of DNA microarrays. The detection and screening of duplex DNA binders are important because these molecules, in many cases, are potential anticancer agents as well as toxins. Triplex DNA binders are also promising drug candidates. These molecules, in conjunction with triplex forming oligonucleotides, could potentially be used to achieve control of gene expression by interfering with transcription factors that bind to DNA. Therefore, the ability to screen for these molecules in a high-throughput fashion could dramatically improve the drug screening process. The assay reported here provides excellent discrimination between strong, intermediate, and weak duplex and triplex DNA binders in a high-throughput fashion. PMID:17614366
Studies of organic paint binders by NMR spectroscopy
NASA Astrophysics Data System (ADS)
Spyros, A.; Anglos, D.
2006-06-01
Nuclear magnetic resonance spectroscopy is applied to the study of aged binding media used in paintings, namely linseed oil, egg tempera and an acrylic medium. High resolution 1D and 2D NMR experiments establish the state of hydrolysis and oxidation of the linseed and egg tempera binders after five years of aging, by determining several markers sensitive to the hydrolytic and oxidative processes of the binder lipid fraction. The composition of the acrylic binder co-polymer is determined by 2D NMR spectroscopy, while the identification of a surfactant, poly(ethylene glycol), found in greater amounts in aged acrylic medium, is reported. The non-destructive nature of the proposed analytical NMR methodology, and minimization of the amount of binder material needed through the use of sophisticated cryoprobes and hyphenated LC-NMR techniques, make NMR attractive for the arts analyst, in view of its rapid nature and experimental simplicity.
Epoxidized Natural Rubber/Chitosan Network Binder for Silicon Anode in Lithium-Ion Battery.
Lee, Sang Ha; Lee, Jeong Hun; Nam, Dong Ho; Cho, Misuk; Kim, Jaehoon; Chanthad, Chalathorn; Lee, Youngkwan
2018-05-16
Polymeric binder is extremely important for Si-based anode in lithium-ion batteries due to large volume variation during charging/discharging process. Here, natural rubber-incorporated chitosan networks were designed as a binder material to obtain both adhesion and elasticity. Chitosan could strongly anchor Si particles through hydrogen bonding, while the natural rubber could stretch reversibly during the volume variation of Si particles, resulting in high cyclic performance. The prepared electrode exhibited the specific capacities of 1350 mAh/g after 1600 cycles at the current density of 8 A/g and 2310 mAh/g after 500 cycles at the current density of 1 A/g. Furthermore, the cycle test with limiting lithiation capacity was conducted to study the optimal binder properties at varying degree of the volume expansion of silicon, and it was found that the elastic property of binder material was strongly required when the large volume expansion of Si occurred.
Lu, Huiran; Guccini, Valentina; Kim, Hyeyun; Salazar-Alvarez, German; Lindbergh, Göran; Cornell, Ann
2017-11-01
Carboxylated cellulose nanofibers (CNF) prepared using the TEMPO-route are good binders of electrode components in flexible lithium-ion batteries (LIB). However, the different parameters employed for the defibrillation of CNF such as charge density and degree of homogenization affect its properties when used as binder. This work presents a systematic study of CNF prepared with different surface charge densities and varying degrees of homogenization and their performance as binder for flexible LiFePO 4 electrodes. The results show that the CNF with high charge density had shorter fiber lengths compared with those of CNF with low charge density, as observed with atomic force microscopy. Also, CNF processed with a large number of passes in the homogenizer showed a better fiber dispersibility, as observed from rheological measurements. The electrodes fabricated with highly charged CNF exhibited the best mechanical and electrochemical properties. The CNF at the highest charge density (1550 μmol g -1 ) and lowest degree of homogenization (3 + 3 passes in the homogenizer) achieved the overall best performance, including a high Young's modulus of approximately 311 MPa and a good rate capability with a stable specific capacity of 116 mAh g -1 even up to 1 C. This work allows a better understanding of the influence of the processing parameters of CNF on their performance as binder for flexible electrodes. The results also contribute to the understanding of the optimal processing parameters of CNF to fabricate other materials, e.g., membranes or separators.
ERIC Educational Resources Information Center
Candler, W. J.
1981-01-01
It is helpful to elicit sentences using "binders" and to examine their properties together, especially when the indigenous language has textual and logical processes different from those of English. Such a procedure increases students' awareness of the delicacy of the clause/sentence grammar which pivots around these difficult words. (Author)
Domínguez-Robles, Juan; Sánchez, Rafael; Díaz-Carrasco, Pilar; Espinosa, Eduardo; García-Domínguez, M T; Rodríguez, Alejandro
2017-11-01
Three different lignin-rich fractions have been used as binder material for electrodes in rechargeable lithium batteries. Lignin samples were obtained through three different pulping processes; kraft, soda and organosolv pulping processes, using wheat straw as raw material. Physico-chemical characterization of three types of lignins was evaluated. Characterization has been performed using Fourier transform infrared spectroscopy (FTIR) and 31 P NMR Spectroscopy to analyse the functional groups; gel permeation chromatography (GPC) for determining molar mass distribution (MWD), and thermogravimetric analysis (TGA) to follow the thermal behaviour. Electrodes containing lignin or poly vinylidene fluoride (PVDF) were tested electrochemically. The three different lignin samples exhibited excellent performance as binder, retaining the specific capacity after 50 cycles at a current density of 100mAg -1 . These results show that lignin could be used as a low-cost and environmental binder, replacing the PVDF polymer in electrodes for energy storage applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Ceramic honeycomb structures and the method thereof
NASA Technical Reports Server (NTRS)
Riccitiello, Salvatore R. (Inventor); Cagliostro, Domenick E. (Inventor)
1987-01-01
The subject invention pertains to a method of producing an improved composite-composite honeycomb structure for aircraft or aerospace use. Specifically, the subject invention relates to a method for the production of a lightweight ceramic-ceramic composite honeycomb structure, which method comprises: (1) pyrolyzing a loosely woven fabric/binder having a honeycomb shape and having a high char yield and geometric integrity after pyrolysis at between about 700 and 1,100 C; (2) substantially evenly depositing at least one layer of ceramic material on the pyrolyzed fabric/binder of step (1); (3) recovering the coated ceramic honeycomb structure; (4) removing the pyrolyzed fabric/binder of the structure of step (3) by slow pyrolysis at between 700 and 1000 C in between about a 2 to 5% by volume oxygen atmosphere for between about 0.5 and 5 hr.; and (5) substantially evenly depositing on and within the rigid hollow honeycomb structure at least one additional layer of the same or a different ceramic material by chemical vapor deposition and chemical vapor infiltration. The honeycomb shaped ceramic articles have enhanced physical properties and are useful in aircraft and aerospace uses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, William G.; Rios, Orlando; U
ORNL worked with Grid Logic Inc to demonstrate micro induction sintering (MIS) and binder decomposition of steel powders. It was shown that MIS effectively emits spatially confined electromagnetic energy that is directly coupled to metallic powders resulting in resistive heating of individual particles. The non-uniformity of particle morphology and distribution of the water atomized steel powders resulted in inefficient transfer of energy. It was shown that adhering the particles together using polymer binders resulted in more efficient coupling. Using the MIS processes, debinding and sintering could be done in a single step. When combined with another system, such as binder-jet,more » this could reduce the amount of required post-processing. An invention disclosure was filed on hybrid systems that use MIS to reduce the amount of required post-processing.« less
Qu, Xin; Liu, Quan; Wang, Chao; Oeser, Markus
2018-01-01
Conventional asphalt binder derived from the petroleum refining process is widely used in pavement engineering. However, asphalt binder is a non-renewable material. Therefore, the use of a co-production of renewable bio-oil as a modifier for petroleum asphalt has recently been getting more attention in the pavement field due to its renewability and its optimization for conventional petroleum-based asphalt binder. Significant research efforts have been done that mainly focus on the mechanical properties of bio-asphalt binder. However, there is still a lack of studies describing the effects of the co-production on performance of asphalt binders from a micro-scale perspective to better understand the fundamental modification mechanism. In this study, a reasonable molecular structure for the co-production of renewable bio-oils is created based on previous research findings and the observed functional groups from Fourier-transform infrared spectroscopy tests, which are fundamental and critical for establishing the molecular model of bio-asphalt binder with various biomaterials contents. Molecular simulation shows that the increase of biomaterial content causes the decrease of cohesion energy density, which can be related to the observed decrease of dynamic modulus. Additionally, a parameter of Flexibility Index is employed to characterize the ability of asphalt binder to resist deformation under oscillatory loading accurately. PMID:29415421
Schubert, Mark; Ruedin, Pascal; Civardi, Chiara; Richter, Michael; Hach, André; Christen, Herbert
2015-01-01
Low-density wood fiber insulation boards are traditionally manufactured in a wet process using a closed water circuit (process water). The water of these industrial processes contains natural phenolic extractives, aside from small amounts of admixtures (e.g., binders and paraffin). The suitability of two fungal laccases and one bacterial laccase was determined by biochemical characterization considering stability and substrate spectra. In a series of laboratory scale experiments, the selected commercial laccase from Myceliophtora thermophila was used to catalyze the surface modification of thermo-mechanical pulp (TMP) using process water. The laccase catalyzed the covalent binding of the phenolic compounds of the process water onto the wood fiber surface and led to change of the surface chemistry directly via crosslinking of lignin moieties. Although a complete substitution of the binder was not accomplished by laccase, the combined use of laccase and latex significantly improved the mechanical strength properties of wood fiber boards. The enzymatically-treated TMP showed better interactions with the synthetic binder, as shown by FTIR-analysis. Moreover, the enzyme is extensively stable in the process water and the approach requires no fresh water as well as no cost-intensive mediator. By applying a second-order polynomial model in combination with the genetic algorithm (GA), the required amount of laccase and synthetic latex could be optimized enabling the reduction of the binder by 40%. PMID:26046652
Performance analysis of flexible DSSC with binder addition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muliani, Lia; Hidayat, Jojo; Anggraini, Putri Nur, E-mail: putri.nur.anggraini@gmail.com
2016-04-19
Flexible DSSC is one of modification of DSSC based on its substrate. Operating at low temperature, flexible DSSC requires a binder to improve particles interconnection. This research was done to compare the morphology and performance of flexible DSSC that was produced with binder-added and binder-free. TiO{sub 2} powder, butanol, and HCl were mixed for preparation of TiO{sub 2} paste. Small amount of titanium isopropoxide as binder was added into the mixture. TiO{sub 2} paste was deposited on ITO-PET plastic substrate with area of 1x1 cm{sup 2} by doctor blade method. Furthermore, SEM, XRD, and BET characterization were done to analyzemore » morphology and surface area of the TiO{sub 2} photoelectrode microstructures. Dyed TiO{sub 2} photoelectrode and platinum counter electrode were assembled and injected by electrolyte. In the last process, flexible DSSCs were illuminated by sun simulator to do J-V measurement. As a result, flexible DSSC containing binder showed higher performance with photoconversion efficiency of 0.31%.« less
Evaluation of novel reactive MgO activated slag binder for the immobilisation of lead and zinc.
Jin, Fei; Al-Tabbaa, Abir
2014-12-01
Although Portland cement is the most widely used binder in the stabilisation/solidification (S/S) processes, slag-based binders have gained significant attention recently due to their economic and environmental merits. In the present study, a novel binder, reactive MgO activated slag, is compared with hydrated lime activated slag in the immobilisation of lead and zinc. A series of lead or zinc-doped pastes and mortars were prepared with metal to binder ratio from 0.25% to 1%. The hydration products and microstructure were studied by X-ray diffraction, thermogravimetric analysis and scanning electron microscopy. The major hydration products were calcium silicate hydrate and hydrotalcite-like phases. The unconfined compressive strength was measured up to 160 d. Findings show that lead had a slight influence on the strength of MgO-slag paste while zinc reduced the strength significantly as its concentration increased. Leachate results using the TCLP tests revealed that the immobilisation degree was dependent on the pH and reactive MgO activated slag showed an increased pH buffering capacity, and thus improved the immobilisation efficiency compared to lime activated slag. It was proposed that zinc was mainly immobilised within the structure of the hydrotalcite-like phases or in the form of calcium zincate, while lead was primarily precipitated as the hydroxide. It is concluded, therefore, that reactive MgO activated slag can serve as clinker-free alternative binder in the S/S process. Copyright © 2014 Elsevier Ltd. All rights reserved.
Konda Gokuldoss, Prashanth; Kolla, Sri; Eckert, Jürgen
2017-01-01
Additive manufacturing (AM), also known as 3D printing or rapid prototyping, is gaining increasing attention due to its ability to produce parts with added functionality and increased complexities in geometrical design, on top of the fact that it is theoretically possible to produce any shape without limitations. However, most of the research on additive manufacturing techniques are focused on the development of materials/process parameters/products design with different additive manufacturing processes such as selective laser melting, electron beam melting, or binder jetting. However, we do not have any guidelines that discuss the selection of the most suitable additive manufacturing process, depending on the material to be processed, the complexity of the parts to be produced, or the design considerations. Considering the very fact that no reports deal with this process selection, the present manuscript aims to discuss the different selection criteria that are to be considered, in order to select the best AM process (binder jetting/selective laser melting/electron beam melting) for fabricating a specific component with a defined set of material properties. PMID:28773031
Gokuldoss, Prashanth Konda; Kolla, Sri; Eckert, Jürgen
2017-06-19
Additive manufacturing (AM), also known as 3D printing or rapid prototyping, is gaining increasing attention due to its ability to produce parts with added functionality and increased complexities in geometrical design, on top of the fact that it is theoretically possible to produce any shape without limitations. However, most of the research on additive manufacturing techniques are focused on the development of materials/process parameters/products design with different additive manufacturing processes such as selective laser melting, electron beam melting, or binder jetting. However, we do not have any guidelines that discuss the selection of the most suitable additive manufacturing process, depending on the material to be processed, the complexity of the parts to be produced, or the design considerations. Considering the very fact that no reports deal with this process selection, the present manuscript aims to discuss the different selection criteria that are to be considered, in order to select the best AM process (binder jetting/selective laser melting/electron beam melting) for fabricating a specific component with a defined set of material properties.
NASA Astrophysics Data System (ADS)
Srinivasulu Reddy, K.; Venkata Reddy, Vajrala; Mandava, Ravi Kumar
2017-08-01
Chemically bonded no-bake molds and cores have good mechanical properties and produce dimensionally accurate castings compared to green sand molds. Poor collapsibility property of CO2 hardened sodium silicate bonded sand mold and phenolic urethane no-bake (PUN) binder system, made the reclamation of the sands more important. In the present work fine silica sand is mixed with phenolic urethane no-bake binder and the sand sets in a very short time within few minutes. In this paper it is focused on optimizing the process parameters of PUN binder based sand castings for better collapsibility and surface finish of gray cast iron using Taguchi design. The findings were successfully verified through experiments.
Time dependent viscoelastic rheological response of pure, modified and synthetic bituminous binders
NASA Astrophysics Data System (ADS)
Airey, G. D.; Grenfell, J. R. A.; Apeagyei, A.; Subhy, A.; Lo Presti, D.
2016-08-01
Bitumen is a viscoelastic material that exhibits both elastic and viscous components of response and displays both a temperature and time dependent relationship between applied stresses and resultant strains. In addition, as bitumen is responsible for the viscoelastic behaviour of all bituminous materials, it plays a dominant role in defining many of the aspects of asphalt road performance, such as strength and stiffness, permanent deformation and cracking. Although conventional bituminous materials perform satisfactorily in most highway pavement applications, there are situations that require the modification of the binder to enhance the properties of existing asphalt material. The best known form of modification is by means of polymer modification, traditionally used to improve the temperature and time susceptibility of bitumen. Tyre rubber modification is another form using recycled crumb tyre rubber to alter the properties of conventional bitumen. In addition, alternative binders (synthetic polymeric binders as well as renewable, environmental-friendly bio-binders) have entered the bitumen market over the last few years due to concerns over the continued availability of bitumen from current crudes and refinery processes. This paper provides a detailed rheological assessment, under both temperature and time regimes, of a range of conventional, modified and alternative binders in terms of the materials dynamic (oscillatory) viscoelastic response. The rheological results show the improved viscoelastic properties of polymer- and rubber-modified binders in terms of increased complex shear modulus and elastic response, particularly at high temperatures and low frequencies. The synthetic binders were found to demonstrate complex rheological behaviour relative to that seen for conventional bituminous binders.
Method of making molten carbonate fuel cell ceramic matrix tape
Maricle, Donald L.; Putnam, Gary C.; Stewart, Jr., Robert C.
1984-10-23
A method of making a thin, flexible, pliable matrix material for a molten carbonate fuel cell is described. The method comprises admixing particles inert in the molten carbonate environment with an organic polymer binder and ceramic particle. The composition is applied to a mold surface and dried, and the formed compliant matrix material removed.
NASA Astrophysics Data System (ADS)
Helwani, Z.; Fatra, W.; Arifin, L.; Othman, M. R.; Syapsan
2018-04-01
In this study, the manual hydraulic press was designed to prepare the briquettes from selected biomass waste. Each biomass was sun-dried and milled into small particle sizes before mixing with crude glycerol that used as a biomass binder. The effects of applied pressure levels of 100, 110, 120 bars, the particle size of 60, 80 and 100 mesh and the binder composition on the density, compressive strength and calorific heating value of the prepared briquettes were investigated using response surface methodology (RSM). Results showed that the briquettes have an average inside diameter, average outside diameter, and height of 12, 38, and 25-30 mm, respectively. The density of the briquettes increased with increasing the applied pressure, was in the range of 623-923 kg/m3. The densest briquettes were obtained at 80 mesh of particle size, 53:47 binder composition ratio and 110 bars of pressurizing. The heating value of the briquette reached up to 28.99 MJ/kg obtained on the particle size of 80 mesh, 53:47 binder composition, and 110 bars and the best compressive strength of 6.991 kg/cm2 obtained at a particle size of 100 mesh, 60:40 binder composition, and 120 bars. Process conditions influence the calorific value significantly.
NASA Astrophysics Data System (ADS)
Zhu, Cheng
Modified asphalt binder, which is combined by base binder and additive modifier, has been implemented in pavement industry for more than 30 years. Recently, the oxidative aging mechanism of asphalt binder has been studied for several decades, and appreciable finding results of asphalt binder aging mechanism were achieved from the chemistry and rheological performance aspects. However, most of these studies were conducted with neat binders, the research of aging mechanism of modified asphalt binder was limited. Nowadays, it is still highly necessary to clarify how the asphalt binder aging happens with the modified asphalt binder, what is the effect of the different modifiers (additives) on the binder aging process, how the rheological performance changes under the thermal oxidative aging conditions and so on. The objective of this study was to investigate the effect of isothermal oxidative aging conditions on the rheological performance change of the modified and controlled asphalt binders. There were totally 14 different sorts of asphalt binders had been aged in the PAV pans in the air-force drafted ovens at 50°C, 60°C and 85°C for 0.5 day to 240 days. The Fourier-Transform Infrared Spectroscopy (FT-IR) and Dynamic Shear Rheometer (DSR) were used to perform the experiments. The analysis of rheological indices (Low shear viscosity-LSV, Crossover modulus-G*c, Glover-Rowe Parameter-G-R, DSR function-DSR Fn) as a function of carbonyl area (CA) was conducted. With the SBS modification, both of the hardening susceptibility of the rheological index-LSV and G-R decreases compared with the corresponding base binder. The TR increased the hardening susceptibility of all the rheological indexes. While for the G*c, SBS increases the slope of the most modified asphalt binders except A and B_TR_X series binders. The multiple linear regression statistical analysis results indicate that the oxidative aging conditions play an important role on the CA, and rheological performance indexes. The modifiers-SBS and TR have different directional effect on these parameters. The field asphalt binder carbonyl area prediction was conducted. The pavement temperatures which were calculated by TEMP software were input into MATLAB(TM) as a parameter with other factors, e.g the asphalt binder oxidative aging parameters, the binder film thickness, the air void radius, etc., to calculate the field asphalt CA value as a function of time out to 20 years. It was found that the different rheological index method resulted different conclusion with the asphalt binder. The SBS modified asphalt binders of A, C version and B version had close average increasing rate of LSV, higher average decreasing rate of G*c, lower average increasing rate of DSR Fn compared with the corresponding base binders. D_HPM had lower average increasing rate of LSV, G*c and DSR Fn than base binder Base D. The tire rubber modified binder B_TR had higher average increasing rate of LSV, DSR Fn, and higher average decreasing rate of G*c than base binder Base B. The main finding of this study was that the modifier SBS and tire rubber can reduce the thermal oxidation aging rate (kf and kc) compared with the corresponding base binder, the activation energy was asphalt binder source dependent. For the hardening susceptibility, the modifiers-SBS, X, Y, Z reduced the HS of LSV and G-R. The tire rubber slightly increased the HS of LSV and G-R. A_PM, B_TR_X_PM reduced the HS of G*c and other modified binders increased the HS of G*c.
Devadason, I Prince; Anjaneyulu, A S R; Babji, Y
2010-01-01
The functional properties of 4 binders, namely corn starch, wheat semolina, wheat flour, and tapioca starches, were evaluated to improve the quality of buffalo meat nuggets processed in retort pouches at F(0) 12.13. Incorporation of corn starch in buffalo meat nuggets produced more stable emulsion than other binders used. Product yield, drip loss, and pH did not vary significantly between the products with different binders. Shear force value was significantly higher for product with corn starch (0.42 +/- 0.0 Kg/cm(3)) followed by refined wheat flour (0.36 +/- 0.010 Kg/cm(3)), tapioca starch (0.32 +/- 0.010 Kg/cm(3)), and wheat semolina (0.32 +/- 0.010 Kg/cm(3)). Type of binder used had no significant effect on frying loss, moisture, and protein content of the product. However, fat content was higher in products with corn starch when compared to products with other binders. Texture profile indicated that products made with corn starch (22.17 +/- 2.55 N) and refined wheat flour (21.50 +/- 0.75 N) contributed firmer texture to the product. Corn starch contributed greater chewiness (83.8 +/- 12.51) to the products resulting in higher sensory scores for texture and overall acceptability. Products containing corn starch showed higher sensory scores for all attributes in comparison to products with other binders. Panelists preferred products containing different binders in the order of corn starch (7.23 +/- 0.09) > refined wheat flour (6.48 +/- 0.13) > tapioca starch (6.45 +/- 0.14) > wheat semolina (6.35 +/- 0.13) based on sensory scores. Histological studies indicated that products with corn starch showed dense protein matrix, uniform fat globules, and less number of vacuoles when compared to products made with other binders. The results indicated that corn flour is the better cereal binder for developing buffalo meat nuggets when compared to all other binders based on physico-chemical and sensory attributes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walters, David J.; Luscher, Darby J.; Yeager, John D.
Accurately modeling the mechanical behavior of the polymer binders and the degradation of interfaces between binder and crystal is important to science-based understanding of the macro-scale response of polymer bonded explosives. The paper presents a description of relatively a simple bi-crystal HMX-HTPB specimen and associated tensile loading experiment including computed tomography imaging, the pertinent constitutive theory, and details of numerical simulations used to infer the behavior of the material during the delamination process. Within this work, mechanical testing and direct numerical simulation of this relatively simple bi-crystal system enabled reasonable isolation of binder-crystal interface delamination, in which the effects ofmore » the complicated thermomechanical response of explosive crystals were minimized. Cohesive finite element modeling of the degradation and delamination of the interface between a modified HTPB binder and HMX crystals was used to reproduce observed results from tensile loading experiments on bi-crystal specimens. Several comparisons are made with experimental measurements in order to identify appropriate constitutive behavior of the binder and appropriate parameters for the cohesive traction-separation behavior of the crystal-binder interface. This research demonstrates the utility of directly modeling the delamination between binder and crystal within crystal-binder-crystal tensile specimen towards characterizing the behavior of these interfaces in a manner amenable to larger scale simulation of polycrystalline PBX materials. One critical aspect of this approach is micro computed tomography imaging conducted during the experiments, which enabled comparison of delamination patterns between the direct numerical simulation and actual specimen. In addition to optimizing the cohesive interface parameters, one important finding from this investigation is that understanding and representing the strain-hardening plasticity of HTPB binder is important within the context of using a cohesive traction-separation model for the delamination of a crystal-binder system.« less
Walters, David J.; Luscher, Darby J.; Yeager, John D.; ...
2018-02-27
Accurately modeling the mechanical behavior of the polymer binders and the degradation of interfaces between binder and crystal is important to science-based understanding of the macro-scale response of polymer bonded explosives. The paper presents a description of relatively a simple bi-crystal HMX-HTPB specimen and associated tensile loading experiment including computed tomography imaging, the pertinent constitutive theory, and details of numerical simulations used to infer the behavior of the material during the delamination process. Within this work, mechanical testing and direct numerical simulation of this relatively simple bi-crystal system enabled reasonable isolation of binder-crystal interface delamination, in which the effects ofmore » the complicated thermomechanical response of explosive crystals were minimized. Cohesive finite element modeling of the degradation and delamination of the interface between a modified HTPB binder and HMX crystals was used to reproduce observed results from tensile loading experiments on bi-crystal specimens. Several comparisons are made with experimental measurements in order to identify appropriate constitutive behavior of the binder and appropriate parameters for the cohesive traction-separation behavior of the crystal-binder interface. This research demonstrates the utility of directly modeling the delamination between binder and crystal within crystal-binder-crystal tensile specimen towards characterizing the behavior of these interfaces in a manner amenable to larger scale simulation of polycrystalline PBX materials. One critical aspect of this approach is micro computed tomography imaging conducted during the experiments, which enabled comparison of delamination patterns between the direct numerical simulation and actual specimen. In addition to optimizing the cohesive interface parameters, one important finding from this investigation is that understanding and representing the strain-hardening plasticity of HTPB binder is important within the context of using a cohesive traction-separation model for the delamination of a crystal-binder system.« less
Routine Testing of Bitumen Binders
NASA Astrophysics Data System (ADS)
Holý, Michal; Remišová, Eva
2017-12-01
The quality of bituminous binders used in the construction and maintenance of road surfaces is currently assessed by empirical testing based on obtaining one value for specific boundary conditions, which were designed about 100 years ago. Basic empirical tests include the softening point and penetration, but the practice shows that these tests appear to be inadequate. The evaluation of changes of bitumen properties during the production and paving process of bituminous mixture is also important. The paper points out how the "traditional" tests as softening point and penetration and viscosity are sufficient to evaluate properties of bitumen binders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Ye; Zhou, Xingyi; Yu, Guihua
Developing high-performance battery systems requires the optimization of every battery component, from electrodes and electrolyte to binder systems. However, the conventional strategy to fabricate battery electrodes by casting a mixture of active materials, a nonconductive polymer binder, and a conductive additive onto a metal foil current collector usually leads to electronic or ionic bottlenecks and poor contacts due to the randomly distributed conductive phases. When high-capacity electrode materials are employed, the high stress generated during electrochemical reactions disrupts the mechanical integrity of traditional binder systems, resulting in decreased cycle life of batteries. Thus, it is critical to design novel bindermore » systems that can provide robust, low-resistance, and continuous internal pathways to connect all regions of the electrode. Here in this Account, we review recent progress on material and structural design of novel binder systems. Nonconductive polymers with rich carboxylic groups have been adopted as binders to stabilize ultrahigh-capacity inorganic electrodes that experience large volume or structural change during charge/discharge, due to their strong binding capability to active particles. To enhance the energy density of batteries, different strategies have been adopted to design multifunctional binder systems based on conductive polymers because they can play dual functions of both polymeric binders and conductive additives. We first present that multifunctional binder systems have been designed by tailoring the molecular structures of conductive polymers. Different functional groups are introduced to the polymeric backbone to enable multiple functionalities, allowing separated optimization of the mechanical and swelling properties of the binders without detrimental effect on electronic property. Then, we describe the design of multifunctional binder systems via rationally controlling their nano- and molecular structures, developing the conductive polymer gel binders with 3D framework nanostructures. These gel binders provide multiple functions owing to their structure derived properties. The gel framework facilitates both electronic and ionic transport owing to the continuous pathways for electrons and hierarchical pores for ion diffusion. The polymer coating formed on every particle acts as surface modification and prevents particle aggregation. The mechanically strong and ductile gel framework also sustains long-term stability of electrodes. In addition, the structures and properties of gel binders can be facilely tuned. We further introduce the development of multifunctional binders by hybridizing conductive polymers with other functional materials. Meanwhile mechanistic understanding on the roles that novel binders play in the electrochemical processes of batteries is also reviewed to reveal general design rules for future binder systems. We conclude with perspectives on their future development with novel multifunctionalities involved. Highly efficient binder systems with well-tailored molecular and nanostructures are critical to reach the entire volume of the battery and maximize energy use for high-energy and high-power lithium batteries. We hope this Account promotes further efforts toward synthetic control, fundamental investigation, and application exploration of multifunctional binder materials.« less
Shi, Ye; Zhou, Xingyi; Yu, Guihua
2017-10-05
Developing high-performance battery systems requires the optimization of every battery component, from electrodes and electrolyte to binder systems. However, the conventional strategy to fabricate battery electrodes by casting a mixture of active materials, a nonconductive polymer binder, and a conductive additive onto a metal foil current collector usually leads to electronic or ionic bottlenecks and poor contacts due to the randomly distributed conductive phases. When high-capacity electrode materials are employed, the high stress generated during electrochemical reactions disrupts the mechanical integrity of traditional binder systems, resulting in decreased cycle life of batteries. Thus, it is critical to design novel bindermore » systems that can provide robust, low-resistance, and continuous internal pathways to connect all regions of the electrode. Here in this Account, we review recent progress on material and structural design of novel binder systems. Nonconductive polymers with rich carboxylic groups have been adopted as binders to stabilize ultrahigh-capacity inorganic electrodes that experience large volume or structural change during charge/discharge, due to their strong binding capability to active particles. To enhance the energy density of batteries, different strategies have been adopted to design multifunctional binder systems based on conductive polymers because they can play dual functions of both polymeric binders and conductive additives. We first present that multifunctional binder systems have been designed by tailoring the molecular structures of conductive polymers. Different functional groups are introduced to the polymeric backbone to enable multiple functionalities, allowing separated optimization of the mechanical and swelling properties of the binders without detrimental effect on electronic property. Then, we describe the design of multifunctional binder systems via rationally controlling their nano- and molecular structures, developing the conductive polymer gel binders with 3D framework nanostructures. These gel binders provide multiple functions owing to their structure derived properties. The gel framework facilitates both electronic and ionic transport owing to the continuous pathways for electrons and hierarchical pores for ion diffusion. The polymer coating formed on every particle acts as surface modification and prevents particle aggregation. The mechanically strong and ductile gel framework also sustains long-term stability of electrodes. In addition, the structures and properties of gel binders can be facilely tuned. We further introduce the development of multifunctional binders by hybridizing conductive polymers with other functional materials. Meanwhile mechanistic understanding on the roles that novel binders play in the electrochemical processes of batteries is also reviewed to reveal general design rules for future binder systems. We conclude with perspectives on their future development with novel multifunctionalities involved. Highly efficient binder systems with well-tailored molecular and nanostructures are critical to reach the entire volume of the battery and maximize energy use for high-energy and high-power lithium batteries. We hope this Account promotes further efforts toward synthetic control, fundamental investigation, and application exploration of multifunctional binder materials.« less
Patel, Shrayesh N; Javier, Anna E; Balsara, Nitash P
2013-07-23
Block copolymers that can simultaneously conduct electronic and ionic charges on the nanometer length scale can serve as innovative conductive binder material for solid-state battery electrodes. The purpose of this work is to study the electronic charge transport of poly(3-hexylthiophene)-b-poly(ethylene oxide) (P3HT-PEO) copolymers electrochemically oxidized with lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt in the context of a lithium battery charge/discharge cycle. We use a solid-state three-terminal electrochemical cell that enables simultaneous conductivity measurements and control over electrochemical doping of P3HT. At low oxidation levels (ratio of moles of electrons removed to moles of 3-hexylthiophene moieties in the electrode), the electronic conductivity (σe,ox) increases from 10(-7) S/cm to 10(-4) S/cm. At high oxidation levels, σe,ox approaches 10(-2) S/cm. When P3HT-PEO is used as a conductive binder in a positive electrode with LiFePO4 active material, P3HT is electrochemically active within the voltage window of a charge/discharge cycle. The electronic conductivity of the P3HT-PEO binder is in the 10(-4) to 10(-2) S/cm range over most of the potential window of the charge/discharge cycle. This allows for efficient electronic conduction, and observed charge/discharge capacities approach the theoretical limit of LiFePO4. However, at the end of the discharge cycle, the electronic conductivity decreases sharply to 10(-7) S/cm, which means the "conductive" binder is now electronically insulating. The ability of our conductive binder to switch between electronically conducting and insulating states in the positive electrode provides an unprecedented route for automatic overdischarge protection in rechargeable batteries.
NASA Astrophysics Data System (ADS)
Varzi, Alberto; Passerini, Stefano
2015-12-01
Potatoes starch (PS), a natural polymer obtainable from non-edible sources, is for the first time evaluated as alternative water-processable binder for Electrochemical Double-Layer Capacitor (EDLC) electrodes. Morphological and electrochemical properties of activated carbon (AC)-based electrodes are investigated and compared to those achieved with the state-of-the-art aqueous binder (CMC, i.e. Na-carboxymethyl cellulose). The obtained results suggest substantial benefits of PS, in particular regarding the electrode fabrication process. As a matter of fact, owing to its amylopectin content (moderately branched polysaccharide), PS displays only minimal shrinkage upon drying, resulting on rather homogeneous electrodes not presenting the dramatic surface cracking observed with CMC. Furthermore, owing to the smaller volume of water required for the processing, much higher active material loading per area unit can be achieved. This is reflected on improvements of up to 60% in terms of areal capacitance.
Nayak, Vignesh; Jyothi, Mannekote Shivanna; Balakrishna, R Geetha; Padaki, Mahesh; Ismail, Ahmad Fauzi
2015-01-01
Herein we present a new approach for the complete removal of CrVI species, through reduction of CrVI to CrIII, followed by adsorption of CrIII. Reduction of chromium from water is an important challenge, as CrIV is one of the most toxic substances emitted from industrial processes. Chitosan (CS) thin films were developed on plain polysulfone (PSf) and PSf/TiO2 membrane substrates by a temperature-induced technique using polyvinyl alcohol as a binder. Structure property elucidation was carried out by X-ray diffraction, microscopy, spectroscopy, contact angle measurement, and water uptake studies. The increase in hydrophilicity followed the order: PSf < PSf/TiO2 < PSf/TiO2/CS membranes. Use of this thin-film composite membrane for chromium removal was investigated with regards to the effects of light and pH. The observations reveal 100 % reduction of CrVI to CrIII through electrons and protons donated from OH and NH2 groups of the CS layer; the reduced CrIII species are adsorbed onto the CS layer via complexation to give chromium-free water. PMID:26246989
Instrumentation for studying binder burnout in an immobilized plutonium ceramic wasteform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, M; Pugh, D; Herman, C
The Plutonium Immobilization Program produces a ceramic wasteform that utilizes organic binders. Several techniques and instruments were developed to study binder burnout on full size ceramic samples in a production environment. This approach provides a method for developing process parameters on production scale to optimize throughput, product quality, offgas behavior, and plant emissions. These instruments allow for offgas analysis, large-scale TGA, product quality observation, and thermal modeling. Using these tools, results from lab-scale techniques such as laser dilametry studies and traditional TGA/DTA analysis can be integrated. Often, the sintering step of a ceramification process is the limiting process step thatmore » controls the production throughput. Therefore, optimization of sintering behavior is important for overall process success. Furthermore, the capabilities of this instrumentation allows better understanding of plant emissions of key gases: volatile organic compounds (VOCs), volatile inorganics including some halide compounds, NO{sub x}, SO{sub x}, carbon dioxide, and carbon monoxide.« less
Wei, Qinghua; Wang, Yanen; Li, Xinpei; Yang, Mingming; Chai, Weihong; Wang, Kai; zhang, Yingfeng
2016-04-01
In 3DP fabricating artificial bone scaffolds process, the interaction mechanism between binder and bioceramics power determines the microstructure and macro mechanical properties of Hydroxyapatite (HA) bone scaffold. In this study, we applied Molecular Dynamics (MD) methods to investigating the bonding mechanism and essence of binders on the HA crystallographic planes for 3DP fabrication bone scaffolds. The cohesive energy densities of binders and the binding energies, PCFs g(r), mechanical properties of binder/HA interaction models were analyzed through the MD simulation. Additionally, we prepared the HA bone scaffold specimens with different glues by 3DP additive manufacturing, and tested their mechanical properties by the electronic universal testing machine. The simulation results revealed that the relationship of the binding energies between binders and HA surface is consistent with the cohesive energy densities of binders, which is PAM/HA>PVA/HA>PVP/HA. The PCFs g(r) indicated that their interfacial interactions mainly attribute to the ionic bonds and hydrogen bonds which formed between the polar atoms, functional groups in binder polymer and the Ca, -OH in HA. The results of mechanical experiments verified the relationship of Young׳s modulus for three interaction models in simulation, which is PVA/HA>PAM/HA>PVP/HA. But the trend of compressive strength is PAM/HA>PVA/HA>PVP/HA, this is consistent with the binding energies of simulation. Therefore, the Young׳s modulus of bone scaffolds are limited by the Young׳s modulus of binders, and the compressive strength is mainly decided by the viscosity of binder. Finally, the major reasons for differences in mechanical properties between simulation and experiment were found, the space among HA pellets and the incomplete infiltration of glue were the main reasons influencing the mechanical properties of 3DP fabrication HA bone scaffolds. These results provide useful information in choosing binder for 3DP fabrication bone scaffolds and understanding the interaction mechanism between binder and HA bioceramics power. Copyright © 2015 Elsevier Ltd. All rights reserved.
Current technologies for biological treatment of textile wastewater--a review.
Sarayu, K; Sandhya, S
2012-06-01
The release of colored wastewater represents a serious environmental problem and public health concern. Color removal from textile wastewater has become a big challenge over the last decades, and up to now, there is no single and economically attractive treatment method that can effectively decolorize the wastewater. Effluents from textile manufacturing, dyeing, and finishing processes contain high concentrations of biologically difficult-to-degrade or even inert auxiliaries, chemicals like acids, waxes, fats, salts, binders, thickeners, urea, surfactants, reducing agents, etc. The various chemicals such as biocides and stain repellents used for brightening, sequestering, anticreasing, sizing, softening, and wetting of the yarn or fabric are also present in wastewater. Therefore, the textile wastewater needs environmental friendly, effective treatment process. This paper provides a critical review on the current technology available for decolorization and degradation of textile wastewater and also suggests effective and economically attractive alternatives.
Advanced Graphene-Based Binder-Free Electrodes for High-Performance Energy Storage.
Ji, Junyi; Li, Yang; Peng, Wenchao; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin
2015-09-23
The increasing demand for energy has triggered tremendous research effort for the development of high-performance and durable energy-storage devices. Advanced graphene-based electrodes with high electrical conductivity and ion accessibility can exhibit superior electrochemical performance in energy-storage devices. Among them, binder-free configurations can enhance the electron conductivity of the electrode, which leads to a higher capacity by avoiding the addition of non-conductive and inactive binders. Graphene, a 2D material, can be fabricated into a porous and flexible structure with an interconnected conductive network. Such a conductive structure is favorable for both electron and ion transport to the entire electrode surface. In this review, the main processes used to prepare binder-free graphene-based hybrids with high porosity and well-designed electron conductive networks are summarized. Then, the applications of free-standing binder-free graphene-based electrodes in energy-storage devices are discussed. Future research aspects with regard to overcoming the technological bottlenecks are also proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ERIC Educational Resources Information Center
Alabama State Dept. of Education, Montgomery.
This packet contains eight learning modules developed for use in Fieldcrest Cannon workplace literacy classes for yardage binder operators. The modules cover the following topics: (1) communications 1 and 2; (2) safety; (3) fractions; (4) statistical process control; (5) measurement; (6) calculator; (7) benefits; and (8) computer. Modules consist…
Mechanically activated fly ash as a high performance binder for civil engineering
NASA Astrophysics Data System (ADS)
Rieger, D.; Kullová, L.; Čekalová, M.; Novotný, P.; Pola, M.
2017-01-01
This study is aimed for investigation of fly ash binder with suitable properties for civil engineering needs. The fly ash from Czech brown coal power plant Prunerov II was used and mechanically activated to achieve suitable particle size for alkaline activation of hardening process. This process is driven by dissolution of aluminosilicate content of fly ash and by subsequent development of inorganic polymeric network called geopolymer. Hardening kinetics at 25 and 30 °C were measured by strain controlled small amplitude oscillatory rheometry with strain of 0.01 % and microstructure of hardened binder was evaluated by scanning electron microscopy. Strength development of hardened binder was investigated according to compressional and flexural strength for a period of 180 days. Our investigation finds out, that mechanically activated fly ash can be comparable to metakaolin geopolymers, according to setting time and mechanical parameters even at room temperature curing. Moreover, on the bases of long time strength development, achieved compressional strength of 134.5 after 180 days is comparable to performance of high grade Portland cement concretes.
Fabrication of porous silicon nitride ceramics using binder jetting technology
NASA Astrophysics Data System (ADS)
Rabinskiy, L.; Ripetsky, A.; Sitnikov, S.; Solyaev, Y.; Kahramanov, R.
2016-07-01
This paper presents the results of the binder jetting technology application for the processing of the Si3N4-based ceramics. The difference of the developed technology from analogues used for additive manufacturing of silicon nitride ceramics is a method of the separate deposition of the mineral powder and binder without direct injection of suspensions/slurries. It is assumed that such approach allows reducing the technology complexity and simplifying the process of the feedstock preparation, including the simplification of the composite materials production. The binders based on methyl ester of acrylic acid with polyurethane and modified starch were studied. At this stage of the investigations, the technology of green body's fabrication is implemented using a standard HP cartridge mounted on the robotic arm. For the coordinated operation of the cartridge and robot the specially developed software was used. Obtained green bodies of silicon powder were used to produce the ceramic samples via reaction sintering. The results of study of ceramics samples microstructure and composition are presented. Sintered ceramics are characterized by fibrous α-Si3N4 structure and porosity up to 70%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walls, P
Sixteen of the twenty-one samples have been investigated using the scanning laser dilatometer. This includes all three types of samples with different preparation routes and organic content. Cracks were observed in all samples, even those only heated to 300 C. It was concluded that the cracking was occurring in the early part of the heat treatment before the samples reached 300 C. Increase in the rate of dilation of the samples occurred above 170 C which coincided with the decomposition of the binder/wax additives as determined by differential thermal analysis. A comparison was made with SYNROC C material (Powder Runmore » 143), samples of which had been CIPed and green machined to a similar diameter and thickness as the 089mm SRTC pucks. These samples contained neither binder nor other organic processing aids and had been kept in the same desiccator as the SRTC samples. The CIPed Synroc C samples sintered to high density with zero cracks. As the cracks made up only a small contribution to the change in diameter of the sample compared to the sintering shrinkage, useful information could still be gained from the runs. The sintering curves showed that there was much greater shrinkage of the Type III samples containing only the 5% PEG binder compared to the Type I which contained polyolefin wax as processing aid. Slight changes in gradient of the sintering curve were observed, however, due to the masking effect of the cracking, full analysis of the sintering kinetics cannot be conducted. Even heating the samples to 300 C at 1.0 or 0.5 C/min could not prevent crack formation. This indicated that heating rate was not the critical parameter causing cracking of the samples. Sectioning of green bodies revealed the inhomogeneous nature of the binder/lubricant distribution in the samples. Increased homogeneity would reduce the amount of binder/lubricant required, which should in turn, reduce the degree of cracking observed during heating to the binder burnout temperature. A combination of: (1) use of a higher forming pressure, (2) reduction of organics content, (3) improvement in the distribution of the organic wax and binder components throughout the green body, could possibly alleviate cracking. Ultrasonic emulsification of the binder and wax with a small quantity of water prior to adding to the ball or attrition mill is advised to ensure more even distribution of the wax/binder system. This would also reduce the proportion of organic additives required. The binder burnout stage of the operation must first be optimized (i.e. production of pucks with no cracks) prior to optimization of the sintering stage.« less
Menapace, Ilaria; Masad, Eyad
2016-09-01
This paper presents findings on the evolution of the surface microstructure of two asphalt binders, one unmodified and one polymer modified, directly exposed to aging agents with increasing durations. The aging is performed using an accelerated weathering tester, where ultraviolet radiation, oxygen and an increased temperature are applied to the asphalt binder surface. Ultraviolet and dark cycles, which simulated the succession of day and night, alternated during the aging process, and also the temperature varied, which corresponded to typical summer day and night temperatures registered in the state of Qatar. Direct aging of an exposed binder surface is more effective in showing microstructural modifications than previously applied protocols, which involved the heat treatment of binders previously aged with standardized methods. With the new protocol, any molecular rearrangements in the binder surface after aging induced by the heat treatment is prevented. Optical photos show the rippling and degradation of the binder surface due to aging. Microstructure images obtained by means of atomic force microscopy show gradual alteration of the surface due to aging. The original relatively flat microstructure was substituted with a profoundly different microstructure, which significantly protrudes from the surface, and is characterized by various shapes, such as rods, round structures and finally 'flower' or 'leaf' structures. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Highly Attrition Resistant Zinc Oxide-Based Sorbents for H2S Removal by Spray Drying Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, C.K.; Lee, J.B.; Ahn, D.H.
2002-09-19
Primary issues for the fluidized-bed/transport reactor process are high attrition resistant sorbent, its high sorption capacity and regenerability, durability, and cost. The overall objective of this project is the development of a superior attrition resistant zinc oxide-based sorbent for hot gas cleanup in integrated coal gasification combined cycle (IGCC). Sorbents applicable to a fluidized-bed hot gas desulfurization process must have a high attrition resistance to withstand the fast solid circulation between a desulfurizer and a regenerator, fast kinetic reactions, and high sulfur sorption capacity. The oxidative regeneration of zinc-based sorbent usually initiated at greater than 600 C with highly exothermicmore » nature causing deactivation of sorbent as well as complication of sulfidation process by side reaction. Focusing on solving the sorbent attrition and regenerability of zinc oxide-based sorbent, we have adapted multi-binder matrices and direct incorporation of regeneration promoter. The sorbent forming was done with a spray drying technique that is easily scalable to commercial quantity.« less
NASA Astrophysics Data System (ADS)
Iwański, Marek; Cholewińska, Malgorzata; Mazurek, Grzegorz
2017-10-01
The paper presents the influence of the ageing on viscoelastic properties of the bitumen at road pavement operating temperatures. The ageing process of bituminous binders causes changes in physical and mechanical properties of the bitumen. This phenomenon takes place in all stages of bituminous mixtures manufacturing, namely: mixing, storage, transport, placing. Nevertheless, during the service life it occurs the increase in stiffness of asphalt binder that is caused by the physical hardening of bitumen as well as the influence of oxidation. Therefore, it is important to identify the binder properties at a high and low operating temperatures of asphalt pavement after simulation of an ageing process. In the experiment as a reference bitumen, the polymer modified bitumen PMB 45/80-65 was used. The liquid surface active agent FA (fatty amine) was used as a bitumen viscosity-reducing modifier. It was added in the amount of 0,2%, 0,4% and 0,6% by the bitumen mass. All binder properties have been determined before ageing (NEAT) and after long-term ageing simulated by the Pressure Ageing Vessel method (PAV). To determine the binder properties at high temperatures the dynamic viscosity at 60°C was tested. On the basis of test results coming from the dynamic viscosity test it was calculated the binder hardening index. The properties at a low temperature were determined by measuring the creep modulus using Bending Beam Rheometer (BBR) at four temperatures: -10°C, -16°C, -22°C and -28°C. The stiffness creep modulus “S” and parameter “m” were determined. On the basis of dynamic viscosity test it was found that the ageing process caused a slight decrease in a dynamic viscosity. The level of a hardening index considerably increased at 0.6% fatty amine content. The long-term ageing process had a minor effect on stiffening of a polymer modified bitumen with FA additive regardless of a low temperature and an amount of fatty amine content.
NASA Astrophysics Data System (ADS)
Navaro, J.; Bruneau, D.; Drouadaine, I.; Pouteau, B.; Colin, J.; Dony, A.
2012-05-01
When asphalt concrete is manufactured incorporating a high percentage (almost 70%) of reclaimed materials from the deconstruction of road surfaces under renovation, and when the corresponding production device is designed specifically to reduce the energy input need (lowering the production temperature), the resulting manufacturing process contributes to the protection of the environment and reduces production costs. However, to meet the quality requirements of the finished product, virgin materials of appropriate quality and quantity must also be added (mineral aggregates and new asphalt binder) and control systems set up to quantify and optimize the parameters involved (thus avoiding the guess work which still often prevails today). It was for this reason that a new experimental technique described here was devised, which will ultimately be used in asphalt concrete production plants. The technique involves lixiviating reclaimed asphalt concrete using a chlorinated solvent; the resulting solute is collected gradually, then the mixture of binders (virgin and reclaimed asphalt concrete) can be characterized and their mass fractions quantified using a combination of UV and IR spectrometry. With this experimental technique we were able to assess the extent to which the reclaimed asphalt pavement binder participates in the agglomeration and cohesion of the reclaimed asphalt concrete. This assessment was made in terms of the main parameters in the production process, temperature of the materials and mixing time.
Roll Compaction and Tableting of High Loaded Metformin Formulations Using Efficient Binders.
Arndt, Oscar-Rupert; Kleinebudde, Peter
2018-04-23
Metformin has a poor tabletability and flowability. Therefore, metformin is typically wet granulated with a binder before tableting. To save production costs, it would be desirable to implement a roll compaction/dry granulation (RCDG) process for metformin instead of using wet granulation. In order to implement RCDG, the efficiency of dry binders is crucial to ensure a high drug load and suitable properties of dry granules and tablets. This study evaluates dry granules manufactured by RCDG and subsequently tableting of high metformin content formulations (≥ 87.5%). Based on previous results, fine particle grades of hydroxypropylcellulose and copovidone in different fractions were compared as dry binders. The formulations are suitable for RCDG and tableting. Furthermore, results can be connected to in-die and out-of-die compressibility analysis. The addition of 7% of dry binder is a good compromise to generate sufficient mechanical properties on the one hand, but also to save resources and ensure a high metformin content on the other hand. Hydroxypropylcellulose was more efficient in terms of granule size, tensile strength and friability. Three percent croscarmellose was added to reach the specifications of the US Pharmacopeia regarding dissolution. The final formulation has a metformin content of 87.5%. A loss in tabletability does not occur for granules compressed at different specific compaction forces, which displays a robust tensile strength of tablets independent of the granulation process.
Ceramic Honeycomb Structures and Method Thereof
NASA Technical Reports Server (NTRS)
Cagliostro, Domenick E.; Riccitiello, Salvatore R.
1989-01-01
The present invention relates to a method for producing ceramic articles and the articles, the process comprising the chemical vapor deposition (CVD) and/or chemical vapor infiltration (CVI) of a honeycomb structure. Specifically the present invention relates to a method for the production of a ceramic honeycomb structure, including: (a) obtaining a loosely woven fabric/binder wherein the fabric consists essentially of metallic, ceramic or organic fiber and the binder consists essentially of an organic or inorganic material wherein the fabric/binder has and retains a honeycomb shape, with the proviso that when the fabric is metallic or ceramic the binder is organic only; (b) substantially evenly depositing at least one layer of a ceramic on the fabric/binder of step (a); and (c) recovering the ceramic coated fiber honeycomb structure. In another aspect, the present invention relates to a method for the manufacture of a lightweight ceramic-ceramic composite honeycomb structure, which process comprises: (d) pyrolyzing a loosely woven fabric a honeycomb shaped and having a high char yield and geometric integrity after pyrolysis at between about 700 degrees and 1,100 degrees Centigrade; (e) substantially evenly depositing at least one layer of ceramic material on the pyrolyzed fabric of step (a); and (f) recovering the coated ceramic honeycomb structure. The ceramic articles produced have enhanced physical properties and are useful in aircraft and aerospace uses.
Nanobodies and recombinant binders in cell biology
Helma, Jonas; Cardoso, M. Cristina; Muyldermans, Serge
2015-01-01
Antibodies are key reagents to investigate cellular processes. The development of recombinant antibodies and binders derived from natural protein scaffolds has expanded traditional applications, such as immunofluorescence, binding arrays, and immunoprecipitation. In addition, their small size and high stability in ectopic environments have enabled their use in all areas of cell research, including structural biology, advanced microscopy, and intracellular expression. Understanding these novel reagents as genetic modules that can be integrated into cellular pathways opens up a broad experimental spectrum to monitor and manipulate cellular processes. PMID:26056137
NASA Astrophysics Data System (ADS)
Tinguely, Jean-Claude; Solarska, Renata; Braun, Artur; Graule, Thomas
2011-04-01
A new approach for the large-scale production of flexible photoelectrodes for dye-sensitized solar cells (DSSCs) is presented by roll-to-roll coating of a titanium dioxide nanodispersion containing the block copolymer 'Pluronic®' (PEOx-PPOy-PEOx, PEO: poly(ethylene oxide), PPO: poly(propylene oxide)). Functional DSSCs were assembled and the different coating procedures compared with respect to their solar power conversion efficiency. It is shown that the binder 'Pluronic' can be removed at processing temperatures as low as 140 °C, thus aiding achievement of sufficient adhesion to the ITO-PET support, higher porosity of the TiO2 layer and decreased crack appearance. Further optimization of this method is particularly promising when combined with other known low-temperature methods.
NASA Astrophysics Data System (ADS)
Zularisam, A. W.; Wahida, Norul; Alfian, Ahmad
2017-07-01
This paper presents the green method to synthesis two types of adsorbent called mesoparticle graphene sand composite (MGSC) by using table sugar (MGSCts) and arenga palm sugar (MGSCaps) as different carbon sources to remove methylene blue acted as a dye model. Immobilisations of these materials on sand were introduced by using pyrolysis method without binder usage. Sand was treated by removing deleterious materials before sieved. The solutions of sugar were prepared and heated to 95 °C. The sand and sugar solutions were mixed and constantly stirred before putting them in furnace with nitrogen environment to produce MGSCts and MGSCaps. The composites were activated by using concentrated sulphuric acid to open the pores and maximise the capacity of absorbency. The analyses on the characteristic of both MGSCts and MGSCaps were conducted through field emission scanning electron microscope (FESEM), elemental dispersive x-ray (EDX) and elemental mapping (EM). FESEM analyses exhibited that the coating process was done uniformly as there were layers of coating sheets formation on the sand particles surfaces. After conducting EDX and EM, there were major elements found in both MGSCts and MGSCaps which were carbon, oxygen and silica. EM exhibited the distribution of these elements were scattered on the MGSC’s surfaces. Removal of methylene blue was successfully carried out by using both MGSCts and MGSCaps, with maximum removal up to 40% at the first hour of contact time.
Optimization and characterization of a cemented ultimate-storage product
NASA Astrophysics Data System (ADS)
Brunner, H.
1981-12-01
The U- and Pu-containing packaging wastes can be homogeneously cemented after a washing and fragmentation process. Both finely crushed and coarsely fragmented raw wastes yield products with sufficient mechanical stability. The processability limit of the coarsely fragmented raw waste using cement paste or mortar is largely determined by the cellulose content, which is not to exceed 1.3% by weight in the end waste. Of 9 binders studied, the most corrosion-resistant products were obtained with blast-furnace slag cement, whereas poured concrete and Maxit are much less resistant in five-component brine. In the cemented product, hydrolysis of plasticizers (DOP) from plastics (PVC) occurs, leading to release of 2-ethyl-hexanol. This reaction occurs to a much lower degree with blast-furnace slag cement than with all other binders studied. The binder chosen for further tests consists of blast-furnace slag cement, concrete fluidizer and a stabilizer, and is processed at a W/C ratio of 0.43.
Biodiscovery of aluminum binding peptides
NASA Astrophysics Data System (ADS)
Adams, Bryn L.; Sarkes, Deborah A.; Finch, Amethist S.; Hurley, Margaret M.; Stratis-Cullum, Dimitra
2013-05-01
Cell surface peptide display systems are large and diverse libraries of peptides (7-15 amino acids) which are presented by a display scaffold hosted by a phage (virus), bacteria, or yeast cell. This allows the selfsustaining peptide libraries to be rapidly screened for high affinity binders to a given target of interest, and those binders quickly identified. Peptide display systems have traditionally been utilized in conjunction with organic-based targets, such as protein toxins or carbon nanotubes. However, this technology has been expanded for use with inorganic targets, such as metals, for biofabrication, hybrid material assembly and corrosion prevention. While most current peptide display systems employ viruses to host the display scaffold, we have recently shown that a bacterial host, Escherichia coli, displaying peptides in the ubiquitous, membrane protein scaffold eCPX can also provide specific peptide binders to an organic target. We have, for the first time, extended the use of this bacterial peptide display system for the biodiscovery of aluminum binding 15mer peptides. We will present the process of biopanning with macroscopic inorganic targets, binder enrichment, and binder isolation and discovery.
NASA Astrophysics Data System (ADS)
Tsang, Chi Him A.; Leung, D. Y. C.
2017-09-01
Fabrication of electrocatalyst for direct glucose fuel cell (DGFC) operation involves destructive preparation methods with the use of stabilizer like binder, which may cause activity depreciation. Binder-free electrocatalytic electrode becomes a possible solution to the above problem. Binder-free bimetallic Pd-Pt loaded graphene aerogel on nickel foam plates with different Pd/Pt ratios (1:2.32, 1:1.62, and 1:0.98) are successfully fabricated through a green one-step mild reduction process producing a Pd-Pt/GO/nickel form plate (NFP) composite. Anode with the binder-free electrocatalysts exhibit a strong activity in a batch type DGFC unit under room temperature. The effects of glucose and KOH concentrations, and the Pd/Pt ratios of the electrocatalyst on the DGFC performance are also studied. Maximum power density output of 1.25 mW cm-2 is recorded with 0.5 M glucose/3 M KOH as the anodic fuel, and Pd1Pt0.98/GA/NFP as catalyst, which is the highest obtained so far among other types of electrocatalyst.
Mussel-Inspired Conductive Polymer Binder for Si-Alloy Anode in Lithium-Ion Batteries
Zhao, Hui; Wei, Yang; Wang, Cheng; ...
2018-01-15
The excessive volume changes during cell cycling of Si-based anode in lithium ion batteries impeded its application. One major reason for the cell failure is particle isolation during volume shrinkage in delithiation process, which makes strong adhesion between polymer binder and anode active material particles a highly desirable property. Here, a biomimetic side-chain conductive polymer incorporating catechol, a key adhesive component of the mussel holdfast protein, was synthesized. Atomic force microscopy-based single-molecule force measurements of mussel-inspired conductive polymer binder contacting a silica surface revealed a similar adhesion toward substrate when compared with an effective Si anode binder, homo-poly(acrylic acid), withmore » the added benefit of being electronically conductive. Electrochemical experiments showed a very stable cycling of Si-alloy anodes realized via this biomimetic conducting polymer binder, leading to a high loading Si anode with a good rate performance. We attribute the ability of the Si-based anode to tolerate the volume changes during cycling to the excellent mechanical integrity afforded by the strong interfacial adhesion of the biomimetic conducting polymer.« less
Fabrication of dual porosity electrode structure
Smith, James L.; Kucera, Eugenia H.
1991-01-01
A substantially entirely fibrous ceramic which may have dual porosity of both micro and macro pores. Total porosity may be 60-75% by volume. A method of spraying a slurry perpendicularly to an ambient stream of air is disclosed along with a method of removing binders without altering the fiber morphology. Adding fine ceramic particulates to the green ceramic fibers enhances the sintering characteristics of the fibers.
A Systems Approach to Depaint Chemistry
2009-02-01
continuous colored film by curing through solvent evaporation, oxidation, catylization or other means. – Vehicle: Film former, binder, resin or polymer...impart large changes in properties. – Suspending agents – Driers – Anti-Skinning Agents – Wetting Agents – Anti- Foaming Agents – Coalescing Agents ...volatile stripper inside the coating. Paint Release Agent Coating Removal Mechanism Zone1: PRA Layer Zone2: PRA Initial Permeation into coating system Epoxy
Kumar, Alok; Akkineni, Ashwini R; Basu, Bikramjit; Gelinsky, Michael
2016-03-01
Scaffolds for bone tissue engineering are essentially characterized by porous three-dimensional structures with interconnected pores to facilitate the exchange of nutrients and removal of waste products from cells, thereby promoting cell proliferation in such engineered scaffolds. Although hydroxyapatite is widely being considered for bone tissue engineering applications due to its occurrence in the natural extracellular matrix of this tissue, limited reports are available on additive manufacturing of hydroxyapatite-based materials. In this perspective, hydroxyapatite-based three-dimensional porous scaffolds with two different binders (maltodextrin and sodium alginate) were fabricated using the extrusion method of three-dimensional plotting and the results were compared in reference to the structural properties of scaffolds processed via chemical stabilization and sintering routes, respectively. With the optimal processing conditions regarding to pH and viscosity of binder-loaded hydroxyapatite pastes, scaffolds with parallelepiped porous architecture having up to 74% porosity were fabricated. Interestingly, sintering of the as-plotted hydroxyapatite-sodium alginate (cross-linked with CaCl2 solution) scaffolds led to the formation of chlorapatite (Ca9.54P5.98O23.8Cl1.60(OH)2.74). Both the sintered scaffolds displayed progressive deformation and delayed fracture under compressive loading, with hydroxyapatite-alginate scaffolds exhibiting a higher compressive strength (9.5 ± 0.5 MPa) than hydroxyapatite-maltodextrin scaffolds (7.0 ± 0.6 MPa). The difference in properties is explained in terms of the phase assemblage and microstructure. © The Author(s) 2015.
Method for fabricating ceramic filaments and high density tape casting method
NASA Technical Reports Server (NTRS)
Collins, Jr., Earl R. (Inventor)
1990-01-01
An apparatus and method is disclosed for fabricating mats of ceramic material comprising preparing a slurry of ceramic particles in a binder/solvent, charging the slurry into a vessel, forcing the slurry from the vessel into spinneret nozzles, discharging the slurry from the nozzles into the path of airjets to enhance the sinuous character of the slurry exudate and to dry it, collecting the filaments on a moving belt so that the filaments overlap each other thereby forming a mat, curing the binder therein, compressing and sintering the mat to form a sintered mat, and crushing the sintered mat to produce filament shaped fragments. A process is also disclosed for producing a tape of densely packed, bonded ceramic particles comprising forming a slurry of ceramic particles and a binder/solvent, applying the slurry to a rotating internal molding surface, applying a large centrifugal force to the slurry to compress it and force excess binder/solvent from the particles, evaporating solvent and curing the binder thereby forming layers of bonded ceramic particles and cured binder, and separating the binder layer from the layer of particles. Multilayers of ceramic particles are cast in an analogous manner on top of previously formed layers. When all of the desired layers have been cast the tape is fired to produce a sintered tape. For example, a three-layer tape is produced having outer layers of highly compressed filament shaped fragments of strontium doped lanthanum (LSM) particles and a center layer of yttria stabilized zicronia (YSZ) particles.
Method of making contamination-free ceramic bodies
NASA Technical Reports Server (NTRS)
Philipp, Warren H. (Inventor)
1991-01-01
Ceramic structures having high strength at temperatures above 1000 C after sintering are made by mixing ceramic powders with binder deflocculants such as guanidine salts of polymeric acids, guanidine salts of aliphatic organic carboxylic acids or guanidine alkylsulfates with the foregoing guanidine salts. The novelty of the invention appears to lie in the substitution of guanidine salts for the alkalai metal salt components or organic fatty acids of the prior art binder-deflocculant, ceramic processing aids whereby no undesirable metal contaminants are present in the final ceramic structure. Guanidine alkylsulfates also replace the Na or K alkylsulfates commonly used with binder-deflocculants in making high temperature ceramic structures.
Liang, Huei-Chen; Liu, Yi-Chen; Chen, Hsin; Ku, Ming Chun; Do, Quynh-Trang; Wang, Chih-Yen; Tzeng, Shun-Fen; Chen, Shu-Hui
2018-06-13
Catechol estrogens (CEs) are metabolic electrophiles that actively undergo covalent interaction with cellular proteins, influencing molecular function. There is no feasible method to identify their binders in a living system. Herein, we developed a click chemistry-based approach using ethinylestradiol (EE2) as the precursor probe coupled with quantitative proteomics to identify protein targets of CEs and classify their binding strengths. Using in-situ metabolic conversion and click reaction in liver microsomes, CEs-protein complex was captured by the probe, digested by trypsin, stable isotope labeled via reductive amination, and analyzed by liquid chromatography-mass spectrometry (LC-MS). A total of 334 liver proteins were repeatedly identified (n 2); 274 identified proteins were classified as strong binders based on precursor mass mapping. The binding strength was further scaled by D/H ratio (activity probe/solvent): 259 strong binders had D/H > 5.25; 46 weak binders had 5.25 > D/H > 1; 5 non-specific binders (keratins) had D/H < 1. These results were confirmed using spiked covalent control (strong binder) and noncovalent control (weak binder), as well as in vitro testing of cytochrome c (D/H = 5.9) which showed covalent conjugation with CEs. Many identified strong binders, such as glutathione transferase, catechol-O-methyl transferase, superoxide dismutase, catalase, glutathione peroxidase, and cytochrome c, are involved in cellular redox processes or detoxification activities. CE conjugation was shown to suppress the superoxide oxidase activity of cytochrome c, suggesting that CEs modification may alter the redox action of cellular proteins. Due to structural similarity and inert alkyne group, EE2 probe is very likely to capture protein targets of CEs in general. Thus, this strategy can be adopted to explore the biological impact of CEs modification in living systems.
Supercritical Carbon Dioxide Based Processing of PEP Binder Polymers
1997-03-01
mBPECTED 1 19990525 017 257 Table 1. Representative PEP Materials with Binders Studied mmsmi§M8i&M Wk&mߣfit0t& • PBXN -5 PBXN -6 PBXN -201 PBX...Meeting, 28 November - 1 December 1989, CPIA Publication 527, pp. 99- 106 , 1989. Reid, R.C; Prausnitz, J.M.; Poling, B.E., The Properties of Liquids and
Stabilization/solidification of hot dip galvanizing ash using different binders.
Vinter, S; Montanes, M T; Bednarik, V; Hrivnova, P
2016-12-15
This study focuses on solidification of hot dip-galvanizing ash with a high content of zinc and soluble substances. The main purpose of this paper is to immobilize these pollutants into a matrix and allow a safer way for landfill disposal of that waste. Three different binders (Portland cement, fly ash and coal fluidized-bed combustion ash) were used for the waste solidification. Effectiveness of the process was evaluated using leaching test according to EN 12457-4 and by using the variance analysis and the categorical multifactorial test. In the leaching test, four parameters were observed: pH, zinc concentration in leachate, and concentration of chlorides and dissolved substances in leachate. The acquired data was then processed using statistical software to find an optimal solidifying ratio of the addition of binder, water, and waste to the mixture, with the aim to fulfil the requirement for landfill disposal set by the Council Decision 2003/33/EC. The influence on the main observed parameters (relative amount of water and a binder) on the effectiveness of the used method and their influence of measured parameters was also studied. Copyright © 2016 Elsevier B.V. All rights reserved.
Aqueous-Processed, High-Capacity Electrodes for Membrane Capacitive Deionization.
Jain, Amit; Kim, Jun; Owoseni, Oluwaseye M; Weathers, Cierra; Caña, Daniel; Zuo, Kuichang; Walker, W Shane; Li, Qilin; Verduzco, Rafael
2018-05-15
Membrane capacitive deionization (MCDI) is a low-cost technology for desalination. Typically, MCDI electrodes are fabricated using a slurry of nanoparticles in an organic solvent along with polyvinylidene fluoride (PVDF) polymeric binder. Recent studies of the environmental impact of CDI have pointed to the organic solvents used in the fabrication of CDI electrodes as key contributors to the overall environmental impact of the technology. Here, we report a scalable, aqueous processing approach to prepare MCDI electrodes using water-soluble polymer poly(vinyl alcohol) (PVA) as a binder and ion-exchange polymer. Electrodes are prepared by depositing aqueous slurry of activated carbon and PVA binder followed by coating with a thin layer of PVA-based cation- or anion-exchange polymer. When coated with ion-exchange layers, the PVA-bound electrodes exhibit salt adsorption capacities up to 14.4 mg/g and charge efficiencies up to 86.3%, higher than typically achieved for activated carbon electrodes with a hydrophobic polymer binder and ion-exchange membranes (5-13 mg/g). Furthermore, when paired with low-resistance commercial ion-exchange membranes, salt adsorption capacities exceed 18 mg/g. Our overall approach demonstrates a simple, environmentally friendly, cost-effective, and scalable method for the fabrication of high-capacity MCDI electrodes.
Single Domain Antibodies as New Biomarker Detectors
Fischer, Katja; Leow, Chiuan Yee; Chuah, Candy; McCarthy, James
2017-01-01
Biomarkers are defined as indicators of biological processes, pathogenic processes, or pharmacological responses to a therapeutic intervention. Biomarkers have been widely used for early detection, prediction of response after treatment, and for monitoring the progression of diseases. Antibodies represent promising tools for recognition of biomarkers, and are widely deployed as analytical tools in clinical settings. For immunodiagnostics, antibodies are now exploited as binders for antigens of interest across a range of platforms. More recently, the discovery of antibody surface display and combinatorial chemistry techniques has allowed the exploration of new binders from a range of animals, for instance variable domains of new antigen receptors (VNAR) from shark and variable heavy chain domains (VHH) or nanobodies from camelids. These single domain antibodies (sdAbs) have some advantages over conventional murine immunoglobulin owing to the lack of a light chain, making them the smallest natural biomarker binders thus far identified. In this review, we will discuss several biomarkers used as a means to validate diseases progress. The potential functionality of modern singe domain antigen binders derived from phylogenetically early animals as new biomarker detectors for current diagnostic and research platforms development will be described. PMID:29039819
NASA Astrophysics Data System (ADS)
Huang, Ming; Mi, Rui; Liu, Hao; Li, Fei; Zhao, Xiao Li; Zhang, Wei; He, Shi Xuan; Zhang, Yu Xin
2014-12-01
Three-dimensional carbon nanotubes@MnO2 core-shell nanostructures grown on Ni foam for binder-free capacitor electrodes have been fabricated by a floating catalyst chemical vapor deposition process and a facile hydrothermal approach. Ultrathin layered MnO2 nanosheets are uniformly coated on the surface of the carbon nanotubes (CNTs), directly grown on Ni foam. This unique well-designed binder-free electrode exhibits a high specific capacitance (325.5 F g-1 at a current density of 0.3 A g-1), good rate capability (70.7% retention), and excellent cycling stability (90.5% capacitance retention after 5000 cycles), due to the high conductivity of the close contact between CNTs and Ni foam, as well as the moderate specific surface area of the CNTs@MnO2 core-shell nanostructures. The developed synthetic strategy may provide design guidelines for constructing advanced binder-free supercapacitors electrode.
Influence of Water Solute Exposure on the Chemical Evolution and Rheological Properties of Asphalt.
Pang, Ling; Zhang, Xuemei; Wu, Shaopeng; Ye, Yong; Li, Yuanyuan
2018-06-11
The properties of asphalt pavement are damaged under the effects of moisture. The pH value and salt concentration of water are the key factors that affect the chemical and rheological properties of asphalt during moisture damage. Four kinds of water solutions, including distilled water, an acidic solution, alkaline solution and saline solution were used to investigate the effects of aqueous solute compositions on the chemical and rheological properties of asphalt. Thin-layer chromatography with flame ionization detection (TLC-FID), Fourier transform infrared (FTIR) spectroscopy and dynamic shear rheometer (DSR) were applied to investigate the components, chemistry and rheology characteristics of asphalt specimens before and after water solute exposure. The experimental results show that moisture damage of asphalt is not only associated with an oxidation process between asphalt with oxygen, but it is also highly dependent on some compounds of asphalt dissolving and being removed in the water solutions. In detail, after immersion in water solute, the fraction of saturates, aromatics and resins in asphalt binders decreased, while asphaltenes increased; an increase in the carbonyl and sulphoxide indices, and a decrease in the butadiene index were also found from the FTIR analyzer test. The rheological properties of asphalt are sensitive to water solute immersing. The addition of aqueous solutes causes more serious moisture damage on asphalt binders, with the pH11 solution presenting as the most destructive during water solute exposure.
Capacity Fade and Its Mitigation in Li-Ion Cells with Silicon-Graphite Electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bareno, Javier; Shkrob, Ilya A.; Gilbert, James A.
Silicon-graphite (Si-Gr) electrodes typically contain lithiated carboxylates as polymer binders that are introduced through aqueous processing. Li-ion cells with such electrodes show significantly faster capacity fade than cells with graphite (Gr) electrodes. Here we examine the causes for capacity loss in Si-Gr cells containing LiPF 6-based electrolytes. The presence of SiO xF y in the Si-Gr electrode, fluorophosphate species in the electrolyte, and silica on the positive electrode indicates the crucial role of the hydrolytic cycle. In particular, HF acid that is generated through LiPF 6 hydrolysis corrodes Si particles. As it reacts, the released water re-enters the cycle. Wemore » trace the moisture initiating this detrimental cycle to the hydration water in the lithiated binders that cannot be fully removed by thermal treatment. The rate of HF corrosion can be reduced through the use of electrolyte additives. For the fluoroethylene carbonate (FEC) additive, the improved performance arises from changes to the solid electrolyte interphase (SEI) that serves as a barrier against HF attack. Here, we propose that the greater extent of polymer cross-linking, that gives FEC-derived SEI elastomer properties, slows down HF percolation through this SEI membrane and inhibits the formation of deep cracks through which HF can access and degrade the Si surface.« less
Capacity Fade and Its Mitigation in Li-Ion Cells with Silicon-Graphite Electrodes
Bareno, Javier; Shkrob, Ilya A.; Gilbert, James A.; ...
2017-09-06
Silicon-graphite (Si-Gr) electrodes typically contain lithiated carboxylates as polymer binders that are introduced through aqueous processing. Li-ion cells with such electrodes show significantly faster capacity fade than cells with graphite (Gr) electrodes. Here we examine the causes for capacity loss in Si-Gr cells containing LiPF 6-based electrolytes. The presence of SiO xF y in the Si-Gr electrode, fluorophosphate species in the electrolyte, and silica on the positive electrode indicates the crucial role of the hydrolytic cycle. In particular, HF acid that is generated through LiPF 6 hydrolysis corrodes Si particles. As it reacts, the released water re-enters the cycle. Wemore » trace the moisture initiating this detrimental cycle to the hydration water in the lithiated binders that cannot be fully removed by thermal treatment. The rate of HF corrosion can be reduced through the use of electrolyte additives. For the fluoroethylene carbonate (FEC) additive, the improved performance arises from changes to the solid electrolyte interphase (SEI) that serves as a barrier against HF attack. Here, we propose that the greater extent of polymer cross-linking, that gives FEC-derived SEI elastomer properties, slows down HF percolation through this SEI membrane and inhibits the formation of deep cracks through which HF can access and degrade the Si surface.« less
Spray-painted binder-free SnSe electrodes for high-performance energy-storage devices.
Wang, Xianfu; Liu, Bin; Xiang, Qingyi; Wang, Qiufan; Hou, Xiaojuan; Chen, Di; Shen, Guozhen
2014-01-01
SnSe nanocrystal electrodes on three-dimensional (3D) carbon fabric and Au-coated polyethylene terephthalate (PET) wafer have been prepared by a simple spray-painting process and were further investigated as binder-free active-electrodes for Lithium-ion batteries (LIBs) and flexible stacked all-solid-state supercapacitors. The as-painted SnSe nanocrystals/carbon fabric electrodes exhibit an outstanding capacity of 676 mAh g(-1) after 80 cycles at a current density of 200 mA g(-1) and a considerable high-rate capability in lithium storage because of the excellent ion transport from the electrolyte to the active materials and the efficient charge transport between current collector and electrode materials. The binder-free electrodes also provide a larger electrochemical active surface compared with electrodes containing binders, which leads to the enhanced capacities of energy-storage devices. A flexible stacked all-solid-state supercapacitor based on the SnSe nanocrystals on Au-coated PET wafers shows high capacitance reversibility with little performance degradation at different current densities after 2200 charge-discharge cycles and even when bent. This allows for many potential applications in facile, cost-effective, spray-paintable, and flexible energy-storage devices. The results indicate that the fabrication of binder-free electrodes by a spray painting process is an interesting direction for the preparation of high-performance energy-storage devices. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Distribution of binder in granules produced by means of twin screw granulation.
Fonteyne, Margot; Fussell, Andrew Luke; Vercruysse, Jurgen; Vervaet, Chris; Remon, Jean Paul; Strachan, Clare; Rades, Thomas; De Beer, Thomas
2014-02-28
According to the quality by design principle processes may not remain black-boxes and full process understanding is required. The granule size distribution of granules produced via twin screw granulation is often found to be bimodal. The aim of this study was to gain a better understanding of binder distribution within granules produced via twin screw granulation in order to investigate if an inhomogeneous spread of binder is causing this bimodal size distribution. Theophylline-lactose-polyvinylpyrrolidone K30 (PVP) (30-67.5-2.5%, w/w) was used as a model formulation. The intra-granular distribution of PVP was evaluated by means of hyperspectral coherent anti-Stokes Raman scattering (CARS) microscopy. For the evaluated formulation, no PVP rich zones were detected when applying a lateral spatial resolution of 0.5 μm, indicating that PVP is homogenously distributed within the granules. Copyright © 2013 Elsevier B.V. All rights reserved.
The nature of the MDI/wood bond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcinko, J.J.; Phanopoulos, C.; Newman, W.H.
1995-12-01
Polymeric diphenylmethane diisocyanate (pMDI) binders have been used in the wood composite industry for 20 years. Almost one half of the oriented strand board (OSB) manufactures in North America are taking advantage of its processing speed and superior board performance. MDI`s current use in Strandboard, MDF (medium density fiber board), LVL (laminated veneer lumber), Plywood, and Particleboard is wide spread. A fundamental understanding of the role of MIDI as a binder in these complex composites is essential for further processing optimization. Experimental data is presented which investigates the nature of the chemical bonding in wood composites. Solid state nuclear magneticmore » resonance (NMR) data is combined with data from thermal analysis and fluorescence microscopy to investigate the chemistry, penetration, and morphology of the isocyanate/wood interphase. Structure property relationships are developed and related to composite performance. The study contrasts isocyanate and phenol formaldehyde binder systems.« less
Nanobodies and recombinant binders in cell biology.
Helma, Jonas; Cardoso, M Cristina; Muyldermans, Serge; Leonhardt, Heinrich
2015-06-08
Antibodies are key reagents to investigate cellular processes. The development of recombinant antibodies and binders derived from natural protein scaffolds has expanded traditional applications, such as immunofluorescence, binding arrays, and immunoprecipitation. In addition, their small size and high stability in ectopic environments have enabled their use in all areas of cell research, including structural biology, advanced microscopy, and intracellular expression. Understanding these novel reagents as genetic modules that can be integrated into cellular pathways opens up a broad experimental spectrum to monitor and manipulate cellular processes. © 2015 Helma et al.
Combustion-Assisted Photonic Annealing of Printable Graphene Inks via Exothermic Binders.
Secor, Ethan B; Gao, Theodore Z; Dos Santos, Manuel H; Wallace, Shay G; Putz, Karl W; Hersam, Mark C
2017-09-06
High-throughput and low-temperature processing of high-performance nanomaterial inks is an important technical challenge for large-area, flexible printed electronics. In this report, we demonstrate nitrocellulose as an exothermic binder for photonic annealing of conductive graphene inks, leveraging the rapid decomposition kinetics and built-in energy of nitrocellulose to enable versatile process integration. This strategy results in superlative electrical properties that are comparable to extended thermal annealing at 350 °C, using a pulsed light process that is compatible with thermally sensitive substrates. The resulting porous microstructure and broad liquid-phase patterning compatibility are exploited for printed graphene microsupercapacitors on paper-based substrates.
Durable zinc ferrite sorbent pellets for hot coal gas desulfurization
Jha, Mahesh C.; Blandon, Antonio E.; Hepworth, Malcolm T.
1988-01-01
Durable, porous sulfur sorbents useful in removing hydrogen sulfide from hot coal gas are prepared by water pelletizing a mixture of fine zinc oxide and fine iron oxide with inorganic and organic binders and small amounts of activators such as sodium carbonate and molybdenite; the pellets are dried and then indurated at a high temperature, e.g., 1800.degree. C., for a time sufficient to produce crush-resistant pellets.
Fabrication of dual porosity electrode structure
Smith, J.L.; Kucera, E.H.
1991-02-12
A substantially entirely fibrous ceramic is described which may have dual porosity of both micro and macro pores. Total porosity may be 60-75% by volume. A method of spraying a slurry perpendicularly to an ambient stream of air is disclosed along with a method of removing binders without altering the fiber morphology. Adding fine ceramic particulates to the green ceramic fibers enhances the sintering characteristics of the fibers. 3 figures.
Method for removing metal ions from solution with titanate sorbents
Lundquist, Susan H.; White, Lloyd R.
1999-01-01
A method for removing metal ions from solution comprises the steps of providing titanate particles by spray-drying a solution or slurry comprising sorbent titanates having a particle size up to 20 micrometers, optionally in the presence of polymer free of cellulose functionality as binder, said sorbent being active towards heavy metals from Periodic Table (CAS version) Groups IA, IIA, IB, IIB, IIIB, and VIII, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size distribution in the range of 1 to 500 micrometers. The particles can be used free flowing in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove metal ions from aqueous or organic liquid.
Romero-Pastor, Julia; Navas, Natalia; Kuckova, Stepanka; Rodríguez-Navarro, Alejandro; Cardell, Carolina
2012-03-01
This study focuses on acquiring information on the degradation process of proteinaceous binders due to ultra violet (UV) radiation and possible interactions owing to the presence of historical mineral pigments. With this aim, three different paint model samples were prepared according to medieval recipes, using rabbit glue as proteinaceus binders. One of these model samples contained only the binder, and the other two were prepared by mixing each of the pigments (cinnabar or azurite) with the binder (glue tempera model samples). The model samples were studied by applying Principal Component Analysis (PCA) to their mass spectra obtained with Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF-MS). The complementary use of Fourier Transform Infrared Spectroscopy to study conformational changes of secondary structure of the proteinaceous binder is also proposed. Ageing effects on the model samples after up to 3000 h of UV irradiation were periodically analyzed by the proposed approach. PCA on MS data proved capable of identifying significant changes in the model samples, and the results suggested different aging behavior based on the pigment present. This research represents the first attempt to use this approach (PCA on MALDI-TOF-MS data) in the field of Cultural Heritage and demonstrates the potential benefits in the study of proteinaceous artistic materials for purposes of conservation and restoration. Copyright © 2012 John Wiley & Sons, Ltd.
Liu, Yi; Li, Yi; Chang, Runxing; Zheng, Hailing; Li, Menglu; Hu, Zhiwen; Zhou, Yang; Wang, Bing
2016-01-01
Proteinaceous materials, such as ovabumin and collagen, were commonly used as binding media, and as adhesives and protective coatings. However, the identification of ancient proteinaceous binders is a great challenge for archaeologists, due to their limited sample size, complex combinations of various ingredients and reduced availability of the binder during the process of protein degradation. In this paper, an enzyme-linked immunosorbent assay (ELISA) provides to be a particularly promising method for the detection of proteinaceous binding materials in ancient relics. The present work focused on the specific identification of proteins in archaeological binders, which was brushed on the Tripitaka. Two samples, the adhesion area (S1) and the ink area (S2), were tested by ELISA. The results showed that both S1 and S2 reacted positively when treated with an anti-collagen-I antibody. It proved the existence of proteinaceous binders in Ancient Tripitaka, and the percentage of collagen in S1 and S2 was 61.44 and 15.4%, respectively. Compared with other conventional techniques, ELISA has advantages of high specificity, sensitivity, rapidity and low cost, making it especially suitable for the protein detection in the archaeological field.
Alkaline Activator Impact on the Geopolymer Binders
NASA Astrophysics Data System (ADS)
Błaszczyński, Tomasz Z.; Król, Maciej R.
2017-10-01
Concrete structures are constantly moving in the direction of improving the durability. Durability depends on many factors, which are the composition of concrete mix, the usage of additives and admixtures and the place, where material will work and carry the load. The introduction of new geopolymer binders for geopolymer structures adds a new aspect that is type of used activator. This substance with strongly alkaline reaction is divided because of the physical state, the alkaline degree and above all the chemical composition. Taking into account, that at present the geopolymer binders are made essentially from waste materials or by-products from the combustion of coal or iron ore smelting, unambiguous determination of the effect of the activator on the properties of the geopolymer material requires a number of trials, researches and observation. This paper shows the influence of the most alkaline activators on the basic parameters of the durability of geopolymer binders. In this study there were used highly alkaline hydroxides, water glasses and granules, which are waste materials in a variety of processes taking place in chemical plants. As the substrate of geopolymer binders there were used fly ash which came from coal and high calcareous ash from the burning of lignite.
Efficiency of Composite Binders with Antifreezing Agents
NASA Astrophysics Data System (ADS)
Ogurtsova, Y. N.; Zhernovsky, I. V.; Botsman, L. N.
2017-11-01
One of the non-heating methods of cold-weather concreting is using concretes hardening at negative temperatures. This method consists in using chemical additives which reduce the freezing temperature of the liquid phase and provide for concrete hardening at negative temperatures. The non-heating cold-weather concreting, due to antifreezing agents, allows saving heat and electric energy at the more flexible work performance technology. At selecting the antifreezing components, the possibility of concreting at temperatures up to minus 20 °C and combination with a plasticizer contained in the composite binder were taken into account. The optimal proportions of antifreezing and complex agents produced by MC-Bauchemie Russia for fine-grained concretes were determined. So, the introduction of antifreezing and complex agents allows obtaining a structure of composite characteristic for cement stone in the conditions of below zero temperatures at using different binders; the hydration of such composite proceeded naturally. Low-water-demand binders (LWDB) based composites are characterized by a higher density and homogeneity due to a high dispersity of a binder and its complicated surface providing for a lot of crystallization centers. LWDB contains small pores keeping water in a liquid form and promoting a more complete hydration process.
Micheli, Laura; Mazzuca, Claudia; Palleschi, Antonio; Palleschi, Giuseppe
2012-06-01
Paper-based artworks are among the most valuable assets for transmission of knowledge. Historical paper is composed of different polysaccharides (e.g. cellulose), binders, and glues. During aging all of these components undergo several degradation processes, as a result of external and intrinsic causes, and these can compromise the state of conservation of the document. In this work, application of a new biotechnological strategy for paper artefact preservation is reported. By making use of innovative and non-invasive materials, for example appropriate hydrogels, in combination with selective electrochemical biosensors, it is possible to simultaneously verify the degradation condition of the paper artwork and then to efficiently clean it, while monitoring the process of removal of both pollution and degradation products. In this paper, we focus on specific examples in which such techniques have been applied to paper artworks and that illustrate the advantages and potential of this biotechnology compared with the traditional paper-cleaning methods currently in use.
Gotch, Frank; Levin, Nathan W; Kotanko, Peter
2010-01-01
Calcium mass balance (Ca(MB)) is determined by the difference between Ca absorbed between dialyses (Ca(Abs)) and the Ca removed during dialysis (J(d)Ca(2+)). A mathematical model to quantify (1) Ca(Abs) as a function of Ca intake (Ca(INT)) and the doses of vitamin D analogues, and (2) J(d)Ca(2+) as a function of Ca(2+) dialysance, the mean plasma Ca(2+) ((M)C(pi)Ca(2+)) minus dialysate Ca(2+) (C(di)Ca(2+)), ultrafiltration rate (Q(f)) and treatment time is developed in this paper. The model revealed a basic design flaw in clinical studies of Ca-based as opposed to non-Ca-based binders in that C(di)Ca(2+) must be reduced with the Ca-based binders in order to avoid a positive Ca(MB) relative to the non-Ca-based binders. The model was also used to analyze Ca(MB) in 320 Renal Research Institute hemodialysis patients and showed that all patients irrespective of type of binder were in positive Ca(MB) between dialyses (mean +/- SD 160 +/- 67 mg/day) with current doses of vitamin D analogues prescribed. Calculation of the optimal C(di)Ca(2+) for the 320 Renal Research Institute patients revealed that in virtually all instances, the C(di)Ca(2+) required for neutral Ca(MB), where Ca removal during dialysis was equal to Ca accumulation between dialyses, was less than 2.50 mEq/l and averaged about 2.00 mEq/l. This sharply contradicts the recent KDIGO (Kidney Disease: Improving Global Outcomes) Clinical Practice Guideline for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease - Mineral and Bone Disorder, that suggests a C(di)Ca(2+) of 2.5-3.0 mEq/l. Review of the KDIGO work group discussions shows that this discrepancy stems from the unwarranted work group assumption that intradialytic Ca(MB) is zero. We strongly believe that this guideline for dialysate Ca(2+) is inappropriate and should be modified to more realistically reflect the needs of dialysis patients. Copyright (c) 2010 S. Karger AG, Basel.
Mechanical Properties and Eco-Efficiency of Steel Fiber Reinforced Alkali-Activated Slag Concrete.
Kim, Sun-Woo; Jang, Seok-Joon; Kang, Dae-Hyun; Ahn, Kyung-Lim; Yun, Hyun-Do
2015-10-30
Conventional concrete production that uses ordinary Portland cement (OPC) as a binder seems unsustainable due to its high energy consumption, natural resource exhaustion and huge carbon dioxide (CO₂) emissions. To transform the conventional process of concrete production to a more sustainable process, the replacement of high energy-consumptive PC with new binders such as fly ash and alkali-activated slag (AAS) from available industrial by-products has been recognized as an alternative. This paper investigates the effect of curing conditions and steel fiber inclusion on the compressive and flexural performance of AAS concrete with a specified compressive strength of 40 MPa to evaluate the feasibility of AAS concrete as an alternative to normal concrete for CO₂ emission reduction in the concrete industry. Their performances are compared with reference concrete produced using OPC. The eco-efficiency of AAS use for concrete production was also evaluated by binder intensity and CO₂ intensity based on the test results and literature data. Test results show that it is possible to produce AAS concrete with compressive and flexural performances comparable to conventional concrete. Wet-curing and steel fiber inclusion improve the mechanical performance of AAS concrete. Also, the utilization of AAS as a sustainable binder can lead to significant CO₂ emissions reduction and resources and energy conservation in the concrete industry.
Novel Binders and Methods for Agglomeration of Ore
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. K. Kawatra; T. C. Eisele; K. A. Lewandowski
2006-09-30
Heap leaching is one of the methods being used to recover metal from low grade ore deposits. The main problem faced during heap leaching is the migration of fine grained particles through the heap, forming impermeable beds which result in poor solution flow. The poor solution flow leads to less contact between the leach solution and the ore, resulting in low recovery rates. Agglomeration of ore into coarse, porous masses prevents fine particles from migrating and clogging the spaces and channels between the larger ore particles. Currently, there is one facility in the United States which uses agglomeration. This operationmore » agglomerates their ore using leach solution (raffinate), but is still experiencing undesirable metal recovery from the heaps due to agglomerate breakdown. The use of a binder, in addition to the leach solution, during agglomeration would help to produce stronger agglomerates that did not break down during processing. However, there are no known binders that will work satisfactorily in the acidic environment of a heap, at a reasonable cost. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. Increasing copper recovery in heap leaching by the use of binders and agglomeration would result in a significant decrease in the amount of energy consumed. Assuming that 70% of all the leaching heaps would convert to using agglomeration technology, as much as 1.64*10{sup 12} BTU per year would be able to be saved if a 25% increase in copper recovery was experienced, which is equivalent to saving approximately 18% of the energy currently being used in leaching heaps. For every week a leach cycle was decreased, a savings of as much as 1.23*10{sup 11} BTU per week would result. This project has identified several acid-resistant binders and agglomeration procedures. These binders and experimental procedures will be able to be used for use in improving the energy efficiency of heap leaching.« less
Investigations into the burning-out of organic substances in the ceramic body
NASA Technical Reports Server (NTRS)
Locher, C.; Pfaff, E.; Schulz, P.; Zografou, C.
1983-01-01
Pressed compacts were made of spray dried alumina containing water soluble polyvinyl alcohol or cellulose derivative binder. The burning out of organic binder on gradual heating was investigated by visual and microscopic observations of the cross section and by thermogravimetry. Burning out proceeds inward from the peripheries, gradually reducing the size of the black core, which first consists of a dark boundary layer and later turns uniformly black with a sharp boundary. A detailed mechanism of the burning out process between and within the spray dried granules is observed under the microscope. Oxygen atmosphere accelerates the burning out process.
Smith, Jeremy; Zhang, Weimin; Sougrat, Rachid; Zhao, Kui; Li, Ruipeng; Cha, Dongkyu; Amassian, Aram; Heeney, Martin; McCulloch, Iain; Anthopoulos, Thomas D
2012-05-08
Using phase-separated organic semiconducting blends containing a small molecule, as the hole transporting material, and a conjugated amorphous polymer, as the binder material, we demonstrate solution-processed organic thin-film transistors with superior performance characteristics that include; hole mobility >5 cm(2) /Vs, current on/off ratio ≥10(6) and narrow transistor parameter spread. These exceptional characteristics are attributed to the electronic properties of the binder polymer and the advantageous nanomorphology of the blend film. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Hui; Wei, Yang; Wang, Cheng
The excessive volume changes during cell cycling of Si-based anode in lithium ion batteries impeded its application. One major reason for the cell failure is particle isolation during volume shrinkage in delithiation process, which makes strong adhesion between polymer binder and anode active material particles a highly desirable property. Here, a biomimetic side-chain conductive polymer incorporating catechol, a key adhesive component of the mussel holdfast protein, was synthesized. Atomic force microscopy-based single-molecule force measurements of mussel-inspired conductive polymer binder contacting a silica surface revealed a similar adhesion toward substrate when compared with an effective Si anode binder, homo-poly(acrylic acid), withmore » the added benefit of being electronically conductive. Electrochemical experiments showed a very stable cycling of Si-alloy anodes realized via this biomimetic conducting polymer binder, leading to a high loading Si anode with a good rate performance. We attribute the ability of the Si-based anode to tolerate the volume changes during cycling to the excellent mechanical integrity afforded by the strong interfacial adhesion of the biomimetic conducting polymer.« less
Formulation design for optimal high-shear wet granulation using on-line torque measurements.
Cavinato, Mauro; Bresciani, Massimo; Machin, Marianna; Bellazzi, Guido; Canu, Paolo; Santomaso, Andrea C
2010-03-15
An alternative procedure for achieving formulation design in a high-shear wet granulation process has been developed. Particularly, a new formulation map has been proposed which describes the onset of a significant granule growth as a function of the formulation variables (diluent, dry and liquid binder). Granule growth has been monitored using on-line impeller torque and evaluated as changes in granule particle size distribution with respect to the dry formulation. It is shown how the onset of granule growth is denoted by an abrupt increase in the torque value requires the amount of binder liquid added to be greater than a certain threshold that is identified here as 'minimum liquid volume'. This minimum liquid volume is determined as a function of dry binder type, amount, hygroscopicity and particle size distribution of diluent. It is also demonstrated how this formulation map can be constructed from independent measurements of binder glass transition temperatures using a static humidity conditioning system. 2009 Elsevier B.V. All rights reserved.
Monitoring the petroleum bitumen characteristics changes during their interaction with the polymers
NASA Astrophysics Data System (ADS)
Belyaev, P. S.; Mishchenko, S. V.; Belyaev, V. P.; Frolov, V. A.
2017-08-01
The subject of the study is the characteristics (penetration, softening temperature, ductility and elasticity) of a road binder based on petroleum bitumen. The work purpose is to monitor the changes in the characteristics of petroleum bitumen when it interacting with polymers: thermoplastic elastomer, low-density polyethylene, including the adhesive additive presence. To carry out the research a special laboratory facility was designed and manufactured with two blade mixers providing intensive turbulent mixing and the possibility to effect on the transition process of combining the components in a polymer-bitumen binder. To construct a mathematical model of the polymer-bitumen binder characteristics dependence from the composition, methods of statistical experiments planning were used. The possibility of the expensive thermoplastic elastomers replacement with polyethylene is established while maintaining acceptable polymer-bitumen binder quality parameters. The obtained results are proposed for use in road construction. They allow to reduce the roads construction cost with solving the problem of recycling long-term waste packaging from polyethylene.
Composite fiber structures for catalysts and electrodes
NASA Technical Reports Server (NTRS)
Marrion, Christopher J.; Cahela, Donald R.; Ahn, Soonho; Tatarchuk, Bruce J.
1993-01-01
We have recently envisioned a process wherein fibers of various metals in the 0.5 to 15 micron diameter range are slurried in concert with cellulose fibers and various other materials in the form of particulates and/or fibers. The resulting slurry is cast via a wet-lay process into a sheet and dried to produce a free-standing sheet of 'composite paper.' When the 'preform' sheet is sintered in hydrogen, the bulk of the cellulose is removed with the secondary fibers and/or particulates being entrapped by the sinter-locked network provided by the metal fibers. The resulting material is unique, in that it allows the intimate contacting and combination of heretofore mutually exclusive materials and properties. Moreover, due to the ease of paper manufacture and processing, the resulting materials are relatively inexpensive and can be fabricated into a wide range of three-dimensional structures. Also, because cellulose is both a binder and a pore-former, structures combining high levels of active surface area and high void volume (i.e., low pressure drop) can be prepared as freestanding flow through monoliths.
Making Plant-Support Structures From Waste Plant Fiber
NASA Technical Reports Server (NTRS)
Morrow, Robert C.; < oscjmocl. < attjew K/; {ertzbprm. A,amda; Ej (e. Cjad); Hunt, John
2006-01-01
Environmentally benign, biodegradable structures for supporting growing plants can be made in a process based on recycling of such waste plant fiber materials as wheat straw or of such derivative materials as paper and cardboard. Examples of structures that can be made in this way include plant plugs, pots, planter-lining mats, plant fences, and root and shoot barriers. No chemical binders are used in the process. First, the plant material is chopped into smaller particles. The particles are leached with water or steam to remove material that can inhibit plant growth, yielding a fibrous slurry. If the desired structures are plugs or sheets, then the slurry is formed into the desired shapes in a pulp molding subprocess. If the desired structures are root and shoot barriers, pots, or fences, then the slurry is compression-molded to the desired shapes in a heated press. The processed materials in these structures have properties similar to those of commercial pressboard, but unlike pressboard, these materials contain no additives. These structures have been found to withstand one growth cycle, even when wet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumuluru, Jaya Shankar; Conner, Craig C.; Hoover, Amber N.
Biomass from plants can serve as an alternative renewable energy resources for energy production. Low densities of 40–60 kg/m3 for ground lignocellulosic biomass like corn stover limit its operation for energy purposes. The common drawbacks are inefficient transportation, a bigger storage foot print, and handling problems. Densification of biomass using pellet mill helps to overcome these limitations. This study helps to understand the effect of binder on high moisture biomass with a focus on the quality (density and durability), the pelleting efficiency and the specific energy consumption of its pelleting process. Raw corn stover was pelleted at high moisture ofmore » 33% (w.b.) at both varying preheating temperatures and binder percentage. The die speed of the pellet mill was set at 60Hz. The pellets produced were analyzed and showed higher moisture content. They were further dried in a laboratory oven at 70°C for 3-4 hr bringing the pellet moisture to <9%. The dried pellets were evaluated for their physical properties like unit, bulk and tapped density, and durability. Furthermore, the results indicated increasing the binder percentage to 4% improved the physical properties of the pellets and reduced the specific energy consumption. Higher binder addition of 4% reduced the feedstock moisture loss during pelleting to <4%, which can be due reduced residence time of the material in the die. On the other hand the physical properties like density and durability improved significantly with binder addition. At 4% binder and 33% feedstock moisture content, the bulk density and durability values observed were >510 kg/m3 and >98% and the percent fines generation has reduced to <3%. Also at these conditions the specific energy consumption was reduced by about 30-40% compared no binder pelleting test.« less
Tumuluru, Jaya Shankar; Conner, Craig C.; Hoover, Amber N.
2016-06-15
Biomass from plants can serve as an alternative renewable energy resources for energy production. Low densities of 40–60 kg/m3 for ground lignocellulosic biomass like corn stover limit its operation for energy purposes. The common drawbacks are inefficient transportation, a bigger storage foot print, and handling problems. Densification of biomass using pellet mill helps to overcome these limitations. This study helps to understand the effect of binder on high moisture biomass with a focus on the quality (density and durability), the pelleting efficiency and the specific energy consumption of its pelleting process. Raw corn stover was pelleted at high moisture ofmore » 33% (w.b.) at both varying preheating temperatures and binder percentage. The die speed of the pellet mill was set at 60Hz. The pellets produced were analyzed and showed higher moisture content. They were further dried in a laboratory oven at 70°C for 3-4 hr bringing the pellet moisture to <9%. The dried pellets were evaluated for their physical properties like unit, bulk and tapped density, and durability. Furthermore, the results indicated increasing the binder percentage to 4% improved the physical properties of the pellets and reduced the specific energy consumption. Higher binder addition of 4% reduced the feedstock moisture loss during pelleting to <4%, which can be due reduced residence time of the material in the die. On the other hand the physical properties like density and durability improved significantly with binder addition. At 4% binder and 33% feedstock moisture content, the bulk density and durability values observed were >510 kg/m3 and >98% and the percent fines generation has reduced to <3%. Also at these conditions the specific energy consumption was reduced by about 30-40% compared no binder pelleting test.« less
High Gloss Corrosion-Resistant Coatings
1991-08-27
removal and parts by weight of a zinc salt of a substituted benioic certainly saves on manpower that would generally be acid , and 4 to 27 pans by...system consisting essentially of zinc molybdate, zinc salt of benzoic acids , and zinc phosphate in specific ratio’s. The coating exhibits good...polymeric binder and 18 to 70 percent by weight of a pigment system consisting essen- tially of zinc molybdate. zinc salt of benzoic acids , and zinc
Ha, Don-Hyung; Ly, Tiffany; Caron, Joseph M; Zhang, Haitao; Fritz, Kevin E; Robinson, Richard D
2015-11-18
In this work, we demonstrate a general lithium-ion battery electrode fabrication method for colloidal nanoparticles (NPs) using electrophoretic deposition (EPD). Our process is capable of forming robust electrodes from copper sulfide, manganese sulfide, and germanium NPs without the use of additives such as polymeric binders and conductive agents. After EPD, we show two postprocessing treatments ((NH4)2S and inert atmosphere heating) to effectively remove surfactant ligands and create a linked network of particles. The NP films fabricated by this simple process exhibit excellent electrochemical performance as lithium-ion battery electrodes. Additive-free Cu(2-x)S and MnS NP films show well-defined plateaus at ∼1.7 V, demonstrating potential for use as cathode electrodes. Because of the absence of additives in the NP film, this additive-free NP film is an ideal template for ex situ analyses of the particles to track particle morphology changes and deterioration as a result of Li ion cycling. To this end, we perform a size-dependent investigation of Cu(2-x)S NPs and demonstrate that there is no significant relationship between size and capacity when comparing small (3.8 nm), medium (22 nm), and large (75 nm) diameter Cu(2-x)S NPs up to 50 cycles; however, the 75 nm NPs show higher Coulombic efficiency. Ex situ TEM analysis suggests that Cu(2-x)S NPs eventually break into smaller particles (<10 nm), explaining a weak correlation between size and performance. We also report for the first time on additive-free Ge NP films, which show stable capacities for up to 50 cycles at 750 mAh/g.
De, Debojyoti; Dutta, Debajyoti; Kundu, Moloy; Mahato, Sourav; Schiavone, Marc T; Chaudhuri, Surabhi; Giri, Ashok; Gupta, Vidya; Bhattacharya, Sanjoy K
2005-01-01
Background Carbon dioxide fixation bioprocess in reactors necessitates recycling of D-ribulose1,5-bisphosphate (RuBP) for continuous operation. A radically new close loop of RuBP regenerating reactor design has been proposed that will harbor enzyme-complexes instead of purified enzymes. These reactors will need binders enabling selective capture and release of sugar and intermediate metabolites enabling specific conversions during regeneration. In the current manuscript we describe properties of proteins that will act as potential binders in RuBP regeneration reactors. Results We demonstrate specific binding of 3-phosphoglycerate (3PGA) and 3-phosphoglyceraldehyde (3PGAL) from sugar mixtures by inactive mutant of yeast enzymes phosphoglycerate mutase and enolase. The reversibility in binding with respect to pH and EDTA has also been shown. No chemical conversion of incubated sugars or sugar intermediate metabolites were found by the inactive enzymatic proteins. The dissociation constants for sugar metabolites are in the micromolar range, both proteins showed lower dissociation constant (Kd) for 3-phosphoglycerate (655–796 μM) compared to 3-phosphoglyceraldehyde (822–966 μM) indicating higher affinity for 3PGA. The proteins did not show binding to glucose, sucrose or fructose within the sensitivity limits of detection. Phosphoglycerate mutase showed slightly lower stability on repeated use than enolase mutants. Conclusions The sugar and their intermediate metabolite binders may have a useful role in RuBP regeneration reactors. The reversibility of binding with respect to changes in physicochemical factors and stability when subjected to repeated changes in these conditions are expected to make the mutant proteins candidates for in-situ removal of sugar intermediate metabolites for forward driving of specific reactions in enzyme-complex reactors. PMID:15689239
Formula for the Removal and Remediation of Polychlorinated Biphenyls in Painted Structures
NASA Technical Reports Server (NTRS)
Quinn, Jacqueline; Loftin, Kathleen; Geiger, Cherie
2010-01-01
An activated metal treatment system (AMTS) removes and destroys polychlorinated biphenyls (PCBs) found in painted structures or within the binding or caulking material on structures. It may be applied using a "paint-on and wipe-off" process that leaves the structure PCB-free and virtually unaltered in physical form. AMTS is used in conjunction with a solvent solution capable of donating hydrogen atoms. AMTS as a treatment technology has two functions: first, to extract PCBs from the material, and second, to degrade the extracted PCBs. The process for removing PCBs from structures is accomplished as an independent step to the degradation process. The goal is to extract the PCBs out of the paint, without destroying the paint, and to partition the PCBs into an environmentally friendly solvent. The research to date indicates this can be accomplished within the first 24 hours of AMTS contact with the paint. PCBs are extremely hydrophobic and prefer to be in the AMTS over the hardened paint or binder material. The solvent selected must be used to open, but not to destroy, the paint s polymeric lattice structure, allowing pathways for PCB movement out of the paint and into the solvent. A number of solvent systems were tested and are available for use within the AMTS. The second process of the AMTS is the degradation or dehalogenation of the PCBs. The solvent selection for this process is limited to solvents that are capable of donating a hydrogen atom to the PCB structure. Additional AMTS formulation properties that must be addressed for each site-specific application include viscosity and stability. The AMTS must be thick enough to remain where it is applied. Several thickening agents have been tested. Adding a stabilizing agent ensures that the AMTS will not evaporate and leave unprotected, activated metal exposed. During AMTS formulation testing, a number of reagents were evaluated to ensure the rate of dehalogenation was not inhibited by its addition to the system.
Kinetic analysis of an anion exchange absorbent for CO2 capture from ambient air.
Shi, Xiaoyang; Li, Qibin; Wang, Tao; Lackner, Klaus S
2017-01-01
This study reports a preparation method of a new moisture swing sorbent for CO2 capture from air. The new sorbent components include ion exchange resin (IER) and polyvinyl chloride (PVC) as a binder. The IER can absorb CO2 when surrounding is dry and release CO2 when surrounding is wet. The manuscript presents the studies of membrane structure, kinetic model of absorption process, performance of desorption process and the diffusivity of water molecules in the CO2 absorbent. It has been proved that the kinetic performance of CO2 absorption/desorption can be improved by using thin binder and hot water treatment. The fast kinetics of P-100-90C absorbent is due to the thin PVC binder, and high diffusion rate of H2O molecules in the sample. The impressive is this new CO2 absorbent has the fastest CO2 absorption rate among all absorbents which have been reported by other up-to-date literatures.
Kinetic analysis of an anion exchange absorbent for CO2 capture from ambient air
Shi, Xiaoyang; Li, Qibin; Lackner, Klaus S.
2017-01-01
This study reports a preparation method of a new moisture swing sorbent for CO2 capture from air. The new sorbent components include ion exchange resin (IER) and polyvinyl chloride (PVC) as a binder. The IER can absorb CO2 when surrounding is dry and release CO2 when surrounding is wet. The manuscript presents the studies of membrane structure, kinetic model of absorption process, performance of desorption process and the diffusivity of water molecules in the CO2 absorbent. It has been proved that the kinetic performance of CO2 absorption/desorption can be improved by using thin binder and hot water treatment. The fast kinetics of P-100-90C absorbent is due to the thin PVC binder, and high diffusion rate of H2O molecules in the sample. The impressive is this new CO2 absorbent has the fastest CO2 absorption rate among all absorbents which have been reported by other up-to-date literatures. PMID:28640914
Rocket Research at Georgia Tech.
1981-11-01
samples were prepared by dry pressing 30% Valley Met H- 30 aluminum, 7% carnauba wax , and 63% 100 P AP. One sample was prepared using as received H-30, a...Al, and Carnauba wax powders. Sandwiches with aluminum in the binder lamina. Both pre-oxidation and pre-stretching treatments of aluminum particles...two different processes. 1. Dry-pressing powder mixtures in which polymeric binder is replaced by carnauba wax powder. 2. Hand mixing small samples of
Estrogen Receptor Binding Affinity of Food Contact Material Components Estimated by QSAR.
Sosnovcová, Jitka; Rucki, Marián; Bendová, Hana
2016-09-01
The presented work characterized components of food contact materials (FCM) with potential to bind to estrogen receptor (ER) and cause adverse effects in the human organism. The QSAR Toolbox, software application designed to identify and fill toxicological data gaps for chemical hazard assessment, was used. Estrogen receptors are much less of a lock-and-key interaction than highly specific ones. The ER is nonspecific enough to permit binding with a diverse array of chemical structures. There are three primary ER binding subpockets, each with different requirements for hydrogen bonding. More than 900 compounds approved as of FCM components were evaluated for their potential to bind on ER. All evaluated chemicals were subcategorized to five groups with respect to the binding potential to ER: very strong, strong, moderate, weak binder, and no binder to ER. In total 46 compounds were characterized as potential disturbers of estrogen receptor. Among the group of selected chemicals, compounds with high and even very high affinity to the ER binding subpockets were found. These compounds may act as gene activators and cause adverse effects in the organism, particularly during pregnancy and breast-feeding. It should be considered to carry out further in vitro or in vivo tests to confirm their potential to disturb the regulation of physiological processes in humans by abnormal ER signaling and subsequently remove these chemicals from the list of approved food contact materials. Copyright© by the National Institute of Public Health, Prague 2016
Synthesis and Comparison of Two cBN Composites with Starting Ternary Carbide Binders
NASA Astrophysics Data System (ADS)
Yue, Zhenming; Yang, Limin; Gong, Jianhong; Gao, Jun
2018-04-01
Ti3SiC2 and Ti3AlC2 are two promising binders for the ultrahard composite polycrystalline cubic boron nitride (PcBN). In this study, the cBN composites with Ti3SiC2 and Ti3AlC2 binders with different binder contents were synthesized under the same high pressure ( 5.5 GPa) and high temperature (1350 °C) conditions. Their mechanical properties were measured separately, including Vickers hardness, bending hardening, and compression hardening. Together with XRD results, the phase compounds were also investigated. The decomposition and reaction processes were affected by binder content. Some new compounds formed during sintering, these compounds were TiC, TiSi2, SiC, TiB2, SiB4, TiB2, and TiC0.7N0.3 in Ti3SiC2-cBN composites, as well as TiC0.7N0.3, TiB2, and AlN in Ti3AlC2-cBN composites. The microstructure of the cracks surface was obtained after the bending tests, and was used to further investigate and compare their crack mode by SEM. The crack surface profile and elementary analysis on the oxidative surface were also discussed.
High-Performance Screen-Printed Thermoelectric Films on Fabrics
Shin, Sunmi; Kumar, Rajan; Roh, Jong Wook; ...
2017-08-04
Printing techniques could offer a scalable approach to fabricate thermoelectric (TE) devices on flexible substrates for power generation used in wearable devices and personalized thermo-regulation. However, typical printing processes need a large concentration of binder additives, which often render a detrimental effect on electrical transport of the printed TE layers. Here, we report scalable screenprinting of TE layers on flexible fiber glass fabrics, by rationally optimizing the printing inks consisting of TE particles (p-type Bi 0.5Sb 1.5Te 3 or n-type Bi 2Te 2.7Se 0.3), binders, and organic solvents. We identified a suitable binder additive, methyl cellulose, which offers suitable viscositymore » for printability at a very small concentration (0.45–0.60 wt.%), thus minimizing its negative impact on electrical transport. Following printing, the binders were subsequently burnt off via sintering and hot pressing. We found that the nanoscale defects left behind after the binder burnt off became effective phonon scattering centers, leading to low lattice thermal conductivity in the printed n-type material. With the high electrical conductivity and low thermal conductivity, the screen-printed TE layers showed high room-temperature ZT values of 0.65 and 0.81 for p-type and n-type, respectively.« less
High-Performance Screen-Printed Thermoelectric Films on Fabrics.
Shin, Sunmi; Kumar, Rajan; Roh, Jong Wook; Ko, Dong-Su; Kim, Hyun-Sik; Kim, Sang Il; Yin, Lu; Schlossberg, Sarah M; Cui, Shuang; You, Jung-Min; Kwon, Soonshin; Zheng, Jianlin; Wang, Joseph; Chen, Renkun
2017-08-04
Printing techniques could offer a scalable approach to fabricate thermoelectric (TE) devices on flexible substrates for power generation used in wearable devices and personalized thermo-regulation. However, typical printing processes need a large concentration of binder additives, which often render a detrimental effect on electrical transport of the printed TE layers. Here, we report scalable screen-printing of TE layers on flexible fiber glass fabrics, by rationally optimizing the printing inks consisting of TE particles (p-type Bi 0.5 Sb 1.5 Te 3 or n-type Bi 2 Te 2.7 Se 0.3 ), binders, and organic solvents. We identified a suitable binder additive, methyl cellulose, which offers suitable viscosity for printability at a very small concentration (0.45-0.60 wt.%), thus minimizing its negative impact on electrical transport. Following printing, the binders were subsequently burnt off via sintering and hot pressing. We found that the nanoscale defects left behind after the binder burnt off became effective phonon scattering centers, leading to low lattice thermal conductivity in the printed n-type material. With the high electrical conductivity and low thermal conductivity, the screen-printed TE layers showed high room-temperature ZT values of 0.65 and 0.81 for p-type and n-type, respectively.
High-Performance Screen-Printed Thermoelectric Films on Fabrics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Sunmi; Kumar, Rajan; Roh, Jong Wook
Printing techniques could offer a scalable approach to fabricate thermoelectric (TE) devices on flexible substrates for power generation used in wearable devices and personalized thermo-regulation. However, typical printing processes need a large concentration of binder additives, which often render a detrimental effect on electrical transport of the printed TE layers. Here, we report scalable screenprinting of TE layers on flexible fiber glass fabrics, by rationally optimizing the printing inks consisting of TE particles (p-type Bi 0.5Sb 1.5Te 3 or n-type Bi 2Te 2.7Se 0.3), binders, and organic solvents. We identified a suitable binder additive, methyl cellulose, which offers suitable viscositymore » for printability at a very small concentration (0.45–0.60 wt.%), thus minimizing its negative impact on electrical transport. Following printing, the binders were subsequently burnt off via sintering and hot pressing. We found that the nanoscale defects left behind after the binder burnt off became effective phonon scattering centers, leading to low lattice thermal conductivity in the printed n-type material. With the high electrical conductivity and low thermal conductivity, the screen-printed TE layers showed high room-temperature ZT values of 0.65 and 0.81 for p-type and n-type, respectively.« less
Synthesis and Comparison of Two cBN Composites with Starting Ternary Carbide Binders
NASA Astrophysics Data System (ADS)
Yue, Zhenming; Yang, Limin; Gong, Jianhong; Gao, Jun
2018-05-01
Ti3SiC2 and Ti3AlC2 are two promising binders for the ultrahard composite polycrystalline cubic boron nitride (PcBN). In this study, the cBN composites with Ti3SiC2 and Ti3AlC2 binders with different binder contents were synthesized under the same high pressure ( 5.5 GPa) and high temperature (1350 °C) conditions. Their mechanical properties were measured separately, including Vickers hardness, bending hardening, and compression hardening. Together with XRD results, the phase compounds were also investigated. The decomposition and reaction processes were affected by binder content. Some new compounds formed during sintering, these compounds were TiC, TiSi2, SiC, TiB2, SiB4, TiB2, and TiC0.7N0.3 in Ti3SiC2-cBN composites, as well as TiC0.7N0.3, TiB2, and AlN in Ti3AlC2-cBN composites. The microstructure of the cracks surface was obtained after the bending tests, and was used to further investigate and compare their crack mode by SEM. The crack surface profile and elementary analysis on the oxidative surface were also discussed.
Fukui, Atsuko; Fujii, Ryuta; Yonezawa, Yorinobu; Sunada, Hisakazu
2004-03-01
The release properties of phenylpropanolamine hydrochloride (PPA) from ethylcellulose (EC) matrix granules prepared by an extrusion granulation method were examined. The release process could be divided into two parts; the first and second stages were analyzed by applying square-root time law and cube-root law equations, respectively. The validity of the treatments was confirmed by the fitness of a simulation curve with the measured curve. In the first stage, PPA was released from the gel layer of swollen EC in the matrix granules. In the second stage, the drug existing below the gel layer dissolved and was released through the gel layer. The effect of the binder solution on the release from EC matrix granules was also examined. The binder solutions were prepared from various EC and ethanol (EtOH) concentrations. The media changed from a good solvent to a poor solvent with decreasing EtOH concentration. The matrix structure changed from loose to compact with increasing EC concentration. The preferable EtOH concentration region was observed when the release process was easily predictable. The time and release ratio at the connection point of the simulation curves were also examined to determine the validity of the analysis.
An Experimental Study of Briquetting Process of Torrefied Rubber Seed Kernel and Palm Oil Shell.
Hamid, M Fadzli; Idroas, M Yusof; Ishak, M Zulfikar; Zainal Alauddin, Z Alimuddin; Miskam, M Azman; Abdullah, M Khalil
2016-01-01
Torrefaction process of biomass material is essential in converting them into biofuel with improved calorific value and physical strength. However, the production of torrefied biomass is loose, powdery, and nonuniform. One method of upgrading this material to improve their handling and combustion properties is by densification into briquettes of higher density than the original bulk density of the material. The effects of critical parameters of briquetting process that includes the type of biomass material used for torrefaction and briquetting, densification temperature, and composition of binder for torrefied biomass are studied and characterized. Starch is used as a binder in the study. The results showed that the briquette of torrefied rubber seed kernel (RSK) is better than torrefied palm oil shell (POS) in both calorific value and compressive strength. The best quality of briquettes is yielded from torrefied RSK at the ambient temperature of briquetting process with the composition of 60% water and 5% binder. The maximum compressive load for the briquettes of torrefied RSK is 141 N and the calorific value is 16 MJ/kg. Based on the economic evaluation analysis, the return of investment (ROI) for the mass production of both RSK and POS briquettes is estimated in 2-year period and the annual profit after payback was approximately 107,428.6 USD.
2008-04-29
An exhaust hood is necessary for binder removal. Cooling requires a fan at a second speed setpoint . Firing profiles need to be precisely...29,935.06 from Ohio match. Plasmalab 80 Plus Compact etching system (left) and heater/ chiller unit (right). CAHN TherMax 500 High Pressure TGA...the current research is aimed to optimize parameters of the structure, in order to improve the resonant properties of the periodic layered structures
Superhydrophobic diatomaceous earth
Simpson, John T [Clinton, TN; D& #x27; Urso, Brian R [Clinton, TN
2012-07-10
A superhydrophobic powder is prepared by coating diatomaceous earth (DE) with a hydrophobic coating on the particle surface such that the coating conforms to the topography of the DE particles. The hydrophobic coating can be a self assembly monolayer of a perfluorinated silane coupling agent. The DE is preferably natural-grade DE where organic impurities have been removed. The superhydrophobic powder can be applied as a suspension in a binder solution to a substrate to produce a superhydrophobic surface on the substrate.
Laser Induced Polymerization Reactions in Solid Propellant Binders.
1982-06-18
were -then evacuated in a glass vacuum desiccatbr to remove dissolved air and then opened to the atmosphere. Some samples were run under a nitrogen or...diacetate solution was prepared using acetonitrile as solvent. Molar absorbtivities at 266 and 355 nm for l,l’-ferrocenedicarboxylic acid were obtained with...increasing order of the electron withdrawing ability of the groups attached to the ferrocene ring. The order is as shown. r l,l’-Ferrocenedicarboxylic Acid
Fabrication of metallic microstructures by micromolding nanoparticles
Morales, Alfredo M.; Winter, Michael R.; Domeier, Linda A.; Allan, Shawn M.; Skala, Dawn M.
2002-01-01
A method is provided for fabricating metallic microstructures, i.e., microcomponents of micron or submicron dimensions. A molding composition is prepared containing an optional binder and nanometer size (1 to 1000 nm in diameter) metallic particles. A mold, such as a lithographically patterned mold, preferably a LIGA or a negative photoresist mold, is filled with the molding composition and compressed. The resulting microstructures are then removed from the mold and the resulting metallic microstructures so provided are then sintered.
Mechanical Properties and Eco-Efficiency of Steel Fiber Reinforced Alkali-Activated Slag Concrete
Kim, Sun-Woo; Jang, Seok-Joon; Kang, Dae-Hyun; Ahn, Kyung-Lim; Yun, Hyun-Do
2015-01-01
Conventional concrete production that uses ordinary Portland cement (OPC) as a binder seems unsustainable due to its high energy consumption, natural resource exhaustion and huge carbon dioxide (CO2) emissions. To transform the conventional process of concrete production to a more sustainable process, the replacement of high energy-consumptive PC with new binders such as fly ash and alkali-activated slag (AAS) from available industrial by-products has been recognized as an alternative. This paper investigates the effect of curing conditions and steel fiber inclusion on the compressive and flexural performance of AAS concrete with a specified compressive strength of 40 MPa to evaluate the feasibility of AAS concrete as an alternative to normal concrete for CO2 emission reduction in the concrete industry. Their performances are compared with reference concrete produced using OPC. The eco-efficiency of AAS use for concrete production was also evaluated by binder intensity and CO2 intensity based on the test results and literature data. Test results show that it is possible to produce AAS concrete with compressive and flexural performances comparable to conventional concrete. Wet-curing and steel fiber inclusion improve the mechanical performance of AAS concrete. Also, the utilization of AAS as a sustainable binder can lead to significant CO2 emissions reduction and resources and energy conservation in the concrete industry. PMID:28793639
NASA Astrophysics Data System (ADS)
Tovpinets, A. O.; Leytsin, V. N.; Dmitrieva, M. A.; Ivonin, I. V.; Ponomarev, S. V.
2017-12-01
The solution of the tasks in the field of creating and processing materials for additive technologies requires the development of a single theory of materials for various applications and processes. A separate class of materials that are promising for use in additive technologies includes materials whose consolidation is ensured by the presence of low-melting components in the initial mixture which form a matrix at a temperature not exceeding the melting point, recrystallization or destruction of any of the responsible refractory components of the initial dispersion. The study of the contribution of the binder thermal destruction to the structure and phase composition of the initial compact of the future composite is essential for the development of modern technologies for the synthesis of low-temperature ceramics. This paper investigates the effect of the thermal destruction of a binder on the formation of a green compact of low-temperature ceramics and the structural-mechanical characteristics of sintered ceramics. The approach proposed in Ref. [1] for evaluating the structure and physical characteristics of sintered low-temperature ceramics is improved to clarify the structure of green compacts obtained after thermal destruction of the polymer binder, with taking into account the pores formed and the infusible residue. The obtained results enable a more accurate prediction of thermal stresses in the matrix of sintered ceramics and serve as a basis for optimization.
Exploration of G-quadruplex function in c-Myb gene and its transcriptional regulation by topotecan.
Li, Fangyuan; Zhou, Jiang; Xu, Ming; Yuan, Gu
2018-02-01
Our bioinformatics research shows that there are four G-rich sequences (S1-S4) in the upstream region of the transcription start site of c-Myb gene, and we have proved that these sequences have the ability to form G-quadruplex structures. This work mainly focuses on G-quadruplex function, recognition and transcription regulation in c-Myb gene, revealing a novel regulatory element in c-Myb proximal promoter region, and its transcription regulation by G-quadruplex binder. The research has identified that the enhancer effect in c-Myb transcription was primarily affected by the G-quadruplex formed by S1 sequence, and the up-regulation effect may due to the removal of repressive progress of MZF-1 by stabilizing G-quadruplex. Attentions were being paid to the development of G-quadruplex binders for selective recognition, and topotecan was found to have high binding affinity in vitro and could effectively affect the c-Myb transcription activities in cells. The regulation of G-quadruplex with binders in transcriptional, translational levels by Q-RT-PCR and western blot was in expectation of providing a strategy for gene expression modulation. In conclusion, our study revealed a G-quadruplex structure in c-Myb proximal promoter region, which was of great importance in the regulation of c-Myb function. Copyright © 2017 Elsevier B.V. All rights reserved.
Organic materials for ceramic molding processes
NASA Technical Reports Server (NTRS)
Saito, K.
1984-01-01
Ceramic molding processes are examined. Binders, wetting agents, lubricants, plasticizers, surface active agents, dispersants, etc., for pressing, rubber pressing, sip casting, injection casting, taping, extrusion, etc., are described, together with forming machines.
Method for sealing an oxygen transport membrane assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, Javier E.; Grant, Arthur F.
An improved method of sealing a ceramic part to a solid part made of ceramic, metal, cermet or a ceramic coated metal is provided. The improved method includes placing a bond agent comprising an Al 2O 3 and SiO 2 based glass-ceramic material and organic binder material on adjoining surfaces of the ceramic part and the solid part. The assembly is heated to a first target temperature that removes or dissolves the organic binder material from the bond agent and the assembly is subjected to a second induction heating step at a temperature ramp rate of between about 100.degree. C.more » and 200.degree. C. per minute to temperatures where the glass-ceramic material flows and wets the interface between adjoining surfaces. The assembly is rapidly cooled at a cooling rate of about 140.degree. C. per minute or more to induce nucleation and re-crystallization of the glass-ceramic material to form a dense, durable and gas-tight seal.« less
Mužíková, Jitka; Srbová, Alena; Svačinová, Petra
2017-12-01
This paper deals with a study of the novel coprocessed dry binder Combilac®, which contains 70% of α-lactose monohydrate, 20% of microcrystalline cellulose and 10% of native corn starch. These tests include flow properties, compressibility, lubricant sensitivity, tensile strength and disintegration time of tablets. Compressibility is evaluated by means of the energy profile of compression process, test of stress relaxation and tablet strength. The above-mentioned parameters are also evaluated in the physical mixture of α-lactose monohydrate, microcrystalline cellulose and native corn starch and compared with Combilac. Combilac shows much better flowability than the physical mixture of the used dry binders. Its compressibility is better, tablets possess a higher tensile strength. Neither Combilac, nor the physical mixture can be compressed without lubricants due to high friction and sticking to the matrix. Combilac has a higher lubricant sensitivity than the physical mixture of the dry binders. Disintegration time of Combilac tablets is comparable with the disintegration time of tablets made from the physical mixture.
Thompson, Stephanie; Manns, Braden; Lloyd, Anita; Hemmelgarn, Brenda; MacRae, Jennifer; Klarenbach, Scott; Unsworth, Larry; Courtney, Mark; Tonelli, Marcello
2017-05-01
Dietary restriction and phosphate binders are the main interventions used to manage hyperphosphatemia in people on hemodialysis, but have limited efficacy. Modifying conventional dialysis regimens to enhance phosphate clearance as an alternative approach remains relatively unstudied. This was a 10-week, 2-arm, randomized crossover study. Participants were prevalent dialysis patients ( n = 32) with consecutive serum phosphate levels >1.6 mmol/L and on stable doses of a phosphate binder. Following a 2-week run-in period, participants were randomized to initiate dialysis using two high flux dialyzers in parallel (blood flow ≥350 mL/min, dialysate flow 800 mL/min) or standard dialysis using one high flux dialyzer (blood flow ≥350 mL/min, dialysate flow of 800 mL/min). Each regimen was 3 weeks in duration. After a 2-week washout period, participants received the alternate regimen. The primary outcome was the mean difference in phosphate clearance by dialyzer strategy. Secondary outcomes were phosphate removal and pre-dialysis serum phosphate. Phosphate clearance for the double dialyzer strategy did not differ significantly from the single dialyzer strategy [mean difference 7.5 mL/min (95% confidence interval, 95% CI, -6.1, 21.0), P = 0.28]. There was no difference in total phosphate removal and pre-dialysis phosphate between the double and single dialyzer strategies [total phosphate removal mean difference -0.2 mmol (95% CI -4.1, 3.7), P = 0.93; pre-dialysis mean difference 0.01 mmol/L (95% CI -0.18, 0.21), P = 0.88]. There was no difference in the proportion of participants who experienced at least one episode of intradialytic hypotension (32 versus 47%, P = 0.13). A limitation of the study was frequent protocol deviations in the dialysis prescription. In this study, the use of two dialyzers in parallel did not increase phosphate clearance, phosphate removal or pre-dialysis serum phosphorus when compared with a standard dialysis treatment strategy. Future studies should continue to evaluate novel methods of phosphate removal using conventional hemodialysis. © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
REFRACTORY ARTICLE AND PROCESS OF MANUFACTURING SAME
Hamilton, N.E.
1957-12-10
A method is described for fabricating improved uranium oxide crucibles. In the past, such crucibles have lacked mechanical strength due to the poor cohesion of the uranium oxide particles. This difficulty has now been overcome by admixing with the uranium oxide a quantity of a refractory oxide binder, and dry pressing and sintering the resulting mixture into the desired shape. Suitable as binders are BeO, CaO, Al/sub 2/C/sub 3/, and ThO/sub 2/ among others.
Method Of Characterizing An Electrode Binder
Cocciantelli, Jean-Michel; Coco, Isabelle; Villenave, Jean-Jacques
1999-05-11
In a method of characterizing a polymer binder for cell electrodes in contact with an electrolyte and including a current collector and a paste containing an electrochemically active material and said binder, a spreading coefficient of the binder on the active material is calculated from the measured angle of contact between standard liquids and the active material and the binder, respectively. An interaction energy of the binder with the electrolyte is calculated from the measured angle of contact between the electrolyte and the binder. The binder is selected such that the spreading coefficient is less than zero and the interaction energy is at least 60 mJ/m.sup.2.
Possibility of Coal Combustion Product Conditioning
NASA Astrophysics Data System (ADS)
Błaszczyński, Tomasz Z.; Król, Maciej R.
2018-03-01
This paper is focused on properties of materials known as green binders. They can be used to produce aluminium-siliceous concrete and binders known also as geopolymers. Comparing new ecological binders to ordinary cements we can see huge possibility of reducing amount of main greenhouse gas which is emitted to atmosphere by 3 to even 10 times depending of substrate type used to new green material production. Main ecological source of new materials obtaining possibility is to use already available products which are created in coal combustion and steel smelting process. Most of them are already used in many branches of industry. They are mostly civil engineering, chemistry or agriculture. Conducted research was based on less popular in civil engineering fly ash based on lignite combustion. Materials were examine in order to verify possibility of obtaining hardened mortars based of different factors connected with process of geopolymerization, which are temperature, amount of reaction reagent and time of heat treatment. After systematizing the matrices for the basic parameters affecting the strength of the hardened mortars, the influence of the fly ash treatment for increasing the strength was tested.
NASA Astrophysics Data System (ADS)
Choudhury, Nurul A.; Ma, Jia; Sahai, Yogeshwar; Buchheit, Rudolph G.
Novel, cost-effective, high-performance, and environment-friendly electrode binders, comprising polyvinyl alcohol chemical hydrogel (PCH) and chitosan chemical hydrogel (CCH), are reported for direct borohydride fuel cells (DBFCs). PCH and CCH binders-based electrodes have been fabricated using a novel, simple, cost-effective, time-effective, and environmentally benign technique. Morphologies and electrochemical performance in DBFCs of the chemical hydrogel binder-based electrodes have been compared with those of Nafion ® binder-based electrodes. Relationships between the performance of binders in DBFCs with structural features of the polymers and the polymer-based chemical hydrogels are discussed. The CCH binder exhibited better performance than a Nafion ® binder whereas the PCH binder exhibited comparable performance to Nafion ® in DBFCs operating at elevated cell temperatures. The better performance of CCH binder at higher operating cell temperatures has been ascribed to the hydrophilic nature and water retention characteristics of chitosan. DBFCs employing CCH binder-based electrodes and a Nafion ®-117 membrane as an electrolyte exhibited a maximum peak power density of about 589 mW cm -2 at 70 °C.
Iwao, Yasunori; Kimura, Shin-Ichiro; Ishida, Masayuki; Mise, Ryohei; Yamada, Masaki; Namiki, Noriyuki; Noguchi, Shuji; Itai, Shigeru
2015-01-01
The manufacture of highly drug-loaded fine globular granules eventually applied for orally disintegrating tablets has been investigated using a unique multi-functional rotor processor with acetaminophen, which was used as a model drug substance. Experimental design and statistical analysis were used to evaluate potential relationships between three key operating parameters (i.e., the binder flow rate, atomization pressure and rotating speed) and a series of associated micromeritics (i.e., granule mean size, proportion of fine particles (106-212 µm), flowability, roundness and water content). The results of multiple linear regression analysis revealed several trends, including (1) the binder flow rate and atomization pressure had significant positive and negative effects on the granule mean size value, Carr's flowability index, granular roundness and water content, respectively; (2) the proportion of fine particles was positively affected by the product of interaction between the binder flow rate and atomization pressure; and (3) the granular roundness was negatively and positively affected by the product of interactions between the binder flow rate and the atomization pressure, and the binder flow rate and rotating speed, respectively. The results of this study led to the identification of optimal operating conditions for the preparation of granules, and could therefore be used to provide important information for the development of processes for the manufacture of highly drug-loaded fine globular granules.
Durable zinc oxide-containing sorbents for coal gas desulfurization
Siriwardane, Ranjani V.
1996-01-01
Durable zinc-oxide containing sorbent pellets for removing hydrogen sulfide from a gas stream at an elevated temperature are made up to contain titania as a diluent, high-surface-area silica gel, and a binder. These materials are mixed, moistened, and formed into pellets, which are then dried and calcined. The resulting pellets undergo repeated cycles of sulfidation and regeneration without loss of reactivity and without mechanical degradation. Regeneration of the pellets is carried out by contacting the bed with an oxidizing gas mixture.
1992-06-25
SD. The CFA/ll microsphere vaccine (Lot 74F2) percent water content was found using the Karl Fischer titrimeter method to be 2.154% using triplicate...cooling of the reaction is necessary. Under prior synthetic methods the removal of heat has been the rate limiting step, thus necessitating several...Janine I 471 Bhattacharya, P.K. See Tober, Richard L. III 221 Billingsley, Daniel See Watkins, Wendell R. III 275 Binder, Michael Method for Increasing
Kinetic calculations of explosives with slow-burning constituents
NASA Astrophysics Data System (ADS)
Howard, W. Michael; Souers, P. Clark; Fried, Laurence E.
1998-07-01
The equilibrium thermochemical code CHEETAH V1.40 has been modified to detonate part of the explosive and binder. An Einstein thermal description of the unreacted constituents is used, and the Einstein temperature may be increased to reduce heat absorption. We study the effect of the reactivity and thermal transport on the detonation velocity. Hydroxy-terminated-polybutadiene binders have low energy and density and would degrade the detonation velocity if they burned. Runs with unburned binder are closer to the measured values. Aluminum and ammonium perchlorate are also largely unburned within the sonic reaction zone that determines the detonation velocity. All three materials appear not to fully absorb heat as well. The normal assumption of total reaction in a thermochemical code is clearly not true for these special cases, where the detonation velocities have widely different values for different combinations of processes.
Calvano, Cosima Damiana; van der Werf, Inez Dorothé; Palmisano, Francesco; Sabbatini, Luigia
2015-01-01
Direct on-target plate processing of small (ca. 100 μg) fragments of paint samples for MALDI-MS identification of lipid- and protein-based binders is described. Fragments were fixed on a conventional stainless steel target plate by colloidal graphite followed by in situ fast tryptic digestion and matrix addition. The new protocol was first developed on paint replicas composed of chicken egg, collagen, and cow milk mixed with inorganic pigments and then successfully applied on historical paint samples taken from a fifteenth century Italian panel painting. The present work contributes a step forward in the simplification of binder identification in very small paint samples since no conventional solvent extraction is required, speeding up the whole sample preparation to 10 min and reducing lipid/protein loss.
NASA Astrophysics Data System (ADS)
Susilowati, Agustine; Melanie, Hakiki; Maryati, Yati; Aspiyanto
2017-01-01
Fermentation of Lactobacillus Acid Bacteria (LAB) which are mixtures of Lactobacillus acidophilus, Bifidobacteriumbifidum, Lactobacillus bulgaricus and Streptococcus thermophillus on hydrolysate as a result of inulin hydrolysis using inulinase enzymes obtained from endophytic fungi ofScopulariopsis sp.-CBS1 (inulin hydrolysate of S) and Class of Deuteromycetes-CBS4 (inulin hydrolysate of D) generate potential fermented inulin fiber as cholesterol binder. Fermentation process was conducted under concentrations of inulin hydrolysate 50% (w/v), LAB 15% (v/v) and skim milk 12.5% (w/v) at room temperature and 40°C for 0, 12, 24, 36 and 48 hours, respectively. Result of experimental work showed that longer time of LAB fermentation increased total acids, TPC and CBC at pH 2, but decreased total sugar, reducing, IDF, SDF, CBC pH 2 and CBC pH 7. Based on Cholesterol Binding Capacity (CBC), optimization of fermentation process on inulin hydrolysate of S was achieved by combining treatment at 40°C for 24 hours resulted in CBC pH 2 of 19.11 mg/g TDF and inulin hydrolysate of D was achieved by fermentation at 40 °C for 48 hours resulted in CBC pH 2 of 24.28 mg/g TDF. Inulin hydrolysate of class of Deutrymecetes CBS4 fermented by LAB had better functional property as cholesterol binder than that inulin hydrolysate of S fermented by LAB. This is due to cholesterol binder and cholesterol derivatives as a result of degradation of LAB on digestive system (stomach) when compared to higher colon under optimal process condition.
Evaluation of hybrid binder for use in surface mixtures in Florida : final report, June 2009.
DOT National Transportation Integrated Search
2009-06-01
Binder and mixture tests were performed to evaluate the relative performance of a PG 67-22 base binder and six other commercially available binders produced by modifying the same base binder with the following modifiers: one Styrene Butadiene Styrene...
Wang, Yan-Shuai; Dai, Jian-Guo; Wang, Lei; Tsang, Daniel C W; Poon, Chi Sun
2018-01-01
Inorganic binder-based stabilization/solidification (S/S) of Pb-contaminated soil is a commonly used remediation approach. This paper investigates the influences of soluble Pb species on the hydration process of two types of inorganic binders: ordinary Portland cement (OPC) and magnesium potassium phosphate cement (MKPC). The environmental leachability, compressive strength, and setting time of the cement products are assessed as the primary performance indicators. The mechanisms of Pb involved in the hydration process are analyzed through X-ray diffraction (XRD), hydration heat evolution, and thermogravimetric analyses. Results show that the presence of Pb imposes adverse impact on the compressive strength (decreased by 30.4%) and the final setting time (prolonged by 334.7%) of OPC, but it exerts much less influence on those of MKPC. The reduced strength and delayed setting are attributed to the retarded hydration reaction rate of OPC during the induction period. These results suggest that the OPC-based S/S of soluble Pb mainly depends on physical encapsulation by calcium-silicate-hydrate (CSH) gels. In contrast, in case of MKPC-based S/S process, chemical stabilization with residual phosphate (pyromorphite and lead phosphate precipitation) and physical fixation of cementitious struvite-K are the major mechanisms. Therefore, MKPC is a more efficient and chemically stable inorganic binder for the Pb S/S process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Polyamidoamine dendrimer-based binders for high-loading lithium–sulfur battery cathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharya, Priyanka; Nandasiri, Manjula I.; Lv, Dongping
2016-01-01
Lithium-sulfur (Li-S) batteries are regarded as one of the most promising candidates for next generation energy storage systems because of their ultra high theoretical specific energy. To realize the practical application of Li-S batteries, however, a high S active material loading is essential (>70 wt% in the carbon-sulfur (C-S) composite cathode and >2 mg cm-2 in the electrode). A critical challenge to achieving this high capacity in practical electrodes is the dissolution of the longer lithium polysulfide reaction intermediates in the electrolyte (resulting in loss of active material from the cathode and contamination of the anode due to the polysulfidemore » shuttle mechanism). The binder material used for the cathode is therefore crucial as this is a key determinant of the bonding interactions between the active material (S) and electronic conducting support (C), as well as the maintenance of intimate contact between the electrode materials and current collector. The battery performance can thus be directly correlated with the choice of binder, but this has received only minimal attention in the relevant Li-S battery published literature. Here, we investigated the application of polyamidoamine (PAMAM) dendrimers as functional binders in Li-S batteries—a class of materials which has been unexplored for electrode design. By using dendrimers, it is demonstrated that high S loadings (>4 mg cm-2) can be easily achieved using "standard" (not specifically tailored) materials and simple processing methods. An exceptional electrochemical cycling performance was obtained (as compared to cathodes with conventional linear polymeric binders such as carboxymethyl cellulose (CMC) and styrene-butadiene rubber (SBR)) with >100 cycles and 85-98% capacity retention, thus demonstrating the significant utility of this new binder architecture which exhibits critical physicochemical properties and flexible nanoscale design parameters (CNDP's).« less
Assessments of low emission asphalt mixtures produced using combinations of foaming agents
NASA Astrophysics Data System (ADS)
Mohd Hasan, Mohd Rosli
The asphalt foaming techniques have been used over the last couple of decades as an alternative to the traditional method of preparing asphalt mixtures. Based on positive feedback from the industry, this study was initiated to explore and evaluate the performance of the Warm Mix Asphalt (WMA) mixture produced through a foaming process using physical and chemical foaming agents, which are ethanol and sodium bicarbonate (NaHCO3), respectively. The success of this project may lead to new theories and provide an environmentally friendly technique to produce asphalt mixtures. This may advance the understanding of the foaming process and improve the performance of WMA to support sustainable development. Theoretically, ethanol can function in the same manner as water but requires less energy to foam due to its lower boiling point, 78°C. During the asphalt foaming process, numerous bubbles were generated by the vaporized ethanol, which significantly increased the volume of the asphalt binder, hence the coating potential of aggregates improves. The sodium bicarbonate was incorporated to enhance the quantity of bubbles and its stability. Therefore, understanding foaming agents, their solubility, chemical reactions, chemical function groups and rheological properties of the foamed binder are essential to help control the foam structure and final properties of the foamed WMA mixture. In order to understand the overall performance of newly developed foaming WMA, this material was evaluated for moisture susceptibility, rutting potential, and resistance to fracture and thermal cracking. The coatability, workability and compactability of foamed asphalt mixtures during production were also evaluated. Based on the results, it was found that the newly proposed foaming WMA has high potential to promote sustainable development by lowering the energy consumption and impacts on the environment. The ethanol is efficient in lowering the viscosity of asphalt binders, enhancing the workability, and having a higher expulsion rate from the foamed binder compared to water as a foaming agent. The addition of foaming agents to the asphalt binder has also lowered the activation energy of the asphalt binder, which has high potential in lowering the energy demand during production processes. The foamed WMA mixture prepared at 100°C was found to have behavior comparable with the control Hot Mix Asphalt (HMA) prepared at 155°C in terms of coatability, workability and compactability. Based on the mixture performance tests, the foamed WMA has a comparable or better performance than the HMA in terms of resistance to moisture damage, permanent deformation, fracture cracking and thermal cracking. The application of nano-hydrated lime is efficient in enhancing the aggregate coatability and improving the bearing capacity of asphalt pavement to lower the rutting potential and moisture susceptibility of foamed WMA mixtures. Limitations for each of the related parameters are also reported in this dissertation for the lab production of foamed WMA mixtures using ethanol and NaHCO 3 as foaming agents. The specified values were made based on the binder test, service characteristics and performance of foamed WMA mixtures in order to yield a comparable or better performance than the control HMA. Field validations should be carried out to understand the overall performance and durability of the proposed foaming WMA.
Papp, Joseph K.; Forster, Jason D.; Burke, Colin M.; ...
2017-02-27
We show that a common Li–O 2 battery cathode binder, poly(vinylidene fluoride) (PVDF), degrades in the presence of reduced oxygen species during Li–O 2 discharge when adventitious impurities are present. This degradation process forms products that exhibit Raman shifts (~1133 and 1525 cm –1) nearly identical to those reported to belong to lithium superoxide (LiO 2), complicating the identification of LiO 2 in Li–O 2 batteries. We show that these peaks are not observed when characterizing extracted discharged cathodes that employ poly(tetrafluoroethylene) (PTFE) as a binder, even when used to bind iridium-decorated reduced graphene oxide (Ir-rGO)-based cathodes similar to thosemore » that reportedly stabilize bulk LiO 2 formation. We confirm that for all extracted discharged cathodes on which the 1133 and 1525 cm –1 Raman shifts are observed, only a 2.0 e –/O 2 process is identified during the discharge, and lithium peroxide (Li 2O 2) is predominantly formed (along with typical parasitic side product formation). In conclusion, our results strongly suggest that bulk, stable LiO 2 formation via the 1 e –/O 2 process is not an active discharge reaction in Li–O 2 batteries.« less
Kim, Yohan; Bae, Jiyeol; Park, Hosik; Suh, Jeong-Kwon; You, Young-Woo; Choi, Heechul
2016-09-15
A new and facile one-step synthesis method for preparing granulated mesoporous carbon (GMC) with three-dimensional spherical mesoporous symmetry is prepared to remove large molecular weight organic compounds in aqueous phase. GMC is synthesized in a single step using as-synthesized mesoporous carbon particles and organic binders through a simple and economical synthesis approach involving a simultaneous calcination and carbonization process. Characterization results obtained from SEM, XRD, as well as surface and porosity analysis indicate that the synthesized GMC has similar physical properties to those of the powdered mesoporous carbon and maintains the Brunauer-Emmett-Teller (BET) surface area and pore volume because the new synthesis method prevents the collapse of the pores during the granulation process. Batch adsorption experiments revealed GMC showed a substantial adsorption capacity (202.8 mg/g) for the removal of methyl violet as a target large molecular contaminant in aqueous phase. The mechanisms and dynamics modeling of GMC adsorption were also fully examined, which revealed that surface diffusion was rate limiting step on adsorption process of GMC. Adsorption kinetics of GMC enables 3 times faster than that of granular activated carbon in terms of surface diffusion coefficient. This is the first study, to the best of our knowledge, to synthesize GMC as an adsorbent for water purification by using facile granulation method and to investigate the adsorption kinetics and characteristics of GMC. This study introduces a new and simple method for the synthesis of GMC and reveals its adsorption characteristics for large molecular compounds in a water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
14 CFR 198.15 - Non-premium insurance-payment of registration binders.
Code of Federal Regulations, 2013 CFR
2013-01-01
...—payment of registration binders. (a) The binder for initial registration is $575 for each aircraft or... registration binders. 198.15 Section 198.15 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... addition of an aircraft or insurable item must be accompanied by the binder for each aircraft and insurable...
14 CFR 198.15 - Non-premium insurance-payment of registration binders.
Code of Federal Regulations, 2011 CFR
2011-01-01
...—payment of registration binders. (a) The binder for initial registration is $575 for each aircraft or... registration binders. 198.15 Section 198.15 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... addition of an aircraft or insurable item must be accompanied by the binder for each aircraft and insurable...
14 CFR 198.15 - Non-premium insurance-payment of registration binders.
Code of Federal Regulations, 2010 CFR
2010-01-01
...—payment of registration binders. (a) The binder for initial registration is $575 for each aircraft or... registration binders. 198.15 Section 198.15 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... addition of an aircraft or insurable item must be accompanied by the binder for each aircraft and insurable...
14 CFR 198.15 - Non-premium insurance-payment of registration binders.
Code of Federal Regulations, 2014 CFR
2014-01-01
...—payment of registration binders. (a) The binder for initial registration is $575 for each aircraft or... registration binders. 198.15 Section 198.15 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... addition of an aircraft or insurable item must be accompanied by the binder for each aircraft and insurable...
Microfluidic Synthesis of Ca-Alginate Microcapsules for Self-Healing of Bituminous Binder.
Shu, Benan; Wu, Shaopeng; Dong, Lijie; Wang, Qing; Liu, Quantao
2018-04-19
This work aims to develop an original alginate micro-emulsion combining with droplets microfluidic method to produce multinuclear Ca-alginate microcapsules containing rejuvenator for the self-healing of bituminous binder. The sizes of the Ca-alginate microcapsules could be easily controlled by tuning flow rates of the continuous and dispersed phases. The addition of a surfactant Tween80 not only improved the stability of the emulsion, but it also effectively reduced the size of the microcapsules. Size predictive mathematical model of the microcapsules was proposed through the analysis of fluid force. Optical microscope and remote Fourier infrared test confirmed the multinuclear structure of Ca-alginate microcapsules. Thermogravimetric analysis showed that the microcapsules coated with nearly 40% rejuvenator and they remained intact during the preparation of bitumen specimen at 135 °C. Micro self-healing process of bituminous binder with multinuclear Ca-alginate microcapsules containing rejuvenator was monitored and showed enhanced self-healing performance. Tensile stress-recovery test revealed that the recovery rate increased by 32.08% (in the case of 5% microcapsules), which meant that the Ca-alginate microcapsules containing rejuvenator could effectively enhance the self-healing property of bituminous binder.
Durability of cement and geopolimer composites
NASA Astrophysics Data System (ADS)
Błaszczyński, T.; Król, M.
2017-10-01
Concrete structures are constantly moving in the direction of improving the durability. This main feature depends on many factors, which are the composition of concrete mix, the usage of additives and admixtures and the place, where material will work and carry the load. The introduction of new geopolymer binders for geopolymer structures adds a new aspect that is type of used activator. This substance with strongly alkaline reaction is divided because of the physical state, the alkaline degree and above all the chemical composition. Taking into account, that at present the geopolymer binders are made essentially from waste materials or by products from the combustion of coal or iron ore smelting, unambiguous determination of the effect of the activator on the properties of the geopolymer material requires a number of trials, researches and observation. This paper shows the influence of the most alkaline activators on the basic parameters of the durability of geopolymer binders. In this study there were used a highly alkaline hydroxides, water glasses and granules, which are waste materials in a variety of processes taking place in a chemical plants. As the substrate of geopolymer binders there were used fly ash which came from coal and high calcium ash from the burning of lignite.
NASA Astrophysics Data System (ADS)
Burganos, Vasilis N.; Skouras, Eugene D.; Kalarakis, Alexandros N.
2017-10-01
The lattice-Boltzmann (LB) method is used in this work to reproduce the controlled addition of binder and hydrophobicity-promoting agents, like polytetrafluoroethylene (PTFE), into gas diffusion layers (GDLs) and to predict flow permeabilities in the through- and in-plane directions. The present simulator manages to reproduce spreading of binder and hydrophobic additives, sequentially, into the neat fibrous layer using a two-phase flow model. Gas flow simulation is achieved by the same code, sidestepping the need for a post-processing flow code and avoiding the usual input/output and data interface problems that arise in other techniques. Compression effects on flow anisotropy of the impregnated GDL are also studied. The permeability predictions for different compression levels and for different binder or PTFE loadings are found to compare well with experimental data for commercial GDL products and with computational fluid dynamics (CFD) predictions. Alternatively, the PTFE-impregnated structure is reproduced from Scanning Electron Microscopy (SEM) images using an independent, purely geometrical approach. A comparison of the two approaches is made regarding their adequacy to reproduce correctly the main structural features of the GDL and to predict anisotropic flow permeabilities at different volume fractions of binder and hydrophobic additives.
Observation of asphalt binder microstructure with ESEM.
Mikhailenko, P; Kadhim, H; Baaj, H; Tighe, S
2017-09-01
The observation of asphalt binder with the environmental scanning electron microscope (ESEM) has shown the potential to observe asphalt binder microstructure and its evolution with binder aging. A procedure for the induction and identification of the microstructure in asphalt binder was established in this study and included sample preparation and observation parameters. A suitable heat-sampling asphalt binder sample preparation method was determined for the test and several stainless steel and Teflon sample moulds developed, finding that stainless steel was the preferable material. The magnification and ESEM settings conducive to observing the 3D microstructure were determined through a number of observations to be 1000×, although other magnifications could be considered. Both straight run binder (PG 58-28) and an air blown oxidised binder were analysed; their structures being compared for their relative size, abundance and other characteristics, showing a clear evolution in the fibril microstructure. The microstructure took longer to appear for the oxidised binder. It was confirmed that the fibril microstructure corresponded to actual characteristics in the asphalt binder. Additionally, a 'bee' micelle structure was found as a transitional structure in ESEM observation. The test methods in this study will be used for more comprehensive analysis of asphalt binder microstructure. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
The value of 'binder-off' imaging to identify occult and unexpected pelvic ring injuries.
Fagg, James A C; Acharya, Mehool R; Chesser, Tim J S; Ward, Anthony J
2018-02-01
To determine the effectiveness of 'binder-off' plain pelvic radiographs in the assessment of pelvic ring injuries. All patients requiring operative intervention at our tertiary referral pelvic unit/major trauma centre for high-energy pelvic injuries between April 2012 and December 2014 were retrospectively identified. Pre-operative pelvic imaging with and without pelvic binder was reviewed with respect to fracture pattern and pelvic stability. The frequency with which the imaging without pelvic binder changed the opinion of the pelvic stability and need for operative intervention, when compared with the computed tomography (CT) scans and anteroposterior (AP) radiographs with the binder on, was assessed. Seventy-three percent (71 of 97) of patients had initial imaging with a pelvic binder in situ. Of these, 76% (54 of 71) went on to have 'binder-off' imaging. Seven percent (4 of 54) of patients had unexpected unstable pelvic ring injuries identified on 'binder-off' imaging that were not identified on CT imaging in binder. Trauma CT imaging of the pelvis with a pelvic binder in place is inadequate at excluding unstable pelvic ring injuries, and, based on the original findings in this paper, we recommend additional plain film 'binder-off' radiographs, when there is any clinical concern. Copyright © 2017 Elsevier Ltd. All rights reserved.
Qiu, Lei; Shao, Ziqiang; Wang, Daxiong; Wang, Wenjun; Wang, Feijun; Wang, Jianquan
2014-10-13
Novel water-based binder CMC-Li is synthesized using cotton as raw material. The mechanism of the CMC-Li as a binder is reported. Electrochemical properties of batteries cathodes based on commercially available lithium iron phosphate (LiFePO4, LFP) and CMC-Li as a water-soluble binder are investigated. CMC-Li is a novel lithium-ion binder. Compare with conventional poly(vinylidene fluoride) (PVDF) binder, and the battery with CMC-Li as the binder retained 97.8% of initial reversible capacity after 200 cycles at 176 mAh g(-1), which is beyond the theoretical specific capacity of LFP. Constant current charge-discharge test results demonstrate that the LFP electrode using CMC-Li as the binder has the highest rate capability, follow closely by that using PVDF binder. The batteries have good electrochemical property, outstanding pollution-free and excellent stability. Copyright © 2014 Elsevier Ltd. All rights reserved.
Direct molding of pavement tiles made of ground tire rubber
NASA Astrophysics Data System (ADS)
Quadrini, Fabrizio; Gagliardi, Donatella; Tedde, Giovanni Matteo; Santo, Loredana; Musacchi, Ettore
2016-10-01
Large rubber products can be molded by using only ground tire rubber (GTR) without any additive or binder due to a new technology called "direct molding". Rubber granules and powders from tire recycling are compression molded at elevated temperatures and pressures. The feasibility of this process was clearly shown in laboratory but the step to the industrial scale was missing. Thanks to an European Project (SMART "Sustainable Molding of Articles from Recycled Tires") this step has been made and some results are reported in this study. The press used for compression molding is described. Some tests were made to measure the energy consumption so as to evaluate costs for production in comparison with conventional technologies for GTR molding (by using binders). Results show that 1 m2 tiles can be easily molded with several thicknesses in a reasonable low time. Energy consumption is higher than conventional technologies but it is lower than the cost for binders.
NASA Astrophysics Data System (ADS)
Chen, Zhen; Kim, Guk-Tae; Chao, Dongliang; Loeffler, Nicholas; Copley, Mark; Lin, Jianyi; Shen, Zexiang; Passerini, Stefano
2017-12-01
This work reports the performance of LiNi0.4Co0.2Mn0.4O2 electrodes employing sodium carboxymethyl cellulose as the binder (CMC/NCM). Compared with conventional organic PVDF-based electrodes, the CMC/NCM electrodes display very uniform distribution of NCM and carbon particles together with strong adhesion among the particles and with the current collector, leading to significantly mitigated crack formation and delamination of the electrode upon repeated delithiation/lithiation processes. Additionally, these electrodes offer enhanced Li+ diffusion kinetics, reduced polarization, therefore, excellent high C-rate capability, and extremely stable cycling performance even at elevated temperature (60 °C). Benefiting from the features of low cost, environmentally friendliness, and easy disposability-recyclability, the water-soluble CMC is a promising binder for practical application in energy storage systems.
Prediction of crosslink density of solid propellant binders. [curing of elastomers
NASA Technical Reports Server (NTRS)
Marsh, H. E., Jr.
1976-01-01
A quantitative theory is outlined which allows calculation of crosslink density of solid propellant binders from a small number of predetermined parameters such as the binder composition, the functionality distributions of the ingredients, and the extent of the curing reaction. The parameter which is partly dependent on process conditions is the extent of reaction. The proposed theoretical model is verified by independent measurement of effective chain concentration and sol and gel fractions in simple compositions prepared from model compounds. The model is shown to correlate tensile data with composition in the case of urethane-cured polyether and certain solid propellants. A formula for the branching coefficient is provided according to which if one knows the functionality distributions of the ingredients and the corresponding equivalent weights and can measure or predict the extent of reaction, he can calculate the branching coefficient of such a system for any desired composition.
Effect of liquid-phase sintering as a means of quality enhancement of pseudoalloys based on copper
NASA Astrophysics Data System (ADS)
Gordeev, Yu I.; Abkaryan, A. K.; Zeer, G. M.; Lepeshev, A. A.; Zelenkova, E. G.
2017-01-01
The effects of the liquid phase of a metal binder on the microstructure and properties of self-diffusion gradient composite (Cu - Al - ZnO) were investigated. For the compositions considered, it was revealed that at the temperature of about 550 °C, a liquid phase binder forms from nanoparticles Cu - Al. Applying a proper amount of a (Cu - Al) binder appeared to be beneficial for fabricating gradient composites with the desired self-diffusion process. It is also favorable for mass transfer of additives nanoparticles into the volume of a matrix during sintering and for the desired fine microstructure and mechanical properties. For the experimental conditions considered in this study, the best mechanical properties can be obtained when 6 mass % (Cu - Al) of ligature were used, which gave hardness HB at 120, electroerosion wear - 0.092 • 10-6 g / cycle, resistivity - 0.025 mcOm.
Continious production of exfoliated graphite composite compositions and flow field plates
Shi, Jinjun; Zhamu, Aruna; Jang, Bor Z.
2010-07-20
A process of continuously producing a more isotropic, electrically conductive composite composition is provided. The process comprises: (a) continuously supplying a compressible mixture comprising exfoliated graphite worms and a binder or matrix material, wherein the binder or matrix material is in an amount of between 3% and 60% by weight based on the total weight of the mixture; (b) continuously compressing the compressible mixture at a pressure within the range of from about 5 psi or 0.035 MPa to about 50,000 psi or 350 MPa in at least a first direction into a cohered graphite composite compact; and (c) continuously compressing the composite compact in a second direction, different from the first direction, to form the composite composition in a sheet or plate form. The process leads to composite plates with exceptionally high thickness-direction electrical conductivity.
NASA Astrophysics Data System (ADS)
Shi, Yongzheng; Yang, Dongzhi; Yu, Ruomeng; Liu, Yaxin; Hao, Shu-Meng; Zhang, Shiyi; Qu, Jin; Yu, Zhong-Zhen
2018-04-01
To satisfy increasing power demands of mobile devices and electric vehicles, rationally designed electrodes with short diffusion length are highly imperative to provide highly efficient ion and electron transport paths for high-rate and long-life lithium-ion batteries. Herein, binder-free electrodes with the robust three-dimensional conductive network are prepared by assembling ultralong TiO2 nanowires with reduced graphene oxide (RGO) sheets for high-performance lithium-ion storage. Ultralong TiO2 nanowires are synthesized and used to construct an interconnecting network that avoids the use of inert auxiliary additives of polymer binders and conductive agents. By thermal annealing, a small amount of anatase is generated in situ in the TiO2(B) nanowires to form abundant TiO2(B)/anatase interfaces for accommodating additional lithium ions. Simultaneously, RGO sheets efficiently enhance the electronic conductivity and enlarge the specific surface area of the TiO2/RGO nanocomposite. The robust 3D network in the binder-free electrode not only effectively avoids the agglomeration of TiO2/RGO components during the long-term charging/discharging process, but also provides direct and fast ion/electron transport paths. The binder-free electrode exhibits a high reversible capacity of 259.9 mA h g-1 at 0.1 C and an excellent cycling performance with a high reversible capacity of 111.9 mA h g-1 at 25 C after 5000 cycles.
METHOD FOR PRODUCING CEMENTED CARBIDE ARTICLES
Onstott, E.I.; Cremer, G.D.
1959-07-14
A method is described for making molded materials of intricate shape where the materials consist of mixtures of one or more hard metal carbides or oxides and matrix metals or binder metals thereof. In one embodiment of the invention 90% of finely comminuted tungsten carbide powder together with finely comminuted cobalt bonding agent is incorporated at 60 deg C into a slurry with methyl alcohol containing 1.5% paraffin, 3% camphor, 3.5% naphthalene, and 1.8% toluene. The compact is formed by the steps of placing the slurry in a mold at least one surface of which is porous to the fluid organic system, compacting the slurry, removing a portion of the mold from contact with the formed object and heating the formed object to remove the remaining organic matter and to sinter the compact.
Potential-dependent, switchable ion selectivity in aqueous media using titanium disulfide.
Srimuk, Pattarachai; Lee, Juhan; Fleischmann, Simon; Aslan, Mesut; Kim, Choonsoo; Presser, Volker
2018-05-01
Selective removal of ions by electrochemical processes is a promising approach to enable various water treatment applications such as water softening or heavy metal removal. Ion intercalation materials have been investigated for their intrinsic ability to prefer one specific ion over others, showing a preference for (small) monovalent ions over multivalent species. In this work, we present for the first time a fundamentally different approach: tunable ion selectivity not by modifying the electrode material, but by changing the operational voltage. We used titanium disulfide which shows distinctly different potentials for the intercalation of different cations and formed thereof binder-free composite electrodes with carbon nanotubes. Capitalizing on this potential difference, we demonstrate controllable cation selectivity by online monitoring the effluent stream during electrochemical operation by inductively coupled plasma optical emission spectrometry for aqueous 50 mM CsCl and MgCl2. We obtained a molar selectivity of Mg2+ over Cs+ of 31 (strong Mg preference) in the potential range between -396 mV and -220 mV vs. Ag/AgCl. By adjusting the operational potential window to -219 mV to +26 mV vs. Ag/AgCl, Cs+ is preferred over Mg2+ by 1.7-times (Cs preference). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optimized Production of Coal Fly Ash Derived Synthetic Zeolites for Mercury Removal from Wastewater
NASA Astrophysics Data System (ADS)
Tauanov, Z.; Shah, D.; Itskos, G.; Inglezakis, V.
2017-09-01
Coal fly ash (CFA) derived synthetic zeolites have become popular with recent advances and its ever-expanding range of applications, particularly as an adsorbent for water and gas purification and as a binder or additive in the construction industry and agriculture. Among these applications, perpetual interest has been in utilization of CFA derived synthetic zeolites for removal of heavy metals from wastewater. We herein focus on utilization of locally available CFA for efficient adsorption of mercury from wastewater. To this end, experimental conditions were investigated so that to produce synthetic zeolites from Kazakhstani CFAs with conversion into zeolite up to 78%, which has remarkably high magnetite content. In particular, the effect of synthesis reaction temperature, reaction time, and loading of adsorbent were systematically investigated and optimized. All produced synthetic zeolites and the respective CFAs were characterized using XRD, XRF, PSA and porosimetric instruments to obtain microstructural and mineralogical data. Furthermore, the synthesized zeolites were studied for the removal of mercury from aqueous solutions. A comparison of removal eficiency and its relationship to the physical and chemical properties of the synthetic zeolites were analyzed and interpreted.
Preparation of sorbent pellets with high integrity for sorption of CO.sub.2 from gas streams
Siriwardane, Ranjani V.
2016-05-10
Method for the production of a CO.sub.2 sorbent prepared by integrating a clay substrate, basic alkali salt, amine liquid, hydraulic binder, and a liquid binder. The basic alkali salt is present relative to the clay substrate in a weight ratio of from about 1 part to about 50 parts per 100 parts of the clay substrate. The amine liquid is present relative to a clay-alkali combination in a weight ratio of from about 1 part to about 10 parts per 10 parts of the clay-alkali combination. The clay substrate and basic alkali salt may be combined in a solid-solid heterogeneous mixture and followed by introduction of the amine liquid. Alternatively, an alkaline solution may be blended with the amine solution prior to contacting the clay substrate. The clay-alkali-amine CO.sub.2 sorbent is particularly advantageous for low temperature CO.sub.2 removal cycles in a gas stream having a CO.sub.2 concentration less than around 2000 ppm and an oxygen concentration around 21%, such as air.
Carbon cloth supported electrode
Lu, Wen-Tong P.; Ammon, Robert L.
1982-01-01
A flow-by anode is disclosed made by preparing a liquid suspension of about to about 18% by weight solids, the solids comprising about 3.5 to about 8% of a powdered catalyst of platinum, palladium, palladium oxide, or mixtures thereof; about 60 to about 76% carbon powder (support) having a particle size less than about 20 m.mu.m and about 20 to about 33% of an inert binder having a particle size of less than about 500 m.mu.m. A sufficient amount of the suspension is poured over a carbon cloth to form a layer of solids about 0.01 to about 0.05 cm thick on the carbon cloth when the electrode is completed. A vacuum was applied to the opposite side of the carbon cloth to remove the liquid and the catalyst layer/cloth assembly is dried and compressed at about 10 to about 50 MPa's. The binder is then sintered in an inert atmosphere to complete the electrode. The electrode is used for the oxidation of sulfur dioxide in a sulfur based hybrid cycle for the decomposition of water.
1986-11-15
reproduced photographically and laminated to a format 35 cm wide by 42 cm high. Maps were enclosed in a binder with each individual map being removable for...FLATBDS, TRACT1V 40 Ft. Flatbed w/Tractor 12 Ton Lowboy w/Tractor 35 Ton Lowboy w/Tractor 50 Ton Lowboy w/Tractor Over-The-Road Tractor Rig Tandem Axle...Mechanics Van All-terrain vehicle Flatbeds (4) (with tarp covers) Emergency Air Supply Van Tractors (4) (2 equipped with gear pumps) 20 yard Rolloff boxes
Fluidizable zinc titanate materials with high chemical reactivity and attrition resistance
Gupta, Raghubir P.; Gangwal, Santosh K.; Jain, Suresh C.
1993-01-01
Highly durable and chemically reactive zinc titanate materials are prepared in a particle size range of 50 to 400 .mu.m suitable for a fluidized-bed reactor for removing reduced sulfur species in a gaseous form by granulating a mixture of fine zinc oxide and titanium oxide with inorganic and organic binders and by optional additions of small amounts of activators such as CoO and MoO.sub.3 ; and then indurating it at 800.degree. to 900.degree. C. for a time sufficient to produce attrition-resistant granules.
Fluidizable zinc titanate materials with high chemical reactivity and attrition resistance
Gupta, R.P.; Gangwal, S.K.; Jain, S.C.
1993-10-19
Highly durable and chemically reactive zinc titanate materials are prepared in a particle size range of 50 to 400 [mu]m suitable for a fluidized-bed reactor for removing reduced sulfur species in a gaseous form by granulating a mixture of fine zinc oxide and titanium oxide with inorganic and organic binders and by optional additions of small amounts of activators such as CoO and MoO[sub 3]; and then indurating it at 800 to 900 C for a time sufficient to produce attrition-resistant granules.
DOT National Transportation Integrated Search
2011-12-01
This research evaluated the properties of recycled asphalt binders from Wisconsin sources. Continuous grading : properties were measured for 18 recycled binder sources: 12 reclaimed asphalt pavement (RAP) sources and 6 recycled : asphalt shingle sour...
Proton conducting membrane using a solid acid
NASA Technical Reports Server (NTRS)
Boysen, Dane A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Haile, Sossina M. (Inventor); Chisholm, Calum (Inventor)
2006-01-01
A solid acid material is used as a proton conducting membrane in an electrochemical device. The solid acid material can be one of a plurality of different kinds of materials. A binder can be added, and that binder can be either a nonconducting or a conducting binder. Nonconducting binders can be, for example, a polymer or a glass. A conducting binder enables the device to be both proton conducting and electron conducting.
Process envelopes for stabilisation/solidification of contaminated soil using lime-slag blend.
Kogbara, Reginald B; Yi, Yaolin; Al-Tabbaa, Abir
2011-09-01
Stabilisation/solidification (S/S) has emerged as an efficient and cost-effective technology for the treatment of contaminated soils. However, the performance of S/S-treated soils is governed by several intercorrelated variables, which complicates the optimisation of the treatment process design. Therefore, it is desirable to develop process envelopes, which define the range of operating variables that result in acceptable performance. In this work, process envelopes were developed for S/S treatment of contaminated soil with a blend of hydrated lime (hlime) and ground granulated blast furnace slag (GGBS) as the binder (hlime/GGBS = 1:4). A sand contaminated with a mixture of heavy metals and petroleum hydrocarbons was treated with 5%, 10% and 20% binder dosages, at different water contents. The effectiveness of the treatment was assessed using unconfined compressive strength (UCS), permeability, acid neutralisation capacity and contaminant leachability with pH, at set periods. The UCS values obtained after 28 days of treatment were up to ∼800 kPa, which is quite low, and permeability was ∼10(-8) m/s, which is higher than might be required. However, these values might be acceptable in some scenarios. The binder significantly reduced the leachability of cadmium and nickel. With the 20% dosage, both metals met the waste acceptance criteria for inert waste landfill and relevant environmental quality standards. The results show that greater than 20% dosage would be required to achieve a balance of acceptable mechanical and leaching properties. Overall, the process envelopes for different performance criteria depend on the end-use of the treated material.
Fatigue and fracture properties of aged binders in the context of reclaimed asphalt mixes.
DOT National Transportation Integrated Search
2014-08-01
Evidence in the literature indicates that the stiffness of the asphalt binder increases and ductility of the binder decreases : with oxidative aging. Typically for unmodified asphalt binders, increase in stiffness or decrease in ductility is regarded...
NASA Astrophysics Data System (ADS)
Dávila-Jiménez, Martín M.; Elizalde-González, María P.; García-Díaz, Esmeralda; Santes-Aquino, Alba M.
2016-02-01
The aim of this research was to decompose isoproturon and adsorb its photoproducts by developing a carbon material from a juice industry waste. Carbon-TiO2 hybrid materials were obtained by impregnating carbonized guava seeds with TiO2 gels prepared from TiOSO4ṡxH2O and NH4OH using glycerol as a binder and thermally treating the materials at 500 °C. Raman studies confirmed the anatase phase of TiO2. SEM images showed isolated TiO2 agglomerates firmly attached to the carbon surface. The adsorption behavior of isoproturon on guava carbon was studied and yielded S-type adsorption isotherms. The photocatalytic activities of the prepared hybrid materials were monitored to study the kinetics and elimination process both of the herbicide and its photoproducts. The reaction was monitored by UV-Vis spectrophotometry, LC-DAD and LC-MS, enabling identification of some intermediate species. Among the photoproducts produced by carbon-TiO2 hybrid materials, amino-isopropylphenol was detected.
Development of non-petroleum-based binders for use in flexible pavements - phase II.
DOT National Transportation Integrated Search
2015-10-01
Bio-binders can be utilized as asphalt modifiers, extenders, and replacements for conventional asphalt in bituminous binders. : From the rheology results of Phase I of this project, it was found that the bio-binders tested had good performance, simil...
Thermoplastic Explosive Compositions on the Base of Hexanitrohexaazaisowurtzitane
NASA Astrophysics Data System (ADS)
Ilyin, V. P.; Smirnov, S. P.; Kolganov, E. V.; Pechenev, Yu. G.
2006-08-01
Hexanitrohexaazaisowurtzitane is an azostructural compound known as CL-20. We performed a series of experiments with CL-20 synthesized in Russia to evaluate the possibility to use it in pressed high explosive compositions. We used it in thermoplastic compositions both with an inert binder and energetic binder. The compositions were conventionally named CL-20И and CL-20A. It was determined that the thermoplastic compositions had the most high detonation parameters and a level of sensitivity to mechanical effects acceptable to allow their processing. Their detonation characteristics were compared with that of some known foreign compositions based on CL-20.
Low vulnerability explosives (LOVEX) for mass-use warheads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruneda, C.; Jessop, E.; McGuire, R.
1990-03-13
There is an ongoing effort at Lawrence Livermore National Laboratory to develop explosives with a significantly lower vulnerability to battlefield environments (bullets, fragments, sympathetic detonation) than current explosives (TNT and Comp B) without sacrificing performance or increasing costs. The approach taken is to develop a composite explosive which is comprised of inexpensive fillers such as RDX, NaNO{sub 3}, Al and a low modulus binder system. The binder system uses nitroglycerin/triacetin as an energetic plasticizer. This paper discusses the experimental results to date in vulnerability, performance and processing. 7 refs., 8 figs., 6 tabs.
Additive-free thick graphene film as an anode material for flexible lithium-ion batteries
NASA Astrophysics Data System (ADS)
Rana, Kuldeep; Kim, Seong Dae; Ahn, Jong-Hyun
2015-04-01
This work demonstrates a simple route to develop mechanically flexible electrodes for Li-ion batteries (LIBs) that are usable as lightweight effective conducting networks for both cathodes and anodes. Removing electrochemically dead elements, such as binders, conducting agents and metallic current collectors, from the battery components will allow remarkable progress in this area. To investigate the feasibility of using thick, additive-free graphene films as anodes for flexible LIBs, we have synthesized and tested thick, additive-free, freestanding graphene films as anodes, first in a coin cell and further in a flexible full cell. As an anode material in a half cell, it showed a discharge capacity of about 350 mA h g-1 and maintained nearly this capacity over 50 cycles at various current rates. This film was also tested as an anode material in a full cell with a LiCoO2 cathode and showed good electrochemical performance. Because the graphene-based flexible film showed good performance in half- and full coin cells, we used this film as a flexible anode for flexible LIBs. No conducting agent or binder was used in the anode side, which helped in realizing the flexible LIBs. Using this, we demonstrate a thin, lightweight and flexible lithium ion battery with good electrochemical performance in both its flat and bent states.This work demonstrates a simple route to develop mechanically flexible electrodes for Li-ion batteries (LIBs) that are usable as lightweight effective conducting networks for both cathodes and anodes. Removing electrochemically dead elements, such as binders, conducting agents and metallic current collectors, from the battery components will allow remarkable progress in this area. To investigate the feasibility of using thick, additive-free graphene films as anodes for flexible LIBs, we have synthesized and tested thick, additive-free, freestanding graphene films as anodes, first in a coin cell and further in a flexible full cell. As an anode material in a half cell, it showed a discharge capacity of about 350 mA h g-1 and maintained nearly this capacity over 50 cycles at various current rates. This film was also tested as an anode material in a full cell with a LiCoO2 cathode and showed good electrochemical performance. Because the graphene-based flexible film showed good performance in half- and full coin cells, we used this film as a flexible anode for flexible LIBs. No conducting agent or binder was used in the anode side, which helped in realizing the flexible LIBs. Using this, we demonstrate a thin, lightweight and flexible lithium ion battery with good electrochemical performance in both its flat and bent states. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06082b
Investigation of the Effect of Oil Modification on Critical Characteristics of Asphalt Binders
NASA Astrophysics Data System (ADS)
Golalipour, Amir
Thermally induced cracking of asphalt pavement continues to be a serious issue in cold climate regions as well as in areas which experience extreme daily temperature differentials. Low temperature cracking of asphalt pavements is attributed to thermal stresses and strains developed during cooling cycles. Improving asphalt binder low temperature fracture and stiffness properties continues to be a subject of particular concern. Therefore, significant amount of research has been focused on improving asphalt binder properties through modification. In recent years, wide ranges of oil based modifications have been introduced to improve asphalt binder performance, especially at the low service temperatures. Although, significant use of these oils is seen in practice, knowledge of the fundamental mechanisms of oil modification and their properties for achieving optimum characteristics is limited. Hence, this study focuses on better understanding of the effect of oil modifiers which would help better material selection and achieve optimum performance in terms of increasing the life span of pavements. In this study, the effect of oil modification on the rheological properties of the asphalt binder is investigated. To examine the effect of oil modification on binder characteristics, low temperature properties as well as high temperature performance of oil modified binders were evaluated. It is found that oils vary in their effects on asphalt binder performance. However, for all oils used in the study, adding an oil to binder can improve binder low temperature performance, and this result mainly attributed to the softening effect. In addition to that, a simple linear model is proposed to predict the performance grade of oil modified binder based on the properties of its constituents at high and low temperatures. Another part of this study focuses on the oil modification effect on asphalt binder thermal strain and stresses. A viscoelastic analytical procedure is combined with experimentally derived failure stress and strain envelopes to determine the controlling failure mechanism, strain tolerance or critical stress, in thermal cracking of oil modified binders. The low temperature failure results depict that oil modification has a good potential of improving the cracking resistance of asphalt binders during thermal cycles.
Development and demonstration of a lignite-pelletizing process. Phase II report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-01-01
The current work began with scale-up of laboratory equipment to commercial size equipment. For this purpose, BCI used an existing pilot plant that had been assembled to pelletize and indurate taconite ore. BCI determined therewith that lignite pellets can be produced continuously on a pilot scale using the basic process developed in the laboratory. The resulting pellets were found to be similar to the laboratory pellets at equivalent binder compositions. Tests of product made during a 5-ton test run are reported. A 50-ton demonstration test run was made with the pilot plant. Pellet production was sustained for a two-week period.more » The lignite pelletizing process has, therefore, been developed to the point of demonstration in a 50-ton test. BCI has completed and cost estimated a conceptually designed 4000 TPD facility. BCI believes it has demonstrated a technically feasible process to agglomerate lignite by using an asphalt emulsion binder. Product quality is promising. Capital and operating costs appear acceptable to justify continuing support and development. The next step should focus on three areas: production development, process refinement, and cost reduction. For further development, BCI recommends consideration of a 5 to 10 ton/h pilot plant or a 20 to 40 ton/h module of a full sized plant, the lower first cost of the former being offset by the ability to incorporate the latter into a future production unit. Other specific recommendations are made for future study that could lead to process and cost improvements: Binder Formulation, disc Sizing, Drier Bed Depth, and Mixing Approach. Pellet use other than power plant fuel is considered.« less
Han, Zhen-Ji; Yamagiwa, Kiyofumi; Yabuuchi, Naoaki; Son, Jin-Young; Cui, Yi-Tao; Oji, Hiroshi; Kogure, Akinori; Harada, Takahiro; Ishikawa, Sumihisa; Aoki, Yasuhito; Komaba, Shinichi
2015-02-07
Poly(acrylic acid) (PAH), which is a water soluble polycarboxylic acid, is neutralized by adding different amounts of LiOH, NaOH, KOH, and ammonia (NH4OH) aqueous solutions to fix neutralization degrees. The differently neutralized polyacid, alkali and ammonium polyacrylates are examined as polymeric binders for the preparation of Si-graphite composite electrodes as negative electrodes for Li-ion batteries. The electrode performance of the Si-graphite composite depends on the alkali chemicals and neutralization degree. It is found that 80% NaOH-neutralized polyacrylate binder (a pH value of the resultant aqueous solution is ca. 6.7) is the most efficient binder to enhance the electrochemical lithiation and de-lithiation performance of the Si-graphite composite electrode compared to that of conventional PVdF and the other binders used in this study. The optimum polyacrylate binder highly improves the dispersion of active material in the composite electrode. The binder also provides the strong adhesion, suitable porosity, and hardness for the composite electrode with 10% (m/m) binder content, resulting in better electrochemical reversibility. From these results, the factors of alkali-neutralized polyacrylate binders affecting the electrode performance of Si-graphite composite electrodes are discussed.
Effects of binders on the electrochemical performance of rechargeable magnesium batteries
NASA Astrophysics Data System (ADS)
Wang, Nan; NuLi, Yanna; Su, Shuojian; Yang, Jun; Wang, Jiulin
2017-02-01
A comparative study on the effects of different binders on the electrochemical performance of rechargeable magnesium batteries with Mo6S8 cathode is conducted for the first time. The selected binders are commercial organic-soluble polyvinylidene fluoride (PVDF), water-soluble poly(acrylic acid) (PAA), poly(vinyl alcohol) (PVA), gelatin, sodium alginate (SA) and Beta-cyclodextrin (β-CD). The binders significantly affect the physical properties, thus the electrochemical performance of Mo6S8 cathode. Compared with those using traditional PVDF binder, Mo6S8 electrodes with PAA and PVA exhibit enhanced cycling stabilities and rate capabilities, which are attributed to the improved cohesion among the electrode constituents and adhesion between the electrode laminate and the current collector. In addition, the anodic stability of these binders is not only related to the chemical structure of binders, but also to the uniformity of electrode surface. SA binder shows low anodic stability duo to containing easily oxidized groups. Non-uniform electrode surface decreases the anodic stability of PVDF based Mo6S8 electrode. Gelatin can be used as a binder in the formulation of high voltage cathodes for rechargeable magnesium batteries.
Roles of Poly(propylene Glycol) During Solvent-Based Lamination of Ceramic Green Tapes
NASA Technical Reports Server (NTRS)
Suppakarn, Nitinat; Ishida, Hatsuo; Cawley, James D.; Levine, Stanley R. (Technical Monitor)
2000-01-01
Solvent lamination for alumina green tapes is readily accomplished using a mixture of ethanol, toluene and poly(propylene glycol). After lamination, the PPG is clearly present as a discrete film at the interface between the laminated tapes. This condition, however, does not generate delamination during firing. Systematic sets of experiments are undertaken to determine the role of PPG in the lamination process and, specifically, the mechanism by which it is redistributed during subsequent processing. PPG slowly diffuses through the organic binder film at room temperature. The PPG diffusion rapidly increases as temperature is increased to 80 C. The key to the efficiency of adhesives during green-tape lamination is mutual solubility of the nonvolatile component of the glue and the base polymeric binder.
21 CFR 880.5160 - Therapeutic medical binder.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Therapeutic medical binder. 880.5160 Section 880...) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Therapeutic Devices § 880.5160 Therapeutic medical binder. (a) Identification. A therapeutic medical binder is a...
21 CFR 880.5160 - Therapeutic medical binder.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Therapeutic medical binder. 880.5160 Section 880...) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Therapeutic Devices § 880.5160 Therapeutic medical binder. (a) Identification. A therapeutic medical binder is a...
Checa-Moreno, R; Manzano, E; Mirón, G; Capitan-Vallvey, L F
2008-05-15
In this paper, we performed a comparison between commonly used strategies amino acid ratios (Aa ratios), two-dimensional ratio plots (2D-Plot) and statistical correlation factor (SCF) and a classification technique, soft independent modelling of class analogy (SIMCA), to identify protein binders present in old artwork samples. To do this, we used a natural standard collection of proteinaceous binders prepared in our laboratory using old recipes and eleven samples coming from Cultural Heritage, such as mural and easel paintings, manuscripts and polychrome sculptures from the 15-18th centuries. Protein binder samples were hydrolyzed and their constitutive amino acids were determined as PITC-derivatives using HPLC-DAD. Amino acid profile data were used to perform the comparison between the four different strategies mentioned above. Traditional strategies can lead to ambiguous or non-conclusive results. With SIMCA, it is possible to provide a more robust and less subjective identification knowing the confidence level of identification. As a standard, we used proteinaceous albumin (whole egg, yolk and glair); casein (goat, cow and sheep) and collagen (mammalian and fish). The process results in a more robust understanding of proteinaceous binding media in old artworks that makes it possible to distinguish them according to their origin.
Li, Sijie; Tang, Honghu; Ge, Peng; Jiang, Feng; Zhou, Jiahui; Zhang, Chenyang; Hou, Hongshuai; Sun, Wei; Ji, Xiaobo
2018-02-21
Considering serious pollution from the traditional chemical synthesis process, the resource-rich, clean, and first-hand electrode materials are greatly desired. Natural ore molybdenite (MoS 2 ), as the low-cost, high-yield, and environmental-friendly natural source, is investigated as a first-hand anode material for lithium-ion batteries (LIBs). Compared with chemosynthetic pure MoS 2 , natural molybdenite provides an ordered ion diffusion channel more effectively owing to its excellent characteristics, containing well-crystalline, large lattice distance, and trance dopants. Even at a large current density of 2.0 A g -1 , a natural molybdenite electrode employing a carboxymethyl cellulose binder displays an initial charge capacity of 1199 mA h g -1 with a capacity retention of 72% after 1000 cycles, much higher than those of the electrodes utilizing a poly(vinylidene fluoride) binder. These types of binders play a crucial role in stabilizing a microstructure demonstrated by ex situ scanning electron microscopy and in affecting pseudocapacitive contributions quantitatively determined by a series of kinetic exploration. Briefly, this work might open up a new avenue toward the use of natural molybdenite as a first-hand LIB anode in scalable applications and deepen our understanding on the fundamental effect of binders in the metal-sulfide.
Alkali-activated complex binders from class C fly ash and Ca-containing admixtures.
Guo, Xiaolu; Shi, Huisheng; Chen, Liming; Dick, Warren A
2010-01-15
Processes that maximize utilization of industrial solid wastes are greatly needed. Sodium hydroxide and sodium silicate solution were used to create alkali-activated complex binders (AACBs) from class C fly ash (CFA) and other Ca-containing admixtures including Portland cement (PC), flue gas desulfurization gypsum (FGDG), and water treatment residual (WTR). Specimens made only from CFA (CFA100), or the same fly ash mixed with 40 wt% PC (CFA60-PC40), with 10 wt% FGDG (CFA90-FGDG10), or with 10 wt% WTR (CFA90-WTR10) had better mechanical performance compared to binders using other mix ratios. The maximum compressive strength of specimens reached 80.0 MPa. Geopolymeric gel, sodium polysilicate zeolite, and hydrated products coexist when AACB reactions occur. Ca from CFA, PC, and WTR precipitated as Ca(OH)(2), bonded in geopolymers to obtain charge balance, or reacted with dissolved silicate and aluminate species to form calcium silicate hydrate (C-S-H) gel. However, Ca from FGDG probably reacted with dissolved silicate and aluminate species to form ettringite. Utilization of CFA and Ca-containing admixtures in AACB is feasible. These binders may be widely utilized in various applications such as in building materials and for solidification/stabilization of other wastes, thus making the wastes more environmentally benign.
Towards Understanding the Polymerization Process in Bitumen Bio-Fluxes.
Król, Jan B; Niczke, Łukasz; Kowalski, Karol J
2017-09-09
Bitumen is a commonly used material for road construction. According to environmental regulations, vegetable-based materials are applied for binder modification. Fluxed road bitumen containing a bio-flux oxidation product increases the consistency over time. The efficiency of crosslinking depends on the number of double bonds and their position in the aliphatic chain of fatty acid. The main goal of this paper was to examine the structural changes taking place during hardening bitumen with bio-flux additives. Two types of road bitumens fluxed with two different oxidized methyl esters of rapeseed oil were used in this study. Various chemical and rheological tests were applied for the fluxed-bitumen at different stages of oxygen exposure. The oxidation of rapeseed oil methyl ester reduced the iodine amount by about 10%-30%. Hardening of the fluxed bitumen generally results in an increase of the resins content and a reduction of the aromatics and asphaltenes. In the temperature range of 0 °C to 40 °C, bio-flux results with a much higher increase in the phase angle than in temperatures above 40 °C in the bitumen binder. The increase in the proportion of the viscous component in the low and medium binder temperature is favorable due to the potential improvement of the fatigue resistance of the asphalt mixture with such binders.
Biocompatibility of new calcium aluminate cement (EndoBinder).
Aguilar, Fabiano Gamero; Roberti Garcia, Lucas Fonseca; Panzeri Pires-de-Souza, Fernanda Carvalho
2012-03-01
The purpose of this study was to evaluate the biocompatibility of calcium aluminate cement (EndoBinder) in subcutaneous tissue of rats. Fifteen rats, weighing 300 g, were separated into 3 groups (n = 5) in accordance with the time of death (7, 21, 42 days). Two incisions were made in the dorsal subcutaneous tissue of each rat in which were implanted 2 polyethylene tubes filled with the test materials, EndoBinder (EB) and Grey MTA (GMTA). The external tube walls were considered the negative control group (CG). After 7, 21, and 42 days, animals were killed, obtaining 5 samples per group, at each time interval of analysis. From the morphologic and morphometric analyses by using a score of (0-3) (50, 100, and 400×), results showed absence of inflammatory reaction (0) for EB after 42 days. However, for GMTA, a slight inflammatory reaction (1) was observed after 42 days, which means the persistence of a chronic inflammatory process. When compared with CG, tissue reaction ranging from discrete (1-7 days) to absent (0-42 days) was observed. EndoBinder presented satisfactory tissue reaction; it was biocompatible when tested in subcutaneous tissue of rats. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Effect of Binder on Combustion Quality on EFB Bio-briquettes
NASA Astrophysics Data System (ADS)
Handra, Nofriady; Hafni
2017-12-01
Energy demand in various sectors in Indonesia has increased in line with the rate of population growth and the national economy. Fulfillment of energy needs can be obtained from various energy sources such as fuel oil, solar, biomass, wind, water and others. So far, energy sources used in Indonesia are still using many non-renewable energy sources, such as fuel oil. The utilization of waste from empty palm oil bunches into bio-briquettes has helped the government in overcoming the problem of EFB waste. The availability of biomass has prompted researchers to utilize biomass waste that includes Agricultural and Forestry waste, to be processed into briquettes as an alternative energy substitute for fuel oil. This research aims to improve the utilization of waste of Palm Oil Bunches through the manufacture of bio-briquette as alternative fuel and determine the appropriate binder material for briquette making so as to produce optimal combustion value. The binders used for the manufacture of briquettes are pine sap and starch flour. The test result showed that the highest value of calorific was found in the mixture of 50% EFB composition with fibre size ± 1-5 mm with 50% pine resin which is 6331,7 cal/g. Meanwhile, lowest value on EFB ± with fibre size 5-10 mm composition EFB 60% and 40% starch flour binder that is 2295,7 cal/g. The results of a flame test study of several points that are known to turn on until it emits a flame for ± 30 seconds, it takes 22,2 minutes for the burnt-out briquette (to ashes). Based on visual observations that the fire colour of bio-briquette with finer fibre on the EFB composition 50% pine gum binder produces a bluish red fire colour. It is generally assumed that pine resin glues produce better fuel value compared to starch binder. Besides that, fibre particles size also affects the combustion quality produced.
Yemmireddy, Veerachandra K; Farrell, Glenn D; Hung, Yen-Con
2015-08-01
Titanium dioxide (TiO2 ) is a well-known photocatalyst for its excellent bactericidal property under UVA light. The purpose of this study was to develop physically stable TiO2 coatings on food contact surfaces using different binding agents and develop methods to evaluate their durability and microbicidal property. Several types of organic and inorganic binders such as polyvinyl alcohol, polyethylene glycol, polyurethane, polycrylic, sodium and potassium silicates, shellac resin, and other commercial binders were used at 1:1 to 1:16 nanoparticle to binder weight ratios to develop a formulation for TiO2 coating on stainless steel surfaces. Among the tested binders, polyurethane, polycrylic, and shellac resin were found to be physically more stable when used in TiO2 coating at 1:4 to 1:16 weight ratio. The physical stability of TiO2 coatings was determined using adhesion strength and scratch hardness tests by following standard ASTM procedures. Further, wear resistance of the coatings was evaluated based on a simulated cleaning procedure used in food processing environments. TiO2 coating with polyurethane at a 1:8 nanoparticle to binder weight ratio showed the highest scratch hardness (1.08 GPa) followed by coating with polycrylic (0.68 GPa) and shellac (0.14 GPa) binders. Three different techniques, namely direct spreading, glass cover-slip, and indented coupon were compared to determine the photocatalytic bactericidal property of TiO2 coatings against Escherichia coli 0157:H7 at 2 mW/cm(2) UVA light intensity. Under the tested conditions, the indented coupon technique was found to be the most appropriate method to determine the bactericidal property of TiO2 coatings and showed a reduction of 3.5 log CFU/cm(2) in 2 h. © 2015 Institute of Food Technologists®
Elastic and Sorption Characteristics of an Epoxy Binder in a Composite During Its Moistening
NASA Astrophysics Data System (ADS)
Aniskevich, K.; Glaskova, T.; Jansons, J.
2005-07-01
Results of an experimental investigation into the elastic and sorption characteristics of a model composite material (CM) — epoxy resin filled with LiF crystals — during its moistening are presented. Properties of the binder in the CM with different filler contents ( v f = 0, 0.05, 0.11, 0.23, 0.28, 0.33, 0.38, and 0.46) were evaluated indirectly by using known micromechanical models of CMs. It was revealed that, for the CM in a conditionally initial state, the elastic modulus of the binder in it and the filler microstrain (change in the interplanar distance in the crystals, measured by the X-ray method) as functions of filler content had the same character. The elastic modulus of the binder in the CM with a low filler content was equal to that for the binder in a block; the elastic modulus of the binder in the CM decreased with increasing filler content. The maximum (corresponding to water saturation of the CM) stresses in the binder and the filler microstresses as functions of filler content were of the same character. Moreover, the absolute values of maximum stresses in the binder and of filler microstresses coincided for high and low contents of the filler. At v f = 0.2-0. 3, the filler microstrains exceeded the stresses in the binder. The effect of moisture on the epoxy binder in the CM with a high filler content was not entirely reversible: the elastic characteristics of the binder increased, the diffusivity decreased, and the ultimate water content increased after a moistening-drying cycle.
47 CFR 51.232 - Binder group management.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 3 2012-10-01 2012-10-01 false Binder group management. 51.232 Section 51.232... Obligations of All Local Exchange Carriers § 51.232 Binder group management. (a) With the exception of loops..., segregating or reserving particular loops or binder groups for use solely by any particular advanced services...
47 CFR 51.232 - Binder group management.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 3 2013-10-01 2013-10-01 false Binder group management. 51.232 Section 51.232... Obligations of All Local Exchange Carriers § 51.232 Binder group management. (a) With the exception of loops..., segregating or reserving particular loops or binder groups for use solely by any particular advanced services...
47 CFR 51.232 - Binder group management.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 3 2011-10-01 2011-10-01 false Binder group management. 51.232 Section 51.232... Obligations of All Local Exchange Carriers § 51.232 Binder group management. (a) With the exception of loops..., segregating or reserving particular loops or binder groups for use solely by any particular advanced services...
46 CFR 308.3 - Applications for insurance; warranties; supporting documents; payment of binder fees.
Code of Federal Regulations, 2012 CFR
2012-10-01
... documents; payment of binder fees. 308.3 Section 308.3 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE General § 308.3 Applications for insurance; warranties; supporting documents; payment of binder fees. (a) Application, binder forms. A single application for War...
46 CFR 308.3 - Applications for insurance; warranties; supporting documents; payment of binder fees.
Code of Federal Regulations, 2014 CFR
2014-10-01
... documents; payment of binder fees. 308.3 Section 308.3 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE General § 308.3 Applications for insurance; warranties; supporting documents; payment of binder fees. (a) Application, binder forms. A single application for War...
46 CFR 308.3 - Applications for insurance; warranties; supporting documents; payment of binder fees.
Code of Federal Regulations, 2010 CFR
2010-10-01
... documents; payment of binder fees. 308.3 Section 308.3 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE General § 308.3 Applications for insurance; warranties; supporting documents; payment of binder fees. (a) Application, binder forms. A single application for War...
46 CFR 308.3 - Applications for insurance; warranties; supporting documents; payment of binder fees.
Code of Federal Regulations, 2013 CFR
2013-10-01
... documents; payment of binder fees. 308.3 Section 308.3 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE General § 308.3 Applications for insurance; warranties; supporting documents; payment of binder fees. (a) Application, binder forms. A single application for War...
Microstructure of the combustion zone: Thin-binder AP-polymer sandwiches
NASA Technical Reports Server (NTRS)
Price, E. W.; Panyam, R. R.; Sigman, R. K.
1980-01-01
Experimental results are summarized for systematic quench-burning tests on ammonium perchlorate-HC binder sandwiches with binder thicknesses in the range 10 - 150 microns. Tests included three binders (polysulfide, polybutadiene-acrylonitrile, and hydroxy terminated polybutadiene), and pressures from 1.4 to 14 MPa. In addition, deflagration limits were determined in terms of binder thickness and pressure. Results are discussed in terms of a qualitative theory of sandwich burning consolidated from various sources. Some aspects of the observed results are explained only speculatively.
Ren, Jing; Li, Nan; Li, Lei; An, Jing-Kun; Zhao, Lin; Ren, Nan-Qi
2015-02-01
Granulation of biochar powder followed by immobilization of ferric oxides on the macroporous granular biochar (Bg-FO-1) substantially enhanced phosphate removal from water. BET analysis confirmed that both granulation and ferric oxides loading can increase the surface areas and pore volumes effectively. Bg-FO-1 was proven to be a favorable adsorbent for phosphate. The phosphate adsorption capacity was substantially increased from 0 mg/g of raw biochar powder to 0.963 mg/g (Bg-FO-1). When the ferric oxides loading was prior to granulation, the adsorption capacity was decreased by 59-0.399 mg/g, possibly due to the decrease of micropore and mesopore area as well as the overlaying of binders to the activated sites produced by ferric oxides. Copyright © 2014 Elsevier Ltd. All rights reserved.
Activities of the Institute of Chemical Processing of Coal at Zabrze
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dreszer, K.
1995-12-31
The Institute of Chemical Processing of Coal at Zabrze was established in 1955. The works on carbochemical technologies have been, therefore, carried out at the Institute for 40 years. The targets of the Institute`s activities are research, scientific and developing works regarding a sensible utilization of fuels via their processing into more refined forms, safe environment, highly efficient use of energy carriers and technological products of special quality. The Institute of Chemical Processing of Coal has been dealing with the following: optimized use of home hard coals; improvement of classic coal coking technologies, processing and utilization of volatile coking products;more » production technologies of low emission rate fuels for communal management; analyses of coal processing technologies; new technologies aimed at increasing the efficiency of coal utilization for energy-generating purposes, especially in industry and studies on the ecological aspects of these processes; production technologies of sorbents and carbon activating agents and technologies of the utilization; rationalization of water and wastes management in the metallurgical and chemical industries in connection with removal of pollution especially dangerous to the environment from wastes; utilization technologies of refined materials (electrode cokes, binders, impregnating agents) for making electrodes, refractories and new generation construction carbon materials; production technologies of high quality bituminous and bituminous and resin coating, anti-corrosive and insulation materials; environmentally friendly utilization technologies for power station, mine and other wastes, and dedusting processes in industrial gas streams.« less
Influence of Mycotoxin Binders on the Oral Bioavailability of Doxycycline in Pigs.
De Mil, Thomas; Devreese, Mathias; De Saeger, Sarah; Eeckhout, Mia; De Backer, Patrick; Croubels, Siska
2016-03-16
Mycotoxin binders are feed additives that aim to adsorb mycotoxins in the gastrointestinal tract of animals, making them unavailable for systemic absorption. The antimicrobial drug doxycycline (DOX) is often used in pigs and is administered through feed or drinking water; hence, DOX can come in contact with mycotoxin binders in the gastrointestinal tract. This paper describes the effect of four mycotoxin binders on the absorption of orally administered DOX in pigs. Two experiments were conducted: The first used a setup with bolus administration to fasted pigs at two different dosages of mycotoxin binder. In the second experiment, DOX and the binders were mixed in the feed at dosages recommended by the manufacturers (= field conditions). Interactions are possible between some of the mycotoxin binders dosed at 10 g/kg feed but not at 2 g/kg feed. When applying field conditions, no influences were seen on the plasma concentrations of DOX.
Ibrahim, Mohd Rasdan; Katman, Herda Yati; Karim, Mohamed Rehan; Koting, Suhana; Mashaan, Nuha S
2014-01-01
The main objective of this paper is to investigate the relations of rubber size, rubber content, and binder content in determination of optimum binder content for open graded friction course (OGFC). Mix gradation type B as specified in Specification for Porous Asphalt produced by the Road Engineering Association of Malaysia (REAM) was used in this study. Marshall specimens were prepared with four different sizes of rubber, namely, 20 mesh size [0.841 mm], 40 mesh [0.42 mm], 80 mesh [0.177 mm], and 100 mesh [0.149 mm] with different concentrations of rubberised bitumen (4%, 8%, and 12%) and different percentages of binder content (4%-7%). The appropriate optimum binder content is then selected according to the results of the air voids, binder draindown, and abrasion loss test. Test results found that crumb rubber particle size can affect the optimum binder content for OGFC.
Vankova, Svetoslava; Francia, Carlotta; Amici, Julia; Zeng, Juqin; Bodoardo, Silvia; Penazzi, Nerino; Collins, Gillian; Geaney, Hugh; O'Dwyer, Colm
2017-02-08
Fundamental research on Li-O 2 batteries remains critical, and the nature of the reactions and stability are paramount for realising the promise of the Li-O 2 system. We report that indium tin oxide (ITO) nanocrystals with supported 1-2 nm oxygen evolution reaction (OER) catalyst Ru/RuO x nanoparticles (NPs) demonstrate efficient OER processes, reduce the recharge overpotential of the cell significantly and maintain catalytic activity to promote a consistent cycling discharge potential in Li-O 2 cells even when the ITO support nanocrystals deteriorate from the very first cycle. The Ru/RuO x nanoparticles lower the charge overpotential compared with those for ITO and carbon-only cathodes and have the greatest effect in DMSO electrolytes with a solution-processable F-free carboxymethyl cellulose (CMC) binder (<3.5 V) instead of polyvinylidene fluoride (PVDF). The Ru/RuO x /ITO nanocrystalline materials in DMSO provide efficient Li 2 O 2 decomposition from within the cathode during cycling. We demonstrate that the ITO is actually unstable from the first cycle and is modified by chemical etching, but the Ru/RuO x NPs remain effective OER catalysts for Li 2 O 2 during cycling. The CMC binders avoid PVDF-based side-reactions and improve the cyclability. The deterioration of the ITO nanocrystals is mitigated significantly in cathodes with a CMC binder, and the cells show good cycle life. In mixed DMSO-EMITFSI [EMITFSI=1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide] ionic liquid electrolytes, the Ru/RuO x /ITO materials in Li-O 2 cells cycle very well and maintain a consistently very low charge overpotential of 0.5-0.8 V. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Walsh, Evan D; Han, Xiaogang; Lacey, Steven D; Kim, Jae-Woo; Connell, John W; Hu, Liangbing; Lin, Yi
2016-11-02
For commercial applications, the need for smaller footprint energy storage devices requires more energy to be stored per unit area. Carbon nanomaterials, especially graphene, have been studied as supercapacitor electrodes and can achieve high gravimetric capacities affording high gravimetric energy densities. However, most nanocarbon-based electrodes exhibit a significant decrease in their areal capacitances when scaled to the high mass loadings typically used in commercially available cells (∼10 mg/cm 2 ). One of the reasons for this behavior is that the additional surface area in thick electrodes is not readily accessible by electrolyte ions due to the large tortuosity. Furthermore, the fabrication of such electrodes often involves complicated processes that limit the potential for mass production. Here, holey graphene electrodes for supercapacitors that are scalable in both production and areal capacitance are presented. The lateral surface porosity on the graphene sheets was created using a facile single-step air oxidation method, and the resultant holey graphene was compacted under ambient conditions into mechanically robust monolithic shapes that can be directly used as binder-free electrodes. In comparison, pristine graphene discs under similar binder-free compression molding conditions were extremely brittle and thus not deemed useful for electrode applications. The coin cell supercapacitors, based on these holey graphene electrodes exhibited small variations in gravimetric capacitance over a wide range of areal mass loadings (∼1-30 mg/cm 2 ) at current densities as high as 30 mA/cm 2 , resulting in the near-linear increase of the areal capacitance (F/cm 2 ) with the mass loading. The prospects of the presented method for facile binder-free ultrathick graphene electrode fabrication are discussed.
Comparison of influence of ageing on low-temperature characteristics of asphalt mixtures
NASA Astrophysics Data System (ADS)
Vacková, Pavla; Valentin, Jan; Benešová, Lucie
2017-09-01
Ability of relaxation of asphalt mixtures and thus its resilience to climate change and traffic load is decreasing by influence of aging - in this case aging of bituminous binder. Binder exposed to climate and UV ages and becomes more fragile and susceptible to damage. The results of the research presented in this paper are aimed to finding a correlation between low-temperature properties of referential and aged asphalt mixture specimens and characteristics (not low-temperature) of bituminous binders. In this research there were used conventional road binders, commonly used modified binders and binders additionally modified in the laboratory. The low-temperature characteristics were determined by strength flexural test, commonly used in the Czech Republic for High Modulus Asphalt Mixtures (TP 151), and semi-cylindrical bending test (EN 12697-44). Both of the tests were extended by specimens exposed to artificial long-term aging (EN 12697-52) - storing at 85° C for 5 days. The results were compared with characteristics of binders for finding a suitable correlation between characteristics of binders and asphalt mixtures.
Physio-Microstructural Properties of Aerated Cement Slurry for Lightweight Structures
Salem, Talal; Hamadna, Sameer; Darsanasiri, A. G. N. D.; Soroushian, Parviz; Balchandra, Anagi; Al-Chaar, Ghassan
2018-01-01
Cementitious composites, including ferrocement and continuous fiber reinforced cement, are increasingly considered for building construction and repair. One alternative in processing of these composites is to infiltrate the reinforcement (continuous fibers or chicken mesh) with a flowable cementitious slurry. The relatively high density of cementitious binders, when compared with polymeric binders, are a setback in efforts to introduce cementitious composites as lower-cost, fire-resistant, and durable alternatives to polymer composites. Aeration of the slurry is an effective means of reducing the density of cementitious composites. This approach, however, compromises the mechanical properties of cementitious binders. An experimental program was undertaken in order to assess the potential for production of aerated slurry with a desired balance of density, mechanical performance, and barrier qualities. The potential for nondestructive monitoring of strength development in aerated cementitious slurry was also investigated. This research produced aerated slurries with densities as low as 0.9 g/cm3 with viable mechanical and barrier qualities for production of composites. The microstructure of these composites was also investigated. PMID:29649163
Perspectives of flax processing wastes in building materials production
NASA Astrophysics Data System (ADS)
Smirnova, Olga
2017-01-01
The paper discusses the possibility of using the flax boons for thermal insulation materials. The solution for systematization of materials based on flax boon is suggested. It based on the principle of building materials production using the flax waste with different types of binders. The purpose of the research is to obtain heat-insulating materials with different structure based on agricultural production waste - flax boon, mineral and organic binders. The composition and properties of organic filler - flax boons - are defined using infrared spectroscopy and standard techniques. Using the method of multivariate analysis the optimal ratio of flax boons and binders in production of pressed, porous and granular materials are determined. The effect of particles size distribution of flax boons on the strength of samples with the different composition is studied. As a result, the optimized compositions of pressed, porous and granular materials based on flax boons are obtained. Data on the physical and mechanical properties of these materials are given in the paper.
Physio-Microstructural Properties of Aerated Cement Slurry for Lightweight Structures.
Almalkawi, Areej T; Salem, Talal; Hamadna, Sameer; Darsanasiri, A G N D; Soroushian, Parviz; Balchandra, Anagi; Al-Chaar, Ghassan
2018-04-12
Cementitious composites, including ferrocement and continuous fiber reinforced cement, are increasingly considered for building construction and repair. One alternative in processing of these composites is to infiltrate the reinforcement (continuous fibers or chicken mesh) with a flowable cementitious slurry. The relatively high density of cementitious binders, when compared with polymeric binders, are a setback in efforts to introduce cementitious composites as lower-cost, fire-resistant, and durable alternatives to polymer composites. Aeration of the slurry is an effective means of reducing the density of cementitious composites. This approach, however, compromises the mechanical properties of cementitious binders. An experimental program was undertaken in order to assess the potential for production of aerated slurry with a desired balance of density, mechanical performance, and barrier qualities. The potential for nondestructive monitoring of strength development in aerated cementitious slurry was also investigated. This research produced aerated slurries with densities as low as 0.9 g/cm³ with viable mechanical and barrier qualities for production of composites. The microstructure of these composites was also investigated.
Experience with The Use of Warm Mix Asphalt Additives in Bitumen Binders
NASA Astrophysics Data System (ADS)
Cápayová, Silvia; Unčík, Stanislav; Cihlářová, Denisa
2018-03-01
In most European countries, Hot Mix Asphalt (HMA) technology is still being used as the standard for the production and processing of bituminous mixtures. However, from the perspective of environmental acceptability, global warming and greenhouse gas production, Slovakia is making an effort to put into practice modern technology, which is characterized by lower energy consumption and reducing negative impacts on the environment. Warm mix asphalt technologies (WMA), which have been verified at the Department of Transportation Engineering laboratory, Faculty of Civil Engineering, Slovak University of Technology (FCE, SUT) can provide the required mixture properties and can be used not only for the construction of new roads, but also for their renovation and reconstruction. The paper was created in cooperation with the Technical University of Ostrava, Czech Republic, which also deals with the addition of additives to asphalt mixtures and binders. It describes a comparison of the impact of some organic and chemical additives on the properties of commonly used bitumen binders in accordance with valid standards and technical regulations.
Controlling Properties of Agglomerates for Chemical Processes
NASA Astrophysics Data System (ADS)
Halt, Joseph A.
Iron ore pellets are hard spheres made from powdered ore and binders. Pellets are used to make iron, mainly in blast furnaces. Around the time that the pelletizing process was developed, starch was proposed as a binder because it's viscous, adheres well to iron oxides, does not contaminate pellets and is relatively cheap. In practice, however, starch leads to weak pellets with rough surfaces - these increase the amount of dust generated within process equipment and during pellet shipping and handling. Thus, even though the usual binder (bentonite clay) contaminates pellets, pelletizers prefer it to starch or other organics. This dissertation describes three ways to make good starch-based binders for pellets. Importantly, they solve the usual problems of weak rough pellets and lots of dust. The three approaches are: (1) Addition of clay to starch. This is not a novel idea. In fact, it is the standard method used for their improvement. However, it has not been tested extensively with starch. This approach was expected to be - and indeed was - successful. (2) Addition of a clay-rich layer to green ball surfaces. This approach is a novel idea. The coating's purpose was to mimic the good surface properties of standard bentonite-clay bonded pellets; as a benefit, clay consumption was significantly reduced. This approach was successful. (3) Addition of dispersants to starch. This approach was a novel idea. The intent of the dispersants was to enable pelletization to occur at lower moisture contents, thus leading to denser particle packing and lower porosity. The dispersants resulted in significantly stronger, smoother pellets without contaminating them with silica. Using approaches 1 and 3, starch can be used directly in traditional pelletizing operations, and importantly, in new pelletizing processes for new iron making operations. For approach 2, new application methods must be developed. Future engineering work is suggested as follows: design better dispersants for magnetic magnetite ores; incorporate the dispersing agent and starch into bead form for easy use; design a simple way to add coatings in existing drum-based pelletizing circuits; and optimize the coating composition to decrease both abrasion losses and pellet clustering (for new Direct Reduction pellets).
Sustainable asphalt pavement: Application of slaughterhouse waste oil and fly ash in asphalt binder
NASA Astrophysics Data System (ADS)
Sanchez Ramos, Jorge Luis
Increasing energy costs, lack of sufficient natural resources and the overwhelming demand for petroleum has stimulated the development of alternative binders to modify or replace petroleum-based asphalt binders. In the United States, the petroleum-based asphalt binder is mainly used to produce the Hot Mix Asphalt (HMA). There are approximately 4000 asphalt plants that make 500 million tons of asphalt binder valued at roughly 3 billion/year. The instability of the world's oil market has pushed oil prices to more than 80 per barrel in 2012, which increased the cost of asphalt binder up to $570 per ton. Therefore, there is a timely need to find alternative sustainable resources to the asphalt binder. This paper investigates the possibility of the partial replacement of the asphalt binder with slaughterhouse waste and/or fly ash. In order to achieve this objective, the asphalt binder is mixed with different percentages of waste oil and/or fly ash. In order to investigate the effect of these additives to the performance of the asphalt binder, a complete performance grade test performed on multiple samples. The results of the performance grade tests are compared with a control sample to observe how the addition of the waste oil and/or fly ash affects the sample. Considering the increasing cost and demand of asphalt, the use of slaughterhouse waste oil and/or fly ash as a partial replacement may result in environmental and monetary improvements in the transportation sector.
NASA Astrophysics Data System (ADS)
Shaffie, E.; Arshad, A. K.; Ahmad, J.; Hashim, W.
2018-04-01
The purpose of this research is to study the moisture induce damage performance of dense graded (AC14) and stone mastic asphalt (SMA14) asphalt pavement using Nanolyacrylate polymer modified asphalt binder. The physical properties of aggregate, volumetric and performance of asphalt mixes were assessed and evaluated with the laboratory tests. The study investigates fourteenth different asphalt mixtures consisting of NP modified asphalt binder formulations at 2%, 4% and 6%. Two types of asphalt binder, penetration grade PEN 80-100 and performance grade PG 76 were added with Nanopolyacrylate as asphalt modifier. The modified asphalt binder was prepared by adding 6 percent of Nanopolyacrylate (NP) to the asphalt binder. Both AC14 and SMA14 mixtures passed the Marshall requirements which indicate that these mixtures were good with respect to durability and flexibility. In terms of moisture induce damage, it was observed that the strength of the asphalt mixes increased with the addition of NP polymer modified asphalt binder. Similar trend could also be seen for SMA14 mixes, where the ITS value of SMA14 showed a significant difference compared to AC14 and all the mixtures exceeded the minimum requirement value as specified in the specification. Thus, addition of nanopolyacrylate polymer to the asphalt binder has significantly improved the cohesion as well as adhesion properties of the asphalt binder, and hence the stripping performance. Therefore, it can be concluded that the nanopolyacylate is suitable to be used as a modifier to the modified asphalt binder in order to enhance the properties of the asphalt binder and thus improving the performance of asphalt in both AC14 and SMA14 mixes.
The use of abdominal binders to treat over-shunting headaches.
Sklar, Frederick H; Nagy, Laszlo; Robertson, Brian D
2012-06-01
Headaches are common in children with shunts. Headaches associated with over-shunting are typically intermittent and tend to occur later in the day. Lying down frequently makes the headaches better. This paper examines the efficacy of using abdominal binders to treat over-shunting headaches. Over an 18-year period, the senior author monitored 1027 children with shunts. Office charts of 483 active patients were retrospectively reviewed to identify those children with headaches and, in particular, those children who were thought to have headaches as a result of over-shunting. Abdominal binders were frequently used to treat children with presumed over-shunting headaches, and these data were analyzed. Of the 483 patients undergoing chart review, 258 (53.4%) had headache. A clinical diagnosis of over-shunting was made in 103 patients (21.3% overall; 39.9% of patients with headache). In 14 patients, the headaches were very mild (1-2 on a 5-point scale) and infrequent (1 or 2 per month), and treatment with an abdominal binder was not thought indicated. Eighty-nine patients were treated with a binder, but 19 were excluded from this retrospective study for noncompliance, interruption of the binder trial, or lack of follow-up. The remaining 70 pediatric patients, who were diagnosed with over-shunting headaches and were treated with abdominal binders, were the subjects of a more detailed retrospective study. Significant headache improvement was observed in 85.8% of patients. On average, the patients wore the binders for approximately 1 month, and headache relief usually persisted even after the binders were discontinued. However, the headaches eventually did recur in many of the patients more than a year later. In these patients, reuse of the abdominal binder was successful in relieving headaches in 78.9%. The abdominal binder is an effective, noninvasive therapy to control over-shunting headaches in most children. This treatment should be tried before any surgery is considered. It is suggested that the abdominal binder may modulate abnormally increased intracranial pulse pressures associated with over-shunting. Interactions with the cerebrovascular bed are suspected to account for persistent headache relief after the binder is discontinued.
Lopes, Antonio Alberto; Tong, Lin; Thumma, Jyothi; Li, Yun; Fuller, Douglas S; Morgenstern, Hal; Bommer, Jürgen; Kerr, Peter G; Tentori, Francesca; Akiba, Takashi; Gillespie, Brenda W; Robinson, Bruce M; Port, Friedrich K; Pisoni, Ronald L
2012-07-01
Poor nutritional status and both hyper- and hypophosphatemia are associated with increased mortality in maintenance hemodialysis (HD) patients. We assessed associations of phosphate binder prescription with survival and indicators of nutritional status in maintenance HD patients. Prospective cohort study (DOPPS [Dialysis Outcomes and Practice Patterns Study]), 1996-2008. 23,898 maintenance HD patients at 923 facilities in 12 countries. Patient-level phosphate binder prescription and case-mix-adjusted facility percentage of phosphate binder prescription using an instrumental-variable analysis. All-cause mortality. Overall, 88% of patients were prescribed phosphate binders. Distributions of age, comorbid conditions, and other characteristics showed small differences between facilities with higher and lower percentages of phosphate binder prescription. Patient-level phosphate binder prescription was associated strongly at baseline with indicators of better nutrition, ie, higher values for serum creatinine, albumin, normalized protein catabolic rate, and body mass index and absence of cachectic appearance. Overall, patients prescribed phosphate binders had 25% lower mortality (HR, 0.75; 95% CI, 0.68-0.83) when adjusted for serum phosphorus level and other covariates; further adjustment for nutritional indicators attenuated this association (HR, 0.88; 95% CI, 0.80-0.97). However, this inverse association was observed for only patients with serum phosphorus levels ≥3.5 mg/dL. In the instrumental-variable analysis, case-mix-adjusted facility percentage of phosphate binder prescription (range, 23%-100%) was associated positively with better nutritional status and inversely with mortality (HR for 10% more phosphate binders, 0.93; 95% CI, 0.89-0.96). Further adjustment for nutritional indicators reduced this association to an HR of 0.95 (95% CI, 0.92-0.99). Results were based on phosphate binder prescription; phosphate binder and nutritional data were cross-sectional; dietary restriction was not assessed; observational design limits causal inference due to possible residual confounding. Longer survival and better nutritional status were observed for maintenance HD patients prescribed phosphate binders and in facilities with a greater percentage of phosphate binder prescription. Understanding the mechanisms for explaining this effect and ruling out possible residual confounding require additional research. Copyright © 2012 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, D.M.; Hawkins, T.W.; Lindsay, G.A.
1994-12-01
As part of the Strategic Environmental Research and Development Program (SERDP) a clean, agile manufacturing of explosives, propellants and pyrotechniques (CANPEP) effort set about to identify new approaches to materials and processes for producing propellants, explosives and pyrotechniques (PEP). The RDX based explosive PBXN-109 and gun propellant M-43 were identified as candidates for which waste minimization and recycling modifications might be implemented in a short time frame. The binders, additives and plasticizers subgroup identified cast non-curable thermoplastic elastomer (TPE) formulations as possible replacement candidates for these formulations. Paste extrudable explosives were also suggested as viable alternatives to PBXN-109. Commercial inertmore » and energetic TPEs are reviewed. Biodegradable and hydrolyzable binders are discussed. The applicability of various types of explosive formulations are reviewed and some issues associated with implementation of recyclable formulations are identified. It is clear that some processing and weaponization modifications will need to be made if any of these approaches are to be implemented. The major advantages of formulations suggested here over PBXN-109 and M-43 is their reuse/recyclability. Formulations using TPE or Paste could by recovered from a generic bomb or propellant and reused if they met specification or easily reprocessed and sold to the mining industry.« less
Formability and mechanical properties of porous titanium produced by a moldless process.
Naito, Yoshihito; Bae, Jiyoung; Tomotake, Yoritoki; Hamada, Kenichi; Asaoka, Kenzo; Ichikawa, Tetsuo
2013-08-01
Tailor-made porous titanium implants show great promise in both orthopedic and dental applications. However, traditional powder metallurgical processes require a high-cost mold, making them economically unviable for producing unique devices. In this study, a mixture of titanium powder and an inlay wax binder was developed for moldless forming and sintering. The formability of the mixture, the dimensional changes after sintering, and the physical and mechanical properties of the sintered porous titanium were evaluated. A 90:10 wt % mixture of Ti powder and wax binder was created manually at 70°C. After debindering, the specimen was sintered in Ar at 1100°C without any mold for 1, 5, and 10 h. The shrinkage, porosity, absorption ratio, bending and compressive strength, and elastic modulus were measured. The bending strength (135-356 MPa), compression strength (178-1226 MPa), and elastic modulus (24-54 GPa) increased with sintering time; the shrinkage also increased, whereas the porosity (from 37.1 to 29.7%) and absorption ratio decreased. The high formability of the binder/metal powder mixture presents a clear advantage for fabricating tailor-made bone and hard tissue substitution units. Moreover, the sintered compacts showed high strength and an elastic modulus comparable to that of cortical bone. Copyright © 2013 Wiley Periodicals, Inc.
Monteyne, Tinne; Heeze, Liza; Mortier, Severine Therese F C; Oldörp, Klaus; Cardinaels, Ruth; Nopens, Ingmar; Vervaet, Chris; Remon, Jean-Paul; De Beer, Thomas
2016-10-01
Twin screw hot melt granulation (TS HMG) is a valuable, but still unexplored alternative to continuous granulation of moisture sensitive drugs. However, knowledge of the material behavior during TS HMG is crucial to optimize the formulation, process and resulting granule properties. The aim of this study was to evaluate the agglomeration mechanism during TS HMG using a rheometer in combination with differential scanning calorimetry (DSC). An immiscible drug-binder formulation (caffeine-Soluplus(®)) was granulated via TS HMG in combination with thermal and rheological analysis (conventional and Rheoscope), granule characterization and Near Infrared chemical imaging (NIR-CI). A thin binder layer with restricted mobility was formed on the surface of the drug particles during granulation and is covered by a second layer with improved mobility when the Soluplus(®) concentration exceeded 15% (w/w). The formation of this second layer was facilitated at elevated granulation temperatures and resulted in smaller and more spherical granules. The combination of thermal and rheological analysis and NIR-CI images was advantageous to develop in-depth understanding of the agglomeration mechanism during continuous TS HMG and provided insight in the granule properties as function of process temperature and binder concentration.
Seong, Dong Gi; Ha, Jong Rok; Lee, Jea Uk; Lee, Wonoh; Kim, Byung Sun
2015-11-01
Carbon fiber reinforced composite has been a good candidate of lightweight structural component in the automotive industry. As fast production speed is essential to apply the composite materials for the mass production area such as automotive components, the high speed liquid composite molding processes have been developed. Fast resin injection through the fiber preform by high pressure is required to improve the production speed, but it often results in undesirable deformations of the fiber preform which causes defectives in size and properties of the final composite products. In order to prevent the undesirable deformation and improve the stability of preform shape, polymer type binder materials are used. More stable fiber preform can be obtained by increasing the amount of binder material, but it disturbs the resin impregnation through the fiber preform. In this study, carbon nanomaterials such as graphene oxide were embedded on the surface of carbon fiber by electrophoretic deposition method in order to improve the shape stability of fiber preform and interfacial bonding between polymer and the reinforcing fiber. Effects of the modified reinforcing fiber were investigated in two respects. One is to increase the binding energy between fiber tows, and the other is to increase the interfacial bonding between polymer matrix and fiber surface. The effects were analyzed by measuring the binding force of fiber preform and interlaminar shear strength of the composite. This study also investigated the high speed liquid molding process of the composite materials composed of polymer matrix and the carbon fiber preforms embedded by carbon nanomaterials. Process parameter such as permeability of fiber preform was measured to investigate the effect of nanoscale surface modification on the macroscale processing condition for composite manufacturing.
Binder-free LiCoO2/carbon nanotube cathodes for high-performance lithium ion batteries.
Luo, Shu; Wang, Ke; Wang, Jiaping; Jiang, Kaili; Li, Qunqing; Fan, Shoushan
2012-05-02
Binder-free LiCoO(2) -SACNT cathodes with excellent flexibility and conductivity are obtained by constructing a continuous three-dimensional super-aligned carbon nanotube (SACNT) framework with embedded LiCoO(2) particles. These binder-free cathodes display much better cycling stability, greater rate performance, and higher energy density than classical cathodes with binder. Various functional binder-free SACNT composites can be mass produced by the ultrasonication and co-deposition method described in this paper. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Proton conducting membrane using a solid acid
NASA Technical Reports Server (NTRS)
Haile, Sossina M. (Inventor); Chisholm, Calum (Inventor); Boysen, Dane (Inventor); Narayanan, Sekharipuram R. (Inventor)
2002-01-01
A solid acid material is used as a proton conducting membrane in an electrochemical device. The solid acid material can be one of a plurality of different kinds of materials. A binder can be added, and that binder can be either a nonconducting or a conducting binder. Nonconducting binders can be, for example, a polymer or a glass. A conducting binder enables the device to be both proton conducting and electron conducting. The solid acid material has the general form M.sub.a H.sub.b (XO.sub.t).sub.c.
Fatta, Despo; Papadopoulos, Achilleas; Stefanakis, Nikos; Loizidou, Maria; Savvides, Chrysanthos
2004-08-01
The aim of this study was to develop cost-effective, appropriate solidification technologies for treating hazardous industrial wastes that are currently disposed of in ways that may threaten the quality of local groundwater. One major objective was to use materials other than cement, and preferably materials that are themselves wastes, as the solidification additives, namely using wastes to treat wastes or locally available natural material. This research examines the cement-based and lime-based stabilization/solidification (S/S) techniques applied for waste generated at a metal-plating industry and a dye industry. For the lime-based S/S process the following binder mixtures were used: cement kiln dust/ lime, bentonite/lime and gypsum/lime. For the cement-based S/S process three binder mixtures were used: cement kiln dust/cement, bentonite/cement and gypsum/cement. The leachability of the wastes was evaluated using the toxicity characteristic leaching procedure. The applicability and optimum weight ratio of the binder mixtures were estimated using the unconfined compressive strength test. The optimum ratio mixtures were mixed with waste samples in different ratios and cured for 28 days in order to find the S/S products with the highest strength and lowest leachability at the same time. The results of this work showed that the cement-and lime-based S/S process, using cement kiln dust and bentonite as additives can be effectively used in order to treat industrial waste.
Binder Jetting: A Novel NdFeB Bonded Magnet Fabrication Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paranthaman, M. Parans; Shafer, Christopher S.; Elliott, Amy M.
2016-04-05
Our goal of this research is to fabricate near-net-shape isotropic (Nd) 2Fe 14B-based (NdFeB) bonded magnets using a three dimensional printing process to compete with conventional injection molding techniques used for bonded magnets. Additive manufacturing minimizes the waste of critical materials and allows for the creation of complex shapes and sizes. The binder jetting process works similarly to an inkjet printer. A print-head passes over a bed of NdFeB powder and deposits a polymer binding agent to bind the layer of particles together. The bound powder is then coated with another layer of powder, building the desired shape in successivemore » layers of bonded powder. Upon completion, the green part and surrounding powders are placed in an oven at temperatures between 100°C and 150°C for 4–6 h to cure the binder. After curing, the excess powder can be brushed away to reveal the completed “green” part. Green magnet parts were then infiltrated with a clear urethane resin to achieve the measured density of the magnet of 3.47 g/cm 3 close to 46% relative to the NdFeB single crystal density of 7.6 g/cm 3. Magnetic measurements indicate that there is no degradation in the magnetic properties. In conclusion, this study provides a new pathway for preparing near-net-shape bonded magnets for various magnetic applications.« less
The guayule plant : a renewable, domestic source of binder materials for flexible pavement mixtures.
DOT National Transportation Integrated Search
2013-01-01
The guayule (pronounced 'why-YOU-lee') plant grows in arid and semi-arid regions (e.g. the southwestern U.S.) and is a source of natural rubber. It was cultivated and processed during the World War II rubber shortage and is currently being processed ...
Ihsanullah; Atieh, Muataz Ali
2017-01-01
An aluminum oxide-impregnated carbon nanotube (CNT-Al2O3) membrane was developed via a novel approach and used in the removal of toxic metal cadmium ions, Cd(II). The membrane did not require any binder to hold the carbon nanotubes (CNTs) together. Instead, the Al2O3 particles impregnated on the surface of the CNTs were sintered together during heating at 1400 °C. Impregnated CNTs were characterized using XRD, while the CNT-Al2O3 membrane was characterized using scanning electron microscopy (SEM). Water flux, contact angle, and porosity measurements were performed on the membrane prior to the Cd(II) ion removal experiment, which was conducted in a specially devised continuous filtration system. The results demonstrated the extreme hydrophilic behavior of the developed membrane, which yielded a high water flux through the membrane. The filtration system removed 84% of the Cd(II) ions at pH 7 using CNT membrane with 10% Al2O3 loading. A maximum adsorption capacity of 54 mg/g was predicted by the Langmuir isotherm model for the CNT membrane with 10% Al2O3 loading. This high adsorption capacity indicated that adsorption was the main mechanism involved in the removal of Cd(II) ions. PMID:28956842
Characterizing and modeling organic binder burnout from green ceramic compacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ewsuk, K.G.; Cesarano, J. III; Cochran, R.J.
New characterization and computational techniques have been developed to evaluate and simulate binder burnout from pressed powder compacts. Using engineering data and a control volume finite element method (CVFEM) thermal model, a nominally one dimensional (1-D) furnace has been designed to test, refine, and validate computer models that simulate binder burnout assuming a 1-D thermal gradient across the ceramic body during heating. Experimentally, 1-D radial heat flow was achieved using a rod-shaped heater that directly heats the inside surface of a stack of ceramic annuli surrounded by thermal insulation. The computational modeling effort focused on producing a macroscopic model formore » binder burnout based on continuum approaches to heat and mass conservation for porous media. Two increasingly complex models have been developed that predict the temperature and mass of a porous powder compact as a function of time during binder burnout. The more complex model also predicts the pressure within a powder compact during binder burnout. Model predictions are in reasonably good agreement with experimental data on binder burnout from a 57--65% relative density pressed powder compact of a 94 wt% alumina body containing {approximately}3 wt% binder. In conjunction with the detailed experimental data from the prototype binder burnout furnace, the models have also proven useful for conducting parametric studies to elucidate critical i-material property data required to support model development.« less
LIQUID PHASE SINTERING OF METALLIC CARBIDES
Hammond, J.; Sease, J.D.
1964-01-21
An improved method is given for fabricating uranium carbide composites, The method comprises forming a homogeneous mixture of powdered uranium carbide, a uranium intermetallic compound which wets and forms a eutectic with said carbide and has a non-uranium component which has a relatively high vapor pressure at a temperature in the range 1200 to 1500 deg C, and an organic binder, pressing said mixture to a composite of desired green strength, and then vacuum sintering said composite at the eutectic forming temperature for a period sufficient to remove at least a portion of the non-uranium containing component of said eutectic. (AEC)
De Mil, Thomas; Devreese, Mathias; De Baere, Siegrid; Van Ranst, Eric; Eeckhout, Mia; De Backer, Patrick; Croubels, Siska
2015-01-01
The aim of this study was to characterize 27 feed additives marketed as mycotoxin binders and to screen them for their in vitro zearalenone (ZEN) adsorption. Firstly, 27 mycotoxin binders, commercially available in Belgium and The Netherlands, were selected and characterized. Characterization was comprised of X-ray diffraction (XRD) profiling of the mineral content and d-spacing, determination of the cation exchange capacity (CEC) and the exchangeable base cations, acidity, mineral fraction, relative humidity (RH) and swelling volume. Secondly, an in vitro screening experiment was performed to evaluate the adsorption of a single concentration of ZEN in a ZEN:binder ratio of 1:20,000. The free concentration of ZEN was measured after 4 h of incubation with each of the 27 mycotoxin binders at a pH of 2.5, 6.5 and 8.0. A significant correlation between the free concentration of ZEN and both the d-spacing and mineral fraction of the mycotoxin binders was seen at the three pH levels. A low free concentration of ZEN was demonstrated using binders containing mixed-layered smectites and binders containing humic acids. PMID:25568976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Lynn; Yaga, Robert; Lamvik, Michael
The influence of phosphor and binder layer chemistries on the lumen maintenance and color stability of remote phosphor disks were examined using wet high-temperature operational lifetime testing (WHTOL). As part of the experimental matrix, two different correlated color temperature (CCT) values, 2700 K and 5000 K, were studied and each had a different binder chemistry. The 2700 K samples used a urethane binder whereas the 5000 K samples used an acrylate binder. Experimental conditions were chosen to enable study of the binder and phosphor chemistries and to minimize photo-oxidation of the polycarbonate substrate. Under the more severe WHTOL conditions ofmore » 85°C and 85% relative humidity (RH), absorption in the binder layer significantly reduced luminous flux and produced a blue color shift. The milder WHTOL conditions of 75°C and 75% RH, resulted in chemical changes in the binder layer that may alter its index of refraction. As a result, lumen maintenance remained high, but a slight yellow shift was found. The aging of remote phosphor products provides insights into the impact of materials on the performance of phosphors in an LED lighting system.« less
The impact of nurse-led education on haemodialysis patients' phosphate binder medication adherence.
Sandlin, Kimberly; Bennett, Paul N; Ockerby, Cherene; Corradini, Ann-Marie
2013-03-01
Phosphate binder medication adherence is required to maintain optimal phosphate levels and minimise bone disease in people with end stage kidney disease. To examine the impact of a nurse-led education intervention on bone disorder markers, adherence to phosphate binder medication and medication knowledge. Descriptive study with a paired pre-post intervention survey. Adults receiving haemodialysis. Twelve-week intervention where patients self-administered their phosphate binder medication at each dialysis treatment. Nurses provided individualised education. Patients completed a pre- and post-intervention survey designed to explore their knowledge of phosphate binders. There were no statistically significant changes in clinical markers but a significant improvement in the proportion of patients who took their phosphate binder correctly, increasing from 44 to 72% (p = 0.016). There were moderate to large effect size changes for improved knowledge. A nurse-led intervention education programme can increase patients' phosphate binder adherence. However, this does not necessarily manifest into improved serum phosphate levels. © 2013 European Dialysis and Transplant Nurses Association/European Renal Care Association.
Ibrahim, Mohd Rasdan; Katman, Herda Yati; Karim, Mohamed Rehan; Koting, Suhana; Mashaan, Nuha S.
2014-01-01
The main objective of this paper is to investigate the relations of rubber size, rubber content, and binder content in determination of optimum binder content for open graded friction course (OGFC). Mix gradation type B as specified in Specification for Porous Asphalt produced by the Road Engineering Association of Malaysia (REAM) was used in this study. Marshall specimens were prepared with four different sizes of rubber, namely, 20 mesh size [0.841 mm], 40 mesh [0.42 mm], 80 mesh [0.177 mm], and 100 mesh [0.149 mm] with different concentrations of rubberised bitumen (4%, 8%, and 12%) and different percentages of binder content (4%–7%). The appropriate optimum binder content is then selected according to the results of the air voids, binder draindown, and abrasion loss test. Test results found that crumb rubber particle size can affect the optimum binder content for OGFC. PMID:24574875
NASA Astrophysics Data System (ADS)
Wang, Rui; Feng, Lili; Yang, Wenrong; Zhang, Yinyin; Zhang, Yanli; Bai, Wei; Liu, Bo; Zhang, Wei; Chuan, Yongming; Zheng, Ziguang; Guan, Hongjin
2017-10-01
When testing the electrochemical performance of metal oxide anode for lithium-ion batteries (LIBs), binder played important role on the electrochemical performance. Which binder was more suitable for preparing transition metal oxides anodes of LIBs has not been systematically researched. Herein, five different binders such as polyvinylidene fluoride (PVDF) HSV900, PVDF 301F, PVDF Solvay5130, the mixture of styrene butadiene rubber and sodium carboxymethyl cellulose (SBR+CMC), and polyacrylonitrile (LA133) were studied to make anode electrodes (compared to the full battery). The electrochemical tests show that using SBR+CMC and LA133 binder which use water as solution were significantly better than PVDF. The SBR+CMC binder remarkably improve the bonding capacity, cycle stability, and rate performance of battery anode, and the capacity retention was about 87% after 50th cycle relative to the second cycle. SBR+CMC binder was more suitable for making transition metal oxides anodes of LIBs.
NASA Astrophysics Data System (ADS)
Strohm, Gianna Sophia
The move from conventional energetic composites to nano scale energetic mixtures (nano energetics) has shown dramatic improvement in energy release rate and sensitivity to ignition. A possible application of nano energetics is on a semiconductor bridge (SCB). An SCB typically requires a tenth of the energy input as compared to a bridge wire design with the same no-fire and is capable of igniting in tens of microseconds. For very low energy applications, SCBs can be manufactured to extremely small sizes and it is necessary to find materials with particle sizes that are even smaller to function. Reactive particles of comparable size to the bridge can lead to problems with ignition reliability for small bridges. Nano-energetic composites and the use of SCBs have been significantly studied individually, however, the process of combining nano energetics with an SCB has not been investigated extensively and is the focus of this work. Goals of this study are to determine if nano energetics can be used with SCBs to further reduce the minimum energy required and improve reliability. The performance of nano-scale aluminum (nAl) and bismuth oxide (Bi2O3) with nitrocellulose (NC), Fluorel(TM) FC 2175 (chemically equivalent to VitonRTM) and Glycidyl Azide Polymer (GAP) as binders where quantified initially using the SenTest(TM) algorithm at three weight fractions (5, 7, and 9%) of binder. The threshold energy was calculated and compared to previous data using conventional materials such as zirconium potassium chlorate (ZPC), mercuric 5-Nitrotetrazol (DXN-1) and titanium sub-hydride potassium per-chlorate (TSPP). It was found that even though there where only slight differences in performance between the binders with nAl/Bi2O 3 at any of the three binder weight fractions, the results show that these nano energetic materials require about half of the threshold energy compared to conventional materials using an SCB with an 84x42 mum bridge. Binder limit testing was conducted to find the critical limit of binder when the output of the SCB declines. The binder was evaluated at 13, 17 and 20% and it was found that the limit amount of binder falls between 17 and 20% by weight of material. Scaling of the SCB bridge was evaluated using a 36x15 mum bridge size and tested using 5, 7 and 9% nAl/Bi2O 3 FC 2175 slurry, creating a functioning SCB compared to previous no-ignition results using TSPP. It was also postulated that the compaction of a secondary material onto the SCB would alter the SCB output during testing. It was found that increased energy values where required for both the 5 and 7% binder amounts and no change was seen at the 9% level.
2008-06-27
Aluminum toxicity can cause osteomalacia, anemia, and dementia in hemodialysis patients and has historically been associated with exposure to contaminated water or dialysate preparations or ingestion of aluminum-containing phosphate binders. Since 2002, improvements in water treatment methods and use of non-aluminum-containing phosphate binders have resulted in low prevalence (<1%) of aluminum toxicity among hemodialysis patients. In the United States, reported cases of aluminum toxicosis are rare, and no outbreak has been reported since 1992. This report describes 10 patients treated at a hemodialysis unit in a Wyoming hospital (hospital A) in 2007 who had elevated serum aluminum levels that were detected through routine serum aluminum screening. An investigation was conducted by the Wyoming Department of Health, which determined that the source of exposure was dialysate acid concentrate that became contaminated with aluminum as it passed through two electric drum pumps. The drum pumps had been used to transfer dialysate acid concentrate from 55-gallon storage drums to 1-gallon jugs for use on individual hemodialysis machines. Removal of the pumps from service resulted in a rapid reduction in patient serum aluminum levels. The findings suggest that regular assessment of machine compatibility with dialysate fluid is needed.
NASA Astrophysics Data System (ADS)
Sabri, N. A.; Nawi, M. A.; Nawawi, W. I.
2015-10-01
Carbon coated nitrogen-doped Degussa P25TiO2 (or C,N-P25TiO2) was successfully immobilized on a glass plate using epoxidized natural rubber (ENR-50) and polyvinyl chloride (PVC) as the organic binders. Photo-etching of the fabricated system for 10 h oxidized its PVC binder into polyenes as well as forming a highly porous surface. The band gap energy (Eg) of the photo-etched immobilized photocatalyst system (C,N-P25TiO2/ENR/PVC-10 h) was reduced from 2.91 to 2.86 eV. Its photocatalytic activity was studied via photocatalytic degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) under a 45 W visible light fluorescent lamp. C,N-P25TiO2/ENR/PVC-10 h with polyenes performed better than its slurry counterpart under visible light irradiation where the conjugated double bonds acted as photo sensitizers. The immobilized C,N-P25TiO2/ENR/PVC-10 h has excellent reusability and sustainable with an average k value of 0.056 ± 0.011 min-1 and average percent removal of 99.18 ± 0.54%.
Howe, Beth Ann [Lewistown, IL; Chaps-Cabrera, Jesus Guadalupe [Coahuila, MX
2009-05-12
A metal-phosphate binder is provided. The binder may include an aqueous phosphoric acid solution, a metal-cation donor including a metal other than aluminum, an aluminum-cation donor, and a non-carbohydrate electron donor.
Lala, A O; Ajayi, O L; Oso, A O; Ajao, M O; Oni, O O; Okwelum, N; Idowu, O M O
2016-12-01
This study was carried out to investigate the effect of dietary supplementation with molecular or nano-clay binders on biochemical and histopathological examination of organs of turkeys fed diets contaminated with aflatoxin B 1. Two hundred and sixteen unsexed 1-day-old British United Turkeys were randomly allotted to nine diets in a 3 × 3 factorial arrangement of diets supplemented with no toxin binder, molecular toxin binder (MTB) and nano-clay toxin binder, each contaminated with 0, 60 and 110 ppb aflatoxin B 1 respectively. There were three replicates per treatment with eight turkeys per replicate. Biochemical analyses, organ weights and histopathological changes of some organs were examined at the end of the study which lasted for 84 days. Turkeys fed diets supplemented with molecular and nano-binders showed higher (p < 0.001) total serum protein, reduced (p < 0.001) serum uric acid and GGT concentration values when compared with those fed aflatoxin-contaminated diets supplemented with no binder. Turkeys fed aflatoxin-contaminated diets supplemented with no binder had increased (p < 0.001) AST and ALT concentration when compared with other treatments. The heaviest (p < 0.001) liver and intestinal weight was noticed with turkeys fed diets supplemented with no binder and contaminated with 110 ppb aflatoxin B 1 . Pathologically, there was no visible morphological alteration noticed in all turkeys fed uncontaminated diets and nano-clay-supplemented group. Hepatic paleness, hepatomegaly and yellowish discolouration of the liver were observed with turkeys fed diets containing no binder but contaminated with 60 and 110 ppb aflatoxin B1. Intestinal histopathological changes such as goblet cell hyperplasia, villous atrophy and diffuse lymphocytic enteritis were more prominent in turkeys fed diets containing no toxin binder and MTB. In conclusion, there were improved biochemical parameters and reduced deleterious effects of aflatoxin B 1 in turkeys fed diet supplemented with clay binders. However, the improvement was more conspicuous in the nano-clay-supplemented group than molecular clay group. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.
Influence of pH on in vitro disintegration of phosphate binders.
Stamatakis, M K; Alderman, J M; Meyer-Stout, P J
1998-11-01
Hyperphosphatemia, a common complication in patients with end-stage renal disease, is treated with oral phosphate-binding medications that restrict phosphorus absorption from the gastrointestinal (GI) tract. Impaired product performance, such as failure to disintegrate and/or dissolve in the GI tract, could limit the efficacy of the phosphate binder. Disintegration may be as important as dissolution for predicting in vitro product performance for medications that act locally on the GI tract, such as phosphate binders. Furthermore, patients with end-stage renal disease have a wide range in GI pH, and pH can influence a product's performance. The purpose of this study was to determine the effect of pH on in vitro disintegration of phosphate binders. Fifteen different commercially available phosphate binders (seven calcium carbonate tablet formulations, two calcium acetate tablet formulations, three aluminum hydroxide capsule formulations, and three aluminum hydroxide tablet formulations) were studied using the United States Pharmacopeia (USP) standard disintegration apparatus. Phosphate binders were tested in simulated gastric fluid (pH 1.5), distilled water (pH 5.1), and simulated intestinal fluid (pH 7.5). Product failure was defined as two or more individual tablets or capsules failing to disintegrate completely within 30 minutes. Results indicate that 9 of the 15 phosphate binders tested showed statistically significant differences in disintegration time (DT) based on pH. The percentage of binders that passed the disintegration study test in distilled water, gastric fluid, and intestinal fluid were 80%, 80%, and 73%, respectively. The findings of this study show that the disintegration of commercially available phosphate binders is highly variable. The pH significantly affected in vitro disintegration in the majority of phosphate binders tested; how significantly this affects in vivo performance has yet to be studied.
Induction technique in manufacturing preforms
NASA Astrophysics Data System (ADS)
Frauenhofer, M.; Ströhlein, T.; Fabig, S.; Böhm, S.; Herbeck, L.; Dilger, K.
2008-09-01
The prepreg technology is a state-of-the-art method to produce high-performance CFRP parts. Due to the high material prices, the restricted process rate, and limitations to the component complexity, in future, more and more parts will be assembled by using liquid composite moulding. Especially in the case of series larger than 100 parts per year, the LCM technology offers the best cost-effectiveness. This technology is based on resin injection into dry multilayer fibre textiles (preforms). The Institute of Joining and Welding (TU, Braunschweig), together with the Institute of Composite Structures and Adaptive Systems (DLR), has elaborated a new technology to speed up the preform process, which is the most labour-intensive step within the LCM process chain. A novel concept to consolidate binder-coated fabrics is under development. By applying the high energy transfer rate of induction technology, it is possible to heat up a preform with rates up to 50 K/s to melt the binder and consolidate the preform.
Durable regenerable sorbent pellets for removal of hydrogen sulfide from coal gas
Siriwardane, R.V.
1999-02-02
Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form, usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.
Durable regenerable sorbent pellets for removal of hydrogen sulfide from coal gas
Siriwardane, R.V.
1997-12-30
Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.
Durable regenerable sorbent pellets for removal of hydrogen sulfide from coal gas
Siriwardane, Ranjani V.
1997-01-01
Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.
Durable regenerable sorbent pellets for removal of hydrogen sulfide coal gas
Siriwardane, Ranjani V.
1999-01-01
Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form, usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.
Seal coat binder performance specifications.
DOT National Transportation Integrated Search
2013-11-01
Need to improve seal coat binder specs: replace empirical tests (penetration, ductility) with : performance-related tests applicable to both : unmodified and modified binders; consider temperatures that cover entire in service : range that are tied t...
Polysiloxane binder for lithium ion battery electrodes
Zhang, Zhengcheng; Dong, Jian; Amine, Khalil
2015-10-13
An electrode includes a binder and an electroactive material, wherein the binder includes a polymer including a linear polysiloxane or a cyclic polysiloxane. The polymer may be generally represented by Formula I: ##STR00001##
Practical experiences with new types of highly modified asphalt binders
NASA Astrophysics Data System (ADS)
Špaček, Petr; Hegr, Zdeněk; Beneš, Jan
2017-09-01
As a result of steadily increasing traffic load on the roads in the Czech Republic, we should be focused on the innovative technical solutions, which will lead to extending the life time of asphalt pavements. One of these ways could be the future use of bitumen with a higher degree of polymer modification. This paper discusses experience with comparison of new highly polymer modified asphalt binder type with conventional polymer modified asphalt binder and unmodified binder with penetration grade 50/70. There are compared the results of various types laboratory tests of asphalt binders, as well as the results of asphalt mixtures laboratory tests. The paper also mentions the experience with workability and compactability of asphalt mixture with highly polymer modified asphalt binder during the realization of the experimental reference road section by the Skanska company in the Czech Republic.
Modified binders on the basis of flotation tailings
NASA Astrophysics Data System (ADS)
Shapovalov, N. A.; Zagorodnyuk, L. Kh; Shchekina, A. Yu; Gorodov, A. I.
2018-03-01
The article proposes compositions of efficient modified composite binders on the basis of portland cement and flotation tailings; the new binders attain the ultimate compressive stress that is twice as high as that of the cement stone. At that, use of annually growing volume of flotation tailings in the production of the composite binder is a rational way for recycling this type of waste and allows saving the planet's natural resources.
The effects of two thick film deposition methods on tin dioxide gas sensor performance.
Bakrania, Smitesh D; Wooldridge, Margaret S
2009-01-01
This work demonstrates the variability in performance between SnO(2) thick film gas sensors prepared using two types of film deposition methods. SnO(2) powders were deposited on sensor platforms with and without the use of binders. Three commonly utilized binder recipes were investigated, and a new binder-less deposition procedure was developed and characterized. The binder recipes yielded sensors with poor film uniformity and poor structural integrity, compared to the binder-less deposition method. Sensor performance at a fixed operating temperature of 330 °C for the different film deposition methods was evaluated by exposure to 500 ppm of the target gas carbon monoxide. A consequence of the poor film structure, large variability and poor signal properties were observed with the sensors fabricated using binders. Specifically, the sensors created using the binder recipes yielded sensor responses that varied widely (e.g., S = 5 - 20), often with hysteresis in the sensor signal. Repeatable and high quality performance was observed for the sensors prepared using the binder-less dispersion-drop method with good sensor response upon exposure to 500 ppm CO (S = 4.0) at an operating temperature of 330 °C, low standard deviation to the sensor response (±0.35) and no signal hysteresis.
The Effects of Two Thick Film Deposition Methods on Tin Dioxide Gas Sensor Performance
Bakrania, Smitesh D.; Wooldridge, Margaret S.
2009-01-01
This work demonstrates the variability in performance between SnO2 thick film gas sensors prepared using two types of film deposition methods. SnO2 powders were deposited on sensor platforms with and without the use of binders. Three commonly utilized binder recipes were investigated, and a new binder-less deposition procedure was developed and characterized. The binder recipes yielded sensors with poor film uniformity and poor structural integrity, compared to the binder-less deposition method. Sensor performance at a fixed operating temperature of 330 °C for the different film deposition methods was evaluated by exposure to 500 ppm of the target gas carbon monoxide. A consequence of the poor film structure, large variability and poor signal properties were observed with the sensors fabricated using binders. Specifically, the sensors created using the binder recipes yielded sensor responses that varied widely (e.g., S = 5 – 20), often with hysteresis in the sensor signal. Repeatable and high quality performance was observed for the sensors prepared using the binder-less dispersion-drop method with good sensor response upon exposure to 500 ppm CO (S = 4.0) at an operating temperature of 330 °C, low standard deviation to the sensor response (±0.35) and no signal hysteresis. PMID:22399977
Lim, Tae Hwan; Choi, Jeong Rak; Lim, Dae Young; Lee, So Hee; Yeo, Sang Young
2015-10-01
Fiber binder adapted carbon air filter is prepared to increase gas adsorption efficiency and environmental stability. The filter prevents harmful gases, as well as particle dusts in the air from entering the body when a human inhales. The basic structure of carbon air filter is composed of spunbond/meltblown/activated carbon/bottom substrate. Activated carbons and meltblown layer are adapted to increase gas adsorption and dust filtration efficiency, respectively. Liquid type adhesive is used in the conventional carbon air filter as a binder material between activated carbons and other layers. However, it is thought that the liquid binder is not an ideal material with respect to its bonding strength and liquid flow behavior that reduce gas adsorption efficiency. To overcome these disadvantages, fiber type binder is introduced in our study. It is confirmed that fiber type binder adapted air filter media show higher strip strength, and their gas adsorption efficiencies are measured over 42% during 60 sec. These values are higher than those of conventional filter. Although the differential pressure of fiber binder adapted air filter is relatively high compared to the conventional one, short fibers have a good potential as a binder materials of activated carbon based air filter.
NASA Astrophysics Data System (ADS)
Makowska, Michalina; Huuskonen-Snicker, Eeva; Alanaatu, Pauli; Aromaa, Kalle; Savarnya, Abhishek; Pellinen, Terhi; Das, Animesh
2018-05-01
The hot in-place recycling (HIR) of asphalt concrete (AC) is one of the least CO2 emissive reuse techniques. It allows for 100% reuse of material in-situ in the same application, at a reduced need for the material transport to and back from the construction site, as well as the reduced price in comparison with the fresh wearing course overlay. Finland uses the technique predominantly to fill wheel path ruts caused by the studded tire abrasion, to retain structural capacity and prevent hydroplaning. During the HIR process, the aged AC material is heated up in-situ, milled to the approximate depth of 40 mm, blended with fresh AC admixture and rejuvenator. However, the amount of the aged material and the amount of the aged bitumen that undergoes rejuvenation depends on the pavement transverse profile. The rut depth, width and shape determine the minimum volume of admixture necessary for refill during the process in order to retain the structural capacity, as well as the amount of the aged binder requiring rejuvenation. In favor of achieving homogenous rheological properties in the final product, the proportion between the aged binder and the fresh binder should be controlled, as it influences the required amount of rejuvenator. Therefore, the rut cross-sectional area and furthermore, the rut volume is one of the previously unrecognized or ignored major variables of the hot in-place recycling process in Finland that should be incorporated to the HIR process control. This article demonstrates the methodology of incorporating the transverse road profile measurements by 17 vehicle-mounted laser sensors into the calculation of required rejuvenator amounts. This can be done during the procurement preparation phase or during the paving work as a continuous in-situ process control. In the rheological optimization the apparent Newtonian viscosity concept and the rotational viscosity are utilized in the viscosity based blending equation, which then allows the use of oily rejuvenators. The method reduces the need for aged pavement sampling compared with the determination of the calibration curve between rejuvenator concentration and the rheological response. Additionally, the apparent Newtonian viscosity corrects the complex viscosity by the phase angle derived correction factor, opening a previously unexplored opportunity of targeting desired viscoelastic characteristics. The approach is less sensitive to the frequencies and temperatures at which the shear measurements are conducted. This makes proposed calculative method of the desired proportioning of the aged binder, the fresh binder and the rejuvenator a promising tool for the industry. The combined algorithm presented allows for: the discrimination of sites where HIR type maintenance of pavement in question would result in a substandard product; the choice of the most promising material combination of the admixture and rejuvenator, as well as for the adjustment of the admixture and rejuvenator amount in-place.
DOT National Transportation Integrated Search
2012-12-01
Crumb rubber, made from scrap tires, has been introduced into the production of different types of hot : mix asphalt (HMA) in either a wet or dry process. In the wet process, the crumb rubber and binder are : completely mixed to form asphalt rubber (...
NASA Astrophysics Data System (ADS)
Blegur, Ernes Josias; Endarko
2017-01-01
Carbon electrodes prepared with crosslink method for desalination purpose has been synthesized and characterized. The carbon electrodes were synthesized with activated carbon (700 - 1400 m2/g) and polyvinyl alcohol (PVA) as a binder using crosslink method with temperature crosslink at 120°C. Electrochemical properties of carbon electrodes were examined using electrical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The proposed study was to measure the salt-removal percentage of 330 µS/cm NaCl using a capacitive deionization (CDI) unit cell prepared with two pairs of carbon electrodes. The applied potential of 2.0 V and a flow rate of 25 mL/min were used to desalination tests. The result showed that the greatest value of the percentage of salt-removal was achieved at 36.1% for the carbon electrodes with Active Carbon Modified (ACM) while the salt-removal percentage for the Active Carbon (AC) electrodes only at 22%. The fact indicates that the active carbon modified using HNO3 can improve the efficiency of CDI about 14%.
Processing equipment for grinding of building powders
NASA Astrophysics Data System (ADS)
Fediuk, R. S.; Ibragimov, R. A.; Lesovik, V. S.; Pak, A. A.; Krylov, V. V.; Poleschuk, M. M.; Stoyushko, N. Y.; Gladkova, N. A.
2018-03-01
In the article questions of mechanical grinding up to nanosize of building powder materials are considered. In the process of mechanoactivation of the composite binder, active molecules of cement minerals arise when molecular packets are destroyed in the areas of defects and loosening of the metastable phase during decompensation of intermolecular forces. The process is accompanied by a change in the kinetics of hardening Portland cement. Mechanical processes in the grinding of mineral materials cause, together with an increase in their surface energy, the growth of the isobaric potential of the powders and, accordingly, their chemical activity, which also contributes to high adhesion strength when they come into contact with binders. Thus, a set of measures for mechanical activation allows more fully use the mass of components of the filled cement systems and regulate their properties. At relatively low costs, it is possible to provide an impressive and, importantly, easily repeatable in production conditions result. It is revealed that the use of a vario-planetary mill allows to achieve the best results on grinding the powder building materials.
Fortuna, Sara; Fogolari, Federico; Scoles, Giacinto
2015-01-01
The design of new strong and selective binders is a key step towards the development of new sensing devices and effective drugs. Both affinity and selectivity can be increased through chelation and here we theoretically explore the possibility of coupling two binders through a flexible linker. We prove the enhanced ability of double binders of keeping their target with a simple model where a polymer composed by hard spheres interacts with a spherical macromolecule, such as a protein, through two sticky spots. By Monte Carlo simulations and thermodynamic integration we show the chelating effect to hold for coupling polymers whose radius of gyration is comparable to size of the chelated particle. We show the binding free energy of flexible double binders to be higher than that of two single binders and to be maximized when the binding sites are at distances comparable to the mean free polymer end-to-end distance. The affinity of two coupled binders is therefore predicted to increase non linearly and in turn, by targeting two non-equivalent binding sites, this will lead to higher selectivity. PMID:26496975
Texas cracking performance prediction, simulation, and binder recommendation.
DOT National Transportation Integrated Search
2014-10-01
Recent studies show some mixes with softer binders used outside of Texas (e.g., Minnesotas Cold Weather Road Research Facility mixes) have both good rutting and cracking performance. However, the current binder performance grading (PG) system fail...
76 FR 81487 - Agency Information Collection Extension; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-28
... to Kathleen Binder at kathleen.binder@hq.doe.gov . Correction In the Federal Register of December 16... corrected to read: (1) OMB No. 1910-5118; Issued in Washington, DC on December 21, 2011. Kathleen M. Binder...
Study of chloride ion transport of composite by using cement and starch as a binder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armynah, Bidayatul; Halide, Halmar; Zahrawani,
This study presents the chemical bonding and the structural properties of composites from accelerator chloride test migration (ACTM). The volume fractions between binder (cement and starch) and charcoal in composites are 20:80 and 60:40. The effect of the binder to the chemical composition, chemical bonding, and structural properties before and after chloride ion passing through the composites was determined by X-ray fluorescence (XRF), by Fourier transform infra-red (FTIR), and x-ray diffraction (XRD), respectively. From the XRD data, XRF data, and the FTIR data shows the amount of chemical composition, the type of binding, and the structure of composites are dependingmore » on the type of binder. The amount of chloride migration using starch as binder is higher than that of cement as a binder due to the density effects.« less
De Mil, Thomas; Devreese, Mathias; Broekaert, Nathan; Fraeyman, Sophie; De Backer, Patrick; Croubels, Siska
2015-05-06
Mycotoxin binders are readily mixed in feeds to prevent uptake of mycotoxins by the animal. Concerns were raised for nonspecific binding with orally administered veterinary drugs by the European Food Safety Authority in 2010. This paper describes the screening for in vitro adsorption of doxycycline-a broad-spectrum tetracycline antibiotic-to six different binders that were able to bind >75% of the doxycycline. Next, an in vivo pharmacokinetic interaction study of doxycycline with two of the binders, which demonstrated significant in vitro binding, was performed in broiler chickens using an oral bolus model. It was shown that two montmorillonite-based binders were able to lower the area under the plasma concentration-time curve of doxycycline by >60% compared to the control group. These results may indicate a possible risk for reduced efficacy of doxycycline when used concomitantly with montmorillonite-based mycotoxin binders.
Binder-induced surface structure evolution effects on Li-ion battery performance
NASA Astrophysics Data System (ADS)
Rezvani, S. J.; Pasqualini, M.; Witkowska, A.; Gunnella, R.; Birrozzi, A.; Minicucci, M.; Rajantie, H.; Copley, M.; Nobili, F.; Di Cicco, A.
2018-03-01
A comparative investigation on binder induced chemical and morphological evolution of Li4Ti5O12 electrodes was performed via X-ray photoemission spectroscopy, scanning electron microscopy, and electrochemical measurements. Composite electrodes were obtained using three different binders (PAA, PVdF, and CMC) with 80:10:10 ratio of active material:carbon:binder. The electrochemical performances of the electrodes, were found to be intimately correlated with the evolution of the microstructure of the electrodes, probed by XPS and SEM analysis. Our analysis shows that the surface chemistry, thickness of the passivation layers and the morphology of the electrodes are strongly dependent on the type of binders that significantly influence the electrochemical properties of the electrodes. These results point to a key role played by binders in optimization of the battery performance and improve our understanding of the previously observed and unexplained electrochemical properties of these electrodes.
Influence of Binder in Iron Matrix Composites
NASA Astrophysics Data System (ADS)
Shamsuddin, S.; Jamaludin, S. B.; Hussain, Z.; Ahmad, Z. A.
2010-03-01
The ability to use iron and its alloys as the matrix material in composite systems is of great importance because it is the most widely used metallic material with a variety of commercially available steel grades [1]. The aim of this study is to investigate the influence of binder in particulate iron based metal matrix composites. There are four types of binder that were used in this study; Stearic Acid, Gummi Arabisch, Polyvinyl alcohol 15000 MW and Polyvinyl alcohol 22000 MW. Six different weight percentage of each binder was prepared to produce the composite materials using powder metallurgy (P/M) route; consists of dry mixing, uniaxially compacting at 750 MPa and vacuum sintering at 1100° C for two hours. Their characterization included a study of density, porosity, hardness and microstructure. Results indicate that MMC was affected by the binder and stearic acid as a binder produced better properties of the composite.
Yang, Meiyan; Xie, Si; Li, Qiu; Wang, Yuli; Chang, Xinyi; Shan, Li; Sun, Lei; Huang, Xiaoli; Gao, Chunsheng
2014-04-25
Delivering sparingly water-soluble drugs from ethylcellulose (EC) coated pellets with a controlled-release pattern remains challenging. In the present study, hydrophilic polyvinylpyrrolidone (PVP) was used both as a binder and a pore-former in EC coated pellets to deliver sparingly water-soluble topiramate, and the key factors that influenced drug release were identified. When the binder PVP content in drug layers below 20% w/w was decreased, the physical state of topiramate changed from amorphous to crystalline, making much difference to drug solubility and dissolution rates while modifying the drug release profile from first-order to zero-order. In addition, without PVP in drug layering solution, drug layered particles were less sticky during layering process, thus leading to a shorter process and higher loading efficiency. Furthermore, PVP level as a pore-former in EC coating layers mainly governed drug release from the coated pellets with the sensitivity ranging from 23% to 29%. PVP leaching rate and water permeability from EC/PVP film increased with the PVP level, which was perfectly correlated with drug release rate. Additionally, drug release from this formulation was independent of pH of release media or of the paddle mixing speed, but inversely proportional to the osmolality of release media above the physiological range. Copyright © 2014. Published by Elsevier B.V.
Development of high toughness, high strength aluminide-bonded carbide ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becher, P.F.; Plucknett, K.P.; Tiegs, T.N.
1997-04-01
Cemented carbides are widely used in applications where resistance to abrasion and wear are important, particularly in combination with high strength and stiffness. In the present case, ductile aluminides have been used as a binder phase to fabricate dense carbide cermets by either sintering of mixed powders or a melt-infiltration sintering process. The choice of an aluminide binder was based on the exceptional high temperature strength and chemical stability exhibited by these alloys. For example, TiC-based composites with a Ni{sub 3}Al binder phase exhibit improved oxidation resistance, Young`s moduli > 375 GPa, high fracture strengths (> 1 GPa) that aremore » retained to {ge} 900{degrees}C, and fracture toughness values of 10 to 15 MPa{radical}m, identical to that measured in commercial cobalt-bonded WC with the same test method. The thermal diffusivity values at 200{degrees}C for these composites are {approximately} 0.070 to 0.075 cm{sup 2}/s while the thermal expansion coefficients rise with Ni3Al content from {approximately} 8 to {approximately}11 x 10{sup {minus}6}/{degrees}C over the range of 8 to 40 vol. % Ni{sub 3}Al. The oxidation and acidic corrosion resistances are quite promising as well. Finally, these materials also exhibit good electrical conductivity allowing them to be sectioned and shaped by electrical discharge machining (EDM) processes.« less
NASA Astrophysics Data System (ADS)
Ma, Xiao; Li, Xinguo; Zheng, Xianxu; Li, Kewu; Hu, Qiushi; Li, Jianling
2017-11-01
In recent decades, the hot-spot theory of condensed-phase explosives has been a compelling focus of scientific investigation attracting many researchers. The defect in the polymeric binder of the polymer-bonded explosive is called the intergranular defect. In this study, the real polymeric binder was substituted by poly(methyl methacrylate) (PMMA) as it is transparent and has similar thermodynamic properties to some binders. A set of modified split Hopkinson pressure bars equipped with a time-resolved shadowgraph was used to study the process of crack initiation and potential hot-spot formation around a cylindrical defect in PMMA. The new and significant phenomenon that the opening-mode crack emerged earlier than the shearing-mode crack from the cylindrical defect has been published for the first time in this paper. Furthermore, a two-dimensional numerical simulation was performed to show the evolution of both the stress field and the temperature field. The simulation results were in good agreement with the experiment. Finally, the law of potential hot-spot formation is discussed in detail.
Jang, Suk-Yong; Han, Sien-Ho
2016-12-19
Currently, Si as an active material for LIBs has been attracting much attention due to its high theoretical specific capacity (3572 mAh g -1 ). However, a disadvantage when using a Si negative electrode for LIBs is the abrupt drop of its capabilities during the cycling process. Therefore, there have been a few studies of polymers such as poly(vinylidene fluoride) (PVdF), carboxymethyl cellulose (CMC), styrene butadiene rubber (SBR) and polyacrylic acid (PAA) given that the robust structure of a polymeric binder to LIBs anodes is a promising means by which to enhance the performance of high-capacity anodes. These studies essentially focused mainly on modifying of the linear-polymer component or on copolymers dissolved in solvents. Cross-linking polymers as a binder may be preferred due to their good scratch resistance, excellent chemical resistance and high levels of adhesion and resilience. However, because these types of polymers (with a rigid structure and cross-linking points) are also insoluble in general organic solvents, applying these types in this capacity is virtually impossible.
Song, Jiangxuan; Yu, Zhaoxin; Gordin, Mikhail L; Li, Xiaolin; Peng, Huisheng; Wang, Donghai
2015-12-22
Maintaining structural stability is a great challenge for high-capacity conversion electrodes with large volume change but is necessary for the development of high-energy-density, long-cycling batteries. Here, we report a stable phosphorus anode for sodium ion batteries by the synergistic use of chemically bonded phosphorus-carbon nanotube (P-CNT) hybrid and cross-linked polymer binder. The P-CNT hybrid was synthesized through ball-milling of red phosphorus and carboxylic group functionalized carbon nanotubes. The P-O-C bonds formed in this process help maintain contact between phosphorus and CNTs, leading to a durable hybrid. In addition, cross-linked carboxymethyl cellulose-citric acid binder was used to form a robust electrode. As a result, this anode delivers a stable cycling capacity of 1586.2 mAh/g after 100 cycles, along with high initial Coulombic efficiency of 84.7% and subsequent cycling efficiency of ∼99%. The unique electrode framework through chemical bonding strategy reported here is potentially inspirable for other electrode materials with large volume change in use.
Schiebel, Johannes; Radeva, Nedyalka; Köster, Helene; Metz, Alexander; Krotzky, Timo; Kuhnert, Maren; Diederich, Wibke E; Heine, Andreas; Neumann, Lars; Atmanene, Cedric; Roecklin, Dominique; Vivat-Hannah, Valérie; Renaud, Jean-Paul; Meinecke, Robert; Schlinck, Nina; Sitte, Astrid; Popp, Franziska; Zeeb, Markus; Klebe, Gerhard
2015-09-01
Fragment-based lead discovery is gaining momentum in drug development. Typically, a hierarchical cascade of several screening techniques is consulted to identify fragment hits which are then analyzed by crystallography. Because crystal structures with bound fragments are essential for the subsequent hit-to-lead-to-drug optimization, the screening process should distinguish reliably between binders and non-binders. We therefore investigated whether different screening methods would reveal similar collections of putative binders. First we used a biochemical assay to identify fragments that bind to endothiapepsin, a surrogate for disease-relevant aspartic proteases. In a comprehensive screening approach, we then evaluated our 361-entry library by using a reporter-displacement assay, saturation-transfer difference NMR, native mass spectrometry, thermophoresis, and a thermal shift assay. While the combined results of these screening methods retrieve 10 of the 11 crystal structures originally predicted by the biochemical assay, the mutual overlap of individual hit lists is surprisingly low, highlighting that each technique operates on different biophysical principles and conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tohala, Luma; Oukacine, Farid; Ravelet, Corinne; Peyrin, Eric
2017-05-01
We recently reported that a great variety of DNA oligonucleotides (ONs) used as chiral selectors in partial-filling capillary electrophoresis (CE) exhibited interesting enantioresolution properties toward low-affinity DNA binders. Herein, the sequence prerequisites of ONs for the CE enantioseparation process were studied. First, the chiral resolution properties of a series of homopolymeric sequences (Poly-dT) of different lengths (from 5 to 60-mer) were investigated. It was shown that the size increase-dependent random coil-like conformation of Poly-dT favorably acted on the apparent selectivity and resolution. The base-unpairing state constituted also an important factor in the chiral resolution ability of ONs as the switch from the single-stranded to double-stranded structure was responsible for a significant decrease in the analyte selectivity range. Finally, the chemical diversity enhanced the enantioresolution ability of single-stranded ONs. The present work could lay the foundation for the design of performant ON chiral selectors for the CE separation of weak DNA binder enantiomers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Gorla, Sai Prasanth
Chemistry of intermetallic bonded diamond is studied. The impact resistance and energies of intermetallic bonded diamond is compared to current poly crystalline diamond compacts. IBD's are found to have high standards of hardness and have more impact energies absorbed. Intermetallic bonded diamond composite comprises of diamond particles dispersed in Tungsten carbide using Nickel aluminide (Ni3Al) as binder. In previous research conducted on IBD's, diamonds are successfully dispersed in intermetallic alloy of nickel aluminide and processed at 1350°C such that diamond particles remain intact without forming graphite. Composites are formed by milling, pressing the intermetallic binder and diamond particles and sintering at high temperature conditions.
Tlatli, Rym; Nozach, Hervé; Collet, Guillaume; Beau, Fabrice; Vera, Laura; Stura, Enrico; Dive, Vincent; Cuniasse, Philippe
2013-01-01
Artificial miniproteins that are able to target catalytic sites of matrix metalloproteinases (MMPs) were designed using a functional motif-grafting approach. The motif corresponded to the four N-terminal residues of TIMP-2, a broad-spectrum protein inhibitor of MMPs. Scaffolds that are able to reproduce the functional topology of this motif were obtained by exhaustive screening of the Protein Data Bank (PDB) using STAMPS software (search for three-dimensional atom motifs in protein structures). Ten artificial protein binders were produced. The designed proteins bind catalytic sites of MMPs with affinities ranging from 450 nm to 450 μm prior to optimization. The crystal structure of one artificial binder in complex with the catalytic domain of MMP-12 showed that the inter-molecular interactions established by the functional motif in the artificial binder corresponded to those found in the MMP-14-TIMP-2 complex, albeit with some differences in geometry. Molecular dynamics simulations of the ten binders in complex with MMP-14 suggested that these scaffolds may allow partial reproduction of native inter-molecular interactions, but differences in geometry and stability may contribute to the lower affinity of the artificial protein binders compared to the natural protein binder. Nevertheless, these results show that the in silico design method used provides sets of protein binders that target a specific binding site with a good rate of success. This approach may constitute the first step of an efficient hybrid computational/experimental approach to protein binder design. © 2012 The Authors Journal compilation © 2012 FEBS.
DOT National Transportation Integrated Search
2014-11-01
In this research project, asphalt binders containing various polymer modifiers were investigated through : examining both binder and mixture properties.Two additional topics were also investigated, including: a) the : effects of liquid antistr...
Evaluation of new binders using newly developed fracture energy test : [summary].
DOT National Transportation Integrated Search
2013-07-01
The flexibility and cohesion that give asphalt concrete its performance characteristics largely derive from the properties of binders. The durability of binders affects the function and lifetime of paving, and considering how extensive Floridas ro...
78 FR 73503 - Procurement List Additions and Deletions
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-06
...: 7510-01-462-1383--Binder, Loose-leaf, View Framed, Navy Blue, 1/2''. NSN: 7510-01-462-1385--Binder, Loose-leaf, Frame View, Navy Blue, 1-1/2''. NSN: 7510-01-462-1386--Binder, Loose-leaf, View Framed...
Laboratory evaluation of asphalt binder rutting, fracture, and adhesion tests.
DOT National Transportation Integrated Search
2014-04-01
The current performance grading (PG) specification for asphalt binders was developed based on the Strategic Highway : Research Program (SHRP) and is based primarily on the study of unmodified asphalt binders. Over the years, experience has : proven t...
Ling, Min; Liu, Michael; Zheng, Tianyue; ...
2017-01-01
The doping mechanism of poly (1-pyrenemethyl methacrylate) (PPy) is investigated through electrochemical analytical and spectroscopic method. The performance of PPy as a Si materials binder is studied and compared with that of a commercial available lithium polyacrylate (PAALi) binder. The pyrene moiety consumes lithium ions according to the cyclic voltammogram (CV) measurement, as a doping to the PPy binder. Based on the lithium consumption, PPy based Si/graphite electrode doping is quantified at 1.1 electron/pyrene moiety. Lastly, the PPy binder based electrodes surface are uniform and crack free during lithiation/delithiation, which is revealed through Scanning electron microscope (SEM) imaging.
Locatelli, Francesco; Del Vecchio, Lucia; Violo, Leano; Pontoriero, Giuseppe
2014-05-01
Hyperphosphatemia is common in the late stages of chronic kidney disease (CKD) and is associated with elevated parathormone levels, abnormal bone mineralization, extraosseous calcification and increased risk of cardiovascular events and death. Several classes of oral phosphate binders are available to help control phosphorus levels. Although effective at lowering serum phosphorus, they all have safety issues that need to be considered when selecting which one to use. This paper reviews the use of phosphate binders in patients with CKD on dialysis, with a focus on safety and tolerability. In addition to the more established agents, a new resin-based phosphate binder, colestilan, is discussed. Optimal phosphate control is still an unmet need in CKD. Nonetheless, we now have an extending range of phosphate binders available. Aluminium has potentially serious toxic risks. Calcium-based binders are still very useful but can lead to hypercalcemia and/or positive calcium balance and cardiovascular calcification. No long-term data are available for the new calcium acetate/magnesium combination product. Lanthanum is an effective phosphate binder, but there is insufficient evidence about possible long-term effects of tissue deposition. The resin-based binders, colestilan and sevelamer, appear to have profiles that would lead to less vascular calcification, and the main adverse events seen with these agents are gastrointestinal effects.
NASA Astrophysics Data System (ADS)
Nakazawa, Toshitada; Ikoma, Ai; Kido, Ryosuke; Ueno, Kazuhide; Dokko, Kaoru; Watanabe, Masayoshi
2016-03-01
Electrochemical reactions in Li-S cells with a solvate ionic liquid (SIL) electrolyte composed of tetraglyme (G4) and Li[TFSA] (TFSA: bis(trifluoromethanesulfonyl)amide) are studied. The sulfur cathode (S cathode) comprises sulfur, carbon powder, and a polymer binder. Poly(ethylene oxide) (PEO) and poly(vinyl alcohol) (PVA-x) with different degrees of saponification (x%) are used as binders to prepare the composite cathodes. For the Li-S cell containing PEO binder, lithium polysulfides (Li2Sm, 2 ≤ m ≤ 8), reaction intermediates of the S cathode, dissolve into the electrolyte, and Li2Sm acts as a redox shuttle in the Li-S cell. In contrast, in the Li-S cell with PVA-x binder, the dissolution of Li2Sm is suppressed, leading to high columbic efficiencies during charge-discharge cycles. The compatibility of the PVA-x binder with the SIL electrolyte changes depending on the degree of saponification. Decreasing the degree of saponification leads to increased electrolyte uptake by the PVA-x binder, increasing the charge and discharge capacities of Li-S cell. The rate capability of Li-S cell is also enhanced by the partial swelling of the PVA-x binder. The enhanced performance of Li-S cell containing PVA-x is attributed to the lowering of resistance of Li+ ion transport in the composite cathode.
In situ imaging during compression of plastic bonded explosives for damage modeling
Manner, Virginia Warren; Yeager, John David; Patterson, Brian M.; ...
2017-06-10
Here, the microstructure of plastic bonded explosives (PBXs) is known to influence behavior during mechanical deformation, but characterizing the microstructure can be challenging. For example, the explosive crystals and binder in formulations such as PBX 9501 do not have sufficient X-ray contrast to obtain three-dimensional data by in situ, absorption contrast imaging. To address this difficulty, we have formulated a series of PBXs using octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) crystals and low-density binder systems. The binders were hydroxyl-terminated polybutadiene (HTPB) or glycidyl azide polymer (GAP) cured with a commercial blend of acrylic monomers/oligomers. The binder density is approximately half of the HMX, allowingmore » for excellent contrast using in situ X-ray computed tomography (CT) imaging. The samples were imaged during unaxial compression using micro-scale CT in an interrupted in situ modality. The rigidity of the binder was observed to significantly influence fracture, crystal-binder delamination, and flow. Additionally, 2D slices from the segmented 3D images were meshed for finite element simulation of the mesoscale response. At low stiffness, the binder and crystal do not delaminate and the crystals move with the material flow; at high stiffness, marked delamination is noted between the crystals and the binder, leading to very different mechanical properties. Initial model results exhibit qualitatively similar delamination.« less
In situ imaging during compression of plastic bonded explosives for damage modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manner, Virginia Warren; Yeager, John David; Patterson, Brian M.
Here, the microstructure of plastic bonded explosives (PBXs) is known to influence behavior during mechanical deformation, but characterizing the microstructure can be challenging. For example, the explosive crystals and binder in formulations such as PBX 9501 do not have sufficient X-ray contrast to obtain three-dimensional data by in situ, absorption contrast imaging. To address this difficulty, we have formulated a series of PBXs using octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) crystals and low-density binder systems. The binders were hydroxyl-terminated polybutadiene (HTPB) or glycidyl azide polymer (GAP) cured with a commercial blend of acrylic monomers/oligomers. The binder density is approximately half of the HMX, allowingmore » for excellent contrast using in situ X-ray computed tomography (CT) imaging. The samples were imaged during unaxial compression using micro-scale CT in an interrupted in situ modality. The rigidity of the binder was observed to significantly influence fracture, crystal-binder delamination, and flow. Additionally, 2D slices from the segmented 3D images were meshed for finite element simulation of the mesoscale response. At low stiffness, the binder and crystal do not delaminate and the crystals move with the material flow; at high stiffness, marked delamination is noted between the crystals and the binder, leading to very different mechanical properties. Initial model results exhibit qualitatively similar delamination.« less
Han, Jae-Woong; Jeon, Ji-Hong; Park, Chan-Gi
2015-01-01
We evaluated the strength and durability characteristics of latex-polymer-modified, pre-packed pavement repair concrete (LMPPRC) with a rapid-set binder. The rapid-set binder was a mixture of rapid-set cement and silica sand, where the fluidity was controlled using a latex polymer. The resulting mix exhibited a compressive strength of ≥21 MPa and a flexural strength of ≥3.5 MPa after 4 h of curing (i.e., the traffic opening term for emergency repairs of pavement). The ratio of latex polymer to rapid-set binder material was varied through 0.40, 0.33, 0.29, and 0.25. Mechanical characterization revealed that the mechanical performance, permeability, and impact resistance increased as the ratio of latex polymer to rapid-set binder decreased. The mixture exhibited a compressive strength of ≥21 MPa after 4 h when the ratio of latex polymer to rapid-set binder material was ≤0.29. The mixture exhibited a flexural strength of ≥3.5 MPa after 4 h when the ratio of latex polymer to rapid-set binder material was ≤0.33. The permeability resistance to chloride ions satisfied 2000 C after 7 days of curing for all ratios. The ratio of latex polymer to rapid-set binder material that satisfied all conditions for emergency pavement repair was ≤0.29. PMID:28793596
In Situ Imaging during Compression of Plastic Bonded Explosives for Damage Modeling.
Manner, Virginia W; Yeager, John D; Patterson, Brian M; Walters, David J; Stull, Jamie A; Cordes, Nikolaus L; Luscher, Darby J; Henderson, Kevin C; Schmalzer, Andrew M; Tappan, Bryce C
2017-06-10
The microstructure of plastic bonded explosives (PBXs) is known to influence behavior during mechanical deformation, but characterizing the microstructure can be challenging. For example, the explosive crystals and binder in formulations such as PBX 9501 do not have sufficient X-ray contrast to obtain three-dimensional data by in situ, absorption contrast imaging. To address this difficulty, we have formulated a series of PBXs using octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) crystals and low-density binder systems. The binders were hydroxyl-terminated polybutadiene (HTPB) or glycidyl azide polymer (GAP) cured with a commercial blend of acrylic monomers/oligomers. The binder density is approximately half of the HMX, allowing for excellent contrast using in situ X-ray computed tomography (CT) imaging. The samples were imaged during unaxial compression using micro-scale CT in an interrupted in situ modality. The rigidity of the binder was observed to significantly influence fracture, crystal-binder delamination, and flow. Additionally, 2D slices from the segmented 3D images were meshed for finite element simulation of the mesoscale response. At low stiffness, the binder and crystal do not delaminate and the crystals move with the material flow; at high stiffness, marked delamination is noted between the crystals and the binder, leading to very different mechanical properties. Initial model results exhibit qualitatively similar delamination.
In Situ Imaging during Compression of Plastic Bonded Explosives for Damage Modeling
Manner, Virginia W.; Yeager, John D.; Patterson, Brian M.; Walters, David J.; Stull, Jamie A.; Cordes, Nikolaus L.; Luscher, Darby J.; Henderson, Kevin C.; Schmalzer, Andrew M.; Tappan, Bryce C.
2017-01-01
The microstructure of plastic bonded explosives (PBXs) is known to influence behavior during mechanical deformation, but characterizing the microstructure can be challenging. For example, the explosive crystals and binder in formulations such as PBX 9501 do not have sufficient X-ray contrast to obtain three-dimensional data by in situ, absorption contrast imaging. To address this difficulty, we have formulated a series of PBXs using octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) crystals and low-density binder systems. The binders were hydroxyl-terminated polybutadiene (HTPB) or glycidyl azide polymer (GAP) cured with a commercial blend of acrylic monomers/oligomers. The binder density is approximately half of the HMX, allowing for excellent contrast using in situ X-ray computed tomography (CT) imaging. The samples were imaged during unaxial compression using micro-scale CT in an interrupted in situ modality. The rigidity of the binder was observed to significantly influence fracture, crystal-binder delamination, and flow. Additionally, 2D slices from the segmented 3D images were meshed for finite element simulation of the mesoscale response. At low stiffness, the binder and crystal do not delaminate and the crystals move with the material flow; at high stiffness, marked delamination is noted between the crystals and the binder, leading to very different mechanical properties. Initial model results exhibit qualitatively similar delamination. PMID:28772998
Han, Jae-Woong; Jeon, Ji-Hong; Park, Chan-Gi
2015-10-01
We evaluated the strength and durability characteristics of latex-polymer-modified, pre-packed pavement repair concrete (LMPPRC) with a rapid-set binder. The rapid-set binder was a mixture of rapid-set cement and silica sand, where the fluidity was controlled using a latex polymer. The resulting mix exhibited a compressive strength of ¥21 MPa and a flexural strength of ¥3.5 MPa after 4 h of curing (i.e., the traffic opening term for emergency repairs of pavement). The ratio of latex polymer to rapid-set binder material was varied through 0.40, 0.33, 0.29, and 0.25. Mechanical characterization revealed that the mechanical performance, permeability, and impact resistance increased as the ratio of latex polymer to rapid-set binder decreased. The mixture exhibited a compressive strength of ¥21 MPa after 4 h when the ratio of latex polymer to rapid-set binder material was ¤0.29. The mixture exhibited a flexural strength of ¥3.5 MPa after 4 h when the ratio of latex polymer to rapid-set binder material was ¤0.33. The permeability resistance to chloride ions satisfied 2000 C after 7 days of curing for all ratios. The ratio of latex polymer to rapid-set binder material that satisfied all conditions for emergency pavement repair was ¤0.29.
DOT National Transportation Integrated Search
2017-01-01
The chemical process of oxidative age-hardening in asphalt pavements is one of the major distresses leading to hot mix asphalt (HMA) pavement failure as evidenced by fatigue and thermal (low temperature) cracking.
Titanium Carbide Bipolar Plate for Electrochemical Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaConti, Anthony B.; Griffith, Arthur E.; Cropley, Cecelia C.
Titanium carbide comprises a corrosion resistant, electrically conductive, non-porous bipolar plate for use in an electrochemical device. The process involves blending titanium carbide powder with a suitable binder material, and molding the mixture, at an elevated temperature and pressure.
NASA Technical Reports Server (NTRS)
Werkheiser, Niki; Fiske, Michael; Edmunson, Jennifer; Khoshnevis, Behrokh
2015-01-01
For long-duration missions on other planetary bodies, the use of in-situ materials will become increasingly critical. As man's presence on these bodies expands, so must the breadth of the structures required to accommodate them including habitats, laboratories, berms, radiation shielding for natural radiation and surface reactors, garages, solar storm shelters, greenhouses, etc. Planetary surface structure manufacturing and assembly technologies that incorporate in-situ resources provide options for autonomous, affordable, pre-positioned environments with radiation shielding features and protection from micrometeorites, exhaust plume debris, and other hazards. This is important because gamma and particle radiation constitute a serious but reducible threat to long-term survival of human beings, electronics, and other materials in space environments. Also, it is anticipated that surface structures will constitute the primary mass element of lunar or Martian launch requirements. The ability to use in-situ materials to construct these structures will provide a benefit in the reduction of up-mass that would otherwise make long-term Moon or Mars structures cost prohibitive. The ability to fabricate structures in situ brings with it the ability to repair these structures, which allows for self-sufficiency necessary for long-duration habitation. Previously, under the auspices of the MSFC In Situ Fabrication and Repair (ISFR) project and more recently, under the joint MSFC/KSC Additive Construction with Mobile Emplacement (ACME) project, the MSFC Surface Structures Group has been developing materials and construction technologies to support future planetary habitats with in situ resources. One such technology, known as Contour Crafting (additive construction), is shown in Figure 1, along with a typical structure fabricated using this technology. This paper will present the results to date of these efforts, including development of novel nozzle concepts for advanced layer deposition using the Contour Crafting process. This process, conceived initially for rapid development of cementitious structures on Earth, also lends itself exceptionally well to the automated fabrication of planetary surface structures using minimally processed regolith as aggregate, and imported binder material or binders developed from in situ materials. This process has been used successfully in the fabrication of construction elements using lunar regolith simulant and Mars regolith simulant, both with various binder materials. These binder materials have resulted from extensive evaluation and include both "imported" binder materials that might be launched from Earth as well as some binder materials that can theoretically also be derived from existing regolith materials. They were chosen to 1) reduce penetrating radiation as much as possible, primarily with hydrogen-bearing polymers, 2) attempt to provide an air-tight structure, 3) sufficiently mix and adsorb to regolith grains for strength, 4) maximize tolerance to day-night thermal cycling, 5) possibly increase electrical conductivity to dissipate any accumulated static charge, and 6) ease their application on planetary surfaces (specifically, the accommodation of reduced atmosphere and lack of heat sinks). Some of these materials have been tested with respect to radiation mitigation, micrometeorite resistance, and resistance to larger, slower-traveling pieces of regolith impinging on the surface, simulating nearby launch and landing activities. Conceptual designs for a Continuous Feedstock Delivery/Mixing System (CFDMS) will also be presented and future planned activities will be discussed as well.
DOT National Transportation Integrated Search
2015-01-01
The Virginia Department of Transportation (VDOT) specifies polymer-modified asphalt binders for certain asphalt : mixtures used on high-volume, high-priority routes. These binders must meet performance grade (PG) requirements for a PG : 76-22 binder ...
40 CFR 427.40 - Applicability; description of the asbestos paper (elastomeric binder) subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... asbestos paper (elastomeric binder) subcategory. 427.40 Section 427.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Elastomeric Binder) Subcategory § 427.40 Applicability...
40 CFR 427.40 - Applicability; description of the asbestos paper (elastomeric binder) subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... asbestos paper (elastomeric binder) subcategory. 427.40 Section 427.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Elastomeric Binder) Subcategory § 427.40 Applicability...
40 CFR 427.40 - Applicability; description of the asbestos paper (elastomeric binder) subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... asbestos paper (elastomeric binder) subcategory. 427.40 Section 427.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Elastomeric Binder) Subcategory § 427.40 Applicability...
Evaluation of the Texas tier system for seal coat binder specification.
DOT National Transportation Integrated Search
2012-09-01
The Texas Department of Transportation (TxDOT) instituted a change in their seal coat binder specification in 2010 which allowed districts to select multiple binders within specified traffic levels or tiers for the purposes of allowing contractors to...
Impact of Recycled Asphalt Shingles (RAS) on Asphalt Binder Performance
DOT National Transportation Integrated Search
2018-01-01
This study evaluated the effect of reclaimed asphalt pavement (RAP) and recycled asphalt shingles (RAS) on virgin binder true grade and fracture energy density (FED). A mortar approach, which avoids the need for binder extraction, was adopted to quan...
40 CFR 247.16 - Non-paper office products.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-paper office products. (a) Office recycling containers and office waste receptacles. (b) Plastic desktop accessories. (c) Toner cartridges. (d) Plastic-covered binders containing recovered plastic; chipboard and pressboard binders containing recovered paper; and solid plastic binders containing recovered plastic. (e...
Guidelines on design and construction of high performance thin HMA overlays.
DOT National Transportation Integrated Search
2016-08-01
Key Components of Mix Design and Material Properties: : High-quality aggregate - SAC A for high : volume roads : - PG 70 or 76 (Polymer Modified binders) : - RAP and RAS (shingles) not allowed : - Minimum binder content ( Over 6%) : - Pay for binder ...
40 CFR 247.16 - Non-paper office products.
Code of Federal Regulations, 2011 CFR
2011-07-01
...-paper office products. (a) Office recycling containers and office waste receptacles. (b) Plastic desktop accessories. (c) Toner cartridges. (d) Plastic-covered binders containing recovered plastic; chipboard and pressboard binders containing recovered paper; and solid plastic binders containing recovered plastic. (e...
40 CFR 247.16 - Non-paper office products.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-paper office products. (a) Office recycling containers and office waste receptacles. (b) Plastic desktop accessories. (c) Toner cartridges. (d) Plastic-covered binders containing recovered plastic; chipboard and pressboard binders containing recovered paper; and solid plastic binders containing recovered plastic. (e...
40 CFR 247.16 - Non-paper office products.
Code of Federal Regulations, 2014 CFR
2014-07-01
...-paper office products. (a) Office recycling containers and office waste receptacles. (b) Plastic desktop accessories. (c) Toner cartridges. (d) Plastic-covered binders containing recovered plastic; chipboard and pressboard binders containing recovered paper; and solid plastic binders containing recovered plastic. (e...
40 CFR 247.16 - Non-paper office products.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-paper office products. (a) Office recycling containers and office waste receptacles. (b) Plastic desktop accessories. (c) Toner cartridges. (d) Plastic-covered binders containing recovered plastic; chipboard and pressboard binders containing recovered paper; and solid plastic binders containing recovered plastic. (e...
Evaluation of new binders using newly developed fracture energy test.
DOT National Transportation Integrated Search
2013-07-01
This study evaluated a total of seven asphalt binders with various additives : using the newly developed binder fracture energy test. The researchers prepared and : tested PAV-aged and RTFO-plus-PAV-aged specimens. This study confirmed previous : res...
Microstructure, mechanical and fretting wear properties of TiC-stainless steel composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akhtar, F.; Department of Metallurgical and Materials Engineering, University of Engineering and Technology, Lahore; Guo, S.J.
2008-01-15
This study deals with the processing, microstructure, and wear behavior of TiC-reinforced stainless steel matrix composites, containing 50 to 70 wt.% TiC. Powder technology was used to successfully fabricate the composites. The microstructure of the composite was characterized by scanning electron microscopy. The microstructural study revealed that the TiC particles were distributed uniformly in the steel matrix phase. Interface debonding and microcracks were not observed in the composite. The composite hardness increased with TiC content. The fretting wear resistance of the composites was studied against high speed steel. The wear mechanisms are discussed by means of microscopical observations on themore » worn surfaces. The wear was severe at higher wear loads and lower TiC content. Microplowing of the stainless steel matrix was found to be the dominant wear mechanism. Heavy microplowing and rapid removal of material from the wear surface was observed at high wear load. The variation of wear loss with volume fraction and mean free path of the binder phase is also reported.« less
Starch-g-Poly-(N, N-dimethyl acrylamide-co-acrylic acid): an efficient Cr (VI) ion binder.
Kolya, Haradhan; Roy, Anirban; Tripathy, Tridib
2015-01-01
Synthesis of Starch-g-(Poly N, N-dimethylacrylamide-co-acrylic acid) was carried out by solution polymerization technique using potassium perdisulfate (K(2)S(2)O(8)) as the initiator. The graft copolymer was characterized by measuring molecular weight, using size exclusion chromatography (SEC), FTIR spectroscopy and X-ray diffraction (XRD) studies. The synthetic graft copolymer was used for removal of hexavalent chromium ion [Cr (VI)] from its aqueous solution. Various operating variables affecting the metal sorption such as, the amount of adsorbent, solution pH, contact time, temperature and the Cr (VI) solution concentration were extensively investigated. FTIR and UV-VIS spectroscopy, cyclic voltammetry (CV) were employed to study the metal complexation. The adsorption data could be well described by the pseudo-second-order and Langmuir isotherm model which indicate a chemisorption process. Calculation of the various thermodynamic parameters for the adsorption was also done. The negative value of free energy change (ΔG°) indicates the spontaneous nature of the adsorption. Copyright © 2014 Elsevier B.V. All rights reserved.
2014-01-01
Background Identification of ligand-protein binding interactions is a critical step in drug discovery. Experimental screening of large chemical libraries, in spite of their specific role and importance in drug discovery, suffer from the disadvantages of being random, time-consuming and expensive. To accelerate the process, traditional structure- or ligand-based VLS approaches are combined with experimental high-throughput screening, HTS. Often a single protein or, at most, a protein family is considered. Large scale VLS benchmarking across diverse protein families is rarely done, and the reported success rate is very low. Here, we demonstrate the experimental HTS validation of a novel VLS approach, FINDSITEcomb, across a diverse set of medically-relevant proteins. Results For eight different proteins belonging to different fold-classes and from diverse organisms, the top 1% of FINDSITEcomb’s VLS predictions were tested, and depending on the protein target, 4%-47% of the predicted ligands were shown to bind with μM or better affinities. In total, 47 small molecule binders were identified. Low nanomolar (nM) binders for dihydrofolate reductase and protein tyrosine phosphatases (PTPs) and micromolar binders for the other proteins were identified. Six novel molecules had cytotoxic activity (<10 μg/ml) against the HCT-116 colon carcinoma cell line and one novel molecule had potent antibacterial activity. Conclusions We show that FINDSITEcomb is a promising new VLS approach that can assist drug discovery. PMID:24936211
Development of an MgO-based binder for stabilizing fine sediments and storing CO2.
Hwang, Kyung-Yup; Ahn, Jun-Young; Kim, Cheolyong; Seo, Jeong-Yun; Hwang, Inseong
2015-12-01
An MgO-based binder was developed that could stabilize fine dredged sediments for reuse and store CO2. Initially, a binder consisting of fly ash (FA) and blast furnace slag (BFS) was developed by using alkaline activators such as KOH, NaOH, and lime. The FA0.4-BFS0.6 binder (mixed at a FA-to-BFS weight ratio of 4:6) showed the highest compressive strength of 10.7 MPa among FA/BFS binders when 5 M KOH was used. When lime (L) was tested as an alkaline activator, the strength was comparable with those obtained when KOH or NaOH was used. The L0.1-(FA0.4BFS0.6)0.9 binder (10 % lime mixed with the FA/BFS binder) showed the highest strength of 11.0 MPa. Finally, by amending this L0.1-(FA0.4BFS0.6)0.9 binder with MgO, a novel MgO-based binder (MgO0.5-(L0.1-(FA0.4BFS0.6)0.9) 0.5) was developed, which demonstrated the 28th day strength of 11.9 MPa. The MgO-based binder was successfully applied to stabilize a fine sediment to yield a compressive strength of 4.78 MPa in 365 days, which was higher than that obtained by the Portland cement (PC) system (3.22 MPa). Carbon dioxide sequestration was evidenced by three observations: (1) the decrease in pH of the treated sediment from 12.2 to 11.0; (2) the progress of the carbonation front inward the treated sediment; and (3) the presence of magnesium carbonates. The thermogravimetric analysis (TGA) results showed that 67.2 kg of CO2 per ton of the treated sediment could be stored under the atmospheric condition during 1 year.
Viscoelastic behaviour of cold recycled asphalt mixes
NASA Astrophysics Data System (ADS)
Cizkova, Zuzana; Suda, Jan
2017-09-01
Behaviour of cold recycled mixes depends strongly on both the bituminous binder content (bituminous emulsion or foamed bitumen) and the hydraulic binder content (usually cement). In the case of cold recycled mixes rich in bitumen and with low hydraulic binder content, behaviour is close to the viscoelastic behaviour of traditional hot mix asphalt. With decreasing bituminous binder content together with increasing hydraulic binder content, mixes are characteristic with brittle behaviour, typical for concrete pavements or hydraulically bound layers. The behaviour of cold recycled mixes with low content of both types of binders is similar to behaviour of unbound materials. This paper is dedicated to analysing of the viscoelastic behaviour of the cold recycled mixes. Therefore, the tested mixes contained higher amount of the bituminous binder (both foamed bitumen and bituminous emulsion). The best way to characterize any viscoelastic material in a wide range of temperatures and frequencies is through the master curves. This paper includes interesting findings concerning the dependency of both parts of the complex modulus (elastic and viscous) on the testing frequency (which simulates the speed of heavy traffic passing) and on the testing temperature (which simulates the changing climate conditions a real pavement is subjected to).
Kim, Sunjin; Jeong, You Kyeong; Wang, Younseon; Lee, Haeshin; Choi, Jang Wook
2018-05-14
New binder concepts have lately demonstrated improvements in the cycle life of high-capacity silicon anodes. Those binder designs adopt adhesive functional groups to enhance affinity with silicon particles and 3D network conformation to secure electrode integrity. However, homogeneous distribution of silicon particles in the presence of a substantial volumetric content of carbonaceous components (i.e., conductive agent, graphite, etc.) is still difficult to achieve while the binder maintains its desired 3D network. Inspired by mucin, the amphiphilic macromolecular lubricant, secreted on the hydrophobic surface of gastrointestine to interface aqueous serous fluid, here, a renatured DNA-alginate amphiphilic binder for silicon and silicon-graphite blended electrodes is reported. Mimicking mucin's structure comprised of a hydrophobic protein backbone and hydrophilic oligosaccharide branches, the renatured DNA-alginate binder offers amphiphilicity from both components, along with a 3D fractal network structure. The DNA-alginate binder facilitates homogeneous distribution of electrode components in the electrode as well as its enhanced adhesion onto a current collector, leading to improved cyclability in both silicon and silicon-graphite blended electrodes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Analysis of the binder yield energy test as an indicator of fatigue behaviour of asphalt mixes
NASA Astrophysics Data System (ADS)
O'Connell, Johan; Mturi, Georges A. J.; Komba, Julius; Du Plessis, Louw
2017-09-01
Empirical binder testing has increasingly failed to predict pavement performance in South Africa, with fatigue cracking being one of the major forms of premature pavement distress. In response, it has become a national aspiration to incorporate a performance related fatigue test into the binder specifications for South Africa. The Binder Yield Energy Test (BYET) was the first in a series of tests analysed for its potential to predict the fatigue performance of the binder. The test is performed with the dynamic shear rheometer, giving two key parameters, namely, yield energy and shear strain at maximum shear stress (γτmax). The objective of the investigation was to perform a rudimentary evaluation of the BYET; followed by a more in-depth investigation should the initial BYET results prove promising. The paper discusses the results generated from the BYET under eight different conditions, using six different binders. The results are then correlated with four point bending beam fatigue test results obtained from asphalt mix samples that were manufactured from the same binders. Final results indicate that the BYET is not ideal as an indicator of fatigue performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ropret, P.; Zoubek, R.; Skapin, A. Sever
2007-11-15
In restoration of colour layers, the selection of the most appropriate retouching binder is a very important step that may have a crucial impact on materials durability. As different weather conditions can have versatile influence on stability of colour layers, we determined the effect of ageing on carefully selected samples of binders (Tylose, Klucel, ammonium caseinate, gum arabicum, fish and skin glues and some other synthetic binders) as well as on several binder-pigment combinations (the pigments in combinations being cinnabar, green earth and smalt). The samples were subjected to accelerated ageing tests in climatic chambers. In these tests the temperaturemore » and the relative humidity were daily oscillating between - 20 deg. C and 50 deg. C and 50% to 90%, respectively, for a period of one month. Then the samples were exposed to UV and visible light generated by a metal halide lamp for a month. The differences in microstructure before and after ageing were determined by optical and scanning electron microscopy, while the ageing of the organic structures in binders was investigated by Fourier transform infrared (FTIR) microscopy.« less
DOT National Transportation Integrated Search
2017-09-01
Numerous studies have shown that G*/Sin, the high temperature specification parameter for current Performance Graded (PG) asphalt binder is not adequate to reflect the rutting characteristics of polymer-modified binders. Consequently, many state De...
DOT National Transportation Integrated Search
2017-09-01
Higher traffic coupled with heavier loads led the asphalt industry to introduce polymer-modified binders to enhance the durability and strength of hot mix asphalt (HMA) pavements. When the Superpave Performance Graded (PG) binder specification (AASHT...
Self-healing composites and applications thereof
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tee, Chee Keong; Wang, Chao; Cui, Yi
A battery electrode includes an electrochemically active material and a binder covering the electrochemically active material. The binder includes a self-healing polymer and conductive additives dispersed in the self-healing polymer to provide an electrical pathway across at least a portion of the binder.
40 CFR 427.40 - Applicability; description of the asbestos paper (elastomeric binder) subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... asbestos paper (elastomeric binder) subcategory. 427.40 Section 427.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Elastomeric Binder) Subcategory § 427.40 Applicability; description of...
40 CFR 427.40 - Applicability; description of the asbestos paper (elastomeric binder) subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... asbestos paper (elastomeric binder) subcategory. 427.40 Section 427.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Elastomeric Binder) Subcategory § 427.40 Applicability; description of...
Grade determination of crumb rubber-modified performance graded asphalt binder.
DOT National Transportation Integrated Search
2013-08-01
Due to particulates common in crumb rubber-modified asphalt binders, conventional PG grading using the Dynamic Shear Rheometer (DSR) with a gap height of 1.0 mm may not be valid and in accordance with current specifications. Asphalt binder testing an...
Grade determination of crumb rubber-modified performance graded asphalt binder.
DOT National Transportation Integrated Search
2013-08-01
Due to particulates common in crumb rubber-modified asphalt binders, conventional PG grading using the Dynamic : Shear Rheometer (DSR) with a gap height of 1.0 mm may not be valid and in accordance with current specifications. : Asphalt binder testin...
Effect of asphalt rejuvenating agent on aged reclaimed asphalt pavement and binder properties.
DOT National Transportation Integrated Search
2016-11-01
Hot in-place recycling (HIR) preserves distressed asphalt pavements while minimizing use of virgin binder : and aggregates. The final quality of an HIR mixture depends on the characteristics of the original binder, aging of the : pavement surface dur...
Wetting characteristics of asphalt binders at mixing temperatures.
DOT National Transportation Integrated Search
2013-10-01
Conventional hot mix asphalt (HMA) is produced by heating the aggregate and the asphalt binder to elevated : temperatures that are typically in the range of 150C to 160C. These temperatures ensure that the viscosity of the : asphalt binder is low eno...
Development of binder test to determine fracture energy [summary].
DOT National Transportation Integrated Search
2012-04-01
Asphalt binder makes up a relatively small percentage 4% to 8% of the hot mix asphalt used in pavements, but its performance as a binder is critical to the longevity of road surfaces. Asphalt is : a material whose flexibility changes with : t...
Attrition resistant bulk iron catalysts and processes for preparing and using same
Jothimurugesan, Kandaswamy [Ponca City, OK; Goodwin, Jr., James G.; Gangwal, Santosh K [Cary, NC
2007-08-21
An attrition resistant precipitated bulk iron catalyst is prepared from iron oxide precursor and a binder by spray drying. The catalysts are preferably used in carbon monoxide hydrogenation processes such as Fischer-Tropsch synthesis. These catalysts are suitable for use in fluidized-bed reactors, transport reactors and, especially, slurry bubble column reactors.
40 CFR Table 1 to Subpart Hhhh of... - Minimum Requirements for Monitoring and Recordkeeping
Code of Federal Regulations, 2010 CFR
2010-07-01
...-hour block averages. 2. Other process or control device parameters specified in your OMM b plan. As... value for each product manufactured during the operating day. 6. UF-to-latex ratio in the binder c For... Required if a thermal oxidizer is used to control formaldehyde emissions. b Required if process...
The effect of process parameters on audible acoustic emissions from high-shear granulation.
Hansuld, Erin M; Briens, Lauren; Sayani, Amyn; McCann, Joe A B
2013-02-01
Product quality in high-shear granulation is easily compromised by minor changes in raw material properties or process conditions. It is desired to develop a process analytical technology (PAT) that can monitor the process in real-time and provide feedback for quality control. In this work, the application of audible acoustic emissions (AAEs) as a PAT tool was investigated. A condenser microphone was placed at the top of the air exhaust on a PMA-10 high-shear granulator to collect AAEs for a design of experiment (DOE) varying impeller speed, total binder volume and spray rate. The results showed the 10 Hz total power spectral densities (TPSDs) between 20 and 250 Hz were significantly affected by the changes in process conditions. Impeller speed and spray rate were shown to have statistically significant effects on granulation wetting, and impeller speed and total binder volume were significant in terms of process end-point. The DOE results were confirmed by a multivariate PLS model of the TPSDs. The scores plot showed separation based on impeller speed in the first component and spray rate in the second component. The findings support the use of AAEs to monitor changes in process conditions in real-time and achieve consistent product quality.
NASA Astrophysics Data System (ADS)
Tringe, J. W.; Kercher, J. R.; Springer, H. K.; Glascoe, E. A.; Levie, H. W.; Hsu, P.; Willey, T. M.; Molitoris, J. D.
2013-07-01
We employ in-situ flash x-ray imaging, together with a detailed multiphase convective burn model, to demonstrate how explosives' binder characteristics influence the burning processes in thermal explosions. Our study focuses on the HMX-based explosives LX-10 and PBX 9501. While the HMX (cyclotetramethylene-tetranitramine) crystallite size distributions for these two explosives are nearly identical before heating, our experiments and simulations indicate that after heating, variations result due to differences in binder composition. Post-ignition flash x-ray images reveal that the average density decreases at late times more rapidly in PBX 9501 than LX-10, suggesting a faster conductive burning rate in PBX-9501. Heated permeability measurements in LX-10 and PBX 9501 demonstrate that the binder system characteristics influence the evolution of connected porosity. Once ignited, connected porosity provides pathways for product gas heating ahead of the reaction front and additional surface area for burning, facilitating the transition from conductive to convective burning modes. A multiphase convective burn model implemented in the ALE3D code is used to better understand the influence on burn rates of material properties such as porosity and effective thermally damaged particle size. In this context, particles are defined as gas-impermeable binder-coated crystallites and agglomerations with a set of effective radii reff. Model results demonstrate quantitative agreement with containment wall velocity for confined PBX 9501 and LX-10, and qualitative agreement with density as a function of position in the burning explosive. The model predicts a decrease in post-ignition containment wall velocity with larger radii in reff. These experimental data and model results together provide insight into the initiation and propagation of the reaction wave that defines the convective burn front in HMX-based explosives, a necessary step toward predicting violence under a broad range of conditions.
NASA Astrophysics Data System (ADS)
Varfolomeev, M. S.; Moiseev, V. S.; Shcherbakova, G. I.
2017-01-01
A technology is developed to produce highly thermoresistant ceramic monoxide corundum molds using investment casting and an aluminum-organic binder. This technology is a promising trend in creating ceramic molds for precision complex-shape casting of important ingots made of high-alloy steels, high-temperature and titanium alloys, and refractory metals. The use of the casting molds that have a high thermal and chemical resistance to chemically active metals and alloys under high-temperature casting minimizes the physicochemical interaction and substantially decreases the depth of the hard-to-remove metal oxide layer on important products, which increases their service properties.
Method of preparing fiber reinforced ceramic material
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishna T. (Inventor)
1987-01-01
Alternate layers of mats of specially coated SiC fibers and silicon monotapes are hot pressed in two stages to form a fiber reinforced ceramic material. In the first stage a die is heated to about 600 C in a vacuum furnace and maintained at this temperature for about one-half hour to remove fugitive binder. In the second stage the die temperature is raised to about 1000 C and the layers are pressed at between 35 and 138 MPa. The resulting preform is placed in a reactor tube where a nitriding gas is flowed past the preform at 1100 to 1400 C to nitride the same.
New agent to treat elevated phosphate levels: magnesium carbonate/calcium carbonate tablets.
Meyer, Caitlin; Cameron, Karen; Battistella, Marisa
2012-01-01
In summary, Binaphos CM, a magnesium carbonate/calcium carbonate combination phosphate binder, is marketed for treating elevated phosphate levels in dialysis patients. Although studies using magnesium/calcium carbonate as a phosphate binder are short term with small numbers of patients, this phosphate binder has shown some promising results and may provide clinicians with an alternative for phosphate binding. Using a combination phosphate binder may reduce pill burden and encourage patient compliance. In addition to calcium and phosphate, it is imperative to diligently monitor magnesium levels in patients started on this medication, as magnesium levels may increase with longer duration of use. Additional randomized controlled trials are necessary to evaluate long-term efficacy and safety of this combination phosphate binder.
NASA Astrophysics Data System (ADS)
Bumanis, G.; Bajare, D.; Dembovska, L.
2015-11-01
Alkali activation technology can be applied for a wide range of alumo-silicates to produce innovative materials with various areas of application. Most researches focuse on the application of alumo-silicate materials in building industry as cement binder replacement to produce mortar and concrete [1]. However, alkali activation technology offers high potential also in biotechnologies [2]. In the processes where certain pH level, especially alkaline environment, must be ensured, alkali activated materials can be applied. One of such fields is water treatment systems where high level pH (up to pH 10.5) ensures efficient removal of water pollutants such as manganese [3]. Previous investigations had shown that alkali activation technology can be applied to calcined clay powder and aluminium scrap recycling waste as a foam forming agent to create porous alkali activated materials. This investigation focuses on the structural investigation of calcined kaolin and illite clay alkali activation processes. Chemical and mineralogical composition of both clays were determined and structural investigation of alkali activated materials was made by using XRD, DTA, FTIR analysis; the microstructure of hardened specimens was observed by SEM. Physical properties of the obtained material were determined. Investigation indicates the essential role of chemical composition of the clay used in the alkali activation process, and potential use of the obtained material in water treatment systems.
TEA CO2 laser machining of CFRP composite
NASA Astrophysics Data System (ADS)
Salama, A.; Li, L.; Mativenga, P.; Whitehead, D.
2016-05-01
Carbon fibre-reinforced polymer (CFRP) composites have found wide applications in the aerospace, marine, sports and automotive industries owing to their lightweight and acceptable mechanical properties compared to the commonly used metallic materials. Machining of CFRP composites using lasers can be challenging due to inhomogeneity in the material properties and structures, which can lead to thermal damages during laser processing. In the previous studies, Nd:YAG, diode-pumped solid-state, CO2 (continuous wave), disc and fibre lasers were used in cutting CFRP composites and the control of damages such as the size of heat-affected zones (HAZs) remains a challenge. In this paper, a short-pulsed (8 μs) transversely excited atmospheric pressure CO2 laser was used, for the first time, to machine CFRP composites. The laser has high peak powers (up to 250 kW) and excellent absorption by both the carbon fibre and the epoxy binder. Design of experiment and statistical modelling, based on response surface methodology, was used to understand the interactions between the process parameters such as laser fluence, repetition rate and cutting speed and their effects on the cut quality characteristics including size of HAZ, machining depth and material removal rate (MRR). Based on this study, process parameter optimization was carried out to minimize the HAZ and maximize the MRR. A discussion is given on the potential applications and comparisons to other lasers in machining CFRP.
40 CFR 427.30 - Applicability; description of the asbestos paper (starch binder) subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... asbestos paper (starch binder) subcategory. 427.30 Section 427.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Starch Binder) Subcategory § 427.30 Applicability; description of the...
40 CFR 427.30 - Applicability; description of the asbestos paper (starch binder) subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... asbestos paper (starch binder) subcategory. 427.30 Section 427.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Starch Binder) Subcategory § 427.30 Applicability; description of the...
40 CFR 427.30 - Applicability; description of the asbestos paper (starch binder) subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... asbestos paper (starch binder) subcategory. 427.30 Section 427.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Starch Binder) Subcategory § 427.30 Applicability; description of the...
40 CFR 427.30 - Applicability; description of the asbestos paper (starch binder) subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... asbestos paper (starch binder) subcategory. 427.30 Section 427.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Starch Binder) Subcategory § 427.30 Applicability; description of the asbestos paper...
40 CFR 427.30 - Applicability; description of the asbestos paper (starch binder) subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... asbestos paper (starch binder) subcategory. 427.30 Section 427.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Starch Binder) Subcategory § 427.30 Applicability; description of the asbestos paper...
DOT National Transportation Integrated Search
2011-03-01
Hot mix asphalt (HMA) is a mixture containing aggregates and asphalt binders prepared at specified : proportions. The aggregates and asphalt binder proportions are determined through a mix design : procedure such as the Marshall Mix Design or the Sup...
DOT National Transportation Integrated Search
2011-03-01
Hot mix asphalt (HMA) is a mixture containing aggregates and asphalt binders prepared at specified : proportions. The aggregates and asphalt binder proportions are determined through a mix design : procedure such as the Marshall Mix Design or the Sup...
Validity of multiple stress creep recovery test for LADOTD asphalt binder specification.
DOT National Transportation Integrated Search
2010-09-01
The objectives of this research are to characterize the elastic response of various binders used by LADOTD to determine the feasibility of the Multiple Stress Creep Recovery (MSCR) test to be included in the LADOTD asphalt binder specification and to...
DOT National Transportation Integrated Search
2016-11-01
Hot in-place recycling (HIR) preserves distressed asphalt pavements while minimizing use of virgin binder and aggregates. The final quality of an HIR mixture depends on the characteristics of the original binder, aging of the pavement surface during ...
46 CFR 308.544 - Facultative binder, Form MA-315.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Facultative War Risk Cargo Insurance § 308.544 Facultative binder, Form MA-315. The standard form of War Risk Facultative Cargo Binder, which may be obtained from MARAD's...
47 CFR 51.232 - Binder group management.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 3 2010-10-01 2010-10-01 false Binder group management. 51.232 Section 51.232 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERCONNECTION Obligations of All Local Exchange Carriers § 51.232 Binder group management. (a) With the exception of loops...
Hayashi, T; Kornel, L
1990-01-01
This paper reports the results of a study on the binding of adrenal steroids in bovine aortic tissue. Using the same method as in our previous study of mineralocorticoid and glucocorticoid binding in rabbit arterial cytosol, we could not demonstrate in the bovine aorta the three types of high affinity binders for these steroids, which we found in the rabbit arteries. In the search for specific markers for each of the three types of binders (glucocorticoid and mineralocorticoid receptors and the transcortin-like intracellular binder), we have found that a conjugated steroid, cortisol-21-sulfate, binds preferentially to the transcortin-like binder, but not to the two receptors. Using this steroid, in combination with the pure synthetic glucocorticoid RU 28362, we were able to clearly discriminate between the three types of corticosteroid binders in bovine aorta.
Ling, Liming; Bai, Ying; Wang, Zhaohua; Ni, Qiao; Chen, Guanghai; Zhou, Zhiming; Wu, Chuan
2018-02-14
Sodium alginate (SA) is investigated as the aqueous binder to fabricate high-performance, low-cost, environmentally friendly, and durable TiO 2 anodes in sodium-ion batteries (SIBs) for the first time. Compared to the conventional polyvinylidene difluoride (PVDF) binder, electrodes using SA as the binder exhibit significant promotion of electrochemical performances. The initial Coulombic efficiency is as high as 62% at 0.1 C. A remarkable capacity of 180 mAh g -1 is achieved with no decay after 500 cycles at 1 C. Even at 10 C (3.4 A g -1 ), it remains 82 mAh g -1 after 3600 cycles with approximate 100% Coulombic efficiency. TiO 2 electrodes with SA binder display less electrolyte decomposition, fewer side reactions, high electrochemistry reaction activity, effective suppression of polarization, and good electrode morphology, which is ascribed to the rich carboxylic groups, high Young's modulus, and good electrochemical stability of SA binder.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Judith A.; Zikry, M. A., E-mail: zikry@ncsu.edu
2015-09-28
The coupled electromagnetic (EM)-thermo-mechanical response of cyclotrimethylenetrinitramine-estane energetic aggregates under laser irradiation and high strain rate loads has been investigated for various aggregate sizes and binder volume fractions. The cyclotrimethylenetrinitramine (RDX) crystals are modeled with a dislocation density-based crystalline plasticity formulation and the estane binder is modeled with finite viscoelasticity through a nonlinear finite element approach that couples EM wave propagation with laser heat absorption, thermal conduction, and inelastic deformation. Material property and local behavior mismatch at the crystal-binder interfaces resulted in geometric scattering of the EM wave, electric field and laser heating localization, high stress gradients, dislocation density, andmore » crystalline shear slip accumulation. Viscous sliding in the binder was another energy dissipation mechanism that reduced stresses in aggregates with thicker binder ligaments and larger binder volume fractions. This investigation indicates the complex interactions between EM waves and mechanical behavior, for accurate predictions of laser irradiation of heterogeneous materials.« less
Evaluation of lignin as an antioxidant in asphalt binders and bituminous mixtures.
DOT National Transportation Integrated Search
2017-01-01
The chemical process of oxidative age-hardening in asphalt pavements is one of the major distresses : leading to hot mix asphalt (HMA) pavement failure as evidenced by fatigue and thermal (low temperature) : cracking. : Research investigations at the...
Method of making amorphous metal composites
Byrne, Martin A.; Lupinski, John H.
1982-01-01
The process comprises placing an amorphous metal in particulate form and a low molecular weight (e.g., 1000-5000) thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite.
Monolayer boron-aluminum compacted sheet material
NASA Technical Reports Server (NTRS)
Sumner, E. V.
1973-01-01
The manufacturing techniques, basic materials used, and equipment required to produce monolayer boron-aluminum composites are described. Tentative materials and process specifications are included. Improvements in bonding and filament spacing obtained through use of brazing powder in the fugitive binder are discussed.
Titanium carbide bipolar plate for electrochemical devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaConti, Anthony B.; Griffith, Arthur E.; Cropley, Cecelia C.
A corrosion resistant, electrically conductive, non-porous bipolar plate is made from titanium carbide for use in an eletrochemical device. The process involves blending titanium carbide powder with a suitable binder material, and molding the mixture, at an elevated temperature and pressure.
Large-Area Atomic Oxygen Facility Used to Clean Fire-Damaged Artwork
NASA Technical Reports Server (NTRS)
Rutledge, Sharon K.; Banks, Bruce A.; Steuber, Thomas J.; Sechkar, Edward A.
2000-01-01
In addition to completely destroying artwork, fires in museums and public buildings can soil a displayed artwork with so much accumulated soot that it can no longer be used for study or be enjoyed by the public. In situations where the surface has not undergone extensive charring or melting, restoration can be attempted. However, soot deposits can be very difficult to remove from some types of painted surfaces, particularly when the paint is fragile or flaking or when the top surface of the paint binder has been damaged. Restoration typically involves the use of organic solvents to clean the surface, but these solvents may cause the paint layers to swell or leach out. Also, immersion of the surface or swabbing during solvent cleaning may move or remove pigment through mechanical contact, especially if the fire damage extends into the paint binder. A noncontact technique of removing organic deposits from surfaces was developed out of NASA research on the effects of oxygen atoms on various materials. Atomic oxygen is present in the atmosphere surrounding the Earth at the altitudes where satellites typically orbit. It can react chemically with surface coatings or deposits that contain carbon. In the reaction, the carbon is converted to carbon monoxide and some carbon dioxide. Water vapor is also a byproduct of the reaction if the surface contains carbon-hydrogen bonds. To study this reaction, NASA developed Earth-based facilities to produce atomic oxygen for material exposure and testing. A vacuum facility designed and built by the Electro-Physics Branch of the NASA Glenn Research Center at Lewis Field to provide atomic oxygen over a large area for studying reactions in low Earth orbit has been used to successfully clean several full-size paintings. (This facility can accommodate paintings up to 1.5 by 2.1 m. The atomic oxygen plasma is produced between two large parallel aluminum plates using a radiofrequency power source operating at roughly 400 W. Atomic oxygen is generated uniformly over this area at an operating pressure of 1 to 5 mtorr.
NASA Astrophysics Data System (ADS)
Li, Y. S.; Zhao, T. S.; Liang, Z. X.
In preparing low-temperature fuel cell electrodes, a polymer binder is essential to bind discrete catalyst particles to form a porous catalyst layer that simultaneously facilitates the transfer of ions, electrons, and reactants/products. For two types of polymer binder, namely, an A3-an anion conducting ionomer and a PTFE-a neutral polymer, an investigation is made of the effect of the content of each binder in the anode catalyst layer on the performance of an alkaline direct ethanol fuel cell (DEFC) with an anion-exchange membrane and non-platinum (non-Pt) catalysts. Experiments are performed by feeding either ethanol (C 2H 5OH) solution or ethanol-potassium hydroxide (C 2H 5OH-KOH) solution. The experimental results for the case of feeding C 2H 5OH solution without added KOH indicate that the cell performance varies with the A3 ionomer content in the anode catalyst layer, and a content of 10 wt.% exhibits the best performance. When feeding C 2H 5OH-KOH solution, the results show that: (i) in the region of low current density, the best performance is achieved for a membrane electrode assembly without any binder in the anode catalyst layer; (ii) in the region of high current density, the performance is improved with incorporation of PTFE binder in the anode catalyst layer; (iii) the PTFE binder yields better performance than does the A3 binder.
DOT National Transportation Integrated Search
2014-08-01
The current performance grading (PG) specification for asphalt binders is based primarily on the study of unmodified asphalt binders. Over the years, experience has proven that the PG grading system, while good for ensuring overall quality, fails in ...